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Abstract

Ontologies are machine processable artifacts and the core structures of the Seman-

tic Web. OWL (Web Ontology Language) is a W3C Recommendation language

for developing ontologies; it is based on Description Logics, allowing for precise

knowledge representation and sound and complete automated reasoning over the

collection of axioms in an OWL document.

Although ontologies are useful for sharing terminologies, their design and reuse

are difficult and time consuming processes. Despite the efforts of the community

towards the development of OWL ontologies, there is a lack of methods and tools

for reusing and inspecting ontologies, i.e., reverse engineering methods.

This thesis focuses on the area by investigating the detection of regular-

ities in ontologies, for the purpose of abstracting sets of axioms into patterns

that can be verified and reused. Its main contribution is the Regularity In-

spector for Ontologies (RIO) framework, which implements methods to find

syntactic regularities (repetitive structures in the asserted axioms) and semantic

regularities (repetitive structures in the entailments) in an ontology. Regularity

detection is achieved through the use of cluster analysis for detecting similarities

in sets of axioms. This thesis provides experimental evidence for the effectiveness

of regularity analysis for the inspection of patterns, and the discovery of model-

ing irregularities (often modelling errors) during quality assurance for real, large

ontologies. In particular, empirical analysis showed that RIO could successfully

detect regularities in ontologies, revealing the patterns adopted by the developers.

It can be also used to trace pattern deviations as part of checking conformance

to an intended design template during quality assurance of an ontology.

This work has been motivated by the existence of pattern based systematic

development methodologies and the lack of methods for discovering patterns in

existing ontologies—the natural complement of these pattern based development

methodologies.
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Chapter 1

Introduction

Ontologies are the core models of the Semantic Web and a prominent component

of the Linked Data paradigm [BHBL09]. OWL (Web Ontology Language) is a

W3C standard language for developing logic based ontologies [W3C09]. OWL is

built upon the foundations of Description Logics [BCM+03]; a family of knowl-

edge representation languages which are decidable fragments of the First Order

Logic. There are many definitions of what an ontology is. From a Description

Logic and computational point of view, an OWL ontology is a set of axioms,

which are logical sentences which describe a logical theory about a field of in-

terest. The power of OWL ontologies lies in their ability to generate inferences

about the relationships among classes and instances in the ontology after auto-

mated reasoning [HS01, TH06a]. For this reason, ontologies are particularly well

suited for research in areas with vast amounts of available data that need further

exploration and exploitation, such as in biomedical research [RSN08, BS06].

A simple example of what an ontology looks like can be found in Figure 1.1.

This example shows an intuitive graphical representation of axioms describing a

small family1. The circles represent classes, like Man, Woman, Dog. Each class

has a set of individuals like Quagmire, Lois, denoted with the diamond shape.

Individuals are related to each other through properties like hasWife and hasPet.

More details about basic notions of ontologies are described in Chapter 2.

On the downsides, the design of an ontology can be a difficult and time-

consuming process. OWL is a highly expressive language and can be effectively

used for the representation of complex domain knowledge such as biology, or med-

ical terminology. However, it is quite difficult to form the axioms and describe

1‘Inspired from the Family Guy series, http://www.fox.com/familyguy/
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Quagmire

Chris

Dog

Peter 

Brian
hasPet

Lois

hasW
ife

Stewie

hasSon

Man

Woman

Boy

Figure 1.1: Representation of OWL Classes containing Individuals. The Individ-
uals are connected with Properties.

concepts in the ontology without prior selection of a design techniques. This is

similar to software development; the software engineer does not start implement-

ing a program without thinking about a design for the program first; there is an

initial plan on how objects and processes are connected to each other. This kind

of decisions rely on the application for which the program or the ontology are

going to be used; what is their purpose and motivation? In addition, after the

development, the ontology needs to be properly managed and evolved so that it

will be constantly aligned with changes that occur in the application domain in

which it is used.

The work on effective design of ontologies [PSFGP10, RRB06, DCGPMPSF08]

has led to the development of a large number of axiomatically rich ontologies.

Editors like Protégé 4 and The NeOn Toolkit are professional environments for

developing or editing an ontology by offering automated reasoning and explana-

tion services for inferences, debugging of logical errors, multiple graphical views of

the asserted and inferred ontology, modularisation services and so on. Methods

for more effective ontology development, especially in the bioinformatics area,

include libraries of design patterns and a meta-language for expressing them.

The importance of design patterns in ontologies was analysed, among others,

by Aranguren [Ara09]. Design patterns are modelling solutions for particular
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modelling problems. Ontology Design Patterns (ODPs) aim to facilitate the pro-

cess of building axiomatically rich and rigorous ontologies. ODPs are similar to

software design patterns; effective modelling solutions for common ontology mod-

elling problems. The developers of ODPs are essentially trying to overcome design

problems, to help ontology engineers select standard design decisions during the

development of an ontology.

An example of an ontology fragment and related patterns, which will be ex-

plained in greater detail in subsequent chapters, is provided in Figure 1.2.

(1) Alanine SubClassOf hasCharge some Positive

(2) Aspartate SubClassOf hasCharge some Negative

(3) Cysteine SubClassOf hasPolarity some Non-Polar

(4) Glutamate SubClassOf hasPolarity some Polar

g1 = ?AminoAcid SubClassOf hasCharge some ?Charge

g2 = ?AminoAcid SubClassOf hasPolarity some ?Polarity

Figure 1.2: Four axioms from the Amino Acid ontology, describing four amino
acids, and two patterns abstracting them.

All these efforts have led to the rapid development of ontologies, hosted in

repositories like BioPortal2 and TONES3. Such repositories, together with on-

tology searching services like Swoogle4 and Watson5, aim to facilitate ontology

sharing; a key aspect of the semantic web. Thus, developers, instead of designing

a new ontology from scratch, can reuse existing ontologies from repositories and

extract fragments for the construction of a new ontology. This is similar to soft-

ware reuse; code exists in repositories and developers do not have to implement a

program from scratch, reusing fragments of existing code instead. This is a natu-

ral development as the corresponding field evolves and matures; in the past years

2http://bioportal.bioontology.org/
3http://owl.cs.manchester.ac.uk/repository
4http://swoogle.umbc.edu/
5http://kmi-web05.open.ac.uk/WatsonWUI/

http://bioportal.bioontology.org/
http://owl.cs.manchester.ac.uk/repository
http://swoogle.umbc.edu/
http://kmi-web05.open.ac.uk/WatsonWUI/
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there has been effort focusing on just writing programs for completing simple

tasks, while today software engineering has evolved into agile development and

higher reuse of software. This is where the need for reverse engineering methods

starts to emerge: in software engineering a variety of techniques for inspecting

code such as code slicing tools6 [Kor02, RK02], abstraction techniques such as

object orientation, functional programming, UML diagrams etc exist, to facilitate

the process of understanding code.

In ontology engineering, the process of understanding an ontology, as part

of reusing or maintaining it, is a difficult task. The user has to understand the

meaning of each axiom as well as combinations of them to gain an idea of the

underlying semantics. Such axioms are difficult to understand and sometimes

non-intuitive, especially with regards to the conceptual implications of using an

axiom or the consequences of applying automated reasoning after adding a new

axiom to an ontology. In other words, the user has to achieve different levels of

comprehension: understanding how the ontology was built, what design style has

been used, and its underlying semantics and inferences. This task becomes even

more difficult when dealing with ontologies that consists of hundreds of thousands

of axioms. Even though there is a plethora of tools for ontology development there

is a lack of methods and tools geared toward the inspection of ontologies and for

quality assurance.

This research focuses on an aspect of ontology inspection, the detection of

regularities. In this thesis, regularities are defined as repetitive structures in

the asserted axioms and entailments of an ontology. The intuition behind it is

to reveal the composition style of an ontology and highlight possible underlying

patterns. The detection of such regularities can be helpful in many tasks such as:

1. Inspection of the design style of an ontology: Regularities can pro-

vide an abstraction layer on top of the low level axioms of an ontology.

Since it is expected that particular design decisions were made during the

development of an ontology, regularities can reveal such design by providing

batch descriptions of axioms that reference similar entities in the ontology.

2. Quality assurance: The analysis of regularities of an ontology, and as a

6Program slicing is a technique for simplifying programs by focusing on selected aspects of
semantics. The process of slicing deletes those parts of the program which can be determined to
have no effect upon the semantics of interest. Slicing has applications in testing and debugging,
re-engineering, program comprehension and software measurement.
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consequence of its irregularities, can help the improvement of the ontology

schema. These irregularities can be deliberate deviations of an ontology

“coding” standard or discrepancies. These discrepancies cannot be traced

by any reasoner as they are not logical errors. The detection and repair of

such issues improves the quality of the ontology schema.

3. Ontology integration: Another scenario is a pattern-based approach for

the integration of ontologies. This task is similar to the methods described

in [ŠZSI10] and involves various alignment actions performed on the ontolo-

gies according to their underlying patterns. The detection of regularities

can facilitate such procedure as it can highlight fragments of the ontology

that have been designed in the same way.

More detailed usage scenarios are described in Chapter 3.3.

1.1 Research hypothesis and research questions

This research is on the broader area of the development of reverse ontology en-

gineering methods. In particular, it focuses on the identification of repetitive

axiomatic structures, named as regularities in an ontology.

The hypotheses of this research are:

1. Detection of syntactic regularities can reveal the compositional style of an

ontology.

2. Detection of semantic regularities can reveal queries that can be asked about

an ontology.

3. Analysis of regularities can help the inspection of irregularities in an ontol-

ogy.

4. Regularities can provide an abstract view of the ontology.

The main hypothesis (1) of this thesis is that the recognition of syntactic

regularities can be helpful for understanding the composition of an ontology in

terms of such patterns, as it can reveal parts of the ontology that were designed

in similar ways. In the field of ontology engineering, the use and recognition of

patterns is important when authoring an ontology, in order to understand it and

assure that it conforms to guidelines and intended patterns.
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The second hypothesis (2) can be considered as an extension of the first hy-

pothesis; the detection of semantic regularities can provide a summary of the

information that can be inferred about similar entities in the ontology. In addi-

tion, the detected regularities in the entailments of the ontology can reveal queries

that can be asked about the ontology.

The third hypothesis (3) is related to the analysis of the detected regulari-

ties. The claim made here is that the analysis of regularities can help a more

systematic inspection of irregularities in an ontology. These irregularities can be

either deliberate design deviations or design defects in an ontology. An inten-

tional design deviation can be motivated by the need for a particular feature, or

to work around a performance issue, where strict adherence to the pattern would

have caused great cost when reasoning, and this choice should be documented

for future developers, so that the intent is preserved. On the other hand, an

unintentional deviation might be the consequence of a misunderstanding, and as

such, basically a modelling error.

Finally the fourth hypothesis is related with the inspection of regularities in

an ontology and the abstraction they create in the axioms and entailments of an

ontology. Regularities can summarise repetitive structures in an ontology repre-

sented through generalisations; axioms with at least one meta-linguistic variable.

The validation of these hypotheses initially involves the evaluation of the

detected regularities; whether they are valid and meaningful. That covers the as-

sessment, through metrics, of the quality and validity of the detected regularities,

and comparison with different independent structures of an ontology.

Each hypothesis is related with a number of research questions, which are

answered in the remaining chapters of this thesis. These are:

• Questions related to hypothesis 1

– How can syntactic regularities be detected in ontologies?

– How can the validity of the detected syntactic regularities be assessed?

– How can regularities reveal the compositional style of an ontology?

• Questions related to hypothesis 2

– How can semantic regularities be detected in ontologies?

– How can the validity of the detected semantic regularities be assessed?
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– How can semantic regularities reveal queries about an ontology?

• Question related to hypothesis 3

– How can the analysis and inspection of regularities reveal irregularities

in an ontology?

• Question related to hypothesis 4

– How can regularities provide a summary of the ontology?

1.2 Contribution of this Thesis

The broad aim of this thesis is to advance the methods of authoring ontologies

and in particular methods of revealing the compositional style of an ontology.

To achieve this, this research focuses on the detection of regularities in ontolo-

gies as part of an inspection process to help authoring and makes the following

contributions:

• Explanation of the concept of regularities, irregularities, patterns

and design patterns. Even though the term pattern has been used in

the field before, there are different interpretations of it. This thesis gives a

description of regularities, and clarifies their difference from patterns and

design patterns.

• Computation of syntactic regularities. One of the main contributions

of this thesis is the computation of syntactic regularities, which are repeti-

tive structures in the asserted axioms of an ontology.

• Computation of semantic regularities. Another important contribu-

tion of this thesis is the computation of semantic regularities, which are

repetitive structures of a selected set of entailments in the ontology.

• Implemented tools for the inspection of regularities. A prototype

tool has been developed for the computation as well as the inspection of

regularities. In particular, a plugin with multiple views of clusters of similar

entities and their description with generalisations along with stats for the

generalisations has been developed for a professional ontology suite, Protégé

47.
7http://protege.stanford.edu/

http://protege.stanford.edu/
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• Evaluation of the framework. The framework for the detection of syn-

tactic and semantic regularities in the ontology has been evaluated using a

variety of strategies. These include validation through two different types

of criteria:

– Internal criteria. As the computation of regularities is based on

clustering, there are metrics for assessing the quality of the results

such as the compactness and separation of the clustered data.

– External criteria. This approach tests whether the detected struc-

tures are meaningful by comparing the results with an independent

partition of the data. This can be further divided into the following

approaches:

∗ Comparison with patterns described in the documentation of the

ontology.

∗ Projection and validation of the syntactic and semantic regulari-

ties against the modular structure.

• Inspection of irregularities. This thesis provides experimental evidence

of the inspection of irregularities in an ontology as part of the analysis of the

detected regularities. These were classified as either deliberate deviations

from an initial pattern or as design defects.

1.3 Outline of Thesis

Chapter 2 presents background knowledge for the research area. It includes

a discussion on the area of ontology engineering and ontology comprehen-

sion. Also, it describes different aspects of ontology comprehension using

the software comprehension analogy and shows how different methods and

tools in ontology engineering can be used to facilitate comprehension of an

ontology. Finally, it presents background work on patterns and introduces

the notion of regularities.

Chapter 3 presents the architecture of a framework for detecting regularities in

ontologies, RIO, the main contribution of this research. It also describes

some usage scenarios in which this framework can be potentially useful.
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Chapter 4 describes the computation of syntactic regularities in ontologies,

which is the first contribution of RIO. It presents the algorithms for the

computation of the regularities and describes modelling decisions that were

made for their computations.

Chapter 5 describes the computation of semantic regularities in ontologies, which

are repetitive structures in a selected set of entailments in an ontology. It

describes the details on the extraction of an entailment set from an ontology

and details of the algorithms for computing semantic regularities. This is

the second contribution of RIO.

Chapter 6 describes the evaluation methods for assessing the validity and qual-

ity of the detected regularities. This involves the inclusion of different types

of criteria such as metrics and validation through other independent struc-

tures in the ontology.

Chapters 7 and 8 present a number of experiments and evaluation results. The

experiments demonstrate the detection of syntactic and semantic regular-

ities in ontologies as well as the inspection of irregularities in a variety of

ontologies. The layout of these Chapters is symmetric; Chapter 7 presents

the experiments on the syntactic regularities, while Chapter 8 presents the

corresponding experiments for the semantic regularities on the same se-

lection of ontologies allowing the comparison with the results of syntactic

regularities.

Chapter 9 discusses outcomes of this research and reviews this thesis’ contribu-

tions with respect to the evaluation results. It ends with pointers for future

research.

1.4 Published Work

The work of this thesis is supported by the following journal, conference and

workshop publications:

• [MISR11] E. Mikroyannidi, L. Iannone, R. Stevens, and A. Rector. In-

specting regularities in ontology design using clustering. The Semantic

Web, ISWC 2011, pages 438-453. Springer, 2011.
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• [MISR12] E. Mikroyannidi, L. Iannone, R. Stevens, and A. Rector. In-

specting regularities and irregularities in SNOMED-CT. In Proceedings of

the 4th International Workshop on Semantic Web Applications and Tools

for the Life Sciences, SWAT4LS 2011, pages 76-83, New York, NY, USA,

2012. ACM.

• [MIS12] E. Mikroyannidi, L. Iannone, and R. Stevens. RIO: The Regu-

larities Inspector for Ontologies Plugin for Protégé 4. In 3rd International

Conference on Biomedical Ontology (ICBO), June 2012.

• [MMIS12] E. Mikroyannidi, N. A. A. Manaf, L. Iannone, and R. Stevens.

Analysing syntactic regularities in ontologies. In 9th OWL: Experiences

and Directions Workshop (OWLED), 2012.

• [MSIR12] E. Mikroyannidi, R. Stevens, L. Iannone and A. Rector. Analysing

Syntactic Regularities and Irregularities in SNOMED-CT. In the Journal

of Biomedical Semantics.

• [MSR11] E. Mikroyannidi, R. Stevens, and A. Rector. Identifying ontology

design styles with metrics. In 7th International Workshop on Semantic

Web Enabled Software Engineering (SWESE), Bonn, Germany, 2011.



Chapter 2

Ontology Engineering and

Reverse Methods for

Comprehension

This chapter introduces key ideas and definitions as well as the general scope in

which this research is placed, including the presentation of fundamental notions

and nomenclature that will be used in the remaining chapters. Section 2.1 is

a short introduction to ontology engineering and the ontology comprehension

problem. It can be used as an outline of this Chapter and as a map for introducing

the key ideas that are discussed and explained later on.

2.1 The Landscape of Ontology Engineering

Ontologies are machine processable artifacts, useful for expressing and sharing

domain knowledge [BCM+03]. As mentioned in Chapter 1, OWL is a W3C

standard language for developing logic-based ontologies. The family of OWL

(1 and 2) languages is based on Description Logics, allowing for inferences to

be made based on a set of asserted facts, named as axioms ; two of the OWL

languages, OWL DL and OWL 2 DL, have this notion expressed in their name,

where DL stands for Description Logics. In OWL, axioms are built using OWL

constructs, combined through operands. In a nutshell, they are logical sentences

that describe a knowledge domain. Details about OWL constructs are described

in Section 2.3.

Axioms can be written using a variety of OWL syntaxes. To give a simple

28
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example of an ontology expressed in OWL using the DL Syntax, consider the

following ontology O:

Car v Vehicle (1)

Sports car v Car (2)

These two axioms state that a Car is-a a Vehicle and a Sports car is-a Car.

The logical inference that follows from these two axioms is:

O |= Sports car v Vehicle (a)

Expression (a) is also called an entailment. This is only one example of

an entailment from this example ontology; in theory, infinite inferences can be

made [BCM+03]. In practice, a software program, called a reasoner, is used for

working with the ontology; it initially checks for logical errors and then generates

inferences like (a), starting from the asserted facts, like axioms (1) and (2).

The OWL languages, up to OWL 2 DL, are characterised by the availability

of efficient reasoning algorithms - meaning that the reasoning tasks are decidable,

and in the average case reasoning can be performed quickly. More details on how

reasoning is performed are described in Section 2.4.

Thus, ontologies can be efficient solutions for describing detailed domains and

sharing terminologies, e.g.,in biology [BR04], health sciences [BM06] etc, as the

developers do not have to assert all the required information manually, but large

amounts can be left implicit and inferred from the asserted axioms by a reasoner.

In addition, OWL provides a variety of constructs and features for describing a

domain, allowing for the inclusion of more complex axioms.

The establishment of OWL as a W3C standard has contributed to the rapid

development of ontologies for many disciplines and especially bioinformatics [BS06].

As an example, Figure 2.1 shows the use of word ’ontology’ in PubMed1 publi-

cations since 2000. The number of articles related with ontologies has rapidly

increased over the last years and many leading journals in Bioinformatics and

Computers in Biology and Medicine area, have devoted special issues on ontolo-

gies and regularly present papers on ontology applications.

1http://www.ncbi.nlm.nih.gov/pubmed

http://www.ncbi.nlm.nih.gov/pubmed
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Figure 2.1: Growth of ontology papers in PubMed since 2000.

2.1.1 Problems with OWL and Ontology Engineering So-

lutions

From early years, the development and reuse of ontologies led to the development

of ontology engineering methods [NH97, UHW+98]. However, with the develop-

ment of ontologies and of the ontology engineering field, the necessity of better en-

gineering solutions emerged [PSFGP10, RRB06, DCGPMPSF08, EF08, FLC10].

Ontologies describing complex domains, such as biology, anatomy and dis-

eases, have being developed for the last 10 years [BS06] in the context of large

projects. A few examples are the Gene Ontology (GO)2 [Con04], SNOMED-

CT3, NCI thesaurus4 and FMA5 [RMJ+03]. Many collaborative efforts amongst

different communities flourished the development of such terminologies. Such on-

tologies consist of hundreds to thousands of axioms of varying complexity. NCI

thesaurus is one of the largest ontologies that covers numerous cancer research re-

lated domains [SdCH+07]. One of its latest versions released on 09/20116, consists

2http://www.geneontology.org/
3http://www.connectingforhealth.nhs.uk/systemsandservices/data/uktc/snomed
4http://ncit.nci.nih.gov/
5http://sig.biostr.washington.edu/projects/fm
6http://www.cs.man.ac.uk/~goncalvj/ncit/asserted.html

http://www.geneontology.org/
http://www.connectingforhealth.nhs.uk/systemsandservices/data/uktc/snomed
http://ncit.nci.nih.gov/
http://sig.biostr.washington.edu/projects/fm
http://www.cs.man.ac.uk/~goncalvj/ncit/asserted.html
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of 1 ,262 ,066 axioms. Since much effort has been spent on these ontologies, shar-

ing and reusing such resources is easier than building new ones from scratch. For

this purpose, ontology repositories like NCBO BioPortal7 were developed to al-

low the sharing of biomedical and bioinformatics terminology. However, the reuse

and extension of an ontology is not an easy task, especially because, as ontologies

grow in size and complexity, they become more difficult to manage and maintain.

SNOMED-CT is such an example; many efforts have focused on the maintenance

and quality assurance of the ontology [RBS11, CSKD04, WHM+07, RBK08].

More details on quality assurance are presented in Section 2.7.1.

Even though OWL is a very expressive logical language, as we will see in

Section 2.2, it has been observed that expressing knowledge in OWL is a difficult

task [RDH+04], even for simple domains such as Pizza, the subject of a famous

ontology used in many tutorials [RDH+04].

Ontology editors and other tools have been developed to facilitate ontology

development as we will see in Section 2.6, but most of these still offer little more

than basic functionality for writing axioms in an ontology and basic visualisations

of the structure of an ontology.

In addition, the unpredictable “behaviour” of an ontology with regard to its

entailments has proved to be an issue for ontology development; this is because

the misuse of OWL constructs and their combination resulted in unpredictable

entailments and in logical errors that could not be resolved with manual inspection

of the axioms [RDH+04]; manual inspection is limited, in this context, both by

the scale of ontologies composed of hundreds of thousands of axioms, and by the

difficulty, for a human, to understand at once all the consequences of adding an

axiom to an ontology.

Even worse, some of these errors will make the ontology inconsistent, i.e., no

model could exist for this ontology. Details about inconsistency are described in

Section 2.4. While detecting an inconsistency is a standard task for reasoners, and

so it does not require human intervention for detection, repairing an inconsistency

is much more difficult, since there can be more than one cause, and identifying

the root issue is a complex task [PSK05].

This consideration leads to another key aspect of ontology engineering: on-

tology debugging. In particular, the problem of fixing unsatisfiable concepts and

inconsistent ontologies often cannot be resolved with manual inspection of an

7http://bioportal.bioontology.org/

http://bioportal.bioontology.org/
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ontology. Theories and tools for dealing with ontology debugging have made this

task easier [PSK05]. In addition, methods for providing explanations to various

entailments and helping users to trace logical errors in ontologies have been de-

veloped [KPHS07, HP10, HPS10a, HPS10b]. Today, these ontology debugging

and explanatory services have become an important feature of advanced ontol-

ogy editors like Protégé 48 and The NeOn Toolkit9. All these are discussed in

Section 2.6.2.

Module extraction and integration with other ontologies is a more advanced

task concerning ontology reuse; it requires the understanding of an ontology for

selecting the corresponding signature. The modularisation of an ontology would

ensure the extraction of a desired part of an ontology for reuse in a different

ontology. We discuss different types of modularisation algorithms in Section 2.5.

In addition to module extraction, collaborative efforts on the development

of an ontology brought to attention another problem of ontology engineering;

the development of methods for tracking ontology versions and avoiding conflicts

when different people are editing an ontology [SEA+02, HJ02].

All the above tasks, as most tasks involving ontology use and authoring,

have a common characteristic, which is the need to understand an ontology, i.e.,

ontology comprehension. Ontology comprehension is an important and difficult

task [NCA08, GWS07]. The process of understanding ontologies can be compared

to the process of understanding code, its structure, organisation and purpose, in

software engineering. The OWL language can be compared with similar low

level programming languages such as assembler, as it represents the lowest level

for ontology semantics; the components below OWL, such as its serialization and

storage solutions, do not have semantic value, i.e., the same ontology can be stored

as a file or in a database, or in any of a set of syntaxes, and each ontology has

exactly the same interpretation. To the best of our knowledge, so far there is no

framework combining ontology engineering methods for the purpose of ontology

comprehension.

Different renderings of OWL ontologies, such as the OWL Functional Syn-

tax [MPSP+09] and the OWL Manchester Syntax [BVHH+04], which are de-

scribed in more detail in Section 2.3, can provide a more readable rendering of

8http://protege.stanford.edu/
9http://neon-toolkit.org/

http://protege.stanford.edu/
http://neon-toolkit.org/
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an ontology but it is not enough as a standalone service to achieve comprehen-

sion. In addition, efforts on the interpretation of axioms in the ontology into

natural language as an attempt for a more understandable format have been re-

ported in [SMW+11, RD00, GA07, Sch09]. All the above ontology engineering

solutions whose initial purpose was not ontology comprehension as well as new

ones could be integrated to support ontology comprehension. As it is discussed in

Section 2.6.1, similar software engineering approaches were taken in the software

engineering field for tackling the corresponding problem of software comprehen-

sion; the understanding of code. All these methods that can be used in the scope

of comprehension are named as reverse engineering methods. More details about

software reverse engineering and ontology reverse engineering are described in

Section 2.6.

The reuse of ontologies can simplify the comprehension of an ontology, since a

commonly used ontology will need to be understood once by a developer, and all

subsequent reuses will require less study. This task involves initially the inspection

of an ontology, identification of patterns and understanding of the axioms and

their implications. Pattern injection and pattern recognition in ontologies are

important aspects of ontology comprehension and the main focus of this thesis.

The usage of patterns as ontology engineering solutions are thoroughly described

in the following section as well as in Section 2.7.

The Role of Patterns in Ontology Engineering

Pattern recognition is one of the most critical skills in intelligent decision mak-

ing, as it can help in predicting the evolution of a system with a high degree of

accuracy [TK06]. In software engineering, pattern recognition has been used in

software comprehension frameworks for the creation of code abstractions, facili-

tating inspection processes [Bro81].

In ontology engineering, patterns have so far been used in a different context.

Ontologies as self-standing entities are Knowledge Representation artifacts: ax-

ioms express patterns of knowledge in a particular domain [BCM+03]. Efforts

towards knowledge extraction from text and its representation with ontologies

are reported in [PRG+09, JKS+11]. Existing work on ontology patterns refers

mainly to the development of ontologies based on patterns. Moreover, design

patterns, meaning best design practices, are used often in common knowledge

representation problems [GP09].
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However, patterns can exist without being necessarily the result of the appli-

cation of a design decision to a modelling problem; they can emerge as developers

reapply the same process unconsciously, reinventing the same solution at different

points in the development. Finding and formalising such patterns can be done

through the RIO framework (introduced in Chapter 1 as the main contribution

of this thesis).

Patterns can be considered the design templates that developers use when

describing a set of entities in an ontology. These patterns can be expressed in

various ways such as through spreadsheets, general documentation, conceptual

schemas, etc [PRG+09, JKS+11]. Their instantiation in the ontology is expected

to give rise to repetitive structures. These repetitive structures are axioms and

sets of axioms with similar design. There are methods and tools for ontology

development that allow to design ontologies using patterns; however, the detection

of patterns in ontologies is still a novel area, and this thesis provides tools to

advance the exploration in this research subject. Some prior work towards this

direction is reported in [J L L05] where the authors detect patterns using DL rules.

However the detection of the patterns is not unsupervised.

This thesis deals with the problem of pattern recognition in ontologies. The

contribution can be framed in the field of reverse ontology engineering methods:

the methods described in this thesis can be used in a framework as a supporting

tool for the comprehension of an ontology, of which RIO is a first draft.

Summary

This section described briefly aspects of ontology engineering. It also introduced

issues with ontology use and reuse as a result of a lack of systematic reverse

ontology engineering methods and tools. Sections 2.2, 2.3 and 2.5 describe in more

detail fundamental notions of ontology engineering while Section 2.6 describes

in more detail the problem of ontology comprehension. Section 2.6.2 describes

aspects of the problem and, starting from software comprehension frameworks,

draws an outline of an ontology comprehension framework. Finally, Section 3.1

gives the main definitions around different notions of patterns.
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2.2 Description Logics

This section presents the basic notions and nomenclature for Description Logics

and OWL.

Description Logics (DLs) are a family of logic based knowledge representation

languages [BCM+03]. They are decidable fragments of First Order Logic (FOL).

DL is used in artificial intelligence for formal reasoning on the terminological

knowledge of an application domain.

This logical foundation provides for solid reasoning algorithms, which allow

OWL ontologies to be used to draw sound and complete inferences about the

knowledge domain they describe. The most notable application outside Computer

Science is in bioinformatics and medical informatics, where DL assists in the

codification of medical and biological knowledge.

The basic building blocks of DL are:

• Concepts: A concept is a unary predicate in FOL and is defined as a class

in OWL. A class in OWL is defined as a group of individuals.

• Roles: They are named as properties in OWL and they are binary predi-

cates in FOL.

• Individuals: An individual in OWL is defined as a single object. In FOL

individuals represent constants.

Basic Constructs and Complex Concepts

Table 2.1 shows some basic DL constructs. C and D in Table 2.1 are concepts

while R is a role. Complex concepts can be created as a combination of particular

constructs and concepts. For example, the complex concept Woman uArtist is a

conjunction describing individuals who are instances of Woman and Artist; in an

ontology, for example, there might be an individual identified with the name F

representing Frida Kahlo10 and belonging to this class expression; this is the OWL

name for a composite class obtained through composition of DL constructs.

10http://en.wikipedia.org/wiki/Frida_Kahlo

http://en.wikipedia.org/wiki/Frida_Kahlo
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Constructor DL Syntax Example
Top concept >
Bottom concept ⊥
Concept negation ¬ ¬Child
Concept intersection C uD Woman u Artist
Concept union C tD Cat t Dog
Existential restriction ∃R.C ∃hasPet.Dog
Universal restriction ∀R.C ∀hasChild.Boy
TBox axioms
Concept inclusion C v D Car v Vehicle
Concept equivalence C ≡ D FamilyGuy ≡ Man u ∃ hasFamily.Family
ABox axioms
Concept assertion a : C Brian : Dog
Role assertion (a, b) : R (Peter, Brian) : hasPet

Peter has pet Brian

Table 2.1: DL constructors and examples.

Axioms

Axioms are logical statements about a knowledge domain. Axioms built with

concepts, roles, individuals and constructors. Thus, axioms are logical state-

ments relating concepts, roles and individuals with a (sub)set of the constructors

mentioned above. There are three categories of axioms:

• TBox axioms are Terminological Box statements defining relationships be-

tween concepts, concepts and roles, and between roles and datatypes. TBox

axioms that define concept inclusions are called subclass axioms in OWL.

An example of a subclass axiom is Car v Vehicle, that asserts that Car is

a sub-concept of Vehicle. In OWL, a subclass axiom between atom classes

is also called is-a relationship. The axiom Car v ∃ hasPart.SteeringWheel

states that every instance of a Car has a part which is a steering wheel.

Equivalency of concepts (A ≡ B), which means equiextension of the in-

stance sets for any interpretation, is an abbreviation for pairs of axioms of

the form {A v B, B v A}.

• ABox axioms are Assertional Box statements defining relationships be-

tween individuals. For example, the axiom hasFriend(Peter Griffin, Glenn

Quagmire) is an assertion axiom, defining that the individual Peter Griffin

has as friend the individual Glenn Quagmire.
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• RBox axioms are Relational Box statements defining relationships be-

tween roles. For example, the axiom hasBrother v hasSibling states that the

hasBrother is a sub-property of the hasSibling property.

The type of axioms that can be expressed about a knowledge domain depend

on the Description Logic language that is used and the expressivity it allows. The

type of axiom that all Description Logic languages allow is the atomic subsump-

tion; that is the subsumption between atomic classes (e.g. Car v Vehicle).

DL Expressivity

The expressivity of a DL language defines the set of constructors that can be used

in axioms expressed in that language. Some basic DL languages are:

1. The EL logic allows for concept intersections (u) and existential restrictions

(∃).

2. The ALC logic allows for complex concept negation (¬C, where C is a

complex class, e.g. Bat u Man), concept union (t), concept intersection

(u), existential restrictions (∃) and universal restrictions (∀).

Other constructors whose combination defines logics of higher expressivity

are:

• F Functional properties: For a given individual, a role can have only

one value. For example, the property assertion hasMother(Stewie, Lois),

where Functional(hasMother), describes the fact that the individual Stewie

can have only one mother, Lois. Thus, if the individual Stewie has two

values for hasMother, these two values would be inferred to be alternative

names for the same individual.

• H Role hierarchy: It defines relationship between properties (e.g. sub-

properties). An example is hasSister v hasSibling.

• R+ Limited complex role inclusion axioms; reflexivity and irreflex-

ivity; role disjointness and transitivity. An example is hasAncestor

being a transitive role; if hasAncestor{Lois, Pewterschmidt} and hasAnces-

tor(Meg, Lois), then it is implied that hasAncestor(Meg, Pewterschmidt).
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• O Nominals: They define classes that can have only one individual as

instance. For example, the concept {Brian} is a concept with only one

instance, the individual Brian.

• I Inverse properties: They define properties of different direction. For

example, the assertion hasMother(Stewie, Lois) has as inverse hasMother−(Lois,

Stewie).

• N Cardinality restrictions: They can be used to define a number of role

successors and predecessors of individuals. For example, the ≥ 2 hasSibling

is a concept that defines individuals that have at least 2 siblings while the

≤ 2 hasSibling defines individuals that have maximum 2 siblings.

• Q Qualified cardinality restrictions: They are a more expressive form

of cardinality restrictions, allowing the specification of role fillers. For ex-

ample, the concept ≥ 2 hasSibling.Male defines individuals that have at

least two male siblings.

The combination of constructors can define the expressivity of a language. For

example, the DL SHIQ is the ALC plus extended cardinality restrictions, and

transitive and inverse roles. Abbreviations on the languages can be defined. For

example, the EL++ is an alias for ELRO and it allows in additional for transitive

roles and nominals. The expressivity of OWL 2 DL is SROIQ; it is an extension

of SHIQ and in addition it includes reflexive roles.

2.3 An Ontology Language for the Web (OWL)

The basic notions of OWL are:

• Entities: elements used to refer to objects from a field of interest. In OWL,

entities are concepts (classes), object and data properties, individuals, an-

notation properties and simple datatypes.

• Expressions: combinations of entities to form complex descriptions from

basic ones. Expressions are complex classes in DL.

• Axioms: the basic statements that form an OWL ontology.
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OWL DL Symbol Manchester Syntax Functional Syntax
someValuesFrom ∃ hasPet some Dog ObjectSomeValuesFrom(hasPet Dog)
allValuesFrom ∀ hasChild only Boy ObjectAllValuesFrom(hasChild Boy)
hasValue 3 hasCountryOfOrigin value

England
ObjectHasValue(hasCountryOfOrigin Eng-
land)

minCardinality ≥ hasSibling min 2 ObjectMinCardinality(2 hasSibling)
Cardinality = hasSibling exactly 2 ObjectExactCardinality(2 hasSibling)
maxCardinality ≤ hasSibling max 2 ObjectMaxCardinality(2 hasSibling)
intersectionOf u Bat and Man ObjectIntersectionOf(Bat Man)
unionOf t Man or Woman ObjectUnionOf(Man Woman)
complementOf ¬ not Dog ObjectComplementOf(Dog)
subClassOf v Car SubClassOf Vehicle SubClassOf(Car Vehicle)
equivalentTo ≡ Batman EquivalentTo Bat

and Man
EquivalentClasses(BatMan ObjectIntersec-
tionOf(Bat Man))

Table 2.2: Representation of OWL constructors and examples in Manchester and
Functional syntax

Axioms are used to make statements about a knowledge domain, relating

entities. As mentioned above, an ontology, from a computational point of view,

is a set of axioms describing a domain of interest.

OWL can be expressed in many formats, as already mentioned above. Accord-

ing to the W3C Recommendation [W3C09], all ontology tools should support the

RDF/XML format. A common human-readable syntax for OWL ontologies is the

Manchester OWL Syntax; another syntax easier on human eyes is the Functional

Syntax. In this thesis, mainly Manchester OWL Syntax and DL syntax will be

used for the demonstration of examples and results. Table 2.2 shows examples of

OWL constructors in the Manchester and Functional Syntax.

2.3.1 OWL Sublanguages

OWL 1 has three main sublanguages; OWL-Lite, OWL-DL and OWL-Full.

OWL 2 has the following profiles: EL, QL, RL, and OWL 2 DL, whose expres-

sivity (SROIQ) is slightly higher than OWL DL (SHIQ) [MGH+09]. OWL-Lite is

the least expressive sublanguage of OWL. OWL-DL falls between that of OWL-

Lite and OWL-Full. OWL-DL may be considered as an extension of OWL-Lite

and OWL-Full an extension of OWL-DL. OWL-Full is the most expressive OWL

variation and is undecidable, meaning that the reasoner cannot give a complete

answer. Thus, performing automated reasoning on OWL-Full ontologies is not

possible. OWL-Full is used in ontologies where high expressivity is more impor-

tant than decidability and computational completeness of the language.

This thesis focuses on ontologies that use the OWL-Lite and OWL-DL lan-

guages.
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2.3.2 Structural Notions and Graphical Representation

Following very closely the definitions described above for DL languages, each

OWL axiom has an internal structure, which mainly connects entities with OWL

constructs. Entities can be either classes, properties or individuals. Classes rep-

resent a set of individuals with common characteristics. Individuals are instances

of classes and properties link pairs of individuals in relationships.

Signature of an ontology: It is defined as the set of atom entities in an

ontology. These are the classes, object and data properties and individuals that

exist in the ontology. The representation Sig(O) denotes the signature of an

ontology O.

Usage axioms: The usage axioms of an entity are the set of axioms that

reference that entity. For example given the axioms of Figure 2.2 the usage axioms

for Car are axioms (1)-(3) while usage of property drives are axioms (3) and (4).

(1) Car SubClassOf Vehicle
(2) Car SubClassOf hasColor some Color
(3) CarDriver SubClassOf drives some Car
(4) LorryDriver SubClassOf drives some Lorry

Figure 2.2: Four example axioms describing cars and drivers.

Figures 2.3, 2.4 and 2.5 show different graphical representations of entities.

Individuals are represented with diamond shapes. A set of individuals forming a

class is enclosed in a circle. Finally, relationships between classes are represented

with arrows connecting circles. Figure 2.5 shows the graphical representation

of classes containing individuals. These individuals are related with properties

(property assertions).
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Peter Griffin

Lois

Meg

Chris

Stewie

Brian

Figure 2.3: Representation of OWL Individuals.

Peter Griffin BrianhasPet
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hasW
ife Stewie

hasSon

Figure 2.4: Representation of OWL Properties.

Quagmire

Chris

Dog

Peter 

Brian
hasPet
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Man

Woman

Boy

Figure 2.5: Representation of OWL Classes containing Individuals. The Individ-
uals are connected with Properties.

In tutorials [HKR+04], often the graphical representation of Figure 2.5 has
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been used to demonstrate the role of various objects in OWL. This kind of rep-

resentation is based on set theory and it is regarded as an alternative, easier to

understand, description of objects in OWL.

Is-a Relationship

Subclass axiom is also called an “is-a” relationship in OWL. Ontology editors

usually represent such relationships as trees, although there is no single inheri-

tance limitation in an OWL ontology. Two sample representations are shown in

Figure 2.6 for the subclass axioms Man v Adult, Woman v Adult, Boy v Child,

Girl v Child, Child v Person, Adult v Person.

Adult

Man
Woman

Child

Boy
Girl

Person

Person

Adult Child

Woman Man Girl Boy

is-a

is-a

is-a

is-a is-a is-a

Figure 2.6: Two graphical representations of the class hierarchy. The first repre-
sentation shows the subclass axioms as an overlap of the sets Person, Adult, Man,
Woman, Child, Boy and Girl. The second representation shows the inheritance
tree that is formed from the the subclass axioms.
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Restrictions

Similarly, various graph representations can be used for existential and universal

restrictions. Figure 2.7 shows two graphical representations of the existential

restriction Father SubClassOf hasChild some Child. This axiom means that if

there is an instance of the Father class, then it is connected to at least one

instance of the Child class with the hasChild object property, even if the Child

instance is not known. Secondly, the hasChild some Child is an anonymous class

and it is a superclass of the Father class. This anonymous class can be also a

superclass of the Mother class.

Father Child
hasChild

hasChild

hasChild

hasChild

hasChild

Father

hasChild some Child

Figure 2.7: Two graphical representations of existential restrictions. The first
representation shows how the individuals of two classes (Father, Child) are con-
nected with the property (hasChild) of the existential restriction Father SubClassOf
hasChild some Child. The second representation shows that the anonymous class
hasChild some Child is a superclass of the Father class.

Universal restrictions can be represented similarly to the existential restric-

tions. The difference is that, for example, for the axiom LuckyFather SubClassOf

hasChild only Girl, if there is an instance of a LuckyFather then all of its hasChild

successors are inferred to be instances of the Girl class.
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2.4 Reasoning

The power of OWL ontologies lies in the ability to perform sound and complete

automated reasoning. Using automated reasoning the following tasks can be

performed:

Consistency checking: Given an ontology O as an input, O is consistent

if there is at least one model I of O. In practice, this means that the reasoner

checks if there are any contradictions in the ontology, thus checking whether the

ontology is consistent. An inconsistent ontology has no models, thus, there is no

interpretation that satisfies every axiom of the ontology. Consistency checking is

the main standard reasoning service. Usually, consistency checking is performed

before any other reasoning task.

Satisfiability Checking: Given an ontology O and a class expression C, C

is satisfiable with respect to O if O 6|= C v ⊥ i.e, CI 6= ∅ in some model I of O.

In other words, an unsatisfiable class expression cannot have any instances in any

model of the ontology, thus it is interpreted as an empty set in every model of the

ontology [HBPS08], and flagged as a subclass of ⊥, which in OWL is indicated

with owl:Nothing (an unsatisfiable class is actually equivalent to ⊥, since ⊥ is also

a subclass of any class, just as, in set theory, the empty set is a subset of any

set).

Subsumption Testing: Given an ontology O and two class expressions C

and D, then is C subsumed by D ( C v D ) with respect to O (O |= C v D)?;

i.e., is CI ⊆ DI in every model I of O?. The reasoner infers the structure of

“is-a” (subsumption) relationships, even if not all of them are explicitly stated.

For example, if we have the following axioms in O {Man v Person, Father v
Man}, then O |= Father v Person.

Instance Checking: Given an ontology O, a class expression C and an

individual α, the reasoner can infer if the individual α is of type C. In DL

notation the entailment which is checked is O |= C(α), i.e., if aI ∈ CI for every

model I of O. For example, given the following axioms:

Mother EquivalentTo Woman and hasChild some Child

Individual: Lois

Types: Mother

it is entailed that Lois is also an instance of Woman.
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DL queries: Queries can be asked for getting answers on relations between

entities. The reasoner will return all the results which are entailed by this query.

DL queries can be used for getting answers for the knowledge represented in

ontologies. The answers can be named superclasses (and ascendants), equivalent

classes, subclasses (and descendant classes), or individuals, depending on the

query. An example query is shown in Figure 2.8 as it is taken from DL query

interface in Protégé 4.2. DL queries can be helpful for gaining an intuition of how

an ontology works. For example, the Figure 2.8 shows a query for finding injuries

of the foot (’Injury of dorsalis pedis artery (disorder)’). On the query results we have

selected to show all the ancestor classes. Among the results we get injuries of the

pelvis (e.g. Injury of the abdomen (disorder)), which was obviously not expected

to be found. DL queries have been used for checking such modelling errors in the

quality assurance of an ontology [RBS11].

Figure 2.8: An example of a DL query as it is shown in Protégé 4.

2.4.1 Tableaux Reasoners

The most common type of reasoners performing automated reasoning with DL

systems are tableaux reasoners [BCM+03]. Tableaux algorithms try to prove the

satisfiability of a concept C by constructing a model, an interpretation I in which

CI is not empty. A tableaux is a graph which represents interpretation models,

with nodes corresponding to individuals (elements of the domain interpretation

·I). Thus, in order to check the consistency of an ontology, a tableaux reasoner

attempts to build an interpretation model of this ontology.

The key idea of tableaux reasoners is that they check the consistency of an
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ontology by starting from an initial ABox of the ontology A0 and applying a set

of expansion rules to break down A0; thus the representation of models in the

ontology are represented as a set of ABoxes {A0, A1, . . . , An}. In languages such

as ALC and more expressive ones, where rule expansion is non-deterministic,

each ABox has decision points for the algorithm, thus each ABox has assertions

which are the constraints on the associated model. For example checking the

satisfiability of expression C t D (x) will result in two ABoxes and therefore two

models; one for C (x) and one for D (x). Each decision shows whether x is an

instance of C or D. Table 2.3 shows the rules for ALC [BCM+03].

In this thesis, tableaux reasoners such as FaCT++ [TH06a], HermiT [SMH08]

and Pellet [SPG+07] can be used in the discovery of semantic regularities; more

details will be provided in the following chapters.

Rule Condition and Actions
u-rule If (C uD)(x) ∈ A and {C(x), D(x)} * A

then A′ = A ∪ {C(x), D(x)}
t-rule If (C tD)(x) ∈ A and {C(x), D(x)} * A

then A′ = A ∪ {C(x)},A′′ = A ∪ {D(x)}
∃-rule If (∃R.C)(x) ∈ A and {R(x, y), D(y)} * A for some y

then A′ = A ∪ {R(x, y), C(y)}
∀-rule If (∀R.C)(x) ∈ A and R(x, y) ⊆ A and D(y) * A for some y

then A′ = A ∪ {C(y)}

Table 2.3: Expansion rules for ALC

2.5 Modularity

Ontology modularity is an important research area of ontology engineering as it

allows the partitioning and reuse of ontology fragments. In general, a module is

a fragment of an ontology that is useful for some purpose. In practice, modular-

isation algorithms work as follows; the user provides a set of entities (signature)

from the ontology which is used as a seed for extracting the set of axioms referring

to this signature.

Two types of modularity are distinguished; the syntactic and the semantic

one. Syntactic based approaches like the one presented in [SR07] consider only

structural notions of axioms when extracting a module without considering the

semantics of the language. These though do not guarantee the preservation of
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entailments from the original ontology. On the other hand, semantic based ap-

proaches [GHKS07a] produce modules that preserve the entailments that hold in

the original ontology. Locality-based modules [GHKS07b] belong to this category;

a module M ⊆ O for some ontology O and signature σ ⊆ sig(O) is guaranteed to

preserve all entailments α that can be built from entities in σ which hold in O.

Modularity is the basis for Atomic Decomposition, and for practical optimisa-

tions used in the experiments to deal with large and complex ontologies, in order

to allow the reasoner to tackle such large ontologies in smaller portions. More

details will be presented in the following chapters.

2.5.1 Atomic Decomposition (AD)

The Atomic Decomposition (AD) [VPS11] is a recent method that reveals the

modular structure of an ontology. A naive approach to the computation of all

modules in an ontology needs exponential time, since modules are generated

depending on a subset of the entities mentioned in an ontology, and there is an

exponential number of such subsets. The AD efficiently builds a structure that

synthetically represents all modules based on locality for an ontology, regardless

of the modularisation algorithm variant adopted and without the need to compute

all modules in the ontology.

According to [VPS11], an atom is the smallest building block in the atomic

decomposition structure, and consists of axioms co-occurring in modules. We use

the following definitions from [Tsa12].

Definition 1 (Atom). Given an ontology O and a notion x of locality ∈ {>,⊥},
an atom a is a maximal set of axioms, such that ∀M = x-mod(Σ,O), we have

either all of the axioms are in M or none of them does.

In practice, the locality notion defines the way that a module extraction al-

gorithm will constraint the ontology for the extraction of the atoms. In the ⊥
locality, the modular extraction algorithm will constraint the ontology by ex-

cluding sub-concepts of a concept, while in the >, the algorithm will extract the

module by excluding super-concepts of a concept. In practice the locality type

that is most commonly used is the ⊥. In the remaining thesis when the type of

locality is not mentioned, it will be implied the ⊥-locality.

Definition 2 (Atomic Dependency). An atom a is dependent on an atom b

(written as b � a) if for all modules M such that M ⊇ a, then M ⊇ b.
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Definition 3 (Atomic Decomposition). The Atomic Decomposition AD of an

ontology O, is a dependency graph G = 〈S,�〉, where S is the set of all atoms of

O.

Since every atom is a set of axioms, and atoms are pairwise disjoint, the AD

is a partition of the ontology, and its size is at most linear w.r.t. the size of the

ontology [VPS12]. An axiom belongs to only one atom.

Lets consider the example ontology of Figure 2.9 taken from [VGK+11] and

its ⊥-AD shown in Figure 2.10.

(a1) Animal v (= 1hasGender.>),

(a2) Animal v (≥ 1hasHabitat.>),

(a3) Person v Animal,

(a4) Vegan ≡ Person ∩ ∀eats.(Vegetable ∪Mushroom),

(a5) TeaTotaller ≡ Person ∩ ∀drinks.NonAlcoholicThing,

(a6) Student v Person ∩ ∃hasHabitat.University,

(a7) GraduateStudent ≡ Student ∩ ∃hasDegree.{BA, BS}

Figure 2.9: An example ontology consisting of 7 axioms [VGK+11]

α1, α2

α4 α5

α3

α6

α7

A1

A2

A3 A4 A5

A6

Figure 2.10: AD of the example ontology of Figure 2.9

The AD of Figure 2.10 consists of six atoms (A1−A6). Each atom holds a num-

ber of axioms. The AD graph also represents the partition of the ontology. For
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example, the module for atom A6 will include the axioms in the path dependency

from A6 to A1. Thus, the module M will include axioms M = {a1, a2, a3, a6, a7}.
Similarly the module for atom A2 will include the axioms of atoms A2, A1.

The AD structure can have many useful applications such as quick extraction

of modules [VGK+11], or to investigate dependencies between modules [VPS10],

and finally improve reasoner performance for big ontologies [TP12].

As AD has the effect of reducing the number of axioms that need to be taken

into account by a reasoner, it also helps in solving similar issues for humans; i.e.,

ontology debugging, mentioned above, can benefit from AD to reduce the number

of candidate solutions when looking for ways to fix an inconsistent ontology;

ontology comprehension is similarly simplified, as a smaller part of the ontology

needs to be understood at once.

Even though the AD is a fine grained view of an ontology, it can provide

information on the construction of the ontology and can explain how a module

with a very small seed signature can lead to the extraction of a significant portion

of the ontology. Also, the AD also guarantees that a module built on top of it will

preserve all the entailments over the signature of the atoms, i.e., it will respect

the notion of locality needed to guarantee its logical properties. This derives from

the AD structure being based on the locality notion.

There is experimental evidence that the properties of the AD dependency

graph can help to reveal logical dependency between axioms [VPS12]. In this

thesis we use the AD structure for evaluating the discovered patterns, or regular-

ities.

2.6 Ontology Comprehension

Ontology comprehension can be a demanding cognitive procedure. A user has to

understand how OWL constructors are used to model the domain of the ontology

and the implications they cause. The user has then to identify those parts of the

ontology that have been modelled with the same combination or pattern of con-

structors and entities, together with their interconnection with the other parts of

the ontology. In this way, the user is cognitively creating clusters of concepts with

similar patterns. Therefore, the understanding of the pattern will consequently

lead to the understanding of the cluster of concepts that has been designed using

this pattern. Axiomatically rich ontologies make use of advanced characteristics
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of OWL leading to inferences that give the ontology a rich, interconnected and

complex structure [RDH+04]. Consequently, a user can be faced with a logical

artifact that is difficult to comprehend at many levels: The style of modelling; the

size and shape of the whole ontology; the entailments afforded by the ontology;

and so on. Even before the OWL language specification, ontologies sometimes

failed to deliver their purpose as they were considered to be complex entities that

required an excessive amount of time and effort to be used in conjunction with

other ontologies or to be integrated into an application [UHW+98].

To the best of our knowledge, there is no existing framework for ontology

comprehension. The term seems to have been introduced in [GWS07], where on-

tology comprehension was described as a problem that derives from the problem-

atic “communication” between human agents and ontology artifacts. According

to the authors of [GWS07], the ontology comprehension was described as:

the interaction between human agents and knowledge expressed in

an ontology.

The authors distinguished two modes where ontology comprehension was im-

portant; the development mode and the inspection mode. In the development

mode, comprehension of both the knowledge domain and its OWL description

is important for the correct coding of the information. In the inspection mode,

the understanding of the structure of the ontology, its underlying structures and

design style are important factors for determining the reuse of an ontology.

Another effort on ontology comprehension is reported in [Kee07]. The author

of this work refers to abstractions over an ontology and defines various layers of

abstraction for facilitating the comprehension procedure. These abstractions are

mainly conceptual abstractions defined by functions. Even though this work refers

to abstractions, which are a key concept in comprehension, the abstractions that

are defined are more ad-hoc solutions for particular ontologies that have similar

structure by reusing upper ontologies like DOLCE [GGM+02].

In addition, another method developed for ontology comprehension is de-

scribed in [BSP09]. The tool named as SuperModel aimed to provide an in-

sight into the set of possible models for an ontology based on the implementa-

tion of a tableaux reasoner. The particular tool was coupled with the use of

FaCT++ [TH06a] reasoner. The user could explore various models as these were

exposed by the tool. A screenshot of the plugin for the Protégé 4 ontology editor

is shown in Figure 2.11, taken from [HBPS08].
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Fig. 5. A screenshot of the SuperModel plugin in Protégé

7 Conclusions

Over the past few years since OWL became a standard, services and tools for gen-
erating explanations of entailments have come from nothing to being more than
respectable. In particular, the ability to generate justifications for entailments
is now seen as a key inference service that is required for the development of
ontologies. However, anecdotal evidence suggests that certain types of justifica-
tions can be very hard if not impossible for a broad range of users to understand.
Work to remedy this situation includes identifying superfluous parts of axioms
using so-called laconic justifications, experimenting with augmenting justifica-
tions with lemmas, and the use of models for improving ontology understanding
and comprehension.
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Figure 2.11: A screenshot of the SuperModel plugin in Protégé 4 [HBPS08]

2.6.1 Software Comprehension Analogy

The comprehension of an ontology can be compared to the problem of compre-

hending code. Even though there are many differences between code and OWL

ontologies, structural organisation of information and artifact complexity are sim-

ilar aspects.

Since there is no ontology comprehension framework available, we will use the

analogy with software comprehension as an attempt to pin down corresponding

aspects of ontology comprehension. Software comprehension [VML02] is the pro-

cess of understanding code, its structure, organisation and purpose, in software

engineering. The comprehension problem is derived from the concept assignment

problem [BMW93] that is described in software engineering as the main problem

of program understanding. The following notions are used in the majority of the

presented software comprehension frameworks:

Reverse engineering according to [RS02] is the analysis of a subject system for

identifying the system’s components and their interrelationships, creating
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representations of a system in another form at a higher level of abstraction

and understanding the program execution and the sequence in which it

occurred.

Program slicing is a program reduction technique, allowing to narrow down

the size of the source code of interest by identifying only those parts of

the original program that are relevant to the computation of a particular

function/output [RS02].

Dynamic slicing is a refinement of the static slice by only preserving the be-

haviour for a specific program input rather than all possible program in-

put [Kor02].

Most notable software comprehension frameworks offer a variety of methods

and tools for achieving code comprehension. The main points that are used in all

of them is the provision of different abstraction layers. These tools mainly cover

different aspects of code analysis such as low level slicing of the code or high

level abstraction graphs for gaining an overview of the code’s structure. Software

comprehension frameworks like the DESIRE system [BMW93] or the MOOSE

framework [RS02, NDG05, RK02] or the VizzAnalyser framework [LEL+03, LP05]

provide views and analyser tools of different code abstraction.

The functionality and features of the tools can be summarised to the following:

• Analysis tools performing code slicing. These tools mainly refer to the

program slicing and dynamic slicing mentioned above and their goal is to

narrow down the size of the code and isolate only the part that is of interest.

• Visualisation techniques for providing different views based on abstractions

that are performed in the code. Abstract syntax trees, UML diagrams etc

can be formed according to the structure of the code. For example, the

VizzAnalyser framework [LEL+03, LP05] uses metaphors for a more com-

prehensible visualisation of the software system. It provides the user with

the flexibility to choose among a number of different metaphors and layout

algorithms. With the use of metaphors, a program can be visualised as a

city with buildings and streets. So a small building represents a small class

or buildings on fire represent classes with bad code quality (e.g. without

comments). Other visualisations refer to low level or high level analysis of

the code.
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• Cliché recognition methods which identify repetitive structures in the code.

In [Bro81] cliché recognition will result in clusters of similar code which can

be browsed by the user.

Thus the reverse engineering methods that are provided by the software com-

prehension frameworks aim to provide abstractions for reducing the code com-

plexity. Task oriented methods like program slicing aim to guide the user to

achieve a specific inspection task. Visualisations are combined with the other

techniques for the provision of more comprehensible abstractions over the code.

The analogy with software comprehension can be helpful for the design of similar

methodologies in the ontology comprehension area.

2.6.2 Aspects of Ontology Comprehension

By using the software comprehension analogy we can draw an outline of an on-

tology comprehension framework consisting of reverse engineering methods. This

section describes such methods by reference to existing work. Most of these

existing methods were already introduced in the beginning of this Chapter (Sec-

tion 2.1) as solutions to other ontology engineering problems. However, we argue

that these can be also used in the scope of reverse engineering.

Methods providing further analysis of the axioms work similarly to code slic-

ing tools used in software comprehension frameworks. These are modularisation

methods and methods used for ontology debugging, such as the provision of jus-

tifications for entailments. Modularity can help the user to extract the part of

the ontology that is of interest and facilitate the analysis of an interconnected

set of axioms. Justifications are explanations to entailments. These explana-

tions are small fragments from the ontology that justify why an entailment hold.

Most notable efforts on ontology debugging and on justifications are reported

in [PSK05, HBPS08, HPS09a, HPS10b, KPHS07]. Two example justifications

are shown in Figure 2.12, explaining why the entailment ’old lady’ v ’cat owner’

holds in the ontology. Justifications can be particularly helpful when inspecting

an ontology and trying to understand the inferences made in the ontology. In the

example of Figure 2.12, both explanations consist of three axioms. These axioms

are asserted in the ontology. If one of the asserted axioms from the justification is

removed, then the entailment will no longer hold. Justifications have been used

for tracing unsatisfiable entities and inconsistencies in an ontology.
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Figure 2.12: Two example justifications for the entailment ’old lady’ v ’cat owner’
as they are presented in Protégé 4.

Other methods that can be used in the scope of ontology comprehension are

the abstractions provided by the Atomic Decomposition. The atoms of the de-

pendency graph many times can consist of more than one axiom (see for Example

Figure 2.10), thus are fine grained abstractions over the axioms of the ontology.

On a second level the interconnection of atoms in the graph can help the user to

trace dependent atoms.

Abstraction methods are closely related with efficient visualisation approaches.

An analysis on ontology visualisation is reported in [TH06b]. Popular ontology

editors like Protégé 4, Swoop, NeoN toolkit and TopBraid composer provide

visualisations, simple ontology metrics and other features, such as property usage,

for the structures of the ontology to facilitate comprehension. One important

reason for using visual languages for knowledge representation is that an ontology

might contain relationships that cannot be easily understood in pure text or

formal logic. It is often easier to represent complex relationships with a picture

that can be understood on an intuitive level. Protégé 4, on top of the basic

hierarchy views, has plugins, such as OWLViz11, for providing an alternative

visual representation of the class hierarchy. It also allows for side-by-side viewing

of asserted and inferred class hierarchies; a convenient view for assessing the

ontology before and after reasoning. In general visualisation approaches are an

important aspect for achieving comprehension.

Finally, methods on the generation of natural language from ontologies [Sch09]

and methods analysing the differences between versions of an ontology [GPS11,

GPS12] can contribute to a framework for systematic inspection and development

of ontologies.

11http://www.co-ode.org/downloads/owlviz/

http://www.co-ode.org/downloads/owlviz/
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Cliché recognition is a common approach for pattern detection in software

comprehension; such methods aim to highlight repetitive structures in the code

and group parts of the code that have been developed in a similar way. How-

ever similar methods are missing in the landscape of ontology engineering. The

existence of repetitive structures in an ontology are very closely related with the

existence of ontology patterns. That is because patterns by definition impose a

repetitive design over the data. Even though there are efforts on the development

of ontologies using patterns there are not any methods for detecting patterns in

ontologies. The next section gives an introduction to existing work on patterns

and then presents the scope of this thesis.

2.7 Ontology Patterns

As it has been explained in Section 2.2, creating a formal ontology requires the

creation of a conceptual vocabulary as well as the specification of relationships

between the terms in that vocabulary; these relationships affect the conclusions,

named as entailments, that are drawn from a given set of assertions. Captur-

ing useful modeling decisions at a more abstract level of reusable “patterns”,

i.e. representations which capture recurring structure within and across ontolo-

gies [Cla08] is an important aspect of ontology engineering and systematic ontol-

ogy development.

In this section we will focus on two types of patterns; knowledge patterns and

ontology design patterns (ODPs).

Patterns seek to raise the level of abstraction at which the ontology is formu-

lated [IRS09]. This is achieved by instantiating a particular pattern of axioms

that captures a particular modelling issue and enables the desired inferences to

be made. Understanding may still be required, but the solution is ready-made

and its reuse provides consistency of style [IRS09].

Knowledge Patterns, introduced in [Cla08] as:

[...] representations which capture recurring structure within and

across ontologies.

This notion, is similar to the concept from Software Engineering of Design

Patterns [Pre94]. Similarly, the ontology community introduced the notion of

Ontology Design Patterns (ODPs) [GP09, Gan05], which are best practices in
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modeling knowledge. According to the solution they offer, ODPs have been

categorised into subcategories such as Logic and Content patterns [GP09]. The

ODP portal12 hosts a big variety of ODPs to facilitate their uptake. In the ODP

catalogue, graphical explanation of a pattern is added and in most cases there is

an implementation of the pattern in OWL. This is beneficial for inspecting the

implementation of a pattern. The ODPs that are described in the catalogue are

mainly best practices to specific problems. The benefit of developing ontologies by

using design patterns and knowledge patterns, in general, is extensively described

in [Ara09].

However, an unaddressed practical aspect is the instantiation of patterns in

ontologies. These patterns can be either best practices (named as ODPs) or just

design templates defined by the ontology developer. An ODP is a knowledge

pattern, but the converse does not necessarily hold in general, i.e., a knowledge

pattern might not be represented as an ODP [IRS09]. A problem that the OPPL

scripted language aimed to address is the systematic instantiation of patterns in

OWL ontologies [IPRS10, IERS08, IRS09].

2.7.1 Ontology Quality Assurance

The quality assurance of an ontology is closely related to the ontology comprehen-

sion problem and many efforts have been reported towards that direction. These

methods mainly involve the definition of metrics that aim to assess the quality of

an ontology in terms of its complexity, information richness, documentation etc.

The methods are reported in [BJSSA05, YOE05, YZY06, MJF10, AB06].

Pattern based approaches for the quality assurance of particular ontologies like

SNOMED-CT, FMA and and GO are described in [MRS09, FBIP+10, RBS11,

CSKD04]. These methods seek particular types of errors which are anchored

to the semantics of the ontology. The methods that are adopted either involve

only manual inspection of the ontology or they also include methods for analysing

potential underlying patterns that can be mapped to the semantics of an ontology.

A more systematic analysis is reported in [FBIP+10] where the authors performed

an analysis of the axiomatic description of terms with similar naming conventions

in order to highlight patterns that were adopted for the design of these terms

and axiomatically enrich them. In that work, the OPPL language was used for

matching a pattern and for ingesting new ones.

12http://ontologydesignpatterns.org/

http://ontologydesignpatterns.org/
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However, all these methods have in common the requirement of manual inspec-

tion of an ontology. This will be the starting point where the ontology engineer

will manually inspect the description of a particular set of entities (e.g. entities

with a particular keyword in their label) in the ontology. Based on the manual

inspection the engineer will express possible patterns for this set of terms like

the authors in [RI12]. This pattern will then be used as a query against the

ontology with the use of a scripting language like OPPL which is described in

detail in the following Section. By inspecting the instantiation of this pattern the

engineer will be able then to form a hypothesis for special cases in the ontology;

e.g. entities that were expected to instantiate the pattern but instead deviated

from that pattern. However, there is a lack of methods to highlight patterns in

an ontology for facilitating the above procedure. This thesis aims at dealing with

this problem, as mentioned above.

2.7.2 OPPL

The Ontology Pre-Processor Language (OPPL)13 is a language for querying and

modifying Description Logic knowledge bases expressed in OWL [IERS08]. OPPL

was initially motivated by the need of ontology developers to transform an ontol-

ogy to an axiomatically richer one [ERSA08].

An OPPL statement has the following form:

?varible_1:Type ... ?varible_n:Type

SELECT Query,....,Query

BEGIN

ADD | REMOVE Axiom

...

ADD | REMOVE Axiom

END

Thus, the main parts of an OPPL statement are:

1. Variable declaration (?variable 1:Type)

2. Selection (between SELECT and BEGIN)

3. Actions (between BEGIN and END)

13http://oppl2.sourceforge.net/

http://oppl2.sourceforge.net/
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The OPPL syntax is built upon the Manchester OWL Syntax [HPS09b]. The

full OPPL syntax grammar is shown in Figure 2.13. An important part in the

OPPL script is the variables. They are used in an OPPL script to represent

a set of entities that play similar role in an axiom. Then, queries and actions

are expressed using the variables, enabling batch processes on the axioms. For

example the following OPPL script:

?target:CLASS, ?origin:CLASS

SELECT

?target SubClassOf develops_from some ?origin

BEGIN

ADD ?target SubClassOf develops_from only ?origin

END

defines two variables (?target, ?origin) that hold classes. In this script the

bindings for the variables will be all classes that participate in the general axiom

?target SubClassOf develops_from some ?origin

and for these bindings will add a universal restriction (ADD ?target SubClassOf

develops from only ?origin).

In general, variables can have the following types:

1. CLASS;

2. OBJECTPROPERTY;

3. DATAPROPERTY;

4. INDIVIDUAL;

5. CONSTANT.

Each variable type covers a possible category of entities in the OWL specifi-

cation. An entity is a named object or a constant. Therefore, it should be noted

that an anonymous class description is not an acceptable substitution for any

variable type as this will affect the completeness of the underlying algorithms for

executing arbitary queries [IRS09].

OPPL is can be used for embedding patterns in an OWL ontology [IRS09].

It can be used for specifying general knowledge patterns in OWL, whether these
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OPPL Statement ::= ( VariableDeclaration )?

( Query )? ( Actions )? ";"

VariableDeclaration ::= VariableDefinition

( "," VariableDefinition )*

Actions ::= "BEGIN" Action ( "," Action )* "END;"

VariableDefinition ::= <IDENTIFIER> ":" variableType

Constraint ::= <IDENTIFIER> <NEQ> OWLExpression

variableType ::= "CLASS" | "OBJECTPROPERTY |

"DATAPROPERTY" | "INDIVIDUAL" | "CONSTANT"

Query ::= "SELECT" Axiom ( "," Axiom )*

( <WHERE> Constraint ( <COMMA> Constraint )* )?

Action ::= "ADD" | "REMOVE" Axiom

Axiom ::= An axiom in Manchester OWL Syntax

(possibly containing variables)

IDENTIFIER::= "?"<LETTER> (<LETTER>|<DIGIT>)*

LETTER ::= ["_","a"-"z","A"-"Z"]

DIGIT ::= ["0"-"9"]

OWLExpression ::= An OWL entity in Manchester OWL Syntax

(possibly containing variables)

Figure 2.13: The OPPL syntax [IERS08]

are ODPs or not. It has the following advantages for expressing patterns in

ontologies:

• Provision of a declarative specification of patterns and their descriptions in

OWL.

• Automatic production of pattern instantiations. This can be helpful for fa-

cilitating automated population of ontologies based on templates [JHI+10].

• Ability of formal analysis of patterns and their effects of their reuse. This

can be helpful for ontology engineer for comprehending fragments of the

ontology that instantiate the pattern.

• Their specification as a reusable template for extending an ontology, offers

a means of expressing the ways of expected evolution of an ontology with

respect to the intentions of its original modelers.

Thus, OPPL can help the manipulation and modification of axioms in an

ontology to instantiate a particular pattern. Another practical usage of OPPL
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demonstrated in [JKS+11, JHI+10] is the population of ontologies from spread-

sheets. In particular in [JHI+10] the authors describe a usage scenario for devel-

oping an ontology which was deemed more efficient for biologists. A spreadsheet

was used to collect the knowledge from biologists while ontology engineers ex-

tracted this knowledge from spreadsheets and populated an ontology with the

use of OPPL.

However, an aspect that has not being addressed yet is the mining of patterns

in ontologies when such an ontology is shared and reused from other people.

To the best of our knowledge, at the time of writing this thesis, the only way

to understand whether an ontology uses a pattern for the description of axioms

is by manually inspecting the ontology. However, such a procedure becomes

impractical especially for big ontologies.

2.7.3 Need for pattern detection approaches

Section 2.7 introduced various notions of patterns and described their useful-

ness for ontology development, reuse, maintenance and quality assurance. Thus,

patterns play a key role in the systematic development and reuse of an ontology.

Existing approaches are focusing mainly on the development of ontologies with

patterns. However, the verification of existence of patterns in an ontology is a

process that has to be done manually by the ontology engineers who are reusing

the ontology. If the patterns have not being described in the documentation

of an ontology by the developers of the ontology, then the procedure of mining

such patterns is a difficult task as it is done by manual inspection of axioms and

formulation of OPPL queries and DL queries to verify a pattern.

This thesis tackles this problem with a machine learning approach for the

unsupervised detection of patterns in an ontology. In particular, the research

presented in this thesis deals with the detection of repetitive structures named as

regularities, considering two aspects of an ontology; its asserted axioms and its

entailments. The aim is to highlight repetitive structures in the asserted axioms

and entailments of an ontology and express them with more generalised expres-

sions. These generalised expressions could highlight the underlying patterns that

were used for the design of similar parts of an ontology, and give an intuition of

the construction of the ontology, as well as highlight deviations from the norm.
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2.8 Summary

This chapter introduced the basic concepts of ontology engineering and high-

lighted the necessity for reverse engineering methods. It established the problem

of ontology comprehension and presented the landscape of a framework for facil-

itating such a procedure as the understanding of an ontology. It also introduced

background work for this thesis and the usefulness of patterns in ontology engi-

neering. Patterns have been used for embedding knowledge in ontologies; these

can be best practises or design decisions adopted by the developers of the on-

tology. Patterns can play a key role in the inspection of an ontology; having

knowledge about them can help the user to understand the construction of an

ontology. In the broad area of reverse ontology engineering we have drawn, we fo-

cus on a particular sub-problem, which is the unsupervised detection of patterns

in ontologies. In particular, although there are methods and tools for embedding

patterns in an ontology, there is a lack for the reverse procedure; mining patterns

from an ontology. At the moment, such procedure is done manually. The unsu-

pervised detection of regularities in the axioms and entailments of an ontology

can organise the axioms and entailments according to their repetitive design style,

thus can help the user to inspect the construction of an ontology. In this thesis,

we are dealing with this problem of unsupervised detection of regularities. The

following chapters give details on our approach to solve this problem.



Chapter 3

Regularity Inspector for

Ontologies (RIO) Framework

Chapter 2 presented the current problems with the reuse of ontologies. As men-

tioned before, many ontology reusing scenarios share a need for ontology com-

prehension, meaning the understanding of an ontology. Even though the level of

understanding that is needed varies depending on the task at hand, understand-

ing underlying patterns and mapping the axiomatisation to the corresponding

knowledge domain are almost always needed. In Chapter 2 we also presented

the outline of an ontology comprehension framework for assessing the various

dimensions of the problem.

The design of ontologies based on patterns is an advisable approach as this

can improve the quality assurance process of the ontology and in general it can

help the systematic development of the ontology; the reason for this is that, in

an ontology that follows a set of patterns, irregularities are more evident and are

likely to point to errors. In software engineering, the term “code smell” expresses

a similar concept: constructs and patterns that are likely to be errors or that will

make future development harder [FB99].

However, the reverse procedure, i.e., mining patterns from ontologies, has

not beeing investigated yet. This thesis aims to contribute to this area with

the establishment of a framework for the detection of regularities in ontologies.

However, the methods described here cannot be considered as standalone methods

for achieving comprehension. Ontology comprehension as a goal is not the scope

of this thesis but the reverse engineering methods described here can be integrated

with other systems for creating an ontology comprehension framework.

62
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This chapter presents the architecture of the Regularity Inspector for Ontolo-

gies (RIO) framework. RIO, the main outcome of this thesis, performs unsuper-

vised detection of syntactic and semantic regularities in ontologies.

This chapter presents an overview of the framework and describes the main

architecture and algorithms for computing syntactic and semantic regularities.

It introduces the challenges and the various implementation decisions that were

taken in order to tackle these challenges, and it investigates potential use cases in

which the detection of regularities can be used as an ancillary service. Chapters

4 and 5 give details for the computation of syntactic and semantic regularities

respectively.

3.1 Ontology Regularities

This section presents the nomenclature and some basic definitions that are used

throughout this thesis and makes distinctions between different types of patterns.

We distinguish the notion of syntactic regularity from the notion of design

pattern, since the term pattern has multiple meanings. In ontology engineering,

the existence of patterns is interpreted as design patterns, i.e., solutions to de-

sign problems [GP09, ERSA08, Gan05]. Patterns of axioms, however, can exist

throughout an ontology without being an accepted design pattern. Design pat-

terns can be represented in different forms, such as conceptual models, with OPPL

scripts [IERS08, IRS09], text descriptions etc [PRG+09]. However, a regularity

is not necessarily a design pattern.

An axiom α is asserted in an ontology O. We will omit the ontology O where

it is clear from the context. Thus, we define the following:

Definition 4 (Generalisation function). Let a be an axiom and e ∈ sig(a) be an

entity and ?x be a variable. The generalisation function g(a, e, ?x) is a function

whose output is the axiom a where the entity e is replaced by the variable ?x.

Definition 5 (Generalisation). Let n > 1 be an integer, A = {a1, . . . , n} be a

set of n axioms such that there exists a set of entities E = {e1, . . . , en} with

g(ai, ei, ?x) = g(aj, ej, ?x) ∀i, j ≤ n. The generalisation G(A,E, ?x) over a set

A for the entities in E is the axiom obtained through the generalisation function

g(ai, ei, ?x) applied to any axiom ai ∈ A.
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Since, G(A,E, ?x) is the same as g(ai, ei, ?x) we will refer to a generalisation

with g(ai, ei, ?x) and for brevity we will use g(ai) or just g. We borrow the

syntax for the variables in a generalisation from OPPL1, a declarative language

for manipulating OWL ontologies [IERS08]. An example generalisation is ?x

SubClassOf Vehicle, where ?x is a class variable holding all classes that are vehicles.

Thus, a generalisation can express a syntactic regularity or syntactic pattern,

as it can abstract over a set of axioms with the same structure. Similarly, a

semantic regularity or semantic pattern can abstract over a set of entailments

with same structure.

The term “semantic patterns” has been introduced in [SEM01] for describing

high level solutions to a modeling problem. However, here, the intuition of a

semantic regularity (or pattern) is that it represents implicit information made

available by automated reasoning.

To give an example, consider the following axioms:

(1) Car v Vehicle

(2) Sports car v Car

(3) Bus v Vehicle

(4) Mini Bus v Bus

These four axioms are subclass axioms between atom classes. A type of syn-

tactic regularity that can be detected in the previous axioms is

(a) ?x v Vehicle

(b) ?x v Vehicle

(c) ?y v ?x

where ?x={[Car, Bus], ?y=[Sports car, Mini Bus]}

Axioms (a),(b) and (c) can be regarded as generalised axioms that have vari-

ables holding similar entities. Being able to detect such structures can be useful

to gain an insight to the construction of an ontology. The main contribution of

this thesis is RIO, a framework that is able to detect such generalisations.

3.2 RIO usage scenarios

RIO mainly focuses on the detection of syntactic and semantic regularities. Pat-

tern recognition is an integral part of most machine intelligence systems built for

decision making [TK06].

1Details on OPPL are given in Section 2.6
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The detection of syntactic regularities deals with the way axioms are asserted

in an ontology; for example, it reveals general patterns that the ontology engineer

has followed while writing the axioms that describe the domain of the ontology.

This aspect can be potentially helpful for revealing the compositional style of the

ontology, and, thus, facilitate the comprehension of an ontology.

Some use cases in which RIO can be helpful as a service are:

1. Comprehension of an ontology: This is a very general task in which the

user is inspecting an existing ontology, which is later going to be used for

completing a task; for example, integrating the ontology in the back-end of

a system. In this task then the user has to inspect the ontology, understand

how the domain of the ontology is described and be able to reuse parts of

the ontology.

2. Extension of an ontology: This task mainly involves the process of

inspecting an ontology with the goal of extending it. This requires the

identification and “understanding” of patterns that are used for describing

different parts of the ontology. Then, the adoption of an existing pattern

for the description of new entities in the ontology will enable a uniform

extension of the ontology with the expected behaviour. It will also facilitate

the maintenance of the ontology, as the comprehension of a uniform design

style will suffice.

3. Quality assurance of an ontology: The detection of regularities in an

ontology can be helpful in the broader area of quality assurance of an on-

tology. One aspect of quality assurance is for checking conformance to

intended patterns. This involves the inspection of patterns for understand-

ing how the ontology was built and how a topic in the ontology domain is

mapped to a pattern. Being able to analyse the composition of the ontol-

ogy and to identify the underlying patterns can be helpful for distinguishing

the different design styles that were followed during the development of the

ontology. In this thesis, we focus mainly on this application of RIO.

4. Analyse the construction of an ontology: An ontology engineer wants

to reuse an ontology for an application. The engineer has some prior in-

formation about the ontology and an intuition of some of the dominant

patterns that are used in the ontology. An analysis of the regularities of the
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ontology can be helpful for verifying the existence of these patterns and for

showing which entities from the ontology instantiate these patterns.

5. Analysis of the evolution of an ontology: The implementation of such

a scenario presupposes the coupling of RIO with a toolkit for analysing

differences between ontologies [GPS12]. The authors in [GPS11] categorise

types of differences in the ontology according to the impact they have on

the entailments of the ontology. This analysis is applied for all the versions

of an ontology and shows the evolution of an ontology with respect to its

semantics. A framework for detecting regular structures in an ontology,

like RIO, can be used for exploring the distribution of differences in an

ontology to corresponding patterns. For example, such an analysis will give

a better intuition on how the ontology was constructed; whether ontology

developers focus on one or more patterns per version, how these patterns

alter and deviate through different versions, and so on.

6. Generation of artificial ontologies for benchmarking: Benchmark-

ing systems like Lehigh University Benchmark (LUBM) [GPH05] or the

Hladik [Hla05] have used an approach of “artificial” generation of an ontol-

ogy or in other words synthetic generation of schemas for testing reasoners.

Further approaches to generating synthetic RDFS schemas and OWL on-

tologies “from scratch” use commonly occurring patterns and distribution

laws, as described in [TGC07, Š07], amongst others. The idea is to extend

the schema of an ontology and predict its evolution in terms of reasoning

performance under the assumption that no new constructors will be intro-

duced. This extension is a large scale “realistic” ontology. However, given

the frequent occurrence of design patterns and structural regularities in

OWL ontologies, a randomised synthetic ontology generation might lead to

a far more diverse set of axioms than we expect to find in naturally occur-

ring ontologies. The syntactic regularities that RIO detects could be used

as a template for the ontology schema, which can be further populated for

extending the ontology.



CHAPTER 3. RIO FRAMEWORK 67

3.3 Architecture of RIO framework

RIO is a framework for the unsupervised detection of regularities in ontologies.

In our definitions, we distinguish the notion of regularities from the notion of

patterns in the following sense; regularities are on a lower level from patterns

as they just express repetitive information in the ontology. A regularity is a

set of axioms with reoccurring structure, while a pattern has been used with the

meaning of a design pattern: best practice for a design problem. In the remaining

chapters, referring either to patterns or regularities will have the same meaning.

The general usage of the word pattern differs from the word “design pattern”.

The detection of regularities is focused on two aspects:

1. How was the ontology composed?

2. What are the most important inferences that can be drawn from the ontol-

ogy? What can we ask about the ontology?

The first question is answered with the detection of syntactic regularities in

an ontology while the second one can be addressed with the detection of semantic

regularities in a selected set of entailments in the ontology. RIO incorporates al-

gorithms for detecting repetitive structures either in the axioms or entailments of

an ontology. These repetitive structures are expressed in the form of generalisa-

tions, which are axioms with variables replacing a set of entities. More formally,

a generalisation is defined as follows:

The main question and corresponding ‘problem’ in the detection of regularities

(repetitive structures) in an ontology is how we detect these repetitive structures.

This question can be reformulated to the following question: What granularity

level should we use for detecting the repetitive structures in an ontology? In

other words, given a set of axioms, which entities do I select to represent with

variables? This will have an impact on the way we represent the regularities,

and consequently the corresponding patterns in the ontology and the level of

abstraction at which we choose to represent them.

3.3.1 Detecting syntactic regularities

Given the axioms of Figure 3.1 taken from the Amino Acid ontology2, syntactic

regularities of different granularity can be expressed.

2http://www.cs.man.ac.uk/~stevensr/ontology/amino-acid.owl

http://www.cs.man.ac.uk/~stevensr/ontology/amino-acid.owl
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(1) Alanine SubClassOf hasCharge some Positive

(2) Aspartate SubClassOf hasCharge some Negative

(3) Cysteine SubClassOf hasPolarity some Non-Polar

(4) Glutamate SubClassOf hasPolarity some Polar

Figure 3.1: Four axioms from the Amino Acid ontology, describing four amino
acids.

For example, Figure 3.2a shows two example regularities, g 1 and g 2, where in g

1, it is ?AminoAcid =[Alanine, Aspartate ] and ?Charge =[Positive, Negative ] and

in g 2, it is ?AminoAcid =[Cysteine, Glutamate ], ?Polarity =[Non-Polar, Polar ].

Thus, g1 instantiates axioms (1) and (2) and g2 instantiates axioms (3) and (4).

g1 = ?AminoAcid SubClassOf hasCharge some ?Charge

g2 = ?AminoAcid SubClassOf hasPolarity some ?Polarity

(a) Two example regularities abstracting the four axioms of Figure 3.1.

g1’ = ?AminoAcid SubClassOf ?hasPhysicoChemicalProperty

some ?PhysicoChemicalProperty

(b) An example regularity abstracting the four axioms of Figure 3.1.

Figure 3.2: Two examples of regularities of different granularity, abstracting the
four axioms of Figure 3.1.

However, a single regularity can also used to express the repetitive struc-

ture of the axioms in Figure 3.1. Such a regularity is shown in Figure 3.2b, where

?AminoAcid =[Alanine, Aspartate, Cysteine, Glutamate ], ?hasPhysicoChemicalProp-

erty =[hasCharge, hasPolarity ] and ?PhysicoChemicalProperty =[Positive, Negative,

Non-Polar, Polar ].
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In this example, all generalisations (g1, g2, g1’) expressing the underlying

repetitive structures are correct and meaningful; entities that are represented by

a variable are also similar in context (for example, variables holding all Amino

Acids, or Polarity values etc). The only difference is that g1’ is more abstract

than g1, g2. A different example taken from the Pizza ontology3 is shown in

Figure 3.3a.

MargheritaPizza SubClassOf hasBase some PizzaBase

MargheritaPizza SubClassOf hasTopping some MozzarellaTopping

LaReine SubClassOf hasTopping some SpinachTopping

SloppyGiusepe SubClassOf hasTopping some TomatoTopping

(a) Four axioms taken from the Pizza ontology.

g1’=?Pizza SubClassOf ?PizzaProperty some ?PizzaFiller

(b) A generalisation example abstracting the four axioms.

Figure 3.3: Four axioms taken from the Pizza ontology and an example regularity
describing the four axioms.

A generalisation that describes these axioms is shown in Figure 3.3b where,

?Pizza =[MargheritaPizza,LaReine, SloppyGiusepe ], ?PizzaProperty =[hasBase, hasTop-

ping ], ?PizzaFiller =[PizzaBase, MozzarelaTopping, SpinachTopping, TomatoTop-

ping ]. Such regularity seems to be very generic for entities that represent different

“topics” in the ontology (E.g. PizzaBase, PizzaTopping).

Therefore, one of the main challenges is to decide which entities to replace

with variables in a way that can capture the underlying semantics of the ontology

(e.g. a variable that will hold entities that are also similar in context).

From a computational point of view, selecting which entities to replace with

a variable is not an easy task. A naive solution would be trying all possible com-

binations of entities for selecting the variables. However, there are exponentially

3http://www.co-ode.org/ontologies/pizza/pizza.owl

http://www.co-ode.org/ontologies/pizza/pizza.owl


CHAPTER 3. RIO FRAMEWORK 70

many combinations to try and thus this solution is not practical.

On the other hand, machine learning, and clustering in particular, can help to

overcome this computational obstacle. Cluster analysis can help to define groups

of similar entities. These clusters of similar entities then can serve as variables

when expressing the generalisations.

3.3.2 RIO Workflow

The workflow of RIO for the detection of regularities in an ontology is shown in

Figure 3.4 and it is similar to the Knowledge Discovery process (KD) [Lan05].

The details of these blocks differ for the computation of semantic and syntactic

regularities. For example, in Figure 3.4, the extraction of a finite set of entail-

ments was done using the Knowledge Explorer (KE). Details about it are given

in Chapter 5. The general workflow remains the same for the computation of

both types of regularities.

In the remaining sections we will describe the general blocks in the workflow.

These are:

1. Selection of the relevant ontology fragment for regularity detection.

2. Proximity matrix computation.

3. Cluster analysis.

4. Generalisations expression.

The computation of task 1 depends on the type of regularities we want to

compute. For the computation of syntactic regularities, the relevant part is the set

of asserted axioms in the ontology. For the computation of semantic regularities,

the relevant part is the set of entailments extracted from the ontology.

Tasks 1 - 2 are the preprocess for clustering. For a more cohesive reading, we

will start describing task 3 and then proceed with the description of task 2.

3.4 Cluster Analysis

Cluster analysis has been used in different disciplines for tackling the problem of

unsupervised pattern recognition. The problem that cluster analysis addresses is

defined according to [Lan05] as:
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Syntactic 
regularties

Asserted axioms in 
the ontology

Entailments 
extracted from KEG

Semantic 
regularties

1. Selection of relevant 
part of the ontology

Application of 
transformation policy

Pairwise distance 
calculation

2. Calculation of 
Proximity matrix

3. Clustering

3. Computation of 
Generalisations

Figure 3.4: Workflow of RIO framework.
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“Given a collection of n individual objects, each of which is de-

scribed by a set of p characteristics or variables, derive a useful di-

vision into a number of classes. Both the number of classes and the

properties of the classes are to be determined.”

Thus, cluster analysis will give a partition of n objects, that is a set of clusters

where an object belongs to one cluster only.

RIO framework uses cluster analysis in order to get clusters of similar entities,

with similar usage in the axioms of an ontology. Even though different clustering

algorithms can be used, in this thesis we focus on the results that we obtain from

one kind of clustering rather than explore all the alternative clustering algorithms.

In the literature there are several clustering techniques; we chose agglomera-

tive hierarchical clustering [Lan05] and we report an informal description of the

algorithm we used in Algorithm 1. A more detailed description of the algorithm

is given in Section 4.6.

Algorithm 1 Basic agglomerative hierarchical clustering

Input: Proximity matrix with distances
Output: A set of clusters

Assign to the current set of clusters the set of singleton clusters, each repre-
senting an input entity.
repeat

Merge the closest two clusters, replace them with the result of the merge in
the current set of clusters.

Update the proximity matrix, with the new distance between the newly
created cluster and the original ones.
until The stopping criterion is met
return The current set of clusters.

Clustering usually takes as input a matrix containing numbers indicating the

similarity or dissimilarity of each pair of objects which are to be clustered. Such

matrix is called a proximity matrix. In RIO, the proximity matrix that is used by

the hierarchical clustering contains the distance measure for the entity pairs in

the ontology signature4. Note that the measures used to compute this distance

are always symmetrical, therefore the proximity matrix is always a symmetric

matrix.

The next question to answer is “what parameters are considered for the com-

putation of the distance between two entities?”.

4The signature of an ontology is described in Chapter 2, Section 2.3
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3.5 Computation of proximity matrix

The distance is an important factor in clustering as it captures the similarities of

the dataset.

RIO is using the Jaccard distance [Han07] which is defined for two sample

tests A and B as:

Jδ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(3.1)

Depending on the type of regularities we want to detect, the distance between

two entities is measured according to the usage of these entities in a set of ax-

ioms or entailments. Thus in RIO, given two entities e1, e2 in the signature of

an ontology O, their pairwise distance d(e1, e2) is computed using the Jaccard

distance (1) for which A and B are two sets of axioms defined as follows:

• For the computation of syntactic regularities, A = abs(A1), B = abs(A2),

where A1 and A2 are the asserted axioms in O that reference e1 and e2

respectively. The abs is a replacement function that transforms A1 and A2

into abstract forms.

• For the computation of semantic regularities, A = abs(A1), B = abs(A2),

where A1 and A2 are the entailments in O that reference e1 and e2 respec-

tively. The abs is a replacement function that transforms A1 and A2 into

abstract forms.

The replacement function defined as abs above is described in detail in Chap-

ter 4, Section 4.3. At the moment it suffices to know that the purpose of this

function is to take as input a set of axioms and return an abstract forms of the

axioms by replacing particular entities with general placeholders. This transfor-

mation is needed to make two sets of axioms or entailments comparable for the

distance computation. In other words, the purpose of this transformation is to

capture the similarities between the two entities whose distance is being mea-

sured. In Section 4.3 we define different transformation functions and we show

how they can affect clustering results. Finally, the proximity matrix includes all

the pairwise distances between all the selected entities from the ontology.
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3.6 Generalisations

The last step in RIO’s workflow is the formulation of generalisations after the

completion of clustering. Generalisations are a synthetic view of the clusters in

the ontology. A more formal definition was given in Definition 5. A generalisation

is an axiom with at least one variable instead of an entity. A generalisation is an

abstraction over a set of axioms with similar usage. In RIO, every variable rep-

resents a cluster of similar entities, as this was resulted from the cluster analysis.

For example, the generalisation:

?AminoAcid SubClassOf AminoAcid

has the ?AminoAcid variable, which represents the cluster that holds all the amino

acids.

3.6.1 Generalisation variables

In RIO we borrow the syntax for variables from OPPL. An OPPL variable can

be:

• Input or Non generated, i.e., they can replace entities in axioms of the

corresponding type (there are OPPL variables for each type of entity in a

signature);

• Generated, i.e., their value is the result of an expression depending on

other variables.

Even though it is not the main focus of the thesis, having an informative

label for a variable can facilitate the inspection of generalisations by ontology

engineers. In RIO, the label of a variable is selected as follows: Since every

variable corresponds to a set of similar entities (cluster), the label of the variable

is selected to be the name of the least common subsumer of the entities in the

corresponding cluster. If the least common subsumer is the > (owl:Thing) entity,

then a generic name is selected as the label of the cluster variable (e.g. clusteri,

where i denotes the sequence of the cluster). With this approach we try to give

a variable name that indicates the type of entities it holds. For example, in the

Amino Acid ontology if all Amino Acids are subclasses of the AminoAcid class then

the corresponding clusters that include amino acids will be named as ?AminoAcid,

?AminoAcid 1, ?AminoAcid 2 and so on. However, this is not always feasible for all

variables as clusters can contain entities that do not share a common subsumer.
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3.7 RIO plugin for Protégé 4

The RIO plugin is an Open Source project available online5. Its implementation

is based on OWLAPI6. The generalisations are described using the OPPL vocab-

ulary. A standalone Java tool is used for the regularities’ computation, which are

then saved in an XML file. The user can load and visualise the regularities in

Protégé 4 using the RIO plugin. Figure 3.5 shows one of the main views of the

plugin.

The cluster view shows, for every cluster, name and number of entities con-

tained. The Cluster member list view shows the list of entities in a cluster. The

generalisation view shows information about the regularities that are captured

for every cluster. In the generalisation view, every generalisation can be unfolded

to show the axioms that are abstracted (instantiations) and metrics about the

variables. The metrics that are shown are the number of instantiations, and the

number of entities that are covered by each variable. In principle, the union of

the generalisations in the view describes a cluster, but a single generalisation is

not necessarily applicable to all members of a cluster.

Generalisation viewDependency view  Cluster view

Cluster member 
list view

Figure 3.5: RIO main view for Protégé 4.

5http://riotool.sourceforge.net
6http://owlapi.sourceforge.net

http://riotool.sourceforge.net
http://owlapi.sourceforge.net
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A number of additional views have been developed for viewing stats about

the detected regularities.

Software tools that provide visualisations of the regularities in ontologies can

be useful as auxiliary services in an ontology editor environment like Protégé 4

and The NeOn Toolkit, as they provide a syntetic view of the large and complex

information discovered by tools like RIO. Regularity services can be used to sup-

port systematic development, error-fixing and maintenance of an ontology. RIO

plugin for Protégé 4 is a prototype to demonstrate the usage of RIO framework

and to disseminate it to the community.

3.8 Summary

This chapter started with the description of usage scenarios of a framework like

RIO. Then, the challenges on the detection of regularities were presented and fi-

nally the overview of RIO and decision options in the architecture were described.

RIO can detect two types of regularities; in the asserted axioms of an ontology,

named as syntactic regularities, and in the entailments of an ontology, named

as semantic regularities. Both types of regularities are detected according to the

structural similarities that exist across the axioms. Clustering plays a key role

in RIO framework; it is used for detecting groups of entities with similar usage.

RIO’s workflow is similar to a knowledge discovery (KD) process. The input of

RIO is a set of axioms or entailments depending on the type of regularities we

want to compute. These axioms are further processed and transformed in order

to allow the computation of the proximity matrix consisting of pairwise entity dis-

tances. The postprocessing of the results includes the description of the clusters

with generalisations; axioms with variables representing a set of similar entities.

The following two chapters present in more detail the methods and algorithms

for the computation of syntactic and semantic regularities respectively.



Chapter 4

Computation of Syntactic

Regularities

This chapter gives a thorough description of the algorithms for the computation

of syntactic regularities, the main functionality of the RIO framework. The de-

tection of syntactic regularities can have multiple uses during the inspection of an

ontology as axioms can be grouped according to their similar design. The main

goal of the detection of syntactic regularities in RIO is to expose the ontology

design style, to abstract over the existing axioms in the ontology and show the

general patterns that are used to describe different sets of concepts: it is expected

that entities with similar content in an ontology are designed according to the

same pattern.

4.1 Syntactic Regularity Detection

As presented in Figure 3.4, four main components are used for the computation

of syntactic regularities. These are:

1. Selection of the relevant information from the ontology for the computation

of syntactic regularities.

2. Clustering preprocess; proximity matrix calculation.

3. Clustering analysis.

4. Description of clusters with generalisations. These express the syntactic

regularities in the ontology.

77
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For the first step, the input that is considered for the computation of syntactic

regularities is the set of asserted axioms in an ontology, logical and non-logical

(e.g., annotations). The main step in this workflow is the cluster analysis (step 3).

Cluster analysis relies on the notion of distance to quantify how similar (or

dissimilar) and, therefore, how close or far apart two entities are in the clustering

space. In our workflow, the implementation of Step 2, and, in particular, the

distance adopted to compute the proximity matrix, is the most important aspect

of the implementation. Even though this step is the preparation of the input for

the clustering algorithm, it is more important than the application of clustering,

as clustering results rely heavily on the feature measure that is considered [Lan05].

4.2 Distance measure

As described in Chapter 3.5, the calculation of the distance is based on structural

similarities between axioms. To compare axioms, we transform them into a more

abstract form by applying a place-holder replacement function φ. We will define

the notion of similar axiom structure more formally in the following, and show

how this leads to the particular distance we adopted for our cluster analysis.

Using Jaccard’s distance (see Equation 3.1) we define the following:

Definition 6 (Distance). Let O be an ontology, σi and σj be two entities from

sig(O), Σ and φ a place-holder replacement function. We denote Ai the set

{φAx(α), α ∈ O, σi ∈ sig(α)}, i.e: the set of place-holder replacements for the

axioms in O that reference σi.

We define the distance between the two entities, (σi,σj) ∈ ΣxΣ as:

d(σi, σj)←
|Ai ∪ Aj| − |Ai ∩ Aj|

|Ai ∪ Aj|
(4.1)

The distance is computed as an overlap between the two sets of abstracted

axioms for each pair of entities in the signature of the ontology. The abstract form

of axioms results after applying the place-holder function φ in the usage axioms

of each entity. From this we can observe that ∀O, φ, e1, e2 : 0 ≤ dφ(e1, e2) ≤ 1.
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4.2.1 Comparing axioms

Let us consider the famous Pizza Ontology1. Its main scope is pizzas and their

toppings along with other information such as the country of origin for each pizza,

the spiciness of some toppings, or their classification as vegetables, fish, or meat.

Among other things, in this ontology we observe that all the topping classes are

used as fillers in axioms like these:

(1) aPizza SubClassOf hasTopping some aTopping

(2) aPizza SubClassOf hasTopping only (aTopping

or anotherTopping or . . . )

In other words, classes like MozzarellaTopping and TomatoTopping seem sim-

ilar because they appear as fillers of an existential restriction on the property

hasTopping within a sub-class axiom where the left-hand side is a pizza. They

also appear as disjuncts in a universal restriction on the same property in another

sub-class axiom whose left-hand side is, again, a pizza. Likewise, pizzas in this

ontology tend to appear on the left-hand side of sub-class axioms describing their

toppings, base, and country of origin.

Therefore, we expect that our cluster analysis should, in the case of the pizza

ontology, put together all toppings in a single cluster, pizzas in another, and

countries of origin in a third one and so on.

More formally, the distance we introduce quantifies the difference between the

usage of two entities in a set of axioms.

4.3 Place-holder replacement function

The place-holder function φ enables the comparison between the usage axioms

when calculating pairwise distances.

The abstract form of the usage axioms that are generated in this step should

not be confused with the final generalisations described in Section 4.7. The

generalisations are computed after clustering and provide a description of the

clusters while the transformed axioms of this step are only intermediate objects

for the computation of the pairwise distances.

Definition 7 (Place-holder replacement). Let O be an ontology and let

Φ={ ?owlClass, ?owlObjectProperty, ?owlDataProperty, ?owlAnnotationProperty,

1http://www.co-ode.org/ontologies/pizza/

http://www.co-ode.org/ontologies/pizza/
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?owlIndividual, ?star } be a set of six symbols that do not appear in the signature2

of O, sig(O). A place-holder replacement is a function φ : sig(O) → sig(O) ∪ Φ

satisfying the following constraints: Consider e ∈ O then φ(e) =

• e or ?star or ?owlClass, if e is a class name;

• e or ?star or ?owlObjectProperty, if e is an object property name;

• e or ?star or ?owlDataProperty, if e is a data property name;

• e or ?star or ?owlAnnotationProperty, if e is an annotation property name;

• e or ?star or ?owlIndividual, if e is an individual name.

We define the particular placeholder replacement φS as φS(e)=

• ?owlClass, if e is a class name (OWLClass type);

• ?owlObjectProperty, if e is an object property name (OWLObjectProperty

type);

• ?owlDataProperty, if e is a data property name (OWLDataProperty type);

• ?owlAnnotationProperty, if e is an annotation property name (OWLAnnota-

tionProperty type);

• ?owlIndividual, if e is an individual property name (OWLIndividual type).

Definition 8 (Place-holder replacement in axioms). Let O be an ontology, α ∈ O
one of its axioms and φ a place-holder replacement function. We define φAx as a

function that for the input α returns a new axiom by applying φ to all the entities

e ∈ sig(α).

φ is a way to control the granularity of our distance. It remains to be decided

which entities to replace in an axiom.

2For signature here we mean the set of class names, data/object/annotation property names,
individuals referenced in the axioms of an ontology O.
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4.4 Different types of replacement function

Selecting a replacement function φ for computing distances is not a straightfor-

ward task. That is because the replacement function should transform axioms in

a way that captures important semantics. Different heuristics can be adopted for

reflecting the most important underlying semantics of the axioms when comput-

ing the distance.

In this thesis we propose a tradeoff where we delegate the decision of whether

to replace an entity in an axiom to a measure of three different criteria, producing

three different replacement functions. These criteria are:

• Type of the entity.

• Popularity of the entity with respect to the other entities in the same kind

of axiom within the ontology.

• Split of entities into variables according to the structural similarities of

axioms.

Based on these criteria this section presents three different types of replace-

ment function:

1. Naive replacement functions

2. Popularity replacement function

3. Structural replacement function

For each type of replacement function a definition of what is replaced by

a general placeholder and an explanation for selecting particular heuristics. In

addition, for each case an example is given to demonstrate how the replacement

function works when applied to axioms.

4.4.1 Naive replacement approaches

In this approach function φ will replace all entities in the signature of an axiom

α with a symbol variable. More formally:

Definition 9 (All entity replacement function). Let O be an ontology, entity e ∈
O and φ a replacement function. Consider an axiom α with signature Σ = sig(α),

it is a usage axiom of e, for which it is e ∈ Σ. An all entity replacement function

φ(α) with input α will return for every σi ∈ Σ
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• ?star if σi = e

• φS(e) otherwise;

The following example demonstrates the usage of this function when it is used

for the computation of a distance between two entities.

Example

Let our O be the Pizza ontology mentioned above and Margherita, Capricciosa two

entities in O. If we want to compute d(Margherita,Capricciosa) then φ will work

as follows: ∀e ∈ O, φ(e)=

• ?star if e ∈ {Margherita,Capricciosa};

• φS(e) otherwise;

Let us now compute the values of φAx(α) for some of the axioms in O.

α1 = Margherita DisjointWith Cajun

φAx(α1)= ?star DisjointWith ?owlClass

α2 = Capricciosa DisjointWith Cajun

φAx(α1)= ?star DisjointWith ?owlClass

α3 = Margherita SubClassOf hasTopping some TomatoTopping

φAx(α3)= ?star SubClassOf ?owlObjectProperty some ?owlClass

α4 = Capricciosa SubClassOf hasTopping some TomatoTopping

φAx(α4)= ?star SubClassOf ?owlObjectProperty some ?owlClass

It should be noted that the ?star placeholder represents the entities whose

distance is computed. We use this placeholder for keeping track of the position

of the entities in the referencing axioms.

Similarly, to compute the distance between d{TomatoTopping,PizzaBase} in

O, φ will be applied as follows: ∀e ∈ O, φ(e)=

• ?star if e ∈ {TomatoTopping,PizzaBase};
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• φS(e) otherwise;

Let us now compute the values of φ
Ax

(α) for a pair of axioms in O

α1 = Margherita SubClassOf hasTopping some TomatoTopping

φAx(α1)= ?owlClass SubClassOf ?owlObjectProperty some ?star

α2 = Pizza SubClassOf hasBase some PizzaBase

φAx(α2)= φAx(α1) = ?owlClass SubClassOf

?owlObjectProperty some ?star

This means that d(TomatoTopping,PizzaBase) < 1 as it will be from equation

4.1, |Axφ(e1) ∩ Axφ(e2)| > 0 and, therefore, |(Axφ(e1) ∪ Axφ(e2)| − |Axφ(e1) ∩
Axφ(e2)| < |(Axφ(e1) ∪ Axφ(e2)|.

The consequence would be that distance dφ does not separate as cleanly as

possible TomatoTopping (and likewise several sub-classes of PizzaTopping) from

PizzaBase, because the selected placeholder function makes their usage axioms to

look the same.

Changing the granularity of the place-holder replacement function produces

more or less sensitive distance functions. The two extremes are replacing ev-

ery entity with a place-holder or not replacing any of them. Whilst the former

produces a distance that is far too tolerant and puts together entities that seem

unrelated, the latter will most likely result in a distance that scores 1 (maximal

distance) for most entity pairs.

Property based replacement function

Let O be an ontology and two entities σi, σj ∈ sig(O) for which we want to

compute d{σi, σj}. For every entity e ∈ sig(O) the property based replacement

function φ will replace the following:

• ?star if e ∈ {σi, σj}

• e if e is an object property, a data property or an annotation property name;

• φS(e) otherwise;
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Example

In this example we will show how the property based replacement function works.

For computing the distance d{TomatoTopping,PizzaBase}, φ will replace the fol-

lowing:

• ?star if e ∈ {TomatoTopping,PizzaBase};

• e if e is a object property name;

• φS(e) otherwise;

Then the values of φAx for a pair of axioms α will be:

α1 = Margherita SubClassOf hasTopping some TomatoTopping

φAx(α1)= ?owlClass SubClassOf hasTopping some ?star

α2 = Pizza SubClassOf hasBase some PizzaBase

φAx(α2)= ?owlClass SubClassOf hasBase some ?star

The distance will be then d(TomatoTopping,PizzaBase) = 1. Thus, the entities

TomatoTopping, PizzaBase have no similarity.

This replacement function considers all properties as “important” entities in

an axiom, thus they are not replaced with a general place-holder as the other

entities. The intuition behind this is similar to the detection of isomorphic struc-

tures; two graphs are isomorphic when there is an edge-preserving matching of

their vertices. Thus, the important part is the connections between the nodes.

Considering that axioms can be represented in a form of a graph, a similar ap-

proach is adopted for the replacement function.

4.4.2 Popularity based replacement

Definition 10 (Popularity). Let O be an ontology, e ∈ sig(O) an entity. The

place-holder replacement function φSAx for the axioms of O will extract the struc-

ture of each axiom.

Given an axiom α ∈ O, let us define the set Axα = {β ∈ O, φSAx(β) =

φSAx(α)}, that is, the set of axioms in O that have the same structure as α.
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We can, finally, define popularity πAxα of an entity f ∈ sig(O)as

πAxα(f) = |{β∈Axα,f∈sig(β)}|
|Axα|

that is, the number of axioms in Axα that reference f over the size of Axα

itself.

We can plug-in popularity as defined above into a place-holder replacement

function and therefore in our computation as follows: When computing a distance

between two entities, namely e1 and e2, for each axiom α where either occurs,

the function replaces e1 or e2 with ?star and decides whether to replace the other

entities with a place-holder depending on their popularity across all the axioms

that have the same structure as α.

Definition 11 (Popularity based place-holder replacement). Let O be an ontol-

ogy, e ∈ sig(O) an entity, and α ∈ O an axiom. Let Axα and πAxα be respectively

the set of axioms sharing the same structure as α and the popularity metric defined

in Definition 10. Finally, let σ be a function that we call popularity criterion

and maps a popularity value into the set {true, false}.

∀f ∈ sig(O), we define our function as follows: φαe (f)

• ?star if f = e;

• f if σ(πAxα(f)) = true;

• φS(f) otherwise.

We can now use the popularity based place-holder replacement defined above

in our distance (Definition 6). Given two entities e1 and e2 according to the

formula we need to compute Axφ(e1) and Axφ(e2). For every axiom α in the

ontology O that references e1 (resp. e2), we compute φAx(α) = φαe1Ax(α) (resp.

φAx(α) = φαe2Ax(α)). Informally, for each axiom, we compute our replacement

function based on the popularity of the entities across the set of axioms sharing

the same structure as the axiom we are currently considering.

In the definition above we deliberately parameterised the decision criterion to

make our distance framework independent from any particular implementation.

In this work, however, we compute a confidence interval [l, u] for the mean value
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of πAxα , (95% confidence). We assume the variance is unknown; therefore in order

to compute the area under the distribution function (z), we use the values for the

T distribution, rather than the normal one in the formulas:

l = M − z · sd√
N
, u = M + z · sd√

N

where with sd we denote the standard deviation and with M the mean com-

puted on the set of entities (whose size is N) in the ontology. If the popularity of

a given entity is greater than u then we assign true to our σ (see Definition 11),

false otherwise.

Example

Once again, let our ontology be the Pizza ontology and let us use as our place-

holder replacement function φ, the one in Definition 11 (based on popularity).

Let us compute the replacements for the same axioms as in the example

in Section 4.4.1. We omit the calculations but the confidence interval for the

popularity when applied to such axioms is such that the only entities which will

not be replaced are: hasTopping and TomatoTopping, therefore:

α1 = Margherita SubClassOf hasTopping some TomatoTopping

φAx(α1)= ?owlClass SubClassOf hasTopping some ?star

α2 = Pizza SubClassOf hasBase some PizzaBase

φAx(α2)= ?owlClass SubClassOf ?owlObjectProperty some ?star

The extensive usage of object property hasTopping in this particular kind

of axiom is the reason why our place-holder replacement function deems it as

important and preserves it in the replacement result.

We observe, however, that deciding replacements based on confidence inter-

vals is strongly dependant on the quality of the sample data. TomatoTopping,

for instance, in the example above, is judged popular too. The reason is that

all pizzas in the ontology have TomatoTopping (and MozzarellaTopping) among

their toppings. Conversely, the formula correctly spots that several other enti-

ties (Margherita, Pizza, hasBase, . . . ) are not relevant when dealing with axioms

presenting a particular structure (?owlClass SubClassOf ?owlObjectProperty some
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?owlClass). We claim that this is preferable w.r.t. making an a priori decision,

maybe based on users’ intuitions, on what should be replaced and when.

4.4.3 Structural replacement function

This approach is based on the search of an optimal split of the entities in cor-

responding placeholders. We will demonstrate how this transformation policy

works using the example ontology in Figure 4.1.

B1 SubClassOf B (4.2)

B2 SubClassOf B (4.3)

B3 SubClassOf B (4.4)

C SubClassOf A (4.5)

B SubClassOf A (4.6)

C1 SubClassOf C (4.7)

C2 SubClassOf C (4.8)

C3 SubClassOf C (4.9)

C3 SubClassOf hasP1 some B3 (4.10)

C3 SubClassOf hasP1 only B3 (4.11)

C4 SubClassOf hasP1 some B4 (4.12)

C4 SubClassOf hasP1 only B4 (4.13)

C5 SubClassOf hasP1 some B1 (4.14)

Figure 4.1: Example ontology

The transformation is done in two steps.

Step 1: The first step is the representation of axioms in abstract forms; This

is done by replacing every entity in an axiom with a general variable denoting the

type and the position of the entity. Figure 4.2 shows the transformation result

for the example ontology.

Step 2: For each one of the general axioms (4.15)-(4.17) we retrieve their

instantiations and check if the replacement of a variable with an entity gives

better separation of axioms in different groups.

The choice of variable replacements depends on the structural commonalities
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?class 2 SubClassOf ?class 1 (4.15)

Instantiations : (4.2)− (4.9)

?class 2 SubClassOf ?objectProperty 1 some ?class 1 (4.16)

Instantiations : (4.10), (4.12), (4.14)

?class 2 SubClassOf ?objectProperty 1 only ?class 1 (4.17)

Instantiations : (4.11), (4.13)

Figure 4.2: Step 1 - Transformation of the axioms in the ontology into abstract
forms.

of the axioms. Our criterion is that if there are more than two structural differ-

ences between a pair of axioms then the variable should be checked for further

replacements. The idea behind this criterion is that we want to find an optimal

variable replacement in the axioms that will reflect the differences between the

entities in the ontology.

In the example ontology in Figure 4.2, the general axiom (4.15) abstracts

the axioms (4.2)-(4.9) of Figure 4.1. Many of these axioms have more than one

structural difference ((4.2) and (4.6) or (4.3) and (4.15) etc.). Therefore, further

possible replacements should be examined.

The general axiom is the root of the tree. Then, the branches of the tree show

all possible values for each variable of the general axiom. An example tree for the

generalisation (4.15) is shown in Figure 4.3. The leaf nodes of the tree show the

instantiations that result from the replacement of the parent node. Replacements

that abstract only a single axiom are discarded. Replacements that separate the

values of the other variables into different sets and abstract more than one axiom

are kept. For example, in Figure 4.2 all further splits of variable ?class 2 are

discarded as they abstract only a single axiom. However, the replacements for

?class 1 are kept as they abstract more than one axiom and separate the values

of the other variable (?class 2) into disjoint sets. Therefore, classes A, B and C

in the axioms of the form of (4.15) are marked as “relevant” and they are not

replaced by a placeholder. The same procedure is followed for the general axioms

(4.16) and (4.17). In particular, none of the referenced entities of the general

axioms (4.16) and (4.17) are marked as “relevant” because none of the possible
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replacement abstracts more than one axiom. Thus, all of the referenced entities

will be replaced by a placeholder after the application of the replacement function

φ.

?class_2 SubClassOf ?class_1

?class_2 = 
B1

?class_2 
= B2

?class_2 
= B3

?class_1 
= B

?class_1 
= A

?class_1 
= C

B1 
SubClassOf 

B

B1 
SubClassOf 

B

B2 
SubClassOf 

B

B3 
SubClassOf 

B

B2 
SubClassOf 

B

B3 
SubClassO

f B

C 
SubClassOf 

A

B 
SubClassOf 

A

C1 
SubClassOf 

C

C2 
SubClassOf 

C

C3 
SubClassOf 

C

?class_2 = 
C1

?class_2 = 
C2

?class_2 
= C3

C1 
SubClassOf 

C

C2 
SubClassOf 

C

?class_2 ?class_1

?class_2 
= B

B 
SubClassOf 

A

?class_2 
= C

C 
SubClassOf 

A

Figure 4.3: Tree showing possible variable replacements.

This replacement policy can be plugged into the placeholder replacement func-

tion φ. To give an example, the distance d(B1,B3)=0 as the application of φ on

their referencing axioms will give the transformed axioms of Figure 4.4 for both

entities.

?star SubClassOf B (4.18)

?owlClass SubClassOf ?owlObjectProperty some ?star (4.19)

?owlClass SubClassOf ?owlObjectProperty only ?star (4.20)

Figure 4.4: Referencing axioms of entities B1, B3 after the application of the
structural replacement function.

4.5 Computation of proximity matrix

Algorithm 2 depicts the computation of the proximity matrix Mi,j. For the

computation of syntactic regularities, Algorithm 2 takes as input an ontology O
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and a place-holder replacement function φ. It should be noted that one type of

replacement function from the ones presented in Section 4.4 is considered in the

Algorithm. The output is a symmetric matrix with all pairwise distances between

the entities in sig(O).

Algorithm 2 ComputeProximityMatrix(φ,O)
Input: A replacement function φ, an ontology O
Output: A proximity Matrix Mi,j = {mi,j}, 0 ≤ i, j ≤ |Σ|

1: Σ← Sig(O)
2: for all (σi,σj) ∈ ΣxΣ, 0 ≤ i, j ≤ |Σ| do
3: Ax(σi)← getAxioms(σi,O)
4: Ax(σj)← getAxioms(σj,O)
5: Ai ← φ(Ax(σi)) . Transform axioms
6: Aj ← φ(Ax(σj))

7: d(σi, σj)← |Ai∪Aj |−|Ai∩Aj |
|Ai∪Aj | . Calculate distance

8: mi,j = mj,i = d(σi, σj) . Build proximity matrix
9: end for

10: return Mi,j

Algorithm 2 is calling function getAxioms(σi,O), which returns all axioms

from the ontology O that reference an entity σi. In Algorithm 2, Steps 5,6

show the transformation of the usage axioms of every pair of entities (σi, σj)

into abstract forms Ai and Aj respectively. The transformation is achieved with

the application of the place-holder replacement function φ. Step 7 shows the

calculation of the distance and Step 8 shows the construction of each element of

the proximity matrix with every distance d(σi, σj).

4.6 Agglomerative hierarchical clustering

The clustering algorithm is sketched in Algorithm 3. The input of Algorithm 3

is a proximity matrix Mi,j and a stopping criterion P . More details about the

stopping criterion P are given later on. Algorithm 3 is calling the sub-routines

(1) getElements(Mi,j), which returns the set of elements from the proximity

matrix Mi,j, which are the entities from the ontology that are considered for clus-

tering; (2) minDistancePair(Mi,j) which returns the pair of clusters 〈a, b〉 with

the least distance value from the proximity matrix; (3) getClusterFor(a) re-

turns the elements of cluster a; (4) updateProximityWithNewDistances(S)

updates the proximity matrix with respect to a set of clusters S.
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Algorithm 3 AgglomerativeHierarchicalClustering(Mi,j, P)

Input: A proximity matrix Mi,j, a stopping criterion P
Output: A set of clusters S

1: Xsingletons ← getElements(Mi,j)
2: S ← Xsingletons = {{a} | a ∈ Σ} . Initialise all clusters to be singletons
3: while P is not met do
4: 〈a, b〉 ← minDistancePair(Mi,j)
5: S1 ← getClusterFor(a)
6: S2 ← getClusterFor(b)
7: S ← S ∪ (S1 ∪ S2) \ {S1, S2}
8: Mi,j ← updateProximityWithNewDistances(S)
9: end while

10: return S

Next we will illustrate how we update the distances in our proximity matrix

at every agglomeration and what we use as our stopping criterion.

For the former we use the Lance-Williams formula (also see Section 8.3.3 in

[Lan05] - page 524). This formula computes the distance between clusters Q and

R, where R is the result of a merger between clusters A and B, as a function of

the distances between Q, A, and B. That is

p(R,Q) = αA p(A,Q) + αB p(B,Q) + βp(A,B) + γ|p(A,Q)− p(B,Q)| (4.21)

The distance between two sets (clusters) is a function of the distance between

their single elements. There are several approaches to compute this, each corre-

sponds to a different value configuration of the coefficients αA, αB, β, γ in the

general Lance-Williams formula. In the experiments described in the following

sections, we used the so-called centroid configuration3. For this configuration the

coefficients are defined as:

αA =
mA +mB

mA +mQ

αB =
mB

mA +mB

β =
−mAmB

(mA +mB)2 γ = 0

where mA, mB, and mQ are the number of points in clusters A, B, and Q, respec-

tively.

3Although vaguely related, not to be confused with a centroid in the K-means cluster
analysis - see Chapter 8 in [Lan05].
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What mainly differs in hierarchical clustering algorithms, is the way the prox-

imity is updated. Different methods such as complete link, single link and group

average, will give a different proximity, thus different type of clusters.

As a stopping criterion, our implementation uses a heuristic decision. In par-

ticular, the stopping criterion P is selected according to the minimal or maximal

differences that can be detected between the elements in the two closest clusters.

As defined in Step 7 of Algorithm 2, the value of d(σi, σj) is in the interval [0,1].

We use two values as parameters for P (d(σi, σj)). When P (0)(minimal dis-

tance differences) is selected (AgglomerateZeros(Mi,j)), the algorithm will

stop agglomerations when the distances between all possible pairs of elements for

all clusters is equal to 0. When P (1) is selected (AgglomerateAll(Mi,j)), the

algorithm will stop agglomerations when the distances between all possible pairs

of elements for all clusters is equal to 1 (maximal distance differences).

Definition 12 (Agglomerate decision function). Let O be an ontology and d a

distance function. We define the function aggd : 2sig(O) × 2sig(O) → {true, false}
as follows: Given E = {e1, e2, . . . , en} and F = {f1, f2, . . . , fm} be two clusters,

aggd(E,F ) =

• If P (0) is selected then

– false, if ∃1 ≤ i ≤ n(∃1 ≤ j ≤ m : d(ei, fj) = 0);

– true, otherwise.

• If P (1) is selected then

– false, if ∃1 ≤ i ≤ n(∃1 ≤ j ≤ m : d(ei, fj) = 1);

– true, otherwise.

The algorithm terminates when no pair in the current set of clusters returns

true for the Agglomeration decision function aggd, defined above. In the ex-

periments described in Chapters 7 and 8 P (1) is always selected as a stopping

criterion of clustering.

For example, when clustering the Pizza ontology, our implementation returns

17 clusters containing over 110 entities in total; these include:

• A cluster for the toppings that are used in pizzas;
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• A cluster for the named pizzas (pizza with a name and a description of their

toppings);

• A cluster for the country of origin of the toppings.

As intuitive as these groups may seem, given the average familiarity people

have with the pizza domain, this represents a cluster analysis based on the actual

usage of the entities in the ontology. In this example clusters seem to follow the

taxonomy quite well, however, as we shall see in the experiments chapter, this

may not be the case. Performing this kind of analysis can indeed reveal common

use between entities that are far apart in the taxonomical hierarchy.

4.7 Generalisations

Once the clusters are available, the axioms that reference entities in the same

cluster can be generalised and provide a more abstract view on the entire cluster.

We can define a generalisation as a simple substitution of an entity with a variable

within an axiom. A formal description of generalisations is given in Section 3.6.

Here we will give an example of syntactic generalisations from the Pizza ontology.

4.7.1 Example: Generalised Pizzas

Let O be our Pizza ontology and let cluster1 be the cluster of all the toppings used

in pizzas obtained using our cluster analysis above, and cluster2 be the cluster of

all pizzas. Given α = Margherita SubClassOf hasTopping some TomatoTopping:

• g(α, cluster1, ?cluster1) = Margherita SubClassOf hasTopping some ?cluster1;

• g(α, cluster2, ?cluster2) = ?cluster2 SubClassOf hasTopping some TomatoTop-

ping; or composing the two

• g(g(α, cluster2, ?cluster2), cluster1, ?cluster1) = ?cluster2 SubClassOf hasTop-

ping some ?cluster1

where ?cluster1 and ?cluster2 are two variables of type class. (In OPPL:

?cluster1:CLASS, ?cluster2:CLASS).

Generalisations provide a synthetic view of all the axioms that contribute to

generate a cluster of entities. Each of these axioms can indeed be regarded as
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an instantiation of a generalisation, as they can be obtained by replacing each

variable in g with entities in the signature of the ontology.

4.8 Summary

This Chapter presented the algorithms implemented in the RIO framework for

the detection of syntactic regularities. RIO is using cluster analysis for detecting

clusters of similar entities. The usage of the clustered entities is expressed in terms

of variables representing clusters forming generalisations. The generalisations are

the syntactic regularities as every variable in them represents a cluster, i.e. a set

of similar entities.

The next Chapter describes the algorithms an various design decisions that

are taken in RIO for the detection of regularities in the entailments of an ontology,

or semantic regularities.



Chapter 5

Computation of Semantic

Regularities

This chapter describes the methods for detecting semantic regularities, i.e., repet-

itive structures in selected entailments from an ontology. The aim of computing

semantic regularities is to gain an overview of possible DL queries - what the

ontology talks about, and how to ask for this information. The definitions as well

as examples of semantic regularities were given in Chapter 2, Section 3.1. In this

Chapter we describe the details of the algorithms and methods that RIO is using

for the computation of semantic regularities.

The main difference between the detection of semantic regularities and the

detection of syntactic regularities is that for the computation of the semantic

regularities a set of entailments needs to be computed from the ontology. This

set of entailments is used as an input in the clustering algorithm. Thus, the

final regularities are abstractions over the entailments of the ontology and give

an overview of the information that can be inferred about similar classes in the

ontology; they are not sensitive to the detail of how axioms are expressed, but

they capture the meaning of an ontology. As there is, in general, more than

one way to entail an axiom from an ontology, using the inferred axioms rather

than the asserted axioms means that a regularity can be found across different

forms of expression; this regularity would not have been detected if the regularity

inspection had stopped at the syntactic level.

To give an example highlighting the difference between regularities detected

in the asserted axioms of an ontology and regularities in the entailments of an
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ontology, consider the axioms of Figure 5.1 taken from the People ontology1.

Figure 5.1 also shows some of the entailments ((b1)-(b12)) that hold for the

axioms (a1)-(a10) of the ontology.

Asserted Axioms:

(a1) van driver EquivalentTo person and (drives some van)

(a2) lorry driver EquivalentTo person and (drives some lorry)

(a3) bus driver EquivalentTo person and (drives some bus)

(a4) haulage truck driver EquivalentTo person and (drives some truck)

and (works for some (part of some haulage company))

(a5) van driver SubClassOf person

(a6) lorry driver SubClassOf person

(a7) bus driver SubClassOf person

(a8) haulage truck driver SubClassOf person

(a9) person SubClassOf animal

(a10) person SubClassOf eats some Thing

Entailments:

(b1) van driver SubClassOf animal

(b2) lorry driver SubClassOf animal

(b3) bus driver SubClassOf animal

(b4) haulage truck driver SubClassOf animal

(b5) van driver SubClassOf eats some Thing

(b6) lorry driver SubClassOf eats some Thing

(b7) bus driver SubClassOf eats some Thing

(b8) haulage truck driver SubClassOf eats some Thing

(b9) van driver SubClassOf drives some Thing

(b10) lorry driver SubClassOf drives some Thing

(b11) bus driver SubClassOf drives some Thing

(b12) haulage truck driver SubClassOf drives some Thing

Figure 5.1: Example asserted axioms taken from the People ontology

1http://owl.man.ac.uk/2006/07/sssw/people.owl

http://owl.man.ac.uk/2006/07/sssw/people.owl
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From the two sets we can derive different types of regularities. Two syntactic

regularities that derives from the axioms of Figure 5.1 are shown in Figure 5.2a.

(g1) ?driver EquivalentTo person and (drives some ?vehicle)

Instantiations: (a1) - (a3)

(g2) ?driver SubClassOf person

Instantiations: (a5) - (a8)

(a) Two syntactic regularities describing the axioms of Figure 5.1.

(g1’) ?driver SubClassOf animal

Instantiations: (b1) - (b4)

(g2’) ?driver SubClassOf eats some Thing

Instantiations: (b6) - (b8)

(g3’) ?driver SubClassOf drives some Thing

Instantiations: (b9) - (b12)

(b) Three semantic regularities describing the entailments of Figure 5.1.

Figure 5.2: Syntactic and semantic regularities describing the axioms of Fig-
ure 5.1.

On the other hand, the regularities that derive from entailments (b1)-(b12)

are shown in Figure 5.2b

As it can be seen the semantic regularities are found in the inferred axioms of

the ontology, and they abstract on the inferred information. Also information that

might not be captured by the syntactic regularities because of the difference in the

structure of the asserted axioms can be captured in the semantic regularities. For

example, regularity (g1) instantiates axioms (a1)-(a3) but it does not instantiate

axiom (a4) even though part of it is that haulage truck driver EquivalentTo person

and (drives some truck) so it can be covered by the regularity. On the other hand,

the semantic regularity (g3́) covers instantiations (b9) - (b12), thus it captures the

information about the haulage truck driver which was excluded in the syntactic

regularities. Such additional information can be useful for quality assurance of an
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ontology; the semantic regularities can give a more complete outline of underlying

patterns as these are reflected by the reasoner.

RIO’s current implementation is computing a set of entailments using the

Knowledge Explorer (KE); a toolkit for providing a graph for the entailments

of the TBox of an ontology, based on the completion graph generated by the

FaCT++ tableaux reasoner [TH06a]. A more detailed description of KE is given

in Section 5.1. Details on the algorithms and refinements of methods for the

computation of semantic regularities are given in Section 5.2.

5.1 Knowledge Explorer

The knowledge explorer is an extension of the OWLAPI OWLReasoner: it is a Java

interface that allows client code to explore the completion tree built by a tableaux

reasoner. Knowledge explorer has been developed at the University of Manch-

ester by Dimtry Tsarkov and Ignazio Palmisano, the developers of FaCT++ and

JFact reasoner respectively. To the best of our knowledge, this interface is cur-

rently implemented directly only by the FaCT++ [TH06a] tableaux reasoner.

The interface and its documentation are available on the OWLAPI web site2.

It should be noted that the KE is an interface added in FaCT++ reasoner

for simplifying the process of extracting entailments referring to the TBox of the

ontology: it provides a simpler and faster interface to retrieve information that a

reasoner can provide through the traditional OWLReasoner interface. In terms of

implementation efficiency, KE provides convenient methods for the computation

of entailments occurring between complex classes whose computation with the

standard OWLReasoner interface is more difficult to implement.

However, KE is not a new implementation of a DL Reasoner. It exploits

the implementation of the underlying reasoner (FaCT++ in this context) for

answering queries, but does not implement new or alternative reasoning services.

Thus, the entailments obtained through KE have the same characteristics of

soundness of the implementing reasoner.

Also worth noting is that KE is not tied to FaCT++; it is an extension of

the OWLReasoner and as such it can be implemented by any reasoner which is

accessible through the OWL API. At the time of writing, only JFact3, the Java

2http://owlapi.sourceforge.net
3http://jfact.sourceforge.net

http://owlapi.sourceforge.net
http://jfact.sourceforge.net
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port of FaCT++, has an experimental implementation of the KE; wider diffusion

and support will hopefully happen in the near future.

In our approach we want to further exploit the information, which can be

exposed by the KE and generalise over the canonical form of the graph. The

assumption we make is that the generalisation over the repetitive structures that

result from the canonical form of the graph will result to the detection of semantic

patterns in the ontology.

The knowledge exploration graph is based on the exploration of a single model4

that a reasoner builds while it checks the TBox consistency (for details on the

computation of TBox consistency the reader should refer to Chapter 2.4). More

formally,

Definition 13 (Completion graph). A completion graph is a directed graph G =

〈V,E,L〉, where V is a nonempty set of nodes, E ⊆ V ×V is a set of edges, and

L maps every v ∈ V to a set of classes, and every e ∈ E to a set of properties.

Such a completion graph is produced by a tableaux-based reasoner (e.g.,

FaCT++) during a satisfiability check. A completion graph corresponding to

a satisfiability check for a class A w.r.t. ontology O (whether or not O |= A v ⊥)

has a few features [HKS06]:

1. There is a root node r ∈ V such that A ∈ L(r).

2. For every class B ∈ L(r), O |= A v B, where A and B are classes.

3. Every edge in the graph corresponds to a ∃R.C or ≥ nR.C class in a label

of one of its starting nodes.

4. For every node x and class C, the reasons for C ∈ L(x) include:

• There is a class B: B ∈ L(x) and O |= B v C;

• There is a node y: (y, x) ∈ E and R ∈ L(y, x) and either ∃R.C ∈ L(y)

or ∀R.C ∈ L(y)

Definition 14 (Knowledge Explorer Graph). A knowledge explorer graph is a

completion graph whose labelling function L maps every node to a set of named

classes from Sig(O).

4As it has being explained in Section 2.4, a tableaux reasoner creates interpretation models
of an ontology.
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In essence, the knowledge explorer is a completion graph based on a model5

for a class A and an ontology O, with class expressions, i.e., non-named classes,

removed from the labels of the completion tree nodes. In the future whenever we

refer to KE we refer to the exploration of the graph (the letter ’G’ is dropped).

An example graph is shown in Figure 5.3, from the people ontology, where

the subgraph for the haulage truck driver class is shown. The asserted axioms for

haulage truck driver are shown in Figure 5.1. The root node includes the set of

classes S= {animal, person, adult }, which are superclasses of haulage truck driver.

Some implicit information can be derived from the graph, such as:

O |= haulage truck driver v ∃eats.>

O |= haulage truck driver v ∃.works for.∃part of.company

O |= haulage truck driver v ∃drives.∃>

[animal, person, haulage_truck_driver, adult]

[part_of some haulage_company]

works_for

[part_of some company]

works_for

[Thing]

eats
[truck and vehicle]

drives

[haulage_company]

part_of

[company]

part_of

Figure 5.3: An example knowledge exploration subgraph showing possible entail-
ments of the haulage truck driver class.

A reasoner implementing KE provides several methods to access the knowl-

edge exploration graph, namely:

• getRootNode(A) returns the root node of a graph for a class A;

5An ontology can have infinite interpretation models [BCM+03]. Tableaux reasoners build
an interpretation model only for consistent ontologies. For more details we refer the reader to
Section 2.4 and [BCM+03].
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• getLabel(x) returns a set {B : B ∈ L(x)}

• getProperties(x) returns {R : ∃y, (x, y) ∈ E,R ∈ L(x, y)};

• getNeighbours(x,R) returns {y : (x, y) ∈ E,R ∈ L(x, y)};

5.1.1 Entailments considered

As it was mentioned the entailments that are extracted from KE are of the form

A v B and A ≡ B, where A is always an atomic class and B can be an atomic

or complex class, where the grammar for B can be:

B → >|A|B uB|∃R.B

This grammar leads to an infinite instantiations, which is reasonable, due to

an infinite number of non-trivial entailments in general. For example, we can

have entailments of the form A v ∃R.A, A v ∃R.R.A and so on. In order

to extract a finite set of entailments and to ensure the termination of explo-

ration in KE, we have the following restriction. The models of a concept ex-

pression are tree-like. They might have infinite branches which can be unrolled

cycles or infinitely long branches. For such cases, the reasoner stops exploring

the branch because of a blocking condition [GHM10]. Thus, the KE provides

only the part of a branch up to its first repetition. This will cover both in-

finitely long branches and unrolled cycles. So, if the model looks like x → R →
y → S → x′ → R → y′ → S → x′′ . . . , where Label(x) = Label(x′) = . . .

and Label(y) = Label(y′) = . . ., the implemented KE will return a concept

(Label(x) and (some R (Label(y) and (some S Label(x)))), where Label(x) is

the label returned by the getLabel(x) function. Such blocking effect prevents

from non terminating cycles.

There are also some additional restrictions on the implementation side of KE.

At the time of writing, the following information cannot be directly extracted

from the KE:

• Expressions containing complex properties. For example, in entailments of

the form O |= A v ∃R.C, if R is a complex property then at the current

implementation of KE they are not explored further. Thus, such entailments

are skipped.
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• In Definition 13 when ∃R.C ∈ L(y) or ∀R.C ∈ L(y), at the current imple-

mentation R is always an object property.

It is worth noting that these limitations are dependent on the FaCT++ im-

plementation, not on the KE interface itself; the authors of the KE are currently

working on an update that will remove them.

The reader might argue that the set of extracted entailments is ad hoc for the

designed system (KE). For example, in the grammar introduced above it does not

include negation or cardinality restrictions. Also entailments on the ABox are not

included. However, this type of grammar should suffice for computing entailments

in the EL profile, without any loss of information on the types of entailments with

respect to the defined grammar6. Considering that many biomedical ontologies

like SNOMED-CT, the Foundation Model of Anatomy (FMA), GALEN etc are

on this profile, we limit the scope of analysis on this expressivity as it does not

constrain us too much. It remains as future work to explore other grammars and

compare the significance of results.

5.2 Semantic regularity algorithms

We have described the entailments that are directly exposed by the KE, so now we

can proceed with details on the algorithms for the computation of entailments and

semantic regularities. The main steps for the computation of semantic regularities

are similar to the ones for the computation of syntactic regularities. These are:

1. Extraction of a set of entailments n from the KE.

2. Computation of the proximity matrix of distances between the entities in

the Sig(n).

3. Computation of clusters of entities in the Sig(n).

4. Formulation of generalisations that describe clusters of similar entities.

In this section we will not go into details on the clustering algorithm as this

has been already described in the previous chapters. The main differences in the

algorithms are mainly on the first two steps of the procedure.

6EL profile allows for concept intersections and existential restrictions
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Algorithm 4 computes a set of entailments S from the KE. To achieve this, it

uses recursive Algorithm 5 to explore all descendant nodes to the RootNode.

Algorithm 4 in step 10 calls function checkEntailments (Algorithm 6) to check

if the created axioms α, β are entailed by the ontology O. With this method we

verify that extracted entailments from the KE are always valid.

Algorithm 4 ComputeKnowledgeExplorationAxioms

Input: O an ontology
Output: A set of entailments S, such that O |= S

1: S ← ∅
2: for all A ∈ sig(O) that O 6|= A v⊥ do
3: R← getRootNode(A)
4: for all p ∈ getProperties(R) do
5: F ← ∅ . p-fillers
6: for all N ∈ getNeighbours(R, p) do
7: F ← F ∪ getFillers(N)
8: end for
9: end for

10: S ← S ∪ checkEntailments(A, p, F )
11: end for
12: return S

Algorithm 5 getFillers

Input: A node R
Output: A set of complex classes Fillers;

1: Fillers← getLabel(R) ∪ {>}
2: for all p ∈ getProperties(R) do
3: for all N ∈ getNeighbours(R, p) do
4: for all C ∈ getFillers(N) do
5: Fillers ← Fillers ∪{∃p.C}
6: end for
7: end for
8: end for
9: return Fillers

Algorithm 4 can be used with any consistent OWL-DL ontology as it does

not add any constraints on the reasoning process.

The computation of the proximity matrix will be based on the signature of

the set of entailments Sig(S). Because we are interested in the computation

of semantic regularities, the input of the clustering algorithm should be a set



CHAPTER 5. COMPUTATION OF SEMANTIC REGULARITIES 104

Algorithm 6 checkEntailments

Input: a class A, objectProperty p, a set of classes Fillers;
Output: A set of entailments S, such that O |= S

1: S ← ∅
2: for all C ∈ Fillers do
3: Axiom α← A v ∃p.C ∪A ≡ ∃p.C
4: if O |= α then S ← S ∪ {α}
5: end if
6: Axiom β ← A v ∀p.C ∪A ≡ ∀p.C
7: if O |= β then S ← S ∪ {β}
8: end if
9: end for

10: return S

of entailments S. Clustering in RIO is based on the computation of pairwise

distances of a set of entities. Here, we are interested only in the entities that

participate in the entailments, thus the rest of the entities in the Sig(O) are not

included.

Algorithm 7 shows the steps for the computation of the proximity matrix Mi,j.

Algorithm 7 is similar to Algorithm 2, only here the calculation of distances is

done on the set of entailments. The sub-routine getEntailments(σi, S) returns

the entailments from S that reference the entity σi.

Algorithm 7 ComputeProximityMatrix(φ, S)

Input: A replacement function φ, a set of entailments S
Output: A proximity Matrix Mi,j = {mi,j}, 0 ≤ i, j ≤ |Σ|

1: Σ← Sig(S)
2: for all (σi,σj) ∈ ΣxΣ, 0 ≤ i, j ≤ |Σ| do
3: Ax(σi)← getEntailments(σi, S)
4: Ax(σj)← getEntailments(σj, S)
5: Ai ← φ(Ax(σi)) . Transform entailments
6: Aj ← φ(Ax(σj))

7: d(σi, σj)← |Ai∪Aj |−|Ai∩Aj |
|Ai∪Aj | . Calculate distance

8: mi,j = mj,i = d(σi, σj) . Build proximity matrix
9: end for

10: return Mi,j

Finally, function AgglomerativeHierarchicalClustering(Mi,jP )), which

have been already introduced in Algorithm 3 is called for the computation of the

clusters. Algorithm 3 takes as an input the proximity matrix which was computed
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by Algorithm 7.

5.3 Replacement Function

The replacement functions adopted for the computation of semantic regularities

are the same ones defined for the computation of syntactic regularities. The trans-

formation policy is plugged in the replacement function φ used in Algorithm 7,

Steps 5, 6 for the transformation of the entailments into more abstract forms

for the calculation of pairwise distances. Therefore, the following replacement

functions are used:

1. Property-based replacement function described in Chapter 4.4.1.

2. Popularity-based replacement function described in Chapter 4.4.2.

3. Structural-based replacement function described in Chapter 4.4.3.

It should be noted that since the set of entailments that are considered for

the computation of semantic regularities can contain only object properties, the

property-based replacement function will not replace any object properties by

placeholders.

The replacement function is applied in the same way for entailments as for

the asserted axioms. For example, in Algorithm 7, Steps 5 and 6, the placeholder

replacement function φ is applied to the referencing entailments Ax(σi), Ax(σj)

∈ S of entities (σi,σj). With the property-based replacement policy, function φ

replaces entities σi, σj with ?* placeholder in the entailments. Object properties

are not replaced by any placeholder and the remaining entities in the entail-

ments Ax(σi), Ax(σj) are replaced with a general placeholder denoting their type

according to Definition 7.

After the application of the replacement function φ, the distance d(σi, σj) is

calculated as an overlap of the two sets of transformed entailments φ(Ax(σi)),

φ(Ax(σj)). It should be mentioned that this transformation is an intermediate

step (Steps 6, 5 in Algorithm 7). The abstract form of entailments that are

generated in this step should not be confused with the final generalisations that

are produced after the termination of Algorithm 3.
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5.4 Entailment Generalisations

Similarly to the computation of syntactic regularities, after the computation of

clusters the last step is the formulation of generalisations with respect to the

detected clusters. Thus, similarly to the syntactic regularities, a variable in the

generalised entailments is representing a corresponding cluster of similar entities.

For example, for the people ontology, RIO detected 8 clusters. The results refer

to clustering using the popularity replacement function. An example semantic

generalisation is shown in Figure 5.4.

Generalisation:
?cluster 2 SubClassOf drives some (vehicle and ?vehicle)
Instantiations:
van driver SubClassOf drives some (van and vehicle)
lorry driver SubClassOf drives some (lorry and vehicle)
haulage truck driver SubClassOf drives some (truck and vehicle)
bus driver SubClassOf drives some (bus and vehicle)

Figure 5.4: An example entailment generalisation and its instantiations from the
people ontology.

This generalisation covers 4 entailments from the ontology.

5.5 Summary

This Chapter presented details on the Algorithms for the computation of semantic

regularities in ontologies. In particular, it started with the description of the KE

which is used for the computation of entailments in an ontology. The computed

entailments are used as input of the clustering algorithm, which returns a set of

entities that play similar roles in entailments of similar structure. The description

of these entailments is given by generalisations.

At this point we have concluded the description of methods for detecting

regularities in RIO framework. The next chapters describe methods for evaluating

the regularities of RIO and a series of experiments on the application of RIO

framework in a variety of real ontologies.



Chapter 6

Evaluation Methods

With the description of RIO framework at hand, we can proceed to the definition

of methods for evaluating the validity of the framework and its significance as it

is used in a series of experiments. The claims to be demonstrated by experiment

in this thesis are:

1. Feasibility of detection of syntactic regularities.

2. Feasibility of detection of semantic regularities.

3. Examination of the cluster validity and assessment of regularity level.

4. Detected regularities can help to reveal the composition style of an ontology.

5. Ontology characterisation in terms of their regular design style.

6. Usefulness of irregularity inspection in an ontology as part of regularity

analysis.

In order to verify these claims two types of analysis are performed; quantitative

and qualitative analyses. The aim of the quantitative analysis is to assess validity

and reliability of the detected regularities. This is done with a metric scheme

presented in this Chapter. The qualitative analysis refers to further analysis and

interpretation of the detected regularities in selected ontologies.

This chapter describes methods used for experimental result evaluation. The

goal of evaluation is first to validate the clustering results and secondly to verify

the validity of the generalisations. This is done with internal criteria such as

metrics for assessing the cohesion of clusters and external criteria like projection

of generalisations in other independent graphs such as the modular structure.

107
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Statistical evaluation methods are presented in this thesis to investigate the

validity of the results. A series of experiments show the usefulness and interpre-

tation of the results such as a systematic inspection of irregularities, performed

on SNOMED-CT ontology modules (Chapter 7).

6.1 Motivation

Validation of the results: Since clustering algorithms define clusters that are

not known a priori, the final results require some kind of evaluation in most

applications [RLR98, HBV01].

In RIO, hierarchical clustering will give a set of clusters of similar entities

(according to their usage either in the asserted axioms of the ontology or on a set of

entailments). In the worst case scenario, on the last step of agglomeration, every

cluster will include a single entity. That means, zero agglomerations occurred

during clustering based on the proximity matrix. Thus, a key motivation for

cluster validation is that almost every clustering algorithm will find clusters in a

data set, even if that data set has no natural cluster structure.

Interpretation of the results: The final product of clustering is the clusters

of similar entities as well the description of these clusters with generalisations.

The generalisations represent the regularities of the ontology. Assessing the qual-

ity of the generalisations, such as size, abstraction level of axioms, cluster cover-

age etc is important to understand the type of patterns that might exist in the

ontology and how these deviate when describing different parts of the ontology.

6.1.1 Cluster validity assessment

One of the most important issues in cluster analysis is the evaluation of clustering

results to find the partitioning that best fits the underlying data. This is the main

subject of cluster validity [HBV01].

Ideally, the set of clusters should be cohesive and cluster should be well sepa-

rated from each other. In literature, a first type of experimental validation is the

visualisation of clustered data. However, in the case of multidimensional or large

scale data this is not the most efficient and systematic way of assessment.

According to literature, there are three approaches to investigate cluster va-

lidity [TK06]. The first approach is based on internal criteria. That means that

the clustering results are assessed in terms of measurements that involve the data
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set themselves, such as analysis of the proximity matrix, cohesion metrics on the

clusters etc. The second approach is based on external criteria. This implies that

the clustering results are assessed based on a pre-specified structure, which is

imposed on a data set and reflects an intuition about the clustering structure of

the data set [TK06]. Finally, a relative criteria approach compares two structures

and measures their relevance.

The cluster validity criteria that are used in this thesis are internal and ex-

ternal.

6.2 Internal criteria

Being able to distinguish whether there is a non-random structure in the data

is just one important aspect of cluster validation. This section describes the

methods that were used for the quantitative evaluation of the clustering results,

known as cluster validity methods. These are mainly metrics which aim to verify

that the clusters have not been randomly formed.

6.2.1 Clustering Metrics

As internal criteria we selected metrics that assess the homogeneity of the mem-

bers of a cluster and the heterogeneity between different clusters. Respectively

these metrics measure cluster cohesion and cluster separation. In literature there

is a variety of metrics for assessing these aspects [Lan05, HBV01, RH07]. In this

thesis the following simple metrics were used:

Definition 15 (Max Internal Distance (MaxID)). Given a cluster C with n ele-

ments, we define the Max Internal Distance (MaxID) of C as:

MaxID = max
1≤i,j≤n

{d(xi, xj)}

Definition 16 (Min Internal Distance (MinID)). Given a cluster C with n ele-

ments, we define the Min Internal Distance (MinID) of C as:

MinID = min
1≤i,j≤n,i 6=j

{d(xi, xj)}

Definition 17 (Max External Distance (MaxED)). Given a set of clusters {Ci}, 1 ≤
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i ≤ n we define the Max External Distance (MaxED) as:

MaxED = max
x∈Ci,y∈Cj ,1≤i,j≤n

{d(x, y)}

Definition 18 (Min External Distance (MinED)). Given a set of clusters {Ci}, 1 ≤
i ≤ n, we define the Min External Distance (MinED) as:

MinED = min
x∈Ci,y∈Cj ,1≤i,j≤n,i6=j

{d(x, y)}

Definition 19 (Mean Internal Distance (MeanID)). Given a set of K clusters

CK, we define the Mean Internal Distance (MeanID) as:

MeanID =
1

K

K∑
m=1

∑|Cm|
xi,xj ,i 6=j d(xi, xj)

|Cm|

where d(xi, xj) is the distance between two elements in the cluster Cm and |Cm|
is the cardinality of cluster Cm.

Definition 20 (Homogeneity (h)). Given a set of clusters Cn, homogeneity h is

defined as:

h = 1−MeanID

and it measures how well formed the clusters are.

Most of these metrics are in the category of overall measures of cohesion and

separation, meaning they are weighted sums for assessing the validity of clusters,

like the mean internal and mean external distance.

6.2.2 Generalisation quality metrics

In addition, we have defined a set of metrics for assessing the quality of generali-

sation that describe the cluster. The following metric definitions are used in the

results section for assessing the quality of generalisations:

Definition 21 (Cluster Coverage (CC)). Let g be a generalisation, which has a

variable v and this variable corresponds to a cluster c with n entities. If v holds m

entities from c where m ≤ n, then the cluster coverage CCg for the generalisation

g is defined as:

CCg =
m

n
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Definition 22 (Mean Cluster Coverage per generalisation (MCC)). Given a set

of generalisations G = {g1, g2, . . . , gn} for which every generalisation gi ∈ G has

cluster coverage CCgi, then MCC is defined as

MCC =

∑n
i=0 CCgi
|G|

The union of the generalisations describes the cluster, hence a single general-

isation might not be necessarily applicable to all the entities in a cluster. Thus,

the MCC measures the number of entities in a cluster for which a generalisation

is applicable. To demonstrate how it works, consider the example of Figure 6.1.

Cluster: ?Beverage=[Lemonade, Wine, Whiskey, Beer, Coke]

Generalisation:

?Beverage SubClassOf contains some Alcohol

Instantiations:

Wine SubClassOf contains some Alcohol

Whiskey SubClassOf contains some Alcohol

Beer SubClassOf contains some Alcohol

where ?Beverage=[Wine, Whiskey, Beer]

Figure 6.1: An example cluster and generalisation describing beverages

In this example, cluster ?Beverage has 5 members in total. However, the

example generalisation is applicable only for 3 of these classes. Thus, the cluster

coverage by this generalisation is 60%.

Definition 23 (Mean Instantiations per Generalisation (MI)). Given a set of

generalisations G which cover A axioms (instantiations), we define

MI =
|A|
|G|

MI is a measure that shows the level of abstraction for each generalisation.

The MI metric is an important one used in all of the experiments of this thesis,

as an estimation of the abstraction impact of a generalisation over an ontology.
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It essentially measures the number of axioms or entailments from the ontology,

that is abstracted by a generalisation. In the above example, the generalisation

?Beverage SubClassOf contains some Alcohol has 3 instantiations. In cases that

the MI metric is high, it indicates that a dominant regularity exists that is cap-

tured by a few generalisations. More details on the uniformity of an ontology are

given in the following section.

6.2.3 Uniformity

The main question about detection of regularities is which strategy captures

regularities, if they exist, in the most efficient way. Then a second question

that arises is what is considered as an efficient way. An ontology can be one of

the following in terms of regularities:

• It can be irregular

• It can be regular with many different forms of regularities

• It can be regular with a few different forms of regularities

According to the RIO framework, we can characterise an ontology as irregular

if all the generalisations in the ontology cover only single axioms. This is an

extreme case, which is unlikely to happen for medium to large size ontologies.

The reason is that the axioms are constructed following a syntax, thus they are

expected to have some syntactic regularities.

We define uniformity in regularities as the degree of diversity of regularities

in an ontology. The intuition behind uniformity is to define a characteristic that

allows the assessment of the detected regularities. According to the previous

states, an ontology can be regular, but have different forms of regularity; thus

it has low uniformity. Uniformity can give an intuition of the compositional

complexity of an ontology. It shows that different design decisions were taken

for describing different portions of the ontology. For example, a general pattern

that has been chosen to describe a set of entities in the ontology, can have some

deviations when it is applied in a different set of entities. On the other hand, an

ontology can be regular with a high level of uniformity, meaning that the same

form of regularity appears in most axioms of the ontology. On a second level,

this reveals a low compositional complexity of the ontology.
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According to the RIO framework, we can observe the following properties in

order to assess the uniformity of an ontology:

• Number of generalisations

• Number of instantiations per generalisation

• Cluster coverage by generalisations

• Degree of homogeneity of clusters

An indicator of a regular and homogeneous ontology is the number of general-

isations covering a high number of instantiations. According to these two criteria

we define uniformity as the average of the MI and MCC metric, thus:

uniformity =
MI +MCC

2

The higher the number of instantiations covered by a generalisation, the more

regular the ontology is; a side effect is that the number of such generalisations

must be small. As a consequence, the cluster coverage by per generalisation will be

close to 1. On the other hand, the existence of a high number of generalisations of

similar structures gives the indication of a regular but not very uniform ontology.

For example consider the following two generalisations:

?Pizza SubClassOf hasTopping some ?Topping 1

?Pizza SubClassOf hasTopping some ?Topping 2

These indicate the existence of two clusters of toppings; ?Topping 1 and ?Top-

ping 2 which results in two generalisations even though they have similar struc-

ture. On the other hand, a single generalisation describing this type of regularity

would have been:

?Pizza SubClassOf hasTopping some ?Topping

The high number of generalisations of similar structure having only a few

differences in the variables, indicates the existence of a regularity with many de-

viations. There can be two explanations for the deviations. The first one is that

the distance approach which is selected does not capture similarities between en-

tities in the most efficient way but the detected regularities is an approximation.

The second one is that entities that result in the same cluster share common ax-

ioms expressed by a generalisation. However, this does not exclude the existence
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of axioms of different structure using entities of the same cluster. For example,

in the above generalisations ?Topping 1 and ?Topping 2 even though they are

toppings, they can hold different types, such as meaty toppings and vegetarian

toppings respectively. This distinction is reflected on the referencing axioms of

these entities and it is the reason that separates them in different clusters.

6.3 External criteria

Cluster validity measures are intended to help us measure the goodness of the

clusters that we have obtained. Indeed, they typically give us a single number

as a measure of that goodness. However, we are then faced with the problem

of interpreting the significance of this number, a task that may be even more

difficult [Lan05].

External criteria of evaluation include methods which are more heuristic and

tailored to the nature of the data. In our case, we are dealing with OWL ontolo-

gies, which are known to be complex logical artifacts. OWL ontologies consist of

structured data. Different structural analysis of an ontology can be applied. In

this work, we are using the modular structure of an ontology to check if it com-

plies with the detected syntactic and semantic regularities. This structure has

been also described in Chapter 2.5 as the Atomic Decomposition. Even though

there is no one to one correspondence between the detected regularities and the

modular structure exposed by the Atomic Decomposition, there are similarities

between them. For example, regular axioms have also an impact on the structure

of the Atomic Decomposition. Details about these similarities are discussed later

on.

It should be noted that in the external evaluation we focus more on the pre-

cision of detecting regularities which are expected to be found rather than recall.

6.3.1 Syntactic regularities external evaluation

This section includes other experimental methods for the validation of the results.

In literature [Lan05], external evaluation evaluates clustering results using data

that was not used for clustering, such as known class labels and external bench-

marks. Such external benchmarks are predefined classifications on the data. In

practice, it is quite difficult to have a predefined classification of the entities in the

ontology, as most of the times, the purpose of clustering is knowledge acquisition.
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Reference to ontology documentation or developer

On the qualitative analysis of the ontologies, dominant patterns described in

the documentation of the ontologies were compared with the detected syntactic

regularities. The documentation of the ontologies in this case worked as a gold

standard for the verification of the results. However, this is just a limited method

of verification as in very few cases we could refer to the documentation of the

ontologies, which described a pattern. The results of such analysis are described

in Chapters 7 and 8.

Verification with OPPL scripts

Ontology documentation in many cases is quite abstract and will give only an

intuition of how the ontology is structured. For evaluating the difference between

the detected regularities and the expected pattern, sometimes this documentation

does not suffice. That might be because there might be a difference between the

intended design as it is described in the documentation and the actual design of

the ontology. For example, there might be cases in which the pattern prescribed

in the ontology technical guide is not respected in a large number of cases in the

actual ontology. In Chapter 2 we introduced the usage of OPPL as a language

for manipulating ontologies and ingesting patterns in them.

In Chapter 7 we show a qualitative analysis of the syntactic regularities in

three modules from SNOMED-CT. These modules are expected to have axioms

that instantiate patterns described in the technical guide of the ontology [sno11].

For a more systematic verification of the results, we initially express these patterns

with OPPL to count their instantiations in the ontology and then we compare

these results with the regularities detected from RIO.

Projection of generalisations in the atomic decomposition

In Chapter 2, an introduction to Modularity and Atomic Decomposition was pre-

sented. The Atomic Decomposition shows the modular structure of an ontology.

It is a dependency graph between atoms and each atom is a maximal set of axioms

which co-occur in ontology modules.

As an evaluation method, the AD is independent from clustering results.

Of course, the input in both structures is the same ontology but the meth-

ods for partitioning this input are different. There is prior evidence that AD
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can expose the semantics of the ontology by showing the dependency between

atoms [VPS12, VPS11]. An atom with dependencies cannot exist on its own

in a module; the dependent atoms will also included in the module. That in-

dicates that AD shows how axioms have logical dependencies to other axioms,

with respect to a modularisation algorithm; both have been proved to be sound

and complete in terms of what can be inferred from the ontology, therefore the

structure highlighted by the AD is semantically sound and not an artifact of the

syntactic structure of the ontology.

By showing a high correlation between the AD structure and the generali-

sations found by RIO, we are highlighting the fact that RIO generalisations are

capturing semantically sound repetitions, not just syntactic regularities which are

incidental to the ontology intended semantics, thus confirming the reliability of

the detected patterns.

The AD of the ontology O of Figure 6.2a is shown in Figure 6.3. This ontology

consists only of subclass axioms. The axiom in A7 is built upon A2, which means

that a module that contains axioms of A7 will also contain the axiom of A2.

This structural observation can be also explained from a cognitive aspect; the

description of Breaststroke swimming is built upon the description of Swimming,

which is included in A2.

To evaluate the quality of regularities, we project the final generalisations in

AD to assess the compression of this structure; the intuition behind this is that

atoms with regular structure will be merged after the projection of regularities

in the AD. This shows that the detected generalisations are not random but

they correspond to repetitive structures also reflected in the AD structure. In

other words, verifying this repetition with AD is an indication that the detected

generalisations are meaningful. Thus we define AD compression as:

ADCompression =
|GADatoms|
|ADatoms|

where ADatoms are the atoms of the Atomic Decomposition, and GADatoms

are the atoms whose axioms have been replaced with generalisations.

The syntactic regularities of the example ontology O as they can be detected

by RIO using the popularity-based placeholder function are presented in Fig-

ure 6.2b. The projection of these generalisations in the AD of the ontology will

cause compression of the structure, shown in Figure 6.4. The projection of the
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Cycling SubClassOf Sport
Swimming SubClassOf Sport

Freestyle swimming SubClassOf Swimming
Breaststroke swimming SubClassOf Swimming

Sightseeing SubClassOf Hobby
Painting SubClassOf Hobby

Oil painting SubClassOf Painting
Watercolor painting SubClassOf Painting

(a) Example ontology.

Generalisation:
?Hobby SubClassOf Hobby
Instantiations:

Sightseeing SubClassOf Hobby
Painting SubClassOf Hobby

{?Hobby:CLASS=[Sightseeing,
Painting]}

Generalisation:
?Painting SubClassOf ?Hobby

Instantiations:
Oil painting SubClassOf Painting
Watercolor painting

SubClassOf Painting
{?Painting:CLASS=[Oil painting,

Watercolor painting],
?Hobby:CLASS=[Painting]}

Generalisation:
?Sport SubClassOf Sport
Instantiations:
Swimming SubClassOf Sport
Cycling SubClassOf Sport
{?Sport:CLASS=[Swimming, Cycling]}

Generalisation:
?Swimming SubClassOf ?Sport
Instantiations:
Freestyle swimming SubClassOf Swimming
Breaststroke swimming

SubClassOf Swimming
{?Swimming:CLASS=[Freestyle swimming,

Breaststroke swimming],
?Sport:CLASS=[Swimming]}

(b) Four regularities and corresponding instantiations of the example ontology detected
by RIO using popularity replacement function.

Figure 6.2: Example ontology and its syntactic regularities detected by RIO

generalisations caused a 50% compression of the AD. It should be noted that

the resulting structure has no longer the same dependency structure as the ini-

tial AD. For example, atoms A1 and A3 do not have any dependents in the AD

but they get merged with A2 and A4 respectively. However, there are structural

similarities on the initial AD and these are captured by the generalisations.
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(A2)
Swimming 
SubClassOf 

Sport

(A5)
Freestyle_swimming 

SubClassOf 
Swimming

(A3)
Sightseeing 
SubClassOf 

Hobby

(A7)
Breaststroke_swimming 

SubClassOf 
Swimming

(A4)
Painting 

SubClassOf 
Hobby

(A6)
Oil_painting 
SubClassOf 

Painting

(A1)
Cycling 

SubClassOf 
Sport

(A8)
Watercolor_painting 

SubClassOf 
Painting

Figure 6.3: AD of the example ontology

(B2)
?Hobby SubClassOf Hobby

(B3)
?Swimming SubClassOf ?Sport

(B4)
?Painting SubClassOf ?Hobby

(B1)
?Sport SubClassOf Sport

Figure 6.4: Compressed AD of the example ontology O. In this example, the
generalisation are detected using RIO clustering with popularity replacement
function.

In addition, different types of isomorphic structures can be detected in Fig-

ure 6.3. Someone could argue that since the ontology has only subclass axioms

the main syntactic regularity is ?x SubClassOf ?z, with ?x and ?z holding the

corresponding entities from the ontology. Thus, everything should be merged in

one atom. The regularities expressed by the generalisations are also verified by

the AD compression. However, the ones detected by RIO with the popularity

placeholder replacement take into account the popularity of various entities in
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the ontology, therefore not everything is getting merged.

6.3.2 Semantic regularities evaluation

For the evaluation of the semantic regularities the same internal and external

criteria are used. For the external criteria the following are taken into account:

AD considers only the asserted axioms of an ontology. However, modules that

are extracted according to the AD ensure the preservation of all entailments over

the signature of the module [VPS12], therefore we do not have to worry about

losing entailments by using AD modules. In our evaluation approach, the set

of entailments that result from parsing the KE, are used for creating an AD of

entailments. Then, the detected generalisations are projected to this AD and the

compression of the structure is measured in the same way as with the syntactic

regularities.

6.4 Pattern induction

As it has been mentioned in the previous sections, a pattern in this thesis is

considered as a design template for describing a set of entities in the signature of

an ontology. The term pattern is distinguished from the term Ontology Design

Pattern (ODP) as not necessarily all patterns in an ontology are best practices

to a problem; they are however design templates adopted by the developers of

an ontology. As a consequence, the instantiation of a pattern will give rise to

repetitive structures in an ontology.

A single regularity resembles a repetitive structure in the axioms of an ontol-

ogy. It can resemble a pattern or not. The cluster analysis that RIO performs in

an ontology, will have as a result a set of clusters of similar entities whose descrip-

tion is given by a set of generalisations. These generalisations might resemble one

or more patterns. In practice, it is easier to distinguish these patterns in ontolo-

gies with few axioms, as there are fewer generalisations per cluster. However, as

it is shown in the experiments of Chapter 6, big ontologies result in many gener-

alisations. Even though their number is much smaller than the initial number of

axioms, it is difficult to distinguish clear patterns that completely describe a set

of entities. The set of generalisations describing a cluster is close to be considered

as a pattern, however, there are two limitations:
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• A dominant regularity might have caused the merge of many entities in a

cluster. Apart from this regularity, there can be many deviations on the

remaining generalisation that describe the cluster.

• The variables of a single generalisation, which correspond to a cluster, more

often do not cover all the members of that cluster but a subset of those.

Thus, it needs further filtering of these generalisations and separations to

distinguish patterns that completely describe a set of entities.

An approach for filtering the detected regularities, so to distinguish patterns,

would be to try combinations of regularities according to the axioms they in-

stantiate. For example, lets assume we have following cluster and its description

shown in Figure 6.5.

Generalisations (3) and (4) do not cover all entities in the ?Beverage clus-

ter. Thus, two patterns that can be distinguished in this cluster are shown in

Figure 6.6.

Pattern 1:

?Beverage SubClassOf Beverage

?Beverage SubClassOf hasColor some ?Color

?Beverage SubClassOf contains some Alcohol

where {?Beverage:CLASS=[Beer, Wine], ?Color=[Yellow, Red]}

Pattern 2:

?Beverage SubClassOf Beverage

?Beverage SubClassOf hasColor some ?Color

?Beverage SubClassOf contains some Carbonated water

where {?Beverage:CLASS=[Lemonade, Coke], ?Color=[White, Black]}

Figure 6.6: Two patterns describing alcoholic and non-alchoholic beverages from
Figure 6.5.

As it is shown, these two patterns share the first two generalisations and de-

viate in the third generalisation. Thus, trying all combinations of generalisations
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Cluster: ?Beverage:CLASS{Beer, Wine, Lemonade, Coke}

Description:
(1) ?Beverage SubClassOf Beverage

Instantiations:
Beer SubClassOf Beverage
Wine SubClassOf Beverage
Lemonade SubClassOf Beverage
Coke SubClassOf Beverage

(2) ?Beverage SubClassOf hasColor some ?Color
Instantiations:

Beer SubClassOf hasColor some Yellow
Wine SubClassOf hasColor some Red
Lemonade SubClassOf hasColor some White
Coke SubClassOf hasColor some Black

(3) ?Beverage SubClassOf contains some Alcohol
Instantiations:

Beer SubClassOf contains some Alcohol
Whiskey SubClassOf contains some Alcohol

(4) ?Beverage SubClassOf contains some Carbonated water
Instantiations:

Lemonade SubClassOf contains some Carbonated water
Coke SubClassOf contains some Carbonated water

Figure 6.5: An example cluster and its description.

in a cluster can lead to the distinction of patterns. However, such procedure can

be computationally impractical especially for big ontologies, as they have quite

many generalisations.

The Atomic Decomposition can facilitate such process. In particular, the

projection of the resulting generalisations on the AD will cause the compression

of this structure only in places where repetitive structures exist; atoms with same

number and type of generalisations will be merged. Thus, if a generalisation is

projected in n atoms and m of these are getting merged, where m < n, it indicates

a pattern shared across the signature of the m atoms. Therefore, parsing the

compressed structure will distinguish the different types of patterns that exist

in the ontology, and highlight their deviations. In the experiments presented in
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Chapters 7, 8 we explore patterns that occur across merged atoms. We name

such patterns as atom patterns.

6.5 Summary

This chapter described the various methods for evaluating the results of the ex-

periments described in Chapter 7. These are distinguished in two categories;

internal and external criteria. The internal criteria include metrics for the clus-

ters derive from the proximity matrix to give an intuition of the distances between

the data. How close they are, and how well separated are the clusters from each

other. Internal criteria also includes metrics for assessing the quality of the final

generalisations; how many they are, how many axioms they instantiate etc. The

external criteria on the other hand include comparison with manual detection of

pattern either via documentation and OPPL scripts or by metrics and compar-

ison with the modular structure of an ontology. The following Chapter shows

these criteria in action, through a series of experiments using a variety of real

ontologies.



Chapter 7

Experiments on Syntactic

Regularities

This Chapter and the next one describe the experiments demonstrating the usage

of the RIO framework meets its aims. So far we have described the methods used

in RIO for the detection of syntactic and semantic regularities. The detection of

syntactic regularities creates an abstraction over the asserted form of an ontol-

ogy, while the detection of semantic regularities creates an abstraction over the

entailments of an ontology.

7.1 Experiments Setup

The setup of the experiments for both syntactic and semantic regularities is the

same. This Chapter presents the results on the syntactic regularities while Chap-

ter 8 presents the results on the semantic regularities. The results are presented

and discussed in a similar way for this and the following Chapter.

Two types of analysis are used in the experiments on the detection of regu-

larities1. These are:

1. Quantitative analysis on a larger collection of ontologies from the Bio-

Portal repository 2; a repository consisting of bioinformatics and biomedical

ontologies. The aim of this analysis is to examine whether the results can

be generalised over a larger set of ontologies. In this analysis, an evaluation

of the framework is performed according to the evaluation metrics defined

1both syntactic and semantic.
2http://bioportal.bioontology.org/
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in Chapter 6. In addition, a characterisation of the ontologies is done with

respect to their patterns and their uniformity3.

2. Qualitative analysis by using a small set of ontologies for which we have

additional information about their construction. These are ontologies for

which the documentation is accessible or the ontology developers can be

consulted. The aim of this analysis is to examine in depth the results of RIO

and perform additional tasks such as inspection of irregularities, quality

assurance of the ontology, and so on, and through this to demonstrate the

potential of the RIO framework for the detection of dominant patterns in

the ontology as well as analysis of their deviations.

7.1.1 Clustering Tasks

The main clustering algorithm used by RIO, presented in Chapter 3, is Agglom-

erative Hierarchical Clustering (AHC).

Three replacement methods were introduced in Sections 4.4.1, 4.4.2 and 4.4.3

named as property based replacement, popularity based replacement and structural

replacement function respectively.

These methods influence the distance granularity during the computation of

the proximity matrix, thus affecting the shape of the final clustering results.

Details of these methods are described in Chapter 4.

Based on these variations the following three clustering tasks are performed

for each experiment:

1. Clustering using the popularity replacement function.

2. Clustering using the structural replacement function.

3. Clustering using the property relevance function.

7.1.2 Quantitative Analysis: BioPortal Repository

The following setup is the same for the quantitative analysis in both syntactic

and semantic regularities.

3The uniformity has been defined in Chapter 6.2.3.
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Curation Procedure

The BioPortal 4 ontologies used in this experiment were last updated on Decem-

ber 2011 using the BioPortal RESTful Service API. 208 OWL ontologies were

downloaded for the experiment; non-compliant ontologies, and ontologies that

could not be parsed or had missing imports were excluded from the experiment.

By non-compliant ontologies, we mean ontologies outside OWL DL and OWL

2 DL profiles, usually because of the wrong use of some OWL constructs. A

common violation was the use of non-simple properties in axioms that only allow

for simple properties, and the lack of declarations for classes or properties. The

first violation caused an ontology to be excluded, as it is hard to decide how

to correct the ontology; the second class of violations is easier to fix, therefore

we proceeded to fix the affected ontologies instead of dropping them from the

experimental set.

Other Parameters of the Setup

Timeout consideration Due to practical considerations, a total timeout of 45

minutes of CPU time was set for the above clustering tasks for each ontology

in the quantititative analysis. In both qualitative experiments (for syntactic

and semantic regularities) the same timeout was defined for the generation of

the results from the BioPortal corpus. In both cases an acceptable number of

ontologies were processed varying in size and DL expressivity, thus the timeout

was not further increased for processing more ontologies.

Evaluation parameters The following evaluation steps are not evaluation

of ontologies using RIO but rather evaluation of RIO using ontologies. Thus, for

each task the metrics described in Chapter 6 were computed for assessing:

1. The quality and validity of the clusters

2. The quality and validity of the generalisations

3. The clustering method that gives the best results

4. The characterisation of ontologies with respect to their regularities

Presentation of Results For the analysis of the syntactic and semantic

regularities of the BioPortal ontologies, the same type of graphs and additional

4http://bioportal.bioontology.org/

http://bioportal.bioontology.org/
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statistical tests are used for the observation of the results and for the verification

of the hypothesis that derive from the observation. These are:

1. Table summarising the total average values for each evaluation regularity

metric. Such table gives an initial numerical intuition on the shape of the

regularities that were generated for each clustering task.

2. Graphs representing the values of each evaluation metric, grouped by clus-

tering task for all ontologies. The aim of such graph is to give more details

to help the observation and the formulation of hypothesis about the results.

3. Boxplotss [MTL78], which are more abstract than the graphs representing

the values for each metric for every ontology. Boxplots are used to gain an

intuition of the distribution of values for each metric.A box plot is a graph

depicting five descriptive stats:

(a) Min: It represents the smallest value.

(b) Lower Quartile (Q1): 25% of the data has a value smaller than this

value in the plot.

(c) Median (Q2): This is the middle value of the data set. 50% of the

data has a value higher than this value.

(d) Upper Quartile (Q3): 25% of the data has a value higher than this

value.

(e) Max: The greatest value.

4. T-Test for verifying hypothesis formulated with the observation of the pre-

vious graph. In particular t-Test is used for verifying the significance of

difference between the results of different clustering tasks.

5. Pearson’s correlation metric [Wei03] for verifying correlation between dif-

ferent evaluation metrics. Thus, the picture of regularities gained from the

observation of the graphs is verified with t-Test for comparison between the

results of different clustering tasks and Pearson’s correlation for correlating

results on the same clustering task.

This Chapter starts with the presentation of the main experimental setup and

then for each experiment the presentation and discussion of results follows.
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7.2 Experiment 1: Syntactic Regularity Detec-

tion in BioPortal Ontologies

This section describes the quantitative analysis of the detection of syntactic reg-

ularities in the BioPortal repository. Initially we will describe the ontologies used

for the experiment and then the presentation and discussion of the results.

7.2.1 Results

RIO completed all three syntactic clustering tasks within the allotted timeout

for a set of 93 ontologies. This section presents the results of these tasks and a

discussion with additional analysis of the results follows.

Table 7.1 shows the total mean values for selected metrics for the processed

BioPortal ontologies. The results of this table indicate that RIO detected syn-

tactic regularities in all of the ontologies of the corpus with all methods.

Metrics Popularity Structural Property
Relevance

Generalised Axioms (%) 52% 51% 33%
Instantiations per Generalisation 5.5 5.49 5.07
# Clusters 67.66 59.88 8.065
# Entities per Cluster 5.88 8.09 31.287
Cluster Coverage (%) 54% 52% 40%
Homogeneity 0.60 0.53 0.77
AD Compression (%) 54% 55% 19%

Table 7.1: Total mean values for selected regularity metrics for the 93 processed
ontologies from BioPortal repository.

It can be observed from Table 7.1 that the results for the popularity replace-

ment function and structural replacement function are closer than the ones of the

property based relevance replacement function. For example, the total mean per-

centage of the generalised axioms for both popularity and structural replacement

method is almost the same (52% and 51%). However, it is markedly lower for the

property replacement method (33%). Thus, a first hypothesis derived from the

summary of total averages in Table 7.1, is that when structural and popularity

replacements are used, the clustering algorithm will detect more regularities in

the axioms of an ontology.
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A more detailed view of these metrics for all three replacement methods are

presented in Figures 7.1–7.5 for each ontology. In all Figures, the results are sorted

in ascending order according to the axiom number of the ontologies. In particular,

the processed ontologies were categorised as small, medium and large according

to their axiom numbers. As it is also indicated in the x-axis of the figures, small

ontologies were in the spectrum of 30-300 axioms, medium ontologies were in the

range of 300-1000 axioms and finally big ontologies had more than 1000 axioms.

Figure 7.1 shows the percentage of generalised axioms; meaning the percentage

of axioms from the ontology instantiating a regularity. Figure 7.2 shows the

Mean Instantiations per Generalisations for each ontology, or in other words the

abstraction impact per generalisation. It should be noted that a higher scale

on the y-axis is used for ontologies 47-93 of Figure 7.2. Figure 7.3 shows the

mean cluster coverage per generalisation. This metric shows how many entities

from a cluster are covered in average from the corresponding variable that is

referenced in a generalisation. Figure 7.4 shows the homogeneity of the corpus.

Finally, Figure 7.5 shows the Atomic Decomposition (AD) compression for each

ontology from the corpus. As it has been described in Chapter 6, Section 6.3.1,

the AD compression metric is an external criterion for assessing the quality of

generalisations with respect to the compression they cause when projected in the

AD.

7.2.2 Discussion

Comparison of replacement methods

Table 7.2 shows the p value for the Student’s t-Test revealing the significant

difference on metric values for different replacement methods5. Each column on

the table represents a potential hypothesis for a pair of replacement methods; that

one of the two methods is always greater than the other. The null hypothesis H0

is that no difference can be drawn between the two methods of the pair. When

p < 0.05, then H0 is rejected.

From Figures 7.1-7.5 and Table 7.2 the following hypotheses can be verified:

• H1: The percentage of generalised axioms with the structural replacement

function is always greater than the one resulted with the popularity and

5The t-test is between “paired” values, and one tail type, meaning that one of the methods
is always lower or greater than the second.
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Figure 7.1: Percentage of abstracted axioms in BioPortal ontologies

Metric Popularity - Property Structural-Property Popularity - Structural
Generalised Axioms 1.067 · 10−21 5.365 · 10−21 1.035 · 10−2

Mean Instantiations
per generalisation

0.077 0.226 0.00021

Cluster Coverage 0.00498 1.3 · 10−10 0.004989
AD Compression 5.54 · 10−22 3.024 · 10−27 0.034
Homogeneity 2.8 · 10−11 1.56 · 10−20 8.38 · 10−10

Table 7.2: T-Test results for selected metrics. The table shows the p value
for checking the significance of difference in regularity metrics between different
replacement methods that were used in clustering.

property replacement function. This is depicted in Figure 7.1.

• H2: Clustering with the structural replacement function resulted in higher

instantiations per generalisation than clustering with popularity (p=0.00021).

It is almost valid that popularity replacement function will give generali-

sations with greater abstraction impact (mean instantiations per general-

isation) than the property replacement function, while no conclusion can
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Figure 7.2: Mean Instantiation per Generalisation of BioPortal Ontologies.
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Figure 7.3: Mean Cluster Coverage of BioPortal Ontologies.
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Figure 7.4: Homogeneity of BioPortal Ontologies.
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Figure 7.5: AD Compression of BioPortal Ontologies.
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be drawn on this metric between the structural and property replacement

functions.

• H3: Clustering with popularity returns regularities with higher cluster cov-

erage than clustering with the property replacement function and clustering

with the structural replacement function. Similarly the cluster coverage for

clustering with the structural replacement function is higher than clustering

with the property replacement function.

• H4: Clustering with the structural replacement function results in general-

isation that can cause the highest AD compression compared to the other

two. Similarly, clustering with the popularity replacement function results

in generalisations causing higher compression in AD graph than the clus-

tering with the property function.

• H5: Clustering with property replacement function returns clusters with

the highest homogeneity. In addition, clustering with popularity returns

more homogeneous clusters than clustering with the structural replacement

function.

Finally a descriptive summary of the dataset on selected metrics is shown in

Figures 7.6-7.10. The boxplots of these Figures can give a better intuition on

the distribution of values on regularity for each metric and type of replacement

function.

In general, popularity and structural methods had for the majority of ontolo-

gies comparable results (Figures 7.6-7.10). However, clustering using the property

relevance method results in the inclusion of fewer axioms under a regularity, as

shown in Figure 7.1 and depicted in H1. Also, although the difference is not

verified by the t-test, for many of the ontologies the number of instantiations per

generalisations is lower than in the other two methods. In general, the property-

based replacement function will lead to a more sensitive distance, meaning more

pairs of entities will be dissimilar. Thus, fewer but more homogeneous clusters are

formed (as hypothesis H5 is valid) and as a result fewer regularities are detected

in the ontology (H1). These regularities are more fine-grained than the ones de-

tected with the other two methods; the mean instantiations per generalisation

and the mean cluster coverage per generalisation for the property replacement

function are lower (shown in Figures 7.2 and7.3 respectively).
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Figure 7.6: Boxplot on generalised axioms
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Figure 7.7: BoxPlot on Mean Instantiation per Generalisation of the BioPortal
Ontologies.

Projection of generalisations in the AD

In a nutshell, the higher percentage compression of AD is an indication of good

quality of generalisations; meaning that the repetitive structures expressed by
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Figure 7.8: Boxplot on Cluster Coverage of BioPortal Ontologies.
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Figure 7.9: Boxplot on the homogeneity of BioPortal ontologies.

the generalisations are also reflected in the AD dependency graph. Of the 93

ontologies used in the experiment, 33 of them exhibit less than 50% AD com-

pression, and 9 had this metric below 30%. These results refer to clustering with

the popularity replacement function. Figure 7.10 shows that the distribution of
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Figure 7.10: Boxplot on AD Compression of the BioPortal Ontologies.

the results for the popularity replacement function is of similar shape as the one

for the structural replacement function. However, the results of the AD com-

pression for the popularity replacement function are lower than the other two

methods (H4). In the results of the popularity method, five of the ontologies had

0% compression but these had on average more than 50 axioms per atom. On

the structural replacement, the AD compression results are very similar with the

ones of the popularity measure; from these only 3 of the ontologies have 0%. On

the property relevance method, 19 had AD compression 0% and 72 were above

30%. The intuition behind the definition of the AD compression metric was that

meaningful generalisations will cause higher compression on the AD, since the

same repetitive structures also exist in the AD. However, such claim needs fur-

ther investigation, as there can be a case of a regular ontology that does not cause

any merge on the atoms of the AD.

Regularity and Uniformity of Ontologies

All 93 ontologies appear to have some form of regularity. The big ontologies

in the corpus (more than 1000 axioms) had an average of 43% of their axioms

instantiating a regularity. For the big ontologies, a single generalisation was

instantiated on average by 5.8 axioms in the ontology with minimal 1.7 and
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maximal 10.6 axioms when using the popularity replacement function. Small

ontologies instantiated 2.9 axioms per generalisation and medium ontologies 3.6

axioms per generalisation. For the structural replacement function, big ontologies

instantiated 8.7 axioms per generalisation, medium ontologies instantiated 4.7

axioms per generalisation and small 3.7 axioms per generalisation.

Ontology 89 (cognitive-atlas) is an example of a uniform ontology; it has

on average 32.3 axioms per generalisation, with mean cluster coverage 28% and

AD compression 91%. Even though there is not a clear correlation between the

number of instantiations per generalisation and the AD compression (verified

using Pearson’s correlation), there are cases like ontologies 89, 47 and 73 for

which a high number of instantiations per generalisation was followed by a high

AD compression.

Ontologies with a high number of instantiations followed by a high cluster

coverage indicate a regular and uniform ontology. Figure 7.11 shows the mean

cluster coverage as well as the mean instantiations per generalisation for clustering

with the structural replacement function. We selected the structural replacement

function since in the majority of evaluation metrics seems to give better results

than the other two methods. Figure 7.11 reveals uniform ontologies as they

have both values higher than the others. Based on this combination of metrics,

Table 7.3 shows detailed regularity metrics on the 7 most uniform ontologies in

the corpus.

Ontology/
Axioms

#Clusters Entities per
Cluster

Cluster Cov-
erage(%)

Instantiations
per General-
isation

Homogeneity

7 / 74 1 15 69% 10 0.93
41 / 530 7 6.9 71% 16.93 0.32
46 / 579 10 5.8 74% 18.6 0.65
47 / 589 4 31 51% 20.35 0.11
69 / 1 270 13 8.54 57% 16.32 0.43
73 / 1 624 18 34.6 42% 23.68 0.61
82 / 3 146 30 12.3 36% 15.7 0.21

Table 7.3: Regular and uniform ontologies from the BioPortal corpus. The results
for the structural method are shown.

Uniform Ontologies

Table 7.3 contains uniform ontologies from all categories of size (small, medium,

big). Ontology 73 (tick-gross-anatomy) has 1624 axioms and has the highest

number of instantiations per generalisation from all the 93 processed ontologies.
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Figure 7.11: Uniformity indication. Cluster coverage and mean instantiations per
generalisations for the structural method

Indeed, this ontology has a highly regular and homogeneous pattern referring to

existential restrictions using the part of relationship. Four generalisations were

found with such a structure, abstracting 582 axioms from the ontology. Such

a regularity is shown in Figure 7.12 and it covers 425 axioms in the ontology.

Other detected regularities in this ontology were referring to atomic subsump-

tions. Such a generalisation (2) is shown in Figure 7.12 instantiating 96 axioms

in the ontology.

(1) ?cluster 1 SubClassOf part of some ?cluster 2
Total Instantiations: (425)
Example Instantiation:

adult hemocyte SubClassOf part of some adult circulatory system
where {?cluster 1:CLASS=[adult hemocyte],

?cluster 2:CLASS=[adult circulatory system]}

(2) ?cluster 1 SubClassOf ?anatomical structure
Total Instantiations: (96)
Example Instantiation:

adult ovary funicular cell SubClassOf cell
where {?cluster 1:CLASS=[adult ovary funicular cell],

?anatomical structure:CLASS=[cell]}

Figure 7.12: Example regularities with many instantiations.
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7.2.3 Atom Patterns

This section provides some additional analysis of the generalisations on selected

ontologies based on the projection of the regularities in the AD structure. As

described in Chapter 6.4, tracing changes in the AD graph after the projection

of generalisations, could show patterns that exist across many atoms as a result

of combination of generalisations. We name these as atom patterns. To give

an example, the projection of the syntactic regularities of ontology 73 in the

AD causes a 92% compression of the AD structure; this is an indication that

the generalisations capture the repetitive structures reflected in the AD as well.

In this ontology, the atom pattern consisting of two generalisations is shown in

Figure 7.13. This pattern merges 42 atoms, containing axioms instantiating the

above two generalisations.

Atom Pattern:

?cluster 4 SubClassOf part of some ?cluster 4

?cluster 4 SubClassOf ?anatomical structure

Merged Atoms: 42

Example Atom Instantiations:

Atom 1: [’adult ovary stage II oocyte’ SubClassOf part of some ’adult ovary’,

’adult ovary stage II oocyte’ SubClassOf ’cell’],

Atom 2: [’adult pharynx cuticular lining’ SubClassOf part of some ’adult pharynx’,

’adult pharynx cuticular lining’ SubClassOf ’acellular anatomical structure’]

Figure 7.13: Dominant atom pattern from ontology 73.

The compressed AD can help to highlight generalisations that are coupled

together, giving an intuition of patterns and their deviations as they are projected

in the AD. This pattern deviates for two other atoms in the ontology described

by the generalisations of Figure 7.14.
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Atom Pattern:

(1) ?cluster 4 SubClassOf ?anatomical structure

(2) ?cluster 4 SubClassOf part of some ?cluster 4

(3) ?cluster 4 SubClassOf part of some ?cluster 3

Merged Atoms: (2)

Atom Instantiations:

Atom 1: [ adult hemocyte SubClassOf ’cell’,

adult hemocyte SubClassOf part of some ’adult hemocoel’,

adult hemocyte SubClassOf part of some ’adult circulatory system’]

Atom 2: [’adult sensory neuron’ SubClassOf ’cell’,

’adult sensory neuron’ SubClassOf ’portion of tissue’,

’adult sensory neuron’ SubClassOf part of some ’adult synganglion’,

’adult sensory neuron’ SubClassOf part of some ’adult peripheral sensillum’]

Figure 7.14: A deviation of the atom pattern of Figure 7.13.

It can be observed that the second atom has two axiom instantiations for

generalisation (1). Generalisations will reflect both types of repetitive structures;

the ones that occur within a single atom and the ones that occur across different

atoms. In total, 34 atom patterns were traced in the compressed AD of ontology

73; these patterns occurred across different atoms of the initial AD. This number

does not include patterns that could exist in single atoms. For example, an atom

with two subclass axioms, can be abstracted by an atom with a single generalisa-

tion abstracting both subclass axioms, after the projection of the generalisation

on the AD. However, this atom might not be merged with other atoms.

A future direction would be to achieve a better distinction of patterns consist-

ing of more than one generalisations by parsing the connected generalised atoms

(top-bottom chain of atoms) in the compressed AD.

7.2.4 Conclusions for Experiment 1

This section described the setup for the experiment for computing syntactic reg-

ularities in the BioPortal corpus. It also presented the main analysis of these

results. The main outcomes for the syntactic regularities based on the empirical

evidence of 93 ontologies are:
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• The detection of syntactic regularities by RIO is practical.

• All 93 processed ontologies varying in number of axioms have a form of

syntactic regularity covered by at least two clusters.

• The results of clustering using the popularity-based replacement function

are comparable to the clustering results when using the structural based

replacement function. Clustering using these replacement functions will

detect more regularities in the ontologies, which were more coarse-grained

(more instantiations per generalisation) compared to the regularities de-

tected by the clustering using a property replacement function.

• In terms of generalisation quality, clustering using the property relevance

replacement function performed worse than the other two replacement func-

tions returning fewer generalisations with fewer instantiations per general-

isation.

• The detected regularities in the majority of the ontologies caused a com-

pression of the AD (more than 50% for structural and popularity functions).

This indicates that the same regularities expressed by the generalisations,

also exist in the atoms of the AD. In the cases in which the AD compres-

sion was 0%, the reason was that the initial AD consisted of very few atoms

with a large number of axioms per atom (more than 50 axioms per atom).

Thus, the projection of the generalisations in the AD did not cause any

compression across different atoms. It remains as future work to define

better metrics for assessing the projection of generalisations in the AD, as

an attempt to isolate well defined patterns and isolate irregularities.

• In terms of uniformity of regularities, the majority of big ontologies6 have

at least one generalisation instantiating a significant number of axioms in

the ontology. These can be characterised as dominant regularities in the on-

tology. However, the description of entities that are referenced in dominant

regularities can deviate in other axioms in the ontology. This deviation on

the remaining axioms is also reflected in the results; each cluster is described

by many generalisations with a few instantiations. In other words, there

6“Big” ontologies are characterised in this experiment the ontologies that have more than
1000 axioms. This characterisation derives with respect to the collection of the ontologies used
in the experiment.
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were generalisations abstracting a high number of axioms, but also in the

same ontology many more generalisations of smaller abstraction impact.

• Ontologies with highly uniform generalisations had a high number of in-

stantiations and a high cluster coverage. This shows that the clusters are

well-formed with respect to meaningful generalisations; generalisations that

have many instantiations and cover all the entities of the corresponding

cluster.

• Merged atoms, caused by the projection of the generalisations in the AD,

can reveal closely coupled generalisations and patterns of more than one

generalisation.

7.3 Experiment 2: Qualitative Analysis of Syn-

tactic Regularities

In Experiment 1, we demonstrated the ability of the RIO framework to detect

syntactic regularities in a collection of ontologies retrieved from BioPortal. Ex-

periments 2 and 3 show a more in depth analysis of a smaller set of ontologies,

for which we have prior knowledge about their construction.

7.3.1 Selected Ontologies

Table 7.4 shows some simple ontology metrics for the five selected ontologies. All

the ontologies are documented, enabling further analysis and evaluation of the

clusters and regularities.

The Amino Acid ontology7 has been developed by Robert Stevens, in the

School of Computer Science at the University of Manchester. This ontology

has been used for teaching purposes. Information about the construction of the

ontology can be found online8.

The Kidney and Urinary Pathway Knowledge Base (KUPKB)9 ontology [JKS+11]

describes:

• The kidney and urinary gross anatomy

7http://goo.gl/WS25H
8http://goo.gl/O1s57
9http://129.194.69.119/?q=kupo

http://goo.gl/WS25H
http://goo.gl/O1s57
http://129.194.69.119/?q=kupo
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• The cells in those organs and tissues

• The gene products in those cells;

• The functional attributes of those gene products;

• The cellular components of those cells.

The goal of the ontology is to help biologists working on the kidney and urinary

pathway to describe biological samples for investigations and the findings from

those investigations [JKS+11]. Its project website has a variety of documents

describing the construction and the patterns used when developing the ontology.

The Ontology for Biomedical Investigations (OBI) project describes life-science

and clinical investigations [BCD+10]. Documentation about the ontology can be

found online10.

SNOMED Clinical Terms (SNOMED-CT) is a large multilingual clinical health

terminology11. Extensive documentation for the ontology can be found on the

online resources of the International Health Terminology Standards Development

Organisation (IHTSDO). According to IHTSDO,

SNOMED-CT contributes to the improvement of patient care by

underpinning the development of Electronic Health Records that record

clinical information in ways that enable meaning-based retrieval. This

provides effective access to information required for decision support

and consistent reporting and analysis.

Experiment 2 uses two modules from the SNOMED-CT ontology, referring to

the description of Hypertension and Chronic clinical findings respectively. More

details on the extraction of the modules as well as an extensive analysis of three

modules from SNOMED-CT, with regard to its regularities and irregularities,

are presented in Experiment 3, Section 7.4. In this experiment we use these two

modules from SNOMED-CT to assess the performance of the three replacement

methods, the popularity, structural and property replacement functions. In Ex-

periment 3, the method that results in generalisations with the higher abstraction

is used for the analysis of the regularities and matching with expected patterns.

10http://obi-ontology.org/
11http://www.ihtsdo.org/snomed-ct/

http://obi-ontology.org/
http://www.ihtsdo.org/snomed-ct/
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Ontology #Axioms #LogicalAxioms #Entities

Amino acid 381 210 92
SNOMED-CT Hypertension 1 537 492 524
KUBKB 29 406 7 780 3 420
OBI 54 509 28 849 4 027
SNOMED-CT Chronic 13 825 6 957 6 868

Table 7.4: Ontology metrics indicating size of the ontologies used in the qualita-
tive analysis.

Clustering Tasks

The same clustering tasks as described in Experiment 1 were performed with the

ontologies in Experiment 2. These are:

1. Clustering using the popularity replacement function.

2. Clustering using the structural replacement function.

3. Clustering using the property relevance function.

7.3.2 Results

Figure 7.15 shows the set of axioms that were instantiating a generalisation. Fig-

ure 7.16 shows the mean instantiations per generalisation for all methods. Fig-

ure 7.17 shows the cluster coverage of the ontologies for three different methods.

For all of the ontologies the mean cluster coverage is more than 20% for at least

with one of the methods. Figure 7.18 shows cluster homogeneity for each method

and finally Figure 7.19 shows the AD compression for all replacement methods.

The Figures show the results for all three replacement methods and the results

are sorted by the number of axioms (ontology size) in ascending order.

Atomic Decomposition (AD) Compression. The AD compression in 3

out of 5 ontologies is higher than 50% in at least one of the three replacement

methods. OBI has the highest degree of compression (92%) for all three methods;

this suggests a very high reliability for the regularities found in the ontology.

Comparison of the three replacement methods. All three variations of

the replacement function plugged into the agglomerative hierarchical clustering

algorithm have resulted in the detection of regularities in the processed ontologies.

In general, there are no high variations between the results of the popularity

and structural methods. In Figure 7.15, the percentage of axioms which were



CHAPTER 7. EXPERIMENTS ON SYNTACTIC REGULARITIES 144

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

Amino	
  acid	
   SNOMED-­‐CT	
  Hypertensions	
   SNOMED-­‐CT	
  Chronic	
   KUPKB	
   OBI	
  

G
en

er
al
is
ed

	
  A
xi
om

s	
  (
%
)	
  

popularity	
   structural	
   property-­‐relevance	
  

Figure 7.15: Percentage of axioms instantiating a generalisation
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Figure 7.16: Mean Instantiations per Generalisation

found to instantiate a regularity is in most ontologies very close for all methods.

The property relevance policy seems to give the smallest number of axioms being

generalised compared to the other two methods; however, there is not enough data

in this group of ontologies to apply statistical methods to evaluate reliability. It

performs the worst in the KUPKB ontology with only 6% of instantiated axioms.

As also depicted in Figure 7.16, the property relevance method will generate

generalisations with the lowest number of instantiations compared to the other

two methods. Similarly, it gives the lowest AD compression (apart from the
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Figure 7.17: Cluster coverage.
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Figure 7.18: Cluster homogeneity

SNOMED-CT Hypertension module) from the other methods. However, prop-

erty relevance is “winning” in Figure 7.18 as it appears to return the most ho-

mogeneous clusters in all ontologies. The reason is that property relevance will

produce a very sensitive distance (usually close to value 1) between pairs of en-

tities; thus, fewer entities will be merged into a cluster. As a consequence, fewer

axioms will be found to instantiate a generalisation. However, the number of

clusters that are formulated have fewer entities and they are more homogeneous.

The regularities that are formed capture the most repetitive information in the

ontology, but they are quite fine-grained.
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Figure 7.19: Atomic decomposition (AD) compression

On the other hand, the structural replacement method gives better results in

the percentage of ontology axioms being generalised, in the abstraction impact

of generalisations and in AD compression. However, its cluster homogeneity is

the lowest in 3 out of the 5 ontologies. In this case, structural replacement

will produce a less sensitive distance, which will lead to the detection of more

regularities and with a higher level of abstraction. However, the clusters are not

as homogeneous as in property relevance. That is because clusters contain more

widely distanced entities.

Finally, the results of the popularity replacement method are close with the

ones of the structural replacement method in most cases. There is a big difference

only in the Amino Acid ontology and SNOMED-CT modules. In these cases, the

percentage of axioms instantiating a generalisation is similar to the one of the

structural replacement, however the mean instantiations per generalisation and

AD compression are much lower. In general, the popularity replacement method

behaves well in most cases. However, sometimes it can overfit the data, meaning

that the increased popularity of many entities will have as a consequence a very

sensitive distance. The proximity matrix will have more values closer to 1, which

will lead to more clusters and very fine-grained generalisations.
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7.3.3 Inspection of Regularities

In this section, we will highlight some cases from each ontology. It should be

noted that all of the selected ontologies preexisted the clustering framework; this

means that insights provided by RIO did not influence the ontology development.

Dominant patterns and verification with documentation

The AminoAcid ontology. The first cluster in the AminoAcid ontology con-

tains all the amino acids. Figure 7.20 shows the main pattern consisting of 7

generalisations. In particular, the pattern describes that every amino acid class

is a subclass of the AminoAcid and it has a number of physico-chemical properties.

These are the Charge, Polarity, Hydrophobicity, SideChainStructure and Size. This

is the main pattern in the ontology, covering 202 axioms, which is 53% of the ax-

ioms in the ontology. Such pattern is also described in the online documentation

of the ontology12, named as Entity Property Quality (EPQ) pattern [ERSA08].

The second pattern refers to the asserted structure of the normalisation design

pattern [AAKS08]13 [Rec03]. The normalisation design pattern is a best practice

for avoiding multiple asserted superclasses leading to tangled polyhierarchies.

The solution is to assert a primitive class as superclass. Equivalent classes will

act as additional categories of the primitive classes. The reasoner will classify

the primitive classes under defined categories. Figure 7.21 shows the description

of the pattern as it is presented in the online Ontology Design Pattern (ODP)

catalogue14. The classes Module1, Module2, Module3 are equivalent classes. In the

asserted class hierarchy they do not have any subclasses. After the classification of

the ontology, the primitive classes are reorganised and have multiple superclasses

including the equivalent classes.

In the Amino acid ontology, the Non-PolarAminoAcid whose description is

shown in Figure 7.22, is acting as an additional category of the amino acids. In

particular, it is a category for the amino acids that are non-polar. In the asserted

form of the ontology, the Non-PolarAminoAcid does not have any subclasses. After

the classification of the ontology, the Non-PolarAminoAcid will have all amino acids

as subclasses which are implied to be non-polar like the Alanine class. RIO will

generate a cluster (cluster 5) that includes equivalent classes, acting as categories

12http://goo.gl/O1s57
13http://ontologydesignpatterns.org/wiki/Submissions:Normalization
14http://ontologydesignpatterns.org/wiki/Submissions:Normalization

http://goo.gl/O1s57
http://ontologydesignpatterns.org/wiki/Submissions:Normalization
http://ontologydesignpatterns.org/wiki/Submissions:Normalization
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Generalisations:
(1) ?AminoAcid SubClassOf AminoAcid
(2) ?AminoAcid SubClassOf ?cluster 3 some ?Charge
(3) ?AminoAcid SubClassOf ?cluster 3 some ?Polarity
(4) ?AminoAcid SubClassOf ?cluster 3 some ?Hydrophobicity
(5) ?AminoAcid SubClassOf ?cluster 3 some ?SideChainStructure
(6) ?AminoAcid SubClassOf ?cluster 3 some ?Size
(7) DisjointClasses: set(?AminoAcid.VALUES)

Example Instantiations:
(1) A SubClassOf AminoAcid,

where {?AminoAcid:CLASS=[Alanine]}
(2) A SubClassOf hasCharge some Neutral

where {?AminoAcid:CLASS=[Alanine],
?cluster 3:OBJECTPROPERTY=[hasCharge], ?Charge:CLASS=[Neutral]}

(3) A SubClassOf hasPolarity some Non-Polar,
where ?cluster 3 = [hasPolarity]

(4) A SubClassOf hasHydrophobicity some Hydrophobic
where {?AminoAcid:CLASS=[Alanine], ?Hydrophobicity:CLASS=[Hydrophobic],
?cluster 3:OBJECTPROPERTY=[hasHydrophobicity]}

(5) A SubClassOf hasSideChainStructure some Aliphatic
where {?SideChainStructure:CLASS=[Aliphatic], ?AminoAcid:CLASS=[Alanine],
?cluster 3:OBJECTPROPERTY=[hasSideChainStructure]}

(6) A SubClassOf hasSize some Tiny
where {?AminoAcid:CLASS=[Alanine],
?cluster 3:OBJECTPROPERTY=[hasSize], ?Size:CLASS=[Tiny]}

(7) DisjointClasses: Alanine, Cysteine, Aspartate, Tryptophan, Valine, Threonine, Serine,
Arginine, Glutamine, Proline, Tyrosine, Glycine, Leucine, Methionine,
Asparagine, Histidine, Isoleucine, Lysine

where {?AminoAcid:CLASS=[Alanine, Cysteine, Aspartate, Tryptophan, Valine, Threonine, Serine,
Arginine, Glutamine, Proline, Tyrosine, Glycine, Leucine, Methionine,
Asparagine, Histidine, Isoleucine, Lysine]}

Figure 7.20: Pattern describing the amino acids in the AminoAcid ontology. The
pattern consists of 7 generalisations, which describe the amino acids according to
their physico-chemical characteristics. An example instantiation of each general-
isation is shown for the amino acid Alanine.

in the normalisation pattern. Figure 7.20 shows an example generalisation and

instantiation of this cluster.

The KUPKB ontology. In [JHI+10] the design process of the KUP ontology

is explained and two main patterns are described for generating the cell types in

the ontology. Figure 7.23 shows these patterns described in OPPL [JHI+10].

The results from RIO showed such clusters of cells and clusters of classes used

as fillers of the properties describing ’cells’ (e.g. participates in, part of). Two

example generalisations capturing these regularities are shown in Figures 7.24.

Each one of these generalisations corresponds to a different cluster in the

ontology. In addition, details corresponding to these regularities was described
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Figure 7.21: Graphical representation of the normalisation pattern. In the as-
serted class hierarchy the equivalent classes Module1, Module2, Module3 do not
have any subclass. After the classification of the ontology, the primitive classes
are reorganised and have multiple superclasses.

Generalisation:
?cluster 5 EquivalentTo AminoAcid and (?cluster 3 some ?Polarity)

Example instantiation:
Non-PolarAminoAcid EquivalentTo AminoAcid

and (hasPolarity some Non-Polar)
where {?cluster 3:OBJECTPROPERTY=[hasPolarity],
?Polarity:CLASS=[Non-Polar], ?cluster 5:CLASS=[Non-PolarAminoAcid]}

Figure 7.22: Example generalisation referring to the normalisation pattern used
in the Amino Acid ontology.

in [JHI+10], providing some external validation. The first regularity is encapsu-

lated in the description of the first pattern and the second regularity is encapsu-

lated in the description of the second pattern. Additional regularities were also

detected that refer to longer conjunctions of the previous generalisations (e.g. a

conjunction of participates in relationships on the right hand side of the axiom).

In this analysis 10 variations of such generalisations were detected.
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Pattern 1:

?cell:CLASS,

?anatomyPart:CLASS,

?partOfRestriction:CLASS = cell

and part of some ?anatomyPart,

?anatomyIntersection:CLASS =

createIntersection(?partOfRestriction.VALUES)

BEGIN

ADD ?cell equivalentTo ?anatomyIntersection

END;

Pattern 2:

?participant:CLASS,

?participatesRestriction:CLASS = ?cell

and participates in some ?participant,

?participatesIntersection:CLASS =

createIntersection(?participatesRestriction.VALUES)

BEGIN

ADD ?cell SubClassOf ?participatesIntersection

END;

Figure 7.23: Two OPPL patterns describing cell types in the KUPKB [JHI+10].

The OBI ontology. In [PRG+09], a methodology for developing the ’assay’

branch of OBI terms in OBI using a template based on spreadsheets is described.

RIO detected 26 clusters including the ’assay’ concepts. Figure 7.25 shows the

description of such clusters. Cluster ?biological process includes 54 ’epitope spe-

cific cells’, which are defined classes. It describes the analyte assays that are used

to “achieve a planned objective”.

The reason that RIO has detected more than one cluster of ’assay’ terms is

that the asserted axioms describing these terms deviate from a single pattern. For

example, cluster ?assay part of whose description is shown in Figure 7.26 includes

53 ’assay concepts’. The description of this is different than the one shown in

Figure 7.25.
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Generalisation:
(1) ?KUPO core entity EquivalentTo cell

and (part of some ?KUPO anatomy entity)

Example instantiation:
’kidney pelvis cell’ EquivalentTo cell and (part of some ’kidney pelvis’)

Generalisation:
(2) ?KUPO core entity SubClassOf (?cluster 2 some ’cytokine production’)

and (?cluster 2 some ?cluster 7)

Example instantiation:
’kidney interstitial fibroblast’ SubClassOf

(participates in some ’cytokine production’)
and (participates in some

’extracellular matrix constituent secretion’)

Figure 7.24: Two example generalisations referring to two expected patterns in
the ontology. The first generalisation instantiates 60 axioms and the second three
instantiations

Generalisations with complete cluster coverage

The generalisations presented in Figures 7.20, 7.22, 7.24 are example syntactic

regularities referring to patterns which are expected to be found in the ontologies.

In Chapter 4 it was mentioned that a variable in a single generalisation represents

a cluster of entities. However, the variable in a particular generalisation does not

necessarily cover all members of the corresponding cluster. In many cases it

covers a subset of members of a cluster. For example, in the generalisation of

Figure 7.25, variable ?biological process covers 53 out of the 54 members of the

cluster.

Alternative view of generalisations

RIO can give an alternative view based on the similar usage of entities in the

ontology. It could selectively reveal repeating structures in the ontology that were

more difficult to inspect manually. For example, in SNOMED-CT-hypertensions
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Generalisation:
?biological process EquivalentTo

?biological process 1 and (?cluster 12 some ?biological 4)

Example instantiation:
’epitope specific killing by T cells’ EquivalentTo ’T cell mediated cytotoxicity’
and (’process is result of’ some ’MHC:epitope complex binding to TCR’).

where
{?biological process:CLASS=[’epitope specific killing by T cells’],
?biological process 1:CLASS=[’T cell mediated cytotoxicity’],
?cluster 12:OBJECTPROPERTY=[’process is result of’],
?biological 4:CLASS=[’MHC:epitope complex binding to TCR’]}

Figure 7.25: An example generalisation of OBI ontology referring to the descrip-
tion of ’assay’ classes (cluster ?biological process). An example instantiation for
?biological process =[’epitope specific killing by T cells’ ] with corresponding vari-
able replacements is also shown.

Generalisation:
?assay SubClassOf ?cluster 2 some ?objective specification

Example instantiation:
’comet assay’ SubClassOf achieves planned objective some ’assay objective’

where
{?assay:CLASS=[’comet assay’],
?cluster 2:OBJECTPROPERTY=[achieves planned objective],
?objective specification:CLASS=[’assay objective’]}

Figure 7.26: An example generalisation from the OBI ontology referring to the
description of ’assay’ classes (cluster ?assay). The generalisation of Figure 7.25
deviates from the generalisation of this figure.
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the highlighted classes of Figure 7.27a are grouped in the same cluster and their

similar definition is given by the generalisation of Figure 7.27b. However, the

inspection of regularities through navigation in the class hierarchy is not an easy

task because of the high level of nesting and complexity of the hierarchy. The

form of regularity of Figure 7.27b(b) is also described in the technical guide of

the ontology [sno11](described in Section 17.2.2., page 180).

7.3.4 Inspecting irregularities

In the example in Figure 7.20, we notice that a possible value of ?AminoAcid is the

TinyAromaticAminoAcid. This value is covered only by the third generalisation.

The axioms describing this class are shown in Figure 7.28:

TinyAromaticAminoAcid EquivalentTo AminoAcid and hasSize some Tiny

TinyAromaticAminoAcid SubClassOf AminoAcid

Figure 7.28: Description of the TinyAromaticAminoAcid in the Amino acid ontol-
ogy.

The second axiom is redundant causing the TinyAromaticAminoAcid class to

be included in the same cluster with the amino acid classes. This cluster is

represented with the variable ?AminoAcid. By removing this axiom, the TinyAro-

maticAminoAcid no longer is a member of cluster ?AminoAcid. This deviation

can be characterised as an “anti-pattern”; the redundant subclass axiom had as

a result the TinyAromaticAminoAcid to be included in the same cluster with the

primitive amino acid classes.

However, there were cases that entities were not included in a cluster because

their description was a deliberate exception in the regularity. For example, in

OBI, different clusters of ’assay’ terms were detected (described in Figures 7.25

and Figure 7.26).
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(a) Two members of ?cluster 11 as shown in Protégé class hierarchy view. Although
the classes instantiate the same regularity of Figure 7.27b, they are not sibling in the
hierarchy.

Generalisation:
?cluster 11 EquivalentTo ?cluster 6

and (?cluster 101 some (?cluster 57 some ?cluster 2))

Example Instantiations:
(1) ’Recurrent duodenal ulcer (disorder)’ EquivalentTo

’Duodenal ulcer disease (disorder)’ and (RoleGroup some
(’Clinical course (attribute)’ some ’Recurrent (qualifier value)’))

(2) ’Recurrent gastrointestinal bleeding (disorder)’ EquivalentTo
’Gastrointestinal hemorrhage (disorder)’ and (RoleGroup some

(’Clinical course (attribute)’ some ’Recurrent (qualifier value)’)),

where, {?cluster 11:CLASS=[’Recurrent duodenal ulcer (disorder)’,
’Recurrent gastrointestinal bleeding (disorder)’], ?cluster 6:CLASS=[’Duodenal
ulcer disease (disorder)’, ’Gastrointestinal hemorrhage (disorder)’],
?cluster 101:OBJECTPROPERTY=[RoleGroup], ?cluster 57:CLASS=[’Clinical course
(attribute)’],

?cluster 2:CLASS=[’Recurrent (qualifier value)’]}

(b) Generalisation and two example instantiations from SNOMED-CT-chronic module.

Figure 7.27: Syntactic regularities are not detected only between sibling classes.
An example regularity is shown in Figure 7.27b. The position of cluster 11 =[’Re-
current duodenal ulcer (disorder)’, ’Recurrent gastrointestinal bleeding (disor-
der)’] in the class hierarchy is shown in Figure 7.27a.
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7.3.5 Summary for Experiment 2

In this Experiment we showed the ability of RIO to represent patterns amongst

the detected syntactic regularities. For each of the selected ontologies we demon-

strated a corresponding regularity that captures an expected pattern. The next

section has an extensive analysis of the syntactic regularities on three modules of

the SNOMED-CT ontology; the aim of the following Experiment is to perform a

more systematic quality assurance of the SNOMED-CT modules with respect to

their underlying patterns.

7.4 Experiment 3: Analysis of Syntactic Regu-

larities in SNOMED-CT

In this Section the pattern based quality assurance of three modules [DTI07]

from SNOMED-CT is presented. In particular, we detect and further analyse the

regularities and irregularities in the modules of the ontology, and find how these

can be linked to potential design defects in the ontology that have been reported

in past work. The assumption made for these defects is that entities that follow

naming conventions should also follow a similar pattern in the description of their

usage axioms. For example, any concept in the ontology that is labeled as Chronic,

should also have an explicit or implicit reference to the ’Chronic (qualifier value)’

class. Entities that do not follow this pattern are categorised as:

1. Design discrepancies in the asserted axioms in an ontology.

2. Deliberate deviations of a pattern

We pinpoint such defects in the ontology and we verify a portion of them by

referring to the SNOMED-CT literature. The design discrepancies we highlight

mainly refer to missing restrictions. The rest are categorised as deviations from

an expected pattern. We show that parts of the ontology that do not follow

a particular pattern are more prone to design discrepancies, such as missing

restrictions, incorrect descriptions etc. That is expected, since the developers

have a higher level of freedom to describe concepts that do not have a general

pattern, and, therefore, there is more room for error.
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7.4.1 SNOMED-CT modules

The steps that were followed for the analysis of the regularities in SNOMED-CT

were:

1. Extraction of three SNOMED-CT modules

2. Application of the RIO on the asserted ontologies

3. Analysis of the regularities and verification with published work and SNOMED-

CT documentation.

For the extraction of the modules we used the July 31, 2010 IHTSDO (In-

ternational Health Terminology Standards Development Organisation) release of

SNOMED CT converted to OWL using the Perl script provided with the release.

The procedure for extracting the modules from the ontology is the same as

the one described in [RI12]. For module extraction, we used the methods in the

OWL API15 [HB09], packaged in an application available online 16.

The analysis of syntactic regularities mainly focuses on the description of four

groups of terms in the ontology. These groups of terms have a naming convention

and it is also expected to instantiate a pattern. In the remainder of the Chapter

it will be called a “target” entity. We also will refer to terms in the ontology

by using their labels as they were found in the OWL ontology. The extracted

modules refer to “chronic” and “acute” diseases, together with “present” and

“absent” clinical findings. Some descriptive metrics for the size of the modules

are presented in Table 7.5.

Present and absent clin-
ical findings

Chronic findings Acute findings

Target entities Classes whose labels
have the keywords
“present” or “absent”

Classes whose labels
have the keywords
“chronic”

Classes whose labels
have the keywords
“acute”

Axioms 5 065 20 688 19 812
Classes 1 687 6 842 6 599
Object properties 16 25 25
Mean class hierarchy
depth

9.76 11.2 10.09

Table 7.5: General metrics on the three extracted modules of SNOMED-CT.

The extraction of the modules was based on a set of terms that were expected

to instantiate a pattern in their axioms. For example, it is expected that all

15http://owlapi.sourceforge.net
16http://owl.cs.manchester.ac.uk/research/topics/snomed/

http://owlapi.sourceforge.net
http://owl.cs.manchester.ac.uk/research/topics/snomed/
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chronic findings have an axiom that relates them with ’Chronic (qualifier value)’.

Similarly all acute findings are expected to be related with ’Acute (qualifier value)’.

The modules describe classes that are findings and have the words “Present” or

“Absent” in the beginning or middle of their label. These can be gathered using

the OPPL script in Figure 7.29.

1.

?c:CLASS, ?x:CONSTANT = MATCH(".Present.*")

SELECT ?c.IRI label ?x

BEGIN

ADD ?c subClassOf PresentInTheBeginningCandidate

END;

2.

?c:CLASS, ?x:CONSTANT = MATCH(".*present.*")

SELECT ?c.IRI label ?x

BEGIN

ADD ?c subClassOf PresentInTheMiddleCandidate

END;

Figure 7.29: OPPL scripts for gathering target terms for the extraction of the
“Present” module

The OPPL script gives 0 candidate classes whose name starts with the word

“Present” and 59 classes with the word “present” in the middle of their name.

For the “absent” case, there was only 1 class whose label started with the word

“Absent” and 24 classes with the word “absent” in the middle of their name.

Similarly, the “Acute” and “Chronic” modules were extracted based on a set

of terms which have the words “Acute” and “Chronic” in their name and de-

scribe acute and chronic clinical findings respectively. Similar scripts as the ones

presented in Figure 7.29 gave 420 candidate “Chronic” classes and 509 “Acute”

candidate classes.

In our analysis the patterns which are described in the technical guide [sno11]

are manually formulated using OPPL scripts, which returns all possible candidate

axioms that are instantiations of this pattern. These are compared with RIO’s

results and we further discuss the strengths and weaknesses of the two methods.
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7.4.2 Analysis of the syntactic regularities

Table 7.6 show some evaluation metrics of the application of the RIO framework

on each module. As it has been already described in Chapter 6, the mean number

of instantiations per generalisation shows how many axioms can be abstracted

by a single generalisation. An ontology with a high cluster coverage per general-

isation (close to 100%) and a high mean of instantiations per generalisation is a

strong indication of a very regular ontology.

Module # Clusters Cluster coverage per
generalisation (%)

Mean Instantiations
per Generalisation

Present and absent clinical findings 41 8.50 6.42
Chronic findings 75 6.40 6.13

Acute findings 76 6.80 5.70

Table 7.6: Results of the application of RIO in the three SNOMED-CT modules.

The results show that the present and absent clinical findings module is the

most regular of all three modules, as it has the highest cluster coverage and

mean instantiations per generalisations. However, the overall cluster coverage

percentage does not exceed 8.5%. There are two reasons for this result; First, the

ontology is not highly regular. Secondly, in some cases the clustering algorithm

is too “greedy”, resulting in big clusters that are not completely homogeneous.

Most of the regularities that were captured by RIO refer to restrictions us-

ing the RoleGroup attribute [SDMW02] for grouping relationships. This is also

the main regularity that is described in the technical guide of the release we

used [sno11]. The purpose of the RoleGroup attribute in SNOMED-CT was

to provide a simple way to indicate that certain roles should be grouped to-

gether [SDMW02]. However, we want to check how this general regularity is

formed when describing different sets of terms in the ontology. In the remainder

of the section, we will focus on the regularities we found in the entities from the

ontology, which have:

• The words “Present” or “Absent” at the beginning or in the middle of their

name.

• The words “Chronic” or “Acute” at the beginning or in the middle of their

name.
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7.4.3 “Present” and “Absent” cases

Table 7.7 shows the results of the regularities referring to entities, whose names

included the words “present” or “absent”. There are 58 out of 59 “present”

entities which are distributed in 6 clusters. Similarly, all the 25 “absent” entities

are distributed in 5 clusters.

There is one “present” clinical finding that is not included in the clusters

(‘Definitely present (qualifier value)’). The reason is that this class is never used

in any other axiom, apart from its declaration and position in the class hierarchy

(It is a subclass of the ‘Known present (qualifier value)’ and superclass of the

‘Confirmed present (qualifier value)’. Fifty of the “present” entities appear to be

in the same cluster and described by 16 generalisations. Figure 7.30 shows an

example generalisation and instantiation referring to this cluster (cluster 1).

The structure of the 16 generalisations describing “present” classes is similar;

in many cases the only thing that changes is a single variable in the generalisation.

A reason for this is that entities participating in axioms of similar syntax fall into

different clusters due to their different usage in other axioms. The expected

pattern for all the present and absent cases is their explicit reference to the

’Known present (qualifier value)’ and ’Known absent (qualifier value)’ respectively.

An example instantiation pattern is shown in Figure 7.30.

The analysis of the regularities (Table 7.7) showed that the 31% (127) of the

usage axioms of the present entities are using this pattern. These axioms are

abstracted by 23 (35%) of the generalisations. Similarly, for the absent classes,

81 (34%) instantiations explicitly refer to the absent qualifier value and these

are abstracted by 15 (39%) by the generalisations. Note that the total number

of instantiations in Table 7.7 refer to all the axioms that were generalised and

referenced by at least one target entity (including both left and right hand side

of the axiom). Also these numbers refer to the expected syntactic pattern, which

is an explicit reference to a qualifier value (e.g. ’Known present (qualifier value)’).

However, an implicit pattern can exist, such as propagation through the class

hierarchy, which can infer such a connection. This explains the relatively low

percentage of the axioms following the pattern.
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Generalisation:

?cluster 1 EquivalentTo ?cluster 20

and ?cluster 23 some ?expression conjunction

and ?cluster 23 some ?cluster 16

Example Instantiation:

’Coin sign present (situation)’ EquivalentTo

‘Clinical finding present (situation)’

and (RoleGroup some ((Associated finding (attribute)

some ’Coin sign (finding)’)

and (’Finding context (attribute)’

some ’Known present (qualifier value)’)

and (’Temporal context (attribute)’

some ’Current or specified time (qualifier value)’)

and (’Subject relationship context (attribute)’

some ’Subject of record (person)’)))

where:

?cluster 1: CLASS=[’Coin sign present (situation)’],

?cluster 20: CLASS=[‘Clinical finding present (situation)’],

?cluster 23: OBJECTPROPERTY=[RoleGroup, Subject relationship context

(attribute)], ? expression conjunction: CLASS=[

((Associated finding (attribute) some Coin sign (finding))

and (Finding context (attribute) some Known present (qualifier value))

and (Temporal context (attribute) some Current or specified time (qualifier value))],

?cluster 16: CLASS=[’Subject of record (person)’]

Figure 7.30: Example generalisation and instantiation for ?cluster 1. The cluster
includes 50 classes with the word “present” in their name described by 16 gen-
eralisations. The example generalisation and instantiation show the pattern that
is used for describing these entities, which is the usage of particular roles.

Similarly, 21 of the “absent” clinical findings are in the same cluster described

by 10 generalisations. Both absent and present classes seem to follow the same

type of regularity in their definition. This is also described as a common pattern

in the SNOMED-CT online resources [sno11]. Most of the entities are described

using the RoleGroup attribute for grouping relationships using the ‘Associated

finding (attribute)’, ‘Finding context (attribute)’, ‘Temporal context (attribute)’ and

‘Subject relationship context (attribute) attributes. However, in both cases, we

found deviations from this pattern.

There were also clusters including entities with different forms of class ex-

pressions. An example is the ‘Clinical finding absent (situation)’. The analysis of

the module gave in total 17 classes that included the ’RoleGroup’ attribute more

than once in their definition. Figure 7.31 shows three example clusters with such
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entities. The usage of role groups and multiple role groups in SNOMED-CT is

described in [CS09].

These examples might be deliberately defined in this way, however it is a

deviation from the design style of most classes, that leads to deeply nested class

expressions. It might be also a case of malformed axioms, as it is not clear in

which cases the ’RoleGroup’ attribute should be used more than once in the same

axiom [CS09] and when a relationship should be grouped with an existing role

group. Table 7.7 shows that 3 clusters were detected with 4 “present” classes

using multiple role groups in their axioms. Likewise, 3 clusters were detected

with 3 “absent” classes whose axioms used multiple role groups. Our aim is to

highlight such cases, which should be further assessed by experts.

?cluster 19:{
‘Foreign body in female genital organs

and perineum (disorder)’
‘On examination - diabetic maculopathy

absent both eyes (situation)’
‘Bilateral cataracts (disorder)’
‘Alexia and agraphia present (situation)’
‘Foreign body of body cavity and wall (disorder)’
‘Injury to heart and lung (disorder)’
‘Tumor of lower respiratory tractand

mediastinum (disorder)’
‘On examination - diabetic maculopathy
present both eyes (situation)’}

?cluster 20:{
‘Musculoskeletal and connective tissue

disorder (disorder)’
‘Finding with explicit context (situation)’
‘History of clinical finding in subject (situation)’
‘Clinical finding present (situation)’
‘Clinical finding absent (situation)’
‘Disorder of soft tissue of thoracic

cavity (disorder)’}

?cluster 28:{
‘On examination - genitalia (finding)’
‘On examination - skin (finding)’
‘Disorder of soft tissue of body cavity (disorder)’}

(a) Outlier clusters with multiple usage of
RoleGroup attribute in their axioms

Clinical finding absent (situation) EquivalentTo
Situation with explicit context (situation) and
(RoleGroup some (Finding context (attribute)
some Known absent (qualifier value)))
and (RoleGroup some
(Temporal context (attribute)

some Current or specified time (qualifier value)))
and (RoleGroup some
(Subject relationship context (attribute)
some Subject of record (person)))

(b) Example axiom with multiple usage of
the RoleGroup attribute

Figure 7.31: Clusters with multiple usage of the RoleGroup attribute and example
instantiation.
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Present Absent
Total number of entities starting with “Present” or “Absent” 0 1
Total number of entities having “present” or “absent” in the middle of their name 59 24
Number of clusters that include the target entities 6 5
Number of generalisations describing the target entities 65 39
Number of instantiations referring to the target entities 404 236
Number of target entities that were not in any cluster. 1 0
Number of clusters including entities with multiple role groups (RoleGroup) in their
axioms

3 3

Number of clustered entities using multiple role groups (RoleGroup) in their axioms 4 3
Number of generalisations which instantiations explicitly refer to the present (Known
present (qualifier value)) or absent qualifier (Known absent (qualifier value))

23 (35%) 15 (39%)

Number of instantiations that explicitly refer to the present or absent qualifier 127 (31%) 81 (34%)

Table 7.7: Selected results of the analysis of regularities in present and absent
cases.

7.4.4 “Chronic” and “Acute” cases

Table 7.8 summarises the results of the regularities that were found in the entities

containing the words “acute” and “chronic” in their label. The results showed

that most of the entities do not follow a general pattern. Therefore, the entities

are distributed in many clusters and are described by many generalisations. From

the technical guide, a general pattern that is expected in these terms is the explicit

reference to the chronic or acute qualifiers in equivalent or subclass axioms [RI12].

An example description is shown in Figure 7.32.

’Chronic urate nephropathy (disorder)’ SubClassOf ’Urate nephropathy (disorder)’

and (RoleGroup some (’Clinical course (attribute)’ some ’Chronic (qualifier value)’))

Figure 7.32: Example description of a “chronic” class (’Chronic urate nephropathy
(disorder)’).

However, only 50 (5%) of the generalisations for the “Chronic” module were

found to abstract axioms related to “Chronic” entities and 114 (10%) of the

generalisations for the “Acute” module abstracted axioms related to “Acute”

entities. An example generalisation reflecting the expected pattern for the chronic

classes is shown in Figure 7.33.

We verified some of the results of this work with the results described in [RI12].

However, this chapter focuses more on the analysis of the syntactic regularities
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from an ontology engineering perspective. Subsets of these terms might be ex-

pected to deviate from this pattern from a medical perspective. For example,

a subset of “chronic” terms deviate from the pattern in Figure 7.33 reported

in [RI12], as they are described according to their morphology. Thus, there is no

existential restriction in their asserted axioms referring to the ’Chronic (qualifier

value)’. Since these terms do not have a reference to the Chronic (qualifier value)

they cannot be highlighted by a syntactic tool like RIO; such a relationship is

found in the inferences of the ontology.

Generalisation:

?cluster 2 EquivalentTo ?cluster 12 and (RoleGroup some

(?cluster 32 some ?cluster 20))

Example instantiation:

’Chronic pyonephrosis (disorder)’ EquivalentTo ’Pyonephrosis (disorder)’

and (RoleGroup some (’Clinical course (attribute)’ some ’Chronic (qualifier value)’))

where:

{?cluster 2:CLASS=[’Chronic pyonephrosis (disorder)’],

?cluster 12:CLASS=[’Pyonephrosis (disorder)’],

?cluster 32:OBJECTPROPERTY=[Clinical course (attribute)],

?cluster 20:CLASS=[’Chronic (qualifier value)’]}

Figure 7.33: Example syntactic regularity that covers 14 axioms describing 14
chronic disorders. This syntactic regularity reflects a pattern that expected to be
found for “chronic” classes (explicit reference to the ’Chronic (qualifier value)’).

In addition, 20 entities from the target set of entities were not clustered. Here,

for the sake of brevity, we mainly focus on the “Chronic” cases. Table 7.8 sum-

marises some of the results for all the cases. Figures 7.34 and 7.35 show the

chronic and acute entities, which were not included in any cluster respectively.

Some of them, such as the ‘Chronic anxiety (finding)’ were also reported in [RI12]

as design defects. From these, the “Chronic low back pain (finding)” is reported

in [RI12] as having an incomplete description. In particular, the class has an ex-

istential restriction that is missing. However, this type of irregularity is not clear

from the syntax of the axiom. The class is grouped with other “chronic” classes,

which have complete existential restrictions. Therefore, this type of irregularity

is a challenge to identify using the analysis of the results.
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Chronic Acute
Total number of entities starting with “Chronic” or “Acute” 388 472
Total number of entities having “chronic” or “acute” in the middle of their name 32 38
Number of clusters that include the target entities 34 34
Number of generalisations describing the target entities 919 1109
Number of instantiations referring to the target entities 1503 1849
Number of target entities that were not in any cluster. 12 11
Number of clusters including entities with multiple role groups (RoleGroup) in their
axioms

19 21

Number of clustered entities using multiple role groups (RoleGroup) in their axioms 64 79
Number of generalisations which instantiations explicitly refer to the chronic (Chronic
(qualifier value)) or acute qualifier (Sudden onset AND/OR short duration (qualifier
value))

50 (5%) 114 (10%)

Number of instantiations that explicitly refer to the chronic or acute qualifier 76 (5%) 210 (11%)

Table 7.8: Selected results on the analysis of regularities in chronic and acute
cases.

’Chronic progressive renal failure (disorder)’,
’Chronic back pain (finding)’,
’Chronic diarrhea of unknown origin (disorder)’,
’Chronic inflammatory demyelinating polyneuritis (disorder)’,
’Chronic cough (finding)’, ’Chronic anxiety (finding)’,
’Chronic post-traumatic stress disorder (disorder)’,
’Chronic bullous emphysema (disorder)’,
’Chronic acquired lymphedema (disorder)’,
’Chronic diarrhea (disorder)’, ’Chronic constipation (disorder)’,
’Chronic pain syndrome (disorder)’

Figure 7.34: Chronic entities that were not included in a cluster.

’Acute exacerbation of bronchiectasis (disorder)’,

’Acute cardiac pulmonary edema (disorder)’,

’Acute coronary syndrome (disorder)’,

’Acute and subacute liver necrosis (disorder)’,

’Acute myeloid leukemia with recurrent genetic abnormality (morphologic abnormality)’,

’Gallbladder calculus with acute cholecystitis and no obstruction (disorder)’,

’Acute situational disturbance (disorder), Acute urticaria (disorder)’,

’Acute meniscal tear, medial (disorder)’,

’Acute contagious conjunctivitis (disorder)’,

’Acute schizophrenia-like psychotic disorder (disorder)’

Figure 7.35: Acute entities that were not included in a cluster.

Finally, 10 clusters included entities participating in nested class expressions

with multiple role groups (using multiple RoleGroup relationships). It should be
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noted that clusters of a smaller size tended to include such deviations from the

regular pattern (most of the class expressions are described using a single role

group in the examined modules).

7.4.5 Verification of results

In order to verify some of the results, we manually ran OPPL scripts whenever

possible and estimate recall on the regularities. In particular, we examined which

classes failed to follow the expected pattern by running corresponding OPPL

scripts. For example, for the “chronic” classes we ran the queries of Figure 7.36

to select classes that had the word “Chronic” in their label, but were missing the

expected semantics. The first OPPL scripts of Figure 7.36 gave 131 candidate

classes with incomplete semantics while the second script will give 5 candidate

classes with incomplete semantics. This set of candidate classes are potential er-

rors in the ontology since they are missing the reason for being “chronic” findings,

despite this is indicated in their label.

1.

?c:CLASS, ?x:CONSTANT=MATCH(".Chronic.*")

SELECT ?c.IRI label ?x

WHERE FAIL ?c subClassOf RoleGroup some

(’Clinical course (attribute)’ some ’Chronic (qualifier value)’)

BEGIN ADD ?c subClassOf ChronicIncompleteCandidates

END;

2.

?c:CLASS, ?x:CONSTANT=MATCH(".*chronic.*") SELECT ?c.IRI label ?x

WHERE FAIL

?c subClassOf RoleGroup some

(’Clinical course (attribute)’ some ’Chronic (qualifier value)’)

BEGIN ADD ?c subClassOf ChronicIncompleteCandidates END;

Figure 7.36: OPPL scripts for gathering chronic classes with incomplete descrip-
tion.

Comparing the results of the manual analysis using OPPL scripts with the

results of the automatic analysis by RIO we can note that the analysis with RIO

gave in total 314 classes (Table 7.8) as potential deviations from the expected

pattern while manual OPPL scripts narrowed this down to 131 candidate classes.
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The reason for this difference is that OPPL scripts take into account both the

asserted and the inferred form of the ontology, thus the instantiation of the ex-

pected pattern is in the inferences of the ontology. However, this kind of semantic

analysis could not be done by RIO since we have a purely syntactic approach.

It should be mentioned, though, that the 131 candidate classes from the OPPL

script included all these classes in Figure 7.34. Similar OPPL scripts gave 147

“acute”, 9 “present” and 2 “absent” candidate classes with missing descriptions.

7.4.6 Summary for Experiment 3

In this experiment we presented a more in depth analysis of syntactic regularities

in three modules of SNOMED-CT ontology with respect to patterns that were

expected to be instantiated by terms with particular keywords in their labels

(referring to them as “target” entities).

The results showed expected regularities, as well as deviations from these

regularities. It revealed terms with incomplete descriptions, such as missing ex-

istential restrictions (e.g. 12 “chronic” classes with an incomplete description

which were not included in any cluster); classes, which were placed correctly in

the class hierarchy by the reasoner, but described with long class expressions

using multiple role groups (e.g. 79 “acute” classes whose definition makes use

of multiple role groups). In the worst case, the expected patterns described in

the technical guide of the ontology were explicitly instantiated by only 5% of the

corresponding entities in the module (Table 7.8). The results also indicated that

parts of the ontology that did not follow an explicit pattern tended to have more

potential “defects”. All these can be detected and reported to domain experts

who will decide which ones should be modified.

In addition, with OPPL scripts (Figure 7.36) we verified a subset of entities

which were also highlighted with the analysis from RIO (e.g. entities of Fig-

ure 7.34). However, a number of target entities did not instantiate the expected

pattern in their asserted axioms, but the pattern was expressed in the inferences

of the ontology. These entities were highlighted by RIO as deviations from the

expected pattern as the inferences were not taken into account. The considera-

tion of inferences by RIO for detecting patterns in inferences of the modules is

presented in the next Chapter.



Chapter 8

Experiments on Semantic

Regularities

We have presented so far the experiments on the analysis on the syntactic reg-

ularities in ontologies. In this section we present the corresponding analysis for

semantic regularities of ontologies. Again, the outline of the analysis is very

similar to the one used for the syntactic regularities.

8.1 Experiment 4: BioPortal Semantic Regular-

ities

Similar to Experiment 1, in Section 7.2, this section describes the quantitative

analysis of the detection of semantic regularities in the BioPortal repository. We

used the same collection of BioPortal Ontologies as in Experiment 1. Initially

we will describe the ontologies used for the experiment and then the presentation

and discussion of the results. The setup of the experiment and the presentation

of the results were described in Chapter 7.1.

8.1.1 Results

With the timeout considerations, RIO completed all three semantic clustering

tasks for a set of 40 ontologies. This section presents the results of these tasks

and a discussion with additional analysis of the results follows.

Table 8.1 shows the total mean values for selected metrics of the processed

BioPortal ontologies while Figures 8.1, 8.2, 8.5 present the semantic regularity

167
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results for each ontology for all three replacement methods. In these figures,

the results are sorted in ascending order according to the number of axioms of

the ontologies. As it is indicated in the x-axis of the Figures, the ontologies were

categorised according to their axiom number to small ontologies (30-300 axioms),

medium ontologies (300-1000 axioms) and big ontologies (1000-12000 axioms).

Metrics Popularity Structural Property
Relevance

Generalised Entailments (%) 100% 39% 100%
Instantiations per Generalisation 97.5 27.5 24.6
# Clusters 4.4 2.85 5.4
# Entities per Cluster 136.1 69.5 41.7
Cluster Coverage (%) 48% 32% 41%
Homogeneity 0.40 0.65 0.65
AD Compression (%) 81% 41% 40%

Table 8.1: Total mean values of semantic regularity metric results for the 40
processed ontologies from the BioPortal repository.

According to Table 8.1, the mean instantiations per generalisation value indi-

cates that the clustering based on structural and popularity replacements func-

tions gives generalisations of higher abstraction. These generalisations also cor-

respond to repetitive structures reflected in the Atomic Decomposition as the

AD compression in Table 8.1 is higher for popularity and structural replacement

function. The information depicted in Figures 8.2, 8.5 seems to be in an agree-

ment with the initial hypothesis. However, more information is needed to give a

clear answer. Further discussion and verification of these results are presented in

the following section.

8.1.2 Discussion

Detection of regularities

The practicality of computing semantic regularities. The computation of

semantic regularities for all three methods was completed in the allotted time

for 40 out of 208 BioPortal ontologies. The performance for the computation

of semantic regularities is worse than the one for the computation of syntactic

regularities; in fact, there are two bottlenecks in the computation of semantic

regularities; the extraction of entailments from the KE and the computation of

the proximity matrix for the clustering algorithm.
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Figure 8.1: Percentage of generalised entailments in BioPortal ontologies

KE is already an optimisation for quicker computation of entailments, but it

still requires reasoning and is therefore an onerous task. Chainsaw1, an exper-

imental reasoner that leverages Atomic Decomposition, was firstly motivated by

this problem, i.e., how to tackle reasoning over very large ontologies that can be

decomposed with AD [TP12]. However, it is still in the experimental stage, so it

was not used extensively in these experiments.

The proximity matrix computation is not a bottleneck unique to semantic

regularities; the same problem affects syntactic regularities, to a lesser extent as

on average the matrices to be computed are smaller in the syntactic approach.

Even though various optimisations have been applied to the computation of the

proximity matrix and the clustering procedure, more can be done to allow RIO

to better handle ontologies consisting of hundreds of thousands of axioms or

entailments; such improvements have been planned for future work.

1http://chainsaw.sourceforge.net

http://chainsaw.sourceforge.net
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Figure 8.2: Mean Instantiation per Generalisation of BioPortal Ontologies.

It is nonetheless an acceptable performance to detect semantic regularities for

all clustering methods in less than 45 minutes. The largest ontology (bioinformatics-

data-formats-identifiers-operations-and-topics) that was processed with this time-

out consisted of maximum 20 951 entailments. It should be also noted that the

number of entailments is not directly comparable with the number of axioms in

the ontology, i.e., it is not possible, before applying a reasoner, to know what

this number will be. For example, in the set of processed ontologies, the ontology

with the maximum number of entailments was not the one with the largest set

of asserted axioms. It is expected though, for all of the ontologies, the number of

entailments of each ontology will be greater than the number of its asserted ax-

ioms. That is because the KE will extract both trivial and non-trivial entailments

from the ontology.
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Figure 8.3: Mean Cluster Coverage of BioPortal Ontologies.

Comparison of replacement methods

Significance of Differences. Table 8.2 shows the p value for the Student’s t-

Test revealing the significant difference on metric values for different replacement

methods2. Each column in the table represents a potential hypothesis for a pair

of replacement methods; that one of the two methods is always greater than the

other. The null hypothesis H0 is that no difference can be drawn between the two

methods of the pair. When p < 0.05, then H0 is rejected.

Based on the results of Table 7.2, conclusions about the following hypotheses

can be drawn:

• H1: The percentage of generalised entailments with the popularity replace-

ment function is always greater than the one resulted with the structural

and property replacement function. This is also depicted in Figure 8.1.

2The t-test is computed in the same way as in the syntactic analysis of regularities (see
Chapter 7.2 for details).



CHAPTER 8. EXPERIMENTS ON SEMANTIC REGULARITIES 172

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31" 32" 33" 34" 35" 36" 37" 38" 39" 40"

Ho
m
og
en

ei
ty
*

Ontology*ID*

popularity" structural" property"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20"

Ho
m
og
en

ei
ty
*

Ontology*ID*

popularity" structural" property"

Small Ontologies 
[30 - 300 axioms] Medium ontologies [300 - 1000 axioms]

Medium ontologies
 [300 - 1000 axioms] Big ontologies [1000 - 12000 axioms]

Figure 8.4: Homogeneity of BioPortal Ontologies.

Metric Popularity - Property Structural-Property Popularity - Structural
#Generalised Entail-
ments

5.28 · 10−6 5.15 · 10−17 8.40 · 10−29

Mean Instantiations
per generalisation

0.00016 0.05727 0.00028

Cluster Coverage 0.048 0.457 0.175
AD Compression 8.06 · 10−10 4.63 · 10−3 3.03 · 10−9
Homogeneity 9.35 · 10−10 4.80 · 10−1 3.19 · 10−10

Table 8.2: T-Test results for selected metrics. The table shows the p value for
checking the significance of difference in regularity metrics between different re-
placement methods that were used in clustering. Each column represents a po-
tential hypothesis for a pair of methods. The null hypothesis H0 is rejected for
p < 0.05.

Thus, in semantic regularity detection, clustering with popularity function

finds more regularities.

• H2: Clustering with the popularity replacement function returns always the

highest number of instantiations per generalisation than the other types of
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Figure 8.5: AD Compression of BioPortal Ontologies.

clustering. It is nearly valid that the structural replacement function will

return generalisations with more instantiations per generalisation than the

property replacement function (p=0.057).

• H3: Clustering with popularity returns regularities with higher cluster cov-

erage than clustering with the property replacement function and clustering

with the structural replacement function while no conclusion can be drawn

on this metric between the pairs of structural and property replacement

functions, popularity and structural methods.

• H4: Clustering with the popularity replacement function results in general-

isation that cause the highest AD compression compared to the other two

methods. Similarly, clustering with the structural replacement function re-

sults in generalisations causing higher compression in AD graph than the

clustering with the property function.
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• H5: Clustering with property replacement function returns clusters with

the highest homogeneity. In addition, clustering with popularity returns

the least homogeneous clusters.

Distribution of evaluation metric values. A descriptive summary of the

dataset on selected metrics is shown in Figures 8.6–8.10. The boxplots of these

figures, can give a better intuition on the distribution of values on regularity for

each metric and type of replacement function.
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Figure 8.6: Boxplot on generalised entailments.

The general trend for the results obtained for the semantic regularities deviates

from the one for the computation of the syntactic ones. As this is depicted in the

boxplot of Figure 8.6, all clustering methods have different shape of results. This

significance is also verified by the t-test in Hypothesis H1.

As shown in Figure 8.7 and also statistically verified in H2, clustering with

the property replacement gives the highest number of instantiations per general-

isation, then follows the structural replacement function and last is the property

replacement functions. However, as also shown in Figure 8.7 the distribution

of values for the structural replacement function is similar to the distribution

of values of the property replacement function. For example, in ontology 30

(biological-imaging-methods) in Figure 8.2, the abstraction achieved by the clus-

tering with popularity is the highest (442 entailments per generalisation). But
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Figure 8.7: BoxPlot on Mean Instantiation per Generalisation of the BioPortal
Ontologies.
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Figure 8.8: Boxplot on Cluster Coverage of BioPortal Ontologies.

the abstraction achieved by the structural replacement function and the property

replacement function is the same (1.7 entailments per generalisation).

The reason for this is that the structural and property replacement functions
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Figure 8.9: Boxplot on the homogeneity of BioPortal ontologies.
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Figure 8.10: Boxplot on AD Compression of the BioPortal Ontologies.

provide a sensitive distance measure, while the popularity replacement function

results in a more tolerant replacement function. For ontology 30, clustering with
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popularity function detected 3 clusters, with 172.3 entities per cluster while clus-

tering with the structural method detected 2 clusters with 23.5 entities per cluster.

Thus, entities which belong to a cluster in popularity clustering, are left out in

structural clustering ending up in singleton clusters which are not included in the

final results.

An example is shown in Figure 8.11. The entailments referring to permeabilized

tissue instantiate a regularity for both clustering methods. However the one

detected by the structural method is more fine grained; the generalisation has only

2 instantiations while the generalisation for the popularity method instantiates

1424 entailments, amongst them the ones referring to permeabilized tissue.

Generalisation detected in clustering with structural method:
permeabilized tissue SubClassOf ?cluster 2
Instantiations: (2)
permeabilized tissue SubClassOf Biological Imaging Method
permeabilized tissue SubClassOf sample preparation method
where,
{?cluster 2:CLASS=[Biological Imaging Method, sample preparation method]}

Generalisation detected in clustering with popularity method:
?Biological Imaging Method SubClassOf ?cluster 1
Instantiations: (1424)
Example instantiations:
permeabilized tissue SubClassOf Biological Imaging Method
permeabilized tissue SubClassOf sample preparation method

where,
{?cluster 1:CLASS=[Biological Imaging Method, sample preparation method]}

Figure 8.11: Example showing how entailments instantiate generalisations of dif-
ferent granularity when a different replacement function is selected in clustering.

Cluster coverage. Similarly to the other metrics, clustering with popularity

gives the highest results. This is Hypothesis H3 which is verified in the t-Test.

Also the boxplots in Figure 8.8 depict such difference. In addition, the distribu-

tion of cluster coverage values for the property function is more widespread than

the other two methods whose distribution is closer to the median value. This

is the reason why no clear conclusion can be drawn between the comparison of
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structural and property function. However, for all of the methods, the 75% of the

ontologies had generalisations with more than 20% mean cluster coverage, which

is an acceptable metric for assessing the goodness of the generalisations.

Projection of generalisations in the AD. As it have been discussed in

Chapter 6, the AD shows that the detected regularities have also an impact in

the structure of the AD graph when they are projected in it. It is an external ver-

ification that these generalisations are not random, as they also capture existing

repetitive structures in the ontology.

The difference of methods on the level of abstraction of the regularities has

also an impact on the AD compression. As presented in Figure 8.10, the general-

isations that result from the structural clustering cause the highest compression

compression of the AD (the 75% of the values are above 70%) while generali-

sations that result from the structural and popularity clustering cause far less

compression (50% of values are above 40% for both methods). This observation

is also verified in H4.

Popularity replacement method. Only three ontologies have AD com-

pression lower than 60%, and of these only one has an AD compression of 0%.

The number of clusters in that case is 1, thus it has no impact on the AD of the

entailments. The AD compression results are worse for the structural method

and popularity, thus it is an indication that these methods might not capture

existing regularities in the best way compared to the popularity.

Based on the analysis of the results of this experiment clustering with the

popularity method will give generalisations of better quality; more regularities will

be detected, with higher abstraction impact over the entailments of the ontology

and higher cluster coverage. Thus, the analysis in the following section is based

on these results.

Regularity and uniformity of ontologies

All 40 ontologies had some form of regularity in their entailments; in terms of

uniformity of regularities, semantic regularities seem to have fewer deviations

than syntactic regularities. Figure 8.12 depicts an intuition of the uniformity of

the semantic regularities detected by the clustering algorithm with the popularity

replacement function. Table 8.3 shows the five ontologies in highest ranking of

uniformity. Their ranking is based on the combination of values in Figure 8.12. As

shown in the table, the mean cluster coverage of their generalisations exceeds 20%
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and these generalisations have a significant abstraction impact on the entailments

as the mean instantiations per generalisation is more than 90 entailments.

Ontology/
Axioms

#Clusters Entities per
Cluster

Cluster Cov-
erage(%)

Instantiations
per General-
isation

Homogeneity

12 / 467 2 105 76% 302 0.34
13 / 511 3 78 64% 99.1 0.63
16 / 550 3 79.7 58% 117.4 0.54
21 / 708 2 154.5 35% 135.1 0.28
31 / 1 320 3 184.3 28% 204.3 0.27

Table 8.3: Regular and uniform ontologies from the BioPortal corpus. The results
for the popularity method are shown.
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Figure 8.12: Uniformity indication. Cluster coverage and mean instantiations per
generalisations for the popularity replacement method

Examples of uniform ontologies. A variety of different types of semantic

regularities is captured. The majority of the processed ontologies have very few
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clusters and few generalisations which abstract a significant amount of entail-

ments.

Ontology 31 (physico-chemical-process) ends up with two clusters of similar

entities with clustering using the structural replacement function and with of

three clusters when performing clustering with the popularity and property re-

placement function. The clustering algorithm with popularity method detected

23 generalisations abstracting 4 698 entailments. The main type of patterns of

entailments are shown in Figure 8.13. In this ontology, the structural replacement

function will achieve a higher abstraction (more instantiations per generalisation)

of the ontology. However, the same type of regularities will be highlighted. The

remaining 18 generalisations in the ontology are similar to generalisation (4) of

Figure 8.13.

Generalisations:
(1) ?cluster 1 SubClassOf ?cluster 1

Instantiations: (3285)
Example Instantiation:
simple diffusion SubClassOf membrane process

(2) ?cluster 1 SubClassOf Part of some Thing
Instantiations: (528)
Example Instantiation:
simple diffusion SubClassOf Part of some Thing

(3) ?cluster 1 SubClassOf Part of some ?physico-chemical process ontology
Instantiations: (464)
Example Instantiation:
simple diffusion SubClassOf Part of some physico-chemical process ontology

(4) ?cluster 1 SubClassOf is reverse of some ((?cluster 1 conjunction)
and (Part of some ((?cluster 1 conjunction)
and (Part of some ?physico-chemical process ontology))))

Instantiations: (66)
Example instantiation:
atomic fluorescence SubClassOf is reverse of some ((process
and excitation and photoexcitation and microscopic process)
and (Part of some ((process and macroscopic process
and absorption and photoabsorption)
and (Part of some physico-chemical process ontology))))

where,
{?cluster 1:CLASS=[simple diffusion, membrane process, simple diffusion,

atomic fluorescence],
?cluster 1 conjunction:CLASS=[(process and excitation

and photoexcitation and microscopic process),
(process and macroscopic process and absorption
and photoabsorption)],

?physico-chemical process ontology:CLASS=[physico-chemical process ontology]}

Figure 8.13: Example uniform semantic regularities.
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Atom Patterns. Similarly, the inspection of the atoms in the AD of entail-

ments that were merged after the projection of the generalisations on the AD

shows repetitive structures that occur across different atoms. Such an example is

shown in Figure 8.14 taken from ontology 31. The pattern described by two gen-

eralisations causes the merging of 358 atoms. In ontology 31, 17 atom patterns

were detected.

Atom Pattern:
?cluster 1 SubClassOf ?cluster 1
?cluster 1 SubClassOf ’Part of’ some ?’physico-chemical process ontology’

Merged Atoms: (358)
Atom 1: [ATP-hydrolysing chelatase reaction SubClassOf process,

ATP-hydrolysing chelatase reaction SubClassOf chemical reaction,
ATP-hydrolysing chelatase reaction SubClassOf biochemical reaction,
ATP-hydrolysing chelatase reaction SubClassOf phosphorus-containing

anhydride hydrolase reaction,
ATP-hydrolysing chelatase reaction SubClassOf hydrolase reaction,
ATP-hydrolysing chelatase reaction SubClassOf transferase reaction,
ATP-hydrolysing chelatase reaction SubClassOf chelatase reaction,
ATP-hydrolysing chelatase reaction SubClassOf nucleoside triphosphate

(di)phosphohydrolase reaction,
ATP-hydrolysing chelatase reaction SubClassOf biotransformation reaction,
ATP-hydrolysing chelatase reaction SubClassOf macroscopic process,
ATP-hydrolysing chelatase reaction SubClassOf ligase reaction,
ATP-hydrolysing chelatase reaction SubClassOf

acid anhydride hydrolase reaction,
ATP-hydrolysing chelatase reaction SubClassOf ’Part of’ some Thing,
ATP-hydrolysing chelatase reaction SubClassOf ’Part of’

some physico-chemical process ontology]
Atom 2: [bimolecular nucleophilic substitution SubClassOf polar reaction,

bimolecular nucleophilic substitution SubClassOf
heterolytic substitution reaction,

bimolecular nucleophilic substitution SubClassOf chemical reaction,
bimolecular nucleophilic substitution SubClassOf bimolecular reaction,
bimolecular nucleophilic substitution SubClassOf elementary reaction,
bimolecular nucleophilic substitution SubClassOf macroscopic process,
bimolecular nucleophilic substitution SubClassOf process,
bimolecular nucleophilic substitution SubClassOf substitution reaction,
bimolecular nucleophilic substitution SubClassOf

nucleophilic substitution reaction,
bimolecular nucleophilic substitution SubClassOf ’Part of’ some Thing,
bimolecular nucleophilic substitution SubClassOf ’Part of’ some

physico-chemical process ontology]

Figure 8.14: Example semantic patterns found across many atoms in AD.
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8.2 Conclusions on Experiment 4

The empirical analysis of the semantic regularities found in 40 ontologies from

BioPortal leads to the following main outcomes:

• The detection of semantic regularities referring to atomic subsumptions and

subsumptions between complex class expressions in class level was practical

for the 40 ontologies from BioPortal repository. In all of the ontologies

some kind of semantic regularity was detected. The number of detected

generalisations was between 2 and 1370 generalisations and a total average

of 44.3 generalisations per ontology3. This indicates that entailments in

the ontology can have different structure and can instantiate a pattern.

By comparing the results with the syntactic regularities, we observe that

the detected semantic regularities are fewer and more uniform; not many

deviations are detected as with the syntactic regularities.

• The proportion of entailments that was extracted from the KE is not always

analogous to the number of axioms in the ontology. However, the number

of entailments is always greater than the number of logical axioms in the

ontology. That is because we did not exclude trivial entailments from the

data set; that is entailments that are also asserted in the axioms of the on-

tology. An analysis of the entailments of BioPortal is described in [HPS11].

This analysis is done from a different point of view; it inspects the justifica-

tory structure of the BioPortal ontologies. However, it is remarked that a

big number of non-trivial entailments were detected in most of the ontolo-

gies. It should be also noted that this analysis was considering only atomic

subsumption entailments. To the best of our knowledge, this thesis is the

first effort on performing an analysis of entailments including complex class

expressions.

• The number and abstraction level of generalisations can differ significantly

when a different replacement function is considered in clustering. The em-

pirical results of the semantic regularities of BioPortal showed that the

results were more similar for the structural and property replacement func-

tion, while popularity gave much higher values for the majority of metrics.

3these results refer to clustering with the popularity replacement function
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Clustering with the structural and property replacement functions will re-

sult in fewer clusters and fewer and more fine-grained generalisations. On

the other hand, the popularity replacement function results in more coarse

grained generalisations, which instantiate a high number of entailments

from the ontology. In addition, the cluster coverage of these generalisations

is significantly higher than in the other two methods. This is depicted in

Figure 8.8 and verified with the t-Test (Hypothesis H3). On average cluster

coverage is 48% and 75% of the ontologies have more 40% cluster coverage.

This shows that the generalisations resulted from clustering with the pop-

ularity function are well-formed. Although, clustering with the structural

replacement function gave better results for the syntactic regularities, this

result is not followed by the analysis for the semantic regularities. A reason

for this is that structural replacement function is affected by the length

of an entailment (how structural replacement works is explained in Chap-

ter 4.4.3) as the split of a variable entity depends on the other variables

in an entailment. The current implementation for extracting entailments

from the KE will return entailments whose right part of the entailment

consist of long conjuctions of class expressions (e.g. A SubClassOf B and

C and D . . . ). Structural replacement function is not as effective as the

popularity for handing replacements in these long entailments. However,

trying breaking down long conjuctions will have as a result a deterioration

in the performance of clustering. That is because the number of entail-

ments significantly increases, thus it takes longer to compute the proximity

matrix.

• The AD compression results are related to the abstraction impact of the

generalisations for most of the ontologies. By computing Pearson’s Corre-

lation, a medium positive correlation (0.55) was detected between the AD

compression and the mean instantiations per generalisations for the popu-

larity and structural method while a strong correlation (0.6) was detected

for the property replacement function. An interpretation is that the input

is more homogeneous in terms of regularities, thus the number of instan-

tiations is a good representative for checking whether a good abstraction

of the entailments by the generalisations has been achieved. However, all

methods will detect highly regular entailments. It remains as a future direc-

tion to investigate when it is more useful to use the popularity replacement
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method for obtaining generalisations with higher abstraction level and when

to use structural and property replacement functions for obtaining more

fine-grained generalisations. Also, it remains as future direction the defini-

tion of better metrics for evaluating how meaningful, with respect to the

content of the ontology, the generalisations are. This cannot be claimed

through AD yet.

• In terms of uniformity of entailments, on the detection of semantic regular-

ities, the clustering algorithm has a more constrained input; meaning that

the entailments whose regularities are computed are only class expressions

while for the detection of syntactic regularities a bigger variety of different

type of entailments can be considered (e.g. class assertions and property

assertions). Thus, by default fewer deviations are expected in the patterns

as the input is more constrained for the detection of semantic regularities.

Secondly, the semantic regularities show common patterns on the inferences

of an ontology. These inferences even though they depend on the asserted

axioms, they are not explicitly asserted by the developers of the ontology,

but they are generated from the reasoner. Thus, the automatic generation

provides also uniformity to the results. In addition, the entailments can be

a result of a design pattern used in the asserted axioms of the ontology.

Therefore, the generalisations that result are uniform because they depend

on the same pattern.

8.3 Experiment 5: Qualitative Analysis of Se-

mantic Regularities

In Experiment 4 of Section 8.1 we demonstrated the ability of RIO to detect

semantic regularities in a bigger collection of ontologies from BioPortal. This

experiment is showing a more in depth analysis of semantic regularities of a

smaller set of ontologies. It should be mentioned that these ontologies were also

used in the experiments shown in Sections 7.3 and 7.4 and for analysing their

syntactic regularities with respect to expected patterns. This analysis attempts

to show differences in the semantic results obtained compared to the syntactic

ones.
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8.3.1 Experiment Setup

Selected ontologies The selected ontologies for this experiment consist of the

SNOMED-CT modules used in Section 7.4 as well as a subset of the ontologies

that were used in the Experiment presented in Section 7.3. From these ontologies,

OBI is missing as the computation of entailments for this ontology using the KE

was impractical.

The setup is similar to the previous experiments and has been described in

Section 7.1. In this experiment however we do a very brief comparison of the

results and their validation between different clustering methods, as an extensive

analysis of the semantic regularities has been performed with a collection of on-

tologies from BioPortal. We focus mainly on the analysis of regularities and see

how they resemble expected patterns. In addition, the same analysis performed

for SNOMED-CT’s syntactic regularities is repeated considering now only the se-

mantic regularities. We make a comparison with the analysis analysis and discuss

about potential irregularities.

8.3.2 Results

Figures 8.15 and 8.16 show the mean instantiations per generalisation and the AD

compression respectively while Figure 8.17 shows the mean cluster coverage of the

detected semantic regularities. The percentage of entailments that were found to

instantiate a regularity in all ontologies is 100%, apart from Amino Acid, whose

percentage was 82% only for clustering with the property replacement function.

8.3.3 Discussion

Comparison of the three replacement methods. For this collection of

ontologies, the popularity method has a greater abstraction impact on the entail-

ments of the SNOMED-CT-chronic module than the other two methods (shown

in Figure 8.15). The structural replacement method has slightly higher number

of instantiations per generalisation for the other ontologies. The AD compres-

sion shown in 8.16 is more than 50% for all of the methods and ontologies apart

from the property replacement method for the Flowers and KUPKB ontology. In

that aspect, the property replacement function gives more clusters and more fine

grained generalisations but these have higher cluster coverage.
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Figure 8.15: Mean Instantiations per Generalisation
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Figure 8.16: Atomic decomposition (AD) compression

Inspection of Regularities

In this section, we will highlight some interesting cases from the inspection of

semantic regularities in the ontologies. The examples we illustrate are taken

either from the clustering results with the popularity replacement function or the

clustering results with the structural replacement function.

KUPKB: The analysis of syntactic regularities of KUPKB, presented in Sec-

tion 7.3, revealed 10 generalisations referring to two patterns described in the

documentation of the ontology [JHI+10] and also shown in Figure 7.23. These
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Figure 8.17: Cluster Coverage

two patterns describe kidney cells and they use the properties part of and par-

ticipates in respectively. In the semantic analysis these patterns are covered in a

much more uniform way; in particular, each pattern matches a single regularity.

The two semantic regularities are shown in Figure 8.18 covering 696 and 360

entailments respectively.

SNOMED-CT modules: Experiment 3, in Section 7.4, showed an extensive

analysis of regularities and irregularities with respect to expected patterns in

the ontology. However, this analysis was done by considering only the asserted

axioms in the ontology. The expected patterns for the SNOMED-CT modules

that were used in these experiments were described in 7.4. These are four patterns

describing entities which have the keywords “chronic”, “acute”, “present” and

“absent” in their label respectively. We will refer to them as target entities.

An analysis, similar to the one performed for the syntactic regularities of the

four SNOMED-CT modules, is now applied to the semantic regularities of the

ontology. As in the analysis of the syntactic regularities for these modules, we

will narrow down the inspection and demonstration of results only for regularities

and entailments referencing the target entities. Tables 8.4 and 8.5 show the

corresponding results from the analysis of the semantic regularities. The following

examples and analysis of the results refer to the detection of semantic regularities

using clustering with the structural function.

As it is shown in the tables, the analysis of semantic regularities will give

a better overview of the regularities and irregularities because the results do

not have any syntactic dependencies; the input of the clustering algorithm are
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Pattern 1
Generalisation:
?cluster 1 SubClassOf part of some (?cluster 2 conjunction)
Total Instantiations: 696
Example Instantiation:
’kidney cortex artery cell; SubClassOf part of

some (cell and ’KUPO core entity’ and ’KUPO anatomy entity’)

where
{?cluster 1:CLASS=[kidney cortex artery cell],

?cluster 2 conjunction:CLASS=[
cell and ’KUPO core entity’ and ’KUPO anatomy entity’]}

Pattern 2
Generalisation:
?cluster 1 SubClassOf participates in some ?cluster 3
Total Instantiations: 360
Example Instantiation:
’kidney proximal convoluted tubule epithelial cell’ SubClassOf

participates˙in some ’bicarbonate transport’
where
{?cluster 1:CLASS=[’kidney proximal convoluted tubule epithelial cell’],

?cluster 3:CLASS=[’bicarbonate transport’]}

Figure 8.18: Semantic regularities example resembling the expected pattern in
KUPKB.

Present Absent
Total number of entities starting with “Present” or “Absent” 0 1
Total number of entities having “present” or “absent” in the middle of their name 59 24
Number of clusters that include the target entities 2 3
Number of generalisations describing the target entities 61 40
Number of instantiations referring to the target entities 832 409
Number of target entities that were not in any cluster 1 0
Number of generalisations which instantiations explicitly refer to the present (Known
present (qualifier value)) or absent qualifier (Known absent (qualifier value))

2 (3%) 2 (5%)

Number of instantiations that explicitly refer to the present or absent qualifier 134 (16%) 81 (19%)

Table 8.4: Selected results of the analysis of semantic regularities in present and
absent cases.

entailments that have been generated by the reasoner and not been asserted

manually by the developer.

Uniformity of regularities. The automatic generation of entailments has

as a result the generation of more uniform regularities that do not suffer from

syntactic deviations. On the contrary, in the syntactic analysis of regularities, we

have seen entities that have similar semantics end up in different clusters because

of the different structure of their asserted axioms (for details see Section 7.4).

This was reflected both on the number of generalisations capturing the expected
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Chronic Acute
Total number of entities starting with “Chronic” or “Acute” 388 472
Total number of entities having “chronic” or “acute” in the middle of their name 32 38
Number of clusters that include the target entities 2 2
Number of generalisations describing the target entities 96 98
Number of instantiations referring to the target entities 8530 10079
Number of target entities that were not in any cluster 1 1
Number of generalisations which instantiations explicitly refer to the chronic (Chronic
(qualifier value)) or acute qualifier (Sudden onset AND/OR short duration (qualifier
value))

4 (4%) 2 (4%)

Number of instantiations that explicitly refer to the chronic or acute qualifier 430 (5%) 361 (4%)

Table 8.5: Selected results on the analysis of semantic regularities in chronic and
acute cases.

patterns, the number of instantiations per generalisation and the number of en-

tities which were not included in any cluster.

Figure 8.19 shows such a uniform regularity that captures the expected pat-

terns for the “chronic” entities. In particular, the generalisation of the example

instantiates 415 entailments which instantiate the expected pattern. Similarly,

Figures 8.20, 8.21 and 8.22, show the corresponding semantic regularities cap-

turing the expected patterns for the “acute”, “present” and “absent” entities

respectively.

Inspection of irregularities

Amino Acid. The generalisation of Figure 8.23 in the AminoAcid ontology

revealed that some entities acting as categories for the amino acids like the

TinyAliphaticAminoAcid and HydrophobicAminoAcid have a Neutral charge even

though the asserted axioms describing these entities are:

Non-PolarAminoAcid EquivalentTo AminoAcid and (hasPolarity some Non-Polar)

HydrophobicAminoAcid EquivalentTo AminoAcid and

(hasHydrophobicity some Hydrophobic)

Thus, they are not expected to be subclasses of the anonymous class hasCharge

some Neutral.

The reason for this regular entailment can be explained with the justification of

Figure 8.24 as it is shown in Protégé 4. Of similar structure is also the justification

for the TinyAliphaticAminoAcid. The reason is that the class AminoAcid is defined

to be only one of the primitive4 amino acids (Alanine, Cysteine etc). All of the

Amino Acids that can be Hydrophobic have also Neutral charge and the other

4Primitive classes are the ones that are not equivalent.
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Generalisation:
?SCT 138875005 SubClassOf RoleGroup some (Finding site (attribute)

some (?SCT 138875006 conjunction))
Total Instantiations: 415
Example Instantiation:
’Chronic renal failure syndrome (disorder)’ SubClassOf RoleGroup

some (Clinical course (attribute)
some (SNOMED CT Concept (SNOMED RT+CTV3)
and Descriptor (qualifier value)
and Time patterns (qualifier value)
and Special atomic mapping values (qualifier value)
and Courses (qualifier value)
and Special disorder atoms (qualifier value)
and Qualifier value (qualifier value)
and Chronic (qualifier value)))

where
{?SCT˙138875005:CLASS=[Chronic renal failure syndrome (disorder)],

?SCT˙138875006:CLASS=[Time patterns (qualifier value),
Chronic (qualifier value),
Special disorder atoms (qualifier value),
Courses (qualifier value),
Special atomic mapping values (qualifier value),
Qualifier value (qualifier value),
Descriptor (qualifier value),
SNOMED CT Concept (SNOMED RT+CTV3)]}

Figure 8.19: Semantic regularity example resembling an expected pattern in
SNOMED-CT for “chronic” entities.

Generalisation:
?cluster 1 SubClassOf RoleGroup some (Clinical course (attribute)

some ?cluster 2)
Total Instantiations: 352
Example Instantiation:
Acute heart failure (disorder) SubClassOf RoleGroup

some (Clinical course (attribute)
some Sudden onset AND/OR short duration (qualifier value)) :

where,
{?cluster˙2:CLASS=[Sudden onset AND/OR short duration (qualifier value)],

?cluster˙1:CLASS=[Acute heart failure (disorder)]}

Figure 8.20: Semantic regularity example resembling an expected pattern in
SNOMED-CT for “acute” entities.

Amino Acids are defined to be Hydrophilic. Since hasHydrophobicity property is

functional and Hydrophilic is disjoint with Hydrophobic, the amino acids that are
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Generalisation:
?cluster 1 SubClassOf RoleGroup some (Finding context (attribute)

some (?cluster˙2˙conjunction))
Total Instantiations: 130
Example Instantiation:
Ankle clonus present (situation) SubClassOf RoleGroup
some (Finding context (attribute) some (Known (qualifier value)
and Finding context value (qualifier value)
and Known present (qualifier value)))
where,
{?cluster 2:CLASS=[Known present (qualifier value), Known (qualifier value),

Finding context value (qualifier value)],
?cluster 1:CLASS=[Ankle clonus present (situation)]}

Figure 8.21: Semantic regularity example resembling an expected pattern in
SNOMED-CT for “present” entities.

Generalisation:
?cluster 1 SubClassOf RoleGroup some (Finding context (attribute)

some (?cluster 2 conjunction))
Total Instantiations: 79
Example Instantiation:
’Vaginal discharge absent (situation)’ SubClassOf RoleGroup
some (Finding context (attribute)
some (Known (qualifier value)
and Finding context value (qualifier value)
and Known absent (qualifier value)))

where,
{?cluster˙2:CLASS=[Known (qualifier value), Known absent (qualifier value),

Finding context value (qualifier value)],
?cluster˙1:CLASS=[Vaginal discharge absent (situation)]}

Figure 8.22: Semantic regularity example resembling an expected pattern in
SNOMED-CT for “absent” entities.

Hydrophobic must be also neutrally charged. This type of irregularity was not

discoverable in the syntactic analysis performed by RIO, as it was not explicitly

asserted in the ontology.

SNOMED-CT. In contrast with the analysis of the syntactic regularities,

Tables 8.4 and 8.5 show much fewer target classes not included in any cluster. In

Section 7.4, Figure 7.34 shows Chronic entities that were not found in any cluster

in the syntactic regularities. However, the semantic analysis gave different results.
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Generalisation:
?AminoAcid SubClassOf hasCharge some (?RefiningFeature conjunction)

Example Instantiations:
TinyAliphaticAminoAcid SubClassOf hasCharge some (Charge and Neutral

and PhysicoChemicalProperty and RefiningFeature)
HydrophobicAminoAcid SubClassOf hasCharge some (Charge and Neutral

and PhysicoChemicalProperty and RefiningFeature)
where,
{?AminoAcid:CLASS=[TinyAliphaticAminoAcid, HydrophobicAminoAcid],

?RefiningFeature conjunction:CLASS=[(Charge and Neutral
and PhysicoChemicalProperty and RefiningFeature)]}

Figure 8.23: An example semantic “irregularity” in the Amino Acid ontology. The
TinyAliphaticAminoAcid and the HydrophobicAminoAcid are also neutrally charged,
which is not expected as both their axiomatic description and label do not indicate
such property.

Figure 8.24: Justification for the entailment HydrophobicAminoAcid SubClassOf
hasCharge some (Charge and Neutral and PhysicoChemicalProperty and Refin-
ingFeature)

From the 12 entities of Figure 7.34, entities ’Chronic progressive renal failure

(disorder), Chronic inflammatory demyelinating polyneuritis (disorder) instantiate the

chronic pattern (see Figure 8.19) in their entailments. These were excluded from
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the syntactic regularities as they were not instantiating the pattern explicitly.

Similarly, from the 11 acute entities of Figure 7.35 that were not included

in any cluster in the syntactic regularities, the Acute cardiac pulmonary edema

(disorder) only was found to instantiate the acute pattern (see Figure 8.20).

Lexical irregularities. In addition, the analysis of semantic regularities

revealed entities whose referencing entailments were instantiating one of the ex-

pected patterns, but this was not followed by the label of their name. An example

of such entity is shown in Figure 8.25. Entity Poliomyelitis osteopathy of the fore-

arm (disorder), even though it does not have in its name the keyword “Acute” like

the other acute disorders, is inferred to be an Acute disease (disorder). Whether

this is an intended irregularity or not is not clear. However, it is useful to have

tools for helping in the isolation of such irregularities. In addition, it is more

difficult to detect such entities with the analysis of the asserted axioms, since

such information is not explicitly asserted in the description of the entity but it

propagates through the class hierarchy.

This also justifies why the number of entities with a particular keyword in their

labels is lower than the number of entailments that refer to the corresponding

pattern. It should be noted that it is expected that a target entity to have only

one instantiation referencing the corresponding “qualifier” entity (e.g. ’Chronic

(qualifier)’, ’Sudden onset AND/OR short duration (qualifier value)’, ’Known present

(qualifier value)’, ’Known absent (qualifier value)’). In particular, there are 388

chronic entities, from which we have shown that 10 of them do not instantiate

the pattern, and 430 instantiations of the corresponding pattern. Thus, there

are 10 entities that are implied to be chronic diseases but this is not indicated in

their label. This might be an intended deviation from the developers or mistake

in the labeling of these entities. In the scope of this work is to isolate such

discrepancies. Similarly, for the SNOMED-CT-acute module, there are 8 entities,

which instantiate the “acute” pattern without having the keyword “acute” in their

label. In the other modules, there are 75 such entities, which are implied to be

Present clinical findings and 56 entities which are implied to be Absent clinical

findings. It should be noted that in these 56 entities, the class No edema present

(situation) was included. Thus, a “present” entity was implied to be an Absent

clinical finding.
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?cluster 1 SubClassOf RoleGroup some (Associated with (attribute) some

((?cluster 1 conjunction and ?cluster 2 conjunction)

and (RoleGroup some (Clinical course (attribute)

some ?cluster 2))))

Poliomyelitis osteopathy of the forearm (disorder) SubClassOf RoleGroup

some (Associated with (attribute)

some ((Disease due to Picornaviridae (disorder)

and Disorder of nervous system (disorder)

and Acute nervous system disorder (disorder)

and Acute disease (disorder)

and Viral disease (disorder)

and Disorder of body system (disorder)

and Acute poliomyelitis (disorder)

and Clinical finding (finding)

and Infectious disease (disorder)

and Disease due to Enterovirus (disorder)

and Acute infectious disease (disorder)

and Disease (disorder))

and (RoleGroup some (Clinical course (attribute)

some Sudden onset AND/OR short duration (qualifier value))))) :

where {?cluster 2:CLASS=[Clinical finding (finding), Disease (disorder),

Sudden onset AND/OR short duration (qualifier value)],

?cluster 1:CLASS=[Acute nervous system disorder (disorder),

Viral disease (disorder), Acute infectious disease (disorder),

Poliomyelitis osteopathy of the forearm (disorder),

Infectious disease (disorder), Disorder of nervous system (disorder),

Disease due to Picornaviridae (disorder),

Acute disease (disorder), Disease due to Enterovirus (disorder),

Disorder of body system (disorder), Acute poliomyelitis (disorder)]}

Figure 8.25: Example of an entity (Poliomyelitis osteopathy of the forearm (disor-
der)) that is inferred to be an Acute disease (disorder) without complying to the
corresponding naming convention.

8.4 Conclusions on Experiment 5

From the analysis of the semantic regularities reported above, we can conclude

the following:

• The semantic analysis revealed regularities which could not be detected by

a syntactic tool. For example, in the amino acid ontology a pattern used

in the asserted axioms of the ontology had as a consequence the same type
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of an entailment captured by the regularities. These regularities also had

similar structure in the justifications. This can be a motivation for future

work on additional assessment of goodness of the semantic regularities. In

particular, entailments of similar structure are expected to have similar

justifications and justificatory structure. Measuring such similarity between

justifications of entailments instantiating the same generalisation can be an

additional metric for assessing the quality of semantic regularities.

• Comparison between the syntactic and semantic regularities of SNOMED-

CT showed that the semantic regularities reflecting an expected pattern

are more uniform; fewer generalisations were detected with much higher

abstraction impact. This can give a better overview of irregularities in the

ontology with respect to an expected pattern: the semantic regularities ab-

stract over the semantics of an ontology, thus entities that do not explicitly

instantiate a pattern, can be found to instantiate it in the entailments of

the ontology. Thus, a better picture can be gained about deviations of a

pattern.

• The analysis of semantic analysis revealed entities that were not included

in the target entities, meaning not having a particular keyword in their la-

bel; yet, they seemed to instantiate the corresponding pattern mapped to

a keyword. In addition, this observation could not be made with syntactic

regularities or with the OPPL script. That is firstly, because this informa-

tion was implicit in the axioms of the ontology and secondly, because the

label of the target entities was used as a parameter for the corresponding

OPPL query (an example of OPPL query is shown in Figure 7.36 for the

“Chronic” entities).

• The use of KE will produce entailments of the type A v B, A ≡ B. In

these, the right hand side of the entailment (superclass) is usually a long

conjunction of class expressions. Algorithm 4, which does the extraction

of the entailments, will return such output. As shown in the experiments

presented above in this Chapter, this long conjunction can affect the results

of the replacement function since various replacements implicitly depend on

the length of the axiom. It remains as a future implementation improvement

to simplify the entailments and separate conjunctions. At the moment this

procedure adds cost to the computation of the clusters as the simplification
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will lead to the increase of referencing entailments per entity. Thus, this

makes the computation of the proximity matrix slower.

• For quality assurance, adding more entailments to the set such as class

assertions, property assertions and so on can extend the analysis of RIO in

other parts of the ontology and consider a more full set of its semantics. At

the moment, this change adds computational cost. However, the ultimate

goal is to harmonise modularity with reasoner computation and regularity

detection for faster and more systematic ontology quality assurance.

• KE in combination with RIO and OPPL can help towards a more systematic

quality assurance of ontologies. RIO can be used for guiding the observation

of fragments of the ontology and OPPL for the verification of discrepancies

and irregularities in the ontology. Also using the lexical analysis of entities

in combination with their description and semantics in the ontology is a

good starting point to check if naming conventions comply with axiomatic

descriptions. Such lexical pattern guided the analysis with SNOMED-CT.



Chapter 9

Conclusions and Future Work

9.1 Thesis Overview

This thesis deals with the problem of detecting syntactic and semantic regu-

larities in ontologies. We presented RIO, a framework that uses clustering for

detecting regularities in the asserted axioms and entailments of an ontology. The

regularities are expressed as generalisations, including variables, representing cor-

responding clusters of similar entities. These generalisations are abstractions over

the axioms and entailments of an ontology over the repetitive structures that are

found. As demonstrated through a series of experiments in the previous Chap-

ters, regularities can be revealed as patterns in the ontology and these could be

used to gain an intuition of the construction of an ontology. In addition, regular-

ities in the entailments of an ontology can give an intuition of the semantics of

an ontology; meaning entailments are grouped according to their similarities in

the structure, revealing how entities of similar design participate in entailments

of similar structure. Also, it was demonstrated that regularities can be useful

for guiding the quality assurance of an ontology; for highlighting entities whose

design deviates from the expected one. A number of internal and external crite-

ria, mainly including a variety of metrics for analysing the proximity matrix and

assessing the goodness of clusters and final generalisations, were used to verify

that the results are reliable.

As discussed in Chapter 2, these results can be put to use in reverse engi-

neering an ontology to understand how it works and how it was built, and they

help in providing a simpler, more abstract view of the ontology, which highlights

possible errors as irregularities, as described in Chapters 7, 8.

197



CHAPTER 9. CONCLUSIONS AND FUTURE WORK 198

9.2 Answers to the Main Research Questions

Each research question has been answered at a different point in the thesis by

verifying the related hypothesis introduced in Chapter 1. The combination of

these answers shows that the corresponding hypotheses are supported. These

can be summarised as follows:

9.2.1 How can syntactic and semantic regularities be de-

tected in ontologies?

This question is related to the first and second hypotheses presented in Chapter 3,

Section 3.3: syntactic regularities in an ontology can be expressed with generalised

axioms, which use variables to hold similar entities. An example is:

?Vehicle SubClassOf hasPart some ?VehiclePart

where ?Vehicle, ?VehiclePart are variables holding similar entities. The main

challenge in this problem is how to bind the variables, i.e., how to detect the

groups of similar entities that are going to be represented by a variable. In

the literature, this is categorised as a problem of unsupervised pattern recogni-

tion [Han07, Lan05, BN06, TK06].

The way we deal with such problem in this thesis is with the use of cluster-

ing clustering, as it enables meaningful partitioning of data into groups. In the

approach taken here, we used hierarchical agglomerative clustering; one of the

simplest clustering algorithms for the detection of clusters in data. For the detec-

tion of syntactic regularities, a clustering algorithm will detect clusters of similar

entities based on their usage in the asserted axioms of an ontology. Similarly, for

the detection of semantic regularities, the clustering algorithm used in RIO will

detect clusters in the entailments of an ontology.

9.2.2 How can the validity of the detected regularities be

assessed?

Methods for assessing the validity of the detected regularities were presented in

Chapter 6. In brief the validity of the detected regularities is assessed using two

categories of criteria:
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• Internal criteria: Internal criteria consider the actual results and data

used in the cluster analysis for assessing the quality of the results. A num-

ber of metrics have been defined. These are clustering metrics for assessing

the compactness and separation of the data clusters as well as generali-

sation metrics for assessing the goodness of the detected generalisations,

such as their number, their abstraction impact in the ontology, their clus-

ter coverage etc. In addition, these metrics, in combination with selected

external criteria, are used for assessing the uniformity of an ontology, i.e.

how complex is the ontology with respect to the inspection of its patterns.

• External criteria: These consider external structures and parameters

which are independent from the methods used in clustering. For exter-

nal criteria we used the reference to ontology documentation for developers,

verification with OPPL scripts. We also defined a metric based on the pro-

jection of the generalisations on the the modular structure of an ontology

exposed by the Atomic Decomposition (AD) graph [VPS11]. However, the

first two methods are the most reliable methods for verifying the existence

of patterns. The investigation of alternative evaluation metrics with respect

to the AD remains as a future work.

In Chapters 7 and 8 we presented a series of experiments demonstrating the

usage of these criteria for the assessment of the regularities and their effectiveness

in measuring the quality of generalisations and clusters; the experiments proved

that the detection of regularities is feasible and a useful instrument to detect

patterns and for quality assurance.

9.2.3 How can regularities reveal the compositional style

of an ontology?

A common technique during the development of an ontology is for the developers

to adopt design templates for describing different fragments of the ontology. The

work around Ontology Design Patterns verifies this [IRS09, GP09, Gan05, BS05].

In this thesis we have described different notions of patterns and regularity (Chap-

ter 2). By making the assumption that instantiating a pattern in an ontology

results in repetitive structures in the axioms of the ontology, the reverse process

that detects such repetitive structures can reveal the original patterns. Of course,

the detection and expression of these repetitive structures is not as accurate as
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the initial pattern, but the approximation is good enough to group axioms that

have been developed in the same way. RIO performs this task by abstracting

axioms with generalisations. It should be noted that a pattern will be exposed

by RIO if it has been used more than once in its asserted axioms or if it has a big

impact in the semantics of an ontology. Such examples were highlighted in the

experiments of Chapters 7, 8; e.g. in SNOMED-CT when an expected pattern

described in the documentation of the ontology was not explicitly instantiated

by all the entities with the corresponding naming convention (See for example

Figures 7.34, 7.35, in Section 7.4). However, the analysis of the semantic regu-

larities showed that for many of these entities the pattern was instantiated in the

entailments.

9.2.4 How can semantic regularities reveal queries about

an ontology?

Semantic regularities are abstractions over the entailments of an ontology by

grouping entailments with similar structure. This type of regularities first con-

tributes to the exposure of the compositional style of an ontology. Secondly,

they reveal similarities in terms of semantics of an ontology; how fragments of

the ontology work in a similar way and an intuition about what can be queried

about these fragments. Until now, the only way to achieve this is by manually

writing DL queries. This work provides tools to help this process along, with

data extracted from the ontology rather than guessed by the writer.

9.2.5 How can the analysis and inspection of regularities

reveal irregularities in an ontology?

Irregularities can be revealed by inspection at the following levels of analysis:

• With regularities of similar structure, usually deviating in only one variable.

The deviating variable represents two clusters, which did not get merged

even though they have at least one axiom in common (the one represented

by the generalisation). The reason is that these clusters had more differ-

ences in their remaining referencing axioms than commonalities. This is an

indication of a deviating pattern (an example can be found in Section 7.2

in Figure 7.12.
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• With clusters not including entities which were expected to instantiate a

pattern. Such examples were highlighted in the analysis of the syntactic

regularities of SNOMED-CT; where a number of entities were excluded

from clusters as they were missing the instantiation of a pattern. These

were marked as irregularities.

9.2.6 How can regularities provide a summary of the on-

tology?

The syntactic regularities are expressed with generalisations abstracting over the

asserted axioms and semantic regularities are abstractions of the entailments in

an ontology. First of all, the generalisations are fewer than the actual number

of axioms and entailments as they are abstractions. Secondly, these abstractions

have similar syntax with the low level instantiations.

9.3 Thesis contributions

The main contributions of this thesis are:

1. Methods for the detection of repetitive structures in the syntax of the as-

serted axioms of an ontology. These are named as syntactic regularities.

Their detection is done by using clustering. The final results are gener-

alised axioms, named as generalisations, which are formed with respect to

the detected clusters. In particular, they include variables representing a

group of similar entities as detected by the clustering. The generalisations

are abstractions of the axioms in the ontology; they group axioms that have

a similar design.

2. Methods for the detection of repetitive structures in the entailments of an

ontology. These are named as semantic regularities. The semantic reg-

ularities are also detected in the same way as the syntactic regularities.

However, in the semantic approach the input to the clustering phase is

abstracted away from the syntax, i.e., the particular choice of axioms to

model a concept, but it only depends on the semantics; this removes noise

produced by alternative equivalent choices made by the ontology developers

(e.g. asserted axioms), providing insight that could not be reached with the

syntactic approach.
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3. The methods for the detection of syntactic and semantic regularities com-

prise the RIO framework. The framework has been applied to a wide variety

of ontologies to verify its ability to detect regularities.

4. Evaluation methods for assessing the validity and quality of the results.

These are standard metrics for assessing the validity of clusters as well

as metrics for assessing the quality of regularities; their number, their ab-

straction level over the axioms and entailments of an ontology, their cluster

coverage ability and so on. In addition, a number of external criteria such

as analysis of regularities with respect to expected patterns described in the

documentation and being verified with OPPL scripts were used for assessing

the quality as well giving a picture of how meaningful they can be. Finally,

metrics for measuring the impact of change after projection of regularities

in independent structures such as the modular structure of an ontology were

defined.

5. We made contribution towards the reverse engineering of ontologies: the

regularities being found can reveal the construction of an ontology and the

adopted patterns by the developers.

6. A contribution towards quality assurance to ontology. As the regularities

found enable to abstract away from details, they vastly reduce the complex-

ity of an overview of the ontology. This simplifies the detection of particular

types of errors, such as missing information about a term.

9.4 Future Work

This thesis has introduced a novel framework for detecting regularities in ontolo-

gies. While the methods described can be used to address practical problems

with ontologies, the research has opened paths for future work which are pre-

sented below.

9.4.1 Ontology Comprehension

As discussed in Chapter 2, ontology comprehension is the broader field in which

this research is placed. Although ontology comprehension is not the goal of this

thesis, it has been the initial motivation for the RIO framework. The methods of
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RIO are placed in the area of reverse engineering of ontologies, with the goal of

integrating existing methods and new ones in an ontology comprehension frame-

work. Pattern based development of ontologies and pattern detection in them is

a key aspect in reverse engineering. Pattern detection named as cliché recognition

has been used in software comprehension frameworks [RS02, vMV97, NDG05].

They are used for highlighting parts of the code that are similar. In ontology

engineering, there have been many efforts towards the definition and usage of

ODPs. However, even in the absence of ODPs, the development of ontologies

with knowledge patterns is a best practice, leading to the development of methods

such as the OPPL scripting language and spreadsheet templates for populating

an ontology.

As seen in the results of the empirical evaluation, metrics on the goodness

of regularities and uniformity of an ontology can give an intuition of how the

ontology has been composed, deviations of regularities and so on. Such methods

could help the inspection and authoring of ontologies as a part of an ontology

comprehension framework.

An additional future task in this direction is the coupling of RIO with ontology

versioning methods like the ones described in [GPS11, GPS12] for a pattern based

analysis of ontology evolution. In particular it would be interesting to explore how

developers update an ontology with respect to its patterns; if they are working

continuously with a pattern between different versions of an ontology or if regular

design is interrupted, changed or dropped between different versions. All these

are promising directions worth investigating.

9.4.2 Ontology Quality Assurance

The analysis of SNOMED-CT syntactic and semantic regularities showed how

RIO can be used as part of a systematic quality assurance of ontologies. Im-

provement of the methods of RIO for more quality assurance is in the immediate

future plans of RIO framework. In particular, the analysis that was done manu-

ally on the results could be automatised in RIO to filter information and narrow

down the scope of regularity inspection on the fly, to lighten the burden on the

user once the tool completes its investigations. This could, for example, include

the analysis on terms labeling in bioinformatics ontologies like the Foundational

Model of Anatomy ontology (FMA), Gene Ontology (GO), and SNOMED-CT,

and enriching the concept definitions prior to regularity detection [QMFBS12].
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Additional methods that seem worth investigating include the analysis of gen-

eralisations of similar structure for isolation of deviation. In addition, towards

this direction would be the further analysis of the proximity matrix and the high-

light of clusters that are closer to each other in terms of distance. This is an

indication of existent similarities but also deviations in the referencing axioms of

these clusters of entities. Other methods will include the combination of RIO

with AD decomposition; it has been used in this thesis as an external criteria for

assessing the goodness of generalisations by measuring the rate of compression

of the AD graph after generalisations. A further analysis of this compression is

the isolation of atoms which included axiom instantiating a regularity detected

RIO but the corresponding atoms did not get merged. These can be potential

deviations of patterns in the ontology.

9.4.3 Ontology Integration

Ontology integration is another task in which RIO could be useful. Existing

methods for ontology integration mainly focus on metrics used for the analysis of

an ontology. The authors in [ŠZSI10] refer to a pattern based approach towards

ontology alignment. However, in the approach used in [ŠZSI10] the user has to

manually express the pattern with OPPL for finding common fragments between

the ontologies for integration. RIO could facilitate such a procedure by exposing

the regularities of the ontologies which can be used as a starting point for the

alignment.

9.4.4 Pattern Induction

The regularities detected by RIO highlight potential patterns in the ontology.

However, not all regularities necessarily represent a well defined pattern resem-

bling the construction of an ontology. There can be regularities but these are

not necessarily mapped to a pattern. In addition, combination of generalisations

can constitute a pattern that fully describes a set of entities and this can be

missed in the current version of RIO. RIO’s regularities can be one level below

the patterns in an ontology, as they are a statistical approach, thus the final gen-

eralisations do not capture patterns as they were initially designed by ontology

developers. Additional filtering can be required in cases where many generalisa-

tions are detected; RIO’s clustering technique facilitate such procedure, as the
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generalisations that are built are expressed with respect to the detected clusters in

the ontology. Thus, the set of generalisations referencing a variable describe also

the corresponding cluster. However, the full description of the terms in a cluster

with a single generalisation is not always feasible. In particular, the variable of a

specific generalisation corresponds to a cluster, however it is not necessary that

all members of the cluster instantiate that generalisation. Usually it is a sub-

set of these entities which instantiate it. The cluster coverage metric is defined

to assess this aspect. This metric, along with the number of instantiations per

generalisation, has been also used for assessing the uniformity of the regularities;

however, when RIO does not detect such uniformity in the regularities, further

filtering and analysis of the generalisations is needed for isolating regularities and

seek specific patterns usually referring to a set of entities covering a particular

topic in the ontology.

As described in Chapter 6.4, the Atomic Decomposition can be used for further

analysis of the generalisations, as by itself it provides a partitioning of the axioms

based on their locality notion. There is also an intuition that a top down parsing of

the AD graph can help to define the various topics as these are covered by ontology

modules. Such a feature can be helpful for further analysis of the generalisations;

they could be used to see how generalisations of the same type distribute over the

AD graph and find critical paths that reveal more precise patterns and deviations

from these patterns.

All these techniques are fairly novel, thus further investigation is worthy for

achieving a better pattern induction.

9.4.5 Evaluation of the Cognitive Effect of Generalisations

This is an aspect of future work which is related with the comprehension of an

ontology and the induction of patterns. As mentioned above, the integration of

RIO with other methods in the scope of ontology comprehension will require ad-

ditional user studies for assessing the cognitive impact that patterns can have on

the inspection of ontologies. As an initial step towards a more “human friendly”

presentation of the regularities, we have presented in Chapter 3.6.1 the labeling

of clusters, thus corresponding variables in the generalisation with a meaningful

name, derived from common characteristics of the clustered entities, whenever

this was possible. Such naming could facilitate the inspection of regularities and

provide summaries of the axioms and entailments in the ontology with respect
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to the detected generalisations. However, additional studies and experiments

would shed light on how users can be guided from the generalisations for the

comprehension of the ontology.

9.4.6 Reasoner Optimisation and Benchmarking

Two additional directions of RIO application are related with reasoner perfor-

mance. First, an application of RIO could be a pattern-based optimization of

reasoners by reducing the terminology size when checking for logical errors, which

will make both authoring and using these ontologies feasible. RIO can be used

for the generation of ontology templates populating “artificial” ontologies as de-

scribed in [TGC07, Š07]. The key idea is to use the generalisations for extending

the schema of an ontology. This will enable the usage of a less randomised ar-

tificial ontology generation, which is useful for evaluating the performance of

reasoners.

9.4.7 Implementation Improvements

This section discusses improvements of the implemented methods that can be

added as features in future work.

Algorithm Optimisations

Clustering is the computational bottleneck of the RIO framework. In the work

presented in this thesis, we applied hierarchical agglomerative clustering for de-

tecting similarities between entities in an ontology. The selected clustering al-

gorithm is described in the literature and is a simple and standard approach for

performing unsupervised detection of patterns. The clustering algorithm used

in RIO has been implemented and tailored to the nature of the problem, thus

no external library was used; the reason for this was to focus more effort on

the preprocess and post-process of data than in the knowledge discovery proce-

dure. Although the extensive empirical analysis has shown that RIO can detect

meaningful regularities in ontologies, it is worth investigating different clustering

algorithms and use existing libraries to enhance both results and performance.
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Implemented Tools

The algorithms described in this thesis have all been implemented, and verified

during the evaluation of the results, although a number of implementation details

are of prototypical quality. For example, a prototype visualization tool already

exists, and has been presented to the community [MIS12]; however, to improve

utility and diffusion, various features should be included, starting with the addi-

tion of support to show semantic regularities: the current implementation can,in

fact, only visualise syntactic regularities.

The current implementation of the RIO plugin for Protégé 4, a standalone

Java tool, needs to be run beforehand for generating clusters and generalisations

for an ontology. The results, in the form of an XML file, can then be loaded and

visualised in Protégé 4. In future tasks, the clustering implementation will be

integrated with the visualisation plugin for Protégé 4.

9.5 Overall Conclusion

Together RIO and the work on quality assurance lay the foundations of the infras-

tructure necessary for systematic inspection and quality assurance of ontologies,

through the use of ontology reverse engineering methods like the ones presented

and evaluated in this thesis, and the future directions outlined in this Chapter.
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