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Nomenclature

a Crack/Notch length

a, c Set of generalised co-ordinates

B strain-displacement operator

A, B, a, b Constants

4321 ,,, CCCC Constants

d Nodal displacement vector

dr, dm, and ds Nodal displacement vectors of nodes in regular region, master nodes,

and in singular region

...,2,1 ndst
sd Nodal displacements of the nodes in the first layer, second layer, …

in the singular region

D Material property matrix

E Young’s modulus

)(eE Strain energy

f Nodal force vector

fr, fm, and fs Nodal force vectors of nodes in regular region, master nodes, and in

singular region

innst
s

,1f Transformed nodal force vectors of the first layer and the inner

layers in the singular region

G Shear modulus

H, h Plate height

ch distance between crack/notch tip and bottom boundary of plate

H constitutive matrix
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k Element stiffness matrix

K Stiffness matrix

Krr, Kmr,

Kmm, Kss, …

Partitioned stiffness matrices (r refers to regular region, m to master

nodes, and s to slave nodes)

n
sK partitioned stiffness matrix of the nth layer in the singular region

inn
s

st
s KK ,1 Transformed partitioned stiffness matrices of the first layer and the

inner layers in the singular region

IIIIII KKK ,, Stress intensity factors of mode I, II, III

cK Complex stress intensity factor

IcK Fracture toughness

i Complex unit  1 ; integer variable

j Integer variable

J Jacobian Matrix

J Determinant of the Jacobian Matrix

m, n Integer variables

N shape function matrix

NL, nl Number of layers in the singular region

NT, nt Number of terms of eigenfunction series expansion

yx PP , Resultant forces

0R Radius of region meshed using a similarity ratio

cR Radius of control volume

sR Radius of singular region

,r Polar co-ordinates



13

t Plate thickness

T Transformation matrix

n
sT Transformation matrix of the nodal displacements of the nth layer in

the singular region

st
s
1T Transformation matrix of the nodal displacements of the first layer in

the singular region

cT Matrix of direction cosines

u Displacement field

yx uu , Displacements in x and y directions

V Volume

w Displacement in z directions

W Width of single-edge-notched plate or half width of double-edge-

/centre- notched plate

)(eW Strain energy density

x, y, z Cartesian co-ordinates

z Complex variable

 Angle between notch face and x-axis

 Angle between notch bisector and x-axis

  Diagonal matrix

yx  , Relative displacements in x and y directions

 Normal strain

ε strain vector

 Notch opening angle; shear strain

,...,, 321  Curves labels
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,, Complex potentials

 Airy stress function

 Eigenvalue

 Poisson’s ratio

 Similarity ratio

 Normal stress

σ Stress vector

t Ultimate tensile strength

 Shear stress

 ,  Natural coordinates

2 The Laplacian operator
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Abstract

Fractal-like Finite Element Method and Strain Energy Approach for Computational
Modelling and Analysis of Geometrically V-notched Plates

Muhammad Treifi
Doctor of Philosophy

The University of Manchester
December 2012

The fractal-like finite element method (FFEM) is developed to compute stress intensity
factors (SIFs) for isotropic homogeneous and bi-material V-notched plates. The method is
semi-analytical, because analytical expressions of the displacement fields are used as
global interpolation functions (GIFs) to carry out a transformation of the nodal
displacements within a singular region to a small set of generalised coordinates. The
concept of the GIFs in reducing the number of unknowns is similar to the concept of the
local interpolation functions of a finite element. Therefore, the singularity at a notch-tip is
modelled accurately in the FFEM using a few unknowns, leading to reduction of the
computational cost.

The analytical expressions of displacements and stresses around a notch tip are derived
for different cases of notch problems: in-plane (modes I and II) conditions and out-of-
plane (mode III) conditions for isotropic and bi-material notches. These expressions,
which are eigenfunction series expansions, are then incorporated into the FFEM to carry
out the transformation of the displacements of the singular nodes and to compute the
notch SIFs directly without the need for post-processing. Different numerical examples of
notch problems are presented and results are compared to available published results and
solutions obtained by using other numerical methods.

A strain energy approach (SEA) is also developed to extract the notch SIFs from finite
element (FE) solutions. The approach is based on the strain energy of a control volume
around the notch-tip. The strain energy may be computed using commercial FE packages,
which are only capable of computing SIFs for crack problems and not for notch problems.
Therefore, this approach is a strong tool for enabling analysts to compute notch SIFs
using current commercial FE packages. This approach is developed for comparison of the
FFEM results for notch problems where available published results are scarce especially
for the bi-material notch cases.

A very good agreement between the SEA results and the FFEM results is illustrated. In
addition, the accuracy of the results of both procedures is shown to be very good
compared to the available results in the literature. Therefore, the FFEM as a stand-alone
procedure and the SEA as a post-processing technique, developed in this research, are
proved to be very accurate and reliable numerical tools for computing the SIFs of a
general notch in isotropic homogeneous and bi-material plates.
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Introduction
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1. Introduction

1.1. Background and Motivation

The presence of cracks in structural elements leads to stress intensities at the crack tips.

This may lead to a catastrophic sudden failure of those structures. Therefore, a lot of

research has been dedicated to finding parameters to characterise the fracture caused by

cracks. Some of those parameters, that are used today, are the stress intensity factors

(SIFs), the J-integral, and the crack tip opening displacement, which are used as failure

criteria. Relationships between these parameters exist in linear elastic fracture mechanics.

The presence of notches, too, leads to stress intensities at the notch tips. A crack is a

special case of a notch (a notch with an opening angle of zero is basically a crack).

Therefore, developing new methods and/or extending existing methods of computing

fracture parameters of a crack to compute general fracture parameters of a notch is of high

relevance. This is because it would allow interested designers and analysts to compute

fracture parameters of any general case of stress intensity.

The usefulness is greater if a method can be developed or extended to compute fracture

parameters for notches and cracks in two different materials joined together. This is

important, because of the use of components made up of different materials joined

together in different engineering fields. Those fracture parameters help the designer and

the operator to understand the mechanical integrity of such bi-material components. This

could also be used to assess the bonding strength of an adhesive between the different

joined materials.
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Many researchers have dedicated a lot of research to attempt to treat notches along the

interface of a bi-material component. However, because of the complicated nature of such

cases, they only produced results for stress singularities of bi-material notches without

producing results of the more useful parameters, such as the SIFs.

The fractal-like finite element method (FFEM) is a semi-analytical method that was

initially developed in the 1980s in Hong Kong to compute the SIFs of crack problems. Its

results are of good accuracy and it is easy to implement in a finite element (FE) code as

only matrix multiplication is involved, provided that “good” global interpolation

functions (GIFs) are used. From the late 1990s, researchers at Manchester have extended

the FFEM to multiple penny-shaped cracks, thermoelastic crack problems and dynamic

crack problems. However, none of the researchers in Hong Kong or Manchester have

investigated notch problems. Therefore, the main objective of this thesis is to extend the

FFEM to compute the SIFs of general notch cases of isotropic and bi-material cases,

along with attempts to develop other approaches to extract the SIFs for a general notch

from commercial FE packages. This is because most FE commercial packages are capable

of computing the SIFs for cracks but not for general notches.

1.2. Aims and Objectives

The specific objectives of this study are:

1. Derivation of global interpolation functions for an isotropic notch under mode I, II

and III loading conditions.
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2. Extending the FFEM to compute the SIFs for symmetric isotropic notch under

mode I, II and III loading conditions.

3. Dealing with asymmetric isotropic notch using FFEM.

4. Derivation of global interpolation functions for a bi-material notch under mode I,

II and III loading conditions.

5. Extending the FFEM to compute the SIFs for bi-material notch under mode I, II

and III loading conditions.

6. Developing a technique for extracting SIFs values from commercial FE packages

based on the strain energy for comparison.

1.3. Contributions to Knowledge

This research provides a means to compute the SIFs for general notch problems. It

develops the FFEM to compute notch SIFs as a stand-alone method. To evaluate the

accuracy of the predicted notch SIFs values by the FFEM, comparison with available

published results is carried out. However, for many cases considered there are no

available published results to compare with especially in the cases of bi-material notch

problems. Therefore, a comparison is carried out with crack cases for which published

results exist or numerical results are obtainable using commercial FE packages, as a crack

is simply a special case of a notch. Although this comparison proves partially and, to a

certain degree, sufficiently that the FFEM provides accurate results, the necessity to

compare FFEM results, especially for the bi-material cases, with another method seems in

order as it will enable the validation of the newly developed FFEM for analysing bi-

material notches. Therefore, a lot of effort and research has been devoted to overcome

this, and an approach based on the strain energy of a singular region around the notch tip
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to compute the notch SIFs is developed. The strain energy can be easily computed using a

commercial FE package. This makes this approach quite appealing, as it makes it easy to

extract notch SIFs using commercial FE packages, which to my knowledge are not

capable of computing SIFs of a general notch.

In addition, the many examples of different notch shapes and locations subjected to

different loading conditions give a valuable insight into the behaviour of the SIFs values

as the notch gets closer to the boundaries or as the material properties of a bi-material

notch vary. Many of those results are new.

In list form, the contributions to knowledge are as follows:

1. Development of the FFEM to compute mode I and II SIFs for isotropic notch

problems.

2. Development of the FFEM to compute mode I and II SIFs for isotropic

asymmetric notch problems.

3. Development of the FFEM to compute mode III SIFs for isotropic notch

problems.

4. Development of the FFEM to compute mode III SIFs for bi-material notch

problems.

5. Development of the FFEM to compute mode I and II SIFs for bi-material notch

problems.

6. Development of the SEA to extract mode I, II and III SIFs for isotropic and bi-

material notch problems from FE solutions produced using commercial FE

packages.
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1.4. Layout of Thesis

This thesis is presented in an Alternative Format, meaning that its core context is

presented in the form of research papers that have been published in externally refereed

contexts. Therefore, this thesis is divided into twelve chapters. Chapter one defines the

aims and objectives, justifies the undertaking and highlights the contributions to

knowledge of the study. Chapter two provides a literature review of the methods that

have been developed and used to compute SIFs for cracks and notches. Chapter three

provides a general theoretical background of the FFEM and the mathematical derivations

of the global interpolation functions. Chapter four provides a research overview and a

summary of the papers included in the thesis. The following seven chapters, Chapter five

to Chapter eleven, are the published research papers that demonstrate the methods and

findings of the research undertaken. The sections of these papers are listed in the Table of

Contents. However, the pagination of the thesis does not include the pages numbers of the

papers. Hence, Chapters five to eleven appear at pages 110, 111, 112, etc.

Chapter five presents a copy of a journal paper entitled “Computation of the stress

intensity factors of sharp notched plates by the fractal-like finite element method” that has

been published in the International Journal for Numerical Methods in Engineering. In this

paper the FFEM is developed to compute SIFs values for the in-plane problem (mode I

and II) under tension. Chapter six presents a copy of a journal paper entitled

“Computations of modes I and II stress intensity factors of sharp notched plates under in-

plane shear and bending loading by the fractal-like finite element method” that has been

published in the International Journal of Solids and Structures. In this paper, the FFEM

code is extended to compute the notch SIFs for plates subjected to in-plane shear and
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bending loading conditions. Chapter seven presents a copy of a conference paper entitled

“Computations of SIFs for non-symmetric v-notched plates by the FFEM” that has been

published in the Proceedings of the ASME 2009 International Design Engineering

Technical Conferences & Computers and Information in Engineering Conference

IDETC/CIE 2009 August 30 - September 2, 2009, San Diego, CA, USA. In this paper the

method is extended to compute the SIFs for non-symmetric notch cases. Chapter eight

presents a copy of a journal paper entitled “Computations of the stress intensity factors of

double-edge and centre V-notched plates under tension and anti-plane shear by the

fractal-like finite element method” that has been published in the journal Engineering

Fracture Mechanics. In this paper, the FFEM is developed to compute mode III SIFs for

notches subjected to out-of-plane loading conditions. All the aforementioned work was on

developing the FFEM to compute SIFs for isotropic homogeneous cases.

Chapter nine presents a copy of a journal paper entitled “Evaluation of mode III stress

intensity factors for bi-material notched bodies using the fractal-like finite element

method” that has been published (early view) in the journal Computers and Structures. In

this paper, the FFEM is developed to compute the mode III SIFs for bi-material notches.

Chapter ten presents a copy of a journal paper entitled “Strain Energy Approach to

Compute Stress Intensity Factors for Isotropic Homogeneous and Bi-material V-notches”

that has been published (early view) in the International Journal of Solids and Structures.

In this paper, an approach to compute SIFs for general notches in isotropic homogeneous

or bi-material plates based on the strain energy is developed. Chapter eleven presents a

copy of a journal paper entitled “Bi-material V-notch Stress Intensity Factors by the

Fractal-like Finite Element Method” that has been published (early view) in the journal

Engineering Fracture Mechanics. In this paper, the FFEM is developed to compute the
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mode I and II SIFs for bi-material notches. Chapter twelve concludes the thesis,

summarises the findings and makes suggestions for future work.
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Chapter 2

Literature Review
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2. Literature Review

2.1. Historical Background of Fracture Mechanics

Structures were traditionally designed so that the internal stresses would be below certain

limiting values, which were usually taken as the yield stress values of the materials used.

This approach is insufficient, because materials may have defects such as cracks,

dislocations or impurities, etc, or a structure may have sharp corners, notches, or holes.

All of these may cause the stresses to rise and are considered stress raisers. As a result the

structure might fail at much lower values of the stresses. Many historic catastrophic

failures of major structures such as bridges, ships, aircraft, pipelines, and tanks have

happened as a result of not only inadequate design but also because of the pre-existence

of flaws in the materials, leading not only to financial losses but also to the loss of many

lives. An example is the failure sustained by the World War II Liberty ships. Of about

2700 ships built during World War II, roughly 400 sustained fractures, of which 90 were

serious. Twenty ships sustained complete failure; ten of them basically broke in two

(Anderson, 1995). Most of the fractures initiated on the deck at square hatch corners. The

investigations of the fracture problem that occurred during the decade after the War led to

the development of the field which we now know as Fracture Mechanics.

Griffith (1920) carried out one the earliest systematic investigation of fracture problems

based on the existing development of the stress analysis of an elliptical hole performed by

Inglis (1913). Griffith’s theory is based on energy balance. He noted that in case of the

presence of a crack in a loaded plate, a balance must be attained between the decrease in

potential energy and the increase in surface energy resulting from the presence of the
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crack. However, his approach was too primitive for engineering applications and was

only good for brittle materials. Subsequent efforts to make it applicable to metals were

not successful, until a breakthrough was achieved by Irwin (1948) to extend Griffith

approach to metals by including the energy dissipated by local plastic flow. He also

developed the concept of strain energy release rate (Irwin, 1957) which was related to

Griffith’s approach but was more useful for engineering problems. Irwin’s work was

based on the assumption that solutions to crack problems could be obtained using elastic

considerations if the plastic zone around the crack tip was small. Utilising Westergaard’s

(1939) solutions for a cracked body, Irwin showed that the displacements and stresses

near a crack tip could be described by a single constant related to the strain energy rate.

This constant later became known as the Stress Intensity Factor.

During the same period, Williams (1952, 1957) derived the stress and displacement

expressions for the singular region around a notch/crack tip under generalised in-plane

loading. The expressions were shown to be eigenfunction series expansions, which are

referred to in the literature as Williams’ eigenfunction series expansions to acknowledge

his effort. He was the first to demonstrate the 2
1r  singularity for elastic crack problems,

which has offered substantial understanding of the type of singularity near the crack tip,

and paved the way forward for future research.

Around the 1960s, the fundamentals of Linear Elastic Fracture Mechanics (LEFM) were

fairly well established, and scientists began to give attention to crack-tip plasticity, since

LEFM ceases to be valid when there is a significant plastic zone around the crack tip.

Many researchers suggested a yielding correction at the crack tip. Irwin (1961) suggested

a correction that was a very simple extension of LEFM. Dugdale (1960) and Barenblatt
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(1962) independently developed more detailed models based on a narrow strip of yielded

material at the crack tip. Wells (1961) recognised that the crack faces moved apart with

plastic deformation, which led to the development of the concept called the crack-tip-

opening displacement (CTOD). Rice (1968) was able to generalise the energy release rate

to nonlinear materials by idealising the plastic deformation behaviour as nonlinear elastic.

He explained that the nonlinear energy release rate can be expressed as a path-

independent line integral, called the J-integral (or domain integral), evaluated along an

arbitrary contour around the crack tip.

Recent research trends have been related to dynamic and time-dependent fracture

mechanics of linear and nonlinear materials, and to the development of microstructural

models for fracture and models to relate local and global fracture behaviour of materials.

2.2. Stress Intensity Factors (SIFs):

In LEFM, the stress intensity factors (SIFs) characterise the stress, strain, and

displacement fields in the crack/notch tip region and have a significant function in

virtually all fracture problems. For example, in failure design studies, it is necessary to

accurately evaluate SIFs in order to determine fracture parameters such as the critical

crack length, the fracture loads and the service life of a structural component. Fast,

reliable and accurate computations of SIFs are often necessary in practical applications

such as in the design of new structures or in the assessment of the integrity of existing

structures. This is especially true for high integrity structures such as nuclear reactor

cores, aircraft, submarines and spacecraft. Another area of major application is in welded

structures.



32

The general solutions for the stresses and displacements near the crack tip can be

expressed in terms of the three SIFs related to three basic cracking modes as illustrated in

Figure 2.1: the opening mode referred to as mode I  IK , the sliding (or in-plane shear)

mode referred to as mode II  IIK , and the tearing (or out-of-plane shear) mode referred

to as mode III  IIIK . When a SIF value, for example the value of IK , reaches a critical

value, rapid crack growth occurs. The critical value is a material property and is known as

the fracture toughness  ICK . The fracture toughness of a material is determined

experimentally.

Similarly, as notch or sharp corners lead to stress intensities at the notch tip, notch SIFs

could be used to characterise the notch tip conditions. Therefore, the study of stress

intensities at a corner/notch is of high importance, because the presence of corners in a

structure may result in crack initiation leading to a structural failure or shortening of the

service life of the structure (recall the Liberty ships where the crack initiated at the

corners of square hatches). The importance is even higher in the case of composite

bodies, which comprise isotropic materials jointed together, because it could be used, for

example, to evaluate the adhesive strength. Therefore, much effort and research has been

                      (a)                                  (b)                                       (c)

Figure 2.1. Basic Modes of Fracture: (a) mode I; (b) mode II; and (c) mode III.
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devoted to the analysis of sharp notch problems and computation of notch SIFs. By

analogy to the fracture criterion for cracks, Seweryn (1994) proposed a general fracture

criterion for notches; i.e. Failure occurs when the notch SIFs reach critical values. Other

researchers who tried to establish a failure criterion for a notch are Knésl (1991), Gómez

and Elices (2003), and Carpinteri et al. (2008). Knésl (1991) extended the stability

criterion of a crack to the general case of a notch. Gómez and Elices (2003) showed the

advantages of the cohesive crack model for predicting fracture of notched components,

and recently Carpinteri et al. (2008) presented an expression for the generalised fracture

toughness which is a function of the material tensile strength, the fracture toughness and

the notch opening angle.

Many researchers have developed various methods and procedures to compute the SIFs

using experimental, analytical, numerical or semi-analytical methods. Experimental

methods such as photoelasticity, moire, or caustics could be used to obtain SIFs (Sih,

1981). The SIFs cannot be measured directly in an experiment, but they can be found via

relations between SIFs and measurable quantities like strains or displacements.

The most common analytical methods used to determine SIFs are the Integral

Transformation Method by Sneddon (1946, 1969), the Complex Variable Method by

Westergaard (1939) and Muskhelishvili (1953), and Williams’ Eigenfunction Series

Expansion by Williams (1952). These methods have been used to determine the

distribution of the stresses and the displacements near the crack tip. Williams (1952) was

the first to investigate the analytical form of singularities resulting at a notch tip. He

found that the stresses in a homogeneous notched body become infinite at the notch tip

under any boundary conditions. Analytical methods give accurate solutions, but they can



34

only be applied to simple cases. Some of these methods are used in this thesis to derive

the stress and displacement expressions near the notch tip that are used as GIFs in the

FFEM.

For most realistic problems with finite geometrical boundaries and complex loading

conditions, numerical and semi-analytical procedures are the only means to determine the

SIFs. There are many numerical methods, such as the Finite Element Method (FEM), the

Boundary Element Method, the Finite Difference Method, the Weight Residue Method,

the Boundary Collocation Method, etc. Details of these methods can be found in many

references such as Atluri (1986) and Aliabadi et al. (1991). Most numerical procedures in

the literature are based on modified versions of those methods.

Among the aforementioned methods, the FEM is the most established approach in

engineering. It has been proven to be capable of dealing with crack problems. However,

computationally speaking, it is quite costly because of the unavoidable fine mesh required

around the crack tip, which leads to a very large number of unknowns. Some singular

elements have been developed to eliminate some of the FEM’s problems, such as the

widely used quarter-point element Barsoum (1976a, 1976b). This type of elements can

generate the r/1 singularity at the crack tip. There has been some criticism of this

element such as the discussion raised by Dhondt (1994). He proved that the quarter-point

element is an unstable equilibrium configuration, meaning a small geometric modification

of the quarter-point element to match the body geometry, for example, will lead to a

totally degenerated element. Another issue is that the quarter-point element can only be

degenerated from specific finite element types. However, the singular quarter-point

element was an important development, and it is widely incorporated into commercial FE
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packages. Moreover, the SIFs cannot be obtained using the FEM directly, but some post-

processing is required, such as using the domain integral (or J-integral) techniques by

Rice (1968) or the virtual crack extension by Hellen (1975).

Semi-analytical methods that have been developed to compute the SIFS are among others

the hybrid crack element (HCE), the scaled boundary finite element method (SBFEM),

and the fractal-like finite element method (FFEM). Semi-analytical methods appear

promising for fracture mechanics because they combine the accuracy of analytical

solutions with the practicality of numerical procedures. The HCE was developed by Tong

et al. (1973) to compute the SIFs for plane cracks. Karihaloo and Xiao (2001) presented a

simplified variational principle using truncated asymptotic crack tip displacement and

stress series expansions was used to formulate the HCE. Despite the good accuracy of the

numerical results obtained by the HCE, the element was incompatible with the

surrounding finite elements because of the exclusion of coefficients of the Williams series

expansion that do not contribute to the stresses and strains in the formulation of the HCE

(Xiao and Karihaloo, 2004). To minimise the incompatibility, Xiao and Karihaloo (2007)

recovered these coefficients by an indirect method that involves the application of a least-

squares method. Wolf (2003) developed the SBFEM, which is a numerical finite element-

based procedure in the circumferential directions and an analytical procedure in the radial

direction. In the SBFEM, the governing partial differential equations are transformed to a

scaled boundary co-ordinate system. By introducing shape functions in the

circumferential directions, these equations are reduced to a set of second-order ordinary

differential equations. These ordinary differential equations are solved analytically in the

radial direction after determining their coefficients by a finite element approximation in

the circumferential directions. However, the mathematics of the SBFEM compared to the
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FEM is rather complicated (Chidgzey and Deeks, 2005). A brief history about the FFEM

is presented in the next section.

For notch cases, researchers have developed various methods and procedures to compute

the SIFs for a notch based on methods used to predict crack SIFs. Gross and Mendelson

(1972) calculated the SIFs for many notch cases of modes I and II by means of a

boundary collocation method based on the stress functions derived by Williams (1952).

Tong and Pian (1973) concluded that in order to improve the convergence rate of finite

element solutions of problems with a singularity, the interpolation functions of a finite

element formulation must include terms that can account for the analytical form of the

singularity. In addition, these interpolation functions should be used for elements within a

finite region, and not only for those around the singular point. Lin and Tong (1980)

developed singular finite elements for the analysis of v-notched plates. Carpenter (1984)

presented a collocation procedure to compute SIFs for notch problems based on the

contour integral of Stern et al. (1976). Babuška and Miller (1984) developed post-

processing approaches to extract the generalised SIFs near corner points from a finite

element solution using Green’s function or the energy release principle. Portela et al.

(1991) proposed a boundary element singularity subtraction technique to compute the

SIFs of notch problems. Their method requires extra boundary conditions that they

referred to as ‘‘singularity conditions of the regularisation procedure”. Zhao and Hahn

(1992) predicted the SIFs of a notch problem from the SIFs of a crack problem. Chen

(1995) computed the SIFs of notched plates by means of the body force method.

Results of mode III SIFs of cracked plates were reported by some authors such as Zhang

(1988) who presented results for off-centre single-edge-cracked plates with the aid of the



37

basic theorem of the Fourier transform and Fourier series. Noda and Takase (2003)

calculated the generalised SIFs for a V-shaped notched round bar under tension, bending,

and torsion using the singular integral equation of the body force method.

Most of the aforementioned research work was concerned only with isotropic

homogeneous crack and/or notch problems. For bi-material cases, which are more

complicated, researchers such as Theocaris (1974), Dempsey and Sinclair (1981), and

Hein and Erdogan (1971), among others, studied the stress and displacement fields and

investigated the behaviour of the singular eigenvalues for bi-material notches. The case of

an interfacial crack problem, which is a special case of a bi-material notch problem, has

been investigated by many researchers, such as Lin and Mar (1976) constructed a hybrid

crack element to compute SIFs for cracks in bi-materials. Yau and Wang (1984) used a

procedure that involves known auxiliary solutions and evaluation of conservation

integrals along a suitably selected remote path. Lee and Choi (1988) computed the SIFs

for interfacial cracks using a boundary element method which employed the multi-region

technique and the double-point concept. Matsumto et al. (2000) evaluated the SIFs of

interface cracks using a concept based on the interaction energy release rates.

Results for stress intensities for bi-material notch problems were reported by few

researchers, due to their complexity. Carpenter and Byers (1987) investigated bi-material

notch problems by using the reciprocal work contour integral method. Tan and Meguid

(1997) presented a singular finite element to compute the SIFs of a notch formulated by

using explicit expressions for the singular stress and displacement fields of a general bi-

material wedge. Chen and Sze (2001) developed a hybrid-stress finite element model in

which the asymptotic stress and displacement fields embedded into the wedge-tip element
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were numerically obtained. All of this research work was concerned with only the in-

plane problems, i.e. modes I and II.

For the case of anti-plane shear, i.e. mode III, in bi-material crack/notch problems Wu

and Chiu (1991) computed the SIFs for interface cracks in bi-materials under anti-plane

shear by using a complex-variable formulation based on the solutions of a dislocation and

a body force in an infinite composite body. Other researchers who studied the case of a

bi-material crack under anti-plane shear loading conditions are, among others, Lee and

Earmme (2000), Li (2001), and Li and Duan (2006). The general case of anti-plane notch

was investigated by Jun and Yuqiu (1992) by using a Sub-Region Mixed FEM. They

provided very limited examples of a notch in a disk. Liu and Chue (2006) examined the

stress singularity orders in dissimilar anisotropic wedges.

2.3. The Fractal-like Finite Element Method (FFEM)

The idea of the Fractal-like Finite Element Method goes back to the work of Leung and

Cheung (1981). Originally they proposed a two-level finite element technique of

constructing a frame super-element to reduce the computational cost for solving dynamic

problems of a large scale frame. The idea was based on the concept of global-local

interpolation functions introduced by Mote (1971). The concept was that while local

interpolation functions (shape functions) reduce the infinite number of degrees of freedom

of a continuum to a finite number of degrees of freedom related to the nodes of the

continuous element, the global finite element interpolation functions can be used to

reduce the number of unknowns significantly.
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The study was extended to model two-dimensional plates subject to concentrated static

and harmonic loads by Leung and Wong (1988, 1992) and two-dimensional crack

problems by Leung and Wong (1989). Leung and Su extended the method further to

include many two-dimensional crack problems. They applied the method to mode I

(Leung and Su, 1994), mixed mode (Leung and Su, 1995a), and body force crack

problems (Leung and Su, 1995b), as well as to cracked Kirchhoff’s plates (Leung and Su,

1996a), cracked Reissner’s plates (Leung and Su, 1996b) and further to penny-shaped and

circumferential cracks and axisymmetric cracks (Leung and Su, 1998). Leung and Tsang

(2000) studied mode III crack problems. Xie el al. (2003) carried out a parametric study

of the FFEM for the computations of SIFs for crack problems. Tsang et al. (2004)

extended the method to penny shaped and circumferential cracks. It has been shown that

the Fractal-like Finite Element Method gives very accurate results for many different

crack problems. Reddy and Rao (2008a) carried out a stochastic fracture mechanics

analysis of linear-elastic cracked structures subjected to mixed-mode (I and II) loading

conditions using the FFEM. They also developed a fractal finite element based method

for continuum-based shape sensitivity analysis for a crack in a homogeneous, isotropic

body subject to mixed-mode (I and II) loading conditions (Reddy and Rao, 2008b).

Recently, during the course of this research Treifi el al. (2008, 2009a, 2009b, 2009c,

2013a, 2013b, 2013c) have developed the FFEM to compute the SIFs for notch problems

in isotropic homogeneous and bi-material plates subjected to mode I, II, or III loading

conditions. These research papers make up the core contents of this thesis.

As a semi-analytical method, the FFEM brings together the agility of the finite element

method (FEM) and the accuracy of the exact analytical solutions. It is well known that in

order to improve the convergence of FE solutions for problems with singularities, it is
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necessary to discretise the singular regions around the singular points using very fine

meshes. This leads to a large number of unknowns and a considerable increase of the

computational cost. In the FFEM, the employment of the exact analytical expressions of a

displacement field as global interpolation functions to transform the large number of

nodal displacements into a small set of generalised co-ordinates reduces the

computational cost significantly. Also, the SIFs and the coefficients of the higher order

terms of the notch tip asymptotic field are the generalised co-ordinates and are computed

directly. Therefore, no post-processing is required to extract them. Moreover, no special

singular finite elements are needed to model the singular region around a notch tip—

conventional finite elements can be used to model the whole of the cracked/notched body

(singular and regular regions). The implementation of the FFEM involves simple matrix

multiplication. No complicated mathematics is involved. Therefore, it is easy to be

implemented into an existing FE code.

The FFEM is based on the FEM. Therefore, the FFEM results are mesh dependent as is

the case in the FEM. Following the general advice given for the FEM on how to generate

good meshes is sufficient to produce good results in the FFEM. The only limitation to the

use of the FFEM is the availability of “good” global interpolation functions, whether they

be exact analytical or not.

2.4. The Strain Energy Approach (SEA)

The idea of using the strain energy to compute the SIFs goes back to the work of Sih

(1974a, 1974b), who proposed a strain energy density factor for cracks. Lazzarin et al.

(2001, 2007, 2010) have established an approach based on the averaged strain energy
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density over a control volume around a notch tip to compute the SIFs for sharp and

rounded notches. They dealt only with isotropic homogeneous notches subject to pure

mode I, II or III conditions. For mixed mode I and II cases, they usually neglected the

effect of mode II SIF (Lazzarin and Zambardi, 2001) where they used examples with non-

singular mode II stress components, but in a recent publication (Lazzarin et al., 2010)

they suggested using two concentric volumes to compute mode I and II notch SIFs.

However, this approach does not always work as will be discussed later in Chapter 10. In

Chapter 10, a strain energy approach is developed to compute the SIFs for isotropic

homogeneous and bi-material notches under mode I, II and III. The case of mixed modes

I and II is dealt with differently to what Lazzarin et al. (2010) proposed. The approach is

based on the strain energy of a control volume around a singular point such as a notch tip.

The formulae are simple and easy to implement. The strain energy can easily be

computed using commercial finite element packages. Thus, enabling analysts to compute

the notch SIFs using commercial FE packages, which are generally not capable of

computing the SIFs of a general notch (they are only capable of computing the SIFs of a

crack). Because the SEA depends on the strain energy computed using the FEM, the

results are mesh dependent. Also, fine meshes around the singular points are

recommended especially for mixed mode cases.

2.5. Conclusion

In this chapter, a literature review about the methods used to compute the SIFs, the

FFEM, and the SEA was presented. In addition, the advantages of the FFEM and SEA

were highlighted together with their limitations.
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Chapter 3

Theoretical Background
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3. Theoretical Background

3.1. Introduction

In this chapter, a detailed background of the work, techniques and methods developed and

used in this research is presented for completeness. Firstly, the theoretical formulation of

the FFEM is presented, followed by the derivations of the GIFs employed in the FFEM in

the subsequent chapters. The numerical techniques developed to carry out the analysis in

the FFEM and the SEA are also described. The sections of this chapter correspond to

work and techniques developed and used in the upcoming chapters which contain

materials published in externally refereed contexts.

3.2. Formulation of the FFEM

In the FFEM, a body containing singular points, such as, a tip of a notch or a crack, is

divided into singular and regular regions delineated by curves such as ,..., 2
0

1
0  as

illustrated in Figure 3.1. Conventional finite elements are used to model the singular and

regular regions. However, a very fine mesh of conventional finite elements is used within

the singular regions. This mesh is generated layer by layer in a self-similar fractal-like

process. In the conventional FEM, the nodal displacements are the unknowns of a

problem. In the FFEM, the unknowns are the nodal displacements of the nodes in the

regular region and the coefficients of the GIFs, called generalised coordinates. The GIFs

are used to transform the nodal displacements of the nodes in the singular region into a

small set of generalised co-ordinates. The generalised co-ordinates associated with the

singular eigenvalues are related to the stress intensity factors for modes I, II and III. The
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other coordinates are the coefficients of the higher order terms. The first non-singular

stress term of the eigenfunction series expansion which is called the “T-stress” is related

to the coefficient of the first higher order term of the series. The “T-stress” coefficient is

the most important coefficient as it plays an important role in the directional stability of

the crack propagation (Cotterell and Rice, 1980). In addition, it is understood that using

more terms of the series expansion of the stresses and displacement expressions lead to

more accurate results (Hui and Ruina, 1995). As those generalised coordinates are

computed directly in the FFEM, no post-processing is necessary to extract the SIFs.

Analytical solutions for the displacements around the notch tip are used as GIFs to

perform the transformation.

Using  as a similarity ratio and the crack tip as a centre of similarity, a set of curves

 ,...,, 321  , similar to 0 , is generated within the singular region. The layer between

the curves 1n and n  is called the nth  layer. All nodes on 0  are considered master

nodes, while the nodes inside 0  are considered slave nodes as shown in Figure 3.2.

Figure 3.1. Singular and regular regions of a cracked and notched plate.
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In the conventional finite element method, the displacements can be expressed as follows:

dNu . (3.1)

where u  is the displacement field, d  is the nodal displacement vector, and N  is the shape

function matrix. The strain can be obtained using

dBε . (3.2)

where: ε  is the strain vector, and B  is the strain-displacement operator. For linearly

elastic conditions, the stress-strain relations can be stated as

εHσ . (3.3)

where σ  is the stress vector, and H  is the material properties matrix (constitutive matrix).

The static equilibrium equation, in the FEM, is

fdK . (3.4)

where f  is the nodal force vector and K  is the global stiffness matrix

In the FFEM, the static equilibrium equation of the regular region can be written as
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Figure 3.2. An illustration of a singular region (master nodes are highlighted).
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where rd  are the displacements of the nodes in the regular region and md  are the

displacements of the master nodes. Similarly, for the first layer in the singular region, the

static equilibrium equation can be written as
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where st
s
1d are the displacements of the slave nodes in the first layer. st

s
1d can be expressed

in terms of a set of generalised co-ordinates  TCCC ,...,, 321c , which are the

coefficients of the GIFs, as follows:

cTd st
s

st
s

11  (3.7)

st
s
1T  is the transformation matrix in terms of polar co-ordinates ),( r for the slave nodes

in the first layer. Therefore, Eq. (3.6) can be written as
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or
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In order to provide the continuity between the singular and the regular region, md  are not

transformed.

Now, the static equilibrium equation of the nth  layer in the singular region, 1n , is

n
s

n
s

n
s fdK  (3.10)

By applying the transformation and pre-multiplying by the transpose of n
sT , we get

n
s

Tn
s

n
s

n
s

Tn
s fTcTKT  (3.11)
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where 
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Because md  are not transformed, the size of the transformation matrix of the first layer

st
s
1T is smaller than that of the transformation matrix of the thn  layer n

sT .

The global equilibrium equation can now be written as
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where nl  is the number of layers used to model the singular region. Eq. (3.12) can be

rewritten after applying the transformation as follows
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where st
s

st
ms

st
ms

111 TKK  , st
sm

Tst
s
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sm

111 KTK  , st
s
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ss

Tst
s
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ss

1111 TKTK  , 



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s
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2
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n
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n
s TKTK  , st
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s
111 fTf  , 




nl

n

n
s

inn
s

2
ff , and n

s
Tn

s
n
s fTf  . Only the parts with the

subscript s  are transformed. The unknowns of the problem are now the nodal
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displacements  mr dd &  of the nodes in the regular region and the generalised co-

ordinates c .

If we consider sd  as the vector of displacements in the singular region except for those on

0 , the size of the vector sd  is much bigger than the vector of the generalised co-

ordinates c . Therefore, solving the system of equations (3.14) is much more efficient than

solving the system of equations (3.12). Figure 3.3 shows the essential steps of the FFEM.

They are similar to the FEM steps. The differences are highlighted in Italics.

3.3. Fractal Transformation

In the FFEM, the singular region is modelled using layers of elements of similar shapes.

The layers are constructed using a similarity ratio  . The property of the stiffness

Discretisation (mesh generation)

Computation of element stiffness matrices

Fractal transformation of singular element stiffness matrices

Assembly of global stiffness matrix

Define loads and constraints (boundary conditions)

Solutions for unknowns (displacements + generalised coordinates)

Figure 3.3. Essential steps in FFEM (differences between FFEM and FEM are in Italics)
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matrices of two dimensional iso-parametric finite elements of similar shapes is utilised to

compute the stiffness matrix of the inner layers )2( n  of the singular region, inn
sK . The

element stiffness matrix can be computed using

dV
V

T HBBk  (3.15)

where V is the volume of an element. For an iso-parametric finite element, Eq. (3.15) can

be written as

dJdT 
 


1

1

1

1

HBBk (3.16)

where   and   are natural coordinates, and J  is the determinant of the Jacobian Matrix

J . Assuming two 3-node triangular elements (1 and 2) of similar shape, where element 2

nodal coordinates can be written in terms of those of element 1 using a similarity ratio 

as

)1()2( XX  (3.17)

The matrices B  and J of a triangular element are

 kji BBBB ,, (3.18)
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where a typical iB  is defined as
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The matrix )2(B  and the determinant )2(J  for element 2 can be written in terms of those

of element 1 as

)1()2( 1 BB

 (3.21)

)1(2)2( JJ  (3.22)

Substituting Eqs. (3.21) and (3.22) into Eq. (3.16) leads to

)1()2( kk  (3.23)

Eq. (3.23) demonstrates that iso-parametric elements of similar shapes have the same

stiffness matrix. In other words, the stiffness matrices of all the layers in the singular

region are the same.

The stiffness matrix inn
sK  of the inner layers )2( n  in the singular region is





nl

n

n
s

n
s

Tn
s

nl

n

n
s

inn
s

22
TKTKK (3.24)

The stiffness matrix of every layer in the singular region is the same because the stiffness

matrices of the two-dimensional iso-parametric finite elements of similar shapes are the

same as proven above. Therefore,

st
s

n
s

1KK  (3.25)

The transformation matrix of the nth  layer can be written in terms of that of the first layer

as

 f
s

n
s TT  (3.26)

where f
sT  is the transformation matrix of the nodal displacements of all the nodes (slave

and master) in the first layer and it is different from the aforementioned st
s
1T , and    is a

diagonal matrix where
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  in
ii

 1 (3.27)

where i  are the eigenvalues of the terms considered in the GIFs. Substituting equations

(3.25)-(3.27) into equation (3.24) gives
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where

  f
s
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s

Tf
sijk TKT 1 (3.29)

and
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This sum is a geometric series. For a finite number of layers, ij  can be written as

     
 ji

jiji nl

ij 




 







1

1 1

(3.31)

and for an infinite number of layers  nl  as
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(3.32)

A similar procedure can be followed to compute the generalised force vector of the inner

layers in the singular region

 Tf
ii

inn
s f ...... f (3.33)

where
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


 (3.34)

for an infinite number of layers  nl .
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3.4. General Form of Global Interpolation Functions (GIFs)

The GIFs play a very important role in the FFEM. They are used to perform the fractal-

like transformation of the large number of nodal displacements of the singular region into

a small set of generalised coordinates. The generalised coordinates are basically the

coefficients of the terms used as GIFs. Therefore, analytical expressions for the

displacement field are used as GIFs. Because of this choice, the SIFs and the higher order

terms become direct unknowns in the FFEM, because they are simply the generalised

coordinates as will be shown in the subsequent sections.

Assuming the displacement field is expressed as

 



NT

i
ii rfcu

1
, (3.35)

where ic  are the generalised coordinates,  ,rf i  are the GIFs, and NT  is the number of

terms considered, the transformation matrix T can be written in an explicit form as
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where n  refers to the number of nodes in a layer of elements.

The analytical displacement and stress expressions around a notch tip for the different

cases presented in the coming chapters are presented in the next sections of this chapter.

The displacement expressions are used as GIFs, while the stress expressions are used to

obtain the SIF expressions.
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3.5. GIFs for Homogenous Isotropic Notch under In-plane Loading (modes I and II)

The displacement and stress expressions around a notch tip of an isotropic plate can be

derived using an eigenfunction expansion method or a complex variable method. Both

methods are presented. The expressions derived using the two methods are equivalent and

produce the same results, although they look different symbolically.

3.5.1. Airy Stress Function Method

Stress Analysis

The Airy stress function approach can be used to derive the displacement and stress

expansions around a notch tip in the manner of Williams (1952). Let   be the Airy stress

function in a polar co-ordinate system  ,r  centred at the tip of an infinite notch as

illustrated in Figure 3.4. The 0  axis and the Cartesian x-axis coincide with the

bisector of the notch angle. In the absence of body forces, the elasticity equations of

equilibrium are satisfied if the stresses are expressed as follows (Coker and Filon, 1931):

2

2

r


 (3.37)

  2
r (3.38)
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The Airy stress function  ,r  satisfies the bi-harmonic equation:

  022  (3.40)
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where
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Following Williams (1952), the Airy stress function for a notch problem can be taken as

     Frr 1,  (3.42)

and its first and second partial derivatives are
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where the prime denotes differentiation with respect to  . F is also used instead of  F

for convenience.

Now, substituting Eq. (3.42) into Eq. (3.40) gives

    0111 1
2
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
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
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r
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r
Fr  

   012 1122   FrFr 

Figure 3.4. Notch geometry and the co-ordinate systems.
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or

   01 1122   FrFr  (3.43)

Expanding Eq. (3.43) using the following partial derivatives
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which can be simplified to get the following fourth order partial differential equation

    0112 222  FFF  (3.44)

The general solution of this equation is

          1cos1sin1cos1sin 4321  CCCCF (3.45)

provided that 1,0  . The solution for 0  is

   coscossinsin 4321 CCCCF  (3.46)

and for 1  is

   2cos2sin 4321 CCCCF  (3.47)

From (3.37), (3.38), (3.39) and (3.42), the stress expressions are
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or more concisely, they can be rewritten as

  FFrr 11     (3.48)

  Fr 11    
 (3.49)

 Frr    


1 (3.50)

By applying the boundary conditions, the unknowns iC  and i  are determined, which can

assume real or complex values. For traction-free boundary conditions, the following

conditions are applied

  0,  r (3.51)

  0,   rr (3.52)

Substituting these conditions into equations (3.49) and (3.50) gives

    0  FF (3.53)

Applying these conditions to the general solution (3.45) of the differential equation

(3.44), a linear system of four equations with four unknowns is obtained
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Using simple algebra, this system of four equations could be separated into two

uncoupled systems. Each sub-system is with two unknowns of iC .
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(3.55)

The first sub-system, Eq. (3.54), leads to solutions that are symmetric (mode I) with

respect to the x-axis because 2C  and 4C  are coefficients of cosine functions in Eq. (3.45).

Similarly, the second sub-system, Eq. (3.55), leads to solutions that are anti-symmetric

(mode II) with respect to the x-axis.

By equating the determinants of Eqs. (3.54) and (3.55) to zero in order for nontrivial

solutions of 4321 ,,, CCCC to exist, the following characteristic equations are obtained

02sin2sin   II (3.56)

and

02sin2sin   IIII (3.57)

for mode I and II, respectively. The eigenvalues of mode I  I  and of mode II  II  are

generally different from each other except for the special case of a crack problem,

02sin2sin  III   which gives the following eigenvalues

2
nIII   (3.58)
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The characteristic equations (3.56) and (3.57) can be solved numerically using Muller’s

iterative method (Press et al., 2007). The advantage of Muller’s method is that the

iteration can converge to a complex root, even if it has started with a real number. A flow

chart of Muller’s method is illustrated in Figure 3.5. In this figure, inc, lim and er refer to

the step increment, the limit of iterations and the error. They are taken as 001.0inc ,

lim=60 and 510er  for isotropic cases ( 001.0001.0 iinc  , lim=60 and 1010er  for

bi-material cases).

The dominant eigenvalues, which are the smallest eigenvalues greater than zero

( 10   ), for different notch angles   are plotted in Figure 3.6. This figure in

conjunction with the stress expressions given by Eqs. (3.48) to (3.50) shows that the

stresses are unbounded when the notch angle 180  for mode I, and  55.102  for

mode II.

Eq. (3.45), from which the eigenvalues are derived, is not valid for 1,0  . 1  is

physically meaningless because it does not represent a physically possible displacement

since Eqs. (3.100) and (3.101) show that when 1  at the notch tip ru  and

u , i.e., the displacements, become unbounded. Therefore, 1  is not an

admissible root. Similarly, 0  is not admissible because it represents a rigid body

translation. 1  is an eigenvalue for the notch angles  0  and 180  for mode I,

and  55.102 for mode II.

From Eq. (3.54), 4C  can be written in terms of 2C  as

 
 

   
    224 1sin1

1sin1
1cos
1cos CCC II

II

I

I














 (3.59)
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Figure 3.5. Muller’s method flowchart.
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Figure 3.5. Continued.

Figure 3.6. Notch angle vs. eigenvalues for mode I and mode II
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Similarly, from Eq. (3.55), 3C  can be written in terms of 1C  as

 
 

   
    113 1cos1

1cos1
1sin
1sin CCC IIII

IIII

II

II














 (3.60)

Therefore,  F  can be written as

     
   

   
    






































1cos
1cos
1cos1cos

1sin
1sin
1sin1sin

2

1

I
I

I
I

II
II

II
IIIII

C

CFFF
(3.61)

It would be helpful to mention that the part of  F associated with the coefficient 1C

represents the mode II stress function. Similarly, the part of  F associated with the

coefficient 2C  represents the mode I stress function.

Now, Eq. (3.45) can be rewritten as

  III FFF  (3.62)

where

    1cos1cos 42  III CCF (3.63)

    1sin1sin 31  IIIIII CCF (3.64)

and their derivatives as

       
       



1cos11cos1

1sin11sin1

4
2

2
2

42







IIIII

IIIII

CCF

CCF

       
       



1sin11sin1

1cos11cos1

3
2

1
2

31







IIIIIIIIII

IIIIIIIIII

CCF

CCF

The stress expressions for mode I can be written according to (3.48), (3.49) and (3.50) as

follows
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  IIII Fr
I

11    


       
 1cos1cos1 42

1   IIIII CCr
I

(3.65)

  



 


  IIII
r FFr

I

11  

       
      ]1cos1cos1

1cos11cos1[

42

4
2

2
21



 



 

III

IIIII
r

CC
CCr

I

   
    ]1cos112

1cos112[

4
2

2
21



 



 

II

III
r

C

Cr
I

       
        ]1cos31cos1[

]1cos31cos[

42
1

4
2

2
21















IIIIII

IIIIIII
r

CCr

CCr
I

I

        ]1cos31cos1[ 42
1     IIIIII

r CCr
I

(3.66)

        








1sin11sin1 42
1

1







 






IIIII

III
r

CCr

Fr

I

I

         
 1sin11sin1 42

1   IIIIII
r CCr

I

(3.67)

Similarly, the stress expressions for mode II can be written according to (3.48), (3.49) and

(3.50) as follows

  IIIIIIII Fr
II

11    


       
 1sin1sin1 31

1   IIIIIIIIII CCr
II

(3.68)

  



 


  IIIIIIII
r FFr

II

11  
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       
      ]1sin1sin1

1sin11sin1[

31

3
2

1
21



 


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IIIIII

IIIIIIIII
r

CC
CCr

II

        ]1sin31sin1[ 31
1     IIIIIIIIIIIIII

r CCr
II

         1sin31sin1[ 31
1   IIIIIIIIIIII

r CCr
II

(3.69)





 
  IIIIII

r Fr
II

 


1

         
 1cos11cos1 31

1   IIIIIIIIIIII
r CCr

II

(3.70)

And finally, according to the principle of superposition, the stress expressions for mixed-

mode cases are (it should be noted that these expressions are series expansions and that

the ∑ symbols are dropped for simplicity. This has been adopted throughout the thesis)

        
        
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





IIIIIIIIII

IIIII
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II
r

I
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CCr

CCr
II

I

(3.71)

      
      
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





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(3.72)

        
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I
rr
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(3.73)

The stress expressions in the Cartesian co-ordinates can be derived by using the following

transformation equations:

  cossin2sincos 22
rrx  (3.74)
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  cossin2cossin 22
rry  (3.75)

    
22 sincoscossin  rrxy (3.76)

Therefore, the mode I stress expressions in the Cartesian co-ordinates can be written as

           311cos12 424
1   IIIIII

x osCCCr
I

(3.77)

           3cos11cos12 424
1   IIIIII

y CCCr
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(3.78)

          3sin11sin1 42
1   IIIIII

xy CCr
I

(3.79)

Similarly, the mode II stress expressions in the Cartesian co-ordinates can be written as

           3sin11sin12 313
1   IIIIIIIIIIII

x CCCr
II

(3.80)

           3sin11sin12 313
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y CCCr
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(3.81)
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(3.82)

And finally, the stress expressions for mixed-mode cases are

         
         









3sin11sin12

311cos12

313
1

424
1











IIIIIIIIII

IIIII
x

II
x

I
xx

CCCr

osCCCr
II

I

(3.83)
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Displacement Expressions

The displacements can be expressed in a polar coordinate system as illustrated in Figure

3.4 as follows (Coker and Filon, 1931):

  







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
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ur 1

2
1 (3.86)
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2
1 (3.87)

where G is the shear modulus,   for plane strain,





1

for plane stress and  is

the Poisson’s ratio. The function  is related to the biharmonic function  as
















r

r
2 (3.88)

Also,   satisfies Laplace’s equation (Coker and Filon, 1931), that is

02   (3.89)

Solutions for  can be supposed to be

    Grr m, (3.90)

Substituting Eq. (3.90) into Eq. (3.89) gives

    02   GGm (3.91)

The general solution of this equation is

   mAmAG sincos 21  (3.92)

Using Eqs. (3.42) and (3.90) in Eq. (3.88) provides a relation between  F  and  G .

Equating the powers of r   gives

1 m (3.93)

and equating the coefficients of similar trigonometric terms gives
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31 1
4 CA





(3.94)

42 1
4 CA





(3.95)

Therefore,  G  can be written as

      


 1sin1cos
1

4
43 


 CCG (3.96)

or by writing it in terms of 1C and 2C  as

   
     

    

















 








 1sin

1cos
1cos1cos

1sin
1sin

1
4

21 CCG (3.97)

Equations (3.96) and (3.97), can be rewritten as follows (  is omitted for convenience)

III GGG 

   
   








1sin

1cos
1cos

1
41sin

1
4

24 







 I

I

I

I
I

I
I CCG (3.98)

   
   








1cos

1sin
1sin

1
41cos

1
4

13 







 II

II

II

II
II

II
II CCG (3.99)

and their derivatives as

  1cos4 4 
 II CG

  1sin4 3 
 IIII CG

From (3.86) and (3.87), the displacement expressions in the radial and circumferential

directions can be expressed as

          GrFr
G

ur  11
2
1 (3.100)

        
 GrFr

G
u 11

2
1

 (3.101)
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From equations (3.45), (3.96), (3.100) and (3.101), the mode I displacement expressions

in the radial direction can be written as follows

       



 

   IIII
r GrFr

G
u

II

11
2
1

        


1cos431cos1
2 42  IIIII

r CC
G

ru
I

(3.102)

and in the circumferential direction as

      



 


  


IIII GrFr

G
u

II

11
2
1

        


 1sin431sin1
2 42  IIIII CC
G

ru
I

(3.103)

Similarly, the mode II displacement expressions in the radial direction can be written as

follows

       



 

   IIIIIIII
r GrFr

G
u

IIII

11
2
1

        


1sin431sin1
2 31  IIIIIIIIII

r CC
G

ru
II

(3.104)

and in the circumferential direction as

      



 


  


IIIIIIII GrFr

G
u

IIII

11
2
1

        


 1cos431cos1
2 31  IIIIIIIIII CC
G

ru
II

(3.105)

According to the principle of superposition, the mixed-mode displacement field in the

radial direction is

II
r

I
rr uuu 
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        

        







1sin431sin1
2

1cos431cos1
2

31

42





IIIIIIII

IIII
r

CC
G

r

CC
G

ru
II

I

(3.106)

and in the circumferential direction

III uuu  

        

        









1cos431cos1
2

1sin431sin1
2

31

42





IIIIIIII

IIII

CC
G

r

CC
G

ru
II

I

(3.107)

In a Cartesian co-ordinate system, the displacement expressions can be written for mode I

cases as

  sincos II
r

I uuu 

       


2coscos143
2 424  IIIII CCC
G

ru
I

(3.108)

  cossin II
r

I uuv 

       


2sinsin143
2 424  IIIII CCC
G

rv
I

(3.109)

and for mode II cases as

  sincos IIII
r

II uuu 

       


2sinsin143
2 313  IIIIIIIIII CCC
G

ru
II

(3.110)

  cossin IIII
r

II uuv 

       


2coscos143
2 313  IIIIIIIIII CCC
G

rv
II

(3.111)
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And finally, according to the principle of superposition, the displacement fields for

mixed-mode cases in the Cartesian co-ordinates are

III uuu 

       

       







2sinsin143
2

2coscos143
2

313

424





IIIIIIII

IIII

CCC
G

r

CCC
G

ru
II

I

(3.112)

III vvv 

       

       







2coscos143
2

2sinsin143
2

313

424





IIIIIIII

IIII

CCC
G

r

CCC
G

rv
II

I

(3.113)

3.5.2. Complex Variable Method

The stresses and displacements can be expressed in terms of complex potentials )(z  and

)(z as follows (England, 1971)

          zzzzeiuuG i
r 

   432 (3.114)

       z
z
zzzzzi rr     (3.115)

       z
z
zzzzzi r     (3.116)

where z  is a complex variable, irez  , z  is the conjugate of z , and  z  and  z are

complex potentials that can be expressed as (Vasilopoulos, 1988)

      zBzzAz  , (3.117)

where BA, are complex constants: 2121 , iBBBiAAA  . Substituting Eq. (3.117)

into Eqs. (3.114) to (116) gives
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          
  111432   iii

r eBeAeAriuuG (3.118)

        
  1111 2   iii

rr eBeAeAri (3.119)

      
  1111   iii

r eBeAeAri (3.120)

From equation (3.120), applying traction-free boundary conditions at    gives

022   BeAAe ii  

The following system of equations is obtained by expanding this equation and equating

the real and imaginary parts to zero

  11 2cos2cos BA   (3.121a)

  02sin2sin2  A (3.121b)

  02sin2sin1  A (3.121c)

  22 2cos2cos BA   (3.121d)

From these equations, for non-trivial solutions,

  02sin2sin   (3.121e)

  02sin2sin   (3.121f)

which are called characteristic equations. On one hand, if the first characteristic equation

  02sin2sin   , then 022  BA and   2cos2cos11  AB . After

substituting this back into Eq. (3.120), expanding and applying the definition of SIFs, 1A

is found to be related to IK  and consequently Eq. (3.121e) gives the mode I eigenvalues

 I . Therefore, Eqs. (3.121a-d) can be written as

  02sin2sin   II

  2cos2cos11
IIAB 

On the other hand, if the characteristic equation   02sin2sin   , then

011  BA  and   2cos2cos22  AB . Similarly, 2A  is found to be related to
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IIK  and consequently Eq. (3.121f) gives the mode II eigenvalues  II . Therefore, Eqs.

(3.121a-d) can be written as

  02sin2sin   IIII

  2cos2cos22
IIIIAB 

These characteristic equations are exactly the same as derived previously and, therefore,

have the same fundamental roots as shown in Figure 3.6.

From Eqs. (3.118)-(3.120), the stress and displacement expressions can be written as

        

        







1sin2cos2cos1sin43
2

1cos2cos2cos1cos43
2

2

1





IIIIIIIIII

IIIII
r

A
G

r

A
G

ru
II

I

(3.122)

        

        









1cos2cos2cos1cos43
2

1sin2cos2cos1sin43
2

2

1





IIIIIIIIII

IIIII

A
G

r

A
G

ru
II

I

(3.123)

        
        






1sin2cos2cos1sin3

1cos2cos2cos1cos3

2
1

1
1








IIIIIIIIIIII

IIIIII
r

Ar

Ar
II

I

(3.124)

        
        







1sin2cos2cos1sin1

1cos2cos2cos1cos1

2
1

1
1


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



IIIIIIIIIIII

IIIIII

Ar

Ar
II

I

(3.125)

        
        







1cos2cos2cos1cos1

1sin2cos2cos1sin1

2
1

1
1








IIIIIIIIIIII

IIIIII
r

Ar

Ar
II

I

(3.126)

These expressions are equivalent to the ones derived using the eigenfunction expansion

approach in the previous section.

For the case 1 , the complex potentials are given as

    BzzAzz  , (3.127)
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If  180,0 , then 0211  BBA  and the displacements represent a rigid body

movement and given as

  20, 2 3 4 1ru Gu r A    

If  180,0 , then 2cos2,0 112 BAB   and the displacement expressions are

given as





 


  2cos2cos

2
432 11 BBrGur (3.128)

   2sin1432 12 BArGu  (3.129)

3.5.3. Mode I and II Stress Intensity Factors (SIFs)

The notch stress intensity factors are defined in a way similar to those of a crack as

)0(lim2 1

0
 


 

I

rK
rI (3.130)

)0(lim2 1

0
 


 


rrII

II

rK (3.131)

for mode I and mode II, respectively.

By substituting the stress expressions (3.72) and (3.73) into Eqs. (3.130) and (3.131), the

relations between the SIFs and the generalised co-ordinates are obtained as

   
  21cos

1cos112 CK I

I
II

I 












 (3.132)

     
  11sin

1sin112 CK II

II
IIIIII

II 












 (3.133)

or by substituting equations (3.125) and (3.126) into (3.130) and (3.131) as
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  12cos2cos12 AK IIII
I   (3.134)

  22cos2cos12 AK IIIIIIII
II   (3.135)

Eqs. (3.132) to (3.135) show that the SIFs are directly related to the generalised

coordinates. As the generalised coordinates are computed directly in the FFEM, no post-

processing technique is necessary to extract the notch SIFs.

3.6. GIFs for Homogenous Isotropic Notch under Anti-plane Loading (Mode III)

3.6.1. Stress and Displacement Expressions

The stress and displacement expressions of a notch subject to anti-plane shear loading

conditions can be derived by using a stress function approach. The only non-zero

displacement component is in the z direction  w  and the non-zero stresses are rz  and

z  which can be derived by using a stress function    in a polar coordinate system

centred at the tip of an infinite notch as illustrated in Figure 3.4. The equilibrium

equations are satisfied if the stresses are derived as follows








rrz
1 (3.136)

rz 


 (3.137)

The compatibility equations are reduced to

02  (3.138)

where 2  denotes the Laplacian operator. The stress function    can be taken as
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  Fr
III

 (3.139)

where III  is an eigenvalue. For simplicity, the superscript is dropped for the rest of this

section. After substituting   and its derivatives into the differential Eq. (3.138), the

solution for   is

  sincos BAr  (3.140)

Substituting Eq. (3.140) into Eqs. (3.136) and (3.137), the stress expressions are

   cossin1 BArrz   (3.141)

  
 sincos1 BArz   (3.142)

The eigenvalues   are obtained by imposing the following boundary conditions on the

notch faces

  0z (3.143)

Substituting Eq. (3.143) into Eq. (3.142) yields

  0sincos1   BAr (3.144)

  0sincos1   BAr (3.145)

For non-trivial solutions for A and B , the determinant of equations (3.144) and (3.145)

must be zero. By solving the determinant, the eigenvalues are obtained as

...,3,2,1;
2

 mm

 (3.146)

When m is an odd number and assuming that 12  nm , then substituting that into Eq.

(3.146) and (3.144) or (3.145) gives
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
 





 

2
1nm  and 0B

When m  is an even number and assuming that nm 2 , it can be shown that substituting

that into Eq. (3.146) and (3.144) or (3.145) gives


 n

m   and 0A

The eigenfunction series expansions of the stresses can now be written as
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(3.147)
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
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
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
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
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
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




nrnBnrnA

nn
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2
1 11

2
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(3.148)

The displacement function w  can be derived using the following equations

r
wGG rzrz 


  (3.149)

and


  




r
wGG zz (3.150)

where G  is the shear modulus. Integrating Eqs. (3.149) and (3.150) gives






















 







 






 



 nBrnArGw

nn
cos

2
1sin2

1

(3.151)

3.6.2. Mode III Stress Intensity Factors (SIFs)

The stress intensity factors of a notch are defined in a way similar to those of a crack as
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)0(lim2 1

0
 


 


zrIII

III

rK (3.152)

Substituting equations (3.148) into equations (3.152) gives

AK III
III 2 (3.153)

Equation (3.153) demonstrates a direct and simple relationship between the SIFs and the

generalised co-ordinates.

3.7. GIFs for Bi-material Notch under In-plane Loading (Modes I and II)

3.7.1. Stress and Displacement Expressions

The stress and displacement functions of a bi-material notch as shown in Figure 3.7 can

be expressed using a complex variable approach as:

  zjj
yy

j
xx 'Re4   (3.154)

       zzzzzi jjjj
xy

j
yy ''''   (3.155)

Figure 3.7. Bi-material notch geometry
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       zzzzziPP jjjj
x

j
y   ' (3.156)

        zzzzz
G

iuu jjj
j

j

j
y

j
x   '

2
1 (3.157)

where j  refers to material j , jG  is the shear modulus of material j , jj  43  for

plane-strain or )1/(43 jjj    for plane-stress and j  is the Poisson’s ratio of

material j .  zj  and  zj  are complex potentials and are assumed to be (Theocaris,

1974)

 
  
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



zbzBz

zazAz

jj
j

jj
j




(3.158)

Substituting Eq.(3.158) into Eqs. (3.155) to (3.157) gives
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(3.161)

3.7.1.1. Derivation of Eigenvalues

The complex potentials must satisfy the following continuity and boundary conditions

0
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
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


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







xy

xy

yxyx

xyxy

iPP

iPP

iuuiuu

iPPiPP

(3.162)

Substituting Eqs. (3.160)-(3.161) into (3.162) gives, after simplification,
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2211 bAbA  (3.163)

2211 BaBa  (3.164)

   22211112 bAGbAG   (3.165)

   22211112 BaGBaG   (3.166)

  1
22

11 111 aeeAb ii   (3.167)

  1
22

11 111 AeeaB ii   (3.168)

  2
22

22 122 aeeAb ii    (3.169)

  2
22

22 122 AeeaB ii    (3.170)

Substituting Eqs. (3.167) to (3.170) into Eqs. (3.163) to (3.166) gives

        01111 2211 2
2

2
2

2
1

2
1     iiii eaeAeaeA (3.171)

        01111 2211 2
2

2
2

2
1

2
1     iiii eaeAeaeA (3.172)

         011 2211 2
2

2
22

2
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2
11

1

2     iiii eaeAeaeA
G
G (3.173)

         011 2211 2
22

2
2

2
11

2
1

1

2     iiii eaeAeaeA
G
G (3.174)

The conjugates of Eqs (3.171) to (3.174) are

        01111 2211 2
2

2
2

2
1

2
1     iiii eaeAeaeA (3.175)

        01111 2211 2
2

2
2

2
1

2
1     iiii eaeAeaeA (3.176)

         011 2211 2
2

2
22

2
1

2
11

1

2     iiii eaeAeaeA
G
G (3.177)

         011 2211 2
22

2
2

2
11

2
1

1

2     iiii eaeAeaeA
G
G (3.178)

Eqs. (3.171), (3.173), (3.176) and (3.178) can be written in matrix form as
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(3.179)

Eq. (3.179) can be rewritten in a short form as

    02121 TaaAAD (3.180)

For non-trivial solutions the determinant of  D  should be zero, i.e.

  0det D (3.181)

Solving Eq. (3.181) gives the values of  , the eigenvalues, that make the determinant

zero. The values of   may be real or complex. A modified version of Muller’s method is

used to solve this equation. This is done because Muller’s method might converge to a

specific root within an interval leading to the missing of some of the eigenvalues. The

algorithm of the technique used is demonstrated in Figure 3.8. The technique is very

simple and is done to force Muller’s method to move on to find the next eigenvalue using

an incremental increase to the value of the root found in step i  if it has the same value as

the root found in step 1i .

3.7.1.2. Displacement Expressions for Complex Eigenvalues

For complex eigenvalues, Eq. (3.179) may be partitioned as follows
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(3.182)

From Eq. (3.182), 12 ,aA  and 2a  can be computed in term of 1A  as
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Figure 3.8. Numerical technique to compute the eigenvalues
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Substituting the values of the coefficients 2A , 1a  and 2a  from Eq. (3.183) into Eqs.

(3.167) to (3.170), all the coefficients of the complex potentials can be written in terms of

1A and its conjugate 1A  as
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for material 1 and
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for material 2. 1A and its conjugate 1A  can be written in terms of the real and imaginary

parts of 1A  as
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Assuming that
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then Eq. (3.161), the displacement expression, can be rewritten as
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)Im(
)Re(

2
1

1

1

1

A
A

A
A

iuuG jjj
j
y

j
xj JNHL (3.188)

Equating the real and imaginary parts of both sides of Eq. (3.188) leads to

     
      




























)Im(
)Re(

2,1Im1,1Im
2,1Re1,1Re

2
1

1

1

A
A

Gu
u

jj

jj

j
j
y

j
x

JJ
JJ

(3.189)

Eq. (3.189) shows that the displacement expressions for each complex eigenvalue can be

written in terms of the real and imaginary parts of a complex coefficient. Therefore, each

complex eigenvalue is associated with two elements of the generalised coordinates.

3.7.1. 3. Displacement Expressions for Real Eigenvalues

For real eigenvalues, the complex potentials  zj  and  zj  are reduced to

 
  







zBz

zAz

j
j

j
j




(3.190)

Substituting Eq. (3.190) into Eqs. (3.155) to (3.157) gives

   ]11[ 2)1(2)1(1
j

i
j

i
j

ij
xy

j
yy BeAeAeri     (3.191)

  ]1[ 22
j

i
j

i
j

ij
x

j
y BeAeAeriPP     (3.192)
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    ]1[2 22
j

i
j

i
jj

ij
y

j
xj BeAeAeriuuG     (3.193)

Substituting Eqs. (3.191) to (3.193) into Eqs. (3.162) gives

   22211112 BAGBAG   (3.194)

2211 BABA  (3.195)

  1
22

11 111 AeeAB ii   (3.196)

  2
22

22 122 AeeAB ii    (3.197)

Substituting Eqs. (3.196) and (3.197) into Eqs. (3.194) and (3.195) gives

042322111  dAdAdAdA (3.198)

082726151  dAdAdAdA (3.199)

where  12
121

 ieGd  ,  112
22   ieGd ,  22

213
 ieGd  ,

 122
14    ieGd , 12

5 1 ied  ,  112
6   ied , 122

7   ied , and

 122
8    ied . Eqs. (3.198) and (3.199) can be written in matrix form as

 0
2

2

87

43

1

1

65

21 































A
A

dd
dd

A
A

dd
dd

(3.200)

Solving Eqs. (3.200) for 2A  and its conjugate 2A  gives

12112 AsAsA  (3.201)

14132 AsAsA  (3.202)

where
4783

8154
1 dddd

dddds



 ,
4783

8246
2 dddd

dddds



 ,
3874

7135
3 dddd

dddds



 , and
3874

7236
4 dddd

dddds



 .

Subtracting Eq. (3.202) from the conjugate of Eq. (3.201) gives

01211  AtAt (3.203)
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where 321 sst   and 412 sst  . Eq. (3.203) could be written in terms of the real and

imaginary parts of the 1A  as

 0
)Im(
)Re(

1

1

2221

1211 















A
A

qq
qq

(3.204)

where )Re()Re( 2111 ttq  , )Im()Im( 1212 ttq  , )Im()Im( 2121 ttq  , and

)Re()Re( 2122 ttq  .

Eq. (3.204) shows that )Im( 1A  can be determined in terms of )Re( 1A  or vice versa, i.e.,

 cc
p
p

A
A

P
















2

1

1

1

)Im(
)Re(

(3.205)

where c  is either )Re( 1A  or )Im( 1A . To avoid division by zero, 1p  and 2p  may be

computed from Table 3.1 depending on the largest absolute value of ijq .

Table 3.1. Values of 1p  and 2p

Largest ijq 1p 2p

11q 1112 / qq 1

12q 1 1211 / qq

21q 2122 / qq 1

22q 1 2221 / qq

From Eq. (3.186) and (3.205), 1A and its conjugate 1A  can be written in terms of c  as

    c
A
A

A
A

i
i

A
A

PNN 



































)Im(
)Re(

)Im(
)Re(

1
1

1

1

1

1

1

1 (3.206)
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and 2A and its conjugate 2A  can be written in terms of 1A and 1A  and therefore in terms

of c  as

     c
A
A

A
A

ss
ss

A
A

PNSS 

































1

1

1

1

43

21

2

2 (3.207)

Using Eqs. (3.196), (3.197), (3.206) and (3.207), the coefficients of the complex

potentials in Eqs. (3.191) to (3.193) can be written as

 
     cc

A
A

eeB
A
A

ii
11

1

1

22
1

1

1

1
10
01

11

RPNH 










































 
(3.208)

for material 1 and

 
      cc

A
A

eeB
A
A

ii
22

2

2

22
2

2

2

1
10
01

22

RPNSH 










































  
(3.209)

for material 2.

Assuming that

    1122     ii
j

i
j eeerL (3.210)

then Eq. (3.193),the displacement expression for real eigenvalues, could be rewritten as

      cciuuG jjj
j
y

j
xj JRL 2 (3.211)

Equating the real and imaginary parts of both sides of Eq. (3.211) leads to

  
   c

Gu
u

j

j

j
j
y

j
x






















1,1Im
1,1Re

2
1

J
J

(3.212)

Eq. (3.212) shows that the displacement expressions for each real eigenvalue can be

written in terms of a real variable. Therefore, each real eigenvalue is associated with a

single element of the generalised coordinates.
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3.7.1.4. Generalised Coordinates

The displacement expressions around a notch tip are the sum of terms of Eqs. (3.189) and

(3.212) repeated for as many eigenvalues considered. The coefficients c  in Eq. (3.212)

and the real and imaginary parts of the coefficients 1A  in Eq. (3.189) are called

generalised coordinates and will be computed directly in the FFEM. The ones associated

with the singular eigenvalues (   1Re  ) are related directly to the SIFs of a general

notch. The rest are the constants of the higher order terms.

3.7.2. Stress Intensity Factors

The eigenvalues computed using Eq. (3.181) could be real or complex. For a general bi-

material notch, the singular eigenvalues (   1Re  ) are either two real singular

eigenvalues associated with mode I and mode II  III  ,  or a single complex singular

eigenvalue with real and imaginary parts. A complex singular eigenvalue is associated

with a complex SIF that can be computed using one of the following equations

 
0

1

0
lim2










  xyyyrc irK (3.213)

or

 
0

1

0
lim2










  xyyyrc irK (3.214)

Substituting Eq. (3.159) into Eqs. (3.213) and (3.214) gives

    11)2(2 11 22
1     ii

c eeAK S (3.215)

  1)2(12 11 22
1     ii

c eeAK S (3.216)

The real and imaginary parts of cK represent the mode I and II SIFs, respectively.
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For the case of two real singular eigenvalues, where one eigenvalue is associated with

mode I while the other is associated with mode II, the SIFs expressions are computed

using

)0(lim2 1

0
 


 

yyrI
I

rK (3.217)

)0(lim2 1

0
 


 

xyrII
II

rK (3.218)

Substituting the stress expression, Eq. (3.191), into Eqs. (3.217) and (3.218) gives

    
    ]11

11[
2

2

11

11

22
21

22
21









I

I

ii
III

ii
III

II
I

eeipp

eeippcK








(3.219)

for mode I, and

    
    ]11

11[
2

2

11

11

22
21

22
21

















I

II

ii
IIIIII

ii
IIIIII

IIII
II

eeipp

eeipp
i
cK

(3.220)

for mode II.

3.8. GIFs for Bi-material Notch under Anti-plane Loading (Mode III)

3.8.1. Stress and Displacement Expressions

Let ),( r be a polar co-ordinate system centred at the tip of a bi-material notch as shown

in Figure 3.7. In the state of anti-plane, the only non-zero stress components are rz  and

z , and the only non-zero displacement component is in the z  direction )(w . The stress

components can be expressed in terms of w  as

r
wG

j

j
j

rz 



)(

)( (3.221)
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
 




)(
)( 1 j

j
j

z
w

r
G (3.222)

where jG  is the shear modulus of material j ; 2,1j . The equilibrium equation can be

written in terms of the stress components as

0)(
)()(







 j

rz

j
rz

j
z

r
r 


 (3.223)

Substituting Eqs. (3.221) and (3.222) into Eq. (3.223), the equilibrium equation can be

expressed in terms of the displacement component w  as

01 )(

2

)(2

2

)(2













r
w

r
wrw

r

jjj


(3.224)

The displacement function )( jw can be assumed as

)()( 
j

j Frw  (3.225)

where   is an eigenvalue. Substituting )( jw  and its derivatives into the differential Eq.

(3.224) gives

    02   jj FF (3.226)

Substituting the general solution of the differential Eq. (3.226) into Eq. (3.225) gives

  sincos)(
jj

j BArw  (3.227)

where jA and jB  are the generalised co-ordinates (or the coefficients of the higher terms

of the mode III notch asymptotic field ). On substituting Eq. (3.227) into Eqs. (3.221) and

(3.222), the stress expressions are

   sincos1)(
jjj

j
rz BArG   (3.228)

  
 cossin1)(

jjj
j

z BArG   (3.229)

The eigenvalues   are obtained by imposing the following boundary and continuity

conditions:
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  0, 1
)1(   rz (3.230)

  0, 2
)2(   rz (3.231)

   0,0, )2()1(   rwrw (3.232)

   0,0, )2()1(    rr zz (3.233)

Substituting Eqs. (3.227) and (3.229) into Eqs. (3.230) to (3.233) yields

1

1
11 cos

sin

AB  (3.234)

2

2
22 cos

sin

AB  (3.235)

12 AA  (3.236)

1
2

1
2 B

G
GB  (3.237)

Eqs. (3.234) to (3.237) can be written in matrix form as

 0

00
0101

cossin00
00cossin

2

2

1

1

21

22

11














































B
A
B
A

GG




(3.238)

which can be rewritten in a short form as

    02211 TBABAD (3.239)

For non-trivial solutions the determinant of  D must vanish, i.e.

  0det D (3.240)

After some algebraic manipulations, Eq. (3.240) can be written as

0sincoscossin 212211   GG (3.241)

Eq. (3.241) can be simplified further as
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    0sin1sin1 21
2

1
21

2

1 
















 

G
G

G
G (3.242)

By solving Eq. (3.242), the eigenvalues are obtained. Eq. (3.242) can be solved using

Muller’s iterative method. The solution of Eq. (3.242) is always real. For the special case

when 21 GG   and   21 , Eq. (3.242) is reduced to




2
n
 (3.243)

which is the same relationship as the one derived for a symmetric homogeneous notch

(Eq. (3.146)).

Using Eqs. (3.227) to (3.229), the displacement and stress expressions in materials 1 and

2 can be written as

  sincos 11
)1( BArw  (3.244)









  sincos 1

2

1
1

)2( B
G
GArw (3.245)

   sincos 11
1

1
)1( BArGrz   (3.246)

  
 cossin 11

1
1

)1( BArGz   (3.247)









    sincos 1

2

1
1

1
2

)2( B
G
GArGrz (3.248)









   

 cossin 1
2

1
1

1
2

)2( B
G
GArGz (3.249)

3.8.2. Stress Intensity Factors

The mode III SIF of an anti-plane bi-material notch is defined as
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 0lim2 )(1

0

)(  


 

 j
zr

j
III rK (3.250)

Substituting Eq. (3.247) or (3.249) into Eq. (3.250) gives

11
)( 22 BGBGK jj

j
III   (3.251)

3.9. Implementation of the FFEM

Based on the theory presented in the previous sections, the structure of the FFEM

program implemented is shown in Figure 3.9. The code is programmed in FORTRAN90.

The next sub-sections explain the steps in more details.

3.9.1. Discretisation and Mesh Generation

For the purpose of mesh generation, the ABAQUS software is used to generate the nodal

and element definitions. Basically, a plate is drawn, partitioned and meshed. Then, an

input file is generated that contains only a list of the nodes’ labels and coordinates and the

elements labels and nodes. This file is then used in the FFEM Input File Generation sub-

routine explained next.

3.9.2. Input File for FFEM

The data required for an FFEM input file are similar to the data of a conventional FEM

input file. The only difference is defining the singular and regular nodes and elements.

Therefore, a sub-routine was developed and used to convert an FEM input file containing

basic data, i.e. the node labels and coordinates and the element labels and nodal topology,

to an FFEM input file. The sub-routine was written in FORTRAN 90. The sub-routine is
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Discretisation and mesh generation using ABAQUS
Input: plate dimensions  WH 
Output: nodal and element definitions

Interface program
FFEM input file generation
Input: nodal and element definitions, location of notch tip,

length of notch, notch opening angle, material
properties

Output: FFEM input File

Solver I:
Determination of the eigenvalues
Input: notch opening angle, material properties
Output: eigenvalues

 Element stiffness matrices
 Transformation of element stiffness matrices for

Singular elements
 Assembly of the global stiffness matrix

Load definitions and boundary conditions

Solver II:
Input: global stiffness matrix, global force vector
Output: displacement and generalised coordinates

SIFs

FFEM

Figure 3.9. Flowchart of FFEM program
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simple as it only contains conditions to recognise the singular and regular nodes and,

therefore, singular and regular elements by using simple comparison criteria of the nodes

coordinates. Any commercial FE package could be used to mesh a model and create a

mesh file. In this study, The ABAQUS software is used for this purpose (to draw and

mesh the geometry of a notched plate) as mentioned in the previous section. The

subroutine reads the file, defines all the parameters needed (singular and regular nodes

and elements, notch angle and material properties) and then writes a new input file

suitable for the FFEM code.

3.9.3. Eigenvalue Solver

The eigenvalues are determined using a sub-routine based on Muller’s iterative method

(Press et al., 2007). The sub-routine was written in FORTRAN 90 and was incorporated

in the FFEM code. It is based on the flowcharts presented in Figures (3.5) and (3.8). The

characteristic equations of the eigenvalues are solved using this sub-routine.

3.9.4. Assembly of Global Stiffness Matrix and Force Vector

Six-node triangular elements are used to mesh the plates. Seven point integration scheme

is employed to compute the element stiffness matrices. It should be noted that any

conventional finite elements can be used for modelling both the regular and singular

regions. The element stiffness matrices are computed. If an element is within the singular

region then its local stiffness matrix is transformed using the GIFs. This is carried out at

this level (element level), so the orders of matrices involved are very small and, therefore,
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reducing the computational cost and time. As the element stiffness matrices are built and

transformed, they are also assembled into the global stiffness matrix.

3.9.5. Simultaneous Linear Equations Solver

After applying the boundary conditions and building the global force vector, the

equilibrium equation, which is now in matrix form, is solved numerically to obtain the

nodal displacements and the generalised coordinates. This is done by triangulating

(decomposing) the global stiffness matrix and then obtaining the unknowns by direct

substitution. The SIFs are subsequently computed using the generalised coordinates

corresponding to the singular eigenvalues of mode I, II, or III. All the computations are

carried out using a code written in Fortran 90.

3.10. Strain Energy Approach (SEA)

The strain energy of a finite volume is


V

ee dVWE )()( (3.252)

where )(eW  is the strain energy density and can be computed as follows

  εσ :)(eW (3.253)

where σ  and ε  are stress and strain tensors, respectively. For an isotropic material, the

strain energy density )(eW  for a generalised state of stress can be written as

 yzyzxzxzxyxyzzzzyyyyxxxx
eW  

2
1)( (3.253)

The strains can be written in terms of the stresses by using Hooke’s law
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  zzyyxxxx E
 

1 (3.254)

  zzxxyyyy E
 

1 (3.255)

  yyxxzzzz E
 

1 (3.256)

xyxy G
 1

 (3.257)

yzyz G
 1

 (3.258)

xzxz G
 1

 (3.259)

where E is the Young’s modulus,   is the Poisson’s ratio and
)1(2 


EG is the shear

modulus. It was shown in the previous sections that the stresses could be written in terms

of the generalised coordinates. It was also shown that the generalised coordinates are

related to the SIFs. Therefore, the singular stresses at the notch tip can be expressed in

terms of the SIFs. For simplicity, assuming that the stresses could be written in terms of

the mode I, II and III SIFs in the near field region as

  ,,,, rKKKf IIIIIIij  (3.260)

The higher order terms in this equation are ignored because of the dominance of the

leading order terms in the singular region. By substituting the stress expressions into Eq.

(3.252) and carrying out the integration over a finite volume around the notch tip, Eq.

(3.252) becomes a representation of a direct relation between the strain energy for a finite

volume and the SIFs and could be written as

 IIIIII
e KKKFE ,,)(  (3.261)
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The strain energy could be easily computed using a commercial finite element package.

Most FE packages are not, to our knowledge, capable of computing the SIFs for general

notches. Therefore, this approach is quite useful to extract SIFs for general notches by

using current commercial FE packages. In this study, the ABAQUS software is used to

compute the strain energy. Eq. (3.252) can be partitioned to deal with bi-material and

mixed mode cases where two equations are needed to compute mode I and mode II SIFs

as follows

 
 III

e
III

e

KKFE

KKFE

,

,

2
)(

2

1
)(

1




(3.262)

The integration of Eq. (3.252) can be carried out symbolically for simple pure mode cases

resulting in closed form formulae as presented in Chapter 10. For more complex cases

such as mixed mode cases, the integration can be carried out numerically using for

example the MATLAB software. In this study, a sub-routine based on the Composite

Simpson’s Method is developed and used to carry out the integration. Then, the

simultaneous Eqs. (3.262) are solved using the MATLAB software. Figure 3.10 shows

the essential steps of the SEA.

Calculate strain energy for a closed volume

Integrate over the volume symbolically
or numerically

Solve simultaneous Equations

K

Figure 3.10. Essential steps of the SEA
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3.11. Conclusion

In this chapter the background theory of the FFEM and derivations of the stress and

displacement expressions around a notch tip that are used in the subsequent chapters were

presented. In addition, the numerical techniques and computational steps of the FFEM

and the SEA that were developed and used were also described. This was done because of

the brief nature of the published work presented in the rest of this thesis.
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Chapter 4

Research Overview
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4. Research Overview

4.1. Introduction

This thesis is presented in an Alternative Format, in which research, techniques and

findings are presented in the form of scientific papers that have been published in

externally refereed contexts. The papers included are linked to each other, and together

make up a coherent and continuous research work. In total, seven papers are included of

which four have already been published. The other three papers are currently under

review. In this chapter, an overview of the research, a short description of each paper and

a statement of the authors’ contributions are presented.

4.2. Research Overview

The main aim of this research as detailed in Chapter 1 is to extend the FFEM to compute

the mode I, II and III SIFs for general notches in isotropic homogeneous and bi-material

plates. The exact analytical solutions of the displacement field around a notch tip in an

isotropic material subjected to in-plane loading are derived and used as GIFs in the

FFEM. The mode I and II SIFs values predicted by the FFEM for notched plates

subjected to tension, shear, and bending loading conditions are of good accuracy

compared to available published data (Treifi et al., 2008, 2009a, 2009b). The method at

this stage has proved promising. As superposition of the results for mode I, II and III is

sufficient to describe the most general case of loading on a specimen with a notch, the

method is extended to compute mode III SIFs. Therefore, the exact analytical solution of

the displacement field around a notch tip in an isotropic notch subjected to out-of-plane
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shear loading conditions is derived and employed in the FFEM to compute the mode III

SIFs for general notches in isotropic notched plates (Treifi et al., 2009c).

In many engineering applications, materials are increasingly joined together and quite

frequently they are joined together with a corner/notch created between the two materials.

The presence of corners/notches is known to cause stress intensity at the tip of such

corner/notch. Therefore, the development of the FFEM to compute the SIFs for bi-

material notches is the next logical step.

Firstly, the FFEM is extended to compute mode III SIFs for bi-material notches. This is

done by deriving the exact analytical solution of the displacement field around a bi-

material notch tip subjected to out-of-plane shear loading conditions and employing the

solution in the FFEM (Treifi and Oyadiji, 2013a). Secondly, the exact analytical solutions

of the displacement field around a bi-material notch tip subjected to in-plane loading

conditions are derived and employed as GIFs to extend the FFEM to compute mode I and

II SIFs for bi-material plates (Treifi and Oyadiji, 2013b).

Most of the results produced by the FFEM for the notch cases, especially for bi-material

notch cases, are new. To prove the accuracy of the FFEM, the results are compared to

available published results and numerical solutions obtained using commercial FE

packages such as the ABAQUS software. However, the published results are generally

only for crack cases or isotropic notch cases, and the commercial FE packages are not

capable of computing the SIFs for general notches. Therefore, a new approach based on

the strain energy of a finite volume around a notch tip is developed to compute the SIF

values for isotropic homogeneous and bi-material notches (Treifi and Oyadiji, 2013c).
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The good agreement between the results obtained using the FFEM and the corresponding

results computed using the SEA increases the confidence in the FFEM results especially

for the bi-material notch problems. Indeed, both methods seem promising, one as a stand

alone method (FFEM) and the other as a subroutine that could be used to compute the

SIFs for general notches using commercial FE packages.

4.3. Outline of Included Published Papers

As this thesis is presented in an Alternative Format, the papers published that are

mentioned in the previous Section are included as separate chapters following the

Alternative Format guidelines. In total seven papers are included. Four of them are co-

authored by me and my supervisor, Dr S O Oyadiji. As the leading author, I contributed

the major ideas and contents of these papers, and I solely carried out the work in these

papers under the supervision of Dr. Oyadiji. The other three are co-authored by three

researchers: I, Dr S O Oyadiji, and Dr D K L Tsang. As the leading author, I contributed

the major ideas and contents of these papers, and I solely carried out the work in these

papers under the supervision of Dr. Oyadiji and Dr Tsang. It should be mentioned that the

SIF values presented in those papers are non-dimensionalised. Also, the stress and

displacement expressions around the notch tip are series expansions and that the ∑ symbol

is dropped for simplicity. Brief descriptions of the seven papers are presented next in the

order they appear in the subsequent chapters. Table 4.1 gives an illustrative overview of

them.
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Table 4.1. Overview of included published papers
Ch.
No.

Paper Details Mode Material Illustration

5. Computation of the SIFs of Sharp

Notched Plates by the FFEM. Int J

Numer Meth Engng 2009

I and II Isotropic

6. Computations of Modes I and II

SIFs of Sharp Notched Plates under

In-plane Shear and Bending Loading

by the FFEM. Int J  Solids Struct

2008

I and II Isotropic

7. Computations of SIFs for Non-

symmetric V-notched Plates by the

FFEM. Proceedings of the ASME

IDETC/CIE 2009

I and II Isotropic

8. Computations of the SIFs of Double-

edge and Centre V-notched Plates

under Tension and Anti-Plane Shear

by the FFEM. Engng Fract Mech

2009

I, II and

III

Isotropic
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Table 4.1. Continued
9. Evaluation of Mode III SIFs for Bi-

material Notched Bodies Using the

FFEM. Comput Struct 2013

III Bi-material

10. SEA to Compute SIFs for Isotropic

Homogeneous and Bi-material V-

notches. Int J Solids Struct 2013

I, II and

III

Isotropic

and

bi-material

11. Bi-material V-notch SIFs by the

FFEM. Engng Fract Mech 2013

I and II Bi-material

4.3.1. Computation of the Stress Intensity Factors of Sharp Notched Plates by the

Fractal-like Finite Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: International Journal for Numerical Methods in Engineering 2009; 77:558–

580.

In this paper, The FFEM is extended to analyse the singularity problems of sharp notched

plates subject to tension loading conditions. The exact stress and displacement fields of a
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general notch are derived for plane-stress/strain conditions. The exact analytical

expressions of the displacements, which are eigenfunction expansion series, are used to

perform the global transformation and to determine the SIFs. A convergence study of a

notched plate subject to pure mode I loading conditions is carried out to determine the

optimal similarity ratio, number of layers and number of terms of the GIFs. Different

numerical examples are also presented of V-notched plates for different notch opening

angles and different notch locations under tension loading conditions. To demonstrate the

accuracy and efficiency of the FFEM to compute the notch SIFs, the results are compared

to available published results and numerical solutions predicted using the ABAQUS

software. The ABAQUS software is used only for crack cases, because ABAQUS is not

capable of computing SIFs for general notches. The accuracy of Mode I SIFs computed

using the FFEM is shown to be very good. New results are also presented.

4.3.2. Computations of Modes I and II Stress Intensity Factors of Sharp Notched

Plates under In-plane Shear and Bending Loading by the Fractal-like Finite

Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: International Journal of Solids and Structures 2008; 45:6468–6484.

The FFEM is used to compute the SIFs for different configurations of cracked/notched

plates subjected to in-plane shear and bending loading conditions. A convergence study of

a V-notched plate subject to pure mode II loading conditions is carried out to determine

the optimal similarity ratio, number of layers and number of terms of the GIFs. Different

numerical examples of various configurations of cracked/notched plates under different

types of shear and bending loading conditions are presented. The results of the FFEM for
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mode II SIFs are validated via published data for crack and notch cases or numerical

solutions predicted using the ABAQUS software for crack cases. Very good accuracy is

achieved. New results are also presented.

4.3.3. Computations of SIFs for Non-symmetric V-notched Plates by the FFEM

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published in: Proceedings of ASME Conference IDETC/CIE2009; 3:711–717.

This paper further develops The FFEM to compute the SIFs for non-symmetrical

configurations of sharp V-notched plates. This is when the bisector of a notch opening

angle does not lie on or is not parallel to the x-axis of the global coordinate system. The

same exact analytical expressions of the displacements around a notch tip derived for a

symmetrical notch case can be used as GIFs when the notch is non-symmetrical by

introducing an appropriate local coordinate transformation to obtain the correct global

stiffness matrix. To demonstrate the accuracy of the FFEM to compute the mode I and II

SIFs for a non-symmetrical notch, various numerical examples are presented and results

are validated via available published data. The accuracy of the FFEM results compared to

the corresponding published data is shown to be very good.

4.3.4. Computations of the Stress Intensity Factors of Double-edge and Centre V-

notched Plates under Tension and Anti-plane Shear by the Fractal-like Finite

Element Method

Authors: Muhammad Treifi, S. Olutunde Oyadiji and Derek K. L. Tsang

Published in: Engineering Fracture Mechanics 2009; 76:2091–2108.
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In this paper, the FFEM is extended to compute the SIFs of double-edge-/centre-notched

plates subjected to out-of-plane shear or tension loading conditions. The exact stress and

displacement fields of a general notch under pure mode III loading conditions are derived.

The exact analytical expressions of the displacements, which are eigenfunction expansion

series, are used to perform the global transformation and to determine the SIFs. A

convergence study of a notched plate subject to pure mode III loading conditions is

carried out to determine the optimal similarity ratio, number of layers and number of

terms of the GIFs. The GIFs derived in the previous papers are used for in-plane (mode I

and II) problems, and the GIFs derived in this paper are used for out-of-plane (mode III)

problems. Many numerical examples of double-edge-/centre-notched plates are presented,

and the results are validated via existing published data or numerical solutions obtained

by using the ABAQUS software (for crack cases only). Also, an example on the ability of

the FFEM to compute the coefficients of the higher order terms is presented. The FFEM

results for mode III are shown to be of very good accuracy. New results of notched plate

problems are also introduced.

4.3.5. Evaluation of Mode III Stress Intensity Factors for Bi-material Notched

Bodies Using the Fractal-like Finite Element Method

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published (early view) in: Computers and Structures 2013;

http://dx.doi.org/10.1016/j.compstruc.2013.02.015.

In this paper, the FFEM is extended to compute the SIFs for bi-material notched bodies

subjected to anti-plane shear (mode III) loading conditions. The notched bodies are

formed by bonding two materials together (isotropic-isotropic/isotropic-orthotropic). The
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exact stress and displacement fields of a general bi-material notch under pure mode III

loading conditions are derived and employed as GIFs in the FFEM. Also, a strain energy-

based approach (SEA) is developed and used to extract the mode III SIFs for a bi-material

notch using standard finite element (FE) commercial packages for comparison with

corresponding data produced using the FFEM. This is done because there are no available

published results to compare the mode III notch SIFs to. Various numerical results for bi-

material cracked/notched bodies under anti-plane shear, many of which are new, are

presented. The results are compared to published results or numerical solutions and

shown to be of very good accuracy. Some interesting results of a crack parallel to an

interface for different crack locations and different material property ratios are also

presented.

4.3.6. Strain Energy Approach to Compute Stress Intensity Factors for Isotropic

Homogeneous and Bi-material V-notches

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published (early view) in: International Journal of Solids and Structures 2013; 50: 2196-

2212. http://dx.doi.org/10.1016/j.ijsolstr.2013.03.011.

In this paper, a strain energy approach (SEA) is developed to compute the general stress

intensity factors (SIFs) for isotropic homogeneous and bi-material plates containing

cracks and notches subjected to modes I, II and III loading conditions. The approach is

based on the strain energy of a control volume around the notch tip, which may be

computed using commercial finite element packages. Therefore, this approach enables

analysts to compute the notch SIFs using current commercial FE packages, despite the

fact that these packages are only capable of computing SIFs for crack problems. The
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relations between the strain energy of a control volume around the crack/notch tip are

derived for the in-plane (mode I and II) and out-of-plane (mode III) cases for isotropic

homogeneous and bi-material notches. Convergence studies are carried out to determine

the control volume size for each case. Various numerical examples of isotropic

homogeneous and bi-material notched plates are presented and results are compared to

corresponding published results or results that are computed using different numerical

methods. The accuracy of the SIF values predicted by the SEA is shown to be very good.

Many of the presented results are new, especially for the cases of bi-material notches

where the problem is quite complicated.

4.3.7. Bi-material V-notch Stress Intensity Factors by the Fractal-like Finite Element

Method

Authors: Muhammad Treifi and S. Olutunde Oyadiji

Published (early view) in: Engineering Fracture Mechanics 2013;

http://dx.doi.org/10.1016/j.engfracmech.2013.04.006.

In this paper, The FFEM is developed to compute SIF values for bi-material notches

under mode I and II loading conditions. The displacement fields around a bi-material

notch tip are derived and employed as GIFs in the FFEM to transform the large number of

nodal displacements in the singular region to a small set of generalized coordinates

leading to direct computation of the SIFs and the constants of the higher order terms.

Various numerical examples for bi-material crack and notch cases are presented. It is

demonstrated, via convergence studies, that the size of the singular region has an effect on

the results. Recommendations are made on the choice of the size of the singular region.

Compared to available published results and numerical solutions obtained by using
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different numerical methods, the FFEM is shown to produce results with very good

accuracy. Also, new results for bi-material notches are introduced.

4.4. Conclusion

In this chapter, an overview of the research undertaken was presented along with short

descriptions of the published scientific papers included in this thesis. A statement on the

contributions of the co-authors to those papers was also stated. The author of this thesis

was the major contributor to those papers; he carried out the analytical derivations and the

computations and wrote the papers as lead author. The role of the co-authors was mainly

supervisory. The papers included make up the subsequent chapters of this thesis as it is

submitted in an Alternative Format.
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Chapter 5

Computation of the Stress Intensity Factors of Sharp Notched Plates by

the Fractal-like Finite Element Method

International Journal for Numerical Methods in Engineering 2009; 77:558–580
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Computation of the stress intensity factors of sharp notched plates
by the fractal-like finite element method

Muhammad Treifi, S. Olutunde Oyadiji∗,† and Derek K. L. Tsang

Dynamics and Aeroelasticity Research Group, School of Mechanical, Aerospace and Civil Engineering,
University of Manchester, Manchester M60 1QD, U.K.

SUMMARY

The fractal-like finite element method (FFEM) is an accurate and efficient method to compute the stress
intensity factors (SIFs) of different crack configurations. In the FFEM, the cracked/notched body is
divided into singular and regular regions; both regions are modelled using conventional finite elements.
A self-similar fractal mesh of an ‘infinite’ number of conventional finite elements is used to model the
singular region. The corresponding large number of local variables in the singular region around the crack
tip is transformed to a small set of global co-ordinates after performing a global transformation by using
global interpolation functions. In this paper, we extend this method to analyse the singularity problems
of sharp notched plates. The exact stress and displacement fields of a plate with a notch of general angle
are derived for plane-stress/strain conditions. These exact analytical solutions which are eigenfunction
expansion series are used to perform the global transformation and to determine the SIFs. The use of
the global interpolation functions reduces the computational cost significantly and neither post-processing
technique to extract SIFs nor special singular elements to model the singular region are needed. The
numerical examples demonstrate the accuracy and efficiency of the FFEM for sharp notched problems.
Copyright q 2008 John Wiley & Sons, Ltd.
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KEY WORDS: edge-cracked plate; stress intensity factors; edge-notched plate; notch; finite element
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1. INTRODUCTION

The computation of stress fields inside elastic bodies with corners is a common problem in
mechanical and civil engineering. Therefore, much research has been devoted to the analysis of
sharp notches where stresses diverge and oscillate. The task of computing the so-called notch
stress intensity factors (SIFs) is important and has relevance for strength calculations. Experiments
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Aerospace and Civil Engineering, University of Manchester, Manchester M60 1QD, U.K.
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show that simple failure criteria based on critical values of such factors exist, at least for brittle
fracture [1].

Gross and Mendelson [2] used a boundary collocation procedure of the stress functions derived
by Williams [3] to calculate the SIFs. Tong and Pian [4] pointed out that the interpolation functions
must include terms that can account for the analytical form of the singularity in order to improve the
rate of convergence. In addition, these interpolation functions should be used for elements within
a finite region, and not only for those around the singular point. Sinclair et al. [5, 6] discussed
the idea of a generalised stress intensity at sharp corners and outlined an approach to obtain it
based on the calculation of a contour integral, which was an extension of the work of Stern et al.
[7, 8]. Carpenter [9–12] independently also applied the contour integral of Stern et al. [7, 8] to
compute fracture mechanics parameters and introduced a collocation approach to calculate stress
intensities.

Lin and Tong [13] developed a special hybrid finite element. Their results were limited to
mode I cases. Portela and Aliabadi [14] developed the boundary element singularity subtraction.
As the method’s name suggests, they used a technique to subtract the singularity. They published
results for symmetric and non-symmetric notch configurations. However, this method requires
extra boundary conditions that they referred to as ‘singularity conditions of the regularisation
procedure.’ Babuška et al. [15–17] developed finite element techniques to extract SIFs for mixed
modes. They discussed two broad types of methods: one involves an ‘influence’ function and the
other is related to the energy principle of fracture mechanics. These techniques are post-processing
procedures and known as extraction techniques.

The fractal-like finite element method (FFEM) is a semi-analytical method. Its idea goes back to
the work of Leung and Cheung [18]. Originally they proposed a two-level finite element technique
of constructing a frame super-element to reduce the computational cost for solving dynamic
problems of a large-scale frame. The idea was based on the concept of global–local interpolation
functions introduced by Mote [19]. The concept was that while local interpolation functions (shape
functions) reduce the infinite number of degrees of freedom of a continuum to a finite number
of degrees of freedom related to the nodes of the continuous element, the global finite element
interpolation functions can be used to reduce the number of nodal unknowns to a small number
of unknowns, called generalised co-ordinates.

The study was extended to model two-dimensional plates subject to concentrated static and
harmonic loads by Leung and Wong [20, 21] and two-dimensional crack problems by Leung and
Wong [22]. Leung and Su extended the method further to include many two-dimensional crack
problems [23–29]. They applied the method to mode I [23], mixed mode [24], and body force
crack problems [25] in 1994, 1995, 1996, respectively, as well as to cracked Kirchhoff’s plates
[26], cracked Reissner’s plates [27] and further to axisymmetric cracks and penny-shaped and
circumferential cracks [28, 29]. Leung and Tsang [30] studied mode III crack problems. It has been
shown that the fractal-like finite element method gives very accurate results for many different
crack problems.

In this paper, we extend the fractal-like finite element method to model the singularity resulting
at the notch tip. Williams’ eigenfunction series expansion will be used as global interpolation
functions to perform the fractal transformation. No special singular finite elements are necessary
to model the singular region—any conventional finite elements can be used to model the singular
region. Also, no post-processing is necessary to extract the SIFs, because some of the unknown
coefficients of the exact analytical solutions employed as the global interpolation functions are
related to the SIFs. Various numerical results concerning different notch configuration problems

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:558–580
DOI: 10.1002/nme
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subjected to mode I load conditions are presented to demonstrate the accuracy and efficiency of
the FFEM to calculate SIFs of sharp notched plates.

2. FORMULATION OF THE FRACTAL-LIKE FINITE ELEMENT METHOD (FFEM)

Following the work of Leung and Su [23–29], in the FFEM, the cracked body is divided into
singular regions (near fields) and regular regions (far fields) delineated by curves �1

0 and �2
0

as illustrated in Figure 1. Conventional finite elements are used to model both near-field and
far-field regions. However, a very fine mesh of conventional finite elements is used within the
singular regions. This mesh is generated layer by layer in a self-similar fractal process. The nodal
displacements are the unknowns in the regular region. The nodal displacements in the singular
region are transformed into a small set of generalised co-ordinates, which are the unknowns in the
singular region. Two of the generalised co-ordinates are related to the SIFs for modes I and II;
and therefore no post-processing is necessary to extract the SIFs. Williams’ analytical solutions
for the displacements near the crack tip are used for performing the transformation.

By using � as the similarity ratio and the crack tip as the centre of similarity, a set of curves
{�1,�2,�3, . . .}, similar to �0, is generated within the singular region. The layer between the
curves �n−1 and �n is called the nth layer. All nodes on �0 are considered master nodes, while
the nodes inside �0 are considered slave nodes as shown in Figure 2.

In the conventional finite element method, the displacements can be expressed as follows:

u=Nd (1)

where u is the displacement field, d is the nodal displacement vector, and N is the shape functions
matrix. The strain can be obtained by

e=Bd (2)

Figure 1. Singular and regular regions of cracked and notched plates.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:558–580
DOI: 10.1002/nme



COMPUTATION OF THE STRESS INTENSITY FACTORS 561

Figure 2. Detailed sketch of the near-field region (master nodes are highlighted).

where e is the strain vector and B is the strain-displacement operator. The stress vector is related
to the strain vector as

r=De (3)

where r is the stress vector and D is the material properties matrix.
The equilibrium equation is

Kd= f (4)

where K is the stiffness matrix and f is the nodal force vector:

K=
∫
V
BTDBdV (5)

where V is the volume of an element. For the regular region, the equilibrium equation can be
written as [

Krr Krm

Kmr Kmm

]{
dr
dm

}
=
{
fr
fm

}
(6)

where dr are the displacements of the nodes in the regular region, and dm are the displacements
of the master nodes. Similarly, for the first layer in the singular region, the equilibrium equation
can be written as [

K1st
mm K1st

ms

K1st
sm K1st

ss

]{
dm

d1sts

}
=
{
f1stm

f1sts

}
(7)

where d1sts are the displacements of the slave nodes in the first layer which can be expressed in
terms of the generalised co-ordinates cT={C I

1,C
II
1 ,C I

2,C
II
2 ,C I

3, . . .} as follows:
d1sts =T1st

s c (8)
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T1st
s is the transformation matrix in terms of polar co-ordinates (r,�) for the slave nodes in the

first layer. Therefore, Equation (7) can be written as[
I 0

0 T1st
s

]T[
K1st

mm K1st
ms

K1st
sm K1st

ss

][
I 0

0 T1st
s

]{
dm

c

}
=
[
I 0

0 T1st
s

]T{
f1stm

f1sts

}
(9)

or [
K1st

mm K1st
msT

1st
s

T1stT
s K1st

sm T1stT
s K1st

ss T
1st
s

]{
dm

c

}
=
{

f1stm

T1stT
s f1sts

}
(10)

In order to provide the continuity between the singular and the regular region, dm are not trans-
formed.

Now, for the nth layer in the singular region; n>1

Kn
sd

n
s = fns (11)

Applying the transformation gives

TnT
s Kn

sT
n
s c=TnT

s fns (12)

where

Kn
s =

[
Kn

s,i i Kn
s,i j

Kn
s, j i Kn

s, j j

]

Since dm are not transformed, the size of T1st
s is smaller than that of Tn

s .
The global stiffness matrix equation is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Krr Krm

Kmr Kmm+K1st
mm K1st

ms

K1st
sm K1st

ss +K2nd
s,i i K2nd

s,i j

K2nd
s, j i K2nd

s, j j +K3rd
s,i i K3rd

s,i j

. . .
. . .

. . .

Knl
s, j i Knl

s, j j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr

dm

d1sts

d2nds

...

dnls

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fr

fm

f1sts

f2nds

...

fnls

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where nl is the number of layers in the singular region. We can rewrite Equation (13) by applying
the transformation as follows:⎡
⎢⎢⎢⎢⎣
Krr Krm 0

Kmr Kmm+K1st
mm K1st

msT
1st
s

0 T1stT
s K1st

sm T1stT
s K1st

ss T
1st
s +

nl∑
n=2

TnT
s Kn

sT
n
s

⎤
⎥⎥⎥⎥⎦
⎧⎪⎨
⎪⎩
dr

dm

c

⎫⎪⎬
⎪⎭=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fr

fm+f1stm

T1stT
s f1sts +

nl∑
n=2

TnT
s fns

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)
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or ⎡
⎢⎢⎢⎢⎢⎣

Krr Krm 0

Kmr Kmm+K1st
mm K̄1st

ms

0 K̄1st
sm K̄1st

ss +
nl∑

n=2
K̄n

s

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
dr

dm

c

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fr

fm+f1stm

f̄1sts +
nl∑

n=2
f̄ns

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(15)

where K̄1st
ms =K1st

msT
1st
s , K̄n

s =TnT
s Kn

sT
n
s , f̄

n
s =TnT

s fns , etc.
The unknowns now are the displacements dr and dm in the regular region and the generalised

co-ordinates c. If we consider ds as the vector of displacements in the singular region except
for those on �0, the size of the vector ds is much bigger than the vector of the generalised co-
ordinates c. Therefore, solving the system of Equation (15) is much more efficient than solving
the system of Equation (13).

3. GLOBAL INTERPOLATION FUNCTIONS FOR A NOTCH PROBLEM

The global interpolation functions, which are used for the fractal transformation, have an essential
role in the FFEM; therefore, exact analytical solutions are employed as the global interpolation
functions. An eigenfunction expansion approach or a complex variable approach can be used to
derive analytical solutions of the stress and displacement fields around a notch tip [31, 32]. For
the sake of completeness, the following is a short description of those approaches.

3.1. Eigenfunction expansion method

The airy stress function approach can be used to derive the displacement and stress series expansions
around a notch tip in the manner of Williams [3]. He investigated the analytical form of the most
critical singularity cases of notches. Williams’ eigenfunctions were proved to be complete for the
annular sector [33, 34]. According to this method, the stress and displacement expressions in a

Figure 3. Notch geometry and the co-ordinate systems.
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polar co-ordinate system centred at the tip of an infinite notch as illustrated in Figure 3 (the �=0
axis and the Cartesian x-axis coincide with the bisector of the notch angle) can be written as

�r = −�Ir�I−1[(�I+1)C2 cos(�
I+1)�+(�I−3)C4 cos(�

I−1)�]
−�IIr�II−1[(�II+1)C1 sin(�

II+1)�+(�II−3)C3 sin(�
II−1)�] (16)

�� = �I(�I+1)r�I−1[C2 cos(�
I+1)�+C4 cos(�

I−1)�]
+�II(�II+1)r�II−1[C1 sin(�

II+1)�+C3 sin(�
II−1)�] (17)

�r� = �Ir�I−1[(�I+1)C2 sin(�
I+1)�+(�I−1)C4 sin(�

I−1)�]
−�IIr�II−1[(�II+1)C1 cos(�

II+1)�+(�II−1)C3 cos(�
II−1)�] (18)

ur = r�I

2G
[−(�I+1)C2 cos(�

I+1)�+C4(3−�I−4�)cos(�I−1)�]

+r�II

2G
[−(�II+1)C1 sin(�

II+1)�+C3(3−�II−4�)sin(�II−1)�] (19)

u� = r�I

2G
[(�I+1)C2 sin(�

I+1)�+C4(3+�I−4�)sin(�I−1)�]

+r�II

2G
[−(�II+1)C1 cos(�

II+1)�−C3(3+�II−4�)cos(�II−1)�] (20)

where G is the shear modulus, �=� for plane strain, �=�/(1+�) for plane stress, and � is Poisson
ratio. �I and �II are eigenvalues for modes I and II, respectively, and are calculated from the
characteristic equations:

�I sin2�+sin2�I� = 0 (21)

�II sin2�−sin2�II� = 0 (22)

C1,C2,C3,C4 are the generalised co-ordinates. C3 and C4 can be calculated in terms of C1 and C2

C4 = −cos(�I+1)�

cos(�I−1)�
C2=− (�I+1)sin(�I+1)�

(�I−1)sin(�I−1)�
C2 (23)

C3 = − sin(�II+1)�

sin(�II−1)�
C1=− (�II+1)cos(�II+1)�

(�II−1)cos(�II−1)�
C1 (24)

The characteristic equations (21) and (22) can be solved numerically using Muller’s iteration
method [14]. Muller’s method can converge to a complex root, even if the iteration has started
with a real number. A comprehensive discussion of the behaviour of the roots of Equations (21)
and (22) is given in References [31, 35].

The dominant eigenvalues, which are the smallest eigenvalues greater than zero, for different
notch angles 	 are plotted in Figure 4. From Figure 4 and Equations (16)–(18), it can be inferred
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Figure 4. Notch angle vs. dominant eigenvalues for modes I and II.

that the stresses are unbounded at the notch tip when the notch angle 	<180◦ for mode I, and
	<102.55◦ for mode II.

3.2. Complex variable approach

According to the complex variable approach [36], the displacement and stress expressions can be
written as

ur = r�I

2G
A1[(3−4�−�I)cos(�I−1)�+(cos2�I�+�I cos2�)cos(�I+1)�]

+r�II

2G
A2[−(3−4�−�II)sin(�II−1)�+(cos2�II�−�II cos2�)sin(�II+1)�] (25)

u� = r�I

2G
A1[(3−4�+�I)sin(�I−1)�−(cos2�I�+�I cos2�)sin(�I+1)�]

+r�II

2G
A2[(3−4�+�II)cos(�II−1)�+(cos2�II�−�II cos2�)cos(�II+1)�] (26)

�r = r�I−1�IA1[−(�I−3)cos(�I−1)�+(cos2�I�+�I cos2�)cos(�I+1)�]
+r�II−1�IIA2[(�II−3)sin(�II−1)�+(cos2�II�−�II cos2�)sin(�II+1)�] (27)

�� = r�I−1�IA1[(�I+1)cos(�I−1)�−(cos2�I�+�I cos2�)cos(�I+1)�]
−r�II−1�IIA2[(�II+1)sin(�II−1)�+(cos2�II�−�II cos2�)sin(�II+1)�] (28)

�r� = r�I−1�IA1[(�I−1)sin(�I−1)�−(cos2�I�+�I cos2�)sin(�I+1)�]
+r�II−1�IIA2[(�II−1)cos(�II−1)�+(cos2�II�−�II cos2�)cos(�II+1)�] (29)

where A1 and A2 are the generalised co-ordinates.
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Figure 5. Single edge-cracked plate and the mesh used for the analysis.

Expressions (25)–(29) are equivalent to the ones derived using the eigenfunction expansion
approach and, therefore, produce similar results. It should be noted that both forms of expressions
have been presented to emphasise the fact that while they are different symbolically, they produce
similar results.

3.3. The stress intensity factors (SIFs)

The SIFs are defined in a way similar to those of a crack by some authors [2] as

KI =
√
2
 lim

r→0
r1−�I��(�=0) (30)

KII =
√
2
 lim

r→0
r1−�II�r�(�=0) (31)

for modes I and II, respectively.
The relationships between the SIFs and the generalised co-ordinates are obtained by substituting

the stress expressions (17) and (18) into Equations (30) and (31):

KI =
√
2
�I(�I+1)

(
1− cos(�I+1)�

cos(�I−1)�

)
C2 (32)

KII = −√
2
�II

[
(�II+1)−(�II−1)

sin(�II+1)�

sin(�II−1)�

]
C1 (33)
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Figure 6. Variations of SIFs with number of terms (NT) and for different numbers of layers (NL) and
similarity ratios � compared with those of Tada [37].
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Figure 7. Variations of SIFs with similarity ratio and for different numbers of terms and numbers of layers
compared with those of Tada [37].
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Figure 8. Variations of SIFs with number of layers and for different similarity ratios and numbers of terms
compared with those of Tada [37].

or by substituting Equations (28) and (29) into (30) and (31):

KI =
√
2
�I(1+�I−�I cos2�−cos2�I�)A1 (34)

KII =
√
2
�II(−1+�II−�II cos2�+cos2�II�)A2 (35)

Relationships (32)–(35) show that no post-processing technique is necessary to extract the SIFs.
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4. NUMERICAL EXAMPLES

4.1. Convergence study for a crack case

A convergence study will be performed to demonstrate the accuracy and stability of the FFEM.
The effects of the similarity ratio (for a range of 0.1–0.9), the number of layers in the singular
region (for a range of 4–20), and the number of terms of the eigenfunction expansion series used
as global interpolation functions (for a range of 5–30) on the SIFs will be considered.

Two-dimensional mode I plane-stress crack problem of a single edge-cracked plate as shown
in Figure 5 will be analysed. The aspect ratio and the ratio of the crack length to the plate width
are h/w=2 and a/w=0.4, respectively. Six-node triangle elements are used to model the plate.
Also, the singular region volume is held constant with increasing numbers of layers.

The results compared to those of Tada [37] are presented in Figures 6–8. Figures 6 and 7 show
that the number of transformation terms (NT) does not have a significant effect on the results when
NT�5.

Table I. SIFs for an edge-cracked plate for different crack lengths.

KI/�
√


a1−�I1

FFEM

a/w Gross [37] Tada [37] Yang [38] 5 layers 10 layers 15 layers 20 layers

0.1 1.186 1.196 1.204 1.165 1.185 1.186 1.186
0.2 1.373 1.367 1.380 1.342 1.363 1.365 1.365
0.3 1.662 1.655 1.676 1.629 1.655 1.657 1.658
0.4 2.106 2.108 2.134 2.071 2.105 2.108 2.108
0.5 2.829 2.827 2.858 2.767 2.814 2.818 2.818
0.6 4.030 4.043 4.090 3.946 4.015 4.020 4.021
0.7 — 6.376 6.471 6.203 6.318 6.328 6.328
0.8 — 11.993 — 11.610 11.850 11.869 11.871
0.9 — 34.719 — 33.176 34.068 34.139 34.145

Figure 9. Variations of SIFs with crack length (using 20 layers) compared with that of Tada [37].
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Figure 10. Single off-centre edge-cracked plate subjected to mode I load condition.

From Figure 7, good results can be obtained by using values of similarity ratios between 0.5 and
0.7 for the range of numbers of layers used in this study. Also, Figure 8 illustrates that the results
converge asymptotically with increasing numbers of layers used to model the singular region when
�>0.3. Good results can be obtained by using 10 layers or more.

4.2. Examples of single edge-cracked plates subjected to mode I load conditions

Two-dimensional mode I plane-stress crack problems of a single edge-cracked plate will be analysed
for different crack lengths. The problem is shown in Figure 5. Based on the convergence study,
10 terms of the eigenfunction series are used for the fractal transformation. The aspect ratio and
the similarity ratio are h/w=2 and �=0.6, respectively. Six-node triangle elements are used.
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Table II. SIFs for an off-centre edge-cracked plate for different crack positions.

KI/�
√


a(KII/�
√


a)

hc/h FFEM ABAQUS

0.1 3.488 (1.037) 3.488 (1.039)
0.2 2.343 (0.230) 2.343 (0.232)
0.3 2.150 (0.053) 2.150 (0.054)
0.4 2.113 (0.009) 2.113 (0.010)
0.5 2.108 (0.000) 2.108 (0.000)

Different numbers of layers are used to model the singular region whose volume is held constant
with increasing numbers of layers.

The comparisons of the computed SIFs and corresponding published data [37, 38] are shown in
Table I for different ratios of crack length to plate width. Also, the SIFs computed using 20 layers
to model the singular region by the FFEM compared to those of Tada [37] are plotted in Figure 9.

Table I as well as Figure 8 show that the SIF values increase asymptotically with increasing
numbers of layers. In addition, the SIF values increase with increasing ratios of crack length to
plate width (a/w) as shown in Table I and Figure 9. It is also seen from Table I and Figure 9
that there is a sharp increase in the SIF value when the crack length to plate width ratio (a/w)

exceeds 0.8. Furthermore, the FFEM results for the SIFs of single edge-cracked plates show very
good agreement with the published results. The results in Table I prove that the eigenfunction
expansion series derived for notch problems yield accurate results for crack problems (when the
notch opening angle 	=0◦).

4.3. Examples of single off-centre edge-cracked plates under tension

A single off-centre edge-cracked plate as illustrated in Figure 10 is considered in this section.
The ratio of the crack length to the width of the plate is taken as a/w=0.4. Sixteen layers in the
singular region, 10 terms of the eigenfunctions, an aspect ratio of h/w=2, a similarity ratio of
�=0.6, and six-node triangle elements are used.

Using the parameters stated above, the FFEM is used to compute the modes I and II SIF values.
The results obtained are tabulated in Table II. But it should be noted that these are new results and
that there are no published data with which to compare them. Therefore, in order to validate the
results, the ABAQUS 6.5-4 finite element analysis (FEA) package is used to model the cracked
plates. A similar mesh to that shown in Figure 5 is used. In addition, the elements around the
crack tip are modelled using quarter-point crack tip elements [39].

The values of the SIFs for modes I and II predicted by the ABAQUS FEA package are also
tabulated in Table II. It should be mentioned that mode II occurs in this example because of the
geometrical asymmetry of the plate configuration. It can be seen from Table II that the SIF values
increase as the crack gets closer to the top or bottom boundaries of the plate, and the minimum
values occur when the crack is central. In order to show clearly the sharp drop in the SIF values
as the crack location moves from the edge to the centre of the plate, the KI and KII values are
plotted in Figure 11. From this figure, it can be inferred that cracks located within 20% of the
ends of the plate are more critical as they give the highest SIFs. Also, the FFEM and ABAQUS
results are in very good agreement.
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Figure 11. Variations of SIFs of an off-centre edge-cracked plate compared with those
calculated using ABAQUS FEA package.

4.4. Numerical examples of single edge-notched plates subjected to mode I load conditions

Two-dimensional mode I plane-stress notch problems of a single edge-notched plate is analysed for
different notch angles. The problem is shown in Figures 12 and 13. Ten terms of the eigenfunction
series are used for the fractal transformation. The aspect ratio, the similarity ratio, and the ratio
of the notch length to the plate width are h/w=2, �=0.6, and a/w=0.4, respectively. Six-node
triangle elements are used to model the plate. The volume of the singular region is held constant
with increasing numbers of layers.

The SIFs calculated by the FFEM for different numbers of layers and different notch angles
compared to numerical published data are shown in Table III. In addition, the SIFs computed
using 16 layers to model the singular region by the FFEM are compared to those of Gross [2] in
Figure 14.

The results in Table III increase asymptotically with increasing numbers of layers. The SIF
values increase monotonically as the notch opening angle increases as shown in Table III and
Figure 14. It can be observed that the difference between a crack SIF and a notch SIF when the
notch angle is less than 30◦ is less than 1% for mode I. This could be of high importance from an
experimental point of view, as making notches is relatively much easier than developing cracks in
test specimens.

The FFEM results in Table III for single edge-notched plates ascertain that the use of the
eigenfunction series derived in Section 3 as the global interpolation functions of the FFEM gives
results in very good agreement with the published results.

4.5. Numerical examples of single off-centre edge-notched plates

Figure 15 illustrates a single off-centre edge-notched plate under tension. The number of layers
in the singular region, the number of terms of the eigenfunction series, the aspect ratio, and the
similarity ratio are nl=16, nt=20, h/w=2, �=0.6, respectively. Six-node triangle elements are
used to model the notched plates as shown in Figure 16. A circumferentially denser mesh is used
to model the singular region, as it was necessary to obtain non-oscillatory SIFs for mode II when
the notch opening angle is rather large.

The modes I and II SIFs for different notch positions are tabulated for a ratio of the notch
length to the plate width a/w=0.4 and different notch opening angles in Table IV and for a notch
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Figure 12. Single edge-notched plate subjected to mode I load conditions.

opening angle 	=50◦ and various ratios of the notch length to the plate width in Table V. In
addition, in order to show clearly how SIF values change, they are plotted in Figures 17 and 18,
respectively. Published SIF values appear to be unavailable for most of the cases analysed in this
section.

The missing values in Tables IV and V are because the geometry of the plate is no more
rectangular (the top and bottom boundaries are no more equal). The results in Tables IV and V
converged well as the density of the mesh in the singular region was increased in the circumferential
direction. Compared to the cases studied in previous sections for which published data existed,
the values of the SIFs in Tables IV and V that correspond to these cases are, respectively, similar.
Consequently, the SIF values in Tables IV and V are valid.

It can be seen from Table IV and Figure 17 that the SIFs monotonically increase as the notch
opening angle increases. Also, the values of the SIFs increase as the notch gets closer to the top or
bottom boundaries of the plate. The minimum values of the SIFs occur when the notch is central
and the notch opening angle is 0◦. It is worth mentioning that the difference between the crack
SIFs and the notch SIFs when the notch angle is 30◦ or less is around 1.5% or less for mode I,
but is up to 39% for mode II.
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Figure 13. FE mesh of the geometry of a single edge-notched plate.

Table III. Mode I SIFs for various notch angles compared with published results.

KI/�
√


a1−�I1

FFEM

	 (deg) �I1 Gross [2] Aliabadi [14] 10 layers 16 layers 20 layers

0 0.500000 2.113 2.113 2.105 2.108 2.108
30 0.501453 2.128 2.129 2.122 2.124 2.125
60 0.512221 2.223 2.222 2.218 2.220 2.220
90 0.544484 2.473 2.471 2.466 2.467 2.467
120 0.615731 3.021 — 3.016 3.016 3.016

Table V and Figure 18 show that the SIF values of a notched plate whose notch opening angle
is 	=50◦ increase as the notch length increases and as the notch gets closer to the top or bottom
boundaries of the plate. Also, from Figures 17 and 18, the curves of the mode II SIFs are steeper
when the notch is closer to the top or bottom boundaries of the plate.

5. CONCLUSIONS

In this paper, the fractal-like finite element method (FFEM) has been extended to model notch
problems. The FFEM divides the cracked or notched body into singular and regular regions.
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Figure 14. Variations of SIFs with notch opening angle (using 16 layers) compared with those of Gross [2].

Figure 15. Single off-centre edge-notched plate under tension.

Conventional finite elements are used to model all regions. The singular region is modelled using
a large number of elements generated layer by layer in a self-similar manner. The FFEM utilises
the fractal transformation concept to reduce the large number of degrees of freedom around a
singular point, such as a crack or notch tip, to a small set of generalised co-ordinates by using
global interpolation functions.
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Figure 16. FE mesh of the geometry of a single off-centre edge-notched plate.

Table IV. Normalised SIFs of a single off-centre edge-notched plate for various notch
positions and opening angles for a/w=0.4.

(hc/h)

0.1 0.2 0.3 0.4 0.5

	 (deg) KI KII KI KII KI KII KI KII KI KII

0 3.490 1.040 2.344 0.232 2.151 0.054 2.114 0.011 2.109 0.001
10 3.503 1.153 2.346 0.253 2.152 0.059 2.115 0.011 2.110 0.001
20 3.517 1.287 2.350 0.278 2.156 0.064 2.119 0.012 2.114 0.001
30 3.544 1.448 2.361 0.307 2.167 0.070 2.131 0.014 2.125 0.001
40 3.580 1.596 2.381 0.335 2.186 0.076 2.150 0.015 2.145 0.002
50 3.741 1.758 2.427 0.368 2.218 0.083 2.180 0.016 2.174 0.002
60 — — 2.472 0.404 2.263 0.090 2.226 0.018 2.221 0.003
70 — — 2.534 0.448 2.325 0.099 2.289 0.020 2.284 0.003
80 — — 2.615 0.507 2.407 0.110 2.372 0.022 2.367 0.004
90 — — — — 2.511 0.127 2.477 0.026 2.473 0.005

The global interpolation functions used to perform the fractal transformation were exact analyt-
ical solutions of the stress and displacement fields around a notch tip and were derived analytically
by using an eigenfunction expansion technique and a complex variable approach. Those functions
were found to be eigenfunction expansion series, and some of their coefficients are related directly
to the SIFs, and therefore no post-processing technique is necessary to extract the SIFs.
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Figure 17. Normalised mode I (a) and mode II (b) SIFs of a single off-centre edge-notched plate for
various notch positions and opening angles.

Figure 18. Normalised mode I (a) and mode II (b) SIFs of a single off-centre edge-notched plate for
various notch positions and notch lengths for notch opening angle 	=50◦.

Table V. Normalised SIFs of a single off-centre edge-notched plate for various notch positions and notch
lengths for notch opening angle 	=50◦.

(hc/h)

0.1 0.2 0.3 0.4 0.5

a/w KI KII KI KII KI KII KI KII KI KII

0.1 1.481 0.139 1.252 0.024 1.212 0.005 1.205 0.001 1.204 0.001
0.2 2.117 0.539 1.537 0.115 1.425 0.026 1.402 0.005 1.399 0.001
0.3 2.869 1.097 1.918 0.243 1.746 0.057 1.711 0.011 1.706 0.001
0.4 3.741 1.758 2.427 0.368 2.218 0.083 2.180 0.016 2.174 0.002
0.5 — — 3.159 0.450 2.948 0.090 2.917 0.017 2.913 0.003

The robustness and the accuracy of the FFEM in modelling and analysing notch problems
were tested via many numerical examples of cracked and notched plates. The numerical results
of two-dimensional single symmetric/off-centre edge-cracked/edge-notched plates under tension
conditions that the study generated are in very good agreement with existing published data or
numerical solutions. However, the results for single off-centre edge-notched plates appear to be
new results.
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a b s t r a c t

The fractal-like finite element method (FFEM) is used to compute the stress intensity fac-
tors (SIFs) for different configurations of cracked/notched plates subject to in-plane shear
and bending loading conditions. In the FFEM, the large number of unknown variables in the
singular region around a notch tip is reduced to a small set of generalised co-ordinates by
performing a fractal transformation using global interpolation functions. The use of exact
analytical solutions of the displacement field around a notch tip as the global interpolation
functions reduces the computational cost significantly and neither post-processing tech-
nique to extract SIFs nor special singular elements to model the singular region are
required. The results of numerical examples of various configurations of cracked/notched
plates are presented and validated via published data. Also, new results for cracked/
notched plate problems are presented. These results demonstrate the accuracy and effi-
ciency of the FFEM to compute the SIFs for notch problems under in-plane shear and bend-
ing loading conditions.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

There are many cases in engineering design where it is necessary to compute the stress fields inside notched elastic
bodies. The presence of notches affects the capacity of structural members to withstand loading and may result in crack ini-
tiation. Therefore, much research has been devoted to the analysis of sharp notches where stresses diverge and oscillate.
However, most published data is about mode I (tension) cases. There are only few results concerning pure mode II and
in-plane bending cases of notch problems.

The task of computing the so-called notch stress intensity factors (SIFs) is important and has relevance for strength cal-
culations. Experimental findings have indicated that simple failure criteria based on critical notch SIFs exist, at least for brit-
tle fracture (Seweryn, 1994). By means of a boundary collocation procedure which is based on the stress functions derived by
Williams (1952), Gross and Mendelson (1972) computed the stress intensity factors for notch problems. They presented
many cases of mode I and limited cases of mode II. Tong and Pian (1973) concluded that the interpolation functions of a finite
element formulation must include terms that can account for the analytical form of a singularity in order to improve the
convergence rate of finite element solutions of problems with singularities. In addition, these interpolation functions should
be used for elements within a finite region, and not only for those around the singular point. Sinclair and Kondo (1984) and
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Sinclair et al. (1984) proposed a generalised stress intensity concept at sharp corners and outlined an approach to obtain it
based on the calculation of a contour integral. Their work was an extension of the work of Stern and Soni (1976) and Stern
et al. (1976). Independently, Carpenter (1984a,b,c, 1985) also applied the contour integral of Stern and Soni (1976) and Stern
et al. (1976) to compute fracture mechanics parameters and introduced a collocation approach to calculate stress intensity
factors of notch problems.

The use of a special hybrid finite element was proposed by Lin and Tong (1980). Their results were limited to mode I cases.
Similarly, a boundary element singularity subtraction technique was proposed by Portela et al. (1991). They used a technique
to subtract the singularity and published results for mode I and mode II cases of symmetric and non-symmetric notch con-
figurations. But their method requires extra boundary conditions that they referred to as ‘‘singularity conditions of the reg-
ularisation procedure.” Babuška and Miller (1984a,b) and Szabo and Babuška (1988) also developed finite element
techniques to extract stress intensity factors for mixed mode problems. They presented two approaches, namely: one ap-
proach which involves an ‘‘influence” function and another approach which is related to the energy principle of fracture
mechanics. These techniques, which are post-processing procedures, are known as extraction techniques. Zhao and Hahn
(1992) developed a method to determine the stress intensity factors of a notch problem from the stress intensity factors
of a crack problem. They reported results for mode I and mode II cases.

The focus of this paper is on the use of the fractal-like finite element (FFEM) method for analysing notch problems involv-
ing mode II loading and in-plane bending. The method is a semi-analytical method, whose idea goes back to the work of Leu-
ng and Cheung (1981). Initially, they employed a two-level finite element technique for constructing a frame super-element
in order to reduce the computational cost for solving dynamic problems of a large-scale frame. The idea was based on the
concept of global–local interpolation functions introduced by Mote (1971). The concept was that while local interpolation
functions (shape functions) of a finite element formulation reduce the infinite number of degrees of freedom of a continuum
to a finite number of degrees of freedom related to the nodes of the continuous element, the global finite element interpo-
lation functions can be used to reduce the number of nodal unknowns to a small number of unknowns, called generalised co-
ordinates.

Leung and co-workers applied the method to model two-dimensional crack problems, thin plate vibration subject to con-
centrated harmonic loads (Leung and Wong, 1989, 1992), mode I crack problems (Leung and Su, 1994), mixed mode (Leung
and Su, 1995a), body force crack problems (Leung and Su, 1995b), cracked Kirchhoff’s plates (Leung and Su, 1996a), cracked
Reissner’s plates (Leung and Su, 1996b), axisymmetric cracks (Leung and Su, 1998a), penny-shaped and circumferential
cracks (Leung and Su, 1998b), and mode III crack problems (Leung and Tsang, 2000). Xie et al. (2003) carried out a parametric
study on the fractal finite element method for crack problems. It has been proven that the fractal-like finite element method
gives very accurate results for many different crack problems. Recently Treifi et al. (2007, 2008) have extended the FFEM to

Fig. 1. Notched plates subject to mode II (a, b) and bending (c) load conditions.
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model the singularity resulting at a notch tip. They presented results of symmetric and non-symmetric notched plates sub-
jected to mode I loading conditions.

In this paper, we investigate the cases of edge-notched plates subjected to mode II loading conditions shown in Figs. 1(a)
and (b) and in-plane bending shown in Fig. 1(c) by using the fractal-like finite element method. The singular stress field
around the notch tip is represented by the Williams’ eigenfunction series which is used as global interpolation functions
to perform the fractal transformation. No special singular finite elements are required to model the stress singularity at
the notch tip – any conventional finite elements can be used to model the singularity. Also, no post-processing is required
to extract the stress intensity factors, because some of the unknown coefficients of the exact analytical solutions employed as
the global interpolation functions are related to the SIFs. Various numerical examples concerning different notch configura-
tion problems are presented to demonstrate the accuracy and efficiency of the FFEM to calculate mode I and mode II stress
intensity factors of sharp notched plates.

2. Formulation of the fractal-Like finite element method (FFEM)

In the FFEM, a body containing singular points such as crack/notch tips is divided into singular and regular regions delin-
eated by curves C1

0 and C2
0 as illustrated in Fig. 2. For the discretisation of the singular and regular regions, any conventional

finite elements can be used. However, a very fine mesh is used within the singular regions. This mesh is generated layer by
layer in a self-similar manner. The nodal displacements in the singular region are transformed into a small set of generalised
co-ordinates, which are the unknowns in the singular region, by using global interpolation functions. In the regular region,
the unknowns are the nodal displacements. The stress intensity factors for modes I and II are related to two coefficients of
the generalised co-ordinate set; and therefore no post-processing is needed to extract them. Analytical solutions of the dis-
placement field around a notch tip are used for performing the transformation.

The singular region is meshed as shown in Fig. 3. By assuming that q is a similarity ratio and using the notch tip as a cen-
tre of similarity, a set of curves {C1,C2,C3,. . .}, similar to the curve C0, that separates the singular and regular regions, is gen-
erated within the singular region. The layer between the curves Cn�1 and Cn is called the nth layer. All nodes on C0 are
considered master nodes, while the nodes inside C0 are considered slave nodes as shown in Fig. 3.

In the conventional finite element method, the static equilibrium equation can be written as

Kd ¼ f ð1Þ

where K is the stiffness matrix, d is the nodal displacement vector and f is the nodal force vector.
The equilibrium equation of the regular region can be written as

Krr Krm

Kmr Kmm

� �
dr

dm

� �
¼

fr

fm

� �
ð2Þ

where dr are the displacements of the nodes in the regular region, and dm are the displacements of the master nodes. Sim-
ilarly, the equilibrium equation of the first layer in the singular region can be written as

K1st
mm K1st

ms

K1st
sm K1st

ss

" #
dm

d1st
s

� �
¼

f1st
m

f1st
s

( )
ð3Þ

where d1st
s are the displacements of the slave nodes in the first layer which can be expressed in terms of the vector of the

generalised co-ordinates aT ¼ fAI
1;A

II
1 ;A

I
2;A

II
2 ;A

I
3; . . .g as

Fig. 2. Singular and regular regions of cracked/notched body.
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d1st
s ¼ T1st

s a ð4Þ

where T1st
s is the transformation matrix in terms of polar co-ordinates (r,h) for transforming the nodal displacements of the

slave nodes in the first layer into the generalised co-ordinates. Therefore, Eq. (3) can be rewritten as

K1st
mm K1st

ms T1st
s

T1stT

s K1st
sm T1stT

s K1st
ss T1st

s

" #
dm

a

� �
¼

f1st
m

T1stT

s f1st
s

( )
ð5Þ

The displacements of the master nodes dm are not transformed in order to provide continuity between the singular and the
regular regions.

Now, for the nth layer in the singular region; n > 1

Kn
s dn

s ¼ fn
s ð6Þ

Applying the transformation, Eq. (6) can be rewritten as

TnT

s Kn
s Tn

s a ¼ TnT

s fn
s ð7Þ

The size of T1st
s is smaller than that of Tn

s , because dm are not transformed.
Finally, the global stiffness equation can be written as

Krr Krm 0
Kmr Kmm þ K1st

mm K1st
ms

0 K1st
sm K1st

ss þ Kinn
s

2
64

3
75

dr

dm

a

8><
>:

9>=
>; ¼

fr

fm þ f1st
m

�f1st
s þ �f inn

s

8><
>:

9>=
>; ð8Þ

where nl is the number of layers in the singular region, K1st
ms ¼ K1st

ms T1st
s , Kinn

s ¼
Pnl

n¼2Kn
s , Kn

s ¼ TnT

s Kn
s Tn

s , �f1st
s ¼ T1stT

s f1st
s ,

�f inn
s ¼

Pnl
n¼2

�fn
s , and �fn

s ¼ TnT

s fn
s . Kinn

s is the generalised stiffness matrix of the inner layers (n P 2) in the singular region:

Kinn
s ¼

Xnl

n¼2

Kn
s ¼

Xnl

n¼2

TnT

s Kn
s Tn

s ð9Þ

The stiffness matrix of every layer in the singular region is the same because the stiffness matrices of the two-dimensional
isoparametric finite elements of similar shapes are the same (Leung and Su, 1994). Therefore,

Kn
s ¼ K1st

s ð10Þ

The transformation matrix of the nth layer can be written in terms of that of the first layer as

Tn
s ¼ Tf

s ½d� ð11Þ

where Tf
s is the transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer and it is

different from the aforementioned T1st
s , and [d] is a diagonal matrix where

dii ¼ qðn�1Þki ; ki ¼ kI
1; k

II
1 ; k

I
2; k

II
2 ; . . . ð12Þ

Substituting Eqs. (10)–(12) into Eq. (9) gives

Kinn
s ¼

Xnl

n¼2

½d�TTf T

s K1st
s Tf

s ½d� ¼ ½�dij
�kij� ð13Þ

Fig. 3. Illustration of a singular region (master nodes are highlighted.)
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where

½�kij� ¼ Tf T

s K1st
s Tf

s ð14Þ

and

�dij ¼
Xnl

n¼2

qðn�1Þkiqðn�1Þkj ¼
Xnl

n¼2

qðn�1ÞðkiþkjÞ ¼ qðkiþkjÞ þ q2ðkiþkjÞ þ � � � þ qðnl�1ÞðkiþkjÞ ð15Þ

This sum is a geometric series. For a finite number of layers, �dij can be written as

�dij ¼
qðkiþkjÞð1� qðnl�1ÞðkiþkjÞÞ

1� qðkiþkjÞ
ð16Þ

and for an infinite number of layers (nl ?1) as

�dij ¼
qðkiþkjÞ

1� qðkiþkjÞ
ð17Þ

For a crack problem (c = 0), Eq. (17) yields the same equation derived by Leung and Su (1995) for a crack problem. A similar
procedure can be followed to compute the generalised force vector of the inner layers in the singular region �f inn

s .
The unknowns of the problem now are the displacements dr and dm in the regular region and the generalised co-ordinates

a instead of the nodal displacements of the nodes in the singular region. If we consider ds as the vector of the nodal displace-
ments of the nodes in the singular region except for those on C0, the size of the vector ds is much bigger than that of the
vector of the generalised co-ordinates a. Therefore, solving the system of Eqs. (8) reduces the computational cost consider-
ably. For more details about the formulation of the FFEM, see Treifi et al. (2008) and Leung and Su (1994–1998).

3. Global interpolation functions for a notch problem

The global interpolation functions are very important in the FFEM, because they are employed to perform the fractal
transformation. Therefore, exact analytical solutions of the displacement field around a notch tip are used as the global inter-
polation functions. Those analytical solutions can be derived by using an eigenfunction expansion approach (Williams, 1952)
or a complex variable approach (England, 1971).

According to the Complex Variable Method, the stress and displacement expressions in a polar co-ordinate system cen-
tred at the tip of an infinite notch as illustrated in Fig. 4 can be written as

ur ¼ rkI

2G A1½ð3� 4g� kIÞ cosðkI � 1Þhþ ðcos 2kIaþ kI cos 2aÞ cosðkI þ 1Þh�

þ rkII

2G A2½�ð3� 4g� kIIÞ sinðkII � 1Þhþ ðcos 2kIIa� kII cos 2aÞ sinðkII þ 1Þh�
ð18Þ

uh ¼ rkI

2G A1½ð3� 4gþ kIÞ sinðkI � 1Þh� ðcos 2kIaþ kI cos 2aÞ sinðkI þ 1Þh�

þ rkII

2G A2½ð3� 4gþ kIIÞ cosðkII � 1Þhþ ðcos 2kIIa� kII cos 2aÞ cosðkII þ 1Þh�
ð19Þ

rr ¼ rkI�1kIA1½�ðkI � 3Þ cosðkI � 1Þhþ ðcos 2kIaþ kI cos 2aÞ cosðkI þ 1Þh�
þrkII�1kIIA2½ðkII � 3Þ sinðkII � 1Þhþ ðcos 2kIIa� kII cos 2aÞ sinðkII þ 1Þh�

ð20Þ

Fig. 4. Notch geometry and the co-ordinate systems.
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rh ¼ rkI�1kIA1½ðkI þ 1Þ cosðkI � 1Þh� ðcos 2kIaþ kI cos 2aÞ cosðkI þ 1Þh�
�rkII�1kIIA2½ðkII þ 1Þ sinðkII � 1Þhþ ðcos 2kIIa� kII cos 2aÞ sinðkII þ 1Þh�

ð21Þ

rrh ¼ rkI�1kIA1½ðkI � 1Þ sinðkI � 1Þh� ðcos 2kIaþ kI cos 2aÞ sinðkI þ 1Þh�
þrkII�1kIIA2½ðkII � 1Þ cosðkII � 1Þhþ ðcos 2kIIa� kII cos 2aÞ cosðkII þ 1Þh�

ð22Þ

where G is the shear modulus, g = m for plane strain, g ¼ m
1þm for plane stress, and m is the Poisson’s ratio. kI and kII are eigen-

values for mode I and mode II, respectively, and are calculated from the following characteristic equations:

kI sin 2aþ sin 2kIa ¼ 0 ð23Þ
kII sin 2a� sin 2kIIa ¼ 0 ð24Þ

The eigenvalues of mode I (kI) and mode II (kII) for a notch problem are different from each other except for the special case of
a crack problem. Detailed derivations of the stress and displacement expressions around a notch tip can be found in refer-
ences such as Vasilopoulos (1988).

Muller’s iteration method can be used to find the roots of the characteristic equations (23) and (24) (Portela et al., 1991).
Muller’s method can converge to a complex root, even if the iteration has started with a real number. The dominant eigen-
values, which are the eigenvalues that satisfy the condition 0 < Re(k1) < 1, for different opening notch angles are tabulated in
Table 1.

The stress intensity factors of a notch are defined in a way similar to those of a crack as

K I ¼
ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1�kIrhðh ¼ 0Þ ð25Þ

K II ¼
ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1�kIIrrhðh ¼ 0Þ ð26Þ

for mode I and mode II, respectively (Gross and Mendelson, 1972).
Substituting Eqs. (21) and (22) into Eqs. (25) and (26) gives

K I ¼
ffiffiffiffiffiffiffi
2p
p

kIð1þ kI � kI cos 2a� cos 2kIaÞA1 ð27Þ
K II ¼

ffiffiffiffiffiffiffi
2p
p

kIIð�1þ kII � kII cos 2aþ cos 2kIIaÞA2 ð28Þ

Eqs. (27) and (28) demonstrate direct relationships between the SIFs and the generalised co-ordinates. Therefore, no post-
processing technique is required to extract the SIFs.

4. Numerical examples

4.1. Convergence study of mode II for a crack case

A convergence study is carried out to demonstrate the accuracy and stability of the FFEM to compute mode II SIFs. The
effects of the number of layers in the singular region (for a range of 4–20 and when nl =1), the similarity ratio (for a range of
0.1–0.9), and the number of terms of the eigenfunction expansion series used as global interpolation functions (for a range of
5–30) on the mode II SIFs will be investigated.

A two-dimensional mode II plane-stress problem of a single edge-cracked plate as shown in Fig. 5(a) is analysed. The mo-
ments applied at the top and the bottom boundaries are to counter the moment caused by the shear stresses applied at the
top and the bottom boundaries of the plate. These counter-moments can be modelled using one of the two cases shown in
Figs. 5(b) and (c). The loading system shown in Fig. 5(b) is used in this convergence study. The aspect ratio and the ratio of
the crack length to the plate width are h/w = 2 and a/w = 0.4, respectively. Six-node triangle elements (seven-point integra-
tion scheme) are used to mesh the plate as shown in Fig. 6. Also, the singular region volume is held constant with increasing
numbers of layers.

Table 1
Dominant eigenvalues of different notch angles

c (�) kI
1 kII

1

0 0.5000000 0.5000000
10 0.5000530 0.5293547
20 0.5004264 0.5620065
30 0.5014530 0.5981919
40 0.5034904 0.6381825
50 0.5069329 0.6822948
60 0.5122214 0.7309008
70 0.5198543 0.7844406
80 0.5303957 0.8434395
90 0.5444837 0.9085292
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The results compared to those obtained by using the ABAQUS 6.5-4 finite element analysis (FEA) package are presented in
Figs. 7–9. A similar mesh to that shown in Fig. 6 is used to model and analyse the cracked plate in ABAQUS. In addition, the
elements around the crack tip are modelled using quarter-point crack tip elements (ABAQUS, 2004). Figs. 7 and 8 show that
the number of transformation terms (NT) does not have a significant effect on the results when NT P 5 for the ranges of vari-
ables (numbers of layers (NL), similarity ratios (q) and NT) used in this study.

Fig. 8 demonstrates that good results can be obtained by using values of similarity ratios larger than 0.5 for the ranges of
variables used in this study. Also, it can be seen that when nl ?1, larger similarity ratios (finer meshes of the singular re-

Fig. 5. Edge-cracked plate subject to mode II loading conditions.

Fig. 6. FE mesh of the geometry of a single edge-cracked plate.
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gion) are needed to provide good results. Fig. 9 illustrates that the results converge asymptotically with increasing numbers
of layers used to model the singular region when q > 0.3. Good results can be obtained by using ten layers or more. A similar
behaviour was observed for the cases of mode I loading conditions (Treifi et al., 2008).

Fig. 7. Variations of SIFs with number of terms (NT) for different number of layers (NL) and similarity ratiosqcompared to those obtained by using ABAQUS.
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4.2. Examples of single edge-cracked plates subjected to mode II load conditions

Two-dimensional mode II plane-stress problems of a single edge-cracked plate are analysed for different crack lengths.
The problem is shown in Fig. 5. Based on the convergence study, 16 layers are used to model the singular region and 10 terms
of the eigenfunction series are used for the fractal transformation. The similarity ratio and the aspect ratio are q = 0.6, and h/

Fig. 8. Variations of SIFs with similarity ratio for different number of terms and numbers of layers compared to those obtained by using ABAQUS.
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w = 2, respectively. Six-node triangle elements (seven-point integration scheme) are used to mesh the geometry of the plate
as shown in Fig. 6.

The stress intensity factors computed for the mode II problems illustrated in Figs. 5(b) and (c) by the FFEM compared to
corresponding published data (Zhao and Hahn, 1991, 1992) and those computed by using ABAQUS (the counter-moments
were modelled as in Fig. 5(b) and the mesh is similar to that shown in Fig. 6) are tabulated in Table 2 for different ratios
of crack length to plate width.

Table 2
Mode II SIFs of an edge-cracked plate for different crack lengths

a
w K II=s

ffiffiffiffi
p
p

a1�kII
1

Zhao and Hahn
(1991)

Zhao and Hahn
(1992)

ABAQUS (Counter-moments modelled
as in Fig. 5(b))

FFEM

Counter-moments modelled as
in Fig. 5(b)

Counter-moments modelled as
in Fig. 5(c)

0.1 – – 0.376 0.376 0.376
0.2 – 0.441 0.695 0.696 0.694
0.3 – 0.830 0.960 0.960 0.958
0.4 1.166 1.150 1.179 1.180 1.179
0.5 – 1.394 1.369 1.370 1.371
0.6 – 1.581 1.549 1.550 1.552
0.7 – 1.771 1.752 1.753 1.754
0.8 – – 2.053 2.054 2.054
0.9 – – 2.738 2.740 2.739

Fig. 9. Variations of SIFs with Number of layers for different similarity ratios and numbers of terms compared to those obtained by using ABAQUS.
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Table 2 shows that the mode II SIF values increase with increasing ratios of crack length to plate width (a/w). More impor-
tantly, Table 2 illustrates that the SIF values computed by the FFEM are in very good agreement with those predicted by the
ABAQUS FEA package and their accuracy is better than those calculated by Zhao and Hahn (1991, 1992). Therefore, the re-
sults in Table 2 prove that the eigenfunction expansion series presented in Section 3 which were derived for notch problems
produce accurate results for mode II crack problems (when the notch opening angle c = 0�).

4.3. Examples of single off-centre edge-cracked plates under mode II loading conditions

A single off-centre edge-cracked plate as illustrated in Fig. 10 is analysed in this section. The ratio of the crack length to
the width of the plate is taken as a/w = 0.4. Ten terms of the eigenfunctions, 16 layers in the singular region, an aspect ratio h/
w = 2, and a similarity ratio q = 0.6 are used. Six-node triangle elements (seven-point integration scheme) are used to mesh
the geometries of the plates in a similar manner of that shown in Fig. 6.

The FFEM is used to compute the mode I and mode II SIF values using the parameters stated above for both cases of apply-
ing the counter-moments at the top and the bottom boundaries of the plate illustrated in Figs. 5(b) and (c). The results ob-
tained are tabulated in Table 3. But it should be noted that these are new results and that there are no published data with
which to compare them. Therefore, in order to validate the results, the ABAQUS 6.5-4 FEA package is used to model the
cracked plates. A similar mesh to that shown in Fig. 6 is used. Moreover, the elements around the crack tip are modelled
using quarter-point crack tip elements, and the counter-moments applied on the top and the bottom boundaries of the plate
are modelled as in Fig. 5(b). It should be noted that although similar meshes (and therefore similar numbers of nodes) are
used in the FFEM and ABAQUS, the number of equations that need to be solved in the FFEM is much smaller than that in
ABAQUS, because of the transformation process described in Section 3.

The values of the stress intensity factors for mode I and mode II predicted by the ABAQUS FEA package are also tabulated
in Table 3. Mode I occurs in this example because of the geometrical asymmetry of the plate configuration. It can be seen
from Table 3 that the SIF values increase as the crack gets closer to the bottom boundary of the plate, and the minimum val-
ues occur when the crack is on the centre line. Also, the FFEM and the ABAQUS results are in very good agreement. It is how-
ever worth noting that the differences between the FFEM results are due to the differences in the methods of application of
the counter-moments which produce different influences of the concentrated and linearly varying loads applied at the top
and the bottom boundaries of the plates shown in Figs. 5(b) and (c).

4.4. Examples of single edge-notched plates subjected to mode II load conditions

Two-dimensional mode II plane-stress problems of single edge-notched plates shown in Figs. 1(a) and (b) are analysed for
different notch angles. Sixteen layers are used to model the singular region, and 10 terms of the eigenfunction series are used

Fig. 10. Single off-centre edge-cracked plate subjected to mode II load conditions.
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for the fractal transformation. The similarity ratio and the ratio of the notch length to the plate width are q = 0.6 and a/
w = 0.4, respectively. Six-node triangle elements (seven-point integration scheme) are used to model the plate as shown
in Fig. 11.

Firstly, a plate under mode II loading conditions as illustrated in Fig. 1(a) is considered. The SIFs computed by the FFEM for
different notch angles and an aspect ratio h/w = 0.8 compared to published data (Gross and Mendelson, 1972; Portela et al.,
19911) are tabulated in Table 4.

Now a plate under mode II loading conditions as shown in Fig. 1(b) is analysed. The SIF values calculated by the FFEM for
different notch angles and an aspect ratio h/w = 2 compared to the published results of Zhao and Hahn (1991, 1992) are pre-
sented in Table 5. Also, both ways of modelling the counter-moments as shown in Figs. 12(a) and (b) are investigated.

The results in Table 4 show that the SIF values computed by the FFEM are in very good agreement with those predicted by
Gross and Mendelson (1972) and Portela et al. (1991). This again proves the accuracy of the FFEM for computing mode II SIFs.
Table 5 demonstrates that there is a discrepancy of about 1% between the FFEM results and those reported by Zhao and Hahn

Fig. 11. FE mesh of the geometry of a single edge-notched plate.

1 It seems that there is a typographical error in Portela et al., 1991; in Table 3: K II
�t
ffiffiffi
p
p

a1�f1
should be K II

�ta1�f1
.

Table 4
Mode II SIFs of a plate as shown in Fig. 1(a) for various notch angles compared with published results

c (�) K II=s
ffiffiffiffi
p
p

a1�kII
1

Gross and Mendelson (1972) Portela et al. (1991)1 FFEM

0 0.282 0.282 0.282
10 0.206 0.205 0.206
20 0.129 0.129 0.129
30 0.051 0.051 0.051

Table 3
Normalised SIFs for an off-centre edge-cracked plate for different crack positions

hc/h ABAQUS (Counter-moments modelled as in Fig. 5(b)) FFEM

Counter-moments modelled as in Fig. 5(b) Counter-moments modelled as in Fig. 5(c)

KI KII KI KII KI KII

0.1 10.459 5.563 10.458 5.565 11.021 5.033
0.2 4.978 1.924 4.978 1.925 5.238 1.853
0.3 3.062 1.305 3.062 1.305 3.121 1.292
0.4 1.512 1.193 1.512 1.194 1.520 1.191
0.5 0.001 1.179 0.000 1.180 0.000 1.179
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(1991), but it is up to 14% compared to the results of Zhao and Hahn (1992). However, it was shown in a previous example on
cracked plates that the accuracy of the FFEM results is better than that of the results of Zhao and Hahn (1991, 1992).

The results in Tables 4 and 5 for single edge-notched plates subject to mode II loading conditions ascertain that the use of
the eigenfunction series presented in Section 3 as the global interpolation functions of the FFEM gives results which are in
very good agreement with published data.

4.5. Examples of single off-centre edge-notched plates subjected to mode II load conditions

Fig. 13 illustrates a single off-centre edge-notched plate under mode II loading conditions. The number of terms of the
eigenfunction series, the number of layers in the singular region, the similarity ratio, and the aspect ratio are nt = 20,
nl = 16, q = 0.6, and h/w = 2, respectively. Six-node triangle elements (seven-point integration scheme) are used to model
the notched plates as shown in Fig. 14. In order to obtain non-oscillatory SIFs when the notch opening angle is rather large,
a circumferentially denser mesh is used to model the singular region.

The mode I and mode II SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of
the notch length to the plate width a/w = 0.4 in Tables 6(a) and 6(b) and for a notch opening angle c = 50� and for various
ratios of the notch length to the plate width in Tables 7(a) and 7(b). In these tables, (a) and (b) indicate that the counter-
moments are applied in the same ways shown in Figs. 12(a) and (b), respectively. Published SIF values appear to be unavail-
able for most of the cases analysed in this section.

Table 5
Mode II SIFs of a plate as shown in Fig. 1(b) for various notch angles compared with published results

c (�) K II=s
ffiffiffiffi
p
p

a1�kII
1

Zhao and Hahn
(1992)

Zhao and Hahn
(1991)

FFEM

Counter-moments modelled as couples
(Fig. 12(a))

Counter-moments modelled as linearly varying
loads (Fig. 12(b))

0 1.150 1.166 1.180 1.179
30 1.863 1.625 1.634 1.634
60 2.355 2.292 2.314 2.317
90 3.126 3.215 3.190 3.198

Fig. 12. Two ways of modelling the counter-moments of an edge-notched plate subject to mode II loading conditions.
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The results in Tables 6(a), 6(b), 7(a) and 7(b) converged well as the density of the mesh in the singular region was in-
creased in the circumferential direction. The SIF values in those tables that correspond to cases which were studied in pre-
vious sections and for which published data exist are respectively similar. Therefore, the results in Tables 6(a), 6(b), 7(a) and
7(b) are valid. The missing values in those tables are due to the fact that the geometry of the plate is no more rectangular (the
top and bottom boundaries are no more equal).

Tables 6(a) and 6(b) show that the SIFs monotonically increase as the notch opening angle increases. Also, the values of
the SIFs increase as the notch gets closer to the bottom boundary of the plate. The minimum values of the SIFs occur when
the notch is on the centre line and the notch opening angle is 0�. From Tables 7(a) and 7(b), it can be seen that the SIFs for an
edge-notched plate with a notch opening angle c = 50� increase as the notch length increases.

Fig. 13. Single off-centre edge-notched plate under mode II loading conditions.

Fig. 14. FE mesh of the geometry of a single off-centre edge-notched plate.
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Table 6(a)
Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(a)) for various notch positions and
opening angles for a/w = 0.4

c (�) hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0 10.465 5.568 4.981 1.926 3.064 1.306 1.513 1.194 0.000 1.180
10 10.543 6.165 4.990 2.116 3.064 1.445 1.513 1.327 0.000 1.312
20 10.613 6.871 5.000 2.334 3.068 1.605 1.515 1.478 0.000 1.463
30 10.732 7.716 5.020 2.582 3.077 1.787 1.519 1.651 0.000 1.635
40 10.855 8.474 5.053 2.843 3.096 1.993 1.529 1.854 0.000 1.837
50 11.548 9.284 5.204 3.130 3.163 2.221 1.560 2.078 0.000 2.061
60 – – 5.268 3.448 3.207 2.468 1.584 2.323 0.000 2.307
70 – – 5.364 3.819 3.270 2.737 1.617 2.585 0.000 2.568
80 – – 5.482 4.283 3.352 3.039 1.660 2.873 0.000 2.855
90 – – – – 3.462 3.389 1.716 3.195 0.000 3.175

Table 6(b)
Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(b)) for various notch positions and
opening angles for a/w = 0.4

c (�) hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0 11.029 5.035 5.241 1.854 3.123 1.293 1.521 1.192 0.000 1.180
10 11.085 5.603 5.247 2.056 3.123 1.436 1.521 1.325 0.000 1.311
20 11.143 6.275 5.256 2.289 3.127 1.602 1.523 1.478 0.000 1.462
30 11.242 7.076 5.277 2.558 3.138 1.791 1.528 1.652 0.000 1.635
40 11.364 7.860 5.315 2.862 3.159 2.012 1.538 1.857 0.000 1.837
50 12.000 8.715 5.468 3.203 3.229 2.258 1.570 2.085 0.000 2.063
60 – – 5.547 3.584 3.278 2.529 1.595 2.335 0.000 2.309
70 – – 5.660 4.015 3.348 2.823 1.629 2.602 0.000 2.572
80 – – 5.799 4.534 3.437 3.155 1.673 2.897 0.000 2.860
90 – – – – 3.552 3.540 1.731 3.229 0.000 3.183

Table 7(a)
Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(a)) for various notch positions and notch
lengths for a notch opening angle c = 50�

a/w hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0.1 10.010 4.534 4.630 1.419 2.674 0.844 1.289 0.735 0.000 0.720
0.2 10.147 6.463 4.644 2.283 2.714 1.449 1.313 1.282 0.000 1.258
0.3 10.730 7.982 4.795 2.794 2.857 1.892 1.396 1.721 0.000 1.698
0.4 11.548 9.284 5.204 3.130 3.163 2.221 1.560 2.078 0.000 2.061
0.5 – – 5.981 3.373 3.729 2.501 1.852 2.397 0.000 2.388

Table 7(b)
Normalised SIFs of a single off-centre edge-notched plate subject to mode II load conditions (similar to that in Fig. 12(b)) for various notch positions and notch
lengths for a notch opening angle c = 50�

a/w hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0.1 6.012 1.153 3.906 0.722 2.556 0.712 1.276 0.718 0.000 0.719
0.2 8.062 3.405 4.310 1.554 2.651 1.292 1.304 1.257 0.000 1.255
0.3 10.099 6.060 4.840 2.432 2.873 1.815 1.397 1.707 0.000 1.695
0.4 12.000 8.715 5.468 3.203 3.229 2.258 1.570 2.085 0.000 2.063
0.5 – – 6.302 3.760 3.801 2.617 1.863 2.419 0.000 2.392
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4.6. Examples of single edge-notched plates subjected to bending load conditions

A single edge-notched plate under bending loading conditions as illustrated in Fig. 1(c) is analysed for different opening
notch angles and different notch positions. The parameters used in this examples are nt = 20, nl = 16, q = 0.6, and h/w = 2. Six-
node triangle elements (seven-point integration scheme) are used to model the notched plates as shown in Fig. 14.

The mode I and mode II SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of
the notch length to the plate width a/w = 0.4 in Table 8 and for a notch opening angle c = 50� and for various ratios of the
notch length to the plate width in Table 9. Most of the cases studied in this section appear to be new. However, there are
few published results that correspond to cases in Tables 8 and 9. Those cases are tabulated in Table 10 for comparison.
The FFEM results in Table 10 are in very good agreement with the published data. Therefore, the results tabulated in Tables
8 and 9 are valid.

The SIFs in Tables 8 and 9 increase monotonically with increasing notch opening angles and increasing notch lengths.
Also, the SIF values increase as the notch gets closer to the top or bottom boundaries of the plate.

5. Conclusions

In this paper, the fractal-like finite element method was used to model and analyse notched plates subject to in-plane
shear and bending loading conditions. The FFEM utilises the fractal transformation concept to reduce significantly the large

Table 8
Normalised SIFs of a single off-centre edge-notched plate subject to bending load conditions for various notch positions and opening angles for a/w = 0.4

c (�) hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0 2.244 0.761 1.429 0.169 1.290 0.039 1.263 0.008 1.260 0.001
10 2.253 0.844 1.429 0.185 1.290 0.043 1.263 0.008 1.260 0.000
20 2.263 0.943 1.431 0.203 1.291 0.047 1.265 0.009 1.261 0.001
30 2.280 1.062 1.435 0.225 1.295 0.051 1.269 0.010 1.265 0.001
40 2.301 1.170 1.444 0.246 1.303 0.056 1.277 0.011 1.273 0.001
50 2.422 1.287 1.482 0.270 1.331 0.061 1.303 0.012 1.299 0.001
60 – – 1.502 0.297 1.350 0.067 1.323 0.013 1.319 0.002
70 – – 1.530 0.331 1.378 0.073 1.351 0.015 1.347 0.002
80 – – 1.565 0.377 1.414 0.083 1.388 0.017 1.384 0.002
90 – – – – 1.460 0.097 1.435 0.020 1.432 0.004

Table 9
Normalised SIFs of a single off-centre edge-notched plate subject to bending load conditions for various notch positions and notch lengths for a notch opening
angle c = 50�

a/w hc/h

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0.1 1.321 0.128 1.111 0.022 1.074 0.005 1.067 0.001 1.066 0.000
0.2 1.696 0.463 1.201 0.098 1.106 0.022 1.087 0.005 1.084 0.001
0.3 2.070 0.874 1.325 0.192 1.189 0.045 1.162 0.009 1.158 0.001
0.4 2.422 1.287 1.482 0.270 1.331 0.061 1.303 0.012 1.299 0.001
0.5 – – 1.708 0.306 1.568 0.063 1.547 0.012 1.544 0.002

Table 10
SIFs of a single edge-notched plate subject to bending load conditions for various notch angles compared with published results (a/w = 0.4, h/w = 2)

c (�) K I=r
ffiffiffiffi
p
p

a1�kI
1

Zhao and Hahn (1992) Gross and Mendelson (1972) Chen (1995) FFEM

0 1.258 1.261 – 1.260
10 – 1.261 – 1.260
20 – 1.263 – 1.261
30 1.262 1.267 1.266 1.265
60 1.327 1.309 1.309 1.319
90 1.484 1.437 1.433 1.432
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number of unknowns in the singular region. The transformation is performed by using global interpolation functions. Neither
post-processing technique to extract the stress intensity factors nor special singular finite elements to model the singular the
region are required.

The SIFs of many examples of edge-notched plates under in-plane shear and bending loading conditions were computed
by using the FFEM. The results were in very good agreement with published data, and their accuracy was better than some of
those reported results. Moreover, the results for single off-centre edge-notched plates appear to be new results.
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ABSTRACT 

The present paper further develops The Fractal-like Finite 
Element Method (FFEM) to compute the stress intensity 
factors (SIFs) for non-symmetrical configurations of sharp V-
notched plates. The use of global interpolation functions 
(GIFs) in the FFEM significantly reduces the number of 
unknown variables (nodal displacements) in a singular region 
surrounding a singular point to a small set of generalised 
coordinates. The same exact analytical solutions of the notch 
tip asymptotic field derived for a symmetrical notch case can 
be used as GIFs when the notch is non-symmetrical. However, 
appropriate local coordinate transformation in the singular 
region is required to obtain the correct global stiffness matrix. 
Neither post-processing technique to extract SIFs nor special 
singular elements to model the singular region are required. 
Any conventional finite elements can be used to model the 
singular region. The SIFs are directly computed because of the 
use of exact analytical solutions as GIFs whose coefficients 
(generalised coordinates) are the unknowns in the singular 
region. To demonstrate the  accuracy and efficiency of the 
FFEM to compute the SIFs and model the singularity at a 
notch tip of non-symmetrical configurations of notched plates, 
various numerical examples are presented and results are 
validated via available published data. 

 

KEYWORDS:  
notch, stress intensity factors, fracture mechanics, finite 

element method, fractal-like finite element method. 
 
 

1 INTRODUCTION 
 
In two-dimensional elasticity, stresses near sharp notches or 
corners exhibit singular behaviour. Sharp notches/corners are 
stress raisers of major interest. Their presence in engineering 
components significantly influences the capacity of those 
components and may result in a crack initiation leading to a 
catastrophic failure or to a shortening of the service life. 
Therefore, much research has been devoted to investigate 
notch problems. Failure criteria for notch problems based on 
notch stress intensity factors exist, at least for brittle fracture 
[1]. Similar to crack problems, the failure occurs when the 
notch stress intensity factors reach critical values. 
  
Many procedures have been developed to calculate the notch 
SIFs and to model the singularity resulting at a notch tip. 
Gross and Mendelson [2] used a Boundary Collocation 
Approach based on the stress functions derived by Williams 
[3] to compute mode I and mode II SIFs of many notch cases. 
It has been well recognised that the Finite Element Method 
has slow convergence rate when dealing with problems 
involving stress singularities. Tong and Pian [4] concluded 
that in order to improve the convergence of a finite element 
solution of a problem with a singularity, the finite element 
interpolation functions must include terms that can account for 
the analytical form of the singularity. These functions should 
also be used for elements within a finite region around the 
singular point. Special hybrid finite elements were developed 
by Lin and Tong [5] to account for the notch tip singularities. 
Carpenter [6,7] introduced a collocation procedure based on 
the contour integral of Stern [8] to compute the notch stress 
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intensity factors. A boundary element singularity subtraction 
technique to compute the SIFs for notch problems was 
proposed by Portela et al. [9]. Chen [10] computed the notch 
SIFs of notched plates under tension or in-plane bending by 
means of the body force method. 
 
The Fractal-like Finite Element Method is semi-analytical. It 
brings together the agility of the Finite Element Method and 
the accuracy of the analytical solutions. The method is based 
on the global-local interpolation functions introduced by Mote 
[11]. The FFEM was applied to compute the SIFs for crack 
problems by Leung and co-workers [12-14]. Treifi et al. 
[15,16] further extended the method to compute the SIFs for 
symmetrical notch problems. In general, notches are not 
always symmetrical. Therefore, extending the method to 
compute the SIFs for non-symmetrical notch problems is in 
order. 
 
In this paper, the FFEM is extended to compute the SIFs for 
non-symmetrical notch problems. The exact solutions of the 
singular displacement field around a notch tip used as global 
interpolation functions for a symmetrical notch can be used for 
a non-symmetrical notch. Only simple local coordinate 
transformation is needed in the singular region, so that the 
local x-axis lies on the bisector of the notch opening angle. 
Various numerical examples of non-symmetrically notched 
plates are presented, and results are validated via comparison 
with available published results to demonstrate the accuracy 
and efficiency of the FFEM. 

2 GLOBAL INTERPOLATION FUNCTIONS 
 

 
The exact analytical solutions of the displacement field around 
a notch tip are used as global interpolation functions to 
perform the transformation of the local variable (nodal 
displacements) in the singular region into a small set of 
generalised coordinates. Those generalised coordinates are the 
coefficients of the notch tip asymptotic field, which represent 
the SIFs, the T-stress, and the higher order coefficients. The 
generalised coordinates are computed directly in the FFEM. 
Therefore, no post-processing technique is necessary to extract 
the SIFs. The stress and displacement expressions around a 
notch tip can be derived by using a stress function approach or 
a complex variable method. Both approaches lead to 
equivalent expressions. For the sake of completeness, only a 

short description of the analytical solutions of the stress and 
displacement fields around a notch tip is presented here. 
Detailed derivations may be found in references such as 
Vasilopoulos [17] and Treifi et al. [15]. 
 
By using a complex variable method, the notch-tip stress and 
displacement expressions in a local polar coordinate system, 
centred at the notch tip and that the 0=θ  axis is the bisector 
of the notch opening angle γ  coincides with the local 
Cartesian x axis, derived for a semi-infinite notch as illustrated 
in Figure 1 can be written as 
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where 1A  and 2A  are complex constants (the generalised 
coordinates), G  is the shear modulus, νη = for plane strain, 

ν
νη
+

=
1

for plane stress, and ν is the Poisson’s ratio. Iλ and 

IIλ  are eigenvalues for mode I and mode II, respectively, and 
are calculated from the following characteristic equations 

02sin2sin =+ αλαλ II                (6) 
02sin2sin =− αλαλ IIII                (7) 

 
 

Figure 1. Coordinate systems centred at the notch tip 
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Iλ and IIλ are generally complex numbers and different from 
each other, except for the special case of a crack (when the 
notch opening angle o0=γ ). Equations (6) and (7) can be 
solved by using Muller’s Method. 
 
The stress intensity factors of a notch are defined as 

)0(lim2 1

0
== −

→
θσπ θ

λI
rK

rI       (8) 

)0(lim2 1
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θσπ θ

λ
rrII

II
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for mode I and mode II, respectively [2]. 
 
Substituting equations (4) and (5) into equations (8) and (9) 
gives 

( ) 12cos2cos12 AK IIII
I αλαλλλπ −−+=          (10) 

( ) 22cos2cos12 AK IIIIIIII
II αλαλλλπ +−+−=                (11) 

From Equations (10) and (11) it can be seen that no post-
processing technique is required to extract the SIFs, because 
these equations demonstrate direct relations between the SIFs 
and the generalised coordinates.  

3 FORMULATION OF THE FFEM 
 
A short description of the FFEM is presented in this section 
with a focus on the coordinate transformation required for 
modelling the singular region of a non-symmetrical notch. In 
the FFEM, a body with a singularity is divided into singular 
and regular regions as shown in Figure 2. Both regions are 
modelled using conventional finite elements. No special 
singular finite elements are needed to model the singular 
region in order to account for the analytical form of the 
singularity. A very fine mesh generated layer by layer in a 
self-similar manner (by assuming a similarity ratio ρ  and the 
notch tip is used as a centre of similarity) is used in the 
singular region as illustrated in Figure 3. The large number of 
the nodal displacements (of slave nodes) in the singular region 
is then transformed into a small set of generalised coordinates 
by using global interpolation functions. This process reduces 
the computational cost significantly, because the number of 
unknowns is greatly reduced. The exact analytical 
displacement expressions presented in the previous section are 
used as global interpolation functions in the FFEM. Because 
the layers of finite elements in the singular region are self-
similar, only the first layer is needed to generate the global 
stiffness matrix by using a fractal transformation [12,16].  
 

 
In the conventional finite element method the equilibrium 
equation can be written as 

fKd =                 (12) 
where K  is the stiffness matrix, d  is the nodal displacement 
vector, and f  is the nodal force vector. 
 

In the FFEM, equation (12) is partitioned into regular, master 
and singular parts as 
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where r , m and s refer to regular region, master nodes and 
singular region, a  is the vector of the generalised coordinates 
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and nl  is the number of layers in the singular region. n
sT  is 

the transformation matrix of the thn  layer in the singular 
region. 
 
In Equation (13), the nodal displacements of the slave nodes 
are replaced by the generalised coordinates by using the 
transformation matrices of the layers in the singular region n

sT  
as follows 

aTd n
s

n
s =                 (14) 

where n  refers to the thn  layer in the singular region. n
sT  is 

computed using the global interpolation functions presented in 
the previous section. inn

sK , which is the generalised stiffness 
matrix of the inner layers )2( ≥n  in the singular region, can 
be generated from the stiffness matrix of the first layer only by 
utilising the property of the self-similar two-dimensional 
isoparametric finite elements as reported by Treifi et al. [16] 
as 
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Figure 2. Singular and regular regions of a plate with 
singularities.

 
Figure 3. A singular region mesh (master nodes 

highlighted). 
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( ) ( ) ( )( )jijiji nl
ij

λλλλλλ ρρρδ +−++ +++= 12 .... . Equation (15) 
represents a sum of a geometric series. Therefore, ijδ  can be 
written as 
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and for the case of an infinite number of layers ( )∞→nl  as 
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A similar procedure can be followed to compute the 
generalised force vector of the inner layers in the singular 
region inn

sf . 
 
The unknowns of the problem are the displacements 

mr dd and  and the generalised co-ordinates a . If we consider 

sd  as the vector of the nodal displacements of the slave nodes 
in the singular region, the size of the vector sd  is much 
greater than that of the vector of the generalised co-ordinates 
a . Therefore, solving the system of equations (13) reduces the 
computational cost considerably. For more details about the 
formulation of the FFEM, see Treifi et al. [16] and Leung and 
Su [12-14]. 

 
Now for the case of a non-symmetrical notch case shown in 
Figure 4 when the bisector of the notch opening angle does not 
coincide with the x-axis, suitable coordinate transformation is 
needed to obtain the generalised stiffness matrix of the 
singular region. The stress and displacement expressions 
presented in Section 2 were derived in a local coordinate 
system (x', y'). Therefore, a coordinate transformation is 
needed to obtain correct values in a global coordinate system. 
Let Gd  and Ld  be the nodal displacement vectors of the 

thn layer in the singular region in global (x, y) and local (x', y') 
Cartesian coordinate systems, respectively. The local 
Cartesian coordinate system is assumed to be centred at the 
notch tip and that its x'-axis coincides with the bisector of the 
notch opening angle. The relation between the nodal 
displacement components in the two coordinate systems 
shown in Figure 4 is: 

LcG dTd =                (18) 

where cT  is the matrix of direction cosines. Substituting 
Equation (14) ( s  and n  are omitted for simplicity) into 
Equation (18) yields 

aTTaTd ′== cG               (19) 
The transformation matrix T  can be replaced by T′ in the 
formulation of the FFEM to solve both symmetrical and non-
symmetrical notch problems. 

4 NUMERICAL EXAMPLES AND VALIDATION 
 
A few examples of various non-symmetrical configurations of 
single-edge-notched rectangular plates are presented in this 
section. Consider a rectangular plate which contains a non-
symmetrical notch whose bisector is inclined an angle β  over 
the plate horizontal axis of symmetry as shown in Figures 5 
and 6. Published results for these cases exist and are compared 
with to demonstrate the accuracy of the approach proposed in 
the previous section. 
 

 
First, consider a rectangular plate under tension loading 
conditions as shown in Figure 5 with an aspect ratio 2h/w =  
and a ratio of the notch length to the plate width 0.4a/w = . 
The results are obtained by using twenty terms of the 
eigenfunction series, a similarity ratio 9.0=ρ , and an 
‘infinite’ number of layers in the singular region. The 
geometry of the plate is meshed in a similar way to that shown 
in Figure 7 using six-node triangle elements (seven-point 
integration scheme). The inclined angle β  is taken to be half 
of the notch opening angle γ , that is 2/γβ = . The SIFs 
computed by the FFEM for different notch opening angles 
compared to corresponding published results obtained by 
Portela et al [9] are plotted in Figure 8. 
 

 
Figure 5. A non-symmetrically notched plate ( 2h/w =  and 

2/γβ = ). 

 
 

Figure 4. A non-symmetrical notch. 
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Figure 8. SIFs of non-symmetrically notched plates for different notch angles ( 2h/w = , 0.4a/w = , 
2/γβ = )compared to those of reference [9]. 

 
Now, consider a rectangular plate under tension loading 
conditions as shown in Figure 6 with an aspect ratio 

3h/w = and 0.5/hh1 = . Similar parameters to those of the 
previous example are used to obtain the FFEM results. The 
geometry of the plate is meshed in a way similar to that shown 
in Figure 7. The FFEM results for different notch opening 
angles, different inclined angles and different notch lengths 
are plotted in Figures 9, 10 and 11. Corresponding published 
results reported by Chen [10] are also plotted in those figures 
for comparison. 
 

 
From Figures 8 to 11, it can be seen that the mode I and mode 
II SIFs vary in opposite directions as the inclined angle β  
increases; the mode I SIFs decrease while the mode II SIFs 
increase. it can also be seen from those figures that the SIFs 
predicted by the FFEM are in very good agreement with the 
published results. The discrepancies between the FFEM 
results and those predicted by Portela et al [9] are less than 1% 
for mode I and mode II SIFs. The discrepancies between the 
FFEM results and those predicted by Chen [10] are about 1% 
for mode I SIFs and less than 5% for mode II SIFs. 

 
Figure 6. A non-symmetrically notched plate 

( 3h/w = ).  
Figure 7. FE mesh of the notched plate. 
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Figure 10. SIFs of non-symmetrically notched plates for different inclined angles ( 3h/w = , 0.5/hh1 = , 

o60=γ ) compared to those of reference [10]. 

 
Figure 9. SIFs of non-symmetrically notched plates for different inclined angles ( 3h/w = , 0.5/hh1 = , 

o30=γ ) compared to those of reference [10]. 

 
Figure 11. SIFs of non-symmetrically notched plates for different inclined angles ( 3h/w = , 0.5/hh1 = , 

o90=γ ) compared to those of reference [10].
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5 CONCLUSIONS 
 
In this paper, the FFEM was extended to model and analyse 
non-symmetrical notch problems. A simple coordinate 
transformation is needed to evaluate the SIFs of a non-
symmetrical notch based on the global interpolation functions 
derived for a symmetrical notch case. In the FFEM, no 
complicated mathematics is involved; only simple matrix 
multiplication. Post-processing techniques to extract the SIFs 
or special singular finite elements are not needed. The SIFs are 
computed directly because of the use of exact analytical 
solutions as global interpolation functions. Also, the FFEM 
reduces the number of unknowns significantly and therefore 
the computational cost. It can practically be applied when the 
agile and widely used Finite Element Method has convergence 
difficulties as in the case of the presence of singular points and 
when there is a need to reduce the computational cost 
associated with a large number of unknown variables of a 
problem without the need of using other methods. 
 
Various numerical examples of non-symmetrically notched 
plates under tension loading conditions were presented, and 
results were validated via comparison with corresponding 
published results. The good agreement achieved between the 
FFEM results and published results proved the validity of the 
use of the simple local coordinate transformation in the FFEM 
when dealing with non-symmetrical notch cases. 
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a b s t r a c t

The fractal-like finite element method (FFEM) is extended to compute the stress intensity
factors (SIFs) of double-edge-/centre-notched plates subject to out-of-plane shear or ten-
sion loading conditions. In the FFEM, the use of global interpolation functions reduces
the large number of unknowns in a singular region to a small set of generalised co-ordi-
nates. Therefore, the computational cost is reduced significantly. Also, neither post-pro-
cessing techniques to extract the SIFs nor special singular elements are needed. Many
numerical examples of double-edge-/centre-notched plates are presented, and results
are validated via existing published data. New results of notched plate problems are also
introduced.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Structural components with corners/notches are common occurrences in engineering design. The presence of notches af-
fects the loading resistance capacity of those components and may result in a crack initiation leading to a structural failure or
to a shortening of the service life. Therefore, much research has been devoted to the analysis of sharp notch problems. How-
ever, most of the cases reported in the literature are about mode I cases. There are only few results concerning pure modes II
and III cases of notch problems.

In linear elastic fracture mechanics, the stress intensity factors provide a means to assess the stability of cracks. Similarly,
for notch problems experimental results have demonstrated that simple failure criteria based on the so-called notch/gener-
alised stress intensity factors exist, at least for brittle fracture [1]. The failure occurs when the notch stress intensity factors
reach critical values. The limiting cases of the notch opening angle c = 0� and c = 180� correspond to a cracked solid and a
solid with no notch, respectively. For tension loading conditions, if a failure is presumed to occur at a critical value of the
generalised stress intensity factor for both of those cases, then in the case of a crack the critical value is the fracture tough-
ness while in the case of a solid without a notch it is the tensile strength [2]. The case of a notch when 0� < c < 180� is be-
tween those two limiting cases. Therefore, many researchers have tried to develop a criterion to calculate or measure the
critical values of notch stress intensity factors while others have tried to compute the notch stress intensity factors by using
numerical, analytical or empirical methods. Just to mention a few of those who have tried to establish a failure criterion for a
notch, Seweryn [1] introduced a brittle fracture criterion for structures with sharp notches that states that a crack will
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propagate from a tip of a notch when the actual value of the notch stress intensity factor reaches a critical value, Knésl [3]
extended the stability criterion of a crack to the general case of a notch, Gómez and Elices [4] showed the advantages of the
cohesive crack model for predicting fracture of notched components, and recently Carpinteri et al. [5] presented an expres-
sion for the generalised fracture toughness which is a function of material tensile strength, fracture toughness and notch
opening angle.

Many procedures have been developed to compute the generalised stress intensity factors of sharp notched components.
Gross and Mendelson [6] computed the SIFs of many cases of modes I and II notch problems by means of a Boundary Col-
location Method (BCM) based on the stress functions derived by Williams [7]. It was concluded by Tong and Pian [8] that in
order to improve the convergence rate of finite element solutions of problems with a singularity, the interpolation functions
of a finite element formulation must include terms that can account for the analytical form of the singularity. In addition,
these interpolation functions should be used for elements within a finite region, and not only for those around the singular
point. Lin and Tong [9] developed special hybrid finite elements to account for the notch tip singularities. A generalised stress
intensity concept at sharp corners was proposed by Sinclair et al. [10]. They outlined an approach based on the calculation of
a contour integral that was an extension of the work of Stern et al. [11,12]. Independently, Carpenter [13,14] introduced a
collocation approach to calculate stress intensity factors of notch problems based on the contour integral of Stern et al.
[11,12]. Babuška et al. [15,16] developed post-processing approaches to extract the SIFs for mixed mode problems from a
finite element solution. Portela et al. [17] proposed a boundary element singularity subtraction technique to compute the
SIFs of notch problems. Their method requires extra boundary conditions that they referred to as ‘‘singularity conditions
of the regularisation procedure”. Zhao and Hahn [18] developed a method to determine the SIFs of a notch problem from

Nomenclature

a crack/notch length
a vector of generalised co-ordinates
A, B generalised co-ordinates
d nodal displacement vector
dr, dm, and ds nodal displacement vectors of nodes in regular region, master nodes, and in singular region
d1st; 2nd; ...

s nodal displacements of the nodes in the first layer, second layer, . . . in the singular region
f nodal force vector
fr, fm, and fs nodal force vectors of nodes in regular region, master nodes, and in singular region
�f1st; inn

s transformed nodal force vectors of the first layer and the inner layers in the singular region
G shear modulus
h plate height
hc distance between crack/notch tip and bottom boundary of plate
K stiffness matrix
Krr, Kmr, Kmm, Kss, . . . partitioned stiffness matrices (r refers to regular region, m to master nodes, and s to slave nodes)
Kn

s partitioned stiffness matrix of the nth layer in the singular region
�K1st

s ; �K inn
s transformed partitioned stiffness matrices of the first layer and the inner layers in the singular region

KI, KII, KIII stress intensity factors of modes I, II, and III
m, n integer variables
NL, nl number of layers in the singular region
NT, nt number of terms of eigenfunction series expansion
r,h polar co-ordinates
Tn

s transformation matrix of the nodal displacements of the nth layer in the singular region
T1st

s transformation matrix of the nodal displacements of the first layer in the singular region
Tf

s transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer in the sin-
gular region

W width of single-edge-notched plate or half width of double-edge-/centre-notched plate
w displacement in z direction
x, y, z Cartesian co-ordinates
a angle between notch face and x-axis
d scaling variable
c notch opening angle
C boundary curve
U stress function
k eigenvalue
q similarity ratio
r tensile stress
s shear stress
r2 the Laplacian operator
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the SIFs of a crack problem. All the aforementioned methods were mainly used to predict the SIFs of mode I, mode II, or
mixed modes (I and II) cases of single-edge-notched plates. Chen [19] computed the SIF of single-edge- and double-edge-
notched plates subject to tension or in-plane bending loading conditions by means of the Body Force Method.

Results of mode III SIFs of cracked plates were reported by some authors such as Zhang [20] who presented results for off-
centre single-edge-cracked plates with the aid of the basic theorem of the Fourier transform and Fourier series. Leung and
Tsang [21] extended the two-level finite element method to analyse mode III crack problems. Noda and Takase [22] calcu-
lated the generalised SIFs for a V-shaped notched round bar under tension, bending, and torsion using the singular integral
equation of the body force method.

The fractal-like finite element method, which is based on the concept of global-local interpolation functions introduced by
Mote [23], is semi-analytical. Leung and co-workers [24–27] applied the FFEM to compute the stress intensity factors of many
two-dimensional crack problems only. It has been proven that the FFEM produces very accurate results [24–25]. Recently Tre-
ifi et al. [28–30] have extended the FFEM to analyse the singularity resulting at a notch tip. They presented many results of
various configurations of notched plates subjected to mode I or mode II loading conditions of single-edge-notched plates.

In general, superposition of the results of modes I, II and III can be used to describe the most general case of loading on a
V-notched specimen. Therefore, the extension of the FFEM to analyse mode III notch problems is in order. The mode III case
might appear to be simpler than the mode I and mode II cases, because of the fact that it reduces to a one-dimensional prob-
lem. However, entirely different global interpolation functions that account for the analytical form of the mode III singularity
around a notch tip are needed to be used in the FFEM. As a result, the mode III problem is completely different from the
modes I and II cases with regard to handling and final results. Only the general outlines of those cases are similar. Further-
more, providing mode III results of different notch problems with different notch opening angles will give further insight into
the behaviour of fracture parameters of notched components.

The FFEM can be used to calculate directly not only the stress intensity factors but also the coefficients of the higher order
terms of the crack/notch tip asymptotic field. Only few methods such as the Boundary Collocation Method (BCM), Hybrid
Crack Element (HCE) and the Scaled Boundary Finite Element Method (SBFEM) are available in the literature which can
be used to evaluate the crack tip higher order terms. The BCM is a method that satisfies the boundary conditions at selected
locations or points; it is powerful for use for structures with simple geometries and simple loading conditions.

The HCE was developed by Karihaloo and Xiao [31] based on the Hybrid Element Approach introduced by Tong et al. [32].
A simplified variational principle using truncated asymptotic crack tip displacement and stress series expansions was used to
formulate the HCE [31]. Despite the good accuracy of the numerical results obtained by the HCE, the element was incom-
patible with the surrounding finite elements because of the exclusion of coefficients of the Williams series expansion that
do not contribute to the stresses and strains in the formulation of the HCE [33]. To minimise the incompatibility, Xiao
and Karihaloo [34] recovered these coefficients by an indirect method that involves the application of a least-squares meth-
od. The SBFEM, developed by Wolf [35], is a numerical finite element-based procedure in the circumferential directions and
an analytical procedure in the radial direction. In the SBFEM, the governing partial differential equations are transformed to a
scaled boundary co-ordinate system. By introducing shape functions in the circumferential directions, these equations are
reduced to a set of second-order ordinary differential equations. These ordinary differential equations are solved analytically
in the radial direction after determining their coefficients by a finite element approximation in the circumferential direc-
tions. However, the mathematics of the SBFEM compared to the finite element method is rather complicated [36].

The FFEM combines the accuracy of analytical solutions and the agility of the finite element method. No complicated
mathematics is involved; only simple matrix multiplication is needed. The exact solutions of the singular displacement field
around a notch tip are used as global interpolation functions to perform a transformation of the nodal displacements in the
singular region into a set of generalised co-ordinates. The transformation reduces the number of unknowns significantly and
consequently the computational cost too. Because of the employment of exact analytical solutions as global interpolation
functions, the stress intensity factors and the coefficients of the higher order terms of the notch tip asymptotic field become
primary unknowns of the problem. Therefore, no post-processing is required to extract them. In addition, special singular
finite elements are not needed to model the stress singularity at the notch tip—any conventional finite elements can be used
to model the singular region. Hence, some practical applications of the FFEM are when the standard Finite Element Method
has convergence difficulties as in the case of the presence of a singular point and when there is a need to reduce the com-
putational cost associated with the large number of unknowns of a problem. The limitation to the use of the FFEM is the
availability of ‘‘good” global interpolation functions, whether they be exact analytical or not.

In this paper, the FFEM is extended to model and analyse many cases of double-edge- and centre-notched plates sub-
jected to anti-plane shear (mode III) or tension (mode I) loading conditions. The accuracy and efficiency of the FFEM to com-
pute modes I, II and III SIFs is demonstrated by comparison with many numerical examples concerning different
configurations of cracked/notched plates subject to anti-plane shear or tension loading conditions of which published results
exist. Also, many new results of notch problems are presented.

2. Formulation of the fractal-like finite element method (FFEM)

A short description of the FFEM formulation is presented in this section. For detailed description, one may refer to Refs.
[24–27,29]. In the FFEM, a body containing singular points is divided into singular and regular regions delineated by curves
such as C1

0 and C2
0 as shown in Fig. 1a. Any conventional finite elements can be used to model all regions. In the singular
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regions, however, a very fine mesh generated layer by layer in a self-similar manner is used. The nodal displacements in the
singular region are transformed into a small set of generalised co-ordinates by using global interpolation functions. This
transformation process reduces the number of unknowns significantly. Now, the unknowns of the problem are the nodal dis-
placements of the regular region and the generalised co-ordinates of the singular region. The stress intensity factors are re-
lated to some of the coefficients of the generalised co-ordinate set, as is shown in the next section; and therefore no post-
processing is needed to extract them.

The singular region is discretised as shown in Fig. 1b. By using the notch tip as a centre of similarity and assuming that q
is a similarity ratio, a set of curves {C1, C2, C3, . . .} similar to the curve that separates the singular and regular regions C0 is
generated within the singular region. All nodes within C0 are considered slave nodes, while the nodes on C0 are considered
master nodes as illustrated in Fig. 1b.

In the conventional finite element method, the static equilibrium equation can be written as

Kd ¼ f ð1Þ

where K is the stiffness matrix, d is the nodal displacement vector, and f is the nodal force vector.
By dividing the matrix equation into regular and singular parts, the global stiffness matrix equation can be rewritten as

Krr Krm

Kmr Kmm þ K1st
mm K1st

ms

K1st
sm K1st

ss þ K2nd
s;ii K2nd

s;ij

K2nd
s;ji K2nd

s;jj þ K3rd
s;ii K3rd

s;ij

. .
. . .

. . .
.

Knl
s;ji Knl

s;jj

2
666666666664

3
777777777775

dr

dm

d1st
s

d2nd
s

..

.

dnl
s

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

fr

fm

f1st
s

f2nd
s

..

.

fnl
s

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð2Þ

where dr are the displacements of the nodes in the regular region, dm are the displacements of the master nodes, d1st;2nd;...
s are

the displacements of the nodes in the first layer, second layer, . . . in the singular region, and nl is the number of layers in the
singular region. The same notation applies to K and f.

The nodal displacements of the nodes in the nth layer in the singular region can be expressed in terms of a vector of gen-
eralised co-ordinates a as

dn
s ¼ Tn

s a ð3Þ

where Tn
s is the transformation matrix of the nth layer in the singular region.

After applying the transformation, the global stiffness equation becomes

Krr Krm 0
Kmr Kmm þ K1st

mm
�K1st

ms

0 �K1st
sm

�K1st
ss þ �Kinn

s

2
64

3
75

dr

dm

a

8><
>:

9>=
>; ¼

fr

fm þ f1st
m

�f1st
s þ �f inn

s

8><
>:

9>=
>; ð4Þ

where

�K1st
ms ¼ K1st

ms T1st
s ; �Kinn

s ¼
Xnl

n¼2

�Kn
s ;

�Kn
s ¼ TnT

s Kn
s Tn

s ;
�f1st

s ¼ T1stT

s f1st
s ; �f inn

s ¼
Xnl

n¼2

fn
s ; and �fn

s ¼ TnT

s fn
s

Fig. 1. (a) Singular and regular regions of a cracked/notched body and (b) an illustration of a singular region (master nodes are highlighted).
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The vector of the generalised co-ordinates a is much smaller than the vector of the nodal displacements in the singular
region ds. Therefore, solving the system of Eq. (4) reduces the computational cost considerably compared to solving the sys-
tem of Eq. (2).

Now, the generalised stiffness matrix of the inner layers (n P 2) in the singular region, �Kinn
s , can be simplified by utilising

the properties of the self-similar two-dimensional isoparametric finite elements. The stiffness matrices of the layers in the
singular region are the same because the stiffness matrices of two-dimensional isoparametric finite elements of similar
shapes are the same [24]. Therefore,

Kn
s ¼ K1st

s ð5Þ

and the transformation matrix of the nth layer can be written in terms of that of the first layer as

Tn
s ¼ Tf

s ½d� ð6Þ

where Tf
s is the transformation matrix of the nodal displacements of all the nodes (slave and master) in the first layer and it is

different from the aforementioned T1st
s , which is the transformation matrix of the nodal displacements of the slave nodes

only in the first layer, and [d] is a diagonal matrix where

dii ¼ qðn�1Þki ; ki ¼ k1; k2; k3; . . . ð7Þ

From Eqs. (5)–(7), �Kinn
s can be rewritten as

�Kinn
s ¼

Xnl

n¼2

�Kn
s ¼

Xnl

n¼2

TnT

s Kn
s Tn

s ¼
Xnl

n¼2

½d�T Tf T

s K1st
s Tf

s ½d� ¼ ½dijkij� ð8Þ

where

½kij� ¼ Tf T

s K1st
s Tf

s ð9Þ

and

dij ¼
Xnl

n¼2

qðn�1Þkiqðn�1Þkj ¼
Xnl

n¼2

qðn�1ÞðkiþkjÞ

¼ qðkiþkjÞ þ q2ðkiþkjÞ þ � � � þ qðnl�1ÞðkiþkjÞ

ð10Þ

This sum is a geometric series. For a finite number of layers, dij can be written as

dij ¼
qðkiþkjÞð1� qðnl�1ÞðkiþkjÞÞ

1� qðkiþkjÞ
ð11Þ

and for an infinite number of layers ðnl!1Þ as

dij ¼
qðkiþkjÞ

1� qðkiþkjÞ
ð12Þ

A similar procedure can be followed to compute the generalised force vector of the inner layers in the singular region �f inn
s .

3. Global interpolation functions

Exact analytical solutions of the displacement field around a notch tip are employed as global interpolation functions. The
stress and displacement expressions can be derived by using a stress function approach or a complex variable method. A
description of the derivation of the global interpolation functions for a two-dimensional plane stress/strain case (modes I
and II) of a notch may be found in Refs. [7,29,37]. A short description of the derivation of the global interpolation functions
for a mode III notch problem is presented next.

3.1. Global interpolation functions for a mode III notch problem

The stress and displacement expressions of a notch subject to out-of-plane shear loading conditions can be derived by
using a stress function approach. This approach follows the general framework presented by Williams [7] for the in-plane
notch case. The only non-zero displacement component is in the z direction (w) and the non-zero stresses are srz and shz,
which can be derived by using a stress function (U) in a polar co-ordinate system centred at the tip of an infinite notch
as illustrated in Fig. 2. The equilibrium equations are satisfied if the stresses are derived as follows:

srz ¼ �
1
r
@U
@h

ð13Þ

shz ¼
@U
@r

ð14Þ
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The compatibility equations are reduced to

r2U ¼ 0 ð15Þ

where r2 denotes the Laplacian operator. The stress function (U) can be taken as

U ¼ rkFðhÞ ð16Þ

After substituting U and its derivatives into the differential Eq. (15), the general solution of the resulting equation is

U ¼ rkðA cos khþ B sin khÞ ð17Þ

where A and B are the generalised co-ordinates (or the coefficients of the terms of the mode III notch asymptotic field). On
substituting Eq. (17) into Eqs. (13) and (14), the stress expressions are

srz ¼ rk�1kðA sin kh� B cos khÞ ð18Þ
shz ¼ rk�1kðA cos khþ B sin khÞ ð19Þ

The eigenvalues k are obtained by imposing the following boundary conditions on the notch faces:

shzð�aÞ ¼ 0 ð20Þ

Substituting Eq. (20) into Eq. (19) yields

rk�1kðA cos kaþ B sin kaÞ ¼ 0 ð21Þ
rk�1kðA cos ka� B sin kaÞ ¼ 0 ð22Þ

For non-trivial solutions of A and B, the determinant of Eqs. (21) and (22) should be zero. By solving the determinant, the
eigenvalues are obtained as

k ¼ mp
2a

; m ¼ 1;2;3; . . . ð23Þ

When m is an odd number and by assuming m = 2n � 1, it can be shown that km ¼ n� 1
2

� �
p
a and B = 0. When m is an even

number and by assuming m = 2n, it can be shown that km ¼ np
a and A = 0.

The eigenfunction series expansions of the stresses can now be written as

srz ¼ A n� 1
2

� �
p
a

rðn�
1
2Þ

p
a�1 sin n� 1

2

� �
p
a

h

� �
� B

np
a

r
np
a �1 cos

np
a

h
� �

ð24Þ

shz ¼ A n� 1
2

� �
p
a

rðn�
1
2Þ

p
a�1 cos n� 1

2

� �
p
a
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and of the displacement as
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where G is the shear modulus.
The mode III stress intensity factor of a notch is defined in a way similar to that of a crack as

K III ¼
ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1�kshzðh ¼ 0Þ ð27Þ

Fig. 2. Notch geometry and co-ordinate systems.

2096 M. Treifi et al. / Engineering Fracture Mechanics 76 (2009) 2091–2108



Substituting Eqs. (25) into Eqs. (27) gives

K III ¼
ffiffiffiffiffiffiffi
2p
p

kA ð28Þ

Eq. (28) demonstrates a direct relationship between the SIFs and the generalised co-ordinates which are calculated di-
rectly in the FFEM. Therefore, no post-processing technique is required to extract the SIFs.

4. Numerical examples and verification

The use of the global interpolation functions derived in Section 3 for a mode III notch problem is verified via many exam-
ples of crack problems for which published data exist. This is done because of the lack of existing results concerning notched
plate problems under mode III loading conditions. For the plane stress/strain case, the global interpolation functions used in
the FFEM were tested and verified in Refs. [29,30]. Crack problems are special cases of notch problems (the notch opening
angle c = 0�). First, a numerical verification for crack problems is presented that includes a convergence study to demonstrate
the accuracy and stability of the method to compute mode III SIFs, many examples of central and off-central single- and dou-
ble-edge-cracked plates and centre- and off-centre-cracked plates under mode III loading conditions, and an example about
computing the coefficients of the higher order terms of the asymptotic field for a centre crack problem under tension. Pub-
lished results for these examples exist and are compared with to validate the FFEM results and demonstrate the accuracy and
the stability of the method. Then many examples of central and off-central double-edge notch problems and centre- and off-
centre-notch problems under out-of-plane shear or tension loading conditions are presented. Most of the results of the notch
examples presented in this study are new.

Because of the nature of mode III problems, the SIF values for the cases of single-edge-notched, double-edge-notched and
centre-notched plates shown in Fig. 3 are equal. Therefore, for the case of mode III, we will not differentiate between those
cases and we will only use ‘‘single-edge notch” to refer to those three cases. This is not the case for plane stress/strain prob-
lems. For the cases of a double-edge-notched plate shown in Fig. 4a and a centre-notched plate shown in Fig. 4c, half of the
plate can be modelled with applying proper boundary conditions along the symmetry line as shown in Fig. 4b and d, respec-
tively. The case of a single-edge-notched plate subject to tension loading conditions was presented in Ref. [29].

4.1. Numerical verification for crack problems

4.1.1. Convergence study of mode III for a crack case
The accuracy and stability of the FFEM to compute mode III SIFs is demonstrated by carrying out a convergence study. The

effects of the number of layers in the singular region (for a range of 4–20 and when NL =1), the similarity ratio (for a range
of 0.1–0.9), and the number of terms of the eigenfunction series expansion used as global interpolation functions (for a range
of 5–30) on the mode III SIF values of a cracked plate are investigated.

A mode III problem of a single-edge-cracked plate as shown in Fig. 5a is analysed. The aspect ratio and the ratio of the
crack length to the plate width are h/w = 3 and a/w = 0.4, respectively. Six-node triangle elements (seven-point integration
scheme is used for all the examples in this paper) are used to mesh the plate as shown in Fig. 5b. Also, the singular region

Fig. 3. (a) Central single-edge-notched, (b) central double-edge-notched, and (c) centre-notched plate subject to out-of-plane shear loading conditions.
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volume is held constant with increasing numbers of layers. The analytical solution of this problem exists for infinite height.
The normalised SIF value is KIII = 1.075 [38].

The results are presented in Figs. 6–8. Figs. 6 and 7 show that the number of transformation terms (NT) does not have a
significant effect on the results when NT P 5 for the ranges of variables (numbers of layers (NL), similarity ratios (q) and NT)
used in this study. Also, Fig. 7 demonstrates that accurate results can be obtained by using values of similarity ratios larger
than 0.5 for the ranges of variables used in this study. Moreover, it can be seen that when NL =1, larger similarity ratios
(finer meshes of the singular region) are needed to obtain accurate results. Fig. 8 illustrates that the results converge asymp-
totically with increasing numbers of layers used to model the singular region when q > 0.3. Good results can be obtained by
using ten layers or more. A similar behaviour was observed for the cases of mode I/II loading conditions [29,30].

4.1.2. Examples of single-edge-cracked plates subjected to mode III load conditions
Mode III problems of a single-edge-cracked plate are analysed for different crack lengths and different numbers of layers.

The cracked plate is shown in Fig. 5a. Based on the convergence study, 10 terms of the eigenfunction series are used for the
fractal transformation. The similarity ratio and the aspect ratio are q = 0.6, and h/w = 3, respectively. Six-node triangle ele-
ments are used to mesh the geometry of the plate as shown in Fig. 5b. The singular region volume is held constant with
increasing numbers of layers.

The stress intensity factors computed for the mode III problems by the FFEM compared to corresponding published data
of infinite plate height [38] are tabulated in Table 1 for different ratios of crack length to plate width and different numbers of

Fig. 4. (a) and (b): Central double-edge-notched plate under tension. (c) and (d): centre-notched plate under tension.

Fig. 5. (a) Central single-edge-cracked plate subject to mode III loading conditions and (b) the FE mesh used for the analyses.
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Fig. 6. Variations of SIFs with number of terms (NT) for different number of layers (NL) and similarity ratios q compared to corresponding published results
(Murakami [38]).
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Fig. 7. Variations of SIFs with similarity ratio for different number of terms and numbers of layers compared to corresponding published results (Murakami
[38]).
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layers. Table 1 shows that the mode III SIF values increase with increasing ratios of crack length to plate width (a/w). The
results converge asymptotically with increasing numbers of layers used to model the singular region. More importantly, Ta-
ble 1 illustrates that the SIF values computed by the FFEM are in very good agreement with the published data. Therefore, the
results in Table 1 prove that the eigenfunction series expansions presented in Section 3 which were derived for notch prob-
lems produce accurate results for mode III crack problems (when the notch opening angle c = 0�).

4.1.3. Examples of off-central single-edge-cracked plates under mode III loading conditions
Many configurations of an off-central single-edge-cracked plate under mode III loading conditions as illustrated in Fig. 9

are analysed in this section. Ten terms of the eigenfunction series, 16 layers in the singular region and a similarity ratio
q = 0.6 are used. Six-node triangle elements are used to mesh the geometries of the plates in a similar manner to that shown
in Fig. 5b.

The values of the SIFs for mode III for many asymmetric (off-central) single-edge-cracked plates computed by the FFEM
are compared to those predicted by Zhang [20] in Table 2. It can be seen from Table 2 that the FFEM results and those of
Zhang [20] are in very good agreement. This again proves that the FFEM results using the eigenfunction series expansions
presented in Section 3 as global interpolation functions which were derived for notch problems produce accurate results

Fig. 8. Variations of SIFs with number of layers for different similarity ratios and numbers of terms compared to corresponding published results
(Murakami [38]).
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for mode III crack problems (when the notch opening angle c = 0�). Therefore, they can be used with confidence to produce
results for notch problems as done in Section 4.2.

4.1.4. Coefficients of the higher order terms of a centre-cracked plate
The five leading coefficients of the higher order terms of the crack tip asymptotic field are obtained for a centre-cracked

plate under tension. The geometrical parameters of the cracked plate are: h/2 = w = 4, a = 1. Twenty terms of the eigenfunc-
tion series, an ‘‘infinite” number of layers in the singular region, a similarity ratio q = 0.9, and six-node triangle elements are
used. Only half of the plate is modelled in a similar way to that shown in Fig. 4d, and a coarse mesh is used in the regular
region (four and eight elements are used along the horizontal and vertical boundaries of the plate, respectively) similar to
that shown in Fig. 5b, but the singular region is meshed more finely in the circumferential direction than that of Fig. 5b.

The coefficients are tabulated in Table 3. Karihaloo and Xiao [33] provided solutions for this example by using the Hybrid
Crack Element (HCE) and the Boundary Collocation Method (BCM). They also compared their results with interpolated re-
sults from Fett’s solutions [39]. These published results are also tabulated in Table 3 for comparison. The current values
of the coefficients are in good agreement with the published results. The biggest discrepancy occurred for the fourth coef-
ficient computed by the HCE. However, Karihaloo and Xiao [33] computed these values by using a half-polygonal HCE to ex-
ploit the symmetry. Only mode I expansion was used in the formulation of this element. They stated that the half-polygonal
HCE predicts accurate coefficients for the first three terms if only mode I expansion is used in the formulation. They found
that the results deteriorated when they used both modes I and II expansions in the formulation of the half-polygonal HCE.
However, they proved in the same work that using a polygonal HCE without exploiting the symmetry in the formulation
gives results with good accuracy.

Table 1
Mode III SIFs of a central single-edge-cracked plate for different crack lengths.

a/w K III=s
ffiffiffiffi
p
p

a1�kIII

Murakami [38] FFEM

5 layers 10 layers 15 layers 20 layers

0.1 1.004 0.996 1.003 1.004 1.004
0.2 1.017 1.009 1.016 1.017 1.017
0.3 1.040 1.032 1.039 1.040 1.040
0.4 1.075 1.067 1.074 1.075 1.075
0.5 1.128 1.120 1.127 1.128 1.128
0.6 1.208 1.199 1.207 1.208 1.208
0.7 1.336 1.325 1.335 1.336 1.336
0.8 1.565 1.552 1.563 1.564 1.564
0.9 2.113 2.094 2.111 2.112 2.112

Fig. 9. Off-central single-edge-cracked plate subjected to mode III load conditions.
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4.2. Numerical examples for notch problems

4.2.1. Examples of central single-edge-notched plates subjected to mode III load conditions
Mode III problems of a central single-edge-notched plate shown in Fig. 10a are analysed for different notch angles. Dif-

ferent numbers of layers are used to model the singular region whose volume is held constant with increasing numbers of
layers. Ten terms of the eigenfunction series are used for the fractal transformation. The aspect ratio, the ratio of the notch
length to the plate width, and the similarity ratio are h/w = 2, a/w = 0.4, and q = 0.6, respectively. Six-node triangle elements
are used to model the plate as shown in Fig. 10b.

The SIFs predicted by the FFEM for different notch opening angles and different numbers of layers are tabulated in Table
4. This table shows that the SIF values increase monotonically as the notch opening angle increases. Also, the results con-
verge asymptotically with increasing numbers of layers used to model the singular region. Similar convergence was observed
for the case of crack problems presented in Section 4.1. It should be noted that these results appear to be new and that there
are no published data with which to compare them. However, it was shown in the previous numerical examples in Section
4.1 that using the eigenfunction series expansions presented in Section 3 as global interpolation functions which were

Table 2
Mode III SIFs ðK III=s

ffiffiffiffi
p
p

a1�kIII Þ of an off-central single-edge-cracked plate.

hc:w:h a:w:h

1:w:h 2:w:h 3:w:h 4:w:h 5:w:h 6:w:h

14:12:24 FFEM 1.002 1.012 1.028 1.052 1.085 1.131
Zhang [20] 1.003 1.013 1.030 1.053 1.085 1.125

14:10:24 FFEM 1.004 1.017 1.040 1.076 1.129 1.209
Zhang [20] 1.004 1.018 1.041 1.076 1.124 1.189

14:8:24 FFEM 1.006 1.027 1.065 1.128 1.234 1.431
Zhang [20] 1.006 1.027 1.065 1.123 1.209 1.331

Table 3
Coefficients for centre-cracked plate (h/2 = w = 4, a = 1) under tension.

A1/r A2/r A3/r A4/r A5/r

FFEM 0.7666 �0.2794 0.1914 0.0037 �0.0293
Karihaloo and Xiao (HCE) [33] 0.7665 �0.2779 0.1915 �0.0018 �0.0235
Karihaloo and Xiao (BCM) [33] 0.768 �0.2777 0.1866 0.003 �0.0279
Fett (BCM) [39] (interpolated) 0.767 �0.276 0.188 0.0033 �0.032

Fig. 10. (a) Central single-edge-notched plate subject to mode III loading conditions and (b) the FE mesh used for the analyses.
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derived for notch problems produced accurate results for mode III crack problems (when the notch angle c = 0�). Therefore, it
can be assumed that the results in Table 4 are valid.

4.2.2. Examples of off-central single-edge-notched plates subject to mode III load conditions
Many problems of an off-central single-edge-notched plate under mode III loading conditions as illustrated in Fig. 11a are

investigated. The number of terms of the eigenfunction series, the number of layers in the singular region, the similarity ra-
tio, and the aspect ratio are nt = 20, nl = 16, q = 0.6, and h/w = 2, respectively. Six-node triangle elements are used to model
the notched plates as shown in Fig. 11b.

The mode III SIFs for different notch positions are tabulated for different notch opening angles and for a ratio of the notch
length to the plate width a/w = 0.4 in Table 5, and for a notch opening angle c = 50� and for various ratios of the notch length

Table 4
Mode III SIFs ðK III=s

ffiffiffiffi
p
p

a1�kIII Þ of a central single-edge-notched plate for various notch angles and different numbers of layers (h/w = 2, a/w = 0.4).

c (�) NL

10 layers 16 layers 20 layers

0 1.076 1.077 1.077
30 1.233 1.233 1.233
60 1.417 1.417 1.417
90 1.628 1.628 1.628
120 1.859 1.859 1.859

Fig. 11. (a) Off-central single-edge-notched plate under mode III loading conditions and (b) the FE mesh used for the analyses.

Table 5
Mode III SIFs ðK III=s

ffiffiffiffi
p
p

a1�kIII Þ of off-central single-edge-notched plate for various notch angles and notch positions (h/w = 2, a/w = 0.4).

c (�) hc/h

0.1 0.2 0.3 0.4 0.5

0 1.243 1.116 1.086 1.079 1.077
10 1.303 1.168 1.136 1.128 1.126
20 1.368 1.223 1.189 1.180 1.178
30 1.437 1.281 1.245 1.235 1.233
40 1.511 1.343 1.304 1.293 1.291
50 1.590 1.408 1.366 1.355 1.352
60 – 1.477 1.431 1.419 1.417
70 – 1.550 1.500 1.487 1.484
80 – 1.627 1.572 1.558 1.555
90 – – 1.647 1.631 1.628
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to the plate width in Table 6. The missing values in those tables are due to the fact that the geometry of the plate is no more
rectangular (the top and bottom boundaries are no more equal and the notch faces have unequal lengths).

Table 5 shows that the SIFs monotonically increase as the notch opening angle increases. Also, the values of the SIFs in-
crease as the notch gets closer to the bottom boundary of the plate. The minimum values of the SIFs occur when the notch is
on the centre line and the notch opening angle is 0�. In Table 6, it can be seen that the SIFs for a single-edge-notched plate
with a notch opening angle c = 50� increase as the notch length increases and as the notch gets closer to the bottom bound-
ary of the plate.

It should be noted that most of the results in this section appear to be new and that there are no published SIF values
available with which to compare them. To assess the accuracy of the results, two meshes of the singular region as shown
in Figs. 10b and 11b were investigated. The differences in the results were much less than 1%. Also, it was shown in the pre-
vious examples that using the eigenfunction series expansions presented in Section 3 as global interpolation functions which
were derived for notch problems produced accurate results for mode III crack problems (when the notch angle c = 0�). Con-
sequently, it can be assumed that the results in Tables 5 and 6 are valid. The results reported in these tables are obtained by
using the denser mesh of the singular region illustrated in Fig. 11b.

4.2.3. Examples of central double-edge-notched and centre-notched plates subject to tension load conditions
A central double-edge-notched plate shown in Fig. 4a and a centre-notched plate shown in Fig. 4c are investigated for

different notch lengths and different notch opening angles. Only half of the plate is analysed after applying the appropriate
boundary conditions along the symmetry line as shown in Fig. 4b and d. The number of terms of the eigenfunction series, the
number of layers in the singular region, the similarity ratio, and the aspect ratio are nt = 20, nl = 16, q = 0.6, and h/2w = 2,
respectively. Six-node triangle elements are used to model the notched plates as shown in Fig. 12.

Table 6
Mode III SIFs ðK III=s

ffiffiffiffi
p
p

a1�kIII Þ of off-central single-edge-notched plate for various notch positions and notch lengths (h/w = 2, c = 50�).

a/w hc/h

0.1 0.2 0.3 0.4 0.5

0.1 1.282 1.253 1.248 1.247 1.247
0.2 1.373 1.288 1.271 1.267 1.266
0.3 1.479 1.340 1.310 1.302 1.300
0.4 1.590 1.408 1.366 1.355 1.352
0.5 – 1.495 1.447 1.434 1.431

Fig. 12. The FE mesh used for the analyses of double-edge- and centre-notched plates.
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The SIF values for central double-edge- and centre-notched plates compared to the available published results are tabu-
lated in Tables 7 and 8, respectively. The SIFs presented in those tables increase with increasing ratios of notch length to plate
width and with increasing notch opening angles. Also, it can be seen that the FFEM results are in very good agreement with
the published results.

4.2.4. Examples of off-central double-edge-notched and off-centre-notched plates subject to tension load conditions
Many problems of off-central double-edge-notched plates and off-centre-notched plates shown in Fig. 13 are analysed for

different notch opening angles and different notch positions. Only half of the off-central double-edge- or off-centre-notched
plate is analysed after applying the appropriate boundary conditions along the symmetry line in a similar way to those

Table 7
Mode I SIFs ðK I=r

ffiffiffiffi
p
p

a1�kI Þ of central double-edge-notched plate for various notch lengths and notch opening angles (h/2w = 2).

c (�) a/w

0.2 0.4 0.6 0.8

0 FFEM 1.111 1.132 1.236 1.573
Tada [40] 1.118 1.132 1.226 1.567

30 FFEM 1.122 1.143 1.248 1.586
Chen [19] 1.123 1.145 1.251 1.604

45 FFEM 1.125 1.153 1.261 1.602
– – – – –

60 FFEM 1.165 1.191 1.300 1.650
Chen [19] 1.176 1.199 1.309 1.672

90 FFEM 1.302 1.323 1.442 1.850
Chen [19] 1.298 1.323 1.445 1.864

Fig. 13. (a) Off-central double-edge-notched and (b) off-centre-notched plate under tension.

Table 8
Mode I SIFs ðK I=r

ffiffiffiffi
p
p

a1�kI Þ of centre-notched plate for various notch lengths and notch opening angles (h/2w = 2).

c (�) a/w

0.2 0.4 0.6 0.8

0 FFEM 1.024 1.109 1.303 1.814
Tada [29] 1.024 1.109 1.303 1.814

30 FFEM 1.053 1.151 1.375 1.959
45 FFEM 1.067 1.184 1.433 2.072
60 FFEM 1.131 1.261 1.547 2.283
90 FFEM 1.321 1.497 1.923 3.018
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shown in Fig. 4b and d. The number of terms of the eigenfunction series, the number of layers in the singular region, the
similarity ratio, the aspect ratio, and the ratio of the notch length to the plate half width are nt = 20, nl = 16, q = 0.6, h/
2w = 2, and a/w = 0.4, respectively. Six-node triangle elements are used to model the notched plates in a similar way to that
shown in Fig. 12.

Tables 9 and 10 show the SIF values computed by the FFEM for the off-central double-edge-notched and off-centre-
notched plates, respectively. The values of the SIFs increase as the notch opening angle increases and as the notches move
closer to the bottom/top boundary of the plate. The minimum values occur when the notches are on the horizontal symme-
try line and the notch opening angle c = 0�. The mode II occurs in these examples because of the asymmetry of the plate
geometry.

5. Conclusions

In this paper, the Fractal-like Finite Element Method was extended to analyse double-edge- and centre-notched plates
under anti-plane shear (mode III) or tension (mode I) loading conditions. In the FFEM, the large number of unknowns in
the singular region is reduced significantly by using global interpolation functions. Exact analytical solutions of the displace-
ment field around a notch tip are employed as the global interpolation functions; consequently, the stress intensity factors
and the coefficients of the higher order terms of a notch tip asymptotic field become primary unknowns of the problem.
Therefore, no post-processing technique to extract the stress intensity factors is needed. Moreover, special singular finite ele-
ments to model the singular region are not required.

The accuracy and the robustness of the method were tested via many examples of notch/crack problems. The stress inten-
sity factor values produced in this study for cases for which published results exist were in very good agreement with those
available corresponding published data. Many new results of notched plate problems were also presented.
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a b s t r a c t

The fractal-like finite element method (FFEM) is extended to compute the stress intensity factors (SIFs)
for bi-material notched bodies subject to anti-plane shear loading. The notched bodies are formed by
bonding two materials together (isotropic-isotropic/isotropic-orthotropic). Also, a strain energy-based
approach is developed and used to compute mode III SIFs for a bi-material notch using standard finite
element (FE) commercial packages for comparison with corresponding data produced using the FFEM.
Various numerical results for bi-material cracked/notched bodies under anti-plane shear are presented
to demonstrate the accuracy and efficiency of the FFEM. Many new results for bi-material notched bodies
are also introduced.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stress intensity factors (SIFs) characterise the stress, strain, and
displacement fields in the crack/notch tip region and have a signif-
icant function in virtually all fracture problems. For example, in
failure design studies, it is necessary to accurately evaluate SIFs
in order to determine fracture parameters such as the critical crack
length, the fracture loads and the service life of a structural compo-
nent. Fast, reliable and accurate computations of SIFs are often nec-
essary in practical applications such as in the design of new
structures or in the assessment of the integrity of existing struc-
tures. This is especially true for high integrity structures such as
nuclear reactor cores, aircraft, submarines and spacecraft. Another
area of major application is in welded structures.

The study of stress intensities at a corner/notch is of high impor-
tance, because the presence of corners in a structure may result in
crack initiation leading to a structural failure or shortening of the
service life of the structure. The importance is even higher in the case
of composite bodies, which comprise isotropic materials joined
together, because it could be used to evaluate the adhesive strength.
Therefore, much effort and research has been devoted to the analysis
of sharp notch problems. However, most of the cases available in the
literature are about in-plane homogeneous notch problems.

In linear elastic fracture mechanics, it is well known that the
stresses around a notch tip are singular. Williams [1] investigated

the analytical form of these singularities. He found that the stresses
in a homogeneous notched body become infinite at the notch tip
under any boundary conditions. Seweryn [2] demonstrated that
simple failure criteria based on the notch SIFs exist, at least for
brittle fracture. Failure occurs when the notch SIFs reach critical
values. Other researchers who tried to establish a failure criterion
for a notch are Knésl [3], Gómez and Elices [4], and Carpinteri et al.
[5].

Many researchers have developed various methods and proce-
dures to compute the SIFs for a notch. Gross and Mendelson [6] cal-
culated the SIFs for many notch cases of modes I and II by means of
a boundary collocation method. Lin and Tong [7] developed singu-
lar finite elements for the analysis of V-notched plates. Carpenter
[8] presented a collocation procedure to compute SIFs for notch
problems based on the contour integral of Stern et al. [9]. Babuška
and Miller [10] developed post-processing approaches to extract
the generalised SIFs near corner points from a finite element solu-
tion. Zhao and Hahn [11] predicted the SIFs of a notch problem
from the SIFs of a crack problem. Chen [12] computed the SIFs of
notched plates by means of the body force method.

Other researchers developed semi-analytical methods such as
the hybrid crack element (HCE), the scaled boundary finite element
method (SBFEM), and the fractal-like finite element method
(FFEM). The HCE was developed by Tong et al. [13] to compute
the SIFs for plane cracks. Wolf [14] developed the SBFEM, which
is a numerical finite element-based procedure in the circumferen-
tial directions and an analytical procedure in the radial direction.
The FFEM is based on the concept of global–local interpolation
functions [15]. Su and co-authors [16–19] developed the FFEM to
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compute the SIFs for various crack problems only. Recently Treifi
et al. [20–24] have extended the FFEM to analyse homogeneous
notch problems. They presented many results concerning homoge-
neous notched plates subjected to mode I, mode II, or mode III
loading conditions.

Most of the aforementioned research work was concerned only
with homogeneous crack and/or notch problems. For bi-material
cases, which are more complicated, researchers such as Theocaris
[25], Dempsey and Sinclair [26], and Hein and Erdogan [27], among
others, studied the stress and displacement fields and investigated
the behaviour of the singular eigenvalues for bi-material notches.
The case of an interfacial crack problem, which is a special case
of a bi-material notch problem, has been investigated by many
researchers. Lin and Mar [28] constructed a hybrid crack element
to compute SIFs for cracks in bi-materials. Yau and Wang [29] used
a procedure that involves known auxiliary solutions and evalua-
tion of conservation integrals along a suitably selected remote
path. Lee and Choi [30] computed the SIFs for interfacial cracks
using a boundary element method which employed the multi-
region technique and the double-point concept. Matsumto et al.
[31] evaluated the SIFs of interface cracks using a concept based
on the interaction energy release rates.

Results for stress intensities for bi-material notch problems
were reported by few researchers, due to their complexity. Carpen-
ter and Byers [32] investigated bi-material notch problems by
using the reciprocal work contour integral method. Tan and Me-
guid [33] presented a singular finite element to compute the SIFs
of a notch formulated by using explicit expressions for the singular
stress and displacement fields of a general bi-material wedge. Chen
and Sze [34] developed a hybrid-stress finite element model in
which the asymptotic stress and displacement fields embedded
into the wedge-tip element were numerically obtained. All of this
research work was concerned with only the in-plane problems, i.e.
modes I and II.

The most general case of loading on a notched body can be de-
scribed by means of superposition of the results of modes I, II and
III. Therefore, the case of anti-plane shear, i.e. mode III, in bi-mate-
rial crack/notch problems is necessary to describe the most general
case of loading on a notched body. Wu and Chiu [35] computed the
SIFs for interface cracks in bi-materials under anti-plane shear by
using a complex-variable formulation based on the solutions of a
dislocation and a body force in an infinite composite body. Other
researchers who studied the case of a bi-material crack under
anti-plane shear loading conditions are, among others, Lee and
Earmme [36], Li [37], and Li and Duan [38]. The general case of
anti-plane notch was investigated by Jun and Yuqiu [39] by using
a Sub-Region Mixed FEM. They provided very limited examples of
a notch in a disk. Liu and Chue [40] examined the stress singularity
orders in dissimilar anisotropic wedges. Ma and Hour [41] con-
cluded that the order of singularity for the anti-plane dissimilar
anisotropic notch problem is always real.

In this paper, the mode III stress and displacement expressions
around a bi-material notch tip are derived analytically and
employed as global interpolation functions to extend the FFEM to
compute the SIFs for anti-plane bi-material notch problems. The
FFEM brings together the agility of the finite element method
(FEM) and the accuracy of the exact analytical solutions. It is well
known that in order to improve the convergence of finite element
solutions for problems with singularities, it is necessary to discre-
tise the singular regions around the singular points using very fine
meshes. This leads to a large number of unknowns and a consider-
able increase of the computational cost. In the FFEM, the employ-
ment of the exact analytical solutions of the displacement field
around a notch tip as global interpolation functions to transform
the large number of nodal displacements around a notch tip into
a small set of generalised co-ordinates reduces the computational

cost significantly. Also, the SIFs and the coefficients of the higher
order terms of the notch tip asymptotic field are generalised co-
ordinates and are computed directly. Therefore, no post-processing
is required to extract them. Moreover, no special singular finite ele-
ments are needed to model the singular region around a notch tip—
conventional finite elements can be used to model the whole of the
cracked/notched body. The implementation of the FFEM involves
simple matrix multiplication. No complicated mathematics is
involved.

Various numerical examples of bi-material notch problems sub-
ject to anti-plane shear loading conditions are presented. The accu-
racy of the FFEM results is demonstrated by comparison with
available results for anti-plane bi-material crack problems, as crack
problems are special cases of notch problems. Also, many bi-mate-
rial crack problems results are compared to values predicted by the
commercial FE package ABAQUS [42]. Results for bi-material notch
problems are not available and current commercial FE packages are
generally not able to predict the SIFs for a notch. Therefore, an ap-
proach based on the strain energy (SE) of a finite volume surround-
ing the notch tip is developed and used to predict the SIF values for
a notch subject to mode III loading conditions. ABAQUS is used to
compute the strain energy, and the approach presented in Section 4
is used to extract the SIFs for notch problems. The FFEM results are
in very good agreement with the available published results and
the numerical results computed and/or extracted using commer-
cial FE packages. Most of the results for anti-plane bi-material
notch cases presented in this paper appear to be new.

2. Formulation of the FFEM

For the sake of brevity and completeness, only a short descrip-
tion of the FFEM formulation is presented in this section. One may
refer to Leung and Su [16–19] or Treifi et al. [21–23] for a detailed
description. In the FFEM, a notched/cracked body is divided into
singular and regular regions as shown in Fig. 1. The whole body
is modelled using any conventional finite elements. However, the
singular region is discretised using a very fine mesh generated
layer by layer in a fractal-like self-similar manner as illustrated
in Fig. 2. It should be noted from this figure that the fractal self-
similar nature of the mesh applies to the radial direction towards
the notch/crack tip but not to the hoop direction. For this reason,
the topology is referred to as being fractal-like. Also, the fractals
used are deterministic rather than stochastic as clearly shown by
Fig. 2. The resulting large number of nodal displacements in the
singular region is then transformed into a small set of generalised
co-ordinates using global interpolation functions. This concept is
based on the idea of local-cum-global interpolation. The local
interpolation functions (shape functions) reduce the infinite

Fig. 1. Regular and singular regions of a bi-material notched body.
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number of degrees of freedom of a continuum to a finite number of
degrees of freedom related to the nodes of the continuous element.
Similarly, the global interpolation functions can be used to reduce
the number of nodal unknowns to a small number of unknowns.
This process reduces the number of unknowns of the problem sig-
nificantly, and consequently the computational cost.

The layers of finite elements in the singular region are gener-
ated by using the notch/crack tip as a centre of similarity and
assuming a similarity ratio (q). All the nodes inside the singular re-
gion are considered slave nodes, while the ones on the line that
separates the regular and singular regions are considered master
nodes as illustrated in Fig. 2. By utilising the properties of the
self-similar two-dimensional isoparametric finite elements; i.e.
the stiffness matrices of two-dimensional isoparametric finite ele-
ments of similar shapes are the same [16]; the stiffness matrices of
the inner layers can be computed from only the stiffness matrix of
the first layer in the singular region. Therefore, the generalised
stiffness matrix of the singular region becomes a sum of a geomet-
ric series, allowing the use of theoretically infinite number of lay-
ers in the singular region [23].

The static equilibrium equation in the conventional FEM can be
written as

Kd ¼ f ð1Þ

where K is the stiffness matrix, d is the nodal displacement vector,
and f is the nodal force vector.

The nodal displacements of the nodes in the singular region can
be transformed into a small vector of generalised co-ordinates by
using global interpolation functions; that is, for the nth layer:

dn
s ¼ Tn

s a ð2Þ

where dn
s is the nodal displacement vector of the nodes in the nth

layer in the singular region, Tn
s is the transformation matrix of the

nth layer, and a is the vector of generalised co-ordinates. After the
transformation process is applied, Eq. (1) can be rewritten as

Krr Krm 0
Kmr Kmm þ K1st

mm K1st
ms

0 K1st
sm K1st

ss þ Kinn
s

2
64

3
75

dr

dm

a

8><
>:

9>=
>; ¼

fr

fm þ f1st
m

�f1st
s þ �f inn

s

8><
>:

9>=
>; ð3Þ

where

K1st
ms ¼ K1st

ms T1st
s

Kinn
s ¼

Xnl

n¼2

Kn
s ;

Kn
s ¼ TnT

s Kn
s Tn

s ;

�f1st
s ¼ T1stT

s f1st
s ;

�f inn
s ¼

Xnl

n¼2

�fn
s ; and

�fn
s ¼ TnT

s fn
s :

The subscripts r,m, and s refer to the nodes in the regular region,
master nodes, and slave nodes, respectively, the superscripts 1st
and inn refer to the first layer and the inner layers in the singular
region respectively, and nl is the number of layers used in the sin-
gular region.

Let ds be the vector of the nodal displacements of the slave
nodes. This vector is much larger than the vector of the generalised
co-ordinates a. Therefore, solving the system of equations in Eq. (3)
reduces the computational cost considerably compared to solving
the system of equations in Eq. (1). Also, Eq. (3) shows that the gen-
eralised co-ordinates (which are the SIFs and the coefficients of the
higher order terms) are directly computed. No post-processing
technique is required to extract them.

3. Global interpolation functions for mode III bi-material notch

In the FFEM, the global interpolation functions have a very
important role, because they are used to transform the large
number of unknowns (nodal displacements) in a singular region
to a small set of generalised co-ordinates. Therefore, exact
analytical solutions of the displacement field around a notch
tip are employed as global interpolation functions. Those
exact analytical solutions are found to be eigenfunction series
expansions. A description of the derivation of the stress and
displacement fields for an anti-plane bi-material notch is
presented in this section. These derivations are based on Linear
Elastic Fracture Mechanics (LEFM) assumptions. It should be
noted that the LEFM still provides accurate predictions especially
when the extent of the plastic region is not significant which is
the case for many materials.

Let (r, h) be a polar co-ordinate system centred at the tip of a
bi-material notch, such that the x-axis is located at the interface
of the two materials 1 and 2 as illustrated in Fig. 3. In the state
of anti-plane, the only non-zero stress components are srz and
shz, and the only non-zero displacement component is in the z
direction (w). The stress components can be expressed in terms
of w as

sðjÞrz ¼ Gj
@wðjÞ

@r
ð4Þ

sðjÞhz ¼ Gj
1
r
@wðjÞ

@h
ð5Þ

where Gj is the shear modulus of material j (j = 1, 2). The equilib-
rium equation can be written in terms of the stress components as

@sðjÞhz

@h
þ r

@sðjÞrz

@r
þ sðjÞrz ¼ 0 ð6Þ

Substituting Eqs. (4) and (5) into Eq. (6), the equilibrium equation
can be expressed in terms of the displacement component w as

Fig. 2. Mesh in a singular region (master nodes highlighted).
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1
r
@2wðjÞ

@h2 þ r
@2wðjÞ

@r2 þ
@wðjÞ

@r
¼ 0 ð7Þ

The displacement function w(j) can be assumed as

wðjÞ ¼ rkFjðhÞ ð8Þ

where k is an eigenvalue. After substituting w(j) and its derivatives
into the differential Eq. (7), the general solution of the resulting
equation is

wðjÞ ¼ rkðAj cos khþ Bj sin khÞ ð9Þ

where Aj and Bj are the generalised co-ordinates (the coefficients of
the terms of the mode III notch asymptotic field). On substituting
Eq. (9) into Eqs. (4) and (5), the stress expressions are

sðjÞrz ¼ Gjkrk�1ðAj cos khþ Bj sin khÞ ð10Þ

sðjÞhz ¼ Gjkrk�1ð�Aj sin khþ Bj cos khÞ ð11Þ

The eigenvalues k are obtained by imposing the following boundary
and continuity conditions:

sð1Þhz ðr; h ¼ þa1Þ ¼ 0 ð12Þ

sð2Þhz ðr; h ¼ �a2Þ ¼ 0 ð13Þ

wð1Þðr; h ¼ 0Þ ¼ wð2Þðr; h ¼ 0Þ ð14Þ

sð1Þhz ðr; h ¼ 0Þ ¼ sð2Þhz ðr; h ¼ 0Þ ð15Þ

Substituting Eqs. (9) and (11) into Eqs. (12)–(15) yields

B1 ¼ A1
sin ka1

cos ka1
ð16Þ

B2 ¼ �A2
sin ka2

cos ka2
ð17Þ

A2 ¼ A1 ð18Þ

B2 ¼
G1

G2
B1 ð19Þ

For non-trivial solutions of Aj and Bj, the determinant of Eqs.
(16)–(19) must vanish. By solving the resulting determinant, the
eigenvalues are obtained from

G1 sin ka1 cos ka2 þ G2 cos ka1 sin ka2 ¼ 0 ð20Þ

Eq. (20) can be rewritten as

G1

G2
þ 1

� �
sin kða1 þ a2Þ þ

G1

G2
� 1

� �
sin kða1 � a2Þ ¼ 0 ð21Þ

Eq. (21) can be solved using Muller’s iteration method [43]. The
solution of Eq. (21) is found to be always real [41]. For the special
case when G1 = G2 and a1 = a2 = a, Eq. (21) is reduced to

k ¼ np
2a

ð22Þ

which is the same relationship as the one derived for a symmetric
homogeneous isotropic notch [23].

The displacement and stress expressions in materials 1 and 2
can be rewritten as

wð1Þ ¼ rkðA1 cos khþ B1 sin khÞ ð23Þ

wð2Þ ¼ rk A1 cos khþ G1

G2
B1 sin kh

� �
ð24Þ

sð1Þrz ¼ G1krk�1ðA1 cos khþ B1 sin khÞ ð25Þ

sð1Þhz ¼ G1krk�1ð�A1 sin khþ B1 cos khÞ ð26Þ

sð2Þrz ¼ G2krk�1 A1 cos khþ G1

G2
B1 sin kh

� �
ð27Þ

sð2Þhz ¼ G2krk�1 �A1 sin khþ G1

G2
B1 cos kh

� �
ð28Þ

The mode III SIF of an anti-plane bi-material notch is defined as

KðjÞIII ¼
ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1�ksðjÞhz ðh ¼ 0Þ ð29Þ

Substituting Eq. (26) or (28) into Eq. (29) gives

KðjÞIII ¼
ffiffiffiffiffiffiffi
2p
p

GjkBj ¼
ffiffiffiffiffiffiffi
2p
p

G1kB1 ð30Þ

Fig. 3. Bi-material notch and co-ordinate systems.

Fig. 4. Bi-material cracked body under anti-plane shear: (a) isotropic-orthotropic
materials and (b) transformed isotropic-isotropic materials.
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The generalised co-ordinate B1 in Eq. (30) is computed directly in
the FFEM. Therefore, no-post processing technique is required to
calculate the mode III SIF.

4. Relationships between mode III notch SIFS and the strain
energy of a finite volume around a notch-tip

Published results for notch mode III SIFs are not available in the
literature and current FE commercial packages, such as ABAQUS,
are not able to compute the SIFs of notch problems. To validate
the FFEM results, an approach based on strain energy is developed
for the case of a mode III notch.

The strain energy of a finite volume around a notch-tip can be
written as

EðeÞ ¼
Z

V
W ðeÞdV ð31Þ

where W(e) is the strain energy density and can be computed as

W ðeÞ ¼
Z

r : @e ð32Þ

where r and e are stress and strain tensors, respectively. For a mode
III bi-material case, the strain energy of a finite volume of a radius Rc

around a notch-tip can be computed using Eqs. (25)–(32) as follows

Fig. 5. The finite element mesh used in the analysis of bi-material cracked bodies.

Table 1
Normalised SIFs for a bi-material cracked body under anti-plane shear (a/w = 0.4).

b G2/G1

1/4 1 4

0.1 FFEM 1.667 1.489 1.269
ABAQUS 1.667 1.489 1.269
SE 1.669 1.494 1.272
Ref. [35] 1.67 1.49 1.27

0.2 FFEM 1.327 1.244 1.149
ABAQUS 1.327 1.244 1.149
SE 1.327 1.244 1.149
Ref. [35] 1.33 1.24 1.15

0.5 FFEM 1.109 1.097 1.085
ABAQUS 1.109 1.098 1.085
SE 1.109 1.097 1.085
Ref. [35] 1.11 1.09 1.09

1 FFEM 1.077 1.077 1.077
ABAQUS 1.077 1.077 1.077
SE 1.077 1.077 1.077
Ref. [35] 1.08 1.08 1.07

Fig. 6. The finite element mesh used in the ABAQUS analysis of bi-material cracked
bodies.

Table 2
Normalised SIFs for a bi-material cracked body under anti-plane shear (G2/G1 = 1/4).

a/w b

0.1 0.2 0.5 1.0

0.1 FFEM 1.127 1.039 1.007 1.004
Ref. [35] 1.13 1.03 1.01 1.00

0.2 FFEM 1.324 1.128 1.029 1.017
Ref. [35] 1.32 1.13 1.03 1.02

0.3 FFEM 1.504 1.228 1.064 1.041
Ref. [35] 1.50 1.23 1.06 1.04

0.4 FFEM 1.667 1.327 1.109 1.077
Ref. [35] 1.67 1.33 1.11 1.08

0.5 FFEM 1.817 1.423 1.168 1.130
Ref. [35] 1.82 1.42 1.16 1.13

0.6 FFEM 1.956 1.519 1.247 1.210
Ref. [35] 1.95 1.52 1.24 1.21

0.7 FFEM 2.091 1.626 1.368 1.337
Ref. [35] 2.09 1.63 1.37 1.34

0.8 FFEM 2.236 1.784 1.585 1.565
Ref. [35] 2.23 1.78 1.59 1.56
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EðeÞ ¼ I

8pG2
1k

3
R2k

c K2
III ð33Þ

where I is an integral and its value is

I ¼ G2k
2a2

cos ka1

sin ka1

� �2

þ G1

G2

� �2
 !

þ G1k
2a1

cos ka1

sin ka1

� �2

þ 1

 !
ð34Þ

Convenient expressions for Rc are proposed based on the ultimate
tensile strength rt and on the fracture toughness KIC. Under plane
strain conditions [44]

Rc ¼
ð1þ mÞð5� 8mÞ

4p
KIC

rt

� �2

ð35Þ

and under plane stress conditions [45]

Rc ¼
ð5� 3mÞ

4p
KIC

rt

� �2

ð36Þ

The strain energy E(e) can be computed using commercial FE pack-
ages such as ABAQUS. This, then, is substituted in Eq. (33) to extract
the mode III SIFs of a notch.

5. Numerical examples and verification

The accuracy of the FFEM results is validated by means of com-
parison with published results for anti-plane bi-material crack
problems and numerical results using ABAQUS for crack and notch
problems. Because of the lack of published results for anti-plane bi-
material notch problems, the approach based on the strain energy
of a finite volume around a notch tip presented in Section 4 is used
to predict the notch SIFs using the FE package ABAQUS. Crack prob-
lems are special cases of notch problems (a notch with an opening
angle of zero is basically a crack). Many examples of bi-material
crack problems subject to anti-plane loading conditions for which
published results exist are presented first to demonstrate the accu-
racy of the FFEM and the standard FE-based SE approach. That is
followed by examples of a crack parallel to an interface. Then,
many examples of bi-material notch problems under anti-plane
shear loading conditions for different notch opening angles, notch
positions, notch lengths, and elastic mismatch ratios (G2/G1) are
presented.

5.1. Numerical examples for anti-plane bi-material crack problems

A bi-material edge cracked body of a rectangular cross-section
of height 2h and width w = h subject to anti-plane shear loading
conditions is analysed in this section. The bi-material cracked body
is formed by bonding an isotropic material with shear modulus G1

to an orthotropic material with shear moduli G11, G22 as shown in
Fig. 4(a). The orthotropic part of the body can be transformed into
an isotropic material with shear modulus G2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22
p

by adjust-
ing the height of the orthotropic part h to bh as shown in Fig. 4(b),
where b = G2/G22 [35]. In the FFEM analysis, ten terms of the eigen-
function series, 16 layers in the singular region and a similarity ra-
tio q = 0.6 are used. These values are chosen based on the
convergence study presented in Ref. [23]. The size of the singular
region is the same for all the examples analysed. Six-node triangu-
lar elements are used to mesh the geometries of the cross-sections
in a similar manner to that shown in Fig. 5. For all the examples in
this paper, seven-point integration scheme is used for the triangu-
lar elements.

First, in Table 1, the results predicted by the FFEM and by the
strain energy approach presented in Section 4 are validated by

Table 3
Normalised SIFs for a bi-material cracked body under anti-plane shear (G2/G1 = 1).

a/w b

0.1 0.2 0.5 1.0

0.1 FFEM 1.091 1.028 1.006 1.004
Ref. [35] 1.09 1.03 1.01 1.00

0.2 FFEM 1.233 1.093 1.025 1.017
Ref. [35] 1.23 1.09 1.03 1.02

0.3 FFEM 1.367 1.167 1.055 1.041
Ref. [35] 1.36 1.16 1.05 1.04

0.4 FFEM 1.489 1.244 1.097 1.077
Ref. [35] 1.49 1.24 1.09 1.08

0.5 FFEM 1.606 1.323 1.154 1.130
Ref. [35] 1.61 1.32 1.14 1.13

0.6 FFEM 1.720 1.410 1.234 1.210
Ref. [35] 1.72 1.41 1.23 1.21

0.7 FFEM 1.841 1.521 1.356 1.337
Ref. [35] 1.84 1.52 1.35 1.34

0.8 FFEM 2.000 1.703 1.578 1.565
Ref. [35] 2.00 1.70 1.57 1.56

Table 4
Normalised SIFs for a bi-material cracked body under anti-plane shear (G2/G1 = 4).

a/w b

0.1 0.2 0.5 1.0

0.1 FFEM 1.045 1.015 1.005 1.004
Ref. [35] 1.05 1.02 1.01 1.00

0.2 FFEM 1.119 1.051 1.020 1.017
Ref. [35] 1.12 1.05 1.02 1.02

0.3 FFEM 1.194 1.096 1.047 1.041
Ref. [35] 1.19 1.09 1.05 1.04

0.4 FFEM 1.269 1.149 1.085 1.077
Ref. [35] 1.27 1.15 1.09 1.07

0.5 FFEM 1.347 1.212 1.140 1.130
Ref. [35] 1.34 1.20 1.14 1.13

0.6 FFEM 1.437 1.293 1.219 1.210
Ref. [35] 1.43 1.29 1.22 1.20

0.7 FFEM 1.555 1.412 1.345 1.337
Ref. [35] 1.54 1.41 1.35 1.33

0.8 FFEM 1.746 1.621 1.570 1.565
Ref. [35] 1.74 1.61 1.57 1.56

Fig. 7. Bi-material body with a crack parallel to an interface under anti-plane shear.
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means of comparison with available published results predicted
by Wu and Chiu [35] and those predicted by the commercial FE
package ABAQUS. For the ABAQUS analysis, a three-dimensional
model subject to mode III loading and boundary conditions is
used. The model is meshed using C3D20 elements as shown in
Fig. 6. In addition, quarter point wedge elements are used around
the crack-tip. For the strain energy approach, Rc is taken equal to
0.07776 (that includes 3 layers of elements around the crack-tip
for which the strain energy is computed). This value of Rc is deter-
mined after the J-integral has stabilised. Then, in Tables 2–4, the
mode III SIFs computed using the FFEM compared to the values
predicted by Wu and Chiu [35] are presented. The values of the
SIFs of Wu and Chiu [35] presented in Tables 1–4 are interpolated
from graphs, as those authors presented their results using graphs
only. The SIFs are computed for different crack lengths (a/
w = 0.1, 0.2, . . ., 0.8), elastic mismatch ratios (G2/G1 = 1/4, 1, 4),
and orthotropic material properties (b = 0.1, 0.2, 0.5, 1).

The results presented in Table 1 demonstrate the accuracy of
the FFEM and the strain energy approach to predict the SIFs for
mode III interfacial crack problems. Tables 1–4 show that the SIFs
for a bi-material crack when both of the materials are isotropic
(i.e. the crack is located on the horizontal centre line of the
cross-section) are independent of the elastic mismatch ratios.
This was also observed in Ref. [35]. The values of the SIFs increase
with increasing crack lengths, decreasing values of b, and decreas-
ing values of elastic mismatch ratios G2/G1. It can also be seen
from those tables that the FFEM results are in very good agree-
ment with the published results. This proves that the use of the
global interpolation functions in the FFEM, which were derived
for a general bi-material notch in Section 3, produces accurate re-
sults for mode III bi-material crack problems (when the notch
opening angle c = 0�). This means that they can be used with con-
fidence to compute the SIFs for bi-material notch problems.

5.2. Numerical examples for an anti-plane bi-material crack parallel
to an interface

Examples of a bi-material body with a crack parallel to an
interface (w = h, a/w = 0.4) are analysed using the FFEM and ABA-
QUS. The bi-material body is formed by bonding together two iso-
tropic materials as shown in Fig. 7. For the ABAQUS analysis,
three-dimensional elements C3D20 are used to model the bi-
material body. In addition, singular quarter point elements are
used around the crack tip. Also, mode III loading and boundary
conditions are applied. In the FFEM analysis, the body is meshed
in a similar manner to that shown in Fig. 5.

The results for different elastic mismatch ratios G2/G1, and dif-
ferent crack locations hc/H are presented in Table 5. This table
shows that the mode III SIF values predicted by the FFEM and
ABAQUS are in very good agreement. Also, it demonstrates a very
interesting behaviour of the values of the SIFs as the crack loca-
tion gets closer or farther from the interface. When the crack loca-
tion is far from the interface, the SIF values are close to the SIF
values of a homogeneous body. As the crack location gets closer
to the interface, the values of the SIFs are affected in different
ways depending on which material the crack is located in. If the
crack is in the stiffer material, the values of the SIFs increase,
but their values decrease if the crack is in the softer material. This
trend becomes more pronounced as the material properties of the
two materials differ substantially. To show that clearly, the values
of the mode III SIFs are plotted in Fig. 8. To help understand this
behaviour of the bi-material body with a crack parallel to an
interface, the deformed shapes for the cases of (G2/G1 = 1, 1/2, 1/
10, 1/100) and (hc/H = 0.4, 0.6) are plotted in Fig. 9. The curvatures
of the deformed shapes differ considerably depending on the
crack location whether it is in the stiffer or the softer material.Ta
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5.3. Numerical examples for anti-plane bi-material notch problems

Many examples of bi-material notched bodies of a rectangular
cross-section of height H and width w where H/w = 2 are presented
in this section. The notched bodies are subject to anti-plane shear
loading conditions as shown in Fig. 10(a). The bi-material bodies
are formed by bonding two isotropic materials together. In the
FFEM analysis, ten terms of the eigenfunction series, 16 layers in
the singular region and a similarity ratio q = 0.6 are used. Six-node
triangle elements are used to mesh the geometries of the cross-
sections in a similar manner to that shown in Fig. 10(b).

The mode III SIFs computed by the FFEM for a/w = 0.4 and for
different notch opening angles (c = 0�,10�, . . .,90�), notch positions
(hc/h = 0.1, 0.2, . . ., 0.5), and elastic mismatch ratios (G2/G1 = 1/
10, 1/4, 1, 4, 10) are tabulated in Tables 6–10. Tables 11–15 present
the mode III SIFs computed by the FFEM for a notch opening angle
c = 50� and for different notch lengths (a/w = 0.1, 0.2, . . ., 0.5),
notch positions (hc/h = 0.1, 0.2, . . ., 0.5), and elastic mismatch ratios
(G2/G1 = 1/10, 1/4, 1, 4, 10). The missing values in those tables are
due to the fact that the geometry of the plate is no more rectangu-
lar (the top and bottom boundaries are no more equal and the
notch faces have unequal lengths).

From Tables 6–10, it can be seen that the values of the SIFs in-
crease with increasing notch opening angles, as the notch gets clo-
ser to the bottom boundary, and with decreasing elastic mismatch
ratios. Tables 11–15 show that the SIFs increase with increasing
notch lengths, as the notch gets closer to the bottom boundary,
and with decreasing elastic mismatch ratios. From Tables 6–15,
the SIFs are dependent on the elastic mismatch ratios of the bi-
material notched body in general. They are only independent of
the elastic mismatch ratios when the notch is located on the hori-
zontal symmetry line; i.e. the notched body is symmetric with re-
spect to the bisector of the notch opening angle which coincides
with the interface. This can be proven analytically [35]. Assume a
symmetrical notched body consisting of one material only
(G2/G1 = 1). The displacement and the stresses for this case can
be referred to as w0 and s0, respectively. For a general case of an
elastic mismatch ratio of a symmetrical bi-material notched body,

the displacements vanish along the interface, due to the symmetry
conditions. From Eqs. (23)–(28), it can be shown that the displace-
ment and the stresses are w(1) = w0 and s(1) = s0 in material 1 and
wð2Þ ¼ G1

G2
w0 and s(2) = s0 in material 2. This demonstrates the stres-

ses are independent of the elastic mismatch ratio. Therefore, the
SIFs are independent of the elastic mismatch ratio of a symmetrical
bi-material notched body under mode III loading conditions.

It should be noted that most of the results in Tables 6–15 appear
to be new and that there are no published SIF values available with
which to compare them. To validate those results, a comparison
with the strain energy approach presented in Section 4 is carried
out. Again, Rc is taken equal to 0.07776 (that includes 3 layers of
elements around the notch-tip for which the strain energy is com-
puted). ABAQUS is used to compute the strain energy. A three-
dimensional model subject to mode III loading and boundary con-
ditions is analysed. The model is meshed using C3D20 elements as
shown in Fig. 11. In addition, quarter point wedge elements are
used around the notch-tip. A comparison of the SIF values pre-
dicted by the FFEM and the strain energy approach is shown in Ta-
bles 16–20. These tables show that the SIF values predicted by both
approaches are in very good agreement. It was also shown in the
previous sections that the use of the global interpolation functions
presented in Section 3, which were derived for anti-plane bi-mate-
rial notch problems, produced accurate results for anti-plane bi-
material crack problems (when the notch angle c = 0�). Conse-
quently, it can be assumed that the FFEM results for notch prob-
lems in Tables 6–15 are valid and accurate.

To demonstrate the efficiency of the FFEM with regard to reduc-
ing the computational cost, let us consider one of the examples
when the notched body is symmetrical about the interface,
c = 0�, and a/w = 0.4. According to the mesh used, the total number
of degrees of freedom (one degree of freedom per node), which is
consequently the number of equations to be solved, is 5063 in
the conventional finite element method. In the FFEM analysis, be-
cause of the transformation, the total number of equations to be
solved is only 1148. Those numbers depend on the mesh used to
model the singular region—16 layers were used in this example
as shown in Fig. 10(b). Larger numbers of layers can generally be

Fig. 8. SIF values for a crack parallel to an interface.
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Fig. 9. Deformed shapes of a bi-material body with a crack parallel to an interface: (a) G2/G1 = 1 and hc/H = 0.4, (b) G2/G1 = 1/2 and hc/H = 0.4, (c) G2/G1 = 1/10 and hc/H = 0.4,
(d) G2/G1 = 1/100 and hc/H = 0.4, (e) G2/G1 = 1/2 and hc/H = 0.6, (f) G2/G1 = 1/10 and hc/H = 0.6, and (g) G2/G1 = 1/100 and hc/H = 0.6.

Fig. 10. (a) Bi-material notched body under anti-plane shear and (b) the finite element mesh used in the analysis.
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Table 6
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1/10, a/w = 0.4).

c(�) hc/H

0.1 0.2 0.3 0.4 0.5

0 1.354 1.148 1.096 1.081 1.077
10 1.422 1.202 1.146 1.130 1.126
20 1.496 1.259 1.199 1.183 1.178
30 1.574 1.320 1.256 1.238 1.233
40 1.659 1.384 1.316 1.296 1.291
50 1.751 1.453 1.379 1.358 1.352
60 – 1.526 1.445 1.423 1.417
70 – 1.603 1.515 1.491 1.484
80 – 1.686 1.589 1.562 1.555
90 – – 1.666 1.636 1.628

Table 7
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1/4, a/w = 0.4).

c(�) hc/H

0.1 0.2 0.3 0.4 0.5

0 1.326 1.140 1.093 1.080 1.077
10 1.393 1.193 1.143 1.130 1.126
20 1.464 1.250 1.197 1.182 1.178
30 1.540 1.310 1.253 1.237 1.233
40 1.622 1.373 1.312 1.296 1.291
50 1.711 1.441 1.375 1.357 1.352
60 – 1.513 1.442 1.422 1.417
70 – 1.589 1.511 1.490 1.484
80 – 1.670 1.584 1.561 1.555
90 – – 1.661 1.635 1.628

Table 8
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1, a/w = 0.4).

c(�) hc/H

0.1 0.2 0.3 0.4 0.5

0 1.243 1.116 1.086 1.079 1.077
10 1.303 1.168 1.136 1.128 1.126
20 1.368 1.223 1.189 1.180 1.178
30 1.437 1.281 1.245 1.235 1.233
40 1.511 1.343 1.304 1.293 1.291
50 1.590 1.408 1.366 1.355 1.352
60 – 1.477 1.431 1.419 1.417
70 – 1.550 1.500 1.487 1.484
80 – 1.627 1.572 1.558 1.555
90 – – 1.647 1.631 1.628

Table 9
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 4, a/w = 0.4).

c(�) hc/H

0.1 0.2 0.3 0.4 0.5

0 1.148 1.092 1.080 1.077 1.077
10 1.201 1.142 1.129 1.126 1.126
20 1.259 1.195 1.181 1.178 1.178
30 1.320 1.251 1.237 1.233 1.233
40 1.384 1.311 1.295 1.291 1.291
50 1.453 1.374 1.356 1.352 1.352
60 – 1.440 1.421 1.417 1.417
70 – 1.509 1.489 1.484 1.484
80 – 1.582 1.560 1.554 1.555
90 – – 1.633 1.627 1.628

Table 10
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 10, a/w = 0.4).

c(�) hc/H

0.1 0.2 0.3 0.4 0.5

0 1.109 1.083 1.077 1.076 1.077
10 1.160 1.132 1.126 1.125 1.126
20 1.215 1.185 1.179 1.177 1.178
30 1.272 1.240 1.234 1.232 1.233
40 1.334 1.299 1.292 1.290 1.291
50 1.398 1.361 1.353 1.351 1.352
60 – 1.426 1.417 1.416 1.417
70 – 1.494 1.485 1.483 1.484
80 – 1.565 1.555 1.553 1.555
90 – – 1.628 1.626 1.628

Table 11
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1/10, c = 50�).

a/w hc/H

0.1 0.2 0.3 0.4 0.5

0.1 1.303 1.258 1.250 1.248 1.247
0.2 1.441 1.305 1.276 1.268 1.266
0.3 1.596 1.372 1.319 1.304 1.300
0.4 1.751 1.453 1.379 1.358 1.352
0.5 – 1.548 1.461 1.438 1.431

Table 12
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1/4, c = 50�).

a/w hc/H

0.1 0.2 0.3 0.4 0.5

0.1 1.298 1.257 1.249 1.247 1.247
0.2 1.424 1.300 1.275 1.268 1.266
0.3 1.567 1.364 1.316 1.303 1.300
0.4 1.711 1.441 1.375 1.357 1.352
0.5 – 1.534 1.457 1.437 1.431

Table 13
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 1, c = 50�).

a/w hc/H

0.1 0.2 0.3 0.4 0.5

0.1 1.282 1.253 1.248 1.247 1.247
0.2 1.373 1.288 1.271 1.267 1.266
0.3 1.479 1.340 1.310 1.302 1.300
0.4 1.590 1.408 1.366 1.355 1.352
0.5 – 1.495 1.447 1.434 1.431

Table 14
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 4, c = 50�).

a/w hc/H

0.1 0.2 0.3 0.4 0.5

0.1 1.262 1.249 1.247 1.247 1.247
0.2 1.313 1.275 1.268 1.266 1.266
0.3 1.377 1.315 1.303 1.300 1.300
0.4 1.453 1.374 1.356 1.352 1.352
0.5 – 1.455 1.436 1.431 1.431
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used, and theoretically an infinite number of layers can also be
used as mentioned in Section 2 without increasing the number of
equations to be solved in the FFEM. This shows the computational
cost reduction that can potentially be achieved by using the FFEM.
This is in addition to the fact that post-processing techniques or
special singular elements are not needed as is the case in other fi-
nite element approaches.

6. Conclusion

In this paper, the FFEM was extended to compute the SIFs for bi-
material notch problems under anti-plane shear loading condi-
tions. Exact analytical solutions of the asymptotic field around a
notch tip were derived for an anti-plane bi-material notch and
were used as global interpolation functions in the FFEM to trans-
form the large number of nodal displacements of the slave nodes
in the singular region to a small number of generalised co-ordi-
nates. The SIFs are computed directly, as they are directly related
to the generalised co-ordinates, which are primary unknowns of
the problem. Therefore, no post processing technique is needed
to extract them. Also, no special singular elements are needed to
model the singular region. Any conventional finite elements can
be used.

Table 15
Normalised SIFs for a bi-material notched body under anti-plane shear computed by
FFEM (G2/G1 = 10, c = 50�).

a/w hc/H

0.1 0.2 0.3 0.4 0.5

0.1 1.254 1.248 1.247 1.247 1.247
0.2 1.288 1.270 1.267 1.266 1.266
0.3 1.335 1.306 1.300 1.299 1.300
0.4 1.398 1.361 1.353 1.351 1.352
0.5 – 1.441 1.432 1.430 1.431

Fig. 11. The finite element mesh used in the ABAQUS analysis of bi-material
notched bodies.

Table 16
Normalised SIFs for a bi-material notched body under anti-plane shear (G2/G1 = 1/10,
a/w = 0.4).

c(�) hc/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.148 1.148 1.096 1.095 1.077 1.077
30 1.320 1.320 1.256 1.256 1.233 1.233
60 1.526 1.526 1.445 1.445 1.417 1.417
90 – – 1.666 1.665 1.628 1.628

Table 17
Normalised SIFs for a bi-material notched body under anti-plane shear (G2/G1 = 1/4,
a/w = 0.4).

c(�) hc/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.140 1.140 1.093 1.093 1.077 1.077
30 1.310 1.310 1.253 1.253 1.233 1.233
60 1.513 1.513 1.442 1.442 1.417 1.417
90 – – 1.661 1.661 1.628 1.628

Table 18
Normalised SIFs for a bi-material notched body under anti-plane shear (G2/G1 = 1,
a/w = 0.4).

c(�) hc/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.116 1.116 1.086 1.086 1.077 1.077
30 1.281 1.281 1.245 1.245 1.233 1.233
60 1.477 1.477 1.431 1.432 1.417 1.417
90 – – 1.647 1.647 1.628 1.628

Table 19
Normalised SIFs for a bi-material notched body under anti-plane shear (G2/G1 = 4,
a/w = 0.4).

c(�) hc/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.092 1.092 1.080 1.080 1.077 1.077
30 1.251 1.252 1.237 1.237 1.233 1.233
60 1.440 1.440 1.421 1.421 1.417 1.417
90 – – 1.633 1.633 1.628 1.628

Table 20
Normalised SIFs for a bi-material notched body under anti-plane shear (G2/G1 = 10, a/
w = 0.4).

c(�) hc/H

0.2 0.3 0.5

FFEM SE FFEM SE FFEM SE

0 1.083 1.083 1.077 1.077 1.077 1.077
30 1.240 1.241 1.234 1.234 1.233 1.233
60 1.426 1.426 1.417 1.417 1.417 1.417
90 – – 1.628 1.628 1.628 1.628
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Due to the lack of available data for mode III bi-material notch
problems, an approach based on the strain energy of a finite region
around a notch-tip was developed to extract the notch SIF values
for a notched body subject to mode III loading conditions using
commercial FE packages.

Many numerical examples of anti-plane bi-material crack and
notch problems were presented to demonstrate the accuracy and
efficiency of the FFEM. The results were verified and validated
via comparison with available published data and numerical re-
sults. Most of the bi-material notch cases analysed in this paper ap-
pear to be new. The numerical values of the mode III SIFs showed
that they are dependent on the material properties of the bi-mate-
rial notched body in general, but they are independent of them
when the bi-material notched body is composed of isotropic mate-
rials and is symmetrical with respect to the bisector of the notch
opening angle which coincides with the interface.
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a b s t r a c t

A strain energy approach (SEA) is developed to compute the general stress intensity factors (SIFs) for iso-
tropic homogeneous and bi-material plates containing cracks and notches subject to mode I, II and III
loading conditions. The approach is based on the strain energy of a control volume around the notch
tip, which may be computed by using commercial finite element packages. The formulae are simple
and easy to implement. Various numerical examples are presented and compared to corresponding pub-
lished results or results that are computed using different numerical methods to demonstrate the accu-
racy of the SEA. Many of those results are new, especially for the cases of bi-material notches where the
problem is quite complicated.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of studying stress intensities caused by the
presence of sharp corners/notches has led to much research de-
voted to the analysis of sharp notches. The presence of sharp
notches causes stress intensities around the notch tip. This area
is vulnerable to a crack initiation that may lead to structural failure
or shortening of the service life of a structure. Most of the research
in literature is for isotropic homogeneous cases. Very little is done
for bi-material notch problems, due to its complexity.

It is well known that, in linear elastic fracture mechanics, the
stresses at a notch tip become infinite (singular) (Williams, 1952,
1957). Based on experimental findings by Seweryn (1994), it was
demonstrated that simple failure criteria based on the notch SIFs ex-
ist. Therefore, some researchers tried to establish a failure criterion
for notch problems, such as Knésl (1991), Gómez and Elices (2003)
and Carpinteri et al. (2008). Other researchers developed different
methods and procedures to compute the notch SIFs such as the
boundary collocation method (Gross and Mendelson, 1972), the
boundary element singularity subtraction technique (Portela et al.,
1991), singular finite elements (Lin and Tong, 1980) and finite ele-
ment post-processing approaches (Babuška and Miller, 1984).
Semi-analytical methods are also developed to compute the SIFs of
a notch such as the hybrid crack element (HCE) (Tong et al., 1973),
the scaled boundary finite element method (SBFEM) (Wolf, 2003),
and the fractal-like finite element method (FFEM) (Leung and Su,
1994; Treifi et al., 2008, 2009a,b, 2007; Treifi and Oyadiji, 2009).

Those methods are capable of computing not only the SIFs but also
the higher order terms of the notch tip asymptotic field.

Most of the work mentioned above dealt only with homoge-
neous crack/notch problems. For bi-material problems, published
results are available mainly for interfacial crack problems. For bi-
material notches, published SIFs are rare, because the problem is
quite complicated. For interface crack cases, Williams (1959)
investigated configurations of dissimilar materials containing
interface cracks. Lin and Mar (1976) developed a hybrid crack ele-
ment. Lee and Choi (1988) used a boundary element method which
employed the multi-region technique and the double-point con-
cept. Yau and Wang (1984) developed a procedure based on the
evaluation of conservation integrals. Matsumto et al. (2000) used
an approach based on the interaction energy release rates to com-
pute the SIFs of interface cracks. Researchers who dealt with bi-
material notch problems are few, and their research work was
more about studying the stress and displacement fields and the
behaviour of the singular eigenvalues. Early work was carried out
by Bogy (1968, 1970) and Bogy and Wang (1971). Carpenter and
Byers (1987) used a reciprocal work contour integral method.
Tan and Meguid (1997) developed a singular finite element formu-
lated using expressions of the singular stress and displacement
fields of a bi-material notch. Chen and Sze (2001) developed a hy-
brid finite element formulated using numerically obtained asymp-
totic stress and displacement fields. Carpinteri et al. (2006)
presented an approximate analytical model based on the theory
of multi-layered beams to compute mode I SIFs for a general notch
perpendicular to a bi-material interface. Paggi and Carpinteri
(2008) presented a comprehensive review of interface mechanical
problems leading to stress singularities.
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In this paper, we present a strain energy based approach to com-
pute the SIF values for homogeneous and bi-material notch prob-
lems subject to mode I, II and III loading conditions. The approach
is based on the work of Lazzarin and Zambardi (2001), Lazzarin
and Berto (2005), Lazzarin and Filippi (2006), Lazzarin and Zap-
palorto (2008), Lazzarin et al. (2010), Berto and Lazzarin (2007), Ra-
daj et al. (2009), Zappalorto and Lazzarin (2011) and Zappalorto et al.
(2008) who developed the idea of using averaged strain energy over
a control volume around a notch tip to compute the SIFs for sharp
and rounded notches. They dealt mainly with homogeneous pure
mode I, II or III cases. For mixed mode I and II cases, they usually ne-
glected the effect of mode II SIF (Lazzarin and Zambardi, 2001) where
they used examples with non-singular mode II stress components,
but in a recent publication (Lazzarin et al., 2010) they suggested
using two concentric volumes to compute mode I and II notch SIFs.
However, this approach does not always work as will be discussed
later. In the current work, we simply partition the control volume
and the integral accordingly to compute mode I and II SIFs for homo-
geneous mixed-mode and bi-material notch problems. This new
strategy is operationally very simple to implement. It involves sim-
ple mathematical operations that can be carried out numerically.
The strain energy for the control volume could be computed by using
commercial finite element packages. In most of these packages, it is
not possible to compute notch SIFs, but the SEA empowers analysts
to compute notch SIFs. The accuracy of the approach is tested via
many examples of isotropic homogeneous and bi-material notches
under different loading conditions. The results are compared to
available published results and results computed numerically using
different numerical methods; the agreement is very good. Also, new
results are presented.

2. Strain energy approach

The strain energy of a finite volume around a notch-tip can be
written as (Bower, 2010)

EðeÞ ¼
Z

V
W ðeÞdV ð1Þ

where W(e) is the strain energy density and can be computed as
follows

W ðeÞ ¼
Z

r : @e ð2Þ

where r and e are stress and strain tensors, respectively. For an iso-
tropic material, the strain energy density W(e) for a generalised state
of stress can be written as

W ðeÞ ¼ 1
2
½rxxexx þ ryyeyy þ rzzezz þ sxycxy þ sxzcxz þ syzcyz� ð3Þ

The strains can be written in terms of the stresses by using
Hooke’s law

exx ¼
1
E

rxx � mðryy þ rzzÞ
� �

eyy ¼
1
E
½ryy � mðrxx þ rzzÞ�

ezz ¼
1
E
½rzz � mðrxx þ ryyÞ�

cxy ¼
1
G
sxy

cyz ¼
1
G
syz

cxz ¼
1
G
sxz

G ¼ E
2ð1þ mÞ

ð4Þ

where E;G; m are Young’s modulus, shear modulus and Poisson’s ra-
tio, respectively. For simplicity the stresses can be expressed as

rij ¼ f ðKI;KII;KIII; r; hÞ ð5Þ

where KI , KII and KIII are the mode I, II and III SIFs, respectively. By
substituting the stress expressions into Eq. (1) and carrying out the
integration over a finite volume around the notch tip, Eq. (1) becomes
a representation of a direct relation between the strain energy for a
finite volume and the SIFs. The strain energy could be easily com-
puted using a commercial finite element package. Most FE packages
are not, to our knowledge, capable of computing the SIFs for general
notches. Therefore, this approach is quite useful to extract SIFs for
general notches by using current commercial FE packages. Eq. (1)
could be partitioned to deal with bi-material or mixed mode cases
where two equations are needed to compute mode I and mode II SIFs.
This will be discussed in detail in the next sections.

2.1. Isotropic homogeneous notch

2.1.1. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under in-plane loading conditions
(mode I, II and mixed mode)

For the in-plane problem, the strain energy density is

W ðeÞ ¼ 1
2E

r2
xx þ r2

yy þ r2
zz � 2mðrxxryy þ rxxrzz þ ryyrzzÞ

h
þ2ð1þ mÞs2

xy

i
ð6Þ

where rzz ¼ 0 under plane-stress and rzz ¼ mðrxx þ ryyÞ under
plane-strain.

The stress expressions for a general homogeneous notch as seen
in Fig. 1 are (Williams, 1952; Portela et al., 1991)

rxx ¼ kIrkI�1A1 2þ kI cos 2aþ cos 2kIa
� �

cos kI � 1
� �

h
�

� kI � 1
� �

cos kI � 3
� �

h
�

þ kIIrkII�1A2 � 2þ kII cos 2a� cos 2kIIa
� �

sin kII � 1
� �

h
�

þ kII � 1
� �

sin kII � 3
� �

h
�

ð7Þ

ryy ¼ kIrkI�1A1 2� kI cos 2a� cos 2kIa
� �

cos kI � 1
� �

h
�

þ kI � 1
� �

cos kI � 3
� �

h
�
þ kIIrkII�1A2 �2þ kII cos 2a

��
� cos 2kIIa

�
sin kII � 1
� �

h� kII � 1
� �

sin kII � 3
� �

h
�

ð8Þ

sxy ¼ kIrkI�1A1 � kI cos 2aþ cos 2kIa
� �

sin kI � 1
� �

h
�

þ kI � 1
� �

sin kI � 3
� �

h
�

þ kIIrkII�1A2 � kII cos 2a� cos 2kIIa
� �

cos kII � 1
� �

h
�

þ kII � 1
� �

cos kII � 3
� �

h
�

ð9Þ

Fig. 1. Isotropic homogeneous notch geometry.
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where kI and kII are eigenvalues and are computed using the follow-
ing characteristic equations

kI sin 2aþ sin 2kIa ¼ 0 ð10Þ

kII sin 2a� sin 2kIIa ¼ 0 ð11Þ

A1 and A2 are constants related to the mode I and mode II SIFs

KI ¼
ffiffiffiffiffiffiffi
2p
p

kI 1þ kI � kI cos 2a� cos 2kIa
� �

A1 ð12Þ

KII ¼
ffiffiffiffiffiffiffi
2p
p

kII �1þ kII � kII cos 2aþ cos 2kIIa
� �

A2 ð13Þ

Eqs. (7)–(9) are eigenfunction series expansions (the R symbol
is dropped for simplicity). In the SEA, only the singular terms are
considered. The stress expressions in Eqs. (7)–(9) can be rewritten
for simplicity as

rxx ¼ A1rkI�1fxðhÞ þ A2rkII�1gxðhÞ ¼ A1rkI�1fx þ A2rkII�1gx ð14Þ

ryy ¼ A1rkI�1fyðhÞ þ A2rkII�1gyðhÞ ¼ A1rkI�1fy þ A2rkII�1gy ð15Þ

sxy ¼ A1rkI�1fxyðhÞ þ A2rkII�1gxyðhÞ ¼ A1rkI�1fxy þ A2rkII�1gxy ð16Þ

Under plane-stress, substituting the above equations into Eq.
(6) gives

W ðeÞ ¼ 1
2E

A2
1r2ðkI�1Þ f 2

x þ f 2
y � 2mfxfy þ 2ð1þ mÞf 2

xy

� �h
þA2

2r2ðkII�1Þ g2
x þ g2

y � 2mgxgy þ 2ð1þ mÞg2
xy

� �
þA1A2rðk

IþkII�2Þ 2f xgx þ 2f ygy � 2mðfxgy þ fygxÞ
�

þ4ð1þ mÞfxygxy

��
ð17Þ

By substituting Eq. (17) into Eq. (1), the strain energy for a finite
volume of a radius Rc around a notch tip is

EðeÞ ¼
Z Rc

0

Z þa

�a
W ðeÞrdrdh

¼ 1
2E

A2
1

R2kI

c

2kI

Z þa

�a
f 2
x þ f 2

y � 2mfxfy þ 2ð1þ mÞf 2
xy

� �
dh

(

þA2
2

R2kII

c

2kII

Z þa

�a
g2

x þ g2
y � 2mgxgy þ 2ð1þ mÞg2

xy

� �
dh

þA1A2
Rðk

IþkIIÞ
c

ðkI þ kIIÞ

Z þa

�a
2f xgx þ 2f ygy � 2mðfxgy þ fygxÞ
�

þ4ð1þ mÞfxygxy

�
dh

)
ð18Þ

Substituting Eqs. (12) and (13) into Eq. (18) gives a quadratic
equation with two unknowns

EðeÞ ¼ MK2
I þ NK2

II þ QKIKII ð19Þ

It should be noted that the coefficients M, N and Q have different
dimensional units. Sih (1974) reported a similar expression relating
the strain energy density to the crack SIFs when he introduced a
strain energy density factor as a fracture parameter for crack prob-
lems. The integration could be carried out numerically by using, for
example, Composite Simpson’s rule. Eq. (19) illustrates a direct rela-
tion between the SIFs and the strain energy of a finite volume
around the notch tip. For pure mode I or pure mode II, Eq. (19)
can be used to compute mode I SIF, KI , or mode II SIF, KII

(EðeÞ ¼ MK2
I for pure mode I and EðeÞ ¼ NK2

II for pure mode II). How-
ever, in the case of mixed mode problems, Eq. (19) represents an
equation that contains two unknowns KI and KII. To overcome this,
Eq. (19) could be partitioned into two regions: one below the bisec-
tor (�a to 0) and the other above the bisector (0 to þa) as shown in

Fig. 2. This leads to the following two quadratic equations with two
unknowns

EðeÞ1 ¼
Z Rc

0

Z 0

�a
W ðeÞrdrdh ¼ M1K2

I þ N1K2
II þ Q1KIKII ð20Þ

EðeÞ2 ¼
Z Rc

0

Z þa

0
W ðeÞrdrdh ¼ M2K2

I þ N2K2
II þ Q 2KIKII ð21Þ

Due to the symmetry, the following relations hold

M1 ¼ M2

N1 ¼ N2

Q 1 ¼ �Q 2

ð22Þ

After some simple algebraic manipulations, the mode I and II
SIFs can be computed using the following equations

KII ¼
EðeÞ1 � EðeÞ2

2Q 1KI
ð23Þ

2M1K4
I � EðeÞ1 þ EðeÞ2

� �
K2

I þ
N1 EðeÞ1 � EðeÞ2

� �2

2Q2
1

¼ 0 ð24Þ

Obviously, Eqs. (23) and (24) would give more than one set of
answers. Usually it is easy to determine the correct set. However,
for less experienced analysts, the ratio of the relative displace-
ments of the notch faces could be used to determine the right set
of answers. For a crack problem, the following equation holds

KI

KII
¼ Dy

Dx
ð25Þ

where Dy ¼ v1ðr0;a1Þ � v2ðr0;a2Þ and Dx ¼ u1ðr0;a2Þ � u2ðr0;a2Þ are
the relative displacements of the crack faces. Eq. (25) could be used
as an approximation for notch cases too i.e. KI

KII
� Dy

Dx
. Because Dx and

Dy are computed numerically using finite element analysis, Eq. (25)
is better considered as an approximation rather than an equality.
The displacements of two nodes facing each other on the notch
faces such as the nodes 1 and 2 as shown in Fig. 2 could be used.
It is advisable to consider nodes that are reasonably far from the
notch tip.

Lazzarin et al. (2010) suggested using two concentric circles
with different radii to deal with mixed mode cases, but their sug-
gestion cannot be used for the special case of a notch with an open-
ing angle of zero, i.e. a crack.

Fig. 2. Partitioning of the control volume.
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2.1.2. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under out-of-plane loading
conditions (mode III)

For the out-of-plane problem, the strain energy density is

W ðeÞ ¼ 1
2G

s2
rz þ s2

hz

� �
ð26Þ

The stress expressions for a general homogeneous notch under
mode III loading conditions are

srZ ¼ GkIIIrkIII�1B sin kIIIh ð27Þ

shZ ¼ GkIIIrkIII�1B cos kIIIh ð28Þ

where kIII ¼ np
2a ; n ¼ 1;2;3; . . . and B is a constant. For detailed deri-

vations, one may refer to Seweryn and Molski (1996). Eqs. (27)
and (28) are eigenfunction series expansions (the R symbol is
dropped for simplicity). In the SEA, only the singular term is consid-
ered, i.e. n ¼ 1. The constant B associated with the singular eigen-
value is related to the mode III SIF

KIII ¼
ffiffiffiffiffiffiffi
2p
p

GkIIIB ð29Þ

By substituting Eqs. (27)–(29) into Eqs. (26) and (1), and after
some algebraic manipulations, the strain energy of a finite volume
under mode III conditions can be written as

EðeÞ ¼ R2kIII

c K2
IIIa

4pGkIII ð30Þ

This equation is in agreement with an expression presented by
Lazzarin and Zappalorto (2008) relating the strain energy density
to the mode III SIF. Eq. (30) represents a simple analytical formula
that links the mode III SIF to the strain energy of a finite volume
around and a notch tip.

2.2. Bi-material notch

2.2.1. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under in-plane loading conditions
(mode I, II and mixed mode)

For the in-plane bi-material problem, the expression for the
strain energy density is

WjðeÞ ¼ 1
2Ej

rj
xx

� �2 þ rj
yy

� �2
þ rj

zz

� �2 � 2mj rj
xxr

j
yy þrj

xxr
j
zz þrj

yyr
j
zz

� �	

þ2 1þ mj
� �

sj
xy

� �2



ð31Þ

where j refers to the material. Under plane-stress conditions
rzz ¼ 0, and under plane-strain conditions rzz ¼ mðrxx þ ryyÞ.

The stress expressions for a general bi-material notch as seen in
Fig. 3 are (Carpenter and Byers, 1987)

2rð1Þxx ¼ krk�1A1 3eihðk�1Þ � e�ihð1�kÞ e�2ih � 1
� �

ðk� 1Þ
�

þY2 3e�ihðk�1Þ � eihð1�kÞ e2ih � 1
� �

ðk� 1Þ
� �

� S1eihð1�kÞ � S2e�ihð1�kÞ
i

þ krk�1A1 Y2 3eihðk�1Þ � e�ih 1�kð Þ e�2ih �1
� �

ðk� 1Þ
� �h

þ3e�ih k�1ð Þ � eihð1�kÞ e2ih �1
� �

k�1
� �

� S2eihð1�kÞ � S1e�ihð1�kÞ
i
ð32Þ

2rð2Þxx ¼ krk�1A1 Y1 3eihðk�1Þ � e�ihð1�kÞ e�2ih�1
� �

ðk�1Þ
� ��

þY3 3e�ihðk�1Þ � eihð1�kÞðe2ih�1Þðk�1Þ
� �

�S3eihð1�kÞ � S4e�ihð1�kÞ
i

þkrk�1A1 Y3 3eihðk�1Þ � e�ihð1�kÞðe�2ih�1Þðk�1Þ
� �h

þY1 3e�ihðk�1Þ � eihð1�kÞ e2ih�1
� �

ðk�1Þ
� �

� S4eihð1�kÞ � S3e�ihð1�kÞ
i

ð33Þ

2rð1Þyy ¼ krk�1A1 eihðk�1Þ þ e�ihð1�kÞ e�2ih � 1
� �

ðk� 1Þ
�

þY2 e�ihðk�1Þ þ eihð1�kÞ e2ih � 1
� �

ðk� 1Þ
� �

þ S1eihð1�kÞ þ S2e�ihð1�kÞ
i

þ krk�1A1 Y2 eihðk�1Þ þ e�ihð1�kÞ e�2ih � 1
� �

ðk� 1Þ
� �h

þe�ihðk�1Þ þ eihð1�kÞ e2ih � 1
� �

ðk� 1Þ þ S2eihð1�kÞ þ S1e�ihð1�kÞ
i
ð34Þ

2rð2Þyy ¼ krk�1A1 Y1 eihðk�1Þ þ e�ihð1�kÞ e�2ih�1
� �

ðk�1Þ
� ��

þY3 e�ihðk�1Þ þ eihð1�kÞ e2ih�1
� �

ðk�1Þ
� �

þ S3eihð1�kÞ þ S4e�ihð1�kÞ
i

þkrk�1A1 Y3 eihðk�1Þ þ e�ihð1�kÞ e�2ih�1
� �

ðk�1Þ
� �h

þY1 e�ihðk�1Þ þ eihð1�kÞ e2ih�1
� �

ðk�1Þ
� �

þ S4eihð1�kÞ þ S3e�ihð1�kÞ
i

ð35Þ

2isð1Þxy ¼ krk�1A1 Y2 e�ihðk�1Þ � eihð1�kÞ e2ih�1
� �

ðk�1Þ
� ��

þe�ihð1�kÞ e�2ih�1
� �

ðk�1Þ� eihðk�1Þ þ S2e�ihð1�kÞ � S1eihð1�kÞ
i

þ krk�1A1 e�ihðk�1Þ � eihð1�kÞ e2ih�1
� �

ðk�1Þ
h

þY2 e�ihð1�kÞðe�2ih�1Þðk�1Þ� eihðk�1Þ
� �

þ S1e�ihð1�kÞ � S2eihð1�kÞ
i

ð36Þ

2isð2Þxy ¼ krk�1A1 Y3 e�ihðk�1Þ � eihð1�kÞ e2ih�1
� �

ðk�1Þ
� ��

þY1 e�ihð1�kÞ e�2ih�1
� �

ðk�1Þ� eihðk�1Þ� �
þ S4e�ihð1�kÞ � S3eihð1�kÞ

i
þ krk�1A1 Y1 e�ihðk�1Þ � eihð1�kÞ e2ih�1

� �
ðk�1Þ

� �h
þY3 e�ihð1�kÞ e�2ih�1

� �
ðk�1Þ� eihðk�1Þ

� �
þ S3e�ihð1�kÞ � S4eihð1�kÞ

i
ð37Þ

where

S1 ¼ �e2ika1 � e2ia1 � 1
� �

kY2

S2 ¼ �Y2e2ika1 � e2ia1 � 1
� �

k

S3 ¼ �Y1e�2ika2 � e�2ia2 � 1
� �

kY3

Fig. 3. Bi-material notch geometry.
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S4 ¼ �Y3e�2ika2 � e�2ia2 � 1
� �

kY1

Y ¼
Y1

Y2

Y3

8><
>:

9>=
>; ¼ �D�1

22 D21

D22 ¼
�j2 þ e�2ika2 G2

G1
k e2ia1 � 1
� �

k 1� e�2ia2
� �

k e2ia2 � 1
� �

1� e�2ika1 e2ika2 � 1

k 1� e2ia2
� � G2

G1
j1 þ e�2ika1
� �

� j2 þ e2ika2
� �

2
664

3
775

D21 ¼

G2
G1

j1 þ e2ika1
� �

k 1� e�2ia1
� �

G2
G1

k e�2ia1 � 1
� �

2
664

3
775

and jj ¼ 3� 4mj for plane-strain and jj ¼ 3� 4mj=ð1þ mjÞ for plane-
stress. k is an eigenvalue and can be determined numerically using
Muller’s method from the following equation

det

1� e2ika1 e�2ika2 �1 k 1� e2ia1
� �

k e�2ia2 �1
� �

G2
G1

j1þ e2ika1
� �

�j2þ e�2ika2 G2
G1

k e2ia1 �1
� �

k 1� e�2ia2
� �

k 1� e�2ia1
� �

k e2ia2 �1
� �

1� e�2ika1 e2ika2 �1
G2
G1

k e�2ia1 �1
� �

k 1� e2ia2
� � G2

G1
j1þ e�2ika1
� �

� j2þ e2ika2
� �

2
666664

3
777775

0
BBBBB@

1
CCCCCA¼ 0

ð38Þ

Eq. (38) gives either one singular complex singular eigenvalue
where realðkÞ < 1 or two singular real eigenvalues kI < 1 and
kII < 1 (in some cases only one real eigenvalue exists). An alterna-
tive matrix formulation of the stress field around a notch tip could
be used as presented by Paggi and Carpinteri (2008).

For a complex eigenvalue, the complex SIF for a bi-material
notch can be computed using one of the following equations

Kc ¼
ffiffiffiffiffiffiffi
2p
p

kA1 Y2 1� e�2ika1
� �

� k e�2ia1 � 1
� �� �

ð39Þ

Kc ¼
ffiffiffiffiffiffiffi
2p
p

kA1 1� e�2ika1 � kY2 e�2ia1 � 1
� �h i

ð40Þ

Eqs. (32) and (37) are eigenfunction series expansions (the R
symbol is dropped for simplicity). In the SEA, only the singular
terms are considered. The stress expressions in Eqs. (32)–(37)
can be rewritten for simplicity as
rj

xx ¼ A1rk�1f j
xðhÞ þ A1rk�1gj

xðhÞ ¼ A1rk�1f j
x þ A1rk�1gj

x ð41Þ

rj
yy ¼ A1rk�1f j

yðhÞ þ A1rk�1gj
yðhÞ ¼ A1rk�1f j

y þ A1rk�1gj
y ð42Þ

sj
xy ¼ A1rk�1f j

xyðhÞ þ A1rk�1gj
xyðhÞ ¼ A1rk�1f j

xy þ A1rk�1gj
xy ð43Þ

Under plane-stress, substituting the above equations into Eq.
(31) gives

WjðeÞ ¼ 1
2Ej

A2
1r2ðk�1Þ f j

x
2þ f j

y
2�2mjf j

xf j
yþ2ð1þmjÞf j

xy
2

� �h
þA2

1r2ðk�1Þ gj
x

2þ gj
y

2�2mjgj
xgj

yþ2ð1þmjÞgj
xy

2
� �

þA1A1rðkþk�2Þ 2f j
xgj

xþ2f j
ygj

y�2mj f j
xgj

yþ f j
ygj

x

� �
þ4ð1þmjÞf j

xygj
xy

� �i
ð44Þ

The strain energy for a finite volume of a radius Rc around a notch
tip is obtained by substituting the above equation into Eq. (1),

EjðeÞ ¼
Z Rc

0

Z
h

WjðeÞrdrdh¼ 1
2Ej

A2
1

R2k
c

2k

Z
h

f j
x

2þ f j
y

2�2mj f j
x f j

yþ2ð1þmjÞf j
xy

2
� �

dh

(

þA2
1

R2k
c

2k

Z
h

gj
x

2þgj
y

2�2mjgj
xgj

yþ2ð1þmjÞgj
xy

2
� �

dh

þA1A1
RðkþkÞ

c

ðkþkÞ

Z
h

2f j
xgj

xþ2f j
ygj

y�2mj f j
xgj

yþ f j
ygj

x

� �
þ4ð1þmjÞf j

xygj
xy

� �
dh

)
ð45Þ

The integration over h is from �a2 to 0 for j ¼ 2 (material 2) and
from 0 to a1 for j ¼ 1 (material 1).

Equation (45) gives one equation per material in terms of two
unknowns which are the real and imaginary parts of A1 (or Kc).
For brevity and simplicity Eq. (45) can be rewritten as

EjðeÞ ¼ A2
1Mj þ A2

1Nj þ A1A1Q j ð46Þ

Eq. (46) could be simplified further, because Nj ¼ Mj and Q j is a
real number, as

a2 2MReal
1 þ Q1

� �
þ b2 Q 1 � 2MReal

1

� �
� 4abMImaginary

1 � E1ðeÞ ¼ 0

ð47Þ

for material 1, and

a2 2MReal
2 þ Q2

� �
þ b2 Q 2 � 2MReal

2

� �
� 4abMImaginary

2 � E2ðeÞ ¼ 0

ð48Þ

for material 2, where A1 ¼ aþ ib. The bi-material SIFs can be com-
puted using Eqs. (47) and (48) after computing the strain energy
in material 1 and material 2 within a finite region around the notch
tip of radius Rc .

For real eigenvalues kI and kII , the stress expressions are

2rð1Þxx ¼
X

k

kkrkk�1ak

(
ðpk1þ ipk2Þ eihðkk�1Þ 2þ kk e�2ia1 � e�2ih

� �
þ e�2ih

� ��
þe2ikka1 e�ihðkk�1Þ�
þðpk1� ipk2Þ e�ihðkk�1Þ 2þ kk e2ia1 � e2ih

� �
þ e2ih

� ��
þe�2ikka1 eihðkk�1Þ�) ð49Þ

2rð2Þxx ¼
X

k

kkrkk�1ak ðsk1ðpk1 þ ipk2Þ þ sk2ðpk1 � ipk2ÞÞf

� eihðkk�1Þ 2þ kk e2ia2 � e�2ih
� �

þ e�2ih
� �

þ e�2ikka2 e�ihðkk�1Þ� �
þðsk1ðpk1 � ipk2Þ þ sk2ðpk1 þ ipk2ÞÞ
� e�ihðkk�1Þ 2þ kk e�2ia2 � e2ih

� �
þ e2ih

� �
þ e2ikka2 eihðkk�1Þ� ��

ð50Þ

2rð1Þyy ¼
X

k

kkrkk�1ak ðpk1þ ipk2Þ eihðkk�1Þ 2þ kk e�2ih� e�2ia1
� �

� e�2ih
� ���

�e2ikka1 e�ihðkk�1Þ�
þðpk1� ipk2Þ e�ihðkk�1Þ 2þ kk e2ih� e2ia1

� �
� e2ih

� ��
�e�2ikka1 eihðkk�1Þ�� ð51Þ

2rð2Þyy ¼
X

k

kkrkk�1ak ðsk1ðpk1 þ ipk2Þ þ sk2ðpk1 � ipk2ÞÞf

� eihðkk�1Þ 2þ kk e�2ih � e2ia2
� �

� e�2ih
� �

� e�2ikka2 e�ihðkk�1Þ� �
þðsk1ðpk1 � ipk2Þ þ sk2ðpk1 þ ipk2ÞÞ
� e�ihðkk�1Þ 2þ kk e2ih � e�2ia2

� �
� e2ih

� �
� e2ikka2 eihðkk�1Þ� ��

ð52Þ

2isð1Þxy ¼
X

k

kkrkk�1ak ðpk1þ ipk2Þ eihðkk�1Þðkk e�2ih� e�2ia1
� �

� e�2ihÞ
��

þe2ikka1 e�ihðkk�1Þ�þðpk1� ipk2Þ e�ihðkk�1Þ kk e2ia1 � e2ih
� �

þ e2ih
� ��

� e�2ikka1 eihðkk�1Þ�� ð53Þ

2isð2Þxy ¼
X

k

kkrkk�1ak ðsk1ðpk1 þ ipk2Þ þ sk2ðpk1 � ipk2ÞÞf

� eihðkk�1Þ kk e�2ih � e2ia2
� �

� e�2ih
� �

þ e�2ikka2 e�ihðkk�1Þ� �
þðsk1ðpk1 � ipk2Þ þ sk2ðpk1 þ ipk2ÞÞ
� e�ihðkk�1Þ kk e�2ia2 � e2ih

� �
þ e2ih

� �
� e2ikka2 eihðkk�1Þ� ��

ð54Þ
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where k ¼ I; II, sk1 ¼ dk4dk5�dk1dk8
dk3dk8�dk7dk4

, sk2 ¼ dk6dk4�dk2dk8
dk3dk8�dk7dk4

, and to avoid division
by zero, pk1 and pk2 can be computed using the expressions stated in
Table 1 where

qk11 ¼ Reðtk1Þ þ Reðtk2Þ; qk12 ¼ Imðtk2Þ � Imðtk1Þ

qk21 ¼ Imðtk1Þ þ Imðtk2Þ; qk22 ¼ Reðtk1Þ � Reðtk2Þ

tk1 ¼ sk2 � sk3; tk2 ¼ sk1 � sk4

sk3 ¼
dk5dk3 � dk1dk7

dk4dk7 � dk8dk3
; sk4 ¼

dk6dk3 � dk2dk7

dk4dk7 � dk8dk3

dk1 ¼ G2 j1 þ e2ikka1
� �

; dk2 ¼ G2kk e2ia1 � 1
� �

;

dk3 ¼ �G1 j2 þ e�2ikka2
� �

; dk4 ¼ �G1kk e�2ia2 � 1
� �

;

dk5 ¼ 1� e2ikka1 ; dk6 ¼ �kk e2ia1 � 1
� �

; dk7 ¼ e�2ikka2 � 1;

dk8 ¼ kk e�2ia2 � 1
� �

To determine pk1 and pk2 from Table 1, it should be noted that the
first step is to determine the largest absolute value of the qkij’s, this
is jqkijj. The corresponding expressions for pk1 and pk2 are obtained
from the row containing this largest absolute value of qkij.

The SIFs expressions are

KI ¼
ffiffiffiffiffiffiffi
2p
p kIaI

2
ðpI1 þ ipI2Þ 1þ kI 1� e�2ia1

� �
� e2ikIa1

� ��
þðpI1 � ipI2Þ 1þ kI 1� e2ia1

� �
� e�2ikIa1

� ��
ð55Þ

Table 1
Definition of pk1 and pk2.

Largest jqkijj pk1 pk2

qk11 �qk12=qk11 1
qk12 1 �qk11=qk12

qk21 �qk22=qk21 1
qk22 1 �qk21=qk22

Fig. 4. (a) Notched plate subject to tension loading conditions (b) the plate FE mesh (c) control volume.

Fig. 5. SIFs for Notched plate c ¼ 60
�

under tension loading conditions.
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KII ¼
ffiffiffiffiffiffiffi
2p
p kIIaII

2i
ðpII1 þ ipII2Þ kII 1� e�2ia1

� �
þ e2ikIIa1 � 1

� ��
þðpII1 � ipII2Þ kII e2ia1 � 1

� �
� e�2ikIa1 þ 1

� ��
ð56Þ

The stress expressions in Eqs. (49)–(54) can be rewritten as

rj
xx ¼ aIrkI�1f j

xðhÞ þ aIIrkII�1gj
xðhÞ ¼ aIrkI�1f j

x þ aIIrkII�1gj
x ð57Þ

rj
yy ¼ aIrkI�1f j

yðhÞ þ aIIrkII�1gj
yðhÞ ¼ aIrkI�1f j

y þ aIIrkII�1gj
y ð58Þ

sj
xy ¼ aIrkI�1f j

xyðhÞ þ aIIrkII�1gj
xyðhÞ ¼ aIrkI�1f j

xy þ aIIrkII�1gj
xy ð59Þ

Assuming plane-stress state, substituting the above equations
into Eq. (31) gives

WjðeÞ ¼ 1
2Ej

a2
I r2ðkI�1Þ f j

x
2þ f j

y
2�2mjf j

xf j
yþ2ð1þmjÞf j

xy
2

� �h
þa2

IIr
2ðkII�1Þ gj

x
2þ gj

y
2�2mjgj

xgj
yþ2ð1þmjÞgj

xy
2

� �
þaIaIIrðkIþkII�2Þ 2f j

xgj
xþ2f j

ygj
y�2mj f j

xgj
yþ f j

ygj
x

� �
þ4ð1þmjÞf j

xygj
xy

� �i
ð60Þ

by substituting the above equation into Eq. (1), the strain energy for
a finite volume of a radius Rc around a bi-material notch tip with
real singular eigenvalues is obtained

EjðeÞ ¼
Z Rc

0

Z
h

WjðeÞrdrdh

¼ 1
2Ej

a2
I

R2kI
c

2kI

Z
h

f j
x

2 þ f j
y

2 � 2mjf j
xf j

y þ 2ð1þ mjÞf j
xy

2
� �

dh

(

þa2
II

R2kII
c

2kII

Z
h

gj
x

2 þ gj
y

2 � 2mjgj
xgj

y þ 2ð1þ mjÞgj
xy

2
� �

dh

þaIaII
RðkIþkIIÞ

c

ðkI þ kIIÞ

Z
h

2f j
xgj

x þ 2f j
ygj

y � 2mj f j
xgj

y þ f j
ygj

x

� ��

þ4ð1þ mjÞf j
xygj

xy

�
dh
o

ð61Þ

The integration over h is from �a2 to 0 for j ¼ 2 (material 2) and
from 0 to a1 for j ¼ 1 (material 1). Computing the strain energy for
each region using a commercial FE package, and substituting it
back into Eq. (60) gives

Fig. 6. (a) A slant centre cracked plate (b) the plate FE mesh.

Fig. 7. Mode I and II SIFs for the slant centre cracked plate.
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EjðeÞ ¼ MjK
2
I þ NjK

2
II þ Q jKIKII ð62Þ

Eq. (62) represents two quadratic equations with two un-
knowns, KI and KII , which can be solved easily using a program-
ming software such as the MATLAB program.

2.2.2. Relationships between stress intensity factors and strain energy
of a finite volume around a notch tip under out-of-plane loading
conditions (mode III)

For the out-of-plane bi-material problem, the strain energy
density in cylindrical-polar coordinates is

WjðeÞ ¼ 1
2G

sj
rz

2 þ sj
hz

2h i
ð63Þ

The stress expressions for a general bi-material notch under
mode III loading conditions are

sð1Þrz ¼ G1k
IIIrkIII�1B

cos kIIIa1

sin kIIIa1
cos kIIIhþ sin kIIIh

 !
ð64Þ

sð1Þhz ¼ G1k
IIIrkIII�1B � cos kIIIa1

sin kIIIa1
sin kIIIhþ cos kIIIh

 !
ð65Þ

for material 1 and

sð2Þrz ¼ G2k
IIIrkIII�1B

cos kIIIa1

sin kIIIa1
cos kIIIhþ G1

G2
sin kIIIh

 !
ð66Þ

sð2Þhz ¼ G2k
IIIrkIII�1B � cos kIIIa1

sin kIIIa1
sin kIIIhþ G1

G2
cos kIIIh

 !
ð67Þ

for material, 2 where kIII is an eigenvalue that can be computed
from

G1

G2
þ 1


 �
sin kIIIða1 þ a2Þ þ

G1

G2
� 1


 �
sin kIIIða1 � a2Þ ¼ 0 ð68Þ

and B is a constant. Eqs. (64) and (67) are eigenfunction series
expansions (the R symbol is dropped for simplicity). In the SEA,
only the singular term is considered. The constant B associated with
the singular eigenvalue is related to the mode III SIF

KIII ¼
ffiffiffiffiffiffiffi
2p
p

G1k
IIIB ð69Þ

For detailed derivations, one may refer to Qian and Hasebe
(1997). By substituting Eqs. (64)–(67) into Eqs. (63) and (1), and
after some algebraic manipulations, the strain energy of a finite
volume under mode III conditions can be written as

EðeÞ ¼
Z Rc

0

Z 0

�a2

W2ðeÞdhþ
Z a1

0
W1ðeÞdh


 �
rdr ¼ I

8pG2
1k

III3 R2kIII

c K2
III

ð70Þ

where I is an integral and its value is

I ¼ G2k
III2

a2
cos kIIIa1

sin kIIIa1

 !2

þ G1

G2


 �2
0
@

1
A

þ G1k
III2

a1
cos kIIIa1

sin kIIIa1

 !2

þ 1

0
@

1
A ð71Þ

Eq. (70) represents a simple analytical formula that can be used
to determine mode III SIF values of bi-material notches after com-
puting the strain energy of a finite volume of radius Rc around and
a notch tip using available commercial FE packages.

Fig. 8. The FE mesh used in the FFEM of the slant centre cracked plate.

Fig. 9. (a) A slant centre notched plate c ¼ 45
�

(b) the plate FE mesh.
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3. Numerical examples and verification

The proposed approach is verified by means of comparison with
available published results and numerical results computed using
the ABAQUS FEA commercial software and/or the software devel-
oped by the authors using FFEM. The numerical examples are pre-
sented in sub-groups corresponding to the sub-sections in
Section 2 starting with isotropic homogeneous and then bi-mate-

rial examples. Some discussion on the choice of Rc is also presented
for each case. In all the examples the strain energy values for a fi-
nite volume around the notch tip are predicted using ABAQUS ver-
sion 6.8. In the FEA, it is well known that the mesh of a body has an
effect on the results, and that good meshes should be used for the
analysis. Here, too, a good mesh should be used to achieve accurate
results. By ‘good mesh’ we mean that large and small elements
should not be adjacent, but there should be a transitional change
in size.

3.1. Isotropic homogeneous notch

3.1.1. Mode I, II and mixed mode
The effect of the radius Rc on the accuracy of the SEA to predict

SIF values for isotropic notch cases subject to in-plane loading con-
ditions is demonstrated through different examples. For all the
examples the global mesh used is more or less the same, but the
local mesh around the notch tip is different. For example, different
numbers of finite elements are used to discretise the small region
around the notch/crack tip.A notched plate with a notch opening
angle of c ¼ 60

�
under pure mode I loading conditions shown in

Fig. 4(a) is considered first. The plate is of height H ¼ 20 and width
W ¼ 10. The notch length is a where a=w ¼ 0:4. Quadrilateral ele-
ments (which are designated as CPS8 in the ABAQUS FEA software)
are used to model the plate as shown in Fig. 4(b). The small region
around the notch tip is meshed layer by layer with a similarity ra-
tio q ¼ 0:6 as illustrated in Fig. 4(c). The radius of the first layer is

Fig. 10. Mode I and II SIFs for the slant centre notched plate.

Fig. 11. The FE mesh used in the FFEM of the slant centre notched plate.

Table 2
Scaled SIFs under tension loading conditions.

c ðkI ; kIIÞ hc=H

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0 SEA 3.508 1.048 2.352 0.234 2.158 0.053 2.120 0.010 2.115 0.000
FFE 3.490 1.040 2.344 0.232 2.151 0.054 2.114 0.011 2.109 0.001

(0.5,0.5) ABAQUS 3.504 1.045 2.349 0.232 2.155 0.054 2.119 0.010 2.113 0.000

30 SEA 3.557 1.439 2.369 0.308 2.174 0.073 2.137 0.011 2.132 0.000
FFE 3.544 1.448 2.361 0.307 2.167 0.07 2.131 0.014 2.125 0.001

(0.5014,0.5982) ABAQUS – – – – – – – – – –

60 SEA – – 2.464 0.423 2.265 0.091 2.230 0.016 2.226 0.000
FFE – – 2.472 0.404 2.263 0.090 2.226 0.018 2.221 0.003

(0.5122,0.7309) ABAQUS – – – – – – – – – –

90 SEA – – – – 2.514 0.125 2.478 0.021 2.474 0.000
FFE – – – – 2.511 0.127 2.477 0.026 2.473 0.005

(0.5445,0.9085) ABAQUS – – – – – – – – – –
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R0 ¼ 0:6. This is an arbitrary choice to provide transitional change
in the size of the finite elements used to model the plate. R0 has no
significance other than to indicate the relative size of the mesh
used around the notch tip with respect to the mesh size in the do-
main far from the notch tip. Initially, six layers are used within R0.
The mode I SIF values are computed based on the energy values for
control volumes of sizes ranging from 1 layer to 6 layers (that is,
the control radius is Rc = 0.046656–0.6). The same is repeated for
9 (Rc = 0.0100777–0.6), 16 (Rc = 0.000282168–0.6) and 20
(Rc = 0.0000365376–0.6) layers. The value of R0 is not changed.
Only the number of layers within R0 and the radius of the control
volume Rc are changed. The results are plotted in Fig. 5. The graph
shows clearly that convergence is achieved with increasing num-
ber of layers within R0; that is, using smaller sizes of the control

volume Rc allowed by finer meshes within R0. The converged SIF
value (scaled by r

ffiffiffiffi
p
p

a1�k) achieved is KI ¼ 2:225. Published results
for this case are reported to be KI ¼ 2:223 by Gross and Mendelson
(1972) and KI ¼ 2:222 by Portela et al. (1991). In this example,
accurate results are achieved when computing the strain energy
value for values of Rc between 0:000101566 and 0:046656. In other
words, the strain energy is computed for a control volume of size
ranging from 3 to 15 layers out of the 20 layers that are used to
model the region around the notch tip. Fig. 5 also shows that the
size of the control volume Rc has an important role and results
are less dependent on the mesh within Rc. In this figure, the differ-
ent curves mean that different meshes (number of layers within Rc)
are used for each value of Rc. Considering a value of Rc ¼ 0:046656
in Fig. 5, its projection on the green dashed curve shows that only

Table 3
Scaled SIFs under shear loading conditions.

c ðkI ; kIIÞ hc=H

0.1 0.2 0.3 0.4 0.5

KI KII KI KII KI KII KI KII KI KII

0 SEA 10.275 5.798 4.963 1.971 3.055 1.325 1.572 1.162 0.000 1.180
FFE 10.465 5.568 4.981 1.926 3.064 1.306 1.513 1.194 0.000 1.180

(0.5,0.5) ABAQUS 10.505 5.591 4.993 1.927 3.069 1.306 1.516 1.194 0.000 1.181

30 SEA 10.754 7.681 5.035 2.601 3.085 1.807 1.521 1.665 0.000 1.636
FFE 10.732 7.716 5.020 2.582 3.077 1.787 1.519 1.651 0.000 1.635

(0.5014,0.5982) ABAQUS – – – – – – – – – –

60 SEA – – 5.198 3.557 3.183 2.483 1.574 2.325 0.000 2.301
FFE – – 5.268 3.448 3.207 2.468 1.584 2.323 0.000 2.307

(0.5122,0.7309) ABAQUS – – – – – – – – – –

90 SEA – – – – 3.476 3.422 1.720 3.229 0.000 3.208
FFE – – – – 3.462 3.389 1.716 3.195 0.000 3.175

(0.5445,0.9085) ABAQUS – – – – – – – – – –

Fig. 12. (a) Notched plate subject to tension loading conditions (b) notched plate subject to in-plane shear loading conditions (c) the plate FE mesh.
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one layer of FE elements is used within Rc . Its projection on the
blue line shows that more layers, 4 layers of elements, are used
within Rc ¼ 0:046656, and so on for the red (11 layers) and black
(15 layers) lines.

For mixed-mode problems, two examples, one of a slant crack
and another of a slant notch, are considered. Fig. 6(a) illustrates a
plate with a slant centre crack at angle of b ¼ 45

�
subject to tensile

loading. The plate dimensions are H ¼ 2W ¼ 10. The crack length is
2a ¼ 2. To compute the strain energy the plate is meshed using
quadrilateral elements (CPS8) in ABAQUS as shown in Fig. 6(b).
Like the previous example, the SIFs values are computed using
the strain energy of different volumes around the crack tip. Coarse
and fine meshes are used within R0 ¼ 0:6. The results are plotted in
Fig. 7. It is clear again that better convergence is achieved by using
finer meshes within R0, i.e. smaller sizes of the control volume
Rc < 0:1. This observation is in line with the general accepted size
of the region governed by the singular terms around a crack tip,

which is about a=10. The scaled SIFs predicted using the strain en-
ergy for a control volume of radius Rc ¼ 0:00047019 (6 layers)
when using 20 layers within R0 ¼ 0:6 (fine mesh) are KI ¼ 0:651
and KII ¼ 0:641. The SIFs values for this problem computed using
the ABAQUS package are KI ¼ 0:655 and KII ¼ 0:640. In ABAQUS,
quarter-point elements are used around the crack tip, and the plate
mesh is the same as in Fig. 6(b). By using the fractal-like finite ele-
ment method (FFEM), a method extended by the current authors to
compute the notch SIFs, the SIFs values for this problem are
KI ¼ 0:650 and KII ¼ 0:636. In FFEM, the plate is meshed using
six-node triangular elements as shown in Fig. 8.

Now, a plate similar to the last example containing an inclined
centre notch as shown in Fig. 9(a) is analysed. The notch opening
angle is c ¼ 45

�
and its length is 2a ¼ 2. The plate dimensions

are H ¼ 2W ¼ 10. The plate is meshed using CPS8 elements in
ABAQUS as shown in Fig. 9(b). The SIFs values computed based
on the strain energy values for different enclosed volumes around

Fig. 13. (a) Notched plate subject to anti-plane shear loading conditions c ¼ 60
�

(b)
the plate FE mesh.

Fig. 14. Mode III SIFs for the notched plate c ¼ 60
�
.

Fig. 15. (a) Off-centre notched plate subject to anti-plane shear loading conditions
(b) the plate FE mesh.
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the notch tip (different Rc ’s) are plotted in Fig. 10. Like the previous
examples, using a finer mesh (and therefore smaller Rc) gives bet-
ter convergence. The scaled SIFs predicted using the strain energy
for a control volume of 4 layers (Rc ¼ 0:000169262) and 20 layers
within R0 ¼ 0:6 are KI ¼ 0:657;KII ¼ 0:910. For this problem, Lazz-
arin et al. (2010)1 reported the following SIFs values
KI ¼ 355;KII ¼ 325 not scaled (KI ¼ 0:641;KII ¼ 0:838 scaled). Lazza-
rin et al. (2010) computed the mode I and II SIFs based on the strain
energy density of two concentric circles. Using their approach, the
authors computed the SIF values based on the strain energy of two
concentric circles of radii Rc ¼ 0:000169262 (3 layers) and
Rc ¼ 0:000282047 (5 layers). The SIFs values obtained are
KI ¼ 0:657;KII ¼ 0:910 which are in good agreement with our com-
puted values using the SEA. The difference between the current re-
sults and those reported by Lazzarin et al. (2010) could be
attributed to using different sizes of control volumes compared to
the ones used in this paper.

Using the FFEM (Treifi et al., 2009a), the SIFs values for this
example are KI ¼ 0:646;KII ¼ 0:912. In the FFEM, the plate is
meshed as shown in Fig. 11 using six-node triangle elements. In
the singular region, twenty layers of elements are used. The SIFs
values predicted using the strain energy approach as described in
Section 2.1.1 and the FFEM are in very good agreement. This proves
that the current results are correct.

The approach based on two concentric circles is not always
applicable, as the current authors did a test using two circles to
compute the mixed mode SIFs for the previous crack example.
The results obtained were totally unrealistic. This is due to the fact
that the two concentric circles approach leads to an indeterminate
system of equations in the case of a crack problem, i.e. a notch with
a zero opening angle. However, the approach presented in this pa-
per does not have this limitation. Therefore, the current procedure
is a more general approach to compute mixed mode SIFs of a gen-
eral notch including the special case of a crack. It should also be
noted that Lazzarin et al. (2010) did not mention that their ap-
proach is applicable to mixed mode crack problems explicitly.

Different examples of notched plates with different notch open-
ing angles and different locations under tension or shear loading
conditions are presented in Tables 2 and 3. The notched plates
and their FE meshes are similar to the ones shown in Fig. 12. The
results are compared to those predicted by ABAQUS for the crack
cases using the same mesh and the FFEM results reported by Treifi
et al. (2008, 2009a) for crack and notch cases. The plate dimensions
are H ¼ 2W ¼ 20, and the notch length is a where a=w ¼ 0:4. Fine
mesh of 20 layers of elements is used within R0 ¼ 0:6, and the
strain energy used to predict the SIF values is computed for a vol-
ume of radius Rc ¼ 0:000101566 (that is for 3 layers). The results
are presented in Tables 2 and 3 and are in good agreement with
the results predicted using the other numerical approaches. The
accuracy of the SEA could be improved by computing the strain en-
ergy for different volumes and then looking at the converged re-
gions as demonstrated in the previous examples.

3.1.2. Mode III
A convergence study of an edge notched plate subject to mode

III loading conditions as shown in Fig. 13 is presented to demon-
strate the effect of Rc on the accuracy of the SEA. The plate is mod-
elled and analysed using different meshes within the region
around the notch-tip. The plate dimensions are: H ¼ 2W ¼ 20;
the plate thickness t ¼ 1, the notch length is a where a=W ¼ 0:4,
and the notch opening angle c ¼ 60

�
. Three dimensional FE ele-

ments (C3D20) are used to model the plate in ABAQUS in order

to compute the strain energy, and anti-plane conditions are ap-
plied.The small region around the notch tip is meshed layer by
layer with a similarity ratio q ¼ 0:6. The radius of the first layer
is taken as R0 ¼ 0:6. Initially, six layers are used within R0. The
mode I SIF values are computed based on the energy values for
control volumes of sizes ranging from 1 layer to 6 layers (that is,
the control radius is Rc = 0.046656–0.6). The same is repeated for
9 (Rc = 0.0100777–0.6), 16 (Rc = 0.000282168–0.6) and 20
(Rc = 0.0000365376–0.6) layers. The value of R0 is not changed.
The mode III SIF values are plotted in Fig. 14. For the parameters
considered (NL ¼ 6;9;16;20), this figure shows clearly that conver-
gence is achieved regardless of the mesh around the notch tip
(within R0) and radius of the control volume (Rc). The converged
SIF value (scaled by s

ffiffiffiffi
p
p

a1�kIII ) predicted by the SEA is
KIII ¼ 1:418. The mode III SIF for this case reported by Treifi et al.
(2009b) using the FFEM is KIII ¼ 1:417:

Different examples of notched plates with different notch open-
ing angles and different locations under anti-plane loading condi-
tions are analysed. The notched plates and their FE meshes are
similar to the ones shown in Fig. 15. The results are compared in
Table 4 to those predicted by ABAQUS for the crack cases using
the same mesh and the FFEM results for the crack and notch cases
reported by Treifi et al. (2009b) (the values are scaled by
s
ffiffiffiffi
p
p

a1�kIII ). In the FFEM, the plate is meshed using 6-node triangu-
lar elements similar to the mesh shown in Fig. 16. The plate dimen-

Table 4
Scaled SIFs (KIII=s

ffiffiffiffi
p
p

a1�kIII ) under anti-plane shear loading conditions.

cðkIIIÞ hc=H

0.2 0.3 0.5

0 SEA 1.117 1.087 1.077
FFE 1.116 1.086 1.077

(0.5) ABAQUS 1.117 1.087 1.077

30 SEA 1.282 1.245 1.234
FFE 1.281 1.245 1.233

(0.545455) ABAQUS – – –

60 SEA 1.478 1.432 1.417
FFE 1.477 1.431 1.417

(0.6) ABAQUS – – –

90 SEA – 1.648 1.628
FFE – 1.647 1.628

(0.666667) ABAQUS – – –

Fig. 16. The FE mesh used in the FFEM of off-centre notched plate subject to anti-
plane shear loading conditions.

1 It seems there is a typographical error in Lazzarin et al. (2010); in Table 5: k45
2

value is 0.660 and not 0.624.
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sions are H ¼ 2W ¼ 20 and the notch length is a where a=w ¼ 0:4.
A coarse mesh of 7 layers of elements is used within R0 ¼ 0:6, and
the strain energy used to predict the SIF values is computed for a
volume of radius Rc ¼ 0:07776 (that is for 3 layers). The SEA results
presented in Table 4 are in good agreement with the results pre-
dicted using ABAQUS for crack cases and the FFEM for crack and
notch cases. The accuracy of the SEA is excellent when dealing with
pure mode cases, so for those cases finer meshes are not necessary.

3.2. Bi-material notch

3.2.1. Mode I, II and mixed mode
To demonstrate the effect of Rc on the accuracy of SIFs values

predicted using the SEA relationships presented in Section 2.2.1

for a bi-material notch, an edge cracked plate consisting of two
parts as shown in Fig. 17(a) is analysed for different material prop-
erty ratios. The convergence study presented in Section 3.1.1 for
single material notch cases demonstrated the need for a fine mesh
around the notch-tip to obtain high accuracy results for mixed-
mode I and II cases. Therefore, 20 layers will be used within the
small region (R0 ¼ 0:6) containing the crack tip. The plate is
meshed using CPS8 elements in ABAQUS as shown in Fig. 17(b).
The cracked plate dimensions are H ¼ 3W ¼ 30, and the crack
length a is given as a=W ¼ 0:4. The Poisson’s ratios of both materi-
als are taken as m1 ¼ m2 ¼ 0:3. The Young Modulus ratios consid-
ered are E1=E2 ¼ 1;2;4;10;100. The real and imaginary parts of
the complex SIF, representing Mode I and II SIFs, are computed

Fig. 19. SIFs for the bi-material cracked plate E1=E2 ¼ 2.

Fig. 20. SIFs for the bi-material cracked plate E1=E2 ¼ 4.

Fig. 21. SIFs for the bi-material cracked plate E1=E2 ¼ 10.Fig. 18. SIFs for the bi-material cracked plate E1=E2 ¼ 1.

Fig. 17. (a) A bi-material cracked plate subject to tension (b) the plate FE mesh.
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using different values of Rc ranging from Rc = 0.0000365376 to 0.6
(that is, for 1 layer to 20 layers). The SIF values are plotted in
Figs. 18–22. Because Eq. (62) gives two sets of valid roots, both sets
are plotted. Corresponding SIFs values predicted by Matsumto
et al. (2000) are also plotted for comparison. Those figures show
that convergence is achieved for only one set of the roots for
E1=E2 ¼ 1;2;4 (small differences in material properties). However,
for large differences in material properties as is the case in
E1=E2 ¼ 10;100, both sets of roots converge within different re-
gions. When one of the sets converges, the other diverges. In addi-
tion, for small material property differences E1=E2 ¼ 1;2,
convergence is achieved using small Rc , but for large material prop-
erty differences E1=E2 ¼ 10;100 convergence is achieved using
large Rc . In the cases studied here, good accuracy is achieved using
Rc ¼ 0:000282109 (that is, the control volume containing 5 layers)
for the cases of small material property differences. For the cases of
large material property differences, better convergence is achieved
using Rc ¼ 0:0167961 (that is, the control volume containing 13
layers).

Based on the above discussion, the SIFs for an edge-crack bi-
material plate are computed for different crack lengths and differ-
ent material property ratios. The cracked plate and its FE mesh are
similar to those shown in Fig. 17. The plate dimensions are the

same as of the previous example. 20 layers are used within the
small region (R0 ¼ 0:6) containing the crack tip. The scaled SIF val-
ues ðKc=r

ffiffiffiffi
p
p

a1�ReðkÞð2aÞiImðkÞÞ computed using the SEA are tabulated
in Table 5. Corresponding published results by Matsumto et al.
(2000) and computed results using ABAQUS are also tabulated
for comparison. In ABAQUS, the same mesh is used to compute
the SIFs. The control volume radius is taken as Rc ¼ 0:000282 (5
layers), Rc ¼ 0:001306 (8 layers), Rc ¼ 0:006047 (11 layers) and
Rc ¼ 0:016796 (13 layers) for E1=E2 ¼ 1, E1=E2 ¼ 2, E1=E2 ¼ 4 and
E1=E2 ¼ 10;100, respectively. The singular eigenvalues for a bi-
material crack of E1=E2 ¼ 1;2;4;10;100 are k ¼ 0:5,
k ¼ 0:5þ i0:037306, k ¼ 0:5þ i0:0678545, k ¼ 0:5þ i0:0937743
and k ¼ 0:5þ i0:113817, respectively. Table 5 shows that the SEA
results are in good agreement with the numerical results com-
puted using ABAQUS and with those reported by Matsumto et al.
(2000).

Table 5
Scaled SIFs for a bi-material cracked plate.

a=W E1=E2

1 2 4 10 100

KI KII KI KII KI KII KI KII KI KII

0.2 SEA 1.367 0.000 1.365 �0.138 1.364 �0.250 1.365 �0.339 1.370 �0.418
ABAQUS 1.368 0.000 1.368 �0.137 1.368 �0.251 1.369 �0.350 1.371 �0.430
Matsumto – – 1.367 �0.137 1.368 �0.251 1.366 �0.348 1.376 �0.429

0.3 SEA 1.660 0.000 1.657 �0.160 1.652 �0.292 1.646 �0.397 1.644 �0.488
ABAQUS 1.661 0.000 1.659 �0.159 1.654 �0.289 1.649 �0.400 1.643 �0.487
Matsumto – – 1.657 �0.156 1.655 �0.288 1.648 �0.394 1.647 �0.470

0.4 SEA 2.112 0.000 2.107 �0.199 2.099 �0.364 2.088 �0.498 2.080 �0.609
ABAQUS 2.112 0.000 2.109 �0.198 2.101 �0.360 2.090 �0.496 2.079 �0.600
Matsumto – – 2.109 �0.195 2.102 �0.358 2.090 �0.491 2.083 �0.569

0.5 SEA 2.827 0.000 2.819 �0.268 2.805 �0.489 2.787 �0.669 2.771 �0.812
ABAQUS 2.826 0.000 2.821 �0.268 2.807 �0.485 2.788 �0.665 2.771 �0.801
Matsumto – – 2.819 �0.268 2.806 �0.483 2.789 �0.661 2.772 �0.793

0.6 SEA 4.037 0.000 4.024 �0.396 4.000 �0.718 3.967 �0.983 3.937 �1.180
ABAQUS 4.035 0.000 4.025 �0.398 4.002 �0.718 3.971 �0.982 3.940 �1.177
Matsumto – – 4.024 �0.398 4.001 �0.714 3.968 �0.973 3.906 �1.171

0.7 SEA 6.363 0.000 6.338 �0.665 6.288 �1.202 6.220 �1.647 6.157 �1.956
ABAQUS 6.357 0.000 6.336 �0.671 6.291 �1.210 6.230 �1.651 6.168 �1.974
Matsumto – – 6.348 �0.668 6.298 �1.204 6.227 �1.634 6.157 �1.957

Fig. 23. (a) A bi-material notched plate subject to tension (b) the plate FE mesh.Fig. 22. SIFs for the bi-material cracked plate E1=E2 ¼ 100.
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For a notch case, a bi-material notched plate with an opening an-
gle ofc ¼ 60

�
as shown in Fig. 23(a) is analysed. The plate dimensions

are H ¼ 2W ¼ 20, and the crack length a is taken as a=W ¼ 0:4. The
Poisson’s ratios of both material are taken as m1 ¼ m2 ¼ 0:3. The SIFs
are computed for different material property ratios
E1=E2 ¼ 1;2;4;10;100. The plate is meshed using CPS8 elements in
ABAQUS as shown in Fig. 23(b) to compute the strain energy. 20 lay-
ers are used within the small region (R0 ¼ 0:6) containing the crack
tip. The results are tabulated in Table 6. The control volume radius for
which the strain energy is computed is taken as Rc ¼ 0:000282 (5
layers), Rc ¼ 0:001306 (8 layers), Rc ¼ 0:006047 (11 layers) and
Rc ¼ 0:016796 (13 layers) for E1=E2 ¼ 1, E1=E2 ¼ 2, E1=E2 ¼ 4 and
E1=E2 ¼ 10;100, respectively. Table 6 shows that the singular eigen-
values ðReðkÞ < 1Þ for each case are either two real eigenvalues or
one complex eigenvalue. The cases of two singular real eigenvalues
give two real SIFs KI and KII for mode I and II, respectively. The cases
of one singular complex eigenvalue give complex SIFs Kc ¼ K1 þ iK2.
The results in Table 6 are new and there are no available published
results to compare with. However, the previous validation for crack
cases, which are special cases of notch problems with opening angle
ofc ¼ 0

�
, shows that the SEA gives accurate results. Therefore, the re-

sults in Table 6 are valid. It should be noted that the ABAQUS soft-
ware only computes SIF values when the notch opening angle is
zero, i.e. a crack, but for true notches it cannot compute the notch
SIFs.

3.2.2. Mode III
The mode III SIFs for different cases of a bi-material notched

plate subject to out-of-plane shear loading conditions as shown
in Fig. 24 are computed using the SEA. The plate dimensions are:

H ¼ 2W ¼ 20; the plate thickness t ¼ 1, the notch length is a where
a=W ¼ 0:4. Three dimensional FE elements (C3D20) are used to
model the plate in ABAQUS in a similar way to that in Fig. 15(b)
in order to compute the strain energy, and anti-plane conditions
are applied. The results are compared to those predicted by ABA-
QUS for the crack cases and the FFEM (Treifi and Oyadiji, 2013)
for the crack and notch cases. In the ABAQUS analysis for the crack
cases, the same mesh as for the SEA is used. For the notch cases
where ABAQUS cannot predict the notch SIFs, the results are com-
pared to those predicted by the FFEM. In the FFEM, the plate is
meshed using 6-node triangular elements similar to the mesh
shown in Fig. 16. Based on the convergence study presented for

Table 7
Scaled SIFs (KIII=s

ffiffiffiffi
p
p

a1�kIII ) under anti-plane shear loading conditions ðG1=G2 ¼ 10Þ.

c hc=H

0.2 0.3 0.5

0 SEA 1.148 1.096 1.077
FFE 1.148 1.096 1.077
ABAQUS 1.148 1.096 1.077

30 SEA 1.320 1.256 1.234
FFE 1.320 1.256 1.233
ABAQUS – – –

60 SEA 1.527 1.446 1.417
FFE 1.526 1.445 1.417
ABAQUS – – –

90 SEA – 1.666 1.628
FFE – 1.666 1.628
ABAQUS – – –

Table 8
Scaled SIFs (KIII=s

ffiffiffiffi
p
p

a1�kIII ) under anti-plane shear loading conditions ðG1=G2 ¼ 4Þ.

c hc=H

0.2 0.3 0.5

0 SEA 1.140 1.094 1.077
FFE 1.140 1.093 1.077
ABAQUS 1.140 1.093 1.077

30 SEA 1.310 1.253 1.234
FFE 1.310 1.253 1.233
ABAQUS – – –

60 SEA 1.514 1.442 1.417
FFE 1.513 1.442 1.417
ABAQUS – – –

90 SEA – 1.661 1.628
FFE – 1.661 1.628
ABAQUS – – –

Table 9
Scaled SIFs (KIII=s

ffiffiffiffi
p
p

a1�kIII ) under anti-plane shear loading conditions ðG1=G2 ¼ 1=4Þ.

c hc=H

0.2 0.3 0.5

0 SEA 1.092 1.080 1.077
FFE 1.092 1.080 1.077
ABAQUS 1.092 1.080 1.077

30 SEA 1.252 1.237 1.234
FFE 1.251 1.237 1.233
ABAQUS – – –

60 SEA 1.440 1.422 1.417
FFE 1.440 1.421 1.417
ABAQUS – – –

90 SEA – 1.634 1.628
FFE – 1.633 1.628
ABAQUS – – –

Fig. 24. A bi-material notched plate subject to anti-plane shear loading conditions.

Table 6
Scaled SIFs for a bi-material notched plate (c ¼ 60

�
).

E1=E2 kI kII KI or K1 KII or K2

1 0.51222136 0.73090074 2.226 0.000
2 0.52425299 0.71632272 2.430 �0.666
4 0.56267468 0.67219769 3.633 �1.980
10 0.61388523 + i0.07040375 2.881 �2.549
100 0.61052742 + i0.11267322 2.365 �1.940

M. Treifi, S.O. Oyadiji / International Journal of Solids and Structures xxx (2013) xxx–xxx 15

Please cite this article in press as: Treifi, M., Oyadiji, S.O. Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-
material V-notches. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.011



the mode III isotropic cases, a coarse mesh of 7 layers of elements is
used within R0 ¼ 0:6, and the strain energy used to predict the SIF
values is computed for a volume of radius Rc ¼ 0:07776 (3 layers).
The SEA results compared to corresponding results predicted using
ABAQUS and the FFEM are presented in Tables 7–10. The results of
the three different approaches are in excellent agreement.

4. Conclusions

In this paper, a simple approach based on the strain energy of a
control volume was developed to compute the mode I, II and III
SIFs for isotropic homogeneous and bi-material crack/notch prob-
lems. The approach is simple to employ numerically. It relates
the SIFs to the strain energy that may be computed using commer-
cial FE packages; thus, enabling those packages to compute notch
SIFs. The accuracy of the SEA was demonstrated via many different
numerical examples of homogeneous and bi-material cracked and
notched plates. For pure mode conditions, a coarse mesh (and
therefore a larger size of the control volume) may be used to model
the region around the notch tip, but it is recommended using finer
meshes (and therefore a smaller size of the control volume) when
dealing with mixed mode cases. The results generated using the
SEA are in very good agreement with existing published results
and numerical solutions.
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a b s t r a c t

The fractal-like finite element method (FFEM) is developed to provide stress intensity fac-
tor (SIF) values for bi-material notches. The displacement fields around a bi-material notch
tip are derived and employed as global interpolation functions in the FFEM to transform
the large number of nodal displacements in the singular region to a small set of generalised
co-ordinates leading to direct computation of the SIFs and the coefficients of the higher
order terms. Various numerical examples for bi-material crack and notch cases are pre-
sented. New results for bi-material notches are reported.
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1. Introduction

In recent years, there has been a lot of interest in computing the SIFs for a general notch (or corner), because the presence
of notches may lead to crack initiation and sudden failure. Most of the research reported in the literature [1–5] deals only
with isotropic homogenous notches based on the pioneering work presented by Williams [6]. For bi-material notches, there
are hardly any results reported. Most research is about the behaviour of the eigenvalues and its computation rather than
computing the SIFs [7–9]. That is simply due to the complexity of the bi-material case. However, SIFs were reported for a
bi-material crack, which is a special case of a notch (the notch opening angle is zero) by some authors, such as Matsumto
et al. [10], Yuuki and Cho [11] and Miyazaki et al. [12]. Williams [6] showed that the stress and displacement expressions
around a notch tip can be written as eigenfunction series expansions. For a single material (isotropic homogenous) notch,
the singular eigenvalues are always real. The singular eigenvalues are those which are less than one and they result in un-
bounded stresses. In the case of a two material (bi-material) notch, the singular eigenvalues could be real or complex num-
bers. This means that different eigenfunction series expansions have to be used for each case.

The FFEM was originally developed to compute the SIFs for crack problems [13,14]. Reddy and Rao [15] extended the
method to analyse the shape sensitivity for a homogeneous isotropic crack. The current authors successfully developed
the FFEM to compute the SIFs for an isotropic homogenous notch [16–20]. It should be noted that the two-level finite ele-
ment method [13], the fractal two level finite element methods [14], the fractal finite element mixed-mode method [15], and
the fractal-like finite element method [16–20] are identically the same. In fact, they are all fractal-like because the finite ele-
ments are truly fractal in the radial direction from the point of singularity, whereas in the circumferential direction in a layer,
the elements are not fractal in nature. Therefore, the fractal self-similar nature of the mesh applies to the radial direction

0013-7944/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engfracmech.2013.04.006
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towards the notch/crack tip but not necessarily to the hoop direction. For this reason, the authors prefer to refer to the topol-
ogy as being fractal-like.

In this paper, the authors develop the FFEM to compute the SIFs for a bi-material notch. The stress and displacement fields
are derived for real and complex eigenvalues. Then, the FFEM is developed by employing the displacement expressions as
global interpolation functions to compute the SIFs for bi-material notch problems. To demonstrate the accuracy of the FFEM
to compute bi-material notch SIFs, the SIF values for various bi-material notch examples are computed and compared to
available published results and results computed using different numerical approaches.

2. Global interpolation functions for a bi-material notch

The stress and displacement functions of a bi-material notch as shown in Fig. 1 can be expressed using a complex variable
approach as [21]:

rj
xx þ rj

yy ¼ 4Reð/j0ðzÞÞ ð1Þ

rj
yy � isj

xy ¼ /j0ðzÞ þ ðz� �zÞ/j00ðzÞ þxj0ðzÞ ð2Þ

Nomenclature

a crack/notch length
a set of generalised co-ordinates
A, B, a, b generalised co-ordinates
d nodal displacement vector
dr, dm, and ds nodal displacement vectors of nodes in regular region, master nodes, and in singular region

d1st;2nd;...
s nodal displacements of the nodes in the first layer, second layer, . . . in the singular region

E Young’s modulus
f nodal force vector
fr, fm, and fs nodal force vectors of nodes in regular region, master nodes, and in singular region
�f1st;inn

s transformed nodal force vectors of the first layer and the inner layers in the singular region
G shear modulus
H plate height
K stiffness matrix
Krr, Kmr, partitioned stiffness matrices (r refers to regular region, m to master
Kmm, Kss, . . . nodes, and s to slave nodes)

Kn
s partitioned stiffness matrix of the nth layer in the singular region

K1st
s ;Kinn

s transformed partitioned stiffness matrices of the first layer and the inner layers in the singular region
KI, KII stress intensity factors of mode I, II
Kc complex stress intensity factor
i complex unit

ffiffiffiffiffiffiffi
�1
p� �

j integer variables
NL number of layers in the singular region
NT number of terms of eigenfunction series expansion
Px, Py forces
Rs radius of singular region
r, h polar co-ordinates
Tn

s transformation matrix of the nodal displacements of the nth layer in the singular region
T1st

s transformation matrix of the nodal displacements of the first layer in the singular region
W width of single-edge-notched plate
ux, uy displacements in x and y directions
x, y cartesian co-ordinates
z complex variable
a angle between notch face and x-axis
c notch opening angle
/, x complex potentials
k eigenvalue
m Poisson’s ratio
q similarity ratio
r normal stress
s shear stress
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�Pj
y þ iPj

x ¼ /jðzÞ þ ðz� �zÞ/j0ðzÞ þxjðzÞ ð3Þ

uj
x þ iuj

y ¼
1

2Gj
½jj/

jðzÞ � ðz� �zÞ/j0ðzÞ �xjðzÞ� ð4Þ

where j refers to material j, Gj is the shear modulus of material j, jj = 3 � 4mj for plane-strain or jj = 3 � 4mj/(1 + mj) for plane-
stress and mj is the Poisson’s ratio of material j. /j(z) and xj(z) are complex potentials and are assumed to be

/jðzÞ ¼ Ajzk þ ajz
�k and xjðzÞ ¼ Bjzk þ bjz

�k ð5Þ

Substituting Eq. (5) into Eqs. (2)–(4) gives

rj
yy � isj

xy ¼ krk�1eihð1�kÞ½Aje2ihðk�1Þ þ �ajðe2ih � 1Þ k� 1ð Þ þ �bj� þ �kr�k�1eihð1��kÞ½aje2ihð�k�1Þ þ Ajðe2ih � 1Þð�k� 1Þ þ Bj� ð6Þ

�Pj
y þ iPj

x ¼ rke�ihk½Aje2ihk þ �ajkðe2ih � 1Þ þ �bj� þ r�ke�ih�k½aje2ih�k þ Aj
�kðe2ih � 1Þ þ Bj� ð7Þ

2Gj uj
x þ iuj

y

� �
¼ rke�ihk½jjAje2ihk � �ajkðe2ih � 1Þ � �bj� þ r�ke�ih�k½jjaje2ih�k � Aj

�k e2ih � 1
� �

� Bj� ð8Þ

The complex potentials must satisfy the following continuity and boundary conditions

�P1
y þ iP1

x

���
h¼0
¼ �P2

y þ iP2
x

���
h¼0

u1
x þ iu1

y

���
h¼0
¼ u2

x þ iu2
y

���
h¼0

�P1
y þ iP1

x

���
h¼a1

¼ 0

�P2
y þ iP2

x

���
h¼�a2

¼ 0

ð9Þ

Substituting Eqs. (7) and (8) into (9) gives, after simplification,

1� e2ika1 e�2ika2 � 1 kð1� e2ia1 Þ kðe�2ia2 � 1Þ
G2
G1

j1 þ e2ika1
� �

�j2 þ e�2ika2 G2
G1

kðe2ia1 � 1Þ kð1� e�2ia2 Þ
kð1� e�2ia1 Þ kðe2ia2 � 1Þ 1� e�2ika1 e2ika2 � 1

G2
G1

k e�2ia1 � 1
� �

k 1� e2ia2
� � G2

G1
ðj1 þ e�2ika1 Þ �ðj2 þ e2ika2 Þ

2
66664

3
77775

A1

A2

�a1

�a2

8>>><
>>>:

9>>>=
>>>;
¼ f0g ð10Þ

or

½D� A1 A2 �a1 �a2½ �T ¼ f0g ð11Þ

For non-trivial solution the determinant of [D] should be zero, i.e.

det½D� ¼ 0 ð12Þ

Solving Eq. (12) gives the values of k, the eigenvalues, that make the determinant zero. Muller’s method is used to solve this
equation using the technique presented in Ref. [22]. The values of k may be real or complex.

Fig. 1. Bi-material notch geometry.
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2.1. Complex eigenvalues

For complex eigenvalues, Eq. (11) could be partitioned as follows

½D11� ..
.

½D12�
� � � � � � � � � � � �

½D21� ..
.

½D22�

2
6664

3
7775

A1

� � �
A2

�a1

�a2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

0
� � �
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð13Þ

From Eq. (13)

A2

�a1

�a2

8><
>:

9>=
>; ¼ �½D22��1½D21�A1 ¼ fSgA1 ð14Þ

Using Eq. (14) and the boundary conditions, the coefficients of the complex potentials can be written in terms of A1 and its
conjugate A1 as

A1

A1

a1

�a1

B1

B1

b1

�b1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

1 0
0 1
0 Sð2Þ

Sð2Þ 0
�Sð2Þe�2ika1 � kðe�2ia1 � 1Þ 0

0 �Sð2Þe2i�ka1 � �kðe2ia1 � 1Þ
0 �e�2i�ka1 � �kSð2Þðe�2ia1 � 1Þ

�e2ika1 � kSð2Þðe2ia1 � 1Þ 0

2
66666666666664

3
77777777777775

A1

A1

� 	
¼ ½H1�

A1

A1

� 	
ð15Þ

for material 1 and

A2

A2

a2

�a2

B2

B2

b2

�b2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

Sð1Þ 0
0 Sð1Þ
0 Sð3Þ

Sð3Þ 0
�Sð3Þe2ika2 � kSð1Þðe2ia2 � 1Þ 0

0 �Sð3Þe�2i�ka2 � �kSð1Þðe�2ia2 � 1Þ
0 �Sð1Þe2i�ka2 � �kSð3Þðe2ia2 � 1Þ

�Sð1Þe�2ika2 � kSð3Þðe�2ia2 � 1Þ 0

2
66666666666664

3
77777777777775

A1

A1

� 	
¼ ½H2�

A1

A1

� 	
ð16Þ

for material 2.
A1 and its conjugate A1 can be written in terms of the real and imaginary parts of A1 as

A1

A1

� 	
¼

1 i

1 �i


 �
ReðA1Þ
ImðA1Þ

� 	
¼ ½N�

ReðA1Þ
ImðA1Þ

� 	
ð17Þ

If we let

½Lj� ¼

rkjje�ikhe2ikh

�kr�ke�i�khð1� e2ihÞ
r�kjje�i�khe2i�kh

krke�ikhð1� e2ihÞ
0

�r�ke�i�kh

0
�rke�ikh

2
666666666666664

3
777777777777775

T

ð18Þ

then Eq. (8), the displacement expression, could be rewritten as

2Gj uj
x þ iuj

y

� �
¼ ½Lj�½Hj�½N�

ReðA1Þ
ImðA1Þ

� 	
¼ ½Jj�

ReðA1Þ
ImðA1Þ

� 	
ð19Þ
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Equating the real and imaginary parts of both sides of Eq. (19) leads to

uj
x

uj
y

( )
¼ 1

2Gj

ReðJjð1;1ÞÞ ReðJjð1;2ÞÞ
ImðJjð1;1ÞÞ ImðJjð1;2ÞÞ

" #
ReðA1Þ
ImðA1Þ

� 	
ð20Þ

Eq. (20) shows that the displacement expressions for each complex eigenvalue can be written in terms of a complex coef-
ficient with real and imaginary parts.

2.2. Real eigenvalues

For real eigenvalues, the complex potentials /j(z) and xj(z) are reduced to

/jðzÞ ¼ Ajzk and xjðzÞ ¼ Bjzk ð21Þ

Substituting Eq. (21) into Eqs. (2)–(4) gives

rj
yy � isj

xy ¼ krk�1eihð1�kÞ½Aje2ihðk�1Þ þ Ajðe2ih � 1Þðk� 1Þ þ Bj� ð22Þ

�Pj
y þ iPj

x ¼ rke�ihk½Aje2ihk þ Ajkðe2ih � 1Þ þ Bj� ð23Þ

2Gj uj
x þ iuj

y

� �
¼ rke�ihk½jjAje2ihk � Ajkðe2ih � 1Þ � Bj� ð24Þ

By making use of the continuity and boundary conditions of Eq. (9), the following relation must hold

q11 q12

q21 q22


 �
ReðA1Þ
ImðA1Þ

� 	
¼ f0g ð25Þ

where

q11 ¼ Reðt1Þ þ Reðt2Þ; q12 ¼ Imðt2Þ � Imðt1Þ
q21 ¼ Imðt1Þ þ Imðt2Þ; q22 ¼ Reðt1Þ � Reðt2Þ
t1 ¼ �s2 � s3; t2 ¼ �s1 � s4

s1 ¼
d4d5 � d1d8

d3d8 � d7d4
; s2 ¼

d6d4 � d2d8

d3d8 � d7d4
; s3 ¼

d5d3 � d1d7

d4d7 � d8d3
; s4 ¼

d6d3 � d2d7

d4d7 � d8d3

d1 ¼ G2ðj1 þ e2ika1 Þ; d2 ¼ G2kðe2ia1 � 1Þ; d3 ¼ �G1ðj2 þ e�2ika2 Þ; d4 ¼ �G1kðe�2ia2 � 1Þ;
d5 ¼ 1� e2ika1 ; d6 ¼ �kðe2ia1 � 1Þ; d7 ¼ e�2ika2 � 1; d8 ¼ kðe�2ia2 � 1Þ

Eq. (25) shows that Im (A1) can be determined in terms of Re (A1) or vice versa, i.e.,

ReðA1Þ
ImðA1Þ

� 	
¼

p1

p2

� 	
c ¼ ½P�c ð26Þ

where c is either Re (A1) or Im (A1). To avoid division by zero, p1 and p2 may be computed from Table 1 depending on the
largest absolute value of qij.

From Eqs. (17) and (26), A1 and its conjugate A1 can be written in terms of c as

A1

A1

� 	
¼

1 i

1 �i


 �
ReðA1Þ
ImðA1Þ

� 	
¼ ½N�

ReðA1Þ
ImðA1Þ

� 	
¼ ½N�½P�c ð27Þ

and A2 and its conjugate A2 can be written in terms of A1 and A1 and therefore in terms of c as

A2

A2

� 	
¼

s1 s2

s3 s4


 �
A1

A1

� 	
¼ ½S�

A1

A1

� 	
¼ ½S�½N�½P�c ð28Þ

Table 1
Definition of p1 and p2.

Largest jqijj p1 p2

q11 �q12/q11 1
q12 1 �q11/q12

q21 �q22/q21 1
q22 1 �q21/q22
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Using Eqs. (27) and (28) in addition to the boundary conditions, the coefficients of the complex potentials in Eqs. (22)–(24)
can be written as

A1

A1

B1

8><
>:

9>=
>; ¼

1 0
0 1

�e2ika1 �kðe2ia1 � 1Þ

2
64

3
75 A1

A1

� 	
¼ ½H1�½N�½P�c ¼ ½R1�c ð29Þ

for material 1 and

A2

A2

B2

8><
>:

9>=
>; ¼

1 0
0 1

�e�2ika2 �kðe�2ia2 � 1Þ

2
64

3
75 A2

A2

� 	
¼ ½H2�½S�½N�½P�c ¼ ½R2�c ð30Þ

for material 2. If we let

½Lj� ¼ rke�ikh jje2ikh �kðe2ih � 1Þ �1
� 


ð31Þ

then Eq. (24), the displacement expression for real eigenvalues, could be rewritten as

2Gj uj
x þ iuj

y

� �
¼ ½Lj�½Rj�c ¼ ½Jj�c ð32Þ

Equating the real and imaginary parts of both sides of Eq. (32) leads to

uj
x

uj
y

( )
¼ 1

2Gj

ReðJjð1;1ÞÞ
ImðJjð1;1ÞÞ

" #
c ð33Þ

Eq. (33) shows that the displacement expressions for each real eigenvalue can be written in terms of a real coefficient Similar
formulation was presented in polar coordinates in Ref. [22].

2.3. Generalised coordinates

The displacement expressions around a notch tip are the sum of terms of Eqs. (20) and (33) repeated for as many eigen-
values considered (those equations are series expansions. The

P
symbol is dropped for simplicity). The coefficients c in Eq.

(33) and the real and imaginary parts of the coefficients A1 in Eq. (20) are called generalised coordinates and will be com-
puted directly in the FFEM. The ones associated with the singular eigenvalues (Re(k) < 1) are related directly to the SIFs of a
general notch. The rest are the constants of the higher order terms.

3. Stress intensity factors

The eigenvalues computed using Eq. (12) could be real or complex. For a general bi-material notch, the singular eigen-
values (Re(k) < 1) are either two real singular eigenvalues associated with mode I and mode II (kI,kII) or a single complex sin-
gular eigenvalue with real and imaginary parts (in some cases only one real singular eigenvalue exists). A complex singular
eigenvalue is associated with a complex SIF that can be computed using one of the following equations

Kc ¼
ffiffiffiffiffiffiffi
2p
p

kA1½Sð2Þð1� e�2ika1 Þ � kðe�2ia1 � 1Þ� ð34Þ

Kc ¼
ffiffiffiffiffiffiffi
2p
p

�kA1b1� e�2i�ka1 � �kSð2Þðe�2ia1 � 1Þc ð35Þ

The real and imaginary parts of Kc represent mode I and mode II SIFs. For the case of two real singular eigenvalues, where one
eigenvalue is associated with mode I while the other is associated with mode II, the SIFs expressions are

K I ¼
ffiffiffiffiffiffiffi
2p
p kIcI

2
½ðpI1 þ ipI2Þð1þ kIð1� e�2ia1 Þ � e2ikIa1 Þ þ ðpI1 � ipI2Þð1þ kIð1� e2ia1 Þ � e�2ikIa1 Þ� ð36Þ

for mode I, and

K II ¼
ffiffiffiffiffiffiffi
2p
p kIIcII

2i
½ðpII1 þ ipII2ÞðkIIð1� e�2ia1 Þ þ e2ikIIa1 � 1Þ þ ðpII1 � ipII2ÞðkIIðe2ia1 � 1Þ � e�2ikIa1 þ 1Þ� ð37Þ

for mode II.

4. Fractal-like finite element method for a bi-material notch

The FFEM is a semi-analytical method that incorporates the agility of the finite element method (FEM) and the accuracy of
the analytical solutions. A bi-material notched body is divided into regular and singular regions as shown in Fig. 2. The ana-
lytical expressions of the displacement field around a notch tip are used as global interpolation functions to transform the
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large number of nodal displacements ds of the nodes in the singular region containing the notch tip to a small set of gener-
alised coordinates a as follows

ds ¼ Ta ð38Þ

where T is a transformation matrix and is computed using the displacement expressions in Eqs. (20) and (33) depending on
the type of the eigenvalue. The idea of the global interpolation functions is similar to the idea of the local interpolation func-
tions (shape functions) of a finite element. For a complex eigenvalue, Eq. (20) is used, while for a real eigenvalue Eq. (33) is
used. In the reported literature of the FFEM, such as Treifi et al. [17,20], the transformation matrix T of any layer in the sin-
gular region can be computed in terms of the transformation matrix of the first layer when the layers of elements in the sin-
gular region are constructed using a similarity ratio. This leads to a transformed stiffness matrix of the inner layers being
written as a sum of a geometric series allowing virtually the use of an infinite number of layers in the singular region based
only on the stiffness matrix of the first layer. However, for the case of a bi-material notch where eigenvalues may be com-
plex, this is not simple because k and its conjugate �k appear in the displacement expressions. Therefore, a finite number of
layers will be used in the singular region instead of using the sum of a geometric series. It should be noted that the fractal
self-similar nature of the mesh applies to the radial direction towards the notch/crack tip but not necessarily to the hoop
direction. For this reason, the topology is referred to as being fractal-like.

In the FFEM, the equilibrium equation in the conventional FEM can be partitioned and transformed as follows

Krr Krm 0
Kmr Kmm þ K1st

mm K1st
ms

0 K1st
sm K1st

ss þ Kinn
s

2
64

3
75

dr

dm

a

8><
>:

9>=
>; ¼

fr

fm þ f1st
m

�f1st
s þ �f inn

s

8><
>:

9>=
>; ð39Þ

where r refers to regular nodes, m master nodes located on the border encompassing the singular region, and s singular
nodes. Only the over-barred components (the over-bar here does not refer to the complex conjugate) are transformed:

K1st
ms ¼ K1st

ms T1st
s

K1st
ss ¼ T1stT

s K1st
ss T1st

s

Kinn
s ¼

Xnl

n¼2

Kn
s

Kn
s ¼ TnT

s Kn
s Tn

s

�f1st
s ¼ T1stT

s f1st
s

�f inn
s ¼

Xnl

n¼2

�fn
s

�fn
s ¼ TnT

s fn
s

where T1st
s and Tn

s refer to the transformation matrices for the first and nth layers of the singular region.
The eigenvalues for a bi-material notch may be a combination of real and complex numbers. Each real eigenvalue is asso-

ciated with a single element of the vector of generalised coordinates, but each complex eigenvalue is associated with two
elements (real and imaginary parts of a complex generalised coordinate) of that vector. Therefore, the FFEM code is rewritten
to invoke the appropriate expressions derived in Section 2 according to the type of each eigenvalue.

Fig. 2. Singular and regular regions of a notched plate.
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Fig. 3. (a) Bi-material cracked plate (H/W = 2) subject to tension loading conditions (b) and (c) the plate FE mesh used in the FFEM.

Fig. 4. The FE mesh of the cracked plate (H/W = 2) used to compute the SIFs in the ABAQUS software.
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Fig. 5. Variations of bi-material crack SIFs with size of the singular region for different material property ratios compared to those obtained using ABAQUS
(a/w = 0.4).
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As ds is much larger than a, solving the equilibrium equation for a instead of ds reduces the computational cost dramat-
ically. Also, in the FFEM the SIFs are computed directly without any need for special singular elements or post-processing
technique, because the SIFs are directly related to a as shown in Eqs. (34)–(37).

5. Numerical examples and verifications

5.1. Convergence study

The size of the singular region is determined through a convergence study of examples of bi-material crack and bi-mate-
rial notch cases with different material property ratios and different crack lengths. The choice of the number of terms of the
global interpolation functions NT, the similarity ratio q and the number of layers NL to model the singular region are based
on previous convergence studies [17,18,20].

A bi-material edge cracked plate subjected to tension loading conditions, as shown in Fig. 3a, is considered first. The plate
is of height H = 20 and width W = 10. The crack length a is taken as a/w = 0.4. Six node triangular elements (seven-point inte-
gration scheme) are used to model the plate as shown in Fig. 3b. For this example and all the examples in this paper, the
region around the notch/crack tip is modelled using 20 layers starting with a radius of 0.6 down to 0.00003656 as shown
in Fig. 3c. The layers are constructed using a similarity ratio of q = 0.6. The number of terms of the global interpolation func-
tions to be used in the transformation is taken as NT = 21. The Poisson’s ratios are taken to be m1 = m2 = 0.3.

The SIF values are computed for different material property ratios (2, 4, 10 and 100) using the FFEM. The results are com-
pared to those computed using ABAQUS finite element analysis (FEA) commercial package. In ABAQUS, the cracked plate is
modelled using quadrilateral elements (which are designated as CPS8 in the ABAQUS FEA software) as shown in Fig. 4. Also,
the region around the crack tip is modelled using the same number of layers as in the FFEM. In addition, quarter-point sin-
gular elements are used in the ABAQUS FEA software to model the first layer around the crack tip.

Fig. 5 shows the SIFs computed for different sizes of the singular region and different material property ratios. The sizes
and corresponding number of layers are taken as: the first radius considered is Rs = 0.36 containing 19 layers, the second
radius is Rs = 0.216 containing 18 layers, and so on down to the nineteenth radius Rs = 0.00003656 containing only one layer.

The same analysis as above is repeated for a bi-material edge notched plate as shown in Fig. 6a. The plate is meshed using
six node triangular elements as shown in Fig. 6b. The opening angle of the notch is taken to be c = 60�. No published results
are available for this case and current commercial FEA packages, such as the ABAQUS software, are not capable of computing
the SIFs for a true notch. However, the current authors have developed a strain energy approach (SEA) to compute the SIFs for
a notch, which is based on the strain energy of a finite volume around the notch tip [23]. The strain energy, which may be
computed using commercial FEA packages, is used to compute the notch SIFs by using the formulae presented in Ref. [23].
The ABAQUS software is used to compute the strain energy for this case. The plate is meshed as shown in Fig. 6c using quad-
rilateral elements (CPS8). The notch SIFs computed using the FFEM for different sizes of the singular region and different
material property ratios compared to the SIF values computed using the SEA are plotted in Fig. 7.

From Figs. 5 and 7, it can be seen that the size of the singular region has an effect on the results. Convergence is achieved
within a limited region (Rs = 0.001–0.03) for a bi-material crack with a material property ratio of E1/E2 = 10 or less. For larger

Fig. 6. (a) Bi-material V-notched plate (H/W = 2) subject to tension loading conditions, (b) the plate FE mesh used in the FFEM, and (c) the plate FE mesh
used in the ABAQUS software to compute the strain energy.
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values of material property ratios and for the notch cases, convergence is achieved within a larger region of the size of the
singular region (Rs > 0.001). The larger the size of the singular region, the more the nodal displacements that are transformed
leading to less computational cost.

Now, the relation between the crack length and the size of the singular region is examined. A bi-material cracked plate as
shown in Fig. 8a is considered. The material property ratio is taken as E1/E2 = 4. The plate is of height H = 30 and width

Fig. 7. Variations of bi-material notch SIFs with size of the singular region for different material property ratios compared to those obtained using the SEA
(a/w = 0.4).
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W = 10. Six node triangular elements are used to mesh the plate as shown in Fig. 8b and c. The SIF values are computed for
different crack lengths (a/w = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7). The volumes of the singular region and corresponding number of
layers are taken as follows: the first radius considered is Rs = 0.36 containing 19 layers, the second radius is Rs = 0.216 con-
taining 18 layers, and so on down to the twelfth radius Rs = 0.00047 containing six layers. Smaller radii are not considered
because they will not give results with good accuracy as we found from the previous two examples. The FFEM results are
plotted in Figs. 9–14 and are compared to those reported by Matsumto et al. [10]. It can be seen from those figures that con-
vergence is achieved with smaller sizes of the singular region when the crack length is short. As the crack length increases,
convergence is achieved when using larger sizes of the singular region.

Based on the above discussion, the radius of the singular region for a crack problem may be taken as Rs = 0.0036 when the
crack length is a/W 6 0.5 and the material property ratio is E1/E2 6 10, Rs = 0.0467 when the crack length is a/W 6 0.5 and the
material property ratio is E1/E2 > 10, and Rs = 0.0467when the crack length is a/W > 0.5 for all material property ratios. For
notch problems where convergence is achievable for a wider range of values of the radius of the singular region, the radius
of the singular region may be taken as Rs = 0.0467 for all cases. These values of Rs are used for the rest of the examples pre-
sented in this paper.

5.2. Bi-material crack

A bi-material cracked plate subjected to tension loading conditions as shown in Fig. 8a is analysed. The plate is of height
H = 30 and width W = 10. Six node triangular elements are used to mesh the plate as shown in Fig. 8b and c. Different crack
lengths (a/w = 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7) and different material property ratios (E1/E2 = 2, 4, 10 and 100) are considered.
The scaled SIF values Kc=r

ffiffiffiffi
p
p

a1�ReðkÞð2aÞiImðkÞ
� �

computed using the FFEM are tabulated in Table 2. Corresponding published
results by Matsumto et al. [10] and computed results using the ABAQUS software and the SEA are also tabulated for com-
parison. In ABAQUS and the SEA, the plate is meshed using quadrilateral elements (CPS8) as shown in Fig. 15 and singular
quarter-point elements are used around the crack tip. The singular eigenvalues for a bi-material crack of a material property
ratio of E1/E2 = 2, 4, 10 and 100 are k = 0.5 + i0.037306, k = 0.5 + i0.0678545, k = 0.5 + i0.0937743 and k = 0.5 + i0.113817,
respectively. Table 2 shows that the FFEM results are in good agreement with the numerical results computed using ABAQUS
and the SEA and with those reported by Matsumto et al. [10].

Fig. 8. (a) Bi-material cracked plate (H/W = 3) subject to tension loading conditions (b) and (c) the plate FE mesh used in the FFEM.
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5.3. Bi-material notch

A bi-material V-notched plate subjected to tension loading conditions as shown in Fig. 6a is analysed for different notch
opening angles (c = 0�, 30�, 45�, 60� and 90�) and different material property ratios (E1/E2 = 2, 4, 10 and 100). The plate
dimensions are H = 20 and W = 10. The notch length is taken as a/W = 0.4. Six node triangular elements are used to mesh
the plate in a similar way to that shown in Fig. 6b. No available published results exist to compare with for the notch cases,
and current FEA software, such as the ABAQUS software, cannot compute the SIFs for a true notch; i.e. the notch opening

Fig. 11. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.4,E1/E2 = 4).

Fig. 9. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.2,E1/E2 = 4).

Fig. 10. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.3,E1/E2 = 4).
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angle is not zero. It is only capable of computing the SIF values for crack problems. Therefore, the SEA is used to compare the
results for the true notch cases. In the SEA, the plate is meshed in a similar way to that shown in Fig. 6c to compute the strain
energy.

The scaled SIF values computed using the FFEM and SEA are tabulated in Table 3. The singular eigenvalues (Re (k) < 1) for
each case are also tabulated in Table 3. For each case, the singular eigenvalues are either two real eigenvalues or a single
complex eigenvalue. Each case with two singular real eigenvalues gives two real SIFs KI and KII for mode I and II, respectively,
while each case with a single complex singular eigenvalue gives a complex SIF Kc = K1 + iK2. The real and imaginary parts of a

Fig. 12. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.5,E1/E2 = 4).

Fig. 13. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.6,E1/E2 = 4).

Fig. 14. Variations of bi-material crack SIFs with size of the singular region compared to those obtained Matsumto (a/w = 0.7,E1/E2 = 4).
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Table 2
Scaled SIFs for bi-material cracked plates under tension.

a/W E1/E2

2 4 10 100

KI KII KI KII KI KII KI KII

0.2 FFEM 1.358 �0.135 1.360 �0.249 1.363 �0.349 1.367 �0.429
SEA 1.365 �0.138 1.364 �0.250 1.365 �0.339 1.370 �0.418
ABAQUS 1.368 �0.137 1.368 �0.251 1.369 �0.350 1.371 �0.430
Matsumto 1.367 �0.137 1.368 �0.251 1.366 �0.348 1.376 �0.429

0.3 FFEM 1.649 �0.157 1.646 �0.287 1.642 �0.400 1.639 �0.487
SEA 1.657 �0.160 1.652 �0.292 1.646 �0.397 1.644 �0.488
ABAQUS 1.659 �0.159 1.654 �0.289 1.649 �0.400 1.643 �0.487
Matsumto 1.657 �0.156 1.655 �0.288 1.648 �0.394 1.647 �0.470

0.4 FFEM 2.099 �0.197 2.092 �0.359 2.082 �0.496 2.074 �0.600
SEA 2.107 �0.199 2.099 �0.364 2.088 �0.498 2.080 �0.609
ABAQUS 2.109 �0.198 2.101 �0.360 2.090 �0.496 2.079 �0.600
Matsumto 2.109 �0.195 2.102 �0.358 2.090 �0.491 2.083 �0.569

0.5 FFEM 2.808 �0.267 2.796 �0.485 2.779 �0.666 2.764 �0.802
SEA 2.819 �0.268 2.805 �0.489 2.787 �0.669 2.771 �0.812
ABAQUS 2.821 �0.268 2.807 �0.485 2.788 �0.665 2.771 �0.801
Matsumto 2.819 �0.268 2.806 �0.483 2.789 �0.661 2.772 �0.793

0.6 FFEM 4.014 �0.396 3.991 �0.717 3.961 �0.982 3.929 �1.177
SEA 4.024 �0.396 4.000 �0.718 3.967 �0.983 3.937 �1.180
ABAQUS 4.025 �0.398 4.002 �0.718 3.971 �0.982 3.940 �1.177
Matsumto 4.024 �0.398 4.001 �0.714 3.968 �0.973 3.906 �1.171

0.7 FFEM 6.336 �0.676 6.283 �1.218 6.214 �1.656 6.145 �1.969
SEA 6.338 �0.665 6.288 �1.202 6.220 �1.647 6.157 �1.956
ABAQUS 6.336 �0.671 6.291 �1.210 6.230 �1.651 6.168 �1.974
Matsumto 6.348 �0.668 6.298 �1.204 6.227 �1.634 6.157 �1.957

Fig. 15. The FE mesh of the cracked plate (H/W = 3) used to compute the SIFs in the ABAQUS software.
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complex SIF correspond to mode I and II. From Table 3, it can be seen that the notch SIF values predicted using the FFEM and
the SEA are in very good agreement.

Zuccarello and Ferrante [24] reported an experimental SIF for a V-notched bi-material plate subjected to tension loading
conditions as shown in Fig. 6a. The plate dimensions are H = 30 cm, W = 7.5 cm, the thickness t = 1 cm, and the notch opening
angle is c = 135�. The plate is made of two parts: Aluminium (E1 = 63,300 MPa, m1 = 0.33) and PSM-1 (E2 = 2990 MPa,
m2 = 0.39). The adhesive chosen to bond the two materials together has practically the same material properties as PSM-1.
The experimental SIF for this case is KI=ra1�kI ¼ 1:55. Zuccarello and Ferrante did not include the factor

ffiffiffiffiffiffiffi
2p
p

in the definition
of SIFs. Modelling the plate in a similar way to that shown in Fig. 6b, the SIF computed using the FFEM is
KI=

ffiffiffiffiffiffiffi
2p
p

ra1�kI ¼ 1:54 (the mode I eigenvalue for this case is kI ¼ 0:6515, mode II eigenvalue is not singular). The published
experimental and the computed FFEM SIF values for this problem are in very good agreement.

6. Conclusions

In this paper, the FFEM was developed to compute the mode I and II SIFs for bi-material V-notch problems. Exact analyt-
ical solutions of the asymptotic field around a bi-material notch tip were derived and used as global interpolation functions
in the FFEM to transform the large number of nodal displacements in the singular region to a small number of generalised co-
ordinates. This enables the computation of the SIFs and the coefficients of the higher order terms directly without the need
for a post processing technique to extract them. Also, no special singular elements are needed to model the singular region.
Any conventional finite elements can be used. Various bi-material V-notch problems were analysed and compared to avail-
able published results and numerical solutions to demonstrate the accuracy of the method. New results for bi-material notch
cases were also introduced.
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12. Discussions, Conclusions and Recommendations

12.1. Discussions

In the course of this research, the FFEM was extended to evaluate the SIFs for isotropic

homogeneous and bi-material V-notches under mode I, II and III loading conditions. This

development regards a crack simply as a special case, because a crack is just a notch with

a zero opening angle. This development has made the method more general because its

applications were extended to compute SIFs resulting at singularity points for a wider

range of engineering problems.

The FFEM is a semi-analytical method. It brings together the agility of the FEM and the

accuracy of the exact analytical solutions. The necessity to use very fine meshes to model

the singular regions around singular points leads to a large number of unknowns and a

considerable increase of the computational cost of FE solutions. In the FFEM this is

avoided by the employment of exact analytical expressions of a displacement field as

global interpolation functions to transform the large number of nodal displacements of a

singular region into a small set of generalised co-ordinates. This reduces the

computational cost significantly. The SIFs and the coefficients of the higher order terms

of the notch tip asymptotic field are the generalised co-ordinates that are computed

directly in the FFEM. Therefore, no post-processing is required to extract them.

Moreover, no special singular finite elements are needed to model the singular region

around a notch tip as conventional finite elements can be used to model the whole of the

cracked/notched body. As the transformation involves only simple matrix multiplications,

the implementation of the FFEM into existing FEM codes is rather easy.
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To extend the FFEM to computing SIFs for notches, the stress and displacement

expressions were analytically derived for a homogeneous notch under in-plane conditions

(mode I and II). The displacement expressions were used as GIFs in the FFEM to carry

out the transformation of the nodal displacements of the nodes within a singular region.

The accuracy of the results obtained for different single V-notched plates subjected to

tension, shear, or bending loading conditions was very good compared to available

published data or data obtained using numerical methods such as the FEM

The encouraging results obtained for the in-plane cases (modes I and II) demonstrated the

potential of developing the method further to evaluate SIFs for other notch problems.

Therefore, the stress and displacement expressions were analytically derived for a

homogeneous notch under out-of-plane shear conditions (mode III). These were used as

GIFs in the FFEM. The method was used to generate results for mode III SIFs and the

accuracy of those was shown to be very good.

For both the in-plane and out-of-plane cases, the results were compared to available

published results. When results were not available the results were compared to those

obtained using the commercial FE software package ABAQUS. However, this was done

only for crack problems because commercial FE packages are generally not capable of

computing the SIFs for a general notch, and ABAQUS is no exception. In the ABAQUS

simulation, similar meshes to the one used in the FFEM were used. Also, the elements

around the crack tip were modelled using quarter-point crack-tip elements. Although

similar meshes (and therefore similar numbers of nodes) were used in the FFEM and in

the ABAQUS software, the number of equations that needed to be solved in the FFEM
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was much smaller than that in ABAQUS, because of the transformation process of the

nodal displacements of the singular nodes applied in the FFEM. This demonstrates an

advantage of the FFEM.

In the FFEM, the property of self-similar elements was exploited too. It was shown that

the element matrices of isoparametric two-dimensional FE elements are the same. Also,

the transformation matrix of an inner layer in the singular region could be computed from

that of the first layer. These two properties were exploited in the FFEM. Only the first

layer of elements in the singular region is needed to generate all the inner layers of the

singular region by using the sum of geometrical series. This property permits the

discretisation of the singular region using virtually infinite number of layers of elements.

For bi-material notches the stress and displacement fields were derived for the out-of-

plane case (mode III) and were used as GIFs in the FFEM. Different examples of

different notch geometries and different material properties were analysed to validate the

FFEM results. The mode III SIFs computed using the FFEM were compared to available

published data or numerical solutions. Availability of published data is limited to crack

problems only, and current commercial FE packages are also limited to crack problems.

Therefore, the comparison was limited to bi-material crack problems only. Although this

comparison proves sufficiently, to a certain degree, that the FFEM provides accurate

results, the necessity to compare FFEM results, especially for the bi-material cases, with

another method seemed advantageous to validate clearly the accuracy of the FFEM for

analysing bi-material notches. Therefore, the SEA was developed. As it is based on the

strain energy, it was used in conjunction with a commercial FE package, i.e., the

ABAQUS software, to compute the SIFs for bi-material notches. This approach is quite
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appealing, as it is easy to use in order to extract notch SIFs using commercial FE

packages, which are not capable of computing SIFs of a general notch. The results for

mode III SIFs of a general notch computed using the SEA agreed well with the

corresponding values computed using the FFEM.

The encouraging results of the SEA led to exploring this approach further. It was

extended and presented as a complete technique to compute SIFs for a general notch in

isotropic or bi-material bodies under mode I, II and III conditions from FE solutions

obtained using commercial FE packages. The accuracy of the approach was proven to

very good.

Armed with a new approach to compute SIFs for bi-material notches, the FFEM was

extended to analyse bi-material notches under mode I and II conditions (the in-plane

case), following the analytical derivations of the stress and displacement expressions for a

bi-material notch. The mode I and II SIFs computed for bi-material notches were

compared to available published data and values computed using the ABAQUS software

for crack problems and to SEA results for notch problems. The agreement between the

results was very good.

For the in-plane problem of a bi-material notch, the transformation matrix for the inner

layers in the singular region cannot be computed in terms of the transformation matrix of

the first layer when the layers of elements in the singular region are constructed using a

similarity ratio as is the case for all the previous cases. This is because the complex

eigenvalues and their conjugates appear in the transformation matrix. Therefore, a finite
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number of layers were used in the singular region instead of using the sum of a geometric

series.

It was also shown that the size of the singular region has an effect on the results for the in-

plane bi-material notch. For the other cases, it did not have any considerable effect.

Similarly for the SEA, it was also shown that the size of the control volume (singular) has

an effect on the results especially for mixed mode cases. Recommendations were made on

the size of the singular region in the relevant chapters by carrying out convergence

studies. Also, convergence studies were presented to determine the similarity ratio, the

number of layers of elements to be used to model the singular region and the number of

terms of the displacement series expansion to be used as GIFs in the FFEM.

Because the FFEM is based on the FEM, its results are mesh dependent as is the case in

the FEM. Following the general advice for constructing good meshes in the FEM is

sufficient to produce good results in the FFEM. The FFEM could be used to address other

problems whether singular or not, especially when the conventional FEM has

convergence problems or when the model is too large. The only limitation to the use of

the FFEM is the availability of “good” global interpolation functions.

The SEA depends on the strain energy computed using FE software packages. Therefore,

its results are mesh dependent, too. In addition, it is recommended to use fine meshes

around the singular points especially for mixed mode cases.

To sum up, two procedures were developed to compute the SIFs for a general notch in

isotropic and bi-material bodies. The first is a stand alone method, i.e., the FFEM, and the
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second is a post-processing technique, i.e., the SEA, which can be used to extract the SIFs

for a general notch from FE solutions produced using commercial FE packages. Both

procedures produced accurate and new results.

12.2. Conclusions

The main findings of the research are as follows:

1. The analytical expressions of the stress and displacement fields around a notch tip

in an isotropic homogeneous plate under mode I, II and III loading conditions

were derived and used as global interpolation functions in the FFEM. The FFEM

code was successfully extended to compute the SIFs for isotropic homogeneous

notch. The accuracy of the results was shown to be very good compared to

available publish data and numerical solutions.

2. Using a simple coordinate transformation, the FFEM code was extended to

compute the SIFs for asymmetric isotropic homogeneous without the need for

deriving new GIFs.

3. The analytical expressions of the stress and displacement fields around a notch tip

in a bi-material body under mode I, II and III conditions were derived. It was

found that the singular eigenvalues can assume real or complex values. The

eigenvalues were computed successfully using a modified version of Muller’s

method to avoid Muller’s method convergence to the same root at every step by

using an incremental technique.

4. Using the displacement expressions of a bi-material notch as GIFs, the FFEM

code was extended successfully to compute the SIFs for bi-material notch under
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mode I, II and III conditions. The results obtained demonstrated very good

accuracy with available published data and with numerical solutions.

5. A SEA was developed to extract the mode I, II and III SIFs values for isotropic

homogeneous and bi-material notches from FE solutions computed using a

commercial FE software package.

6. The results obtained using the FFEM agree well with corresponding results

computed using the SEA. This gives more confidence of the accuracy of the

FFEM, and also the SEA, to compute the SIFs values specifically for bi-material

notches where published results were not available and current commercial FE

packages are not capable of computing the SIFs of a general notch.

12.3. Recommendations for Future Work

1. The FFEM and the SEA could be extended to compute the plastic SIFs for

notches.

2. As notches/corners are not always sharp, considering extending the FFEM and the

SEA to compute the SIFs for blunt (rounded) notch is of high relevance.

3. It would be beneficial to extend the application of the FFEM to compute notch

SIFs for bodies subject to dynamic loading. The SEA could also be used to

compute dynamic SIFs.

4. As materials are not always isotropic, it would be good development to extend the

FFEM and SEA to compute SIFs for an anisotropic notch.

5. A significant development of the FFEM would be its extension to compute the

SIFs for three dimensional notched bodies.
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6. The FFEM method is not limited to singularity problems. Other problems whether

singular or not can be addressed, especially when the conventional FEM has

convergence problems or when the model is too large, provided the availability of

good global interpolation functions.
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