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Experimental observations indicate the presence of attached, gravity induced, hori-
zontal buoyant currents above large area fires. Their driving mechanism is indirect and
resembles the one observed above heated horizontal plates. Classic plume modelling
is satisfactory for providing information for the flow far from the source. In dealing
with large areas and directing attention to the flow close to the source, the classic
plume theory should fail because the radial pressure gradient that is responsible for
the driving of the flow is squeezed in the long and thin classic plume assumption. For
this we propose a new plume structure for the description of the buoyant flow above a
circular region of large radius L as “The flow field must be divided into three regions.
A region where the flow is predominantly horizontal and attached to the surface, a
transition region from horizontal to vertical where separation of the attached current
takes place, and a region where vertical flow is established and classic plume theory
can be applied”. A model for the description of the gross properties of the horizontal
currents is developed under the term “horizontal plume”. The modified Richardson
number for the horizontal plume a, being analogous to the radius of the large area,
is studied asymptotically in the limit a → ∞ and second order uniformly valid semi-
analytical solutions are obtained. The hot plate experiment was set up in order to test
the model and facilitate its improvement. A chapter is dedicated to the data analysis
coming from thermocouple readings and visualisation of the flow using particle image
velocimetry.

In the remainder of this thesis two classic problems of laminar natural convection
are revisited. That of the first order laminar boundary layer above an isothermal
circular plate of radius a and the first order laminar boundary layer above the semi-
infinite plate inclined to horizontal. In both cases allowances to variable property
effects were made through the introduction of a nondimensional parameter λT, with
its value set to zero implying the assumption of the Boussinesq approximation. For
the circular plate, fourth order series solutions were obtained valid at the edge of the
plate where the effects of λT and Prandtl number Pr are studied. Furthermore a
finite difference scheme for the numerical solution of the nonsimilar partial integro-
differential equation was developed using the Keller Box method and compared with
results obtained from the commercial finite element software COMSOL Multiphysics
3.5a. For the semi-infinite plate, fourth order series approximations valid at the edge
of the plate were obtained, while an extensive analysis for the effect of λT, Pr and
inclination parameter σ was performed on the flow. Positions of the separation points
when the inclination is negative (σ < 0) as a function of Pr and λT were recovered.
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Chapter 1

Introduction

1.1 Prologue

A minimalistic but hopefully concise presentation of the basic physical laws dictating

the motion of gases and fluids commences this thesis. Once the theoretical background

and the mathematical description of the fluid flow have been established,a brief dis-

cussion follows regarding turbulence and its modelling, while the main part of this

opening chapter is devoted to turbulent free convective flows and specifically on round

plumes. By no means does this brief introductory section claim to cover the whole

field of classic plume theory, instead the effort is directed towards a description of the

necessary theoretical tools, as well as the introduction of the physical assumptions in-

corporated within the modelling of such complex turbulent flows. As it will be shown

in some detail embracement of these assumptions result into a relatively simple (a

system of three first order coupled differential equations) but nonetheless a versatile

theoretical model, as its longevity and applications demonstrate.

As a consequence completeness is ensured regarding the fundamentals of classic

plume theory. Moreover it is expected that the reader will become familiar with the

principles and the philosophy of this type of turbulence modelling, which in turn allows

a smooth transition to the following chapter where the derivation of the new theoretical

model for the description of buoyant flows above large area fires is analytically given.

That is owed to the fact that the style of modelling resembles the one of the classic

round plume as the same ideas are re-employed.

The chapter concludes with a synopsis of the remaining six chapters of this thesis.
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Closing, it must be emphasised that due to the nature of this work and the num-

ber of different subject matters it visits, additional introductory material is provided

throughout when necessary.

1.2 The governing equations of fluid motion

Mathematically a fluid motion is considered completely determined once the velocity

distribution ~u = (u(t, x1, x2, x3), v(t, x1, x2, x3), w(t, x1, x2, x3)), the density ρ(t, x1, x2, x3),

the pressure P (t, x1, x2, x3) and the temperature field T (t, x1, x2, x3) are known for

every point (x1, x2, x3) in space at every time t. Therefore one is dealing with six un-

knowns and for that reason six equations are required to mathematically fully describe

the problem.

The governing equations of fluid motion are due to the basic principles of conser-

vation of mass, momentum (Newton’s law) and energy (first law of thermodynamics),

in addition to the invoking of the following assumptions:

(a) Macroscopic description of the flow - Incorporating the continuum hypothesis.

Enclosed by the continuum mechanics hypothesis lies the assumption that given a

volume of fluid, every point is associated with a fluid particle, and that the volume

can be thought of consisting by a continuous aggregate of fluid particles [95]. The

terminology of a fluid particle is used to describe a small volume element part of the

moving fluid exhibiting all the macroscopic properties of the fluid in a sense that should

be regarded small enough such that variations of macroscopic quantities over its volume

may be neglected. On the other hand, it should be large enough so that microscopic

(molecular level -Brownian motion) variations are insignificant. Given a characteristic

length of the flow under consideration say L and defining the molecular mean free path

(the average distance a molecule travels before colliding with another molecule) as ω,

then for the fluid particle with a characteristic lengthscale l the following must hold:

ω � l� L. (1.1)

In that way it is ensured that the fluid particle contains a great number of molecules

but is still very small when compared to the volume of the fluid considered. A criterion
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for the suitability of the continuum hypothesis is given by the Knudsen number Kn,

defined as

Kn =
ω

L
, (1.2)

under which the condition Kn � 1, must be satisfied for the continuum approach to

be valid.

(b) The principle of local thermodynamic equilibrium.

Thermodynamical results expressed by the equations of state and valid for reversible

processes (a fluid at rest), also hold for non-equilibrium irreversible (due to the energy

dissipation introduced by viscosity and heat conduction) processes, caused by the

moving fluid [98],[88][4]. In addition the local thermodynamic state is described by

the state variables of pressure and temperature [80].

A detailed derivation of the fundamental equations of fluid flow from first principles

can be found in the majority of fluid mechanics texts, so it was decided to put prefer-

ence in a compact presentation which should be regarded sufficient for the purposes of

this work, without unnecessarily extending the length of this otherwise introductory

section. The interested reader can always recourse to excellent texts such as [51], [98],

[80], [88], [4], and [95], to name just a few .

In Eulerian formalism, the fundamental equations for viscous, heat conducting

fluid, the equation which expresses the conservation of matter in suffix notation is

given as
∂ρ

∂t
+
∂(ρuj)

∂xj
= 0. (1.3)

In what concerns the conservation of momentum from Newton’s second law, the ac-

celeration of a particle and the forces per unit volume are related as

ρ
D~u

Dt
= Σ~F = ~f + ~fs. (1.4a)

On the left hand side (l.h.s) the substantive derivative 1 of the velocity, while on the

right hand side (r.h.s) the total force per unit volume Σ~F is split into body forces

~f and surface forces ~fs. The only body force (acting on the whole mass) considered

within the framework of this thesis is due to the influence of the gravitational field

(i.e. ρ~g), where ~g is the vector for the gravity acceleration. Surface forces on the other

1 D
Dt = ∂

∂t + (~u · ∇)
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hand are the external shear and pressure stresses applied on the surface of the element

caused by the motion of the fluid particles. The total surface force can be shown to

be given as [98]

~fs =
∂σij
∂xj

, (1.4b)

where σij is the symmetric stress tensor. The first step in obtaining the general form

of the stress tensor is by noticing that when the fluid is at rest, the shear stresses must

vanish while the normal stresses have to be equal to the hydrostatic pressure. That

can be expressed compactly as

σij = −Pδij when ~u = ~0, (1.4c)

and δij is the Kronecker delta (δij = 1 if i = j and δij = 0 if i 6= j). Thus it should

be expected that this property has to somehow be incorporated in the construction of

the stress tensor. A way of moving forward is by decomposing the stress tensor as

σij = τij − Pδij, (1.4d)

with τij being the viscous/friction stress tensor having the same principal axes as σij.

In order to satisfy the hydrostatic equilibrium condition, the analytical form of the

viscous stress tensor is formulated under the requirement that it vanishes when the

velocity is zero. Additional postulates are necessary before proceeding further, firstly

by resembling results coming from the linear elasticity theory, a linear relationship

between the components of the viscous stress tensor τij and the rate of deformation

tensor eij
2 (Newtonian fluid), is suggested [88], in addition it is further presumed

that the fluid is isotropic [98]. The isotropy assumption implies that the relationship

between the viscous stress tensor and the tensor of rate of deformation are independent

of coordinate system rotation and axis exchange [80].

The hypothesis of a linear dependence between the viscous stress and the rate of

deformation tensors, provides an explicit description of the viscous stress tensor in

terms of the velocity. More accurately the viscous stress tensor can be expressed as a

linear combination of the velocity gradients ∂ui
∂xj

,
∂uj
∂xi

and ∂ul
∂xl

[51]. The following ansatz

is suggested

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

) + λδij
∂ul
∂xl

= 2µeij + λ ellδij, (1.4e)

2For the rate of deformation tensor the following hold eij = 1
2 (ui,j + uj,i) = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
), in

addition eii = ui,i = ∇ · ~u, for details see [88].



CHAPTER 1. INTRODUCTION 25

where µ is the viscosity [kg/m s], λ is the second viscosity sometimes termed as bulk

viscosity due to its association with volume expansion. In that way the stress tensor

σij takes the following form

σij = −Pδij + 2µeij + λ ellδij. (1.4f)

Taking the trace of the stress tensor

tr(σij) = σ11 + σ22 + σ33 = −3P + (2µ+ 3λ)∇ · ~u, (1.5a)

and defining the mechanical pressure as the negative one third of the trace of the stress

tensor so as to obtain

P̄ = −tr(σij)

3
= P −

(
2µ

3
+ λ

)
∇ · ~u, (1.5b)

or

P̄ = −1

3
σii = P −

(
2µ

3
+ λ

)
eii. (1.5c)

It is clear that there is a deviation between the average pressure due to the normal

stresses for a viscous fluid from the thermodynamic pressure, by the term (2µ/3 +

λ)eii [98]. This deviation vanishes when the flow is incompressible since eii = 0,

but the same argument cannot be used when compressibility effects are taken into

consideration. A direct way to overcome this anomaly comes by addressing the role of

the viscosity terms, which is exactly what Stokes did in his hypothesis. According to

Stokes hypothesis by setting

λ = −2µ

3
, (1.6)

the problem is resolved. In that way

P =
1

3
σii (1.7)

and τij is the deviator given as

τij = µ
((∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
δij
∂ul
∂xl

)
. (1.8)

The validity of stokes hypothesis and the role of the secondary viscosity term λ

is still an open discussion. In [51] (sections 16 and 49) the viscosity coefficients are

both shown to be positive so that λ > 0 and µ > 0, something that contradicts

with the Stokes hypothesis, giving a negative secondary viscosity. Furthermore, as
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already mentioned, the second viscosity is associated to processes resulting to volume

change i.e (compression-expansion). If these processes are rapid so that departures

from equilibrium are short lived, the order of magnitude of the viscosity coefficients

is the same which is normally the case. On the other hand when the restoration to

equilibrium is slow, processes are slow the significant dissipation of energy is attributed

to the second viscosity λ and is independent to µ, thus the second viscosity is noticeably

larger [51]. As described in detail in [51] (section 81), the second viscosity is shown

to be frequency dependent. For example in the case of expansion or compression

due to to a sound wave, λ depends on the frequency of the wave. Nevertheless the

momentum equations resulting after making the Stokes hypothesis have been shown

to provide a good description of the actual physical processes and will be presumed

within this work. In addition it must be mentioned that under the the boundary layer

approximation the second viscosity and the ambiguity it introduces cease to exist since

all terms containing the second viscosity can be neglected [80].

Returning to equation (1.4a), with the aid of equations (1.4b), (1.4d) and (1.8), to

obtain the famous Navier-Stokes equations written compactly in suffix notation as

∂(ρui)

∂t
+
∂(ρujui)

∂xj
= fi −

∂P

∂xi
+
∂τij
∂xj

. (1.9)

and the viscous stress tensor is given as in equation (1.8).

Turning attention to the final conservation principle: that of energy, the first law

of thermodynamics [68] states that the amount of change in the internal energy ∆U ,

is due to the work done W and the heat Q transferred to the system. In analogy, the

continuum mechanical (fluid particle) equivalent of the first law of thermodynamics

can be shown [88] to be given as

ρ
De

Dt
= − ∂qi

∂xi
+ σij

∂ui
∂xj

, (1.10a)

where e is the internal energy per unit mass, while qi the heat flux vector obeying

Fourier’s law and given as

qi = −κ ∂T
∂xi

, (1.10b)

with κ [J/m s K], being the thermal conductivity. The minus sign corresponds to the

fact that energy flux is directed from high temperatures to lower ones. Introduction
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of the viscous stress tensor i.e σij = −Pδij + τij in equation (1.10a), results in

ρ
De

Dt
= − ∂qi

∂xi
+ τij

∂ui
∂xj
− P ∂ui

∂xi
, (1.10c)

furthermore by restating the continuity equation as

Dρ

Dt
+ ρ

∂ui
∂xi

= 0, (1.10d)

gives

−P ∂ui
∂xi

= −P
ρ

Dρ

Dt
= −ρ D

Dt

(P
ρ

)
+
DP

Dt
. (1.10e)

Use of equation (1.10e) into (1.10c) finally results

ρ
D

Dt

(
e+

p

ρ

)
= − ∂qi

∂xi
+ τij

∂ui
∂xj

+
Dp

Dt
. (1.10f)

The enthalpy is defined as h = e + P/ρ, further by utilizing the thermodynamic

property [98],[80] given as

Dh

Dt
= cp

DT

Dt
+

1− βT
ρ

Dp

Dt
, (1.10g)

with cp [J/kg K], being the isobaric specific heat capacity, while

β = −1

ρ

(
∂ρ

∂T

)
P

, (1.11)

is the thermal expansion coefficient, then equation (1.10f) takes the following form

ρcp
DT

Dt
= − ∂

∂xi

(
−κ ∂T

∂xi

)
+ τij

∂ui
∂xj

+ βT
DP

Dt
. (1.12)

The term τij∂ui/∂xj is commonly called dissipation Φ, and expresses the rate of dis-

sipation of mechanical energy per unit mass due to shear viscosity[4].

Up to this point five equations have been presented leaving room for one more (six

unknowns), so that the general state of a moving fluid can be determined. The final

equation is given by means of an equation of state

f(P, ρ, T ) = 0, (1.13)

where the functional form depends on the type of fluid. Collecting the fluid motion

can be fully described by equations (1.3),(1.9),(1.12) and (1.13), subject to suitable

boundary conditions.
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1.2.1 Further discussion

When dealing with gases it is customary to employ the ideal gas law stated as

P = ρRT, (1.14)

where R is a gas constant. The ideal gas law is a reasonable approximation for most

common gases and is the assumption made within the framework of this thesis. Addi-

tionally, employment of the ideal gas law introduces further simplifications within the

governing equations. In particular the following holds for the gas expansion coefficient

βT = 1, so that from equation (1.10g), h = cpT is obtained. As a result the equation

of conservation of energy changes to

ρcp
DT

Dt
= − ∂

∂xi

(
−κ ∂T

∂xi

)
+ τij

∂ui
∂xj

+
DP

Dt
. (1.15)

Furthermore when the characteristic velocities are small when compared to speed

of sound (which is the case here, since the essential concern is towards buoyancy

driven flows) the pressure term DP/Dt contained on the r.h.s equation of can be

neglected3. This is because the pressure variations are so small, leaving density and

other thermodynamic quantities almost unaffected. In the context of what will follow,

and since temperature variations are introduced to the flow, the density as well as

the transport properties µ and κ are all assumed to be independent of pressure P .

Moreover the secondary thermodynamic property cp is always assumed to be constant.

Wrapping up, as a general note it must be mentioned that when there is no tem-

perature variations instilled into the flow and the Mach number Ma is small, then the

equation of state changes to ρ = constant. Under this assumption the governing set

of equations can be simplified, that is because the coupling between momentum and

energy equations is lost (that is not the case when ρ = ρ(T ) even if the flow can still be

treated as incompressible), the flow is isothermal, thus the energy equation becomes

superfluous. Thus the number of unknowns reduce to four (i.e. the three component

of the velocity vector ~u and the pressure P ), so that the continuity equation and the

Navier-Stokes equation are sufficient for the description of the flow.

3Generally a criterion for that condition can be obtained by the value of the Mach number Ma
defined as

Ma =
U

Us
, (1.16)

with U being the characteristic velocity of the flow, while Us the speed of sound for the fluid under
consideration.



CHAPTER 1. INTRODUCTION 29

1.3 A brief discussion on Turbulence Modelling

Turbulence modelling is a vast topic so that a detailed discussion is forbidding. Never-

theless, since turbulent plumes and their modelling will occupy a significant portion of

this work, it is advantageous to introduce some fundamental material regarding turbu-

lence and turbulence modelling, with the aim to clarify the ideas and the philosophy

behind the route of the modelling followed. Even though the notion of turbulence is

clear even to the non specialist, trying to provide an accurate description of it seems

to be a harder task. A detailed definition is given in the textbook of Hinze [30], but

for our purposes we shall adopt the more compact one coming from Tritton: [95]

‘Turbulence is a state of continuous instability’.

Theoretically, turbulence is a continuum phenomenon so that the fundamental

equations of fluid flow presented in the previous section, contain all the physics of a

given turbulent flow. The nonlinearity within the Navier-Stokes equations and the

fact that a turbulent flow is rotational, three dimensional and a time dependent phe-

nomenon [99], generates huge difficulties. Since turbulence is deterministic [53],[95],

it means that there is no prior difficulty in attempting a direct numerical simulation

(DNS) to the unsteady three dimensional governing set of equations. However, tur-

bulence can be thought of as consisting of a continuous spectrum of scales that the

numerical solution needs to resolve. These length scales/eddies, represent the order

of magnitude of the distances that the velocity varies appreciably [51], and in a tur-

bulent flow the smaller eddies (whose order of magnitude is defined by Kolmogorov

dissipation scale [53]), even though larger than the mean free path, are much smaller

than larger ones whose lengthscale is of the order of a characteristic length of the flow

under consideration (i.e. in the case of flow past a body the large eddies are of the

same order as the body). Even with the recent advances in computing resources, and

the re-emerging of parallel computing, application of DNS to most real life engineering

applications of interest remain computationally intractable.

Since a complete resolution of a turbulent flow is still some way ahead, the ultimate

question within turbulence modelling is how much detail is required so as to obtain the

answers asked. Further it is natural to expect that there must be an analogy between

detail sacrificed and the simplicity of the resulting model. Hence depending on ones
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needs and the physical difficulties posed by the turbulent flow studied, a careful bal-

ance between the above arguments needs taking into consideration. An advanced and

fashionable technique in turbulence modelling is the Large Eddy Simulation (LES). It

is based on the fact that the large eddies form the basis of a turbulent flow and are

responsible for the transfer of heat and momentum which is usually of the primary in-

terest and the energy cascade process in turbulent flows (continuous transfer of energy

form large to small eddies). Large eddies are almost unaffected by viscosity so that

it is safe to assume that the dissipation of energy is independent of the large eddies.

The dissipation of energy is attributed to the smallest eddies which transform kinetic

energy to heat. Therefore within the LES technique, the following are incorporated:

i) The largest eddies are separated from the small (small frequencies from large re-

spectively with a use of a filter); ii) Approximations are used for the energy exchanges

among the small eddies which are not explicitly simulated.

Even so, LES is computationally expensive so the most common approach in tur-

bulence modelling is to consider only statistical properties of the flowfield, and is the

one that will be adopted in this work. Firstly introduced by Reynolds in 1895, the

flow quantities are decomposed as the sum of mean/average and a fluctuating part.

ui = ūi + úi, P = P̄ + Ṕ , T = T̄ + T́ , and ρ = ρ̄+ ρ́. (1.17)

The average is formed as a time average at a fixed point in space, thus for example

[80], [93]

ūi = lim
τ→∞

1

τ

∫ t0+τ

t0

uidt. (1.18)

The limit τ → ∞, in the definition, implies that the averaging process lasts for a

sufficiently long time τ , so that the average is independent of time. In this way the

time averages of the fluctuating parts are zero by definition, so that ¯́ui = 0,
¯́
P = 0, etc.

Therefore by assuming that the mean flow is independent of time (steady turbulent

flow), the procedure to obtain Reynolds averaged equations is not hard and is a two

step procedure. This starts with the governing equations for a fluid flow and the

decomposition of the flow variables into their mean and fluctuating parts, followed

by the time averaging procedure of the resulting equations (for detailed analysis see

[80],[16],[99]).

The resulting equations contain additional unknown terms, known as Reynolds
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stresses, and thus the turbulence closure problem appears (i.e. coming up with addi-

tional equations for all the unknowns). Among the most popular models are the mixing

length or algebraic models and the two-equations models (two additional transport dif-

ferential equations are added). Focusing on turbulent free shear flows such as plumes

and jets, since there are no walls, the viscosity effects are neglected because turbulent

friction is much larger than the viscous friction, in addition free shear flow are slender

and this results in a simplified form in the momentum equation [80]. Finally within

their modelling, the turbulent closure is circumvented by making an entrainment hy-

pothesis [52] which will be defined in the next section.

1.4 Classic Plume theory

The time averaged behaviour of low Mach number turbulent vertical convection cur-

rents, rising from maintained circular sources of buoyancy, in a surrounding environ-

ment that is still and of uniform density, is the main theme occupying this section.

Depending on the manner in which buoyancy is introduced from the source in the am-

bient, a first categorisation of these flows can be made. The terminology of turbulent

Plumes is used to describe the free convective flows induced under gravity, by a contin-

uous density (or equivalently a temperature) contrast between the source (boundary)

and the surrounding environment. When density differences are introduced in a dis-

crete manner then the term ‘Thermal’ is adopted for their description [96]. Within

the rest of this work the focus will solely lie on turbulent round plumes.

Density differences under gravitational influence give rise to a buoyancy force B

which is responsible for the driving of the flow. With buoyancy being one of the main

forces of our planet, plumes can be observed in a plethora of geophysical flows ranging

from wildfires, volcanic eruptions and cumulus clouds to mixing in the oceans, while

in the man-made environment they are encountered on a daily basis, with the most

common example above chimneys. Plumes have been at the centre of intense scientific

interest coming from different disciplines of science including that of meteorology,

geophysics, applied mathematics, environmental and fire engineering.

The first attempts at a theoretical and experimental description of plumes dates

back to Zeldovich [102] (1937) and Schmidt [81] (1941). Schmidt, by observing the
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conical shape of the vertical turbulent gravitational currents above point and line

sources, assumed that there must be a geometrical and mechanical similarity so that

the horizontal turbulent transfer of heat and momentum must balance vertical transfer

by convection. His analysis was based on a mixing-length analysis hypothesis. A

proposal that still dominates classic plume theory came from Taylor [92] (1945) in his

work ‘on the dynamics of a mass of hot gas rising in the air’. He suggested that ‘The

effect of turbulent mixing is represented by an inflow of surrounding air through the

outer surface of the heated zone at a velocity α times the velocity of the heated gas.’ and

he also showed that his analysis was in a good agreement with the work of Schmidt.

Self similarity analysis of the turbulent buoyant plume flow came by Batchelor (1954)

in his famous lecture on heat convection and buoyancy effects in fluids [3]. He went

on to define the heat flux in terms of weight deficit B = ρeF as

Q =
cpρeTe

g
F, (1.19)

where ρe and Te correspond to environmental density and temperature, g is the accel-

eration due to gravity, while F has units of [(length)4/(time)3]. Based on dimensional

analysis and neglecting viscosity and conductive effects since the flow is fully turbulent

and self similarity is expected to be valid far from the source, he obtained the average

velocity and temperature profiles

w̄ = F 1/3 z−1/3 × f1(ξ), (1.20a)

g
T − Te

Te

= g
ρe − ρ
ρe

= F 2/3 z−5/3 × f2(ξ), (1.20b)

b = αz, (1.20c)

with b the radius of the plume and ξ = r/b the similarity variable. The functional form

of f1(ξ) and f2(ξ) can be determined either from more detailed theories or directly

from experimental measurements [97].

The first breakthrough in describing the time averaged behaviour of these vertical

turbulent gravity currents came in 1956 with the publication of the model of Morton

Taylor and Turner [63], frequently termed as MTT. It is based on an ideal point

source (resulting in an axissymmetric flow) of buoyancy only, and the central point

in its formulation is the entrainment hypothesis that Taylor had suggested earlier on.

According to this assumption the complex process of mixing or engulfment of fresh
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ambient fluid within the vertical current is described as follows ‘the rate at which fluid

is entrained into plumes is taken to be proportional to vertical velocity on the axis of

the plume’. This hypothesis translates within the model as

ue = αw and α ' 0.1, (1.21)

where ue is the radial entrainment velocity, α is the entrainment coefficient and w

is the vertical velocity of the plume at that height. The MTT model relies on two

further assumptions; that of the Boussinesq approximation (i.e. [95] ‘Variations of

all fluid properties are completely ignored with the exception of the density, that its

variation is taken under consideration only when it gives rise to gravitational force’ )

and that of self similar profiles for the velocity and buoyancy force. Prior to the work

of MTT was the plume model of Priestley and Ball [70] referred to as PB. While the

classic formulation of MTT is based on the flux equations of mass, momentum, and

heat, the PB model uses the flux of kinetic energy in place of the mass equation, while

the closure in PB is an entrainment assumption based on Reynolds stress within the

kinetic energy equation. A discussion concerning the differences between these two

models is given by Morton in [61] and [63].

Given that the MTT plume model carries the Boussinesq approximation, its ap-

plicability is questionable in cases where there are large density differences between

the fluid within the plume and the ambient, as for example in plumes created above

a fire, or a volcanic thermal. It was in 1961, that the experimental work of Ricou and

Spalding [72] showed that turbulent entrainment is dependent on the density contrast

between the plume and ambient. Analytically they showed

ue = α
( ρ
ρe

)n
, with n =

1

2
. (1.22)

This became the most popular entrainment model, widely used until today (recent

advances concerning the entrainment are given in [39]), and in what follows we shall

refer to it as the R-S entrainment model. It was first applied in 1965 by Morton in [60],

in his discussion concerning the modelling of fire plumes. Depending therefore on the

adopted entrainment hypothesis, turbulent plumes can be categorised into Boussinesq

and non-Boussinesq plumes. The first extensive study of non-Boussinesq plumes is due

to Rooney and Linden [73], where similarity solution is obtained for the non-Boussinesq

plumes.
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Turning attention on the derivation of the MTT model, it should be emphasised

that even though the flow is turbulent, it is assumed that it can adequately be described

by the mean flow variables alone. Moreover the ambient will be assumed to be still

and unstratified. Stratification effects can be incorporated within the MTT model and

a detailed review is given by [40]. Additionally when the environment is not still but

is characterised by a mean horizontal wind velocity, once more the principles of the

MTT model can be applied [87],[9],[10].

In cylindrical polar coordinates the continuity of mass is expressed as

∂

∂r
(rūρ̄j) +

∂

∂z
(rw̄ρ̄j) = 0. (1.23a)

Here superscript j is introduced so as to allow departures from the Boussinesq ap-

proximation. Therefore j = 0 corresponds to Boussinesq plumes while j = 1 implies

non-Boussinesq plumes. Further assuming hydrostatic pressure distribution and that

∂P/∂z � ∂P/∂r, which implies that the plume is long and thin so that the pressure

is constant along a cross section of a plume, then the momentum equation is given as

∂

∂r
(rρ̄jūw̄) +

∂

∂z
(rρ̄jw̄2) = rg(ρ̄− ρe). (1.23b)

When the Boussinesq approximation is adopted, conservation of energy implies con-

servation of buoyancy flux [17],[39], thus

∂

∂r
(rūg̀) +

∂

∂z
(rw̄g̀) = 0, (1.23c)

where g̀ is the reduced gravity given by,

g̀ = g
ρe − ρ̄
ρe

.

The above statement is not valid when the Boussinesq approximation is abandoned.

Rooney and Linden [73], by considering the conservation of enthalpy along the plume

(similarly to [20]), found that the volume flux is conserved. This allowed them to

conclude that the density deficiency flux is conserved, but not the buoyancy flux.

Therefore by considering the conservation of density flux

∂

∂r
(rū(ρe − ρ̄)) +

∂

∂z
(rw̄(ρe − ρ̄)) = 0, (1.23d)

a valid equation for the non-Boussinesq case is obtained.
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By integrating radially the governing equations (1.23) from r = 0 to r = ∞, the

continuity equation results in

d

dz

∫ ∞
0

rρ̄jw̄dr = −rūρ̄j|∞. (1.24)

If b is the radius of the plume, then for b < r <∞ the velocity w̄ can be neglected, so

that integration of the continuity equation from b to∞ results in rρ̄jū|r=b = rρ̄jū|r=∞.

Therefore
d

dz

∫ ∞
0

rρ̄jw̄dr = −rūρ̄j|b = bρeue, (1.25a)

where ue = −ub. The same procedure applied to momentum and buoyancy flux results

in
d

dz

∫ ∞
0

rρ̄jw̄2dr =

∫ ∞
0

rg(ρ̄− ρe)dr, (1.25b)

d

dz

∫ ∞
0

rūg̀dr = 0. (1.25c)

Finally for the density deficiency flux, after integration it is found that

d

dz

∫ ∞
0

rw̄(ρe − ρ)dr = 0. (1.25d)

Experimental data indicate that the mean velocity and temperature distributions

are Gaussian, but it is customary due to its simplicity to adopt a ‘top hat’ formalism.

Top hat shape functions result in properties having one constant value within a cross

section of the plume and another outside it [97]. For example a top hat distribution

of density and vertical velocity would take the forms

ρ̄(r, z) =

 ρ(z) if r ≤ b(z),

ρe if r > b
, w̄(r, z) =

 w(z) if r ≤ b(z),

0 if r > b(z)
. (1.26)

We can now define the top hat profiles as

ρjwb2 = 2

∫ ∞
0

rρ̄jw̄dr, ρjw2b2 = 2

∫ ∞
0

rρ̄jw̄2dr, w(ρe−ρ)b2 = 2

∫ ∞
0

rw̄(ρe−ρ)dr

g
ρ− ρe

ρe

wb2 = 2

∫ ∞
0

rw̄g̀dr and g(ρ− ρe)b
2 = 2

∫ ∞
0

rg(ρ̄− ρe)dr. (1.27)

Collecting terms, the following set of differential equations are obtained

d

dz
[ρjwb2] = 2bρeue, (1.28a)

d

dz
[ρjw2b2] = g(ρ− ρe)b

2, (1.28b)
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d

dz

[
gw

(ρe − ρ)

ρe

b2

]
= 0, (1.28c)

d

dz
[w(ρe − ρ)b2] = 0. (1.28d)

It can be seen that in terms of top hat formalism equations (1.28c) and (1.28d) are

equivalent. Thus conservation of the density deficit is equivalent to the conservation

of

B = πg(1− x)wb2, with x =
ρ

ρe

. (1.29)

which has units of buoyancy flux. Before proceeding further it should be recalled that

the entrainment hypothesis for Boussinesq and non-Boussinesq plumes is given as

ue =

 αw Boussinesq plumes ,

α
√
xw non-Boussinesq plumes.

(1.30)

Therefore the entrainment method is now compactly written as

ue = αxj/2w. (1.31)

In this way j = 0 corresponds to MTT while j = 1 is the R-S entrainment model.

Following Michaux & Vauquelin [58] and Bremer & Hunt [7], [32], we shall proceed

with the introduction of the modified radius β [58] (termed as effective entrainment

radius by [7], [32]) and a dimensionless density deficit η [58] (termed as the effective

density parameter by [7], [32]) as

β = x
j
2 b, η =

1− x
xj

, (1.32)

the governing equations for the vertical flow can be written in terms of the new vari-

ables as
d

dz
[wβ2] = 2αβw, (1.33a)

d

dz
[w2β2] = ηgβ2, (1.33b)

d

dz
[ηwβ2] = 0. (1.33c)

In this way a single representation is achieved encompassing both Boussinesq and non-

Boussinesq plume limits. The famous MTT solutions can easily be recovered from the

governing equation by simply assuming solutions for each of the variables of the form
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β(z) = Cβz
m, w(z) = Cwz

n and η(z) = Cηz
p so that the similarity solutions obtained

as in [58] are given below as

β(z) =
6α

5
z, (1.34a)

w(z) =

(
3

4

)1/3(
6α

45

)−2/3(
B

π

)1/3

z−1/3, (1.34b)

η(z) =
1

g

(
3

4

)−1/3(
6α

45

)−4/3(
B

π

)2/3

z−5/3. (1.34c)

The fact that the classic MTT model includes an assumption of a point source of

buoyancy only (zero momentum and volume flux), has already been discussed. In real

life applications though the size of the source is finite, while in what concerns the con-

ditions at the source there are many practical situations of interest where departures

from the rather restrictive ‘buoyancy only source condition’ are observed, and where

momentum and volume flux are present. Consequently, direct implementation of the

MTT model for the prediction of the turbulent flow above a finite source would not

provide the sufficient accuracy expected if the size and the source conditions are not

taken into account. To overcome this difficulty a correction is required under which

the finite source is related to a point source located at a virtual origin [33], before the

theoretical model can be applied for predictions.

Different techniques for the determination of the virtual origin have been developed

and can be classified to experimental (requiring experimental data for the prediction)

and to purely theoretical ones (a more detailed categorisation and description of virtual

origin recovery methods is given in [33]). A straightforward technique, that can be

assigned as an experimental one, is by simply providing a best fit to the experimental

data with height and then extrapolating for z<0 in order to find the point where the

fitted function intercepts the z-axis4. The point of intersection can then be considered

to be the virtual origin. Another simple technique belonging to this category requires

a capturing of a picture of the plume once the flow has reached a steady state. With

the aid of the picture and by further presuming a conic shape for the plume, the angle

of spread of the axisymmetric plume, φ = 2θ from the point source, can easily be

estimated. Looking at Figure 1.1, knowledge of the angle θ allows the determination

of the position of the virtual origin at z = −zv located below the source of radius R

4Where z is the axis of symmetry.
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as

zv =
R

tan θ
. (1.35)

R

z   vθ

θ

virtual origin

 R: radius of the source

     source

plume envelope

location of 
virtual
source 

z

z= 0

        2θ: angle of  plume 
      spread

Figure 1.1: A simple technique for the recovery of the position of the virtual origin using
the conic shape plume assumption. The virtual origin located at position z = −zv below the
a source of radius R, and zv = R/ tan θ.

A theoretical breakthrough for the description of the plume flow (under the Boussi-

nesq approximation) above non ideal sources came with publication of the paper of

Morton [59]. By introducing the notion of a forced plume (the term buoyant jet is

also used by other authors) as a plume generated from a source of finite size which

delivers flux of buoyancy B0, momentum M0 and volume Q0, compactly presented as

(B0,M0, Q0), Morton firstly investigated the effect of discharge of momentum from

a virtual source of buoyancy. By considering a forced plume from a point source of

buoyancy and momentum flux only (B0,M0, 0) he showed that it develops into a purely

buoyancy driven flow (pure plume) at a height given as [33]

Lj = 2−3/2α−1/2M
3/4
0

B
1/2
0

. (1.36)

In addition it was shown that the same behaviour of the flow above a point source

(B0,M0, 0), is exhibited by a point source of buoyancy only (B0, 0, 0), located at z =

−1.057Lj. In other words the virtual origin is located at zavs = −1.057Lj, and this

correction is termed as an asymptotic virtual source, since it is valid far from the

source for z/Lj ≥ 5 [33].
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In the second part of his work, the more general case of a plume with momentum,

mass and buoyancy (B0,M0, Q0), rising from a finite area at z = 0, is shown to

be related to a plume rising from a point source of modified momentum γM0 and

buoyancy B0 only (B0, γM0, 0), with the source now located at z = zv. Though, as

earlier discussed, the resulting point source plume (B0, γM0, 0) positioned at z = zv

can also be related to a plume of buoyancy only (B0, 0, 0), positioned at z = zavs.

Therefore by combining the two methods, a plume generated by a finite source and

general source conditions (B0,M0, Q0), exhibits the same behaviour resulting from a

point source plume of buoyancy only (B0, 0, 0), positioned at z = zv + zavs.

Morton [59],[62] firstly introduced the nondimensional parameter Γ0 which for

forced plumes, represents the balance of flow conditions imposed at the physical source

as [7]

Γ0 =
5B0Q

2
0

8α
√
πM

5/2
0

. (1.37)

According to the value of that parameter he suggested the following categorisation of

the plumes in [62] as

• Γ0 = 1: Pure or simple plume. Corresponds to a plume from a virtual source of

buoyancy only.

• Γ0 < 1: In this case apart from positive buoyancy, there is additional momentum

when compared with a pure plume.

• Γ0 < 0: Negative buoyancy jets projected upwards (Fountains).

• Γ0 = 0: Pure jets (no buoyancy effects).

• Γ0 > 1: Lazy Plumes. Deficit of momentum when compared with a pure plume.

Recall that the Richardson number is defined as

Ri =
g̀L

U2
,

where U and L are the characteristic velocity and length. The Richardson number

assesses the balance between free and forced convection, thus by defining the local

Richardson number as Ri(z) = 2ηgβ/w2 [58], when evaluated at z = 0, an indication

of the source conditions is obtained. Further by observing that, for any given source
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conditions, as z → ∞ (the ‘far field’) the flow must be that of the self similar plume

(asymptotic solution) and thus described by (1.34). Substitution of the similarity

solution into the Richardson number definition on the limit z → ∞ results in R∞ =

16α/5. By scaling the Richardson number as [58],[7]

Γ(z) =
Ri(z)

Ri∞
=

5gηβ

8αw2
, (1.38)

the categorisation of plume flows described by Morton is obtained. For example Γ(0) =

1 corresponds to a pure plume from a source, similarly according to the value of Γ(0)

we can obtain a forced plume, lazy plume, etc.

On returning to governing plume equations (1.33), with the aid of (1.38), they are

rewritten in the following form

dβ

dz
=

4α

5

(5

2
− Γ

)
, (1.39a)

dw

dz
=

8α

5

(w
β

)(
Γ− 5

4

)
, (1.39b)

dΓ

dz
=

4αΓ

β
(1− Γ) (1.39c)

and

η =
8αw2Γ

5gβ
. (1.39d)

The form of equations (1.39) suggest the following nondimensional scalings as in [7],

and given as

ζ =
4αz

β0

, β̂ =
β

β0

, ŵ =
w

w0

, (1.40)

with β0, w0, the modified plume radius and velocity at the source. Introduction of

the above nondimensional parameters into equations (1.39) results in the Γ-plume

equation given as
dβ̂

dζ
=

1

5

(5

2
− Γ

)
, (1.41a)

dŵ

dζ
=

2

5

(ŵ
β̂

)(
Γ− 5

4

)
, (1.41b)

dΓ

dζ
=

Γ(1− Γ)

β̂
(1.41c)

and

η =
8αw2

0ŵ
2Γ

5gβ0β̂
. (1.41d)
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The system of differential equations is to be solved subject to initial conditions

given as

Γ(0) = Γ0, ŵ(0) = 1 and β̂(0) = 1. (1.41e)

Depending on the value assigned to Γ0, four of the five classes of solutions as categorised

by Morton [62], jets (Γ0 = 0); pure plumes Γ0 = 1,;forced plumes (0 < Γ0 < 1); and

lazy plumes (Γ0 > 1); are obtained. For the particular case of fountains (Γ0 < 0),

modifications are necessary in the formulation presented, thus attention is restricted

only to the above mentioned cases. A more general treatment, so as to include the

case of fountains, is given in [7].

Proceeding with a separate study for the different limiting cases of interest concern-

ing Γ0, it is not hard to obtain exact analytic solutions for equations (1.41a)–(1.41c),

when dealing with jets and pure plumes.

• Jets, Γ0 = 0.

For the particular case of jets the analysis is straightforward since there is no buoyancy

(i.e. η(ζ) = 0), which implies that Γ(ζ) = 0. Therefore the solution of equations

(1.41a)–(1.41c) is simply given as

b

b0

= 1 +
ζ

2
,

w

w0

=
1

1 + ζ
2

where β = b and β0 = b0 (1.42)

• Pure plumes, Γ0 = 1.

When Γ0 = 1, then Γ(z) = 1 and the solution for pure plumes is easily obtained and

given as

β

β0

=
3

10

(
10

3
+ ζ

)
,

w

w0

=

(
10

3

) 1
3
(

10

3
+ ζ

)− 1
3

,
η

η0

=

(
10

3

) 5
3
(

10

3
+ ζ

)− 5
3

.

(1.43)

In the more general case that Γ0 is allowed to vary (i.e. Γ0 6= 0,Γ0 6= 1), then it

is not possible to obtain explicit relations for the plume variables with the height ζ.

However the plume variables can be expressed in terms of Γ and Γ0 in the following

way. Starting with equations (1.41a) and (1.41c), both are solved for dζ and then

combined to give the following separable differential equation

dβ̂

β̂
=

(
1

2Γ
+

3

10(1− Γ)

)
dΓ. (1.44)
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Integration of the above equation results in

β̂ =

∣∣∣∣ Γ

Γ0

∣∣∣∣ 12 ∣∣∣∣1− Γ0

1− Γ

∣∣∣∣ 3
10

. (1.45)

In a similar manner, use of equations (1.41b) and (1.41c) results in

dŵ

ŵ
=

(
− 1

2Γ
+

1

10(1− Γ)

)
dΓ, (1.46)

which after integration provides a general solution of ŵ as a function of Γ, given below

ŵ =

∣∣∣∣Γ0

Γ

∣∣∣∣ 12 ∣∣∣∣ 1− Γ

1− Γ0

∣∣∣∣ 1
10

. (1.47)

In order to express the plume variables as functions of height ζ, then Γ has to be

related to ζ. From equation (1.41c)

dζ =
β̂dΓ

Γ(1− Γ)
, (1.48)

which after integration and use of equation (1.45), gives

ζ =
|1− Γ0|

3
10

|Γ0|
1
2

∫ Γ

Γ0

|Γ| 12
|1− Γ| 310 Γ(1− Γ)

dΓ. (1.49)

In this way knowledge of the height as a function of Γ is obtained. Now by constraining

Γ0 within the lazy and forced plume limits and using equations (1.45) and (1.47),

analytical expressions for all the plume variables as functions of Γ are given below.

• Forced plumes 0 < Γ(z) < 1 and lazy plumes Γ(z) > 1

Use of equations (1.45) and (1.47) and the limiting cases for Γ considered results in

β

β0

=

√
Γ0

Γ

(
1− Γ0

1− Γ

) 3
10

,
w

w0

=

√
Γ0

Γ

(
1− Γ0

1− Γ

) 1
10

,
η

η0

=

√
Γ0

Γ

√(
1− Γ

1− Γ0

)
.

(1.50)

In addition the behaviour of Γ with height is given as

ζ =


(1−Γ0)3/10√

Γ0

∫ Γ

Γ0

dΓ√
Γ(1−Γ)13/10

for 0 < Γ < 1,

(Γ0−1)3/10√
Γ0

∫ Γ

Γ0

dΓ√
Γ0(1−Γ)13/10

for Γ > 1.

(1.51)

Given any general conditions at the source the introduction of the Morton Γ func-

tion allows a characterisation of the source. When dealing with forced plume and
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lazy plumes far from the source it is expected that both will attain asymptotically

a pure plume behaviour. The reformulation of governing plume equations (1.33) to

the Γ-plume equations (1.41) provides information regarding this behaviour. From

equation (1.41c) it is not hard to conclude that for a forced plume 0 < Γ0 < 1, Γ

increases monotonically towards Γ = 1. On the other hand, for lazy plumes Γ0 > 1,

the Γ decreases monotonically with height to Γ = 1 [58]. From the numerical solution

of equations (1.41), as shown in Figure 1.2 (c), above mentioned behaviour of Γ with

height is illustrated. Furthermore it is clear that in general lazy plumes asymptotically

attend the pure plume behaviour at lower heights than the forced plumes.
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Figure 1.2: Numerical solution of the Γ-plume equations (1.41) for different values of Γ0. (a)
Nondimensional plume velocity ŵ, (b) Nondimensional modified radius β̂, (c) Γ parameter
variation with height.

The Γ plume equations (1.41a) and (1.41b) recover the ‘necking’ point (point of
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minimum radius) and the point of maximum velocity, when Γ = 5/2 and Γ = 5/4

respectively, as firstly observed by [24]. The monotonic behaviour exhibited by Γ with

ζ implies that maximum and minimum velocity only exists for lazy plumes under

the condition Γ0 > 5/4 and Γ0 > 5/2, respectively. This is also evident from the

numerical solution given in Figure 1.2 (a) and (b). Clearly when Γ0 = 10 maximum

velocity and the necking are present. On the contrary for the lazy plume generated

with source conditions Γ0 = 2 only maximum velocity is observed while there is no

apparent necking, as expected.

Closing, by setting Γ = 5/4 and Γ = 5/2 in equation (1.50), the maximum velocity

and the minimum radius are recovered for a lazy plume. Utilisation of equation (1.51),

then provides the height at which this behaviour is exhibited. Furthermore, equation

(1.51) can be used to provide additional information such as the virtual source (position

where Γ = 0) and the asymptotic virtual source correction, a detailed analysis is given

in [7].

1.5 Outline of the thesis

It seems useful to conclude this introductory chapter by outlining the subjects visited

within the rest of this work. In general, the phenomena studied can be classified

as buoyancy induced flows above uniformly heated horizontal surfaces. Primarily,

attention is directed towards the turbulent regime since the buoyant flows generated

above large areas fires is the topic of concern. Having discussed the classic plume

theory and the modelling of those vertical gravity currents, a central feature of this

thesis is a theoretical suggestion for a new plume structure. Reasoning behind this

proposal is the presence of attached gravity induced horizontal currents, indicated by

field experimental observations of plumes generated above large area fires. Focusing on

round plumes generated above sources of large radius, the long and thin assumption of

classic plume theory resulting in the neglect of the radial pressure gradient within the

governing equation is not justifiable, in particular when the flow close to the source

is of interest. On the contrary, the horizontal driving of the flow is attributed to a

radial pressure gradient result of an indirect gravity mechanism. In order to capture

these horizontal buoyant currents an innovative approach is proposed regarding the
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plume modelling. The plume flow is divided into three regions. A region where the

flow is predominantly horizontal and attached to the surface, a transition region from

horizontal to vertical where separation of the attached current takes place, and a

region where vertical flow is established and classic plume theory already described is

adequate.

Therefore the initial objective of the thesis is the mathematical modelling of these

flow regions. Analytically in Chapter 2, a new theoretical model termed as ‘hor-

izontal plume’ is developed, for the description of the mean flow properties of the

horizontal buoyant current generated above a circular area of large radius, supplied

by constant heat flux q. The assumptions within the model and its limitations are

discussed. Further, a dimensionless parameter a, termed as the modified Richardson

number and present in the governing equations is introduced. This newly introduced

dimensionless parameter a is analogous to the large radius of the source, which sug-

gests an asymptotic study (no analytical solutions exist for the governing horizontal

plume equations) in the limit a→∞, which takes place in Chapter 3. Second order

uniform valid semi-analytical approximation are obtained for the governing horizontal

plume equations, also accompanied by the numerical solution. A comparison of the

results obtained from the two methods is given.

It is natural to expect that within Chapter 4 a discussion for the transition of the

horizontal plume flow to the vertical to be present, but this is not the case. At that

time a great deal of effort was placed in the theoretical modelling of the intermediate

region, but all approaches turned out to be unsuccessful. In addition discussions were

ongoing for the design of an experiment (the ‘hot plate experiment’), that would test

the horizontal plume model and suggest improvements along with crucial information

regarding the physical mechanisms of the transition. In theory the experimental design

made allowances for the laminar limit to be studied, while it also felt that the laminar

study had more solid foundations to built on. Therefore Chapter 4 commences with

a brief introductory section dedicated to free/natural convective flows above horizontal

plates. The main subject matter though, is that of the laminar boundary layer flow

above an isothermal horizontal circular disk with the emphasis placed on variable fluid

properties. Fourth order series approximations valid at the circumference of the disc

are obtained. Moreover the full set of boundary layer equations is solved numerically
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using two methods, that of finite differences using the Keller Box method and that of

finite elements. Variable fluid properties and the Prandtl number effects on the flow

are studied thoroughly for the first time.

In Chapter 5 we remain on the laminar flow regime and we revisit a classic

problem, that of first order boundary layer analysis of laminar natural convection

above a uniformly heated horizontal and slightly inclined semi-infinite plate. Effects

of variable fluid properties, Prandtl number and inclination are studied in detail.

In addition when the inclination is negative the position of the separation point is

investigated when altering the Prandtl number. Furthermore, for the first time an

analytic study is carried out for the position of the separation point obtained for

different inclinations and for differing effects of variable fluid properties.

Chapter 6 discusses the ‘hot plate’ experiment designed with the collaborators

and carried out by the sponsor (AWE). Unfortunately, due to technical difficulties

presented, the experimental data is shown to incorporate a considerable amount of

uncertainty. Nevertheless it was decided to include the detailed analysis carried, even

though no safe conclusions could be reached. The chapter opens with an analytic

presentation of the experimental apparatus and the methodology adopted for the con-

duction of the experiment, followed by a thorough discussion of the technical problems

faced. Subsequently a technique is established for the analysis of the horizontal plume

data, and then the experimental findings are compared with the theoretical horizontal

plume model, as well as with the numerical simulation of the experiment using the

two equation turbulence models k − ε and k − ω. The chapter concludes with the

visualisation of the flow using a particle image velocimetry analysis.

Chapter 7 brings this thesis to an end with a synopsis of the outcomes of this

work. Finally, a brief discussion for the transition region is given while the topics of

future work are presented.



Chapter 2

Buoyancy Induced Flow Above

Large Area Fires

2.1 Introduction

Figure 2.1: Plume image from experimental burns in Northumberland carried out in March
2011

47
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Observation of experimental burns indicates the presence of attached and indirectly

induced, horizontal buoyant currents just above an area that is set on fire. These

currents move inwardly from the edges of the area (independently of the geometry)

and at certain locations depending on the wind, the topography, and the fuel, collide

and separate to give rise to the routes of a vertical buoyant structure, the well known

plume. Any independently formed plumes resulting from these collisions unite under

the coanda effect at some height above the surface to form a dominant rising plume. It

is the purpose of this chapter to describe these attached horizontal buoyant currents

which we shall term as a horizontal plume. In trying to describe such a complex

turbulent flow, where many physical processes take place simultaneously, sacrifices in

modelling are necessary, especially since the scope of this work is to provide a simple

model for which analytical or semi-analytical solutions are attainable and predict the

gross features of the flow, rather than a more accurate state of the art multiphysics

numerical simulation. Firstly combustion and radiation effects are neglected while the

geometry of interest is a circular disk of radius a (so that the flow can be considered

axisymmetric), supplied by constant heat flux q. Furthermore the viscosity is neglected

which is a reasonable assumption to make since the flow is fully turbulent (turbulent

friction is much greater than the viscous friction), while the viscous sublayer is located

directly above the circular disc where many of the physical processes taking place are

not modelled. Finally, the environment is assumed unstratified and still, so that the

modelling focuses on the convective flow above the fire, disregarding external driving

factors.

Incorporating the above assumptions, the physical mechanism responsible for the

driving of the horizontal buoyant currents is in essence the one described by Stewartson

[89], in his work concerning the boundary layer free convective flow above a horizontal

heated semi-infinite plate. Assuming that the surrounding environment has uniform

temperature Te and density ρe, then in the region above the circular disk the tempera-

ture T is higher than the environmental temperature so that the fluid density ρ will be

smaller i.e (ρ < ρe) . In considering the static field outside the edge of the heated disc

the pressure distribution is ∂p/∂z = −ρeg, though above the disk the pressure gradient

is reduced since |∂p/∂z| = ρg < ρeg [80] . The decreased pressure gradient results in

a pressure drop in the neighbourhood of the edge of the disc, which is responsible for
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a radial pressure gradient which drives the flow away from the periphery of the disk

towards the centre.

The main limitation of the point source (axisymmetric) turbulent plume model, is

its inability to describe the flow in the immediate neighbourhood above the source.

Even when the virtual origin correction is applied satisfactory approximations with

the existing experimental data are obtained everywhere except close to the source. On

dimensional grounds this is reasonable, more so in the case considered here, where the

radius of the disk of interest is large. Self similarity solutions must collapse near the

source since the radius provides a length scale that needs to be considered. In addition

it must be noted that within the classic plume model, the assumption that the flow

is narrow enough so that (∂P/∂z � ∂P/∂r) is made. Therefore the radial pressure

gradient can be ignored1. This implies that the pressure can be treated as a constant

over a cross section of the plume and equal to the pressure outside the plume, which

varies hydrostatically [32]. The above is a reasonable assumption to be made, but not

when describing the flow close to a large area source. Therefore in considering the

buoyant flow above a circular region of large radius L, a radical approach in describing

the flow is proposed. The flow field is divided into three regions. A region where the

flow is horizontal and attached to the surface, a transition region from horizontal to

vertical where separation of the attached current takes place, and a vertical flow where

the point source plume is valid and can already be described adequately by existing

literature. Therefore in the coordinate system shown in Figure 2.2, the centre of the

circular disk is positioned in the axis of symmetry while the horizontal plume initiates

at r = L, moving inwards towards r = 0. At a point r = rc, such that 0 < rc < L, the

flow separates and turns into a vertical plume. In what follows the focus solely lies in

the derivation of the model equations describing the horizontal flow, rather than the

transition from horizontal to vertical which is briefly discussed in the final conclusions.

1Ignoring the radial pressure gradient essentially means that the vertical length scale Lv is much
larger than the radial length scale L
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Figure 2.2: Sketch of the buoyant flow above a disc of radius L caused by an upward heat
flux q, and whose centre is positioned in the axis of symmetry z. Top hat descriptions are
used to describe the attached horizontal plume in a similar manner to the classic pure plume.
The inward radial velocity is −u while w is the vertical velocity. The temperature T and
the density ρ, under the top hat formalism are constant along vertical lines of height h(r)
and horizontal lines of length 2b(z), in the respective parts of the plume. The horizontal and
vertical entrainment velocities representing the engulfment of ambient fluid of density ρe and
temperature Te, into the classic and horizontal plume respectively, are denoted as −ue and
we. The pressure P is assumed hydrostatic, while the environment is still and unstratified.
Finally r = rc represents the point at which the flow stops being horizontal, and denotes the
beginning of a transition region of predominantly horizontal flow to a predominantly vertical
one. The model developed here is dedicated to the description of the horizontal plume.
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2.2 Horizontal plume - model equations

The methodology of deriving the horizontal plume model equations is similar to the

classic MTT [63] formulation, but without making the Boussinesq approximation since

the flow close to the source is modelled. The flow is turbulent but it is assumed

that it can be adequately described by the mean flow variables alone [73]. Therefore

based on the conservation principles of mass, momentum and energy of the mean

flow properties, an entrainment assumption and adoption of top hat formalism three

ordinary differential equation describing the horizontal flow will result.

In a cylindrical polar coordinate system without making the Boussinesq approx-

imation and further assuming that there is no swirl ū = (ū, 0, w̄) in the flow, the

continuity equation is expressed as

∂

∂r
(rūρ̄) +

∂

∂z
(rw̄ρ̄) = 0. (2.1)

Furthermore by assuming that h(r) is the height of the horizontal attached flow, and

that ū is negligible for z > h, in a similar style in which the MTT model equations

were derived, we proceed by integrating the continuity equation but vertically this

time. ∫ ∞
0

( ∂
∂r

(rρ̄ū) +
∂

∂z
(rρ̄w̄)

)
dz = 0, (2.2a)

which after application of the Leibniz rule results in

d

dr

∫ ∞
0

(rρ̄ū)dz = −r[ρ̄w̄]∞0 = −w̄|z=∞ rρe. (2.2b)

If the continuity equation is integrated for h < z < ∞, so that the contribution of ū

is negligible then ∫ ∞
h

∂

∂z
(rρ̄w̄)dz = 0⇒ w̄h = w̄∞ (2.2c)

Now defining we= −w̄h= −w̄∞, the vertical entrainment velocity at which ambient

fluid of density ρe is submerged into the horizontal flow, then equation (2.2b) becomes

d

dr

∫ ∞
0

(rρ̄ū)dz = rρewe. (2.3)

The radial momentum equation is given as

∂

∂r
(rρ̄ū2) +

∂

∂z
(rρ̄ūw̄) = −r∂P

∂r
. (2.4)
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The pressure gradient in the r.h.s of equation (2.4) is responsible for the driving mech-

anism of the flow and cannot be neglected. Similarly integration of equation (2.4)

results in
d

dr

∫ ∞
0

(rρ̄ū2)dz = −r
∫ ∞

0

∂P

∂r
dz. (2.5)

Introduction of top hat variables (i.e. the mean properties will have one constant value

inside the plume and another outside), is equivalent to the mass V and momentum

M fluxes being replaced by mean values defined as integrals over the plume [97]. In

doing so

V =

∫ ∞
0

(rρ̄ū)dz = rρuh and M =

∫ ∞
0

(rρ̄ū2)dz = rρu2h. (2.6)

In addition the following entrainment hypothesis is made here, the mean inflow vertical

velocity at the edge of the horizontal plume is proportional to the radial velocity. Thus

the vertical velocity entrained at a given horizontal plume height h, is proportional to

radial velocity u at that height. Analytically, for the horizontal plume the entrainment

hypothesis is expressed as

we = −f(r)u = −α
( ρ
ρe

)1/2
u. (2.7)

As can be observed f(r) is chosen so as to take the classic form of R-S [72], therefore

α is the entrainment coefficient. Investigation of the constant α is put on hold until

Chapter 6. Therefore for the next two chapters the constant of entrainment is not

differentiated from the one used for classic pure plumes.

The r.h.s of the momentum equation (2.5) contains a pressure gradient that needs

to be expressed in terms of top hat variables. Looking at the schematic diagram given

in Figure 2.3 . The pressure outside the horizontal plume is considered hydrostatic so

that
dP

dz
= Pz = −ρeg with P ∼ P0 − ρegz for z > h. (2.8a)

By considering the pressure along the vertical segment AB within the plume, with

height h and top hat density ρ, then

PI = −ρgz + kI ,

by noting that at z = h, PI = P0 − ρegh then kI = P0 + (ρ− ρe)gh so that

PI = P0 + (ρ− ρe)gh− ρgz. (2.8b)
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Figure 2.3: Variation of top hat properties along the vertical parallel segments AB and CD.
Along AB the density is ρ, the height is of the plume is h, while the pressure varies as PI .
At distance ∆r along CD, density and plume height are altered by ∆ρ and ∆h respectively,
while the pressure varies as PII .

Similarly by considering the vertical segment CD, parallel to AB and displaced by

distance ∆r, the top-hat properties are slightly altered so that the height of the plume

is now h+ ∆h, while the density is ρ+ ∆ρ. Along CD the pressure varies as

PII = −(ρ+ ∆ρ)gz + kII , while at the point C i.e. z = h+ ∆h then

kII = P0 − ρeg(h+ ∆h) + (ρ+ ∆ρ)g(h+ ∆h),

PII = P0 − (ρ+ ∆ρ)gz + (ρ− ρe)g(h+ ∆h) + ∆ρgh (2.8c)

after neglecting terms of O(∆2). Using equations (2.8b) and (2.8c), then

PII − PI

−∆r
= −−(ρ− ρe)g∆h−∆ρg(h− z)

∆r
, (2.8d)

or as ∆r → 0

−∂P
∂r

= (ρe − ρ)g
dh

dr
+ (z − h)g

dρ

dr
. (2.9)

In that way integration of equation (2.9) results in∫ ∞
0

−∂P
∂r

dz = (ρe − ρ)gh
dh

dr
− gh2

2

dρ

dr
= (ρe − ρ)gh

dh

dr
+
gh2

2

d

dr
[ρe − ρ] ,
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to finally obtain an expression for the pressure gradient with respect to (w.r.t) the top

hat variables given as ∫ ∞
0

−∂P
∂r

dz =
1

2

d

dr

[
g(ρe − ρ)h2

]
. (2.10)

Introduction of top hat variables and the entrainment hypothesis in the conserva-

tion of mass equation (2.3) means that it is now expressed as

d

dr
[rρuh] = −rρeα

( ρ
ρe

)1/2
u. (2.11)

Directing attention to the momentum equation, the explicit expression of the pressure

gradient in terms of top hat variables given in (2.10) in addition to the top hat ex-

pression for the momentum flux M in (2.6), generate an equivalent top hat form of

the momentum equation (2.5), stated as

d

dr

[
rρu2h

]
=

1

2

d

dr

[
g(ρe − ρ)h2

]
. (2.12)

Finally the energy equation is expressed as

∂

∂r
(rρ̄cpūT̄) +

∂

∂z
(rρ̄cpw̄T̄) = −rQ, (2.13)

with Q = q/h. Integration of the energy equation results in,

d

dr

∫ ∞
0

(rρ̄cpūT̄)dz = rρecpweTe − r

∫ ∞
0

Qdz,

or after the introduction of top hat variables

d

dr
[rρcpuTh] = rρecpweTe − rq. (2.14)

The reason for the introduction of constant Q (power per unit volume) in the r.h.s of

the energy equation was to inject the heat flux q into the the top hat model. Further

by noting that ρT ≈ ρeTe, division of equation (2.14) by ρecpTe, results in

d

dr
[ruh] = r

(
we −

q

ρecpTe

)
, (2.15)

or after the entrainment hypothesis

d

dr
[ruh] = −r

(
α
( ρ
ρe

)1/2

u+
q

ρecpTe

)
. (2.16)
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2.3 Further discussion

Thus far, based on arguments of mass, energy and momentum conservation principles,

a top hat formalism, as well as an entrainment assumption, a theoretical set of model

equations describing the gross properties of the attached indirectly induced buoyant

horizontal flow, above a circular area of large radius has been derived. It must be

pointed out that the model is ill defined at r = 0. Nevertheless the model by definition

is designed not to be valid in the region r → 0, since it is expected that the flow will

not be attached anymore and that separation will have already taken place at a critical

point rc > 0. Therefore the purpose of the model is to describe the flow from the edge

of the circular area r = 1 until r = rc. The governing top hat equations are gathered

for convenience and listed below:

• The mass equation
d

dr
[rρuh] = −rρeα

( ρ
ρe

)1/2
u, (2.17a)

• The momentum equation

d

dr
[rρu2h] =

1

2
rg

d

dr

[
(ρe − ρ)h2

]
, (2.17b)

• The energy Equation

d

dr
[ruh] = −r

(
α
( ρ
ρe

)1/2

u+
q

cpρeTe

)
. (2.17c)

The above set of differential equations will be nondimensionalised with the aid of the

following scales.

r = Lŕ, h = αLh́, u = Uú ρ = ρeρ́, a =
Lgα

U2
with (2.18a)

U =
q

2αcpρeTe

, so that a =
4gα3L(cpρeTe)

2

q2
. (2.18b)

It must be noted that on dimensional grounds the Richardson number Ri is given as

Ri =
gLR

V2
R

=
1

Fr2 . (2.19)

Where VR and LR are the characteristic velocity and length scales respectively and Fr,

is the Froude number. By having a closer look to the newly introduced non dimensional

parameter a, it can be argued that a represents a ‘modified Richardson’ number for the
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horizontal flow. Additionally it should be pointed that it is analogous to the physical

radius of the circular area L, and inversely proportional to the square of the heat flux

q into the flow.

Introduction of the nondimensional variables and dropping the primes, the govern-

ing equations (2.17) results in

d

dr
[rρuh] = −r√ρu, (2.20a)

d

dr
[rρu2h] =

1

2
ar

d

dr

[
(1− ρ)h2

]
, (2.20b)

d

dr
[ruh] = −r√ρu− 2r. (2.20c)

Subtraction of equation (2.20c) from (2.20a) gives

d

dr
[ruh(1− ρ)] = −2r. (2.21)

The above equation can be integrated, but before doing so it is natural to consider what

are the constraints applied to the system. The problem has to be treated as an I.V.P

(initial value problem) since the model is not valid at the centre of the plate. Therefore

at the edge of the plate of radius r = L which after the nondimensionalisation means

r = 1, the velocity must be zero, u(1) = 0. Similarly the height of the horizontal plume

must be set to zero i.e. h(1) = 0. The final constraint is applied to the density, and

since the interest of this work lies in the description of flows of where T/Te � 1, the

dimensional density has to be very small therefore the nondimensional density must

be ρ(1) → 0, or in terms of nondimensional density deficit δ = 1 − ρ, δ(1) → 1 must

hold. Returning to equation (2.21) which can now be integrated to give

ruh(1− r) = −r2 + C. (2.22)

The constant of integration can be easily obtained once initial conditions are applied

to get C=1. In that way the the system of governing equations is written in its final

form as
d

dr
[rρuh] = −r√ρu. (2.23a)

d

dr
[rρu2h] =

1

2
ar

d

dr

[
(1− ρ)h2

]
. (2.23b)

ruh(1− ρ) = 1− r2 (2.23c)
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subject to initial conditions (ICs) given as

ρ(1) = u(1) = h(1) = 0. (2.23d)

As it was pointed out earlier, the Richardson number for the horizontal flow is

proportional to the radius of the circular area considered. In trying to describe the

attached horizontal buoyant flow, above large area fires implies that a has to be a large

parameter, further it can be observed that as a → ∞ then the differential algebraic

system can be treated as a singular perturbation problem. The numerical solution of

the governing equations (2.23) and an asymptotic analysis based on large Richardson

number is the subject that will occupy the main work of the chapter that follows.



Chapter 3

Numerical and Analytical Solution

of the Horizontal Plume Flow

3.1 Introduction

The aesthetic of most natural phenomena is closely related to nonlinearities, thus it

is reasonable to expect mathematical models, developed for portraying the essence

of their behaviour, to commonly consist of a set of nonlinear differential equations

(DEs), accompanied by a suitable set of initial (ICs) or boundary conditions (BCs).

Aesthetics in this way comes at a price in mathematical terms, since most of the

weaponry in dealing with linear DEs is inefficient, while recovery of an exact solution

in the majority of cases is an unfeasible task. The lack of explicit solution leaves

room for only two mathematical tools; direct numerical simulation and the theory of

approximation.

In dealing with physical problems the conduction of nondimensionalisation is ad-

visable though once complete, within the resulting equations and among the nondi-

mensional dependent and independent variables features the introduction of newly

nondimensional parameter(s). These parameter(s) can be characteristic of the signif-

icant competing physical processes, or characteristic of the geometry of the problem

under consideration, and frequently can attain very large or very small values. A direct

numerical approach to the solution of a nonlinear system of differential equations is not

always an easy task, regardless of the recent computational progress, whilst the pres-

ence of a very small parameter (equivalently large) makes computations even harder.

58
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On the contrary, the presence of a very small parameter acts as an inhibitor in tackling

the problem numerically, it is blessing when an analytical approach is addressed. One

of the most powerful analytical tools of modern analysis are the asymptotic methods,

also termed perturbation methods, which have vastly contributed to the advances of

fluid dynamics for the majority of the last century. These methods can be considered

as a collection of analytical techniques that provide approximate solutions to problems

containing a small (large) parameter. By means of asymptotic expansions (AE) a re-

duction in difficulty to the problem under consideration is achieved, so as to possibly

attain an exact analytical solution, or to deal numerically with a simplified problem.

Without entering into a great deal of theoretical detail (the interested reader can

turn to vast literature on perturbation methods by [66],[22],[46],[6],[18], to name a

few), few definitions are necessary for the understanding of what will follow. Starting

with the notion of asymptotic sequence [46],

Definition 1 Let {Ξn(ε)} be a sequence of functions with n = 1, 2, . . . . Such a se-

quence is called an asymptotic sequence if

Ξn+1(ε) = o (Ξn(ε)) as ε→ 0 (3.1)

for each n = 1, 2, . . . .

Definition 2 An expression of the form

y(x, ε) =
N∑
n=0

Ξn(ε) yn(x) + · · · , n = 0, 1, 2 . . . , (3.2)

is an asymptotic expansion sometimes termed as Poincaré expansion, of the function

y(x, ε) if

y(x, ε)−
N∑
n=0

Ξn(ε) yn(x) = o(ΞN(ε)) as ε→ 0, (3.3)

or equivalently

y(x, ε)−
N∑
n=0

Ξn(ε) yn(x) = O(ΞN+1(ε)) as ε→ 0 (3.4)

and {Ξn(ε)} is an asymptotic sequence for n = 0, 1, 2, . . . , while yn are the coefficients

of the asymptotic expansion.
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Now let y(x, ε) be defined in a domain D, the asymptotic expansion is said to be uni-

formly valid in that domain provided (3.1)–(3.2) do hold. The power of the asymptotic

expansions lies in the uniform validity in the domain of interest over coordinate series,

i.e. Taylor or Frobenius, frequently used to approximate a solution, but their validity

is often restricted to a vicinity of a point.

Returning to the previous chapter, a mathematical model was developed for the

description of the attached horizontal flow above a heated circular large area. Based

on ‘top hat’ formalism and conservation principles, we arrived at the nondimensional

nonlinear set of equations listed as

d

dr
[rρuh] = −r√ρu, (3.5a)

d

dr
[rρu2h] =

1

2
ar

d

dr

[
(1− ρ)h2

]
, (3.5b)

ruh(1− ρ) = 1− r2, (3.5c)

subject to initial conditions (ICs) given by

u(1) = 0, h(1) = 0, and ρ(1) = 0. (3.6)

The scope of this chapter covers the numerical solution accompanied by an ana-

lytical approximation of the above nonlinear differential algebraic equations (DAEs).

Numerical treatment of the above initial value problem (IVP) at first look appears to

be straightforward but, as it will be shown, the DAEs are singular at the boundary

r = 1. The model is ill-defined at r = 0 and as already mentioned, a modification of the

model that will enable the capturing of the separation of the attached flow to the ver-

tical one is required. Therefore, work in this chapter is focused on r ∈ [r0, 1] ⊂ [0, 1],

while r0 is sufficiently far from zero. Regardless, a section is dedicated to studying

the behaviour of the dependent variables in the limit r0 → 0. The main part of this

chapter is dedicated to the study of the governing equations for large values of the

Richardson number a. The solutions of the above equations exhibit a boundary layer

character; therefore, the problem is treated as a singular perturbation problem.

In what follows, we shall start by performing local analysis at the boundaries r = 0

and r = 1. The asymptotic behaviour obtained around r = 1 will be provided to

the numerical solver as initial conditions in order to overcome the singularity at that

point. Truncated series solutions obtained at r = 1 provide rough approximations



CHAPTER 3. NUMERICAL SEMI-ANALYTICAL SOLUTION 61

to the numerical solution for values of a = O(1) and r not close to zero, but fail

dramatically, when a� 1. The latter case is the main interest of this work.

For the limit a→∞ global analysis is carried out. A boundary layer is located at

r = 1, therefore inner and outer asymptotic expansions are provided in terms of the

small parameter 1/a. The semi-analytical approximations obtained are then analysed

with the numerical results.

3.1.1 Local analysis around r = 1

As is typical of nonlinear differential equations, it is impossible to derive an exact

closed form solution for equations (3.5). In this section local analysis ([78],[6]) is

performed at the edge of the circular disc (r = 1), aiming at the approximation of

the solution around that point. The motivation for local analysis serves a double

scope, analytical as well as numerical. Focusing on the latter, suppose that a direct

numerical integration is attempted. A first approach, and the one pursued here, would

be to write down the index-11 DAEs in matrix-vector form as

M v̇(r) = b, (3.7)

with v̇(r) = (du
dr
, dh
dr
, dρ
dr

). A key difference between DAEs and ODEs lies in the na-

ture of the Mass matrix M. The Mass matrix for DAEs is singular, in contrast to

ODEs where it is nonsingular, and this distinctive characteristic has to be addressed

numerically by the solver. Fortunately, most computational packages nowadays dedi-

cate numerical solvers that deal with the numerical solutions of at least index-1 DAEs,

without any trouble. Of course it can be argued that instead of taking the hard path, a

differentiation of the algebraic equation (3.5c) would bring back equation (2.21), which

historically was the equation that gave rise to the algebraic equation after integration

and application of initial conditions. Dealing directly then with ODEs would overcome

the singularity of M, and classic numerical techniques can be applied. Nevertheless,

because an analytical approach will be carried out in parallel to the numerical one, a

preference is given to the DAEs. Bearing in mind though that a differentiation of the

algebraic equations is not generally used as a computational technique, because prop-

erties of the original DAEs are often lost in numerical simulations of the differentiated

1The index of a DAE can be viewed as the number of times that the DAEs need to be differentiated,
in order to obtain a system of ODEs.
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equations. Having established the form of the equations to be tackled numerically, it

is rather easy to implement them in MATLAB and compute the numerical solution

using suitable methods [83]. This appears to be untrue in our case. Application of the

initial conditions would result, at the initialisation of the numerical solver, in M0 = 0

and b0 = 0. The consequences being a singular Jacobian Matrix, in the attempt of the

solver to deal with the nonlinear system, and termination of the computation. This

behaviour can be explained by the presence of a singularity at r = 1. The singularity

becomes clear with a simple reformulation of the equations. Introduction of a new

variable m given as

m = ruhρ (3.8a)

and multiplication of equation (3.5c) by ρ gives the following form

ρ =
m

m− r2 + 1
. (3.8b)

Using the above, the remaining coupled differential equations can be written in terms

of u and m and expressed explicitly as

du

dr
=

u

(
ur2 (2 ru3 + (r2 − 1) a)

√
m

m+ 1− r2
+ 2a (r4 − 1−m)

)
2r (rmu3 + a (r2 − 1) (r2 −m− 1))

(3.8c)

dm

dr
= −ru

√
m

m+ 1− r2
. (3.8d)

By noting that the new initial conditions are m(1) = ρ(1) = u(1) = 0, it is obvious that

the system exhibits a singularity at r = 1. In dealing with the problem analytically,

local analysis is necessary for approximating the behaviour of the solution around that

point and in addition, as it will become clear on later stages, it provides information

for unlocking the structure of the global solution.

Focusing on the edge of the heated surface at r = 1, it is assumed that the depen-

dent variables behave as

ρ ∼ ρ̃(1− r)κ, u ∼ ũ(1− r)µ, and h ∼ h̃(1− r)ν as r → 1, for some κ, µ, ν ∈ <. (3.9)

Applying (3.9) into the governing equations (3.5) results in κ = µ = 1/5 and ν = 4/5.

Proceeding with the introduction of a new independent variable s, and scalings of the

dependent variables given as

r = 1− s5, h = h̃s4 u = ũs and ρ = ρ̃2s2, (3.10)
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substitution into the governing equations gives

(1− s5)ũh̃(1− s2ρ̃2) = 2− s5, (3.11a)

s(1− s5)(ũ2h̃ρ̃2)s + (8− 13s5)ũ2h̃ρ̃2 =
1

2
a(1− s5)

[
8(1− ρ̃2s2)h̃2 + s

(
(1− ρ̃2s2)h̃2

)
s

]
,

(3.11b)

s(1− s5)(ũh̃ρ̃2)s + (7− 12s5)ũh̃ρ̃2 = 5(1− s5)ũρ̃. (3.11c)

As r → 1, or equivalently s→ 0, to leading order the following is obtained

ũh̃ ∼ 2, ρ̃2ũ2h̃ ∼ 1

2
ah̃2 and 7ũh̃ρ̃2 ∼ 5ũρ̃. (3.12)

Solution of the above system provides the leading order behaviour as

ũ ∼ ũ0 =

(
142a

52

) 1
5

, h̃ ∼ h̃0 =
2

ũ0

, ρ̃ ∼ ρ̃0 =
5ũ0

14
. (3.13)

The approximations can be extended with the aid of symbolic computation package

Maple, so in seeking truncated series expansions of the form

ũ ∼ ũ0 +
n∑
i=1

ũis
i, h̃ ∼ h̃0 +

n∑
i=1

h̃is
i, ρ̃ ∼ ρ̃0 +

n∑
i=1

ρ̃is
i, where n = 8, (3.14)

and with the introduction of a scaled Richardson number A, indicated by the leading

order behaviour given as

A = ũ0 =

(
142a

52

)1/5

, (3.15)

the accuracy of the approximation to the local behaviour of the solution around s = 0

can be increased. The following is obtained as s→ 0

ũ(s, A) ∼ A+
225

4606
A3s2 − 233125

84860944
A5s4 +

443

1690
As5+

+
7260453125

27751735072544
A7s6 +

285305

17125108
A3s7 +O(A9s8), (3.16a)

h̃(s, A) ∼ 2A−1 +
725

4606
As2 − 149375

21215236
A3s4 +

402

845

s5

A
+

+
17243828125

27751735072544
A5s6 +

234565

4281277
As7 + O(A7s8), (3.16b)

ρ̃(s, A) ∼ 5

14
A− 3375

128968
A3s2 +

3646875

1188053216
A5s4 +

83

4732
As5−

− 9978984375

24282768188476
A7s6 − 5212975

1438509072
A3s7 +O(A9s8). (3.16c)
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In terms of the original independent and dependent variables the above can be

written as

u(r, A) = ũs ∼ A (1− r)1/5 +
225

4606
A3 (1− r)3/5 − 233125

84860944
A5 (1− r) +

+
443

1690
A (1− r)6/5 +

7260453125

27751735072544
A7 (1− r)7/5 +

285305

17125108
A3 (1− r)8/5 +

+O(A9 (1− r)9/5), (3.17a)

h(r, A) = h̃s4 ∼ 2
(1− r)4/5

A
+

725

4606
A (1− r)6/5 − 149375

21215236
A3 (1− r)8/5 +

+
402

845

(1− r)9/5

A
+

17243828125

27751735072544
(1− r)2A5 +

234565

4281277
(1− r) 11

5 A+

+O((1− r) 12
5 A7), (3.17b)

ρ(r, A) = ρ̃2s2 ∼ 25

196
(1− r)2/5A2 − 16875

902776
(1− r)4/5A4+

+
47859375

16632745024
(1− r)6/5A6 +

415

33124
(1− r)7/5A2− 2470519921875

5439340074218624
(1− r)8/5A8−

− 4413625

1258695438
(1− r)9/5A4 +O((1− r)2A10), (3.17c)

as r → 1−.

We can now observe that the asymptotic behaviour of the above approximations

becomes singular when A → ∞ (note that the limit A → 0 would also cause our ap-

proximations to be singular, but that limit is not of any physical significance, therefore

we leave it as a purely mathematical curiosity). This suggests that there is a special

asymptotic behaviour for u(r), h(r) and ρ(r) that is not contained in the above rep-

resentation. Nevertheless, the approximations obtained will be used so as to provide

the initial conditions to the numerical solver at r = 1−, and to approximate the be-

haviour of u(r), h(r) and ρ(r) for r ∈ [1−, 1]. In doing so the singularity at r = 1 is

avoided and numerical solution can be obtained easily. Furthermore, it will be shown

that when A = O(1) then (3.17) provide a roughly satisfactory approximation to the

numerical solution, Figure 3.3.

3.1.2 Local analysis as r → 0

Before commencing the discussion regarding the numerical solution, we shall turn our

focus to the centre of the heated area. Despite the lack of credibility of the model
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in the neighbourhood of r = 0, since modifications are necessary in order to capture

the expected transition (separation) of the horizontal attached flow to the well known

vertical plume, the behaviour of the dependent variables in the limit (r → 0) is of

mathematical interest at least. For that reason this section is dedicated to the local

analysis of governing equations around r = 0, beginning with the re-introduction of m

and a transformation for the independent variable 2 given as

m = rρuh and r = e−t. (3.18)

In doing so, multiplication of equation (3.5c) by ρ, results in

m(1− ρ) = (1− e−2t)ρ. (3.19)

Now the study of limit r → 0 implies t → ∞; therefore, under that limit, equation

(3.19) gives

m ∼ ρ

1− ρ. (3.20)

In addition, it is reasonable to expect that as the centre of the plate is approached the

density attains a constant value so that, to leading order, ρ ∼ ρ0 + o(1). In that way

equation (3.20) indicates that m to leading order must be given as m = m0 + o(1) as

t→∞, with m0 being a constant. Equation (3.20) therefore changes to

m0 =
ρ0

1− ρ0

. (3.21)

Turning the attention to the remaining equations (3.121) and (3.5b), the introduction

of transformations (3.18), results in

d

dt
[m] = e−2t√ρu, (3.22)

d

dt
[um] =

1

2
ae−t

d

dt

[
(1− ρ)

e2tm2

ρ2u2

]
. (3.23)

2The reasoning behind the transformation for the independent variable is not straightforward. In
the case that the independent variable remains unchanged, then equation (3.25), is given as

r3u3ρ0
du

dr
∼ a(u+ r

du

dr
).

Then a reasonable way to proceed is by setting (in the same style as in equation (6.30))

u(r) = rωŭ(r),

which unfortunately fails to balance the terms. Thus it is believed that the only way to proceed, is by
introducing the transformation r = e−t. Another way of looking at it, is that the term multiplying
the derivative on the r.h.s (i.e. r), has to somehow vanish.
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Considering the limit t→∞ it is clear that (3.22) does not contribute to any further

knowledge since the outcome is that d
dt

[m0] = 0. Therefore the last resort is the

momentum equation, so by taking into account that as t → ∞, the density and

subsequently m are constant so that derivatives must vanish to leading order, equation

(3.23) gives

m0
du

dt
∼ eta

ρ4
0u

4

[
(1− ρ0)m2

0ρ
2
0u(u− du

dt
)
]
, (3.24)

or

e−tu3ρ0
du

dt
∼ a(u− du

dt
). (3.25)

Setting

u(t) = eωtŭ(t), (3.26)

so that equation (3.25) leads to

e(4ω−1)tŭ3ρ0(ωŭ+
dŭ

dt
) ∼ aeωt(ŭ(1− ω)− dŭ

dt
). (3.27)

The r.h.s and l.h.s terms must balance, so the exponentials in this expression are

eliminated when choosing ω = 1/3, so that u(t) = e1/3ŭ(t). The above stated equation

will then simplify to
dŭ

dt
∼ ŭ(2a− ŭ3ρ0)

3(a + ŭ3ρ0)
. (3.28)

As t → ∞, ŭ must approach a constant equilibrium value, thus dŭ
dt
→ 0. Thus from

(3.28) it must hold that

ŭ→
(2a

ρ0

) 1
3
, as t→∞.

Concluding, it follows that the leading order behaviour for u, h, and ρ is given by

u(r) ∼ (
2a

ρ0

)
1
3 r
−1
3 , h(r) ∼

( ρ0

2a

) 1
3 r

2
3

1− ρ0

, ρ ∼ ρ0 as t→∞ or r → 0.

(3.29)

Furthermore it should be noted that ρ0 is a function of a. An approximation of the

behaviour of ρ0(a) is provided along with the numerical results, Figure 3.1.

3.2 Numerical solution

Having established the numerical procedure to be followed, the system of equations

given in (3.11) is solved numerically while emphasis is placed on the variation of the
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dependent variables with the Richardson number of the horizontal flow. Preference is

shown to the normalised s-based equations w.r.t (ũ, h̃, ρ̃) rather than the original r−
based, for reasons of numerical stability. The ICs are provided to the numerical solver

by equations (3.16) at s = 10−3, while the solution for s ∈ [0, 10−3] is represented by

the truncated power series. Numerical integration is applied on the interval [10−3, 0.99].

The original nondimensional dependent and independent parameters are recovered and

presented in Figure 3.2, after application of the transformations s = (1−r)1/5, u = ũs,

h = h̃s4 and ρ = ρ̃2s2. As s→ 1 (equivalently r → 0), numerical results must not be

fully embraced. The mathematical model fails to capture the transition of the attached

horizontal flow to the vertical plume. It should be expected that a stagnation point

must be located at the centre of the circle, as attached horizontal streams approach the

axis of symmetry and collide. The collision that takes place must give rise to the roots

of the vertical plume. Discussions regarding necessary modifications for the horizontal

model, in order to capture the transition from horizontal to vertical, and concerns over

the range of validity of the horizontal model are given in following chapters.

On safe grounds, far enough from the centre of the disc, numerical computations

indicate that the nondimensional density ρ increases with a, and further as a → ∞,

not far from the edge of the plate, ρ → 1 ( i.e. approaches the nondimensional

ambient density). Similar behaviour w.r.t a is observed for the velocity. The height

of the horizontal plume is scaled with the constant of entrainment which (for plotting

purposes only) in turn is assigned the numeric value widely used for the vertical plume

α = 1/8. It is observed that the height is decreasing as the Richardson number

increases.

Further, in Figure 3.3, results of local analysis at r = 1 are being put under

scrutiny. As already mentioned the truncated power series obtained are valid at the

edge of the plate and provide a sensible approximation to the numerical solution for

values of a = O(1) whilst they collapse as the value of a increases. Reasons for the

breakdown of the approximations are discussed in detail in the next section.

Concluding, local analysis at r = 0 shows that ρ attains an equilibrium value

(3.29) depending on a. Numerical solution for different values of a, followed by the

extraction of the numerical values for ρ as r → 0 (collection point was set at s = 0.97,

or equivalently at r = 0.14127), allows interpolation of the gathered data using a
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rational function. It was found that ρ0(a) behaves as

ρ0(a) ≈ 0.34520 a + 0.01665 a2 + 0.00003 a3

1 + 0.89721 a + 0.02499 a2 + 0.00004 a3
. (3.30)

0 100 200 300 400 500 600 700 800 900 1000
0
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a

Figure 3.1: Variation of ρ0 as a function of the Richardson number a, with a ∈ [1, 1000].
Note that the rational function captures the asymptotic behaviour of ρ0 i.e. ρ0 → 0 as a→ 0
and ρ0 → 1 as a→∞.
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Figure 3.2: Numerical solution for a = 10i and i = −3,−2, . . . , 2, 3. Where α is the constant
of entrainment, used for the nondimensionalisation of the height of the horizontal plume. The
numerical value assigned for the plots is the one widely used for the vertical plume α = 1/8.
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Figure 3.3: Comparison of the numerical solutions with the truncated power series obtained

after the conduction of local analysis at r = 1 (3.17). It can be noted that while a = O(1)

results of local analysis provide a rough approximation to the numerical solution. The

validity of the approximations collapses as a increases.
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3.3 Inner asymptotic expansions as A→∞

3.3.1 Introduction

As it was already shown, in the limit A→∞, or equivalently a→∞ the local analysis

fails to capture the structure around r = 1. The reason for this is the existence of

a boundary layer of thickness O(1/A), located in the neighbourhood of s = 0, so

that the problem must be treated as a singular perturbation problem. This section is

devoted to obtaining the inner and outer asymptotic expansions for large values of a.

Moving on with the inner approximations, recall that to leading order the truncated

series around s = 0 (3.16) indicates the following behaviour with respect to A,

ρ̃ = Aρ̄, ũ = Aū, h̃ =
h̄

A
. (3.31)

By introducing the stretched variable ζ, as suggested by the thickness of the boundary

layer (w.r.t the independent variable s), given as

s =
ζ

A
, (3.32)

where ζ = O(1) as A → ∞, we consider an asymptotically thin layer located at

r = 1, or equivalently at s = 0, with thickness s = O(1/A). For that layer asymptotic

analysis is carried out for the limit A→∞. Introducing the new independent variable

ζ into equations (3.11a)–(3.11c) gives(
1−

( ζ
A

)5)
ũh̃
(

1−
( ζ
A

)2

ρ̃2
)

= 2−
( ζ
A

)5

, (3.33a)

ζ
(

1−
( ζ
A

)5)
(ũ2h̃ρ̃2)ζ +

(
8− 13

( ζ
A

)5)
ũ2h̃ρ̃2 =

1

2

52A5

142
(1− ζ5)×

×
[

8

(
1− ρ̃2 ζ

2

A2

)
h̃2 + ζ

((
1− ρ̃2 ζ

2

A2

)
h̃2

)
ζ

]
, (3.33b)

ζ
(

1−
( ζ
A

)5)
(ũh̃ρ̃2)ζ +

(
7− 12

( ζ
A

)5)
ũh̃ρ̃2 = 5

(
1−

( ζ
A

)5)
ũρ̃. (3.33c)

Proceeding further with the substitution of the leading order behaviour ρ̃ = Aρ̄, ũ =

Aū, h̃ = h̄/A into equations (3.33a)–(3.33c) such that(
1−

( ζ
A

)5)
ūh̄
(

1− ζ2ρ̄2
)

= 2−
( ζ
A

)5

, (3.34a)
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ζ
(

1−
( ζ
A

)5)
(ū2h̄ρ̄2)ζ +

(
8− 13

( ζ
A

)5)
ū2h̄ρ̄2 =

1

2

52

142

(
1−

( ζ
A

)5)
×

×
[
8
(
1− ζ2ρ̄2

)
h̄2 + ζ

((
1− ζ2ρ̄2

)
h̄2
)
ζ

]
, (3.34b)

ζ
(

1−
( ζ
A

)5)
(ūh̄ρ̄2)ζ +

(
7− 12

( ζ
A

)5)
ūh̄ρ̄2 = 5

(
1−

( ζ
A

)5)
ūρ̄. (3.34c)

We shall now seek inner asymptotic expansions to second order of the following form

ρ̄ ∼ ρ̄1(ζ) + AP0 ρ̄2(ζ), ū ∼ ū1(ζ) + AP1ū2(ζ), h̄ ∼ h̄1(ζ) + AP2h̄2(ζ), (3.35)

as A → ∞ with P0, P1, P2 < 0. As it will become clear, no exact analytical solution

can be obtained for leading and second order equations, thus the procedure followed

will be as

• Local Analysis at ζ = 0

• Study of the limit ζ →∞

• Interpolation by rational functions applied to approximate the numerical solu-

tion.

Local analysis around ζ = 0 is necessary for the provision of the ICs to the governing

equations to leading and second order, while study of the limit ζ → ∞, provides

the asymptotic behaviour of the dependent variables on that limit. In this manner

a complete extremum behaviour w.r.t to ζ, i.e. ζ → 0 and ζ → ∞ is attained, and

this knowledge will be of importance when the interpolation to the numerical solution

will take place. Most importantly though, study of the limit ζ → ∞ provides the

matching conditions with outer asymptotic expansions. Finally for the interpolation,

preference is given to rational functions rather than polynomial, while making sure to

incorporate the asymptotic structure obtained in the above steps.

3.3.2 Inner expansion and the matching condition to leading

order

Substituting the sought form of asymptotic expansions given in ( 3.35) into equations

(3.34), and by keeping leading order terms in the limit A → ∞, the following is

obtained

h̄1ū1(1− ζ2ρ̄2
1) = 2, (3.36a)
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ζ(ū2
1h̄1ρ̄

2
1)ζ + 8ū2

1h̄1ρ̄
2
1 =

1

2

52

142

[
8
(
1− ζ2ρ̄2

1

)
h̄2

1 + ζ
((

1− ζ2ρ̄2
1

)
h̄2

1

)
ζ

]
, (3.36b)

ζ(ū1h̄1ρ̄
2
1)ζ + 7ū1h̄1ρ̄

2
1 = 5ū1ρ̄1. (3.36c)

Local analysis is now carried out at ζ = 0. The behaviour of ū1, h̄1, ρ̄1 on that limit

is obtained, while this information will be used to provide the initial conditions for

the numerical solution of equations (3.36). Leading order behaviour can easily be

obtained but for the extension of the approximation we resort again to a computer

algebra system (Maple). Assume power series solutions of the form

ū1 ∼ ū1,0 +
9∑
i=1

ū1,iζ
i, h̄1 ∼ h̄1,0 +

9∑
i=1

h̄1,iζ
i, and ρ̄1 ∼ ρ̄1,0 +

9∑
i=1

ρ̄1,iζ
i, (3.37)

valid in the neighbourhood of ζ = 0, to obtain

ū1(ζ) ∼ 1 +
225

4606
ζ2 − 233125

84860944
ζ4 +

7260453125

27751735072544
ζ6 +O(ζ8), (3.38a)

h̄1(ζ) ∼ 2 +
725

4606
ζ2 − 149375

21215236
ζ4 +

17243828125

27751735072544
ζ6 +O(ζ8), (3.38b)

ρ̄1(ζ) ∼ 5

14
− 3375

128968
ζ2 +

3646875

1188053216
ζ4 − 9978984375

24282768188476
ζ6 +O(ζ8). (3.38c)

Note that the coefficients of the above truncated series are directly related to some of

the terms given in (3.11).

3.3.3 Study of the limit ζ →∞

As was pointed out, there is interest in the behaviour of h̄1, ū1, ρ̄1 as ζ → ∞. Intro-

ducing a new independent variable t, so that ζ = et and dζ = etdt or dζ = ζdt, and by

noting that as ζ → ∞ ⇒ t → ∞, equation (3.36) are reformulated w.r.t to t to take

the following form

h̄1ū1(1− e2tρ̄2
1) = 2, (3.39a)

(ū2
1h̄1ρ̄

2
1)t + 8ū2

1h̄1ρ̄
2
1 =

1

2

52

142

[
8
(
1− e2tρ̄2

1

)
h̄2

1 +
((

1− e2tρ̄2
1

)
h̄2

1

)
t

]
, (3.39b)

(ū1h̄1ρ̄
2
1)t + 7ū1h̄1ρ̄

2
1 = 5ū1ρ̄1. (3.39c)

Proceed using the following ansatz:

ρ̄1 = ρ̂1e
−t, ū1 = û1e

2t
3 , h̄1 = ĥ1e

t, (3.40)
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for variables ū1, h̄1, ρ̄1 as t→∞ with ρ̂, ĥ, û being treated as constants. Starting with

equation (3.39a), by keeping only leading order terms as t→∞, it must hold that

ĥ1û1(1− ρ̂2
1) = 0 or ρ̂1 = 1. (3.41)

Then turning attention to equation (3.39c) to obtain that as t→∞

20û1ĥ1 = 15û1 or ĥ1 =
3

4
. (3.42)

Thus far ρ̂1, and ĥ1 have been obtained leaving one remaining task which is the

calculation of û1. Naturally we should resort to equation (3.39b) but the presence

of the term 1 − e2tρ̄2
1 on the r.h.s, indicates that no sensible result can be extracted

from the information gathered so far. The way to overcome this difficulty is quite

straightforward, an extension to the approximation for ρ̄1 needs to be obtained. Going

back to equation (3.39a) we can write

ĥ1û1e
5t/3(1− e2tρ̄2

1) ∼ 2 ⇒ (1− e2tρ̄2
1) ∼ 2

ĥ1û1

e−5t/3 ⇒

⇒ ρ̄1 ∼ e−t − 1

ĥ1û1

e−8t/3 as t→∞. (3.43)

Apply (3.43) to (3.39b) as t→∞, to obtain

û1 =

(
5

14

) 2
3

. (3.44)

Collecting, the following behaviour to first order is found as ζ →∞

ū1 ∼
(

5

14

) 2
3

ζ
2
3 , h̄1 ∼

3

4
ζ, ρ̄1 ∼

1

ζ
− 4

3

(
14

5

) 2
3

ζ−
8
3 , as ζ →∞. (3.45)

3.3.4 Approximation to second order

The inner solution is now extended to second order. Introducing once more the sought

form of asymptotic expansions given by (3.35) into equation (3.34a) but holding on to

the second order terms gives

A5ū1h̄1

(
1− ζ2ρ̄2

1

)
+ A5ū1h̄1

(
− 2ζ2ρ̄1ρ̄2A

P0 − ζ2ρ̄2
2A

2P0

)
+

+ A5
(
ū1h̄2A

P2 + ū2h̄1A
P1 + ū2h̄2A

P1+P2

)(
1− ζ2ρ̄2

1 − 2ζ2ρ̄1ρ̄2A
P0 − ζ2ρ̄2

2A
2P0

)
−

− ζ5
(
ū1h̄1 + ū1h̄2A

P2 + ū2h̄1A
P1 + ū2h̄2A

P1+P2

)(
1− ζ2ρ̄2

1 − 2ζ2ρ̄1ρ̄2A
P0 − ζ2ρ̄2

2A
2P0

)
= 2A5 − ζ5. (3.46)
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The leading order equation given in (3.36a) can be brought back by keeping terms of

O(A5), simply by reasoning that the unknown powers P0, P1 and P2 are all negative.

Proceeding to second order though is slightly harder and a more detailed study of the

equations is required, since full uncovering of the unknown powers is necessary. The

way to go is by noting that to the next order inhomogeneous terms ζ5 and ζ5ū1h̄1

(
1−

ζ2ρ̄2
1

)
must be taken into account so that the trivial solution is avoided. In doing so,

we arrive at the conclusion that the following constraints in terms of P0, P1 and P2

must be satisfied

P0 ≤ −5, P1 ≤ −5, P2 ≤ −5. (3.47)

With the aid of the above constraints, under the same philosophy and the use of (3.35)

into equations (3.34b) and (3.34c), it can be shown that a ‘meaningful’ set of equations

is obtained only when

P0 = −5, P1 = −5, P2 = −5. (3.48)

For the above values of P0, P1 and P2, it is easily found that equations to the next

order are given as

−ζ5ū1h̄1

(
1− ζ2ρ̄2

1

)
− 2ζ2ū1h̄1ρ̄1ρ̄2 +

(
ū1h̄2 + ū2h̄1

)(
1− ζ2ρ̄2

1

)
= −ζ5, (3.49a)

ζ
(
ū1ρ̄1

(
2ū1ρ̄2h̄1 + ū1ρ̄1h̄2 + 2ū2ρ̄1h̄1

) )
ζ
− ζ6

(
ū2

1ρ̄
2
1h̄1

)
ζ
− 13ζ5ū2

1ρ̄
2
1h1+

+8ū1ρ̄1

(
2ū1ρ̄2h̄1 + ū1ρ̄1h̄2 + 2ū2ρ̄1h1

)
= −1

2

52

142

[
8(1− ζ2ρ̄2

1)h̄2
1 + ζ

(
(1− ζ2ρ̄2

1)h̄2
1

)
ζ

]
+

+
1

2

52

142

[
16h̄1

(
h2 − ζ2

(
h̄2ρ̄

2
1 + h̄1ρ̄1ρ̄2

) )
+ 2ζ

(
h̄1

(
h̄2 − ζ2

(
h̄2ρ̄

2
1 + h̄1ρ̄1ρ̄2

) ))
ζ

]
,

(3.49b)

− ζ6ū1

(
ū1h̄1ρ̄

2
1

)
ζ

+ ζ
(
ū1h̄2h̄1ρ̄

2
1 + 2ū1h̄1ρ̄1ρ̄2

)
ζ
− 12ζ5ū1h̄1ρ̄

2
1+

+ 14ū1h̄1ρ̄1ρ̄2 + 7ū1h̄2ρ̄
2
1 = −5ζ5ū1ρ̄1 + 5

(
ū1ρ̄2 + ū2ρ̄1

)
. (3.49c)

Equations (3.49) do not admit exact analytic solution, therefore once more the local

analysis is performed at ζ → 0, while the behaviour of ū2, h̄2, ρ̄2 , in the limit ζ →∞
is examined. Beginning with the local analysis, the power series solution of the form

ū2 ∼ ū2,0 +
11∑
i=1

ū2,iζ
i, h̄2 ∼ h̄2,0 +

11∑
i=1

h̄2,iζ
i, and ρ̄2 ∼ ρ̄2,0 +

11∑
i=1

ρ̄2,iζ
i, (3.50)
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is once more assumed. The computed approximations are listed below

ū2(ζ) ∼ 443

1690
ζ5 +

285305

17125108
ζ7 − 533529490625

477371153555296
ζ9 +O(ζ11), (3.51a)

h̄2(ζ) ∼ 402

845
ζ5 +

234565

4281277
ζ7 − 528950768375

179014182583236
ζ9 +O(ζ11), (3.51b)

ρ̄2(ζ) ∼ 83

4732
ζ5 − 5212975

1438509072
ζ7 +

13637575915625

20049588449322432
ζ9 +O(ζ11), (3.51c)

valid as ζ → 0. It must be noted that the above truncated series, are necessary for

the supply of ICs around ζ = 0, when solving equations (3.36) and (3.49) numerically.

Turning onto the asymptotic behaviour of ū2, h̄2 and ρ̄2 as ζ →∞, by recollecting

the behaviour of the leading order variables on that limit (3.45), we shall proceed with

the following ansatz:

ū1 ∼
(

5

14

) 2
3

ζ
2
3 , h̄1 ∼

3

4
ζ, ρ̄1 ∼

1

ζ
− 4

3

(
14

5

) 2
3

ζ−
8
3 ,

ū2 ∼ û2ζ
17
3 , h̄2 ∼ ĥ2ζ

6, ρ̄2 ∼ ρ̂2ζ
7
3 as ζ →∞, (3.52)

with û2, ĥ2 and ρ̂2 unknown constants. Substituting (3.52) into equations (3.49) and

keeping leading order terms as ζ →∞ results in a 3× 3 system, listed below:

18λ2 + 27λ3ρ̂2 − 48λ2ĥ2 − 36 û2λ = 0,

252λ3ĥ2 + 81 û2λ
2 − 81λ3 = 0, (3.53)

−4800λ ĥ2 − 14112λ4 + 18816λ4ĥ2 + 28224λ3û2 + 1350λ2ρ̂2 + 1125λ = 0,

with λ = (5/14)2/3. From the solution of (3.53) û2, ĥ2 and ρ̂2 are easily obtained as

û2 =
5

48

(
14

5

) 1
3

, ĥ2 =
51

224
, ρ̂2 =

16

45

( 5

14

) 1
3
. (3.54)

Therefore the behaviour of the variables ū2, h̄2 and ρ̄2 as ζ →∞ is known and given

as

ū2(ζ) ∼ 5

48

(
14

5

) 1
3

ζ
17
3 , h̄2(ζ) ∼ 51

224
ζ6, ρ̄2(ζ) ∼ 16

45

( 5

14

) 1
3
ζ

7
3 as ζ →∞.

(3.55)
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3.4 The matching conditions

At this point a pause might be valuable, to allow a recollection of the transformations

on dependent and independent variables applied thus far, to take place. The starting

point was the nondimensional independent variable r ∈ (0, 1], representing the radius

of the circular disk, and dependent variables ρ(r), u(r) and h(r) representing nondi-

mensional density, velocity and height of the horizontal attached flow respectively. On

performing local analysis at the edge of the disc (r = 1) the following transformations

were found to be appropriate,

• r = 1− s5, A =
(

196a
25

)1/5

, u = ũs, h = h̃s4 and ρ = ρ̃2s2.

The above transformations enabled us to perform local analysis at s = 0, instead.

Furthermore, it was found that by disregarding the significance of A, i.e A = O(1),

the structure of the coordinate expansion for ρ̃(s), ũ(s) and h̃(s) achieves some limited

success in approximating the solution. When A is treated as it should be, a physical

parameter attaining large values, the resulting parametric expansions fail dramatically

to capture the behaviour of the solution. The collapse is attributed to the existence

of a boundary layer of thickness of O(1/a) located at the edge of the disc (r = 1) or

equivalently at s = 0. The presence of a boundary layer indicates that the problem

has to be treated as singular perturbation problem with a small parameter 1/A5. The

existence of a boundary layer required the introduction of a stretched variable ζ as is

usually the case, in addition to further scaling of the dependent variables, now ρ̃, ũ,

h̃, which were given as

• ζ = As, ũ = Aū, h̃ = h̄/A and ρ̃ = Aρ̄.

In this way it was found that to second order the inner asymptotic expansions take

the following form

ū(ζ) ∼ ū1 + A−5ū2, h̄(ζ) ∼ h̄1 + A−5 h̄2ρ̄(ζ) ∼ ρ̄1 + A−5ρ̄2. (3.56)

The above inner asymptotic expansions were constructed in the limiting procedure

ζ = O(1) and 1/a→ 0, in order to approximate the solution in the thin strip (boundary

layer) placed at the edge of the plate. The validity of these asymptotic expansions can
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be extended by making use of Kaplun’s Extension Theorem [77],[18], formulated

w.r.t the current problem3 as:

Theorem 1 Let ū(ζ, 1/a), h̄(ζ, 1/a), ρ̄(ζ, 1/a) be functions of coordinate ζ and a

small parameter 1/a. In addition, allow the following

ū(ζ, 1/a) =
k∑
j=0

ψj(1/a)xj(ζ) + ..., h̄(ζ, 1/A) =
k∑
j=0

φj(1/A)yj(ζ) + ...,

ρ̄(ζ, 1/a) =
k∑
j=0

µj(1/a)jνj(ζ) + ... (3.57)

to be asymptotic expansions of the Poincaré type valid on the interval ζ ∈ [ζ0, 1] ,

where ζ0 > 0 and 1 − ζ0 = O(1/a). Then the above are valid in an extended interval

ζ ∈ [ζ1, 1] such that 1− ζ1 = ε(1/a)→ 0 as 1/a→ 0 and 1/a� ε(1/a)� 1.

In other words the validity of the inner approximations is not restricted in the inner

region but can penetrate further into the left of the original domain of uniformity.

The new extended domain includes the famous overlap region. It is the existence of

this region that allows the matching procedure, since the inner asymptotic expansions

do not hold the monopoly of validity, in addition the outer asymptotic expansions are

valid in this region. Based now on Prandtl’s Matching rule, which can be thought of

as continuity to the sought solution in this region, we shall require that as 1/a→ 0

lim
ζ→∞

u(ζ) = lim
r→1

u(r), lim
ζ→∞

h(ζ) = lim
r→1

h(r), and lim
ζ→∞

ρ(ζ) = lim
ρ→1

u(r), (3.58)

In examining the limit ζ →∞ it was found that

ū(ζ) ∼ ū1 + A−5ū2 =

(
5

14

) 2
3

ζ
2
3 + A−5 5

48

(
14

5

) 1
3

ζ
17
3 , (3.59a)

h̄(ζ) ∼ h̄1 + A−5h̄2 =
3

4
ζ + A−5 51

224
ζ6, (3.59b)

ρ̄(ζ) ∼ ρ̄1 + A−5ρ̄2 =
1

ζ
− 4

3

(
14

5

) 2
3

ζ−
8
3 + A−5 16

45

( 5

14

) 1
3
ζ

7
3 . (3.59c)

Expressing equations (3.59a)-(3.59c) in terms of the original variables gives

u(r) ∼
[
(1− r) 1

3 +
7

24
(1− r) 4

3

]
a

1
3 , (3.60a)

3Even though here the theorem is applied to the inner asymptotic expansion, it is a general result
for asymptotic expansions, so that it holds for the outer asymptotic expansions.
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h(r) ∼ 3

4
(1− r) +

51

224
(1− r)2, (3.60b)

ρ(r) ∼ 1−
[8

3
(1− r)− 1

3 − 16

63
(1− r) 2

3

]
a−

1
3 +

+
[16

9
(1− r)− 2

3 − 64

189
(1− r) 1

3 +
64

3969
(1− r) 4

3

]
a−

2
3 . (3.60c)

The above being valid in a range of the form 1/a� 1− r � 1 for a� 1, will provide

the matching conditions with the outer expansions. Being more precise the above

conditions do provide the matching with the leading order terms for u and h, while

qualitative information is provided for ρ to the second order. Knowledge of the above

will be valuable in constructing the outer asymptotic expansions.

3.5 Semi-analytical solutions for the inner asymp-

totic expansions

Having obtained inner asymptotic expansions to second order, this section is dedi-

cated to the interpolation of the dependent variables ū1, ū2, h̄1, h̄2 and ρ̄1, ρ̄2. For the

interpolation, rational functions will be preferred over polynomial functions in order

to avoid unnecessary oscillations [11] . The construction of the rational functions

though, say Q(ζ)/M(ζ), is not straightforward. Caution is required not to neglect

the nature of the variables that are being interpolated. Recall that the validity of

the inner approximations is not restricted only for ζ = O(1), inner approximations

are also valid in the overlap region so that the behaviour of the dependent variables

on the limit ζ → ∞ somehow needs to be included in the analytical approximations.

Furthermore, local analysis at ζ = 0 provided the ICs for the numerical solution of

systems (3.36)–(3.49). Thus it is additionally important to incorporate that behaviour

into the approximations.

The methodology followed consists of three steps. Starting with the construction

of a function of the same limiting behaviour at ζ = 0 and ζ → ∞ as the dependent

variable under consideration, proceeding with a normalisation of the numerical solution

with the newly introduced function and finally interpolating the resulting normalised

function using a rational function.
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3.5.1 Approximation for ū1, h̄1 and ρ̄1

It was found that the behaviour of ū1 in the the two ‘extreme’ limiting values of ζ is

given as:

ū1(ζ) =

 1 as ζ → 0( 5

14

) 2
3
ζ

2
3 as ζ →∞.

(3.61)

We begin with the introduction of z, where

z =
ζ

ζ + 1
=

 0 as ζ → 0

1 as ζ →∞.
(3.62)

A function that has the same limiting behaviour as ū1 is listed below:

U1(ζ) = 1− z +
( 5

14

) 2
3
z ζ

2
3 . (3.63)

As it was discussed earlier this limiting behaviour has to be taken into account in the

analytical approximation. Thus ū1 is approximated as

ū1apr = U1ū1rat. (3.64)

A suitable rational function ū1rat was found to be

ū1rat = 1 +
(0.97796− 1.0764 z + 0.33330 z2) z (1− z)

1− 2.6042 z + 2.5885 z2 − 0.98384 z3
. (3.65)

In Figure 3.4, a comparison between numerical and analytical approximation is dis-

played. In a similar manner for h̄1 the following limiting behaviour was found

h̄1(ζ) =

 2 as ζ → 0
3ζ

4
as ζ →∞.

(3.66)

A function that captures this limiting behaviour is

H1 = 2− 2z + z
3ζ

4
. (3.67)

Using this information, h̄1 is approximated as

h̄1apr = H1h̄1rat, (3.68)

where h̄1rat is given by

h̄1rat = 1 +
(1.0218− 0.53137 z) z (1− z)

1− 2.0836 z + 1.5088 z2
. (3.69)
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A comparison between the approximate and numerical solution is plotted in Figure

3.4. Solving for ζ2ρ̄1, in equation (3.36a), to obtain

ζ2ρ̄2
1 = 1− 2

h̄1ū1

. (3.70)

Thus usage of the approximations obtained so far for ū1apr, h̄1apr allows for an approx-

imation for ρ̄1 as

ζ2ρ̄1apr = 1− 2

h̄1aprū1apr

. (3.71)

In Figure 3.4 the numerical solution obtained for ζ2ρ̄2
1 is compared with the analytical

approximation ζ2ρ̄2
1apr. Note that the oscillations evident as z → 0 are due to very

small numerical oscillations exaggerated by the fine-scale of the vertical axis. Errors

are typically of the order of 0.1% with a maximum below 1%.

3.5.2 Approximation for ū2, h̄2 and ρ̄2

The same methodology is now applied to the next order terms. Starting with ū2 it was

found that ū2 has the following asymptotic behaviour in the distinct limits of ζ → 0

and ζ →∞:

ū2(ζ) =


443

1690
ζ5 as ζ → 0

5

48

(
14

5

) 1
3

ζ
17
3 as ζ →∞.

(3.72)

Defining as U2, a function that contains the above limiting behaviour is:

U2 =
443

1690
ζ5 1

ζ + 1
+

5

48

(
14

5

) 1
3

z ζ
17
3 , (3.73)

the analytical approximation to ū2 will be of the form

ū2apr = U2ū2rat, (3.74)

where ū2rat was computed to be given as

ū2rat = 1 +
(0.93670− 0.18821 z) z (1− z)

1− 1.4630 z + 1.2882 z2
. (3.75)

Moving to h̄2 the following has been obtained thus far

h̄2(ζ) =


402

845
ζ5 as ζ → 0

51

224
ζ6 as ζ →∞.

(3.76)
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Once more, defining a function H2 which incorporates the above behaviour

H2 =
402

845
ζ5 1

ζ + 1
+

51

224
zζ6, (3.77)

the approximation for h̄2 will be given as

h̄2apr = H2h̄2rat, (3.78)

and

h̄2rat = 1 +
(0.98710− 0.29557 z) z (1− z)

1− 1.9856 z + 1.6486 z2
. (3.79)

Concluding for ρ̄2, equation (3.49a) can be simplified with the aid of equation (3.36a)

i.e.

ρ̄2 =

(
ū1h̄2 + ū2h̄1

)(
1− ζ2ρ̄1

2
)
− ζ5

2ζ2ū1h̄1ρ̄1

. (3.80)

Direct application of the analytical approximations (ū1apr,ū2apr, ρ̄1apr and h̄1apr, h̄2apr)

obtained so far into (3.80) gives an analytical approximation for ρ̄2.

The performance of the second order analytical approximations are given in Figure

3.5. Further maximum absolute and relative errors are listed on Table 3.1

f max|f − fap| max
|f − fap|
|f|

ū1 6.5027e-03 1.2248e-03
ū2 9.5122e-03 2.6580e-03
h̄1 3.1893e-02 1.2445e-03
h̄2 1.9899e-02 4.6018e-03
ρ̄1 9.5613e-01 2.7131e-03

Table 3.1: Maximum values of Absolute and Relative Erros of the approximations. The

values are obtained for z ∈ [10−30.97143].
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Figure 3.4: Comparison of the numerical solutions with analytic approximations, while
z ∈ [10−3, 0.97143]. The oscillations evident as z → 0 are due to very small numerical
oscillations exaggerated by the fine-scale of the vertical axis.
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z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3
x 10
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Figure 3.5: Comparison of the numerical solutions with analytic approximations, while
z ∈ [10−3, 0.97143]. The oscillations evident as z → 0 are due to very small numerical
oscillations exaggerated by the fine-scale of the vertical axis.
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3.6 Outer asymptotic expansions a→∞

We begin by recalling that the system of the governing equations in nondimensional

form was found to be given as

ruh(1− ρ) = 1− r2,

d

dr

[
ru2hρ

]
=

1

2
ar

d

dr

[
(1− r2)h2

]
,

d

dr
[ruhρ] = −r√ρu.

In this section the asymptotic analysis of the governing equations is based on the

distinguished limit a → ∞ and r = O(1). In seeking outer asymptotic expansion

in the limit a → ∞, the matching with inner solutions (3.60) suggests the following

behaviour to leading order

u(r) ∼ a
1
3u1(r), h(r) ∼ h1(r), ρ(r) ∼ 1− a−

1
3ρ1(r). (3.81)

Further examination of the matching conditions indicate that when trying to extend

the approximation to second order, available information exists only for the density

i.e. O(a−2/3). Therefore the general form of the outer asymptotic solutions to second

order can be assumed to be given as

ρ(r) ∼ 1−a−
1
3ρ1(r)+a−

2
3ρ2(r), u(r) ∼ a

1
3u1(r)+aPuu2(r), andh(r) ∼ h1(r)+aPhh2(r),

as a→∞with r fixed whilePu <
1

3
andPh < 0. (3.82)

Applying the proposed form of the asymptotic expansions given in (3.82) into the

algebraic equation (3.5c ) gives

r
(
u1h1ρ1 − u1h1ρ2a

− 1
3

)
+ r
(
u1h2a

1
3

+Ph + u2h1a
Pu + u2h2a

Pu+Ph

)
×

×
(
ρ1a

− 1
3 − ρ2a

− 2
3

)
= 1− r2. (3.83)

By keeping in mind the constraints Pu < 1/3, and Ph < 0, it is not hard to see that

to leading order, terms of O(1) must be retained. When considering the terms that

must be kept to the next order approximation, a more careful analysis is required.

Contenders for the second order approximation must be terms having either one of

the the following orders O(aPu−1/3) , O(aPh) and O(a−1/3), a combination of these
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or all of them. Distinguishing between different cases, we start by assuming that one

term dominates over the others. For example lets say Pu − 1/3 > Ph > −1/3, in

which case to second order the resulting equation should be given as u2h1ρ1 = 0.

Similar homogeneous equations which would lead to the trivial zero solution would be

obtained by keeping only one dominant term. Considering now the option that two

terms balance and dominate over the remaining one, i.e say that Pu−1/3 = Ph > −1/3,

which would result to second order that the following is valid, ρ1(u1h2 + u2h1) = 0

or simply u1h2 + u2h1 = 0. To see where this causes a problem another governing

equation needs to be brought in. By substituting (3.82) in the conservation of mass

equation (3.121) the following is obtained[
r
(
u1h1a

1
3 + u1h2a

1
3

+Ph + u2h1a
Pu + u2h2a

Pu+Ph

)(
1− ρ1a

− 1
3 + ρ2a

− 2
3

)]
r

=

= −r
(
u1a

1
3 + u2a

Pu − 1

2
u1ρ1 −

1

2
u2ρ1a

− 1
3

+Pu

)
. (3.84)

Note that the r.h.s term in equation (3.84) is acquired after the following approximation

√
ρ ∼

(
1− a−

1
3ρ1 + a−

2
3ρ2

)1/2 ∼ 1− 1

2
ρ1a

− 1
3 +O(a−

2
3 ) as a→∞. (3.85)

To leading order, we shall hold on to terms of a1/3, while to second order the resulting

equation will be [r(u1h2 + u2h1)]r = −ru2, but by recalling that (u1h2 + u2h1) = 0

this would result again in a trivial solution u2 = 0. The concluding remark is that all

terms must balance and be included. Therefore the following must hold

Pu− 1

3
= Ph = −1

3
or Pu = 0 and Ph = −1

3
. (3.86)

Now the outer asymptotic structure to second order has been established to be of the

following form

ρ(r) ∼ 1− a−
1
3ρ1(r) + a−

2
3ρ2(r), u(r) ∼ a

1
3u1(r) + u2(r) and

h(r) ∼ h1(r) + a−
1
3h2(r) as a→∞. (3.87)

3.6.1 Approximation to leading and second order

Knowledge of the form of the asymptotic expansions to second order enables us to pro-

ceed. Therefore, substituting the sought form of the solution (3.87) into the governing

equations (3.5), to obtain as a→∞ to leading order

ru1h1ρ1 = 1− r2 (3.88a)
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(
ru2

1h1

)
r

=
1

2
r

d

dr

[
ρ1h

2
1

]
(3.88b)(

ru1h1

)
r

= −ru1, (3.88c)

while to second order the governing equations will be given as

−u1h1ρ2 + (u1h2 + u2h1)ρ1 = 0 (3.89a)(
r
(
u2

1(h2 − h1ρ1

)
+ 2u1u2h1

))
r

=
1

2
r

(
2ρ1h1h2 − ρ2h

2
1

)
r

(3.89b)(
r
(
u1 (h2 − h1ρ1) + u2h1

))
r

= −r
(
u2 −

1

2
u1ρ1

)
. (3.89c)

The above listed system of equations does not admit an exact analytical solution, thus

a numerical approach is required. The problem though appears when one considers

the ICs under which the system will be solved. For the system of equations to leading

order (3.88), ICs for u1, h1 and ρ1, are provided by the Matching Conditions obtained

in studying the limit ζ →∞ for the inner solution. But what about the second order

dependent variables? Matching conditions do provide information to second order only

for the dependent variable ρ2, but indicate nothing about u2 and h2. The way to over-

come this difficulty and to obtain the additional information when Prandtl’s rule and

the intermediate layer expansions fail, is a subject of the next section. The principle

is simple, in requiring the limiting behaviour of our dependent variables at r → 1−,

local analysis at r = 1 can provide answers to the questions asked. Furthermore by

making the assumption that no prior knowledge is on hold for leading order terms,

local analysis will serve as a validation tool to what has been derived so far w.r.t the

Matching Conditions.

Once ICs for all dependent variables are known, the system of equations (3.88)–

(3.89) is solved numerically. The numerical solution obtained is then interpolated

using once more rational functions. In that way semi-analytical approximations for

the outer asymptotic expansions, is accomplished.

3.6.2 Obtaining the matching conditions for u2, h2

Start with the introduction of a new independent variable ξ3 = 1− r, so that study of

the limit r → 1 is equivalent to the limit ξ → 0. Leading order equations (3.88) are

written in terms of ξ as

(1− ξ3)u1h1ρ1 = 2ξ3 − ξ6 (3.90a)
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(
(1− ξ3)u2

1h1

)
ξ

=
1

2
(1− ξ3)

(
ρ1h

2
1

)
ξ

(3.90b)(
(1− ξ3)u1h1

)
ξ

= 3ξ2(1− ξ3)u1. (3.90c)

Disregarding knowledge of the form of the dependent variables u1 , h1 and ρ1 as ξ → 0,

we shall assume the following behaviour

u1 ∼ αξk1 , h1 ∼ βξk2 , ρ1 ∼ γξk0 , as ξ → 0. (3.91)

Substituting (3.91) into (3.90) and keeping leading order terms, we obtain the following

values for α, β, γ, k0 k1 and k2, as ξ → 0

α = 1, β =
3

4
, γ =

8

3
while k0 = −1, k1 = 1, k2 = 3. (3.92)

So that (3.91) is given as

u1 ∼ ξ = (1− r) 1
3 , h1 ∼

3

4
ξ3 =

3

4
(1− r), ρ1 ∼

8

3
ξ−1 =

8

3
(1− r)− 1

3 , as ξ → 0. (3.93)

A comparison now of the Matching Conditions (3.60) with (3.93) is encouraging. The

leading order terms obtained by performing local analysis at r = 1 or ξ = 0, results

in the leading order terms obtained after the study of the limiting behaviour of inner

solutions as ζ →∞. A similar approach is now applied to the second order equations

(3.89) which in terms of the new independent variable ξ are given as

−u1h1ρ2 + (u1h2 + u2h1)ρ1 = 0 (3.94a)(
(1− ξ3)

(
u2

1(h2 − h1ρ1

)
+ 2u1u2h1

))
ξ

=
1

2
(1− ξ3)

(
2ρ1h1h2 − ρ2h

2
1

)
ξ

(3.94b)(
(1− ξ3)

(
u1 (h2 − h1ρ1) + u2h1

))
ξ

= 3ξ2(1− ξ3)
(
u2 −

1

2
u1ρ1

)
. (3.94c)

On the assumption that to leading order as ξ → 0, the dependent variables attain the

following form

u1 ∼ αξk1 , h1 ∼ βξk2 , ρ1 ∼ γξk0 , u2 ∼ δξk3 , h2 ∼ εξk4 , ρ2 ∼ λξk5 , as ξ → 0, (3.95)

then substituting and keeping leading order and balancing powers gives

k3 = 0, k4 = 2 and k5 = −2. (3.96)
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In addition to the 3× 3 system

γ (αε + δ β) = λαβ

−α2β γ + 2αδ β + α2ε = 1/2β (2γ ε− λβ) (3.97)

−αβ γ + δ β + αε = −1

2
γ α + δ

or

−9λ + 32ε + 24δ = 0

32ε− 9λ− 48δ = −64 (3.98)

12ε− 3δ = 8,

solution of the above gives

δ = ε =
8

9
and λ =

448

81
. (3.99)

The ICs for the second order dependent variables will thus be given as

u2 =
8

9
, h2 =

8

9
ξ2 =

8

9
(1− r) 2

3 , ρ2 =
448

81
ξ−2 =

448

81
(1− r)− 2

3 as r → 1−. (3.100)

The system of equations (3.90)–(3.94) can now be solved numerically subject to con-

straints given in (3.93) and (3.100). Further on, analytical approximations to the

numerical solution can easily be obtained using interpolation via rational functions

which is a subject that is dealt with in the following section.

3.6.3 Semi-analytical results for the outer approximations

This section is finalised with the construction of analytical approximations for the de-

pendent variables of the outer asymptotic expansions. The methodology used, mimics

the one employed, when approximations were performed for the inner solutions. The

dependent variables are normalised with their limiting behaviour as ξ → 0, so that in

that limit the resulting normalised function attains a limiting value of one. Interpola-

tion using rational function is then applied to the normalised function.

Start with the leading order terms, thus for u1, it is found that

u1apr = ξ

(
1 +

(0.00753 + 0.23197 ξ − 0.15742 ξ2) ξ2

1− 0.97077 ξ − 0.00568 ξ2

)
(3.101)



CHAPTER 3. NUMERICAL SEMI-ANALYTICAL SOLUTION 90

while h1 is approximated by

h1apr =
3

4
ξ3

(
1 +

(−0.0019710 + 0.27719 ξ − 0.20403 ξ2) ξ2

1− 0.97251 ξ − 0.016482 ξ2

)
(3.102)

Finally ρ1 can be expressed explicitly using equation (3.90a)

ρ1 =
2ξ3 − ξ6

(1− ξ3)u1h1

. (3.103)

Therefore by application of the approximations u1apr and h1apr into (3.90a) directly

leads to the approximate solution ρ1apr. Proceeding to the second order dependent

variables starting with u2, which is approximated by

u2apr =
8

9

(
1 +

(0.02484 + 0.06601 ξ − 0.06121 ξ2) ξ2

1− 1.5418 ξ + 0.55062 ξ2

)
(3.104)

whereas h2 is approximated by

h2apr =
8

9
ξ2

(
1 +

(−0.01411 + 0.21671 ξ − 0.08928 ξ2) ξ2

1 + 0.25291 ξ − 1.2364 ξ2

)
. (3.105)

Concluding, ρ2 is given using equation (3.89a) as

ρ2 = ρ1

(
h2

h1

+
u2

u1

)
. (3.106)

Therefore utilisation of the analytical approximations found so far, are enough for the

approximation for ρ2 to be made.

The behaviour of the leading order analytical approximations when compared with

numerical is given in Figure 3.6, while Figure 3.7 presents the behaviour of second order

analytical approximations. Finally in Table 3.2 the maximum values of absolute and

relative errors of the analytical approximations is presented.

max|f − fap| max
|f − fap|
|f|

u1 6.9077e-03 3.5319e-03
h1 5.0843e-03 3.7125e-03
ρ1 1.8480e-02 7.2051e-03
u2 2.7394e-03 1.6206e-03
h2 1.7019e-03 1.1758e-03
ρ2 4.213e-02 9.4458e-03

Table 3.2: Maximum values of Absolute and Relative Errors of the approximations. Values
are obtained while ξ ∈ [10−4, 0.9]. It must be noted that the maximum absolute error for ρ2

is obtained for ξ ∈ [0.1, 0.9], since it is singular at ξ = 0 (3.106).
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Figure 3.6: Comparison of the numerical solutions with analytic approximations, while
ξ ∈ [10−4, 0.9].
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Figure 3.7: Relative Error of the approximations while ξ ∈ [10−4, 0.9].
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3.7 Global solution

The chapter is finalised with the construction of a global solution. So far in studying

the flow analytically as a → ∞, a three layer structure has been uncovered (Figure

3.8). For the region around the centre of the disc r = 0, a leading order analytical

approximation has been provided, being valid as r → 0. This qualitative information

serves as an indication of the model behaviour in the region where it fails around r = 0.

The main analytical results though were obtained in the remaining two layer regions

which are of primary interest. For the boundary layer structure, inner asymptotic

expansions valid in a thin strip of thickness 1− r = O(1/a) positioned at edge of the

plate where obtained as

u(ζ) ∼ ζ(ū1 +A−5ū2), h(ζ) ∼ ζ4

A5
(h̄1 +A−5h̄2), ρ(ζ) ∼ ζ2(ρ̄1 +A−5ρ̄2)2, (3.107)

while outer asymptotic expansions in the final remaining distinguished layer of thick-

ness 1− r = O(1) were found to be given as

u(r) ∼ a
1
3u1 + u2, h(r) ∼ h1 + a−

1
3h2, ρ(r) ∼ 1− a−

1
3ρ1 + a−

2
3ρ2. (3.108)

From Kaplun’s extension theorem it is known that the local character of validity

of these approximations can be extended to include an intermediate region (overlap

region), where both inner and outer expansions are valid. Nevertheless even after

extension of the domain of their validity, distinguished regions are still present, so that

a global solution cannot be attained by a single usage of inner or outer asymptotic

expansions.

It is natural to expect that a global solution needs to implement information from

both inner and outer asymptotic expansion. That is achieved through the uniform

valid composite solution, valid for 1 − r = O(1/a) and 1 − r = O(1) obtained in the

following way as

u(r, 1/a) = uouter + uinner − ucommon,

h(r, 1/a) = houter + hinner − hcommon, (3.109)

ρ(r, 1/a) = ρouter + ρinner − ρcommon.

Thus a global solution, uniformly valid in the whole domain of interest can be obtained

by summing inner and outer asymptotic expansions and subtracting their common
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Figure 3.8: Schematic diagram of the asymptotic structure for large Richardson number.
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part. The ‘common part’ is a result of re-expansion of either outer or inner solution

in the overlap region. The overlap region can be defined in terms of the original

independent variable as

1− r =
( Θ

η(A)

)5

, (3.110)

or in terms of the stretched independent variable as

s =
Θ

η
or ζ =

ΘA

η
, (3.111)

where Θ = O(1), and 1� η � A. Once the overlap region is established we proceed

with the introduction of the intermediate independent variable Θ into outer or inner

asymptotic expansions, followed by re-expansions for η � 1 or η � A, equivalently.

The result of either re-expansion would result to the common part.

Looking back at the procedure followed for obtaining the matching conditions to

first order approximation, the limit ζ → ∞ was studied. That limiting procedure is

no different mathematically, from expressing the inner asymptotic expansions via the

intermediate independent variable Θ, and re-expanding, while keeping in mind that

Θ = O(1) and A� η. To see that let us consider the inner asymptotic expansions for

u, i.e. u(ζ, 1/A) ∼ ζ(ū1 + A−5ū2). For the leading order term ū1 an approximation

was found to be given as ū1app = U1ū1rat, where

U1(ζ) = 1−z+
( 5

14

) 2
3
z ζ

2
3 and ū1rat = 1+

(0.97796− 1.0764 z + 0.33330 z2) z (1− z)

1− 2.6042 z + 2.5885 z2 − 0.98384 z3
.

Introducing the overlap variable Θ into U1 while recalling that z = ζ/(ζ + 1) to get

U1 = 1−
ΘA
η

ΘA
η

+ 1
+
( 5

14

) 2
3

ΘA
η

ΘA
η

+ 1
ζ

2
3 . (3.112)

Re-expanding the z term for η � A or η/A� 1

z =

ΘA
η

ΘA
η

+ 1
=

1

1 + η
ΘA

∼ 1− η

ΘA
+O

(( η

ΘA

)2
)

+ · · · . (3.113)

Thus U1 and ū1rat can be found to be given to leading order as

U1 ∼
( 5

14

) 2
3

(
ΘA

η

) 2
3

and ū1rat ∼ 1. (3.114)

Thus the leading order term for the inner expansion can be written as

ζū1 ≈ ζU1ū1rat ∼
( 5

14

) 2
3
A

5
3

(Θ

η

) 5
3

= a
1
3 (1− r) 1

3 . (3.115)
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Repeating the same procedure to second order to obtain that

A−5ζū2 ≈ A−5ζU2ū2rat ∼
7

24
a

1
3 (1− r) 4

3 . (3.116)

Thus re-expansion of the inner asymptotic solution via the intermediate variable re-

sulted in nothing other than the matching condition to first order with the outer

solution for u obtained in equation (3.60a). To obtain the matching condition for u

to second order resolving to the outer asymptotic equations was necessary where local

analysis was performed at r = 1 or, more accurately, after the introduction of a new

independent variable ξ as ξ3 = 1 − r, local analysis was carried around ξ = 0. Once

more this is an equivalent procedure to rewriting the outer asymptotic expansions

in terms of the intermediate variable Θ and re-expanding for η � 1. For the outer

asymptotic expansions for u (i.e . u(r) ∼ a
1
3u1 +u2) to leading order an approximation

was found to be given as

u1apr = ξ

(
1 +

(0.00753 + 0.23197 ξ − 0.15742 ξ2) ξ2

1− 0.97077 ξ − 0.00568 ξ2

)
Now ξ in terms of the independent intermediate variable is written as

ξ =

(
Θ

η

) 5
3

(3.117)

Thus it is straightforward to see that

u1apr ∼ ξ =

(
Θ

η

) 5
3

= (1− r) 1
3 for η � 1. (3.118)

The above result is the common part of inner and outer asymptotic expansions to

leading order. To obtain the common part to second order the same procedure need

to be applied to the second order term u2, which easily leads to the result given in

equation (3.100) i.e u2 ∼ 8/9.

It is thus clear that the common part of inner and outer asymptotic expansions had

already been obtained, in the process of finding the matching conditions. Therefore

introduction of intermediate variable and re-expansion of inner or outer asymptotic

expansions is unnecessary, whereas the matching conditions to leading and second

order can safely be presumed to constitute the common part. In that way the uniformly

valid composite solutions for the dependent variable u is given as

uuva = uinner + uouter −
8

9
− a

1
3

(
(1− r) 1

3 +
7

24
(1− r) 4

3

)
(3.119a)
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while for h

huva = hinner + houter −
3

4
(1− r)− 51

224
(1− r)2 − a−

1
3

8

9
(1− r) 2

3 . (3.119b)

Finally, a uniformly valid asymptotic expansion for ρ can be easily obtained, by solving

the original algebraic model equation explicitly for ρ, and introducing the composite

solutions for u and h, to get

ρuva ∼ 1− 1− r2

ruuvahuva

. (3.120)

3.7.1 Behaviour of the global approximations

The qualitative behaviour of the global approximations can be investigated when com-

pared to the numerical solution for large varying values of Richardson number a. In

Figures 3.9, 3.10 and 3.11 a comparison of the composite solution for u, h and ρ is pre-

sented equivalently w.r.t the numerical solution while a = 2, 27, 10i where i = 3, 4 . . . 6.

Overall the accuracy of the uniform approximations built on for large values of a is

rather satisfying over the domain of interest r ∈ [1 , 0.1]. To quantify this, in Figures

3.12, 3.13, presentation of relative and absolute error of the approximation is given,

while in Table 3.3 maximum and minimum values of relative and absolute error is

given for the approximations for different values of a.
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|u− uuva| |h− huva| |ρ− ρuva|
a max min max min max min

2 3.2791e-01 7.9698e-03 3.0969e-03 3.7171e-05 9.6612e-02 9.4762e-04
128 2.2993e-01 7.1008e-03 7.7751e-04 2.6902e-05 3.4830e-02 2.1428e-04
103 2.4191e-01 8.6443e-03 4.8058e-04 9.1370e-06 1.4367e-02 1.0189e-04
104 3.1259e-01 6.6132e-03 6.0314e-04 1.3720e-05 4.7290e-03 3.1219e-05
105 5.0019e-01 5.3149e-03 6.7819e-04 1.1485e-05 1.4815e-03 2.9740e-05
106 8.5832e-01 2.4580e-02 6.9640e-04 1.9391e-07 2.6713e-04 1.2296e-06
107 1.1972e+00 4.5682e-04 7.1656e-04 5.0636e-08 8.1403e-05 1.0194e-08
108 3.1641e+00 3.5382e-03 7.1559e-04 8.0099e-09 2.9753e-05 1.9559e-06

|u− uuva|
|u|

|h− huva|
|h|

|ρ− ρuva|
|ρ|

a max min max min max min

2 7.6897e-02 8.2515e-03 1.0397e-01 1.4413e-04 1.0040e+00 4.6925e-03
128 1.9682e-02 3.0060e-03 5.2063e-02 1.4880e-04 1.0647e-01 3.8651e-04
103 1.1332e-02 2.0461e-03 3.1435e-02 6.4988e-05 2.7282e-02 1.4108e-04
104 7.1145e-03 8.0598e-04 1.7296e-02 1.1469e-04 6.5851e-03 3.6687e-05
105 5.3907e-03 3.4391e-04 9.4924e-03 1.0634e-04 1.7648e-03 3.2552e-05
106 4.3353e-03 7.1574e-04 4.1216e-03 2.8066e-06 2.8999e-04 1.2929e-06
107 2.8130e-03 2.3059e-06 4.1225e-03 3.9802e-06 8.2375e-05 1.0512e-08
108 4.9494e-03 3.8481e-06 4.1303e-03 1.8678e-06 2.9941e-05 1.9671e-06

Table 3.3: Max-Min values of relative and absolute error for the approximations while
r ∈ [0.1, 0.97].
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Figure 3.9: Behaviour of the uniform valid composite for u when compared to the numerical
one, for large values of Richardson number.
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Figure 3.10: Behaviour of the uniform valid composite for αh when compared to the nu-
merical one, for large values of Richardson number.
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3.8 Summary

Over the last two chapters efforts were concentrated on the development of a theoretical

model (termed as horizontal plume) for the description of the gross properties of

horizontal buoyant attached currents, present above large are fires, as well as with its

solution. The model was obtained after the application of the conservation principles

of mass, momentum and energy, in addition to the assumptions of top hat formalism

and an entrainment hypothesis, as analytically presented in Chapter 2. The resulting

model equations were found to be given in their dimensionless form as

d

dr
[rρuh] = −r√ρu,

d

dr
[rρu2h] =

1

2
ar

d

dr

[
(1− ρ)h2

]
,

ruh(1− ρ) = 1− r2,

subject to initial conditions (ICs) given as

ρ(1) = u(1) = h(1) = 0.

Furthermore the dimensionless parameter a, present in the governing equations and

termed as the Richardson number for the horizontal flow, was shown to be proportional

to the radius of the circular area considered. Since the focus is on describing the flow

above large area fires, this implies that a has to be treated as a large parameter.

In Chapter 3 the focus was directed towards the solution of the horizontal plume

equations. Since an exact closed form solution does not exist for the DAE, a numerical

as well as an asymptotic study in the limit a→∞ was carried out. In what concerns

the numerical solution, due to a singularity exhibited at r = 1, local analysis had to

be performed for the approximation of the solution at that point, before initiation

of the numerical integration. Regarding the asymptotic study in the limit a → ∞,

the problem was treated as a singular perturbation problem, since a boundary layer of

thickness O(1/a) was shown to be located in the neighbourhood of r = 1. Second order

inner and outer asymptotic expansions were obtained, and a second order uniform valid

semi-analytical approximation was constructed. Closing, the numerical and the semi-

analytical approximations were shown to be in excellent agreement for values of a

ranging from 102 to 106.



Chapter 4

Heated Horizontal Circular Plates

4.1 Prologue

In the following two chapters we diverge from the work done so far in order to revisit a

classic problem, that of laminar natural convection above heated horizontal surfaces,

or indirect natural convection after borrowing the terminology of [80]. Reasons be-

hind this deviation arose naturally whilst still in the course of closing the theoretical

model for the horizontal plume. Clearly it is the same physical mechanism that drives

boundary layer flow. Absence of a buoyancy component along the surface means that

the flow is accelerated by a buoyancy induced pressure gradient [69]. The fluid being

lighter in the vicinity of the hot plate results in a reduced pressure gradient in the

boundary layer and therefore a reduced pressure. The pressure drop along the plate

direction translates to a negative transverse pressure gradient caused by a positive

transverse temperature gradient (fluid heated by the plate) [36], [28],[80]. Further, as

difficulties manifested throughout several attempts in modelling the region close to

the centre of the circular plate, and thus the transition of the horizontal to vertical

plume, an impression came on the scene that valuable lessons could be obtained after

the study of the laminar limit. Finally, at the time, discussions were ongoing towards

an experiment that would test the theoretical model of the horizontal plume model

and assist in its improvement. The design of the ‘hot plate’ experiment offered the

prospect for the laminar limit to be studied, so the task was pursued.

Historically the first analysis of a free convective flow adjacent to heated or cooled

horizontal plates is due to Stewartson [89], going back as far as 1958. By considering an

105
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isothermal plate with one leading edge (the semi-infinite plate) thus removing a char-

acteristic length, and adopting the Boussinesq approximation he derived the boundary

layer equations for the flow and obtained similarity solutions. His conclusions though

were erroneous due to a sign mistake in the transverse momentum equation. It took

seven years for his analysis to be corrected by the work of Gill et al [28], that went on

to include variable temperature (power law) along the plate, and to correctly conclude

that boundary layer type flow only exists on a heated plate facing upwards or a cooled

plate facing downwards. The self similar equations were studied in detail and accom-

panied by experiments by Rotem and Claaseen [74], where in addition the asymptotic

cases of large and small Prandtl number was taken into consideration, and by Pera

and Gebhart [67], where effects of small inclination were studied as a perturbation of

the flow from the horizontal. In both cases a boundary layer flow near the edge of the

plate was validated, using Schlieren photography in [74] and a Mach-Zehnder interfer-

ometer in [67] where in addition it was shown that separation occurs for local Grashof

number Gr1/3
x > 80 for a horizontal plate, while it was observed that separation is

delayed when the plate is inclined.

Patterns of free convection above horizontal heated plates of different shape were

studied in the experiment carried out by Husar and Sparrow [35], with the aid of

electrochemical flow visualisation technique. They found that in the case of a square,

a rectangle, or an equilateral triangle plate, the flow field has a partitioned character

and that among partitions the flow can be considered independent. The partition of

the flow field happens to almost correspond to the bisectors of the angles along which

there is no flow, Figure 4.1. The origins of the partition can be explained as fluid

‘simultaneously’ leaving the different edges of the plate and moving inwards in parallel

paths normal to the edge. Now as opposing streams approach the bisectors their paths

become wavy and meandering to a vertical buoyant plume having as line source the

bisectors. When changing the geometry of the plate to circular they found that the

character of the flow is slightly different. Now there are no partition lines while the

paths of the fluid, which is accelerating towards the centre, are convergent rather than

parallel. The central region of the plate is dominated by a buoyant plume. It can

be argued though that their conclusion w.r.t circular plates can be viewed differently,

i.e. the flow is partitioned into two concentric regions, the outer being dominated by
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indirect natural convection (attached flow) and the inner by an axisymmetric buoyant

plume, while the radius of the inner region must somehow be dependent on the Grashof

number of the flow. Adopting this viewpoint resembles our plume theoretical model.

: Partition lines for the flow field  

(a) (b)

(c) (d)

Fluid path 

         Area of 
   Buoyant Plume

Figure 4.1: Synopsis of the experiment of [35] using heated plates of different geometry.
Parallel paths normal to the edges of inward moving fluid is observed for (a), (b) and (c)
with convergent paths for (d). Vertical buoyant currents result above the bisectors, or in the
concentric region of the circular plate.

A more recent study of the flow field above rectangular plates (water used as the

test fluid) is due to Kitamura and Kimura [48]. Their results showed that the flow

field can be divided into four regions, starting with a laminar boundary layer located

at the edge of the plate followed by a lengthy streaky transitional flow region which is

marked with a three dimensional separation of heated fluid and the attachment of cold

fluid downstream of the separation. A region where turbulence has fully dominated

follows, while as the centerline of the plate is approached the final distinctive region is

uncovered, that of collision. In investigating turbulence transition phenomena above
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horizontal plates, Kitamura et al [47] carried out an unsteady 3D numerical simulation

of the full Navier-Stokes equations coupled with the energy equation under the Boussi-

nesq approximation accompanied by an experiment. Computations uncovered that the

undertaking of transition to turbulence happens in the following manner. A laminar

boundary layer is located at the vicinity of the edge of the plate while downstream

and due to unstable stratification a vertical exchange of hot and cold fluid takes place

with the appearance of longitudinal vortices. Vortices become irregular as they now

grow larger further downstream and consequently parts of them breakup and separate

from the surface. Moving on and the vortices are fully distorted and turbulence is

dominating. Experimental results supported the above conclusions.

Drawn in by the peculiar flow patterns above circular disks shown in [35], Kita-

mura and Kimura [49] carried out an experiment on the convection of air and water

induced by isothermally upward-facing horizontal heated disks. Focusing initially on

the visualisation of the flow field (dye for water, smoke for air) above the disks, it was

found that for Rayleigh numbers (length scale taken to be the diameter D) smaller

than 8×105−106 for water and (1−2)×106 for air, the flow remains laminar all over

the plate and separates at the centre of the plate giving rise to a buoyant plume. On

the other hand, exceeding of the above stated values results in separation and the on-

set of turbulence taking place at distance rs < D/2. Visualisations showed that when

critical values of Rayleigh number are surpassed, filaments are formed at distance rs

from the circumference of the disk which detach in a three dimensional manner and rise

towards the centre of the plate, Figure 4.2. They found that the radial distance and

the peripheral pitches of separation are independent of the diameter and that there

is a monotonic decrease with the temperature scale defined as the temperature of the

plate minus the ambient. Further they observed that these lengths can be predicted.

Therefore there must be a regularity in the separation, using Rayleigh numbers having

as length scales rs and pθ. In what concerns the onset of turbulence, responsibility is

attributed once more to longitudinal vortices having axis parallel to the flow direction.

A rather detailed analysis for heated semi-infinite plates is given by Jones [38]. By

treating small inclination of O(Gr−1/5) positive1 and negative and as a perturbation

to the horizontal, he went on to obtain series solutions valid at the edge of the leading

1Positive inclination meaning that the leading edge is at the lowest point
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            D

sr

θ
p

Figure 4.2: Structure of the flow for Rayleigh number above critical values as observed
by [49]. The diameter of the plate is D, rs is the mean radial distance of the separation,
pθ = 2πD/n is the peripheral pitches of separation, while n is the total number of separations.

edge of the plate and far away from it (only for positive inclination). Further, he

allowed departures from similarity by numerically solving the non similar PDEs. His

results show that for negative inclination, separation of the flow occurs which is not

accompanied by a singularity in the solution of the equations, while flow reversal along

the plate develops after the separation point. For the case of positive inclination, the

flow far away from the leading edge attains the behaviour of classic free convection.

Ackroyd [2] revisited the problem of the semi-infinite near horizontal plate, only he

discarded the Boussinesq approximation for the inclusion of variable fluid property

effects in the formulation. His motivation was based on poor agreements of correlations

involving the Nusselt and Grashof (equivalently Rayleigh) number, between theoretical

predictions and experiments, mainly after the mass transfer experiment of [29]. First

order boundary layer theory predicts the heat transfer rates to be Nu ∝ Gr1/5, while

most experimental results conclude to Nu ∝ Gr1/4. In his analysis he showed that

the introduction of variable properties alters the constant of proportionality and thus

improves the predictions of boundary layer theory. He further went on to show that

stress work effects and the influence of pressure on density are second order effects
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with still little significance at such orders.

The first analytical study of natural convection above isothermal circular discs is

due to Zakerullah and Ackroyd [101]. Under the same philosophy as in [2], variable

fluid properties were assumed and series solutions valid near the edge of the plate were

obtained. Merkin [56] went on to extend their analysis by solving numerically the

full boundary layer equations (making the Boussinesq approximation) marching from

the edge of the disk and approaching almost the centre of the disk and providing a

detailed analysis for the flow in the region of the centre of the disk. The same analysis

was repeated by Merkin [57], but this time imposing constant heat flux rather than

constant temperature at the disk. Recently, Siddiqa and Hossain [86] studied the effect

of thermal radiation qr on a boundary layer flow of liquid metal above a heated circular

disk. In their analysis the Rosseland diffusion approximation (thick radiation limit)

was used in the energy equation.

Closing the prologue, for the next two chapters the focus lies on isothermal cir-

cular discs, starting with the solution of the boundary layer equations using variable

fluid properties, followed by the full numerical solution of the Navier-Stokes equa-

tions coupled with the energy equation. The parting ends with a chapter dedicated to

the semi-infinite plate using variable fluid properties, i.e. following Ackroyd [2], but

providing the numerical solution of the boundary layer equations.

4.2 Introduction

Attention in this chapter is directed towards the study of boundary layer flow above

a uniformly heated circular disc of radius a. On the disk constant temperature Tw

is imposed such that (Tw > T∞), with T∞ being the ambient temperature, while the

flow is assumed to be steady and laminar. The analysis is based on variable fluid

properties, so that the density ρ and the fluid transport properties, i.e. viscosity

µ and the thermal conductivity κ, are all functions of temperature T . In addition,

secondary thermodynamic properties like the specific heat capacity cp and the Prandtl

number Pr are assumed constant. Specifically a linear law2 is used for viscosity and

2The more accurate Sutherland’s formula [98] for the law of viscosity was not used in order not
to over complicate analytical calculations.
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conductivity given as
µ

µr

= C
T

Tr

and
κ

κr
= C

T

Tr

, (4.1)

with the subscript r corresponding to a reference point where the properties are eval-

uated. The reference point is assumed to be located within the ambient (∞) so that

Tr = T∞, κr = κ∞ and µr = µ∞. Furthermore the constant C is the Chapman-Rubesin

constant [80],[25],[98] given as

C =
ρwµw

ρ∞µ∞
. (4.2)

The constant C is assumed here to be unity apart from when it is used for the viscosity-

temperature relation, valid for gases. The above problem has previously been studied

by [101], thus based on the foundations of their work, here we are trying to extend it.

Specifically on adopting the above assumptions, it will be shown that an additional

parameter (Prandtl number being present as usual) will be introduced in the non-

dimensional, non-similar boundary layer equations. Variable fluid properties are solely

responsible for the presence of the newly introduced parameter, defined as λT = (Tw−
T∞)/T∞, so that setting λT = 0 is equivalent to making the Boussinesq approximation.

A detailed analysis of the effect that λ has on the flow will be carried out, accompanied

by a brief study of the effect of the Prandtl number. Analytically a fourth order

series approximation valid at the circumference of the disk will be obtained for λ =

0, 1, . . . , 4 while the Prandtl number considered will be 0.1, 0.72, 1, 5 and 10. Most

importantly, the numerical solution of the full boundary layer equations will be given

using a finite difference scheme (Keller Box Method) and a commercial finite element

package COMSOL Multiphysics 3.5a.

The governing equations for an axisymmetric flow [80], are listed below as

∂

∂r

(
rρu
)

+
∂

∂z

(
rρw

)
= 0, (4.3a)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= fr −

∂P

∂r
+

1

r

∂(rτrr)

∂r
+
∂τrz
∂z

, (4.3b)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= fz −

∂P

∂z
+

1

r

∂(rτzr)

∂r
+
∂τzz
∂z

, (4.3c)

ρcp

(
u
∂T

∂r
+ w

∂T

∂z

)
=

1

r

∂

∂r

(
kr
∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
. (4.3d)

The system of equations is closed with the ideal gas law i.e

ρT = ρ∞T∞. (4.3e)
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Viscous stresses are given as

τrr = 2µ
∂u

∂r
, τzz = 2µ

∂w

∂z
and τrz = τzr = µ

(
∂u

∂z
+
∂w

∂r

)
, (4.3f)

while it should be pointed that pressure work and dissipation effects have been ne-

glected from the energy equation [1] [36].

The only external field considered here is that of gravity so that the radial compo-

nent of the body force is fr = 0. Furthermore by breaking the pressure into hydrostatic

(p∞) and dynamic (p) i.e.

P = p∞ + p and noting that ∇p∞ = ρ∞g, (4.4a)

then in vector form we can write

f −∇P = ρg −∇ (p∞ + p) = (ρ− ρ∞)g −∇p. (4.4b)

The z-component of (4.4b) is then given as

fz −
∂P

∂z
= (ρ∞ − ρ)g − ∂p

∂z
. (4.4c)

In this way the equations (4.3b) and (4.3c) change to

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+

1

r

∂(rτrr)

∂r
+
∂τrz
∂z

, (4.5)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= (ρ∞ − ρ)g − ∂p

∂z
+

1

r

∂(rτzr)

∂r
+
∂τzz
∂z

. (4.6)

Equations (4.3e), ( 4.3a), (4.3d), (4.5) and (4.6) constitute the governing set of

equations which will be nondimensionalised with the introduction of the following

scalings

x = aẋ, y = aẏ, ρ = ρ∞ρ̇, u =
ν∞
a
u̇, w =

ν∞
a
ẇ, k = k∞k̇, µ = µ∞µ̇,

θ =
T − T∞
Tw − T∞

, Π =
pL2

ρ∞ν2
and λT =

Tw − T∞
T∞

. (4.7)

Fluid properties having as a subscript ∞ correspond to ambient properties, so

that ν∞ and µ∞ refer to the kinematic and dynamic viscosity respectively, while κ∞ is

the thermal conductivity, and ρ∞, T∞ the ambient density and temperature. Further

since there is no characteristic velocity scale, simple dimensional arguments of the

main physical parameters of the problem can lead to a velocity scale given as ν∞/a.
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Introduction of the nondimensional parameters into the governing equations will result

in the continuity equation given as

∂

∂ṙ

(
ṙρ̇u̇
)

+
∂

∂ż

(
ṙρ̇ẇ

)
= 0, (4.8a)

whilst momentum and energy equations change to

ρ̇

(
u̇
∂u̇

∂ṙ
+ ẇ

∂u̇

∂ż

)
= −∂Π

∂ṙ
+

1

ṙ

∂

∂ṙ
(ṙτ̇rr) +

∂

∂ż
(τ̇rz) , (4.8b)

ρ̇

(
u̇
∂ẇ

∂ṙ
+ ẇ

∂ẇ

∂ż

)
= −∂Π

∂ż
+
a3 (1− ρ̇) g

ν2
∞

+
1

ṙ

∂

∂ṙ
(ṙτ̇zr) +

∂

∂ż
(τ̇zz) , (4.8c)

ρ̇

(
u̇
∂θ

∂r
+ ẇ

∂θ

∂ż

)
=

κ∞
ρ∞cpν∞

(
1

ṙ

∂

∂ṙ

(
ṙκ̇
∂θ

∂r

)
+

∂

∂ż

(
κ̇
∂θ

∂ż

))
. (4.8d)

Finally the ideal gas law now reads as

1− ρ̇ =
ρ̇θ (Tw − T∞)

T∞
= ρ̇θλT. (4.8e)

The main similarity parameters for free convective flows are the Grashof 3 and

Prandtl numbers defined as4

Gr =
ga3 (Tw − T∞)

ν2
∞T∞

=
ga3λT

ν2
∞

,
1

Pr
=

κ∞
ρ∞cpν∞

. (4.9)

Unveiling of the above similarity parameters in equations (4.8) and dropping the dots

provides the final form of the nondimensional equations, given as

∂

∂r

(
rρu
)

+
∂

∂z

(
rρw

)
= 0, (4.10a)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂Π

∂r
+

1

r

∂

∂r
(rτrr) +

∂

∂z
(τrz) , (4.10b)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= −∂Π

∂z
+ Grρθ +

1

r

∂

∂r
(rτzr) +

∂

∂z
(τzz) , (4.10c)

ρ

(
u
∂θ

∂r
+ w

∂θ

∂z

)
=

1

Pr

(
1

r

∂

∂r

(
rκ
∂θ

∂r

)
+

∂

∂z

(
κ
∂θ

∂z

))
. (4.10d)

3Quite often Rayleigh number is used instead
4Here the gas expansion coefficient β = 1

T∞
[25] has already been included in the Grashof number

definition
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4.2.1 The boundary layer equations

The nondimensional set of equations can be treated as a singular perturbation problem

as Gr → ∞; therefore following [89], we start by introducing the following set of

stretched variables

z = εẑ, u = ε−2û, w = ε−1ŵ, Π = ε−4Π̂, where ε = Gr−1/5 (4.11)

into the governing equations, so by keeping the leading order terms, the first order

boundary layer approximation equations are obtained as

∂

∂r

(
rρû
)

+
∂

∂ẑ

(
rρŵ

)
= 0, (4.12a)

ρ

(
û
∂û

∂r
+ ŵ

∂û

∂ẑ

)
= −∂Π̂

∂r
+

∂

∂ẑ

(
µ
∂û

∂ẑ

)
+O(ε2), (4.12b)

∂Π̂

∂ẑ
= ρϑ+O(ε2), (4.12c)

ρ

(
û
∂ϑ

∂r
+ ŵ

∂ϑ

∂ẑ

)
=

1

Pr

∂

∂ẑ

(
κ
∂ϑ

∂ẑ

)
+O(ε2). (4.12d)

The above parabolic partial differential equations are to be solved subject to the

following boundary conditions

û = ŵ = 0 and ϑ = 1, on ẑ = 0 while r ∈ (0 , 1],

û, ŵ, ϑ→ 0 as ẑ →∞, (4.12e)

û = ŵ = ϑ = 0 at r = 1 and ẑ > 0.

At this point we shall introduce the following coordinate system, given in Figure 4.3,

based on the transformation r → 1− r. In this way the edge of the plate corresponds

to r = 0, while the centre of the plate is now located at r = 1. Further, note

that the velocity vector in the nondimensional coordinate system (r, ẑ) was given as

u = ûer+ŵeẑ, then for the above described transformation the velocity vector is given

as u = ûe1−r + ŵeẑ = −ûer + ŵeẑ.

In doing so boundary layer equations for the momentum and energy remain un-

changed as well as the boundary conditions. The only change corresponds to the mass
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Figure 4.3: The coordinate system for the boundary layer equations.

continuity equations which is now listed as

∂

∂r

(
(1− r)ρû

)
+

∂

∂ẑ

(
(1− r)ρŵ

)
= 0. (4.13)

The boundary layer equations (4.12b),(4.12c),(4.12d) and (4.13), will occupy us for

the rest of this chapter.

Moving on with the introduction of a stream function that satisfies the continuity

equation i.e.

(1− r)ρû =
∂Ψ

∂ẑ
, and − (1− r)ρŵ =

∂Ψ

∂r
, (4.14)

and similarity transformations for the independent variables based on the Dorodnitsyn-

Howarth transformation [90],[31] [79] (in order to remove the density from the formal

equations) given as

ζ = r, and η = (Cr)−2/5

∫ ẑ

0

ρdz̃. (4.15)

In addition for the mapping (r , z) → (ζ , η) the formal transformations will be given

as
∂

∂r
=

∂

∂ζ
+
∂η

∂r

∂

∂η
and

∂

∂ẑ
= ρ(Cr)−2/5 ∂

∂η
. (4.16)

Furthermore the dependent variables are transformed as

Ψ(r, z) = (Cr)3/5f(ζ, η), Π̂(r, z) = (Cr)2/5g(ζ, η) and ϑ(r, z) = ϑ(ζ, η), (4.17)
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with C being the Chapman variable. Applying the above transformations into r-

momentum boundary layer equation (4.12b) we obtain for the l.h.s

ρ
(
û
∂û

∂r
+ ŵ

∂û

∂ẑ

)
= ρ

[
1
5
C(Cr)−3/5(1− r) + (Cr)2/5

(1− r)3
f 2
η +

(Cr)2/5

(1− r)2
fηfηζ−

− 3

5

C(Cr)−3/5

(1− r)2
ffηη −

(Cr)2/5

(1− r)2
fζfηη

]
,

whilst the r.h.s is given as

−∂Π̂

∂r
+
∂

∂ẑ

(
µ
∂û

∂ẑ

)
=

[
−
(2

5
C(Cr)−3/5g+(Cr)2/5gζ+

∂η

∂r
(Cr)2/5gη

)
+ρ

(Cr)−3/5

1− r
∂

∂η

[
µρfηη

]]
.

After collecting and simplifying the above terms the transformed r-momentum equa-

tion writes as

(1− ζ)2
[µρ
C
fηη

]
η

+
3

5
(1− ζ)ffηη −

1

5
f 2
η −

4

5
ζf 2

η = ζ(1− ζ)
(
fηζfη − fηηfζ

)
+

+
1

ρ
(1− ζ)3

[2

5
g + ζgζ + ζ

∂η

∂r
gη

]
. (4.18a)

Meanwhile the ẑ-momentum boundary layer equation, after the introduction of the

similarity variables changes to

ϑ =
∂g

∂η
. (4.18b)

Finally, the energy equation is given as

(1− ζ)
1

Pr

[κρ
C
ϑη

]
η

= ζ
(
fηϑζ − fζϑη

)
− 3

5
fϑη. (4.18c)

A problem that needs addressing appears in the r.h.s of equation (4.18a) by means

of the term (∂η/∂r), since an explicit expression of that term is required if it is to

make any progress. One way to proceed is to start by writing the transformations of

the independent variables in matrix-vector form, i.e.


∂

∂r
∂

∂ẑ

 = Q


∂

∂ζ

∂

∂η

 where Q =


∂ζ

∂r

∂η

∂r

∂ζ

∂ẑ

∂η

∂ẑ

 . (4.19)

Similarly the inverse transformation, i.e. (ζ , η)→ (r , ẑ), is given as
∂

∂ζ

∂

∂η

 = R


∂

∂r
∂

∂ẑ

 where R =


∂r

∂ζ

∂ẑ

∂ζ

∂r

∂η

∂ẑ

∂η

 . (4.20)
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Clearly R = Q−1 while the inverse of Q is given as

Q−1 =


1 − 1

(Cr)−2/5ρ

∂η

∂r

0
1

(Cr)−2/5ρ
.

 . (4.21)

Therefore the following must hold
∂r

∂ζ

∂ẑ

∂ζ

∂r

∂η

∂ẑ

∂η

 =


1 − 1

(Cr)−2/5ρ

∂η

∂r

0
1

(Cr)−2/5ρ
.

 . (4.22)

From the above we can obtain the inverse Dorodnitsyn-Howarth transformation as

ẑ = (Cr)2/5

∫ η

0

1

ρ
dη̃, (4.23)

in addition to
∂η

∂r
= −(Cr)−2/5ρ

∂z

∂ζ
. (4.24)

It is not hard now, using (4.23) (4.24), to obtain

∂η

∂r
= ρ
(
− 2

5ζ

∫ η

0

1

ρ
dη̃ +

∫ η

0

1

ρ2

∂ρ

∂ζ
dη̃
)
. (4.25)

Turning attention to the terms including the highest derivatives in the momentum and

energy equation, the fractions including the fluid properties can easily be simplified

by recalling the linear law for viscosity and thermal conductivity (4.1) which is now

expressed in terms of density (using the ideal gas law) in non dimensional form as

µ = C
1

ρ
, κ = C

1

ρ
and

1

ρ
= 1 + λTϑ = 1 + λTgη. (4.26)

Utilising the above to obtain the final form of the nonsimilar governing equations

(1− ζ)2fηηη +
3

5
(1− ζ)ffηη −

1

5
f 2
η −

4

5
ζf 2

η = ζ(1− ζ)
(
fηζfη − fηηfζ

)
+

+
1

ρ
(1− ζ)3

[2

5
g + ζgζ

]
− (1− ζ)3

(
2

5

∫ η

0

1

ρ
dη̃ − ζ

∫ η

0

1

ρ2

∂ρ

∂ζ
dη̃

)
gη, (4.27a)

gη = ϑ, (4.27b)
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(1− ζ)
1

Pr
gηηη +

3

5
fgηη = ζ

(
fηgηζ − fζgηη

)
. (4.27c)

The above coupled system of PIDEs, is to be solved subject to the following bound-

ary conditions

f(0, ζ) = fη(0, ζ) = 0, ϑ(0, ζ) = gη(0, ζ) = 1 and (4.27d)

fη(η, ζ) = ϑ(η, ζ) = gη(η, ζ) = g(η, ζ) = 0 as η →∞.

4.3 Series solutions valid for ζ → 0

Setting ζ = 0 in equations (4.27) results in the similarity equations describing the

flow above the horizontal semi-infinite plate. Similarity equations can be viewed as a

leading order approximation of the flow at the edge of the circular plate, thus allowing

departures from similarity power series of the form

f(ζ , η) ≈
n∑
i=0

ζ ifi(η), g(ζ , η) ≈
n∑
i=0

ζ iGi(η), and Θ(ζ , η) ≈
n∑
i=0

ζ iΘi(η) (4.28a)

will be assumed valid for small values of ζ. In addition, the density is also approximated

as
1

ρ
≈ 1 + λT

n∑
i=0

ζ iΘi(η) = 1 + λT

n∑
i=0

ζ iG′i (4.28b)

where the prime notation corresponds to differentiation w.r.t η, while n = 3. Appli-

cation of the series expansion into the governing equations results in the following set

of equations

• O(1)

f ′′′0 +
3

5
f0f

′′
0 +

2

5
(η − λTG0 (0))G′0 −

1

5
(f ′0)

2 − 2

5
G0 = 0, (4.29a)

1

Pr
G′′′0 +

3

5
f0G

′′
0 = 0, (4.29b)

• O(ζ)

f ′′′1 +
1

5
(8f1 + 3f0) f ′′0 +

3

5
f0f

′′
1 +

1

5

(
λT

(
2G0(0)−7G1(0)

)
−2η

)
G′0−

6

5
(f ′0)

2− 7

5
f ′0f

′
1+

+
2

5

(
η − λTG0(0)

)
G′1 −

7

5
G1 +

2

5
G0 = 0, (4.29c)

1

Pr
G′′′1 +

1

5
(3f0 + 8f1)G′′0 +

3

5
f0G

′′
1 − f ′0G′1 = 0, (4.29d)
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• O(ζ2)

f ′′′2 +
1

5

(
3f0 + 8f1 + 13f2

)
f ′′0 +

1

5

(
3f0 + 8f1

)
f ′′1 +

3

5
f0f

′′
2 −

11

5
(f ′0)

2 − 6

5
(f ′1)

2−

− 1

5

(
17f ′1 + 12f ′2

)
f ′0 +

λT

5

(
7G1(0)−12G2(0)

)
G′0 +

1

5

(
λT

(
2G0(0)−7G1(0)

)
−2η

)
G′1+

+
2

5

(
η − λTG0(0)

)
G′2 +

7

5
G1 −

12

5
G2 = 0, (4.29e)

1

Pr
G′′′2 +

1

5
(3f0 + 8f1 + 13f2)G′′0+

1

5
(3f0 + 8f1)G′′1+

3

5
f0G

′′
2−(f ′0 + f ′1)G′1−2f ′0G

′
2 = 0,

(4.29f)

• O(ζ3)

f ′′′3 +
1

5

(
3f0 + 8f1 + 13f2 + 18f3

)
f ′′0 +

1

5

(
3f0 + 8f1 + 13f2 +

)
f ′′1 +

1

5

(
8f1 + 3f0

)
f ′′2 +

+
3

5
f0f

′′
3 −

16

5
(f ′0)

2 − 1

5

(
27f ′1 + 22f ′2 + 17f ′3

)
f ′0 −

17

5
f ′1f

′
2 −

11

5
(f ′1)

2
+

+
λT

5

(
12G2(0)− 17G3(0)

)
G′0 +

λ
T

5

(
7G1(0)− 12G2(0)

)
G′1+

+
1

5

(
λ

T

(
2G0(0)− 7G1(0)

)
− 2η

)
G′2 +

2

5

(
η − λ

T
G0(0)

)
G′3 +

12

5
G2 −

17

5
G3 = 0,

(4.29g)

1

Pr
G′3 +

1

5
(3f0 + 8f1 + 13f2 + 8f3)G′′0 +

1

5
(3f0 + 8f1 + 13f2)G′′1 +

1

5
(3f0 + 8f1)G′′2+

+
3

5
f0G

′′
3 − (f ′0 + f ′1 + f ′2)G′1 − 2 (f ′0 + f ′1)G′2 − 3f ′0G

′
3 = 0, (4.29h)

while the boundary conditions are now given by

fi(0) = f ′i(0) = 0, G′0(0) = 1 while G′i+1(0) = 0, and

f ′i(η)→ 0, Gi(η) = G′i(η)→ 0 as η →∞, for i = 0 . . . n.
(4.30)

It must be noted that on invoking the Boussinesq approximation λT = 0 for the leading

order term equations (self similar), the semi-infinite plate equations given in [89] are

recovered.

4.3.1 Numerical solution

This section is dedicated to the numerical solution of equations (4.29) subject to BCs

(4.30) using the shooting method. The shooting method is a numerical technique for
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solving boundary value problems (BVPs) by treating them as initial value ones (IVPs).

Analytically the ‘shooting’ procedure is initiated by making a guess for the missing ICs

and calling a standard numerical scheme for the solution of an IVP, disregarding for

the time being the BCs. Once the numerical solution of the IVP is available, a test is

imposed on the solution in order to check whether it satisfies the boundary conditions

to desired tolerance. If the tolerance criterion is satisfied the procedure terminates,

otherwise the initial guesses for the ICs are updated and the procedure is repeated

until fulfilment of the tolerance criterion.

In dealing with eight third order differential equations (4.29), the first step in order

to implement the shooting method is order reduction of the DEs to one. Introduction

of new dependent variables ui and vi such that5

f
(j)
k = u3k+j, G

(j)
k = v3k+j, where k = 0 . . . 3 and j = 0 . . . 2, (4.31)

while

du3i

dη
= u3i+1,

du3i+1

dη
= u3i+2 and

dv3i

dη
= v3i+1,

dv3i+1

dη
= v3i+2, for i = 0 . . . 3.

(4.32)

Now order reduction has led to a system of twenty four coupled first order DEs for the

solution of which twenty four ICs are required. Looking back to equation (4.30) only

twelve from the twenty four constraints are available (at η = 0) which implies that

twelve initial guesses are necessary. Specifically the known ICs are given in terms of

the newly introduced variables as

u3i(0) = 0, u3i+1(0) = 0, for i = 0 . . . 3 and

v1(0) = 1, v3i+1(0) = 0, where now i = 1 . . . 3.
(4.33)

For the remaining variables the following initial guesses are assumed

u3i+2(0) = αi, v3i(0) = βi, v3i+2(0) = γi and i = 0 . . . 3. (4.34)

A further difficulty that needs resolving is the appearance of terms v3i(0) directly into

the DE’s for which, as mentioned, there is no prior knowledge. A way to overcome

that problem numerically is by treating constants v3i(0) as new variables that simply

5Notation (j) denotes differentiation with respect to η.
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need to obey four additional differential equations subject to ICs given by the guesses

(i.e. v3i(0) = βi). Analytically we shall introduce

dqi
dη

= 0 subject to qi(0) = βi for i = 0 . . . 3. (4.35)

Equation (4.32) presents only sixteen of the twenty four available DEs resulting from

order reduction of equations (4.29), the remaining ones are listed below

1

Pr

dv2

dη
+

3

5
v2u0 = 0, (4.36a)

1

Pr

dv5

dη
+

1

5
(3u0 + 8u3) v2 +

3

5
u0v5 − u1v4 = 0, (4.36b)

1

Pr

dv8

dη
+

1

5
(8u3 + 13u6 + 3u0) v2 +

1

5
(3u0 + 8u3) v5+

+
3

5
u0v8 − (u1 + u4) v4 − 2u1v7 = 0, (4.36c)

1

Pr

dv11

dη
+

1

5
(18u9 + 13u6 + 8u3 + 3u0) v2 +

1

5
(8u3 + 13u6 + 3u0) v5+

+
1

5
(3u0 + 8u3) v8 +

3

5
u0v11 − (u1 + u4 + u7) v4−

− 2 (u1 + u4) v7 − 3u1v10 = 0, (4.36d)

du2

dη
+

3

5
u2u0 −

1

5
u2

1 +
2

5
(η − λTq1) v1 −

2

5
v = 0, (4.36e)

du5

dη
+

1

5
(3u0 + 8u3)u2 +

3

5
u0u5 +

1

5

(
λT(2q1 − 7λTq2)− 2η

)
v1 +

2

5
(η − λTq1) v4−

− 6

5
u2

1 −
7

5
u1u4 +

2

5
v0 −

7

5
v3,= 0 (4.36f)

du8

dη
+

1

5
(8u3 + 13u6 + 3u0)u2 +

1

5
(3u+ 8u3)u5 +

3

5
u0u8 −

1

5
(17u4 + 12u7)u1−

− 11

5
u2

1 −
6

5
u2

4 +
λ

5
(7q2 − 12q3) v1 +

1

5

(
2λT(q1 − 7q2)− 2η

)
v4+

+
2

5
(η − λTq1) v7 +

7

5
v3 −

12

5
v6 = 0, (4.36g)

du11

dη
+

1

5
(18u9 + 13u6 + 8u3 + 3u0)u2 +

1

5
(8u3 + 13u6 + 3u0)u5+

+
1

5
(3u0 + 8u3)u8 +

3

5
u0u11−

1

5
(17u10 + 22u7 + 27u4)u1−

17

5
u4u7−

16

5
u2

1−
11

5
u2

4+

+
λT

5
(12q3 − 17q4) v1+

λT

5
(7q2 − 12q3) v4+

1

5

(
2λT(2q1−7q2)−2η

)
v7+

2

5
(η − λTq1) v10+

+
12

5
v6 −

17

5
v9 = 0. (4.36h)
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We are now at a stage where the shooting technique can be applied. The original

system of eight third order equations (4.29) has been transformed to twenty eight first

order DEs (i.e.(4.32), (4.35), and (4.36)), for which only twenty four ICs are required.

Taking into account that only twelve are available (4.33) and the remaining twelve are

guessed (4.34), an iterative procedure is initiated until the numerical solution obtained

satisfies the BCs given by

u3i+1(∞) = 0, v3i(∞) = 0 and v3i+1(∞) = 0 for i = 0 . . . 3. (4.37)

to desired accuracy, which in our study was set to ten decimal digits.

The numerical scheme is implemented in Maple using ShootLib [55]. The BCs

are imposed on η = 10, while computations are carried for λT ∈ [0, 4] and Pr =

0.72, representing air. Furthermore, extensive numeric tables for the computed initial

conditions Gi(0), Θ′i(0) and f ′′i (0), for i = 0 . . . 3 and λT = 0, 0.1, 0.2, . . . , 4 are given in

Appendix A. In addition a study for the effect of Prandtl number on the equations is

carried out. Constant fluid properties are assumed i.e. λT = 0, while Prandtl number

is varied as Pr = 0.05, 0.1, 0.72, 1, 6, 10. In each instance, the far field BCs were applied

at different “large” values of η so as to accommodate the thickening or the thinning

of the thermal layer as Prandtl number increases or decreases respectively.

4.3.2 Results and conclusions

The parameter λT introduced in the formulation of the problem, by discarding the

Boussinesq approximation and including variable fluid effects, seems to have a large

effect on the velocity distribution, though somehow the thermal layer remains almost

unaffected. In Figure 4.4, the leading order approximation of the velocity function is

seen to increase significantly with λT while, for the second order term, the effect is

reversed. Third and fourth order approximations are almost equivalent and of small

magnitude. The thermal layer is observed to be perturbed as λT is increased in Figure

4.5. The thinning observed to leading order is also demonstrated in the next order

approximations, which are similar while there is a damping as the orders are increased.

The thinning of the thermal layer results in a reduced negative pressure function in

all approximations, as shown in the curves in Figure 4.6. It should be expected that

the strong effect of λT on the velocity, would affect the laminar stability.
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Directing attention now on the effect of Prandtl number to the flow, from the curves

shown in Figure 4.7, it can be observed that the leading order term of the velocity

function decreases with increasing Prandtl number. The second order term shows the

opposite behaviour, while third and fourth order contributions are almost identical and

of smaller magnitude, encompassing both behaviours as η varies. For the temperature

function Figure 4.8, the leading order approximation indicates the thinning of the

thermal layer, with increasing Prandtl number. The next three order approximations

are all similar and of the same order, accompanied by a slight decrease in amplitude,

as the order of the approximation is increased. The thinning of the thermal layer

to leading order as Prandtl increases, is the reason for a decreased pressure gradient

shown in Figure 4.9. The trend is repeated in higher order terms as the negative

pressure function decreases by increasing the Prandtl number.
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Figure 4.4: Effect of λT on the velocity function approximations while Pr = 0.72.
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Figure 4.5: Effect of λT on the temperature function approximations while Pr = 0.72.
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Figure 4.6: Effect of λT on the pressure function approximations while Pr = 0.72.
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Figure 4.7: Effect of Pr on the velocity function approximations while λT = 0.
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Figure 4.8: Effect of Pr on the temperature function approximations while λT = 0.
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Figure 4.9: Effect of Pr on the pressure function approximations while λT = 0.
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4.4 Numerical formulation of the nonsimilar PDEs

- The Keller Box method

Having obtained solutions valid at the edge of the disk, i.e. ζ � 1, in this section

validity of the solution is extended for every value of ζ by obtaining the full numerical

solution of the nonsimilar PDEs (4.27). The chosen method for the solution of the non-

similar integro-partial differential equations is the Keller Box finite difference scheme.

The Keller Box (due to Keller) [41],[42],[43] or simply the Box method, is an implicit

method of second order accuracy in both directions. It allows nonuniform meshing

and, moreover, an improved accuracy by two orders when Richardson extrapolation is

used.

The method overall consists of four steps; reduction of the order of the given PDEs

to one, application of a difference scheme based on central differences, linearisation

using Newton’s method and finally numerical solution of a linear system of equations,

for which the coefficient matrix has a block tridiagonal structure. The method is

adequate for solving parabolic differential equations and has been used extensively in

laminar [44] and turbulent boundary layer flows [45], flows with separation [14], and

multiphase flows [85] . For the interested reader, a detailed description of the method

can be found in the excellent textbook of Cebeci and Bradshaw [12], where the main

focus lies on heat transfer problems as well as in [16] where attention is directed toward

turbulent boundary layers. Helpful texts where found to be the more general [15],[13]

and [64].

Returning to the system of the nonsimilar coupled integro-differential equations

(4.27), order reduction to one is necessary in order to apply the Box method. For this

reason the additional functions u(ζ, η), v(ζ, η), l(ζ, η) are introduced such that

fη = u, uη = v andϑη = l. (4.38)

In this way the transformed r-momentum and energy equations change to

(1− ζ)2vη +
3

5
(1− ζ)fv − 1

5
u2 − 4

5
ζu2 = ζ(1− ζ)

(
uζu− vfζ

)
+

+
1

ρ
(1− ζ)3

[2

5
g + ζgζ

]
− (1− ζ)3ζ

(
2

5ζ

∫ η

0

1

ρ
dη̃ −

∫ η

0

1

ρ2

∂ρ

∂ζ
dη̃

)
ϑ, (4.39)
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(1− ζ)
1

Pr
lη +

3

5
fl = ζ

(
uϑζ − fζl

)
. (4.40)

Equation (4.39) is still a partial integro-differential equation, therefore a direct ap-

plication of a standard numerical technique including the Box method is not straight-

forward. On a general note many physical problems are described by nonclassical

(sometimes termed as nonstandard), parabolic or hyperbolic initial-boundary value

problems [23]. What differentiates a standard from a nonclassical initial-boundary

value problem, is the appearance of a dependent unknown function or its first spatial

derivative in an integral term over the spatial domain. Depending on the appearance

of the integral term, one could generically classify these problems into four categories;

boundary value problems with nonlocal initial conditions, boundary value problems

with nonlocal boundary conditions [19], partial integro-differential equations (PIDEs)

where the integral term is now present within the equations, while the final cate-

gory can be considered the one that includes an integral term in both boundaries and

equation.

Due to the presence of the integral term, it is natural to expect that standard

numerical techniques would tend to be more complicated to implement or even would

have to be modified in order to accommodate the integral term. That would raise

additional questions towards stability and accuracy. So whenever possible, it is desir-

able to reformulate a nonclassical initial boundary value problem to a standard one.

A general review on the reformulation of certain category of nonclassical problems is

given in [23].

Luckily, reformulation of the partial integro-differential equation (4.39), to standard

form is straightforward. Starting with the introduction of two additional functions

b(ζ, η) and c(ζ, η) given as

b(ζ, η) =

∫ η

0

1

ρ
dη̃ and c(ζ, η) =

∫ η

0

1

ρ2

∂ρ

∂ζ
dη̃, (4.41)

then further proceeding by recalling that ρ(1 + λTϑ) = 1, so that equation (4.41) can

be written as

b(ζ, η) =

∫ η

0

(1 + λTϑ) dη̃ and c(ζ, η) = −
∫ η

0

λTϑζ dη̃. (4.42)
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Differentiation of equations (4.42) w.r.t η results in the final system of eight coupled

first order PDEs which is listed below

fη = u, (4.43a)

uη = v, (4.43b)

gη = ϑ, (4.43c)

ϑη = l, (4.43d)

bη = 1 + λTϑ, (4.43e)

cη = −λTϑζ , (4.43f)

(1− ζ)
1

Pr
lη +

3

5
fl = ζ

(
uϑζ − fζl

)
, (4.43g)

(1− ζ)2vη +
3

5
(1− ζ)fv − 1

5
u2 − 4

5
ζu2 = ζ(1− ζ)

(
uζu− vfζ

)
+

+ (1− ζ)3(1 + λTϑ)
[2

5
g + ζgζ

]
− (1− ζ)3

(
2

5
b− ζc

)
ϑ, (4.43h)

subject to the following boundary conditions

f(ζ, 0) = u(ζ, 0) = b(ζ, 0) = c(ζ, 0) = 0, and ϑ(ζ, 0) = 1, and (4.44)

u(ζ,∞) = ϑ(ζ,∞) = g(ζ,∞) = 0.

The price paid for the reformulation is the increase of the number of unknowns by two,

but this is outweighed by the fact that the numerical scheme can directly be applied.

4.4.1 The difference scheme

Consider an arbitrary rectangular net of points (ζn, ηj) given in Figure 4.10. The

nonuniform grid and its intermediate points are created as

ζ0 = 0, ζn = ζn−1 + κn, for n = 1..N and ζn− 1
2

=
1

2
(ζn + ζn−1),

η0 = 0, ηj = ηj−1 + hj, for j = 1..J for and ηj− 1
2

=
1

2
(ηj + ηj−1).

(4.45)
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η

ζ

ζ ζ ζn-1 n-1/2 n

η

η

η

j

j-1/2

j-1
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D Ckn

hj

(0,0)

η
J ∞η=

ζN

Figure 4.10: Grid for the Box finite difference scheme.

Given a function F , it will be approximated by the net function F n
j at each point

(ζn, ηj). In addition the notation used throughout for the averages of the net function,

say F n
j , is listed below

F n
j− 1

2
=

1

2
(F n

j + F n
j−1), F n−1

j− 1
2

=
1

2
(F n−1

j + F n−1
j−1 ), F

n− 1
2

j =
1

2
(F n

j + F n−1
j )

F
n− 1

2
j−1 =

1

2
(F n

j−1 + F n−1
j−1 ), an =

ζn− 1
2

kn
and mn = 1− ankn,

(4.46)

while nonlinear terms arising, say F 2, will be averaged as

(F 2)
n− 1

2

j− 1
2

=
1

4

(
F n
j F

n
j + F n

j−1F
n
j−1 + F n−

j F n−1
j + F n−1

j−1 F
n−1
j−1

)
. (4.47)

Alternative averages could be used for the non linear terms, provided that the infor-

mation is gathered from no more than the four points of the net rectangle. The stated

form of averaging is optimal in terms of computations [44], and it will be pursued in

what follows.
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Central differences are used for the derivatives, so the ODEs, namely (4.43a),

(4.43b), (4.43c), (4.43d) and (4.43e), will be averaged at the midpoint (ζn, ηj−1/2) of

the line segment BC, while the remaining PDEs, i.e. (4.43g), (4.43e) and (4.43h), will

be averaged at the midpoint (ζn−1/2, ηj−1/2) of the net rectangle ABCD. Starting with

ODEs, the above described procedure results in

fnj − fnj−1 =
1

2
hj
(
unj + unj−1

)
= hju

n
j− 1

2
, (4.48a)

unj − unj−1 =
1

2
hj
(
vnj + vnj−1

)
= hjv

n
j− 1

2
, (4.48b)

gnj − gnj−1 =
1

2
hj
(
ϑnj + ϑnj−1

)
= hjϑ

n
j− 1

2
, (4.48c)

ϑnj − ϑnj−1 =
1

2
hj
(
lnj + lnj−1

)
= hjl

n
j− 1

2
, (4.48d)

bnj − bnj−1 =
1

2
hj
(
2 + λT ϑ

n
j + λT ϑ

n
j−1

)
= hj

(
1 + λTϑ

n
j− 1

2

)
. (4.48e)

For the PDEs we obtain

mn

(
lnj − lnj−1

)
Pr hj

+

(
an +

3

5

)
(lf)nj− 1

2
+

+ an

(
un
j− 1

2
ϑn−1
j− 1

2

− un−1
j− 1

2

ϑn
j− 1

2
− ln

j− 1
2
fn−1
j− 1

2

+ ln−1
j− 1

2

fn
j− 1

2

)
− (uϑ)nj− 1

2
= [R5]n−1

j− 1
2
, (4.49a)

cnj − cnj−1

hj
+

2anλT

1−mn

ϑj− 1
2

= [R7]n−1
j− 1

2
, (4.49b)

(cϑ)n
j− 1

2
mn

4+

((
an −

1

5

)
λTϑ

n
j− 1

2
gn−1
j− 1

2

−
(

1

5
+ an

)(
λTϑj− 1

2
gn
j− 1

2
+ λT (gϑ)n

j− 1
2

+ 2gn
j− 1

2

)
+

+
2

5
(bϑ)n

− 1
2
− (cϑ)n

j− 1
2

)
mn

3 +

(
vnj − vnj−1

)
hj

m2
n +

(
an

(
vn−1
j− 1

2

fn
j− 1

2
− vn

j− 1
2
fn−1
j− 1

2

)
+

+

(
3

5
+ an

)
(fv)n

j− 1
2

+

(
4

5
− an

)
(u2)n

j− 1
2

)
mn − (u2)n

j− 1
2

= [R8]n−1
j− 1

2
, (4.49c)

where

[R5]n−1
j− 1

2
=

(
an −

3

5

)
(fl)j− 1

2
− mn (lj − lj−1)

Prhj
− an(uϑ)j− 1

2
, (4.50a)

[R7]n−1
j− 1

2
=

[
2anλT

1−mn

ϑj− 1
2
− cj − cj−1

hj

]n−1

, (4.50b)
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[R8]n−1
j− 1

2
=

[
− (cϑ)j− 1

2
m4
n +

((
1

5
− an

)(
λT (gϑ)j− 1

2
+ 2gj− 1

2

)
− 2

5
(bϑ)j− 1

2
+

+(cϑ)j− 1
2

)
m3
n−

vj − vj−1

hj
m2
n+

((
an −

3

5

)
(fv)j− 1

2
−
(
an +

4

5

)(
u2
)
j− 1

2

)
mn+

(
u2
)
j− 1

2

]n−1

.

(4.50c)

Finally the boundary conditions now will be given as

fn0 = 0, un0 = 0 ϑn0 = 1, bn0 = 0, cn0 = 0 unJ = 0, ϑnJ = 0 and gnJ = 0. (4.51)

4.4.2 Solution of the difference equations

The task of solving the nonlinear difference scheme is undertaken in this section. We

begin by revisiting the grid given in Figure 4.10, where we assume that at a given

ζ-station namely ζn−1, the values of the net functions fn−1
j , un−1

j , vn−1
j gn−1

j , ϑn−1
j ,

ln−1
j , bn−1

j , cn−1
j are known ∀j ∈ [0, J ]. The difference equations then form a nonlinear

algebraic system of 8J + 8 unknowns, fnj , unj , vnj , gnj , ϑnj , lnj , bnj , cnj between n − 1

and n, ζ-stations. The solution of the nonlinear system will be obtained by means of

Newton’s method, through the process described below.

Firstly it is customary to rewrite the unknowns in a more compact form, so the

following notation will be adopted

fnj , u
n
j , v

n,
j g

n
j , ϑ

n
j , l

n
j , b

n
j , c

n
j ≡ fj, uj, vj, gj, ϑj, lj, bj, cj. (4.52)

For Newton’s method, the iterates are denoted as

{f {i}j , u
{i}
j , v

{i},
j g

{i}
j , ϑ

{i}
j , l

{i}
j , b

{i}
j , c

{i}
j } with i = 0, 1 . . . , (4.53)

while higher iterates are obtained as

f
{i+1}
j = f

{i}
j + δf

{i}
j , u

{i+1}
j = u

{i}
j + δu

{i}
j , v

{i+1}
j = v

{i}
j + δv

{i}
j ,

g
{i+1}
j = g

{i}
j + δg

{i}
j , ϑ

{i+1}
j = ϑ

{i}
j + δϑ

{i}
j , l

{i+1}
j = l

{i}
j + δl

{i}
j ,

b
{i+1}
j = b

{i}
j + δb

{i}
j , c

{i+1}
j = c

{i}
j + δc

{i}
j .

(4.54)

In a similar fashion

f
{i+1}
j−1 = f

{i}
j−1 + δf

{i}
j−1, u

{i+1}
j−1 = u

{i}
j−1 + δu

{i}
j−1, v

{i+1}
j−1 = v

{i}
j−1 + δv

{i}
j−1,

g
{i+1}
j−1 = g

{i}
j−1 + δg

{i}
j−1ϑ

{i+1}
j−1 = ϑ

{i}
j−1 + δϑ

{i}
j−1, l

{i+1}
j−1 = l

{i}
j−1 + δl

{i}
j−1,

b
{i+1}
j−1 = b

{i}
j−1 + δb

{i}
j−1, c

{i+1}
j−1 = c

{i}
j−1 + δc

{i}
j−1.

(4.55)
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The procedure of the linearisation is direct and in two steps. It includes the sub-

stitution of the r.h.s of the higher iterates given in equation (4.54), in place of the

net functions, and the neglect of quadratic or higher order terms of δ. The nonlinear

algebraic equations transform to a linear algebraic system in terms of δfj, δuj, δvj,

δgj, δϑj, δlj, δbj, δcj
6. In this way, equations (4.48a)–(4.48e) change to

δfj − δfj−1 −
1

2
hj (δuj + δuj−1) = (r1)j, (4.56a)

δuj − δuj−1 −
1

2
hj (δvj + δvj−1) = (r2)j, (4.56b)

δgj − δgj−1 −
1

2
hj (δϑj + δϑj−1) = (r3)j, (4.56c)

δϑj − δϑj−1 −
1

2
hj (δlj + δlj−1) = (r4)j, (4.56d)

δbj − δbj−1 −
1

2
λThj (δϑj + δϑj−1) = (r6)j. (4.56e)

Equations (4.49a)–(4.49c) are now given as

(s1)jδlj + (s2)jδlj−1 + (s3)jδϑj+(s4)jδϑj−1 + (s5)jδuj+

+(s6)jδuj−1 + (s7)jδfj + (s8)jδfj−1 = (r5)j,
(4.57a)

(φ1)jδcj + (φ2)jδcj−1 + (φ3)jδϑj + (φ4)δϑj−1 = (r7)j, (4.57b)

(µ1)jδvj + (µ2)jδvj−1 + (µ3)jδuj + (µ4)jδuj−1 + (µ5)jδfj + (µ6)jδfj−1+

+(µ7)jδϑj + (µ8)jδϑj−1 + (µ9)jδgj−1 + (µ10)jδgj−1 + (µ11)jδbj−1+

+(µ12)jδbj−1 + (µ13)jδcj−1 + (µ14)jδcj−1 = (r8)j,

(4.57c)

where

(r1)j = −f {i}j + f
{i}
j−1 + 1

2
hju

{i}
j− 1

2

, (4.58a)

(r2)j = −u{i}j + u
{i}
j−1 + 1

2
hjv

{i}
j− 1

2

, (4.58b)

(r3)j = −p{i}j + p
{i}
j−1 + 1

2
hjϑ

{i}
j− 1

2

, (4.58c)

(r4)j = −ϑ{i}j + ϑ
{i}
j−1 + 1

2
hjl
{i}
j− 1

2

, (4.58d)

(r6)j = −b{i}j + b
{i}
j−1 + hj

(
1 + λT ϑ

{i}
j− 1

2

)
, (4.58e)

6Superscript {i}, has been omitted from δ terms for compactness
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(r5)j = [R5]n−1
j− 1

2

−
(

Pr−1mnh−1
j (l

{i}
j − l

{i}
j−1) + (fl)

{i}
j− 1

2

(
an + 3

5

)
− an(uϑ)

{i}
j− 1

2

+

+an

(
u
{i}
j− 1

2

ϑn−1
j− 1

2

− un−1
j− 1

2

ϑ
{i}
j− 1

2

− l{i}
j− 1

2

fn−1
j− 1

2

+ ln−1
j− 1

2

f
{i}
j− 1

2

))
,

(4.59a)

(r7)j =
2λTan

(
ϑn−1
j− 1

2

− ϑ{i}
j− 1

2

)
1−mn

− h−1
j (cn−1

j − cn−1
j−1 )− h−1

j (c
{i}
j ,−c{i}j−1), (4.59b)

(r8)j =[R8]n−1
j− 1

2

−

−
(

(cϑ)
{i}
j− 1

2

m4
n +

(
(an − 1

5
)λTϑ

{i}
j− 1

2

gn−1
j− 1

2

− (1
5

+ an)
(
2 g
{i}
j− 1

2

+

+ λT (pϑ)
{i}
j− 1

2

+ λTϑ
n−1
j− 1

2

g
{i}
j− 1

2

)
+ 2

5
(bϑ)

{i}
j− 1

2

− (cϑ)
{i}
j− 1

2

)
m3
n+

+ h−1
j (v

{i}
j − v{i}j−1)m2

n +
(

4
5

(u2)
{i}
j− 1

2

− anv{i}j− 1
2

fn−1
j− 1

2

+ anv
n−1
j− 1

2

f
{i}
j− 1

2

−

−an(u2)
{i}
j− 1

2

+ (fv)
{i}
j− 1

2

(
3
5

+ an
) )
mn − (u2)

{i}
j− 1

2

)
.

(4.59c)

The coefficients of the linearised equations are given below. Starting with (4.57a)

(s1)j =
(

3
10

+ 1
2
an
)
f
{i}
j − 1

2
anf

{i}
j− 1

2

+
mn

Pr hj
, (4.60a)

(s2)j =
(

3
10

+ 1
2
an
)
f
{i}
j−1 − 1

2
anf

{i}
j− 1

2

− mn

Pr hj
, (4.60b)

(s3)j = −1
2
anu

n−1
j− 1

2

, (4.60c)

(s4)j = −1
2
anu

n−1
j− 1

2

, (4.60d)

(s5)j = 1
2
anϑ

n−1
j− 1

2

, (4.60e)

(s6)j = (s5)j, (4.60f)

(s7)j = 1
10

(3 + 5 an) l
{i}
j + 1

2
anl

n−1
j− 1

2

, (4.60g)

(s8)j = 1
10

(3 + 5 an) l
{i}
j−1 + 1

2
anl

n−1
j− 1

2

. (4.60h)

For equation (4.57b) the following is obtained

(φ1)j = h−1
j , (φ2)j = −(φ1)j, (φ3)j = (φ4)j =

λTan
1−mn

, (4.61)

while for (4.57c)

(µ1)j = 1
2
mn

(
3
5

+ an
)
f
{i}
j − 1

2
anmnf

n−1
j− 1

2

+
m2
n

hj
, (4.62a)
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(µ2)j = 1
2
mn

(
3
5

+ an
)
f
{i}
j−1 − 1

2
anmnf

n−1
j− 1

2

− m2
n

hj
, (4.62b)

(µ3)j =
(
−1 + 4

5
mn − anmn

)
u
{i}
j , (4.62c)

(µ4)j =
(
−1 + 4

5
mn − anmn

)
u
{i}
j−1, (4.62d)

(µ5)j = 1
2

((
vn−1
j− 1

2

+ v
{i}
j

)
an + 3

5
v
{i}
j

)
mn, (4.62e)

(µ6)j = 1
2

((
vn−1
j− 1

2

+ v
{i}
j−1

)
an + 3

5
v
{i}
j−1

)
mn, (4.62f)

(µ7)j = −1
2

(
(1−mn) c

{i}
j +

(
(1

5
+ an)g

{i}
j + (1

5
− an)gn−1

j− 1
2

)
)
λT − 2

5
b
{i}
j

)
m3
n, (4.62g)

(µ8)j = −1
2

(
(1−mn) c

{i}
j−1 +

(
(1

5
+ an)g

{i}
j−1 + (1

5
− an)gn−1

j− 1
2

)
λT − 2

5
b
{i}
j−1

)
m3
n,

(4.62h)

(µ9)j = −1
2

(
2 +

(
ϑ
{i}
j + ϑn−1

j− 1
2

)
λT

) (
1
5

+ an
)
m3
n, (4.62i)

(µ10)j = −1
2

(
2 +

(
ϑ
{i}
j−1 + ϑn−1

j− 1
2

)
λT

) (
1
5

+ an
)
m3
n, (4.62j)

(µ11)j = 1
5
ϑ
{i}
j m3

n, (4.62k)

(µ12)j = 1
5
ϑ
{i}
j−1m

3
n, (4.62l)

(µ13)j = −1
2

(1−mn)ϑ
{i}
j m3

n, (4.62m)

(µ14)j = −1
2

(1−mn)ϑ
{i}
j−1m

3
n. (4.62n)

Finally, the boundary conditions listed in equation (4.51) change to

δf0 = 0, δu0 = 0, δϑ0 = 0, δb0 = 0, δc0 = 0, δuJ = 0, δϑJ = 0 and δgJ = 0. (4.63)

Having derived the linear system, the next step is to proceed with its solution.

In rewriting the algebraic equations in matrix-vector form, two points are worthwhile

mentioning. Firstly, the coefficient matrix obtained in the Box method is of tridiagonal

form, as it is in another popular implicit finite difference method, that of Crank-

Nicolson. The difference being that in the Box method, entries are blocks of size q× q
rather than scalars, with q being the number of unknowns.

Further another important thing to notice is that at ζ0 (i.e. ζ = 0) it can be

observed from the system of PDEs (4.43a)–(4.43h), that the number of dependent

variables is reduced from eight to seven. Analogously, by setting ζn−1/2 = 0, or equiv-

alently an = 0 and mn = 1, the same conclusion can be recovered. This is because the

newly introduced variable c(ζ, η), due to the reformulation of the integro-differential
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equation to standard form, ceases to appear. It is therefore inevitable that a spe-

cial treatment must be given at the origin (solution of the similarity ODEs system)

in order to avoid a singular matrix before marching downstream. That will become

clearer once the linearised problem is formulated into matrix-vector form. Once the

construction of the block tridiagonal matrix is complete, the solution of the system is

computed and the iterates are updated, until the fulfilment of a convergence criterion.

Once convergence criterion is satisfied, a shift is made downstream, where the same

procedure is repeated, until ζ = ζN .

4.4.3 The case of ζ = 0

The linear algebraic system needs to be solved from n = 0 . . . N . As already mentioned

the case of n = 0 or ζ = 0, which physically represent the edge of the plate, requires a

special treatment. By neglecting the dependence on ζ, the system of PDEs transforms

to a system of ODEs, the solution of which was already obtained in the previous section

using the shooting technique. For completeness we shall assume no prior knowledge

of the solution at the edge, and the Box method will be used to obtain it. Once the

solution is known at n = 0 then we shall proceed to n = 1 where the current solution

is used as an initial guess. But before doing so, due to the nature of the problem, for

the construction of the coefficient matrix two distinctive cases need to be considered,

these being ζ = 0 and ζ 6= 0.

The reformulation of the integro-differential equation to a standard first order

system requires the introduction of two functions representing the integrals. At the

edge of the plate equation (4.43h) becomes

vη + 3
5
fv − 1

5
u2 = 2

5

(
(1 + λTϑ)g − bϑ

)
. (4.64)

So the ODE is independent of the variable c, additionally (4.49b) plays no role in

the coupled system, and is neglected. Therefore the unknowns are reduced to seven

i.e. f , u, v, g, ϑ, l, b. The difference scheme used so far does not need altering, so

that the linearised equations and coefficients computed can safely be used. Simply,

n = 0 implies that an = 0 and mn = 1 so that the difference scheme for the ODEs

is recovered. In addition, (4.43f) is not included in the construction of the blocks

consisting of the block tridiagonal coefficient matrix. The linear algebraic system
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given in equation (4.56) and (4.57) is written in Matrix-vector form as

M0δ0 = r0 valid for n = 0 and ∀j (4.65)

Where M0 is the block tridiagonal given as

M0 =



A0 C0

B1 A1 C1

. . . . . . . . .

Bj Aj Cj

. . . . . . . . .

BJ−1 AJ−1 CJ−1

BJ AJ


, (4.66)

where

A0
0 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 −1
h1

2
0 0 0 0

0 0 0 −1
h1

2
0 0

0 0 0 0 0 −1 −h1

2



(4.67)

A0
j =



1 −hj
2

0 0 0 0 0

0 0 0 0 1 −λThj
2

0

(s7)j (s5)j 0 0 0 (s3)j (s1)j

(µ5)j (µ3)j (µ1)j (µ9)j (µ11)j (µ7)j 0

0 −1 −hj+1

2
0 0 0 0

0 0 0 −1 0 −hj+1

2
0

0 0 0 0 0 −1 −hj+1

2



for 1 ≤ j ≤ J − 1

(4.68)
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A0
J =



1 −hJ
2

0 0 0 0 0

0 0 0 0 1 −λThJ
2

0

(s7)J (s5)J 0 0 0 (s3)J (s1)J

(µ5)J (µ3)J (µ1)J (µ9)J (µ11)J (µ7)J 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0



(4.69)

C0
j =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 −hj+1

2
0 0 0 0 0

0 0 0 1 0 0 −hj+1

2
0

0 0 0 0 0 0 1 −hj+1

2



for 0 ≤ j ≤ J − 1 (4.70)

and

B0
j =



−1 −hj
2

0 0 0 0 0 0

0 0 0 0 −1 0 −λThj
2

0

0 0 0 0 0 (φ2)j (φ4)j 0

(s8)j (s6)j 0 0 0 0 (s4)j (s2)j

(µ6)j (µ4)j (µ2)j (µ10)j (µ12)j (µ14)j (µ8)j 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



for 1 ≤ j ≤ J.

(4.71)
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The vectors δ and r for each value of j are given as

δ0
j =



δfj

δuj

δvj

δgj

δbj

δϑj

δlj



for 0 ≤ j ≤ J, (4.72)

and

r0
0 =



0

0

0

0

(r2)1

(r3)1

(r4)1



, r0
j =



(r1)j

(r6)j

(r5)j

(r8)j

(r2)j+1

(r3)j+1

(r4)j+1



for 1 ≤ j ≤ J − 1, and r0
J =



(r1)J

(r6)J

(r5)J

(r8)J

0

0

0



. (4.73)

4.4.4 The case of ζ 6= 0

In the case that n 6= 0, the system of PDEs is recovered and the function c regains

it’s role. The procedure is the same, the linear algebraic system is written in a matrix

vector form, with the difference being that tridiagonal elements of the coefficient matrix

are blocks of size 8 × 8. Now the linear algebraic system that needs to be solved is

given as

Mnδn = rn valid for n = 1 . . . N and∀j (4.74)
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Analytically the block elements of matrix Mn is given below

An
0 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 −1 −h1

2
0 0 0 0 0

0 0 0 −1 0 0 −h1

2
0

0 0 0 0 0 0 −1 −h1

2



(4.75)

An
j =



1 −hj
2

0 0 0 0 0 0

0 0 0 0 1 0 −λThj
2

0

0 0 0 0 0 (φ1)j (φ3)j 0

(s7)j (s5)j 0 0 0 0 (s3)j (s1)j

(µ5)j (µ3)j (µ1)j (µ9)j (µ11)j (µ13)j (µ7)j 0

0 −1
hj+1

2
0 0 0 0 0

0 0 0 −1 0 0 −hj+1

2
0

0 0 0 0 0 0 −1 −hj+1

2



for 1 ≤ j ≤ J−1

(4.76)
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An
J =



1 −hJ
2

0 0 0 0 0 0

0 0 0 0 1 0 −λThJ
2

0

0 0 0 0 0 (φ1)J (ϕ3)J 0

(s7)J (s5)J 0 0 0 0 (s3)J (s1)J

(µ5)J (µ3)J (µ1)J (µ9)J (µ11)J (µ13)J (µ7)J 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0



(4.77)

Cn
j =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 −hj+1

2
0 0 0 0 0

0 0 0 1 0 0 −hj+1

2
0

0 0 0 0 0 0 1 −hj+1

2



for 0 ≤ j ≤ J − 1 (4.78)
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Bn
j =



−1 −hj
2

0 0 0 0 0 0

0 0 0 0 −1 0 −λThj
2

0

0 0 0 0 0 (φ2)j (φ4)j 0

(s8)j (s6)j 0 0 0 0 (s4)j (s2)j

(µ6)j (µ4)j (µ2)j (µ10)j (µ12)j (µ14)j (µ8)j 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



for 1 ≤ j ≤ J.

(4.79)

Finally, the vectors δn and rn are given as

δnj =



δfj

δuj

δvj

δgj

δbj

δcj

δθj

δlj



(4.80)
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and

rn0 =



0

0

0

0

0

(r2)j

(r3)j

(r4)j



rnj =



(r1)j

(r6)j

(r7)j

(r5)j

(r8)j

(r2)j+1

(r3)j+1

(r4)j+1



for 1 ≤ j ≤ J − 1, and rnJ =



(r1)J

(r6)J

(r7)J

(r5)J

(r8)J

0

0

0



. (4.81)

Finalising, a closer look at the general coefficient matrix Mn, and its block elements

of the main diagonal (i.e An
0 , An

j ,and An
J), unveils the necessity for separate treatment

of the case ζ = 0. At n = 0 the blocks A0
0, A0

j and A0
J all become singular.

4.4.5 Further considerations

So far in our discussion we intentionally neglected to touch on two important topics of

the solution process, namely, the convergence criterion and the initial profiles. Start-

ing with the latter, since Newton’s method is used, initial profiles are necessary for the

station ζ = 0 (the similar problem). The procedure followed was to set λT = 0, there-

fore dealing with Boussinesq problem, and then provide the following initial profiles

for u and ϑ

uin = Ni(1− Ni)2 and ϑin = (1− Ni)2, where Ni =
η

η∞
. (4.82a)

From the definitions of f , v, g, l, b given in (4.43), it is a matter of integration or

differentiation w.r.t η to find the remaining initial profiles, listed below

fin =
η

12
Ni(6− 8Ni + 3Ni2), (4.82b)

vin =
1

η∞
(1− 4Ni + 3Ni2), (4.82c)

gin = −η∞
3

(1− Ni)3, (4.82d)

bin = η + λT

(
pin − pin(0)

)
, (4.82e)



CHAPTER 4. HEATED HORIZONTAL CIRCULAR PLATES 146

and

lin = − 2

η∞
(1− Ni). (4.82f)

Using the above profiles convergence for the coupled system of ODEs was obtained

after a few iterations. The solution obtained for λT = 0 is used throughout as an initial

guess at ζ = 0, for different values of λT. Once the solution is obtained at n = 0, it

is passed as an initial guess to the downstream ζ−station (n = 1) with the additional

initial profile for c, given as cin = 0, and iteration takes place until convergence. The

procedure is repeated as we march on until n = N .

In what concerns the convergence criterion, in boundary layer theory the great-

est error usually appears in the wall shear τw = µ(∂u/∂z)z=0 [16]. In terms of the

transformed variables the wall shear parameter is analogous to f ′′0 = v0. It is therefore

the commonly used criterion for laminar flows of this type, so iterations were set to

terminate once

|v{i}0 | < 10−5. (4.83)

Finally, the code was implemented in MATLAB. Sparse matrix structure was used

for the block tridiagonal mass matrix M, while for the solution of the linear system,

MATLAB’s built in backslash operator \ was used.

4.5 Finite element approach

In this section the numerical solution of the boundary layer equations (4.12) subject

to BCs given in (4.30) will be obtained via a commercial CFD (Computational Fluid

Dynamics) tool, namely COMSOL Multiphysics 3.5a. COMSOL Multiphysics is a

powerful interactive environment for solving engineering and scientific problems based

on PDEs, using the finite element method (FEM).

Initially it was contemplated that direct use of COMSOL is the wise way to go,

considering the amount of work the finite difference code would require. As it became

apparent, implementation of the nonsimilar PDEs (4.29) subject to BCs given in (4.30)

using COMSOL’s General PDEs mode was not as straightforward as it was initially

thought. No problems were encountered when the size of the rectangular domain was

set to be [0 , Z]× [0 , H] with Z = 0.991 and H = 9. Actually the code had no problem
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in converging, even when Z was set closer to the singularity, i.e. Z = 0.998, resulting

though in an inaccurate solution.

For an optimal domain a requirement for H would be to lie somewhere in the region

of twenty five to fifty. In this way the solution could fully capture the increasingly

thickening boundary layer, as the singularity is approached. Problems started to ap-

pear when the size of H was increased in terms of convergence. Solution was obtained

for H = 10, but stepping up this value turned out to be a difficult task. Numerous

approaches were taken, from using different solvers and different meshing techniques,

to introducing an artificial diffusion parameter, and parametrically starting from an

isothermal flow, to name a few. All efforts turned out to be unsuccessful and the feel-

ing we got, stated with scepticism, is that a finer mesh is required, and consequently

unavailable computational resources, making the task unfeasible for us.

For the above stated reasons a different strategy was considered necessary. Inspired

by Merkin [56] and his secondary similarity variable transformation given as η =

ey − 1, we return back to the boundary layer equations (4.12) and define a modified

‘compressed’ Dorodnitsyn-Howarth transformation for the independent variables given

as

ζ = r, and Y = ln

[
(Cr)−2/5

∫ z

0

ρdz̃ + 1

]
, (4.84)

while the transformations for the dependent variables given in (5.17) remain un-

changed.

The reasoning behind the introduction of transformation (4.84) is straightforward.

Recall that the height of the domain corresponding to η was earlier defined as H,

but now redefined as Hη. Once the nonsimilar PDEs using the modified Dorodnitsyn-

Howarth transformation are obtained (i.e. in terms of ζ and Y ), for computational

considerations lets define the height of the domain required as HY . Now by comparing

the standard and modified Dorodnitsyn-Howarth transformations it is not hard to see

that Y = ln(η − 1) and thus HY = ln(Hη + 1). Thus for example in (ζ , η) coordinate

system, a domain of height Hη = 20 is equivalent to HY ≈ 3.045 in the (ζ , Y ) domain.

In this way it is believed that numerical instabilities appearing can be resolved, since

the meshing process might turn out to be more efficient.
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As a result, the boundary layer equations (4.12) are revisited but this time appli-

cation of the modified Dorodnitsyn-Howarth transformation takes place. Now formal

transformations are given as

∂

∂r
=

∂

∂ζ
+
∂Y

∂r

∂

∂Y
and

∂

∂ẑ
= ρe−Y (Cr)−2/5 ∂

∂Y
, (4.85a)

and in addition, by following the same procedure described earlier, the term ∂Y/∂r is

evaluated as
∂Y

∂r
= ρe−Y

(
− 2

5ζ

∫ Y

0

eY
1

ρ
dỸ +

∫ Y

0

eY
1

ρ2

∂ρ

∂ζ
dỸ
)
. (4.85b)

Therefore the modified nonsimilar boundary layer equations are now given as

uY Y = 3uY − 2u+
e3Y (1− ζ)

ρ

(2

5
g + ζgζ

)
+ e3Y (1− ζ)

(
ζc− 2

5
b
)
ϑ+

eY

(1− ζ)2
×

×
(

1

5
u2 +

4

5
ζu2 + ζ(1− ζ)

(
uuζ − fζ(uY − u)

)
− 3

5
(1− ζ)f

(
uY − u

))
, (4.86a)

gY = eY ϑ, (4.86b)

and

ϑY Y =
eY Pr

1− ζ
[
ζ (uϑζ − fζϑY )− 3

5
fϑY

]
+ ϑY , (4.86c)

where

u = fY , b =

∫ Y

0

eY
1

ρ
dỸ , c =

∫ Y

0

eY
1

ρ2

∂ρ

∂ζ
dỸ , and

1

ρ
= 1 + λTϑ. (4.86d)

to be solved under the same boundary conditions listed in (4.44).

Once more the same difficulties appeared when the above stated equations were

modelled in COMSOL. Convergence difficulties manifested, even though a solution was

obtained for HY = 3.3 (equivalent to Hη ≈ 26), regions of large error were present.

Nevertheless a slight improvement was achieved, by obtaining a solution in a domain

of height HY = 2.5, therefore all results presented in what will follow will be based on

those simulations.

4.6 Behaviour of the different numerical methods

Having presented the numerical techniques to be used for the solution of the nonsimilar

PIDEs, this section serves as an investigation of the correctness and the performance
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of the Box method code. An analytical examination of the behaviour of both methods

when compared will be presented, furthermore some necessary supplementary details

concerning the finite difference code are provided. Finally a detailed analysis for the

flow under the Boussinesq approximation is given using both methods.

Having discussed in the previous section, the difficulties faced using a FEM solver,

at this point it should be mentioned that even though the FEM method posed re-

strictions on the height of the domain, something that we did not experience when the

Box method was employed (Hη = 50 was attempted without trouble), use of COMSOL

was superior in terms of moving downstream and approaching the singularity in the

ζ−direction. Meaning that when Box Method was used and λT = 0, 17 no problems

whatsoever were encountered in moving from ζ = 0 to ζ = 0.9 uniformly with κn = 0.1

. Moving though above 0.9, and trying to approach the singularity, appeared to be a

harder task especially as the values of λT were increasing from zero. The uniform grid

had to be abandoned and a time consuming step by step process, of trial and error

had to be performed in order to obtain the correct spacing for the ζ−nodes.

By using the Box method we succeeded in marching as far as ζ = 0.99, for the case

of λT = 0, and Pr = 0.72. The grid used was uniform in the η direction with hj = 0.01

and Hη = 26, while the ζ− nodes were positioned at

ζn =
[
0, 0.1, 0.2, . . . 0.9, 0.91, 0.92, 0.925, 0.930, . . . , 0.945, 0.948, 0.9510, . . . , 0.99

]
.

(4.87)

Now changes in λT or Pr, require a change in the grid and because each case has to be

treated uniquely, especially after ζ = 0.9, for that we decided against trying to obtain

solution as close to the singularity as for the Boussinesq case. For that it is considered

reasonable to rely on COMSOL when describing effect on λT and Pr as the singularity

is approached, unless the opposite is stated.

4.6.1 Comparison of the methods for λT = 0 and Pr = 0.72

Starting at the edge of the plate, numerical solution was obtained using three methods

namely, the shooting method, the Box method and FEM. Excellent agreement can

be observed in Figure 4.11, where the computed velocity, temperature and pressure

7For the cases that λT > 2 the ζ−nodes spacing, had to be decreased as 0.9 is approached.
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profiles are plotted using the three techniques. Moving away from the leading edge and
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Figure 4.11: Comparison of the numerical solution obtained at the leading edge of the disk,
using Keller box, shooting method, and FEM.

proceeding towards the centre of the plate, it can be observed from Figures 4.12, and

Figure 4.13 that the thermal layer (b) is rapidly increasing its thickness as the centre

is approached, a growth that is accompanied with an increase in the negative pressure

(c), and a significant drop in the velocity function (a). Numerical computations show

good agreement apart from ζ = 0.99, and particularly in the pressure function there is

a significant deviation something that has to be attributed to the singularity at r = 1.
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Figure 4.12: Profiles for ζ = 0.1, 0.5, 0.8, 0.9, obtained using Keller box, and FEM.
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Figure 4.13: Profiles for ζ = 0.94, 0.96, 0.99, obtained using Keller box, and FEM.
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4.6.2 Variable property effects

Introduction of variable fluid property effects by allowing λT to deviate from zero,

results in an increase of the velocity function profiles with λT, as shown in Figure 4.14.

This behaviour is retained as the velocity is decreasing, while moving towards the

centre of the plate. On the other hand, an increase in λT results in slightly reduced
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Figure 4.14: Velocity function profiles u at ζ = 0.1, 0.5, 0.9, for different values of λT, while
Pr = 0.72.

temperature function profiles (Figure 4.15) and consequently in the negative pressure

(Figure 4.16). As the centre of the plate is approached the variable property effects

seem to have a negligible effect to the thickening thermal layer and the the negative

pressure function. Overall it can be claimed that λT has significant effects mainly on

the velocity profiles.

In what concerns the heat transfer Q, in nondimensional variables (ζ, ẑ) is given
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Figure 4.15: Temperature function profiles ϑ at ζ = 0.1, 0.5, 0.9, for different values of λT,
while Pr = 0.72.
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Figure 4.16: Pressure function profiles g at ζ = 0.1, 0.5, 0.9, for different values of λT, while
Pr = 0.72.
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as

Q = −∂ϑ
∂ẑ

∣∣∣
ẑ=0

= −ρ(Cr)−2/5∂ϑ

∂η̂

∣∣∣
η=0

. (4.88)

As it can be observed in Figure 4.17, computations indicate a reduced heat transfer

with increasing λT, in addition to Q→ 0 as ζ → 1. Finally for the skin friction i.e.
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Figure 4.17: Variation of heat transfer with r for different values of λT while Pr=0.72 and
C = 1.

∂û

∂ẑ

∣∣∣
ẑ=0

= ρ
(Cr)−1/5

1− r
∂2f

∂η2

∣∣∣
η=0

= ρ
(Cr)−1/5

1− r
∂u

∂η

∣∣∣
η=0

, (4.89)

from Figure 4.18 it can be observed that an increase in λT results in a reduction of the

skin friction along the plate while a rapid increase is detected as ζ → 1 in all cases.
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Figure 4.18: Variation of the skin friction coefficient with ζ for different values of λT, while
Pr=0.72.
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4.6.3 Varying the Prandtl number Pr

Turning attention on the effect of Pr to the flow, the Boussinesq approximation is now

adopted (i.e. λT = 0) and computations are carried for Pr = 0.01, 0.05, 0.1, 0.72, 6, 10.

As clearly demonstrated in Figure 4.19, there is a velocity function increase with a

decreasing Prandtl number. In addition reduction of the Pr results in a thicker thermal

layer which translates to larger negative pressure as seen in Figures 4.20 and 4.21 .

Moving downstream and as the centre of the plate is approached the deceleration

appears to be more intense for smaller values of Pr, while the temperature profiles at

ζ = 0.9 indicate a significantly thicker thermal layer for Pr = O(10−2).
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Figure 4.19: Velocity function profiles u at ζ = 0.1, 0.5, 0.9, for λT = 0 while Pr =
0.01, 0.05, 0.1, 0.72, 6, 10.

Concluding , computations of heat transfer as shown in Figure 4.22, indicate that

the heat transfer rates are reduced monotonically with decreasing Pr, while for the
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Figure 4.20: Temperature function profiles u at ζ = 0.1, 0.5, 0.9, for λT = 0 while Pr =
0.01, 0.05, 0.1, 0.72, 6, 10.
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Figure 4.21: Temperature function profiles u at ζ = 0.1, 0.5, 0.9, for λT = 0 while Pr =
0.01, 0.05, 0.1, 0.72, 6, 10.

skin friction results demonstrated in Figure 4.23 indicate an opposite behaviour, since

the skin friction increases with a decreasing value assigned to Pr.
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Figure 4.22: Variation of heat transfer with ζ for different values of Pr, while λT=0 and
C = 1.
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Figure 4.23: Variation of the skin friction coefficient with ζ for different values of Pr, while
λT=0 and C = 1.
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4.7 Summary

Attention in this chapter was directed towards the study of the boundary layer flow

above a uniformly heated circular disc of radius a. Allowances were made for variable

fluid properties and a linear law for the thermal conductivity and the viscosity was

assumed. Inclusion of variable fluid properties within the formulation resulted in the

presence of an additional dimensionless parameter, λT, within the set of equations.

This newly introduced parameter also enabled the study of the Boussinesq approxi-

mation limit, by simply setting λT = 0. An analytic study concerning the significance

of variable fluid properties (by varying the parameter λT), as well as the influence of

the Prandtl number (under the Boussinesq approximation) on the flow, was presented.

Firstly, fourth order series approximations valid at the edge of the circular disc were

obtained, followed by the numerical solution of the governing PIDEs. A finite differ-

ence scheme was developed for the solution of the PIDEs using the Keller-Box method.

In addition a ‘compressed’ Dorodnitsyn-Howarth transformation was defined for the

Boundary layer equations, and the numerical solution was obtained via FEM using

COMSOL Multiphysics 3.5a.

It was shown that the introduction of variable fluid properties had a significant

effect on the velocity function, but a perturbation effect on the thermal layer and

consequently on the pressure function. In particular, it was observed that an increase

in the value of λT led to a noteworthy increase of the velocity function and a thinning

of the thermal layer, accompanied by a reduced negative pressure gradient. Moving

towards the centre of the disc and the same behaviour was exhibited w.r.t λT, only

now the velocity decreased, while the thickness of the thermal layer and the negative

pressure function increased as the centre of the disc was approached. Furthermore,

heat transfer and skin friction decreased with an increasing λT.

Finally, when the Boussinesq approximation was invoked (λT = 0), and the study

concentrated on the effect of Pr on the flow, the following behaviour was observed. A

decrease in the velocity profiles, a thinning on the thermal layer and a decrease on the

negative pressure function with an increase in the value of Pr. Closing, higher heat

transfer rates were observed for increasing values of Pr, while the opposite behaviour

was exhibited for the skin friction.



Chapter 5

Study of Laminar Natural

Convection Above Inclined to

Horizontal Plates

5.1 Introduction

In this chapter, the first order boundary layer analysis of laminar natural convection

above a uniformly heated horizontal and slightly inclined semi-infinite plate is revisited.

Based on the work of Ackroyd [2], variable fluid properties are introduced in the

formulation, while a fourth order series approximation based on a small inclination

angle γ = O(Gr−1/5), valid near the edge of the plate is obtained. With the angle

positive implying that the leading edge is positioned at the lowest point of the semi-

infinite heated plate, we further allow departures from similarity and a numerical

solution is obtained in regions where the series solution ceases to be valid. Both

positive σ > 0 and negative σ < 0 inclinations are considered as previously explored

by Jones [38]. The difference here being the inclusion of variable property effects, as

well as a study for the effect of Prandtl number when the Boussinesq approximation

is applied.

As was demonstrated in Chapter 4, usage of variable fluid properties resulted in the

appearance of an additional nondimensional parameter, namely λT, in the boundary

layer equations. Since the same assumptions are made here w.r.t the density, the fluid

transport properties and the secondary thermodynamic properties, the parameter λT

163
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naturally arises in the formulation. It will be shown that when the inclination is

negative and λT = 0 we obtain the separation point xs followed by flow reversal, firstly

revealed by [38]. When departing from the Boussinesq approximation, i.e. λT > 0,

it will be shown that the separation point moves downstream as the value of λT

is increased. In addition the effect of the Prandtl number as well as the constant

parameter of inclination σ, to the position of the separation point when λT = 0, is

also considered. Finally when the inclination to horizontal is positive, the effect of λT

and σ is studied by numerically solving the PDE’s for large values of x.

5.2 Formulation

A Cartesian coordinate system is used with the origin positioned at the leading edge

with x measuring along the plate and y being normal to it as shown in Figure 5.1.

Again the plate is kept at a higher temperature than the environment and once more

the suffix w corresponds to properties on the plate, while suffix ∞ corresponds to

ambient properties.

Proceeding with the introduction of the governing equations for the flow, starting

with the the ideal gas law, the continuity and the momentum equations are given as

ρT = ρ∞T∞, (5.1a)

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (5.1b)

∂

∂x

(
ρu2
)

+
∂

∂y
(ρuv) = fx −

∂P

∂x
+

∂

∂x
(τxx) +

∂

∂y
(τxy) , (5.1c)

∂

∂x
(ρuv) +

∂

∂y

(
ρv2
)

= fy −
∂P

∂y
+

∂

∂x
(τyx) +

∂

∂y
(τyy) , (5.1d)

where

τxx = 2µ
∂u

∂x
, τyy = 2µ

∂v

∂y
, and τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
. (5.1e)

Finally the energy equation writes as

∂

∂x
(ρcpuT ) +

∂

∂y
(ρcpvT ) =

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
. (5.1f)

Breaking the pressure into hydrostatic (p∞) and dynamic (p) parts, i.e. P = p∞ + p,

and noting that ∇p∞ = ρ∞g, then in vector form we can write

f −∇P = ρg −∇ (p∞ + p) = (ρ− ρ∞)g −∇p,
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Figure 5.1: Coordinate systems for negative and positive inclination.The angle of inclination
γ, B is the buoyancy force i.e. (g(ρ− ρ∞)) and σ the inclination parameter.

having x and y components given as

fx −
∂P

∂x
= (ρ∞ − ρ)gx −

∂p

∂x
and fy −

∂P

∂y
= (ρ∞ − ρ)gy −

∂p

∂y
(5.1g)

where gx = g sin γ and gy = g cos γ.

The governing equations will now be nondimensionalised using the following scal-

ings

x = Lẋ, y = Lẏ, ρ = ρ∞ρ̇, u =
ν∞
L
u̇, v =

ν∞
L
v̇, κ = κ∞k̇, µ = µ∞µ̇,

θ =
T − T∞
Tw − T∞

, and Π =
pL2

ρ∞ν2
∞
. (5.2)

Introducing the above nondimensional parameters into the governing set of equations,

the ideal gas law now changes to

1− ρ̇ =
ρ̇θ (Tw − T∞)

T∞
, (5.3)

while the continuity and momentum equations are now given as

∂

∂ẋ
(ρ̇u̇) +

∂

∂ẏ
(ρ̇v̇) = 0, (5.4)
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∂

∂ẋ

(
ρ̇u̇2
)

+
∂

∂ẏ
(ρ̇u̇v̇) = −∂Π

∂ẋ
+
L3 (1− ρ̇) g sin γ

ν2
+

∂

∂ẋ
(τ̇xx) +

∂

∂ẏ
(τ̇xy) , (5.5)

∂

∂ẋ
(ρ̇u̇v̇) +

∂

∂ẏ

(
ρ̇v̇2
)

= −∂Π

∂ẏ
+
L3 (1− ρ̇) g cos γ

ν2
+

∂

∂ẋ
(τ̇yx) +

∂

∂ẏ
(τ̇yy) . (5.6)

Defining the Grashof number as

Gr =
gL3 (Tw − T∞) cos γ

ν2T∞
, (5.7)

then with the aid of equation (5.3), the momentum equations after dropping the dots

change to

∂

∂x

(
ρu2
)

+
∂

∂y
(ρuv) = −∂Π

∂x
+ Grρθ tan γ +

∂

∂x
(τxx) +

∂

∂y
(τxy) (5.8)

∂

∂x
(ρuv) +

∂

∂y

(
ρv2
)

= −∂Π

∂y
+ Grρθ +

∂

∂x
(τyx) +

∂

∂y
(τyy) (5.9)

Turning attention to the energy equation, by noticing that the term T appears only

within derivatives, it can thus be changed to T − T∞. In doing so, and after the

introduction of the nondimensional scalings, the nondimensional energy equation (after

dropping dots) is given as

ρu
∂θ

∂x
+ ρu

∂θ

∂y
=

1

Pr

( ∂
∂x

(
κ
∂θ

∂x

)
+

∂

∂y

(
κ
∂θ

∂y

))
, (5.10)

and the Prandtl number Pr is defined as

1

Pr
=

κ∞
ρ∞cpν∞

. (5.11)

The above equations are to be solved subject to the following boundary conditions

u = v = 0 and θ = 1, on y = 0 while x > 0,

u, θ, Π→ 0 as y →∞, (5.12)

u = Π = θ = 0 at x = 0, and y > 0.
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5.2.1 The boundary layer equations

For a large Grashof number and when the plate is horizontal i.e (γ = 0), the above

problem can be treated as a singular perturbation problem and be reduced to a self

similar form as was firstly shown by Stewartson [89]. In our formulation following [38]

and [67], we shall assume small inclinations to the horizontal such that tan γ = O(ε),

where ε = Gr−1/5. This will enable us to use the same similarity variables as [89] and

then depart from the horizontal self similar solutions by expanding in terms of the

perturbation parameter ε, so that inclination effects can be included. The above will

become clear once the boundary layer equations are obtained.

In treating the problem as a boundary layer one, in the limit Gr → ∞, following

[74] we begin by introducing the following stretched variables

y = εŷ, u = ε−2û, v = ε−1v̂, Π = ε−4Π̂, where ε = Gr−1/5, (5.13a)

into the governing equations. Thus keeping leading order terms as Gr→∞ results in

the following set of equations

∂

∂x
(ρû) +

∂

∂ŷ
(ρv̂) = 0, (5.13b)

∂

∂x

(
ρû2
)

+
∂

∂ŷ
(ρûv̂) = −∂Π̂

∂x
+ ε−1ρθ tan γ +

∂

∂ŷ

(
µ
∂û

∂ŷ

)
+O(ε2), (5.13c)

−∂Π̂

∂ŷ
+ ρθ +O(ε2) = 0, (5.13d)

ρû
∂θ

∂x
+ ρû

∂θ

∂ŷ
= +

1

Pr

∂

∂ŷ

(
κ
∂θ

∂ŷ

)
+O(ε2). (5.13e)

Focusing on equation (5.13c), it can be observed that the term ε−1ρθ tan γ has

been retained. The reason for doing so is that we require that the buoyancy force has

to be of the same order as the induced pressure gradient. In order to achieve this a

necessary constraint needs to be imposed on the angle of inclination i.e. tan γ = O(ε),

so that

ε−1ρθ tan γ = σρθ
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with σ being an O(1) constant which we shall term the inclination parameter. A

positive or negative value assigned to σ implies a positive or negative inclination re-

spectively. Therefore the x-momentum equation is now written as

∂

∂x

(
ρû2
)

+
∂

∂ŷ
(ρûv̂) = −∂Π̂

∂x
+ σρθ +

∂

∂ŷ

(
µ
∂û

∂ŷ

)
+O(ε2). (5.14)

Having obtained the boundary layer equations we shall now proceed by introducing

the stream function Ψ, so that

ρû =
∂Ψ

∂ŷ
and ρv̂ = −∂Ψ

∂x
. (5.15)

In addition, similarity transformations for the independent variables based on the

Dorodnitsyn-Howarth transformation are given as [90],[31],[2],

ξ = x and η = (Cx)−2/5

∫ ŷ

0

ρdỹ. (5.16)

Furthermore, for the dependent variables the transformations read as

Ψ(x, ŷ) = (Cx)3/5f(ξ, η), Π̂(x, ŷ) = (Cx)2/5G(ξ, η) and θ(x, ŷ) = Θ(ξ, η), (5.17)

where C is the Chapman variable taken to be unity everywhere, unless it is to be used

in the viscosity temperature relation.

For the mapping (x, y)→ (ξ, η) the formal transformations are given as

∂

∂x
=

∂

∂ξ
+
∂η

∂x

∂

∂η
and

∂

∂ŷ
= ρ(Cx)−2/5 ∂

∂η
. (5.18)

Applying the above stated transformations into the x-momentum equation (5.14), the

convective term changes to

ρ
(
û
∂û

∂x
+ v̂

∂û

∂ŷ

)
= ρ

[
(Cx)−4/5

[
ΨηΨηξ −ΨξΨηη

]
− 2

5
(Cx)−9/5CΨ2

η

]
=

= ρ

[
3

5
C(Cx)−3/5f 2

η+(Cx)2/5fηfηξ−
3

5
C(Cx)−3/5ffηη−(Cx)2/5fξfηη−

2

5
C(Cx)−3/5f 2

η

]
,

while for the r.h.s term

−∂Π̂

∂x
+ σρθ +

∂

∂ŷ

(
µ
∂û

∂ŷ

)
= −

[
2

5
C(Cx)−3/5G+(Cx)2/5

[
Gξ +

∂η

∂x
Gη

]
+

+ σρΘ + (Cx)−3/5ρ
[
µρfηη

]
η

]
.
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Collecting and simplifying the above terms, the transformed x-momentum boundary

layer equation takes the following form[µρ
C
fηη

]
η
− 1

5
f 2
η +

3

5
ffηη−

2

5ρ

(
G+

5ξ

2
Gξ+

5ξ

2

∂η

∂x
Gη

)
+σC−2/5ξ3/5Θ = ξ

(
fηξfη−fηηfξ

)
,

(5.19)

while for the y-momentum boundary layer equation, introduction of the similarity

variables results in

Θ =
∂G

∂η
. (5.20)

Finally introducing the stream function into the energy equation gives

ΨηΘξ −ΨξΘη =
1

Pr
(Cx)−2/5

[
κρΘη

]
η

or
1

Pr

[κρ
C

Θη

]
η

= ξ
(
fηΘξ − fξΘη

)
− 3

5
fΘη. (5.21)

Once more the term ∂η/∂x appears in the x-momentum equation, as a result of

the employment of the Dorodnitsyn- Howarth transformation. By noticing that its

inverse transformation can be obtained as

ŷ = (Cx)2/5

∫ η

0

1

ρ
dη̃, (5.22)

and that
∂ŷ

∂ξ
= −(Cx)2/5

ρ

∂η

∂x
, (5.23)

then a simple combination of the last two expressions will result in an explicit expres-

sion for ∂η/∂x, given as follows

∂η

∂x
= ρ
(
− 2

5ξ

∫ η

0

1

ρ
dη̃ +

∫ η

0

1

ρ2

∂ρ

∂ξ
dη̃
)
. (5.24)

Furthermore, the highest derivatives in x-momentum and energy, nonsimilar boundary

layer equations include the fractions µρ/C and κρ/C. As was mentioned earlier, no

deviation is made from Chapter 4 w.r.t the laws for viscosity and thermal conductivity.

Therefore in nondimensional form, the chosen laws for fluid properties are given as

µ = C (1 + ΘλT) , κ = C (1 + ΘλT) , ρ
(
1+ΘλT

)
= 1, andλ

T
=
Tw − T∞
T∞

. (5.25)

Adaptation of the above laws introduces a simplification into the governing equations

since the fractions change to unity. Therefore the final form of the governing equations,
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after the introduction of (5.24) into the x-momentum equation, and the order increase

of the energy equation, after using the y-momentum equation, follows as

fηηη −
1

5
f 2
η +

3

5
ffηη −

2

5ρ

(
G+

5ξ

2
Gξ

)
+

(
2

5

∫ η

0

1

ρ
dη̃ − ξ

∫ η

0

1

ρ2

∂ρ

∂ξ
dη̃

)
Gη+

+ σ C−2/5 ξ3/5Gη = ξ
(
fηξfη − fηηfξ

)
, (5.26a)

1

Pr
Gηηη +

3

5
fGηη = ξ

(
fηGηξ − fξGηη

)
, (5.26b)

with Gη = Θ. The resulting two third order, coupled system of PIDEs is to be solved

subject to the BCs given below

f(0, ξ) = fη(0, ξ) = 0, Θ(0, ξ) = Gη(0, ξ) = 1, for ξ > 0 and (5.26c)

fη(η, ξ) = Θ(η, ξ) = Gη(η, ξ) = G(η, ξ) = 0 as η →∞.

5.2.2 Series solutions valid for ξ � 1

Setting ξ = 0 in equations (5.26) and λT = 0 results in Stewartson’s similarity equa-

tions describing the flow above a horizontal semi-infinite plate. It must be recalled

that the same equations were obtained when the flow above a disk was studied, as a

leading order approximation valid at the circumference of the disk. This implies that

curvature effects are negligible to leading order. Allowing departures from similarity

so as to include inclination effects, power series of the form

f(ξ , η) ≈
n∑
i=0

βifi(η), G(ξ , η) ≈
n∑
i=0

βiGi(η), and Θ(ξ , η) ≈
n∑
i=0

βiΘi(η), (5.27a)

with β = σ ξ3/5/C2/5 will be assumed valid for ξ � 1. In addition, the density is also

approximated as
1

ρ
≈ 1 + λT

n∑
i=0

βiΘi(η) = 1 + λT

n∑
i=0

βiG′i, (5.27b)

where the prime notation corresponds to differentiation w.r.t η, while n = 3. Applying

the above expansions into equations (5.26a)–(5.26b), and collecting terms of O(1),

O(β), O(β2) and O(β3) equivalently, the following four sets of coupled differential

equations is obtained
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• To leading order O(1)
1

Pr
G′′′0 +

3

5
f0G

′′
0 = 0, (5.28a)

f ′′′0 +
3

5
f ′′0 f0 −

1

5
(f ′0)

2
+

2

5
(η − λTG0(0))G′0 −

2

5
G0 = 0, (5.28b)

• O(β)

f ′′′1 +
6

5
f1f

′′
0 +

3

5
f0f

′′
1 + (1− λTG1(0))G′0+

+
2

5
(η − λTG0(0))G′1 − f ′0f ′1 −G1 = 0, (5.28c)

1

Pr
G′′′1 −

3

5
f ′0G

′
1 +

6

5
f1G

′′
0 +

3

5
f0G

′′
1 = 0, (5.28d)

O(β2)

f ′′′2 −
4

5
(f ′1)

2
+

9

5
f2f

′′
0 +

6

5
f1f

′′
1 +

3

5
f0f

′′
2 + (1− λTG1(0))G′1+

+
2

5
(η − λTG0(0))G′2 −

8

5
(G′0λTG2(0) +G2 + f ′0f

′
2) = 0, (5.28e)

1

Pr
G′′′2 +

9

5
f2G

′′
0 −

6

5
f ′0G

′
2 −

3

5
f ′1G

′
1 +

6

5
f1G

′′
1 +

3

5
f0G

′′
2 = 0, (5.28f)

• O(β3)

f ′′′3 +
12

5
f3f

′′
0 +

9

5
f2f

′′
1 +

6

5
f1f

′′
2 +

3

5
f0f

′′
3 −

8

5
G′1λTG2(0) + (1− λTG1(0))G′2+

+
2

5
(η − λTG0(0))G′3 −

11

5
(G3 +G′0λTG3(0) + f ′1f

′
2 + f ′0f

′
3) = 0, (5.28g)

1

Pr
G′′′3 +

3

5
f0G

′′
3+

12

5
f3G

′′
0+

9

5
f2G

′′
1+

6

5
f1G

′′
2−

3

5
f ′2G

′
1−

9

5
f ′0G

′
3−

6

5
f ′1G

′
2 = 0. (5.28h)

The above systems of coupled differential equations is to be solved subject to the BCs

listed below

fi(0) = f ′i(0) = 0, G′0(0) = 1 while G′i+1(0) = 0, and

f ′i(η)→ 0, Gi(η) = G′i(η)→ 0 as η →∞, for i = 0 . . . n.
(5.29)

5.2.3 Numerical solution for the series approximations

In this section the numerical solution of equations (5.28) subject to BCs (5.29) using

the shooting method is given. Exactly the same numerical procedure is applied here,

as the one analytically described in Section 4.3.1, the only difference being that

equations (4.36) are now different. For this reason we opt not get into a detailed
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description, as the reader can always refer to Section 4.3.1. Once more the numerical

scheme is implemented in Maple [55] using ShootLib. The far field BCs are imposed

at η = 10, while computations are carried for λT ∈ [0, 4] and Pr = 0.72, representing

air. Furthermore, extensive numerical tables for the computed initial conditions Gi(0),

Θ′i(0) and f ′′i (0), for i = 0, 1, . . . , 3 and λT = 0, 0.1, . . . , 4, are given in Appendix B.
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Figure 5.2: Effect of λT on the velocity function approximations Pr = 0.72.

From the numerical solutions presented in Figures 5.2, 5.3 and 5.4 it is clear that

third and fourth order approximations are of small magnitude and will have a small

contribution on the general solution. Regarding the effect of λ
T
, it can be observed

that as the value of λ
T

increases, the magnitude of inclination effects are reduced, so

that λ
T

acts as a damping parameter on the inclination. The concluding remark is

that the effect of inclination is stronger on the velocity and pressure functions, i.e.

O(10−1), but of smaller strength in the temperature function since contribution is of
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O(10−2).
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Figure 5.3: Effect of λT on the temperature function approximations Pr = 0.72.
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Figure 5.4: Effect of λT on the pressure function approximations Pr = 0.72.
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5.3 Negative inclination

Having obtained series solutions valid for ξ � 1, we shall now proceed in our analysis

and obtain solutions valid for ξ = O(1) by numerically solving the PIDEs given in

equation (5.26). The case of negative inclination is studied first (σ < 0). When the

inclination is negative it can be seen from the diagram given in Figure 5.1 that the

tangential buoyancy force component is opposing the motion, so it is expected that

the flow will eventually separate.

In our analysis we shall begin by assigning σ = −1 and λT = 0, so as to follow

Jones. In doing so, recovery of the position of the separation point is achieved, which

comes to an agreement with the position obtained by Jones in his analysis. We shall

then proceed by departing from the Boussinesq approximation and vary the parameter

λT, studying the position of the separation point. The next step in our analysis will

correspond to the position of the separation point for different values of Pr, and the

section will conclude by studying the effect of slightly perturbing the parameter of

inclination σ.

The numerical solution of PIDEs (5.26) is achieved with the aid of COMSOL Mul-

tiphysics 3.5a, using the General PDE Mode. Three different computational domains

DA ,DB and DC were used, in all cases having rectangular shape, and each one suit-

able for different limiting values of λT and Pr. Attention was placed on the choice

of the size of the domain and the meshing. For example, in dealing with the Boussi-

nesq case a domain of size [0, 4] × [0, 15.5] is suitable since the separation point is

located at around 3.7. Furthermore, care must be taken when the size of the domain

is altered while its suitability for given parameters has to be examined ,so that con-

vergence difficulties or even oscillations for the skin friction parameter can be avoided.

The sizes of the three different computational domains starting with DA which was

set to be [0, 4] × [0, 15.5], DB [0, 8] × [0, 15.5],while the larger one DC was set to

[0, 21.5] × [0, 20], with the small and intermediate domains being suitable for small

and intermediate values of λT and intermediate and large values of Pr. The size of the

domains and the meshing of their subdomain were chosen carefully under the criterion

that for an intermediate value of λT for which two different domains are suitable for

converging to a solution, the same solution is obtained.
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5.3.1 From Boussinesq approximation to variable fluid prop-

erties

Starting with λT = 0 and σ = −1, Jones’ formulation is recovered. Numerical solution

for Pr = 0.72 indicated that the separation point is located at xs = ξ = 3.705, a

result that comes to an agreement with the one Jones obtained, i.e. (xs = 3.704).

The domain DB was utilised for the computations, therefore solutions were obtained

for values of ξ ranging from zero to eight. In Figure 5.5, profiles of the velocity (a)

temperature (b), and pressure (c) functions, are plotted for different values of ξ.

Keeping in mind that separation takes place at ξ = 3.705, flow reversal is evident

at ξ = 4 but can clearly be observed at ξ = 6 and ξ = 8. Velocity is decreasing until

the separation point, while after separation velocity function profiles are translated

downstream, with the ones further down including an escalated effect of flow reversal.

A thickening thermal layer as we move downstream is accompanied by an increase in

the pressure.

Introducing variable fluid properties so that λ
T
> 0, results in the separation point

moving downstream. Computations were carried out for λT = 0, 0.1, 0.2, . . . 1.9, 2,

while the Prandtl number was kept fixed at Pr = 0.72 and σ = −1. The position of

the separation point for selected values of λT is given in Table 5.1. The complete

λT 0 0.1 0.2 0.5 0.7 1 1.5 1.8 2
xs 3.705 4.242 4.850 6.827 8.358 10.858 15.671 18.934 21.254

Table 5.1: Position of the separation point xs, for different values λT while Pr = 0.72 and
σ = −1.

extent of our analysis is given in Figure 5.6, where in addition to the separation points

obtained via numerical solution (marked with +), a simple curve is fitted in the least-

squares sense (the blue dashed line). The following function was found suitable

xs = xs0 + AλB
T
, where A = 7.224, B = 1.265 and xs0 = 3.705. (5.30)

The above can be relaxed and a value of B = 5/4 will roughly give the same approxi-

mation.

Moving downstream from the leading edge, and allowing departures from the

Boussinesq approximation then, as can clearly be seen in Figure 5.7, velocity increases
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Figure 5.5: Profiles for ξ = 0, 2, 4, 6, 8, while λT = 0, Pr = 0.72 and σ = −1.
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Figure 5.6: Separation point as a function of λT, while Pr=0.72 and σ=−1. Crosses corre-
spond to actual numerical solutions.

with λT. At ξ = 1 and when λT = 0.5, there is a more significant increase in velocity

than when the Boussinesq approximation is used. Further downstream at ξ = 5, for

the particular cases of λT = 0, 0.1, separation has already taken place, with the differ-

ence being that when λT = 0, the flow reversal is stronger since the separation takes

place earlier. The velocity profile for λT = 0.5 indicates a deceleration since there is

a velocity drop from ξ = 1 to ξ = 5, as expected. Finally at ξ = 8, separation has

taken place for all the cases presented, with the difference being that the same levels

of flow reversal are obtained further downstream for λT > 0. Reflecting on the effects

that an increase of λT has on the thermal layer, the behaviour shown by the series

approximations is verified. There is a slight thinning of the thermal layer as the value

of λT increases, which can be observed at ξ = 1 in Figure 5.8. As ξ increases, shown

by the profiles at ξ = 5 and ξ = 8, the thermal layer can be observed to thicken for

any value of λT. Still though, when variable fluid properties are included the thermal

layer is thinner for all values of ξ. Finally in what concerns the pressure function, Fig-

ure 5.9 indicates that at ξ = 1 it can be seen that the negative pressure is increasing

towards zero with increasing λT, a trend that is verified at ξ = 5 and ξ = 8. Moving
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Figure 5.7: Velocity function profiles at different distances from the leading edge of the
plate, for different values of λT. Computations were carried for Pr = 0.72 and σ = −1.
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downstream results in a reduced pressure gradient for all values of λT.
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Figure 5.8: Temperature function profiles at different distances from the leading edge of
the plate for different values of λT. Computations were carried for Pr = 0.72 and σ = −1.

The heat transfer coefficient in nondimensional variables x and ŷ is given as

−∂Θ

∂ŷ

∣∣∣
ŷ=0

= −ρ(Cξ)−2/5∂Θ

∂η

∣∣∣
η=0

. (5.31)

Variable property effects on heat transfer, can be observed in Figure 5.10. High heat

transfer rates are seen in the neighbourhood of the leading edge, while an increase in

the value of λT results in lower heat transfer rates to the plate. Meanwhile the skin

friction i.e.
∂û

∂ŷ

∣∣∣
ŷ=0

= ρ(Cξ)−1/5 ∂
2f

∂η2

∣∣∣
η=0

(5.32)

and its variation with x, for different values of λT is given in Figure 5.11. Furthermore

the variation of the pressure function at η = 0 with ξ is given in Figure 5.12. The
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Figure 5.9: Pressure function profiles at different distances from the leading edge of the
plate, for different values of λT. Computations were carried for Pr = 0.72 and σ = −1
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Figure 5.10: Variation of heat transfer with x for different values of λT while Pr=0.72, C=1,
σ=−1.

study concludes with a presentation of surface plots for the horizontal component of

velocity û, the velocity function fy, the the temperature function gradient Θη all given

in Figure 5.13
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Figure 5.11: Variation of the skin friction with x for different values of λT, while Pr=0.72,
C=1, σ=−1.
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Figure 5.12: Variation of pressure function with ξ for different values of λT while Pr=0.72,
C=1, σ=−1.
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of velocity û, the velocity parameter function fη and the temperature function gradient −Θη.
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5.3.2 Changing the Prandtl number

Turning attention to the effect of Prandtl number on the flow, extensive computations

were carried out by varying the Prandtl number and obtaining the position of the

separation point xs under the Boussinesq approximation. A few computed positions

are listed below in Table 5.2.

Pr 0.05 0.1 0.5 0.72 1 5 7 10
xs 12.306 8.914 4.290 3.705 3.241 1.790 1.593 1.399

Table 5.2: Position of the separation point xs, for different values of Prandtl number Pr
while λT = 0 and σ = −1.

The full range of the separation points obtained for different values of the Prandtl

number is given in Figure 5.14, denoted with red circles. In addition, a curve-fitting to

the data in a least-squares sense was performed (the blue dashed line in Figure 5.14).

For the nonlinear fit, a function of the following form was chosen

xs = A+B1e
−C1Pr +B2e

−C2Pr, (5.33a)

where the values of the constants were computed as

A = 1.569, B1 = 3.873, C1 = 0.735, B2 = 11.784, C2 = 10.751. (5.33b)

The effect that an increasing Prandtl number has on the flow parameters can be

seen in in Figures 5.15, 5.16 and 5.17. At ξ = 1 where the flow remains attached for all

cases the general trend expected from the similarity analysis are manifested, so that

an increase in Pr results in a drop in the velocity, a thinning of the thermal layer and a

drop in the pressure gradient. In Figure 5.15 the station ξ = 2, is past the separation

points for Pr = 7, 10 and flow reversal is evident, while there is a velocity drop as we

move downstream. The profiles for the temperature function in Figure 5.16 at ξ = 1

show the expected behaviour of a thinner thermal layer, for larger values of Pr, which

tend to thicken downstream. Interestingly at ξ = 4, i.e. far from the separation point

for Pr = 7, 10, the thermal boundary layer is now thicker from the one that the flow

is still attached i.e (Pr = 1). The pressure function is increasing downstream. Finally

the plots for the skin friction and heat transfer rates for different values of Pr are given

in Figures 5.18 and 5.19. It can be observed that the skin friction is decreasing with an
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increasing Pr number and concerning the heat transfer, an increase is observed with

an increasing Pr.
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Figure 5.14: Separation point as a function of Prandtl number, while λT=0. Circles corre-
spond to actual numerical solutions obtained by varying Prandtl number.
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Figure 5.15: Velocity function profiles at different distances from the leading edge of the
plate, for different values of λT. Computations were carried for Pr = 0.72 and σ = −1.
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Figure 5.16: Temperature function profiles at different distances from the leading edge of
the plate, for different values of Pr. Computations were carried for λT = 0 and σ = −1.
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Figure 5.17: Pressure function profiles at different distances from the leading edge of the
plate, for different values of Pr. Computations were carried for λT = 0 and σ = −1
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Figure 5.18: Variation of the skin friction with x for different values of Pr, while λT=0,
C=1, σ=−1.
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Figure 5.19: Variation of heat transfer function with x for different values of Pr, while
λT=0, C=1, σ=−1.
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5.3.3 Varying the inclination parameter σ

In this final part of the section dedicated to negative inclination (σ < 0) a brief

investigation has been carried out related to the behaviour of the flow parameters

with altering the inclination parameter σ. A decrease of σ implies larger negative

inclination whereas an increase in the value of σ indicates a reduction in the angle of

inclination. A reduction of the angle of negative inclination means that the plate is

moving towards being horizontal, thus it should be expected that the separation point

is moved downstream. The opposite result should be demonstrated when the negative

inclination is increased.

In the analysis that follows, the Prandtl number is set to Pr = 0.72 while λT = 0

and the parameter of inclination varies as σ = −1.2,−1.1,−1,−0.9,−0.8. Table 7.1

presents the separation points for these values of σ. A decrease in the inclination

parameter and therefore a larger negative inclination results in the separation point

moving closer to the leading edge. The opposite effect is shown when the angle of

inclination parameter is increased.

σ -1.2 -1.1 -1 - 0.9 -0.8
xs 2.722 3.155 3.705 4.400 5.353

Table 5.3: Position of the separation point xs, for different values of σ while λT = 0 and
Pr = 0.72.

In what concerns the flow parameters shown in Figure 5.20, the effect of varying

inclination on the velocity function is presented. Clearly smaller negative inclination

results in higher velocities since weaker buoyant forces oppose the flow. Profiles shown

at ξ = 4, indicate that flow reversal is present for σ = −1,−1.2, being stronger for

larger inclination. For the case where σ = −0.8 the flow is still attached. Focusing on

the temperature function, in Figure 5.21, profiles at ξ = 1 indicate a thinning of the

thermal layer with decreasing the inclination but the effects are not as strong as the

ones observed for the velocity function. As the separation point is being approached the

differences are magnified. The section concludes with a presentation of the variation

of the heat transfer and skin friction with x given in Figure 5.23. Higher heat transfer

rates are shown for smaller negative inclination.
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Figure 5.20: Velocity function profiles at different distances from the leading edge of the
plate, for different values of σ. Computations were carried for Pr = 0.72 and λT = 0.
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Figure 5.21: Temperature function profiles at different distances from the leading edge of
the plate, for different values of σ. Computations were carried for λT = 0 and Pr = 0.72.
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Figure 5.22: Pressure function profiles at different distances from the leading edge of the
plate, for different values of σ. Computations were carried for λT = 0 and Pr = 0.72
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Figure 5.23: Variation of heat transfer and skin friction for different values of the inclination

parameter σ.
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5.4 Positive inclination

This section is devoted to a discussion on the effects of positive inclination σ > 0 on

the flow. When the inclination to horizontal is positive, then buoyancy forces sustain

the flow rather than opposing it (Figure 5.1). It is therefore expected that the flow

will be accelerating along the semi-infinite plate. Jones [38] in his analysis showed

that, since at large distances from the leading edge of the plate the flow is primarily

influenced by the buoyancy force component parallel to it, eventually it should be

described by the classic free convection solution up a vertical flat heated plate. For

that he went on to divide the flow field into two regions, with the first region being

valid in the neighbourhood of the leading edge (ξ = O(1)), while the second is valid

for larger values of ξ and as ξ → ∞. For the region next to the leading edge, the

nonsimilarity boundary layer equations derived from the transformations (5.16) and

(5.17) are valid. For the region far from the leading edge, the similarity transformations

for the boundary layer equations are the ones for a heated vertical plate which in our

case should be given as

ξ = x, η = (Cx)−1/4

∫ ŷ

0

ρdỹ,

Ψ(x, ŷ) = (Cx)3/4f(ξ, η), Π̂(x, ŷ) = (Cx)1/4G(ξ, η) and θ(x, ŷ) = Θ(ξ, η) (5.34)

where C is the Chapman variable. Application of the above transformations into

the boundary layer results in a different set of PIDEs which is valid in the far field.

Numerically Jones tackled the problem by solving the standard equations from ξ =

0 → 1, while at ξ = 1 a changeover of the equations takes place and the numerical

process was continued downstream. Computations terminated once there is a close

agreement between the skin friction and the heat transfer at the plate, obtained by

the numerical solution of the PDEs and the asymptotic series solution valid far from

the leading edge of the plate.

A different approach is based on the work of Hunt and Wilks [34]. By providing a

continuous set of transformation in the variable x, which takes into account both sim-

ilarity regimes, the switch between two different set of equations becomes unnecessary

and the problem can be tackled numerically by integrating just one set of equations

valid in the neighbourhood of the leading edge and far downstream. A detailed presen-

tation is given in the textbook of Pop and Ingham [69], where the following continuous
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transformations are used (here altered to include variable density)

ξ = x and η = (Cx)−2/5(1 + Cx)3/20

∫ ŷ

0

ρdỹ.

Ψ(x, ŷ) = (Cx)3/5f(ξ, η)(1 + Cx)3/20, Π̂(x, ŷ) = (Cx)2/5(1 + Cx)−3/2G(ξ, η)

and θ(x, ŷ) = Θ(ξ, η). (5.35)

By considering the simplified, Boussinesq similarity transformation for the independent

variable i.e. η = x−2/5(1 + x)3/20ŷ, a truncated power series in x as x→ 0 and x→∞
for the term x−2/5(1 + x)3/20 result in

x−2/5 +
3

20
x3/5 − 51

800
x8/5 +O

(
x13/5

)
as x→ 0

x−1/4 +
3

20
x−5/4 − 51

800
x−9/4 +O

(
x−13/4

)
as x→∞.

(5.36)

It is clear that to leading order, the Boussinesq similarity transformations for the

independent variable are obtained, i.e η = x−2/5ŷ and η = x−1/4ŷ, each one valid in

the two distinguished similarity regimes. Similarly the same principle applies to the

dependent variable transformations.

Application of the above continuous transformations into the boundary layer equa-

tions results in a new set of equations as given in [69], valid in both regimes. Interest-

ingly [69] go on using the nonsimilarity equations resulting from the above continuous

transformations and consider negative inclination, in particular σ = −1. Under the

Boussinesq approximation a parametric study is performed where the parameter is

the Prandtl number and the position of the separation point xs is recovered. The

results [69] show an agreement with the results presented earlier to one decimal digit

for Pr=10, 5 , 2, 1, and 0.5. Though results presented for Pr = 0.3 and Pr = 0.1 devi-

ate significantly especially for the latter case. Analytically they obtain xs = 5.263 for

Pr = 0.3 and xs = 7.671 for Pr = 0.1. Instead our computations result in xs = 5.352

and xs = 8.914, respectively. Clearly as Pr is decreasing and the position of the

separation point is moving further downstream, results obtained from nonsimilarity

equations derived by continuous transformations and the ones based on the neigh-

bourhood of the leading edge regime will deviate significantly. Jones in his analysis,

when considering negative inclination, forced no changeover in the equations since the

boundary layer separates from the plate and does not approach a similarity form as
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x→∞. Furthermore, as shown earlier, the truncated series usage of continuous trans-

formations imply that as x is increasing, the classic free convection scales dominate

over the indirect ones. Therefore the need to march further downstream numerically

in order to obtain the separation point due to the decreased value of Prandtl num-

ber results in stronger effects of classic free convection, which subsequently influence

the solution; hence the deviation. We thus believe that for the case of negative incli-

nation the similarity transformations used i.e (5.16) and (5.17) are appropriate, and

the positions of separation points obtained for different Prandtl numbers should be

trustworthy.

In our analysis no attempt is made in obtaining the classic free convection solution

far from the leading edge. Instead the focus lies in the region close to the leading

edge, where the transformations (5.16) and (5.17) are valid. For that region, vari-

able property and inclination effects are studied, while the section concludes with an

investigation concerning the strength of the induced pressure gradient term ∂Π̂/∂x,

responsible for the indirect drive of the motion when compared with the tangential

component of the buoyancy force (i.e direct drive).

5.4.1 Effect of λT on the flow

Once more, computations were carried out in COMSOL Multiphysics 3.5a using the

General PDE Mode, while the results presented here were obtained using a rectan-

gular domain D+, of size [0, 10] × [0, 15]. No difficulties arose when the width of

the domain was increased. Actually a numerical solution was obtained for a do-

main having width of 200. Computations were performed for values of λT varying as

λT = 0, 0.1, 0.2, . . . , 2, along with the parameters Pr = 0.72 and σ = 1.

Results presented are based on the the same assigned values to the variable property

parameter λT, as the ones used when the inclination was negative i.e.(λT = 0, 0.1, 0.5).

Concentrating in the neighbourhood of the leading edge, profiles for velocity, temper-

ature and pressure function are given at ξ = 0.1 ξ = 0.5 and ξ = 1. It can be

observed in Figure 5.24 that an increase of λT results in an increase in velocity, while

the velocity is increasing as we move away from the leading edge. Furthermore by

revisiting Figure 5.7, it can be observed that at ξ = 1, variable property effects on

velocity are weaker when the inclination is positive.
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Figure 5.24: Velocity function profiles at different distances from the leading edge of the
plate, for different values of λT. Computations were carried for Pr = 0.72 and σ = 1.
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Reflecting on the effects that an increase of λT has on the thermal layer, Figure

5.25 indicates a perturbation effect resulting in a slightly thinner thermal layer with

an increasing λT. The thermal layer is thinning as the leading edge is left behind

while effects of variable property almost diminish at ξ = 1. Once more variable

property effects are weaker when the inclination is positive (see Figure 5.8). Finally in

what concerns the pressure function, curves in Figure 5.26 indicate that the negative
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Figure 5.25: Temperature function profiles at different distances from the leading edge of
the plate for different values of λT. Computations were carried for Pr = 0.72 and σ = 1.

pressure is decreasing with an increasing λT, while the negative pressure is decreasing

further downstream. Again at ξ = 1, a comparison with Figure 5.9 indicates that

variable property effects are weaker when the inclination is positive.

Turning attention to heat transfer and skin friction at the plate it is observed

that variable property effects are more notable. Figure 5.27 indicates that when the
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Figure 5.26: Pressure function profiles at different distances from the leading edge of the
plate, for different values of λT. Computations were carried for Pr = 0.72 and σ = 1.
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Boussinesq approximation is adopted, higher heat transfer rates and skin friction are

observed. So that an increase in λT, results in a reduced heat transfer rate and lower

skin friction.

Concluding, it is found that when the inclination is positive, variable property ef-

fects are shown to have a weaker effect on flow properties especially on the pressure

and temperature functions. Only the velocity function seems to be altered signifi-

cantly, even so to a lesser degree than was observed when the inclination was set to

negative. Skin friction and heat transfer rates are shown to be affected significantly.

Moving downstream, in contrary to negative inclination, and as expected, the increas-

ing velocity is accompanied by a thinning of the thermal layer and a reduced negative

pressure.

5.4.2 Changing the inclination parameter σ

In this section the inclination effects are considered. In a similar fashion, the incli-

nation parameter varies as σ = 1.2, 1, 0.8, with a reduced value of σ implying that

the plate tends to the horizontal, while for the computations, Prandtl number and the

variable property parameter are set to Pr = 0.72 and λT = 0 respectively. Compu-

tations show that for the particular cases of the inclination parameter stated above,

changes reflected on the temperature and pressure functions were insignificant even

though velocity did show some alteration, which is in contrast to when the inclina-

tion was negative. It must be pointed out though that the heat transfer rates and

skin friction show a noteworthy deviation. For that reason a further variation on the

inclination parameter was considered necessary for presentation purposes. Therefore

results presented for velocity temperature and pressure function are based on the val-

ues σ = 0.5, 1, 1.5. Starting with the velocity function in Figure 5.28, as is expected

an increased inclination results in higher velocities with a downstream accelerating

flow, while the growth in the curves indicates that the larger the inclination the higher

is the acceleration. Regarding the temperature function profiles, inclination seems to

have a milder effect, while the higher the inclination the thinner the thermal layer

is. Furthermore departures from the leading edge result in a thinning of the thermal

layer as seen in Figure 5.29. Finally the pressure function profiles given in Figure 5.30,

indicate that the pressure function, in a similar manner to the temperature, seems to
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Figure 5.27: Variation of heat transfer and skin friction for different values of λT.
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Figure 5.28: Velocity function profiles at different distances from the leading edge of the
plate, for different values of σ. Computations were carried for Pr = 0.72 and λT = 0.
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be almost unmoved by the inclination effects especially near the leading edge. The

higher the inclination parameter is the smaller the negative pressure function is. The

magnitude of the pressure function is decreasing downstream as the thermal layer is

thinning and the velocity is increasing.

As mentioned earlier, even though relatively small deviations in the inclination

parameter from σ = 1 disturb the flow field parameters fairly weakly, the skin friction

and the heat transfer demonstrate a more notable variation. The section concludes

with a presentation of this variation, for different values of σ, given in Figure 5.31.

As can be observed, higher heat transfer rates are obtained at greater inclination, a

behaviour that is also exhibited for the skin friction.
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Figure 5.29: Temperature function profiles at different distances from the leading edge of
the plate, for different values of σ. Computations were carried for λT = 0 and Pr = 0.72.
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Figure 5.30: Pressure function profiles at different distances from the leading edge of the
plate, for different values of σ. Computations were carried for λT = 0 and Pr = 0.72
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Figure 5.31: Variation of heat transfer and skin friction for different values of the inclination

parameter σ.
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5.5 The driving of the motion

The chapter is finalised with an investigation concerning the indirect pressure gradi-

ent −∂Π̂/∂x term, and its significance when compared with the tangential component

of the buoyancy force. Analytically by computing numerically the radial pressure

gradient in the region close to the the leading edge (i.e. ξ = O(1)), an order of

magnitude study can be established when the comparisons are made with the tangen-

tial component of buoyancy so that the region of actual influence can be determined.

Computations are carried out for Pr = 0.72, while λT varies as λT = 0, 0.1, . . . , 0.5.

The pressure gradient along the surface of the plate is evaluated in terms of the

similarity transformations as

∂Π̂

∂x
=

2C

5
(Cξ)−3/5G+ (C ξ)2/5Gξ +

∂η

∂x
(C ξ)2/5Gη. (5.37)

Recalling that
∂η

∂x
= ρ
(
− 2

5ξ

∫ η

0

1

ρ
dη̃ +

∫ η

0

1

ρ2

∂ρ

∂ξ
dη̃
)
,

then the negative pressure gradient takes the following form

∂Π̂

∂x
=

2C

5
(Cξ)−3/5G+(C ξ)2/5Gξ+ρ(C ξ)2/5

(
− 2

5ξ

∫ η

0

1

ρ
dη̃+

∫ η

0

1

ρ2

∂ρ

∂ξ
dη̃
)

Θ. (5.38)

where C, the Chapman constant, is taken to be unity within the computations. For

the tangential component of the buoyancy force things are far more simple i.e.

ε−1ρθ tan γ = σρΘ. (5.39)

Constructing now the horizontal driving force mechanism as

−∂Π̂

∂x
+ ε−1ρθ tan γ = −

(2

5
ξ−3/5G+ ξ2/5Gξ

)
+

+ρΘ

[
σ +

( 2

5ξ

∫ η

0

1

ρ
dη̃ −

∫ η

0

1

ρ2

∂ρ

∂ξ
dη̃
)]

.

(5.40)

Because the pressure gradient is negative i.e. ∂Π̂/∂x < 0, then −∂Π̂/∂x > 0, so that

when inclination is positive σ > 0 or negative σ < 0, the tangential buoyancy term

is assisting or opposing the flow respectively. Contour plots of the pressure gradient

∂Π̂/∂x and the tangential component of buoyancy σρΘ, for λT = 0 and λT = 0.5,

while σ = 1 and Pr = 0.72 are given in Figure 5.32. In addition contour plots for

the combined term ∂Π̂/∂ + σρΘ, is given in Figure 5.33 It can be observed that
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ŷ

 

 

0.05

0.10.20.30.5
1

0 2 4 6 8 10
0

1

2

3

4

5

6

0.5

1

1.5

2

2.5

3

x

ŷ
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Figure 5.32: (a): Contour plot for the pressure gradient −∂Π̂/∂x for λT = 0, (b): Contour

plot for the tangential component of buoyancy σρθ, for λT = 0, (c): ∂Π̂/∂x for λT = 0.5,

(d): σρθ for λT = 0.5, all having σ = 1 and Pr = 0.72.

the negative pressure gradient term is dominant over the tangential component of

the buoyancy force in the region close to the leading edge of the plate. At around

x = 1, the pressure gradient drops an order of magnitude (i.e. O(10−1)), while further

downstream at around x = 8 it drops an order once more, so that the buoyancy force

can safely be assumed to drive the flow. Finally when departures from the Boussinesq

approximation are assumed, the negative pressure gradient seems to get a slightly

enhanced influence (as can clearly be seen at contour line 0.1), which is increasing

with λT. The buoyancy term, as naturally expected, is stronger under the Boussinesq

approximation.
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ŷ

 

 

2

1.5 1

0.5

0.3

0.2

0.1

0.050.05

0 2 4 6 8 10
0

1

2

3

4

5

6

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.33: Contour plots for −∂Π̂/∂x + σρΘ. Top λT = 0, bottom λT = 0.5. For both

cases σ = 1 and Pr = 0.72.
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5.6 Summary

This chapter was devoted to the analytic study of the first order boundary layer

analysis of laminar natural convection above a uniformly heated horizontal and slightly

inclined semi-infinite plate. Slight inclinations to horizontal were introduced in the

formulation through the nondimensional parameter σ. With a positive or a negative

value of σ, corresponding to a positive or negative inclination respectively, the effects

of slight inclination to horizontal were studied in detail.

It is known that when the inclination is negative, a separation occurs in the bound-

ary layer flow accompanied by flow reversal. This is due to buoyancy forces opposing

the flow. Therefore, the initial focus was on negative inclination and three separate

studies were carried. The first study investigated the effect of variable fluid properties

(once more introduced in the formulation through the dimensionless parameter λT) on

the position of the separation point. It was found that the position of the separation

point, xs, moves downstream from the leading edge of the plate with increasing values

of λT, and a function xs = f(λT) was suggested.

Within the second investigation the effect of Pr on the position of the separation

point was considered. Thus, under the Boussinesq approximation, a detailed numerical

study was performed and resulted in the conclusion that by increasing the value of

Pr the position of the separation moves closer to the leading edge. Once more this

behaviour was captured by suggesting a function xs = f(Pr). The position of the

separation points obtained in this work, for a varying Prandtl number, deviate from

those published in [69]. This was attributed to the use of a continuous transformation

for the boundary layer equations in [69], which as a consequence resulted in a different

set of nonsimilar equations. On a theoretical basis the separation of the boundary layer

implies that no similarity regime is approached as x→∞, and therefore a continuous

transformation might not be a suitable choice. Consequently it seems reasonable to

expect that the results obtained here are trustworthy. In the final analysis regarding

negative inclination, the effect of the inclination parameter σ was briefly considered.

Positions of separation points were obtained for different values of σ. As expected the

separation point was shown to move downstream from the leading edge as the value

of the negative inclination parameter increases.
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In the final part of this chapter positive inclination (σ > 0), was considered. We

concluded that variable property effects have a milder effect on the flow. Also, an

examination in connection with the indirect pressure gradient −∂Π̂/∂x term, and its

significance when compared with the tangential component of the buoyancy force, was

carried out and an order of magnitude study was performed. From the analysis it was

found that the pressure gradient term at around ξ = 8 is of order O(10−2) and the

tangential buoyancy term fully dominates the driving of the flow.



Chapter 6

Hot Plate Experiment

6.1 Introduction

An ambitious experiment was designed with the collaborators and carried out by the

sponsor (AWE). The scope of the experiment was to test the theoretical model of the

horizontal plume and assist in its improvement. Based on top hat formalism, and a

strong assumption on the entrainment hypothesis which resembles the one commonly

used for the classic non Boussinesq plume i.e.

we = −αhfh(r)U with fh(r) =
( ρ
ρe

)1/2, (6.1)

answers concerning the actual value of αh were expected to be obtained, while the

validity of the ‘R-S like’, functional part of the entrainment hypothesis i.e.fh(r) could

be assessed and if necessary, modified according to the experimental findings. Further-

more in searching for the missing puzzle of the model, that being connecting the classic

plume model with our horizontal attached plume model, analysis of the experimental

data could serve as a guide for the right direction.

In trying to categorise the ‘hot plate’ experiment, one could easily assign it into the

family of round turbulent pure plume experiments, given the source and environmental

conditions defining it (i.e. no momentum at the source just buoyancy, still and un-

stratified ambient surrounding the source), which is a partly correct statement. Even

though a pure plume is generated its focus would lie far from the source where self

similarity is expected or established. Instead in our experiment attention is primarily

213
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directed in the region close to the source where the flow is expected to be predomi-

nantly attached and horizontal. The fully established vertical part of the flow far from

the source is of secondary interest. In that way it bears similarities to natural convec-

tion experiments above flat horizontal surfaces, though the nature of the experiment

is completely different since in the heart of classic natural convection experiments is

the viscous sublayer located just above the plate which here is not of a theoretical

interest.

Pure plumes are especially hard to realise experimentally and when attempted

normally they are generated by a heated wire, a pad, a heated coil, a flame or a line

of flames [17], and pool fires. In most cases though they are generated by a source of

momentum and buoyancy and are studied far from the source where the buoyancy is

fully dominant. One of the first vertical plume experiments dates back to 1952 and is

due to Rouse et al. [76], while the work of George et al. [27] must be mentioned. A

review of experimental data until 1980 is given by Chen and Rodi [17], more recent

work is from Kotsovinos [50] and Shabir & George [82].

The source of the plume in our experiment was chosen to be a heated aluminium

plate of 60cm diameter. While this should have been a good choice difficulties arose

in the conduct of the experiment, as will be explained. Since it is not uncommon for

many natural convection experiments even in the laminar limit (which implies smaller

diameters and much lower temperatures) to suffer from problematic insulation or even

convective flow from below the plate. As became apparent from our analysis problems

with insulation were manifested. In addition the controlling as well as the heating of

the plate turned out to be inappropriate. In what concerns the visualisation of the

flow, the particle feeding to the flow was poor, while there were serious problems with

the video data and no calibration was carried out. The need for the conduct of the

experiment in one go did not help, since a quick analysis would probably have indi-

cated where improvements could be made. The serious technical difficulties revealed

above, had an impact on the delicate flow that was set to be modelled, something that

was demonstrated in the huge amount of problematic data, whose analysis turned out

to be a rather time consuming process. Most importantly though, due to the uncer-

tainty incorporated within the data, we were unable to arrive at any conclusions with

confidence.
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On the brighter side, a newer experiment is being initiated at the time that this

work is being written up, so that the valuable experience gained will be an asset. In

addition methodologies and techniques developed here for analysing the data, suitable

for representing the horizontal plume, should be applicable to a better set of exper-

imental data. Therefore in what follows we shall begin with the introduction of the

experimental apparatus and the methodology followed, while a more detailed descrip-

tion of difficulties faced and efforts made to overcome them is given. A thorough

analysis of the horizontal plume flow is given while the chapter concludes with two

brief sections, one dedicated to the numerical simulation of the experiment using the

two equation turbulence models (k − ε) and (k − ω) [99], both implemented in COM-

SOL Multiphysics 3.5a. In addition a discussion is provided concerning modifications

required so as to better predict the buoyant flow. The final section of the chapter that

closes the main work of this thesis is dedicated to the visualisation of the flow using

particle image velocimetry PIV .

6.2 Methodology and experimental apparatus

A round plume was generated by heating an aluminium plate of radius 30 cm, placed

within a hole cut in the centre of a 150 cm × 150 cm aluminium housing plate, itself

housed in a 300 cm× 300 cm wooden compartment. The power supply was controlled

through brief injections of current so that the temperature (monitored by four thermo-

couples placed at the bottom of the plate) would remain close to a target temperature.

Additionally, the power supply was monitored and recordings of current and voltage

were taken so that the average power to the plate could be obtained. Care was taken to

minimise external flow disturbances that could affect the plume flow, while insulation

was used below and around the plate to minimise heat loss, and to avoid flow effects of

convection from the bottom of the plate. The temperature of the plate at the surface

was verified by taking Infrared (IR) pictures.

Fourteen different experiments were conducted for different target plate tempera-

tures varying from 25◦C to 240◦C as (in ◦C)

25, 30, 35, 40 45, 50, 60, 80 , 100, 120, 150, 180, 210 240.

(6.2)
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The temperature field above the plate was measured by moving an array of 12 ther-

mocouples positioned vertically at different heights above the plate as

1, 2, 3, 5 7, 10, 14, 20 , 30, 50, 80, 120.

with all positions measured in cm. An additional thermocouple was placed outside the

plume flow and was dedicated to measuring the ambient temperature, accompanied by

a relative humidity sensor. The thermocouples and the humidity sensor were connected

to a data logger, sampling at a frequency of 1Khz.Thermocouple recordings were made

in two passes. For the first pass readings were taken at the following locations in the

order

0 12 18 25 0 − 12 − 18 − 25

all in cm from the centre of the plate. The duration of each reading was 60 seconds

and the shifting of position took place every 80 seconds. The second pass was taken

at a more detailed set of positions given in order as

0 4 8 12 15 18 21 23 25 26 27 28 29 30 35

0 − 4 − 8 − 12 − 15 − 18 − 21 − 23 − 25 − 26 − 27 − 28 − 29 − 30 − 35

in cm from the edge of the plate. Once more the duration of the measurements lasted

for 60 seconds at each position and the movement of the array to the next station,

was carried out every 80 seconds. A detailed description of the experimental setup is

given in the drawings presented in Figures 6.1 and 6.2.

Concerning the visualisation of the flow, an analytic schematic diagram is given

in Figure 6.2. Talcum powder was used for the visualisation, while the particles were

placed at the top of two oscillating speakers, which were carefully placed so that the

feeding of powder into the plume flow took place with minimal possible disturbance.

A sheet of light along the centreline of the plate, was created by lights positioned

on opposite sides of the apparatus, far enough away to ensure that the beam was

narrow while the convection caused by the lights did not interfere with the flow within

it. After the completion of each experiment the surface of the plate was cleaned of

talcum powder so that the emissivity of the plate was not affected when thermal images

were taken. Two high resolution digital cameras were placed at different heights the

lowest focused on the flow in the region near the surface of the plate, while the higher

one captured a wider image of the flow.
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Figure 6.1: Thermocouples setup
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Figure 6.2: Visualisation of the flow
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6.3 Technical difficulties

The instantaneous measurements obtained by the thermocouples are denoted as T (r, z, t).

In addition the ambient temperature data gathered by the readings obtained by a

thermocouple safely positioned within ambient will be denoted by Te(t). The possible

presence of stratification was not measured. Unfortunately the ambient information

was obtained by just one thermocouple positioned at a height of about 10cm above

the plate so no actual information concerning the stability of the ambient can be con-

cluded. A code was written for the collection of the data and the generation of the

averages of, T (r, z, t), Te(t), T (r, z, t) − Te(t), the median of Te(t), T (r, z, t) − Te(t)

standard deviation of T (r, z, t)− Te(t), in addition to the max{T (r, z, t)− Te(t)}, and

min{T (r, z, t) − Te(t)}, while the results were output as 12 × 30 matrices positions.

The columns of data in the matrices were used to represent the thermocouple data

for different positions at a fixed z height, and the rows indicated data at the positions

along r. In that way Data(1, 1) would correspond to the thermocouple positioned at

height 1cm above the plate at r = −35cm.

From the measurements (assuming negative vertical stratification in temperature)

it must be expected that

lim
r→∞
z→∞

T = Te, (6.3)

with r → ∞ and z → ∞ implying locations outside the hot plume within the exper-

imental setup. In that way for all data-sets recorded, the simultaneously measured

T (r, z, t)−Te(t) should tend to zero as (r, z) moves towards ambient air. The ambient

temperature varied slowly with time so that it should be reasonable to assume that

Te(t) = T̄e, therefore once the T (r, z, t)− Te is averaged so as to remove the turbulent

fluctuations i.e. T (r, z, t)− Te = ∆T (r, z) the result is independent of time and varies

only with position.

In analysing the data the first problem encountered is demonstrated in the top left

image in Figure 6.3, which is the surface plot for ∆T obtained for the experiment at

target temperature 25◦C with T̄e = 16.81◦C. It can be observed that at greater heights

the thermocouples indicate higher temperatures which was unexpected. The reason

for this might be assigned to a stratification of the ambient but this was unlikely since



CHAPTER 6. HOT PLATE EXPERIMENT 220

this was the first experiment performed so there would not be enough time for a ther-

mal build up. A possibility could be that the lights used for the visualisation of the

flow were creating thermal layers, but then again for the temperature measurement

the light sheet was turned off, and care was taken to address that problem in the de-

sign of the experiment. A third, and very likely possibility is that thermocouples were

not recording in the same way. Unfortunately the thermocouples were not calibrated

to test, or correct for, this possible source of error. In addition the thermocouples

−40 −20 0 20 40
0

20

40

60

80

100

120  

The d iameter of the plate ( − 30 , 30)[ cm ]

 

H
e
ig

h
t
a
b
o
v
e
th

e
p
la
te

[
c
m
]

1

1.5

2

2.5

3

3.5

4

4.5

5

−40 −20 0 20 40
0

20

40

60

80

100

120  

The d iameter of the plate ( − 30 , 30)[ cm ]

 

H
e
ig

h
t
a
b
o
v
e
th

e
p
la
te

[
c
m
]

2

4

6

8

10

12

14

−40 −20 0 20 40
0

20

40

60

80

100

120  

The d iameter of the plate ( − 30 , 30)[ cm ]

 

H
e
ig

h
t
a
b
o
v
e
th

e
p
la
te

[
c
m
]

10

15

20

25

30

35

40

45

−40 −20 0 20 40
0

20

40

60

80

100

120  

The d iameter of the plate ( − 30 , 30)[ cm ]

 

H
e
ig

h
t
a
b
o
v
e
th

e
p
la
te

[
c
m
]

10

15

20

25

30

35

40

45

50

55

60

Figure 6.3: Surface plot of the mean distribution of Temperature. The instantaneous mea-
surement of ambient temperature is subtracted from instantaneous measurements of the
plume temperature. Moving clockwise the following cases of approximate plate temperature
are considered: 25◦C, 60◦C, 210◦C and 180◦C.
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used for the measurement of the experiment were (K-type), best suited to the mea-

surement of large temperature variation of the order of 500◦C to 1000◦C, while for the

experiment the order of the temperature variations were only of the order of one to

ten degrees. To overcome the above discrepancy a calibration was imposed by using

the 25◦C experiment as a base-line. An offset of temperatures was obtained for every

thermocouple (TCi with i = 1 . . . 12 ) in the following way. If a thermocouple i was
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Figure 6.4: Plot of the standard deviation.Rows representing thermocouples, whilst columns
represent the measurement positions along the plate. Moving clockwise the following cases
of approximate plate temperature are considered: 25◦C ,60◦C, 210◦C and 180◦C

found to measure an ‘ambient’ temperature of Te,i, while the more distant thermocou-

ple well into the ambient was measuring ambient Te the difference OFi = Te,i − Te

was determined and used to correct all the measurements of that thermocouple in
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subsequent runs. The corrections were then applied to the average measurements ∆T ,

so that result presented in the following sections will be based on these corrections.

Study of the IR images indicated another serious problem, this time regarding

the heating and the insulation of the plate. Figure 6.5 is indicative. As can be

(a) 100◦C (b) 120◦C

(c) 180◦C (d) 240◦C

Figure 6.5: IR images for experiments at different target temperatures.

observed for temperatures above 100◦C, the heating and the insulation of the plate

were problematic. At the target temperature of 120◦C, the temperature distribution

on the plate is far from uniform, while above that experiments based on higher target

temperatures indicate a collapse of the insulation. For that reason further discussions

concerning experiments at target temperatures above 100◦C are abandoned. The final

problem is the method used for heating the plate. Very brief pulses were provided to

the plate once the temperature of one of the four thermocouples monitoring the plate

fell below a preset target temperature, adjusted according to each experiment. Even

though these pulses were recorded accurately, this method of heating is not a steady
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process. Study of the power data as shown in Figure 6.7 revealed that mean heating
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Figure 6.6: Plots of the temperature profiles at fixed height. TC(i) with i = 1 . . . 12 is
the corresponding thermocouple. Moving clockwise the following cases of approximate
plate temperature are considered: 25◦C ,60◦C, 210◦C and 180◦C

rates were in transient for significant parts of the duration of the experimental time,

which means that measurements made throughout this transient process introduced

further uncertainty in the accuracy of the data. Another concern is illustrated in the

(d) image given in Figure 6.5. The image was probably taken shortly after a pulse of

energy was injected into the plate, which makes it clear that the method of heating

used must have introduced short term and non uniform bursts in the rate of heat

transfer from the plate to the air above the average. The pulses injected into the plate

were responsible for the large values of standard deviation observed in Figure 6.4,

while the asymmetry present in the profiles seen in Figure 6.6, may also be a result of
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the heating method adopted.
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Figure 6.7: Calculations of averaged power injected as thermal energy into the air. The
numbers shown on the right of each plot give the surface temperature of the plate estimated
from the thermal images supplied (with error margins). No thermal image was supplied
for target temperature of 35◦C for which a coarser estimate of surface temperature is made.
Additional errors might arise for other temperatures since many of the thermal images would
have been taken before the heating of the plate had reached thermal equilibrium. Average
ambient temperatures during each experimental run are shown [in square brackets]. Number
on the left are the average power conducted into the air, estimated near the end of each run,
after allowing for radiative losses.

The average power to the plate obtained after allowing for radiative losses is given

in the following table. In order to further proceed with the analysis, the asymmetry of

Tw [◦C] 25 30 35 40 45 50 60 80 100
Q [kW] 0.0094 0.0335 0.0415 0.046 0.066 0.0775 0.1050 0.195 0.286

Table 6.1: Averaged power injected as thermal energy into the air for different target plate
temperatures Tw.

the data was removed by using an even transformation. Averages obtained from mea-

surements taken from symmetric positions on either side of the centre of the plate were

averaged, and the mean value obtained was used to replace the actual measurements

(i.e. Figure 6.8)
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Figure 6.8: Averaged measurements are shown for the target plate temperature of 100◦C.(a)
Variation of ∆T for every thermocouple along the diameter of the plate (b) Symmetric
transformation of the data (c) Variation of ∆T with height (i.e each line corresponds to
fixed r position) for the symmetric data obtained.
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The study of the vertical plume will not be pursued here, since the inconsistency

of the data considered and the lack of information concerning the stratification of the

ambient makes the analysis fruitless. Therefore the focus in analysing the data lies

directly in developing a methodology suitable for the horizontal plume flow.

6.4 Analysis of the horizontal plume data

In formulating the theoretical horizontal plume model in Chapter 2 for the turbulent

flow above a circular horizontal disk, after neglecting viscous forces (i.e. large Grashof

number Gr flows are of interest), and integrating the conservation equations for mass

momentum and energy expressed in terms of the mean flow variables, four parameters

of major importance were singled out. The mass flux V , the momentum flux M , the

energy flux B and a forcing term F responsible for the horizontal driving of the flow,

all defined as

V = 2πr

∫ ∞
0

ρ̄ū dz, M = 2πr

∫ ∞
0

ρ̄ū2 dz,

B = 2πr

∫ ∞
0

ρ̄cpT̄ ū dz, andF = 2πr

∫ ∞
0

∂P

∂r
dz.

(6.4)

Furthermore the mass entrained into the system is defined as Vin = −2πrρewe, while

the energy entrained and provided through heat flux q, is expressed as −2πr(q +

ρecpTewe), with we being the the velocity at which ambient fluid is engulfed into

the horizontal flow. In that way the conservation principles for mass, energy and

momentum were specified as

dV

dr
= Vin,

dB

dr
= Bin and

dM

dr
= −F. (6.5)

In addition the pressure outside the plume (i.e. z > h, with h being the height of the

horizontal flow) was assumed purely hydrostatic whilst inside the plume was given as

P = P0 − ρegz −
∫ ∞
z

(ρe − ρ)dz̃, (6.6)

so that the radial pressure gradient is

Pr = − ∂

∂r

∫ ∞
z

(ρe − ρ)dz̃, (6.7)

which finally results in F being expressed as

F = 2πr

∫ ∞
0

(
∂

∂r

∫ ∞
z

(ρ̄− ρe)dz̃

)
dz = 2πr

∂

∂r

∫ ∞
0

∫ ∞
z

(ρ̄− ρe)dz̃dz. (6.8)
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In that way conservation equations given in (6.5) take the following form

d

dr

∫ ∞
0

rρ̄ū dz = −rρewe (6.9a)

d

dr

∫ ∞
0

rρ̄ū2 dz = −r ∂

∂r

∫ ∞
0

∫ h

z

(ρ̄− ρe)dz̃dz (6.9b)

d

dr

∫ ∞
0

rū dz = −r( q

ρecpTe

+ we) (6.9c)

Embracing the top hat formulation so that

ρ̄ =

 ρ if z ≤ h

ρe if z > h
ū =

 U if z ≤ h

0 if z > h
(6.10)

leads to the governing equations

d

dr
[rρUh] = −rρewe, (6.11a)

d

dr

[
rρU2h

]
=

1

2
rg

d

dr

[
(ρe − ρ)h2

]
, (6.11b)

d

dr
[rUh] = −r( q

ρecpTe

+ we), (6.11c)

or expressed in terms of density deficiency δ = ρe − ρ as

d

dr
[r(ρe − δ)Uh] = −rρewe, (6.12a)

d

dr
[r(ρe − δ)U2h] =

1

2
rg

d

dr
[δh2], (6.12b)

d

dr
[rUh] = −r(we +

q

ρecpTe

). (6.12c)

Equations (6.11), (6.12) are based on the theoretical assumption that top hat

shape functions can properly represent the horizontal part of the flow. However in

the context of the experimental measurements and their analysis, a more general form

of distributions needs to be considered. Beginning with the introduction of a profile

variable

η =
z

H(r)
, (6.13)

where H(r) represents a local height scale for the attached horizontal flow and a

distribution function Φ for which

Φ(0) = 1, and

∫ ∞
0

Φ(η) dη = 1⇒
∫ ∞

0

Φ(η) dz = H. (6.14)
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In addition further properties for the distribution function are L, L2 and L3, defined

as

L =

∫ ∞
0

∫ ∞
µ

Φ(η) dη dµ, L2 =

∫ ∞
0

Φ2(η) dη, and L3 =

∫ ∞
0

Φ3(η) dη. (6.15)

The actual form of the distribution functions is to be determined from the ex-

perimental data. Since no reliable information can be be extracted from the video

data (even though their analysis is pursued in the last section of the chapter where

a qualitative behaviour is presented) we are left with limited options concerning the

appropriate distribution function for the mean velocity. Therefore in what follows the

mean properties of both density deficit δ̄ and the horizontal velocity ū are presumed

to be represented by the same shape function Φ as

δ̄ = δh(r)Φ(η), and ū = −UhΦ(η). (6.16)

On physical grounds the above assumption implies that the same turbulent mixing

processes transfer mass and velocity. Arguably a more suitable choice might have

been to presume that the momentum and the mass are described by the same dis-

tribution function, since the Boussinesq approximation is not adopted. Nevertheless

experimental results studied here, indicate that the flow is not far from being Boussi-

nesq so that the differences would be small, weighted down by the levels of uncertainty

in the experiments carried out.

Introduction of the distributions given in (6.16) into the general form equations

given in (6.9), results in the following set of equations

d

dr
[r(ρe − δhL2)UhH] = −rρewe, (6.17a)

d

dr
[r(ρeL2 − δhL3)U2

hH] = rg
d

dr
[δhLH

2], (6.17b)

d

dr
[rUhH] = −r(we +

q

ρecpTe

). (6.17c)

The above equations correspond to the ‘top hat’ ones given in (6.12), if δh = δ, Uh = u,

L2 = L3 = 1 and L = 1/2. For a general form distribution Φ the analogous ‘top

hat like’ equations can be obtained by initially directing attention towards equations

(6.12a)–(6.17a) and (6.12c)–(6.17c). It can be deduced that equivalence is obtained

when δ = L2δh and UhH = Uh. Additionally by setting Uh = σ1U , and H = σ2h,
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noting that σ1σ2 = 1 and further assuming that the derivatives of L2 and L w.r.t r

can be neglected, then from equations (6.12b)–(6.17b) σ1 and σ2 are evaluated as

σ1 =

(
2L

L2
2

)1/3

and σ2 =

(
L2

2

2L

)1/3

. (6.18)

Therefore the equivalent top hat equations for a general form profile are thus given as

d

dr
[r(ρe − δ)Uh] = −rρewe, (6.19a)

d

dr
[r(ρe − λδ)U2h] =

1

2
rg

d

dr
[δh2], (6.19b)

d

dr
[rUh] = −r(we +

q

ρecpTe

), (6.19c)

where λ = L3/L
2
2.

If the Boussinesq approximation is embodied so that δ → 0, then the resulting

equivalent top hat like system given in equation (6.19), matches the theoretical top

hat system of equations given in (6.12). In the more general case considered here

where the Boussinesq approximation is not adopted the parameter λ is present in the

equations and equivalence can only be attained when λ = 1 or L2
2 = L3. Therefore by

considering a general horizontal plume profile that is not top hat, introduces a pro-

file dependent parameter in the model equations, representing deviation from top hat

formalism. The theoretical work given in Chapter 3 was based on the assumption

that top hat profiles can adequately describe the horizontal part of the flow, therefore

all results obtained were based on λ = 1. Analysis of the thermocouple data indicate

that an exponential distribution Φ(η) = exp(−η) is a likely candidate for the repre-

sentation of the density deficit data (or equivalently the density data) and since the

same distribution is adopted for the horizontal velocity then

δ̄ = δh(r) exp(−η), ū = Uh(r) exp(−η). (6.20)

For the presumed exponential distribution Φ(η) = exp(−η), additional properties given

in (6.15) are evaluated as

L = 1 L2 =
1

2
, L3 =

1

3
so that λ =

4

3
. (6.21)

Consequently since λ > 1, departures from the theoretical analysis provided earlier

are expected. Nevertheless the nature of the equations is not altered significantly
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provided that the resulting value of λ for any preferred distribution remains an O(1)

term, as in the case considered here. Finally in fitting to the experimental data using

the distributions given in (6.20), the corresponding ‘top hat like’ variables h and δ can

be estimated as

h = 2H, U =
Uh
2
, δ =

δh
2
. (6.22)

In what follows, the focus will lie in the analysis of the experiments based on

target plate temperatures of 50◦C, 60◦C, 80◦C and 100◦C. In studying the horizontal

part of the flow exponential fits of the form given in (6.20), were obtained in a least

squares sense for the density deficit and seem to provide a moderately reasonable

approximation in the region of interest. The fitting to the density deficit thermocouple

data is presented in Figure 6.9. Furthermore the variation of the values obtained for

δh along the radius of the plate, from the exponential fits are given in Figure 6.10,

where in addition a symmetric polynomial of the form

δh = δ̂0 + δ̂2r
2 + δ̂4r

4. (6.23)

is fitted to the data. The reasoning behind the polynomial fit is to become clear once

the theoretical model is tested on how well it approximates the experimental data

given in the following section.

6.5 Testing the model

Having obtained the equivalent ‘top hat like’ system of equations given in equations

(6.19), this section is concentrated on testing behaviour of the theoretical model in

describing the experimental findings. We shall begin by rewriting the equations (6.19)

in terms of density and further multiply equation (6.19c) with ρe, to obtain

d

dr
[rρUh] = −rρewe, (6.24a)

d

dr
[r(ρe − λ(ρe − ρ)U2h] =

1

2
rg

d

dr
[(ρe − ρ))h2], (6.24b)

d

dr
[rρeUh] = −r(ρewe +

q

cpTe

). (6.24c)

Subtraction of equations(6.24c)-(6.24a) and application of the entrainment hypothesis

(i.e. we = αh(
ρ
ρe

)1/2U), to finally get

d

dr
[rρUh] = −αhr(ρeρ)1/2U, (6.25a)
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Figure 6.9: Least squares exponential fits (dotted lines) to the experimental density deficit
data.
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Figure 6.10: Variation of δh with r and a best fit using least squares (dotted line).



CHAPTER 6. HOT PLATE EXPERIMENT 233

d

dr
[r(ρe − λ(ρe − ρ)U2h] =

1

2
rg

d

dr
[(ρe − ρ))h2] (6.25b)

d

dr
[r(ρe − ρ)Uh] = −r q

cpTe

. (6.25c)

The number of unknowns in the system of equations (6.25) is five, ρ, U , h, q and

αh whilst λ = 4/3 . For the time being the entrainment coefficient αh, is assumed to

be known and given as αh = 1/8. This means that for the constant of entrainment

in the horizontal flow, the numeric value widely used in vertical plumes, is assigned.

By neglecting one unknown, the problem of shortage of equations is not diminished,

one more equation is required for closure of the system. In searching for an additional

equation, it should be remembered that the average power Q, provided to the plate has

been estimated. By taking into account that information, one more equation appears

in the form of an integral constraint for the heat flux q as∫ L

0

2πrq dr = Q, with L being the radius of the plate. (6.25d)

It is advisable before furthering discussion on the application of the theoretical

model to the experimental data, to make the equations dimensionless. For the nondi-

mensionalisation of (6.25), the following scales will be used

r = Lr′, h = Lαhh
′, U =

Q

2απL2ρecpTe

U ′ q =
Q

πL2
q́

ρ = ρeρ
′ and a = 4gα3

h(ρecpTe)
2π

2L5

Q2
. (6.26)

The resulting equations after dropping primes for ease, are

d

dr
[rρUh] = −r√ρU (6.27a)

d

dr
[r(1− λ(1− ρ)U2h] =

1

2
ar

d

dr
[(1− ρ)h2] (6.27b)

d

dr
[r(1− ρ)Uh] = −2rq. (6.27c)∫ 1

0

rq dr =
1

2
. (6.27d)

This system of equations could be considered theoretically closed, provided that

the form of q is known and suitable boundary conditions are given, so that it could then

be treated numerically. Consequently it is necessary to open a discussion concerning

the boundary conditions that are suitable for the experiment, before touching aspects
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of the numerical methodology to be used. In developing the theoretical model we had

assumed constant heat flux q. The number of unknowns were three, namely U, h and ρ,

while the problem was treated as an IVP, at r = 1. The initial conditions for the

dependent variables were given as h(1) = U(1) = ρ(1) = 0. In addition, the singular

behaviour of the system exhibited at r = 1, required a local analysis in the limit of

r → 1 to be performed. Truncated power series approximations valid in that vicinity

had to be obtained, before a numerical solution could be attempted. The situation

in the experiment is rather different, the number of unknowns has increased to four

(not including αh) with the addition of q, whilst in trying to formulate the problem

as an IVP, experimental results indicate that the initial condition ρ(1) → 0 cannot

be used, since the variations in density are small with respect to the ambient density.

Furthermore we have no prior knowledge of what the initial condition for q(1) should

be. To add to the trouble, the experiment indicates that the height of the plume

and consequently the velocity, are not actually zero at the edge of the plate. This is

likely to be connected with the insulation of the heated plate. As discussed earlier and

shown in the thermal images, the area surrounding the plate is also heated to some

degree, something that results in an additional weaker flow external to the boundaries

of the plate. That secondary external flow acts as a perturbation to the actual flow

under consideration. Nevertheless in what follows the effects of the incoming weak flow

outside the edge of the heated plate will be neglected. In that way initial conditions

for the velocity and the height of the attached flow imposed at the edge of plate remain

unchanged when compared to the theoretical model, and are given as h(1) = 0 and

U(1) = 0. The initial condition for the density is available from the experimental

data, being O(1) quantity, while the initial condition for the heat flux, still remains

undefined.

Forcing the constraints for height and velocity to zero at the edge of the plate,

results in a singularity at the edge of the plate. In the usual manner a local analysis

has to carried out, around r = 1 before numerics can be considered. Unforeseen, local

analysis reveals that the behaviour for all dependent variables at the edge of the plate,

require only knowledge of the value of the density at the edge of the plate.

Assuming that the local behaviour of the dependent variables at the edge of the
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plate is of the form

As r → 1 ρ ∼ ρ̂, U ∼ Û(1− r)a, h ∼ ĥ(1− r)b, q ∼ q̂(1− r)c. (6.28)

substitution of (6.28) into (6.27) results in b = 1, a = c = 1/2. So that

U ∼ Û
√

(1− r), h ∼ ĥ(1− r), q ∼ q̂
√

(1− r) (6.29a)

with

ĥ =
2

3
√
ρ̂
, Û2 =

a(1− ρ̂)

3
√
ρ̂(1− λ(1− r)) and q̂ =

(1− ρ̂)Û

2
√
ρ̂

. (6.29b)

It is clear from the above results that knowledge of ρ̂ suffices for the provision of initial

conditions at r(1−). The system of differential equations is now reformulated with an

introduction of a new dependent variable given as

m(r) = rρ(r)u(r)h(r). (6.30)

Keeping in mind that the local behaviour of m is also known from (6.28), three differ-

ential equations in terms of m, u, and ρ, plus the unchanged integral constraint for q

are obtained as
dm

dr
= −r√ρu, (6.31a)

dρ

dr
=
r
(
u (ρ− 1) + 2q

√
ρ
)
ρ3/2

m
, (6.31b)

du

dr
=
uΨ

Ω
, (6.31c)

∫ 1

0

rq dr =
1

2
, (6.31d)

while Ψ and Ω are given as

Ψ = 2 (
√
ρu+ 2 (1− λ) q)u3ρ2r3 +

(
2q (ρ− 2) + (ρ− 1)

√
ρu
)
aρmr2 + 2am2 (ρ− 1)

(6.31e)

Ω = 2mr
(

(λ (ρ− 1) + 1)u3ρr +ma (1− ρ)
)

(6.31f)

Nevertheless, there are further details that needs to be addressed, before a numer-

ical process can be set up. The form of the heat flux q is still unknown, while the
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estimated power into the plate Q, is used in the nondimensionalisation of q as well as

in the definition of the nondimensional parameter a. Provided that the estimates for

the power are accurate enough, the parameter a contains another unknown of great

interest in our study, namely the constant of entrainment αh, which so far has been

treated as known. Furthermore the scaling of the height of the plume h also makes

use αh. To sum up, there is a need to deal with a problem of five unknowns, after the

inclusion of the constant of entrainment, with the use of three differential equations

and an integral constraint. The fitting to the experimental data provides us with the

information for the density deficit δ, or equivalently for the density ρ and for the height

of the horizontal flow. Further, by fitting a fourth order symmetric polynomial to the

experimental fits for the density deficit δh variation along r, knowledge for the density

deficit at each point r ∈ [1 , 0] rather than the discrete measurement fixed positions

is achieved. The computational domain under consideration is r ∈ [rh, 1−] with rh

being the value of r at which the horizontal model ceases to be valid (rh = 0.3 is

assumed), while 1− is approximated by 0.9999. The domain [0.3, 0.999] is partitioned

into subintervals created as

ri+1 = ri − k for i = 2, 3 . . . n− 1, n and k =
rh − 1

n− 1

while r1 = 0.9999 and r2 =
89

90
. (6.32)

Taking n = 63 or k = 1/90, 62 equal subintervals are generated plus the first one from

[89/90, 0.9999].

Reflecting on the asymptotic behaviour of q around r = 1 (6.29) we can further

suppose that the heat flux can be expressed in the following functional form

q =
√

1− r
(
q̂i +

r − ri
ri+1 − ri

(q̂i+1 − q̂i)
)
. (6.33)

With q̂i and q̂i+1 representing the constant values of q̂ at ri and ri+1 . In other words

linear interpolation is assumed for q̂ at each subinterval. Now by differentiating q an

additional differential equation valid for ∀r ∈ [ri, ri+1] is introduced i.e.

dq

dr
=
√

1− r
(
q̂i+1 − q̂i
ri+1 − ri

)
− 1

2
(1− r)− 1

2

(
q̂i +

r − ri
ri+1 − ri

(q̂i+1 − q̂i)
)
. (6.34a)

In addition the constants q̂i,q̂i+1 can be written as ODEs

dq̂i
dr

= 0,
dq̂i+1

dr
= 0 ∀ r ∈ [ri, ri+1]. (6.34b)
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The introduction of three additional differential equations is purely for reasons of

numerical formulation. The behaviour of the dependent variables m, q, ρ and U from

r = 1 to r = 0.9999, is that described by the local analysis, therefore knowledge of the

dependent variables exists at r = 0.9999. Having created this one dimensional grid, for

each closed subinterval [ri+1, ri], the number of unknowns is six, namely ρ, u,m, q, q̂i

and q̂i+1. Not neglecting the integral constraint, for each subinterval the following

integral is introduced

ti = −
∫ ri+1

ri

rq dr. (6.34c)

The system of equations can now be considered theoretically closed (i.e. six differ-

ential equations and six unknowns) once suitable boundary conditions are provided.

The numerical formulation followed is almost straightforward, and it will only make

use of the information of the data fit to the density deficit δh, or more accurately the

least squares fit to the density deficit. The starting point has to be the local analysis,

as it was shown initial conditions can be provided in r1 = 0.9999 i.e r = 1− using

(6.28), for q, m, u and ρ. For the constants q̂1 is not hard to see that that by setting

r = r1 into (6.33) that q(r1) =
√

1− riq̂1 so that

q̂1 =
(1− ρ̂)Û

2
√
ρ̂

. (6.35)

It is clear that no information can be given for q̂2, when trying to formulate the prob-

lem as an IVP, for that reason the problem will be formulated as shooting one. At

r = r2 knowledge of δh(r2), or equivalently of ρ(r2), allows us to provide a guess (with

the objective of us fitting results, to the experimental data) β1 as an initial condition

for the q̂2, i.e. q̂2(r1) = β1, and set up an iterative process, in which improved estimates

of β1 are made, by shooting from r1 to r2 until the value obtained for ρ(r2) agrees with

the fitted value to the experimental data. Once the process is complete, numerical

information for all variables is obtained in [r1, r2], and the integral t1 = −
∫ r2
r1
rqdr is

numerically evaluated. The same procedure is repeated in all the remaining subinter-

vals. Once the computations are concluded, a check condition is applied∣∣∣ n∑
i=1

ti +

∫ rh

0

rqn dr− 1

2

∣∣∣ < 10−3. (6.36)

The above condition represents nothing else than the integral constraint. The second

term on the l.h.s incorporates an assumption that the heat flux from rh = 0.3 to r = 0
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remains constant. As mentioned earlier an additional unknown is contained in the

system of equations, through the nondimemensional parameter a = f(α,Q). Provided

that Q is estimated correctly, then a can be considered to be only a function of α

i.e. a = F(αh). If (6.36) is not satisfied then the value of a is altered (which means

that α is altered), and the whole computational process is repeated again, until 6.36

is satisfied. In that way the constant of entrainment αh which initially was set to be

equal to 1/8; also calculated so as to obtain a good fit to the experimental data. In

that way all the unknowns are determined and the theoretical model can be compared

to the experimental results.

Alternatively because the dimensionless plume height also depends on αh as seen

in (6.26), the value of αh could be estimated so as to arrive at a best match between

the dimensional experimental heights H(r) and the modelled equivalents. Using the

value of αh obtained in that way, it could also be applied in the definition of the a

to recover the heat flux so that a comparison could be made with the value obtained

using the power data.

6.5.1 Numerical results

Provided that the estimates for the heat flux into the plate are accurate enough,

for the four experiments considered here, namely target plate temperatures of 50◦C,

60◦C, 80◦C and 100◦C numerical computations indicate that fulfilment of the integral

constraint is achieved for values of a and consequently for values of the constant of

entrainment αh, listed in Table 6.2

Target plate temperature (◦C) a αh
50◦C 6.838× 107 1.513
60◦C 2.84× 107 1.382
80◦C 9.57× 106 1.453
100◦C 3.437× 106 1.333

Table 6.2: Values obtained for the constant of entrainment, based on the assumption of
accurate estimates of the power to the plate.

It must be recalled that for the exponential distribution chosen the ‘top hat like’

equations were obtained after the employment of definitions given in equation (6.22),



CHAPTER 6. HOT PLATE EXPERIMENT 239

which when combined with (6.26) results in

αh =
2H

Lh′
, Q = 2π(ρecpTe)

(gα3
hL

5

a

)1/2

, U =
(Lgαh

a

)1/2

U ′. (6.37)

Introduction of a correction dimensional parameter ε [m], for the nondimensional height

of the plume h′ such that H ≈ εh′, enables the matching of the height obtained

numerically with the one obtained from the experimental data, where possible. In

Figure 6.11 a demonstration is given. In doing so, the constant of entrainment αh
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Figure 6.11: Nondimensional computed plume height h′, is modified by the parameter ε,
so as to match the experimental height H.

can be estimated, as αh = 2ε/L. Knowledge of the constant of entrainment will then

be used for calculating the heating power entering the plate using the second equation

in (6.37). Analytical results are presenter in Table 6.3.

Looking at the results obtained when the experimental height data are not con-

sidered the theoretical model provides a constant of entrainment that is around 1.5
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Figure 6.12: Computed horizontal flow parameters for different target plate temperatures.
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Target plate temperature (◦C) a αh Q [W] Qest [W] ε [cm]
50◦C 6.838× 107 1.853 105 77.5 27.8
60◦C 2.84× 107 2.08 194 105 31.2
80◦C 9.57× 106 2.021 320 195 30.3
100◦C 3.437× 106 2.513 740 286 37.7

Table 6.3: Results obtained for the constant of entrainment after fulfilling numerically the
integral constraint for the average power to the plate. Once the value of a is recovered a
plume height correction parameter is introduced so that computed and experimental height
of the plume match. Use of that parameter leads us to the numeric value of the constant of
entrainment αh, which enable us to evaluate average power to the plate Q and compare it
with the estimates Qest.

while the value of a is large. When the matching of computational and experimental

height is attempted the value of the constant of entrainment increases and is around

two. Therefore in both case the value is much larger than the one expected for the

vertical plume flow (i.e 1/8). When using height data to estimate αh the values of

the heating power are significantly higher than the estimates obtained from the power

data, by a margin that seems to be beyond any usual experimental error. Clearly by

revisiting Figure 6.11, it can be observed that in all cases, experimental data indicate

that the height of the plume at the edge of the plate varies from 8cm to around 12cm.

Due to insulation problems clearly seen in infrared pictures the actual size of the area

heated is larger than the one actual modelled. Therefore the real flow taking place

can roughly be described as the one above a larger plate of unknown size, being at

a higher non-uniform temperature than the environment and surrounding the actual

experiment plate. For example in Figure 6.13, infrared images for the experiment at

target plate temperature of 100◦C presented. Ambient temperature measurements in-

dicate that the mean ambient temperature for the experiment is Te = 16.4◦C, though

the infrared images manifest the problem, since the minimum temperature recorded in

the region surrounding the plate is T = 21.3◦C. That surely must result in an asym-

metric external flow moving towards the edge of the plate and acting as a perturbation

on the actual flow modelled. It is therefore expected that a horizontal plume structure

is already in existence around the edge of the plate, which explains why the measured

experimental heights H are significantly different from zero at r = 30cm. Moreover,

the height profiles seen in Figure 6.11 show effects that are not consistent with the

generation of a plume only over the heated plate.
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(a) (b)

Figure 6.13: IR images for the experiment at target temperature of 100◦C .

Concluding, it is practically impossible to arrive at acceptable conclusions from

the results obtained here since the experiment clearly failed to produce flow that the

theoretical model was built to represent. It is therefore unfortunate but no useful

information can be extracted w.r.t the entrainment hypothesis and the constant of

entrainment, used for the horizontal plume flow. A major failing of the experiment

was in maintaining a steady energy supply to the plate. Coupled with the problematic

visualisation of the flow and especially the really poor quality of the videos capturing

the whole flow (practically of no use), very little information can be obtained for the

transition of horizontal buoyant current to vertical plume structure.

Nevertheless the methodology used here is appropriate and ready to be applied

whenever better experimental data are available. Generation of a pure plume structure

(no momentum at the source) does not seem to have been achieved in these laboratory

experiments. Difficulties arise due to relatively small flow velocities, which makes the

flow sensitive to unsteadiness in the energy supply rate and to outside disturbances,

and which in turn are hard to measure [17]. Therefore in designing a future experiment,

a few important features of the current experiment need addressing.

• Accurate monitoring and control of the source conditions.

• A vertical array of thermocouples positioned at different heights and in the am-

bient so that the stratification of the ambient can be monitored.

An important characteristic of the classic plume flow is that the rate at which buoyancy
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is added at the source must, for a neutral environment, be equal to the buoyancy

integral at each height [26] . That is because for an ideal gas conservation of energy

implies conservation of buoyancy so that the integrals of these quantities must equal

the values at the source [82]. It is critical therefore that the conditions at the source, are

carefully monitored so that problems faced here for the analysis of the horizontal flow

are not repeated, while the analysis of the classic plume should allow for comparison

of the buoyancy integrals with the source conditions. Stratification of the ambient is

difficult to avoid in a laboratory generated plume, due to to long time scales that the

experiments need to achieve statistical equilibrium, causing an inversion layer to be

built up at the ceiling. The need for an array of well-calibrated thermocouples placed

in the ambient and at heights covering the actual plume measurements is needed

for determining the degree to which stratification causes warmer ambient fluid to be

entrained into the plume as well as reducing buoyancy. Following [17] by defining a

parameter S as

S = − g

ρe,s

dρe

dz
, (6.38)

where ρe,s is the density at the height of the source while ρe is the local density, then

depending on the value of S, the following cases are defined; the environment is stably

stratified when S > 0, neutrally stratified or unstratified when S = 0 and unstably

stratified when S < 0. In a realistic laboratory environment the condition S → 0 is

ideal for stratification effects to be neglected.

• Reexamination of the time scales of the flow so as to ensure that statistically

stable averages at different heights are present.

• A reassessment concerning the source

• The particle feeding for the visualisation flow.

For completeness the final two brief sections of this Chapter are dedicated to the

numerical simulation of the experiment using k− ε and k− ω turbulence models, and

the visualisation of the flow using particle image velocimetry (PIV) analysis.
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6.6 Numerical simulation of the experiment using

k − ε and k − ω turbulence models

Two equation models for turbulence have become increasingly popular over the last

few decades specifically the k − ε and k − ω models accompanying the ever increas-

ing computational power. Their foundations though date back to Kolmogorov and

Prandtl [99]. With k representing the specific turbulence kinetic energy, ε the specific

dissipation and ω the specific dissipation rate. The closure of the averaged Navier

Stokes equations is obtained by computing the eddy viscosity µT using k and ε or

k and ω. The dimensions of the above stated parameters are given as k [L2/T 2], ω

[T−1], ε [L2/T 3] while for µT the dimension are [M/L4T ]. With M representing mass,

L length and T time. On dimensional grounds therefore the eddy viscosity is modelled

as

µT = ρCµ
k2

ε
in Standard k − ε, (6.39a)

µT = ρ
k

ω
in k − ω, (6.39b)

with a closure coefficient given as Cµ = 0.09. The eddy viscosity closure therefore

introduces two additional transport equations depending on the chosen model. For a

detailed description the reader can refer to the textbook of Wilcox [99].

There is an active discussion in the turbulence modelling community concerning

modifications necessary to the classic k − ε turbulence model in order to successfully

describe free buoyant plumes [8] [100] [65] [54]. The reason being that when the

standard form of the k− ε is used to model round buoyant plume flows it over-predicts

the velocities and temperature variations along the line of axisymmetry resulting in

thinner widths for the velocity and the Temperature. An additional term is normally

inserted in the turbulent kinetic energy equation, representing buoyancy production

and different methods are followed to model it, but this is outside the scope of this

short section.

We shall apply the standard k−ε and k−ω model to numerically simulate the target

temperature experiment of 100◦C. The numerical simulation is carried in COMSOL

Multiphysics 3.5a using the Chemical Engineering module and the k− ε k−ω models.
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Due to the problematic nature of the data collected, as reported in this chapter, a sim-

ulation of the HS1 experiment of Nam and Bill [65] was carried out so as to determine

the the behaviour of COMSOL, presented in Figure 6.14 The results obtained when
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Figure 6.14: k − ε simulation of HS1 experiment [65]. Pool fire of diameter 0.688 m and
heat flux 440.1 kW/m2. (a) Temperature variation at fixed height along the radius. (b)
Velocity variation along the axis of symmetry.

compared to the ones given in [65], indicate that there is a reasonable agreement with

the temperature profiles. The situation is slightly different concerning the variation

of the velocity along the axis of symmetry, but only close to the source from zero to

approximately one, where significantly higher velocity is obtained. Further above, the

results obtained are satisfactory.

Turning attention to the simulation of the experiment of target plate temperature

100◦C, we are faced with the problem of what might be the correct boundary conditions

at the source and next to the source. IR images indicate that the temperature is not

uniform, while the area next to the plate due to problems with insulation is at a higher

temperature than the ambient. In addition the thermocouple readings indicate that at

heights of 1cm above the plate the temperature is under 40◦C. Given the uncertainties

introduced in the numerical formulation by the lack of neat boundary conditions, it

was decided that at the bottom of a square domain of length 1.5m which is used for the

two-dimensional axisymmetric simulation, a uniform temperature condition of 40◦C

is suitable and will be imposed on the plate, while a thermal insulation condition is

applied to the remaining part of that boundary. For the top boundary, convective heat
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flux and normal flow conditions are imposed while tangential velocities are set to zero.

Similar constraints apply for the right boundary only with the difference that ambient

temperature is imposed. Finally for the left boundary axial symmetry conditions are

imposed.

In the k−ε model, initial computations carried, were based on the standard closure

coefficients given in [99], but results obtained were unsatisfactory, since the temper-

ature variation along the centerline was found to be significantly higher than the

experimental measurements indicate. For that it was decided to change the value of

the closure coefficients Cµ and σk as in [65]. Therefore Cµ = 0.09 was changed to

Cµ = 0.18 and σk = 1 to σk = 0.85. With respect to the data, least squares Gaussian

fits for the mean profiles of the temperature of the form

T = Tv exp
−r2

B2
, (6.40)

were obtained and presented in Figure 6.15.
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Figure 6.15: (a) Least squares Gaussian fit to the mean temperature data, (b) Variation
of Tv with height, (c) variation of B with height.

A comparison between numerical simulations using k − ε, k − ω with the exper-

imental results, is given in Figures 6.16 and 6.17. No profound conclusions can be

drawn from the current analysis, other than that a simple modification in the closure

constants of the k − ε model, result in a solution that improves the fit to the data

. It must be noted that before the change in the parameters the behaviour obtained

from the k − ε model did not differ significantly from the one produced here by the

k − ω model. The uncertainty in the data, in addition to the fact that the numerical

simulation corresponds to a controlled experiment, makes any further analysis of little

value.
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(b) z = 30cm
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Figure 6.16: Radial variation of the mean temperature at a fixed height.
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(b) r = 8cm
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(c) r = 15cm
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(d) r = 23cm
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(e) r = 28cm
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Figure 6.17: Fixing r (r = 0 cm being the centre of the plate) the variation of temperature
with height is plotted.
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6.7 Visualisation of the flow

6.7.1 Particle image velocimetry (PIV)

In this final section of the chapter the analysis of the video data is attempted. Numer-

ous problems encountered in the process and the analysis made this far from straight-

forward. As mentioned earlier, two high resolution cameras were supposed to record

the flow, each one suitably placed, for the collection of information serving different

purposes. The role of the lower camera, as shown in the schematic diagram given in

Figure 6.2 was to record the flow just above the plate, while the camera positioned

above was meant to capture the complete flow field. Snapshots obtained from original

video files are shown below in Figure 6.18. Unfortunately the quality of information

(a) (b)

Figure 6.18: Snapshots obtained from the original video files. (a) Camera focused on the
flow just above the plate, (b) Camera capturing the whole flow field.

contained in videos obtained from the top camera, responsible for providing informa-

tion for the velocity field of the whole experiment was poor. Adding the fact that

there was no length calibration to the images, forced us to abandon their analysis.

Therefore in what follows the focus lies solely in the analysis of the velocity field just

above the plate.

It was originally believed that a commercial software package for particle tracking

velocimetry (PTV), could be used for the analysis. Serious problems with the format

of the data led us to reconsider this and further our options. Instead we opted for

the particle image velocimetry method (PIV), and two excellent open software PIV

analysis tools MatPIV [37], [91], and PIVlab [94], were tested. Results presented here

were obtained using PIVlab.
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Briefly the principle of PIV lies on pattern matching. Given a pair of sequential

images A and B obtained at times tA and tB respectively so that ∆t = tB − tA. The

procedure is to divide images A and B into sub-images or subwindows of side length

(pixels) N = 2n (commonly n = 4, 5, 6). Once the partition of the images is complete

then a subwindow from image A is compared with its corresponding subwindow in

image B. That is carried out using cross-correlation so that a displacement pattern

is uncovered. Given this information for displacement and the time that it took to

happen, velocity information can be recovered. Detailed theoretical background of the

method can be found in [37] and [71].

It is often the case that the contrast between particle and background is not up

to the desired level, so that contrast enhancement techniques were applied [75], [21],

in order to address the problem. Additionally the presence of bright spots caused by

intense scattering from larger seed particles can also lead to erroneous cross-correlation,

so that intensity capping [84] is recommended. For the purposes of our analysis image

prepossessing was carried, in the form of masking and contrast enhancement while

capping was introduced in PIVlab.

6.7.2 Results and discussion

Results obtained for two target temperature experiments are presented here, the one

at 60◦C and the other at 100◦C. For target temperature 60◦C, 100 frames were used

for the calculation of the averages (i.e.(3.333s)). Instead for the experiment at target

temperature 100◦C, a more extensive analysis of 500 frames was carried. Finally for

the calibration the length of the image was assumed to be 80cm, which is a reasonable

approximation. The lack of calibration, the non uniform seeding of particles into the

flow, (videos indicate abundance of particles just from one side and at cases of higher

density than should be ideal) and the fact that the recording could have been of a

better quality, make the results not very accurate.

In spite of the difficulties, results obtained suggest that the basic structure of the

flow proposed theoretically by the horizontal plume model is correct. In all cases

studied, there is a horizontal inflow moving from outside the plate (the edge if the

boundary conditions where neat) towards a region around the centre, where it turns

to vertical. The transition to vertical flow seems to happen through the meeting of
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the horizontal streams with strong vortex rolls as can be seen in Figures 6.23 and

6.24. Interestingly, and as was suspected a stagnation point seems to be present just

below the region where the vertical flow arises (Figure 6.20). Furthermore looking at

the behaviour of the vertical component of the velocity Figure 6.22, there are three

dominant regions, one central, one moving upward and two ‘symmetric’ parts moving

in the opposite direction and indicating that there is a structure entraining vertically.
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(a)

(b)

Figure 6.19: (a) Vector field at target temperature of 60◦C, (b) Vector field at target
temperature of 100◦C.
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Figure 6.20: (a) Velocity field at target temperature of 60◦C, (b) Velocity field at target
temperature of 100◦C, [m/s].
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Figure 6.21: (a) Horizontal component of velocity at target temperature of 60◦C, (b)
Horizontal component of velocity at target temperature of 100◦C, [m/s].
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Figure 6.22: (a) Vertical component of velocity at target temperature of 60◦C, (b) Vertical
component of velocity at target temperature of 100◦C, [m/s].
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Figure 6.23: (a) Vorticity for the experiment at target temperature of 60◦C, (b) Vorticity
for the experiment at target temperature of 100◦C, [1/s].
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(a)

(b)

Figure 6.24: (a)Vortex locator at target temperature of 60◦C, (b) Vortex locator at target
temperature of 100◦C.
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(a)

(b)

(a)
(a)

(b)(b)

Figure 6.25: (a) Target temperature of 100◦C (b) Target temperature of 60◦C Represen-
tation of the velocity vector field using the line integral convolution method (LIC) [5]
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Conclusions

Figure 7.1: Plume generated by a spiral ignition in a 4 ha plot in South Africa in June
2012.

In the heart of this thesis was the development of a theoretical model that could

describe the buoyant flow above large area fires. Classic plume theory assumptions

must fail close to an impermeable heat source of large area firstly on dimensional

grounds since the characteristic length of the source is an important parameter that

259
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is neglected. Most importantly classic plume theory fails to describe the attached and

indirectly induced horizontal buoyant currents, observed above large area fires. These

currents move inwardly from the edges of the area (independently of the geometry)

and at certain locations depending on the wind, the topography, and the fuel, collide

and separate to give rise to the roots of a vertical buoyant structure, the well known

plume. Any independently formed plumes resulting from these collisions unite under

the coanda effect at some height above the surface to then form a dominant rising

plume.

Therefore a formal description for the buoyant flow above a large area fire, must

include the attached horizontal buoyant currents mentioned above. Due to the com-

plexity of such a turbulent flow and an endeavour to produce a model that predicts the

gross features of such a flow, simplifications were introduced in the modelling. Firstly

combustion and radiation effects were neglected while the geometry considered, was

that of a circular disk of radius L (axisymmetric flow), supplied by constant heat

flux q. In addition the environment was assumed unstratified and still, so that the

modelling could solely focus on the free convective flow above the fire, disregarding

external driving factors.

For the description of the buoyant flow above a circular region of large radius L,

a radical approach was suggested. The flow field must be divided into three regions.

A region where the flow is predominantly horizontal and attached to the surface, a

transition region from horizontal to vertical where separation of the attached current

takes place, and a region where vertical flow is established and classic plume theory

can be applied.

For the description of the horizontal buoyant currents a ‘horizontal plume’ model

was developed. Based on conservation principles of mass, momentum and energy,

accompanied by the adoption of ‘top hat’ formalism, as well as an entrainment hy-

pothesis that resembled the one used for the classic non-Boussinesq plume, a set of a

differential algebraic system equations was obtained. In their nondimensional form,

the set of governing model equations were shown to contain a parameter a, of nature

similar to Richardson number Ri, which we termed as the modified Richardson num-

ber for the horizontal plume. The parameter a, being analogous to the physical radius

L, implies that above large area fires that parameter would be large. An analytical
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numerical study of the model equations accompanied by a detailed asymptotic study

of the limit a→∞ was then performed. Uniformly valid second order semi-analytical

approximations were obtained are were shown to provide an excellent agreement when

compared with numerical solutions for values of a1 ranging from 102 to 106.

Since the vertical part of the flow can adequately be described by classic plume

theory, the missing puzzle for a ‘complete model’ for the description of the buoyant

flow above large area fires, is the one that describes the transition of the predominantly

horizontal flow (horizontal plume model) into the predominantly vertical flow (classic

plume model). Recall that the horizontal plume model ceases to be valid as the

centre of the area is approached. Thus far discussions concerning the transition have

been carefully avoided. A large part of the research was devoted to finding a way of

modelling the transition so that a ‘universal’ plume model could be obtained. Efforts

were however fruitless, and are not described here because they would elongate this

thesis unnecessarily without contributing anything new. All approaches were based

on the assumption that a smooth transition from horizontal to vertical takes place.

This can be thought as, horizontal streams that move inwardly and towards the centre

of disc being ‘gently’ decelerated and pushed away, since a stagnation point must be

located at the centre of the plate.

For laminar natural convection above horizontal surfaces, the separation is due to

mechanisms of gravitational instability or the dominance of buoyancy force over the

pressure gradient that initiated the driving of the flow. Within the horizontal plume

model equations, the flow is driven by the radial pressure gradient 1/2× g[(ρe−ρ)h2]r

and so that the velocity is accelerating towards infinity as r → 0, since there is nothing

to stop the flow. This is not physical and that is why the validity of the model ceases

as the centre of the disk is approached. An additional dynamical pressure component

within the hot plume gases must act, so as to stop the horizontal flow and deflect it

upwards.

Another way of thinking of this intermediate region is by abandoning the idea that

a ‘gentle’ smooth transition takes place and think of the deflection process as involving

an abrupt pressure jump. This is a crude approach, but it provides relevant scales in

1It must be noted that excellent agreement was also demonstrated when a is of O(107), O(108)
and should be expected for all larger values
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this region. It can be considered that the pressure in the hot plume gases increases

abruptly above its local hydrostatic level by a uniform amount throughout a disc of

radius rc (taken to be significantly smaller than L) and height Hc. The height Hc

should be the height of the plume at r = rc, where the mean density is ρc ≈ ρ0 and

the incoming radial velocity is u = uc. Within the disc the density can be taken to

remain constant with the pressure jump being sufficient to almost stop the horizontal

flow while causing an acceleration of a vertical flow out of the top of the disc. If the

pressure jump and density are the same at the top and at the sides of the disc then

the mean vertical velocity wc, with which the fluid leaves the top of the disc should

have the same value as uc. Conservation of mass requires then that

2πrcHcρcuc = πr2
cρcwc so that rc = 2Hc. (7.1)

That is that the transition from horizontal to vertical flow can be expected to take

place at a radius r that is twice the height h.

Unfortunately due to numerous technical difficulties arising in the conduct of a ‘hot

plate’ experiment, and the resulting uncertainty in the data, we have not been able to

reach to any conclusions with confidence. Nevertheless methodologies and techniques

developed here should be applicable to the a new experiment that is being initiated at

the time that this work is being written up. PIV analysis of the data indicates that the

broad structure of the flow proposed theoretically in this thesis is appropriate. Once

the data of the new experiment are available, the numerous assumptions included in

the theoretical horizontal plume model will need to be revisited, starting with the top

hat formulation as well as the form of the entrainment hypothesis.

The remainder of this thesis was devoted to the study of two classic problems, the

first order boundary layer analysis of laminar natural convection above a uniformly

heated horizontal and slightly inclined semi-infinite plate, and the first order laminar

boundary layer flow above a uniformly heated horizontal circular disc of radius a. In

both cases variable property effects were introduced in the formulation through the

nondimensional parameter λT, with λT = 0 corresponding to the Boussinesq approx-

imation. For both problems a fourth order series approximation valid at the edge of

the semi-infinite and the edge of the circular plate were obtained. The effect of the pa-

rameter λT was extensively studied; the missing initial condition for all orders and for

values of λT = 0, 0.1 . . . 4, obtained via shooting techniques, are given in Appendix A
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and Appendix B. In addition for the circular disc, the effect of Pr when the Boussinesq

approximation is adopted was studied for all orders.

Analytically for the semi-infinite plate, effects of slight inclination to horizontal

were introduced in the formulation through a nondimensional parameter σ. A positive

or a negative value of σ corresponding to a positive or negative inclination respectively.

For the case of negative inclination it is known that separation occurs in the boundary

layer flow, accompanied by flow reversal. That is because the buoyancy forces are

opposing the flow. An analytical study was carried with respect to the effect of variable

property effects on the position of the separation point in order to build upon what is

known when the Boussinesq approximation is used. A best fit to the computations,

obtained by least squares, suggests that the position of the separation point xs varies

with λT as shown below. It must be noted that this representation is valid for Prandtl

number Pr = 0.72, and inclination parameter σ = −1, while xs0 is the position of the

separation point obtained by Jones [38] for the Boussinesq case.

xs = xs0 + AλB
T
, where A = 7.2240, B = 1.2649 and xs0 = 3.705. (7.2)

In a similar manner, by making the Boussinesq approximation (i.e. λT = 0) and fixing

σ = −1, the effect of Prandtl number on the position of the separation point was

studied. It was found that a function of the form

xs = A+B1e
−C1Pr +B2e

−C2Pr, (7.3a)

where

A = 1.5693, B1 = 3.8734, C1 = 0.7346, B2 = 11.7838, C2 = 10.7508. (7.3b)

is suitable for representing xs = f(Pr). In addition by fixing λT = 0 and Pr = 0.72

the effect of the inclination parameter was studied, and the following was obtained.

At this point it should be mentioned that the points of separation obtained here with

σ -1.2 -1.1 -1 - 0.9 -0.8
xs 2.7216 3.1550 3.705 4.4003 5.3526

Table 7.1: Position of the separation point xs, for different values of σ while λT = 0 and
Pr = 0.72.

varying Prandtl number are different from those published in [69]. This is because
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a continuous transformation was used in [69] for the boundary layer equations which

results in a different set of nonsimilar equations. On a theoretical basis when the incli-

nation is negative, separation of the boundary layer takes place which implies that no

similarity regime is approached as x→∞, and therefore a continuous transformation

might not be suitable choice. Consequently it seems reasonable to expect that the

results obtained here should be trustworthy.

When the inclination was set to positive (σ > 0), variable property effects turned

out to have a milder effect on the flow. Finally an investigation concerning the indirect

pressure gradient −∂Π̂/∂x term, and its significance when compared with the tangen-

tial component of the buoyancy force was carried out and an order of magnitude study

was performed. It was found that the pressure gradient term at around ξ = 8 is of

order O(10−2) and the tangential buoyancy term fully dominates the driving of the

flow.

Directing attention towards the steady laminar boundary layer flow above an

isothermal circular disc, an extensive numerical study was performed. A finite dif-

ference scheme was developed for the solution of the PIDEs using the Keller-Box

method. In addition we defined a ‘compressed’ Dorodnitsyn-Howarth transformation

for the Boundary layer equations and the numerical solution was obtained via FEM

using COMSOL Multiphysics 3.5a.

Further work is required in terms of boundary layer analysis in the region close to

the centre of the circular plate where singular behaviour is exhibited, while the work of

[56],[57] can be used as a guide. In addition a parametric study with a varying Grashof

number for the full Navier Stokes equations needs to be performed and the form of

the relationship Nu = f(Gr) need to be investigated. Having established the numerical

tools for the analysis of this flow it is believed that a new study for both problems can

be performed, but this time the boundary condition imposed on the plate will be that

of constant heat flux q rather than constant temperature Tw, while variable property

effects will also be retained in the formulation.
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λT G0(0) Θ′0(0) f ′′0 (0)

0 -1.73493 -0.35726 0.97795

0.1 -1.71517 -0.36171 1.02505

0.2 -1.69674 -0.36595 1.07082

0.3 -1.67946 -0.36999 1.11538

0.4 -1.66322 -0.37387 1.15884

0.5 -1.64789 -0.37758 1.20129

0.6 -1.63340 -0.38115 1.24280

0.7 -1.61966 -0.38459 1.28343

0.8 -1.60659 -0.38791 1.32326

0.9 -1.59415 -0.39112 1.36233

1 -1.58227 -0.39422 1.40068

1.1 -1.57091 -0.39723 1.43837

1.2 -1.56003 -0.40015 1.47543

1.3 -1.54960 -0.40299 1.51190

1.4 -1.53958 -0.40574 1.54780

1.5 -1.52994 -0.40843 1.58316

1.6 -1.52065 -0.41104 1.61802

1.7 -1.51170 -0.41359 1.65240

1.8 -1.50306 -0.41607 1.68631

1.9 -1.49471 -0.41850 1.71979

2 -1.48663 -0.42087 1.75284

2.1 -1.47881 -0.42319 1.78549

2.2 -1.47123 -0.42546 1.81775

2.3 -1.46388 -0.42768 1.84964

2.4 -1.45675 -0.42986 1.88118

2.5 -1.44983 -0.43199 1.91237

2.6 -1.44310 -0.43408 1.94323

2.7 -1.43655 -0.43613 1.97377

2.8 -1.43018 -0.43815 2.00401

2.9 -1.42397 -0.44012 2.03394

3 -1.41793 -0.44206 2.06359

3.1 -1.41204 -0.44397 2.09296

3.2 -1.40629 -0.44585 2.12206

3.3 -1.40068 -0.44769 2.15090

3.4 -1.39520 -0.44950 2.17949

3.5 -1.38985 -0.45129 2.20783

3.6 -1.38462 -0.45305 2.23593

3.7 -1.37951 -0.45478 2.26381

3.8 -1.37451 -0.45648 2.29145

3.9 -1.36961 -0.45816 2.31888

4 -1.36482 -0.45981 2.34610

Table A.1: Computed initial values to leading order for circular and semi-infinite plate†

†It should be recalled that to leading order the similarity equations describing the flow above the
semi-infinite plate were recovered. Therefore the computed initial values listed above are also valid
for the semi-infinite plate.



APPENDIX A. CIRCULAR PLATE 276

λT G1(0) Θ′1(0) f ′′1 (0)

0 -0.25443 0.05009 -0.60402

0.1 -0.25100 0.05053 -0.63108

0.2 -0.24783 0.05096 -0.65744

0.3 -0.24489 0.05138 -0.68314

0.4 -0.24216 0.05179 -0.70824

0.5 -0.23961 0.05219 -0.73279

0.6 -0.23721 0.05258 -0.75683

0.7 -0.23496 0.05295 -0.78039

0.8 -0.23283 0.05332 -0.80349

0.9 -0.23082 0.05368 -0.82618

1 -0.22890 0.05403 -0.84847

1.1 -0.22708 0.05437 -0.87039

1.2 -0.22535 0.05470 -0.89196

1.3 -0.22369 0.05502 -0.91319

1.4 -0.22211 0.05534 -0.93410

1.5 -0.22059 0.05565 -0.95472

1.6 -0.21913 0.05596 -0.97505

1.7 -0.21774 0.05625 -0.99510

1.8 -0.21639 0.05655 -1.01490

1.9 -0.21509 0.05683 -1.03444

2 -0.21384 0.05711 -1.05375

2.1 -0.21263 0.05739 -1.07282

2.2 -0.21146 0.05766 -1.09168

2.3 -0.21033 0.05792 -1.11032

2.4 -0.20924 0.05818 -1.12876

2.5 -0.20818 0.05844 -1.14701

2.6 -0.20715 0.05869 -1.16506

2.7 -0.20615 0.05894 -1.18293

2.8 -0.20518 0.05918 -1.20063

2.9 -0.20424 0.05942 -1.21816

3 -0.20332 0.05966 -1.23552

3.1 -0.20243 0.05989 -1.25272

3.2 -0.20156 0.06012 -1.26977

3.3 -0.20071 0.06034 -1.28666

3.4 -0.19988 0.06057 -1.30341

3.5 -0.19908 0.06078 -1.32003

3.6 -0.19829 0.06100 -1.33650

3.7 -0.19752 0.06121 -1.35284

3.8 -0.19677 0.06142 -1.36905

3.9 -0.19604 0.06163 -1.38513

4 -0.19532 0.06183 -1.40110

Table A.2: Computed initial values to second order.
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λT G2(0) Θ′2(0) f ′′2 (0)

0 -0.22642 0.03285 0.03629

0.1 -0.22319 0.03304 0.03936

0.2 -0.22022 0.03324 0.04231

0.3 -0.21749 0.03343 0.04515

0.4 -0.21495 0.03363 0.04789

0.5 -0.21259 0.03382 0.05055

0.6 -0.21038 0.03402 0.05312

0.7 -0.20830 0.03421 0.05563

0.8 -0.20635 0.03440 0.05807

0.9 -0.20450 0.03458 0.06045

1 -0.20275 0.03476 0.06278

1.1 -0.20109 0.03495 0.06505

1.2 -0.19951 0.03512 0.06728

1.3 -0.19800 0.03530 0.06946

1.4 -0.19656 0.03547 0.07160

1.5 -0.19519 0.03564 0.07371

1.6 -0.19387 0.03581 0.07577

1.7 -0.19260 0.03597 0.07781

1.8 -0.19138 0.03614 0.07981

1.9 -0.19021 0.03630 0.08178

2 -0.18908 0.03645 0.08372

2.1 -0.18799 0.03661 0.08563

2.2 -0.18693 0.03676 0.08751

2.3 -0.18591 0.03691 0.08937

2.4 -0.18493 0.03706 0.09121

2.5 -0.18397 0.03720 0.09302

2.6 -0.18305 0.03735 0.09481

2.7 -0.18215 0.03749 0.09658

2.8 -0.18128 0.03763 0.09833

2.9 -0.18043 0.03777 0.10006

3.0 -0.17961 0.03790 0.10177

3.1 -0.17881 0.03804 0.10346

3.2 -0.17803 0.03817 0.10514

3.3 -0.17727 0.03830 0.10680

3.4 -0.17653 0.03843 0.10844

3.5 -0.17581 0.03856 0.11006

3.6 -0.17510 0.03868 0.11167

3.7 -0.17441 0.03881 0.11327

3.8 -0.17374 0.03893 0.11485

3.9 -0.17309 0.03905 0.11642

4 -0.17244 0.03917 0.11797

Table A.3: Computed initial values to third order.
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λT G3(0) Θ′3(0) f ′′3 (0)

0 -0.21199 0.02115 0.03282

0.1 -0.20897 0.02120 0.03557

0.2 -0.20621 0.02125 0.03823

0.3 -0.20367 0.02132 0.04079

0.4 -0.20131 0.02139 0.04326

0.5 -0.19912 0.02146 0.04567

0.6 -0.19707 0.02154 0.04801

0.7 -0.19514 0.02162 0.05029

0.8 -0.19333 0.02170 0.05251

0.9 -0.19161 0.02178 0.05468

1 -0.18999 0.02186 0.05681

1.1 -0.18845 0.02195 0.05889

1.2 -0.18698 0.02203 0.06093

1.3 -0.18559 0.02211 0.06293

1.4 -0.18425 0.02220 0.06489

1.5 -0.18297 0.02228 0.06682

1.6 -0.18175 0.02237 0.06871

1.7 -0.18057 0.02245 0.07058

1.8 -0.17944 0.02253 0.07241

1.9 -0.17835 0.02261 0.07422

2 -0.17730 0.02269 0.07600

2.1 -0.17629 0.02277 0.07776

2.2 -0.17531 0.02285 0.07949

2.3 -0.17436 0.02293 0.08120

2.4 -0.17345 0.02301 0.08289

2.5 -0.17256 0.02309 0.08456

2.6 -0.17170 0.02316 0.08620

2.7 -0.17086 0.02324 0.08783

2.8 -0.17005 0.02331 0.08944

2.9 -0.16927 0.02339 0.09103

3 -0.16850 0.02346 0.09260

3.1 -0.16776 0.02353 0.09416

3.2 -0.16703 0.02361 0.09570

3.3 -0.16632 0.02368 0.09723

3.4 -0.16563 0.02375 0.09874

3.5 -0.16496 0.02382 0.10023

3.6 -0.16431 0.02389 0.10171

3.7 -0.16367 0.02396 0.10318

3.8 -0.16304 0.02402 0.10464

3.9 -0.16243 0.02409 0.10608

4 -0.16183 0.02416 0.10751

Table A.4: Computed initial values to fourth order.



Appendix B

Computed Initial Values for the

Semi-Infinite Plate

To leading order the computed initial values for the semi-infinite plate (i.e. G0(0),

Θ′0(0) and f ′′0 (0)) are the same as those given in Appendix A in Table A.1.
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λT G1(0) Θ′1(0) f ′′1 (0)

0 0.23574 -0.05563 0.51822

0.1 0.22145 -0.05325 0.50676

0.2 0.20885 -0.05113 0.49642

0.3 0.19764 -0.04921 0.48702

0.4 0.18760 -0.04747 0.47843

0.5 0.17855 -0.04589 0.47053

0.6 0.17036 -0.04444 0.46324

0.7 0.16290 -0.04310 0.45647

0.8 0.15608 -0.04187 0.45018

0.9 0.14982 -0.04072 0.44430

1 0.14405 -0.03966 0.43878

1.1 0.13872 -0.03866 0.43360

1.2 0.13378 -0.03773 0.42872

1.3 0.12918 -0.03686 0.42411

1.4 0.12489 -0.03604 0.41975

1.5 0.12088 -0.03526 0.41561

1.6 0.11712 -0.03453 0.41167

1.7 0.11360 -0.03384 0.40792

1.8 0.11028 -0.03318 0.40435

1.9 0.10716 -0.03256 0.40093

2 0.10420 -0.03196 0.39766

2.1 0.10141 -0.03140 0.39453

2.2 0.09877 -0.03086 0.39153

2.3 0.09626 -0.03034 0.38864

2.4 0.09388 -0.02985 0.38587

2.5 0.09161 -0.02937 0.38320

2.6 0.08945 -0.02892 0.38062

2.7 0.08740 -0.02848 0.37814

2.8 0.08543 -0.02806 0.37574

2.9 0.08355 -0.02766 0.37343

3 0.08176 -0.02727 0.37119

3.1 0.08004 -0.02690 0.36902

3.2 0.07839 -0.02654 0.36691

3.3 0.07681 -0.02619 0.36488

3.4 0.07529 -0.02586 0.36290

3.5 0.07383 -0.02553 0.36098

3.6 0.07243 -0.02522 0.35912

3.7 0.07108 -0.02492 0.35730

3.8 0.06978 -0.02462 0.35554

3.9 0.06853 -0.02434 0.35383

4 0.06732 -0.02406 0.35216

Table B.1: Computed initial values to second order.
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λT G2(0) Θ′2(0) f ′′2 (0)

0 -0.04618 0.00529 0.01046

0.1 -0.04068 0.00464 0.01118

0.2 -0.03614 0.00411 0.01166

0.3 -0.03235 0.00366 0.01197

0.4 -0.02915 0.00329 0.01215

0.5 -0.02642 0.00297 0.01223

0.6 -0.02408 0.00270 0.01225

0.7 -0.02205 0.00246 0.01222

0.8 -0.02027 0.00226 0.01215

0.9 -0.01871 0.00208 0.01205

1 -0.01733 0.00192 0.01193

1.1 -0.01611 0.00178 0.01180

1.2 -0.01502 0.00166 0.01166

1.3 -0.01404 0.00155 0.01150

1.4 -0.01315 0.00145 0.01134

1.5 -0.01235 0.00136 0.01118

1.6 -0.01163 0.00127 0.01102

1.7 -0.01097 0.00120 0.01086

1.8 -0.01036 0.00113 0.01070

1.9 -0.00981 0.00107 0.01053

2 -0.00930 0.00102 0.01038

2.1 -0.00884 0.00096 0.01022

2.2 -0.00841 0.00092 0.01006

2.3 -0.00801 0.00087 0.00991

2.4 -0.00764 0.00083 0.00976

2.5 -0.00729 0.00079 0.00962

2.6 -0.00697 0.00076 0.00948

2.7 -0.00667 0.00072 0.00934

2.8 -0.00639 0.00069 0.00920

2.9 -0.00613 0.00067 0.00907

3 -0.00589 0.00064 0.00894

3.1 -0.00566 0.00061 0.00881

3.2 -0.00544 0.00059 0.00869

3.3 -0.00524 0.00057 0.00856

3.4 -0.00505 0.00055 0.00845

3.5 -0.00487 0.00053 0.00833

3.6 -0.00470 0.00051 0.00822

3.7 -0.00453 0.00049 0.00811

3.8 -0.00438 0.00047 0.00800

3.9 -0.00424 0.00046 0.00790

4 -0.00410 0.00044 0.00780

Table B.2: Computed initial values to third order.
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λT G3(0) Θ′3(0) f ′′3 (0)

0 0.00685 -0.00016 -0.00735

0.1 0.00550 -0.00008 -0.00661

0.2 0.00449 -0.00003 -0.00598

0.3 0.00371 0.00001 -0.00542

0.4 0.00310 0.00003 -0.00494

0.5 0.00262 0.00005 -0.00451

0.6 0.00223 0.00006 -0.00414

0.7 0.00192 0.00007 -0.00381

0.8 0.00166 0.00007 -0.00352

0.9 0.00145 0.00007 -0.00327

1 0.00127 0.00007 -0.00303

1.1 0.00112 0.00007 -0.00283

1.2 0.00100 0.00007 -0.00264

1.3 0.00089 0.00007 -0.00247

1.4 0.00080 0.00007 -0.00232

1.5 0.00072 0.00007 -0.00218

1.6 0.00065 0.00007 -0.00206

1.7 0.00059 0.00006 -0.00194

1.8 0.00053 0.00006 -0.00184

1.9 0.00049 0.00006 -0.00174

2 0.00044 0.00006 -0.00165

2.1 0.00041 0.00006 -0.00157

2.2 0.00038 0.00005 -0.00149

2.3 0.00035 0.00005 -0.00142

2.4 0.00032 0.00005 -0.00136

2.5 0.00030 0.00005 -0.00130

2.6 0.00028 0.00005 -0.00124

2.7 0.00026 0.00005 -0.00119

2.8 0.00024 0.00004 -0.00114

2.9 0.00022 0.00004 -0.00109

3 0.00021 0.00004 -0.00105

3.1 0.00020 0.00004 -0.00101

3.2 0.00018 0.00004 -0.00097

3.3 0.00017 0.00004 -0.00093

3.4 0.00016 0.00004 -0.00090

3.5 0.00015 0.00004 -0.00087

3.6 0.00014 0.00003 -0.00084

3.7 0.00014 0.00003 -0.00081

3.8 0.00013 0.00003 -0.00078

3.9 0.00012 0.00003 -0.00076

4 0.00012 0.00003 -0.00073

Table B.3: Computed initial values to fourth order.


