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Abstract

Fractal-like Finite Element Method and Strain Energy Approach for Computational
Modelling and Analysis of Geometrically V-notched Plates

Muhammad Treifi
Doctor of Philosophy
The University of Manchester
December 2012

The fractal-like finite element method (FFEM) is developed to compute stress intensity
factors (SIFs) for isotropic homogeneous and bi-material V-notched plates. The method is
semi-analytical, because analytical expressions of the displacement fields are used as
global interpolation functions (GIFs) to carry out a transformation of the nodal
displacements within a singular region to a small set of generalised coordinates. The
concept of the GIFs in reducing the number of unknowns is similar to the concept of the
local interpolation functions of a finite element. Therefore, the singularity at a notch-tip is
modelled accurately in the FFEM using a few unknowns, leading to reduction of the
computational cost.

The analytical expressions of displacements and stresses around a notch tip are derived
for different cases of notch problems: in-plane (modes I and II) conditions and out-of-
plane (mode III) conditions for isotropic and bi-material notches. These expressions,
which are eigenfunction series expansions, are then incorporated into the FFEM to carry
out the transformation of the displacements of the singular nodes and to compute the
notch SIFs directly without the need for post-processing. Different numerical examples of
notch problems are presented and results are compared to available published results and
solutions obtained by using other numerical methods.

A strain energy approach (SEA) is also developed to extract the notch SIFs from finite
element (FE) solutions. The approach is based on the strain energy of a control volume
around the notch-tip. The strain energy may be computed using commercial FE packages,
which are only capable of computing SIFs for crack problems and not for notch problems.
Therefore, this approach is a strong tool for enabling analysts to compute notch SIFs
using current commercial FE packages. This approach is developed for comparison of the
FFEM results for notch problems where available published results are scarce especially
for the bi-material notch cases.

A very good agreement between the SEA results and the FFEM results is illustrated. In
addition, the accuracy of the results of both procedures is shown to be very good
compared to the available results in the literature. Therefore, the FFEM as a stand-alone
procedure and the SEA as a post-processing technique, developed in this research, are
proved to be very accurate and reliable numerical tools for computing the SIFs of a
general notch in isotropic homogeneous and bi-material plates.
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Introduction
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1. Introduction

1.1. Background and Motivation

The presence of cracks in structural elements leads to stress intensities at the crack tips.
This may lead to a catastrophic sudden failure of those structures. Therefore, a lot of
research has been dedicated to finding parameters to characterise the fracture caused by
cracks. Some of those parameters, that are used today, are the stress intensity factors
(SIFs), the J-integral, and the crack tip opening displacement, which are used as failure

criteria. Relationships between these parameters exist in linear elastic fracture mechanics.

The presence of notches, too, leads to stress intensities at the notch tips. A crack is a
special case of a notch (a notch with an opening angle of zero is basically a crack).
Therefore, developing new methods and/or extending existing methods of computing
fracture parameters of a crack to compute general fracture parameters of a notch is of high
relevance. This is because it would allow interested designers and analysts to compute

fracture parameters of any general case of stress intensity.

The usefulness is greater if a method can be developed or extended to compute fracture
parameters for notches and cracks in two different materials joined together. This is
important, because of the use of components made up of different materials joined
together in different engineering fields. Those fracture parameters help the designer and
the operator to understand the mechanical integrity of such bi-material components. This
could also be used to assess the bonding strength of an adhesive between the different

joined materials.
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Many researchers have dedicated a lot of research to attempt to treat notches along the
interface of a bi-material component. However, because of the complicated nature of such
cases, they only produced results for stress singularities of bi-material notches without

producing results of the more useful parameters, such as the SIFs.

The fractal-like finite element method (FFEM) is a semi-analytical method that was
initially developed in the 1980s in Hong Kong to compute the SIFs of crack problems. Its
results are of good accuracy and it is easy to implement in a finite element (FE) code as
only matrix multiplication is involved, provided that “good” global interpolation
functions (GIFs) are used. From the late 1990s, researchers at Manchester have extended
the FFEM to multiple penny-shaped cracks, thermoelastic crack problems and dynamic
crack problems. However, none of the researchers in Hong Kong or Manchester have
investigated notch problems. Therefore, the main objective of this thesis is to extend the
FFEM to compute the SIFs of general notch cases of isotropic and bi-material cases,
along with attempts to develop other approaches to extract the SIFs for a general notch
from commercial FE packages. This is because most FE commercial packages are capable

of computing the SIFs for cracks but not for general notches.

1.2. Aims and Objectives

The specific objectives of this study are:

1. Derivation of global interpolation functions for an isotropic notch under mode I, II

and III loading conditions.
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2. Extending the FFEM to compute the SIFs for symmetric isotropic notch under
mode I, IT and III loading conditions.

3. Dealing with asymmetric isotropic notch using FFEM.

4. Derivation of global interpolation functions for a bi-material notch under mode I,
IT and III loading conditions.

5. Extending the FFEM to compute the SIFs for bi-material notch under mode I, II
and III loading conditions.

6. Developing a technique for extracting SIFs values from commercial FE packages

based on the strain energy for comparison.

1.3. Contributions to Knowledge

This research provides a means to compute the SIFs for general notch problems. It
develops the FFEM to compute notch SIFs as a stand-alone method. To evaluate the
accuracy of the predicted notch SIFs values by the FFEM, comparison with available
published results is carried out. However, for many cases considered there are no
available published results to compare with especially in the cases of bi-material notch
problems. Therefore, a comparison is carried out with crack cases for which published
results exist or numerical results are obtainable using commercial FE packages, as a crack
is simply a special case of a notch. Although this comparison proves partially and, to a
certain degree, sufficiently that the FFEM provides accurate results, the necessity to
compare FFEM results, especially for the bi-material cases, with another method seems in
order as it will enable the validation of the newly developed FFEM for analysing bi-
material notches. Therefore, a lot of effort and research has been devoted to overcome

this, and an approach based on the strain energy of a singular region around the notch tip
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to compute the notch SIFs is developed. The strain energy can be easily computed using a

commercial FE package. This makes this approach quite appealing, as it makes it easy to

extract notch SIFs using commercial FE packages, which to my knowledge are not

capable of computing SIFs of a general notch.

In addition, the many examples of different notch shapes and locations subjected to

different loading conditions give a valuable insight into the behaviour of the SIFs values

as the notch gets closer to the boundaries or as the material properties of a bi-material

notch vary. Many of those results are new.

In list form, the contributions to knowledge are as follows:

1.

Development of the FFEM to compute mode I and II SIFs for isotropic notch
problems.
Development of the FFEM to compute mode I and II SIFs for isotropic

asymmetric notch problems.

. Development of the FFEM to compute mode III SIFs for isotropic notch

problems.
Development of the FFEM to compute mode III SIFs for bi-material notch
problems.
Development of the FFEM to compute mode I and II SIFs for bi-material notch
problems.
Development of the SEA to extract mode I, II and III SIFs for isotropic and bi-
material notch problems from FE solutions produced using commercial FE

packages.
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1.4. Layout of Thesis

This thesis is presented in an Alternative Format, meaning that its core context is
presented in the form of research papers that have been published in externally refereed
contexts. Therefore, this thesis is divided into twelve chapters. Chapter one defines the
aims and objectives, justifies the undertaking and highlights the contributions to
knowledge of the study. Chapter two provides a literature review of the methods that
have been developed and used to compute SIFs for cracks and notches. Chapter three
provides a general theoretical background of the FFEM and the mathematical derivations
of the global interpolation functions. Chapter four provides a research overview and a
summary of the papers included in the thesis. The following seven chapters, Chapter five
to Chapter eleven, are the published research papers that demonstrate the methods and
findings of the research undertaken. The sections of these papers are listed in the Table of
Contents. However, the pagination of the thesis does not include the pages numbers of the

papers. Hence, Chapters five to eleven appear at pages 110, 111, 112, etc.

Chapter five presents a copy of a journal paper entitled “Computation of the stress
intensity factors of sharp notched plates by the fractal-like finite element method” that has
been published in the International Journal for Numerical Methods in Engineering. In this
paper the FFEM is developed to compute SIFs values for the in-plane problem (mode I
and II) under tension. Chapter six presents a copy of a journal paper entitled
“Computations of modes I and Il stress intensity factors of sharp notched plates under in-
plane shear and bending loading by the fractal-like finite element method” that has been
published in the International Journal of Solids and Structures. In this paper, the FFEM

code is extended to compute the notch SIFs for plates subjected to in-plane shear and
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bending loading conditions. Chapter seven presents a copy of a conference paper entitled
“Computations of SIFs for non-symmetric v-notched plates by the FFEM that has been
published in the Proceedings of the ASME 2009 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE 2009 August 30 - September 2, 2009, San Diego, CA, USA. In this paper the
method is extended to compute the SIFs for non-symmetric notch cases. Chapter eight
presents a copy of a journal paper entitled “Computations of the stress intensity factors of
double-edge and centre V-notched plates under tension and anti-plane shear by the
fractal-like finite element method” that has been published in the journal Engineering
Fracture Mechanics. In this paper, the FFEM is developed to compute mode III SIFs for
notches subjected to out-of-plane loading conditions. All the aforementioned work was on

developing the FFEM to compute SIFs for isotropic homogeneous cases.

Chapter nine presents a copy of a journal paper entitled “Evaluation of mode III stress
intensity factors for bi-material notched bodies using the fractal-like finite element
method” that has been published (early view) in the journal Computers and Structures. In
this paper, the FFEM is developed to compute the mode III SIFs for bi-material notches.
Chapter ten presents a copy of a journal paper entitled “Strain Energy Approach to
Compute Stress Intensity Factors for Isotropic Homogeneous and Bi-material V-notches”
that has been published (early view) in the International Journal of Solids and Structures.
In this paper, an approach to compute SIFs for general notches in isotropic homogeneous
or bi-material plates based on the strain energy is developed. Chapter eleven presents a
copy of a journal paper entitled “Bi-material V-notch Stress Intensity Factors by the
Fractal-like Finite Element Method” that has been published (early view) in the journal

Engineering Fracture Mechanics. In this paper, the FFEM is developed to compute the
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mode I and II SIFs for bi-material notches. Chapter twelve concludes the thesis,

summarises the findings and makes suggestions for future work.
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Chapter 2

Literature Review
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2. Literature Review

2.1. Historical Background of Fracture Mechanics

Structures were traditionally designed so that the internal stresses would be below certain
limiting values, which were usually taken as the yield stress values of the materials used.
This approach is insufficient, because materials may have defects such as cracks,
dislocations or impurities, etc, or a structure may have sharp corners, notches, or holes.
All of these may cause the stresses to rise and are considered stress raisers. As a result the
structure might fail at much lower values of the stresses. Many historic catastrophic
failures of major structures such as bridges, ships, aircraft, pipelines, and tanks have
happened as a result of not only inadequate design but also because of the pre-existence
of flaws in the materials, leading not only to financial losses but also to the loss of many
lives. An example is the failure sustained by the World War II Liberty ships. Of about
2700 ships built during World War II, roughly 400 sustained fractures, of which 90 were
serious. Twenty ships sustained complete failure; ten of them basically broke in two
(Anderson, 1995). Most of the fractures initiated on the deck at square hatch corners. The
investigations of the fracture problem that occurred during the decade after the War led to

the development of the field which we now know as Fracture Mechanics.

Griffith (1920) carried out one the earliest systematic investigation of fracture problems
based on the existing development of the stress analysis of an elliptical hole performed by
Inglis (1913). Griffith’s theory is based on energy balance. He noted that in case of the
presence of a crack in a loaded plate, a balance must be attained between the decrease in

potential energy and the increase in surface energy resulting from the presence of the
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crack. However, his approach was too primitive for engineering applications and was
only good for brittle materials. Subsequent efforts to make it applicable to metals were
not successful, until a breakthrough was achieved by Irwin (1948) to extend Griffith
approach to metals by including the energy dissipated by local plastic flow. He also
developed the concept of strain energy release rate (Irwin, 1957) which was related to
Griffith’s approach but was more useful for engineering problems. Irwin’s work was
based on the assumption that solutions to crack problems could be obtained using elastic
considerations if the plastic zone around the crack tip was small. Utilising Westergaard’s
(1939) solutions for a cracked body, Irwin showed that the displacements and stresses
near a crack tip could be described by a single constant related to the strain energy rate.

This constant later became known as the Stress Intensity Factor.

During the same period, Williams (1952, 1957) derived the stress and displacement
expressions for the singular region around a notch/crack tip under generalised in-plane
loading. The expressions were shown to be eigenfunction series expansions, which are

referred to in the literature as Williams’ eigenfunction series expansions to acknowledge

his effort. He was the first to demonstrate the » > singularity for elastic crack problems,

which has offered substantial understanding of the type of singularity near the crack tip,

and paved the way forward for future research.

Around the 1960s, the fundamentals of Linear Elastic Fracture Mechanics (LEFM) were
fairly well established, and scientists began to give attention to crack-tip plasticity, since
LEFM ceases to be valid when there is a significant plastic zone around the crack tip.
Many researchers suggested a yielding correction at the crack tip. Irwin (1961) suggested

a correction that was a very simple extension of LEFM. Dugdale (1960) and Barenblatt
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(1962) independently developed more detailed models based on a narrow strip of yielded
material at the crack tip. Wells (1961) recognised that the crack faces moved apart with
plastic deformation, which led to the development of the concept called the crack-tip-
opening displacement (CTOD). Rice (1968) was able to generalise the energy release rate
to nonlinear materials by idealising the plastic deformation behaviour as nonlinear elastic.
He explained that the nonlinear energy release rate can be expressed as a path-
independent line integral, called the J-integral (or domain integral), evaluated along an

arbitrary contour around the crack tip.

Recent research trends have been related to dynamic and time-dependent fracture
mechanics of linear and nonlinear materials, and to the development of microstructural

models for fracture and models to relate local and global fracture behaviour of materials.

2.2. Stress Intensity Factors (SIFs):

In LEFM, the stress intensity factors (SIFs) characterise the stress, strain, and
displacement fields in the crack/notch tip region and have a significant function in
virtually all fracture problems. For example, in failure design studies, it is necessary to
accurately evaluate SIFs in order to determine fracture parameters such as the critical
crack length, the fracture loads and the service life of a structural component. Fast,
reliable and accurate computations of SIFs are often necessary in practical applications
such as in the design of new structures or in the assessment of the integrity of existing
structures. This is especially true for high integrity structures such as nuclear reactor
cores, aircraft, submarines and spacecraft. Another area of major application is in welded

structures.
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The general solutions for the stresses and displacements near the crack tip can be
expressed in terms of the three SIFs related to three basic cracking modes as illustrated in
Figure 2.1: the opening mode referred to as mode I (K 1), the sliding (or in-plane shear)
mode referred to as mode II (K, ), and the tearing (or out-of-plane shear) mode referred
to as mode III (K ,,,). When a SIF value, for example the value of K, , reaches a critical
value, rapid crack growth occurs. The critical value is a material property and is known as

the fracture toughness (K,.). The fracture toughness of a material is determined

experimentally.

(2) (b) (©

Figure 2.1. Basic Modes of Fracture: (a) mode I; (b) mode II; and (¢) mode III.

Similarly, as notch or sharp corners lead to stress intensities at the notch tip, notch SIFs
could be used to characterise the notch tip conditions. Therefore, the study of stress
intensities at a corner/notch is of high importance, because the presence of corners in a
structure may result in crack initiation leading to a structural failure or shortening of the
service life of the structure (recall the Liberty ships where the crack initiated at the
corners of square hatches). The importance is even higher in the case of composite
bodies, which comprise isotropic materials jointed together, because it could be used, for

example, to evaluate the adhesive strength. Therefore, much effort and research has been
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devoted to the analysis of sharp notch problems and computation of notch SIFs. By
analogy to the fracture criterion for cracks, Seweryn (1994) proposed a general fracture
criterion for notches; i.e. Failure occurs when the notch SIFs reach critical values. Other
researchers who tried to establish a failure criterion for a notch are Knésl (1991), Goémez
and Elices (2003), and Carpinteri et al. (2008). Knésl (1991) extended the stability
criterion of a crack to the general case of a notch. Gémez and Elices (2003) showed the
advantages of the cohesive crack model for predicting fracture of notched components,
and recently Carpinteri et al. (2008) presented an expression for the generalised fracture
toughness which is a function of the material tensile strength, the fracture toughness and

the notch opening angle.

Many researchers have developed various methods and procedures to compute the SIFs
using experimental, analytical, numerical or semi-analytical methods. Experimental
methods such as photoelasticity, moire’, or caustics could be used to obtain SIFs (Sih,
1981). The SIFs cannot be measured directly in an experiment, but they can be found via

relations between SIFs and measurable quantities like strains or displacements.

The most common analytical methods used to determine SIFs are the Integral
Transformation Method by Sneddon (1946, 1969), the Complex Variable Method by
Westergaard (1939) and Muskhelishvili (1953), and Williams’ Eigenfunction Series
Expansion by Williams (1952). These methods have been used to determine the
distribution of the stresses and the displacements near the crack tip. Williams (1952) was
the first to investigate the analytical form of singularities resulting at a notch tip. He
found that the stresses in a homogeneous notched body become infinite at the notch tip

under any boundary conditions. Analytical methods give accurate solutions, but they can
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only be applied to simple cases. Some of these methods are used in this thesis to derive
the stress and displacement expressions near the notch tip that are used as GIFs in the

FFEM.

For most realistic problems with finite geometrical boundaries and complex loading
conditions, numerical and semi-analytical procedures are the only means to determine the
SIFs. There are many numerical methods, such as the Finite Element Method (FEM), the
Boundary Element Method, the Finite Difference Method, the Weight Residue Method,
the Boundary Collocation Method, etc. Details of these methods can be found in many
references such as Atluri (1986) and Aliabadi et al. (1991). Most numerical procedures in

the literature are based on modified versions of those methods.

Among the aforementioned methods, the FEM is the most established approach in
engineering. It has been proven to be capable of dealing with crack problems. However,
computationally speaking, it is quite costly because of the unavoidable fine mesh required
around the crack tip, which leads to a very large number of unknowns. Some singular
elements have been developed to eliminate some of the FEM’s problems, such as the

widely used quarter-point element Barsoum (1976a, 1976b). This type of elements can

generate the 1/Ar singularity at the crack tip. There has been some criticism of this
element such as the discussion raised by Dhondt (1994). He proved that the quarter-point
element is an unstable equilibrium configuration, meaning a small geometric modification
of the quarter-point element to match the body geometry, for example, will lead to a
totally degenerated element. Another issue is that the quarter-point element can only be
degenerated from specific finite element types. However, the singular quarter-point

element was an important development, and it is widely incorporated into commercial FE
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packages. Moreover, the SIFs cannot be obtained using the FEM directly, but some post-
processing is required, such as using the domain integral (or J-integral) techniques by

Rice (1968) or the virtual crack extension by Hellen (1975).

Semi-analytical methods that have been developed to compute the SIFS are among others
the hybrid crack element (HCE), the scaled boundary finite element method (SBFEM),
and the fractal-like finite element method (FFEM). Semi-analytical methods appear
promising for fracture mechanics because they combine the accuracy of analytical
solutions with the practicality of numerical procedures. The HCE was developed by Tong
et al. (1973) to compute the SIFs for plane cracks. Karihaloo and Xiao (2001) presented a
simplified variational principle using truncated asymptotic crack tip displacement and
stress series expansions was used to formulate the HCE. Despite the good accuracy of the
numerical results obtained by the HCE, the element was incompatible with the
surrounding finite elements because of the exclusion of coefficients of the Williams series
expansion that do not contribute to the stresses and strains in the formulation of the HCE
(Xiao and Karihaloo, 2004). To minimise the incompatibility, Xiao and Karihaloo (2007)
recovered these coefficients by an indirect method that involves the application of a least-
squares method. Wolf (2003) developed the SBFEM, which is a numerical finite element-
based procedure in the circumferential directions and an analytical procedure in the radial
direction. In the SBFEM, the governing partial differential equations are transformed to a
scaled boundary co-ordinate system. By introducing shape functions in the
circumferential directions, these equations are reduced to a set of second-order ordinary
differential equations. These ordinary differential equations are solved analytically in the
radial direction after determining their coefficients by a finite element approximation in

the circumferential directions. However, the mathematics of the SBFEM compared to the
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FEM is rather complicated (Chidgzey and Deeks, 2005). A brief history about the FFEM

is presented in the next section.

For notch cases, researchers have developed various methods and procedures to compute
the SIFs for a notch based on methods used to predict crack SIFs. Gross and Mendelson
(1972) calculated the SIFs for many notch cases of modes I and II by means of a
boundary collocation method based on the stress functions derived by Williams (1952).
Tong and Pian (1973) concluded that in order to improve the convergence rate of finite
element solutions of problems with a singularity, the interpolation functions of a finite
element formulation must include terms that can account for the analytical form of the
singularity. In addition, these interpolation functions should be used for elements within a
finite region, and not only for those around the singular point. Lin and Tong (1980)
developed singular finite elements for the analysis of v-notched plates. Carpenter (1984)
presented a collocation procedure to compute SIFs for notch problems based on the
contour integral of Stern et al. (1976). Babuska and Miller (1984) developed post-
processing approaches to extract the generalised SIFs near corner points from a finite
element solution using Green’s function or the energy release principle. Portela et al.
(1991) proposed a boundary element singularity subtraction technique to compute the
SIFs of notch problems. Their method requires extra boundary conditions that they
referred to as ‘‘singularity conditions of the regularisation procedure”. Zhao and Hahn
(1992) predicted the SIFs of a notch problem from the SIFs of a crack problem. Chen

(1995) computed the SIFs of notched plates by means of the body force method.

Results of mode III SIFs of cracked plates were reported by some authors such as Zhang

(1988) who presented results for off-centre single-edge-cracked plates with the aid of the
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basic theorem of the Fourier transform and Fourier series. Noda and Takase (2003)
calculated the generalised SIFs for a V-shaped notched round bar under tension, bending,

and torsion using the singular integral equation of the body force method.

Most of the aforementioned research work was concerned only with isotropic
homogeneous crack and/or notch problems. For bi-material cases, which are more
complicated, researchers such as Theocaris (1974), Dempsey and Sinclair (1981), and
Hein and Erdogan (1971), among others, studied the stress and displacement fields and
investigated the behaviour of the singular eigenvalues for bi-material notches. The case of
an interfacial crack problem, which is a special case of a bi-material notch problem, has
been investigated by many researchers, such as Lin and Mar (1976) constructed a hybrid
crack element to compute SIFs for cracks in bi-materials. Yau and Wang (1984) used a
procedure that involves known auxiliary solutions and evaluation of conservation
integrals along a suitably selected remote path. Lee and Choi (1988) computed the SIFs
for interfacial cracks using a boundary element method which employed the multi-region
technique and the double-point concept. Matsumto et al. (2000) evaluated the SIFs of

interface cracks using a concept based on the interaction energy release rates.

Results for stress intensities for bi-material notch problems were reported by few
researchers, due to their complexity. Carpenter and Byers (1987) investigated bi-material
notch problems by using the reciprocal work contour integral method. Tan and Meguid
(1997) presented a singular finite element to compute the SIFs of a notch formulated by
using explicit expressions for the singular stress and displacement fields of a general bi-
material wedge. Chen and Sze (2001) developed a hybrid-stress finite element model in

which the asymptotic stress and displacement fields embedded into the wedge-tip element
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were numerically obtained. All of this research work was concerned with only the in-

plane problems, i.e. modes I and II.

For the case of anti-plane shear, i.e. mode III, in bi-material crack/notch problems Wu
and Chiu (1991) computed the SIFs for interface cracks in bi-materials under anti-plane
shear by using a complex-variable formulation based on the solutions of a dislocation and
a body force in an infinite composite body. Other researchers who studied the case of a
bi-material crack under anti-plane shear loading conditions are, among others, Lee and
Earmme (2000), Li (2001), and Li and Duan (2006). The general case of anti-plane notch
was investigated by Jun and Yugqiu (1992) by using a Sub-Region Mixed FEM. They
provided very limited examples of a notch in a disk. Liu and Chue (2006) examined the

stress singularity orders in dissimilar anisotropic wedges.

2.3. The Fractal-like Finite Element Method (FFEM)

The idea of the Fractal-like Finite Element Method goes back to the work of Leung and
Cheung (1981). Originally they proposed a two-level finite element technique of
constructing a frame super-element to reduce the computational cost for solving dynamic
problems of a large scale frame. The idea was based on the concept of global-local
interpolation functions introduced by Mote (1971). The concept was that while local
interpolation functions (shape functions) reduce the infinite number of degrees of freedom
of a continuum to a finite number of degrees of freedom related to the nodes of the
continuous element, the global finite element interpolation functions can be used to

reduce the number of unknowns significantly.
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The study was extended to model two-dimensional plates subject to concentrated static
and harmonic loads by Leung and Wong (1988, 1992) and two-dimensional crack
problems by Leung and Wong (1989). Leung and Su extended the method further to
include many two-dimensional crack problems. They applied the method to mode I
(Leung and Su, 1994), mixed mode (Leung and Su, 1995a), and body force crack
problems (Leung and Su, 1995b), as well as to cracked Kirchhoff’s plates (Leung and Su,
1996a), cracked Reissner’s plates (Leung and Su, 1996b) and further to penny-shaped and
circumferential cracks and axisymmetric cracks (Leung and Su, 1998). Leung and Tsang
(2000) studied mode III crack problems. Xie el al. (2003) carried out a parametric study
of the FFEM for the computations of SIFs for crack problems. Tsang et al. (2004)
extended the method to penny shaped and circumferential cracks. It has been shown that
the Fractal-like Finite Element Method gives very accurate results for many different
crack problems. Reddy and Rao (2008a) carried out a stochastic fracture mechanics
analysis of linear-elastic cracked structures subjected to mixed-mode (I and II) loading
conditions using the FFEM. They also developed a fractal finite element based method
for continuum-based shape sensitivity analysis for a crack in a homogeneous, isotropic

body subject to mixed-mode (I and II) loading conditions (Reddy and Rao, 2008b).

Recently, during the course of this research Treifi el al. (2008, 2009a, 2009b, 2009c,
2013a, 2013b, 2013c) have developed the FFEM to compute the SIFs for notch problems
in isotropic homogeneous and bi-material plates subjected to mode I, II, or III loading
conditions. These research papers make up the core contents of this thesis.

As a semi-analytical method, the FFEM brings together the agility of the finite element
method (FEM) and the accuracy of the exact analytical solutions. It is well known that in

order to improve the convergence of FE solutions for problems with singularities, it is
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necessary to discretise the singular regions around the singular points using very fine
meshes. This leads to a large number of unknowns and a considerable increase of the
computational cost. In the FFEM, the employment of the exact analytical expressions of a
displacement field as global interpolation functions to transform the large number of
nodal displacements into a small set of generalised co-ordinates reduces the
computational cost significantly. Also, the SIFs and the coefficients of the higher order
terms of the notch tip asymptotic field are the generalised co-ordinates and are computed
directly. Therefore, no post-processing is required to extract them. Moreover, no special
singular finite elements are needed to model the singular region around a notch tip—
conventional finite elements can be used to model the whole of the cracked/notched body
(singular and regular regions). The implementation of the FFEM involves simple matrix
multiplication. No complicated mathematics is involved. Therefore, it is easy to be

implemented into an existing FE code.

The FFEM is based on the FEM. Therefore, the FFEM results are mesh dependent as is
the case in the FEM. Following the general advice given for the FEM on how to generate
good meshes is sufficient to produce good results in the FFEM. The only limitation to the
use of the FFEM is the availability of “good” global interpolation functions, whether they

be exact analytical or not.

2.4. The Strain Energy Approach (SEA)

The idea of using the strain energy to compute the SIFs goes back to the work of Sih

(1974a, 1974b), who proposed a strain energy density factor for cracks. Lazzarin et al.

(2001, 2007, 2010) have established an approach based on the averaged strain energy
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density over a control volume around a notch tip to compute the SIFs for sharp and
rounded notches. They dealt only with isotropic homogeneous notches subject to pure
mode I, II or III conditions. For mixed mode I and II cases, they usually neglected the
effect of mode II SIF (Lazzarin and Zambardi, 2001) where they used examples with non-
singular mode 1II stress components, but in a recent publication (Lazzarin et al., 2010)
they suggested using two concentric volumes to compute mode I and II notch SIFs.
However, this approach does not always work as will be discussed later in Chapter 10. In
Chapter 10, a strain energy approach is developed to compute the SIFs for isotropic
homogeneous and bi-material notches under mode I, II and III. The case of mixed modes
I and II is dealt with differently to what Lazzarin et al. (2010) proposed. The approach is
based on the strain energy of a control volume around a singular point such as a notch tip.
The formulae are simple and easy to implement. The strain energy can easily be
computed using commercial finite element packages. Thus, enabling analysts to compute
the notch SIFs using commercial FE packages, which are generally not capable of
computing the SIFs of a general notch (they are only capable of computing the SIFs of a
crack). Because the SEA depends on the strain energy computed using the FEM, the
results are mesh dependent. Also, fine meshes around the singular points are

recommended especially for mixed mode cases.

2.5. Conclusion

In this chapter, a literature review about the methods used to compute the SIFs, the

FFEM, and the SEA was presented. In addition, the advantages of the FFEM and SEA

were highlighted together with their limitations.
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3. Theoretical Background

3.1. Introduction

In this chapter, a detailed background of the work, techniques and methods developed and
used in this research is presented for completeness. Firstly, the theoretical formulation of
the FFEM is presented, followed by the derivations of the GIFs employed in the FFEM in
the subsequent chapters. The numerical techniques developed to carry out the analysis in
the FFEM and the SEA are also described. The sections of this chapter correspond to
work and techniques developed and used in the upcoming chapters which contain

materials published in externally refereed contexts.

3.2. Formulation of the FFEM

In the FFEM, a body containing singular points, such as, a tip of a notch or a crack, is
divided into singular and regular regions delineated by curves such as T,,T,,.. as

illustrated in Figure 3.1. Conventional finite elements are used to model the singular and
regular regions. However, a very fine mesh of conventional finite elements is used within
the singular regions. This mesh is generated layer by layer in a self-similar fractal-like
process. In the conventional FEM, the nodal displacements are the unknowns of a
problem. In the FFEM, the unknowns are the nodal displacements of the nodes in the
regular region and the coefficients of the GIFs, called generalised coordinates. The GIFs
are used to transform the nodal displacements of the nodes in the singular region into a
small set of generalised co-ordinates. The generalised co-ordinates associated with the

singular eigenvalues are related to the stress intensity factors for modes I, II and III. The
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other coordinates are the coefficients of the higher order terms. The first non-singular
stress term of the eigenfunction series expansion which is called the “T-stress” is related
to the coefficient of the first higher order term of the series. The “T-stress” coefficient is
the most important coefficient as it plays an important role in the directional stability of
the crack propagation (Cotterell and Rice, 1980). In addition, it is understood that using
more terms of the series expansion of the stresses and displacement expressions lead to
more accurate results (Hui and Ruina, 1995). As those generalised coordinates are
computed directly in the FFEM, no post-processing is necessary to extract the SIFs.
Analytical solutions for the displacements around the notch tip are used as GIFs to

perform the transformation.

Regular region

Singular regions

Figure 3.1. Singular and regular regions of a cracked and notched plate.

Using p as a similarity ratio and the crack tip as a centre of similarity, a set of curves
{1“1,1“2,1“3,...}, similar to I, is generated within the singular region. The layer between
the curves I', | and I', is called the nth layer. All nodes on I, are considered master

I’

nodes, while the nodes inside I', are considered slave nodes as shown in Figure 3.2.
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Figure 3.2. An illustration of a singular region (master nodes are highlighted).

In the conventional finite element method, the displacements can be expressed as follows:
u=Nd 3.1
where u is the displacement field, d is the nodal displacement vector, and N is the shape
function matrix. The strain can be obtained using

e=Bd (3.2)
where: € is the strain vector, and B is the strain-displacement operator. For linearly
elastic conditions, the stress-strain relations can be stated as

c=Hse (3.3)

where o is the stress vector, and H is the material properties matrix (constitutive matrix).
The static equilibrium equation, in the FEM, is
Kd=f (3.4)

where f is the nodal force vector and K is the global stiffness matrix

In the FFEM, the static equilibrium equation of the regular region can be written as

K. K _|[d)] [f
rr rm — r (3.5)
Kmr Kmm dm fm
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where d, are the displacements of the nodes in the regular region and d, are the

displacements of the master nodes. Similarly, for the first layer in the singular region, the

static equilibrium equation can be written as

Klst Klst d flst
peeiei] AN 56
where d!” are the displacements of the slave nodes in the first layer. d!” can be expressed

in terms of a set of generalised co-ordinates c¢= {Cl ,C,,C, ,...}T, which are the
coefficients of the GIFs, as follows:

d =T (3.7
T!* is the transformation matrix in terms of polar co-ordinates (r,8) for the slave nodes

in the first layer. Therefore, Eq. (3.6) can be written as

1 O r Klst Km, 1 0 dm 1 0 r flst
0 T ol (SRR S I S (38)
0 rI\S st Kl;ytl K th 0 TS, st C 0 T‘, st f;n

or

Klst KlstTlst d flst
' TWIWI . 1 Tms : N | m — 1 y;' | (3 .9)
'wa st K st VI*S st K S:zt ’I‘S st c VI*S st fS st

sm

In order to provide the continuity between the singular and the regular region,d, are not

transformed.

Now, the static equilibrium equation of the n#h layer in the singular region, n > 1, is
K'd! =f (3.10)

By applying the transformation and pre-multiplying by the transpose of T, we get

T K'T'c=T" (3.11)
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K" K"
where K” =[ ;“ ‘;12}
Kle Ks22

Because d, are not transformed, the size of the transformation matrix of the first layer

T!*is smaller than that of the transformation matrix of the n” layer T”.

The global equilibrium equation can now be written as

Krr Krm dr fr
st 1st
Kmr Kmm + Kmm Kms dm fm
1 L 2nd 2nd L 1
Ks:ri KS;t + Kslnl Ks1n2 d;t fs " (3 12)
2nd 2nd 3rd 3rd 2nd = 2nd :
KSZI Ks22 + Ksll Ks12 ds fs

nl nl nl nl
L Ks21 Ks22_ ds fs

where nl is the number of layers used to model the singular region. Eq. (3.12) can be

rewritten after applying the transformation as follows

rr Krm 0 dr fr
Kmr Kmm + Kirfrtn Ki:;TslSt dm = fm +fr:13t (313)
15t T g 15t st Ty 1strplst d YR p— C 1stT glst u nl gn
0  TKD o TPOKUTY +) TV KT, T+ T f!
L n=2 _ n=2
Or
rr Krm 0 dr fr
K, K, +K. K[ d =+ (3.14)
0 KM RU+R7| ) [P

ms s

nl

o lst Lstrlst st st T g 1st o lst st Ty 1strplst 7 inn __ N

where Kms =K, T Ksm - Tv Ksm > Kss - T? Kss Tv > Ks - ZKS‘ >
n=2

— —. nl —n —
K/ =T/ KT, f"=T"f", f" = D f, and f! =T"'f". Only the parts with the

sTs
n=2

subscript s are transformed. The unknowns of the problem are now the nodal
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displacements (dr&dm) of the nodes in the regular region and the generalised co-

ordinates c.

If we consider d, as the vector of displacements in the singular region except for those on
I',, the size of the vector d_  is much bigger than the vector of the generalised co-

ordinates ¢ . Therefore, solving the system of equations (3.14) is much more efficient than
solving the system of equations (3.12). Figure 3.3 shows the essential steps of the FFEM.

They are similar to the FEM steps. The differences are highlighted in Italics.

Discretisation (mesh generation)

v

Computation of element stiffness matrices

\4

Fractal transformation of singular element stiffness matrices

\ 4
Assembly of global stiffness matrix

\ 4
Define loads and constraints (boundary conditions)

v

Solutions for unknowns (displacements + generalised coordinates)

Figure 3.3. Essential steps in FFEM (differences between FFEM and FEM are in ltalics)

3.3. Fractal Transformation

In the FFEM, the singular region is modelled using layers of elements of similar shapes.

The layers are constructed using a similarity ratio p. The property of the stiffness
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matrices of two dimensional iso-parametric finite elements of similar shapes is utilised to
compute the stiffness matrix of the inner layers (n>2) of the singular region, K™ . The
element stiffness matrix can be computed using

k = [B"HBdV (3.15)
V

where V is the volume of an element. For an iso-parametric finite element, Eq. (3.15) can

be written as

k= HBTHBJdgdn (3.16)

—1-1
where £ and 7 are natural coordinates, and J is the determinant of the Jacobian Matrix

J . Assuming two 3-node triangular elements (1 and 2) of similar shape, where element 2

nodal coordinates can be written in terms of those of element 1 using a similarity ratio p
as
X® = px® (3.17)

The matrices B and J of a triangular element are

B=|B,.B B, | (3.18)
ox 9

_| o0& oS

J_ﬁ > (3.19)
on 0n

where a typical B, is defined as

VI
ox
B,=| 0 N, (3.20)
oy
aN, o,
| Oy Ox |
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The matrix B® and the determinant J® for element 2 can be written in terms of those

of element 1 as

B® —Lgo (3.21)
Yo,
J® =p*g® (3.22)

Substituting Egs. (3.21) and (3.22) into Eq. (3.16) leads to

k? =k" (3.23)
Eq. (3.23) demonstrates that iso-parametric elements of similar shapes have the same
stiffness matrix. In other words, the stiffness matrices of all the layers in the singular

region are the same.

The stiffness matrix K" of the inner layers (7 >2) in the singular region is

K" = iig = iTS”TK;'TS” (3.24)

n=2
The stiffness matrix of every layer in the singular region is the same because the stiffness
matrices of the two-dimensional iso-parametric finite elements of similar shapes are the

same as proven above. Therefore,
K’ =K (3.25)
The transformation matrix of the nth layer can be written in terms of that of the first layer

as
T =T/[5] (3.26)
where T/ is the transformation matrix of the nodal displacements of all the nodes (slave

and master) in the first layer and it is different from the aforementioned T'*, and [5 ] isa

diagonal matrix where
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(3.27)

where A are the eigenvalues of the terms considered in the GIFs. Substituting equations

(3.25)-(3.27) into equation (3.24) gives

nl -
K" =Y [T T/ KT [5]= 5,k

n=2
where
[E,- ] =T/ K"T1/

and

Fotp

(3.28)

(3.29)

(3.30)

This sum is a geometric series. For a finite number of layers, J; can be written as

(/1‘+/1j)(1_ (nl—l)(l,.Jrij))

1— p(/li+/1/)

5y =2

(3.31)

and for an infinite number of layers (nl - oo) as

(2+2;)
S __P

(3.32)

A similar procedure can be followed to compute the generalised force vector of the inner

layers in the singular region

im={. 57" .f

d (4+2)

for an infinite number of layers (n/ — ).

(3.33)

(3.34)
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3.4. General Form of Global Interpolation Functions (GIFs)

The GIFs play a very important role in the FFEM. They are used to perform the fractal-
like transformation of the large number of nodal displacements of the singular region into
a small set of generalised coordinates. The generalised coordinates are basically the
coefficients of the terms used as GIFs. Therefore, analytical expressions for the
displacement field are used as GIFs. Because of this choice, the SIFs and the higher order
terms become direct unknowns in the FFEM, because they are simply the generalised

coordinates as will be shown in the subsequent sections.

Assuming the displacement field is expressed as

NT

u=>ycf(r0) (3.35)

i=l
where ¢, are the generalised coordinates, fl.(r, 6’) are the GIFs, and NT is the number of

terms considered, the transformation matrix T can be written in an explicit form as

fil(r’e) ﬁZ(rﬁH) leT(raH)

_ f21(r99) fzz(raa) szT(Vae)

T (3.36)

fm(’”ae) fnz(rae) f;vNT(r’H)

where n refers to the number of nodes in a layer of elements.

The analytical displacement and stress expressions around a notch tip for the different
cases presented in the coming chapters are presented in the next sections of this chapter.
The displacement expressions are used as GIFs, while the stress expressions are used to

obtain the SIF expressions.
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3.5. GIFs for Homogenous Isotropic Notch under In-plane Loading (modes I and II)

The displacement and stress expressions around a notch tip of an isotropic plate can be
derived using an eigenfunction expansion method or a complex variable method. Both
methods are presented. The expressions derived using the two methods are equivalent and

produce the same results, although they look different symbolically.

3.5.1. Airy Stress Function Method

Stress Analysis

The Airy stress function approach can be used to derive the displacement and stress
expansions around a notch tip in the manner of Williams (1952). Let @ be the Airy stress
function in a polar co-ordinate system (r, 9) centred at the tip of an infinite notch as
illustrated in Figure 3.4. The =0 axis and the Cartesian x-axis coincide with the
bisector of the notch angle. In the absence of body forces, the elasticity equations of

equilibrium are satisfied if the stresses are expressed as follows (Coker and Filon, 1931):

o, = (?;q; (3.37)

o, =V2<I)—09 (3.38)
o) e 659

The Airy stress function (I)(r, 9) satisfies the bi-harmonic equation:

V3 (V20)=0 (3.40)
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%

Figure 3.4. Notch geometry and the co-ordinate systems.

where

o0 1o 1 ¢
Vie—— -4~ 3.41
or* ror r*oo? ( )

Following Williams (1952), the Airy stress function for a notch problem can be taken as
®(r,0)=r*"F(0) (3.42)

and its first and second partial derivatives are

i(VMF): (A+1)"F, a—zz(rMF): (A+D)"'F
or or
%(FAHF): FHE 88_022(’,,“1];): S

where the prime denotes differentiation with respect to 8. F is also used instead of F(6)

for convenience.

Now, substituting Eq. (3.42) into Eq. (3.40) gives
Vz((ﬂ? F A () F %WF”) ~0

r r

V(2 42241 F 4 ET)=0
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or
VA((A+1FrF 4+ F)=0 (3.43)
Expanding Eq. (3.43) using the following partial derivatives

LA+ 1P F - F) = (A 1P (A= 12 F + (A= 12 F

or

2
F<</1 + l)zr’HF + VZ_IF"):
r

(A+1)f(A-1) 22" F+(A-1)A 2" F"

%((/1 + 1)2 U+ r’HF"): (Z 4 1)2 SV A

62

92

((2’ + 1)2},/1*1}:‘ + I"/FIF”): (2’ + l)zr/lleu + r/llenu

gives

(A+1P(A-1)A-20"F+(A-1)A-2)"F"+
(A+1P(A-1)"F+(A =1 F +(A+1) " F" + /7 F"" =0, r 20

which can be simplified to get the following fourth order partial differential equation

Fre 22 +)F + (2 -1 F =0 (3.44)

The general solution of this equation is

F(0)=C,sin(A+1)0+C, cos(1+1)8 + C,sin(1—1)8 + C, cos(1 —1)8 (3.45)
provided that A # 0,£1. The solution for 4 =0 is

F(0)=C, sin@+C,0sin @+ C, cos +C,0cos b (3.46)

and for A ==1 is

F(0)=C, +C,0+C,sin26+C, cos26 (3.47)

From (3.37), (3.38), (3.39) and (3.42), the stress expressions are
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0, =22 _ 0 (4p)= 2 (141)F)

o ot or

o, =V’ -0, =((A+1 " F 4 F )= (A+ ) F

o, = F + (A +1F (A +1)A)F |

o :Lag_l o’P :Lr/m r_li(r/mF,)
00 rored r or
P | . .
=r—2rﬂ 'F —;(,1+1)MF ="' F' —(A+1)'F

or more concisely, they can be rewritten as

o, =r*'[F"+(A+1)F] (3.48)
o, =r" A +1)F] (3.49)
o, =r""[- AF'] (3.50)

By applying the boundary conditions, the unknowns C; and A, are determined, which can
assume real or complex values. For traction-free boundary conditions, the following
conditions are applied

o,(r+a)=0 (3.51)
o.,(r+a)=0 (3.52)
Substituting these conditions into equations (3.49) and (3.50) gives

Fxa)=F'(xa)=0 (3.53)
Applying these conditions to the general solution (3.45) of the differential equation

(3.44), a linear system of four equations with four unknowns is obtained

C, sin(A+1)a +C, cos(A +1)a + Cysin(A —1)a + C, cos(A —1)a = 0
~C,sin(A+ e+ C, cos(A +1)a — C,sin(A —a + C, cos(A —1)a = 0
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(A +1)C, cos(A + 1o — (A +1)C, sin(A + e +

(A -1)C; cos(A —1)a — (A -1)C, sin(1 - 1) = 0
(A +1)C, cos(A + e + (A +1)C, sin(A + e +

(A -1)C; cos(A —1)a + (A -1)C, sin(A —1)a = 0

Using simple algebra, this system of four equations could be separated into two

uncoupled systems. Each sub-system is with two unknowns of C,.

cos(A+1)a cos(2—1)a } {Cz} _ {0} (3.54)

(A+1)sin(A+ D (2-1sin(A-1) ||C,] |0

sin(2 + ) sin(2 —1er } {Cl} _ {0} (3.55)

_(/1 +1)cos(A+1)a (A -1)cos(A-1) || C, 0

The first sub-system, Eq. (3.54), leads to solutions that are symmetric (mode 1) with
respect to the x-axis because C, and C, are coefficients of cosine functions in Eq. (3.45).

Similarly, the second sub-system, Eq. (3.55), leads to solutions that are anti-symmetric

(mode IT) with respect to the x-axis.

By equating the determinants of Egs. (3.54) and (3.55) to zero in order for nontrivial

solutions of C,,C,,C,, C,to exist, the following characteristic equations are obtained

A'sin2a +sin 24 a =0 (3.56)
and
Asin2a —sin24"a =0 (3.57)

for mode I and II, respectively. The eigenvalues of mode I ( ! ) and of mode 11 ( ! ) are
generally different from each other except for the special case of a crack problem,

a=m=> sin2zA" =sin 271" =0 which gives the following eigenvalues

Py zg (3.58)
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The characteristic equations (3.56) and (3.57) can be solved numerically using Muller’s
iterative method (Press et al., 2007). The advantage of Muller’s method is that the
iteration can converge to a complex root, even if it has started with a real number. A flow
chart of Muller’s method is illustrated in Figure 3.5. In this figure, inc, lim and er refer to

the step increment, the limit of iterations and the error. They are taken as inc =0.001,

lim=60 and er =10 for isotropic cases (inc = 0.001+i0.001, /im=60 and er =107"" for

bi-material cases).

The dominant eigenvalues, which are the smallest eigenvalues greater than zero
(0<A<1), for different notch angles y are plotted in Figure 3.6. This figure in
conjunction with the stress expressions given by Egs. (3.48) to (3.50) shows that the
stresses are unbounded when the notch angle y <180° for mode I, and y <102.55° for

mode 1.

Eq. (3.45), from which the eigenvalues are derived, is not valid for A =0,£1. A=-1 1is
physically meaningless because it does not represent a physically possible displacement

since Egs. (3.100) and (3.101) show that when A =-1 at the notch tip u, — o0 and
u, = too, ie., the displacements, become unbounded. Therefore, 4=-1 is not an

admissible root. Similarly, 4 =0 is not admissible because it represents a rigid body

translation. A =1 is an eigenvalue for the notch angles y =0° and y =180° for mode I,

and y =102.55° for mode II.

From Eq. (3.54), C, can be written in terms of C, as
1 1 : 1
C, = cos /11 +1 C, = (/1[ + l)s%n(ﬂl + l)a c, (3.59)
cos\A —1 (ﬂ —l)sm(ﬂ —l)a
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A inc, lim, er

i=1,n=1
A=A
A 4
A, =4 —inc |,
A, = A, +inc
\ 4
F :F(/ll)
F, :F(/lz)
F; =F(/13)
_’13_/11
q_ll_lz
A=qF,—q(l+q)F +¢°F,
B=02q+1)F,—(1+q) F, +¢*F,
C=(1+Q)F3
\ 4
D, =B++B*-44C
D, =B —+B>-44C
v
Yes No

Figure 3.5. Muller’s method flowchart.

59




i=i+l

4 isan

Yes

eigenvalue |F (ﬂ’lx <er

NO

5]
—
A=A, +inc .
Limit is reached
\ 4
( Stop )
Figure 3.5. Continued.
2,5

[\

0 20 40 60 80 100 120 140 160 180
Notch Angle

Figure 3.6. Notch angle vs. eigenvalues for mode I and mode 11
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Similarly, from Eq. (3.55), C; can be written in terms of C, as

__sin{2" +1 _ (/1” + l)cos(ﬂ” + l)a
G ~ sin(2” 21 G __(ill_l)cos(ﬂll_l)a C (3.60)

Therefore, F(0) can be written as

: 11
F(0)=F'+F" = Cl[sin(/l” LG WY —1)0} +

sin(A" —1 (3.61)
cos(A' +1 s '
cos( +1)6 osl i — cos(/l —1)6

It would be helpful to mention that the part of F(6) associated with the coefficient C,
represents the mode II stress function. Similarly, the part of F (9) associated with the

coefficient C, represents the mode I stress function.

Now, Eq. (3.45) can be rewritten as

F(@)=F"+F" (3.62)
where

F' =C,cos(# +1)0+C, cos(' ~1)p (3.63)
F" = sin(2" +1)9+ C,sin(4" ~1)0 (3.64)

and their derivatives as

1 ( +1)C sm(/l’ +1)t9 ( —I)C' sm(ﬁ’ —1)9

”

F' :—(/1’ +1)2C2 cos(ﬂ’ +1)6‘—(ﬂ’ —1) C, cos(/ll —1)6‘

= (ﬂ” + l)C1 cos(/l” + 1)9 + (ﬁ” — I)C3 cos( - 1)9

n

F" =27 +1f ¢ sin(2" +1)0 - (47 -1} ¢, sin(4" —1)p

The stress expressions for mode I can be written according to (3.48), (3.49) and (3.50) as

follows
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aé =7 [/1’ (ﬂl +1) 1]

o =2 (4 + 1), cos(# +1)0 + C, cos(# —1)0] (3.65)
ol = A [FIH + (ﬂf + I)FI}

o =" =X +1] C, cos(# +1)0— (2 —1] C, cos(# 1)
+ (/1’ + IXC2 cos(/ll + 1)(9 +C, cos(/ll -~ 1)6‘)]

ol = rﬂ[’l[(— A _24-1+42 +1k2 cos(/il +1)n9+
(— 42142+ 1)C4 cos(# —1)6]

ol = _— [(— yi— k‘z cos(/il + 1)6’ + (— A7 434 k} cos(/il - 1)0]

== (/11 + I)C2 cos(/”t’ + 1)6’ - (/1’ —~ 3)C4 cos(/ll —~ 1)6‘]

o =" +1)C, cos( +1)0+ (2 =3)c, cos(# —1)0] (3.66)

ol = A [— ﬂIF/}
=2 (2 +1)e, sin(2 +1)0 - (2 —1)c, sin(2 -1)0]

oty = A" +1)e, sin(# +1)0+ (2 —1)c, sin(2 ~1)0] (3.67)

Similarly, the stress expressions for mode II can be written according to (3.48), (3.49) and

(3.50) as follows
O_é] _ A [/111(111 +1)FH]

ol = (1) [c sin(2 +1)p+ ¢, sin(2” —1)0] (3.68)

ol :r}t”—II:FH” +(ﬂ,” +1)F”}
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o =" =¥ +1f ¢ sin(2” +1)0 - (4" —1] ¢, sin(2” —1)p
+ (2" +1)C sin(4” +1)0 + €, sin(4” —1)p)]

o =" =2 (A +1)C sin(2 +1)0 - 27 (A7 - 3)c, sin(47 —1)9]

o =24 +1)e; sin(2” +1)0+ (47 - 3)c, sin(47 —1)p (3.69)

!/
I A I =1
O-I‘tg = r [_ ﬂ« F }

ot = ppA [(/1” —i—l)C1 cos(/i” + 1)(9+(/1” —l)C3 cos(ﬂ” —1)!9] (3.70)

And finally, according to the principle of superposition, the stress expressions for mixed-
mode cases are (it should be noted that these expressions are series expansions and that

the Y symbols are dropped for simplicity. This has been adopted throughout the thesis)

o.=c +c”
o, =2 |2 +1)c, cos(# +1)0+ (4 =3)c, cos(# —1)0] (3.71)

= A 1)e sin(2” +1)0+ (47 - 3)c, sin(2” ~ 1))

c,=0,+0)
o, =2 (2 +1)7C, cos(A +1)0+ €, cos(# —1)0] (3.72)
+ 2" (4" 1) ¢ sin(2” +1)0 + €, sin(2” —1)6]

Ty =0y + 0
0., = A2 +1)c, sin(2 +1)0+ (2 —1)c, sin(4 —1)6] (3.73)

e [(/1” + I)C1 cos(/i” + 1)6’ + (/1” - I)C3 cos(/l” - 1)19]

The stress expressions in the Cartesian co-ordinates can be derived by using the following
transformation equations:

o, =0,c08" 0+0,sin’—20,,sinfcosd (3.74)
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o, =0,sin’ 0 +0,cos’ 0+20,,sinfcos (3.75)

o, =(c,—0,)sinfcosf+0,, (cos2 0 —sin’ 6’) (3.76)

Therefore, the mode I stress expressions in the Cartesian co-ordinates can be written as

o' =27 e, - (1 +1)c, Jeos( —1)0— (2 —1)c,0s(2" —3)0} (3.77)
o =27 e, + (¥ +1)¢, Jeos(2 —1)o+ (4 —1)c, cos(#' —3)p} (3.78)

O'iy = ﬂfrﬂl’l{(}t] +1)C2 sin(/ll —1)19+(/11 —l)C4 sin(ﬂf —3)6’} (3.79)

Similarly, the mode II stress expressions in the Cartesian co-ordinates can be written as

o = e, - (4 + 1) Jsin(4” —1)p - (2" — 1), sin(2” - 3)0) (3.80)
o = 2" 2c, + (27 + 1) Jsin(2" —1)0 + (27 —1)c, sin(2” - 3)0) (3.81)
Gg = QA {— (ﬂ" + l)Cl cos(ﬂ” - 1)0 - (/1” - I)C3 cos(ﬂ” - 3)0} (3.82)

And finally, the stress expressions for mixed-mode cases are

o =ol +o!
o, = A" 2c, - (# +1)c, |eos(2 —1)p - (2 —1)c,0s(4' - 3)p} (3.83)
+ 207 e, - (4 +1)c, Jsin(2” —1)o - (4" 1)c, sin(2” - 3)}

Gy = O'; + O'}I)I

o, = A" 2c, + (2 +1)c, Joos(2' —1)0+ (2 —1)c, cos(2' —3)0} (3.84)
+ 207 e, + (4 +1)c Jsin(2” — 1)+ (47 —1)c, sin(4” - 3)}

o, =0, +0,

o, = A (A +1)e, sin(2 —1)+ (2 -1)c, sin(# -3)p) (3.85)
+ A {— (l” + l)C1 cos(/l” - 1):9 - (ﬁ” - l)C3 cos(/”t” - 3)9}
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Displacement Expressions

The displacements can be expressed in a polar coordinate system as illustrated in Figure

3.4 as follows (Coker and Filon, 1931):

1 [ od oy
_ _9 - 3.86
“=261" o ( n)raa} (3.86)
1 [ 100 , Oy
S et | ) PR it 3.87
=06 v o0 (t=n)r 8r} (3-87)

. . 1% .
where G is the shear modulus, 77 =v for plane strain, 7 =—— for plane stress and v is
+v

the Poisson’s ratio. The function  is related to the biharmonic function ® as

V2P = i(ra—‘/’j (3.88)
ar\ 06

Also, y satisfies Laplace’s equation (Coker and Filon, 1931), that is

Viy=0 (3.89)
Solutions for y can be supposed to be

w(r,0)=r"G(9) (3.90)
Substituting Eq. (3.90) into Eq. (3.89) gives

m*G(0)+G"(6)=0 (3.91)
The general solution of this equation is

G(0)= 4, cosmO + 4, sinm (3.92)

Using Egs. (3.42) and (3.90) in Eq. (3.88) provides a relation between F (0) and G(H).
Equating the powers of » gives
m=A4-1 (3.93)

and equating the coefficients of similar trigonometric terms gives
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4=—2 ¢, (3.94)

4, = 1 C, (3.95)
Therefore, G(H) can be written as
G(@):T[— C, cos(1—1)0 + C, sin(1 -1)f] (3.96)

or by writing it in terms of C,and C, as

4 sin(4 +1)a Y cos(A+1)ar . B
G(6)= l[q (21 cos(1-1)9 Cz—cos(/i—l)a sin(4 1)9} (3.97)

Equations (3.96) and (3.97), can be rewritten as follows (€ is omitted for convenience)

G=G"+G"

G'= ¢, sin(2/ —1)9_— COS(’i ) (2 -1)p (3.98)

/1 cos( l)a sinid

: 1
"= 4 S G cos(2” —1)9 = 2,” G :28” i))z cos(2” - 1) (3.99)

and their derivatives as

G' =4, cosl# ~1)p

!

G" =4C,sin(4" —1)p

From (3.86) and (3.87), the displacement expressions in the radial and circumferential

directions can be expressed as

u, = % (2 + ) F(0)+ (1-7) "G (6)) (3.100)
1 [— ~n)A-1)"G(0)] (3.101)
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From equations (3.45), (3.96), (3.100) and (3.101), the mode I displacement expressions

in the radial direction can be written as follows

"7 26

. [_(zf+1)w'pf(a)+(1_n)ﬂ'G/(e)}

u! :%[— (ﬂf Jrl)C2 cos(/ll +1)9+C4(3—21 —477)005(21 —1)6’] (3.102)

and in the circumferential direction as

ul =1 [— A E(0)+ (- n)2 —1)%’6’(9)}

26

ul = % (7 +1)c, sin(# +1)0+C,(3+ 2" —4n)sin(4 —1)0] (3.103)

Similarly, the mode II displacement expressions in the radial direction can be written as

follows

! =] -y F0)4 (-0 6 0)]

1

u! = % [ (2 +1)c, sin(2” +1)0+ ¢, (3 4 - 4n)sin(4” ~1)0] (3.104)

A

and in the circumferential direction as

ul = [—M”F”'(e)+(l—f7)(/1”—1)%”G”(9)}

el

]u[[

uy = ;_G [— (ﬁ” + I)Cl cos(/l” + 1)6’ - (3 + A7 - 477)C3 cos(/l” - 1)6’] (3.105)

According to the principle of superposition, the mixed-mode displacement field in the

radial direction 1s

o I
u,=u, +u,
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j,l

u = ;—G [— (ﬂf + l)C2 cos(ﬂf + 1)6 +C, (3 -A' - 477)cos(ﬂf —~ 1)9]+

2 (3.106)
Z—G [ (2 +1)c, sin(2” +1)0+ €, (3 47 - 4n)sin(4” ~1)0]
and in the circumferential direction
= ul+u!
u, = r [ +1)c, sin(# +1)0+C,(3+ 4" —4n)sin(4 —1)0]+
2G (3.107)

% [— (/1" + l)Cl cos(ﬂ” + 1)& -C, (3 + A7 - 477)cos(/1” - 1)9]

In a Cartesian co-ordinate system, the displacement expressions can be written for mode I
cases as
u' =u' cos@—u)sin@

u' = % (3=4n)c, — (2 +1)c, Jeos 26— 2'C, cos(' —2)0] (3.108)

v =u!sin @ +u; cos

v = % (3=4n)c, +(2 +1)c, )sin YO+ A C, sin(# —2)6] (3.109)

and for mode 1I cases as
u" =u" cos@—u) sin@

ﬂ”

u' =7 [(B-am)c, ~ (2" +1)c sin 270 -2 ¢ sin(2” ~2)] (3.110)
vl =u!" sin@+u, cosO

Z,”

v = ;—G [— ((3 —4n)C, + (ﬂ” + l)C1 )cos A'o-A"c, cos(/l” —~ 2)19] (3.111)
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And finally, according to the principle of superposition, the displacement fields for

mixed-mode cases in the Cartesian co-ordinates are

w=u' +u"

u= % (G-4n)c, - (2 +1)c, Jeos 20— 2, cos(2' ~2)p]+ (3.112)
bl

y=v' 4"

v= % (G- 4n)c, + (2 +1)c, )sin 26+ 2 C,sin4' ~2)p]+ (3.113)

% [ (3-4n)c, + (4" +1)c,Joos 270 - 4" C; cos(2" - 2)0]

3.5.2. Complex Variable Method

The stresses and displacements can be expressed in terms of complex potentials €(z) and

@(z) as follows (England, 1971)

26(u, +iu,) =" {3-47)z) - 2 () - al2)} (3.114)

o, +ic,, =Q(2)+Q2)-z20"(z)- 2 0(2) (3.115)
z
o, —io,, =Q(z)+Q(z)+zQ"(z)+ z w'(z) (3.116)

where z is a complex variable, z =re’, Z is the conjugate of z, and Q(z) and w(z)are
complex potentials that can be expressed as (Vasilopoulos, 1988)

Q(Z):AZ/{, a)(z)szﬂ (3.117)
where A4, B are complex constants: A4 = 4, +id,, B =B, +iB,. Substituting Eq. (3.117)

into Egs. (3.114) to (116) gives
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26(u, +iu,)=r*{3-4n)4e — A _ B0} (3.118)
o, +ic,, =" Ade Y — A(1—2)e T ~ B} (3.119)
o,—i0,, = rH/I{A 0 g qe e Ee’i(’m)‘g} (3.120)
From equation (3.120), applying traction-free boundary conditions at € = ta gives
Ae™™ + AL + B =0

The following system of equations is obtained by expanding this equation and equating

the real and imaginary parts to zero

Al(COSZ/laJr/”L c05205)=—B1 (3.121a)
A,(~sin24 @+ 2 sin2a)=0 (3.121b)
A(sin24 @ + 2 sin2a)=0 (3.121c)
Az(cos2/1a—/1 cos20¢):B2 (3.121d)

From these equations, for non-trivial solutions,

(sin22 a + 4 sin2a)=0 (3.121e)

(~sin24 @+ 4 sin2a)=0 (3.1210)
which are called characteristic equations. On one hand, if the first characteristic equation

(sin 2Aa+ A sin 2a)= 0, then 4,=8,=0 and B, =-4, (cos 2Aa+ A cos 2a). After
substituting this back into Eq. (3.120), expanding and applying the definition of SIFs, 4,
is found to be related to K, and consequently Eq. (3.121e) gives the mode I eigenvalues
(/11 ) Therefore, Eqs. (3.121a-d) can be written as

(sin 22 o+ 2! sin 2a) =0

B, =-4, (cos 22'a+ A cos 2a)

On the other hand, if the characteristic equation (— sin2A o+ A sin 2a) =0, then

A4 =B,=0 and B, = Az(cos 2L a— A cos Za). Similarly, 4, is found to be related to
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K, and consequently Eq. (3.121f) gives the mode II eigenvalues ( " ) Therefore, Egs.
(3.121a-d) can be written as

(— sin 24" + A" sin 2a)= 0

B, = 4, (cos 22" = A" cos 2a)

These characteristic equations are exactly the same as derived previously and, therefore,

have the same fundamental roots as shown in Figure 3.6.

From Egs. (3.118)-(3.120), the stress and displacement expressions can be written as

u, = i 4 [(3 —dn- 1 )cos(/’t[ - 1)9 + (cos 2/ a+ A cos Za)cos(/il + 1)6’]+

Zfﬂ (3.122)
;—G A, [— (3 —4n-A" )sin(/lﬂ - 1)9 + (cos 22" — A" cos 2a)sin(/1" + 1)0]
U, = iA1 [(3 —dn+ A )sin(/il - 1)9 - (cos 22 a + A’ cos 2a)sin(/1[ + 1)6’]+
23, (3.123)
;—G A, [(3 —dn+ A" )cos(ﬁ" - 1)0 + (cos 22" — 2" cos Za)cos(/I” + 1)6’]
o =r""A4 [— (/11 —~ 3)cos(/11 -~ 1)0 + (cos 22 a+ A cos 205)005(/1[ + 1)6’]+
. (3.124)
A" A, [(/1” - 3)sin(/1” - 1)0 + (cos 22" a— A" cos 2a)sin</1” + 1)0]
o, =r" A4, [(/1’ + l)cos(l’ —~ 1)6 —~ (cos 22 a+ A cos Za)cos(i’ + 1)(9]
i (3.125)
—r* 72" 4, [(ﬂ” + l)sin(lll - 1)9 + (cos 24" a— A" cos 2a)sin(/1” + 1)9]
O, = rﬂ[‘l/llA] [(/11 - l)sin(ﬂf - 1)6? - (cos 24 o+ A' cos 2a)sin(21 + 1)6’]+ (3.126)

rH 4, [(/1” -~ l)cos(i” — 1)19 + (cos 22" — A" cos Za)cos(i” + 1)6’]
These expressions are equivalent to the ones derived using the eigenfunction expansion

approach in the previous section.

For the case 4 =1, the complex potentials are given as

Q(z) = Az, a)(z) =Bz (3.127)
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If »#0°,180°, then 4 =B, =B,=0 and the displacements represent a rigid body
movement and given as

u, =0, 2Gu, :r(3—477—1)A2

If »=0°,180", then B, =0, 24, =—B,cos2a and the displacement expressions are

given as
2Gu, = r[— B> _2477 c0s 2 — B, cos 29} (3.128)
2Gu, = r{(3 41 +1)4, + B, sin 26] (3.129)

3.5.3. Mode I and II Stress Intensity Factors (SIFs)

The notch stress intensity factors are defined in a way similar to those of a crack as

K, =27 133(}#-*’09(9 =0) (3.130)
K, =~2x 1.11101;»1*” 0.,(0=0) (3.131)

for mode I and mode II, respectively.

By substituting the stress expressions (3.72) and (3.73) into Eqgs. (3.130) and (3.131), the

relations between the SIFs and the generalised co-ordinates are obtained as

1
K, =272 (A + 1{1 - %]Cz (3.132)
cos(A -1

: /4
K, =27 ”{(/1” +1)- (2" —1)22 jﬂ 1 }Cl (3.133)
Sin -

or by substituting equations (3.125) and (3.126) into (3.130) and (3.131) as
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K, =272 (1 + A" = A cos2a —cos 2/1'a)A1 (3.134)

K, =272 (14 A" = 2" cos2a +cos 24" a )4, (3.135)

Egs. (3.132) to (3.135) show that the SIFs are directly related to the generalised
coordinates. As the generalised coordinates are computed directly in the FFEM, no post-

processing technique is necessary to extract the notch SIFs.

3.6. GIFs for Homogenous Isotropic Notch under Anti-plane Loading (Mode III)

3.6.1. Stress and Displacement Expressions

The stress and displacement expressions of a notch subject to anti-plane shear loading
conditions can be derived by using a stress function approach. The only non-zero
displacement component is in the z direction (w) and the non-zero stresses are 7, and
7, which can be derived by using a stress function (q)) in a polar coordinate system

centred at the tip of an infinite notch as illustrated in Figure 3.4. The equilibrium

equations are satisfied if the stresses are derived as follows

7. __1od (3.136)
r 06
., =2 (3.137)
or
The compatibility equations are reduced to
VD=0 (3.138)

where V? denotes the Laplacian operator. The stress function (®) can be taken as
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®=r"F(0) (3.139)

where A" is an eigenvalue. For simplicity, the superscript is dropped for the rest of this

section. After substituting @ and its derivatives into the differential Eq. (3.138), the

solution for @ is

® =r*(A4cos A0 + Bsin 10) (3.140)

Substituting Eq. (3.140) into Egs. (3.136) and (3.137), the stress expressions are

. =r""A(Asin 10 — Bcos 16) (3.141)

7, =r""A(Acos 16 + Bsin 10) (3.142)

The eigenvalues A are obtained by imposing the following boundary conditions on the

notch faces

7, (+a)=0 (3.143)
Substituting Eq. (3.143) into Eq. (3.142) yields

r*A(Acos Ao + Bsin Aa)=0 (3.144)
r*2(Acos Ao — Bsin Aar)=0 (3.145)

For non-trivial solutions for 4 and B, the determinant of equations (3.144) and (3.145)

must be zero. By solving the determinant, the eigenvalues are obtained as

A= =1,2,3,... (3.146)
2a

When m is an odd number and assuming that m = 2n —1, then substituting that into Eq.

(3.146) and (3.144) or (3.145) gives
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A, =(n—lj£ and B=0
2)a

When m is an even number and assuming that m = 2n, it can be shown that substituting
that into Eq. (3.146) and (3.144) or (3.145) gives

Ay =27 and 4=0
a

The eigenfunction series expansions of the stresses can now be written as

n—l £—1 Rz _
T = A[n - %jzr( ZJ“ sin([n —%jzﬁj B, cos(M 0} (3.147)

a a

n—l z—1 nz_
ng:A(n—ljzr[ 21“ cos (n—ljzé’ + B 1sin(ﬂ9j (3.148)
2)a 2)a a a

The displacement function w can be derived using the following equations

r =Gy =G (3.149)
or
and
ow
=Gy, =G—- 3.150
To Ve 00 ( )

where G is the shear modulus. Integrating Egs. (3.149) and (3.150) gives

vz nr
Gw = Ar[ 3 sin[(n—lJzﬁJ—Br a cos(ﬂej (3.151)

2 a

3.6.2. Mode III Stress Intensity Factors (SIFs)

The stress intensity factors of a notch are defined in a way similar to those of a crack as
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K, =2z lim ', (0=0) (3.152)
Substituting equations (3.148) into equations (3.152) gives

K, =~27" 4 (3.153)

Equation (3.153) demonstrates a direct and simple relationship between the SIFs and the

generalised co-ordinates.
3.7. GIFs for Bi-material Notch under In-plane Loading (Modes I and II)

3.7.1. Stress and Displacement Expressions

2l 4

Interface

Figure 3.7. Bi-material notch geometry

The stress and displacement functions of a bi-material notch as shown in Figure 3.7 can

be expressed using a complex variable approach as:

ol +aol =4Relp’(2)) (3.154)

o), —it) =¢''(2)+(z-2)p""(2)+ @' (2) (3.155)
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(3.156)

_Pj +lP]_ ( ) (Z Z)¢j'( ) (

\/

ol i) =5 e ()~ (-2 ()0 () (3.157)

j
where j refers to material j, G, is the shear modulus of material j, x, =3—4v, for

plane-strain or x;, =3-4v /(1+v,) for plane-stress and v, is the Poisson’s ratio of

material j. ¢’(z) and @’(z) are complex potentials and are assumed to be (Theocaris,

1974)
#'(2)= 42" +a,z" (3.158)
j A A '
a)’(z):sz +b,z
Substituting Eq.(3.158) into Egs. (3.155) to (3.157) gives
ol —it) =" [4,e T v T, (ez’p - IXA ~1)+b,] (3.159)
+ IrZ—leiH(l—Z)[ajeZiH(Z—l) " Zj (ezie _ IX/T _ 1)+ E,] .
— P/ +iP) = e [ 4, + @ A’ ~1)+b,]
- — _ (3.160)
4 ph it [a,e 21 o /1( 2i0 1>+Bj]
2Gj(u){ +iu;'):rle”p’l[icAlem/1 a /1( 20 _ )—l;j] (3.161)

4 it [x,a, Q2 _ ij(ezie _ 1)_ B

3.7.1.1. Derivation of Eigenvalues

The complex potentials must satisfy the following continuity and boundary conditions

1 - pl
—Py+lPx€

=—P?+iP?
=0 y X lo=0

1, -1 2, a2
le +luy‘9=0 —ux +my‘g=0
. (3.162)

*Dt]

1 - pl
- P, +iP,

—P2+1P2 =0

0=—a,

Substituting Egs. (3.160)-(3.161) into (3.162) gives, after simplification,

77



A +b =4,+b,
a,+B =a,+B,
GZ(KIAI _51): Gl(KzAz _52)

Gz(Klal _El): G (K2a2 _Bz)

b, = A —(e* —1)ig,
B, = -a,e"" —(e¥ ~1)74,
b, = —A,e > — (e ~1)ig,
B, =—a,e " — (¢ ~1)14,

Substituting Egs. (3.167) to (3.170) into Egs. (3.163) to (3.166) gives
A(1- )= 2a (e —1)- 4,(1— e )+ Az, (e ~1)=0

— A4, (em‘l - 1)+ a, (1 e )+ AA, (e_z"o’z - 1)— a, (1 —e e ): 0

Il
S

% [Al (Kl + e2ila1 )+ 2,671 (ezial — 1)]— A2 (K‘2 + 6*21'1062 )_ /152 (efziaz _ 1)

1

1

The conjugates of Eqs (3.171) to (3.174) are
4, (1 — g7 )— Aa, (e_Zi“‘ - 1)— 4, (1 — e )+ Aa, (ez’.“2 - 1) =0

— 4 (e —1)+a(1-e? )+ a4, (e -1)-a,(1- e )=0

% [Zl (K’l +e 2t )+ Aa, (e_zi“‘ - 1)]— A, (K2 +ette )— a, (ez""‘2 - 1): 0

1

AP TR IV A e A
1

Egs. (3.171), (3.173), (3.176) and (3.178) can be written in matrix form as
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(3.163)
(3.164)
(3.165)
(3.166)
(3.167)
(3.168)
(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

(3.174)

(3.175)

(3.176)

(3.177)

(3.178)



] — it o2 | /1(1 _plim ) /»l(e—2ia2 _ 1)

i(K‘1 + ezim' ) —K, + e72[’1‘7’2 il(ez"al _ 1) l(l . e—zuxz ) 1‘;11

G 2ia, 2ia G il 2ida _2 = {0} (3.179)
R T

il(e—zl-al _ 1) i(l _e2ia2) &(Kl n e*Mal) _ (K2 n ezuaz) a,

G G,

—

Eq. (3.179) can be rewritten in a short form as

DJ4 4, @ a] ={o} (3.180)
For non-trivial solutions the determinant of [D] should be zero, i.c.

det[D]=0 (3.181)
Solving Eq. (3.181) gives the values of A, the eigenvalues, that make the determinant
zero. The values of 4 may be real or complex. A modified version of Muller’s method is
used to solve this equation. This is done because Muller’s method might converge to a
specific root within an interval leading to the missing of some of the eigenvalues. The
algorithm of the technique used is demonstrated in Figure 3.8. The technique is very
simple and is done to force Muller’s method to move on to find the next eigenvalue using
an incremental increase to the value of the root found in step i if it has the same value as

the root found in step i —1.

3.7.1.2. Displacement Expressions for Complex Eigenvalues

For complex eigenvalues, Eq. (3.179) may be partitioned as follows

4 0
[Dll] [DIZ]
...... o RA, =140 (3.182)
D, ] D.,]]| 7
6_12

From Eq. (3.182), 4,,a, and a, can be computed in term of 4, as
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\ 4

A=A+AA

Figure 3.8. Numerical technique to compute the eigenvalues

Muller’s Method = i1

A

No

Yes

At is an eigenvalue

= _[Dzz ]71 [D21 ]Al = {S}Al

A=4,+A1

i+1

No
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Substituting the values of the coefficients 4,, @, and a, from Eq. (3.183) into Egs.
(3.167) to (3.170), all the coefficients of the complex potentials can be written in terms of

A and its conjugate 4, as

A 1 0
A 0 1
a, 0 %
al_ 48(2) , 0 {il‘}:[H ]{/_11} (3.184)
B[ |-S@)e? e - Ale -1) 0 4/ g
B, 0 _@e%im _ z(eZial _ 1)
b 0 _ g 2ita _Zﬁ(e—%al _1)
51 I _ i _28(2)(62@ _1) 0 |
for material 1 and
4, S(1) 0 ]
4, 0 S()
a, 0 %
a, S(3) A
B,[ | -s@)e —as)e¥= -1 0 {711}
Ez 0 _ %)e—wfaz _ Z%(e_zmz _ 1) (3.185)
b, 0 _ﬁ)eziiaz _ I%(ezmz _ 1)
b |-S()e?" - a8B3)e > -1) 0 |

i

for material 2. 4, and its conjugate 4, can be written in terms of the real and imaginary

parts of A4, as
{111} _ {1 i } {Re(Al )} _ [N]{Re(Al)} (3.186)
Al |1 —i||Im(4) Im(4,)

Assuming that
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r rllc].efiwez’-’w i
Tt e it0 (l_eZiH)
V/TKje—iIHezﬁe
Dt o0 (] — o2
L= ¢ (1-¢) (3.187)

A _—iAO
—r'e”’

then Eq. (3.161), the displacement expression, can be rewritten as

26 (! +iu!)=[L, JH IN]{R“A >} s ]{R“Al)} (3.188)

Im(4)) Im(4,)
Equating the real and imaginary parts of both sides of Eq. (3.188) leads to

H I {Re(-rj@,l)) Re(J,(Lz))} {Rem}

172G, | m(3,0,0)) 1m(3,0,2)) || 1m(a4,)

(3.189)
uy

Eq. (3.189) shows that the displacement expressions for each complex eigenvalue can be
written in terms of the real and imaginary parts of a complex coefficient. Therefore, each

complex eigenvalue is associated with two elements of the generalised coordinates.

3.7.1. 3. Displacement Expressions for Real Eigenvalues

For real eigenvalues, the complex potentials ¢/(z) and @(z) are reduced to

Z:((ZZ)) B ; (3.190)
Substituting Eq. (3.190) into Egs. (3.155) to (3.157) gives

ol —it) = "4, + Zj(em - IXi ~1)+ B, (3.191)
— P/ +iP) = r*e 4,67 + 4, A 1)+ B,] (3.192)
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2G, (! +iul)=r*e " [x,4,6*% - 4,4 ~1)-B,] (3.193)

Substituting Eqgs. (3.191) to (3.193) into Egs. (3.162) gives

G,[x,4, - B |= G [x,4, - B,] (3.194)
A +B =4,+B, (3.195)
B, = -4 — (¢ ~1)i4 (3.196)
B, = —dye % — (e —1)4, (3.197)

Substituting Eqgs. (3.196) and (3.197) into Egs. (3.194) and (3.195) gives

Ad, + Ad, + 4,d, + 4,d, =0 (3.198)
Ads + Adg + A,d; + Aydy =0 (3.199)
where 4 =Glo+e¥ ). d=GAP ). d =Gl +e),

d,=—Gale¥=-1), di=1-&", d =-ae* -1), d,=e?= -1, and

dy = /1(e72"“2 — 1). Egs. (3.198) and (3.199) can be written in matrix form as

d, d,|[4)] |d; d,|[4 ~ o} 3.200
¢, a4 e alla)” o200

Solving Egs. (3.200) for 4, and its conjugate A, gives

A, = 5,4, + 5,4, (3.201)
4 =54, 45,4 (3.202)
where s, = dyds —didy _ ded, —dydy _dsd; —dd, and _didy—d,d,

s 5= , 83 = , S4 = .
dyd, —d.d, dyd, —d.d, dd, —dd, d,d, —dyd,

Subtracting Eq. (3.202) from the conjugate of Eq. (3.201) gives

t A +t,4 =0 (3.203)
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where t, =5, —s, and ¢, =5, —s,. Eq. (3.203) could be written in terms of the real and

imaginary parts of the A4, as

{%1 41 }{RC(AI)} _ {O} (3.204)

dy 4 | Im(4)
where q,, = Re(t)) +Re(t,), q,, =Im(,)—Im(t,), q,, =Im(,) +1Im(,), and

q,, = Re(t,) —Re(t,) .

Eq. (3.204) shows that Im(4,) can be determined in terms of Re(4,) or vice versa, i.e.,

{Re(AI)} - {p ! }c [Pk (3.205)

Im(4,) D,

where ¢ 1is either Re(4,) or Im(4,). To avoid division by zero, p, and p, may be

computed from Table 3.1 depending on the largest absolute value of ¢, .

Table 3.1. Values of p, and p,

Largest ‘qu‘ D D

qn —4q,/4q, 1

qi> 1 —4,./q1,
qr —45 /4y 1

q5 1 =45/ qx

From Eq. (3.186) and (3.205), 4, and its conjugate A, can be written in terms of ¢ as

A 1 i Re(4)] oqfRe(4)]
{711}_[1 —iHIm(AI)}_[N]{Im(Al)}_[N][P]C (3.206)
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and 4, and its conjugate A4, can be written in terms of 4,and 4, and therefore in terms

of ¢ as

{j{} ) [: ZH%} - [S]{j_i} =[sINIPk (3.207)

Using Egs. (3.196), (3.197), (3.206) and (3.207), the coefficients of the complex

potentials in Egs. (3.191) to (3.193) can be written as

4, 1 0 |
al-| o | g}$mmmwm¢ (3.208)
B _ ot _ /1(621'0(1 _ 1) 1

—_

for material 1 and

4, 1 0
al=| o b IsINPe R 3.209)
B, o 2i%a i(e—Ziaz 1 2

for material 2.

Assuming that

L ]=rte |k, (e 1) -1] (3.210)

then Eq. (3.193),the displacement expression for real eigenvalues, could be rewritten as
26,(ul +iul)=[L, IR =y (3.211)
Equating the real and imaginary parts of both sides of Eq. (3.211) leads to
u’ 1 |RelJ (L1
()t [, oo
u, | 2G, | Im{J (L
Eq. (3.212) shows that the displacement expressions for each real eigenvalue can be
written in terms of a real variable. Therefore, each real eigenvalue is associated with a

single element of the generalised coordinates.

85



3.7.1.4. Generalised Coordinates

The displacement expressions around a notch tip are the sum of terms of Egs. (3.189) and
(3.212) repeated for as many eigenvalues considered. The coefficients ¢ in Eq. (3.212)
and the real and imaginary parts of the coefficients 4, in Eq. (3.189) are called
generalised coordinates and will be computed directly in the FFEM. The ones associated
with the singular eigenvalues (Re(ﬂ)<1) are related directly to the SIFs of a general

notch. The rest are the constants of the higher order terms.

3.7.2. Stress Intensity Factors

The eigenvalues computed using Eq. (3.181) could be real or complex. For a general bi-
material notch, the singular eigenvalues (Re(ﬁ,)< 1) are either two real singular
eigenvalues associated with mode I and mode 11 (/1,,/1,,) or a single complex singular

eigenvalue with real and imaginary parts. A complex singular eigenvalue is associated

with a complex SIF that can be computed using one of the following equations

K, =\2zlimr (o, +io, ) (3.213)
or

K, =\2zlimr (o, +io, ), | (3.214)
Substituting Eq. (3.159) into Egs. (3.213) and (3.214) gives

K, =27224(82)1- e )- Ale > -1)) (3.215)
K, =274 (1= — 78@2)e ™ -1)) (3.216)

The real and imaginary parts of K_represent the mode I and II SIFs, respectively.
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For the case of two real singular eigenvalues, where one eigenvalue is associated with

mode I while the other is associated with mode II, the SIFs expressions are computed

using
K, =2z limr'” o, (0=0) (3.217)
K, =27 lﬁingr”“” o, (0=0) (3.218)

Substituting the stress expression, Eq. (3.191), into Egs. (3.217) and (3.218) gives

K, = \/E 11201 [(pn +ip;, )(1 +4 (1 —etn )_ e’ )

(3.219)
+ (p11 —ip;, )(1 + 4, (1 L )_ o2 )]
for mode I, and
i ] —2ia il.a,
K, = ﬂ%[(ﬁm TP )()v][ (1 —e? 1)+ o2 _ 1) -

+ (pm —ipy, )(ﬂ’[[ (ezml - 1)_ e ¢ 1)]

for mode II.

3.8. GIFs for Bi-material Notch under Anti-plane Loading (Mode III)

3.8.1. Stress and Displacement Expressions

Let (r,0)be a polar co-ordinate system centred at the tip of a bi-material notch as shown
in Figure 3.7. In the state of anti-plane, the only non-zero stress components are z,_ and
7, , and the only non-zero displacement component is in the z direction (w). The stress

components can be expressed in terms of w as

(/)
-G ow
rz J 6”'

(3.221)
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- 1 ow
) _
o _G"; 00

(3.222)

where G, is the shear modulus of material j; j=1,2. The equilibrium equation can be

written in terms of the stress components as

() )
a;z + r—agrz +7U =0 (3.223)
r

Substituting Egs. (3.221) and (3.222) into Eq. (3.223), the equilibrium equation can be

expressed in terms of the displacement component w as

1 azw(./') azw(./') aw(./')
———tr—F+ =
r 00 or or

0 (3.224)

(

The displacement function w'” can be assumed as

w = r’lF]. (@) (3.225)
where A is an eigenvalue. Substituting w'” and its derivatives into the differential Eq.
(3.224) gives

F(0)+2F,(6)=0 (3.226)

Substituting the general solution of the differential Eq. (3.226) into Eq. (3.225) gives

w) = p* (Aj cos A0+ B sin /10) (3.227)
where 4;and B, are the generalised co-ordinates (or the coefficients of the higher terms

of the mode III notch asymptotic field ). On substituting Eq. (3.227) into Egs. (3.221) and

(3.222), the stress expressions are

) = G, A" (4; cos 26 + B, sin 20) (3.228)

7" =G A" (- 4, 5in 20 + B, cos 16) (3.229)

The eigenvalues A are obtained by imposing the following boundary and continuity

conditions:
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rg)(r,ﬁ = +a1): 0

t2(r,0=-a,)=0

w(r,60=0)=w?(r,0=0)

t(r,0=0)=72(r,6 =0)

Substituting Eqgs. (3.227) and (3.229) into Egs. (3.230) to (3.233) yields

sin Ao
B =4, —"%1
cos A,

sin A,
2
cos la,

Egs. (3.234) to (3.237) can be written in matrix form as

—-sinAa, cosig, 0 0 A4
0 0 sinda, cosia, ||B, _ {O}
1 0 -1 0 4,
0 G, 0 -G, ||B,

which can be rewritten in a short form as

[D][Al B, 4, Bz]T:{O}

For non-trivial solutions the determinant of [D] must vanish, i.c.
det[D]=0

After some algebraic manipulations, Eq. (3.240) can be written as
G, sin A, cos la, + G, cos A, sin Ao, =0

Eq. (3.241) can be simplified further as

&9

(3.230)

(3.231)

(3.232)

(3.233)

(3.234)

(3.235)

(3.236)

(3.237)

(3.238)

(3.239)

(3.240)

(3.241)



(%+1] sin A(e, +a2)+(%—ljsin Ma, —a,)=0 (3.242)

2 2
By solving Eq. (3.242), the eigenvalues are obtained. Eq. (3.242) can be solved using
Muller’s iterative method. The solution of Eq. (3.242) is always real. For the special case

when G, =G, and a, =, =a, Eq. (3.242) is reduced to

=17 (3.243)
2a

which is the same relationship as the one derived for a symmetric homogeneous notch

(Eq. (3.146)).

Using Egs. (3.227) to (3.229), the displacement and stress expressions in materials 1 and

2 can be written as

w = (4, cos A0 + B, sin 16) (3.244)
w? =p* (Al cosAf + iBl sin EHJ (3.245)
GZ

" = G, r"™(4, cos 10 + B, sin 10) (3.246)

) = G Ar*™ (= A4, sin 10 + B, cos A6) (3.247)

@ =G, (Al cos A6 + %BI sin i@j (3.248)
2

P =G, (— A4, sin A0 + iB1 cos ﬂHJ (3.249)
G2

3.8.2. Stress Intensity Factors

The mode III SIF of an anti-plane bi-material notch is defined as
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KD =27 limr' (6 =0) (3.250)

r—0

Substituting Eq. (3.247) or (3.249) into Eq. (3.250) gives

K} =N27G AB, =27 G, AB, (3.251)

3.9. Implementation of the FFEM

Based on the theory presented in the previous sections, the structure of the FFEM
program implemented is shown in Figure 3.9. The code is programmed in FORTRAN90.

The next sub-sections explain the steps in more details.

3.9.1. Discretisation and Mesh Generation

For the purpose of mesh generation, the ABAQUS software is used to generate the nodal
and element definitions. Basically, a plate is drawn, partitioned and meshed. Then, an
input file is generated that contains only a list of the nodes’ labels and coordinates and the
elements labels and nodes. This file is then used in the FFEM Input File Generation sub-

routine explained next.

3.9.2. Input File for FFEM

The data required for an FFEM input file are similar to the data of a conventional FEM
input file. The only difference is defining the singular and regular nodes and elements.
Therefore, a sub-routine was developed and used to convert an FEM input file containing
basic data, i.e. the node labels and coordinates and the element labels and nodal topology,

to an FFEM input file. The sub-routine was written in FORTRAN 90. The sub-routine is
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Discretisation and mesh generation using ABAQUS

Input: plate dimensions (HxWw)
Output: nodal and element definitions

\ 4

Interface program
FFEM input file generation
Input: nodal and element definitions, location of notch tip,
length of notch, notch opening angle, material
properties
Output: FFEM input File

Solver I:
Determination of the eigenvalues
Input: notch opening angle, material properties
Output: eigenvalues

\ 4

¢ Flement stiffness matrices

e Transformation of element stiffness matrices for
Singular elements

e Assembly of the global stiffness matrix

FFEM

A 4

Load definitions and boundary conditions

A 4
Solver 1I:

Input: global stiffness matrix, global force vector

Output: displacement and generalised coordinates

Figure 3.9. Flowchart of FFEM program
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simple as it only contains conditions to recognise the singular and regular nodes and,
therefore, singular and regular elements by using simple comparison criteria of the nodes
coordinates. Any commercial FE package could be used to mesh a model and create a
mesh file. In this study, The ABAQUS software is used for this purpose (to draw and
mesh the geometry of a notched plate) as mentioned in the previous section. The
subroutine reads the file, defines all the parameters needed (singular and regular nodes
and elements, notch angle and material properties) and then writes a new input file

suitable for the FFEM code.

3.9.3. Eigenvalue Solver

The eigenvalues are determined using a sub-routine based on Muller’s iterative method
(Press et al., 2007). The sub-routine was written in FORTRAN 90 and was incorporated
in the FFEM code. It is based on the flowcharts presented in Figures (3.5) and (3.8). The

characteristic equations of the eigenvalues are solved using this sub-routine.

3.9.4. Assembly of Global Stiffness Matrix and Force Vector

Six-node triangular elements are used to mesh the plates. Seven point integration scheme
is employed to compute the element stiffness matrices. It should be noted that any
conventional finite elements can be used for modelling both the regular and singular
regions. The element stiffness matrices are computed. If an element is within the singular
region then its local stiffness matrix is transformed using the GIFs. This is carried out at

this level (element level), so the orders of matrices involved are very small and, therefore,
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reducing the computational cost and time. As the element stiffness matrices are built and

transformed, they are also assembled into the global stiffness matrix.
3.9.5. Simultaneous Linear Equations Solver

After applying the boundary conditions and building the global force vector, the
equilibrium equation, which is now in matrix form, is solved numerically to obtain the
nodal displacements and the generalised coordinates. This is done by triangulating
(decomposing) the global stiffness matrix and then obtaining the unknowns by direct
substitution. The SIFs are subsequently computed using the generalised coordinates
corresponding to the singular eigenvalues of mode I, II, or III. All the computations are

carried out using a code written in Fortran 90.
3.10. Strain Energy Approach (SEA)

The strain energy of a finite volume is

E€ = [wdy (3.252)
4

where W' is the strain energy density and can be computed as follows
W =[o:0e (3.253)
where ¢ and g are stress and strain tensors, respectively. For an isotropic material, the

strain energy density W' for a generalised state of stress can be written as
W(E)—l[a E +0 & +0. & 4T YV T V. +T ] (3.253)
- 2 xx ™ xx wyy zz%zz xy}/ Xy xzy Xz yzj/ vz :

The strains can be written in terms of the stresses by using Hooke’s law
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E,.=— [am - V(O'yy +0,. )] (3.254)

1
»y = E[O_yy - V(O_xx + O-zz )] (3255)
£ = %[0 o, +a,) (3.256)
Vi = éay (3.257)
V== éfyz (3.258)
-1 (3.259)
Ve ™ G Xz .

is the shear

where E is the Young’s modulus, v is the Poisson’s ratio and G = )
+v

modulus. It was shown in the previous sections that the stresses could be written in terms
of the generalised coordinates. It was also shown that the generalised coordinates are
related to the SIFs. Therefore, the singular stresses at the notch tip can be expressed in
terms of the SIFs. For simplicity, assuming that the stresses could be written in terms of
the mode I, II and IIT SIFs in the near field region as

o, = f(K,.K,,K,.r0) (3.260)

The higher order terms in this equation are ignored because of the dominance of the
leading order terms in the singular region. By substituting the stress expressions into Eq.
(3.252) and carrying out the integration over a finite volume around the notch tip, Eq.
(3.252) becomes a representation of a direct relation between the strain energy for a finite

volume and the SIFs and could be written as

E©Y=F(K, K,,K,) (3.261)
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The strain energy could be easily computed using a commercial finite element package.
Most FE packages are not, to our knowledge, capable of computing the SIFs for general
notches. Therefore, this approach is quite useful to extract SIFs for general notches by
using current commercial FE packages. In this study, the ABAQUS software is used to
compute the strain energy. Eq. (3.252) can be partitioned to deal with bi-material and
mixed mode cases where two equations are needed to compute mode I and mode II SIFs

as follows

El(E) = E(K[’KI[)

© (3.262)
E," = Fz(KpKu)

Calculate strain energy for a closed volume

\4

Integrate over the volume symbolically
or numerically

\4

| Solve simultaneous Equations |

v

& |

Figure 3.10. Essential steps of the SEA

The integration of Eq. (3.252) can be carried out symbolically for simple pure mode cases
resulting in closed form formulae as presented in Chapter 10. For more complex cases
such as mixed mode cases, the integration can be carried out numerically using for
example the MATLAB software. In this study, a sub-routine based on the Composite
Simpson’s Method is developed and used to carry out the integration. Then, the
simultaneous Egs. (3.262) are solved using the MATLAB software. Figure 3.10 shows

the essential steps of the SEA.
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3.11. Conclusion

In this chapter the background theory of the FFEM and derivations of the stress and
displacement expressions around a notch tip that are used in the subsequent chapters were
presented. In addition, the numerical techniques and computational steps of the FFEM
and the SEA that were developed and used were also described. This was done because of

the brief nature of the published work presented in the rest of this thesis.
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Chapter 4

Research Overview
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4. Research Overview

4.1. Introduction

This thesis is presented in an Alternative Format, in which research, techniques and
findings are presented in the form of scientific papers that have been published in
externally refereed contexts. The papers included are linked to each other, and together
make up a coherent and continuous research work. In total, seven papers are included of
which four have already been published. The other three papers are currently under
review. In this chapter, an overview of the research, a short description of each paper and

a statement of the authors’ contributions are presented.

4.2. Research Overview

The main aim of this research as detailed in Chapter 1 is to extend the FFEM to compute
the mode I, II and III SIFs for general notches in isotropic homogeneous and bi-material
plates. The exact analytical solutions of the displacement field around a notch tip in an
isotropic material subjected to in-plane loading are derived and used as GIFs in the
FFEM. The mode I and II SIFs values predicted by the FFEM for notched plates
subjected to tension, shear, and bending loading conditions are of good accuracy
compared to available published data (Treifi et al., 2008, 2009a, 2009b). The method at
this stage has proved promising. As superposition of the results for mode I, II and III is
sufficient to describe the most general case of loading on a specimen with a notch, the
method is extended to compute mode III SIFs. Therefore, the exact analytical solution of

the displacement field around a notch tip in an isotropic notch subjected to out-of-plane
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shear loading conditions is derived and employed in the FFEM to compute the mode III

SIFs for general notches in isotropic notched plates (Treifi et al., 2009¢).

In many engineering applications, materials are increasingly joined together and quite
frequently they are joined together with a corner/notch created between the two materials.
The presence of corners/notches is known to cause stress intensity at the tip of such
corner/notch. Therefore, the development of the FFEM to compute the SIFs for bi-

material notches is the next logical step.

Firstly, the FFEM is extended to compute mode III SIFs for bi-material notches. This is
done by deriving the exact analytical solution of the displacement field around a bi-
material notch tip subjected to out-of-plane shear loading conditions and employing the
solution in the FFEM (Treifi and Oyadiji, 2013a). Secondly, the exact analytical solutions
of the displacement field around a bi-material notch tip subjected to in-plane loading
conditions are derived and employed as GIFs to extend the FFEM to compute mode I and

IT SIFs for bi-material plates (Treifi and Oyadiji, 2013Db).

Most of the results produced by the FFEM for the notch cases, especially for bi-material
notch cases, are new. To prove the accuracy of the FFEM, the results are compared to
available published results and numerical solutions obtained using commercial FE
packages such as the ABAQUS software. However, the published results are generally
only for crack cases or isotropic notch cases, and the commercial FE packages are not
capable of computing the SIFs for general notches. Therefore, a new approach based on
the strain energy of a finite volume around a notch tip is developed to compute the SIF

values for isotropic homogeneous and bi-material notches (Treifi and Oyadiji, 2013c).
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The good agreement between the results obtained using the FFEM and the corresponding
results computed using the SEA increases the confidence in the FFEM results especially
for the bi-material notch problems. Indeed, both methods seem promising, one as a stand
alone method (FFEM) and the other as a subroutine that could be used to compute the

SIFs for general notches using commercial FE packages.

4.3. Outline of Included Published Papers

As this thesis is presented in an Alternative Format, the papers published that are
mentioned in the previous Section are included as separate chapters following the
Alternative Format guidelines. In total seven papers are included. Four of them are co-
authored by me and my supervisor, Dr S O Oyadiji. As the leading author, I contributed
the major ideas and contents of these papers, and I solely carried out the work in these
papers under the supervision of Dr. Oyadiji. The other three are co-authored by three
researchers: I, Dr S O Oyadiji, and Dr D K L Tsang. As the leading author, I contributed
the major ideas and contents of these papers, and I solely carried out the work in these
papers under the supervision of Dr. Oyadiji and Dr Tsang. It should be mentioned that the
SIF values presented in those papers are non-dimensionalised. Also, the stress and
displacement expressions around the notch tip are series expansions and that the >’ symbol
is dropped for simplicity. Brief descriptions of the seven papers are presented next in the
order they appear in the subsequent chapters. Table 4.1 gives an illustrative overview of

them.
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Table 4.1. Overview of included published papers

Ch. Paper Details Mode Material Illustration
NS(.). Computation of the SIFs of Sharp | Iand II Isotropic TTELITINN
Notched Plates by the FFEM. Int J
Numer Meth Engng 2009 .;>_.

6. | Computations of Modes I and II | Tand II Isotropic " . e
SIFs of Sharp Notched Plates under T B ‘
In-plane Shear and Bending Loading p p |
by the FFEM. Int J Solids Struct T - |
2008 R T e

g .
S
‘ c

7. | Computations of SIFs for Non- | IandII Isotropic s jilli
symmetric V-notched Plates by the {

FFEM. Proceedings of the ASME T %Cﬂ{
IDETC/CIE 2009 ‘ D
ol i1l

8. | Computations of the SIFs of Double- | I, IT and Isotropic © OT? © 0o CT oo oode r ©
edge and Centre V-notched Plates I :\ ‘ T - T
under Tension and Anti-Plane Shear > > < <~
by the FFEM. Engng Fract Mech - G

TEP® BOEIRE BOBBEE
2009
THT?HT Mrt"ﬁft
BEARS
uu;uu T
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Table 4.1. Continued

9. | Evaluation of Mode III SIFs for Bi- 111 Bi-material

material Notched Bodies Using the

FFEM. Comput Struct 2013

|

WVWRIIRFIQ

10. | SEA to Compute SIFs for Isotropic | I, IT and Isotropic CLLTTEttriIty
Homogeneous and Bi-material V- I and
notches. Int J Solids Struct 2013 bi-material J = > s
a .
ST xwa&V;&x@@

- T
VPO

EEEEEEEET

11. | Bi-material V-notch SIFs by the | TandII | Bi-material SEREEAREEEENE g

FFEM. Engng Fract Mech 2013

4.3.1. Computation of the Stress Intensity Factors of Sharp Notched Plates by the
Fractal-like Finite Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: International Journal for Numerical Methods in Engineering 2009; 77:558—

580.

In this paper, The FFEM is extended to analyse the singularity problems of sharp notched

plates subject to tension loading conditions. The exact stress and displacement fields of a
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general notch are derived for plane-stress/strain conditions. The exact analytical
expressions of the displacements, which are eigenfunction expansion series, are used to
perform the global transformation and to determine the SIFs. A convergence study of a
notched plate subject to pure mode I loading conditions is carried out to determine the
optimal similarity ratio, number of layers and number of terms of the GIFs. Different
numerical examples are also presented of V-notched plates for different notch opening
angles and different notch locations under tension loading conditions. To demonstrate the
accuracy and efficiency of the FFEM to compute the notch SIFs, the results are compared
to available published results and numerical solutions predicted using the ABAQUS
software. The ABAQUS software is used only for crack cases, because ABAQUS is not
capable of computing SIFs for general notches. The accuracy of Mode I SIFs computed

using the FFEM is shown to be very good. New results are also presented.

4.3.2. Computations of Modes I and II Stress Intensity Factors of Sharp Notched
Plates under In-plane Shear and Bending Loading by the Fractal-like Finite
Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: International Journal of Solids and Structures 2008; 45:6468—6484.

The FFEM is used to compute the SIFs for different configurations of cracked/notched
plates subjected to in-plane shear and bending loading conditions. A convergence study of
a V-notched plate subject to pure mode II loading conditions is carried out to determine
the optimal similarity ratio, number of layers and number of terms of the GIFs. Different
numerical examples of various configurations of cracked/notched plates under different

types of shear and bending loading conditions are presented. The results of the FFEM for
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mode II SIFs are validated via published data for crack and notch cases or numerical
solutions predicted using the ABAQUS software for crack cases. Very good accuracy is

achieved. New results are also presented.

4.3.3. Computations of SIFs for Non-symmetric V-notched Plates by the FFEM
Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published in: Proceedings of ASME Conference IDETC/CIE2009; 3:711-717.

This paper further develops The FFEM to compute the SIFs for non-symmetrical
configurations of sharp V-notched plates. This is when the bisector of a notch opening
angle does not lie on or is not parallel to the x-axis of the global coordinate system. The
same exact analytical expressions of the displacements around a notch tip derived for a
symmetrical notch case can be used as GIFs when the notch is non-symmetrical by
introducing an appropriate local coordinate transformation to obtain the correct global
stiffness matrix. To demonstrate the accuracy of the FFEM to compute the mode I and II
SIFs for a non-symmetrical notch, various numerical examples are presented and results
are validated via available published data. The accuracy of the FFEM results compared to

the corresponding published data is shown to be very good.

4.3.4. Computations of the Stress Intensity Factors of Double-edge and Centre V-
notched Plates under Tension and Anti-plane Shear by the Fractal-like Finite
Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: Engineering Fracture Mechanics 2009; 76:2091-2108.
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In this paper, the FFEM is extended to compute the SIFs of double-edge-/centre-notched
plates subjected to out-of-plane shear or tension loading conditions. The exact stress and
displacement fields of a general notch under pure mode III loading conditions are derived.
The exact analytical expressions of the displacements, which are eigenfunction expansion
series, are used to perform the global transformation and to determine the SIFs. A
convergence study of a notched plate subject to pure mode III loading conditions is
carried out to determine the optimal similarity ratio, number of layers and number of
terms of the GIFs. The GIFs derived in the previous papers are used for in-plane (mode I
and II) problems, and the GIFs derived in this paper are used for out-of-plane (mode III)
problems. Many numerical examples of double-edge-/centre-notched plates are presented,
and the results are validated via existing published data or numerical solutions obtained
by using the ABAQUS software (for crack cases only). Also, an example on the ability of
the FFEM to compute the coefficients of the higher order terms is presented. The FFEM
results for mode III are shown to be of very good accuracy. New results of notched plate

problems are also introduced.

4.3.5. Evaluation of Mode III Stress Intensity Factors for Bi-material Notched
Bodies Using the Fractal-like Finite Element Method

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published (early view) in: Computers and Structures 2013;

http://dx.doi.org/10.1016/j.compstruc.2013.02.015.

In this paper, the FFEM is extended to compute the SIFs for bi-material notched bodies

subjected to anti-plane shear (mode III) loading conditions. The notched bodies are

formed by bonding two materials together (isotropic-isotropic/isotropic-orthotropic). The
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exact stress and displacement fields of a general bi-material notch under pure mode III
loading conditions are derived and employed as GIFs in the FFEM. Also, a strain energy-
based approach (SEA) is developed and used to extract the mode III SIFs for a bi-material
notch using standard finite element (FE) commercial packages for comparison with
corresponding data produced using the FFEM. This is done because there are no available
published results to compare the mode III notch SIFs to. Various numerical results for bi-
material cracked/notched bodies under anti-plane shear, many of which are new, are
presented. The results are compared to published results or numerical solutions and
shown to be of very good accuracy. Some interesting results of a crack parallel to an
interface for different crack locations and different material property ratios are also

presented.

4.3.6. Strain Energy Approach to Compute Stress Intensity Factors for Isotropic
Homogeneous and Bi-material V-notches

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published (early view) in: International Journal of Solids and Structures 2013; 50: 2196-

2212. http://dx.doi.org/10.1016/j.ijsolstr.2013.03.011.

In this paper, a strain energy approach (SEA) is developed to compute the general stress
intensity factors (SIFs) for isotropic homogeneous and bi-material plates containing
cracks and notches subjected to modes I, II and III loading conditions. The approach is
based on the strain energy of a control volume around the notch tip, which may be
computed using commercial finite element packages. Therefore, this approach enables
analysts to compute the notch SIFs using current commercial FE packages, despite the

fact that these packages are only capable of computing SIFs for crack problems. The
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relations between the strain energy of a control volume around the crack/notch tip are
derived for the in-plane (mode I and II) and out-of-plane (mode III) cases for isotropic
homogeneous and bi-material notches. Convergence studies are carried out to determine
the control volume size for each case. Various numerical examples of isotropic
homogeneous and bi-material notched plates are presented and results are compared to
corresponding published results or results that are computed using different numerical
methods. The accuracy of the SIF values predicted by the SEA is shown to be very good.
Many of the presented results are new, especially for the cases of bi-material notches

where the problem is quite complicated.

4.3.7. Bi-material V-notch Stress Intensity Factors by the Fractal-like Finite Element
Method

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published  (early  view) in:  Engineering  Fracture = Mechanics  2013;

http://dx.doi.org/10.1016/j.engfracmech.2013.04.006.

In this paper, The FFEM is developed to compute SIF values for bi-material notches
under mode I and II loading conditions. The displacement fields around a bi-material
notch tip are derived and employed as GIFs in the FFEM to transform the large number of
nodal displacements in the singular region to a small set of generalized coordinates
leading to direct computation of the SIFs and the constants of the higher order terms.
Various numerical examples for bi-material crack and notch cases are presented. It is
demonstrated, via convergence studies, that the size of the singular region has an effect on
the results. Recommendations are made on the choice of the size of the singular region.

Compared to available published results and numerical solutions obtained by using
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different numerical methods, the FFEM is shown to produce results with very good

accuracy. Also, new results for bi-material notches are introduced.

4.4. Conclusion

In this chapter, an overview of the research undertaken was presented along with short
descriptions of the published scientific papers included in this thesis. A statement on the
contributions of the co-authors to those papers was also stated. The author of this thesis
was the major contributor to those papers; he carried out the analytical derivations and the
computations and wrote the papers as lead author. The role of the co-authors was mainly
supervisory. The papers included make up the subsequent chapters of this thesis as it is

submitted in an Alternative Format.
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Chapter 5

Computation of the Stress Intensity Factors of Sharp Notched Plates by

the Fractal-like Finite Element Method

International Journal for Numerical Methods in Engineering 2009; 77:558-580
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Computation of the stress intensity factors of sharp notched plates
by the fractal-like finite element method

Muhammad Treifi, S. Olutunde Oyadiji*’T and Derek K. L. Tsang

Dynamics and Aeroelasticity Research Group, School of Mechanical, Aerospace and Civil Engineering,
University of Manchester, Manchester M60 10D, U.K.

SUMMARY

The fractal-like finite element method (FFEM) is an accurate and efficient method to compute the stress
intensity factors (SIFs) of different crack configurations. In the FFEM, the cracked/notched body is
divided into singular and regular regions; both regions are modelled using conventional finite elements.
A self-similar fractal mesh of an ‘infinite’ number of conventional finite elements is used to model the
singular region. The corresponding large number of local variables in the singular region around the crack
tip is transformed to a small set of global co-ordinates after performing a global transformation by using
global interpolation functions. In this paper, we extend this method to analyse the singularity problems
of sharp notched plates. The exact stress and displacement fields of a plate with a notch of general angle
are derived for plane-stress/strain conditions. These exact analytical solutions which are eigenfunction
expansion series are used to perform the global transformation and to determine the SIFs. The use of
the global interpolation functions reduces the computational cost significantly and neither post-processing
technique to extract SIFs nor special singular elements to model the singular region are needed. The
numerical examples demonstrate the accuracy and efficiency of the FFEM for sharp notched problems.
Copyright © 2008 John Wiley & Sons, Ltd.
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KEY WORDS: edge-cracked plate; stress intensity factors; edge-notched plate; notch; finite element
method; fracture mechanics

1. INTRODUCTION

The computation of stress fields inside elastic bodies with corners is a common problem in
mechanical and civil engineering. Therefore, much research has been devoted to the analysis of
sharp notches where stresses diverge and oscillate. The task of computing the so-called notch
stress intensity factors (SIFs) is important and has relevance for strength calculations. Experiments
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show that simple failure criteria based on critical values of such factors exist, at least for brittle
fracture [1].

Gross and Mendelson [2] used a boundary collocation procedure of the stress functions derived
by Williams [3] to calculate the SIFs. Tong and Pian [4] pointed out that the interpolation functions
must include terms that can account for the analytical form of the singularity in order to improve the
rate of convergence. In addition, these interpolation functions should be used for elements within
a finite region, and not only for those around the singular point. Sinclair et al. [5, 6] discussed
the idea of a generalised stress intensity at sharp corners and outlined an approach to obtain it
based on the calculation of a contour integral, which was an extension of the work of Stern et al.
[7, 8]. Carpenter [9—12] independently also applied the contour integral of Stern et al. [7, 8] to
compute fracture mechanics parameters and introduced a collocation approach to calculate stress
intensities.

Lin and Tong [13] developed a special hybrid finite element. Their results were limited to
mode I cases. Portela and Aliabadi [14] developed the boundary element singularity subtraction.
As the method’s name suggests, they used a technique to subtract the singularity. They published
results for symmetric and non-symmetric notch configurations. However, this method requires
extra boundary conditions that they referred to as ‘singularity conditions of the regularisation
procedure.” Babuska et al. [15—17] developed finite element techniques to extract SIFs for mixed
modes. They discussed two broad types of methods: one involves an ‘influence’ function and the
other is related to the energy principle of fracture mechanics. These techniques are post-processing
procedures and known as extraction techniques.

The fractal-like finite element method (FFEM) is a semi-analytical method. Its idea goes back to
the work of Leung and Cheung [18]. Originally they proposed a two-level finite element technique
of constructing a frame super-element to reduce the computational cost for solving dynamic
problems of a large-scale frame. The idea was based on the concept of global-local interpolation
functions introduced by Mote [19]. The concept was that while local interpolation functions (shape
functions) reduce the infinite number of degrees of freedom of a continuum to a finite number
of degrees of freedom related to the nodes of the continuous element, the global finite element
interpolation functions can be used to reduce the number of nodal unknowns to a small number
of unknowns, called generalised co-ordinates.

The study was extended to model two-dimensional plates subject to concentrated static and
harmonic loads by Leung and Wong [20, 21] and two-dimensional crack problems by Leung and
Wong [22]. Leung and Su extended the method further to include many two-dimensional crack
problems [23-29]. They applied the method to mode I [23], mixed mode [24], and body force
crack problems [25] in 1994, 1995, 1996, respectively, as well as to cracked Kirchhoff’s plates
[26], cracked Reissner’s plates [27] and further to axisymmetric cracks and penny-shaped and
circumferential cracks [28, 29]. Leung and Tsang [30] studied mode III crack problems. It has been
shown that the fractal-like finite element method gives very accurate results for many different
crack problems.

In this paper, we extend the fractal-like finite element method to model the singularity resulting
at the notch tip. Williams’ eigenfunction series expansion will be used as global interpolation
functions to perform the fractal transformation. No special singular finite elements are necessary
to model the singular region—any conventional finite elements can be used to model the singular
region. Also, no post-processing is necessary to extract the SIFs, because some of the unknown
coefficients of the exact analytical solutions employed as the global interpolation functions are
related to the SIFs. Various numerical results concerning different notch configuration problems
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subjected to mode I load conditions are presented to demonstrate the accuracy and efficiency of
the FFEM to calculate SIFs of sharp notched plates.

2. FORMULATION OF THE FRACTAL-LIKE FINITE ELEMENT METHOD (FFEM)

Following the work of Leung and Su [23-29], in the FFEM, the cracked body is divided into
singular regions (near fields) and regular regions (far fields) delineated by curves F(l) and F%
as illustrated in Figure 1. Conventional finite elements are used to model both near-field and
far-field regions. However, a very fine mesh of conventional finite elements is used within the
singular regions. This mesh is generated layer by layer in a self-similar fractal process. The nodal
displacements are the unknowns in the regular region. The nodal displacements in the singular
region are transformed into a small set of generalised co-ordinates, which are the unknowns in the
singular region. Two of the generalised co-ordinates are related to the SIFs for modes I and II;
and therefore no post-processing is necessary to extract the SIFs. Williams’ analytical solutions
for the displacements near the crack tip are used for performing the transformation.

By using p as the similarity ratio and the crack tip as the centre of similarity, a set of curves
{I',I'2,13,...}, similar to I'g, is generated within the singular region. The layer between the
curves I',_1 and I',, is called the nth layer. All nodes on I'g are considered master nodes, while
the nodes inside I'g are considered slave nodes as shown in Figure 2.

In the conventional finite element method, the displacements can be expressed as follows:

u=Nd ()

where u is the displacement field, d is the nodal displacement vector, and N is the shape functions
matrix. The strain can be obtained by

¢=Bd 2

Regular region

yal

crack
notch

Singular regions

Figure 1. Singular and regular regions of cracked and notched plates.
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Regular Region

0

Figure 2. Detailed sketch of the near-field region (master nodes are highlighted).

where € is the strain vector and B is the strain-displacement operator. The stress vector is related
to the strain vector as

6=Ds¢ 3)

where ¢ is the stress vector and D is the material properties matrix.
The equilibrium equation is

Kd=f “4)

where K is the stiffness matrix and f is the nodal force vector:
K= / B'DBdV 5)
v

where V is the volume of an element. For the regular region, the equilibrium equation can be

written as
Krr I(rm dr _ fr ( 6)
Kmr Kmm dm - fm

where d, are the displacements of the nodes in the regular region, and d,, are the displacements
of the master nodes. Similarly, for the first layer in the singular region, the equilibrium equation

can be written as
Kl RG] [ [0
[Kgs,: K;:t} {d;st} il {f} v
where dsISt are the displacements of the slave nodes in the first layer which can be expressed in
terms of the generalised co-ordinates cl= {CI, C{I, C%, C%I, Cé, ...} as follows:

4" =T;%c (8)
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T;S‘ is the transformation matrix in terms of polar co-ordinates (r, 0) for the slave nodes in the
first layer. Therefore, Equation (7) can be written as

1 0 7'[KS KSIT 0 (d,] [T 077 (£
- Ist Ist (9)
¢ 0 T, f°

Ist Ist Ist 1st
0 TS Ksm Kss 0 TS

or
flSt
" } (10)

KEOKETE (0
- TslstTf;st

1stT g 1st 1stT g Istp st
Ts Ksm Ts Kss Ts ¢

In order to provide the continuity between the singular and the regular region, d,, are not trans-

formed.
Now, for the nth layer in the singular region; n>1
K!d) =f' an
Applying the transformation gives
(12)

T/ K/ Tie=T/ f

where
n n
Kn Ks,ii Ks,ij
s Kn Kn
s, ji S, JJ

Since d,, are not transformed, the size of T!* is smaller than that of T”.

The global stiffness matrix equation is
B Kim T( d. f,
Ist 1

Kor Kom+K,, K, d,, £,

1st Ist 2nd 2nd Ist 1st

Ksm Kss +Ks,ii Ks,ij dss fss

2nd nd | g3rd  edrd 2nd { = | ¢2nd (13)

K i Ko TK K dg f;

nl nl nl nl

L Ko Kid Uds £

where nl is the number of layers in the singular region. We can rewrite Equation (13) by applying

the transformation as follows:
K;r Kim 0 d f,
1 Istrpls " Is
0 TlStTKISt TlStTKIStTISt+ il: TnTKnT” c TlStTfISt+ il: Tann
S sm N AN S P S ) S N ) P’ N S
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or
I(rr Krm 0 dr fr
1 =1 1
Knr Ko +K3 K} a b £, -+ s
_ _ nl _ _ nl _
0 Ko KS+ YK | Le £+ > 1
n=2 n=2

where KISt = KISUT!st R =T K0T, £ =T" £7, etc.

The unknowns now are the displacements d, and d,, in the regular region and the generalised
co-ordinates c¢. If we consider dg as the vector of displacements in the singular region except
for those on I, the size of the vector d; is much bigger than the vector of the generalised co-
ordinates c¢. Therefore, solving the system of Equation (15) is much more efficient than solving

the system of Equation (13).

3. GLOBAL INTERPOLATION FUNCTIONS FOR A NOTCH PROBLEM

The global interpolation functions, which are used for the fractal transformation, have an essential
role in the FFEM; therefore, exact analytical solutions are employed as the global interpolation
functions. An eigenfunction expansion approach or a complex variable approach can be used to
derive analytical solutions of the stress and displacement fields around a notch tip [31, 32]. For
the sake of completeness, the following is a short description of those approaches.

3.1. Eigenfunction expansion method

The airy stress function approach can be used to derive the displacement and stress series expansions
around a notch tip in the manner of Williams [3]. He investigated the analytical form of the most
critical singularity cases of notches. Williams’ eigenfunctions were proved to be complete for the
annular sector [33,34]. According to this method, the stress and displacement expressions in a

»
»

‘}f

\2

Notch

(¢

Figure 3. Notch geometry and the co-ordinate systems.
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polar co-ordinate system centred at the tip of an infinite notch as illustrated in Figure 3 (the =0
axis and the Cartesian x-axis coincide with the bisector of the notch angle) can be written as

RS BV LS PN I I .1
gr=—=Ar" " [(A+1)Cacos(A+1)0+ (4 —3)Cqcos(A —1)0]
A ey sin( 4 1)04 (M= 3)Cs sin( = 1)0] (16)
a9 = LG - 1)r* 71 [Cy cos (A4 10+ Cy cos (2 — 1)0]
O 1A 1 ey sinGM 1) 0+ C3 sin(—1)0] (17)
— L1l N 1 ool
g9g=Ar [(A+1D)Cosin(A +1)0+ (A —1)Cysin(A —1)0]

GO 04 cos( 4 104+ (1 — 1) C3 cos (M — 1)0] (18)

A
Uy = ;—G[—(AIJr 1)Crcos(141)0+Ca(3— A — 4 cos(L—1)0]

).H
+;—G[—(AH+ DCysin(AM+1)0+C33— M —4n) sin(AM = 1)0] (19)
v
ug = S [GHDCosinG+ DO+ Ca(3+ 2 —dn)sinGi! ~ 0]
r)“u
+E[—(1H +1)Crcos(AM+1)0—C33+ M —4n) cos(AM—1)0] (20)

where G is the shear modulus, # =v for plane strain, 7=v/(1+v) for plane stress, and v is Poisson
ratio. A' and A are eigenvalues for modes I and II, respectively, and are calculated from the
characteristic equations:

sin2a+sin2il0 =0 (1)
AMsin20—sin2AMo =0 (22)

C1,C,,C3, C4 are the generalised co-ordinates. C3 and Cy4 can be calculated in terms of C| and C»

cos(A + Do M+ D sin(A + 1o

= — I 2=— 1 - I 2 (23)
cos(A —1a (A =1sin(A —Da
o m, m_

Cs= sin(A" + )ocC _ (A +1)cos(A + )ocC1 (24)

TsinG Do T 1 cos(AM— Do

The characteristic equations (21) and (22) can be solved numerically using Muller’s iteration
method [14]. Muller’s method can converge to a complex root, even if the iteration has started
with a real number. A comprehensive discussion of the behaviour of the roots of Equations (21)
and (22) is given in References [31, 35].

The dominant eigenvalues, which are the smallest eigenvalues greater than zero, for different
notch angles 7y are plotted in Figure 4. From Figure 4 and Equations (16)—(18), it can be inferred
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Figure 4. Notch angle vs. dominant eigenvalues for modes I and II.

that the stresses are unbounded at the notch tip when the notch angle y<180° for mode I, and
1<102.55° for mode II.

3.2. Complex variable approach

According to the complex variable approach [36], the displacement and stress expressions can be
written as

/lI

r
U = —

=5G A[3—4n— N eos(A'=1)0+ (cos 22+ A cos 20)) cos(A+1)0]

/l“

+2—GA2[—(3 —4n—2Mysin(" = 1)0+ (cos 20— MM cos20) sin(A+1)0]  (25)

;LI

ug = ;—GAl [(3—4n+ 21 sin(A' —1)0— (cos 22 e+ 2! cos 2a) sin(A +1)0]

/‘LH

+ ;_G Ar[(3—4n+ Ay cos(AT=1)0+ (cos 22N — i cos 20) cos (A4 1)0] (26)

oy = rll_lfllAl [—(A'=3) cos(A — 1)0+ (cos 2/ o+ AL cos 2ar) cos (AL +1) 6]
I AL T = 3) sin (M — 1)0+ (cos 2 — AT cos 2) sin(2 +1)0] @7
o9 = r’ll*liIAl (A1) cos(A = 1)0— (cos 22 o+ A cos 2a) cos (A + 1) 0]
—r’lH*l/IHAQ[(},H +1)sin(A" = 1)0+ (cos 22— M cos 2a) sin (A + 1) 0] (28)
.0 =r" VLA [ = 1) sin(2 = 1)0— (cos 22 o+ 21 cos 2a) sin(A +1)0]
+riH*1/1HA2 [T = 1) cos(AT = 1)0+ (cos 2o — MM cos 2a) cos(A+1)0] (29)

where A1 and A; are the generalised co-ordinates.
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Figure 5. Single edge-cracked plate and the mesh used for the analysis.

Expressions (25)-(29) are equivalent to the ones derived using the eigenfunction expansion
approach and, therefore, produce similar results. It should be noted that both forms of expressions
have been presented to emphasise the fact that while they are different symbolically, they produce
similar results.

3.3. The stress intensity factors (SIFs)

The SIFs are defined in a way similar to those of a crack by some authors [2] as

Ki=+2zlim = 59(0=0) (30)
Ki = /27 lim P G 0(0=0) 31)

for modes I and II, respectively.
The relationships between the SIFs and the generalised co-ordinates are obtained by substituting
the stress expressions (17) and (18) into Equations (30) and (31):

I
Ki=~2ml' (' +1) (1 - w) Ca (32)
cos(A —1a
in(A!+ Do
Ki = -2l | 141y — o 1y S0+ D 33
1l T |:(A +1D—( )sin(/ln—l)oc (33)
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Figure 6. Variations of SIFs with number of terms (NT) and for different numbers of layers (NL) and

similarity ratios p compared with those of Tada [37].
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Figure 8. Variations of SIFs with number of layers and for different similarity ratios and numbers of terms
compared with those of Tada [37].

or by substituting Equations (28) and (29) into (30) and (31):

Ky =21 (1+ 1= A cos 20— cos221a) A} (34)
K =21 (=14 2= M eos204cos 22 a) Ay (35)

Relationships (32)—(35) show that no post-processing technique is necessary to extract the SIFs.
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4. NUMERICAL EXAMPLES

4.1. Convergence study for a crack case

A convergence study will be performed to demonstrate the accuracy and stability of the FFEM.
The effects of the similarity ratio (for a range of 0.1-0.9), the number of layers in the singular
region (for a range of 4-20), and the number of terms of the eigenfunction expansion series used
as global interpolation functions (for a range of 5-30) on the SIFs will be considered.

Two-dimensional mode I plane-stress crack problem of a single edge-cracked plate as shown
in Figure 5 will be analysed. The aspect ratio and the ratio of the crack length to the plate width
are h/w=2 and a/w=0.4, respectively. Six-node triangle elements are used to model the plate.
Also, the singular region volume is held constant with increasing numbers of layers.

The results compared to those of Tada [37] are presented in Figures 6-8. Figures 6 and 7 show
that the number of transformation terms (NT) does not have a significant effect on the results when
NT2S.

Table I. SIFs for an edge-cracked plate for different crack lengths.

1
KI/Gﬁaliil

FFEM

a/w Gross [37] Tada [37] Yang [38] 5 layers 10 layers 15 layers 20 layers

0.1 1.186 1.196 1.204 1.165 1.185 1.186 1.186
0.2 1.373 1.367 1.380 1.342 1.363 1.365 1.365
0.3 1.662 1.655 1.676 1.629 1.655 1.657 1.658
0.4 2.106 2.108 2.134 2.071 2.105 2.108 2.108
0.5 2.829 2.827 2.858 2.767 2.814 2.818 2.818
0.6 4.030 4.043 4.090 3.946 4.015 4.020 4.021
0.7 — 6.376 6.471 6.203 6.318 6.328 6.328
0.8 — 11.993 — 11.610 11.850 11.869 11.871
0.9 — 34.719 — 33.176 34.068 34.139 34.145

30 1 7
j

25 7
£ 2 ] —@— FFEM
& ! ---w-- Tada

15 | / :

.
10 o
5 |
—
o
a1 02 03 04 0S5 0e 0 08 09

Figure 9. Variations of SIFs with crack length (using 20 layers) compared with that of Tada [37].
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Figure 10. Single off-centre edge-cracked plate subjected to mode I load condition.

From Figure 7, good results can be obtained by using values of similarity ratios between 0.5 and
0.7 for the range of numbers of layers used in this study. Also, Figure 8 illustrates that the results
converge asymptotically with increasing numbers of layers used to model the singular region when
p>0.3. Good results can be obtained by using 10 layers or more.

4.2. Examples of single edge-cracked plates subjected to mode I load conditions

Two-dimensional mode I plane-stress crack problems of a single edge-cracked plate will be analysed
for different crack lengths. The problem is shown in Figure 5. Based on the convergence study,
10 terms of the eigenfunction series are used for the fractal transformation. The aspect ratio and
the similarity ratio are h/w =2 and p=0.6, respectively. Six-node triangle elements are used.
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Table II. SIFs for an off-centre edge-cracked plate for different crack positions.

Ki/o/ma(Ky/o/ma)
he/h FFEM ABAQUS
0.1 3.488 (1.037) 3.488 (1.039)
0.2 2.343 (0.230) 2.343 (0.232)
0.3 2.150 (0.053) 2.150 (0.054)
0.4 2.113 (0.009) 2.113 (0.010)
0.5 2.108 (0.000) 2.108 (0.000)

Different numbers of layers are used to model the singular region whose volume is held constant
with increasing numbers of layers.

The comparisons of the computed SIFs and corresponding published data [37, 38] are shown in
Table I for different ratios of crack length to plate width. Also, the SIFs computed using 20 layers
to model the singular region by the FFEM compared to those of Tada [37] are plotted in Figure 9.

Table I as well as Figure 8 show that the SIF values increase asymptotically with increasing
numbers of layers. In addition, the SIF values increase with increasing ratios of crack length to
plate width (a/w) as shown in Table I and Figure 9. It is also seen from Table I and Figure 9
that there is a sharp increase in the SIF value when the crack length to plate width ratio (a/w)
exceeds 0.8. Furthermore, the FFEM results for the SIFs of single edge-cracked plates show very
good agreement with the published results. The results in Table I prove that the eigenfunction
expansion series derived for notch problems yield accurate results for crack problems (when the
notch opening angle y=0°).

4.3. Examples of single off-centre edge-cracked plates under tension

A single off-centre edge-cracked plate as illustrated in Figure 10 is considered in this section.
The ratio of the crack length to the width of the plate is taken as a/w =0.4. Sixteen layers in the
singular region, 10 terms of the eigenfunctions, an aspect ratio of 4/w =2, a similarity ratio of
p=0.6, and six-node triangle elements are used.

Using the parameters stated above, the FFEM is used to compute the modes I and II SIF values.
The results obtained are tabulated in Table II. But it should be noted that these are new results and
that there are no published data with which to compare them. Therefore, in order to validate the
results, the ABAQUS 6.5-4 finite element analysis (FEA) package is used to model the cracked
plates. A similar mesh to that shown in Figure 5 is used. In addition, the elements around the
crack tip are modelled using quarter-point crack tip elements [39].

The values of the SIFs for modes I and II predicted by the ABAQUS FEA package are also
tabulated in Table II. It should be mentioned that mode II occurs in this example because of the
geometrical asymmetry of the plate configuration. It can be seen from Table II that the SIF values
increase as the crack gets closer to the top or bottom boundaries of the plate, and the minimum
values occur when the crack is central. In order to show clearly the sharp drop in the SIF values
as the crack location moves from the edge to the centre of the plate, the K1 and Ky values are
plotted in Figure 11. From this figure, it can be inferred that cracks located within 20% of the
ends of the plate are more critical as they give the highest SIFs. Also, the FFEM and ABAQUS
results are in very good agreement.
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Figure 11. Variations of SIFs of an off-centre edge-cracked plate compared with those
calculated using ABAQUS FEA package.

4.4. Numerical examples of single edge-notched plates subjected to mode I load conditions

Two-dimensional mode I plane-stress notch problems of a single edge-notched plate is analysed for
different notch angles. The problem is shown in Figures 12 and 13. Ten terms of the eigenfunction
series are used for the fractal transformation. The aspect ratio, the similarity ratio, and the ratio
of the notch length to the plate width are 2/w =2, p=0.6, and a/w =0.4, respectively. Six-node
triangle elements are used to model the plate. The volume of the singular region is held constant
with increasing numbers of layers.

The SIFs calculated by the FFEM for different numbers of layers and different notch angles
compared to numerical published data are shown in Table III. In addition, the SIFs computed
using 16 layers to model the singular region by the FFEM are compared to those of Gross [2] in
Figure 14.

The results in Table III increase asymptotically with increasing numbers of layers. The SIF
values increase monotonically as the notch opening angle increases as shown in Table III and
Figure 14. It can be observed that the difference between a crack SIF and a notch SIF when the
notch angle is less than 30° is less than 1% for mode I. This could be of high importance from an
experimental point of view, as making notches is relatively much easier than developing cracks in
test specimens.

The FFEM results in Table III for single edge-notched plates ascertain that the use of the
eigenfunction series derived in Section 3 as the global interpolation functions of the FFEM gives
results in very good agreement with the published results.

4.5. Numerical examples of single off-centre edge-notched plates

Figure 15 illustrates a single off-centre edge-notched plate under tension. The number of layers
in the singular region, the number of terms of the eigenfunction series, the aspect ratio, and the
similarity ratio are nl=16, nt=20, h/w=2, p=0.6, respectively. Six-node triangle elements are
used to model the notched plates as shown in Figure 16. A circumferentially denser mesh is used
to model the singular region, as it was necessary to obtain non-oscillatory SIFs for mode II when
the notch opening angle is rather large.

The modes I and II SIFs for different notch positions are tabulated for a ratio of the notch
length to the plate width a/w =0.4 and different notch opening angles in Table IV and for a notch
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Figure 12. Single edge-notched plate subjected to mode I load conditions.

opening angle y=50° and various ratios of the notch length to the plate width in Table V. In
addition, in order to show clearly how SIF values change, they are plotted in Figures 17 and 18,
respectively. Published SIF values appear to be unavailable for most of the cases analysed in this
section.

The missing values in Tables IV and V are because the geometry of the plate is no more
rectangular (the top and bottom boundaries are no more equal). The results in Tables IV and V
converged well as the density of the mesh in the singular region was increased in the circumferential
direction. Compared to the cases studied in previous sections for which published data existed,
the values of the SIFs in Tables IV and V that correspond to these cases are, respectively, similar.
Consequently, the SIF values in Tables IV and V are valid.

It can be seen from Table IV and Figure 17 that the SIFs monotonically increase as the notch
opening angle increases. Also, the values of the SIFs increase as the notch gets closer to the top or
bottom boundaries of the plate. The minimum values of the SIFs occur when the notch is central
and the notch opening angle is 0°. It is worth mentioning that the difference between the crack
SIFs and the notch SIFs when the notch angle is 30° or less is around 1.5% or less for mode I,
but is up to 39% for mode II.
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Figure 13. FE mesh of the geometry of a single edge-notched plate.

Table III. Mode I SIFs for various notch angles compared with published results.

Ky1/o/ma
FFEM
y (deg) ZII Gross [2] Aliabadi [14] 10 layers 16 layers 20 layers
0 0.500000 2.113 2.113 2.105 2.108 2.108
30 0.501453 2.128 2.129 2.122 2.124 2.125
60 0.512221 2.223 2222 2218 2.220 2.220
90 0.544484 2.473 2.471 2.466 2.467 2.467
120 0.615731 3.021 — 3.016 3.016 3.016

Table V and Figure 18 show that the SIF values of a notched plate whose notch opening angle
is y=50° increase as the notch length increases and as the notch gets closer to the top or bottom
boundaries of the plate. Also, from Figures 17 and 18, the curves of the mode II SIFs are steeper
when the notch is closer to the top or bottom boundaries of the plate.

5. CONCLUSIONS

In this paper, the fractal-like finite element method (FFEM) has been extended to model notch
problems. The FFEM divides the cracked or notched body into singular and regular regions.
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Figure 15. Single off-centre edge-notched plate under tension.

Conventional finite elements are used to model all regions. The singular region is modelled using
a large number of elements generated layer by layer in a self-similar manner. The FFEM utilises
the fractal transformation concept to reduce the large number of degrees of freedom around a
singular point, such as a crack or notch tip, to a small set of generalised co-ordinates by using
global interpolation functions.
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Figure 16. FE mesh of the geometry of a single off-centre edge-notched plate.

Table IV. Normalised SIFs of a single off-centre edge-notched plate for various notch
positions and opening angles for a/w=0.4.

(he/h)
0.1 0.2 0.3 0.4 0.5

7 (deg) K1 Knt K1 K K1 Kn K1 Kt K1 Ky

0 3.490 1.040 2.344 0.232 2.151 0.054 2.114 0.011 2.109 0.001
10 3.503 1.153 2.346 0.253 2.152 0.059 2.115 0.011 2.110 0.001
20 3.517 1.287 2.350 0.278 2.156 0.064 2.119 0.012 2.114 0.001
30 3.544 1.448 2.361 0.307 2.167 0.070 2.131 0.014 2.125 0.001
40 3.580 1.596 2.381 0.335 2.186 0.076 2.150 0.015 2.145 0.002
50 3.741 1.758 2.427 0.368 2218 0.083 2.180 0.016 2.174 0.002
60 — — 2.472 0.404 2.263 0.090 2.226 0.018 2.221 0.003
70 — — 2.534 0.448 2.325 0.099 2.289 0.020 2.284 0.003
80 — — 2.615 0.507 2.407 0.110 2.372 0.022 2.367 0.004
90 — — — — 2.511 0.127 2.477 0.026 2.473 0.005

The global interpolation functions used to perform the fractal transformation were exact analyt-
ical solutions of the stress and displacement fields around a notch tip and were derived analytically
by using an eigenfunction expansion technique and a complex variable approach. Those functions
were found to be eigenfunction expansion series, and some of their coefficients are related directly
to the SIFs, and therefore no post-processing technique is necessary to extract the SIFs.
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Figure 17. Normalised mode I (a) and mode II (b) SIFs of a single off-centre edge-notched plate for
various notch positions and opening angles.
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Figure 18. Normalised mode I (a) and mode II (b) SIFs of a single off-centre edge-notched plate for
various notch positions and notch lengths for notch opening angle y=50°.

Table V. Normalised SIFs of a single off-centre edge-notched plate for various notch positions and notch
lengths for notch opening angle y=>50°.

(he/h)
0.1 0.2 0.3 0.4 0.5

0.1 1.481 0.139 1.252 0.024 1.212 0.005 1.205 0.001 1.204 0.001
0.2 2.117 0.539 1.537 0.115 1.425 0.026 1.402 0.005 1.399 0.001
0.3 2.869 1.097 1.918 0.243 1.746 0.057 1.711 0.011 1.706 0.001
0.4 3.741 1.758 2.427 0.368 2.218 0.083 2.180 0.016 2.174 0.002
0.5 — — 3.159 0.450 2.948 0.090 2917 0.017 2913 0.003

The robustness and the accuracy of the FFEM in modelling and analysing notch problems
were tested via many numerical examples of cracked and notched plates. The numerical results
of two-dimensional single symmetric/off-centre edge-cracked/edge-notched plates under tension
conditions that the study generated are in very good agreement with existing published data or
numerical solutions. However, the results for single off-centre edge-notched plates appear to be
new results.
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The fractal-like finite element method (FFEM) is used to compute the stress intensity fac-
tors (SIFs) for different configurations of cracked/notched plates subject to in-plane shear
and bending loading conditions. In the FFEM, the large number of unknown variables in the
singular region around a notch tip is reduced to a small set of generalised co-ordinates by
performing a fractal transformation using global interpolation functions. The use of exact
analytical solutions of the displacement field around a notch tip as the global interpolation
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functions reduces the computational cost significantly and neither post-processing tech-
nique to extract SIFs nor special singular elements to model the singular region are
required. The results of numerical examples of various configurations of cracked/notched
plates are presented and validated via published data. Also, new results for cracked/
notched plate problems are presented. These results demonstrate the accuracy and effi-
ciency of the FFEM to compute the SIFs for notch problems under in-plane shear and bend-
ing loading conditions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There are many cases in engineering design where it is necessary to compute the stress fields inside notched elastic
bodies. The presence of notches affects the capacity of structural members to withstand loading and may result in crack ini-
tiation. Therefore, much research has been devoted to the analysis of sharp notches where stresses diverge and oscillate.
However, most published data is about mode I (tension) cases. There are only few results concerning pure mode II and
in-plane bending cases of notch problems.

The task of computing the so-called notch stress intensity factors (SIFs) is important and has relevance for strength cal-
culations. Experimental findings have indicated that simple failure criteria based on critical notch SIFs exist, at least for brit-
tle fracture (Seweryn, 1994). By means of a boundary collocation procedure which is based on the stress functions derived by
Williams (1952), Gross and Mendelson (1972) computed the stress intensity factors for notch problems. They presented
many cases of mode I and limited cases of mode II. Tong and Pian (1973) concluded that the interpolation functions of a finite
element formulation must include terms that can account for the analytical form of a singularity in order to improve the
convergence rate of finite element solutions of problems with singularities. In addition, these interpolation functions should
be used for elements within a finite region, and not only for those around the singular point. Sinclair and Kondo (1984) and
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Sinclair et al. (1984) proposed a generalised stress intensity concept at sharp corners and outlined an approach to obtain it
based on the calculation of a contour integral. Their work was an extension of the work of Stern and Soni (1976) and Stern
et al. (1976). Independently, Carpenter (1984a,b,c, 1985) also applied the contour integral of Stern and Soni (1976) and Stern
et al. (1976) to compute fracture mechanics parameters and introduced a collocation approach to calculate stress intensity
factors of notch problems.

The use of a special hybrid finite element was proposed by Lin and Tong (1980). Their results were limited to mode I cases.
Similarly, a boundary element singularity subtraction technique was proposed by Portela et al. (1991). They used a technique
to subtract the singularity and published results for mode I and mode II cases of symmetric and non-symmetric notch con-
figurations. But their method requires extra boundary conditions that they referred to as “singularity conditions of the reg-
ularisation procedure.” BabuSka and Miller (1984a,b) and Szabo and BabuSka (1988) also developed finite element
techniques to extract stress intensity factors for mixed mode problems. They presented two approaches, namely: one ap-
proach which involves an “influence” function and another approach which is related to the energy principle of fracture
mechanics. These techniques, which are post-processing procedures, are known as extraction techniques. Zhao and Hahn
(1992) developed a method to determine the stress intensity factors of a notch problem from the stress intensity factors
of a crack problem. They reported results for mode I and mode II cases.

The focus of this paper is on the use of the fractal-like finite element (FFEM) method for analysing notch problems involv-
ing mode Il loading and in-plane bending. The method is a semi-analytical method, whose idea goes back to the work of Leu-
ng and Cheung (1981). Initially, they employed a two-level finite element technique for constructing a frame super-element
in order to reduce the computational cost for solving dynamic problems of a large-scale frame. The idea was based on the
concept of global-local interpolation functions introduced by Mote (1971). The concept was that while local interpolation
functions (shape functions) of a finite element formulation reduce the infinite number of degrees of freedom of a continuum
to a finite number of degrees of freedom related to the nodes of the continuous element, the global finite element interpo-
lation functions can be used to reduce the number of nodal unknowns to a small number of unknowns, called generalised co-
ordinates.

Leung and co-workers applied the method to model two-dimensional crack problems, thin plate vibration subject to con-
centrated harmonic loads (Leung and Wong, 1989, 1992), mode I crack problems (Leung and Su, 1994), mixed mode (Leung
and Su, 1995a), body force crack problems (Leung and Su, 1995b), cracked Kirchhoff's plates (Leung and Su, 1996a), cracked
Reissner’s plates (Leung and Su, 1996b), axisymmetric cracks (Leung and Su, 1998a), penny-shaped and circumferential
cracks (Leung and Su, 1998b), and mode III crack problems (Leung and Tsang, 2000). Xie et al. (2003) carried out a parametric
study on the fractal finite element method for crack problems. It has been proven that the fractal-like finite element method
gives very accurate results for many different crack problems. Recently Treifi et al. (2007, 2008) have extended the FFEM to
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Fig. 1. Notched plates subject to mode II (a, b) and bending (c) load conditions.
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Regular region

Singular regions

Fig. 2. Singular and regular regions of cracked/notched body.

model the singularity resulting at a notch tip. They presented results of symmetric and non-symmetric notched plates sub-
jected to mode I loading conditions.

In this paper, we investigate the cases of edge-notched plates subjected to mode II loading conditions shown in Figs. 1(a)
and (b) and in-plane bending shown in Fig. 1(c) by using the fractal-like finite element method. The singular stress field
around the notch tip is represented by the Williams’ eigenfunction series which is used as global interpolation functions
to perform the fractal transformation. No special singular finite elements are required to model the stress singularity at
the notch tip — any conventional finite elements can be used to model the singularity. Also, no post-processing is required
to extract the stress intensity factors, because some of the unknown coefficients of the exact analytical solutions employed as
the global interpolation functions are related to the SIFs. Various numerical examples concerning different notch configura-
tion problems are presented to demonstrate the accuracy and efficiency of the FFEM to calculate mode I and mode II stress
intensity factors of sharp notched plates.

2. Formulation of the fractal-Like finite element method (FFEM)

In the FFEM, a body containing singular points such as crack/notch tips is divided into singular and regular regions delin-
eated by curves I’y and 1"[2) as illustrated in Fig. 2. For the discretisation of the singular and regular regions, any conventional
finite elements can be used. However, a very fine mesh is used within the singular regions. This mesh is generated layer by
layer in a self-similar manner. The nodal displacements in the singular region are transformed into a small set of generalised
co-ordinates, which are the unknowns in the singular region, by using global interpolation functions. In the regular region,
the unknowns are the nodal displacements. The stress intensity factors for modes I and II are related to two coefficients of
the generalised co-ordinate set; and therefore no post-processing is needed to extract them. Analytical solutions of the dis-
placement field around a notch tip are used for performing the transformation.

The singular region is meshed as shown in Fig. 3. By assuming that p is a similarity ratio and using the notch tip as a cen-
tre of similarity, a set of curves {I'1,I"5,I',. ..}, similar to the curve I'y, that separates the singular and regular regions, is gen-
erated within the singular region. The layer between the curves I',_; and I';, is called the nth layer. All nodes on I'y are
considered master nodes, while the nodes inside I'y are considered slave nodes as shown in Fig. 3.

In the conventional finite element method, the static equilibrium equation can be written as

Kd=f (1)

where K is the stiffness matrix, d is the nodal displacement vector and f is the nodal force vector.
The equilibrium equation of the regular region can be written as

[ Krr Krm dr fr
| Konr Kmm] { dy, } B {fm } @

where d, are the displacements of the nodes in the regular region, and d,, are the displacements of the master nodes. Sim-
ilarly, the equilibrium equation of the first layer in the singular region can be written as

(Kt K3 (dy £

KK ldt T ®)
where d;“ are the displacements of the slave nodes in the first layer which can be expressed in terms of the vector of the
generalised co-ordinates a” = {A!, A" A} AL AL ..} as
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Regular Region

0

Fig. 3. Illustration of a singular region (master nodes are highlighted.)

d;St _ T;sta (4)

where Ts1St is the transformation matrix in terms of polar co-ordinates (r,0) for transforming the nodal displacements of the
slave nodes in the first layer into the generalised co-ordinates. Therefore, Eq. (3) can be rewritten as

K KT, d, £ 5
T;stTK;’;t T;stT K;sstT;st { a } - T;stTf;st ( )

The displacements of the master nodes d,, are not transformed in order to provide continuity between the singular and the
regular regions.
Now, for the nth layer in the singular region; n > 1

Kid; = f (6)
Applying the transformation, Eq. (6) can be rewritten as
T'K'T'a =T" f! (7)

The size of TSISt is smaller than that of T;, because d,, are not transformed.
Finally, the global stiffness equation can be written as

K K 0 d, f,
Knr Kom + K KIS dy p =< fm+ 6 (8)
0 Ky Reike[(a) (peefm
where nl is the number of layers in the singular region, K} = KT, K = S Ke, K = TVKI'TY, f1st = T £1
finn — S~ fr and £ = T . K™ is the generalised stiffness matrix of the inner layers (n > 2) in the singular region:
. nl nl .
KM =YK =) T KT 9)
n=2 n=2

The stiffness matrix of every layer in the singular region is the same because the stiffness matrices of the two-dimensional
isoparametric finite elements of similar shapes are the same (Leung and Su, 1994). Therefore,

K' = K!* (10)
The transformation matrix of the nth layer can be written in terms of that of the first layer as
T = F[5] (11)

where T£ is the transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer and it is
different from the aforementioned T!*', and [4] is a diagonal matrix where

Si=p" Vs di= 4, Ay, A (12)
Substituting Eqs. (10)-(12) into Eq. (9) gives
nl
K™ = > (o] T KT0] = [oyks) (13)
n=2
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where
T T
[ky] = T KT (14)
and
nl nl
5y = Zp(nq)z,pwm _ Zp(nq)(zmﬂ) = pUith) . pRUith) 4y il Uit) (15)
n=2 n=2

This sum is a geometric series. For a finite number of layers, §; can be written as

_ p(;.,+).j)(1 _ p(nl—l)(/i,-+;.j))

3j = 1o (16)
and for an infinite number of layers (nl - o) as

- pUitA)

3j = m (17)

For a crack problem (y = 0), Eq. (17) yields the same equation derived by Leung and Su (1995) for a crack problem. A similar
procedure can be followed to compute the generalised force vector of the inner layers in the singular region fin.

The unknowns of the problem now are the displacements d, and d,, in the regular region and the generalised co-ordinates
a instead of the nodal displacements of the nodes in the singular region. If we consider d; as the vector of the nodal displace-
ments of the nodes in the singular region except for those on Ty, the size of the vector dg is much bigger than that of the
vector of the generalised co-ordinates a. Therefore, solving the system of Eqs. (8) reduces the computational cost consider-
ably. For more details about the formulation of the FFEM, see Treifi et al. (2008) and Leung and Su (1994-1998).

3. Global interpolation functions for a notch problem

The global interpolation functions are very important in the FFEM, because they are employed to perform the fractal
transformation. Therefore, exact analytical solutions of the displacement field around a notch tip are used as the global inter-
polation functions. Those analytical solutions can be derived by using an eigenfunction expansion approach (Williams, 1952)
or a complex variable approach (England, 1971).

According to the Complex Variable Method, the stress and displacement expressions in a polar co-ordinate system cen-
tred at the tip of an infinite notch as illustrated in Fig. 4 can be written as

U = %Al [(3 —4n — Ay cos(A —1)0+ (cos 22'a + 7' cos 2a) cos (' + 1)0]

+%A2[—(3 — 4 — Mysin(A" — 1)0 + (cos 24" — 7" cos 2ar) sin(A" + 1)0] e
Uy = %Al (3 —4n+ A)sin(A' —1)0 — (cos 22'a + 7' cos 2a) sin(A' + 1)0] (19)
+%A2[(3 — 45+ My cos(A" — 1) + (cos 2o — i cos 20r) cos(A" + 1)6]
o, = A [ (2 = 3) cos(2' — 1)0 + (cos 24 o + 4 cos 2at) cos(A' + 1)0)] 20)

+r =104, (AN — 3) sin(2" — 1)0 + (cos 24" — " cos 2¢ar) sin(A" + 1)6]

%

Fig. 4. Notch geometry and the co-ordinate systems.
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Table 1
Dominant eigenvalues of different notch angles
7 () A A

0 0.5000000 0.5000000
10 0.5000530 0.5293547
20 0.5004264 0.5620065
30 0.5014530 0.5981919
40 0.5034904 0.6381825
50 0.5069329 0.6822948
60 0.5122214 0.7309008
70 0.5198543 0.7844406
80 0.5303957 0.8434395
90 0.5444837 0.9085292

oy =" 1A (A + 1) cos(A' — 1)0 — (cos 2o + 7' cos 2ar) cos (i + 1)6)
—r" =114 1Y 4+ 1) sin(2" — 1)0 + (cos 24" — 2" cos 201) sin(i" + 1)0]

G =" 1A (AN = 1) sin(A' = 1)0 — (cos 2'a + 2! cos 2¢r) sin(i' + 1)6)
+r =184, 1A = 1) cos (2" = 1)0 + (cos 22" o — 7" cos 20r) cos (2" + 1)0)]

21)

(22)

where G is the shear modulus, # = v for plane strain, n = o for plane stress, and v is the Poisson’s ratio. 2' and A" are eigen-
values for mode I and mode II, respectively, and are calculated from the following characteristic equations:

'sin 20 + sin24'0 = 0 (23)
Msin20 — sin22%0 = 0 (24)

The eigenvalues of mode I (') and mode II (") for a notch problem are different from each other except for the special case of
a crack problem. Detailed derivations of the stress and displacement expressions around a notch tip can be found in refer-
ences such as Vasilopoulos (1988).

Muller’s iteration method can be used to find the roots of the characteristic equations (23) and (24) (Portela et al., 1991).
Muller’s method can converge to a complex root, even if the iteration has started with a real number. The dominant eigen-
values, which are the eigenvalues that satisfy the condition 0 < Re(4;) < 1, for different opening notch angles are tabulated in
Table 1.

The stress intensity factors of a notch are defined in a way similar to those of a crack as

Ki = v2mlim " 64(0 = 0) (25)
Ky = V27 lim " G,5(0 = 0) (26)

for mode I and mode II, respectively (Gross and Mendelson, 1972).
Substituting Egs. (21) and (22) into Eqgs. (25) and (26) gives

Ky = V2 (1 + 2 = i cos 20 — cos 22/ a)A, (27)
Ky = V27" (=1 + " = 2" cos 200 4 cos 24" )A, (28)

Egs. (27) and (28) demonstrate direct relationships between the SIFs and the generalised co-ordinates. Therefore, no post-
processing technique is required to extract the SIFs.

4. Numerical examples
4.1. Convergence study of mode II for a crack case

A convergence study is carried out to demonstrate the accuracy and stability of the FFEM to compute mode II SIFs. The
effects of the number of layers in the singular region (for a range of 4-20 and when nl = co), the similarity ratio (for a range of
0.1-0.9), and the number of terms of the eigenfunction expansion series used as global interpolation functions (for a range of
5-30) on the mode II SIFs will be investigated.

A two-dimensional mode II plane-stress problem of a single edge-cracked plate as shown in Fig. 5(a) is analysed. The mo-
ments applied at the top and the bottom boundaries are to counter the moment caused by the shear stresses applied at the
top and the bottom boundaries of the plate. These counter-moments can be modelled using one of the two cases shown in
Figs. 5(b) and (c). The loading system shown in Fig. 5(b) is used in this convergence study. The aspect ratio and the ratio of
the crack length to the plate width are h/w = 2 and a/w = 0.4, respectively. Six-node triangle elements (seven-point integra-
tion scheme) are used to mesh the plate as shown in Fig. 6. Also, the singular region volume is held constant with increasing
numbers of layers.
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Fig. 5. Edge-cracked plate subject to mode II loading conditions.

Singular region

Fig. 6. FE mesh of the geometry of a single edge-cracked plate.

The results compared to those obtained by using the ABAQUS 6.5-4 finite element analysis (FEA) package are presented in
Figs. 7-9. A similar mesh to that shown in Fig. 6 is used to model and analyse the cracked plate in ABAQUS. In addition, the
elements around the crack tip are modelled using quarter-point crack tip elements (ABAQUS, 2004). Figs. 7 and 8 show that
the number of transformation terms (NT) does not have a significant effect on the results when NT > 5 for the ranges of vari-
ables (numbers of layers (NL), similarity ratios (p) and NT) used in this study.

Fig. 8 demonstrates that good results can be obtained by using values of similarity ratios larger than 0.5 for the ranges of
variables used in this study. Also, it can be seen that when nl — oo, larger similarity ratios (finer meshes of the singular re-
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Fig. 7. Variations of SIFs with number of terms (NT) for different number of layers (NL) and similarity ratiospcompared to those obtained by using ABAQUS.

gion) are needed to provide good results. Fig. 9 illustrates that the results converge asymptotically with increasing numbers
of layers used to model the singular region when p > 0.3. Good results can be obtained by using ten layers or more. A similar
behaviour was observed for the cases of mode I loading conditions (Treifi et al., 2008).
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Fig. 8. Variations of SIFs with similarity ratio for different number of terms and numbers of layers compared to those obtained by using ABAQUS.

4.2. Examples of single edge-cracked plates subjected to mode II load conditions

Two-dimensional mode II plane-stress problems of a single edge-cracked plate are analysed for different crack lengths.
The problem is shown in Fig. 5. Based on the convergence study, 16 layers are used to model the singular region and 10 terms
of the eigenfunction series are used for the fractal transformation. The similarity ratio and the aspect ratio are p = 0.6, and h/
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Fig. 9. Variations of SIFs with Number of layers for different similarity ratios and numbers of terms compared to those obtained by using ABAQUS.

w = 2, respectively. Six-node triangle elements (seven-point integration scheme) are used to mesh the geometry of the plate

as shown in Fig. 6.

The stress intensity factors computed for the mode II problems illustrated in Figs. 5(b) and (c¢) by the FFEM compared to
corresponding published data (Zhao and Hahn, 1991, 1992) and those computed by using ABAQUS (the counter-moments
were modelled as in Fig. 5(b) and the mesh is similar to that shown in Fig. 6) are tabulated in Table 2 for different ratios
of crack length to plate width.

Table 2
Mode II SIFs of an edge-cracked plate for different crack lengths
& Ky/tyma A
Zhao and Hahn Zhao and Hahn ABAQUS (Counter-moments modelled FFEM
(eR) (ieER) 26 it i, 3i(b) Counter-moments modelled as  Counter-moments modelled as
in Fig. 5(b) in Fig. 5(c)
01 - - 0.376 0.376 0.376
02 - 0.441 0.695 0.696 0.694
03 - 0.830 0.960 0.960 0.958
04 1.166 1.150 1.179 1.180 1.179
05 - 1.394 1.369 1.370 1.371
06 - 1.581 1.549 1.550 1.552
0.7 - 1.771 1.752 1.753 1.754
08 - - 2.053 2.054 2.054
09 - - 2.738 2.740 2.739
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Table 2 shows that the mode II SIF values increase with increasing ratios of crack length to plate width (a/w). More impor-
tantly, Table 2 illustrates that the SIF values computed by the FFEM are in very good agreement with those predicted by the
ABAQUS FEA package and their accuracy is better than those calculated by Zhao and Hahn (1991, 1992). Therefore, the re-
sults in Table 2 prove that the eigenfunction expansion series presented in Section 3 which were derived for notch problems
produce accurate results for mode II crack problems (when the notch opening angle y = 0°).

4.3. Examples of single off-centre edge-cracked plates under mode Il loading conditions

A single off-centre edge-cracked plate as illustrated in Fig. 10 is analysed in this section. The ratio of the crack length to
the width of the plate is taken as a/w = 0.4. Ten terms of the eigenfunctions, 16 layers in the singular region, an aspect ratio h/
w =2, and a similarity ratio p = 0.6 are used. Six-node triangle elements (seven-point integration scheme) are used to mesh
the geometries of the plates in a similar manner of that shown in Fig. 6.

The FFEM is used to compute the mode I and mode II SIF values using the parameters stated above for both cases of apply-
ing the counter-moments at the top and the bottom boundaries of the plate illustrated in Figs. 5(b) and (c). The results ob-
tained are tabulated in Table 3. But it should be noted that these are new results and that there are no published data with
which to compare them. Therefore, in order to validate the results, the ABAQUS 6.5-4 FEA package is used to model the
cracked plates. A similar mesh to that shown in Fig. 6 is used. Moreover, the elements around the crack tip are modelled
using quarter-point crack tip elements, and the counter-moments applied on the top and the bottom boundaries of the plate
are modelled as in Fig. 5(b). It should be noted that although similar meshes (and therefore similar numbers of nodes) are
used in the FFEM and ABAQUS, the number of equations that need to be solved in the FFEM is much smaller than that in
ABAQUS, because of the transformation process described in Section 3.

The values of the stress intensity factors for mode I and mode II predicted by the ABAQUS FEA package are also tabulated
in Table 3. Mode I occurs in this example because of the geometrical asymmetry of the plate configuration. It can be seen
from Table 3 that the SIF values increase as the crack gets closer to the bottom boundary of the plate, and the minimum val-
ues occur when the crack is on the centre line. Also, the FFEM and the ABAQUS results are in very good agreement. It is how-
ever worth noting that the differences between the FFEM results are due to the differences in the methods of application of
the counter-moments which produce different influences of the concentrated and linearly varying loads applied at the top
and the bottom boundaries of the plates shown in Figs. 5(b) and (c).

4.4. Examples of single edge-notched plates subjected to mode II load conditions

Two-dimensional mode II plane-stress problems of single edge-notched plates shown in Figs. 1(a) and (b) are analysed for
different notch angles. Sixteen layers are used to model the singular region, and 10 terms of the eigenfunction series are used

M=t.w.h/2

T
— —> —> —>

—a—>

le—— he

«— — — «—
\i/
M=t.w.h/2

Fig. 10. Single off-centre edge-cracked plate subjected to mode II load conditions.
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Table 3
Normalised SIFs for an off-centre edge-cracked plate for different crack positions

h/h  ABAQUS (Counter-moments modelled as in Fig. 5(b))  FFEM

Counter-moments modelled as in Fig. 5(b)  Counter-moments modelled as in Fig. 5(c)

K Ky K Ky K Ky

0.1 10459 5.563 10.458 5.565 11.021 5.033
0.2 4978 1.924 4978 1.925 5.238 1.853
0.3 3.062 1.305 3.062 1.305 3.121 1.292
0.4 1.512 1.193 1.512 1.194 1.520 1.191
0.5 0.001 1.179 0.000 1.180 0.000 1.179

Singular region
Fig. 11. FE mesh of the geometry of a single edge-notched plate.
Table 4
Mode II SIFs of a plate as shown in Fig. 1(a) for various notch angles compared with published results
y () Kn/ty/ma' A
Gross and Mendelson (1972) Portela et al. (1991)! FFEM
0 0.282 0.282 0.282
10 0.206 0.205 0.206
20 0.129 0.129 0.129
30 0.051 0.051 0.051

for the fractal transformation. The similarity ratio and the ratio of the notch length to the plate width are p = 0.6 and a/
w = 0.4, respectively. Six-node triangle elements (seven-point integration scheme) are used to model the plate as shown
in Fig. 11.

Firstly, a plate under mode II loading conditions as illustrated in Fig. 1(a) is considered. The SIFs computed by the FFEM for
different notch angles and an aspect ratio h/w = 0.8 compared to published data (Gross and Mendelson, 1972; Portela et al.,
1991") are tabulated in Table 4.

Now a plate under mode Il loading conditions as shown in Fig. 1(b) is analysed. The SIF values calculated by the FFEM for
different notch angles and an aspect ratio h/w = 2 compared to the published results of Zhao and Hahn (1991, 1992) are pre-
sented in Table 5. Also, both ways of modelling the counter-moments as shown in Figs. 12(a) and (b) are investigated.

The results in Table 4 show that the SIF values computed by the FFEM are in very good agreement with those predicted by
Gross and Mendelson (1972) and Portela et al. (1991). This again proves the accuracy of the FFEM for computing mode II SIFs.
Table 5 demonstrates that there is a discrepancy of about 1% between the FFEM results and those reported by Zhao and Hahn

! It seems that there is a typographical error in Portela et al., 1991; in Table 3: Eﬁ{(ﬂ';,q should be iﬂ’fi':‘.
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Table 5
Mode II SIFs of a plate as shown in Fig. 1(b) for various notch angles compared with published results

7(?)  Ku/tyma'

Zhao and Hahn Zhao and Hahn FFEM
(1992) (1991) R R
Counter-moments modelled as couples Counter-moments modelled as linearly varying
(Fig. 12(a)) loads (Fig. 12(b))
0 1.150 1.166 1.180 1.179
30 1.863 1.625 1.634 1.634
60 2.355 2.292 2314 2.317
90 3.126 3.215 3.190 3.198
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Fig. 12. Two ways of modelling the counter-moments of an edge-notched plate subject to mode II loading conditions.

(1991), but it is up to 14% compared to the results of Zhao and Hahn (1992). However, it was shown in a previous example on
cracked plates that the accuracy of the FFEM results is better than that of the results of Zhao and Hahn (1991, 1992).

The results in Tables 4 and 5 for single edge-notched plates subject to mode II loading conditions ascertain that the use of
the eigenfunction series presented in Section 3 as the global interpolation functions of the FFEM gives results which are in
very good agreement with published data.

4.5. Examples of single off-centre edge-notched plates subjected to mode II load conditions

Fig. 13 illustrates a single off-centre edge-notched plate under mode II loading conditions. The number of terms of the
eigenfunction series, the number of layers in the singular region, the similarity ratio, and the aspect ratio are nt =20,
nl=16, p=0.6, and h/w = 2, respectively. Six-node triangle elements (seven-point integration scheme) are used to model
the notched plates as shown in Fig. 14. In order to obtain non-oscillatory SIFs when the notch opening angle is rather large,
a circumferentially denser mesh is used to model the singular region.

The mode I and mode II SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of
the notch length to the plate width a/w = 0.4 in Tables 6(a) and 6(b) and for a notch opening angle y = 50° and for various
ratios of the notch length to the plate width in Tables 7(a) and 7(b). In these tables, (a) and (b) indicate that the counter-
moments are applied in the same ways shown in Figs. 12(a) and (b), respectively. Published SIF values appear to be unavail-
able for most of the cases analysed in this section.
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Fig. 13. Single off-centre edge-notched plate under mode II loading conditions.

The results in Tables 6(a), 6(b), 7(a) and 7(b) converged well as the density of the mesh in the singular region was in-
creased in the circumferential direction. The SIF values in those tables that correspond to cases which were studied in pre-
vious sections and for which published data exist are respectively similar. Therefore, the results in Tables 6(a), 6(b), 7(a) and
7(b) are valid. The missing values in those tables are due to the fact that the geometry of the plate is no more rectangular (the
top and bottom boundaries are no more equal).

Tables 6(a) and 6(b) show that the SIFs monotonically increase as the notch opening angle increases. Also, the values of
the SIFs increase as the notch gets closer to the bottom boundary of the plate. The minimum values of the SIFs occur when
the notch is on the centre line and the notch opening angle is 0°. From Tables 7(a) and 7(b), it can be seen that the SIFs for an
edge-notched plate with a notch opening angle y = 50° increase as the notch length increases.

) /’/;/ TN §\§
/ I
2

\
A\

l‘.

T Singular region

Fig. 14. FE mesh of the geometry of a single off-centre edge-notched plate.
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Table 6(a)

Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(a)) for various notch positions and

opening angles for a/w = 0.4

7 () hc/h

0.1 0.2 0.3 0.4 0.5

K; Ky K Ky K Ky K Ky K Ki

0 10.465 5.568 4.981 1.926 3.064 1.306 1.513 1.194 0.000 1.180

10 10.543 6.165 4.990 2.116 3.064 1.445 1.513 1.327 0.000 1.312
20 10.613 6.871 5.000 2.334 3.068 1.605 1.515 1.478 0.000 1.463
30 10.732 7.716 5.020 2.582 3.077 1.787 1.519 1.651 0.000 1.635
40 10.855 8.474 5.053 2.843 3.096 1.993 1.529 1.854 0.000 1.837
50 11.548 9.284 5.204 3.130 3.163 2.221 1.560 2.078 0.000 2.061
60 - - 5.268 3.448 3.207 2.468 1.584 2.323 0.000 2.307
70 - - 5.364 3.819 3.270 2.737 1.617 2.585 0.000 2.568
80 - - 5.482 4.283 3.352 3.039 1.660 2.873 0.000 2.855
90 - - - - 3.462 3.389 1.716 3.195 0.000 3.175
Table 6(b)

Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(b)) for various notch positions and

opening angles for a/w = 0.4

7 (°) he/h

0.1 0.2 0.3 0.4 0.5

K Ky K Ky K Ky K K K Ky

0 11.029 5.035 5.241 1.854 3.123 1.293 1.521 1.192 0.000 1.180

10 11.085 5.603 5.247 2.056 3.123 1.436 1.521 1.325 0.000 1.311
20 11.143 6.275 5.256 2.289 3.127 1.602 1.523 1.478 0.000 1.462
30 11.242 7.076 5.277 2.558 3.138 1.791 1.528 1.652 0.000 1.635
40 11.364 7.860 5.315 2.862 3.159 2.012 1.538 1.857 0.000 1.837
50 12.000 8.715 5.468 3.203 3.229 2.258 1.570 2.085 0.000 2.063
60 - - 5.547 3.584 3.278 2.529 1.595 2.335 0.000 2.309
70 - - 5.660 4.015 3.348 2.823 1.629 2.602 0.000 2.572
80 - - 5.799 4.534 3.437 3.155 1.673 2.897 0.000 2.860
90 - - - - 3.552 3.540 1.731 3.229 0.000 3.183
Table 7(a)

Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(a)) for various notch positions and notch

lengths for a notch opening angle y = 50°

alw he/h
0.1 0.2 0.3 0.4 0.5
K; Ky K Ky K; Ky K Ky K; Ky
0.1 10.010 4.534 4.630 1.419 2.674 0.844 1.289 0.735 0.000 0.720
0.2 10.147 6.463 4.644 2283 2.714 1.449 1.313 1.282 0.000 1.258
0.3 10.730 7.982 4.795 2.794 2.857 1.892 1.396 1.721 0.000 1.698
0.4 11.548 9.284 5.204 3.130 3.163 2.221 1.560 2.078 0.000 2.061
0.5 - - 5.981 3.373 3.729 2.501 1.852 2.397 0.000 2.388
Table 7(b)

Normalised SIFs of a single off-centre edge-notched plate subject to mode Il load conditions (similar to that in Fig. 12(b)) for various notch positions and notch

lengths for a notch opening angle y = 50°

alw he/h

0.1 0.2 0.3 0.4 0.5

K; Ky Ky Ky K Ky K K Ki Ki
0.1 6.012 1.153 3.906 0.722 2.556 0.712 1.276 0.718 0.000 0.719
0.2 8.062 3.405 4310 1.554 2.651 1.292 1.304 1.257 0.000 1.255
0.3 10.099 6.060 4.840 2.432 2.873 1.815 1.397 1.707 0.000 1.695
0.4 12.000 8.715 5.468 3.203 3.229 2.258 1.570 2.085 0.000 2.063
0.5 - - 6.302 3.760 3.801 2.617 1.863 2419 0.000 2.392
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Table 8
Normalised SIFs of a single off-centre edge-notched plate subject to bending load conditions for various notch positions and opening angles for a/w = 0.4
v (°) he/h

0.1 0.2 0.3 0.4 0.5

K Ki Ki Ki Ki Ki Ki Ki Ki Ki

0 2.244 0.761 1.429 0.169 1.290 0.039 1.263 0.008 1.260 0.001

10 2.253 0.844 1.429 0.185 1.290 0.043 1.263 0.008 1.260 0.000
20 2.263 0.943 1.431 0.203 1.291 0.047 1.265 0.009 1.261 0.001
30 2.280 1.062 1.435 0.225 1.295 0.051 1.269 0.010 1.265 0.001
40 2.301 1.170 1.444 0.246 1.303 0.056 1.277 0.011 1.273 0.001
50 2.422 1.287 1.482 0.270 1.331 0.061 1.303 0.012 1.299 0.001
60 - - 1.502 0.297 1.350 0.067 1.323 0.013 1.319 0.002
70 - - 1.530 0.331 1.378 0.073 1.351 0.015 1.347 0.002
80 - - 1.565 0.377 1414 0.083 1.388 0.017 1.384 0.002
90 - - - - 1.460 0.097 1.435 0.020 1.432 0.004
Table 9

Normalised SIFs of a single off-centre edge-notched plate subject to bending load conditions for various notch positions and notch lengths for a notch opening
angle y = 50°

alw he/h
0.1 0.2 0.3 0.4 0.5
K[ KI[ KI Kll Kl Kll KI K]I K[ K]I
0.1 1.321 0.128 1.111 0.022 1.074 0.005 1.067 0.001 1.066 0.000
0.2 1.696 0.463 1.201 0.098 1.106 0.022 1.087 0.005 1.084 0.001
0.3 2.070 0.874 1.325 0.192 1.189 0.045 1.162 0.009 1.158 0.001
0.4 2.422 1.287 1.482 0.270 1.331 0.061 1.303 0.012 1.299 0.001
0.5 - - 1.708 0.306 1.568 0.063 1.547 0.012 1.544 0.002
Table 10
SIFs of a single edge-notched plate subject to bending load conditions for various notch angles compared with published results (a/w = 0.4, hjw = 2)
() Ki/av/mal 4
Zhao and Hahn (1992) Gross and Mendelson (1972) Chen (1995) FFEM
0 1.258 1.261 - 1.260
10 - 1.261 - 1.260
20 - 1.263 - 1.261
30 1.262 1.267 1.266 1.265
60 1.327 1.309 1.309 1.319
90 1.484 1.437 1.433 1.432

4.6. Examples of single edge-notched plates subjected to bending load conditions

A single edge-notched plate under bending loading conditions as illustrated in Fig. 1(c) is analysed for different opening
notch angles and different notch positions. The parameters used in this examples are nt = 20, nl = 16, p = 0.6, and h/w = 2. Six-
node triangle elements (seven-point integration scheme) are used to model the notched plates as shown in Fig. 14.

The mode I and mode II SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of
the notch length to the plate width a/w = 0.4 in Table 8 and for a notch opening angle y = 50° and for various ratios of the
notch length to the plate width in Table 9. Most of the cases studied in this section appear to be new. However, there are
few published results that correspond to cases in Tables 8 and 9. Those cases are tabulated in Table 10 for comparison.
The FFEM results in Table 10 are in very good agreement with the published data. Therefore, the results tabulated in Tables
8 and 9 are valid.

The SIFs in Tables 8 and 9 increase monotonically with increasing notch opening angles and increasing notch lengths.
Also, the SIF values increase as the notch gets closer to the top or bottom boundaries of the plate.

5. Conclusions

In this paper, the fractal-like finite element method was used to model and analyse notched plates subject to in-plane
shear and bending loading conditions. The FFEM utilises the fractal transformation concept to reduce significantly the large
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number of unknowns in the singular region. The transformation is performed by using global interpolation functions. Neither
post-processing technique to extract the stress intensity factors nor special singular finite elements to model the singular the
region are required.

The SIFs of many examples of edge-notched plates under in-plane shear and bending loading conditions were computed
by using the FFEM. The results were in very good agreement with published data, and their accuracy was better than some of
those reported results. Moreover, the results for single off-centre edge-notched plates appear to be new results.
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ABSTRACT

The present paper further develops The Fractal-like Finite
Element Method (FFEM) to compute the stress intensity
factors (SIFs) for non-symmetrical configurations of sharp V-
notched plates. The use of global interpolation functions
(GIFs) in the FFEM significantly reduces the number of
unknown variables (nodal displacements) in a singular region
surrounding a singular point to a small set of generalised
coordinates. The same exact analytical solutions of the notch
tip asymptotic field derived for a symmetrical notch case can
be used as GIFs when the notch is non-symmetrical. However,
appropriate local coordinate transformation in the singular
region is required to obtain the correct global stiffness matrix.
Neither post-processing technique to extract SIFs nor special
singular elements to model the singular region are required.
Any conventional finite elements can be used to model the
singular region. The SIFs are directly computed because of the
use of exact analytical solutions as GIFs whose coefficients
(generalised coordinates) are the unknowns in the singular
region. To demonstrate the accuracy and efficiency of the
FFEM to compute the SIFs and model the singularity at a
notch tip of non-symmetrical configurations of notched plates,
various numerical examples are presented and results are
validated via available published data.

KEYWORDS:
notch, stress intensity factors, fracture mechanics, finite
element method, fractal-like finite element method.

1 INTRODUCTION

In two-dimensional elasticity, stresses near sharp notches or
corners exhibit singular behaviour. Sharp notches/corners are
stress raisers of major interest. Their presence in engineering
components significantly influences the capacity of those
components and may result in a crack initiation leading to a
catastrophic failure or to a shortening of the service life.
Therefore, much research has been devoted to investigate
notch problems. Failure criteria for notch problems based on
notch stress intensity factors exist, at least for brittle fracture
[1]. Similar to crack problems, the failure occurs when the
notch stress intensity factors reach critical values.

Many procedures have been developed to calculate the notch
SIFs and to model the singularity resulting at a notch tip.
Gross and Mendelson [2] used a Boundary Collocation
Approach based on the stress functions derived by Williams
[3] to compute mode I and mode Il SIFs of many notch cases.
It has been well recognised that the Finite Element Method
has slow convergence rate when dealing with problems
involving stress singularities. Tong and Pian [4] concluded
that in order to improve the convergence of a finite element
solution of a problem with a singularity, the finite element
interpolation functions must include terms that can account for
the analytical form of the singularity. These functions should
also be used for elements within a finite region around the
singular point. Special hybrid finite elements were developed
by Lin and Tong [5] to account for the notch tip singularities.
Carpenter [6,7] introduced a collocation procedure based on
the contour integral of Stern [8] to compute the notch stress

1 Copyright © 2009 by ASME



intensity factors. A boundary element singularity subtraction
technique to compute the SIFs for notch problems was
proposed by Portela et al. [9]. Chen [10] computed the notch
SIFs of notched plates under tension or in-plane bending by
means of the body force method.

The Fractal-like Finite Element Method is semi-analytical. It
brings together the agility of the Finite Element Method and
the accuracy of the analytical solutions. The method is based
on the global-local interpolation functions introduced by Mote
[11]. The FFEM was applied to compute the SIFs for crack
problems by Leung and co-workers [12-14]. Treifi et al.
[15,16] further extended the method to compute the SIFs for
symmetrical notch problems. In general, notches are not
always symmetrical. Therefore, extending the method to
compute the SIFs for non-symmetrical notch problems is in
order.

In this paper, the FFEM is extended to compute the SIFs for
non-symmetrical notch problems. The exact solutions of the
singular displacement field around a notch tip used as global
interpolation functions for a symmetrical notch can be used for
a non-symmetrical notch. Only simple local coordinate
transformation is needed in the singular region, so that the
local x-axis lies on the bisector of the notch opening angle.
Various numerical examples of non-symmetrically notched
plates are presented, and results are validated via comparison
with available published results to demonstrate the accuracy
and efficiency of the FFEM.

2 GLOBAL INTERPOLATION FUNCTIONS

y

Figure 1. Coordinate systems centred at the notch tip

The exact analytical solutions of the displacement field around
a notch tip are used as global interpolation functions to
perform the transformation of the local variable (nodal
displacements) in the singular region into a small set of
generalised coordinates. Those generalised coordinates are the
coefficients of the notch tip asymptotic field, which represent
the SIFs, the T-stress, and the higher order coefficients. The
generalised coordinates are computed directly in the FFEM.
Therefore, no post-processing technique is necessary to extract
the SIFs. The stress and displacement expressions around a
notch tip can be derived by using a stress function approach or
a complex variable method. Both approaches lead to
equivalent expressions. For the sake of completeness, only a

short description of the analytical solutions of the stress and
displacement fields around a notch tip is presented here.
Detailed derivations may be found in references such as
Vasilopoulos [17] and Treifi et al. [15].

By using a complex variable method, the notch-tip stress and
displacement expressions in a local polar coordinate system,
centred at the notch tip and that the =0 axis is the bisector
of the notch opening angle » coincides with the local
Cartesian x axis, derived for a semi-infinite notch as illustrated
in Figure 1 can be written as

N A{(E—M—Z')cas(ﬂ' -1)0+ }

N (cos24'a+4' cos2a)cos(A' +1)0
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26 (cos24"a— 2" cos2a)sin(2" +1)0 O

i {(3-477”' Jsin(4' -1)6- }r

Y26 (cos24'a+A' cos2a)sin(4' +1)0
P |(3=4n+2" )cos(A" -1)0+
2G (0052/1“0(—/1“ cosZa)cos(/l“ +1)¢9 @
pay -(4'-38)cos(2' -1)0+
o=t (cosZ/i'aJr/i' cosZa)cos(/i' +1)6‘ ’
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' & (cole”a—i” cosZa)cos(ﬂ” +1)0 ©)

where A and A, are complex constants (the generalised
coordinates), G is the shear modulus, 7 =v for plane strain,

Y_ for plane stress, and v is the Poisson’s ratio. A' and

77:1+v

A" are eigenvalues for mode | and mode II, respectively, and
are calculated from the following characteristic equations

A'sin2a+sin21'a=0 (6)
Asin2a —sin24"a =0 ©)
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A'and A" are generally complex numbers and different from
each other, except for the special case of a crack (when the

notch opening angle y =0°). Equations (6) and (7) can be
solved by using Muller’s Method.

The stress intensity factors of a notch are defined as

K, =27 lim ro,(0=0) (8)
Ky =~27 Iang e 0.4(0=0) 9)

for mode | and mode 11, respectively [2].

Substituting equations (4) and (5) into equations (8) and (9)
gives

K, =272 L+ 4' - 2' cos2a —cos24'a)A, (10)
Ky =27 2" (-1+ 4" = 2" cos2a +cos24" a )A, (11)

From Equations (10) and (11) it can be seen that no post-
processing technique is required to extract the SIFs, because
these equations demonstrate direct relations between the SIFs
and the generalised coordinates.

3 FORMULATION OF THE FFEM

A short description of the FFEM is presented in this section
with a focus on the coordinate transformation required for
modelling the singular region of a non-symmetrical notch. In
the FFEM, a body with a singularity is divided into singular
and regular regions as shown in Figure 2. Both regions are
modelled using conventional finite elements. No special
singular finite elements are needed to model the singular
region in order to account for the analytical form of the
singularity. A very fine mesh generated layer by layer in a
self-similar manner (by assuming a similarity ratio o and the

notch tip is used as a centre of similarity) is used in the
singular region as illustrated in Figure 3. The large number of
the nodal displacements (of slave nodes) in the singular region
is then transformed into a small set of generalised coordinates
by using global interpolation functions. This process reduces
the computational cost significantly, because the number of
unknowns is greatly reduced. The exact analytical
displacement expressions presented in the previous section are
used as global interpolation functions in the FFEM. Because
the layers of finite elements in the singular region are self-
similar, only the first layer is needed to generate the global
stiffness matrix by using a fractal transformation [12,16].

Regular region

\/ Singular regions

Figure 2. Singular and regular regions of a plate with
singularities.
In the conventional finite element method the equilibrium
equation can be written as

Kd =f (12)
where K is the stiffness matrix, d is the nodal displacement
vector, and f is the nodal force vector.

Figure 3. A singular region mesh (master nodes
highlighted).

In the FFEM, equation (12) is partitioned into regular, master
and singular parts as

K" Krm 0 dr fr
Kmr Kmm + K];:ﬂ Rl{:: dm = fm +f;5t (13)
0 Rlst Rlst +Rinn a flsl +finn

where r, mand srefer to regular region, master nodes and
singular region, a is the vector of the generalised coordinates

a’ :{All Al” AZI A2II I } KAt = stpist - jcinn :HZIRn

n=2
_ _ . nl _ _
KI=TURITY, R =TT, fr =, =T
n=2
and nl is the number of layers in the singular region. T is

s

the transformation matrix of the n" layer in the singular
region.

In Equation (13), the nodal displacements of the slave nodes
are replaced by the generalised coordinates by using the
transformation matrices of the layers in the singular region T;'
as follows

d; =T/a (14)
where n refers to the n™ layer in the singular region. T is
computed using the global interpolation functions presented in
the previous section. K™, which is the generalised stiffness

matrix of the inner layers (n>2) in the singular region, can

be generated from the stiffness matrix of the first layer only by
utilising the property of the self-similar two-dimensional
isoparametric finite elements as reported by Treifi et al. [16]
as

. nl nl
KI" =Y K=Y KT
:I:Z n=2 (15)
=Y T T ke [5)= [gij Rij]
n=2
where [5] is a diagonal matrix (&, = p" V4,

A=A AN LA L), [Eij]:T;TKf‘TJ , and
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2(%+2;) (nl—l)(zl+ij)‘ Equation (15)

represents a sum of a geometric series. Therefore, 5; can be

written as
p(z, 4 )(l— p(nl—l)(lﬁij ))

Si =p(;'“l’)+p ot p

Jij = - p(‘ﬂ*'ﬁ) (16)
and for the case of an infinite number of layers (nl — o) as

— (#+4))

5ij = W (17)

A similar procedure can be followed to compute the
generalised force vector of the inner layers in the singular

region f™ .

The unknowns of the problem are the displacements
d, and d, and the generalised co-ordinates a . If we consider
d, as the vector of the nodal displacements of the slave nodes
in the singular region, the size of the vector d, is much
greater than that of the vector of the generalised co-ordinates
a . Therefore, solving the system of equations (13) reduces the
computational cost considerably. For more details about the

formulation of the FFEM, see Treifi et al. [16] and Leung and
Su [12-14].

Figure 4. A non-symmetrical notch.

Now for the case of a non-symmetrical notch case shown in
Figure 4 when the bisector of the notch opening angle does not
coincide with the x-axis, suitable coordinate transformation is
needed to obtain the generalised stiffness matrix of the
singular region. The stress and displacement expressions
presented in Section 2 were derived in a local coordinate
system (X', y'). Therefore, a coordinate transformation is
needed to obtain correct values in a global coordinate system.
Let d; and d, be the nodal displacement vectors of the

n™ layer in the singular region in global (x, y) and local (X, y')
Cartesian coordinate systems, respectively. The local
Cartesian coordinate system is assumed to be centred at the
notch tip and that its x'-axis coincides with the bisector of the
notch opening angle. The relation between the nodal
displacement components in the two coordinate systems
shown in Figure 4 is:

dg=TJd, (18)

where T, is the matrix of direction cosines. Substituting
Equation (14) (s and n are omitted for simplicity) into
Equation (18) yields

d,=T.Ta=Ta (19)
The transformation matrix T can be replaced by T'in the
formulation of the FFEM to solve both symmetrical and non-
symmetrical notch problems.

4 NUMERICAL EXAMPLES AND VALIDATION

A few examples of various non-symmetrical configurations of
single-edge-notched rectangular plates are presented in this
section. Consider a rectangular plate which contains a non-
symmetrical notch whose bisector is inclined an angle B over
the plate horizontal axis of symmetry as shown in Figures 5
and 6. Published results for these cases exist and are compared
with to demonstrate the accuracy of the approach proposed in
the previous section.
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Figure 5. A non-symmetrically notched plate (h/w =2 and
B=rl2).

First, consider a rectangular plate under tension loading
conditions as shown in Figure 5 with an aspect ratio h/w =2
and a ratio of the notch length to the plate width a/w=0.4.
The results are obtained by using twenty terms of the
eigenfunction series, a similarity ratio p=0.9, and an
‘infinite’ number of layers in the singular region. The
geometry of the plate is meshed in a similar way to that shown
in Figure 7 using six-node triangle elements (seven-point
integration scheme). The inclined angle S is taken to be half

of the notch opening angle y, that is f=y/2. The SIFs

computed by the FFEM for different notch opening angles
compared to corresponding published results obtained by
Portela et al [9] are plotted in Figure 8.

4 Copyright © 2009 by ASME
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Figure 6. A non-symmetrically notched plate
(hiw =3).

Now, consider a rectangular plate under tension loading
conditions as shown in Figure 6 with an aspect ratio
h/iw=3and h,/h=0.5. Similar parameters to those of the

previous example are used to obtain the FFEM results. The
geometry of the plate is meshed in a way similar to that shown
in Figure 7. The FFEM results for different notch opening
angles, different inclined angles and different notch lengths
are plotted in Figures 9, 10 and 11. Corresponding published
results reported by Chen [10] are also plotted in those figures
for comparison.
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Figure 7. FE mesh of the notched plate.

From Figures 8 to 11, it can be seen that the mode | and mode
Il SIFs vary in opposite directions as the inclined angle /g

increases; the mode | SIFs decrease while the mode Il SIFs
increase. it can also be seen from those figures that the SIFs
predicted by the FFEM are in very good agreement with the
published results. The discrepancies between the FFEM
results and those predicted by Portela et al [9] are less than 1%
for mode | and mode Il SIFs. The discrepancies between the
FFEM results and those predicted by Chen [10] are about 1%
for mode | SIFs and less than 5% for mode 11 SIFs.

2.5
20 [+ fo] fol f+ — [
—«—K, (FFEM)
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: [+ K]| (Aliabadi)
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0 10 20 30 40
Y (B=172)

Figure 8. SIFs of non-symmetrically notched plates for different notch angles (h/w =2, a/lw=0.4,
B =y/2)compared to those of reference [9].
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Figure 9. SIFs of non-symmetrically notched plates for different inclined angles (h/w =3, h,/h =0.5,
» =30°") compared to those of reference [10].
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Figure 10. SIFs of non-symmetrically notched plates for different inclined angles (h/w =3, h,;/h =0.5,
¥ =60°) compared to those of reference [10].
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Figure 11. SIFs of non-symmetrically notched plates for different inclined angles (h/w =3, h,/h =0.5,
7 =90°) compared to those of reference [10].
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5 CONCLUSIONS

In this paper, the FFEM was extended to model and analyse
non-symmetrical notch problems. A simple coordinate
transformation is needed to evaluate the SIFs of a non-
symmetrical notch based on the global interpolation functions
derived for a symmetrical notch case. In the FFEM, no
complicated mathematics is involved; only simple matrix
multiplication. Post-processing techniques to extract the SIFs
or special singular finite elements are not needed. The SIFs are
computed directly because of the use of exact analytical
solutions as global interpolation functions. Also, the FFEM
reduces the number of unknowns significantly and therefore
the computational cost. It can practically be applied when the
agile and widely used Finite Element Method has convergence
difficulties as in the case of the presence of singular points and
when there is a need to reduce the computational cost
associated with a large number of unknown variables of a
problem without the need of using other methods.

Various numerical examples of non-symmetrically notched
plates under tension loading conditions were presented, and
results were validated via comparison with corresponding
published results. The good agreement achieved between the
FFEM results and published results proved the validity of the
use of the simple local coordinate transformation in the FFEM
when dealing with non-symmetrical notch cases.
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1. Introduction

Structural components with corners/notches are common occurrences in engineering design. The presence of notches af-
fects the loading resistance capacity of those components and may result in a crack initiation leading to a structural failure or
to a shortening of the service life. Therefore, much research has been devoted to the analysis of sharp notch problems. How-
ever, most of the cases reported in the literature are about mode I cases. There are only few results concerning pure modes II
and III cases of notch problems.

In linear elastic fracture mechanics, the stress intensity factors provide a means to assess the stability of cracks. Similarly,
for notch problems experimental results have demonstrated that simple failure criteria based on the so-called notch/gener-
alised stress intensity factors exist, at least for brittle fracture [1]. The failure occurs when the notch stress intensity factors
reach critical values. The limiting cases of the notch opening angle y = 0° and 7y = 180° correspond to a cracked solid and a
solid with no notch, respectively. For tension loading conditions, if a failure is presumed to occur at a critical value of the
generalised stress intensity factor for both of those cases, then in the case of a crack the critical value is the fracture tough-
ness while in the case of a solid without a notch it is the tensile strength [2]. The case of a notch when 0° <y <180° is be-
tween those two limiting cases. Therefore, many researchers have tried to develop a criterion to calculate or measure the
critical values of notch stress intensity factors while others have tried to compute the notch stress intensity factors by using
numerical, analytical or empirical methods. Just to mention a few of those who have tried to establish a failure criterion for a
notch, Seweryn [1] introduced a brittle fracture criterion for structures with sharp notches that states that a crack will
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Nomenclature

a crack/notch length

a vector of generalised co-ordinates

A, B generalised co-ordinates

d nodal displacement vector

d,, d,,, and d; nodal displacement vectors of nodes in regular region, master nodes, and in singular region
d;“znd' - nodal displacements of the nodes in the first layer, second layer, ... in the singular region

f nodal force vector

f, £, and f; nodal force vectors of nodes in regular region, master nodes, and in singular region

flstim transformed nodal force vectors of the first layer and the inner layers in the singular region

G shear modulus

h plate height

h¢ distance between crack/notch tip and bottom boundary of plate

K stiffness matrix

K, Kinr, Kinmy Kss, . partitioned stiffness matrices (r refers to regular region, m to master nodes, and s to slave nodes)
K partitioned stiffness matrix of the nth layer in the singular region

KIst, Kim transformed partitioned stiffness matrices of the first layer and the inner layers in the singular region
Ki, Ky, Ky stress intensity factors of modes I, I, and III

m, n integer variables

NL, nl  number of layers in the singular region

NT,nt  number of terms of eigenfunction series expansion

r,0 polar co-ordinates

TV transformation matrix of the nodal displacements of the nth layer in the singular region

T%“ transformation matrix of the nodal displacements of the first layer in the singular region

T]: transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer in the sin-
gular region

w width of single-edge-notched plate or half width of double-edge-/centre-notched plate

w displacement in z direction

x,y,z  Cartesian co-ordinates

o angle between notch face and x-axis

) scaling variable

Y notch opening angle

r boundary curve

(o] stress function

A eigenvalue

o similarity ratio

o tensile stress

T shear stress

\& the Laplacian operator

propagate from a tip of a notch when the actual value of the notch stress intensity factor reaches a critical value, Knésl [3]
extended the stability criterion of a crack to the general case of a notch, Gémez and Elices [4] showed the advantages of the
cohesive crack model for predicting fracture of notched components, and recently Carpinteri et al. [5] presented an expres-
sion for the generalised fracture toughness which is a function of material tensile strength, fracture toughness and notch
opening angle.

Many procedures have been developed to compute the generalised stress intensity factors of sharp notched components.
Gross and Mendelson [6] computed the SIFs of many cases of modes I and II notch problems by means of a Boundary Col-
location Method (BCM) based on the stress functions derived by Williams [7]. It was concluded by Tong and Pian [8] that in
order to improve the convergence rate of finite element solutions of problems with a singularity, the interpolation functions
of a finite element formulation must include terms that can account for the analytical form of the singularity. In addition,
these interpolation functions should be used for elements within a finite region, and not only for those around the singular
point. Lin and Tong [9] developed special hybrid finite elements to account for the notch tip singularities. A generalised stress
intensity concept at sharp corners was proposed by Sinclair et al. [10]. They outlined an approach based on the calculation of
a contour integral that was an extension of the work of Stern et al. [11,12]. Independently, Carpenter [13,14] introduced a
collocation approach to calculate stress intensity factors of notch problems based on the contour integral of Stern et al.
[11,12]. Babuska et al. [15,16] developed post-processing approaches to extract the SIFs for mixed mode problems from a
finite element solution. Portela et al. [17] proposed a boundary element singularity subtraction technique to compute the
SIFs of notch problems. Their method requires extra boundary conditions that they referred to as “singularity conditions
of the regularisation procedure”. Zhao and Hahn [18] developed a method to determine the SIFs of a notch problem from
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the SIFs of a crack problem. All the aforementioned methods were mainly used to predict the SIFs of mode I, mode II, or
mixed modes (I and II) cases of single-edge-notched plates. Chen [19] computed the SIF of single-edge- and double-edge-
notched plates subject to tension or in-plane bending loading conditions by means of the Body Force Method.

Results of mode III SIFs of cracked plates were reported by some authors such as Zhang [20] who presented results for off-
centre single-edge-cracked plates with the aid of the basic theorem of the Fourier transform and Fourier series. Leung and
Tsang [21] extended the two-level finite element method to analyse mode III crack problems. Noda and Takase [22] calcu-
lated the generalised SIFs for a V-shaped notched round bar under tension, bending, and torsion using the singular integral
equation of the body force method.

The fractal-like finite element method, which is based on the concept of global-local interpolation functions introduced by
Mote [23], is semi-analytical. Leung and co-workers [24-27] applied the FFEM to compute the stress intensity factors of many
two-dimensional crack problems only. It has been proven that the FFEM produces very accurate results [24-25]. Recently Tre-
ifi et al. [28-30] have extended the FFEM to analyse the singularity resulting at a notch tip. They presented many results of
various configurations of notched plates subjected to mode I or mode II loading conditions of single-edge-notched plates.

In general, superposition of the results of modes I, Il and III can be used to describe the most general case of loading on a
V-notched specimen. Therefore, the extension of the FFEM to analyse mode III notch problems is in order. The mode III case
might appear to be simpler than the mode I and mode II cases, because of the fact that it reduces to a one-dimensional prob-
lem. However, entirely different global interpolation functions that account for the analytical form of the mode III singularity
around a notch tip are needed to be used in the FFEM. As a result, the mode III problem is completely different from the
modes I and II cases with regard to handling and final results. Only the general outlines of those cases are similar. Further-
more, providing mode III results of different notch problems with different notch opening angles will give further insight into
the behaviour of fracture parameters of notched components.

The FFEM can be used to calculate directly not only the stress intensity factors but also the coefficients of the higher order
terms of the crack/notch tip asymptotic field. Only few methods such as the Boundary Collocation Method (BCM), Hybrid
Crack Element (HCE) and the Scaled Boundary Finite Element Method (SBFEM) are available in the literature which can
be used to evaluate the crack tip higher order terms. The BCM is a method that satisfies the boundary conditions at selected
locations or points; it is powerful for use for structures with simple geometries and simple loading conditions.

The HCE was developed by Karihaloo and Xiao [31] based on the Hybrid Element Approach introduced by Tong et al. [32].
A simplified variational principle using truncated asymptotic crack tip displacement and stress series expansions was used to
formulate the HCE [31]. Despite the good accuracy of the numerical results obtained by the HCE, the element was incom-
patible with the surrounding finite elements because of the exclusion of coefficients of the Williams series expansion that
do not contribute to the stresses and strains in the formulation of the HCE [33]. To minimise the incompatibility, Xiao
and Karihaloo [34] recovered these coefficients by an indirect method that involves the application of a least-squares meth-
od. The SBFEM, developed by Wolf [35], is a numerical finite element-based procedure in the circumferential directions and
an analytical procedure in the radial direction. In the SBFEM, the governing partial differential equations are transformed to a
scaled boundary co-ordinate system. By introducing shape functions in the circumferential directions, these equations are
reduced to a set of second-order ordinary differential equations. These ordinary differential equations are solved analytically
in the radial direction after determining their coefficients by a finite element approximation in the circumferential direc-
tions. However, the mathematics of the SBFEM compared to the finite element method is rather complicated [36].

The FFEM combines the accuracy of analytical solutions and the agility of the finite element method. No complicated
mathematics is involved; only simple matrix multiplication is needed. The exact solutions of the singular displacement field
around a notch tip are used as global interpolation functions to perform a transformation of the nodal displacements in the
singular region into a set of generalised co-ordinates. The transformation reduces the number of unknowns significantly and
consequently the computational cost too. Because of the employment of exact analytical solutions as global interpolation
functions, the stress intensity factors and the coefficients of the higher order terms of the notch tip asymptotic field become
primary unknowns of the problem. Therefore, no post-processing is required to extract them. In addition, special singular
finite elements are not needed to model the stress singularity at the notch tip—any conventional finite elements can be used
to model the singular region. Hence, some practical applications of the FFEM are when the standard Finite Element Method
has convergence difficulties as in the case of the presence of a singular point and when there is a need to reduce the com-
putational cost associated with the large number of unknowns of a problem. The limitation to the use of the FFEM is the
availability of “good” global interpolation functions, whether they be exact analytical or not.

In this paper, the FFEM is extended to model and analyse many cases of double-edge- and centre-notched plates sub-
jected to anti-plane shear (mode III) or tension (mode I) loading conditions. The accuracy and efficiency of the FFEM to com-
pute modes I, II and IIl SIFs is demonstrated by comparison with many numerical examples concerning different
configurations of cracked/notched plates subject to anti-plane shear or tension loading conditions of which published results
exist. Also, many new results of notch problems are presented.

2. Formulation of the fractal-like finite element method (FFEM)

A short description of the FFEM formulation is presented in this section. For detailed description, one may refer to Refs.
[24-27,29]. In the FFEM, a body containing singular points is divided into singular and regular regions delineated by curves
such as I‘E, and Fﬁ as shown in Fig. 1a. Any conventional finite elements can be used to model all regions. In the singular
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regions, however, a very fine mesh generated layer by layer in a self-similar manner is used. The nodal displacements in the
singular region are transformed into a small set of generalised co-ordinates by using global interpolation functions. This
transformation process reduces the number of unknowns significantly. Now, the unknowns of the problem are the nodal dis-
placements of the regular region and the generalised co-ordinates of the singular region. The stress intensity factors are re-
lated to some of the coefficients of the generalised co-ordinate set, as is shown in the next section; and therefore no post-
processing is needed to extract them.

The singular region is discretised as shown in Fig. 1b. By using the notch tip as a centre of similarity and assuming that p
is a similarity ratio, a set of curves {I'y, I'5, I'3, ...} similar to the curve that separates the singular and regular regions I'y is
generated within the singular region. All nodes within I'g are considered slave nodes, while the nodes on Iy are considered
master nodes as illustrated in Fig. 1b.

In the conventional finite element method, the static equilibrium equation can be written as

Kd = f (1)

where K is the stiffness matrix, d is the nodal displacement vector, and f is the nodal force vector.
By dividing the matrix equation into regular and singular parts, the global stiffness matrix equation can be rewritten as

K:  Km 1¢( d f,
K Ko + K K d, f,,
2nd 2nd
KU K+ K K2} da £l
LS RN il ar =y e @)
K K d" £

where d, are the displacements of the nodes in the regular region, d,, are the displacements of the master nodes, d;“‘znd‘“' are
the displacements of the nodes in the first layer, second layer, ... in the singular region, and nl is the number of layers in the
singular region. The same notation applies to K and f.

The nodal displacements of the nodes in the nth layer in the singular region can be expressed in terms of a vector of gen-
eralised co-ordinates a as

d'=T'a 3)

where T; is the transformation matrix of the nth layer in the singular region.
After applying the transformation, the global stiffness equation becomes

K. Kim 0 d, f,
Kor Ko + K50 K d, b ={ fn+ £ (4)
0 Klst Kt 4K | | a f1st 4 finn

where

nl nl
olst _ yelstplst rinn __ Icn en _ i’ penn Flst _ lst’ glst Finn __ Fn Fn _ n'en
KS —KSTS, K" =YK, K =T'KT, f=Tf" f"-3"f, and f-T'f
n=2 n=2

Fig. 1. (a) Singular and regular regions of a cracked/notched body and (b) an illustration of a singular region (master nodes are highlighted).
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The vector of the generalised co-ordinates a is much smaller than the vector of the nodal displacements in the singular
region d;. Therefore, solving the system of Eq. (4) reduces the computational cost considerably compared to solving the sys-
tem of Eq. (2).

Now, the generalised stiffness matrix of the inner layers (n > 2) in the singular region, K™, can be simplified by utilising
the properties of the self-similar two-dimensional isoparametric finite elements. The stiffness matrices of the layers in the
singular region are the same because the stiffness matrices of two-dimensional isoparametric finite elements of similar
shapes are the same [24]. Therefore,

K' =K (5)
and the transformation matrix of the nth layer can be written in terms of that of the first layer as
" = T[9] (6)

where T§ is the transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer and it is
different from the aforementioned T.*, which is the transformation matrix of the nodal displacements of the slave nodes
only in the first layer, and [§] is a diagonal matrix where

Sii =PV =1, 02,03, 7)
From Egs. (5)-(7), K™ can be rewritten as
. nl B nl . nl i o
KM ="K =Y TV KT = 0] T, KT [0] = [0;k;) (8)
n=2 n=2 n=2
where
[y =T KT, (9)
and
nl nl
S — PV o1y — P Dlrth)
’ ; ; (10)

= pUath) 4 p2Ueth) 4.y p(l=1)Gits)
This sum is a geometric series. For a finite number of layers, 5; can be written as

p(/‘.i+/‘.j) (1 _ p(nl—l)(/l,-w.j))

5j = 1 pas (11)
and for an infinite number of layers (nl — ) as

_ pUitA)

%=1 pum (12)

A similar procedure can be followed to compute the generalised force vector of the inner layers in the singular region fi"™.
3. Global interpolation functions

Exact analytical solutions of the displacement field around a notch tip are employed as global interpolation functions. The
stress and displacement expressions can be derived by using a stress function approach or a complex variable method. A
description of the derivation of the global interpolation functions for a two-dimensional plane stress/strain case (modes I
and II) of a notch may be found in Refs. [7,29,37]. A short description of the derivation of the global interpolation functions
for a mode III notch problem is presented next.

3.1. Global interpolation functions for a mode III notch problem

The stress and displacement expressions of a notch subject to out-of-plane shear loading conditions can be derived by
using a stress function approach. This approach follows the general framework presented by Williams [7] for the in-plane
notch case. The only non-zero displacement component is in the z direction (w) and the non-zero stresses are 7,, and 7y,
which can be derived by using a stress function (@) in a polar co-ordinate system centred at the tip of an infinite notch
as illustrated in Fig. 2. The equilibrium equations are satisfied if the stresses are derived as follows:

100
=T o0 1
oD
T = (14)

ar
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“y

Fig. 2. Notch geometry and co-ordinate systems.

The compatibility equations are reduced to
Vo =0 (15)
where V2 denotes the Laplacian operator. The stress function (®) can be taken as
® =1'F(0) (16)
After substituting & and its derivatives into the differential Eq. (15), the general solution of the resulting equation is
& = r*(Acos 20 + Bsin 10) (17)

where A and B are the generalised co-ordinates (or the coefficients of the terms of the mode III notch asymptotic field). On
substituting Eq. (17) into Egs. (13) and (14), the stress expressions are

Tz = " 1(Asin 20 — B cos 20) (18)
T, = r* "1 A(A cos /0 + B'sin 10) (19)

The eigenvalues 1 are obtained by imposing the following boundary conditions on the notch faces:

T(22) = 0 (20)
Substituting Eq. (20) into Eq. (19) yields
1) (A cos i+ Bsin ia) = 0 (21)
r*“1J(Acos Jo. — Bsin o) = 0 (22)

For non-trivial solutions of A and B, the determinant of Egs. (21) and (22) should be zero. By solving the determinant, the
eigenvalues are obtained as
mmn
f=—5—; m=12,3,... 23
A za ) 7 ? ( )
When m is an odd number and by assuming m = 2n — 1, it can be shown that Z, = (n — 1) Zand B=0. When m is an even
number and by assuming m = 2n, it can be shown that 1, =% and A=0.
The eigenfunction series expansions of the stresses can now be written as

N7 1z q . n\=n N7 nm
— _ 2 Zpnpit __\ = _ Bl i
Ty = A(n 2> % 2 sin ((n 2> a 0) B 5T cos ( oc 9) (24)
NT 1z N\ = N a4 . (NT
_ _ | L p—pi-1 [ | -
f(;zfA<n 2) O(r 2 cos<<n 2) a9> +B ” r sm(a 6) (25)
and of the displacement as
A AN nm
Gw = Ar" 2% sin ((n 2> o 0) Br# cos ( o 0) (26)

where G is the shear modulus.
The mode III stress intensity factor of a notch is defined in a way similar to that of a crack as

Ky = \/27‘[11[1(} 1 =*14,(0 = 0) (27)
r—
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Substituting Eqgs. (25) into Egs. (27) gives
Ky = v2mA (28)

Eq. (28) demonstrates a direct relationship between the SIFs and the generalised co-ordinates which are calculated di-
rectly in the FFEM. Therefore, no post-processing technique is required to extract the SIFs.

4. Numerical examples and verification

The use of the global interpolation functions derived in Section 3 for a mode III notch problem is verified via many exam-
ples of crack problems for which published data exist. This is done because of the lack of existing results concerning notched
plate problems under mode III loading conditions. For the plane stress/strain case, the global interpolation functions used in
the FFEM were tested and verified in Refs. [29,30]. Crack problems are special cases of notch problems (the notch opening
angle y = 0°). First, a numerical verification for crack problems is presented that includes a convergence study to demonstrate
the accuracy and stability of the method to compute mode III SIFs, many examples of central and off-central single- and dou-
ble-edge-cracked plates and centre- and off-centre-cracked plates under mode Il loading conditions, and an example about
computing the coefficients of the higher order terms of the asymptotic field for a centre crack problem under tension. Pub-
lished results for these examples exist and are compared with to validate the FFEM results and demonstrate the accuracy and
the stability of the method. Then many examples of central and off-central double-edge notch problems and centre- and off-
centre-notch problems under out-of-plane shear or tension loading conditions are presented. Most of the results of the notch
examples presented in this study are new.

Because of the nature of mode III problems, the SIF values for the cases of single-edge-notched, double-edge-notched and
centre-notched plates shown in Fig. 3 are equal. Therefore, for the case of mode III, we will not differentiate between those
cases and we will only use “single-edge notch” to refer to those three cases. This is not the case for plane stress/strain prob-
lems. For the cases of a double-edge-notched plate shown in Fig. 4a and a centre-notched plate shown in Fig. 4c, half of the
plate can be modelled with applying proper boundary conditions along the symmetry line as shown in Fig. 4b and d, respec-
tively. The case of a single-edge-notched plate subject to tension loading conditions was presented in Ref. [29].

4.1. Numerical verification for crack problems

4.1.1. Convergence study of mode III for a crack case

The accuracy and stability of the FFEM to compute mode III SIFs is demonstrated by carrying out a convergence study. The
effects of the number of layers in the singular region (for a range of 4-20 and when NL = o), the similarity ratio (for a range
of 0.1-0.9), and the number of terms of the eigenfunction series expansion used as global interpolation functions (for a range
of 5-30) on the mode III SIF values of a cracked plate are investigated.

A mode III problem of a single-edge-cracked plate as shown in Fig. 5a is analysed. The aspect ratio and the ratio of the
crack length to the plate width are h/w =3 and a/w = 0.4, respectively. Six-node triangle elements (seven-point integration
scheme is used for all the examples in this paper) are used to mesh the plate as shown in Fig. 5b. Also, the singular region
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Fig. 3. (a) Central single-edge-notched, (b) central double-edge-notched, and (c) centre-notched plate subject to out-of-plane shear loading conditions.
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Fig. 4. (a) and (b): Central double-edge-notched plate under tension. (c) and (d): centre-notched plate under tension.

volume is held constant with increasing numbers of layers. The analytical solution of this problem exists for infinite height.
The normalised SIF value is Ky; = 1.075 [38].

The results are presented in Figs. 6-8. Figs. 6 and 7 show that the number of transformation terms (NT) does not have a
significant effect on the results when NT > 5 for the ranges of variables (numbers of layers (NL), similarity ratios (p) and NT)
used in this study. Also, Fig. 7 demonstrates that accurate results can be obtained by using values of similarity ratios larger
than 0.5 for the ranges of variables used in this study. Moreover, it can be seen that when NL = o, larger similarity ratios
(finer meshes of the singular region) are needed to obtain accurate results. Fig. 8 illustrates that the results converge asymp-
totically with increasing numbers of layers used to model the singular region when p > 0.3. Good results can be obtained by
using ten layers or more. A similar behaviour was observed for the cases of mode I/II loading conditions [29,30].

4.1.2. Examples of single-edge-cracked plates subjected to mode Il load conditions

Mode III problems of a single-edge-cracked plate are analysed for different crack lengths and different numbers of layers.
The cracked plate is shown in Fig. 5a. Based on the convergence study, 10 terms of the eigenfunction series are used for the
fractal transformation. The similarity ratio and the aspect ratio are p = 0.6, and h/w = 3, respectively. Six-node triangle ele-
ments are used to mesh the geometry of the plate as shown in Fig. 5b. The singular region volume is held constant with
increasing numbers of layers.

The stress intensity factors computed for the mode Il problems by the FFEM compared to corresponding published data
of infinite plate height [38] are tabulated in Table 1 for different ratios of crack length to plate width and different numbers of
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Fig. 5. (a) Central single-edge-cracked plate subject to mode III loading conditions and (b) the FE mesh used for the analyses.
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Fig. 6. Variations of SIFs with number of terms (NT) for different number of layers (NL) and similarity ratios p compared to corresponding published results
(Murakami [38]).
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Fig. 8. Variations of SIFs with number of layers for different similarity ratios and numbers of terms compared to corresponding published results
(Murakami [38]).

layers. Table 1 shows that the mode III SIF values increase with increasing ratios of crack length to plate width (a/w). The
results converge asymptotically with increasing numbers of layers used to model the singular region. More importantly, Ta-
ble 1 illustrates that the SIF values computed by the FFEM are in very good agreement with the published data. Therefore, the
results in Table 1 prove that the eigenfunction series expansions presented in Section 3 which were derived for notch prob-
lems produce accurate results for mode Il crack problems (when the notch opening angle y = 0°).

4.1.3. Examples of off-central single-edge-cracked plates under mode Ill loading conditions

Many configurations of an off-central single-edge-cracked plate under mode III loading conditions as illustrated in Fig. 9
are analysed in this section. Ten terms of the eigenfunction series, 16 layers in the singular region and a similarity ratio
p = 0.6 are used. Six-node triangle elements are used to mesh the geometries of the plates in a similar manner to that shown
in Fig. 5b.

The values of the SIFs for mode III for many asymmetric (off-central) single-edge-cracked plates computed by the FFEM
are compared to those predicted by Zhang [20] in Table 2. It can be seen from Table 2 that the FFEM results and those of
Zhang [20] are in very good agreement. This again proves that the FFEM results using the eigenfunction series expansions
presented in Section 3 as global interpolation functions which were derived for notch problems produce accurate results
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Table 1
Mode III SIFs of a central single-edge-cracked plate for different crack lengths.
alw K /Ty "

Murakami [38] FFEM

5 layers 10 layers 15 layers 20 layers

0.1 1.004 0.996 1.003 1.004 1.004
0.2 1.017 1.009 1.016 1.017 1.017
0.3 1.040 1.032 1.039 1.040 1.040
0.4 1.075 1.067 1.074 1.075 1.075
0.5 1.128 1.120 1.127 1.128 1.128
0.6 1.208 1.199 1.207 1.208 1.208
0.7 1.336 1.325 1.335 1.336 1.336
0.8 1.565 1.552 1.563 1.564 1.564
0.9 2.113 2.094 2.111 2112 2.112

for mode III crack problems (when the notch opening angle y = 0°). Therefore, they can be used with confidence to produce
results for notch problems as done in Section 4.2.

4.1.4. Coefficients of the higher order terms of a centre-cracked plate

The five leading coefficients of the higher order terms of the crack tip asymptotic field are obtained for a centre-cracked
plate under tension. The geometrical parameters of the cracked plate are: h/2 =w =4, a = 1. Twenty terms of the eigenfunc-
tion series, an “infinite” number of layers in the singular region, a similarity ratio p = 0.9, and six-node triangle elements are
used. Only half of the plate is modelled in a similar way to that shown in Fig. 4d, and a coarse mesh is used in the regular
region (four and eight elements are used along the horizontal and vertical boundaries of the plate, respectively) similar to
that shown in Fig. 5b, but the singular region is meshed more finely in the circumferential direction than that of Fig. 5b.

The coefficients are tabulated in Table 3. Karihaloo and Xiao [33] provided solutions for this example by using the Hybrid
Crack Element (HCE) and the Boundary Collocation Method (BCM). They also compared their results with interpolated re-
sults from Fett’s solutions [39]. These published results are also tabulated in Table 3 for comparison. The current values
of the coefficients are in good agreement with the published results. The biggest discrepancy occurred for the fourth coef-
ficient computed by the HCE. However, Karihaloo and Xiao [33] computed these values by using a half-polygonal HCE to ex-
ploit the symmetry. Only mode I expansion was used in the formulation of this element. They stated that the half-polygonal
HCE predicts accurate coefficients for the first three terms if only mode I expansion is used in the formulation. They found
that the results deteriorated when they used both modes I and II expansions in the formulation of the half-polygonal HCE.
However, they proved in the same work that using a polygonal HCE without exploiting the symmetry in the formulation
gives results with good accuracy.
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Fig. 9. Off-central single-edge-cracked plate subjected to mode III load conditions.
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Table 2
Mode III SIFs (Ky/Tv/Ta'~*") of an off-central single-edge-cracked plate.
hew:h a:w:h
1:w:h 2:w:h 3:w:h 4:w:h 5:w:h 6:w:h
14:12:24 FFEM 1.002 1.012 1.028 1.052 1.085 1.131
Zhang [20] 1.003 1.013 1.030 1.053 1.085 1.125
14:10:24 FFEM 1.004 1.017 1.040 1.076 1.129 1.209
Zhang [20] 1.004 1.018 1.041 1.076 1.124 1.189
14:8:24 FFEM 1.006 1.027 1.065 1.128 1.234 1.431
Zhang [20] 1.006 1.027 1.065 1.123 1.209 1.331
Table 3
Coefficients for centre-cracked plate (h/2 =w =4, a=1) under tension.
Ailo Ay]o Aslo Aslo As|c
FFEM 0.7666 -0.2794 0.1914 0.0037 —-0.0293
Karihaloo and Xiao (HCE) [33] 0.7665 —0.2779 0.1915 —0.0018 —0.0235
Karihaloo and Xiao (BCM) [33] 0.768 -0.2777 0.1866 0.003 -0.0279
Fett (BCM) [39] (interpolated) 0.767 -0.276 0.188 0.0033 ~0.032

4.2. Numerical examples for notch problems

4.2.1. Examples of central single-edge-notched plates subjected to mode III load conditions

Mode III problems of a central single-edge-notched plate shown in Fig. 10a are analysed for different notch angles. Dif-
ferent numbers of layers are used to model the singular region whose volume is held constant with increasing numbers of
layers. Ten terms of the eigenfunction series are used for the fractal transformation. The aspect ratio, the ratio of the notch
length to the plate width, and the similarity ratio are h/w = 2, a/w = 0.4, and p = 0.6, respectively. Six-node triangle elements
are used to model the plate as shown in Fig. 10b.

The SIFs predicted by the FFEM for different notch opening angles and different numbers of layers are tabulated in Table
4. This table shows that the SIF values increase monotonically as the notch opening angle increases. Also, the results con-
verge asymptotically with increasing numbers of layers used to model the singular region. Similar convergence was observed
for the case of crack problems presented in Section 4.1. It should be noted that these results appear to be new and that there
are no published data with which to compare them. However, it was shown in the previous numerical examples in Section
4.1 that using the eigenfunction series expansions presented in Section 3 as global interpolation functions which were
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Fig. 10. (a) Central single-edge-notched plate subject to mode III loading conditions and (b) the FE mesh used for the analyses.
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Table 4
Mode III SIFs (Kyy/Ty/Ta'~*") of a central single-edge-notched plate for various notch angles and different numbers of layers (h/w = 2, a/w = 0.4).
v () NL

10 layers 16 layers 20 layers
0 1.076 1.077 1.077
30 1.233 1.233 1.233
60 1.417 1.417 1.417
90 1.628 1.628 1.628
120 1.859 1.859 1.859

derived for notch problems produced accurate results for mode III crack problems (when the notch angle y = 0°). Therefore, it

can be assumed that the results in Table 4 are valid.

4.2.2. Examples of off-central single-edge-notched plates subject to mode III load conditions

Many problems of an off-central single-edge-notched plate under mode III loading conditions as illustrated in Fig. 11a are
investigated. The number of terms of the eigenfunction series, the number of layers in the singular region, the similarity ra-
tio, and the aspect ratio are nt =20, nl =16, p = 0.6, and h/w = 2, respectively. Six-node triangle elements are used to model
the notched plates as shown in Fig. 11b.

The mode III SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of the notch
length to the plate width a/w = 0.4 in Table 5, and for a notch opening angle y = 50° and for various ratios of the notch length
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Fig. 11. (a) Off-central single-edge-notched plate under mode III loading conditions and (b) the FE mesh used for the analyses.
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Table 5
Mode 1l SIFs (Kyy/Ty/Ta'~*") of off-central single-edge-notched plate for various notch angles and notch positions (h/w =2, a/w = 0.4).
v () he/h

0.1 0.2 0.3 0.4 0.5
0 1.243 1.116 1.086 1.079 1.077
10 1.303 1.168 1.136 1.128 1.126
20 1.368 1.223 1.189 1.180 1.178
30 1.437 1.281 1.245 1.235 1.233
40 1.511 1.343 1.304 1.293 1.291
50 1.590 1.408 1.366 1.355 1.352
60 - 1.477 1.431 1.419 1.417
70 - 1.550 1.500 1.487 1.484
80 - 1.627 1.572 1.558 1.555
90 - - 1.647 1.631 1.628
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Table 6
Mode III SIFs (Ky/Tv/Ta'~*") of off-central single-edge-notched plate for various notch positions and notch lengths (hjw = 2, 7 = 50°).
a/w he/h

0.1 0.2 0.3 0.4 0.5
0.1 1.282 1.253 1.248 1.247 1.247
0.2 1.373 1.288 1.271 1.267 1.266
03 1.479 1.340 1.310 1.302 1.300
0.4 1.590 1.408 1.366 1.355 1.352
0.5 - 1.495 1.447 1.434 1.431

to the plate width in Table 6. The missing values in those tables are due to the fact that the geometry of the plate is no more
rectangular (the top and bottom boundaries are no more equal and the notch faces have unequal lengths).

Table 5 shows that the SIFs monotonically increase as the notch opening angle increases. Also, the values of the SIFs in-
crease as the notch gets closer to the bottom boundary of the plate. The minimum values of the SIFs occur when the notch is
on the centre line and the notch opening angle is 0°. In Table 6, it can be seen that the SIFs for a single-edge-notched plate
with a notch opening angle y = 50° increase as the notch length increases and as the notch gets closer to the bottom bound-
ary of the plate.

It should be noted that most of the results in this section appear to be new and that there are no published SIF values
available with which to compare them. To assess the accuracy of the results, two meshes of the singular region as shown
in Figs. 10b and 11b were investigated. The differences in the results were much less than 1%. Also, it was shown in the pre-
vious examples that using the eigenfunction series expansions presented in Section 3 as global interpolation functions which
were derived for notch problems produced accurate results for mode III crack problems (when the notch angle y = 0°). Con-
sequently, it can be assumed that the results in Tables 5 and 6 are valid. The results reported in these tables are obtained by
using the denser mesh of the singular region illustrated in Fig. 11b.

4.2.3. Examples of central double-edge-notched and centre-notched plates subject to tension load conditions

A central double-edge-notched plate shown in Fig. 4a and a centre-notched plate shown in Fig. 4c are investigated for
different notch lengths and different notch opening angles. Only half of the plate is analysed after applying the appropriate
boundary conditions along the symmetry line as shown in Fig. 4b and d. The number of terms of the eigenfunction series, the
number of layers in the singular region, the similarity ratio, and the aspect ratio are nt = 20, nl = 16, p = 0.6, and h/2w = 2,
respectively. Six-node triangle elements are used to model the notched plates as shown in Fig. 12.

/\/(}/ | f .1 %
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Fig. 12. The FE mesh used for the analyses of double-edge- and centre-notched plates.
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Table 7
Mode I SIFs (K,/a/Tia'~*) of central double-edge-notched plate for various notch lengths and notch opening angles (h/2w = 2).
v () ajw
0.2 0.4 0.6 0.8
0 FFEM 1.111 1.132 1.236 1.573
Tada [40] 1.118 1.132 1.226 1.567
30 FFEM 1.122 1.143 1.248 1.586
Chen [19] 1.123 1.145 1.251 1.604
45 FFEM 1.125 1.153 1.261 1.602
60 FFEM 1.165 1.191 1.300 1.650
Chen [19] 1.176 1.199 1.309 1.672
90 FFEM 1.302 1.323 1.442 1.850
Chen [19] 1.298 1.323 1.445 1.864
Table 8
Mode I SIFs (K,/ay/Ta'~*) of centre-notched plate for various notch lengths and notch opening angles (h/2w = 2).
v (°) alw
0.2 0.4 0.6 0.8
0 FFEM 1.024 1.109 1.303 1.814
Tada [29] 1.024 1.109 1.303 1.814
30 FFEM 1.053 1.151 1.375 1.959
45 FFEM 1.067 1.184 1.433 2.072
60 FFEM 1.131 1.261 1.547 2.283
90 FFEM 1.321 1.497 1.923 3.018

The SIF values for central double-edge- and centre-notched plates compared to the available published results are tabu-
lated in Tables 7 and 8, respectively. The SIFs presented in those tables increase with increasing ratios of notch length to plate
width and with increasing notch opening angles. Also, it can be seen that the FFEM results are in very good agreement with
the published results.

4.2.4. Examples of off-central double-edge-notched and off-centre-notched plates subject to tension load conditions

Many problems of off-central double-edge-notched plates and off-centre-notched plates shown in Fig. 13 are analysed for
different notch opening angles and different notch positions. Only half of the off-central double-edge- or off-centre-notched
plate is analysed after applying the appropriate boundary conditions along the symmetry line in a similar way to those
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Fig. 13. (a) Off-central double-edge-notched and (b) off-centre-notched plate under tension.
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Table 9
Normalised modes I and II SIFs of off-central double-edge-notched plate for various notch positions and notch opening angles (h/2w =2, afw = 0.4).
v (°) hefh

0.1 0.2 0.3 0.4 0.5

K Ki K Ki K Ki Ki Ku Ki Ku
0 1.930 0.377 1.295 0.096 1.163 0.023 1.136 0.004 1.132 0.000
30 1.949 0.511 1.306 0.131 1.174 0.031 1.147 0.006 1.143 0.001
45 1.993 0.599 1.321 0.154 1.184 0.037 1.157 0.007 1.153 0.001
60 2.047 0.703 1.361 0.180 1.223 0.044 1.195 0.009 1.191 0.001
90 2.250 1.023 1.503 0.248 1.355 0.059 1.327 0.012 1.323 0.002
Table 10
Normalised modes I and II SIFs of off-centre-notched plate for various notch positions and notch opening angles (h/2w = 2, a/w = 0.4).
7 () he/h

0.1 0.2 03 04 0.5

K Ky K Ky K Ky K K K Ky
0 1.564 0.174 1.219 0.039 1.132 0.011 1.112 0.003 1.109 0.000
30 1.677 0.333 1.285 0.072 1.181 0.021 1.155 0.005 1.151 0.001
45 1.763 0.446 1.337 0.098 1.219 0.029 1.189 0.007 1.184 0.001
60 1.880 0.577 1.440 0.132 1.304 0.042 1.267 0.011 1.261 0.002
90 2.185 0.835 1.759 0.228 1.572 0.081 1.510 0.022 1.499 0.003

shown in Fig. 4b and d. The number of terms of the eigenfunction series, the number of layers in the singular region, the
similarity ratio, the aspect ratio, and the ratio of the notch length to the plate half width are nt =20, nl=16, p=0.6, h/
2w =2, and a/w = 0.4, respectively. Six-node triangle elements are used to model the notched plates in a similar way to that
shown in Fig. 12.

Tables 9 and 10 show the SIF values computed by the FFEM for the off-central double-edge-notched and off-centre-
notched plates, respectively. The values of the SIFs increase as the notch opening angle increases and as the notches move
closer to the bottom/top boundary of the plate. The minimum values occur when the notches are on the horizontal symme-
try line and the notch opening angle y = 0°. The mode II occurs in these examples because of the asymmetry of the plate
geometry.

5. Conclusions

In this paper, the Fractal-like Finite Element Method was extended to analyse double-edge- and centre-notched plates
under anti-plane shear (mode III) or tension (mode I) loading conditions. In the FFEM, the large number of unknowns in
the singular region is reduced significantly by using global interpolation functions. Exact analytical solutions of the displace-
ment field around a notch tip are employed as the global interpolation functions; consequently, the stress intensity factors
and the coefficients of the higher order terms of a notch tip asymptotic field become primary unknowns of the problem.
Therefore, no post-processing technique to extract the stress intensity factors is needed. Moreover, special singular finite ele-
ments to model the singular region are not required.

The accuracy and the robustness of the method were tested via many examples of notch/crack problems. The stress inten-
sity factor values produced in this study for cases for which published results exist were in very good agreement with those
available corresponding published data. Many new results of notched plate problems were also presented.
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are also introduced.

The fractal-like finite element method (FFEM) is extended to compute the stress intensity factors (SIFs)
for bi-material notched bodies subject to anti-plane shear loading. The notched bodies are formed by
bonding two materials together (isotropic-isotropic/isotropic-orthotropic). Also, a strain energy-based
approach is developed and used to compute mode III SIFs for a bi-material notch using standard finite
element (FE) commercial packages for comparison with corresponding data produced using the FFEM.
Various numerical results for bi-material cracked/notched bodies under anti-plane shear are presented
to demonstrate the accuracy and efficiency of the FFEM. Many new results for bi-material notched bodies

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stress intensity factors (SIFs) characterise the stress, strain, and
displacement fields in the crack/notch tip region and have a signif-
icant function in virtually all fracture problems. For example, in
failure design studies, it is necessary to accurately evaluate SIFs
in order to determine fracture parameters such as the critical crack
length, the fracture loads and the service life of a structural compo-
nent. Fast, reliable and accurate computations of SIFs are often nec-
essary in practical applications such as in the design of new
structures or in the assessment of the integrity of existing struc-
tures. This is especially true for high integrity structures such as
nuclear reactor cores, aircraft, submarines and spacecraft. Another
area of major application is in welded structures.

The study of stress intensities at a corner/notch is of high impor-
tance, because the presence of corners in a structure may result in
crack initiation leading to a structural failure or shortening of the
service life of the structure. The importance is even higher in the case
of composite bodies, which comprise isotropic materials joined
together, because it could be used to evaluate the adhesive strength.
Therefore, much effort and research has been devoted to the analysis
of sharp notch problems. However, most of the cases available in the
literature are about in-plane homogeneous notch problems.

In linear elastic fracture mechanics, it is well known that the
stresses around a notch tip are singular. Williams [1] investigated

* Corresponding author. Tel.: +44 161 275 4348.
E-mail addresses: m.treifi@mmu.ac.uk (M. Treifi), s.0.oyadiji@manchester.ac.uk
(S.0. Oyadiji).
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the analytical form of these singularities. He found that the stresses
in a homogeneous notched body become infinite at the notch tip
under any boundary conditions. Seweryn [2] demonstrated that
simple failure criteria based on the notch SIFs exist, at least for
brittle fracture. Failure occurs when the notch SIFs reach critical
values. Other researchers who tried to establish a failure criterion
for a notch are Knésl [3], Gémez and Elices [4], and Carpinteri et al.
[5].

Many researchers have developed various methods and proce-
dures to compute the SIFs for a notch. Gross and Mendelson [6] cal-
culated the SIFs for many notch cases of modes I and Il by means of
a boundary collocation method. Lin and Tong [7] developed singu-
lar finite elements for the analysis of V-notched plates. Carpenter
[8] presented a collocation procedure to compute SIFs for notch
problems based on the contour integral of Stern et al. [9]. Babuska
and Miller [10] developed post-processing approaches to extract
the generalised SIFs near corner points from a finite element solu-
tion. Zhao and Hahn [11] predicted the SIFs of a notch problem
from the SIFs of a crack problem. Chen [12] computed the SIFs of
notched plates by means of the body force method.

Other researchers developed semi-analytical methods such as
the hybrid crack element (HCE), the scaled boundary finite element
method (SBFEM), and the fractal-like finite element method
(FFEM). The HCE was developed by Tong et al. [13] to compute
the SIFs for plane cracks. Wolf [14] developed the SBFEM, which
is a numerical finite element-based procedure in the circumferen-
tial directions and an analytical procedure in the radial direction.
The FFEM is based on the concept of global-local interpolation
functions [15]. Su and co-authors [16-19] developed the FFEM to
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compute the SIFs for various crack problems only. Recently Treifi
et al. [20-24] have extended the FFEM to analyse homogeneous
notch problems. They presented many results concerning homoge-
neous notched plates subjected to mode I, mode II, or mode III
loading conditions.

Most of the aforementioned research work was concerned only
with homogeneous crack and/or notch problems. For bi-material
cases, which are more complicated, researchers such as Theocaris
[25], Dempsey and Sinclair [26], and Hein and Erdogan [27], among
others, studied the stress and displacement fields and investigated
the behaviour of the singular eigenvalues for bi-material notches.
The case of an interfacial crack problem, which is a special case
of a bi-material notch problem, has been investigated by many
researchers. Lin and Mar [28] constructed a hybrid crack element
to compute SIFs for cracks in bi-materials. Yau and Wang [29] used
a procedure that involves known auxiliary solutions and evalua-
tion of conservation integrals along a suitably selected remote
path. Lee and Choi [30] computed the SIFs for interfacial cracks
using a boundary element method which employed the multi-
region technique and the double-point concept. Matsumto et al.
[31] evaluated the SIFs of interface cracks using a concept based
on the interaction energy release rates.

Results for stress intensities for bi-material notch problems
were reported by few researchers, due to their complexity. Carpen-
ter and Byers [32] investigated bi-material notch problems by
using the reciprocal work contour integral method. Tan and Me-
guid [33] presented a singular finite element to compute the SIFs
of a notch formulated by using explicit expressions for the singular
stress and displacement fields of a general bi-material wedge. Chen
and Sze [34] developed a hybrid-stress finite element model in
which the asymptotic stress and displacement fields embedded
into the wedge-tip element were numerically obtained. All of this
research work was concerned with only the in-plane problems, i.e.
modes I and II.

The most general case of loading on a notched body can be de-
scribed by means of superposition of the results of modes I, Il and
I1I. Therefore, the case of anti-plane shear, i.e. mode III, in bi-mate-
rial crack/notch problems is necessary to describe the most general
case of loading on a notched body. Wu and Chiu [35] computed the
SIFs for interface cracks in bi-materials under anti-plane shear by
using a complex-variable formulation based on the solutions of a
dislocation and a body force in an infinite composite body. Other
researchers who studied the case of a bi-material crack under
anti-plane shear loading conditions are, among others, Lee and
Earmme [36], Li [37], and Li and Duan [38]. The general case of
anti-plane notch was investigated by Jun and Yugqiu [39] by using
a Sub-Region Mixed FEM. They provided very limited examples of
anotch in a disk. Liu and Chue [40] examined the stress singularity
orders in dissimilar anisotropic wedges. Ma and Hour [41] con-
cluded that the order of singularity for the anti-plane dissimilar
anisotropic notch problem is always real.

In this paper, the mode III stress and displacement expressions
around a bi-material notch tip are derived analytically and
employed as global interpolation functions to extend the FFEM to
compute the SIFs for anti-plane bi-material notch problems. The
FFEM brings together the agility of the finite element method
(FEM) and the accuracy of the exact analytical solutions. It is well
known that in order to improve the convergence of finite element
solutions for problems with singularities, it is necessary to discre-
tise the singular regions around the singular points using very fine
meshes. This leads to a large number of unknowns and a consider-
able increase of the computational cost. In the FFEM, the employ-
ment of the exact analytical solutions of the displacement field
around a notch tip as global interpolation functions to transform
the large number of nodal displacements around a notch tip into
a small set of generalised co-ordinates reduces the computational

cost significantly. Also, the SIFs and the coefficients of the higher
order terms of the notch tip asymptotic field are generalised co-
ordinates and are computed directly. Therefore, no post-processing
is required to extract them. Moreover, no special singular finite ele-
ments are needed to model the singular region around a notch tip—
conventional finite elements can be used to model the whole of the
cracked/notched body. The implementation of the FFEM involves
simple matrix multiplication. No complicated mathematics is
involved.

Various numerical examples of bi-material notch problems sub-
ject to anti-plane shear loading conditions are presented. The accu-
racy of the FFEM results is demonstrated by comparison with
available results for anti-plane bi-material crack problems, as crack
problems are special cases of notch problems. Also, many bi-mate-
rial crack problems results are compared to values predicted by the
commercial FE package ABAQUS [42]. Results for bi-material notch
problems are not available and current commercial FE packages are
generally not able to predict the SIFs for a notch. Therefore, an ap-
proach based on the strain energy (SE) of a finite volume surround-
ing the notch tip is developed and used to predict the SIF values for
a notch subject to mode III loading conditions. ABAQUS is used to
compute the strain energy, and the approach presented in Section 4
is used to extract the SIFs for notch problems. The FFEM results are
in very good agreement with the available published results and
the numerical results computed and/or extracted using commer-
cial FE packages. Most of the results for anti-plane bi-material
notch cases presented in this paper appear to be new.

2. Formulation of the FFEM

For the sake of brevity and completeness, only a short descrip-
tion of the FFEM formulation is presented in this section. One may
refer to Leung and Su [16-19] or Treifi et al. [21-23] for a detailed
description. In the FFEM, a notched/cracked body is divided into
singular and regular regions as shown in Fig. 1. The whole body
is modelled using any conventional finite elements. However, the
singular region is discretised using a very fine mesh generated
layer by layer in a fractal-like self-similar manner as illustrated
in Fig. 2. It should be noted from this figure that the fractal self-
similar nature of the mesh applies to the radial direction towards
the notch/crack tip but not to the hoop direction. For this reason,
the topology is referred to as being fractal-like. Also, the fractals
used are deterministic rather than stochastic as clearly shown by
Fig. 2. The resulting large number of nodal displacements in the
singular region is then transformed into a small set of generalised
co-ordinates using global interpolation functions. This concept is
based on the idea of local-cum-global interpolation. The local
interpolation functions (shape functions) reduce the infinite

Singular region

material 1

Regular regions

material 2

Fig. 1. Regular and singular regions of a bi-material notched body.
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Fig. 2. Mesh in a singular region (master nodes highlighted).

number of degrees of freedom of a continuum to a finite number of
degrees of freedom related to the nodes of the continuous element.
Similarly, the global interpolation functions can be used to reduce
the number of nodal unknowns to a small number of unknowns.
This process reduces the number of unknowns of the problem sig-
nificantly, and consequently the computational cost.

The layers of finite elements in the singular region are gener-
ated by using the notch/crack tip as a centre of similarity and
assuming a similarity ratio (p). All the nodes inside the singular re-
gion are considered slave nodes, while the ones on the line that
separates the regular and singular regions are considered master
nodes as illustrated in Fig. 2. By utilising the properties of the
self-similar two-dimensional isoparametric finite elements; i.e.
the stiffness matrices of two-dimensional isoparametric finite ele-
ments of similar shapes are the same [16]; the stiffness matrices of
the inner layers can be computed from only the stiffness matrix of
the first layer in the singular region. Therefore, the generalised
stiffness matrix of the singular region becomes a sum of a geomet-
ric series, allowing the use of theoretically infinite number of lay-
ers in the singular region [23].

The static equilibrium equation in the conventional FEM can be
written as

Kd = f (1)

where K is the stiffness matrix, d is the nodal displacement vector,
and f is the nodal force vector.

The nodal displacements of the nodes in the singular region can
be transformed into a small vector of generalised co-ordinates by
using global interpolation functions; that is, for the nth layer:

d'=Ta @)

where d is the nodal displacement vector of the nodes in the nth
layer in the singular region, T; is the transformation matrix of the
nth layer, and a is the vector of generalised co-ordinates. After the
transformation process is applied, Eq. (1) can be rewritten as

Ky Kom 0 d, f,
K Kpm + K2 KIS dp b ={ fu -+ (3)
0 K;rsnt R;Sst +K§nn a f‘slst + finn

where

ist _ pelstplst
K. =K, T,

nl
Kinn _ K"
K =3 K,

n=2

K =T'K'T",

Flst _ plst! glst

flst gl

- nl -

fim = >, and
n=2

fr=T1f

The subscripts r,m, and s refer to the nodes in the regular region,
master nodes, and slave nodes, respectively, the superscripts 1st
and inn refer to the first layer and the inner layers in the singular
region respectively, and nl is the number of layers used in the sin-
gular region.

Let d; be the vector of the nodal displacements of the slave
nodes. This vector is much larger than the vector of the generalised
co-ordinates a. Therefore, solving the system of equations in Eq. (3)
reduces the computational cost considerably compared to solving
the system of equations in Eq. (1). Also, Eq. (3) shows that the gen-
eralised co-ordinates (which are the SIFs and the coefficients of the
higher order terms) are directly computed. No post-processing
technique is required to extract them.

3. Global interpolation functions for mode III bi-material notch

In the FFEM, the global interpolation functions have a very
important role, because they are used to transform the large
number of unknowns (nodal displacements) in a singular region
to a small set of generalised co-ordinates. Therefore, exact
analytical solutions of the displacement field around a notch
tip are employed as global interpolation functions. Those
exact analytical solutions are found to be eigenfunction series
expansions. A description of the derivation of the stress and
displacement fields for an anti-plane bi-material notch is
presented in this section. These derivations are based on Linear
Elastic Fracture Mechanics (LEFM) assumptions. It should be
noted that the LEFM still provides accurate predictions especially
when the extent of the plastic region is not significant which is
the case for many materials.

Let (r, 0) be a polar co-ordinate system centred at the tip of a
bi-material notch, such that the x-axis is located at the interface
of the two materials 1 and 2 as illustrated in Fig. 3. In the state
of anti-plane, the only non-zero stress components are 7,, and
Tyz, and the only non-zero displacement component is in the z
direction (w). The stress components can be expressed in terms
of w as

owb)
T = i ar (4)
; 1 owd)
9 = T a0 5)

where G; is the shear modulus of material j (j =1, 2). The equilib-
rium equation can be written in terms of the stress components as
ord ot |

20 +1’W+1rz =0 (6)
Substituting Eqs. (4) and (5) into Eq. (6), the equilibrium equation
can be expressed in terms of the displacement component w as
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material 1
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Fig. 3. Bi-material notch and co-ordinate systems.
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The displacement function w¥) can be assumed as
wi = r'F;(0) (8)

where / is an eigenvalue. After substituting w¥ and its derivatives
into the differential Eq. (7), the general solution of the resulting
equation is

w0 = r(A; cos 20 + B; sin /.0) 9

where A; and B; are the generalised co-ordinates (the coefficients of
the terms of the mode III notch asymptotic field). On substituting
Eq. (9) into Eqgs. (4) and (5), the stress expressions are

1) = Gjar*~1(A; cos /.0 + B; sin 10) (10)

) = Gjar'~' (—A; sin A0 + Bj cos /0) (11)

The eigenvalues 4 are obtained by imposing the following boundary
and continuity conditions:

T (0= +o1) =0 (12)
T2 (r,0=—0)=0 (13)
w(r,0 =0) =w?(r,0 =0) (14)
T (1.0 =0) = T (r.0= 0) (15)
Substituting Eqs. (9) and (11) into Egs. (12)-(15) yields
., sindoy
Br=Aicos 7001 (16)
L sin Ao
By =4 €OS A0t a7)
Ay = A (18)
— GI
B, = G—ZBl (19)

For non-trivial solutions of A; and B;, the determinant of Egs.
(16)-(19) must vanish. By solving the resulting determinant, the
eigenvalues are obtained from

G; sin Adq €os o + G, €os Aoy sin Ao = 0 (20)

Eq. (20) can be rewritten as

<ﬁ+]> sin/l(oc]+a2)+(&—l> sinA(oy — o) =0 (21)
Gz GZ
Eq. (21) can be solved using Muller’s iteration method [43]. The
solution of Eq. (21) is found to be always real [41]. For the special
case when G; = G, and a4 = o = o, Eq. (21) is reduced to
, nm
=5 (22)
which is the same relationship as the one derived for a symmetric
homogeneous isotropic notch [23].

The displacement and stress expressions in materials 1 and 2
can be rewritten as

w) = r*(A; cos 20 + B, sin 1.0) (23)
2 _ oo G,

w'®) =r*( A; cos A0 + G—Bl sin 20 (24)

2

1) = G 2r*71(A cos 70 + B sin 10) (25)

il = Gyar*~1(—A, sin 20 + B, cos 16) (26)
(2) 5 i-1 ] G i g

Ty = Guir Aqcos 0+ G—ZB1 sin 10 (27)
@ i . Gi

T, = Gir —A; sin 0 + G—ZB1 cos A0 (28)

The mode III SIF of an anti-plane bi-material notch is defined as

K0 — V2rlimr! 06 =0) (29)

Substituting Eq. (26) or (28) into Eq. (29) gives
KY = v27rG;2B; = V271G, B, (30)

(a) (b)
TWEPOOOO Q0RO O
w=h w=h
= =
G G
1 +
le— a —» f— (d —»
-~
Gy G2z G, -3
PRI ®

TR RIRRI®

Fig. 4. Bi-material cracked body under anti-plane shear: (a) isotropic-orthotropic
materials and (b) transformed isotropic-isotropic materials.
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Singular region

Fig. 5. The finite element mesh used in the analysis of bi-material cracked bodies.

Table 1
Normalised SIFs for a bi-material cracked body under anti-plane shear (a/w = 0.4).
B Ga/Gy
1/4 1 4
0.1 FFEM 1.667 1.489 1.269
ABAQUS 1.667 1.489 1.269
SE 1.669 1.494 1.272
Ref. [35] 1.67 1.49 127
0.2 FFEM 1.327 1.244 1.149
ABAQUS 1.327 1.244 1.149
SE 1.327 1.244 1.149
Ref. [35] 1.33 1.24 1.15
0.5 FFEM 1.109 1.097 1.085
ABAQUS 1.109 1.098 1.085
SE 1.109 1.097 1.085
Ref. [35] 1.11 1.09 1.09
1 FFEM 1.077 1.077 1.077
ABAQUS 1.077 1.077 1.077
SE 1.077 1.077 1.077
Ref. [35] 1.08 1.08 1.07

The generalised co-ordinate B; in Eq. (30) is computed directly in
the FFEM. Therefore, no-post processing technique is required to
calculate the mode III SIF.

4. Relationships between mode III notch SIFS and the strain
energy of a finite volume around a notch-tip

Published results for notch mode III SIFs are not available in the
literature and current FE commercial packages, such as ABAQUS,
are not able to compute the SIFs of notch problems. To validate
the FFEM results, an approach based on strain energy is developed
for the case of a mode III notch.

The strain energy of a finite volume around a notch-tip can be
written as

E — /V wedv 31

where W€ is the strain energy density and can be computed as
W — / oo (32)

where ¢ and ¢ are stress and strain tensors, respectively. For a mode
III bi-material case, the strain energy of a finite volume of a radius R,
around a notch-tip can be computed using Eqs. (25)-(32) as follows
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Fig. 6. The finite element mesh used in the ABAQUS analysis of bi-material cracked
bodies.

Table 2
Normalised SIFs for a bi-material cracked body under anti-plane shear (G,/G; = 1/4).
alw B
0.1 0.2 0.5 1.0
0.1 FFEM 1.127 1.039 1.007 1.004
Ref. [35] 1.13 1.03 1.01 1.00
0.2 FFEM 1.324 1.128 1.029 1.017
Ref. [35] 1.32 1.13 1.03 1.02
0.3 FFEM 1.504 1.228 1.064 1.041
Ref. [35] 1.50 1.23 1.06 1.04
0.4 FFEM 1.667 1.327 1.109 1.077
Ref. [35] 1.67 1.33 1.11 1.08
0.5 FFEM 1.817 1.423 1.168 1.130
Ref. [35] 1.82 1.42 1.16 1.13
0.6 FFEM 1.956 1.519 1.247 1.210
Ref. [35] 1.95 1.52 1.24 1.21
0.7 FFEM 2.091 1.626 1.368 1.337
Ref. [35] 2.09 1.63 1.37 1.34
0.8 FFEM 2.236 1.784 1.585 1.565
Ref. [35] 223 1.78 1.59 1.56
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Table 3
Normalised SIFs for a bi-material cracked body under anti-plane shear (G»/G; =1).
alw B
0.1 0.2 0.5 1.0
0.1 FFEM 1.091 1.028 1.006 1.004
Ref. [35] 1.09 1.03 1.01 1.00
0.2 FFEM 1.233 1.093 1.025 1.017
Ref. [35] 1.23 1.09 1.03 1.02
0.3 FFEM 1.367 1.167 1.055 1.041
Ref. [35] 1.36 1.16 1.05 1.04
0.4 FFEM 1.489 1.244 1.097 1.077
Ref. [35] 1.49 1.24 1.09 1.08
0.5 FFEM 1.606 1.323 1.154 1.130
Ref. [35] 1.61 1.32 1.14 1.13
0.6 FFEM 1.720 1.410 1.234 1.210
Ref. [35] 1.72 1.41 1.23 1.21
0.7 FFEM 1.841 1.521 1.356 1.337
Ref. [35] 1.84 1.52 135 134
0.8 FFEM 2.000 1.703 1.578 1.565
Ref. [35] 2.00 1.70 1.57 1.56
Table 4
Normalised SIFs for a bi-material cracked body under anti-plane shear (G,/G; = 4).
ajw B
0.1 0.2 0.5 1.0
0.1 FFEM 1.045 1.015 1.005 1.004
Ref. [35] 1.05 1.02 1.01 1.00
0.2 FFEM 1.119 1.051 1.020 1.017
Ref. [35] 1.12 1.05 1.02 1.02
0.3 FFEM 1.194 1.096 1.047 1.041
Ref. [35] 1.19 1.09 1.05 1.04
0.4 FFEM 1.269 1.149 1.085 1.077
Ref. [35] 127 1.15 1.09 1.07
0.5 FFEM 1.347 1.212 1.140 1.130
Ref. [35] 134 1.20 1.14 113
0.6 FFEM 1.437 1.293 1.219 1.210
Ref. [35] 143 1.29 1.22 1.20
0.7 FFEM 1.555 1.412 1.345 1.337
Ref. [35] 154 141 135 133
0.8 FFEM 1.746 1.621 1.570 1.565
Ref. [35] 1.74 1.61 1.57 1.56

EIONONORORONONO!

ORI

Fig. 7. Bi-material body with a crack parallel to an interface under anti-plane shear.

1 2
E© = WR? K2, (33)

where [ is an integral and its value is
5 2 2
. COS A0 Gy
I =Gyi% : + (=
24 2<<smxlot1> G,
cos 2o\
+G¢2a1<<. - 1) +1> (34)
sin 04
Convenient expressions for R. are proposed based on the ultimate

tensile strength o, and on the fracture toughness Kjc. Under plane
strain conditions [44]

_(1+0(5-8v) (Kic\?
R. = |, (35)
and under plane stress conditions [45]

_(5-3) (Kic\?
Re= 41 oy (36)

The strain energy E® can be computed using commercial FE pack-
ages such as ABAQUS. This, then, is substituted in Eq. (33) to extract
the mode III SIFs of a notch.

5. Numerical examples and verification

The accuracy of the FFEM results is validated by means of com-
parison with published results for anti-plane bi-material crack
problems and numerical results using ABAQUS for crack and notch
problems. Because of the lack of published results for anti-plane bi-
material notch problems, the approach based on the strain energy
of a finite volume around a notch tip presented in Section 4 is used
to predict the notch SIFs using the FE package ABAQUS. Crack prob-
lems are special cases of notch problems (a notch with an opening
angle of zero is basically a crack). Many examples of bi-material
crack problems subject to anti-plane loading conditions for which
published results exist are presented first to demonstrate the accu-
racy of the FFEM and the standard FE-based SE approach. That is
followed by examples of a crack parallel to an interface. Then,
many examples of bi-material notch problems under anti-plane
shear loading conditions for different notch opening angles, notch
positions, notch lengths, and elastic mismatch ratios (G,/G;) are
presented.

5.1. Numerical examples for anti-plane bi-material crack problems

A bi-material edge cracked body of a rectangular cross-section
of height 2h and width w = h subject to anti-plane shear loading
conditions is analysed in this section. The bi-material cracked body
is formed by bonding an isotropic material with shear modulus G;
to an orthotropic material with shear moduli G4, G2, as shown in
Fig. 4(a). The orthotropic part of the body can be transformed into
an isotropic material with shear modulus G, = /G11G,, by adjust-
ing the height of the orthotropic part h to gh as shown in Fig. 4(b),
where f = G,/G2; [35]. In the FFEM analysis, ten terms of the eigen-
function series, 16 layers in the singular region and a similarity ra-
tio p=0.6 are used. These values are chosen based on the
convergence study presented in Ref. [23]. The size of the singular
region is the same for all the examples analysed. Six-node triangu-
lar elements are used to mesh the geometries of the cross-sections
in a similar manner to that shown in Fig. 5. For all the examples in
this paper, seven-point integration scheme is used for the triangu-
lar elements.

First, in Table 1, the results predicted by the FFEM and by the
strain energy approach presented in Section 4 are validated by
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Table 5

0.4).

Normalised SIFs for a crack parallel to an interface in a bi-material body under anti-plane shear (a/w

G2/G,

h/H

1/100
FFEM
1.245
1127
1.126
1.159
1.241
1.477
1.850
1.077
0.841

1/50

FFEM

1/20

1/10

1/5

0.8

0.9

ABAQUS
1.245
1.127
1.126
1.159
1.241
1.477
1.850
1.077
0.841

ABAQUS
1.245
1.126
1.125
1.158
1.238
1.464
1.815
1.077
0.844
0.893
0.967

ABAQUS
1.245
1.126
1.123
1.153
1.227
1.430
1.724
1.077
0.853

FFEM
1.245

ABAQUS
1.245
1.125
1.119
1.146
1.210
1.381

FFEM
1.245
1.125
1.119
1.145
1.210
1.38

ABAQUS
1.245
1.123
1.113
1.133
1.182
1.305
1.449
1.077
0.898

FFEM
1.245
1.123
1.113
1.133
1.182
1.305
1.450
1.077
0.898
0.939
0.997
1.035
1.061
1.109
1.241

ABAQUS
1.244
1.120
1.100
1.106
1.127
1.175
1.221
1.077
0.975

FFEM
1.244
1.120
1.099
1.106
1.127
1.175
1.221

ABAQUS
1.243
1.118
1.091
1.089
1.094
1.107
1.119
1.077
1.039
1.050
1.064
1.073
1.082
1.115
1.243

FFEM

ABAQUS
1.243
1.117
1.089
1.085
1.086
1.091
1.096
1.077
1.058
1.064
1.071

FFEM
1.243
1.117
1.088
1.085
1.086
1.091
1.096
1.077
1.059
1.064
1.071
1.077
1.084
1.116
1.243

ABAQUS
1.243
1.116
1.087
1.081
1.078
1.077
1.077
1.077
1.077
1.077
1.078
1.081
1.087
1.116
1.243

FFEM

1.245
1.126
1.125
1.158
1.237
1.464
1.815
1.077
0.844
0.893
0.967

1.243
1.117
1.091
1.089
1.094
1.107
1.119
1.077
1.039
1.050
1.064
1.073
1.082
1.115
1.243

1.243
1.116
1.086
1.081

0.9

1.126
1.123
1.153

0.8
0.7

0.65
0.6

1.226
1.430
1.724
1.077
0.853
0.902

1.078
1.077
1.077
1.077
1.077
1.077
1.078
1.081
1.086
1.116
1.243

0.55

1.607
1.077
0.869

1.607
1.077
0.869
0915

0.525
0.5

1.077
0.975

0.475
0.45
0.4

0.891

0.891

0.902

0915

0.939
0.997

1.001
1.036
1.058
1.074
1.113
1.242

1.001
1.036
1.058
1.074
1.113
1.242

0.965

0.965

0.972
1.021

0.981 0.972

0.981

1.016

1.016
1.050
1.106
1.241

1.017

1.017

1.020
1.053
1.107
1.241

1.026
1.056
1.108
1.241

1.026
1.056
1.108
1.241

1.036
1.062
1.109
1.241

1.077
1.084
1.116
1.243

035
0.3
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1.051
1.106
1.241

1.051

1.051
1.106
1.241

1.053
1.107
1.241

1.106
1.241

0.2
0.1

means of comparison with available published results predicted
by Wu and Chiu [35] and those predicted by the commercial FE
package ABAQUS. For the ABAQUS analysis, a three-dimensional
model subject to mode III loading and boundary conditions is
used. The model is meshed using C3D20 elements as shown in
Fig. 6. In addition, quarter point wedge elements are used around
the crack-tip. For the strain energy approach, R. is taken equal to
0.07776 (that includes 3 layers of elements around the crack-tip
for which the strain energy is computed). This value of R. is deter-
mined after the J-integral has stabilised. Then, in Tables 2-4, the
mode III SIFs computed using the FFEM compared to the values
predicted by Wu and Chiu [35] are presented. The values of the
SIFs of Wu and Chiu [35] presented in Tables 1-4 are interpolated
from graphs, as those authors presented their results using graphs
only. The SIFs are computed for different crack lengths (a/
w=0.1,0.2,...,0.8), elastic mismatch ratios (G,/G;=1/4,1,4),
and orthotropic material properties (=0.1,0.2,0.5, 1).

The results presented in Table 1 demonstrate the accuracy of
the FFEM and the strain energy approach to predict the SIFs for
mode III interfacial crack problems. Tables 1-4 show that the SIFs
for a bi-material crack when both of the materials are isotropic
(i.e. the crack is located on the horizontal centre line of the
cross-section) are independent of the elastic mismatch ratios.
This was also observed in Ref. [35]. The values of the SIFs increase
with increasing crack lengths, decreasing values of 8, and decreas-
ing values of elastic mismatch ratios G,/G;. It can also be seen
from those tables that the FFEM results are in very good agree-
ment with the published results. This proves that the use of the
global interpolation functions in the FFEM, which were derived
for a general bi-material notch in Section 3, produces accurate re-
sults for mode III bi-material crack problems (when the notch
opening angle y = 0°). This means that they can be used with con-
fidence to compute the SIFs for bi-material notch problems.

5.2. Numerical examples for an anti-plane bi-material crack parallel
to an interface

Examples of a bi-material body with a crack parallel to an
interface (w = h, a/w = 0.4) are analysed using the FFEM and ABA-
QUS. The bi-material body is formed by bonding together two iso-
tropic materials as shown in Fig. 7. For the ABAQUS analysis,
three-dimensional elements C3D20 are used to model the bi-
material body. In addition, singular quarter point elements are
used around the crack tip. Also, mode III loading and boundary
conditions are applied. In the FFEM analysis, the body is meshed
in a similar manner to that shown in Fig. 5.

The results for different elastic mismatch ratios G,/Gy, and dif-
ferent crack locations h./H are presented in Table 5. This table
shows that the mode III SIF values predicted by the FFEM and
ABAQUS are in very good agreement. Also, it demonstrates a very
interesting behaviour of the values of the SIFs as the crack loca-
tion gets closer or farther from the interface. When the crack loca-
tion is far from the interface, the SIF values are close to the SIF
values of a homogeneous body. As the crack location gets closer
to the interface, the values of the SIFs are affected in different
ways depending on which material the crack is located in. If the
crack is in the stiffer material, the values of the SIFs increase,
but their values decrease if the crack is in the softer material. This
trend becomes more pronounced as the material properties of the
two materials differ substantially. To show that clearly, the values
of the mode III SIFs are plotted in Fig. 8. To help understand this
behaviour of the bi-material body with a crack parallel to an
interface, the deformed shapes for the cases of (G,/G;=1,1/2,1/
10, 1/100) and (h./H = 0.4, 0.6) are plotted in Fig. 9. The curvatures
of the deformed shapes differ considerably depending on the
crack location whether it is in the stiffer or the softer material.
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Fig. 8. SIF values for a crack parallel to an interface.

5.3. Numerical examples for anti-plane bi-material notch problems

Many examples of bi-material notched bodies of a rectangular
cross-section of height H and width w where H/w = 2 are presented
in this section. The notched bodies are subject to anti-plane shear
loading conditions as shown in Fig. 10(a). The bi-material bodies
are formed by bonding two isotropic materials together. In the
FFEM analysis, ten terms of the eigenfunction series, 16 layers in
the singular region and a similarity ratio p = 0.6 are used. Six-node
triangle elements are used to mesh the geometries of the cross-
sections in a similar manner to that shown in Fig. 10(b).

The mode III SIFs computed by the FFEM for a/w = 0.4 and for
different notch opening angles (y = 0°,10°, .. .,90°), notch positions
(he/h=0.1,0.2,...,0.5), and elastic mismatch ratios (G»/G;=1/
10, 1/4, 1, 4, 10) are tabulated in Tables 6-10. Tables 11-15 present
the mode III SIFs computed by the FFEM for a notch opening angle
y=50° and for different notch lengths (a/w=0.1,0.2,...,0.5),
notch positions (h./h =0.1,0.2, ..., 0.5), and elastic mismatch ratios
(G2/G1=1/10, 1/4,1, 4, 10). The missing values in those tables are
due to the fact that the geometry of the plate is no more rectangu-
lar (the top and bottom boundaries are no more equal and the
notch faces have unequal lengths).

From Tables 6-10, it can be seen that the values of the SIFs in-
crease with increasing notch opening angles, as the notch gets clo-
ser to the bottom boundary, and with decreasing elastic mismatch
ratios. Tables 11-15 show that the SIFs increase with increasing
notch lengths, as the notch gets closer to the bottom boundary,
and with decreasing elastic mismatch ratios. From Tables 6-15,
the SIFs are dependent on the elastic mismatch ratios of the bi-
material notched body in general. They are only independent of
the elastic mismatch ratios when the notch is located on the hori-
zontal symmetry line; i.e. the notched body is symmetric with re-
spect to the bisector of the notch opening angle which coincides
with the interface. This can be proven analytically [35]. Assume a
symmetrical notched body consisting of one material only
(G2/Gy =1). The displacement and the stresses for this case can
be referred to as W' and 7/, respectively. For a general case of an
elastic mismatch ratio of a symmetrical bi-material notched body,

the displacements vanish along the interface, due to the symmetry
conditions. From Eqs. (23)-(28), it can be shown that the displace-
ment and the stresses are W'’ =w’ and 7\" = ¢’ in material 1 and
w® =& w and t® = 7' in material 2. This demonstrates the stres-
ses are independent of the elastic mismatch ratio. Therefore, the
SIFs are independent of the elastic mismatch ratio of a symmetrical
bi-material notched body under mode III loading conditions.

It should be noted that most of the results in Tables 6-15 appear
to be new and that there are no published SIF values available with
which to compare them. To validate those results, a comparison
with the strain energy approach presented in Section 4 is carried
out. Again, R. is taken equal to 0.07776 (that includes 3 layers of
elements around the notch-tip for which the strain energy is com-
puted). ABAQUS is used to compute the strain energy. A three-
dimensional model subject to mode III loading and boundary con-
ditions is analysed. The model is meshed using C3D20 elements as
shown in Fig. 11. In addition, quarter point wedge elements are
used around the notch-tip. A comparison of the SIF values pre-
dicted by the FFEM and the strain energy approach is shown in Ta-
bles 16-20. These tables show that the SIF values predicted by both
approaches are in very good agreement. It was also shown in the
previous sections that the use of the global interpolation functions
presented in Section 3, which were derived for anti-plane bi-mate-
rial notch problems, produced accurate results for anti-plane bi-
material crack problems (when the notch angle y =0°). Conse-
quently, it can be assumed that the FFEM results for notch prob-
lems in Tables 6-15 are valid and accurate.

To demonstrate the efficiency of the FFEM with regard to reduc-
ing the computational cost, let us consider one of the examples
when the notched body is symmetrical about the interface,
y = 0°, and a/w = 0.4. According to the mesh used, the total number
of degrees of freedom (one degree of freedom per node), which is
consequently the number of equations to be solved, is 5063 in
the conventional finite element method. In the FFEM analysis, be-
cause of the transformation, the total number of equations to be
solved is only 1148. Those numbers depend on the mesh used to
model the singular region—16 layers were used in this example
as shown in Fig. 10(b). Larger numbers of layers can generally be
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Fig. 10. (a) Bi-material notched body under anti-plane shear and (b) the finite element mesh used in the analysis.
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Fig. 9. Deformed shapes of a bi-material body with a crack parallel to an interface: (a) G»/G,
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Table 6 Table 10
Normalised SIFs for a bi-material notched body under anti-plane shear computed by Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G,/G; = 1/10, a/w = 0.4). FFEM (G,/G; = 10, a/w = 0.4).
(%) he/H 7(%) h/H
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
0 1.354 1.148 1.096 1.081 1.077 0 1.109 1.083 1.077 1.076 1.077
10 1.422 1.202 1.146 1.130 1.126 10 1.160 1.132 1.126 1.125 1.126
20 1.496 1.259 1.199 1.183 1.178 20 1.215 1.185 1.179 1.177 1.178
30 1.574 1.320 1.256 1.238 1.233 30 1.272 1.240 1.234 1.232 1.233
40 1.659 1.384 1316 1.296 1.291 40 1.334 1.299 1.292 1.290 1.291
50 1.751 1.453 1.379 1.358 1.352 50 1.398 1.361 1.353 1.351 1.352
60 - 1.526 1.445 1.423 1417 60 - 1.426 1.417 1.416 1.417
70 - 1.603 1.515 1.491 1.484 70 1.494 1.485 1.483 1.484
80 - 1.686 1.589 1.562 1.555 80 1.565 1555 1.553 1.555
90 - - 1.666 1.636 1.628 90 - 1.628 1.626 1.628
Table 7 Table 11
Normalised SIFs for a bi-material notched body under anti-plane shear computed by Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G,/G; = 1/4, ajw = 0.4). FFEM (G,/G; = 1/10, y = 50°).
(%) he/H ajw he/H
0.1 0.2 0.3 04 0.5 0.1 0.2 0.3 0.4 0.5
0 1.326 1.140 1.093 1.080 1.077 0.1 1.303 1.258 1.250 1.248 1.247
10 1.393 1.193 1.143 1.130 1.126 0.2 1.441 1.305 1.276 1.268 1.266
20 1.464 1.250 1.197 1.182 1.178 0.3 1.596 1.372 1.319 1.304 1.300
30 1.540 1.310 1.253 1.237 1.233 0.4 1.751 1.453 1.379 1.358 1.352
40 1.622 1.373 1.312 1.296 1.291 0.5 - 1.548 1.461 1.438 1.431
50 1.711 1.441 1.375 1.357 1.352
60 - 1.513 1.442 1.422 1.417
70 - 1.589 1.511 1.490 1.484
80 - 1.670 1.584 1.561 1.555 Table 12
20 - - 1.661 1.635 1.628 able

Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G,/G; = 1/4, y =50°).

afw h/H
Table 8 0.1 0.2 0.3 0.4 0.5
Normalised SIFs for a bi-material notched body under anti-plane shear computed by 01 1.298 1.257 1.249 1.247 1.247
FFEM (G,/G, =1, ajw = 0.4). 02 1.424 1.300 1275 1.268 1.266
() he/H 0.3 1.567 1.364 1.316 1.303 1.300
! ° 0.4 1.711 1.441 1375 1.357 1.352
0.1 0.2 0.3 0.4 0.5 0.5 - 1.534 1.457 1.437 1.431
0 1.243 1.116 1.086 1.079 1.077
10 1.303 1.168 1.136 1.128 1.126
20 1.368 1.223 1.189 1.180 1.178
30 1.437 1.281 1.245 1.235 1.233 Table 13
40 1511 1.343 1.304 1.293 1.291 Normalised SIFs for a bi-material notched body under anti-plane shear computed by
50 1.590 1.408 1.366 1.355 1.352 FFEM (G,/G, = 1, 7 = 50°).
60 - 1.477 1431 1.419 1.417
70 - 1.550 1.500 1.487 1.484 alw h/H
80 - 1.627 1.572 1.558 1.555
90 - - 1.647 1.631 1.628 0.1 02 03 04 05
0.1 1.282 1.253 1.248 1.247 1.247
0.2 1373 1.288 1.271 1.267 1.266
0.3 1.479 1.340 1.310 1.302 1.300
Table 9 0.4 1.590 1.408 1.366 1.355 1.352
Normalised SIFs for a bi-material notched body under anti-plane shear computed by 0.5 - 1.495 1.447 1434 1431
FFEM (G,/G, = 4, ajw = 0.4).
7(°) he/H
0.1 0.2 0.3 04 0.5 Table 14
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
0 1.148 1.092 1.080 1.077 1.077 —4 v Epe
FFEM (G,/Gy =4, y =50°).
10 1.201 1.142 1.129 1.126 1.126
20 1.259 1.195 1.181 1.178 1.178 alw h/H
30 1.320 1.251 1.237 1.233 1.233
40 1.384 1311 1.295 1.291 1.291 01 02 03 04 05
50 1.453 1.374 1.356 1.352 1.352 0.1 1.262 1.249 1.247 1.247 1.247
60 - 1.440 1.421 1.417 1.417 0.2 1.313 1.275 1.268 1.266 1.266
70 - 1.509 1.489 1.484 1.484 0.3 1.377 1315 1.303 1.300 1.300
80 - 1.582 1.560 1.554 1.555 0.4 1.453 1.374 1.356 1.352 1.352
90 - - 1.633 1.627 1.628 0.5 - 1.455 1.436 1.431 1.431
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Table 15
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G,/G; = 10, y = 50°).

Table 17
Normalised SIFs for a bi-material notched body under anti-plane shear (G,/G; = 1/4,
a/w=0.4).

afw h/H

0.1 0.2 0.3 0.4 0.5
0.1 1.254 1.248 1.247 1.247 1.247
0.2 1.288 1.270 1.267 1.266 1.266
0.3 1.335 1.306 1.300 1.299 1.300
0.4 1.398 1.361 1.353 1.351 1.352
0.5 - 1.441 1.432 1.430 1431
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Fig. 11. The finite element mesh used in the ABAQUS analysis of bi-material
notched bodies.

Table 16
Normalised SIFs for a bi-material notched body under anti-plane shear (G,/G; = 1/10,
ajw=04).

7(°) he/H
0.2 0.3 0.5
FFEM SE FFEM SE FFEM SE
0 1.148 1.148 1.096 1.095 1.077 1.077
30 1.320 1.320 1.256 1.256 1.233 1.233
60 1.526 1.526 1.445 1.445 1.417 1.417
90 - - 1.666 1.665 1.628 1.628

used, and theoretically an infinite number of layers can also be
used as mentioned in Section 2 without increasing the number of
equations to be solved in the FFEM. This shows the computational
cost reduction that can potentially be achieved by using the FFEM.
This is in addition to the fact that post-processing techniques or
special singular elements are not needed as is the case in other fi-
nite element approaches.

7(°) h/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.140 1.140 1.093 1.093 1.077 1.077
30 1.310 1.310 1.253 1.253 1.233 1.233
60 1.513 1.513 1.442 1.442 1.417 1.417
90 - - 1.661 1.661 1.628 1.628
Table 18

Normalised SIFs for a bi-material notched body under anti-plane shear (G»/G; =1,
a/w=0.4).

§) hdH

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.116 1.116 1.086 1.086 1.077 1.077
30 1.281 1.281 1.245 1.245 1.233 1.233
60 1.477 1.477 1.431 1.432 1.417 1.417
90 - - 1.647 1.647 1.628 1.628
Table 19

Normalised SIFs for a bi-material notched body under anti-plane shear (G,/G; =4,
ajw=04).

() he/H

0.2 0.3 0.5
FFEM SE FFEM SE FFEM SE
0 1.092 1.092 1.080 1.080 1.077 1.077
30 1.251 1.252 1.237 1.237 1.233 1.233
60 1.440 1.440 1.421 1.421 1.417 1.417
90 - - 1.633 1.633 1.628 1.628

Table 20
Normalised SIFs for a bi-material notched body under anti-plane shear (G,/G, = 10, a/
w=04).

7(°) he/H
0.2 0.3 0.5
FFEM SE FFEM SE FFEM SE
0 1.083 1.083 1.077 1.077 1.077 1.077
30 1.240 1.241 1.234 1.234 1.233 1.233
60 1.426 1.426 1.417 1.417 1.417 1.417
90 - - 1.628 1.628 1.628 1.628

6. Conclusion

In this paper, the FFEM was extended to compute the SIFs for bi-
material notch problems under anti-plane shear loading condi-
tions. Exact analytical solutions of the asymptotic field around a
notch tip were derived for an anti-plane bi-material notch and
were used as global interpolation functions in the FFEM to trans-
form the large number of nodal displacements of the slave nodes
in the singular region to a small number of generalised co-ordi-
nates. The SIFs are computed directly, as they are directly related
to the generalised co-ordinates, which are primary unknowns of
the problem. Therefore, no post processing technique is needed
to extract them. Also, no special singular elements are needed to
model the singular region. Any conventional finite elements can
be used.
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Due to the lack of available data for mode III bi-material notch
problems, an approach based on the strain energy of a finite region
around a notch-tip was developed to extract the notch SIF values
for a notched body subject to mode III loading conditions using
commercial FE packages.

Many numerical examples of anti-plane bi-material crack and
notch problems were presented to demonstrate the accuracy and
efficiency of the FFEM. The results were verified and validated
via comparison with available published data and numerical re-
sults. Most of the bi-material notch cases analysed in this paper ap-
pear to be new. The numerical values of the mode III SIFs showed
that they are dependent on the material properties of the bi-mate-
rial notched body in general, but they are independent of them
when the bi-material notched body is composed of isotropic mate-
rials and is symmetrical with respect to the bisector of the notch
opening angle which coincides with the interface.
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A strain energy approach (SEA) is developed to compute the general stress intensity factors (SIFs) for iso-
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© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of studying stress intensities caused by the
presence of sharp corners/notches has led to much research de-
voted to the analysis of sharp notches. The presence of sharp
notches causes stress intensities around the notch tip. This area
is vulnerable to a crack initiation that may lead to structural failure
or shortening of the service life of a structure. Most of the research
in literature is for isotropic homogeneous cases. Very little is done
for bi-material notch problems, due to its complexity.

It is well known that, in linear elastic fracture mechanics, the
stresses at a notch tip become infinite (singular) (Williams, 1952,
1957). Based on experimental findings by Seweryn (1994), it was
demonstrated that simple failure criteria based on the notch SIFs ex-
ist. Therefore, some researchers tried to establish a failure criterion
for notch problems, such as Knésl (1991), Gémez and Elices (2003)
and Carpinteri et al. (2008). Other researchers developed different
methods and procedures to compute the notch SIFs such as the
boundary collocation method (Gross and Mendelson, 1972), the
boundary element singularity subtraction technique (Portela et al.,
1991), singular finite elements (Lin and Tong, 1980) and finite ele-
ment post-processing approaches (BabuSka and Miller, 1984).
Semi-analytical methods are also developed to compute the SIFs of
a notch such as the hybrid crack element (HCE) (Tong et al., 1973),
the scaled boundary finite element method (SBFEM) (Wolf, 2003),
and the fractal-like finite element method (FFEM) (Leung and Su,
1994; Treifi et al., 2008, 2009a,b, 2007; Treifi and Oyadiji, 2009).

* Corresponding author. Tel.: +44 161 2754348.
E-mail addresses: m.treifi@mmu.ac.uk (M. Treifi), s.0.oyadiji@manchester.ac.uk
(S.0. Oyadiji).
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Those methods are capable of computing not only the SIFs but also
the higher order terms of the notch tip asymptotic field.

Most of the work mentioned above dealt only with homoge-
neous crack/notch problems. For bi-material problems, published
results are available mainly for interfacial crack problems. For bi-
material notches, published SIFs are rare, because the problem is
quite complicated. For interface crack cases, Williams (1959)
investigated configurations of dissimilar materials containing
interface cracks. Lin and Mar (1976) developed a hybrid crack ele-
ment. Lee and Choi (1988) used a boundary element method which
employed the multi-region technique and the double-point con-
cept. Yau and Wang (1984) developed a procedure based on the
evaluation of conservation integrals. Matsumto et al. (2000) used
an approach based on the interaction energy release rates to com-
pute the SIFs of interface cracks. Researchers who dealt with bi-
material notch problems are few, and their research work was
more about studying the stress and displacement fields and the
behaviour of the singular eigenvalues. Early work was carried out
by Bogy (1968, 1970) and Bogy and Wang (1971). Carpenter and
Byers (1987) used a reciprocal work contour integral method.
Tan and Meguid (1997) developed a singular finite element formu-
lated using expressions of the singular stress and displacement
fields of a bi-material notch. Chen and Sze (2001) developed a hy-
brid finite element formulated using numerically obtained asymp-
totic stress and displacement fields. Carpinteri et al. (2006)
presented an approximate analytical model based on the theory
of multi-layered beams to compute mode I SIFs for a general notch
perpendicular to a bi-material interface. Paggi and Carpinteri
(2008) presented a comprehensive review of interface mechanical
problems leading to stress singularities.
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In this paper, we present a strain energy based approach to com-
pute the SIF values for homogeneous and bi-material notch prob-
lems subject to mode I, I and III loading conditions. The approach
is based on the work of Lazzarin and Zambardi (2001), Lazzarin
and Berto (2005), Lazzarin and Filippi (2006), Lazzarin and Zap-
palorto (2008), Lazzarin et al. (2010), Berto and Lazzarin (2007), Ra-
dajetal.(2009), Zappalorto and Lazzarin (2011) and Zappalorto et al.
(2008) who developed the idea of using averaged strain energy over
a control volume around a notch tip to compute the SIFs for sharp
and rounded notches. They dealt mainly with homogeneous pure
mode I, Il or III cases. For mixed mode I and Il cases, they usually ne-
glected the effect of mode I1 SIF (Lazzarin and Zambardi, 2001) where
they used examples with non-singular mode II stress components,
but in a recent publication (Lazzarin et al., 2010) they suggested
using two concentric volumes to compute mode I and II notch SIFs.
However, this approach does not always work as will be discussed
later. In the current work, we simply partition the control volume
and the integral accordingly to compute mode I and I SIFs for homo-
geneous mixed-mode and bi-material notch problems. This new
strategy is operationally very simple to implement. It involves sim-
ple mathematical operations that can be carried out numerically.
The strain energy for the control volume could be computed by using
commercial finite element packages. In most of these packages, it is
not possible to compute notch SIFs, but the SEA empowers analysts
to compute notch SIFs. The accuracy of the approach is tested via
many examples of isotropic homogeneous and bi-material notches
under different loading conditions. The results are compared to
available published results and results computed numerically using
different numerical methods; the agreement is very good. Also, new
results are presented.

2. Strain energy approach

The strain energy of a finite volume around a notch-tip can be
written as (Bower, 2010)

E® = / wedy (1)
v

where W® is the strain energy density and can be computed as

follows

w® :/a:ae (2)

where ¢ and ¢ are stress and strain tensors, respectively. For an iso-

tropic material, the strain energy density W'® for a generalised state
of stress can be written as

1
we = 5 (Ol + Opyyy + Ouakie + Ty + Tl + Tyelye) 3)

The strains can be written in terms of the stresses by using
Hooke’s law

1

Exx = E [axx - V(O'yy + G'zz)}
1

by = [Oyy — V(O + 02)]

1
&z = E [0z — V(0 + 0yy)]

1
Ty = G Txy (4)
1
Vyz = E Tyz
1
Vxe = ¢ Tw
E
6= 2(1+v)

where E, G, v are Young’s modulus, shear modulus and Poisson’s ra-
tio, respectively. For simplicity the stresses can be expressed as

oy = f(Ki, Ky, K, 1, 0) (5)

where K, K; and Ky are the mode I, II and III SIFs, respectively. By
substituting the stress expressions into Eq. (1) and carrying out the
integration over a finite volume around the notch tip, Eq. (1) becomes
a representation of a direct relation between the strain energy for a
finite volume and the SIFs. The strain energy could be easily com-
puted using a commercial finite element package. Most FE packages
are not, to our knowledge, capable of computing the SIFs for general
notches. Therefore, this approach is quite useful to extract SIFs for
general notches by using current commercial FE packages. Eq. (1)
could be partitioned to deal with bi-material or mixed mode cases
where two equations are needed to compute mode I and mode II SIFs.
This will be discussed in detail in the next sections.

2.1. Isotropic homogeneous notch

2.1.1. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under in-plane loading conditions
(mode I, Il and mixed mode)

For the in-plane problem, the strain energy density is

2 2 2
we 02+ 0% + 02, — 2V(0x0yy + Oxu02z + Oy 0z2)

1
=3
21+ v)rfy] (6)
where 0, =0 under plane-stress and 0, = V(0x + 0yy) under
plane-strain.
The stress expressions for a general homogeneous notch as seen
in Fig. 1 are (Williams, 1952; Portela et al., 1991)
G = A7 A [(2 4 7 cos 20t + cos 27ar) cos (7 — 1)0
—(2' = 1) cos (# - 3)0)]
+ 1Ay [~ (2 + A" cos 200 — cos 247 sin (27— 1)0
+(2" = 1) sin (2" - 3)0] (7)
Gy = AT 71A[(2 - # cos 20 — cos 27'at) cos (A — 1)0
+(21 =1) cos (# = 3)6) + 1" Ay [(=2 + A cos 200
—cos2"o) sin (A" = 1)0 — (" — 1) sin (2" - 3)0) (8)
Ty = 17 1A, [~ (#' cos 20+ cos 22'ar) sin (2 — 1)0
+(# = 1)sin (' -3)0]
+ A1y [~ (31 cos 20 — cos 277ar) cos (2 — 1)0
+(A" = 1) cos (A" - 3)0] 9

[a) 4

Fig. 1. Isotropic homogeneous notch geometry.
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where /' and /" are eigenvalues and are computed using the follow-
ing characteristic equations

Msin20 +sin22'0 =0 (10)
sin20 —sin22o = 0 (11)
A, and A, are constants related to the mode I and mode II SIFs

Ky = V2mi! (1 + 2 -/ cos 20 — cos 2 0) A, (12)
Ky = v2m2" (=1 + 2" — 2" cos 200 + cos 22" o) A, (13)

Eqs. (7)-(9) are eigenfunction series expansions (the X~ symbol
is dropped for simplicity). In the SEA, only the singular terms are
considered. The stress expressions in Eqs. (7)-(9) can be rewritten
for simplicity as

O = AT 1(0) + Aot 18, (0) = AT, + At g, (14)
Oy = A" 1y (0) + Agr” g, (0) = AU, 4 Apr g, (15)

Ty = A"y (0) + Aot gy (0) = AUy + AT gy (16)
Under plane-stress, substituting the above equations into Eq.
(6) gives
W(E) _ 1 A2 2011y (2 2_9 2(1 2
= 55 [P (12 452 - 205 + 201+ vf3)
HAPR (g2 + g2 - 2vg,8, +2(1+ Vg3
FAAI D (2f g 1 2f g, — 2V(Fig, + 8y)
+4(1+V)fy8y)] (17)

By substituting Eq. (17) into Eq. (1), the strain energy for a finite
volume of a radius R. around a notch tip is

Re 0L
E© = / / W@rdrdo
0 —o

1 [ R
:ﬁ{A < / (F2 + 52 = 208, + 201+ v)f )do
—

1 2/[/’
20 o
A (gf +g2-2vg,g, +2(1+ v)gfy) do
220 oo

(il

+o
+A1A; ) / (Zfng + 2fygy - zv(fxgy +f)’gx)
J-a

()~IC+ I
+4(1+ v)fxygxy)do} (18)

Substituting Eqs. (12) and (13) into Eq. (18) gives a quadratic
equation with two unknowns

E® = MK? + NK; -+ QKK (19)

It should be noted that the coefficients M, N and Q have different
dimensional units. Sih (1974) reported a similar expression relating
the strain energy density to the crack SIFs when he introduced a
strain energy density factor as a fracture parameter for crack prob-
lems. The integration could be carried out numerically by using, for
example, Composite Simpson’s rule. Eq. (19) illustrates a direct rela-
tion between the SIFs and the strain energy of a finite volume
around the notch tip. For pure mode I or pure mode II, Eq. (19)
can be used to compute mode I SIF, K;, or mode II SIF, Kj
(E® = MK? for pure mode I and E© = NK3 for pure mode II). How-
ever, in the case of mixed mode problems, Eq. (19) represents an
equation that contains two unknowns K; and Kj;. To overcome this,
Eq. (19) could be partitioned into two regions: one below the bisec-
tor (—a to 0) and the other above the bisector (0 to +u) as shown in

Fig. 2. This leads to the following two quadratic equations with two
unknowns

Re 0
EY = /0 / WCrdrdo = Mi K} + N1Kj; + QKiKy (20)
—o

Re +o
EY = / / WOrdrdo = MyK? + NoK3 + QK Ky (21)
0 0

Due to the symmetry, the following relations hold

M] = M2
Ny =N, (22)
Q=-Q

After some simple algebraic manipulations, the mode I and II
SIFs can be computed using the following equations

E(le) _ E(Ze)
KII - Tl[([ (23)

Ny (E
MK} — (Ef + B K} +—— =0 (24)
Obviously, Egs. (23) and (24) would give more than one set of
answers. Usually it is easy to determine the correct set. However,
for less experienced analysts, the ratio of the relative displace-
ments of the notch faces could be used to determine the right set
of answers. For a crack problem, the following equation holds

K Ay

Ky A (25)
where A, = v;(ro, 1) — V2(ro, 02) and Ay = uy (o, otz) — Ua(To, ot2) are
the relative displacements of the crack faces. Eq. (25) could be used
as an approximation for notch cases too i.e. I'<<T', 2 %. Because A, and
A, are computed numerically using finite element analysis, Eq. (25)
is better considered as an approximation rather than an equality.
The displacements of two nodes facing each other on the notch
faces such as the nodes 1 and 2 as shown in Fig. 2 could be used.
It is advisable to consider nodes that are reasonably far from the
notch tip.

Lazzarin et al. (2010) suggested using two concentric circles
with different radii to deal with mixed mode cases, but their sug-
gestion cannot be used for the special case of a notch with an open-
ing angle of zero, i.e. a crack.

Fig. 2. Partitioning of the control volume.

Please cite this article in press as: Treifi, M., Oyadiji, S.0. Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-
material V-notches. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.011




4 M. Treifi, S.0. Oyadiji/ International Journal of Solids and Structures xxx (2013) XXX-XXx

2.1.2. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under out-of-plane loading
conditions (mode III)

For the out-of-plane problem, the strain energy density is

1
ZG[

The stress expressions for a general homogeneous notch under
mode III loading conditions are

W(eJ Trz + T()z} (26>

T,z = GA"r""~1Bsin A"g 27
Toz = GA"r""~1Bcos /"0 (28)
where 2 =1%.n =1,2,3,... and B is a constant. For detailed deri-

vations, one may refer to Seweryn and Molski (1996). Egs. (27)
and (28) are eigenfunction series expansions (the X symbol is
dropped for simplicity). In the SEA, only the singular term is consid-
ered, i.e. n = 1. The constant B associated with the singular eigen-
value is related to the mode III SIF

Ky = vV21Gi"B (29)

By substituting Eqgs. (27)-(29) into Eqgs. (26) and (1), and after
some algebraic manipulations, the strain energy of a finite volume
under mode III conditions can be written as

11l

(e) RZ/ KIII
anGim

This equation is in agreement with an expression presented by
Lazzarin and Zappalorto (2008) relating the strain energy density
to the mode III SIF. Eq. (30) represents a simple analytical formula
that links the mode III SIF to the strain energy of a finite volume
around and a notch tip.

(30)

2.2. Bi-material notch

2.2.1. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under in-plane loading conditions
(mode I, Il and mixed mode)

For the in-plane bi-material problem, the expression for the
strain energy density is

1
2E

+2(1+v) (rl;y)z] (31)

wi (e

N2
{(af )2 + (ijy) + (afzz)2 -2 (axxalyy + 03,0, + 0,0, )

ya

Material1
E1,[v1

01 9

<
[a) 4

o2

Material2
E2, v2

Fig. 3. Bi-material notch geometry.

where j refers to the material. Under plane-stress conditions
0z = 0, and under plane-strain conditions 0, = V(0x + 0yy).

The stress expressions for a general bi-material notch as seen in
Fig. 3 are (Carpenter and Byers, 1987)

20) = ir'"'Ay[3e1 -1)(A-1)
+Y, (36 i0(2-1) _ pi0(1-7) (ezm _ 1)(27 1)) 7519”) 7) S R /)]
LA, [72 (39‘”‘2 1) _ g-io(1-7) (e 2i0 _ = 1))
+3e4(7(271) _ ei0(1-7) (ezm _ 1) (E _ 1) _ Sze‘““’z) _ §1efm(172)}
(32)

_ e—i()(l—/) ( —2i0)

202 =i 1A [Y; (30D 1)(2-1))
+Y5 (300D 10 (20 _1)(; 1))
—S3eil(1-7) _ 5, e=1001- ’)]
+ 701 Y3 (3¢ e 0 (e 20 - 1)(7- 1))
47, (3644)(771) — €17 (g0 _ 1)(7 - ])) 5,617 —§3e*“’“*7)]
(33)

_p-it(1-7) (efzm _

20.(1) — A [ pl00—1) | g-it(1- /)(efzm_ 1)(/1_ 1)
1Y, (e—xo 1) 4 pit(1-4) (ezm _ 1)(/1 _ 1)) + Slein(pz) +§2e7m(17/’,>}
+Irz’17h {E( eif-1) 4 p-i0(1- /)(efzm _ ])<17 1))
_’_efm(Zfl) + em(lfi) (ezm _ 1)(; _ 1) +Szei"<1’7) + §le*f“<15)]
(34)
20.@) — A [Yl( ill-1)  pil(1-L (
+Y3( —i0(2 +eu}(1 v ( 2117 )
+Zr7"ﬁ] [Va (eim?. 1) 4 g0l 7)(6’2’0 1)(; _ ]))
+y1( e i00-1) 4 i0(1-7 (EZi"fl)(Zfl))jtS‘te"’] 7) 45,00~ /)}
(35)

—21() 1))

)+S3e"' ) 45,0100~ /)]

2ty = i\ [Ya e P €00 (e 1) (1 1)
+e 12 (=20 _ 1) (1~ 1) — €V 4 5,701 Sle"”“”")}
+Ar’ 2, [ 0(7-1) _ gio(1 Z)(ezmil)(ziw
Y (10D (@ 1) (- 1) — €701 1 51e 7117 - 5,17
(36)
21‘7:,%,) = 1A, [y (e i00-1) _ gi0(1 z>(ezir)71)()~7]))
+Y1 (e (e —1)(2— 1) — 1) 4. Spe 014 Sge‘{'(”")]
+ A, {Yl( e 0D e'”“’ﬂ(ez"”—l)(l—l))
+¥3 (e 1D (e 20— 1) (F-1) = €01 ) + Sye 117 5,1
37
where

Sl _ _eZi/‘.:q _ (eZi:q _ ])AYZ
S, = 772621'7@, _ (ezm _ 1);

53 — _Y1872ii,ot2 _ (efliaz _ ]);LY}
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Sy = 7736 2050y (e iy 1)W1
Y
Y=1{Y, 3 =-DyDy
Y;
[ =iy +e 2 @j(en —1) (1 —e%%)
Dy, = }b(ezmz _ ]) 1 — e~2ilm o2t _
I i(l 7em2) %(,ﬁ +efzi;.x1) 7(,62 +ezmz)
G_z (Kl + 921/41)
D21 ( 6—2111)
(B 1)

and k; = 3 — 4v; for plane-strain and x; = 3 — 4v;/(1 + v;) for plane-
stress. / is an eigenvalue and can be determined numerically using
Muller’s method from the following equation

1-— e2i/‘a| 6’2'2“2 —~1 l(l _ ez:'z‘) )‘(e—ziazz _ ])
(M +eZi}x]) —icy + @2 %/’.(6‘2"“‘ _ 1) 2(] 79721'12)
det . i ! _ =0
2 (1 o e—Zm) A(eZWZ o 1) 1-— e—Zx/q ermz -1
%A(e ity _ 1) /1(1 _ ezizz) %(Kl +e 2;‘;1,) 7(K2 +ezi;azz)
(38)

Eq. (38) gives either one singular complex singular eigenvalue
where real(Z) <1 or two singular real eigenvalues %, <1 and
/i < 1 (in some cases only one real eigenvalue exists). An alterna-
tive matrix formulation of the stress field around a notch tip could
be used as presented by Paggi and Carpinteri (2008).

For a complex eigenvalue, the complex SIF for a bi-material
notch can be computed using one of the following equations

— VITIA, Ya(1 - e—z:‘zoc]) _ ).(e’ml -1)] (39)
K. = V21iA, [] —e 2 _ 7Y, (e — 1)} (40)

Egs. (32) and (37) are eigenfunction series expansions (the X
symbol is dropped for simplicity). In the SEA, only the singular
terms are considered. The stress expressions in Eqs. (32)-(37)
can be rewritten for simplicity as )

Gy = AT f(0) + AT g (0) = Art T R A g, (41)
a§y = Alr‘*lﬂ(O) + AT

g, (0) =AUl + A g, (42)

t, = A, 0) + A g, (0) = AL+ A g, (43)

Under plane-stress, substituting the above equations into Eq.
(31) gives
wi® = ZLE] [0 (72457 = 200+ 201+ R},
+A2D) (giz +g§,2 —2viglg +2(1+ vj)g{‘yz)
+AAT ) (2flg) + 208, - 2vi(flg) + lgh) + 401+ gl )|
(44)

The strain energy for a finite volume of a radius R around a notch
tip is obtained by substituting the above equation into Eq. (1),

Re ; 2,
Ej“’):/ /W“"’rdrd{):%{/\fgc /(fJ +ff = 2vflf]+ 201+ v)f},” ) do
]

R* ) ) o )
55 ) (87 +8) ~2vglg, +2(1+v)gl,”)do
R( ) o o
it s [ (208208, ~2 (g +5gl) +40 + gy Jao - (45)

The integration over 0 is from —o; to 0 for j = 2 (material 2) and
from O to o4 for j = 1 (material 1).

Equation (45) gives one equation per material in terms of two
unknowns which are the real and imaginary parts of A; (or K,).
For brevity and simplicity Eq. (45) can be rewritten as

F© = A2M; + A2N; + A1A1Q; (46)

Eq. (46) could be simplified further, because N; = M; and Q; is a
real number, as

a2 (ZM:{eaI + Ql) + b2 (Ql _ 2Ml](eal) _ 4alellTlﬂgi"ﬂU’ _F'® _¢

for material 1, and
@ (ZMlzzenl + Qz) + b2 (Qz _ ZMlzleal) _ 4abM12mﬂginaw _EXe_g
(48)

for material 2, where A; = a + ib. The bi-material SIFs can be com-
puted using Eqs. (47) and (48) after computing the strain energy
in material 1 and material 2 within a finite region around the notch
tip of radius R..

For real eigenvalues /; and /4y, the stress expressions are

_ Zikrkrlak{(pkl +ipw) [ei()(zk—l)(2+ik (efziz, —e’Zi(’) +e72i0)
k
Je2in e—i()(/‘.,(—l)}
(Pt — iP2) {e—iﬂ(/‘.k—l)(z +2k(ezix1 _ 2.0) +ezm)

te 2ii0n eiO(/‘.k 1)}} (49)

203 = Z)‘krzkilak{(skl (Pra +1Pi2) + Si2(Pra — iPs2))

X[ 1( (x—1) (2 +;k( 219(2 _ 721() +efzm) +e’2i7vk°‘le’i(7(;>k’l)}

+(8k1 (P — Pi2) +Sk2(Dra + Pi2))

x [e 1) (2 4 7y (2% — g20) 4 20) 4 @At gitn-1])
(50)

_ Zikrj'r]ak{(Pm +ip) [em(/kq) (2 T+ (efzio _ 9721'11) _ efzw)
k
_p2ikn e—io(/‘.k—l)}
+(pk1 *ipkz)[ —10 (7x—1) (2+/ ( 21() 7621.1‘) 762i0)
,e*Zi}-kil ei(l(/’.k—l)} } (51)

200) = szr;'k '@ {(Si1 (P + 1Pw2) + Si2(Pra — iPi2))

« [e”’W 1) 2+ k(e 20 _ 321'%:) _ efzm) _

+Bt1 (Pr1 — Piz) + iz (Pra + 1Pi2))
x [6710 k1) (2 +/Lk( 21() 6721'0(2) _ eZi())

e’ZiZk“Ze’i{'(;k’])}

eZl/k,‘xzeIU ix—1) }} (52>

2,'.[)((}/) _ Zikﬂrlak{(Pm Tipy) [em(}.k—l)(}vk(e—zm _ E—Zia,) )
k

+e2izkale—i(l(ik—l)} + (pkl *ipu)[ —i0(4—1) (AI ( 2W1 _ 2x/)) +ezw)
— e gl (53)

2ity) = Zlkr"'k’]ak{(s,d (D1 +1Pi2) + Si2(Pra — Py2))

><[ ek (€720 — g202) _ @ 20 | g 2iatap i)
+Gu (Pra = 1Pr2) +Sk2(Pit + iPi2))

x[ o—i0Ux—1) ( 72112 _ 2m) +ezm> _ eZi).kZZeiu(/ik—l)]} (54)
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where k = I 11, 5y = dudis—tudis g, — disda—diodis and to avoid division

i3y~ i’ >K2 — A —dir i’

by zero, p, and p,, can be computed using the expressions stated in

Table 1 where

Q1 = Re(tu) +Re(tia):  Griz = IM(tre) — Im(tin)

Qir = Im(tr) +1Im(ti2),  Gray = Re(tia) — Re(ti2)

tk = Sk2 — Sis,

Table 1

tko = Skt — Ska

Definition of p,; and py,.

Largest |qy;|

Pia Pi2

i1
Gr12
k21
k22

~Gr12/Gr11 1
1 ~Qk11/ a2
~0i22/ Q21 1
1 ~Gi21/ Q22

(a) (b)

o disdis — dindia s disdis — diadiz
BT dady — digdis’ T diadiy — digdia

dy = Gz(K] + EZiZku‘)7 dio = Gy (em' - 1)

dk3 = -Gy (Kz + e—Zi/‘.katz)7 dk4 = 7(;1;4‘(6—21‘0(2 — 1).

dkS =1- eZi}.kal_’ de — 7/11((921‘0(, _ 1), dk7 — e—Zx’Lkaz _ ‘17

dkg =k (e—Ziocz — 1)

To determine p,, and p,, from Table 1, it should be noted that the
first step is to determine the largest absolute value of the g,;’s, this
is |qy;|- The corresponding expressions for p,; and p,, are obtained

from the row containing this largest absolute value of qy;.
The SIFs expressions are

Ki = V2r 2 [(pyy +ip) (1 + 44 (1 — e 2) — e2im)

+(pn — i) (14 4 (1 — e?™1) — e~2)] (55)

T TTTTTT
T

T TITTT

1
1

T e e e e e v (I T

X LT TTT

ot VEVIIEEET]

Fig. 4. (a) Notched plate subject to tension loading conditions (b) the plate FE mesh (c) control volume.

2.30
225
< — = =
-~ NL=16
22
0 —-NL=9
-—NL=6
215 |
2.10 : : : .

1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00

Rc

Fig. 5. SIFs for Notched plate y = 60

under tension loading conditions.
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Ana . . .
Ky = v2n"2—i" (P +ipy) (2 (1 — e721) 4 g2
+Pim — ipnz)(]*ll(‘-’m1 -1)- et 4 1)} (56)

The stress expressions in Eqs. (49)-(54) can be rewritten as

-1)

&, = aqr 7 i(0) + agri g (0) = ari Tl 4 aprin g, (57)
O-ify = alr/"lilfj’/.(()) + allrz'rlg{'((b = a'r/:'ilf;{ + a"ri'l'71g§' (58)
Ty = ar™ iy (0) + aur g, (0) = ™'}, + ayrn g, (59)

Assuming plane-stress state, substituting the above equations
into Eq. (31) gives

1 L 2 2 e )
:E[afr2</-' (4R - 2uflf 20+ w8

+azray (g + g - 2viglg) +2(1+ v)gl,)
Taarirn2 (2fjgi +2figl - 2vj< gl +f§'gi) +4(1+ vj)f;'ygiy)]
(60)

wi®

by substituting the above equation into Eq. (1), the strain energy for
a finite volume of a radius R, around a bi-material notch tip with
real singular eigenvalues is obtained

e — /R( / Wi€rdrdo
0 0

1 , R¥ 2

{5 ¢

1 ] ’
2}
271

+ 7 = 2uflf + 200+ v)f, ) do

i2 i2 P i i2
s [ (68" - 2vgle) + 201+ g )ao
R(/?1+?-ll) o o o o
+a,a,,m A (Zf;gfx +2flg, —2v; (f;g’y +f;gfx>

+4(1+ v)fg, )do} (61)

The integration over 0 is from —o; to 0 for j = 2 (material 2) and
from O to o4 for j = 1 (material 1). Computing the strain energy for
each region using a commercial FE package, and substituting it
back into Eq. (60) gives

(b)

1T

T
B N
l«—2a .
2w
(¢
Fig. 6. (a) A slant centre cracked plate (b) the plate FE mesh.
1.00 100
0.90 | 0.90
0.80 0.80
_ 070 < _ 070
¥ re s 2 X __ - D
0.60 0.60
0.50 | ~—t 0.50
0.40 | 0.40
0.30 T T T T 0.30 T T T T
1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E-056 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00
Re Rc

—NL=20

----NL=16

—--NL=9
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Fig. 7. Mode I and II SIFs for the slant centre cracked plate.
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Fig. 8. The FE mesh used in the FFEM of the slant centre cracked plate.

F® = MiK? + N;K3 + QKK (62)

Eq. (62) represents two quadratic equations with two un-
knowns, K; and Kj;, which can be solved easily using a program-
ming software such as the MATLAB program.

2.2.2. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under out-of-plane loading
conditions (mode III)

For the out-of-plane bi-material problem, the strain energy
density in cylindrical-polar coordinates is

; 112 ;2
W = = [d) + (63)

The stress expressions for a general bi-material notch under
mode III loading conditions are

cos Mo, . o
) = G, """ 1B <T1 cos /"9 + sin Mg (64)
sin AMory
2l
. cos Moy .
iV = G, /""" 1B <7 — 2" sin "6 + cos }.'"9> (65)
sin A"
(a) s

for material 1 and

cos /Mo, G .
7@ = G """ 1B (W"’al cos M0 + Gi sin ;"0 (66)
00
@) 11 cosiouy g, G il
T, =GB 7WSH’1A 9+G—2c05A 0 (67)
1

for material, 2 where 2" is an eigenvalue that can be computed
from

(& + 1) sin A (o + o) + (9 - 1) sin A" (oty — o) =0 (68)
G G

and B is a constant. Egs. (64) and (67) are eigenfunction series
expansions (the X symbol is dropped for simplicity). In the SEA,
only the singular term is considered. The constant B associated with
the singular eigenvalue is related to the mode III SIF

Ky = V271G, "B (69)

For detailed derivations, one may refer to Qian and Hasebe
(1997). By substituting Eqs. (64)-(67) into Eqs. (63) and (1), and
after some algebraic manipulations, the strain energy of a finite
volume under mode III conditions can be written as

g = [ ([ weedos [ wioao)rar= L gk
Jo Jo snG2 e

J—oy

(70
where I is an integral and its value is
PP Mo\ . (&)2
G >\ \sin Ao G,
2 cos Moy :
+GAT | | | +1 (71)
sin " oy

Eq. (70) represents a simple analytical formula that can be used
to determine mode III SIF values of bi-material notches after com-
puting the strain energy of a finite volume of radius R. around and
a notch tip using available commercial FE packages.
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Fig. 9. (a) A slant centre notched plate y =45 (b) the plate FE mesh.
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Fig. 10. Mode I and II SIFs for the slant centre notched plate.

Fig. 11. The FE mesh used in the FFEM of the slant centre notched plate.

3. Numerical examples and verification

The proposed approach is verified by means of comparison with
available published results and numerical results computed using
the ABAQUS FEA commercial software and/or the software devel-
oped by the authors using FFEM. The numerical examples are pre-
sented in sub-groups corresponding to the sub-sections in
Section 2 starting with isotropic homogeneous and then bi-mate-

rial examples. Some discussion on the choice of R, is also presented
for each case. In all the examples the strain energy values for a fi-
nite volume around the notch tip are predicted using ABAQUS ver-
sion 6.8. In the FEA, it is well known that the mesh of a body has an
effect on the results, and that good meshes should be used for the
analysis. Here, too, a good mesh should be used to achieve accurate
results. By ‘good mesh’ we mean that large and small elements
should not be adjacent, but there should be a transitional change
in size.

3.1. Isotropic homogeneous notch

3.1.1. Mode I, Il and mixed mode

The effect of the radius R. on the accuracy of the SEA to predict
SIF values for isotropic notch cases subject to in-plane loading con-
ditions is demonstrated through different examples. For all the
examples the global mesh used is more or less the same, but the
local mesh around the notch tip is different. For example, different
numbers of finite elements are used to discretise the small region
around the notch/crack tip.A notched plate with a notch opening
angle of y = 60" under pure mode I loading conditions shown in
Fig. 4(a) is considered first. The plate is of height H = 20 and width
W = 10. The notch length is a where a/w = 0.4. Quadrilateral ele-
ments (which are designated as CPS8 in the ABAQUS FEA software)
are used to model the plate as shown in Fig. 4(b). The small region
around the notch tip is meshed layer by layer with a similarity ra-
tio p = 0.6 as illustrated in Fig. 4(c). The radius of the first layer is

Table 2
Scaled SIFs under tension loading conditions.
YV (1 ) he/H
0.1 0.2 0.3 0.4 0.5
Ki Ky Ki Ky Ki Ky Ki Ky K Ky
0 SEA 3.508 1.048 2.352 0.234 2.158 0.053 2.120 0.010 2.115 0.000
FFE 3.490 1.040 2.344 0.232 2.151 0.054 2114 0.011 2.109 0.001
(0.5,0.5) ABAQUS 3.504 1.045 2.349 0.232 2.155 0.054 2.119 0.010 2.113 0.000
30 SEA 3.557 1.439 2.369 0.308 2.174 0.073 2.137 0.011 2.132 0.000
FFE 3.544 1.448 2.361 0.307 2.167 0.07 2.131 0.014 2.125 0.001
(0.5014,0.5982) ABAQUS - - - - - - - - - -
60 SEA - - 2.464 0.423 2.265 0.091 2.230 0.016 2.226 0.000
FFE - - 2472 0.404 2.263 0.090 2.226 0.018 2.221 0.003
(0.5122,0.7309) ABAQUS - - - - - - - - - -
90 SEA - - - - 2.514 0.125 2.478 0.021 2.474 0.000
FFE - - - - 2.511 0.127 2.477 0.026 2.473 0.005
(0.5445,0.9085) ABAQUS - - - - - - - - - -
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Ro = 0.6. This is an arbitrary choice to provide transitional change
in the size of the finite elements used to model the plate. Ry has no
significance other than to indicate the relative size of the mesh
used around the notch tip with respect to the mesh size in the do-
main far from the notch tip. Initially, six layers are used within Ry.
The mode I SIF values are computed based on the energy values for
control volumes of sizes ranging from 1 layer to 6 layers (that is,
the control radius is R. = 0.046656-0.6). The same is repeated for
9 (R.=0.0100777-0.6), 16 (R.=0.000282168-0.6) and 20
(R.=0.0000365376-0.6) layers. The value of R, is not changed.
Only the number of layers within Ry and the radius of the control
volume R, are changed. The results are plotted in Fig. 5. The graph
shows clearly that convergence is achieved with increasing num-
ber of layers within Ro; that is, using smaller sizes of the control

M. Treifi, S.0. Oyadiji/ International Journal of Solids and Structures xxx (2013) XXX-XXx

volume R, allowed by finer meshes within R,. The converged SIF
value (scaled by ov/7a'~*) achieved is K; = 2.225. Published results
for this case are reported to be K; = 2.223 by Gross and Mendelson
(1972) and K; = 2.222 by Portela et al. (1991). In this example,
accurate results are achieved when computing the strain energy
value for values of R; between 0.000101566 and 0.046656. In other
words, the strain energy is computed for a control volume of size
ranging from 3 to 15 layers out of the 20 layers that are used to
model the region around the notch tip. Fig. 5 also shows that the
size of the control volume R. has an important role and results
are less dependent on the mesh within R.. In this figure, the differ-
ent curves mean that different meshes (number of layers within R.)
are used for each value of R.. Considering a value of R, = 0.046656
in Fig. 5, its projection on the green dashed curve shows that only

Table 3
Scaled SIFs under shear loading conditions.
Y (21, 2ar) he/H
0.1 0.2 0.3 0.4 0.5
K; Ky K; Ky K Ky K; Ky K; Ky
0 SEA 10.275 5.798 4.963 1.971 3.055 1.325 1.572 1.162 0.000 1.180
FFE 10.465 5.568 4.981 1.926 3.064 1.306 1.513 1.194 0.000 1.180
(0.5,0.5) ABAQUS 10.505 5.591 4.993 1.927 3.069 1.306 1.516 1.194 0.000 1.181
30 SEA 10.754 7.681 5.035 2.601 3.085 1.807 1.521 1.665 0.000 1.636
FFE 10.732 7.716 5.020 2.582 3.077 1.787 1.519 1.651 0.000 1.635
(0.5014,0.5982) ABAQUS - - - - - - - - - -
60 SEA - - 5.198 3.557 3.183 2.483 1.574 2.325 0.000 2.301
FFE - - 5.268 3.448 3.207 2.468 1.584 2.323 0.000 2.307
(0.5122,0.7309) ABAQUS - - - - - - - - - -
90 SEA - - - - 3.476 3.422 1.720 3.229 0.000 3.208
FFE - - - - 3.462 3.389 1.716 3.195 0.000 3.175
(0.5445,0.9085) ABAQUS - - - - - - - - - -
(a) o (b) (c)
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Fig. 12. (a) Notched plate subject to tension loading conditions (b) notched plate subject to in-plane shear loading conditions (c) the plate FE mesh.
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one layer of FE elements is used within R.. Its projection on the
blue line shows that more layers, 4 layers of elements, are used
within R, = 0.046656, and so on for the red (11 layers) and black
(15 layers) lines.

For mixed-mode problems, two examples, one of a slant crack
and another of a slant notch, are considered. Fig. 6(a) illustrates a
plate with a slant centre crack at angle of § = 45" subject to tensile
loading. The plate dimensions are H = 2W = 10. The crack length is
2a = 2. To compute the strain energy the plate is meshed using
quadrilateral elements (CPS8) in ABAQUS as shown in Fig. 6(b).
Like the previous example, the SIFs values are computed using
the strain energy of different volumes around the crack tip. Coarse
and fine meshes are used within R, = 0.6. The results are plotted in
Fig. 7. It is clear again that better convergence is achieved by using
finer meshes within Ry, i.e. smaller sizes of the control volume
R. < 0.1. This observation is in line with the general accepted size
of the region governed by the singular terms around a crack tip,
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Fig. 13. (a) Notched plate subject to anti-plane shear loading conditions y = 60 (b)
the plate FE mesh.

which is about a/10. The scaled SIFs predicted using the strain en-
ergy for a control volume of radius R. = 0.00047019 (6 layers)
when using 20 layers within Ry = 0.6 (fine mesh) are K; = 0.651
and Kj = 0.641. The SIFs values for this problem computed using
the ABAQUS package are K; = 0.655 and Kj = 0.640. In ABAQUS,
quarter-point elements are used around the crack tip, and the plate
mesh is the same as in Fig. 6(b). By using the fractal-like finite ele-
ment method (FFEM), a method extended by the current authors to
compute the notch SIFs, the SIFs values for this problem are
K; = 0.650 and Kj; = 0.636. In FFEM, the plate is meshed using
six-node triangular elements as shown in Fig. 8.

Now, a plate similar to the last example containing an inclined
centre notch as shown in Fig. 9(a) is analysed. The notch opening
angle is 7 =45 and its length is 2a = 2. The plate dimensions
are H=2W = 10. The plate is meshed using CPS8 elements in
ABAQUS as shown in Fig. 9(b). The SIFs values computed based
on the strain energy values for different enclosed volumes around
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Fig. 15. (a) Off-centre notched plate subject to anti-plane shear loading conditions
(b) the plate FE mesh.
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Fig. 14. Mode III SIFs for the notched plate y = 60.
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the notch tip (different R.’s) are plotted in Fig. 10. Like the previous
examples, using a finer mesh (and therefore smaller R.) gives bet-
ter convergence. The scaled SIFs predicted using the strain energy
for a control volume of 4 layers (R, = 0.000169262) and 20 layers
within Ry = 0.6 are K; = 0.657,K;; = 0.910. For this problem, Lazz-
arin et al. (2010)' reported the following SIFs values
K; = 355,Ky; = 325 not scaled (K; = 0.641,K; = 0.838 scaled). Lazza-
rin et al. (2010) computed the mode I and II SIFs based on the strain
energy density of two concentric circles. Using their approach, the
authors computed the SIF values based on the strain energy of two
concentric circles of radii R. =0.000169262 (3 layers) and
R. = 0.000282047 (5 layers). The SIFs values obtained are
K; = 0.657,K; = 0.910 which are in good agreement with our com-
puted values using the SEA. The difference between the current re-
sults and those reported by Lazzarin et al. (2010) could be
attributed to using different sizes of control volumes compared to
the ones used in this paper.

Using the FFEM (Treifi et al., 2009a), the SIFs values for this
example are K; =0.646,K; =0.912. In the FFEM, the plate is
meshed as shown in Fig. 11 using six-node triangle elements. In
the singular region, twenty layers of elements are used. The SIFs
values predicted using the strain energy approach as described in
Section 2.1.1 and the FFEM are in very good agreement. This proves
that the current results are correct.

The approach based on two concentric circles is not always
applicable, as the current authors did a test using two circles to
compute the mixed mode SIFs for the previous crack example.
The results obtained were totally unrealistic. This is due to the fact
that the two concentric circles approach leads to an indeterminate
system of equations in the case of a crack problem, i.e. a notch with
a zero opening angle. However, the approach presented in this pa-
per does not have this limitation. Therefore, the current procedure
is a more general approach to compute mixed mode SIFs of a gen-
eral notch including the special case of a crack. It should also be
noted that Lazzarin et al. (2010) did not mention that their ap-
proach is applicable to mixed mode crack problems explicitly.

Different examples of notched plates with different notch open-
ing angles and different locations under tension or shear loading
conditions are presented in Tables 2 and 3. The notched plates
and their FE meshes are similar to the ones shown in Fig. 12. The
results are compared to those predicted by ABAQUS for the crack
cases using the same mesh and the FFEM results reported by Treifi
et al. (2008, 2009a) for crack and notch cases. The plate dimensions
are H = 2W = 20, and the notch length is a where a/w = 0.4. Fine
mesh of 20 layers of elements is used within Ry = 0.6, and the
strain energy used to predict the SIF values is computed for a vol-
ume of radius R, = 0.000101566 (that is for 3 layers). The results
are presented in Tables 2 and 3 and are in good agreement with
the results predicted using the other numerical approaches. The
accuracy of the SEA could be improved by computing the strain en-
ergy for different volumes and then looking at the converged re-
gions as demonstrated in the previous examples.

3.1.2. Mode IIl

A convergence study of an edge notched plate subject to mode
Il loading conditions as shown in Fig. 13 is presented to demon-
strate the effect of R, on the accuracy of the SEA. The plate is mod-
elled and analysed using different meshes within the region
around the notch-tip. The plate dimensions are: H =2W = 20,
the plate thickness t = 1, the notch length is a where a/W = 0.4,
and the notch opening angle y = 60". Three dimensional FE ele-
ments (C3D20) are used to model the plate in ABAQUS in order

1 It seems there is a typographical error in Lazzarin et al. (2010); in Table 5: 23°
value is 0.660 and not 0.624.

to compute the strain energy, and anti-plane conditions are ap-
plied.The small region around the notch tip is meshed layer by
layer with a similarity ratio p = 0.6. The radius of the first layer
is taken as R, = 0.6. Initially, six layers are used within Ry. The
mode I SIF values are computed based on the energy values for
control volumes of sizes ranging from 1 layer to 6 layers (that is,
the control radius is R. = 0.046656-0.6). The same is repeated for
9 (R.=0.0100777-0.6), 16 (R.=0.000282168-0.6) and 20
(R.=0.0000365376-0.6) layers. The value of R, is not changed.
The mode III SIF values are plotted in Fig. 14. For the parameters
considered (NL = 6,9, 16, 20), this figure shows clearly that conver-
gence is achieved regardless of the mesh around the notch tip
(within Ro) and radius of the control volume (R.). The converged
SIF value (scaled by ty/7a'“/m) predicted by the SEA is
Ky = 1.418. The mode III SIF for this case reported by Treifi et al.
(2009b) using the FFEM is Ky = 1.417.

Different examples of notched plates with different notch open-
ing angles and different locations under anti-plane loading condi-
tions are analysed. The notched plates and their FE meshes are
similar to the ones shown in Fig. 15. The results are compared in
Table 4 to those predicted by ABAQUS for the crack cases using
the same mesh and the FFEM results for the crack and notch cases
reported by Treifi et al. (2009b) (the values are scaled by
Ty/Ta'~“n). In the FFEM, the plate is meshed using 6-node triangu-
lar elements similar to the mesh shown in Fig. 16. The plate dimen-

Table 4
Scaled SIFs (Ky/t/7a'~*n) under anti-plane shear loading conditions.
(2 he/H
0.2 0.3 0.5
0 SEA 1.117 1.087 1.077
FFE 1.116 1.086 1.077
(0.5) ABAQUS 1117 1.087 1.077
30 SEA 1.282 1.245 1.234
FFE 1.281 1.245 1.233
(0.545455) ABAQUS - - -
60 SEA 1.478 1.432 1.417
FFE 1.477 1.431 1.417
(0.6) ABAQUS - - -
90 SEA - 1.648 1.628
FFE - 1.647 1.628
(0.666667) ABAQUS - - -

Fig. 16. The FE mesh used in the FFEM of off-centre notched plate subject to anti-
plane shear loading conditions.
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sions are H = 2W = 20 and the notch length is a where a/w = 0.4.
A coarse mesh of 7 layers of elements is used within R, = 0.6, and
the strain energy used to predict the SIF values is computed for a
volume of radius R. = 0.07776 (that is for 3 layers). The SEA results
presented in Table 4 are in good agreement with the results pre-
dicted using ABAQUS for crack cases and the FFEM for crack and
notch cases. The accuracy of the SEA is excellent when dealing with
pure mode cases, so for those cases finer meshes are not necessary.

3.2. Bi-material notch
3.2.1. Mode I, Il and mixed mode

To demonstrate the effect of R. on the accuracy of SIFs values
predicted using the SEA relationships presented in Section 2.2.1
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Fig. 17. (a) A bi-material cracked plate subject to tension (b) the plate FE mesh.
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Fig. 18. SIFs for the bi-material cracked plate E; /E, = 1.

for a bi-material notch, an edge cracked plate consisting of two
parts as shown in Fig. 17(a) is analysed for different material prop-
erty ratios. The convergence study presented in Section 3.1.1 for
single material notch cases demonstrated the need for a fine mesh
around the notch-tip to obtain high accuracy results for mixed-
mode I and II cases. Therefore, 20 layers will be used within the
small region (Ro = 0.6) containing the crack tip. The plate is
meshed using CPS8 elements in ABAQUS as shown in Fig. 17(b).
The cracked plate dimensions are H=3W =30, and the crack
length a is given as a/W = 0.4. The Poisson’s ratios of both materi-
als are taken as v; = v, = 0.3. The Young Modulus ratios consid-
ered are E;/E; = 1,2,4,10,100. The real and imaginary parts of
the complex SIF, representing Mode I and II SIFs, are computed
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Fig. 19. SIFs for the bi-material cracked plate E; /E, = 2.
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Fig. 20. SIFs for the bi-material cracked plate E; /E, = 4.
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Fig. 21. SIFs for the bi-material cracked plate E; /E; = 10.
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using different values of R, ranging from R. = 0.0000365376 to 0.6
(that is, for 1 layer to 20 layers). The SIF values are plotted in
Figs. 18-22. Because Eq. (62) gives two sets of valid roots, both sets
are plotted. Corresponding SIFs values predicted by Matsumto
et al. (2000) are also plotted for comparison. Those figures show
that convergence is achieved for only one set of the roots for
Ei/E; = 1,2,4 (small differences in material properties). However,
for large differences in material properties as is the case in
Ei/E; = 10,100, both sets of roots converge within different re-
gions. When one of the sets converges, the other diverges. In addi-
tion, for small material property differences E;/E,=1,2,
convergence is achieved using small R, but for large material prop-
erty differences E;/E, = 10,100 convergence is achieved using
large R.. In the cases studied here, good accuracy is achieved using
R. = 0.000282109 (that is, the control volume containing 5 layers)
for the cases of small material property differences. For the cases of
large material property differences, better convergence is achieved
using R, = 0.0167961 (that is, the control volume containing 13
layers).

Based on the above discussion, the SIFs for an edge-crack bi-
material plate are computed for different crack lengths and differ-
ent material property ratios. The cracked plate and its FE mesh are
similar to those shown in Fig. 17. The plate dimensions are the

same as of the previous example. 20 layers are used within the
small region (Ry = 0.6) containing the crack tip. The scaled SIF val-
ues (K./o/7a' R (2a)"™?) computed using the SEA are tabulated
in Table 5. Corresponding published results by Matsumto et al.
(2000) and computed results using ABAQUS are also tabulated
for comparison. In ABAQUS, the same mesh is used to compute
the SIFs. The control volume radius is taken as R. = 0.000282 (5
layers), R. = 0.001306 (8 layers), R, = 0.006047 (11 layers) and
R. = 0.016796 (13 layers) for E;/E; =1, E1/E; =2, E;/E; =4 and
Ei/E; = 10,100, respectively. The singular eigenvalues for a bi-
material crack of E;/E;=1,2,4,10,100 are 4i=0.5,
4 =0.5+10.037306, 4=0.5+1i0.0678545, i=0.5+1i0.0937743
and A = 0.5 +1i0.113817, respectively. Table 5 shows that the SEA
results are in good agreement with the numerical results com-
puted using ABAQUS and with those reported by Matsumto et al.
(2000).
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Fig. 22. SIFs for the bi-material cracked plate E; /E, = 100. Fig. 23. (a) A bi-material notched plate subject to tension (b) the plate FE mesh.
Table 5
Scaled SIFs for a bi-material cracked plate.
a/W Ei/E;
1 2 4 10 100
K; Ky K Ky K Ky K; Ky Ki Ky
0.2 SEA 1.367 0.000 1.365 -0.138 1.364 —0.250 1.365 -0.339 1.370 -0.418
ABAQUS 1.368 0.000 1.368 -0.137 1.368 —0.251 1.369 —0.350 1.371 —0.430
Matsumto - - 1.367 -0.137 1.368 —0.251 1.366 —0.348 1.376 -0.429
0.3 SEA 1.660 0.000 1.657 —0.160 1.652 —0.292 1.646 -0.397 1.644 —0.488
ABAQUS 1.661 0.000 1.659 -0.159 1.654 -0.289 1.649 —0.400 1.643 —0.487
Matsumto - - 1.657 —0.156 1.655 —0.288 1.648 —0.394 1.647 —0.470
0.4 SEA 2112 0.000 2.107 -0.199 2.099 —0.364 2.088 —0.498 2.080 —0.609
ABAQUS 2.112 0.000 2.109 —0.198 2.101 —0.360 2.090 —0.496 2.079 —0.600
Matsumto - - 2.109 -0.195 2.102 —0.358 2.090 —0.491 2.083 —0.569
0.5 SEA 2.827 0.000 2.819 —0.268 2.805 —0.489 2.787 —0.669 2.771 -0.812
ABAQUS 2.826 0.000 2.821 —0.268 2.807 —0.485 2.788 —0.665 2771 —0.801
Matsumto - - 2.819 —0.268 2.806 —0.483 2.789 —0.661 2.772 —0.793
0.6 SEA 4.037 0.000 4.024 —0.396 4.000 -0.718 3.967 —0.983 3.937 -1.180
ABAQUS 4.035 0.000 4.025 —0.398 4.002 -0.718 3.971 —0.982 3.940 -1.177
Matsumto - - 4.024 —0.398 4.001 -0.714 3.968 -0.973 3.906 -1.171
0.7 SEA 6.363 0.000 6.338 —0.665 6.288 -1.202 6.220 —1.647 6.157 -1.956
ABAQUS 6.357 0.000 6.336 —0.671 6.291 -1.210 6.230 —1.651 6.168 -1.974
Matsumto - - 6.348 —0.668 6.298 -1.204 6.227 -1.634 6.157 -1.957
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For a notch case, a bi-material notched plate with an opening an-
gleofy = 60 as shownin Fig. 23(a)is analysed. The plate dimensions
are H = 2W = 20, and the crack length a is taken as a/W = 0.4. The
Poisson’s ratios of both material are taken as v; = v, = 0.3. The SIFs
are computed for different material property ratios
Ei/E; =1,2,4,10,100. The plate is meshed using CPS8 elements in
ABAQUS as shown in Fig. 23(b) to compute the strain energy. 20 lay-
ers are used within the small region (R, = 0.6) containing the crack
tip. The results are tabulated in Table 6. The control volume radius for
which the strain energy is computed is taken as R, = 0.000282 (5
layers), R, = 0.001306 (8 layers), R, = 0.006047 (11 layers) and
R. = 0.016796 (13 layers) for E;/E; = 1, E1/E; = 2, E;/E; = 4 and
Ey/E; = 10,100, respectively. Table 6 shows that the singular eigen-
values (Re(1) < 1) for each case are either two real eigenvalues or
one complex eigenvalue. The cases of two singular real eigenvalues
give two real SIFs K; and K; for mode I and II, respectively. The cases
of one singular complex eigenvalue give complex SIFs K. = K; + iK.
The results in Table 6 are new and there are no available published
results to compare with. However, the previous validation for crack
cases, which are special cases of notch problems with opening angle
ofy = 0°, shows that the SEA gives accurate results. Therefore, the re-
sults in Table 6 are valid. It should be noted that the ABAQUS soft-
ware only computes SIF values when the notch opening angle is
zero, i.e. a crack, but for true notches it cannot compute the notch
SIFs.

3.2.2. Mode IIl

The mode III SIFs for different cases of a bi-material notched
plate subject to out-of-plane shear loading conditions as shown
in Fig. 24 are computed using the SEA. The plate dimensions are:

Table 6

Scaled SIFs for a bi-material notched plate (7 = 60°).
Ei/E» A A K; or Ky Ky or Ky
1 0.51222136 0.73090074 2.226 0.000
2 0.52425299 0.71632272 2.430 —0.666
4 0.56267468 0.67219769 3.633 —1.980
10 0.61388523 +i0.07040375 2.881 —2.549
100 0.61052742 +i0.11267322 2.365 —1.940

T
OJOJOROROJOJOJOXO,

G1

G2

w
®®®T®®®®®®_'

Fig. 24. A bi-material notched plate subject to anti-plane shear loading conditions.

H = 2W = 20, the plate thickness t = 1, the notch length is a where
a/W = 0.4. Three dimensional FE elements (C3D20) are used to
model the plate in ABAQUS in a similar way to that in Fig. 15(b)
in order to compute the strain energy, and anti-plane conditions
are applied. The results are compared to those predicted by ABA-
QUS for the crack cases and the FFEM (Treifi and Oyadiji, 2013)
for the crack and notch cases. In the ABAQUS analysis for the crack
cases, the same mesh as for the SEA is used. For the notch cases
where ABAQUS cannot predict the notch SIFs, the results are com-
pared to those predicted by the FFEM. In the FFEM, the plate is
meshed using 6-node triangular elements similar to the mesh
shown in Fig. 16. Based on the convergence study presented for

Table 7
Scaled SIFs (Ky/tv/ma'~*n) under anti-plane shear loading conditions (G, /G, = 10).
? he/H
0.2 0.3 0.5
0 SEA 1.148 1.096 1.077
FFE 1.148 1.096 1.077
ABAQUS 1.148 1.096 1.077
30 SEA 1.320 1.256 1.234
FFE 1.320 1.256 1.233
ABAQUS - - -
60 SEA 1.527 1.446 1.417
FFE 1.526 1.445 1.417
ABAQUS - - -
90 SEA - 1.666 1.628
FFE - 1.666 1.628
ABAQUS - - -
Table 8
Scaled SIFs (Ky/tv/7a'~*n) under anti-plane shear loading conditions (G; /G, = 4).
Y he/H
0.2 0.3 0.5
0 SEA 1.140 1.094 1.077
FFE 1.140 1.093 1.077
ABAQUS 1.140 1.093 1.077
30 SEA 1.310 1.253 1.234
FFE 1.310 1.253 1.233
ABAQUS - - -
60 SEA 1514 1.442 1.417
FFE 1.513 1.442 1.417
ABAQUS - - -
90 SEA - 1.661 1.628
FFE - 1.661 1.628
ABAQUS - - -
Table 9
Scaled SIFs (Ky/t/7a'~*n) under anti-plane shear loading conditions (G; /G, = 1/4).
Y he/H
0.2 0.3 0.5
0 SEA 1.092 1.080 1.077
FFE 1.092 1.080 1.077
ABAQUS 1.092 1.080 1.077
30 SEA 1.252 1.237 1.234
FFE 1.251 1.237 1.233
ABAQUS - - -
60 SEA 1.440 1.422 1.417
FFE 1.440 1.421 1.417
ABAQUS - - -
90 SEA - 1.634 1.628
FFE - 1.633 1.628
ABAQUS - - -
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Table 10
Scaled SIFs (Ky/Ty/ma'~n) under anti-plane shear loading conditions (G, /G, = 1/10).
v he/H
0.2 0.3 0.5
0 SEA 1.083 1.078 1.077
FFE 1.083 1.077 1.077
ABAQUS 1.083 1.078 1.077
30 SEA 1.241 1.234 1.234
FFE 1.240 1.234 1.233
ABAQUS - - -
60 SEA 1.426 1.418 1417
FFE 1.426 1.417 1417
ABAQUS - _ _
90 SEA - 1.629 1.628
FFE - 1.628 1.628
ABAQUS - - -

the mode III isotropic cases, a coarse mesh of 7 layers of elements is
used within Ry = 0.6, and the strain energy used to predict the SIF
values is computed for a volume of radius R, = 0.07776 (3 layers).
The SEA results compared to corresponding results predicted using
ABAQUS and the FFEM are presented in Tables 7-10. The results of
the three different approaches are in excellent agreement.

4. Conclusions

In this paper, a simple approach based on the strain energy of a
control volume was developed to compute the mode I, Il and III
SIFs for isotropic homogeneous and bi-material crack/notch prob-
lems. The approach is simple to employ numerically. It relates
the SIFs to the strain energy that may be computed using commer-
cial FE packages; thus, enabling those packages to compute notch
SIFs. The accuracy of the SEA was demonstrated via many different
numerical examples of homogeneous and bi-material cracked and
notched plates. For pure mode conditions, a coarse mesh (and
therefore a larger size of the control volume) may be used to model
the region around the notch tip, but it is recommended using finer
meshes (and therefore a smaller size of the control volume) when
dealing with mixed mode cases. The results generated using the
SEA are in very good agreement with existing published results
and numerical solutions.
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tip are derived and employed as global interpolation functions in the FFEM to transform
the large number of nodal displacements in the singular region to a small set of generalised
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1. Introduction

In recent years, there has been a lot of interest in computing the SIFs for a general notch (or corner), because the presence
of notches may lead to crack initiation and sudden failure. Most of the research reported in the literature [1-5] deals only
with isotropic homogenous notches based on the pioneering work presented by Williams [6]. For bi-material notches, there
are hardly any results reported. Most research is about the behaviour of the eigenvalues and its computation rather than
computing the SIFs [7-9]. That is simply due to the complexity of the bi-material case. However, SIFs were reported for a
bi-material crack, which is a special case of a notch (the notch opening angle is zero) by some authors, such as Matsumto
et al. [10], Yuuki and Cho [11] and Miyazaki et al. [12]. Williams [6] showed that the stress and displacement expressions
around a notch tip can be written as eigenfunction series expansions. For a single material (isotropic homogenous) notch,
the singular eigenvalues are always real. The singular eigenvalues are those which are less than one and they result in un-
bounded stresses. In the case of a two material (bi-material) notch, the singular eigenvalues could be real or complex num-
bers. This means that different eigenfunction series expansions have to be used for each case.

The FFEM was originally developed to compute the SIFs for crack problems [13,14]. Reddy and Rao [15] extended the
method to analyse the shape sensitivity for a homogeneous isotropic crack. The current authors successfully developed
the FFEM to compute the SIFs for an isotropic homogenous notch [16-20]. It should be noted that the two-level finite ele-
ment method [13], the fractal two level finite element methods [14], the fractal finite element mixed-mode method [15], and
the fractal-like finite element method [16-20] are identically the same. In fact, they are all fractal-like because the finite ele-
ments are truly fractal in the radial direction from the point of singularity, whereas in the circumferential direction in a layer,
the elements are not fractal in nature. Therefore, the fractal self-similar nature of the mesh applies to the radial direction

* Corresponding author. Tel.: +44 161 2754348.
E-mail addresses: m.treifi@mmu.ac.uk (M. Treifi), s.0.oyadiji@manchester.ac.uk (S.0. Oyadiji).
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Nomenclature

a crack/notch length

a set of generalised co-ordinates

A, B, a, b generalised co-ordinates

d nodal displacement vector

d, d,;,, and d; nodal displacement vectors of nodes in regular region, master nodes, and in singular region

d;“'z"d“" nodal displacements of the nodes in the first layer, second layer, ... in the singular region

E Young’s modulus

f nodal force vector

f., f.,, and f; nodal force vectors of nodes in regular region, master nodes, and in singular region
flstinn transformed nodal force vectors of the first layer and the inner layers in the singular region
G shear modulus

H plate height

K stiffness matrix

K:., K, partitioned stiffness matrices (r refers to regular region, m to master

Kmm, Kss, ... nodes, and s to slave nodes)

K partitioned stiffness matrix of the nth layer in the singular region

K!*t Ki™ transformed partitioned stiffness matrices of the first layer and the inner layers in the singular region
K;, Ky stress intensity factors of mode I, II

K complex stress intensity factor

i complex unit (\/jl)

j integer variables

NL number of layers in the singular region

NT number of terms of eigenfunction series expansion
P, Py forces

R radius of singular region

r, 0 polar co-ordinates

W transformation matrix of the nodal displacements of the n‘" layer in the singular region
Tj“ transformation matrix of the nodal displacements of the first layer in the singular region
w width of single-edge-notched plate

uy, u,  displacements in x and y directions

X,y cartesian co-ordinates

z complex variable

o angle between notch face and x-axis

Y notch opening angle

¢, ® complex potentials

A eigenvalue

\J Poisson’s ratio

p similarity ratio

o normal stress

T shear stress

towards the notch/crack tip but not necessarily to the hoop direction. For this reason, the authors prefer to refer to the topol-
ogy as being fractal-like.

In this paper, the authors develop the FFEM to compute the SIFs for a bi-material notch. The stress and displacement fields
are derived for real and complex eigenvalues. Then, the FFEM is developed by employing the displacement expressions as
global interpolation functions to compute the SIFs for bi-material notch problems. To demonstrate the accuracy of the FFEM
to compute bi-material notch SIFs, the SIF values for various bi-material notch examples are computed and compared to
available published results and results computed using different numerical approaches.

2. Global interpolation functions for a bi-material notch

The stress and displacement functions of a bi-material notch as shown in Fig. 1 can be expressed using a complex variable
approach as [21]:

Tly + 0}, = 4Re(¢' (2)) (1)

- ity ~ ) + - 2D + ) ”
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v

Interface

Fig. 1. Bi-material notch geometry.

—P,+iP, = §/(2) + (2~ 2)¢/ (2) + D (2) ?

o+ ity = 5 5 2) — (2= 207 @) - ) )

where j refers to material j, G; is the shear modulus of material j, 1 = 3 — 4v; for plane-strain or x; =3 — 4v;/(1 + v;) for plane-
stress and v; is the Poisson’s ratio of material j. ¢/(z) and «/(z) are complex potentials and are assumed to be

#(2) = AZ + a7 and o/ (2) = BZ* + b7’ (5)
Substituting Eq. (5) into Egs. (2)-(4) gives
al, — ity = ir'=1e" P (A 4 (e — 1)(4 — 1) + bj] + A"~ D[g;e? ") + Ai(e?” —1)(7— 1) + B] (6)
~P) +iP, = r'e " [Ae? 1 @jA(€®” — 1) + bj] + r'e " [aje?" + Aj(e*” — 1) + B] (7)
26G; (uﬂ( T m’y) _ r*e’i""[KjAjeZi(”' _ (11/1(62"“ ~1)- Bj] + rze’i"z[Kjajezi"z _ ij(ezm _ 1) _ 7]] (8)
The complex potentials must satisfy the following continuity and boundary conditions
1, ipl __p2 ip2
P, +iP, o= P, +iP, o
1 a1 _ 12 =2
u, + 1uy‘0:0 =u, + luy‘gz0 o
1, ipl _
P, +iP, b 0
2 2 -~
Py +iPy by 0
Substituting Egs. (7) and (8) into (9) gives, after simplification,
1-— eZi/locl e—Zi).ocz -1 A(] _ eZi;q) /«L(e—Ziacz _ -l) A]
g_? (Kl + e2i).ac,) —Ky + p—2ii%; %A(ezi“l _ 1) /1(] _ e—Ziaz) A,
] . ; . . _~ > =10} (10)
A(] _ e—2m1) ;L(eZtocz _ 1) 1— e—21/.c<1 er/.ozz -1 a;
2a(e?n —1) A(1—e¥e) 2k +e ) —(1; +e¥) | Lo
or
D][A7 Ay a1 ap ]T ={0} (11)
For non-trivial solution the determinant of [D] should be zero, i.e.
detD] =0 (12)

Solving Eq. (12) gives the values of Z, the eigenvalues, that make the determinant zero. Muller’s method is used to solve this
equation using the technique presented in Ref. [22]. The values of 2 may be real or complex.
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2.1. Complex eigenvalues

For complex eigenvalues, Eq. (11) could be partitioned as follows

Aq 0

[D11] [D1,]

...... A 3 =<0

a; 0

D D

[D21] [D2] i 0

From Eq. (13)

Ay

@ p =—[Dyn] ' DalA; = {SHA;

ay

(14)

Using Eq. (_14) and the boundary conditions, the coefficients of the complex potentials can be written in terms of A; and its

conjugate A; as

Ay r 1 0 ]
A 0 1
a 0 S(2)
a | S(2) 0 {él } _ [H]}{Al
B, —S(2)e 2im — j(e 2 _ 1) 0 A A
E] 0 _@321711 _ i(ez"“l _ 1)
by 0 _e ity _ ZW(e—Zm -1
b, | —e2im _ 8(2)(e2m — 1) 0 ]
for material 1 and
A - (1) 0
A, 0 s
ay 0 @
a S(3) 0 A
B, [ | —S(3)e%¥2 — S(1)(e?% — 1) 0 A } -
BZ 0 _we—zﬁaz _ zﬁ(e—h’o{z _ ])
b, 0 _mezﬁaz _ zﬁ(em’az -1)
b, | —S(1)e-2 — 18(3)(e 22 — 1) 0

for material 2. B
A and its conjugate A, can be written in terms of the real and imaginary parts of A; as

1 il {iman =] i

(i)

If we let

r Kjefimezu(}
zrze—i?‘.a(l _ ezi())
r KjE”‘;'” o270
/*Lr/ie—i/l(l(l _ ezm)
0
_ r;i e—i;i()

0
_rle-ii

then Eq. (8), the displacement expression, could be rewritten as

26 (s, + ) — g { 00 £ - {0 )

Im(A,) Im(A;)

(16)

(17)

(18)

(19)
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Equating the real and imaginary parts of both sides of Eq. (19) leads to

W, [~ 2G| Im(J;(1,1)) Im(;(1,2)) | | Im(A,)

Eq. (20) shows that the displacement expressions for each complex eigenvalue can be written in terms of a complex coef-
ficient with real and imaginary parts.

2.2. Real eigenvalues

For real eigenvalues, the complex potentials ¢/(z) and «’(z) are reduced to

#(2) = Aiz* and &J(z) = B;Z (21)
Substituting Eq. (21) into Eqgs. (2)-(4) gives

O_}}.ly _ iTj)‘(y — Zr}.—lei()(l—/'.) [Ajezm(}.—l) +Ej(ezm _ 1)(; _ 1) + Ej] (22)

_Pi + iPi _ rze’i[)Z[Ajezi"" +7ij)»(ez"“ -1 +§j] (23)

26 (uﬁ; T iu@) = re " [i,Ae?" — A% — 1) — B (24)
By making use of the continuity and boundary conditions of Eq. (9), the following relation must hold

Re(A
{QH ‘hz}{ e(Ar) } - {0} (25)
Qo1 G ] LIm(Aq)

where

q11 =Re(t;) +Re(tz), ¢y =1Im(tz) —Im(ty)
@y =Im(ty) +Im(tz), gy, =Re(t;) —Re(tz)
ty =5,—S3, =5 —54
s = dyds — dqdg S = dedy — dyds s = dsds — dqd o= deds — dyd;
dsds — d;ds’ dsds — dds’ dsd; — dgds’ dsd7; — dgds
d] = Gz(K] -+ e2iim ), dz = Gzﬂ.(em‘ — 1), d3 = -G (Kz -+ e—2i}.12)7 d4 = -Gy l(e’”"‘z — 1),
d5 =1- eZi"“‘, de = —A(eml — 1), d7 = 67217'“2 — ]7 dg = i(e’mz — 1)

Eq. (25) shows that Im (A;) can be determined in terms of Re (A;) or vice versa, i.e.,

Re(A
{ (1)}:{p1}c:[P]c (26)
Im(A;) 123
where c is either Re (A;) or Im (A;). To avoid division by zero, p; and p, may be computed from Table 1 depending on the

largest absolute value of gj. _
From Egs. (17) and (26), A; and its conjugate A, can be written in terms of c as

Ay 1 i Re(A1) Re(A)
_ = =[N = [N][P]c 27
r=l e =™ f=mom 27)
and A, and its conjugate A, can be written in terms of A; and A; and therefore in terms of ¢ as
Az S$1 S A] Al
i SPL =SS L = [S][N][P)c 28
{Az} La 54}{/‘\1} H{A1} SIINIIP @8
Table 1
Definition of p; and p,.
Largest |q pi P2
qn —q12/911 1
q12 1 —q11/q12
q21 —q22/q21 1
q22 1 —(21/q22
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Using Eqgs. (27) and (28) in addition to the boundary conditions, the coefficients of the complex potentials in Eqs. (22)-(24)
can be written as

A 1 0 A
A 0 1 {/{ } — HIN]IPlc = [Ry]c (29)
E] 7621711 7/1(6‘2"“‘ _ ]) 1
for material 1 and
A ro1 0 A
A, 0 1 {I{ } = [Hy][S|[N][P]c = [Rz]c (30)
Ez _e—2i}.nxz _)i(e—ziocz _ ]) 2
for material 2. If we let
L] = r).e—i/'.()[KjeZi/‘.H —J(e — 1) 71] (31)
then Eq. (24), the displacement expression for real eigenvalues, could be rewritten as
2G;(, + i) ) = L] [Rjle = e (32)

Equating the real and imaginary parts of both sides of Eq. (32) leads to
j Re(J:(1,1
uﬁ,‘ = € Uit 1) c (33)
W, 2G; | Im(J;(1,1))

Eq. (33) shows that the displacement expressions for each real eigenvalue can be written in terms of a real coefficient Similar
formulation was presented in polar coordinates in Ref. [22].

2.3. Generalised coordinates

The displacement expressions around a notch tip are the sum of terms of Egs. (20) and (33) repeated for as many eigen-
values considered (those equations are series expansions. The >~ symbol is dropped for simplicity). The coefficients c in Eq.
(33) and the real and imaginary parts of the coefficients A; in Eq. (20) are called generalised coordinates and will be com-
puted directly in the FFEM. The ones associated with the singular eigenvalues (Re(/) < 1) are related directly to the SIFs of a
general notch. The rest are the constants of the higher order terms.

3. Stress intensity factors

The eigenvalues computed using Eq. (12) could be real or complex. For a general bi-material notch, the singular eigen-
values (Re(1) < 1) are either two real singular eigenvalues associated with mode I and mode II (/;,/y) or a single complex sin-
gular eigenvalue with real and imaginary parts (in some cases only one real singular eigenvalue exists). A complex singular
eigenvalue is associated with a complex SIF that can be computed using one of the following equations

K. = V21A;[S(2)(1 — e 21y — j(e72 — 1)) G4

K. = VaTiA [1 - e 2 — i8{2)(e 7 — 1)) s

The real and imaginary parts of K. represent mode I and mode II SIFs. For the case of two real singular eigenvalues, where one
eigenvalue is associated with mode I while the other is associated with mode II, the SIFs expressions are

AC

Ki = v2r==(pn +ipp)(1 + 4(1 - e ) — &) 4 (py — ipp) (14 (1 — €21) — e 240))] (36)
for mode I, and
Ky=v Py (P + iPi) (1 — €721) + @24 — 1) + (pyy — i) (Zr (€21 — 1) — @721 1)) (37)

2i
for mode II.

4. Fractal-like finite element method for a bi-material notch

The FFEM is a semi-analytical method that incorporates the agility of the finite element method (FEM) and the accuracy of
the analytical solutions. A bi-material notched body is divided into regular and singular regions as shown in Fig. 2. The ana-
lytical expressions of the displacement field around a notch tip are used as global interpolation functions to transform the
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Singular region Material 1

Regular regions

+ Singular node
. Master node

Material 2

Fig. 2. Singular and regular regions of a notched plate.

large number of nodal displacements d; of the nodes in the singular region containing the notch tip to a small set of gener-
alised coordinates a as follows

d,=Ta (38)

where T is a transformation matrix and is computed using the displacement expressions in Egs. (20) and (33) depending on
the type of the eigenvalue. The idea of the global interpolation functions is similar to the idea of the local interpolation func-
tions (shape functions) of a finite element. For a complex eigenvalue, Eq. (20) is used, while for a real eigenvalue Eq. (33) is
used. In the reported literature of the FFEM, such as Treifi et al. [17,20], the transformation matrix T of any layer in the sin-
gular region can be computed in terms of the transformation matrix of the first layer when the layers of elements in the sin-
gular region are constructed using a similarity ratio. This leads to a transformed stiffness matrix of the inner layers being
written as a sum of a geometric series allowing virtually the use of an infinite number of layers in the singular region based
only on the stiffness matrix of the first layer. However, for the case of a bi-material notch where eigenvalues may be com-
plex, this is not simple because 7 and its conjugate . appear in the displacement expressions. Therefore, a finite number of
layers will be used in the singular region instead of using the sum of a geometric series. It should be noted that the fractal
self-similar nature of the mesh applies to the radial direction towards the notch/crack tip but not necessarily to the hoop
direction. For this reason, the topology is referred to as being fractal-like.
In the FFEM, the equilibrium equation in the conventional FEM can be partitioned and transformed as follows

K Ko 0 d, f,
Ko Ko + K Kt dy b =4 fr+£ (39)
0o Ky Ky+km]|a £ 4 i

where r refers to regular nodes, m master nodes located on the border encompassing the singular region, and s singular
nodes. Only the over-barred components (the over-bar here does not refer to the complex conjugate) are transformed:

Jelst _ yrlstplst
Kms - KmsTs
Jelst _ plst! prlstplst
K =T, K, T,
inn __ n
K" =3 K

n=2
n _ ' enn
K =T'K'T’
Flst _ plst! glst
fs = Ts fs
—_ nl —
inn __ n
fm =3

n=2
fn _ Tann
s — ts ts

where T;“ and T; refer to the transformation matrices for the first and n'" layers of the singular region.

The eigenvalues for a bi-material notch may be a combination of real and complex numbers. Each real eigenvalue is asso-
ciated with a single element of the vector of generalised coordinates, but each complex eigenvalue is associated with two
elements (real and imaginary parts of a complex generalised coordinate) of that vector. Therefore, the FFEM code is rewritten
to invoke the appropriate expressions derived in Section 2 according to the type of each eigenvalue.
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Fig. 3. (a) Bi-material cracked plate (H/W = 2) subject to tension loading conditions (b) and (c) the plate FE mesh used in the FFEM.
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Fig. 4. The FE mesh of the cracked plate (H/W = 2) used to compute the SIFs in the ABAQUS software.
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Fig. 5. Variations of bi-material crack SIFs with size of the singular region for different material property ratios compared to those obtained using ABAQUS

(a/w=0.4).
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As dy is much larger than a, solving the equilibrium equation for a instead of d reduces the computational cost dramat-
ically. Also, in the FFEM the SIFs are computed directly without any need for special singular elements or post-processing
technique, because the SIFs are directly related to a as shown in Egs. (34)-(37).

5. Numerical examples and verifications
5.1. Convergence study

The size of the singular region is determined through a convergence study of examples of bi-material crack and bi-mate-
rial notch cases with different material property ratios and different crack lengths. The choice of the number of terms of the
global interpolation functions NT, the similarity ratio p and the number of layers NL to model the singular region are based
on previous convergence studies [17,18,20].

A bi-material edge cracked plate subjected to tension loading conditions, as shown in Fig. 3a, is considered first. The plate
is of height H = 20 and width W = 10. The crack length a is taken as a/w = 0.4. Six node triangular elements (seven-point inte-
gration scheme) are used to model the plate as shown in Fig. 3b. For this example and all the examples in this paper, the
region around the notch/crack tip is modelled using 20 layers starting with a radius of 0.6 down to 0.00003656 as shown
in Fig. 3c. The layers are constructed using a similarity ratio of p = 0.6. The number of terms of the global interpolation func-
tions to be used in the transformation is taken as NT = 21. The Poisson’s ratios are taken to be v; = v, =0.3.

The SIF values are computed for different material property ratios (2, 4, 10 and 100) using the FFEM. The results are com-
pared to those computed using ABAQUS finite element analysis (FEA) commercial package. In ABAQUS, the cracked plate is
modelled using quadrilateral elements (which are designated as CPS8 in the ABAQUS FEA software) as shown in Fig. 4. Also,
the region around the crack tip is modelled using the same number of layers as in the FFEM. In addition, quarter-point sin-
gular elements are used in the ABAQUS FEA software to model the first layer around the crack tip.

Fig. 5 shows the SIFs computed for different sizes of the singular region and different material property ratios. The sizes
and corresponding number of layers are taken as: the first radius considered is R; = 0.36 containing 19 layers, the second
radius is R; = 0.216 containing 18 layers, and so on down to the nineteenth radius Rs = 0.00003656 containing only one layer.

The same analysis as above is repeated for a bi-material edge notched plate as shown in Fig. 6a. The plate is meshed using
six node triangular elements as shown in Fig. 6b. The opening angle of the notch is taken to be y = 60°. No published results
are available for this case and current commercial FEA packages, such as the ABAQUS software, are not capable of computing
the SIFs for a true notch. However, the current authors have developed a strain energy approach (SEA) to compute the SIFs for
a notch, which is based on the strain energy of a finite volume around the notch tip [23]. The strain energy, which may be
computed using commercial FEA packages, is used to compute the notch SIFs by using the formulae presented in Ref. [23].
The ABAQUS software is used to compute the strain energy for this case. The plate is meshed as shown in Fig. 6¢ using quad-
rilateral elements (CPS8). The notch SIFs computed using the FFEM for different sizes of the singular region and different
material property ratios compared to the SIF values computed using the SEA are plotted in Fig. 7.

From Figs. 5 and 7, it can be seen that the size of the singular region has an effect on the results. Convergence is achieved
within a limited region (R; = 0.001-0.03) for a bi-material crack with a material property ratio of E{/E, = 10 or less. For larger
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Fig. 6. (a) Bi-material V-notched plate (H/W = 2) subject to tension loading conditions, (b) the plate FE mesh used in the FFEM, and (c) the plate FE mesh
used in the ABAQUS software to compute the strain energy.
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values of material property ratios and for the notch cases, convergence is achieved within a larger region of the size of the
singular region (R; > 0.001). The larger the size of the singular region, the more the nodal displacements that are transformed
leading to less computational cost.

Now, the relation between the crack length and the size of the singular region is examined. A bi-material cracked plate as
shown in Fig. 8a is considered. The material property ratio is taken as E{/E, = 4. The plate is of height H=30 and width
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Fig. 7. Variations of bi-material notch SIFs with size of the singular region for different material property ratios compared to those obtained using the SEA

(ajw=0.4).
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W =10. Six node triangular elements are used to mesh the plate as shown in Fig. 8b and c. The SIF values are computed for
different crack lengths (a/w = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7). The volumes of the singular region and corresponding number of
layers are taken as follows: the first radius considered is R; = 0.36 containing 19 layers, the second radius is R; = 0.216 con-
taining 18 layers, and so on down to the twelfth radius R; = 0.00047 containing six layers. Smaller radii are not considered
because they will not give results with good accuracy as we found from the previous two examples. The FFEM results are
plotted in Figs. 9-14 and are compared to those reported by Matsumto et al. [10]. It can be seen from those figures that con-
vergence is achieved with smaller sizes of the singular region when the crack length is short. As the crack length increases,
convergence is achieved when using larger sizes of the singular region.

Based on the above discussion, the radius of the singular region for a crack problem may be taken as Rs = 0.0036 when the
crack length is a/W < 0.5 and the material property ratio is E{/E; < 10, Ry = 0.0467 when the crack length is a/W < 0.5 and the
material property ratio is E{/E; > 10, and Rs = 0.0467when the crack length is a/W > 0.5 for all material property ratios. For
notch problems where convergence is achievable for a wider range of values of the radius of the singular region, the radius
of the singular region may be taken as R, = 0.0467 for all cases. These values of R, are used for the rest of the examples pre-
sented in this paper.

5.2. Bi-material crack

A bi-material cracked plate subjected to tension loading conditions as shown in Fig. 8a is analysed. The plate is of height
H =30 and width W = 10. Six node triangular elements are used to mesh the plate as shown in Fig. 8b and c. Different crack
lengths (a/w =0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and different material property ratios (E;/E; = 2, 4, 10 and 100) are considered.
The scaled SIF values (K./o+/ma'Re® (2a)"™*) computed using the FFEM are tabulated in Table 2. Corresponding published
results by Matsumto et al. [10] and computed results using the ABAQUS software and the SEA are also tabulated for com-
parison. In ABAQUS and the SEA, the plate is meshed using quadrilateral elements (CPS8) as shown in Fig. 15 and singular
quarter-point elements are used around the crack tip. The singular eigenvalues for a bi-material crack of a material property
ratio of E;1/E; =2, 4, 10 and 100 are 4=0.5+1i0.037306, 4=0.5+i0.0678545, /. =0.5 +i0.0937743 and /Z=0.5+i0.113817,
respectively. Table 2 shows that the FFEM results are in good agreement with the numerical results computed using ABAQUS
and the SEA and with those reported by Matsumto et al. [10].
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Fig. 8. (a) Bi-material cracked plate (H/W = 3) subject to tension loading conditions (b) and (c) the plate FE mesh used in the FFEM.
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Fig. 10. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.3,E;/E; = 4).
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Fig. 11. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.4,E,[E; = 4).

5.3. Bi-material notch

A bi-material V-notched plate subjected to tension loading conditions as shown in Fig. 6a is analysed for different notch
opening angles (y = 0°, 30°, 45°, 60° and 90°) and different material property ratios (E;/E; =2, 4, 10 and 100). The plate
dimensions are H=20 and W =10. The notch length is taken as a/W = 0.4. Six node triangular elements are used to mesh
the plate in a similar way to that shown in Fig. 6b. No available published results exist to compare with for the notch cases,
and current FEA software, such as the ABAQUS software, cannot compute the SIFs for a true notch; i.e. the notch opening
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Fig. 12. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.5,E,/E, = 4).
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Fig. 13. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.6,E;/E, = 4).
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Fig. 14. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.7,E/E, = 4).

angle is not zero. It is only capable of computing the SIF values for crack problems. Therefore, the SEA is used to compare the
results for the true notch cases. In the SEA, the plate is meshed in a similar way to that shown in Fig. 6¢ to compute the strain
energy.

The scaled SIF values computed using the FFEM and SEA are tabulated in Table 3. The singular eigenvalues (Re (1) < 1) for
each case are also tabulated in Table 3. For each case, the singular eigenvalues are either two real eigenvalues or a single
complex eigenvalue. Each case with two singular real eigenvalues gives two real SIFs K; and K, for mode I and II, respectively,
while each case with a single complex singular eigenvalue gives a complex SIF K. = K; + iK;. The real and imaginary parts of a
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Table 2
Scaled SIFs for bi-material cracked plates under tension.
a/w Ey[E,
2 4 10 100
K Ky K Ky K Ky K Ky

0.2 FFEM 1.358 —-0.135 1.360 —-0.249 1.363 —0.349 1.367 —0.429
SEA 1.365 —-0.138 1.364 —-0.250 1.365 -0.339 1.370 —-0.418
ABAQUS 1.368 -0.137 1.368 —-0.251 1.369 —-0.350 1.371 —-0.430
Matsumto 1.367 -0.137 1.368 —-0.251 1.366 —-0.348 1.376 —-0.429

0.3 FFEM 1.649 -0.157 1.646 —-0.287 1.642 —0.400 1.639 —-0.487
SEA 1.657 —0.160 1.652 -0.292 1.646 -0.397 1.644 —0.488
ABAQUS 1.659 —0.159 1.654 —0.289 1.649 —0.400 1.643 —0.487
Matsumto 1.657 —-0.156 1.655 —0.288 1.648 —0.394 1.647 —-0.470

0.4 FFEM 2.099 -0.197 2.092 —-0.359 2.082 —0.496 2.074 —0.600
SEA 2.107 -0.199 2.099 —-0.364 2.088 —-0.498 2.080 —-0.609
ABAQUS 2.109 —-0.198 2.101 —-0.360 2.090 —0.496 2.079 —0.600
Matsumto 2.109 -0.195 2.102 —-0.358 2.090 —-0.491 2.083 —-0.569

0.5 FFEM 2.808 —-0.267 2.796 —0.485 2.779 —0.666 2.764 —0.802
SEA 2.819 —0.268 2.805 —0.489 2.787 —0.669 2.771 —-0.812
ABAQUS 2.821 —0.268 2.807 —0.485 2.788 —0.665 2.771 —0.801
Matsumto 2.819 —0.268 2.806 —0.483 2.789 —0.661 2.772 —-0.793

0.6 FFEM 4.014 —0.396 3.991 -0.717 3.961 —0.982 3.929 -1.177
SEA 4.024 —0.396 4.000 -0.718 3.967 —0.983 3.937 -1.180
ABAQUS 4.025 -0.398 4.002 -0.718 3.971 —-0.982 3.940 -1.177
Matsumto 4.024 —-0.398 4.001 -0.714 3.968 -0.973 3.906 -1.171

0.7 FFEM 6.336 —0.676 6.283 -1.218 6.214 -1.656 6.145 -1.969
SEA 6.338 —0.665 6.288 -1.202 6.220 —-1.647 6.157 -1.956
ABAQUS 6.336 —-0.671 6.291 -1.210 6.230 -1.651 6.168 -1.974
Matsumto 6.348 —0.668 6.298 -1.204 6.227 -1.634 6.157 -1.957
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Fig. 15. The FE mesh of the cracked plate (H/W = 3) used to compute the SIFs in the ABAQUS software.
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Table 3
Scaled SIFs for bi-material V-notched plates under tension (a/W = 0.4).
7(°) E[E>
2 4 10 100
K Ky K Kn K Ki K Ky

0 FFEM 2.102 —0.196 2.095 —0.357 2.085 —0.493 2.077 —0.595
SEA 2.109 -0.199 2.100 -0.363 2.089 —-0.496 2.082 —-0.607
ABAQUS 2.110 -0.198 2.102 —0.359 2.092 —0.495 2.081 —0.598
2 0.5+i0.0373 0.5 +i0.0679 0.5 +i0.0938 0.5+i0.1138

30 FFEM 3.447 —2.187 2.469 -1.315 2.264 -1.146 2.192 -1.148
SEA 3.449 —2.188 2470 -1.315 2.264 -1.143 2.193 —1.149
ABAQUS - - - - - - - -
2 0.5265 0.5727 0.5490 +i0.0602 0.5482 +i0.0950 0.5475 +1i0.1198

45 FFEM 2.508 —0.943 3.688 —3.043 2.446 -1.636 2.260 —1.493
SEA 2.510 —0.941 3.689 —3.042 2.446 -1.633 2.261 -1.490
ABAQUS - - - - - - - -
2 0.5202 0.6433 0.5802 +i0.0352 0.5784 +1i0.0879 0.5767 +i0.1187

60 FFEM 2.428 —0.668 3.632 -1.980 2.881 —2.552 2.364 —1.942
SEA 2.430 —0.666 3.633 —1.980 2.881 —2.549 2.365 —1.940
ABAQUS - - - - - - - -
2 0.5243 0.7163 0.5627 0.6722 0.6139 +i0.0704 0.6105 +i0.1127

90 FFEM 2.587 —0.394 2.967 —0.825 4.202 —1.680 3.465 —4.887
SEA 2.590 —0.391 2.969 —0.826 4.201 -1.677 3.466 —4.888
ABAQUS - - - - - - - -
2 0.5532 0.8929 0.5765 0.8545 0.6197 0.7927 0.6975 +i0.0609

complex SIF correspond to mode I and II. From Table 3, it can be seen that the notch SIF values predicted using the FFEM and
the SEA are in very good agreement.

Zuccarello and Ferrante [24] reported an experimental SIF for a V-notched bi-material plate subjected to tension loading
conditions as shown in Fig. 6a. The plate dimensions are H = 30 cm, W = 7.5 cm, the thickness t = 1 cm, and the notch opening
angle is y=135°. The plate is made of two parts: Aluminium (E; = 63,300 MPa, v; =0.33) and PSM-1 (E;=2990 MPa,
v, = 0.39). The adhesive chosen to bond the two materials together has practically the same material properties as PSM-1.
The experimental SIF for this case is K;/ga'~* = 1.55. Zuccarello and Ferrante did not include the factor v27 in the definition
of SIFs. Modelling the plate in a similar way to that shown in Fig. 6b, the SIF computed using the FFEM is
K;/v2nea'~ = 1.54 (the mode I eigenvalue for this case is /; = 0.6515, mode II eigenvalue is not singular). The published
experimental and the computed FFEM SIF values for this problem are in very good agreement.

6. Conclusions

In this paper, the FFEM was developed to compute the mode I and II SIFs for bi-material V-notch problems. Exact analyt-
ical solutions of the asymptotic field around a bi-material notch tip were derived and used as global interpolation functions
in the FFEM to transform the large number of nodal displacements in the singular region to a small number of generalised co-
ordinates. This enables the computation of the SIFs and the coefficients of the higher order terms directly without the need
for a post processing technique to extract them. Also, no special singular elements are needed to model the singular region.
Any conventional finite elements can be used. Various bi-material V-notch problems were analysed and compared to avail-
able published results and numerical solutions to demonstrate the accuracy of the method. New results for bi-material notch
cases were also introduced.
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12. Discussions, Conclusions and Recommendations

12.1. Discussions

In the course of this research, the FFEM was extended to evaluate the SIFs for isotropic
homogeneous and bi-material V-notches under mode I, II and III loading conditions. This
development regards a crack simply as a special case, because a crack is just a notch with
a zero opening angle. This development has made the method more general because its
applications were extended to compute SIFs resulting at singularity points for a wider

range of engineering problems.

The FFEM is a semi-analytical method. It brings together the agility of the FEM and the
accuracy of the exact analytical solutions. The necessity to use very fine meshes to model
the singular regions around singular points leads to a large number of unknowns and a
considerable increase of the computational cost of FE solutions. In the FFEM this is
avoided by the employment of exact analytical expressions of a displacement field as
global interpolation functions to transform the large number of nodal displacements of a
singular region into a small set of generalised co-ordinates. This reduces the
computational cost significantly. The SIFs and the coefficients of the higher order terms
of the notch tip asymptotic field are the generalised co-ordinates that are computed
directly in the FFEM. Therefore, no post-processing is required to extract them.
Moreover, no special singular finite elements are needed to model the singular region
around a notch tip as conventional finite elements can be used to model the whole of the
cracked/notched body. As the transformation involves only simple matrix multiplications,

the implementation of the FFEM into existing FEM codes is rather easy.
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To extend the FFEM to computing SIFs for notches, the stress and displacement
expressions were analytically derived for a homogeneous notch under in-plane conditions
(mode I and II). The displacement expressions were used as GIFs in the FFEM to carry
out the transformation of the nodal displacements of the nodes within a singular region.
The accuracy of the results obtained for different single V-notched plates subjected to
tension, shear, or bending loading conditions was very good compared to available

published data or data obtained using numerical methods such as the FEM

The encouraging results obtained for the in-plane cases (modes I and II) demonstrated the
potential of developing the method further to evaluate SIFs for other notch problems.
Therefore, the stress and displacement expressions were analytically derived for a
homogeneous notch under out-of-plane shear conditions (mode III). These were used as
GIFs in the FFEM. The method was used to generate results for mode III SIFs and the

accuracy of those was shown to be very good.

For both the in-plane and out-of-plane cases, the results were compared to available
published results. When results were not available the results were compared to those
obtained using the commercial FE software package ABAQUS. However, this was done
only for crack problems because commercial FE packages are generally not capable of
computing the SIFs for a general notch, and ABAQUS is no exception. In the ABAQUS
simulation, similar meshes to the one used in the FFEM were used. Also, the elements
around the crack tip were modelled using quarter-point crack-tip elements. Although
similar meshes (and therefore similar numbers of nodes) were used in the FFEM and in

the ABAQUS software, the number of equations that needed to be solved in the FFEM
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was much smaller than that in ABAQUS, because of the transformation process of the
nodal displacements of the singular nodes applied in the FFEM. This demonstrates an

advantage of the FFEM.

In the FFEM, the property of self-similar elements was exploited too. It was shown that
the element matrices of isoparametric two-dimensional FE elements are the same. Also,
the transformation matrix of an inner layer in the singular region could be computed from
that of the first layer. These two properties were exploited in the FFEM. Only the first
layer of elements in the singular region is needed to generate all the inner layers of the
singular region by using the sum of geometrical series. This property permits the

discretisation of the singular region using virtually infinite number of layers of elements.

For bi-material notches the stress and displacement fields were derived for the out-of-
plane case (mode III) and were used as GIFs in the FFEM. Different examples of
different notch geometries and different material properties were analysed to validate the
FFEM results. The mode III SIFs computed using the FFEM were compared to available
published data or numerical solutions. Availability of published data is limited to crack
problems only, and current commercial FE packages are also limited to crack problems.
Therefore, the comparison was limited to bi-material crack problems only. Although this
comparison proves sufficiently, to a certain degree, that the FFEM provides accurate
results, the necessity to compare FFEM results, especially for the bi-material cases, with
another method seemed advantageous to validate clearly the accuracy of the FFEM for
analysing bi-material notches. Therefore, the SEA was developed. As it is based on the
strain energy, it was used in conjunction with a commercial FE package, i.e., the

ABAQUS software, to compute the SIFs for bi-material notches. This approach is quite
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appealing, as it is easy to use in order to extract notch SIFs using commercial FE
packages, which are not capable of computing SIFs of a general notch. The results for
mode III SIFs of a general notch computed using the SEA agreed well with the

corresponding values computed using the FFEM.

The encouraging results of the SEA led to exploring this approach further. It was
extended and presented as a complete technique to compute SIFs for a general notch in
isotropic or bi-material bodies under mode I, II and III conditions from FE solutions
obtained using commercial FE packages. The accuracy of the approach was proven to

very good.

Armed with a new approach to compute SIFs for bi-material notches, the FFEM was
extended to analyse bi-material notches under mode I and II conditions (the in-plane
case), following the analytical derivations of the stress and displacement expressions for a
bi-material notch. The mode I and II SIFs computed for bi-material notches were
compared to available published data and values computed using the ABAQUS software
for crack problems and to SEA results for notch problems. The agreement between the

results was very good.

For the in-plane problem of a bi-material notch, the transformation matrix for the inner
layers in the singular region cannot be computed in terms of the transformation matrix of
the first layer when the layers of elements in the singular region are constructed using a
similarity ratio as is the case for all the previous cases. This is because the complex

eigenvalues and their conjugates appear in the transformation matrix. Therefore, a finite
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number of layers were used in the singular region instead of using the sum of a geometric

series.

It was also shown that the size of the singular region has an effect on the results for the in-
plane bi-material notch. For the other cases, it did not have any considerable effect.
Similarly for the SEA, it was also shown that the size of the control volume (singular) has
an effect on the results especially for mixed mode cases. Recommendations were made on
the size of the singular region in the relevant chapters by carrying out convergence
studies. Also, convergence studies were presented to determine the similarity ratio, the
number of layers of elements to be used to model the singular region and the number of

terms of the displacement series expansion to be used as GIFs in the FFEM.

Because the FFEM is based on the FEM, its results are mesh dependent as is the case in
the FEM. Following the general advice for constructing good meshes in the FEM is
sufficient to produce good results in the FFEM. The FFEM could be used to address other
problems whether singular or not, especially when the conventional FEM has
convergence problems or when the model is too large. The only limitation to the use of

the FFEM is the availability of “good” global interpolation functions.

The SEA depends on the strain energy computed using FE software packages. Therefore,

its results are mesh dependent, too. In addition, it is recommended to use fine meshes

around the singular points especially for mixed mode cases.

To sum up, two procedures were developed to compute the SIFs for a general notch in

isotropic and bi-material bodies. The first is a stand alone method, i.e., the FFEM, and the
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second is a post-processing technique, i.e., the SEA, which can be used to extract the SIFs

for a general notch from FE solutions produced using commercial FE packages. Both

procedures produced accurate and new results.

12.2. Conclusions

The main findings of the research are as follows:

1.

The analytical expressions of the stress and displacement fields around a notch tip
in an isotropic homogeneous plate under mode I, II and III loading conditions
were derived and used as global interpolation functions in the FFEM. The FFEM
code was successfully extended to compute the SIFs for isotropic homogeneous
notch. The accuracy of the results was shown to be very good compared to
available publish data and numerical solutions.

Using a simple coordinate transformation, the FFEM code was extended to
compute the SIFs for asymmetric isotropic homogeneous without the need for
deriving new GIFs.

The analytical expressions of the stress and displacement fields around a notch tip
in a bi-material body under mode I, II and III conditions were derived. It was
found that the singular eigenvalues can assume real or complex values. The
eigenvalues were computed successfully using a modified version of Muller’s
method to avoid Muller’s method convergence to the same root at every step by
using an incremental technique.

Using the displacement expressions of a bi-material notch as GIFs, the FFEM

code was extended successfully to compute the SIFs for bi-material notch under
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mode I, II and III conditions. The results obtained demonstrated very good
accuracy with available published data and with numerical solutions.

5. A SEA was developed to extract the mode I, II and III SIFs values for isotropic
homogeneous and bi-material notches from FE solutions computed using a
commercial FE software package.

6. The results obtained using the FFEM agree well with corresponding results
computed using the SEA. This gives more confidence of the accuracy of the
FFEM, and also the SEA, to compute the SIFs values specifically for bi-material
notches where published results were not available and current commercial FE

packages are not capable of computing the SIFs of a general notch.

12.3. Recommendations for Future Work

1. The FFEM and the SEA could be extended to compute the plastic SIFs for
notches.

2. As notches/corners are not always sharp, considering extending the FFEM and the
SEA to compute the SIFs for blunt (rounded) notch is of high relevance.

3. It would be beneficial to extend the application of the FFEM to compute notch
SIFs for bodies subject to dynamic loading. The SEA could also be used to
compute dynamic SIFs.

4. As materials are not always isotropic, it would be good development to extend the
FFEM and SEA to compute SIFs for an anisotropic notch.

5. A significant development of the FFEM would be its extension to compute the

SIFs for three dimensional notched bodies.
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6. The FFEM method is not limited to singularity problems. Other problems whether
singular or not can be addressed, especially when the conventional FEM has
convergence problems or when the model is too large, provided the availability of

good global interpolation functions.
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