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Abstract
The concept of semi-rigid connection and steel-concrete composite action has been
extensively researched in the past. However, they are not widely used in practice due to
the lack of detailed information, not only about the advantages of the semi-rigid design
philosophy, but also about the potential risks if its effect is not accounted for. The above
considerations were the motivations in taking up this research.

Firstly, a numerical study to investigate the effect of connection stiffness on the
natural frequency of semi-rigid frame was carried out using ABAQUS software. The
results of this numerical study confirmed the necessity of incorporating this effect to get
safe and economical design. Consequently, an analytical procedure for a beam with
semi-rigid connections under gravity load was developed which overcomes the
limitations of previously published procedures. The frequency of a steel beam was also
calculated using effective length concept. Furthermore, two new analytical “hand’’
calculation methods to estimate the first three frequencies of a semi-rigid frame were
developed. Both methods were developed by modifying or improving for existing
methods in the literature for rigid-jointed plane steel frame to incorporate the effect of
connection stiffness. Fist method is suitable only for a semi-rigid plane steel frame
which has uniform properties along its height so as it can be modelled as equivalent
flexural-shear cantilever beam. The proposed second method is suitable for non-uniform
plane steel frame. Both the above methods can be extended to composite structure using
the equivalent stiffness concept of composite beam. Moreover, examples of steel frame
were used to demonstrate the application of the proposed analytical methods. It was
shown that the proposed methods not only can predict the difference in frequency of
rigid and semi-rigid frames, but they are also simple enough to be used in day-to-day
design practices.

Secondly, as the stiffness of connection is essential in the calculation of natural
frequency of a semi-rigid frame, a new simple mechanical component-based model was
developed to determine the initial rotational stiffness of commonly used flush end-plate
steel or composite connection incorporating the partial interaction effect. The traditional
axial spring of shear connectors was replaced by rotational spring to make the model
suitable to extending further than the linear region. A chart was developed to estimate
the appropriate values of the secant stiffness and strength of a shear stud, since the
empirical equations that researchers have used in the past can lead to unrealistic results
in some cases.

Thirdly, a simplified model, which combined three components of a composite
connection in one “lump’> component (RCCS), was developed. It can be used In the
finite element modelling of a composite connection to overcome the convergence
problems associated with cracking of concrete and also it will reduce the computational
time significantly with adequate accuracy. A new procedure to determine the number of
“active’” studs was developed. The relationship between the number of “active’’ shear
atuc_is %nd the maximum number of shear studs required for a full shear connection was

erived.

Finally, the relationship between connection ductility and frame ductility was
investigated. It was found that the moment resistance and ductility of connection affect
significantly the whole behaviour of a frame. Consequently, a simple flowchart to
predict the failure mode of a flush end-plate composite connection was developed. A
procedure to estimate the moment resistance of a flush end-plate composite connection
by modifying the existing procedures in the literature to incorporate the partial shear
connection effect was proposed. Also, the proposed mechanical model was further
extended using the appropriate post-linear values of its components in order to calculate
the rotational ductility of a connection.

All the suggested procedures have been validated with the numerical results using
ABAQUS, the results from other existing models and experimental tests in the literature
where available.
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Notations

Symbol Definition Unit
A, Area of beam mm?
Ayt Avrea of beam flange mm?
A, Area of column mm?
Act Avrea of column flange mm?
A Cross-sectional area of the j-th column mm?
A Avrea of reinforcing bars mm?
A Area of a stud mm?
A Shear area of the column mm?
by Breadth of beam flange mm
bt Width of column flange mm

Det cwe Effective width of column web in compression mm
Cj Distance of the j-th column from the centroid of the column assembly mm
d Diameter of shear connector mm
Dy Distance from the top row of bolts to the centre of the compression zone mm
dew Width of column web mm
Di; Lateral stiffness of the i-th storey N/mm
D, Distance from the reinforcement to the centre of the compression zone mm
ds Distance between the centroid of the beam section and the centroid of the mm
reinforcement
E. Young’s modulus of concrete N/mm?
En Mean modulus of elasticity for the embedded reinforcement N/mm?
Ercc Modulus of elasticity of the (RCC) component N/mm?
Es Young’s modulus of steel N/mm?
f Frequency 1/sec
Fy Tensile force of the top row of bolts N
Fpase Design seismic base shear force
F. Force in the centre of the compression zone N
Feotra | The resistance of beam flange in compression N

Feewra | The resistance of column web in compression and buckling N
Fet Force of the concrete tension member N
fex Characteristic cylinder compressive strength of concrete N/mm?
fom Mean compression strength of concrete N/mm?
fer Crack strength of concrete N/mm?
fetm Mean tensile strength of concrete N/mm?
fo Tensile strength of end plate N/mm?
F, Force in reinforcement N
fou Ultimate strength of reinforcement N/mm?
fry Yield strength of reinforcement N/mm?
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Frcc Force in the (RCC) component N
Fs Force acting on the studs N
Feor Tensile force of a reinforced concrete uncracked member N
Focx Characteristic resistance of the shear stud N
Femax | Ultimate shear strength of the shear stud N
Fscry Yield force of shear connector N
f, Ultimate tensile strength of shear stud N/mm?
fyow Yield strength of column web N/mm?
G Shear modulus N/mm?
h Storey height mm
Hp Depth of the steel beam mm
h; Depth of column mm
hq Bending deflection height of the shear connector mm
hse Height of shear connector mm
hs Thickness of the concrete slab mm
| Second moment of area of the steel beam mm*
I Modified second moment of area of a beam mm*
J Lowest integer number of shear studs for full shear connection -
k characteristic parameter account for the effect of axial rigidity -
Kp Stiffness of bolt N/mm
Kote Stiffness of bottom flange of beam in compression N/mm
Kot Stiffness of top row bolts in tension. N/mm
Kowt Stiffness of beam web in tension N/mm
Kc Stiffness of a group of components in series at the level of the centre of the N/mm
compression
Keto Stiffness of column flange in bending N/mm
Kewe Stiffness of column web in compression N/mm
Kews Stiffness of column web panel in shear N/mm
Kewt Stiffness of column web in tension N/mm
Koo Stiffness of end-plate in bending N/mm
K, Stiffness of reinforcement in the concrete slab. N/mm
Krce Stiffness of an (RCC) spring N/mm
Ks Stiffness of shear connection; Stiffness of connection spring N/mm
Ksp Plastic stiffness of shear connectors N/mm
Ksc Secant stiffness of one shear connector N/mm
Kslab Stiffness of composite slab in composite connection N/mm
Ly Length of the beam under hogging bending moment adjacent to the connection mm
Ipi Span of the beam in the i-th bay mm
I Effective length of bars mm
lrec Length of the (RCC) component mm
L¢ Transmission length of crack mm
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m Mass per unit length of beam kg/mm
Mg Fixed end moment in beam N-mm
M. Moment of composite connection N-mm

M; ra Moment resistance of connection N-mm
M;s Moment of bare steel connection N-mm
M; sw Moment resistance of steelwork in composite connection N-mm
M;y Yield moment of connection N-mm
Nact Number of active shear studs -
Neun Maximum number of shear studs for a full shear connection -

Nec Number of studs in the hogging moment region -
Nopr Number of (RCC) springs in series between any two consecutive shear studs -

p Spacing between shear studs mm
Po Distance between the column face and the first shear stud mm

q behaviour factor -

Rp Strength force of top row of bolts N

R, Resistance of reinforcement N
R Resistance of shear connectors N

Sq (Ty) | The ordinate of the design spectrum at period, T, m/sec?

Sic Rotational stiffness of composite connection N-mm/rad
Sis Rotational stiffness of bare steel connection N-mm/rad
Si.sw Stiffness of steelwork in composite connection N-mm/rad
Ssc Slip of shear connector mm
Ssc.c Slip capacity of shear connector mm
Ssc.u Ultimate slip of shear connector mm
tos Thickness of beam flange mm
tow Thickness of beam web mm
tef Thickness of column flange mm
tow Thickness of column web mm

ty Thickness of end plate mm

Vi Shear force in the i-th storey N
Wslab Width of concrete slab mm

z Lever arm between the compressive and the tensile area mm

H Height of building m

ki Second moment of area of the beam in the i-th bay mm*

L Second moment of area of the j-th column mm*

T Time period sec

T Time period of coupled shear-flexural vibration sec

K Effective length factor -

1 Ductility of frame. and -

4 Rotational ductility of connection -

b Interaction parameter -

22




Ay Extension of the top row of bolts mm

A Extension of a group of components at the level of the centre of the mm
compression

A Extension of reinforcement mm
Ored Reduction in deflection mm

A Slip of shear connection mm
Ay Top horizontal displacement at ultimate load mm
Ay Top horizontal displacement at first yield mm
Agg Increase of embedded reinforcement strain in the cracking state -

Eor Crack strain of concrete -
€smu Ultimate strain for embedded reinforcement -
Esmy Yield strain for embedded reinforcement -
£y Ultimate strain of bare reinforcement -

Esy Yield strain of bare reinforcement -

n Degree of shear connection -

K shape factor -
Correction factor that depends on T, and number of storeys; Eigenvalue of the -
free shear flexural vibration of a prismatic cantilever

\ Poisson's ratio -

Tsm Average bond stress along the transmission length N/mm?
Peomp Rotation due to the deformation of connection’s components mrad
Osh Rotation due to shear panel of column web mrad

® Angular frequency rad/sec

a Parameter account for the effect of flexural and shear rigidity of the assumed 1/mm?®
cantilever

B Rotation capacity of connection mrad
B uit Rotation of connection at ultimate mrad
By Rotation of connection at yield mrad

T Shear connection ratio based on the ultimate strength of reinforcement -

1y Shear connection ratio based on the yield strength of reinforcement -

X Eigenvalue of purely flexural vibration -

Ast Eigenvalue of coupled shear-flexural vibration -

P reinforcement ratio -
Get Stress of the concrete in tension member N/mm?

o Stress of the reinforcement in tension member N/mm?
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Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

Chapter One

Introduction

1.1. Introduction

Traditionally, the methods of analysis and design of steel and composite structures
idealised the actual behaviour of beam-to-column connections into two simplified
extreme cases: "perfectly rigid" or “ideally pinned”. The “perfectly rigid’’> condition
implies complete displacement and slope continuity between the column and the beam
under all conditions of loading, whereas the "ideally pinned™ condition implies that the
rotation continuity is non-existent and almost free rotational movement occurs between
the connected elements. Experimental investigations have clearly demonstrated that real
connections have characteristics that fall between these simplified extremes. Thus, most
of the practical connections of frame structures can be considered as semi-rigid

connection, as shown in Figure 1.1.

Moment, M.
F. ..,

Perfectly Rigid

i |
! GEP. |
il
)

B | L

(£
a. Double Web Angle b.Top and Seat Angle

B ST

= 8

Flush End Plate

Top and Seat Angle

Double Web Angle

i Praned s Rotation, ¢ - c. Extended End Plate d. Flush End Plate

Figure 1.1: Types of connection and its moment- rotation curves (Chan and Chui,2000)

In addition, the classification of a connection as rigid, semi-rigid and nominally pinned
depends essentially on the flexural stiffness of the steel beam connected to its end. This
means that a certain connection may be considered rigid when connected to a steel beam
with low flexural stiffness (Ely/Ly). However, the same connection may be considered
semi-rigid or even nominally pinned when connected to a steel beam with double the
flexural stiffness or more. Consequently, Eurocode 3 (2005) 85.2 and
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Eurocode 4 (2004) §8.2 use two procedures to classify pure steel and composite
connections. Firstly, the connection may be classified as rigid, semi-rigid or nominally
pinned by comparing its stiffness with the flexural stiffness of the beam (Elp/Ly) with
which it connects. Secondly, the connection may be classified as full-strength, partial
strength or nominally pinned by comparing the connection design moment resistance
(Mjra) with the fully plastic moment (M) of the member adjacent to the connection.
Figure 1.2 and Figure 1.3 show the classification of four types of connection when
connected to two different sections of steel beam (i.e. UB 610x305x176 and UB
127x76x13). It is clear from these figures that the same connections can be considered
nominally pinned when they are connected to the beam with high flexural stiffness.
However, the connections are considered rigid or semi-rigid when they are connected to
the beam with low flexural stiffness. These figures also show the boundaries of each

category as adopted by Eurocode 3 (2005) 85.2 classification.

In summary, the category of a connection may change from rigid to semi-rigid or
even to a nominally pinned connection as the flexural stiffness of the connecting steel

beam increases.

1.25
EC-3 Boundaries
! Rigid
- 0.75
2
= 05 Semi-Rigid
0.25
Nominally pinned
—

0 0.2 0.8 1

0.4 0.6

¢J/ (El, /Mpr)
= Extended end-plate connection (Tested by Johonson &Walpole 1981)
=8 Flush end plate connection (Test by Ostrander 1970)

=#—Top and seat angle connection (Testrd by Azizinaminl et.al 1985)
=@—Double web angle connecton (Tested by Liew et. al 1997)

Figure 1.2: Examples of connections connected to beam UB 610x305x176 and
Eurocode 3 boundaries
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1.75

EC-3 Boundaries

! |Rigid

Semi-Rigid

Nominally pinned

—

0 0.2 0.4 0.6 0.8 1
¢} I(El, /Mpr)
=—#—Extended end-plate connection (Tested by Johonson &Walpole 1981)
=&—[|ush end plate connection (Test by Ostrander 1970)
—#—Top and seat angle connection (Testrd by Azizinaminl et.al 1985)
=&—Double web angle connecton (Tested by Liew et. al 1997)
Figure 1.3: Examples of connections connected to beam UB 127x76x13 and Eurocode 3

boundaries

Modern structures use composite members for greater performance under normal
service loading as well as extreme loadings such as blast, impact, fire and earthquakes.
In these structures, the composite action between the steel beam and the concrete slab
intensifies the importance of the semi-rigid concept, since the resultant composite beam
has high stiffness compared with the bare steel beam. Consequently, high beam stiffness
lead to consider the most types of connection which connect to it as semi-rigid or partial

strength connection as discussed above.

Although the assumption of "perfectly rigid" or "ideally pinned" connection
behaviour greatly simplifies the structural analysis and design procedures, this
assumption could result in unconservative predictions of structural response. The
flexibility of connections significantly affect the internal force distributions and lateral
displacement magnitudes in the beams and columns of a structure. Both effects can
influence structural instability and collapse modes, as they are functions of the

connection flexibility.

Recently, the influence of semi-rigid connections on the realistic response of steel
and composite structures has been recognized, and a provision for semi-rigid joints has

been given in several national design codes. Therefore, an understanding of typical
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connection behaviour under load is essential for the analysis of flexibly-connected

frames.

A number of researchers have explored the performance of semi-rigid steel and
composite connections under static and cyclic loadings (Azizinamini and James, 1989;
Nader and Astaneh, 1991; Vellascoa et al., 2006; Cabrero and Bayo, 2007). The main

conclusions from these studies are:

1. The semi-rigid approach normally results in greater efficiency, lightness and

economy of structures;

2. The flexible and semi-rigid structures have considerable potential for resisting

earthquake loading;

3. Connection flexibility and hysteresis are considered to be a significant source of

damping of vibration in low-mass structures;

4. It is possible to adjust the flexibility of connections in order to control collapse
mode and the absorption capacity of energy of frames during earthquakes; and

5. The semi-rigid frames have the advantage of a longer period and might attract

lower inertial loads due to seismic ground motions.

Although the benefits of semi-rigid connections are widely documented, the semi-rigid
connection design is still facing resistance from structural engineers. Reasons for this

include:

1. The complexities and uncertainties in predicting connection behaviour with simple

analytical models to make it suitable for practical use;

2. The lack of appropriate models, tools and design methods which incorporates the
effect of semi-rigid connections in an adequate and simple way so as to bring this

into everyday design-practice; and

3. The lack of detailed information, not only about the advantages of the semi-rigid
design philosophy, but also about the potential risks if its effect is not accounted

for.

Therefore, the first part of this research (Chapters Three, Four, Five and Six) deals
with isolated connection behaviour in order to develop new simple yet accurate models

and procedures to predict the main features of steel and composite connection
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behaviour: (i) initial rotational stiffness; (ii) moment capacity; (iii) rotation at yield and

rotation capacity to overcome the barrier described in Point 1 above.

The second part of this research (Chapter Seven, Eight and Nine) investigate the
effect of semi-rigid connection on the behaviour of an isolated steel beam and a frame
with semi-rigid connections. Firstly, the significant effect of a semi-rigid connection on
deflection, shear forces, bending moment and frequency of an isolated beam with semi-
rigid connections at its ends is presented. Secondly, the effect of a semi-rigid connection
on the seismic behaviour of semi-rigid steel frame is investigated. New procedures to
incorporate the effect of a semi-rigid connection in an adequate and simple way in the
behaviour of a semi-rigid beam and frame are developed in order to overcome the

difficulties identified in Points 2 and 3 above.

Thus, this research will cover both the behaviour of an isolated connection and the

overall behaviour of semi-rigid structures.

1.2. Research objectives

The accuracy and reliability of an analysis or design depends on the degree of
approximation of the model to the actual behaviour of a connection under loading.
Rotational stiffness (S;), moment capacity (Mjrq) and rotational ductility (u=¢c/¢y) are
the key parameters for the behaviour of steel and composite connections, as shown in

Figure 1.4.

»

éy ;ﬁ,c'

Figure 1.4: Typical moment-—rotation curve of a connection

As explained above, depending on the first parameter (i.e. rotational stiffness),
(Eurocode 4, 2004; Eurocode 3, 2005) classify the connections into three categories:

rigid, semi-rigid and nominally pinned connections. In the same way, connections are
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classified as: full strength, partial strength and nominally pinned connections in terms of

the second parameter (i.e. moment capacity).

Even though the rotational ductility of a connection (z4) has a significant effect on the
behaviour of steel and composite structures under extreme loading such as an
earthquake, there is no quantification of ductility available in the literature. The design
codes assume that a certain level of ductility will be achieved if the prescribed detailing
rules are followed. However, this does not cover all of the connection types that are in
use. Moreover, there is no direct link between the element ductility and the overall
frame ductility. The lack of detail arises due to the difficulty in estimating the ductility
of composite connections, which has been attempted for flush end-plate connections in

the current research.

Therefore, to achieve the general aims of this research, the following specific

objectives are identified:

1. Investigate, through literature, the key variables and different approaches to predict
the behaviour of semi-rigid steel and composite connections. Review of the
analytical and numerical models in the literature and identification of the key

components of a connection;

2. Develop a simple mechanical component-based model to calculate the rotational
stiffness of a flush end-plate composite connection, as this connection is a common
semi-rigid connection. The model should be general for use with pure steel and
composite connections, suitable for calculation by hand and with the possibility of

incorporating it into any finite element software;

3. Develop a practical chart to estimate the stiffness and strength of a stud shear-
connector in relation to the strength of the surrounding concrete and the diameter of
the stud,;

4. Develop a simple model to predict the load-slip behaviour of a stud shear-connector
based on the experimental and numerical results from the literature for strength,

stiffness and slip capacity;

5. Develop a new model and derive the associated expression to evaluate the
behaviour of a reinforced concrete composite slab (RCCS) as one “lump”’

component;
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6.

10.

11.

12.

Derive an expression to estimate the active number of a stud shear-connectors in

the shear span of a composite connection;
Develop a flowchart to estimate the failure mode of a composite connection;

Develop a simple procedure to predict the moment capacity of a flush end-plate

composite connection;

Develop a simple procedure to predict the rotation at yield and rotation capacity of
a flush end-plate composite connection;

Propose a new procedure to calculate deflection, shear forces and bending moment
of a steel beam with semi-rigid connections under a general loading condition. It
should also possible to use the procedure to compute the deflection of a composite

steel-concrete member after making some modifications for beam stiffness;

Modify the existing formulae in the literature for rigid plane steel frames to
incorporate the effect of a semi-rigid connection in the natural periods of semi-rigid
steel frames, which can be calculated by hand. In addition, conduct a parametric
study to quantify the effects of semi-rigid connections on the natural periods of

vibration of plane steel frames; and

Improve the original equations of the well-known Muto’s method by introducing
new factors to take into account: inflection point position, boundary conditions and
deflection of an adjacent unloaded upper storey. Subsequently, construct a simple
“hand’” procedure in order to determine the first three natural periods of unbraced

steel frame with rigid or semi-rigid connections.

1.3. Outline of the thesis

The main contents are divided into the following ten chapters, and the logical links

among them are illustrated in a flowchart shown in Figure 1.5.

Chapter One provides a brief introduction to the research background, objectives and

the outline of the thesis.

Chapter Two provides a literature review on the benefit of semi-rigid concept in the

design of structures. Notable experimental tests and analytical approaches in the

literature are also reviewed and the key components of a connection are identified.
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In Chapter Three, a simple mechanical component model to calculate the rotational
stiffness of a composite connection is developed. The effect of each component is well
studied and modelled. The traditional axial spring is replaced by a simple rotational
spring to account for the actual rotation of a concrete slab under loading and to make
this simple model general enough to be used for steelwork and composite connections.
The validity of the model is evaluated by comparing it with the results from other

existing models and experimental results.

Chapter Four presents a practical chart to evaluate the stiffness and strength of shear

connectors with different diameters and for different strengths of concrete.

In Chapter Five a “lump’’> component model of reinforced concrete composite slab
(RCCS) is presented. An analytical expression for the initial stiffness of the “lump”’
component is derived. The validity of the result from the proposed expression has been
verified by finite element analysis using ABAQUS software.

Chapter Six presents the proposed flowchart to predict the failure mode of composite
connections. In addition, the proposed procedures to estimate the moment resistance,
rotation at yield and rotation capacity of composite connections are presented. The
validity of these procedures is evaluated by comparing them with the results from other

existing models and experimental results.

Chapter Seven presents an analytical procedure for a beam with semi-rigid
connections under gravity load. The proposed procedure is based on the principle of
superposition. It overcomes the limitations of previously published procedures. The
accuracy of the proposed procedure has been verified by finite element analysis using
ABAQUS software.

Chapter Eight presents the development of simplified formulae to calculate by hand
the natural periods of semi-rigid steel frames. The proposed formulae have been
developed by modifying of existing formulae in the literature for rigid-jointed plane
steel frames. The accuracy of these approximate formulae has been verified by
ABAQUS. Finally, a parametric study has been conducted to quantify the effects of

semi-rigid connections on the natural periods of vibration of plane steel frames.

In Chapter Nine an approximate analytical method for calculating the natural periods
of unbraced steel frames with semi-rigid connections is presented. The original

equations of the well-known Muto’s method are firstly improved by introducing new
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factors. The improved equations are then combined with the conventional matrix
method of vibration to construct a simple “hand’’ procedure to determine the first three
natural periods of a structure. The accuracy and sensitivity of the approximate
procedure has been validated by finite element analysis of semi-rigidly jointed steel

frames using ABAQUS.

Chapter Ten presents the conclusions of this study and recommendations for future

work.
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Chapter Two

Literature review

2.1. Introduction

This chapter will give a brief overview of the experimental and numerical work
recorded in the literature to investigate the behaviour of isolated semi-rigid steel and
composite connections, as well as their effects on the behaviour of a structure with

semi-rigid connections.

In current research, analytical models have been proposed to predict the behaviour
of isolated semi-rigid connections, as well as to estimate the effect of a semi-rigid
connection on the natural frequency of frames. Therefore, in this chapter, only the main
features of experimental, numerical and analytical work will be briefly reviewed and
discussed. A more specific literature review that clarifies the limitations of the available

models and procedures will be provided in the relevant chapters.

2.2. Semi-rigid concept

In 1917, Wilson and Moore first performed experimental tests on the flexibility of
riveted connections in steel structures. Since then, many experimental and numerical
works have been carried out and various design methods have been proposed to
incorporate the semi-rigid concept. Nevertheless, these methods did not gain much
consideration because of the lengthy computational process involved when assuming

semi-rigid behaviour.

In 1970, a semi-rigid composite connection was first proposed by Barnard. He
continued some of the slab reinforcement across the column with enough shear studs to
ensure full composite connection. Since then, extensive research has been carried out to
investigate the behaviour of isolated semi-rigid composite connections and the effect of
a composite connection on the behaviour of composite structures. Figure 2.1 shows an

example of a semi-rigid composite connection.

The semi-rigid action in structural engineering has received much attention only
during the past 20 years. The advancement of computer technology and the availability
of low-cost and high-performance personal computers, together with the substantial

increase in structural design knowledge, have increased awareness of the need to
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include connection flexibility in the analysis and design of steel and composite
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Figure 2.1: Example of a semi-rigid composite connection

structures.
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2.3. Main approaches to investigate the behaviour of isolated
connection

The behaviour of steel and composite structures is highly influenced by the moment-
rotation characteristics of its beam-to-column connections. The moment-rotation
relationship is nonlinear over the entire range of loading. The rotational stiffness (S;),
moment capacity (M;jrq) and rotational ductility («4=d¢/¢,y) are the key parameters for

the behaviour of composite connection, as was shown in Figure 1.4.

It is well known that the experimental test is the best way to determine the actual
moment-rotation curve of any connection. However, this is very expensive and requires
a great amount of time, as well as may be impractical in some cases. Nevertheless, in
some cases (i.e. very important and large structures), the experimental phase is essential
for the complete investigation of any structural system. Furthermore, experimental
investigation plays a central role in academic studies. On the other hand, the
advancement of computer technology, together with the substantial development of
analytical approaches to predict the moment-rotation behaviour of a connection, makes

it a potential alternative to extensive experimental tests.
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Various analytical approaches exist in the literature to predict the behaviour of semi-

rigid connection. These approaches can be classified into three main categories:
I. Mathematical models based on curve fitting to the available test results,
I1. 2D and 3D finite element models and

I11. Component-based mechanical models.

2.3.1. Mathematical models

These global models fit a skeleton curve through the experimentally obtained key
parameters (i.e. initial stiffness, moment capacity, post-hardening stiffness and rotation

capacity), which represent the full moment-rotation response of the connection.

Several arithmetic expressions have been proposed to fit the moment-rotation curves
from the experimental data, such as linear, bilinear, tri-linear, power, the Ramberg-
Osgood, the Richard-Abbott, exponential and polynomial functions. Some researchers,
such as (Kishi and Chen, 1986), collected the available moment-rotation experimental
data, published from 1936 up to 1986 on riveted, bolted and welded connections, and
constructed steel connection data banks at the Purdue university computer centre. These
models are generally not recommended for a semi-rigid composite connection, as
sufficient data on this type of connection were not available. Moreover, the mode of
failure of a connection may change when the connection detailing, beam and column
sizes are significantly different from the available calibration experiments.
Consequently, the prediction of the connection behaviour may differ substantially from

its actual behaviour.

2.3.2. 2D and 3D finite element models

Another way to model the behaviour of a connection is by means of finite element
idealisation. Much work had been carried out in this category. Most of them were
associated with experimental test which was used to calibrate the finite element models.
Only notable examples are explained here to demonstrate the main feature of this type

of modelling.

Ahmed et al. (1996) used ABAQUS software to generate a numerical 3D finite
element model to simulate the response of semi-rigid steel and composite connections.
One bare steel and three composite flush end-plate connections, tested by (Li et al.,
1996), were used to calibrate the finite element models. Due the symmetry of all of the
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connections, only one side of the connection was modelled in order to reduce the size of
the model. The beam, column and the end-plate were modelled using shell elements.
Interaction elements were used to model the contact between the end-plate and the
column flange. Bolts were modelled by joint elements. The load was applied equally on
ten nodes of the beam web to overcome the local yielding problem. Since the tension-
stiffening effect was not included in the concrete material model, the solution did not
proceed as the concrete slab started to crack. To solve this problem, concrete was
ignored in the model and multi-point constraints were used in the stud sections to
transfer the tensile force to the reinforcement. Studs and the reinforcement were
modelled by beam and truss elements respectively. The slip between the slab and beam
and the degree of shear interaction were modelled using joint elements.

Even though this procedure of modelling provided good agreement with the
specific experimental test of full interaction composite connections, completely
ignoring the concrete slab in the finite element model will limit its ability to investigate
the actual behaviour of composite connections with a partial shear connection. Although
the tension and compression strength of concrete may have a minor effect on the
behaviour of a composite connection under hogging moment, the tension-stiffening
action has a significant effect on the behaviour of reinforcement in the composite

connection. This effect is augmented as the shear connection decreases.

Kattner and Crisinel (2000 ) developed a 2D finite element model to simulate the

behaviour of a semi-rigid composite connection, as shown in Figure 2.2.
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Figure 2.2: 2D finite element model for composite connection using DIANA software
(Kattner and Crisinel, 2000)

38



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

The model consisted of beam elements representing the steel profile, concrete slab and
steel column, and translational spring elements representing the shear connectors, steel
connection and concrete slab-steel column flange interaction. The model was analysed
with DIANA, a general purpose, commercial finite element system based on the
displacement method. Comparisons of simulation and test results showed good

agreement.

(Fu and Lam, 2006 ; Fu et al., 2007 ; Fu et al., 2008; Fu et al., 2010) examined the
behaviour of eight full-scale, semi-rigid composite connections with precast hollow-
core slabs (HCU), as shown in Figure 2.3. Different levels of shear connection, spacing

and position of first studs from the column face were examined.
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Figure 2.3: General arrangement of test set-up (Fu and Lam, 2006)

They built 3D finite element models using continuum elements with the ABAQUS
package to simulate the structural behaviour of composite connections, as shown in
Figure 2.4. The model also incorporated nonlinear material characteristics (see Figure
2.5).The same model was used to carry out parametric studies to investigate the
structural behaviour with variations in size of the beam, thickness of the end-plate,
thickness of the column web and the depth of precast hollow-core slab. The model
could predict the mode of failure of all the tests and the moment-rotation response of

the composite connections with minimal discrepancy.
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Figure 2.4: 3D finite element model of a composite connection using ABAQUS
software and only part of slab was taken and ignored the tension-stiffening effect
(Fu et al., 2007)
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Figure 2.5: The composite connection model with material model of concrete
(Fu et al, 2007)

Gil and Bayo (2008) carried out an experimental program to test internal and external
semi-rigid composite connections, as shown in Figure 2.6. Three tests were performed
on semi-rigid composite joints with flush end-plates. One of the tests dealt with an

internal joint with asymmetrical loads, while the other two focused on external
connections.

Figure 2.6: Example of experimental specimens (Gil and Bayo, 2008)
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Figure 2.7: 3D Finite element model using ABAQUS software for internal and external
connection incorporating the effect of tension-stiffening in concrete modelling
(Gil and Bayo, 2008)

The experimental results were used to calibrate the finite element models. The
ABAQUS finite element models show limitations in modelling the interactions between
different types of elements and surfaces. Moreover, it was found that solution-
processing of a finite element model is very sensitive to the chosen values of tension-
stiffening in the concrete characteristics model. Improper values can cause conflict in

the convergence.

Many other researchers have used 2D and 3D finite element modelling to investigate
the behaviour of steel and composite connections, such as (Kattner and Crisinel, 1997;
Queiroza et al., 2007; Titoum et al., 2008; Dabaon et al., 2009; Queiroz et al., 2009;
Gizejowski et al., 2010).

In fact, some of the finite element models were able to predict the behaviour of semi-
rigid composite connections accurately, i.e. the results were close to the experimental
observations. A well-calibrated finite element model can reduce the number of
experiments that needs to be carried out in order to understand certain behaviour in a
parametric sense. However, the FE models incorporating semi-rigid connections require
intensive computational effort and time which may be impractical for the analysis of

large structures.

2.3.3. Component-based mechanical models

The mechanical models lie between the mathematical models and finite element models.
The main feature of mechanical models is that they simplify the process of dealing with
the complex behaviour of a connection. In addition, the degree of accuracy and

applicability of this model without intensive computations compared with the detailed
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finite element models make it the best practical tool to analyse a semi-rigid composite

connection. Furthermore, it is the more realistic option from a perspective design.

The component-based method combines the analytical model of the individual
connection’s components to model the complex behaviour of connections using only the
material and geometrical properties of these components. Equilibrium and compatibility
requirements are used in its formulation without the very high computational effort
required by the finite element method. The connection is modelled through a series of
mechanical springs (components), as shown in Figure 2.8.

Reinforcement

hear stud

Figure 2.8: Example of mechanical model (Ahmed and Nethercot, 1997)

Every spring is modelled using the stiffness and strength of the associated component
by a process of simple bilinear modelling with the aid of experimental evidence. Silva et

al. (2002) also incorporated the ductility of each component in one such model.

The main outputs of a mechanical model are stiffness, moment capacity and rotational

capacity of steel or composite connections.

A number of mechanical models exist in the literature. Most of them are adequate to
simulate semi-rigid steel connections. Very few of the models are suitable for the
simulation of semi-rigid composite connections. Furthermore, these models ignored or
played down the effect of some of the important characteristics of semi-rigid composite
connections, such as the slip between a concrete slab and steel beam in the case of
partial shear interaction, the effect of the bond forces between concrete and the
reinforcement between adjacent cracks and the effect of compression forces between the

steel column and the concrete aligned to it.

The accuracy of any spring model not only depends on the number of component

springs or procedures to find the equivalent spring for the whole composite connection,
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but the results are also very sensitive to the stiffness of each individual spring.
Therefore, an accurate model must be capable of representing not only the true relation
between its components but also the stiffness of each effective parameter in the

connection.

In Chapter Three, a literature review of notable mechanical models will be presented,
as the main objective of that chapter is to develop a new mechanical model with a
rotational spring to represent the shear connection effect. The proposed model may be
used to calculate the rotational stiffness of bare steel and a composite flush end-plate
connection. In Chapter Six, the same model will be used, with necessary modifications
to calculate the moment resistance, rotation at yield and rotational capacity of a

connection.
2.4. Main approaches to investigate the effect of a semi-rigid

connection on the natural frequency of structure

As the second part of this research focuses on the effect of a semi-rigid connection on
the whole behaviour of a steel beam (Chapter Seven) and on the natural frequency of a
steel frame (Chapters Eight and Nine), this part of the literature briefly review the
notable works in the literature in this field which confirm the necessity of considering
the effect semi-rigid connection in the analysis or design of any structural system. A
more specific literature review which critically analyses the available procedures will be

provided in the relevant chapters.

2.4.1. Background

Recently, the influence of semi-rigid connections on the realistic response of steel and
composite structures has been documented, and specification for semi-rigid connections
has been given in several national design codes. Connection flexibility is the crucial
source of non-linearity in the behaviour of structures under static and dynamic loading,
and it plays an essential role in structure behaviour which is dominated by a deflection
limit state, instability or vibration. Flexible connections affect significantly the
deformations, stress distributions and dynamic responses of a structure. Moreover,
connection flexibility and hysteresis are considered to be a significant source of

damping for vibration in low-mass structures.
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2.4.2. Beam with semi-rigid connections

Jones et al. (1983) demonstrated that the semi-rigid approach leads to smaller beam
sizes and their rotational stiffness can be adjusted for an optimal distribution of the

bending moments in the beams.

Nethercot et al. (1988) reviewed the effect of three cases of connection: fixed, semi-
rigid and nominally pinned on the behaviour of a steel beam. The end moments are
critical for the design of an isolated beam with fixed connections, whereas the span
moment is critical for the design of a simply supported beam. However, the end and
span moments may be nearly balanced for a beam with semi-rigid connections. Also,
the elastic deflection is reduced by end fixity compared to the simply-supported
condition. Columns are another source of economy, where the consideration of actual

restraint conditions may lead to more reliable methods of design.

McGuire (1995) performed a NASTRAN normal modes analysis to the finite
element model of steel beam with semi-rigid connections in order to calculate the
minimum natural frequency of beam for various values of connection stiffness. It was
found that the beam behaves as pinned-pinned beam when the connection stiffness ratio
(i.e. ks/ (EI/L)p) is less than 1.0 and as fixed-fixed beam when the connection stiffness
ratio is more than 100. Consequently, the beam behaves as semi-rigid beam for the

connection stiffness ratio between 1.0 and 100.

Chan and Chui (2000) investigated the effect of changing the stiffness of end
connections on the natural frequency of beams. It was found analytically that the change
of the stiffness of connection has the significant effect on the natural frequency of
beams and ignoring this effect may lead to significant error in vibration analysis of

semi-rigid beams.

The above discussion clearly demonstrates the necessity of considering the semi-

rigid concept in the design of a beam in order to develop a safe and economical design.

2.4.3. Frame with semi-rigid connections

In earthquake engineering, the estimation of the level of design seismic base shear force
(Frase) Of a structure requires the fundamental period to be determined in advance.
Eurocode 8 (2004) §4.3.3.2.2.(1) presents the following expression to compute the

seismic base shear force for multi-storey buildings which can be transformed into an
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equivalent Single Degree of Freedom (SDOF) system using the procedure of (Eurocode
8, 2004)-Annex B:

=

base

=S, (T,)m.2 (2.1)

where Sq (T,) is the ordinate of the design spectrum at period, Ty,
T, is the fundamental period of vibration,

m is the total mass of the building,
A is a correction factor that depends on T, and number of storeys.

In addition, Eurocode 8 (2004) §3.2.2.5 states that the design spectrum (Sq(T1)), which
is the reduced spectrum to avoid inelastic structural analysis explicitly in design,
accounts for the capacity of the structure to dissipate energy through its ductile
behaviour. Three different expressions have been given in (Eurocode 8, 2004)
83.2.2.5.(4) to calculate the design spectrum for different ranges of fundamental period.
These expressions relate the design spectrum to fundamental period and the behaviour
factor (q). The behaviour factor is given for various materials and structural systems

according to the relevant ductility classes of the structure.

It is clear from the above discussion that the natural period (or frequency) and ductility
are the most important properties of a structure for seismic design.

2.4.3.1. Experimental works

Many tests are reported in the literature which has focused on the behaviour of semi-
rigid frames. Since the behaviour of any structure under seismic loading is related to the
combined effects of its ductility and natural period, the determination of these properties

is one of the objectives of this research.

Gerstle (1988) carried out a numerical study to investigate the effects of the
rotational stiffness of connections on the overall behaviour of unbraced frames. These
effects were found to be in the following two categories: (i) the reduction in connection
stiffness for a nominally rigid frame will increase the frame sway deformation under
lateral loads, and will increase the natural period of vibration of the frame; (ii) the
connection rotation will influence the distribution of the internal forces and moments in
beams and columns. Therefore, ignoring the connection flexibility in analysis may lead
to unrealistic predictions of stresses and deflections. Gerstle (1988) also investigated the

effect of connection flexibility on the top storey sways of many frames with heights
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ranging from 5 to 25 stories (3.6 m per storey) with (height/width) ratio ranging
between 0.5 and 3. The results of the investigation indicated that the sway of a semi-
rigid frame is about 40% over that predicted by assuming rigid-frame, and the sway for
a nominally pinned-frame may exceed 100 to 200% of that of a rigid frame. Therefore,
it was concluded that the share of connection rotation ranges from 1/3 to 2/3 of total
sway. The result of the above study supports the previous conclusion for the necessity
of considering the semi-rigid concept in design of frame structures under static or

dynamic loading in order to get safe and economical design.

Nader and Astaneh (1991) investigated experimentally the effects of connection
flexibility on the dynamic response of a single storey steel structure, as shown in Figure
2.9.
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Figure 2.9: Test structure arrangement (Nader and Astaneh, 1991)

Three types of connection had been used: nominally pinned, semi-rigid and rigid
connections. Each of these structures was subjected to three types of earthquake with
maximum peak acceleration ranges between 0.05 g and 0.5 g. These types of earthquake
were the 1940 El Centro SOOE, the 1985 Mexico S60E and the 1952 Taft N21E.

From these tests, it was found that:

1. The response of the nominally pinned structure was considerably nonlinear. The
rigid structure was almost elastic and the semi-rigid structure showed more inelastic

hysteresis response, but with almost no degeneration in stiffness;

2. The maximum base shear in the rigid structure was about 2.5 times of the

maximum base shear for the nominally pinned structure;

3. The maximum lateral drift in the nominally pinned structure was only 30% more

than the maximum lateral drift in the rigid structure. The base shear and lateral drift
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in the semi-rigid structure was in between the ranges for rigid and nominally pinned

structures; and

4. The semi-rigid connection had 20% more rotation than the rigid connection, while
its maximum moment was only 15% less than the maximum moment for the rigid

case.

In summary, an increase in connection stiffness results in an increase in the base
shear forces for the same ground motion, while the associated lateral drift did not
decrease in the same proportion. This conclusion reveals that the rigid connection is not
the optimal solution for dynamic loading, since the optimal design of a structure should
ensure the lowest possible base shear forces associated with an acceptable amount of
lateral deformations. The test structures with semi-rigid connections behaved well and

had moderate base shear forces and yet they did not develop large lateral deformations.

Moreover, Nader and Astaneh (1991) found that the semi-rigid connections can
dissipate the energy in hysteresis behaviour better than the other type of connections.
This virtue may improve the dynamic performance of semi-rigid frames in low-rise
buildings. Furthermore, the moment capacity of the semi-rigid connections was higher
than expected. Based on these results, it was concluded that the semi-rigid structures
have considerable potential for resisting earthquake loading. Further experimental and
numerical work on the effect of semi-rigid connections on the seismic behaviour of
structure was recommended; the aforementioned is one of the objectives of the current

research.

Ohi and Hyoukchoi (2006) investigated the effect of semi-rigid connections on the
dynamic behaviour of structures under earthquake. It was shown that it is possible to
adjust the flexibility of connections in order to control the collapse mode and the energy
absorption capacity of frames during earthquakes.

Several authors, such as (Azizinamini and James, 1989; Dhillon and Malley, 1999;
da S. Vellasco et al., 2006; Ihaddoudéne et al., 2009), studied the performance of semi-
rigid steel beam-to-column connections under static and cyclic loadings. It was found
that the use of semi-rigid connections for building frames will lead to potential
economies by adjusting connection stiffness to achieve optimal distribution of the

bending moments of the connected members.
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All of the above numerical and experimental works confirm the potential effect of semi-

rigid connection on the behaviour of structures under static and dynamic loading.

2.4.3.2. Approximate procedures

Since one of the objectives of this research is to develop new hand calculation
procedures to estimate the natural frequency of structures with semi-rigid connections,
only a brief review of some of these procedures documented in the literature is
presented here. A more specific literature review which identifies the shortcomings of

the available procedures will be provided in the relevant chapters.

Current seismic design codes provide empirical equations which relate the
fundamental period to the height of the frame, and the code implicitly assumes that the
contribution from higher modes of vibration is insignificant. These formulae are usually
dependent on the building material, building type (frame, shear wall, etc.) and overall

dimensions. These formulas take the form:

T=aH’ (2.2)
in which a and g are constants which depend on the building behaviour. In addition,
there are many other empirical formulae in the literature which have the same general
form as Eq. (2.2) but with different constants. None of these empirical formulae take
into account the effect of connection behaviour on the behaviour of a frame.

Also, the design codes allow estimation of the fundamental natural period using more
complex procedures, such as Rayleigh's method and computer-based eigenvalue
analysis, which makes them impractical for many situations. Consequently, many
researchers have investigated the applicability of using approximate hand calculation
methods which have the merits of simplicity while maintaining the required degree of

accuracy.

Goel and Chopra (1998) developed a formula to calculate the fundamental natural
frequency of concrete shear wall building as equivalent cantilever beam using
Dunkerley’s method by calibrating a theoretical formula with the measured period data.

This formula takes this form:
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(2.3)

in which m is the mass per unit height; G is the shear modulus; A is the cross-sectional
area of the equivalent beam; v is Poisson's ratio and « is the shape factor (=0.8333 for
rectangular sections) and D is the plan dimension of the cantilever in the direction in

question.

Assuming the frame as equivalent shear-flexure cantilever beam, Chrysanthakopoulos
et al. (2006) proposed a procedure to estimate the first three vibration periods. A plane
frame which has uniform properties along its height was modelled as equivalent
flexural-shear cantilever beam for which the analytical expression of its natural period
has the form (Smith and Crowe, 1986; Chrysanthakopoulos et al., 2006):

=i_7§ g (2.4)
®*m
Where At =
El

in which m and EI are the approximate mass per meter and flexural rigidity of an
equivalent uniform cantilever beam respectively. The ® is the circular natural
frequency. Similar to the empirical equations, all of the approximate methods above
assumed the beam-column connections as rigid, even though the period of a semi-rigid

frame can be twice that of a rigid frame (Smith and Crowe, 1986).

In this research, two new approximate procedures have been developed, taking into
account the effects of semi-rigid connections by modifying some of the previous

methods in the literature.
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Chapter Three
Mechanical model for predicting the rotational
stiffness of a flush end-plate composite connection

incorporating the effect of partial interaction

3.1. Introduction

The behaviour of a composite structure is highly influenced by the moment-rotation
characteristics of beam-to-column connections. The rotational stiffness, ultimate
moment and rotational capacity are key parameters in defining the aforementioned
characteristics. Experiments, simplified analytical models, finite element models, and
empirical equations based on existing experimental data are the main approaches to
derive these parameters for a particular type of connection. Simplified models are the

most realistic option from a design perspective.

A number of researchers in the past developed various simplified models to predict
each of these parameters as closely to the experimental results as possible. These
models may differ in form, but all of them are based on: spring models to estimate the
equivalent rotational stiffness for the whole connection, a block model to estimate the
ultimate moment, and the compatibility requirement in plastic range to predict the
rotational capacity of the connection.

The rotational stiffness is more important than the other parameters, due to its use in
classification of structures as rigid or semi-rigid. Rotational stiffness also plays a key
role in the vibration design of composite structures. All simplified spring models have
similar forms, but the springs vary in number; the number of springs represents the
number of effective parameters in the composite connection. The accuracy of any spring
model depends not only on the number of component springs or procedures to find the
equivalent spring for the whole composite connection, but the results are also very
sensitive to the stiffness of each individual spring. Therefore, an accurate model must be
capable of representing not only the true relationship between its components but also
the stiffness of each effective parameter in the connection.
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In this work, a simple mechanical component model is developed. The effect of each
component is well studied and modelled. The traditional axial spring which is used to
model the effect of shear connectors is replaced by a simple rotational spring to account
for the actual rotation of a concrete slab under loading and to make this simple model
suitable for using with steelwork and composite connections, appropriate for modelling
with any finite element software and able to extend further than the linear region with
valid values for the stiffness of components, since it is based on the equilibrium and
compatibility requirements. The theoretical basis of this model is also derived.
Furthermore, a simple and effective procedure to evaluate the equivalent stiffness of the
shear connection is developed. The validity of the model is evaluated by comparing the
results with those recorded from other existing models and experimental tests.

3.2. Flush end-plate composite connection

Some of the common bolted composite connections that can be classified as semi-rigid
or partial strength are double web cleat, flush end-plate, and top and seat angle. Figure

3.1 shows a typical flush end-plate composite connection.

Steel Column

—Reinforcement

G{ &%oncrete
L | [ ~-Shear Connectors
Bolt :s\—steel Beam

i H Weld

End Plate

A
W

Figure 3.1: Typical flush end-plate composite connection

3.2.1. Why flush end-plate composite connection?

A Flush end-plate composite connection (Figure 3.1) was selected in this study for a

number of reasons:

1. Due to economic factors and ease of construction, it is the most common choice in
design (Loh et al., 2006);
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2. Experimental tests carried out by (Nethercot, 1995) showed that flush end-plate
connections generally provide the appropriate rotational stiffness and considerably
greater levels of moment capacities than the other types of connections; and

3. The majority of the experimental work on composite connections published from
1989 to 2006 involves composite flush end-plate connections to I-beam sections
connected with H-section columns, as presented in the literature survey carried out
by (Loh et al., 2006). As the current research does not have an experimental
component, data from the literature are vital to validate the analytical and numerical

models.

3.2.2. Key parameters of a flush end-plate composite connection

The most effective parameters for the behaviour of a composite connection under

symmetrical loading are the following (see Figure 3.1):
1. The stiffness and ductility of the reinforcement in the concrete slab.
2. The stiffness and ductility of the shear connectors.

3. The stiffness and ductility of the components in the level of the bottom flange of
the beam (i.e. the column web in compression, bottom flange of the beam in
compression, buckling strength of the column web and beam bottom flange if no

stiffener of the column web is present in this level).

4. The stiffness and ductility of the components at the level of the top row of bolts.
These components consist of the column web in tension, the column flange in
bending, the beam web in tension, the end-plate in bending and the top row of bolts

in tension.

If there is asymmetrical loading, the effect of shear deformation of the column panel
zone should be taken into account. Table 3.1 lists the effective components and their
symbols which are used in the calculation of the rotational stiffness of a flush end-plate
composite connection. A typical model of a flush end-plate composite connection with
its force distribution and deformation is shown in Figure 3.2.
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Table 3.1: Main parameters for a flush end-plate composite connection

Component Stiffness symbol
Reinforcement in the concrete slab. k.
single shear connecter K
shear connection K,
column web in compression Kene
column web in tension Kot
column flange in bending Ko

bottom flange of beam in compression Kote

beam web in tension Kout
end-plate in bending Koo
top row bolts in tension. Ky
5
. ! —hFr
T T

o
!

=
g
oA

=
!

-

. K,
F, +—; AMAA
Fo - K AW

Fp — AWML
D Kowt Koo Kob Kot

Fcﬁ

Figure 3.2: Typical model of a flush end-plate composite connection with its

deformation
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In reference to Figure 3.2, the following points should be noted:

1. All forces and deformations shown in the figure are within the range of

serviceability limit states.
2. Frand Fs are the forces acting on the reinforcement and studs respectively.

3. Fy is the force acting on the top row of bolts, but ky, is the stiffness of a group of

components in series at the level of top row of bolts.

4. F. is the force in the centre of the compression and k. is the stiffness of a group of
components in series at the level of the centre of the compression (Eurocode 3,
2005) which are the column web in compression, Kewe, and column web panel in

shear, kcws for the asymmetrical loading case.

3.3. Background

To date, various finite element and mechanical models have been developed and
introduced to predict the rotational stiffness of beam-to-column connections. Most of
them are applicable for pure steelwork connections and few of the models are applicable
to predict the rotational stiffness of a composite connection. The mechanical models
simplify the behaviour of the connection and approximate the response of the key
elements. Furthermore, most of these models assume full interaction between the
concrete slab and the steel beam, excluding the possibility of slip at the interface.
Aribert (1996) carried out experimental tests and finite element numerical simulations
on flush end-plate composite connections with different degrees of shear connection.
Significant effect of interface slip was observed on the overall behaviour, even in the
case of a full shear connection. Only a few models in the literature considered the slip

when calculating the rotational stiffness.

3.3.1. Requirements of an “ideal model”’

In order to investigate the advantages and limitations of the previous simplified
mechanical models, the basic requirements of an “ideal model’’ are described first.

These are as follows:
1. It should be simple;

2. The model should be applicable to both composite and bare steel flush end-plate

connections;
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3. The actual behaviour of the composite connection should be considered;

4. The actual configuration of the composite connection after deformation should be

reflected;

5. The derivation of mathematical expressions to calculate rotational stiffness should

use all existing forces and moments in the configured model;
6. It should be possible to model it easily in any finite element software;

7. The results of the analytical expressions and finite element modelling of the
mechanical model should be identical;

8. It should be able to extend further than the linear region, with valid values for the
stiffness of the components, since it is based on the equilibrium and compatibility

requirements; and
9. It should use appropriate procedure to estimate the stiffness of each component.

3.3.2. Significant models from the literature

Aribert and Lachal (1992) carried out eight tests on a flush end-plate composite
connection in order to evaluate the effective components of a composite connection and
to investigate the whole behaviour of a composite connection. Based on these tests, they
derived expressions to calculate the rotational stiffness of the composite connection S;.
using a simple summation of the moment resistance of the steel connection M; and the

moment resistance of concrete slab Mg, for the same rotation @, as follows:

M. =M, +M,, —S,.0=S,,0+5,,0 (3.1)

slab slab

Sj,c = Sj,s +Ss|ab - Sj,c = Sj,s + KsIabDr2 (32)

The term Kga accounts for the contribution of the reinforcement and shear studs to the

rotational stiffness of the connection:

2
=S _+ D; (3.3)

Sjc j,s
' Sl a [ D,
7+ -
k Nk (Hb]

r SC" 'sC

where D, is the distance from the reinforcement to the centre of the compression in the

lower flange of the steel beam; Hy, is the depth of the steel beam; Ny, and ks are the

number and secant stiffness of the shear connector; a is the increase factor, taken as =2.

This simple approach did not consider the additional increase in compressive force, F.
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(see Figure 3.2), which leads to an increase in tensile force of the top row of bolts, Fy
The difference between the moment resistance of the bare steel connection, M;s, and the

moment resistance of the steelwork in the composite connection, M’j;, for the same
rotation can be calculated as follows (see Figure 3.3):

Dr

Do

Centre of Rotation

a) Bare steel connection b) Composite connection

Figure 3.3: Internal forces and deformation in bare steel and composite connections

A A
For =4, =¢p> —==—"— 3.4
$ =0 =0 D, D,-e (34)
B o B 4 o_p Dot (3.5)
A, D,-e D,
I:bs Fbc
Fs =KoAps & Ry =kA —> Ay = PR & Ay :k_ (3.6)

b b
where

A, s the deformation of a bolt in a bare steel connection
A,. Iis the deformation of a bolt in a composite connection
F. 1sthe force of a bolt in a bare steel connection

F,. 1s the force of a bolt in a composite connection
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Substituting Eq. (3.6) in Eq. (3.5):

e s Dyoe 3.7)

kb kb Db

D, —e
c Fbc = Fbs 'E)b (38)
“M,,(#)=FR.D, and M, (¢)=F.D,+FD, (3.9)
D, —e
M o(¢)=F,——D,+FD, =F.D,~F.e+FD, (3.10)
b

M ic (¢) :|:M iss (¢)_ Fbsei| + I:r Dr =M ]‘k,s (¢)+ Fr Dr (3.11)
~Mi(4)=M;,(¢)-Fe (3.12)

The moment resistance of the bare steel connection (M;s) can only be equal to the
moment resistance of the steelwork in a composite connection (M7js) if there is a very

low reinforcement ratio or at a lower applied moment, i.e. e<0.

Benussi and Noe (1994) proposed a simple spring model to predict the rotational
stiffness of a partial-depth end-plate composite connection without taking into account

the slip of the shear connectors.

F,
P

Fo

(@) (b)

Figure 3.4: (a) Benussi and Noe’s model (b) Anderson and Najafi’s extended model

This model was extended to an end-plate composite connection incorporating the effect
of the slip of the shear connectors by (Anderson and Najafi, 1994), as shown in Figure
3.4. They also performed four experimental tests on a flush end-plate composite
connection in order to assess their model. In this model, the effect of the shear
connectors was modelled as an axial spring at the level of the slab-beam interface,

which has a stiffness of ks. The components of the steelwork connection were modelled
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as one spring at the top row of bolts level, Dy, with a stiffness of ky, and assumed that
the rotation of the connection is around the centre of the bottom beam flange. The
concrete was assumed to be cracked. From the equilibrium and compatibility the
following equation was derived to evaluate the rotational stiffness of the whole flush
end-plate composite connection:

D.H, (3.13)

S,.=k,Df +
[

The model did not consider the actual deformations of the compression components, as
it was limited to a special case of stiffened column web, as in the experimental tests.
Therefore, the stiffness of the column web, k., was assumed to be equal to infinity,
which may have a finite value in many situations, even if the column web is stiffened.
Also, the stiffness of the shear connectors, ks, was calculated based on the assumption
that the slip at the connection depends only on the nearest stud to the column; the
stiffness of the shear connectors was therefore taken to be a constant value (200kN/mm)
for all cases of the composite connection. In fact, a number of theoretical and
experimental studies have shown that all shear connectors shared the longitudinal shear
resistance in the interface between the concrete slab and the steel beam (Ahmed and
Nethercot, 1996; Aribert and Dinga, 2000). In addition, the model did not reflect the
actual configuration of the composite connection after deformation, as it used a vertical

rigid bar to connect the axial studs' spring with the reinforcement's spring.

Ren and Crisinel (1996) proposed a simple mechanical model which reflected the
actual configuration of the composite connection after deformation, as shown in Figure
3.5.

IW
i kr
e g —F F<—L—NWM—
| 1‘ T r T F,<_I I
, The ]

e F, F—;
I

It

Figure 3.5: The spring model of (Ren and Crisinel 1995)

They incorporated the column web deformation at the level of the beam's bottom flange

in the derivation of a formula to relate the moment applied to the composite connection
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with its rotation. This formula can be used to calculate the rotational stiffness of the

flush end-plate composite connection:

D
ST 1 1 (3.14)
k. kK

ro Ko K
where Dy, ki, ks and k. have the same definition as before. This derivation is based on
the simple summation of the reinforcement and bare steel connection capacities to
calculate the moment capacity of the composite connection. This simple approach did
not consider the actual behaviour of the steelwork component in composite connection,

as explained before in (Aribert and Lachal, 1992)'s model.

Ahmed and Nethercot (1997) developed a simple mechanical model which is the
most common current model to predict the rotational stiffness of a flush end-plate
composite connection, as shown in Figure 3.6. It also considered the increase in F. and
the effect of deformation of the compression zone. Based on this mechanical model,
they derived mathematical expressions to calculate the rotational stiffness of a flush

end-plate composite connection as follows:

H,D, (k1+k1j+ Db{k1+k1+k1j—Db(Hb+ Dr)kl
S _ b C r S C C (315)

e 1 1 1)1 1) 1
s el | IR ) B
kr ks kc kb kc k02

The definition of all symbols is the same as before.

Figure 3.6: Ahmed and Nethercot spring's model
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In fact, they simply modified the mechanical model of (Anderson and Najafi, 1994) (see
Figure 3.4) to incorporate the effect of the stiffness of the compression zone in their
model. Therefore, the centre of rotation of the composite connection will not be in the
centre of the beam's bottom flange, as assumed in (Anderson and Najafi, 1994)‘s model.
(Ahmed and Nethercot, 1997)'s model did not consider the effect of shear in the column
web panel, which is a very important factor in the overall behaviour of asymmetrical
composite connections and its effect should be considered, as stated by (Eurocode 3,
2005). Furthermore, the procedure employed to calculate the stiffness of all of the key
parameters in this model was based on a statistical study of all previous available
procedures and then the value which gave the best agreement for this specific model
with the experimental results was chosen. These values may not represent the actual
stiffness of these parameters and may not be valid for other cases. Furthermore, the
model did not reflect the actual configuration of the composite connection after
deformation, as the concrete slab rotates with the steel beam and this affects the
deformation of the reinforcement. In addition, the derivation of the mathematical
expression to calculate the rotational stiffness of the composite connection did not take
into account the fixed moment required to keep the rigid bar, which connects the studs'
spring with the reinforcement's spring, in a vertical orientation. Therefore, the
mathematical expression did not represent the associated mechanical model. This
inconsistency in reaction's forces leads to inconsistency in the gained results from the
mathematical expression and the finite element modelling of the mechanical model. The
expression always gives larger values of rotational stiffness and consequently less
rotation for the same applied moment, as will be explained in detail in the following
section. It may have little effect on the rotational stiffness of the composite connection
in the linear region of the moment-rotation curve for some cases, but it will limit the
ability of this model to extend further than the linear region, with valid values for the
stiffness of the components.

Liew et al. (2000) used a procedure similar to (Aribert and Lachal, 1992)‘s model
that was calculated the rotational stiffness of composite connection, S;., by adding the
stiffness of the steelwork, S;s, to the stiffness of the reinforced slab, which was
considered to be made up of the combination of the reinforcement stiffness, k;, and the

summation of the stiffness of shear connectors, N Ksc.
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krhrS + NSCkSChSS
e T s T g
7_’_7
Nk,  k

SC 'sC r

(krhéwsckxh; ]
S

(3.16)

where hys, hgs are the equivalent lever arm of the reinforcement and shear connectors in
the slab and N is the number of shear connectors. This approach did not consider the
difference in behaviour of the steelwork component in the composite connection and the

bare steel connection, as explained before with (Aribert and Lachal, 1992)'s model.

Eurocode 4 (2004) used another approach to calculate the initial rotational stiffness
of the composite connection. The effect of shear connectors was taken into account by
modifying the stiffness of the reinforcement spring, k;, multiplied by a reduction factor,
Kislip:

K (3.17)

dip = T FL
1+ Ek,

The stiffness of all of the studs in the slab-beam interface, K, was calculated by an

equation developed by (Aribert, 1996). This equation was derived assuming cracked
composite cross-sections and using the elastic interaction theory of a composite beam,
as will be explained in Section 3.9.4. In fact, this approach was an extension of the
component model for the steelwork connection to be used with a composite connection
by considering the reinforcement component as an additional row of bolts located at the
level of reinforcement. This type of modelling did not consider the difference in
behaviour of the concrete slab with shear connectors and the behaviour of an additional
row of bolts, from the perspective of the distribution of forces and deformations. Also,
this procedure combined the reinforcement steel and shear connectors in the same
spring, despite the fact that they are on different levels. These considerations may have
little effect on the rotational stiffness of high to full shear connection ratios of a
composite connection, but this effect may be unacceptable in the case of partial shear
connections. In addition, this will limit the ability of the model to extend further than

the linear region of the moment-rotation curve using valid stiffness of the components.

It should be noted that even though the symbols of the key parameters for all of the
previous models have the same meaning, different procedures were used by different

researchers to calculate them; this will be discussed in the following sections.
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3.4. Proposed mechanical model

3.4.1. Basic parameters and springs in the proposed mechanical model

In general, the rotation of a composite connection, which is defined as the change in

angle between the steel beam axes and the column axis, consists of two parts:
(i) The rotation due to the deformation of the connection’s components, Qcomp.

(if) The rotation due to the shear panel of the column web, g, (for asymmetrical

loading).

The total rotation of the connection is:

(Ptotal = (pcomp +(psh (318)
In order to construct the proposed mechanical model, the following considerations were
taken into account in order to make the model compatible with (Eurocode 4, 2004)

requirements:
1. The tensile strength of the concrete was ignored.

2. Typical components of a flush end-plate composite connection are (see Figure 3.1):
(i) longitudinal steel reinforcement in tension, k., which has a vital effect on the
overall behaviour of a composite connection; (ii) shear connectors located in the
concrete slab—steel beam interface, ks, since the degree of interaction between them
greatly affects the behaviour of composite connection; (iii) the column web panel in
shear, kews; (iv) end-plate in bending, kpb; (V) column flange in bending, Kem; (Vi)
column web in compression, K, (vii) column web in tension, kewc; (Viii) bolts in

tension, K.

3. Eurocode 3 (2005) 86.3.2 states that the stiffness coefficients of the following
components need not be taken into account in calculation of the rotational stiffness
of connections (i.e. stiffness coefficients equal to infinity): (i) beam's web in
tension, (ii) beam's flange and web in compression and (iii) end-plate in tension or
compression. Its deformations were assumed to include in the deformation of the
beam in bending and does not contribute to the flexibility of the connection
(Weynand et al., 1996).
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4. Eurocode 3 (2005) 86.3.1(3) states that “for a bolted end-plate joint with more than
one row of bolts in tension, the stiffness coefficients for the related basic
components should be combined’’. Therefore, for simplicity, the flush end-plate

with only one row of bolts will be considered.

5. According to (Eurocode 3, 2005), the stiffness coefficient of the combined
components at the level of the top row of bolts, k,, which are: column web in
tension, Kewt; column flange in bending, kem; end-plate in bending, kp,; and bolts in

tension, ky; is given by:

- ! (3.19)

{ 1 1 1 1 }
T S S
kcwt kcfb kpb kbt

6. Following the procedure of (Eurocode 3, 2005), the column web panel in shear and

the column web in compression were combined to yield an equivalent component

with a stiffness coefficient, k, which is given by:

1
_ 3.20
k= (3:20)

K K

Cws cwe

Therefore, only four springs should be modelled in the mechanical model, as shown in

Figure 3.7, in order to simulate:
(i) Longitudinal steel reinforcement in tension, k;.
(i) Shear connectors located in the concrete slab—steel beam interface, k.
(iti) Combined components at the level of the top row of bolts, k, from Eq. (3.19).

(iv) Combined column web in shear and compression, k., from Eqg. (3.20).
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Rotational spring, kg
Bolts row spring, ky )
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(Shear connection)

Column web shear and compression spring, k.

Figure 3.7: Proposed mechanical model

3.4.2. Derivation of the expressions for the mechanical model

To define the rotational stiffness of the shear connection spring, kg in terms of linear
spring stiffness, the moment in this spring, My, can be written using the following

equation:

M, =k,0 =k, == (3.21)

From the equilibrium of the upper part of the composite connection, the following

relationship can be written:

M,=Fd =Fd =kA.d, (3.22)
From Eq. (3.21) and Eq. (3.22) we get:  k, % =k.Ad, (3.23)
-k, =k.d? (3.24)

The stiffness deformation relations are:
F=kA, F=kA, F=kA (3.25)

The compatibility condition gives:
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A, =0d, (3.26)
A, +A +A, =D, tang (3.27)
Ay+A, =D tang = A =D, tang —A, (3.28)

For the small angle (tang=¢) where ¢ is the total rotation of the composite connection,
as mentioned in Eq. (3.18). Subtracting Eq. (3.28) from Eq. (3.27) results, in the
following:

A, +A,—A,=(D,—D,)¢ (3.29)

The equilibrium condition gives:

F=F +F = A, = <Akl . KA, (3:30)
F=F = AS:—kLA' (3.31)
Substituting Eq. (3.30) in Eq. (3.28) results in:
kA, +kA D.k¢ —k.A
D¢ —A =—r—r bbb A = —bc? rTr 3.32
P~y kT T (k+k) (3.32)
Substituting Eq. (3.31) and Eq. (3.32) in Eq. (3.29) results in:
kA Dkg —kA
A+t b r (D, -D 3.33
TR (ko k) (D =Dy)¢ (3:33)
k A k A D,k_¢
A r=r rr (D -D b ¥ 3.34
N Tk T PR S (3.34)
1 1 1 k
Ak | —+—+ =D -D,|1- £ 3.35
{k k, (kc+kb)} { ' b[ (kc+kb)H¢ (3.35)
Dr_Db kb
K. +k,
A, = 4 (3.36)
1 1 1
K | —+—+
k. Kk, (kc+kb)]
Dr_Db kb
k. +K,
F = (3.37)
1

Substituting Eqg. (3.36) in Eq. (3.32) results in:
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A= é (3.38)

p (3.39)

1 1 1
—+ =+
(kr k, (kc+kb)]

By taking the moment about the centre of compression and assuming that there is no
compression force in the beam web, provided that the internal forces for the calculation

of rotational stiffness are low, then:

M,,=F.D,+FD, (3.40)
Substituting Eq. (3.37) and Eq. (3.39) in Eq. (3.40) results in:

o o g5 ool e i) 1226

T Tk +k k +k )| "Lk ko (k +k S

ijc: . T Ky (c+ b) . s (C+ b) . TK, ¢ (341)
1,1, 1
[k, k, (kc+kb)j

M ic Sj’c¢, (342)

and rearranging Eq. (3.41) gives:

2
D2k, k., k. +k,

S"'°(|<c+|<b)+[1 T j (343

K Tk (ko tky)

r S

Many researchers attempted to provide methods to estimate the rotational stiffness
which will be applicable for both composite and bare steel connections. This required
that the rotational stiffness of bare steel connection, Sjs, could be obtained when no
reinforced concrete slab was present in the composite arrangement. To achieve this
consistency, they derived their mathematical expressions by separating the moment
resistance of the bare steel connection and the slab independently in advance (such as
Eg. (3.1)). However, the moment resistance of the steelwork component and the
reinforced slab are inter-related. As explained in Section 3.3, there is an additional

increase in compressive force, F¢, which leads to increase in the tension force in the top

66



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

row of bolts, F,. Hence, the moment resistance of the steelwork component in a
composite connection is less than the moment resistance of the bare steel connection for

the same amount of rotation (see Eq. (3.12)).

The required consistency can be achieved in the proposed model, as it dealt with the
whole composite connection. The components of the bare steel connection were
separated to obtain two terms in Eq. (3.43). The first term represents the effect of the
steelwork components only and the other term is the effect of the correlation between
the bare steel connection and the reinforced slab. The following procedure was used:

1. Steelwork stiffness, Sjsw (i.e. no reinforcement and F,=0)

From Eg. (3.30)
kbAb

F.=F =>kA.=kA, =A, = " (3.44)
Substituting Eq. (3.44) in Eq. (3.28) gives:
kA D
A, =¢D, — 2L = A, = b @ (3.45)
G
1+—=
kC
ks Dy
Mj,SW:FbDb:>Mj,sw:kbAbDb:>Mj,sw: K ¢ (3.46)
kC
M SW K D2
S, =1 __bb (3.47)

jsw
i
kC

Anderson and Najafi (1994) derived an equation to calculate the rotational

stiffness of bare steel connection as follows:

S, =k,D’ (3.48)
It is clear that Eq. (3.48) is a special form of Eq. (3.47) corresponding to the
assumption of an infinite stiffness for the column web (i.e. k=), as the
connections that were tested by (Anderson and Najafi, 1994) had a stiffened

column.

— kb kc Db2

= 3.49
k. +k, (349)

Eq. (3.47) can be rewritten in this form: S,
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2. Concrete slab stiffness, Kgjap

_ Kk, (3.50)

K =
slab kr + kS

Substituting Eq. (3.49) and Eq. (3.50) in Eq. (3.43) gives:

2
D — Sj,sw
r Dbkc
Sj,c = Sj,sw + 1 Sj » = Sj,sw +Sj,sws (351)
+ ]
Kslab Dbzkckb

Eq. (3.51) is a general equation to calculate the rotational stiffness for flush end-plate

steelwork or composite connections and for stiffened or unstiffened column cases.

3.5. The applicability of the proposed equation for general cases

The applicability of Eqg. (3.51) to calculate the rotational stiffness for all cases of flush

end-plate connection can be checked as follows:
1. Steelwork connection case (Ksjap=0)

I.  Unstiffened connection (ke#x)

2
2 Sj SwW
DJkk, | D, = .
Sj,c :Sj,sw + Kslab 2 > = —= (352)
(Db kckb + Kslaij,sw) (1+ kbj
k

C

ii. Stiffened connection (ke=x)

S;c =S, =KDy (3.53)
Eqg. (3.53) is the same as (Anderson and Najafi, 1994)'s equation (i.e. EQq.
(3.48)) for calculating the rotational stiffness of a stiffened bare steel

connection.
2. Composite connection cases
i. Unstiffened connection (kc#)
Same as Eq. (3.51)

ii. Stiffened composite connection (k.=o0)
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k k
D? =k,D? + ———D; 3.54
slab =r b~b k +k r ( )

r S

S;.=S;wtK

In summary, Eq. (3.51) gives the same result as (Ahmed and Nethercot, 1997)'s
equation (i.e. Eg. (3.15)) for calculating the rotational stiffness of an unstiffened
composite connection, but after replacing (Hp ) with (D) to take into account the actual
position of the concrete slab after deformation. The effect of the column web panel in
shear should be considered in K. Also, Eq. (3.54) is similar for (Anderson and Najafi,
1994) and (Ahmed and Nethercot, 1997)'s equations (i.e. Egs. (3.13) & (3.15)) for
calculating the rotational stiffness of a stiffened composite connection, but after
carrying out the same adjustment above for D, and K.. This means that Eq. (3.51) is an
improved form of (Ahmed and Nethercot, 1997)'s equation for unstiffened case of
composite connection as well as Eq. (3.54) is an improved form of (Anderson and
Najafi, 1994; Ahmed and Nethercot, 1997)'s equations for a stiffened composite

connection.

3.6. Why a rotational spring?

In order to show the considerable advantage of using the proposed rotational spring over
the conventional axial spring in the modelling of shear connectors, three composite
connections that had been tested by (Anderson and Najafi, 1994) were used to carry out

this comparison. The details of these tests are listed in Table 3.2.

Table 3.2: Properties of composite connections

ki | ko | k=kd® | ke kp | Dr | Dy | Hp | dr
TEST

kN/mm | kN/mm kN.mm/rad kN/mm kN/mm mm mm mm mm

SAF | 220 | 602 | 5548032 | 68861 | 155 | 400 | 254 | 304 | 96
S8F | 435 | 509 | 4690944 | 68861 | 155 | 400 | 254 | 304 | 96
S12F | 654 | 433 | 3990528 | 68861 | 155 | 400 | 254 | 304 | 96

(Ahmed and Nethercot, 1997)'s model was selected for the comparison, as shown in

Figure 3.8.
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Figure 3.8: a) Proposed model ~ b) (Ahmed and Nethercot 1997)'s model

3.6.1. Modelling

ABAQUS software was used to evaluate the advantage of using the rotational spring
over the conventional linear spring. Linear springs were used in the conventional
models to represent: (i) the column compression zone, (ii) the top row of bolts, (iii) the
reinforcement, and (iv) shear connectors. Linear spring of shear connectors was
replaced by rotational spring in the proposed model. The column and lines of rotation of
the steel beam and slab were modelled by rigid bars. In the conventional model, the
connection between the shear connectors' spring and slab was modelled using a fixed
joint on roller support. However, they were directly joined using a rotational spring in
the proposed model. Sketches of the conventional model and the proposed model are

illustrated in Figure 3.9 and Figure 3.10 respectively.
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Reinforcement spring

Slab

Fixed moment
Slip

Conventional

spring
. Mie
Bolt spring
External
moment

/Bottom flange spring

Figure 3.9: Modelling of conventional mechanical model in ABAQUS

Reinforcement spring

Rotational spring
Bolt spring Mi.c

External moment

/Bottom flange spring

¥

Figure 3.10: Modelling of the proposed mechanical model in ABAQUS

All models of the composite connection were subjected to the same external moment,
M. The magnitude of the external moment was 262 KN-m. This value of moment was
higher than the elastic range of the experimental moment-rotation curve for all
connections, in order to show the whole available range where the stiffness of
components are valid or the region where the post-linear stiffness of components should

be used.
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This comparison using ABAQUS aims to verify the results from the conventional [Eq.
(3.15)] and the proposed [Eg. (3.51)] analytical expressions in terms of satisfying the

equilibrium and compatibility requirements.

3.6.2. Results and discussion

Figure 3.11 shows the result of rotations of the conventional and the proposed models

due to the applied moment for the S4F composite connection.

]
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Figure 3.11: ABAQUS results of rotation for the S4F composite connection

Table 3.3 summarizes the results from ABAQUS modelling for both the conventional
and the proposed models in column 2 and 4 respectively. Also, the results from the
conventional mathematical expression (i.e. Eg. (3.15)) and the proposed mathematical
expression (i.e. Eq. (3.51)) are listed in column 1 and 3.

In the conventional model the rigid bar connecting the horizontal springs for the
reinforcement and shear studs had been assumed to remain vertical. However, in order
to maintain the assumed configuration, a restraining bending moment would have been
necessary, which was not considered in the analytical expression. The corresponding
ABAQUS model using appropriate constraints ensured both equilibrium and
compatibility. Hence the results were different for the conventional model using

ABAQUS and the analytical expressions (columns 3 and 4).

For the proposed model, the ABAQUS and the analytical expression produces similar
results (columns 1 and 2) ensuring the compatibility and equilibrium requirements being

satisfied in the analytical expression.
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The restraining bending moment in the conventional model will increase the total
applied moment or decrease the resistance moment of connection. As a result, it leads to
an increase in rotation and a decrease in the stiffness of the composite connection shown
in the ABAQUS model. In (Ahmed and Nethercot, 1997)'s model, this internal fixed
moment was not included in the derivation of the mathematical expression, even though
its effect (i.e. vertical orientation) was included in the configuration of the model.
Therefore, the mathematical expression underestimates the rotation (i.e. overestimates
stiffness) by about 20% for these cases of composite connections. This difference will
increase significantly as the rotation increases beyond the elastic range. This inaccuracy
may be acceptable in the elastic range for some cases of connections, especially when
the thickness of the slab is very small compared to the depth of the steel beam, as the
internal moment at the base of the vertical rigid bar will be minimal. Nevertheless, this
makes the conventional mechanical model unsuitable for extending further then the
elastic range to estimate the moment-rotation curve of composite connections using the
elasto-plastic behaviour of its components, and limits it from being used with any other
modelling software like ABAQUS. Since the proposed model connects the steel beam
directly to the slab by a rotational spring to model the effect of the shear connectors, this

overcomes all of these shortcomings of the conventional model.

Table 3.3: Summary results of all connections (M=262 kN-m)

| ABAQUS :
Expression ) Expression ABAQUS
) Modelling . .
Connection | Parameter | (Proposed) (Conventional) | Modelling
(Proposed) .
1 ) 3 (Conventional) | 1/2 | 3/4
4
Stiffness | 3563 35.65 29.46 2569 | 099|115
SA4F (KN/mm)
Rotation 7.35 7.35 8.89 10.2 1.00 | 0.87
(mrad)
Stifiness | 4757 46.80 38.31 31.50 101 | 1.22
S8F kKN/mm
Rotation 5.54 5.60 6.84 8.32 0.99 | 0.82
(mrad)
Stffness | 5139 50.87 41.43 3387 | 101|122
s12F | (kN/mm)
Rotation 5.10 5.15 6.32 7.73 0.99 | 0.82
(mrad)
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Furthermore, Figure 3.12 to Figure 3.14 show the applicability of the proposed model
to predict the actual behaviour of composite connections in the whole linear range of the

moment-rotation curve.

200

150

100

—— ABAQUS-Conventional Spring
—=— Ahmed's Expression

—+— ABAQUS-Rotational Spring
== Proposed Expression

—o—Test

Moment (KN-m)
)

10 20
Rotation (mrad)

Figure 3.12: Comparison of rotational and conventional spring's models with test results

for test S4F

300

250 ° N

200
€ 150
<
- —+— ABAQUS-Conventional Spring
<
2 100 —a&— Ahmed's Expression
§ == ABAQUS-Rotational Spring

50 —#—Proposed Expression

—o—Test
0
0 5 10 15 20 25 30

Rotation (mrad)

Figure 3.13: Comparison rotational and conventional spring's models with test results
for test S8F
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350

300

250 /' )/

200
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E 150
‘é’ —— ABAQUS-Conventional Spring
g 100 —=— Ahmed's Expression
§ ABAQUS-Rotational Spring

50 =»=Proposed Expression

Test
0 1
0 5 10 15 20 25 30 35

Rotation (mrad)

Figure 3.14: Comparison rotational and conventional spring's models with test results
for test S12F

In summary, using the rotational spring to simulate the shear connection can capture
the actual behaviour of the composite connection in a linear range. In addition, it makes
the proposed model better suited for estimating the rotation of the composite connection

in the post-linear range using appropriate elasto-plastic behaviour for every component.

3.6.3. Suggestion for modification of the conventional models

In order to modify the conventional mathematical expression to match the mechanical
model, the implicit internal moment should be deducted from the moment resistance of

the connection, as follows:

M je = Fr Dr + deb - I:rdr =M je = Fr (Dr _dr)+ deb (355)
Therefore, the modified stiffness expression for the conventional model (Eqg. (3.15))

will be:

1 1 1 1 1 1
H, (D, —dr)[+k]+ Dg(k+k+kj—Db(Hb+(D, —dr))k—
S . = c c (3.56)

he 1 1 1)1 1) 1
R el B e e
kr ks kc kb kc kc
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k, K K, k k) k

C r S C C

e ™ 1 1 1)1 1) 1
= | ey S
kr ks kc kb kc k02

This modified expression ensures only the matching in results with the ABAQUS

H;(ul}[,g[uul}_m
S

modelling for the associated mechanical model. However, it increases the
underestimation of the rotational stiffness (or overestimation of rotation) due to the
implicit fixed moment. The exclusion of the implicit fixed moment from the derivation
of the conventional expression reduced the underestimation of stiffness due to the use of
a linear spring in the conventional model. However, this omission does not have a

reasonable structural basis.

3.7. Main merits of the proposed model
In summary, the main merits of the proposed model are
1. Its simplicity.
2. It can be applied both to bare steel connections as well as composite connections.

3. It includes all the important aspects of behaviour of steelwork in a composite

connection, as explained in Section 3.3.2 and Figure 3.3.
4. It incorporates the rotation of the slab.

5. The derivation of a mathematical expression to calculate the rotational stiffness

includes all of the relevant forces.
6. It can be modelled easily in any finite element software such as ABAQUS.

7. 1t can be extended in the post-elastic non-linear region, with valid values for the
stiffness of components, since it satisfies the equilibrium and compatibility

conditions at large displacements.
3.8. Determination of the effective terms in the mathematical

expression

The degree of accuracy of any mathematical expression for the rotational stiffness of a
composite connection depends to a large extent on the accuracy of its effective
parameters. Therefore, a parametric study was carried out to evaluate the effect of every
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key parameter in the mathematical expression, K¢, Ky, K; Ks, on the rotational stiffness.

The composite connection, CJS-1, which was tested by (Li et al., 1996), was selected in
this parametric study. The properties of this composite connection and the basic

stiffness coefficient of its components are shown in Table 3.4.

Table 3.4: Properties of Cjs-1 composite connection

Hb Dr Db kr ks kC kb
@m | @m | mm | KN/mm | KN/mm | KN/mm | kN/mm
254x102UB25 | 203x203UC46 | 257.2 | 338 | 203 350 2800 6500 155

Beam Column

The results of the parametric study are shown in Figure 3.15 to Figure 3.18.

3.8.1. Effect of k;

45
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35 /“",v
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25

Sjc (KN.mm/rad)

20 —o—proposed
15 —— Ahmed&Nethercot
Anderson et.al

10

100 1000 10000 100000
k. (KN/mm)-Log scale

Figure 3.15: The effect of k. on rotational stiffness

Figure 3.15 shows that the rotational stiffness of the connection is affected by the

combined stiffness coefficients of the column web in shear and compression, K, if all

other coefficients are constant. This effect is minimal for high values of k. (i.e. a
stiffened composite connection with a symmetrical loading system). However, it has a
significant effect in the lower range of K., (100 to 1000 kN/mm). This highlights the

importance of using a stiffener at the column web to increase the rotational stiffness of
the composite connection. On the other hand, it indicates the necessity of including the
stiffness of the column web in shear into the proposed model. The model used by

(Anderson and Najafi, 1994) is not affected by this factor since it was based on the
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assumption of infinite stiffness of the compression zone (i.e. the fully stiffened case).
Also, (Ahmed and Nethercot, 1997)'s model matches with (Anderson and Najafi,
1994)'s model for higher values of stiffness, since the latter model was modified from
the former model by including the stiffness of the column web in compression effect
only. However, the effects of the column web in shear were not included. The additional
difference between the proposed model and (Ahmed and Nethercot, 1997)'s model for
higher values of k., is due to the reasons which have been explained in the previous
section.

3.8.2. Effect of ki,

——————

45

g ) /‘*‘/- |
g}
o
g_ )
=2
< 25
i —o—proposed
%3 —+— Ahmed&Nethercot
Anderson et.al
15
100 150 200 250 300

k, (KN/mm)

Figure 3.16: The effect of k, on rotational stiffness

Figure 3.16 shows the effect of changing the stiffness coefficient of the row of bolts, kj,

on the rotational stiffness of the composite connection. It is clearly seen that k;, has little
effect on the rotational stiffness. Also, the acceptable value for this parameter was taken
as 155 kN/mm for all composite connections by a number of researches such as
(Anderson and Najafi, 1994; Ahmed and Nethercot, 1997; Loh et al., 2006).

3.8.3. Effect of k,

Figure 3.17 shows the significant effect of the stiffness coefficient of steel

reinforcement, K;, on the rotational stiffness of the composite connection, which

increases steeply from about 15 to 80 kN-mm/mrad for changes in k;, from 100 to

1000 KN/mm. This result is expected, since all of the previous numerical and
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experimental studies confirmed considerable effect of steel reinforcement ratio on

overall behaviour of the composite connection especially for small reinforcement ratios.
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Figure 3.17: The effect of k; on rotational stiffness

3.8.4. Effect of kg

The effect of shear connection on the rotational stiffness of the connection can be seen

in Figure 3.18. (Anderson and Najafi, 1994)'s model has a constant value of stiffness,

since it was based on a constant value of shear connection, K, and equal to 200 KN/mm

for all cases. Figure 3.18 also shows that the rotational stiffness of the composite

connection is very sensitive to the changes in stiffness coefficient of the shear

connection, Ks, especially for a partial shear connection. This effect is reduced when the

connection is close to full interaction. Since the partial interaction is commonly used in

practice, the simple and reliable procedure to evaluate this factor is highly necessary.
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Figure 3.18: The effect of ks on rotational stiffness
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3.9. Adopted procedure to calculate the key parameters

As mentioned above, the accuracy of the results depends to a large extent on the
successful selection of key parameters. In order to make the proposed model compatible
with (Eurocode 3, 2005) and (Eurocode 4, 2004), the stiffness parameters Kk, and K. were
calculated using the procedures in (Eurocode 3, 2005) 86.3.2 (1), Table 6.11 and
(Eurocode 4, 2004) 8A.2.1.1,Table (A.1l). The procedures of calculation are
demonstrated in Sections 3.9.1 and 3.9.2. Meanwhile the procedure to estimate the

stiffness of reinforcement, k;, is explained in Section 3.9.3. A new procedure to estimate

the stiffness of the shear connection, K is proposed in Section 3.9.4.

3.9.1. Stiffness of the top row of bolts, k,

This parameter can be calculated according to (Eurocode 3, 2005) using Eg. (3.19) as
the stiffness coefficient of the combined components at the level of the top row of bolts.
This was taken to be 155 kN/mm by (Anderson and Najafi, 1994) corresponding to the
approximate linear stiffness of the steelwork connection. Ahmed and Nethercot (1997)
adopted the same value, based on a statistical study of its variation with the results of
their model. The same value was taken by (Loh et al., 2006). To simplify the
comparison with other models, the same value was used in the current research if there
was no sufficient data to calculate it using Eq. (3.19), since variation of this value has
little effect on the rotational stiffness of the composite connection, as explained and

shown in Figure 3.16 in the previous section.

3.9.2. Stiffness of the column web in shear, k.,s and compression, Ky

The column web panel in shear is a very important component in the overall behaviour
of the connection, but it has little effect on the rotational stiffness for a stiffened

composite connection or for symmetrical loading, as explained in the previous section.
According to (Eurocode 3, 2005), the stiffness coefficient, Keys, for an unstiffened web

is calculated using the following equation:

k. =
" pz ﬁ(Hb _tbf)

where A, is the shear area of the column and z denotes the lever arm between the

GA, 0.38E.A, 357

compressive and the tensile area. E; is the Young’s modulus of steel. g is the interaction

80



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

parameter to account for asymmetrical loading and it is defined in (Eurocode 3, 2005)

85.3. (8). Its value varies in the range of 0 <B<2.

The stiffness coefficient of the column web in compression, Kewe, is defined in

(Eurocode 3, 2005) for an unstiffened web case as follows:

1 O'7beff cwctcw
kcwc = EA: h_ =E h (3.58)

where, A; and h. are the area and depth of column respectively. D, is the effective
width of the column web in compression and it is computed as follows:
beff,cwc :tbf +2(’\Eab +tp)+5(tcf +rc) (359)

where all of the above terms are defined in (Eurocode 3, 2005) 86.2.6.2. For the
stiffened web case, keuc, 1S taken as equal to infinity.

3.9.3. Stiffness coefficient of the steel reinforcement, k,

This coefficient is based on the assumption that the reinforcement obeys Hooke's law:

F =k, =(En, (3.60)

r
where, A, is the area of reinforcing bars. The main difficulty in calculating the stiffness
of reinforcing bars is the assumed effective length, I;, of bars, having extension A,. This
length is measured from the centreline of the column and is extended along the
reinforcement up to the point where considerable stress is attained. Nevertheless, this
length is not the same along all parallel reinforcing bars, but it is commonly greater as

the reinforcing bar is positioned further away from the column (Gil and Bayo, 2008).

Anderson and Najafi (1994) assumed this length to be equal to half the depth of the
column, h.. However, they stated that if the flexibility of the shear connectors is taken
into consideration, this length needs to increase up to the first row of shear connectors

in order to overcome the overestimation of the stiffness of the reinforcing bars:

I, :%+ P, (3.61)

where po is the distance between the column flange and the first shear stud. The same
expression was used by (Liew et al., 2000; Brown and Anderson, 2001; Queiroz et al.,
2005; Titoum et al., 2009).
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Ren and Crisinel (1996) proposed the following empirical equation to calculate the

effective length, I, in (mm) as:

|, =0.7(60+1.3ks) (3.62)

where k =0.5 for simple bending and k=1 for pure tension, and s is the spacing of the

reinforcing bars in (mm).

Ahmed and Nethercot (1997) reviewed the effective length expressions adopted by
various authors and concluded that if the first stud is very near the column's flange, the
distance to the next stud should be used. They used the following expression to

calculate I,

=+ (3.63)

where po is as above and p is the spacing between shear studs.

Rassati et al. (2004) developed the following equation to calculate the effective

length:

| =h(1+28-05K,,) where K. =A/(A,+064t,b) (364

where Agp is the area of longitudinal reinforcement in the composite beam’s section
adjacent to the connection, and A, is the area of longitudinal reinforcement in the
effective width of the slab. tys and by, are the thickness and the breadth of the steel beam

flange respectively.

Eurocode 4 (2004) used several expressions which depend on the interaction

parameter, B. The estimation of this parameter was explained in Section 3.9.2.

Gil and Bayo (2008) used the finite element method to carry out a parametric study
for composite connections with different load conditions, varying the profiles, bolts and
reinforcement ratio. Based on the reasoning and observation of the simulation results,
an effective length was chosen for each case. They then established an expression to

determine the effective length of the reinforcement, as follows:

r

| = h—2°+0.8Dr (3.65)

It is clear from the above brief discussion that there is no guideline to favour any
approach over the others, as some of them were empirical equations from limited tests

and others were outcomes of statistical analysis for available data or simulation results.
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In Chapter Five, we will propose another procedure to combine the effect of
reinforcement effect with the effect of the shear connector in one component, thus
eliminating the need to estimate the effective length. In current chapter, Eq. (3.61) was

adopted to simplify the comparison with other models.

3.9.4. Stiffness of the shear connection, K

It has been demonstrated by many experimental and numerical studies that the slip in
the interface between the concrete slab and the steel beam has a significant effect on the
rotational stiffness and overall behaviour of a composite connection, even in full shear
connection conditions (Aribert, 1996; Loh et al., 2006). This effect is more significant
for partial shear connections as explained and shown in Figure 3.18. The elastic
stiffness of a stud shear is:

F
k, = (3.66)

where F is the characteristic resistance of the stud and s is the corresponding slip.
Anderson and Najafi (1994) reviewed and assessed the available push-out tests data of
the load-slip behaviour of welded studs. The assessment led to assume the stiffness of
stud, ksc to be 200 KN/mm. Furthermore, they interpreted the result of the assessment by
assuming that the first stud provides resistance to slip under increasing load until it
reaches its maximum resistance and becomes plastic. Its force then remains constant
and any additional load is resisted by the next stud until it also reaches its maximum
resistance, and so forth. Based on this behaviour, they concluded that the slip at the

connection depends initially on the nearest stud to the column and the stiffness of the
shear connection, K, was taken as the stiffness of one stud (i.e. 200 kN/mm). The

numerical study that was carried out by (Ahmed and Nethercot, 1996) showed that all
studs shared the longitudinal shear force in the interface between the concrete slab and
the steel beam even for the studs located at the end of the shear span, but with different

loading ratio.

Ren and Crisinel (1996) suggested the following equation:

0.6R.

k, =smaller 0 : (3.67)
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where R, and R are the resistances of the reinforced concrete slab and the shear
connectors in the hogging moment region, respectively. As is the interface slip, taken as
0.5mm for 19x100mm welded shear connectors. The assumption of a constant slip
value of 0.5mm for complete, full and all partial shear connection conditions is not
compatible with the experimental and numerical results. Lawson (1989) found that this
slip may have negligible value for full shear interaction, and lower values for some
partial shear interaction cases at average working load. Therefore, the estimated

stiffness of the shear connection may be unsafe.

Ahmed and Nethercot (1997) reviewed and assessed the available push-out test data
of the load-slip behaviour of welded studs. They stated that the elastic tangential
stiffness of a shear stud vary between 110 and 350 kN/mm at 45% of its load- carrying
capacity. They suggested the following expression to calculate the stiffness of the shear

connection:

k, = 200N (3.68)

where N is the smaller number of studs in the hogging moment region or studs
required for full interaction. The same expression was taken by (Gil and Bayo, 2008;
Queiroz et al., 2009; Titoum et al., 2009) but with different values, ranging between
100 and 350 KN/mm for the stiffness of a stud. The assumption of a constant stiffness of
the shear connector for all cases is not reasonable, since the stiffness of the shear
connector is related to the diameter and length of shear connector as well as to the
compressive strength of the surrounding concrete. Therefore, the adoption of constant
value of 100kN/mm or 200kN/mm for all cases may overestimate or underestimate the
actual stiffness. A practical chart to estimate the secant stiffness of a stud depending on
the above considerations has been proposed and is described in Chapter Four.

Eurocode 4 (2004), Annex A.3, adopts the following expressions to calculate the

stiffness of the shear connection, Ks.

2

ksszsc where v = A+ eINk,ld, & &= Eala (3.69)
v L_l & Eala ds Es'%

1+¢& ) d,

where E,, A, are the modulus of elasticity and area of reinforcement respectively. E,, I,

are the modulus of elasticity and second moment of area of the steel beam respectively.

| is the length of the beam adjacent to the connection in hogging bending.
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ds is the distance between the centroid of the beam's steel section and the centroid of the

reinforcement. All other symbols are as defined previously.

These expressions are based on the procedure which had been developed by
(Anderson et al., 2000). It was derived assuming cracked composite cross-sections and
using the elastic interaction theory of a composite beam, making it unsuitable to extend

into the post-linear range.

3.9.4.1. Proposed procedure to calculate the stiffness of the shear connection, ks

The behaviour of a shear stud is generally defined by a non-linear load-slip curve which
is obtained from a push-out test. Ollgaard et al. (1971) proposed one of the most cited
analytical functions for a shear stud which can be used to model the behaviour of a
shear stud in a composite connection. This exponential function takes the following

general form:

F% ~(1-e ) (3.70)

where F is the shear force acting on the stud connector; sy is the corresponding slip; o
is a non-dimensional parameter (its value being 0.5-1.5). The value of the parameter A is
0.5-2 mm™. Femax is the ultimate shear strength of a stud connector, which can be
determined by the following equation, given by Eurocode 4 (2004) for a stud connector

in a solid slab:

F ' 08A, 3.71
=min .
o 037&0\} fck Ec ( )

where, f,, is the ultimate tensile strength of the shear stud; fy and E. are the
compressive strength and modulus of elasticity of concrete, respectively. As is the
cross-sectional area of the stud. Eq. (3.71) is multiplied by a factor, k;, which ranges
between 0.6 and 1.0 for a stud used with profiled steel sheeting. The details of
calculating this factor are presented in (Eurocode 4, 2004) 86.6.4 The same forms of Eq.
(3.70) were used by many researchers such as (Aribert and Labib, 1982; Aribert and Al
Bitar, 1989; Razagpur and Nofal, 1989; Johnson and Molenstra, 1991; Loh et al., 2004;
Nie et al., 2004; Titoum et al., 2009; Vasdravellis et al., 2009 ) with different
combinations of o and 1 to model shear stud behaviour. Figure 3.19 shows some

examples of these load-slip curves.
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Fsc/Fsc,max

0.3 —=— Aribert and Labib (0=0.8,1=0.7)

——Johnson,Molenstra (0=0.989,A=1.535)
Johnson,Molenstra (0=0.558,A=1)

—=— Aribert and Al Bitar (¢=0.9,A=0.75)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SSC /SSC,C

Figure 3.19: Load-slip curves for shear stud

The numerical study by (Ahmed and Nethercot, 1996) demonstrated that all studs in
the shear span share the developed force, Fshear, in the interface between the concrete
slab and the steel beam. Therefore, based on this study:

Nsc

I:shear = stc,i (372)

i=1
where N is the number of studs in the shear span. All shear studs in the shear span are
replaced by one equivalent shear stud which has the equivalent force, Feq =Fshear and

equivalent slip, Aeg, then:

Fo = kSAeq (3.73)
NSC

Feq = Fshear = stc,i (374)
i=1

Feq,max = Nsc I:sc,max (375)

Even though Eq. (3.70) was developed from push-out tests of a single or two shear
connectors, it is still valid to simulate the group of shear connectors as the equivalent

shear stud, since it has the same overall behaviour. Then:

F P
e :(1_e“Aeq) and F, <N.F (3.76)

SC " SC,max

1
F o
[N 3 ] =l-e (3.77)
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1

F «
n 1[J
NSC Fsc,max

Ay = — (3.78)

o _Fa__ AF, (3.79)

Aeq F é
Inl 1— &
Nsc I:sc,max

In the current research the combination of ¢=0.8 and 1=0.7 mm™ was used in all

calculations when there was no information about the behaviour of studs, since this
curve is close to the real behaviour of a 19mm diameter headed stud, as this stud was
used in most experimental tests of composite connections. The ultimate shear strength
of connector Fsmax Was taken to be 120 kN if there was not enough data to calculate it
from Eq. (3.71).

3.9.4.2. Estimation of Feq

The rotational stiffness of a connection is always calculated for the average working
load or where the moment-rotation curve of the connection can safely be assumed to be
linear. This range is between 40% to 60% of the ultimate moment capacity of the
connection. It was taken to be 50% of the maximum experimental moment of the
composite connection by (Anderson and Najafi, 1994), while Ahmed and Nethercot
(1997) assumed it to be 45% of the ultimate moment capacity. Based on this
explanation, there are three requirements that must be satisfied in selecting the value of
equivalent shear force, Feq:

1. It should be in the level of moment where the moment—rotation curve of connection
can be assumed to be linear up to this limit. In most cases, this limit is after the
cracking of concrete and prior to the yield moment of the connection. Also,
(Johnson and May, 1975; Lawson, 1989) found that the average working load of a

shear connector is about 0.5 Fy max-

2. It should be ensured that this limit of moment is in the linear range of the moment—
rotation curve. It was taken as 40-60% of the ultimate moment capacity of

connection even when the linear range may be further then 60%.
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3. It should be based on the force in the component which controls the behaviour of
the connection in this range (i.e. the yield force in the reinforcing bar, A f;y, or the

strength of the shear studs, > Fscmax)-

By studying the experimental results from (Li et al., 1996; Fu and Lam, 2006 ) for
different reinforcement and partial shear connection ratios as shown in Table 3.5, it is
clear that the yielding of reinforcement or the fracture of shear studs takes place after
50% of the maximum moment for all complete, full and partial shear connection ratios.

Hence, it was decided to calculate the equivalent shear force, Feq, as follows:

0.5N_F for np<l1

SC "~ SC,max N F
F = where — __SCscmax .
* 0.5 NSC FSC,maX for 77 Z 1 77 A’ fy r (3 80)
n ,

where 7 is the degree of the shear connection.

Table 3.5: Percentage of moment for the control components in composite connection

. % of ultimate moment for the
Shear Ultimate
) control components )
Test Connection Moment _ Mode of failure
] Yield of Fracture of
Ratio n (KN-m) .
Reinforcement Shear Studs

CJs-1 >300% 181.5 7% >100% Excessive deformation
CJs-2 >300% 176 7% >100% Excessive deformation
CJS-3 >300% 148.5 86% >100% Excessive deformation
CJS-4 >300% 1775 66% >100% Excessive deformation
CJS-5 >300% 197.2 68% >100% Excessive deformation
CJS-6 >300% 174 84% >100% Excessive deformation
CJ-1 271% 370 67% >100% Reinforcement fracture
CJ-2 155% 363 65% >100% Reinforcement fracture
CJ-3 78% 250 >100% <100% Connector fracture
Cl-4 116% 368 73% <100% Connector fracture
CJ-5 116% 363 92% <100% Connector fracture
CJ-6 120% 425 67% >100% Reinforcement fracture
CJ-7 120% 274 71% >100% Reinforcement fracture

This value of the equivalent shear force will ensure that the above three requirements of

the equivalent shear force are satisfied. The resulting equations for shear stiffness are:
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O'SENSCFSC,I’TI{:IX
—— 1 for np<1
In[l—(O.S)a}
k. = 3.81
’ O.ﬂNSCFSC max ( )
7 ,
- T for n>1
In 1_(0_5]&
n

Eq. (3.81) overcomes the shortcomings of Eq. (3.67) and Eqg. (3.68) by considering the

shear connection ratio in the calculation of shear stiffness.

3.9.4.3. Validity of the proposed procedure for, ks

Five experimental composite connections (CJ1, CJ2, CJ3, CJ4 and CJ6) were selected
from the experimental study on semi-rigid flush end-plate composite connections with
steel beams and precast hollowcore slabs which were performed by (Fu and Lam, 2006
). These samples represent the cases of complete interaction, full and partial shear
connection respectively. The results of the shear stiffness calculations are listed in Table
3.6.

Table 3.6: Results of calculations

Final Ks

Test | Degree of Area of No. | endslip | Mode of (KN/mm)

shear reinforc- of (Test) failure - o 9 = _

connection ement studs | (mm) (Test)y | & g g g 5 g g3

% (mm?) g |gs|g2|®9"”
Cll 271% 628 7 0.34 RF* 912 200 1400 | 402 | 237
CJ2 155% 628 4 0.8 RF 421 200 800 | 402 | 174
CJ3 78% 628 2 5.8 CF&SF | 166 | 200 400 | 312 | 118
Cl4 116% 828 3 35 CF 274 200 600 | 402 | 148
CJ6 121% 800 4 0.84 RF 374 200 800 | 514 | 201

*RF-Reinforcement Fracture; CF-Connector Fracture; SF-Slab shear failure

Based on the degree of connection and mode of failure in the test, these results show
clearly that (Anderson and Najafi, 1994)'s procedure underestimated the shear stiffness
for most connections, as it did not take into account the effect of the shear connection
ratio and used the same value for complete, full and partial shear connections, since the

procedure depended on just the first shear connector for all cases. Ahmed and Nethercot
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(1997)'s procedure overestimated the shear stiffness of all connections and estimate the
same value for shear stiffness for CJ2 and CJ6, even though they have different shear
connection ratios. This is because this procedure depended only on the number of studs,
Nsc, and its stiffness, ks, and did not take into account the effect of the partial shear
connection ratio. The assumption of constant slip (0.5mm) by (Ren and Crisinel, 1996)'s
procedure leads to the estimation of a higher stiffness of the full shear connection (i.e.
CJ6) than for a complete interaction (i.e. CJ1). The experimental results indicated that
this estimation was not valid, since the end slip in CJ6 was more than twice the end slip
in CJ1. Also, the results give the same stiffness for CJ4 and CJ1, even though the
experimental failure mode showed that the failure of the CJ4 connection occurred due to
the shear failure of the connection, while the failure of CJ1 connection took place
because of the fracture of reinforcement. The Eurocode 4 (2004) procedure
underestimated the shear connection stiffness for all connections. Furthermore, the
stiffness of CJ2 is lower than the stiffness of CJ6, which is not consistent with the
experimental results for the final slip of these connections. The proposed procedure can
predict the actual differences in the shear stiffness of the connection due to the variation

of the shear connection ratios.
3.10. Validation of the proposed expression for the rotational stiffness

of a composite connection

The proposed expression for calculating the rotational stiffness of a composite
connection was validated using the test results from many published papers. These tests
can be divided into three groups of flush end-plate composite connections. These groups

include:

1. a conventional flush end-plate connected to an H-section steel column with metal
deck flooring and solid concrete slabs as in (Anderson and Najafi, 1994; Xiao et al.,
1994; Li et al., 1996; Liew et al., 2000)'s tests;

2. a flush end-plate connected to a square hollow steel column filled concrete with
metal deck flooring and solid concrete slabs as in (Loh et al., 2006)'s tests; and

3. a flush end-plate connected to H-section steel column with precast hollowcore slab
as in (Fu and Lam, 2006 ) tests.
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Two comparisons were carried out as follows:

1. the test results were compared with the results from the proposed expression (i.e.

Eq. (3.51)) of rotational stiffness of a composite connection using the calculated

values of K, and Ks, by:

i. the Eurocode 4 procedure;

ii. the procedure in Section 3.9.3 to calculate k; and the proposed procedure in

Section 3.9.4 to calculate ks.
The results of comparison are shown in Figure 3.20 and Figure 3.21.

2. the same test results were compared with the calculated values of rotational

stiffness using:

i. the results from the proposed expressions in (1(ii)) above;
ii. (Anderson and Najafi, 1994) expressions;

iii. (Ren and Crisinel, 1996) expressions; and

iv. (Ahmed and Nethercot, 1997) expressions.

The results of comparison are shown in Figure 3.22 and Figure 3.23. Table 3.7 lists the
final procedures which were adopted in the proposed expression to calculate the

rotational stiffness of flush end-plate composite connections.

Table 3.7: Adapted procedures for parameters

E
k = == A
" ke r Ks
II‘
Kews Kewe Eurocode 4 Proposed Eurocode 4 Proposed
Eg. (3.19) ~ = Annex A, = ~ =
Te) Te] (o] O [oe]
or I © 8A.2.1.1, Table © o <
155 kN/mm g g (A1) g = g
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3.10.1. Results and conclusions

It can be seen from Figure 3.20 and Figure 3.21 that the proposed expressions to

calculate the stiffness of the steel reinforcement, K, and the stiffness of the shear
connection, K, can give better results than the results using the calculated values of Ks

and K, from the Eurocode 4 procedure. However, the difference is minimal but the
proposed procedure is simpler. Moreover, the procedure proposed to calculate the
stiffness of the shear connection, ks, in elastic range can be extended easily to calculate
the stiffness of the shear connection at any stage of loading where the Eurocode 4
procedure is applicable only to the elastic range, since it is based on the elastic
interaction theory of composite beams.

1.5

Proposed stiffness/Test result

—e—Using Eurocode 4 Values for Kr,Ks
—=—Using Proposed Values for Kr,Ks

Experimental tests

Figure 3.20: Comparison of results using the proposed and Eurocode 4 procedures to

calculate ksand k;
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Proposed stiffness/Test result

—eo—Using Eurocode 4 Values for Kr,Ks
—=—Using Proposed Values for Kr,Ks

Experimental tests

Figure 3.21: Comparison of results using the proposed and Eurocode 4 procedures to

calculate ksand k; (after sorting the results in ascending order)
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Table 3.8: Comparison of predicted and experimental results

Test Ky Ke Sjc Eurocode 4 Proposed Procedure Sj.c (KN/mm) SjofTest
Reference kN/mm | kN/mm | kN/mm Procedure (1) @) Proposed Using
(Test) K¢ Ks K Ks Eurocode 4 Proposed T @)IT
kN/mm kN/mm kN/mm kN/mm Values (1) Values (2)

CJS-1 155 1008 31 1509 866 760 1961 41.7 41.57 1.34 1.34
CJS-2 155 373 28 1509 866 760 1961 25.4 25.38 0.91 0.91
Li et al. (1996) CJS-3 155 373 42 1509 866 760 1961 25.4 25.38 0.61 0.6
CJS-4 155 1008 33 1509 960 760 1961 43.3 41,57 1.31 1.26
CJs-5 155 1008 36 1509 1112 760 1961 455 4157 1.26 1.15
CJs-6 155 373 32 1509 866 760 1961 25.4 25.38 0.79 0.79
SCJ-3 155 1140 29 446 183 238 1045 24.7 31.64 0.85 1.09
SCJ-4 155 1140 49 2250 624 1201 662 57.1 52.51 1.17 1.07
Xiao et al. (1994) SCJ-5 155 1140 61 2250 535 1201 662 52.9 52.51 0.87 0.86
SCJ-6 155 1140 65 2250 535 1201 639 52.9 51.77 0.81 0.8
SCJ-7 155 1140 50 2696 606 1439 588 57.6 51.78 1.15 1.04
S4F 155 1301 35 884 291 472 936 35.2 44.67 1.01 1.28
Anderson and S8F 155 1301 55 1769 463 944 740 49.5 53.69 0.9 0.98
Najafi (1994) S12F 155 1301 66 2653 608 1416 617 60.2 54.96 0.91 0.83
S8FD 155 1305 141 1769 425 944 740 93.7 105.4 0.66 0.75
SCCB1 155 1094 36 1781 369 944 555 419 45,58 1.16 1.27
SCCB2 155 1094 60.1 3958 1023 2099 1047 75.1 69.14 1.25 1.15
Liew et al. (2000) SCCB3 155 1094 84 5541 1930 2938 1627 98.7 85.53 1.17 1.02
SCCB4 155 1094 85 3958 1023 2099 1047 75.1 69.14 0.88 0.81
SCCB5 155 1094 55 3958 1023 2099 1047 75.1 69.14 1.37 1.26
SCCB6 155 1124 55.5 3958 1023 2099 1047 76 69.92 1.37 1.26
Ccl1 155 3125 90 868 237 330 912 88.8 107.4 0.99 1.19
CJ2 155 3125 74 868 175 330 421 74.9 88.48 1.01 1.2
Fuand Lam CJ3 155 3125 90 868 118 120 166 60.7 48.52 0.67 0.54
(2006) Cl4 155 3125 100 868 149 191 274 68.6 63.72 0.69 0.64
CJ5 155 3125 120 868 149 159 274 68.6 59.45 0.57 0.5
CJ6 155 3125 180 1106 202 262 374 83.6 77.98 0.46 0.43
CJ7 155 3125 70 553 92 76 187 51.9 42.94 0.74 0.61
Cl1 155 2683 37 1600 405 842 391 52 47.42 1.41 1.28
CJ2 155 2683 38.3 1600 266 842 211 44.1 38.9 1.15 1.02
Loh et al. (2006) CJ3 155 2683 333 1600 189 842 141 38.9 345 1.17 1.04
Cl4 155 2683 32.5 800 182 421 257 37 38.06 1.14 1.17
CJ5 155 2683 40 2400 828 1263 647 73.8 60.31 1.85 151
Average 1.02 0.99
Stdev. 0.30 0.28
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Table 3.8 and Table 3.9, Figure 3.22 and Figure 3.23 indicate that (Anderson and
Najafi, 1994)'s procedure underestimated the rotational stiffness of the composite
connection for most cases, while Ren and Crisinel (1996)'s procedure overestimated the
rotational stiffness for many cases. This means that these methods represent the lower
and upper bound of rotational stiffness. Ahmed and Nethercot (1997)'s procedure gave a
better agreement with the test results than the other procedures for many cases, but it
overestimated the rotational stiffness for some cases. However, the expression proposed
to calculate the rotational stiffness of a composite connection associated with the
proposed procedure to calculate the stiffness of shear connection can predict well the
rotational stiffness of a composite connection for most cases. In addition, comparison
with the other procedures shows that the proposed procedure has the best average ratio,
standard division and absolute error ratio (0.99, 0.28 and 0.23 respectively). The
differences for some cases can be related to the assumptions made in calculating the
effective length of reinforcement, since all other procedures show the same trend for
these cases. Also, all of the procedures underestimated the rotational stiffness of the
group of tests carried out by (Fu and Lam, 2006 ), since these tests incorporated recent
precast concrete hollowcore slabs which may require modified procedures to calculate

the stiffness of its components.

In summary, besides the generality of the proposed model for bare steel and
composite connections, the other merit of the proposed procedure is its ability to be
extended further than the linear range of the moment-rotation curve of connection using

the proper component stiffness values for the non-linear range.

95



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

15

0.5

Calculated intial stiffness/Test result
=

—=—PROPOSED =¢=AHMED
—=—ANDERSON =+=REN

Experimental Tests

Figure 3.22: Comparison of the proposed procedure with other procedures to calculate

the rotational stiffness of a flush end-plate composite connection

=
4]

Proposed of stiffness/Test result
©

—=—PROPOSED —+—AHMED
—=—ANDERSON -—+—REN

Experimental Tests

Figure 3.23: Comparison of the proposed procedure with other procedures to calculate
the rotational stiffness of a flush end-plate composite connection (after sorting the
results in ascending order)
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Table 3.9: Comparison of predicted and other methods

Reference Test Sjc Sjc  kN/mm Ratio Abs(Error)/T
KN/mm Proposed Ahmed and Anderson and Ren and C P)T T @It (©)a8 PIT T @IT (©)as
(P) Nethercot (1997) Najafi (1994) (1996)
. CJS-1 31 41.57 3177 17.56 32.95 1.04 1.02 0.57 1.06 0.34 0.02 0.43 0.06
Lietal. (1996) CJS-2 28 25.38 3177 17.56 32.95 1.17 1.13 0.63 1.18 0.09 0.13 0.37 0.18
CJS-3 42 25.38 3177 17.56 32.95 1.51 0.76 0.42 0.78 0.4 0.24 0.58 0.22
CJs-4 33 41.57 30.71 17.56 32.95 1.26 0.93 0.53 1 0.26 0.07 0.47 0

CJS-5 36 41.57 26.32 17.56 32.95 1.15 0.73 0.49 0.92 0.15 0.27 0.51 0.08

CJS-6 32 25.38 3L.77 17.56 32.95 0.79 0.99 0.55 1.03 0.21 0.01 0.45 0.03

Xiao et al. SCJ-3 29 31.64 21.08 18.11 20.04 1.09 0.73 0.62 0.69 0.09 0.27 0.38 0.31
(1994) SCJ-4 49 52.51 46.19 27.36 66.29 1.07 0.94 0.56 1.35 0.07 0.06 0.44 0.35
SCJ-5 61 52.51 56.32 27.36 66.29 0.86 0.92 0.45 1.09 0.14 0.08 0.55 0.09

SCJ-6 65 51.77 53.49 27.36 69.23 0.8 0.82 0.42 1.07 0.2 0.18 0.58 0.07

SCJ-7 50 51.78 58.54 28.19 78.05 1.04 1.17 0.56 1.56 0.04 0.17 0.44 0.56

Anderson and S4F 35 44.67 32.43 22.35 30.65 1.28 0.93 0.64 0.88 0.28 0.07 0.36 0.12
Najafi (1994) S8F 55 53.69 49.71 26.33 55.94 0.98 0.9 0.48 1.02 0.02 0.1 0.52 0.02
S12F 66 54.96 63.26 28.28 77.16 0.83 0.96 0.43 1.17 0.17 0.04 0.57 0.17

S8FD 141 105.42 106.34 58.73 105.96 0.75 0.75 0.42 0.75 0.25 0.25 0.58 0.25

Liew et al. SCCB1 36 45.58 48.13 26.76 59.18 1.27 1.34 0.74 1.64 0.27 0.34 0.26 0.64
(2000) SCCB2 60.1 69.14 91.95 30.37 104.22 1.15 1.53 0.51 1.73 0.15 0.53 0.49 0.73
SCCB3 84 85.53 144.48 32 126.3 1.02 1.72 0.38 1.5 0.02 0.72 0.62 0.5

SCCB4 85 69.14 91.95 30.37 104.22 0.81 1.08 0.36 1.23 0.19 0.08 0.64 0.23

SCCB5 55 69.14 91.95 30.37 104.22 1.26 1.67 0.55 1.89 0.26 0.67 0.45 0.89

SCCB6 55.5 69.92 91.95 30.37 105.54 1.26 1.66 0.55 1.9 0.26 0.66 0.45 0.9

Fu and Lam Cl1 90 107.37 71.44 52.15 117.68 1.19 0.79 0.58 1.31 0.19 0.21 0.42 0.31
(2006) CJ2 74 88.48 56.16 46.92 117.68 1.2 0.76 0.63 1.59 0.2 0.24 0.37 0.59
CJ3 90 48.52 39.61 37.89 96.95 0.54 0.44 0.42 1.08 0.46 0.56 0.58 0.08

Cl4 100 63.72 52.93 45.91 117.68 0.64 0.53 0.46 1.18 0.36 0.47 0.54 0.18

CJ5 120 59.45 46.89 42.29 117.68 0.5 0.39 0.35 0.98 0.5 0.61 0.65 0.02

Cl6 180 77.98 65.54 51.27 148.08 0.43 0.36 0.28 0.82 0.57 0.64 0.72 0.18

CJ7 70 42.94 33.59 32.95 76.71 0.61 0.48 0.47 11 0.39 0.52 0.53 0.1

Loh et al. (2006) Cl1 37 47.42 54.7 36.58 43.4 1.28 1.48 0.99 1.17 0.28 0.48 0.01 0.17
CJ2 38.3 38.9 48.74 36.58 34.06 1.02 1.27 0.96 0.89 0.02 0.27 0.04 0.11

CJ3 33.3 34.5 43.91 36.58 24.79 1.04 1.32 11 0.74 0.04 0.32 0.1 0.26

Cl4 32.5 38.06 40.4 34.02 23.01 1.17 1.24 1.05 0.71 0.17 0.24 0.05 0.29

CJ5 40 60.31 71.05 37.76 61.59 151 1.78 0.94 1.54 0.51 0.78 0.06 0.54

AVER. 0.99 1.02 0.58 1.17 0.23 0.31 0.43 0.28

Std.Dev 0.28 0.39 0.21 0.34 0.15 0.23 0.19 0.25

Max 1.51 1.78 1.10 1.9 0.57 0.78 0.72 0.90

Min 0.43 0.36 0.28 0.69
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Chapter Four
Prediction of the load-slip behaviour of a stud shear-

connector

4.1. Background

The stiffness, strength and ultimate slip capacity of a stud shear-connector are essential
properties in the analysis and design of composite beams and connections with full or
partial shear interaction. These parameters can be estimated from push-out tests. These
test data are not always available in practice, and a set of empirical equations are used
which may give unsafe or overly conservative values of stiffness. All of the available
experimental and numerical studies clearly indicated that the strength and stiffness of a
stud shear-connector are related. In addition, all of these properties are related to the
diameter of the stud and the compressive strength of the concrete (Oehlers and
Coughlan, 1986). Therefore, a simple and practical method for predicting the load-slip
behaviour of stud shear-connectors incorporating these factors is highly desirable. One
such model has been developed in this study which is based on the experimental and
numerical results of the initial stiffness available in the literature. The complete load-
slip model was also compared with other test data that are available in the literature for
different diameters of shear studs and concrete compressive strength.

4.2. Current procedures to estimate the essential properties of a stud

shear-connector

In most composite construction calculations, the strength, stiffness and slip capacity of a
stud shear-connector are necessary. Both strength and stiffness are fundamental in
calculating the initial stiffness of composite beam or connection. Only the strength of a
stud shear-connector is required to find the moment capacity. Slip capacity is essential
to estimate the rotation capacity or ductility. However, all of the above are necessary to
investigate the whole behaviour of a composite beam or connection from the start of
applying load until the point of failure. The current procedures to calculate each of the

above properties are as follows:
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4.2.1. Strength of the shear connector, Fy max

Eurocode 4 (2004) 86.6.3.1 presents two formulae for determining the maximum

strength of the shear connector, Fsc max.

7d?
0.8f | — he he
E [ 4 ] 0.2( d+1) for 3< A§4
semax /- — smaller of where o =

2
037aT,E,, [%] 1 for M/ >4

It is clear that the first equation is dominated when the ultimate tensile strength of the

(4.1)

material of a stud shear-connector, f,, controls the behaviour of a shear connector (i.e.
shear failure), but this value should not be greater than 500 N/mm? for a solid slab and
450 N/mm? for a slab with profiled steel sheeting, as stated by (Eurocode 4, 2004)
86.6.3.1 and 86.6.4.2. Conversely, the second equation is dominated when the
characteristic cylindrical compressive strength of the concrete, fe, and its corresponding
modules of elasticity, E.n, are determining factors for failure, typically the failure of the
concrete around the connector (i.e. bearing failure). The reduction factor («) is taken to
account for the ratio of the height (hsc) to diameter (d) of a shear connector and its value
ranges (0.8-1). Most shear studs were used in composite building have, hs/d>4.

Therefore, the reduction factor («) is equal to unity.

Rocha et al. (2012) studied the influence of concrete strength and stud diameter
variation on the reduction factor. The results from this study are summarized in Figure
4.1. It can be seen that (Eurocode 4, 2004)'s equation underestimates the reduction
factor for high strength concrete. In addition, Figure 4.2 shows the variation of « with
hsc for constant (d=19 mm) and the variation of « with d for constant (hse=45 mm). It is
clear that the reduction factor () is more influenced by height than by diameter. This
behaviour can be interpreted as follows (see Figure 4.3): as the shear stud is subjected to
the force transferred from the beam, the concrete around the shear stud is in bearing
stress and the maximum stress is at the base of shear stud. As the load increases, the slip
occurs between the steel beam and the slab. Also, the concrete at the base of the shear
stud will become plastic, causing the shear stud to rotate. The resistance to this rotation
comes from the bending moment, Mg (see Figure 4.3), which correlates directly with
the height of the shear stud, hs.. This moment plays a role of transferring some of the
stress from the plastic zone at the base of the shear stud to the adjacent nonplastic zone.
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This behaviour will increase the ability of the shear stud to resist greater loads before

the concrete fails.
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Figure 4.1: Variation of a with hs/d for constant diameters of shear stud
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MY
Figure 4.3: Forces and deformation of shear stud

In addition, Eq. (4.1) is multiplied by a factor k;, which ranges between 0.6 and 1.0 for

a stud used in a slab with profiled steel sheeting. The details of calculating this factor

are presented in (Eurocode 4, 2004) 86.6.4. The partial safety factor for shear

connection, yy, is taken as 1.25.

4.2.2. Stiffness of a shear stud connector, K.

4.2.2.1. Assumed constant value of kg

All of the previous experimental and numerical work by many researchers indicated
clearly that the stiffness of a shear stud is related to the compressive strength of the
concrete and the diameter of the shear stud, as in the works of (Ollgaard et al., 1971;
Oehlers and Coughlan, 1986; Mottram and Johnson, 1990; Lam and EIl-Lobody, 2005;
Xue et al., 2009; Wang et al., 2011; Xue et al., 2012). However, in many other works
the stiffness of a shear stud was calculated or assumed unrelated to the compressive
strength of the concrete.

A value of 200 kN/mm was assumed by (Anderson and Najafi, 1994) to compute
the initial rotational stiffness of a flush end-plate composite connection for four
experimental cases with different compressive strengths of concrete. The same value
was also taken by (Gil and Bayo, 2008). Also, Al-Jabri (2004) used the same value in
his component-based model to estimate the initial rotational stiffness of flexible end-

plate connection at elevated temperatures.

Based on the assessment of many experimental and numerical works by several
researchers, Ahmed and Nethercot (1997) stated that the shear stiffness of the shear
connector can range between 110 KN/mm and 350 kN/mm; however, no guidance was
given for adopting a specific value from the above range. They adopted a value of
200 kN/mm to calculate the initial rotational stiffness for the 32 cases of flush end-plate

composite connections with different shear connectors that they investigated and
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compressive strengths of concrete. Based on the previous range, Queiroz et al. (2009)
assumed a value of 350 kN/mm in their two-dimensional FE model for the evaluation of
composite beams. Eurocode 4 (2004) (Annex A) allows the assumption of an
approximate value of (100 kN/mm) for headed studs with 19mm diameter when no

push-out test data is available.

The above discussion indicates clearly the necessity for guidelines to choose certain
values of shear stiffness or strength for the shear stud from the above range or a
procedure to calculate it depending on its properties or the properties of the surrounding

concrete.

4.2.2.2. Equations to calculate the value of kg

Based on the analysis of 116 push-out tests, Oehlers and Coughlan (1986) suggested
the following empirical equation to calculate the stiffness of a stud shear-connector,
assuming that the load-slip behaviour is nearly linear up to 0.5 F¢ max.

F

ksc — SC,max (4.2)
(0.16—0.0017 f_)d

where Fgmax is the maximum strength of the stud shear-connector in N/mm?, d is the
diameter of the shear connector in mm and the (f.) is the mean compressive strength of
the surrounding concrete which ranged from 20 to 70 N/mm?. Shim et al. (2004) stated
that the value of 0.16 in Eq. (4.2) should be replaced by 0.08 and 0.24 to obtain the
lower and upper limits of the characteristic stiffness, respectively. Eq. (4.2) can be

rewritten in the form:

ke =7F, (4.3)

It is clear from Figure 4.4 that factor y ranges from 0.4 to 12 (1/mm) for the
compressive strength of concrete with (20< fem <90) in N/mm?. The empirical equation
may overestimate or underestimate the actual value of stiffness of the shear connector,
especially for low or high strength concrete.
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Figure 4.4: Values of yfor different compressive strengths of the surrounding concrete

Wang (1998) presented a practical procedure to estimate the stiffness of a stud
shear-connector as the secant stiffness at the shear connector design strength (0.8Fsc max)
with an equivalent slip of 0.8 mm. Liew et al. (2000) presented a similar procedure but
with (0.6Fsmax) and limited the slip to 0.5 mm to calculate the stiffness of the stud

shear-connector:

k, =1.2F (4.4)

Nie et al. (2004) proposed a similar equation to estimate the shear connector stiffness

as:

k. =0.66F (4.5)

The assumption of a constant slip for all conditions is not compatible with the
experimental and numerical studies, since the slip of a shear connector in the elastic
range may vary from negligible to more than 0.8 mm. Therefore, this assumption may
unsafely underestimate or overestimate the stiffness of stud shear-connectors in some

cases.
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4.2.3. Empirical equations to estimate slip capacity, S

Oehlers and Coughlan (1986) defined the slip capacity of a stud shear-connector as the
slip at failure when the peak load has reduced by 5%. Based on an analysis of 53 push-
out tests with different stud diameters and compressive strengths of concrete, they
established the following empirical equation to estimate the slip capacity (in mm) of a

shear stud:

S, = (0.453-0.0018f,)d (4.6)
They also stated that the mean of the experimental slip capacity was 0.34d.
Furthermore, they proposed the following empirical equation to estimate the slip at

ultimate load capacity as:

S.., = (0.389-0.0023f,)d @4.7)

A number of researchers adopted the above empirical equations to estimate the ultimate
slip and slip capacity of a stud shear in their studies such as (Johnson and Molenstra,
1991; Shim et al., 2004; Titoum et al., 2009).

Xue et al. (2008) conducted thirty push-out tests on stud shear-connectors to
investigate the effects of stud diameter and height and concrete strength on the stud
failure mode. They proposed the following empirical equation to estimate the slip

capacity:

Ssc,c = hd tan (P (48)

where hq is the bending deflection height of the shear stud, which is about 0.18-0.33
times of the height of the shear stud (hy) and ¢ ranges between 27-35 for the stud
shank failure and 55-65 for the concrete failure. The selection of ¢ depends on the
expected mode of failure (Eq. (4.1)). If the concrete controls the behaviour of the shear
stud, the average value of ¢ (i.e. 60°) will be selected. The average adopted value of ¢

for stud shank failure is 31°.

4.3. Proposed approach

4.3.1. Basic relations

The load-slip curve of shear connectors is generally nonlinear. Johnson and May (1975)
found that it was too difficult to find a reliable formula for the shear connector stiffness

due to the scattering of test results and there are too many parameters which affect its
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magnitude. The proposed approach is based on the definition of the shear stud stiffness
given by Johnson and May (1975) - as the secant stiffness at half the ultimate load of
the shear connector. Empirical equations developed by (Ollgaard et al., 1971; Gattesco
and Giuriani, 1996; Gattesco et al., 1997) were used to model the typical load-slip
curves of a stud shear-connector in the present work. It is also based on the
experimental and numerical results on the shear capacity of headed shear studs carried
out by (Ollgaard et al., 1971; An and Cederwall, 1996; Gattesco and Giuriani, 1996;
Kim et al., 2001; Shim et al., 2004; Dai and Liao, 2005; Lam and El-Lobody, 2005;
Ellobody and Young, 2006; Lam, 2007; Xue et al., 2008) in order to select an
appropriate model to calculate the stiffness of shear connector. The four most practical
dimensions of shear connectors (i.e.13mmx65mm, 16mmx85mm, 19mmx100mm and
22mmx100mm) have been used in this study to construct a set of design charts. The
collection of the experimental data is comprised of tests conducted by different
researchers with different set-ups. As a result, the slip capacity shows high degree of
scatter depending on when the tests were stopped in a particular situation. In the
absence of detailed information of the test procedure, a maximum slip value of 0.34d
was adopted in the current study for all of the experimental data which was the mean
slip value suggested by (Oehlers and Coughlan, 1986). Moreover, the emphasis of the
present study is on the initial stiffness and the maximum load capacity of the shear

studs, for which a slip capacity of 0.34 d will be sufficient.

4.3.2. Methodology

The following steps were used to construct a design chart for the strength and secant
stiffness for different values of shear stud diameter.

Step 1: Draw all available load-slip curves for each diameter with different compressive
strength of concrete, as shown in Figure 4.5 to Figure 4.8.

Step 2: The most cited analytical model of stud shear-connector behaviour which was
proposed by (Ollgaard et al., 1971) was used to construct the typical load-slip curves.

The model is as follows:

F s \@
e (o) @9

As explained in Chapter Three (Section 3.9.4.1), Aribert and Labib (1982) presented a
combination of =0.8, =0.7 mm™. Johnson and Molenstra (1991) provided another two

combinations of 0=0.558, p=1.0 mm™ and ¢=0.989, p=1.535 mm™.
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Figure 4.5: Load-slip curves (experimental and numerical) of studs
(22 mm diameter, 100mm high) for different compressive strength of concrete
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Figure 4.6: Load-slip curves (experimental and numerical) of studs

(19 mm diameter, 100mm high) for different compressive strength of concrete
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Figure 4.7: Load-slip curves (experimental and numerical) of studs

(16 mm diameter, 85 mm high) for different compressive strength of concrete
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Figure 4.8: Load-slip curves (experimental and numerical) of studs

(13 mm diameter, 65 mm high) for different compressive strength of concrete
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Based on an experimental study on shear connectors subjected to cyclic loading,
Gattesco and Giuriani (1996) proposed the following equation to simulate the behaviour

of the shear connector with ¢=0.97, =1.3 mm™ and y=0.0045 mm™:

Fe _ o (1— e_ﬂS“’“) + 7S, (4.10)

SC,max

In this study, four combinations of («a, ) were used to determine an optimum model for
capturing the actual behaviour of a shear connector, particularly in the elastic range.

These models are:

Model 1: Eq. (4.10) with  0=0.97, p=1.3 mm™ and y=0.0045 mm™
Model 2: Eq. (4.9) with  0=0.558, p=1.0 mm™

Model 3: Eq. (4.9) with  0=0.989, f=1.535 mm™

Model 4: Eq. (4.9) with  0=0.8, p=0.7 mm™

It should be noted that there are many other empirical relationships (An and Cederwall,
1996; Xue et al., 2008) which are in between the curves for Model-1 and Model-4. The
normalised experimental and numerical load-slip curves with the selected models are

shown in Figure 4.9 to Figure 4.12.
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Figure 4.9: Comparison of experimental and numerical curves for different compressive

strength of concrete across four models (d=22mm)
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Figure 4.10: Comparison of experimental and numerical curves for different

compressive strength of concrete across four models (d=19mm)
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Figure 4.11: Comparison of experimental and numerical curves for different

compressive strength of concrete across four models (d=16mm)
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Figure 4.12: Comparison of experimental and numerical curves for different

compressive strength of concrete across four models (d=13mm)

It can be seen clearly from the above figures that Model-1 and Model-4 represent the
lower and upper bound respectively and Model-2 is the best model for all the cases

which have been investigated, particularly in the elastic range.

Step 3: The best model (Model-2) and Eq. (4.1) were used to construct the proposed

practical chart to estimate the strength and stiffness of shear connectors.

4.3.3. Strength of a stud shear-connector

The boundary between the stud shank mode failure and concrete mode failure can be

determined as follows:

(i) BSI (2005) 86.1.7(b) states that “the minimum ultimate tensile strength of the

material of a headed stud is usually specified in the UK as 495 N/mm?*”.

(if) Eurocode 4 (2004) §6.6.3. 1(1) states that “the specified ultimate tensile strength

of the material of the stud ** should not be greater than 500 N/mm?>.

Therefore, the limiting value of the cylindrical compressive strength of concrete can be

calculated as follows:
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08 fu &C = 0370(&0 \’( ka )control Ecm - \A( ka )control Ecm = 210? f“ (411)

There are many procedures to calculate the modulus of elasticity of concrete based on
its compressive strength, such as the formulas given in ACI code, BS 8110 (BSI 1997)
and Eurocode 2 (2004). The Eurocode 2 (BS EN 1992-1-1:2004) relationship is as

follows:

0.33 0.33
+E,. (MPa) = 22000[ fc%} = 22000{( foc 8%} (4.12)

0.33
(fu).,. x22000x (L +8y _ 2104 (4.13)
ck Jeontrol 10 - a )

Also, the curve fitting of the left side of Eq. (4.13) for the whole range of compressive

strength of concrete results:

f 1.6
( ka )control ~ (SGUCZJ (414)

2
<(fo )y = Concrete failure mode = F, ., =0.37a m(zﬁl j

If ( ka )actual

2
> (fo ) ognr = Stud shank failure mode F, . :O.8fu(”d ]
contro ’ 4

It is clear from Eq. (4.14) that the mode of stud failure (i.e. the shear connector shearing
off or failure of the concrete) depends on the tensile strength of the shear connector.
Ollgaard et al. (1971) analysed statistically the test data of his push-out tests in addition
to a number of other investigations. It was found that an upper bound to the shear

connector strength is approached when «/ f,E. ~897MPa and E. was calculated using

the ACI formula. This experimental relation gives the estimation of ;=28 MPa, which

corresponds to f,=450 MPa. This experimental result is compatible with Eq. (4.14).
From Eq. (4.14):

If f, <500MPa = ( fo )Comrol =34MPa = ( f., )control =43.4MPa
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4.3.4. Secant stiffness of a stud shear-connector

The shear stiffness of a stud shear-connector is calculated as follows:

1
n 1_( 2 J
I:sc,max

_FFsc “(1-e”) = s, - — (4.15)

As noted in Section 4.3.1, the present work is based on Johnson and May (1975)’s

definition of the stud shear-connector stiffness as the secant stiffness at half the

ultimate load of the shear connector:

0.5F, —-0.54F,
ksc — SC,max — ﬂ SC’miX (4.16)
S In(l—(O.S)aj
147F, . using Model-2 for «=0.558, B#=10mm™
ke, =1112F_ .. using Model-3 close to Eq.(4.4) (4.17)
0.64F, .., using Model-4 close to Eq.(4.5)

The results from Eq. (4.17) using the combinations of (a, ) for model-2, were used to
construct a practical chart to the estimate strength and stiffness of stud shear-connectors,
as shown in Figure 4.13. For a lower concrete strength (f;,-control zone at the left) the
stiffness and strength both are governed by concrete failure. Whereas for higher
concrete strength (f,s.-control zone at the right), the stiffness is governed by the

properties of stud material (shown by dashed horizontal lines).
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Figure 4.13: Secant stiffness-strength-concrete strength relationship for stud shear-

connector with different d/hg.
4.4, Validity of the proposed chart for larger diameters of shear

connector

Shim et al. (2004) conducted push-out tests on studs with 25, 27, and 30 mm of
diameter to investigate the static behaviour of large studs which are beyond the scope of
current design codes. The shear stiffness of the stud shear-connector, which was
calculated using the empirical equation (i.e. Eq. (4.2)), was in the range of 25-50% of
the test results. The proposed chart in Figure 4.13 was used to find the stiffness and
strength of the stud shear-connector for the above diameters by constructing parallel
lines at an appropriate level in the chart, as shown in Figure 4.14. The values from the
proposed chart were compared with the average of the push-out test results; and a good
agreement was found which is summarised in Table 4.1. It is clear from the results in
the table that the proposed chart can predict the strength and stiffness of the shear

connector, even for large diameters.
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Figure 4.14: Secant stiffness-strength-concrete strength relationship for large shear stud

connectors
Table 4.1: Summary of results
Stud Average stud strength (kN) Average stud stiffness (kN/mm)
diamet Concrete
lameter Proposed Proposed Eq. Eq. Eq.
strength (MPa) | Test P EC-4 | Test P a a a

(mm) chart chart (4.2) (4.4) | 45)
25 35.4 156 160 167 275 245 78 200 110
25 49.3 180.1 181 167 366.3 290 96 200 110
27 354 186.3 190 195 341.7 290 75 234 129
27 64.5 211.2 215 195 304 330 155 234 129
30 354 191.9 215 240 2925 300 70 288 159
30 64.5 232.3 240 240 290 325 154 288 159

4.5. Multi-linear model of the load-slip curve for the shear connector

For numerical analysis of composite beams and connections, a simple and accurate
load-slip curve for the shear connector must be assumed in advance. The accuracy of
the numerical analysis depends to a large extent on this assumed load-slip curve,

especially for the partially interaction cases in which the shear connector behaviour
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plays the main role in the whole behaviour of composite beams and connections.
Queiroz et al. (2009) assumed a multi-linear model for stud shear-connectors with
(Fsemax=128.7 KN) in their finite element parametric study for the evaluation of

composite beams. This model is shown in Figure 4.15.
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Figure 4.15: Multi-linear model (Fs max=128.7 KN) by (Queiroz et al., 2009)

The assumed high initial stiffness (350 kN/mm) and constant values of slip at different
levels of load in this model were due to the difference in the behaviour of the studs in a
composite beam from those in a push-out test. They also found from a 2D FE model
that the difference in various load-slip curves has insignificant effect on the behaviour

of beams in the hogging moment region.
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Figure 4.16: Tri-linear model by (Titoum et al., 2008)
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Titoum et al. (2008) proposed a tri-linear model for a stud shear-connector, to be
used in their 2-D finite element approach to analyse semi-continuous composite beams
with partial shear connection, as shown in Figure 4.16. The model was based on Eq.
(4.2) to calculate the initial stiffness of a stud shear-connector and the slip at ultimate
load. However, this equation may overestimate or underestimate the stiffness for many

cases, as explained in Section 4.2.2.2.

In the present work, a multi-linear model of the load-slip curve of a shear connector
was constructed using the proposed chart in Figure 4.13 to find the initial stiffness (K,).
and strength (Fsmax) Of the shear connector. Then, using Model-2 (Eq. (4.9)), the post-
yield stiffness (ks.p-1) of the shear connector was calculated. In addition, based on the
study of Wang (1998), it was assumed that the maximum load for the second part of the
multi-linear curve was the design strength of the shear connector (0.8Fsmax). The post-
limit stiffness for the second part of the multi-linear curve, ks -1, can be calculated as

follows:

P P = (L) =5, =—In(1-0sgfF /F, ., ) (4.18)

0.3
Ko =TIT T

F 2K, ;

SC,max

(4.19)

4.5.1. Slip at maximum strength and slip capacity of the shear connector

Eq. (4.6) and Eq. (4.7) were used to find the slip at maximum strength (Sscu) and slip
capacity (Ssc,c) Of shear connector. The ratio (Ssc,u /Sscc) for different compressive

strength of concrete is:

R=s, /s, = 0.783+0.148/(0.389-0.0023f,) (4.20)

Therefore, the post-limit stiffness for the third part of multi-linear curve (ks p-2) can be

calculated as follows:

02F, ., (.21
P2 s, —111 '

The final multi-linear curve is shown in Figure 4.17.
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Figure 4.17: Proposed multi-linear model of load-slip curve

The validity of the proposed multi-linear load-slip curve is verified against some of
experimental load-slip curves, as shown in Figure 4.18. It can be seen clearly from the
figure that the proposed multi-linear model agrees well with the experimental results.
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Figure 4.18: Comparison of the proposed model with experimental load-slip curves
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4.6. Summary and conclusion

The chart in Figure 4.13 demonstrates a simple approach to estimate the appropriate
values of the secant stiffness and strength of a shear connector for different compressive
strength of concrete. It can be used when no push-out test curve is available. The
empirical equations that researchers have used in the past can lead to unrealistic shear
stiffness of the shear connector in some cases. In addition, Figure 4.13 shows clearly
that the secant stiffness and strength of the shear connector are highly related.
Furthermore, the proposed chart can be used to estimate the secant stiffness and strength
for other diameters of shear connectors by drawing parallel lines at the required levels.
A simplified multi-linear load-slip curve was also derived based on the proposed chart
for initial stiffness, as well as the derivation of post-yield stiffness from empirical
equations in the literature. The proposed model is in agreement with the test results, as

shown in Figure 4.18.
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Chapter Five
Stiffness of a reinforced concrete slab in a composite

connection

5.1. Introduction

The fundamental assumption of the present research task is that a beam-column
composite connection can be modelled as a combination of components. These
components can be divided into two main groups: a reinforced concrete slab and a
steelwork connection. Shear studs connect these two groups compositely. Furthermore,
the term “reinforced concrete composite slab’” (RCCS) represents three components:
the reinforcement, the concrete slab and the shear studs (S). In addition, each group can
be subdivided into many components as explained in Chapter Three, where the
components of the (RCCS) were modelled separately. However, the behaviour of the
(RCCS) can be modelled as one “lump’> component. Consequently, a model of the
behaviour of this “lump’> component is required; this is therefore the main objective of

this chapter.

5.2. Background

In a composite beam-column connection, the reinforced concrete composite slab is
mainly under the tension force of the reinforcement F, (see Figure 5.1) which develops
due to transfer of longitudinal shear force from the beam to the concrete through the
shear studs. A model combining the three main components - the concrete, the
reinforcement and the shear studs - is essential for understanding the behaviour of

composite slabs under tensile load.

0,

-
_! — Fr
; T T
‘ri bfl--------- —hﬁ.)
| M
D, Dy w2
Li 1 -~

Figure 5.1: Typical composite connection
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5.3. Brief literature review

In the literature, three basic procedures are used to model the beam-column composite
connection. These are simplified mechanical models, finite element models and

empirical models based on the available experimental data.

In most of the simplified mechanical models, the components of (RCCS) are
modelled separately, as in the works of (Anderson and Najafi, 1994; Ren and Crisinel,
1996; Ahmed and Nethercot, 1997; Liew et al., 2000). In Chapter Three, the simplified
mechanical models were explained in detail eliminating the need to repeat them here.

Eurocode 4 (2004) uses different procedure which combines the stiffness of the
reinforcement (k;) and stiffness of the shear studs (ks) into one component which

represents the stiffness of the composite slab (Ksjap).

k. k
k, =—r= 5.1
slab kS + kr ( )

In this procedure, all shear studs are modelled as one component (ks) which can be
calculated by (Anderson et al., 2000)'s formulae assuming cracked composite cross-
sections and using the elastic interaction theory of a composite beam, as explained in
Chapter Three (Section 3.9.4). Only a fraction of the reinforcement (l;) along the
composite beam of the connection was assumed to influence the stiffness of the
reinforcement (k;). It is also suggested that the effective length (l;) for reinforcement is
to be measured from the centreline of the column up to the point where an assumed

considerable stress is attained.

For the stiffness of the shear studs (ks), a numerical study was performed by (Ahmed
and Nethercot, 1996) which showed clearly that the effect of each shear stud along the
composite beam of the connection depends on its distance from the centreline of the

column and on the degree of shear connection.

In addition, an experimental and numerical studies carried out by (Gil and Bayo,
2008) found that the effective length (I;) is not the same along all parallel reinforcing

bars, therefore an average length was suggested.

In Chapter Three (Sections 3.6.3 and 3.6.4), various other procedures to estimate the
effective length and stiffness of shear studs had been described. These procedures were
shown to give considerably different results. Therefore, potentially inaccurate

estimation of the effective length and equivalent stiffness for all shear studs along the
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composite beam of the connection is the main shortcoming which limits the accuracy of
all the current mechanical models in the literature. Furthermore, all of the simplified
mechanical models dealt with a cracked composite section; the tensile strength of the
concrete and the effect of the concrete between cracks on the behaviour of the

reinforcement (i.e. tension-stiffening effect) were thereby ignored.

A number of researchers used the finite element approach to simulate the beam-
column composite connection. In comparison with the simplified mechanical models,
this approach is more realistic but it is computationally more expensive. The composite
concrete slab (RCCS) components (concrete, reinforcement and shear connectors) are

modelled in different ways, as follows.

As the main role of the concrete in the reinforced slab is to transfer the longitudinal
shear force from the shear studs to the reinforcement, the concrete was ignored in the
modelling of the composite connection using ABAQUS software by (Ahmed et al.,
1996) and replaced by multi-point constraints to join the shear stud (modelled as a beam
element) to the reinforcement (modelled as a truss element). This procedure may reduce
the computational time, but it also reduces the accuracy of the model, since the concrete
plays another important role in increasing the stiffness of the reinforcement in tension.
Therefore, if this effect is not taken into account, the stiffness of the reinforced bars will

be underestimated.

Other researchers (Salvatore et al., 2005; Queiroza et al., 2007; Queiroz et al., 2009;
Vasdravellis et al., 2009 ) modelled the concrete explicitly using finite element software
such as ABAQUS, ANSYS and ADINA to model the beam-column composite
connection. The behaviour of the plain concrete was considered independently of the
behaviour of the reinforcement. The reinforcing bars were modelled as one-dimensional
rods that can be defined either singly (as beam or truss elements) or embedded in
oriented surfaces using elasto-plastic with strain hardening behaviour of the bare steel
bars both in compression and tension. The bond interaction effects, such as bond slip
and dowel action, were considered approximately by using the “tension-stiffening”’
concept in the concrete modelling to simulate load transfer across the cracks through the
reinforcing bar. The shear studs were modelled as non-linear springs using different
load-slip curves. Gil and Bayo (2008) used the same approach but with linear springs
for modelling the shear studs and assuming a stiffness of 200 KN/mm. Solid elements
with elasto-plastic material behaviour was used to model the shear connectors by (Fu et

al., 2007 ; Fu et al., 2008).
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In summary, to date, two procedures have been used to model the reinforced
concrete component (RCC). The first ignored the concrete completely and replaced it
with multi-point constraints to join the shear studs to the reinforcement. The second
modelled the concrete explicitly and the behaviour of the plain concrete was considered
independently of the behaviour of the reinforcement. The tension-stiffening effect was
considered in terms of the behaviour of the concrete. However, the reinforcement was
modelled as bare steel bars. The second approach required extensive computational
effort and often experienced convergence problem. A parametric study covering all

possible parametric combinations will be difficult to achieve using this method.

In the present work, a new procedure, serving as a compromise between the two

methods described above, has been developed to model the (RCC).

5.4. Objectives
The main objectives of this chapter are:

1. To propose a mechanical component model for an (RCCS) which can be used as a
simplified model in the finite element modelling of a composite connection to
overcome the convergence problems in explicit modelling of concrete when the
concrete slab begins to crack. This will also reduce the computational time

significantly with adequate accuracy.
2. To verify the proposed model against experimental tests.

3. To derive analytical expression for the initial stiffness of (RCCS) to be used in the
manual calculation of the initial stiffness of an overall composite connection. The
target expression should combine the effect of the reinforcement, concrete and
shear studs components in one “lump’> component, avoiding the assumption of the
effective length of reinforcement (I,) in calculating the stiffness of the
reinforcement component (k;) and should not ignore the effect of the concrete (i.e.
tension-stiffening), as in the procedures detailed in Chapter Three (Section 3.6.3).

4. To verify the analytical expression against finite element results using ABAQUS

software.

5. To carry out parametric study using ABAQUS software to investigate the effect of

the relative stiffness of the reinforced concrete component and the shear stud
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component - kKrcc/kse - on the initial stiffness of the composite slab (RCCS) as a

“lump’’ component.

6. To modify the proposed mechanical model of initial stiffness for a composite
connection developed in Chapter Three in order to combine the effects of the

reinforcement, the concrete, and the shear studs into one “lump’’ component.

5.5. Proposed model for reinforced concrete composite slab, (RCCS)

The hypothesis of the proposed model is that the force-deformation behaviour of the
(RCCS) under tension can be modelled as a combination of the fundamental
components: reinforcement, concrete and shear studs. In addition, the reinforcement and
the concrete may be combined as one component which should be referred to as the
reinforcement- concrete component (RCC). Therefore, only two major components are
used to construct the proposed model of (RCCS): the (RCC) and the shear studs (S).

The proposed model can be achieved by following two steps:

1. Define the behaviour of each major component (i.e. the (RCC) and the shear
studs (S)) ;

2. Develop an approach to combine the major component behaviours in order to

produce the approximate force-deformation behaviour of the (RCCS).

5.5.1. Defining the behaviour of the major components
5.5.1.1. Reinforcement- concrete component, (RCC)

5.5.1.1.1. Plain concrete

Plain concrete is a brittle material which has high compressive strength, f. . However, it

has a low tensile strength, f., with very limited crack strain, &, as shown in Figure 5.2.

As most concrete in a composite connection is under tension, the cracking and
postcracking of the concrete are the most important aspects of its behaviour, and
dominate its modelling. Therefore, only the behaviour of concrete under tension

associated with the embedded reinforcement behaviour is discussed in this chapter.
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Figure 5.2: Typical Stress-strain relationship for plain concrete

5.5.1.1.2. Tension-stiffening effect

The proposed model for the (RCC) takes into account the tension-stiffening effect.
explanations of this effect are given in (CEB-FIP model code 1990, 1993; Kwak and
Kim, 2006) along with Figure 5.3 below.

Gsm Reinforcement
(Embedded) D
f;lul ——————————————— Nt _;:_:_;_;_;-—-—-
A :First crack
ﬁ:." Esh fcr
b:Crack formation
Reinforcement
(Unembedded) B:Last crack
c:Stabilized cracking
:Yielding of reinforcement
T T 1 a:Uncracked d:Post yielding
F, s,T
D: Fullyielding
1 L L ..~0
&sm1  &smy Esy Esmu €u Esm Eer Eem
a) Reinforcement behaviour b) Concrete behaviour

Figure 5.3: Idealised behaviour of a RC tension member: (a) average stress—strain

relationship of a reinforcement (b) average stress—strain relationship of concrete

When a reinforced concrete uncracked member is loaded in tension, the tensile
force, Fsr, is distributed between the reinforcement and the concrete in proportion to
their relevant stiffness. The first crack in the concrete occurs when the mean strain, &m,
reaches the crack strain of the concrete, &, (point A). The crack formation phase

continues or the concrete contribution decreases significantly until the last crack form
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(point B). A stabilized cracking phase then begins. In this phase, all tensile forces are
balanced by the reinforcement alone in a cracked cross-section. However, tensile forces
are transmitted from the embedded reinforcement to the surrounding concrete by bond
forces in sections between any two successive cracks. As loading increases, the cracks
gradually widens without the appearance of any additional crack, until the
reinforcement at the cracked-sections yields (point C). Any additional increases in load
after the reinforcement yields (i.e. in the post yielding phase) lead to an increase in the
strain until the point of fracture of the reinforcement at the cracked section with a
maximum strain that is less than the maximum strain of the bare steel bar. In this phase,
the contribution of the concrete to the strength of a tension member comes through the

remaining bond resistance.

5.5.1.1.3. Combined reinforcement-concrete behaviour

To date, the behaviour of the plain concrete has been considered independently of the
behaviour of the reinforcement in finite element modelling of composite connections. In
this type of modelling, the stress-strain relationship of the embedded reinforcement is
the stress-strain relationship of the bare steel bar (see Figure 5.3-a) and the tension-
stiffening effect is taken into account by modifying the stress-strain relationship of the

plain concrete, as in Figure 5.3-b.

In the proposed model, the contribution of the reinforcement and the concrete to the
behaviour of the composite connection will be considered using a different approach.

The proposed approach is based on the following considerations:
1. The main roles of concrete in the composite connection are:
i. To transfer the tensile force to the reinforcement from the shear studs and

ii. To increase the stiffness of the reinforcement in tension by way of the tension-

stiffening effect.

2. The embedded reinforcement has greater stiffness and lower ductility than the bare

reinforcement, due to the tension-stiffening effect.

3. The tension-stiffening effect should be taken into account in force-deformation
relationship of the (RCC) as stated in Eurocode 4 (Annex L).

Based on the above considerations, the roles of concrete were taken into account in the
proposed model as follows:
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1. The reinforcement is connected directly to the shear studs by multi point

constraints to simulate the first role of concrete (1(i)) as described above.

2. The second role of concrete (1(ii)) can be interpreted as increasing the stiffness of
the reinforcement in tension by modifying the stress-strain relationship of the
embedded reinforcement, as shown in Figure 5.3-a. This means that the
significant effect of concrete on the reinforcement stiffness is taken implicitly into

account in the stress-strain relationship of the embedded reinforcement.

3. The insignificant tensile strength of concrete is ignored. As mentioned in Section
5.3, Ahmed et al. (1996) ignored the concrete and all its contributions in their
finite element modelling of composite connections. Nevertheless, they achieved

adequate agreement with some experimental results.

The simplified proposed approach will reduce the computational time significantly
and overcome the convergence problems in explicit modelling of concrete that occurred
when the concrete slab begins to crack. Nevertheless, the most important role of
concrete (i.e. transfer the tensile force to the reinforcement and tension-stiffening effect)

are reflected implicitly by modifying the behaviour of the reinforcement.

In order to determine the stress-strain relationship for the (RCC) components, the
basic properties of bare reinforcement should be used, which are the yield strain, &y,
and ultimate strain, &y,. The corresponding mean yield strain, &my, and ultimate mean
strain, &my, for modifying the behaviour of the embedded reinforcement can be

calculated from the relationships shown in the next section.

5.5.1.1.3.1. Pure tension member

The behaviour of a reinforced concrete member under tension as shown in Figure 5.4
can be described using the simplified stress-strain relationship for an embedded
reinforcement, as shown in Figure 5.5. The total tensile force, Fs 1, can be calculated as

follows:

I:s,T = Fc,t + I:r = A:O-c,t + AYO-r (52)
where F.i, oc: and A are the force, stress and area of the concrete respectively. F;, o,

and A, are the force, stress and area of the reinforcement respectively.
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Figure 5.5: Simplified load-strain relationships for bare and embedded reinforcement

Before firstcrack = F;<F_ =F;=AE¢, +AEz¢ (5.3)

s,cr
where & and & are the strain in the concrete and the reinforcement respectively.

v, =6 =6 = F: =AEg, (1+pn) where p :% and n= % (5.4)

C
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where ¢, is the mean strain in the (RCC).

At first crack = En =& and F:=F (5.5)

cr s,cr

F.o =AE&, (1+pn)=Af, (1+pn) (5.6)

where &;, fr are the cracking strain and stress in concrete respectively.

In the stabilized cracking phase = Fo <R <K, (5.7)

~F.=Af, +Ac, (5.8)
In the literature, there are many relationships between the tensile strength of concrete
after cracking, fc, and the crack strength, f.;. Hwang and Rizkalla (1983) performed 34
experimental tests on rectangular reinforced concrete panels under uniaxial load. Based
on the experimental results, they proposed the following relationship for the behaviour

of concrete after cracking:

f — f e—lOOO(E—Ecr) (59)

c.t cr

Gupta and Maestrini (1990) proposed the same form of relationship as

fC't — fcre-550(s-5cr) (510)

Tamai et al. (1988.) proposed a power relationship for the tensile strength of concrete

after cracking. It takes the form:

f. =", (‘9_] (5.11)

&
where the cracking strain, & is taken as 0.0002 and c is a constant depending on the
bond characteristic, taken as 0.4 for a deformed bar. Jaeyeol et al. (2003) proposed the
same form of Eq. (5.11) but after replacing 0.0002 with 0.000113 for the cracking
strain. In the present work, the behaviour of the concrete after cracking was taken as
exponential form (Eqg. (5.9)), since this form represent the true trend for most cases.

Therefore, Eq. (5.8) will be rewritten as:

Fo=A ( fcre—lOOO(am—Scr) +p Gr): A ( fcre—lOOO(sm—scr) + pE, 5m) (5.12)
Atyield = En=&m and f ~0=>F =Af (5.13)
At ultimate = En=&q and f 0K =Af, (5.14)
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In order to find the relevant strain at every load value, Fsr, the increase in strain on the

embedded reinforcement in the cracking state, A&, should first be calculated as follow:

F f, (1
A‘c"sr === —&g = —A‘: il ( +pn) —k = —fcr (515)
AEI' AEI’ EC pEI'
CEgm =&, +(1- ) Ag, (5.16)
Emy = E — BAE (5.17)

In the (CEB-FIP model code 1990, 1993), S, was defined as the integration factor for
the steel strain along the transmission length, L. S, was taken to be 0.4 for

instantaneous loading. The ultimate strain in post-yielding state was also calculated,

using the following relation (Anderson et al., 2000):

O,
Esmu = gsy _ﬂtAgsr +0|1- -
fSy

(0 —2y) (5.18)

F
o, = s.er A: fcr (1+pn) — h[1+pn] (519)
A A P

where o .is the stress in the reinforcement when the first crack has initiated. & is the

srl
coefficient that accounts for the ratio of ultimate strain to the yield strength of the

reinforcement. It was taken as 0.8 for ductile steel with yield strength of 500 MPa.

5.5.1.1.3.2. Verification of the procedure for pure tension against test results

Tamai et al. (1988) conducted six uniaxial tests on prismatic reinforced concrete
specimens. Steel stress distribution and elongations of each specimen were measured in
order to evaluate the tension-stiffening effect on the average stress-strain relationship of
a steel bar in the post-yield range. The main parameters of these tests are the concrete
strength, reinforcement ratio, yield strength of steel and curing conditions. A deformed
steel bar with a diameter of 19 mm was arranged in the centre of rectangular concrete
cross-sections of 150 mm x 200 mm and 200 mm x 250 mm, reinforcement ratios of
0.6% and 1% respectively. The length of all specimens was 2700 mm. The testing

apparatus was set up horizontally, as shown in Figure 5.6.
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Figure 5.6: Test arrangement (Tamai et al., 1988)

Two specimens (No.1 and No.6) were selected from the experimental tests to verify the
applicability of the analytical procedure to estimate the load-deformation curve of a
reinforced concrete member under pure tension. The results of the analytical procedure
and experimental tests are compared in Figure 5.7 to Figure 5.10. It is clear from these
figures that the analytical procedure can predict the behaviour of a reinforced concrete

member under pure tension sufficiently accurately.
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Figure 5.7: Comparison of the stress in a steel bar of a reinforced concrete member and

in a steel bar alone using the analytical procedure (specimen No.1)
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Figure 5.8: Comparison of analytical and experimental results for a reinforced concrete

member (specimen No.1)

450
400
350
300
250
200
150
100 —+—composite-Analytical
50 —=—steel alone

Stress (Mpa)

0 0.5 1 15 2 2.5 3
Strain %

Figure 5.9: Comparison of stress of a steel bar in reinforced concrete member and a

steel bar alone using an analytical procedure (specimen No. 6)
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Figure 5.10: Comparison of analytical and experimental results for a reinforced concrete

member (specimen No. 6)
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5.5.1.1.3.3. Modification for the combined actions of tension and bending

Anderson et al. (2000) modified the relevant relationships for pure tension state in order
to account for the combined action of tension and bending in the reinforced concrete
slab. They defined the cracking moment of a composite connection as the moment that
causes the mean tensile strength of concrete (f.im) to be reached at the upper fibre of the
uncracked slab. Eurocode 4 (2004) gives the following expressions to calculate the

mean tensile strength of concrete, feim:

2/3
. :{0.3( f,)'° < C50/60 (5.20)

2.12In(L+ (f,, +8)/10) >C50/60

The cracking strength, f;, was replaced by the mean tensile strength (fim) multiplied by
the factor (kem) in all relevant relations for pure tension. ke, is a coefficient to account
for the self-equilibrating stresses in the slab prior to cracking:

kK =1 (5.21)
cm h
1+

sl

2z,
where hg is the thickness of the concrete slab and Z; is the vertical distance between the
centroid of the uncracked, unreinforced concrete slab and the neutral axis of the

uncracked, unreinforced transformed composite section.

The resultant stress-strain relationship for the modified behaviour of the embedded
reinforcement is shown in Figure 5.11. In addition, the mean modulus of elasticity (En)

for the embedded reinforcement in the elastic range is shown in the same figure.

This stress-strain curve is required when undertaken finite element modelling of the
(RCC). It should be noted that the length of the (RCC) element should be short enough
to capture the cracking effect of the concrete adequately. The length of the (RCC)

element (s¢) should be in the range:

L <s, <2l =(s,), =15 and L <p (5.22)
where p is the spacing between the shear studs. L is the transmission length, as shown

in Figure 5.4. It can be calculated as follows (Anderson et al., 2000):
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_ Ken fom® (5.23)
4ptg,

where ¢ is the diameter of the reinforcement and 14y, is the average bond stress along the

transmission length, taken as 1.8 fcim.
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Figure 5.11: Stress-strain relationship of the (RCC)

In addition, the width of the (RCC) element (we) should be equivalent to the width of
the transformed concrete slab:

W, ~ Vaiah where n ::—° (5.24)

r

5.5.1.2. Shear stud component

The load-slip curve for a shear stud is required in the proposed model for nonlinear
analysis of the composite connection up to failure. However, only the linear stiffness of
a shear stud may be required in the proposed model for (RCCS), depending on the

following considerations:

1. Eurocode 4 (2004) (Annex A.3) assume that the linear stiffness of an individual

shear connector may be taken as up to 70% of its strength. The same percentage
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was taken by (Queiroz et al., 2009). Johnson and May (1975) assumed this linear
range to be up to 50% of the strength. Ren and Crisinel (1996) assumed the whole
stiffness of the shear connection may be taken as linear up to a value of 60%. The
chart proposed in Chapter Four for estimating the initial stiffness of a shear

connector was constructed based on the percentage of (Johnson and May, 1975).

2. The linear stiffness of a shear connector, ks, can be used in the analysis when it is
expected that the maximum load on a shear connector is equal to or less than half
its strength, Fsc max, depending on the shear connection ratio.

3. Since the maximum expected load on all shear connectors along the length of beam
of a composite connection is equal to the maximum expected load in the
reinforcement up to failure, F,,, then the use of the linear stiffness of the shear
connector, ks, may be required if the number of shear connectors satisfies the
following condition:

N, o, 2 22 (5.25)

sc,min — F
SC,max

where A, and f,, are the area and ultimate strength of the reinforcement
respectively. Fs max IS the strength of the shear connector, which can be determined

easily from the proposed chart in Chapter Four.

4. If the number of shear connectors did not satisfy the condition in Eq. (5.25), then
the load-slip curve of the shear connector will be required for analysis of the
composite connection. The proposed multi-linear load-slip curve in Chapter Four

may be used for this purpose.

5.5.2. Construction of the proposed model

Only two major components are used to construct the proposed model of a composite
slab. These are the (RCC) and the shear studs (S), as shown in Figure 5.12. Moreover,
every region of the (RCC) between the shear studs is modelled individually, as the
strain along the (RCC) is not uniform and depends on the distance from the centreline of
the column. Furthermore, in order to make the proposed model appropriate for both
finite element modelling and manual calculations in the linear-elastic range, the

conventional (RCC) are replaced by (RCC) springs, as shown in Figure 5.13.
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RCC
Reinforcement force, F Coupled bar Uy

Steelwork spring Shear stud springs

ihc/2+p| P | p | P | P | P | P |
T I

Figure 5.12: Proposed model for a composite slab

RCC springs
Coupled bar U,
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Shear stud Springs
| hC/2+p0 | p ! P ! p ! p ! p . P !

Figure 5.13: Simplified proposed spring model

In addition, the number of (RCC) springs in series between any two consecutive

shear studs, Nspr, depends on p and se. This number is equal to the integer number of:

N >P (5.26)
spr Se

Hence, the force-displacement relationship of the (RCC) springs is required in the
simplified spring model. The stress-strain relationship of the (RCC) in Figure 5.11 is
converted to a force-displacement relationship for the (RCC) springs, as shown in
Figure 5.14. This relationship is defined by multiplying all stresses by the area of
reinforcement and all strain by the length of reinforcement over which this strain can be

assumed to act.
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Figure 5.14: Force-deformation relationship for an (RCC) spring
5.6. Derivation of analytical expression for the initial stiffness of

composite slab with shear studs (“lump’> component)

The analytical expression for the “lump’’ component is required to be used in the
manual calculation of the initial stiffness of the overall composite connection. This
expression combines the effects of the concrete, the reinforcement and the shear studs
components in one “lump’’ component. Derivation of this expression is based on the
principle of finding the equivalent stiffness of a group of springs in parallel and in
series. Therefore, the stiffness of every spring should first be calculated; in this instance,

the stiffnesses of the (RCC) springs and the shear stud springs must be derived.

The stiffness of an (RCC) spring, Kecc, can be determined using the axial stiffness of

the (RCC) component as follows:

_ ErecA (5.27)

kRCC - I
RCC

where A, is the area of reinforcement. |,.. and E... are the length and the modulus of

elasticity of the (RCC) component respectively.

As the initial stiffness of the composite connection is assumed to be calculated at
50% of the ultimate moment capacity of the connection, all (RCC) components can be
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assumed to be in the elastic range, but they may be at any one of the three zones in the
elastic range shown in Figure 5.15, depending on their distance from the centreline of
the column. As an approximation, the stiffness of (RCC) spring, krcc, can be taken as

Krcem, for all (RCC) springs, as shown in Figure 5.15.

Fr A

Fru |c..Elastic _ oie... Plastic . i
Fry [77 ' :
c E a: uncracked phase :
i b: Crack formation phase i
= b 1c: Stabilized cracking phase
rer -""' ' x : i
: | Krcem 1 :
i/ | |
| ! !
Lo ! E

| | : i >

Acr Asml Asmy Asmu Asm

Figure 5.15: Approximate force-displacement relationship for an (RCC) spring

In addition, the initial stiffness of a shear stud, ks, can be easily determined from the
proposed chart in Chapter Four. This stiffness is representative of all parallel shear studs
in the same row if there is more than one stud in every row. The final model for the

initial stiffness is shown in Figure 5.16.

kRCC‘l kRCC‘Z kRCC,3 > kRCC‘J

Ihc/2+po,p.p.p.p.p.p

Figure 5.16: Final model for initial stiffness

The equivalent stiffness of all (RCC) and shear stud springs (S), Ki.mp, can be calculated

as follows:

1. The equivalent stiffness of the krcc and ks (the set of springs at the extreme

right as shown in Figure 5.16) is
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K _ ksc,J chc,J (5.28)

7 ko+k

sc,J RCC,J
2. This equivalent spring, Keqy, is in parallel with the previous shear stud spring,

Ksc,3-1, and is in series with the previous (RCC) spring, Kecc.1. Therefore:

( Keq,J + ksc,J—l) kRCC,J—l

K., . =
eq,J-1
(Keq,J + ksc,J—l) + kRCC,J—l

(5.29)

and so on.

3. The equivalent stiffness of all (RCC) and shear stud springs, Ki,m, iS

K 0 (5.30)

eq,J+1 =

(Keq,J+l + ksc,J )kRCC,J

(Keq,J+1 + ksc,J )+ kRCC,J

_ (Keq,J + ksc,J—l) kRCC,J—l
eq,J-1
(Keq,J + ksc,J—l) + kRCC,J—l

_ ( KeCI,3 + ksc,z ) kRCC,Z

eq,2
( Keq,s + ksc,2 ) + kRCC,Z

— (Keq,2 + ksc,l) kRCC,l
“ (KBQ.Z + ksc,l) + kRCC,l

K . =

eq,J

K

(5.31)

Kiamp = Kequ (5.32)

lump

where J is the lowest integer number of shear studs for full shear connection but not

greater than the total number of shear studs:

\]Spg_fsy

SC,max

and J<N (5.33)

sc,all

5.7. Distribution of forces in (RCC) and shear stud springs

The proposed procedure can be used to calculate the distribution of forces in the elastic
range for all (RCC) and shear stud springs as follow:

1. Forces in (RCC) springs
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Fecci =F, (5.34)
ke
FRcc,z = k—qz FRcc,l
eq,2 + ksc,l
ke
FRcc,s = keq,3 _:isc’z RCC,2
e 5.35
FRCC,i :W FRCC,i—l ( ) )
eq,i sc,i—1
2. Forces in shear stud springs
F kSC,l F
sc.l keq,z N kSM RCC 1
kSC
I:sc,2 2 I:5,2
I(eq,s + ksc 2
k...
Fsc i = = Fs i (536)
' keq,i+l + ksc i Y

5.8. Validation

5.8.1. Verification of the analytical expression against finite element results

using ABAQUS software

5.8.1.1. ABAQUS model

The analytical expressions used to calculate the equivalent stiffness of all (RCC) and
shear stud springs, Ky, were verified against finite element modelling using ABAQUS
software. In this modelling, the rotational stiffness of a steelwork connection was
modelled as a pinned boundary condition in order to evaluate the rotational stiffness of
the (RCC) and shear studs alone. The steel beam is 203x102UB23 and is 2.07m long. It
was divided into two parts: one part was modelled with a beam element with a length of
1.97m and the other part was modelled as a solid element with a length of 0.1m in order
to calculate the rotation of the beam as the difference between the displacement at the
top and bottom of the beam. These parts were connected using a coupling constraint.
Both parts were assigned a high modulus of elasticity, 10Es, in order to account for the
rotational stiffness of the composite connection due to the effect of composite slab with
shear studs only. Nine shear studs were used which were distributed at 230mm c/c. The

shear studs were modelled as rigid bars with rotational springs at the base, with stiffness
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equal to 6600 KN-m/rad. This rotational stiffness is equivalent to 150 KN/mm of linear
stiffness, which is the initial stiffness of a 19mm x100mm shear stud in concrete with a
compressive strength of 30 MPa, as determined from the proposed chart in the previous
chapter. The (RCC) springs were assigned 560 kN/mm of axial stiffness, equivalent to
an axial stiffness of 4-¢12mm of reinforcement. The modulus of elasticity was set at
285 GPa, which is the modified modulus to account for the tension-stiffening effect, as
explained in Section 5.5 and Figure 5.15. A concentrated load was applied at the left-
hand end of the steel beam. The final model in ABAQUS is shown in Figure 5.17.

Fixed-base rigid bar

Shear studs

Steel beam

Figure 5.17: ABAQUS model to verify the proposed analytical expressions. The part of
the steel beam shaded in dark cyan (1.97 m) has been modelled by beam elements; the
profile effect is due to rendering. The grey part at the right hand end (0.1 m) has been

modelled by solid elements.

5.8.1.2. Results and discussion

The results of tensile stresses in the springs from the ABAQUS deformed model are

shown in Figure 5.18.
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Figure 5.18: Tensile stresses in the springs from the ABAQUS deformed model

The moment-rotation curve is shown in Figure 5.19. The load was applied such that the

moment was in the linear range in order to calculate initial stiffness of the composite
connection.
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Figure 5.19: Moment-rotation curve

In addition, Figure 5.20 and Figure 5.21 show a comparison between the analytical and
numerical results using ABAQUS software for the distribution of forces acting on the

(RCC) springs and shear studs along the composite connection. Both results are
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identical. These show the validity of the proposed expressions to calculate stiffness and

forces in (RCC) springs and shear studs along a composite connection.
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Figure 5.20: Distribution of forces in (RCC) springs along a composite connection
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Figure 5.21: Distribution of forces acting on shear studs along a composite connection

Furthermore, Figure 5.22 and Figure 5.23 show the distribution of forces in the (RCC)
springs and shear studs as applied moments increase. These figures, along with Figure
5.24 and Figure 5.25 show the ratio of (RCC) springs and the shear studs forces
respectively from total reinforcement force. The results clearly show that the first and
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second shear studs and first and second reinforcement zones (i.e. between the centreline
of the column and the second stud) provide the most resistance to the longitudinal shear
force in the composite connection. In addition, the first three studs provide 80% of the
total shear resistance and the following six studs provide just 20%. This result is in good
agreement with the experimental test results by many researchers such as (Loh et al.,
2006; Fu and Lam, 2006 ). What is more, Anderson and Najafi (1994) assessed their
four experimental tests of composite connections for different reinforcement ratios and
concluded that the majority of resistance to longitudinal shear force in the steel-concrete
interface depends on the first shear stud. Therefore, they considered only this shear stud
in their procedure to calculate the initial stiffness of a composite connection.
Furthermore, Ahmed and Nethercot (1996) performed numerical studies on a number of
cases of composite connections with different shear connection ratios. From the results
of the study, they concluded that all shear studs along the composite connection take a
share of the longitudinal shear force but in different ratios, depending on their distance
from the centreline of the column and the nearest shear stud providing the most
resistance to slip. Their modelling was validated against the experimental results of (Li
et al., 1996). In principle, their conclusions are compatible with the results from the

present work, as shown in Figure 5.24 and Figure 5.25.
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Figure 5.22: Distribution of forces in (RCC) springs for increasing applied moments
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Figure 5.24: Ratio of total reinforcement force in the in every (RCC) spring from total

shear force
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Figure 5.25: Ratio from total reinforcement force in every shear stud along the

composite beam

On the other hand, the proposed procedure can be used to overcome the shortcoming in
the estimation of the effective length of reinforcement, I, as this length is measured
from the centreline of the column up to the point where the assumed considerable stress
is attained, as explained in Section 5.3.

5.8.2. Verification of the proposed model for (RCC) and shear studs against
the experimental test for a composite slab

In literature, limited experimental tests have been conducted on an isolated composite
slab. Rex and Easterling (2000) performed experimental tests on four full-scale
composite slabs with different numbers and positions of shear studs. The load-
deformation behaviour of an isolated composite slab under tension and bending was the
main objective of these tests. In addition, a component model was developed to predict
the load-deformation behaviour of an isolated composite slab and was compared with
the experimental results. This model took into account the effect of concrete on
reinforcement (i.e. tension-stiffening) by modelling the concrete as an axially loaded
fictitious member with a special stress-strain behaviour acting in parallel with the
reinforcing steel. The strain in the concrete was assumed to be the same as the strain in
the reinforcing steel (i.e. a perfect bond). This type of modelling did not represent the
actual behaviour in reinforcement due to the tension-stiffening effect, as explained in

the previous section. A sketch of the test set-up is shown in Figure 5.26.
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Figure 5.26: Sketch of the set-up used by (Rex and Easterling, 2000)

One of the four slab tests (slab #1) was selected to verify the applicability of the
proposed model for (RCC) and shear studs, in order to predict the force-deformation
behaviour of the composite slab. The same modelling procedure used in the previous
section was used to model the steel beam and the shear studs using ABAQUS software.
The embedded reinforcement was modelled as a beam element with modified stress-
strain behaviour, as shown in Figure 5.11, in order to account for the tension-stiffening
effect. The guideline for modelling in Eq. (5.22) and Eqg. (5.24) was used to assign the
profile of reinforcement. The final ABAQUS model is shown in Figure 5.27.

Equivalent reinforcement

\

Shear studs

Figure 5.27: ABAQUS model for a composite slab with shear studs

The result of the deformed shape of the model is shown in Figure 5.28. A comparison of

the experimental and numerical force-deformations is shown in Figure 5.29, which
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clearly shows that the proposed model can reliably predict the force-deformation

behaviour of a composite slab with shear studs up to the maximum load.

Figure 5.28: ABAQUS deformed shape of a composite slab model
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Figure 5.29: Comparison of force-deformation curves for the proposed model and

experimental results

5.8.3. Verification of the proposed model against the experimental test for a
composite connection

In this section, a 3-D finite element model is constructed using ABAQUS software to

verify the proposed model against the experimental test for a composite connection.
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The model is based on the experimental tests of (Li et al., 1996). They performed a
series of six end-plate beam-to-column composite connection tests. All composite
connections were the same with variable shear/moment ratios. A seventh test was
carried out on a pure steel connection for the sake of comparison. The specimens were
assembled from 254x102UB25 beams and 203x203UC46 columns. Details of the

composite connection and load arrangement are shown in Figure 5.30.
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Figure 5.30: a) Load arrangement; b) composite beam section; ¢) end-plate

5.8.3.1. Modelling of composite connection

5.8.3.1.1. Modelling of steel connection

A 3-D finite element model was constructed to simulate the rotational behaviour of end-
plate connections. (Bursi and Jaspart, 1997; Bursi and Jaspart, 1998 ) suggested one of
the three solid elements (C3D8, C3D3Il and C3D8R) to be used to model the end-plate
connection. A set of simulations were carried out to select the best element out of those
three. It was found that the C3D8R element with the reduced integration is the best one

considering accuracy, computational time and convergence problems.
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All components of the end-plate steel connection were modelled using C3D8R solid
elements, as shown in Figure 5.31. Surface-to-surface contact interaction elements were
used to simulate the function between:

1. End-plate,
2. column flange,
3. Shank, front and back nuts of bolts.

The pre-tension in the shank of the bolt was modelled by applying contact pressure
between the front nut and the end-plate and back nut of the bolts and flange of column.
The normal and tangential contact properties were defined using the interaction type
option in ABAQUS with a friction coefficient of 0.25.

Figure 5.31: Steel end-plate connection

A sensitivity study was conducted to determine an optimum mesh size. Furthermore,
interaction elements were used to simulate all of the constrained surfaces. As the
composite connection is symmetrical, only one side of the connection was modelled in

order to reduce computing time.

5.8.3.1.2. Modelling the steel beam and column

C3D8R solid elements were used to simulate the neighbouring zones of the end-plate
connection in order to avoid any conflicts between different types of contact elements.
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As the steel beam and upper and lower parts of the column have relatively small strain
for all stages of loading, beam element with a coarse mesh was used to model the
remaining parts of the steel beam and column to reduce computation time. The surface-
to-surface constrain Tie option in ABAQUS was used to connect the steel beam and the
end-plate; however, coupling constrains were used to connect both parts of the steel

beam and column.

5.8.3.1.3. Material modelling

In order to reduce numerical problems, a simplified elastic-plastic model with
symmetrical behaviour in both tension and compression was used to simulate all the
structural steel components such as the beam, column, shank and nuts of bolts and the
end-plate. The linear elastic part was defined by the ELASTIC option in ABAQUS
using an elastic modulus of elasticity value of Ec=200 GPa. This behaviour continues up
to the experimental yield stress. Based on a study by (Amadio and Fragiacomo, 2003),
the assumed linear post-limit part was modelled using the PLASTIC option using an
assumed hardening modulus of E;=0.015E;. This behaviour continues up to the ultimate
stress, as shown in Figure 5.32. In ABAQUS material model, there are two automatic
options to compute the stress for any strain greater than &g, by extending the last part of

the stress-strain curve indefinitely along a direction of (i) constant slope, (ii) zero slope.

The first option was taken in order to overcome the problem of convergence.

&sy &su

Figure 5.32: Elastic-plastic model for steel
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5.8.3.2. Modelling of a reinforced concrete slab

The proposed model in Section 5.5 was used to simulate the embedded reinforcement
incorporating the effects of concrete, which were taken implicitly. Eq. (5.22) and Eqg.
(5.24) were used to select appropriate dimensions for the element in order to capture the
actual behaviour of a reinforced concrete slab. The embedded reinforcement and shear

studs were connected by multi-point constraints.

5.8.3.3. Modelling of shear studs

As there were two shear studs in every row along the composite connection, their
effects were combined into one equivalent shear stud using the principle of equivalent
springs in parallel. The resultant shear studs were modelled as rotational springs at the
base of a rigid bar which was connected to the centreline of the beam with a modified
embedded reinforcement. The non-linear moment-rotation behaviour of the rotational

spring is shown in Figure 5.33.

=—Moment-Rotation of nonlinear spring

O
JYU

/
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Figure 5.33: Behaviour of shear studs
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5.8.3.4. Boundary conditions and load conditions

All of the test boundary conditions were modelled as close to reality as possible. The
top and bottom of the column was assumed fixed in the FE model so as to represent the
base plates. The final 3-D finite element model is shown in Figure 5.34.

Figure 5.34: The final 3-D finite element model

5.8.3.5. Validity of the finite element model

The 3-D finite element model was validated by comparing the corresponding moment—
rotation curves from the test carried out by (Li et al., 1996). The preliminary validation
was carried out against the experimental behaviour of a pure steel connection in order to
assess the ability of the modelling procedures to capture the actual behaviour of a
steelwork connection. The validity of a composite connection model was then evaluated
against the experimental behaviour of a composite connection. Figure 5.35 shows the
resultant deformed shape of the composite connection. In addition, Figure 5.36 shows
good agreement between the moment-rotation curve from the test and finite element
analysis. The small discrepancy between them may be related to the fact that the stress-
strain behaviour of steel components was assumed to be bilinear. This comparison
clearly indicates the applicability of the proposed model to capture the actual behaviour
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of a composite connection for a reinforced concrete slab. The extended part in Figure
5.36 of the resultant ABAQUS curve for the behaviour of SJS-1 is related to the

extension of the stress-strain curve of steel, as explained in Section 5.8.3.1.3.

Figure 5.35: Deformed shape of the composite connection
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Figure 5.36: Comparison of the moment-rotation curves for experimental and numerical

modelling
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5.9. Parametric study to investigate the effect of krcc/kse 0N Kiymp

A parametric study using the proposed expressions was carried out in order to
investigate the effect of the relative stiffness of the (RCC) to that of the shear stud
component (S) on the resultant stiffness (i.e. “lump”’ stiffness). ABAQUS was then

used to check all the results.

Before carrying out the parametric study, the range of some important factors should
be found first.

5.9.1. Maximum and minimum ratios of krcc/Ks:

Eurocode 4 (2004) states that the minimum and maximum spacing of shear connectors
are five times the diameter of the stud and 800 mm respectively. Therefore, the practical
range of geometry and properties of the materials for a composite connection are listed
in Table 5.1.

Table 5.1: Practical range of properties

Em Ar Ir kRCC ksc
kRCC/ksc
(kN/mm?) (mm?) (mm) (KN/mm) (kN/mm)
Min. | Max. Min. Max. Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max.

200 | 300 | 4¢12mm | 15¢12mm | 80 800 | 113 | 6360 | 100 | 250 | 0.45 | 63

In this table, the relative stiffness krcc/kse varies between 0.45 and 63. In the parametric
study, it was taken to be between 0.01 and 100 in order to investigate other possible
values including the range given in the above table. The selected range also refers to the
range between the low partial shear connection (krcc/kse = 100) and nearly full
interaction (krcc/kse = 0.01) of a composite connection. Therefore, the main objectives

of this parametric study are:

1. Investigate the effect of using stiff or soft shear studs on the distribution of forces in
the shear studs and reinforcement along the composite slab.

2. Investigate the effect of shear connection ratio on the distribution of forces in the
composite slab.
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3. Estimate the maximum number of “active’” shear studs in the shear span in relation

to the shear connection ratio.

4. Obtain the relationship between the required number of shear studs for a full shear

connection and the maximum number of “active’” shear studs in the shear span.

5.9.2. ABAQUS model

The same modelling procedure detailed in Section 5.7 (i.e. a spring model) was used;

this is shown in Figure 5.37.

iy i i i h @ i & fl ! i i i ; f il
Ny g i iy g b e e e e

Figure 5.37: Sample of ABAQUS Model for parametric study (20 studs) (same as
Figure 5.17, but with different number of studs)

5.9.3. Results and discussion

Effect of shear stud stiffness

The effect of the stiffness of a shear stud on the distribution of forces along the
composite connection was investigated by performing four sets of calculation on 13 sets
of shear stud in composite connections, with the number of shear studs varying between
2 and 20. Each set of calculation had constant krcc/kse, With the stiffness of the shear
stud varying between 100 kN/mm and 250 kN/mm. The krcc/ksc Varied between 1.0 and
100. The results of these calculations are shown in Figure 5.38 to Figure 5.41. By
comparing the results from every cycle of calculation (i.e. constant krcc/ksc With varying
ksc), it is clear that the stiffness of a shear stud has little effect on the distribution of
forces acting on the shear studs along the composite connection for constant values of
krcc/kse. However, comparison of the results for the same ks and different krcc/ksc
shows the significant effect of krcc/kse on this distribution of forces. As krcc/Kse
increases (i.e. shear connection ratio decreases), greater redistribution of forces between
shear studs is achieved and more of shear studs will take a share of the total tensile force
in the reinforcement. This consequently means that the effective length of reinforcement

increases.
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Effect of changing krcc/kse With constant ke

Following the observations from the previous part of the parametric study, a constant
value of (k=150 kN/mm) was used in this part, with values of krcc/ks: varying from
0.01 to 100 (i.e. full interaction to partial shear connection range). The results from 12

sets of calculation for 13 cases of composite connection with number of shear studs

ranging from 2 to 20 are shown in Figure 5.42.
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Figure 5.42: Distribution of forces in shear studs for kee=150kN/mm and krcc/Ksc
=0.01 to 100

The results of the analysis show the significant effect of krcc/ksc on the distribution of
forces along the composite connection. When the krcc/kse Value is small (i.e. a high
shear connection), only the shear studs nearer the column will share the total tensile
force and the contribution from the other remaining shear studs is insignificant.
However, almost all shear studs will share the total tensile force but with a linearly
decreasing ratio in cases with a high value of krcc/ks: (i.e. a low shear connection).
Since the stiffness and strength of a shear stud are related, as explained in Chapter Four
and Eq. (4.3), the results indicate that the assumption of (Anderson and Najafi, 1994) of
using only the first shear studs in their calculation of the initial stiffness of a composite
connection is valid only for very stiff shear studs or low reinforcement ratio cases, even

though the first stud has the largest percentage of resistance for all cases. This
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percentage is reduced abruptly as krcc/ksc increases or the partial shear connection ratio
decreases, since more shear studs will take part in the resistance of the total tensile force
at the steel-concrete interface. All shear studs transfer approximately the same amount
of shear force for very low shear connection ratios. This behaviour is described in
Figure 5.43.

== \ax. Ratio for 2-rows

=m=\ax. Ratio for 20-rows

L 4

Ratio from reinforcment force in first stud-row

0 10 20 30 40 50 60 70 80 90 100

kRCC/ ksc

Figure 5.43: First stud force ratio from reinforcement force with varying krcc/Ks

Furthermore, these results confirm the results of the finite element parametric study
conducted by (Ahmed and Nethercot, 1996) on composite connections with different
shear connection ratios. They concluded that it is better to use a higher number of soft
shear studs with a lower strength than to use fewer stiff shear studs with high strength in

order to avoid local concrete failure.

Maximum number of “active’’ shear studs

In the present work, the “active’’ shear stud is defined as the stud that transfers more
than 5% of the total tensile force at the steel-concrete interface. Therefore, the
maximum number of “active’’ shear studs can be estimated by plotting the relationship
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between krcc/kse and the maximum number of “active’” shear studs from the results of
156 cases of composite connections (13 composite connections with different numbers
of shear studs and 12 values of krcc/ksc). The relationship is shown in Figure 5.44, and

can be best fitted with the following logarithmic expression:

Nactive = In(k;&) + 375 (537)
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Figure 5.44: Relationship between the maximum number of “active’’ shear studs and
kRCC/ksc-

Relationship between N and Nagt

In order to derive the relationship between the maximum number of shear studs for a
full shear connection, N, and the number of “active’” shear studs, Nac, Eq. (5.38) is

rewritten as:

Nw:hKEi60+375£8 (5.38)

SC

The relationship between the stiffness and strength of a shear stud was defined in
Chapter Four (i.e. Eq. (4.3)) as:

k. =7F

sc,max

where y was assumed equal to 1.47 as explained in Chapter Four (Section 4.3). Then,
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N, —In(—=f ) 375<8

SC,max

N _ /\r fr,y — /\r _ N full

since o = =
Fsc,max Fsc,max ry
then,
Em

N, =IN(N ) +1In( )+3.75<8 (5.39)

ry

Therefore, if the number of shear studs for a full shear connection is fewer than eight, it
is preferable to increase this number to eight by using shear studs of lower strength.
Also, if this number of shear studs is greater than eight, it is preferable to decrease this
number to eight by using shear studs of higher strength. The required minimum strength

of a shear stud can be calculated as:

f
ming. = ATy (5.40)

SC,max
8

5.11. Modified mechanical model of initial stiffness for a composite

connection

In Chapter Three, a mechanical model was proposed to calculate the initial stiffness of a

composite connection, as shown in Figure 5.45.

Krce

Bolts row spring,

Column web shear and

compression spring, ke

Figure 5.45: The proposed mechanical model
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In this model, the reinforcement and shear stud components were modelled separately.

The proposed mechanical model can be modified in order to account for the tension-

stiffening effect and “active’’ shear studs. This modification is only valid to calculate

the initial stiffness of a composite connection, but the original model with a rotational

spring will be required for the analysis of a composite connection in post-linear range.

This modification can be achieved using different methods:

Method 1

In the first method, the same mechanical model shown in Figure 5.45 is used with the

following modifications to the stiffness of the reinforcement and shear studs:

Stiffness of “active’’ shear studs, ks

There are many procedures to calculate the stiffness of shear studs, as explained
in details in Chapter Three. However, none of them consider the concept of an
“active’’ shear stud or the diminishing share of shear resistance in proportion to
the distance from the centreline of the column. This stiffness should be
calculated considering the logarithmic decrease in contribution of an “active’’
shear stud in total stiffness proportional to its distance from the column. In order
to calculate the initial stiffness of a composite connection, the average stiffness

of shear connectors can be approximated as follows:

S act —

k :%kSC where N_, <N_, (5.41)

. Stiffness of embedded reinforcement

Generally, the stiffness of the reinforcement is calculated using the axial

stiffness equation for a bar:

K = EA (5.42)

where A,, Es is the area and modulus of elasticity of the reinforcement. I, is the
effective length of the reinforcement or the distance from the centreline of the
column up to the point where the tensile stress decrease to about half the
maximum stress. In Chapter Three (Sections 3.9.3), various procedures to
estimate the effective length were described, which give considerably different
results. In this study, the tension-stiffening effect is taken into account by
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replacing Es with En, as explained in Section 5.5 (see Figure 5.11), and the

effective length is calculated as follows:

L (5.43)
T2 4

where h; and p are the depth of the column and the spacing of the shear studs
respectively. These modifications will ensure that the requirements of effective

length definition and stiffness of embedded reinforcement krcc are met.
Method 2

The second method of modification of the proposed mechanical model can be
achieved by replacing both the reinforcement and shear studs springs with a “lump”’
spring, as explained in Section 5.5. The stiffness of the “lump’’ spring can be
calculated using Eq. (5.30). The final modified model is shown in Figure 5.46.

Figure 5.46: Final modified mechanical model

5.12. Summary and conclusions

In this chapter, a new component model for a composite slab has been developed. This
model combines the effects of embedded reinforcement and concrete in one component
(RCC). The tension-stiffening effect of concrete was considered implicitly in the
stiffness of the (RCC) by way of the modified modulus of elasticity concept En. In
addition, the component model was further simplified by replacing all (RCC)
components along the composite connection with equivalent springs. Shear studs were
modelled as linear or non-linear springs depending on the expected range of loading.
Furthermore, a simplified procedure was proposed to calculate the “lump’’ stiffness of
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the (RCC) and the shear stud (S) springs. The proposed models and calculation
procedures were verified against finite element and experimental results for the selected
composite connections. A parametric study was carried out to investigate the effect of
the relative values of (RCC) to S stiffnesses on the distribution of forces acting on all
components of (RCC) and shear stud springs along the composite connection. A new
procedure to find the maximum number of “active’” studs was developed. The
relationship between the number of “active’” shear studs and the maximum number of
shear studs required for a full shear connection was derived. Finally, modification of the
proposed mechanical model to calculate the initial stiffness of a composite connection
was performed using two approaches. The first approach was achieved by developing
new expressions to calculate the stiffness of “active’’ shear studs and the modified
embedded reinforcement. The second approach used a single spring in place of the
reinforcement and shear stud springs in the original mechanical model. The validity of
all the proposed models and equations were verified using ABAQUS software as well

as the results from experimental tests in the literature and they are in well agreement.
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Chapter Six
Moment resistance and Ductility of a flush end-plate

composite connection

6.1. Introduction

In most of the previous works, the moment resistance and rotation capacity of
composite connections had been dealt with separately. However, the values of the
moment resistance and rotation capacity depend significantly on the mode of failure of
connection. In addition, the composite connection cannot attain the plastic moment
without sufficient rotation capacity to ensure the redistribution of forces between the
components of connection. For that reason, there are many experimental cases where
the test had to stop before the composite connection attained its plastic moment due to
excessive deformation in just one of their components such as (Li et al., 1996)'s
experimental tests. Also, there are some cases where the composite connection failed
just at the expected moment resistance due to fracture of one component with very
limited rotation capacity such as S8FD specimen which was tested by (Anderson and
Najafi, 1994).

Therefore, the choice of a procedure to estimate the moment resistance or rotation

capacity of composite connection should be dependent on the mode of failure.
The objectives of this chapter are:

1. Develop a simple flowchart to predict the failure mode of a flush end-plate

composite connection,

2. Develop a procedure to estimate the moment resistance of a flush end-plate
composite connection by modifying the existence procedures in literature to
incorporate the partial shear connection effect and to be compatible with the

proposed flowchart of mode failure,

3. Develop a new procedure to estimate the rotation at first yield and rotation capacity

of a flush end-plate composite connection.
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6.2 Prediction of failure mode of a flush end-plate composite
connection

The procedure to predict the failure mode of composite connection was developed by
studying a number of experimental tests of composite connections in the literature. The

main parameters that govern failure mode are:
1. reinforcement ratio (p),

2. shear connection ratio based on the yield strength of reinforcement (7y), and shear

connection ratio based on the ultimate strength of reinforcement (7,),
3. beam depth (Hy), and
4. whether the column web is stiffened or unstiffened.

The tests from the literature are listed in Table 6.1. The proposed flowchart to predict

the failure mode of a flush end-plate composite connection is shown in Figure 6.1.

It should be noted that the proposed flowchart was constructed based on the practical
range of shear connection ratio (7,>0.4). Also, the reinforcement ratio was assumed in
the range of (0.5<p<1.7%) since most of the experimental tests in the literature were in
this range. The normal range of reinforcement ratio in composite connections is in
between 0.7% to 1.4% according to (Xiao et al., 1996). There are many other cases
reported in the literature where the reinforcement ratio or shear connection ratio are
either very high or very low compared to the above ranges. These cases are not

considered in the present work.
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Table 6.1: Parameters of experimental test of composite connections

Column . Shear
Moment Rotation
Ref. Specimen Web ) Studs SLIP | Failure
p% | resistance
stiffened Ult. | Max. | No. | 7% Mode
Anderson S4F YES 0.55 179 1571266 | 7 | 300 | NA B
and S8F YES 1.1 262 28 | 358 | 7 | 150 [ N.A E,B
S12F YES 1.65 302 22.7 | 557 | 7 | 100 | N.A E
Najafi S8FD YES 1.1 416 14 14 7 | 150 | N.A B
Xiao et. SCJ3 Non 0.2 85.7 7.2 | 266 | 6 | 500 | NA B
al.(1994) SCJ4 Non 1.0 202.9 234 ] 411 | 6 | 120 | N.A D,C
' SCJ5 yes 1.0 240.8 26 35 6 | 120 | N.A E
SCJ6 Non 1.0 157.6 115| 23 6 | 120 | N.A D,C
SCJ7 plate 1.2 204.5 265 | 469 | 6 | 100 | N.A E
Li et. al. CJs-1 Non 1.2 181.5 47 | NA | 7 ]300 | NA E,B
(1996) CJS-2 Non 1.2 176 42 | NA | 7 ]300 | NA E,B
CJs-3 Non 1.2 148.5 18 | NNA | 7 300 | NA D,B
CJS-4 Non 1.2 1775 58 N.A 7 300 | N.A E.B
CJS-5 Non 1.2 197.5 60 | NNA | 7 | 300 | NA E,B
CJS-6 Non 1.2 174 23 | NA | 7 | 300 | N.A E,B
Liewet. al. | SCCB1 YES 0.5 271 249 | NA | 7 | 155 | NA B
(2000) SCCB2 YES 1.12 441 519 | NA | 14 | 140 | N.A E
SCCB3 YES 1.56 449 373 NNA | 10 | 145 | N.A E
Lohet. al. CJ1 C-F-SH 1.29 185.5 30 58 5 | 110 | 05 E
(2006) CJ2 Fill-C 1.29 187.9 38 53 3 66 4.5 E
CJ3 Fill-C 1.29 178.9 45 55 2 44 7.4 E
Cl4 Fill-C 0.65 143.3 21 50 3 | 133 | 11 | SLAB
CJ5 Fill-C 1.94 192.1 19 30 8 |118 | 0.2 E
Fuand CJl1 Non 0.6 370 354 | NA 7 275 | 0.34 B
Lam CJ2 Non 0.6 363 335| NA | 4 | 157 | 08 B
CJ3 Non 0.6 250 6.1 | NA | 2 78 5.8 G
(2006) Cl4 Non 0.6 368 374 | NA | 3 98 35 G
CJ5 Non 0.6 363 31.7| NA | 3 98 3.5 G
CJ6 Non 0.6 425 468 | NNA | 6 | 120 | 0.84 B
CJ7 Non 0.6 274 30 | NA | 2 | 120 | 04 B
CJ8 Non 0.6 439 423 | NA | 4 120 | 16 B

B: fracture of the mesh reinforcement;

C: excessive deformation of column flange;
D: buckling of column web;

E: buckling of beam flange;

F: buckling of beam web;

G: shear studs failure.

C-F-SH: concrete-filled square hollow section.
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Shear Stud Failure |

Reinforcement Fracture

Failure

Yes

Local Beam Flange Buckling

Is Column
Web stiffened?

Local Column Web Buckling

Is Beam
depth/slab depth
<3

Reinforcement Fracture

Failure

Yes

Reinforcement yield

Is Column
Web stiffened?

Local Column Web Buckling [NO

Local Beam Flange Buckling

Figure 6.1: Flowchart for failure mode predication
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6.3. Moment resistance of a flush end-plate composite connection

6.3.1. Brief literature review

In the literature, there are two main procedures to estimate the moment resistance of
composite connection. Both of them predict the moment resistance of composite
connection using the concept of a rigid-plastic, stress blocks approach. In this approach,
stresses in each components of a connection are represented by rectangular stress
blocks. Consequently, these methods sometimes are known as blocks analysis methods.

The moment resistance of a flush end-plate composite connection is mainly provided by

three components:
1. slab reinforcement;
2. top row of bolts in tension; and
3. steel beam bottom flange and web in compression.

The main procedures to estimate the moment resistance of a flush-end composite

connection are:

Procedure One

The moment resistance of composite connection is calculated using rigid plastic
analysis in which the strength of each of the components is multiplied by their lever

arms. The moment resistance, Mjrq is calculated using the following expression:

M, =F.D, +F,D, (6.1)
where D, and Dy, are the distances from the reinforcement and top row of bolts to the
centre of compression respectively. These forces and distances depend on the location
of the neutral axis. Three general cases of locations are associated with three groups of

assumptions:
1. Neutral axis is in the bottom beam flange:

(i). Force in the reinforcement F=Af, (6.2)

(it). Force in the top row of bolts F =R (6.3)
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where Ry, is the strength force of top row of bolts which is determined using the
procedure that will be explained in the next section. The centre of compression is
assumed to be in the mid-thickness of bottom beam flange.

2. Neutral axis is in the beam web below the top row of bolts:
(i). Force in the reinforcement is determined using Eq. (6.2).
(it). Force in the top row of bolts is determined using Eq. (6.3).

The centre of compression is calculated using equilibrium condition by assuming

that the bottom flange and possibly part of the beam web is fully yielded.
3. Neutral axis is in the beam web above the top row of bolts
(). Force in the reinforcement is determined using Eq. (6.2).
(i1). Force in the top row of bolts is zero.
The centre of compression is calculated using the same procedure in case (2) above.

This procedure was adopted by most researchers such as (Anderson and Najafi, 1994;
Li et al., 1996; Ren and Crisinel, 1996; Ahmed and Nethercot, 1997; Crisinel and
Carretero, 1997).

Procedure two

This procedure was proposed by (Brown and Anderson, 2001). The preliminary
calculations of moment resistance are generally similar to procedure one using Eg. (6.1)
to Eq. (6.3). The main differences are:

1. The strength of bottom beam flange is assumed to increase up to 1.4 times of yield
stress (i.e. strain hardening) in order to satisfy the equilibrium requirement between
tension and compression forces. On the other hand, if this increase is not enough to
satisfy equilibrium requirement, the compressive resistance is extended into the
beam web but the strength of the bottom beam flange and part of beam web is

assumed to be 1.2 times of yield stress.

2. The tension forces in the top row of bolts are assumed to be equal to its maximum
capacity, Ry, if the height between the bolt and the plastic neutral axis (dy) is more

than 200 mm to ensure that there is adequate straining of the bolt to reach its
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maximum capacity. If this condition is not satisfied, the bolt force is reduced

proportionally by a factor of (d,/200).

6.3.2. Proposed procedure to calculate moment resistance of a flush end-

plate composite connection

In the present work, the same principles of the previous procedures are considered in
order to develop an appropriate procedure which is compatible with the proposed
mechanical model in Chapter Three (see Figure 6.2). In addition, it should be
compatible with the proposed flowchart in Figure 6.1 and with the procedure to estimate
the rotation at failure which will be developed in the following section. Furthermore, the
previous methods dealt with full interaction of composite connection. Therefore, the
force of the top row of bolts was ignored in some methods such as (Ren and Crisinel,
1996) or was assumed to have maximum capacity for all cases such as (Anderson and
Najafi, 1994; Brown and Anderson, 2001). However, the force of the top row of bolts
depends on the properties of the composite connection. The force of the top row of bolts
may be negligible in the composite connections with full interaction and high
reinforcement ratio. However, it may be at ultimate for connections with full interaction
and low reinforcement ratio. For partial interaction, the bolt forces will be in-betweens.
Ignoring the bolt forces lead to underestimation of the compression force on the
column in the lower part of the connection and this may lead to an unsafe design (Loh et

al., 2006). In the present work, the force of the top row bolts is included.

Reinforcement

Bolts row spring, Rotational spring, kq

Column web shear and

compression spring, k.

a) Deformations b) Free-body diagram

Figure 6.2: Proposed mechanical model with free-body diagram
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6.3.2.1. Shear stud failure mode

This mode of failure occurs when insufficient number of shear stud is used in the shear
span. Often this failure mode is associated with the minimum moment resistance and
rotation capacity of a composite connection. Consequently, this mode of failure is not
preferable for practical use because it does not utilize the available reserve strength and
ductility in the components of composite connection. This condition is characterized by:
p<08 and 04<n <1 where 7, =% (6.4)
ry

From the equilibrium considerations of the composite slab, we get:

F =F =N_F_ .. (6.5)
In addition, since the force in the top row of bolts, Fp, develops as a result of the
extension of bolt group component caused mainly by the extension of reinforcement
(see Figure 6.2-a), this force needs to be checked whether it is in the elastic range or
ultimate stage due to limited extension in the reinforcement. Further, the centre of
compression can be assumed in the mid-thickness of bottom flange for the same reason.
Consequently, Eq. (3.37) and Eqg. (3.39) in Chapter Three to compute the force in the
top row of bolts and the force in the reinforcement are still valid but after replacing the
elastic stiffness of shear connectors, ks, by plastic stiffness, ksp, to take into account the
slip in shear connectors in the post-linear range:

k= NacFeoma (6.6)

S, p S

sc,C

where s IS the slip capacity of shear connector. Eq. (3.37) and Eq. (3.39) can be

rewritten as:

(6.7)

y Dbkc(1+1+ ! J _[Dr_Db s H
(h+&{ K, @pr+m) {h+m] ) (6.8)

Then,
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i)
W:i: ! P ¢ (69)
F D, d
kb kc

For stiffened web column case (i.e. ke=o0)

1 1
Dk, | =+
b b[kr ksvp]

D

r

W (6.10)

F, =wF, < (6.11)
where, Ry, is the strength of the top bolt-row. The R, can be calculated using Eurocode 3

(2005) 86.2.7.2 requirements:

(i) column web in tension
(i) column flange in bending
R, = the smallest value of the resistance for < (iii) end-plate in bending

(iv) beam web in tension

(v) bolt in tension

Also, Li et al. (1996) simplified Eurocode 3 procedure to calculate the resistance of

column flange and end-plate in bending. The final equations for the resistance of bolt-

row are:
(I) beff ,t,cwtcw 1:y,cw
(ii) (4.32 - 0.039m + 0.0116e + 0.009p)t? f,
R, = the smallest of < (iii) (5.5 - 0.021m + 0.017e)t; f, (6.12)
(IV) beff,t,bwtbw fy,bw
(v) 1.8A f,

It should be noted that all partial safety factors are removed from the above equations.
The moment resistance of composite connection can be determined using Eq. (6.1).

6.3.2.2. Reinforcement fracture

This condition is characterized by:
p<08 and 7, >1 (6.13)

In this mode of failure, the resistance force in the reinforcement, R,, is calculated as

follows:
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R=AT,, (6.14)
The moment resistance of composite connection depends on the resistance forces
offered by the reinforcement as well as the bolts. The resistance of the top row of bolts,
Rp, can be calculated using Eq. (6.12). The same procedure in the previous mode of
failure is used to calculate the moment resistance of composite connection but with
slight modification. The centre of compression should be checked whether it is in the
mid-thickness of bottom flange of beam or in the web. This checking is performed using

the following procedure:

if R+R <Af,, > M, =RD,+RD, (6.15)
if R+R,>A,f,, —» M, =RD/ +RD! (6.16)

where D; and D; can be calculated as follows:

D/=D,-Y% and D/ =D,-% (6.17)
2 2
c :Abftbf 12+t,y,(t +VY,/2) & y, - R +R —Asfy, (6.18)
Abf +tbwyw tbvv fb,y

6.3.2.3. Local buckling of beam flange or column web

This condition is characterized by

p>08 and 7, <12 (6.19)

The force in the reinforcement and shear connectors are calculated as follows:

N.F
F. = F, =smaller of { Scf o (6.20)

ry
Since the strain in reinforcement may be at the onset of hardening, it should be checked
if the force in the top row of bolts is in elastic range or ultimate resistance. The force in

the top row of bolts, Fy, is calculated using Eq. (6.11).

Unstiffened column web (Local buckling of column web)

The resistance of column web in compression and buckling can be calculated using
(Eurocode 3, 2005) 86.2.6.2 as follows:
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(i) column web in compression
F. wrg =SMaller< "~ _ _
o (ii) column web in buckling
(I) beff ,cwtcw fy,cw
F =smaller (6.21)
e (") befftcw fy cw i(l_o_—zj
LA A
= Bt culon f - B low | _ (O P i
Q= [|[=fowew yow _ 7 ! eff owow yow 7 _ g3 [—efow c2W y.oW (6.22)
o | EG, Et;,
3(1-v*)d,,
Dt o =ty +23/28) +5(t +1,)+S, (6.23)

sp is the length obtained by dispersion at 45° through the end-plate (t, <sp<2t, ).

if For2F+F —>M,=FD+FRD] (6.24)
if Fop<F+F =R =Fn—-F =0 =M, =FD/+FRD] (6.25)

where D; and D; can be calculated using Eq. (6.17) and Eq. (6.18) respectively.

Stiffened column web (Local buckling of beam flange)

The resistance of beam flange in compression can be calculated using (Eurocode 3,
2005) 86.2.6.7 and the simplified equation by (Li et al., 1996) as follows:

(i) column flange in compression
F. o rg =Smaller < (ii) beam bottom flange in compression
(iii) beam bottom flange in buckling

(I) beff,c,cwtcw fy,cw
F. ot ra =Smaller < (ii) bty f, (6.26)

(iii) 22t ,/235/ 7, ,
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if Fyr2F+F =M, =FD +FD] (6.27)
if Fyr<F+F >R =FRy n—F20 =M, ,,=FD/+FD, (6.28)

where D; and D; can be calculated using Eq. (6.17) and Eq. (6.18) respectively.

6.3.2.4. Yielding of reinforcement with buckling of column web or beam flange

This condition is characterized by:

p>08 and 7, >12 (6.29)

In this mode of failure, the force in the top row of bolts, Fy, and reinforcement, F,, are
calculated using Eqg. (6.11) and Eqg. (6.14) respectively. The expected fracture of
reinforcement is associated with buckling of column web or beam flange. For the
unstiffened and stiffened column webs, similar procedure described in the previous

section is followed.

6.3.3. Validity of the proposed procedure to calculate the moment resistance
of a flush end-plate composite connection

The validity of the proposed procedure is compared against 31 available experimental
tests in the literature. It consists of tests with partial shear connection, full shear
connection and full interaction. Also, reinforcement ratios range between
0.3% to 1.94%. All failure modes are considered. Predictions and test values are

compared in Table 6.2 and Figure 6.3.

14

Proposed/Test
|_\

0.6

Tests

Figure 6.3: Validity of proposed procedure to calculate the moment resistance of

composite connection
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It can be seen that the prediction of moment resistance of a flush end-plate composite
connection from the proposed procedure agrees well with the experimental results for
most cases. From Table 6.2, it can be seen that the proposed procedure gives an average
of 1.001 with a standard deviation of 0.13. In addition, the maximum and minimum of
prediction/test ratios are 1.28 and 0.84 respectively. Ahmed and Nethercot (1997)
evaluated their procedure (procedure 1) against 32 experimental tests, some of which
are not included in this study due to non-availability of data. They found that this
procedure gives an average of 1.04 with a standard deviation of 0.15 and the maximum
and minimum of prediction/test ratios are 1.33 and 0.82 respectively. The incorporation
of expected failure mode and partial shear connection effect in the calculation of the
moment resistance of composite connection are the merits of the proposed procedure
over the other previous procedures. As the most of available experimental data are
related to full shear connection cases, this merits are not clearly revealed in comparison.
Also, Brown and Anderson (2001) investigated the applicability of their procedure
(procedure 2) to predict moment resistance of composite connection against eight
experimental tests. It was found that this procedure gives an average of 0.819 with a
standard deviation of 0.033 and the maximum and minimum of prediction/test ratios are
0.87 and 0.74 respectively. It is clear that the (Brown and Anderson, 2001)'s procedure
underestimate the moment resistance of composite connection for most of the cases.
From the above discussion, it is clear that the proposed procedure in this study can give

the best average, standard deviation, maximum and minimum prediction/test ratios.
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Table 6.2:Comparison of test and predicted results of moment resistance

Referenc Specime Shear Studs Components forces Modified distances (mm) Propose
P w PIT
e n No. ny N Fou Ro F Fec Feo Fo Yoo Ye Drm Do d

SaF 0.55 7 3.76 261 1.92 42911 238.22 322 3506.61 504.9 182.9 0 51 395 254 Eﬁ.mm 0.97
/Anderson and S8F 11 7 1.91 132 0.97 42911 238.22 634.2 3506.61 504.9 0 71.83 13.46 388.27 247.27 246.24 0.94
Najafi (1994)| SIZF 1.65 302 7 119 0.88 0.65 42912 238.22 952 3506.61 504.9 0 24839 65.82 362.09 221.09 344.71 114
S8FD 11 416 7 1.91 132 1.09 481.42 318.15 634.2 3517.18 498.35 0 59.58 13 5785 4435 366.88 0.88
SCJ3 0.3 85.7 6 6.41 4.45 3.62 406.24 238.22 161.7 3438 538.56 182.1 0 51 395 254 110.13 1.28
Xiao et. SCJ4 1 202.9 6 2 1.39 121 434.01 238.22 518 3438 538.56 0 0 5.1 395 254 204.61 1.01
SCJ5 1 240.8 6 2 1.39 1.09 393.67 238.22 518 3438.05 538.56 20.56 0 5.1 395 254 209.83 0.87
al.(1994) SCJ6 1 157.6 6 2 1.39 121 434.01 238.22 518 3438 538.56 0 0 5.1 395 254 204.61 1.28
SCJ7 12 2045 6 1.67 1.16 1.01 434.01 238.22 621.6 3438.05 538.56 0 4325 8.67 390.66 249.66 242.84 1.19
CJS1 12 1815 14 4.61 3.37 114 417 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 0.91
CJS-2 12 176 14 4.61 3.37 114 417.01 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 0.94
Liet. al. CJS-3 12 1485 14 4.61 3.37 114 417.01 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 111
(1996) CJS-4 12 1775 14 4.61 3.37 114 417.01 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 0.93
CJS5 12 1975 14 4.61 3.37 114 417.02 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 0.84
CJS6 12 174 14 4.61 3.37 114 417.02 190.02 49855 3056.07 350.94 0 60 14.33 330.84 194.84 164.94 0.95
Liew et. SCCB1 0.5 271 7 1.69 155 1.16 575.72 233.15 543 3491.46 731.69 188.69 0 6.85 400 254 265.13 0.98
SCCB2 112 441 14 152 1.39 0.52 575.72 233.15 1206.6 3491.46 731.69 0 187.86 4652 376.74 230.74 454.58 1.03
al. (2000) SCCB3 156 449 20 155 142 0.37 575.72 233.15 1689 3491.46 731.69 0 378.68 118.05 340.98 194.98 575.91 1.28
ci1 1.29 1855 5 1.09 1.04 114 523.23 208.04 480 3428.85 446.25 0 16.07 6.02 336.99 180.99 161.75 0.87
Loh et. c2 1.29 187.9 3 0.65 063 1.04 312.06 208.04 480 3428.85 446.25 0 16.07 6.02 336.99 180.99 161.75 0.86
CJ3 1.29 178.9 2 0.43 0.42 0.89 177.6 208.04 480 3428.85 446.25 0 16.07 6.02 336.99 180.99 161.75 0.9
al. (2006) [ 0.65 1433 3 13 1.25 2.27 523.24 208.04 240 3428.85 446.25 206.25 0 5.1 340 184 119.55 0.83
CJ5 1.94 192.1 8 1.16 111 0.76 523.25 208.04 720 3428.85 446.25 0 130.36 31.82 324.09 168.09 233.34 121
ci1 0.6 370 7 25 211 1.91 641.04 2734 398.15 1411555 17085 2734 0 8.85 634 399 36151 0.98

cJ2 0.6 363 4 143 121 191 641.04 2734 398.15 1411555 17085 2734 0 8.85 634 399 36151 1
Fu and CJ3 0.6 250 2 0.71 0.6 243 584.23 273.4 335.98 1411555 17085 2734 0 8.85 634 399 3221 1.28
L [ 0.6 368 3 1.07 0.9 2.69 903.45 2734 360 1411555 1708.5 2734 0 8.85 634 399 337.33 0.92
am CJ5 0.6 363 3 1.07 0.9 2.97 998.92 2734 360 1411555 17085 2734 0 8.85 634 399 337.33 0.93
(2006) CJ6 0.6 425 6 1.68 142 1.84 788.12 2734 507.2 1411555 17085 2734 0 8.85 634 399 430.65 1.01
cJ7 0.6 274 2 112 0.95 5.26 1126.68 2734 240 1411555 17085 2734 0 8.85 634 399 261.25 0.95

CJ8 0.6 439 4 112 0.95 197 842.77 2734 480 1411555 17085 2734 0 8.85 684 399 437.41 1
AVERAGE 1.001
STDEV. 0.13
MAX. 1.28
MIN. 0.84
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6.4. Ductility of a flush end-plate composite connection

Ductility means the ability of a structure to sustain deformations after its initial yield,
without any significant reduction in the ultimate strength. The ductility of composite

connection can be defined as:

b (6.30)

where
@ 1S the rotation of composite connection at failure (i.e. rotation capacity).
¢y 1S the rotation of composite connection when the first component yields.

Since the proposed mechanical model (Figure 6.2) to calculate the initial stiffness is
based on the equilibrium and compatibility requirements that must be satisfied at all
load stages. Hence it can be used to calculate the rotation of a flush end-plate composite
connection at yield and failure after making some necessary modification on stiffness of

its components.

6.5. Brief literature review

6.5.1. Rotation at yield

Eurocode 3 (2005) 8§6.1.2.1(2) emphasises the determination of moment resistance,
rotational stiffness and rotational capacity of connections. The rotational capacity refers
to the rotation at failure. However to calculate connection ductility, the rotation at yield
is essential as described in the previous paragraph. The information on the latter is

virtually non-existent in the literature.

Anderson and Najafi (1994) proposed the following equation to compute the

rotation of a flush end-plate composite connection at yield of reinforcement:

4
By = ksH; F, (6.31)
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k, =200 kN/mm; k. =D'C5r—p* ;B =1 A (6.32)
)
where A; is the reinforcement area and all the others parameters are as defined
previously. These expressions assumed that the first component in the connection to
yield is the reinforcement. This assumption may be valid for a flush end-plate
composite connection with full shear interaction. However, for the connection with
partial shear connection the reinforcement may yield only after the yielding of shear
connectors or may not yield at all. In addition, the effect of deformation in the
compression zone was not included since these expressions were derived for composite

connection with stiffened column web.

Aribert (1996) proposed an approach to predict the whole moment-rotation of a flush
end-plate composite connection. This approach was developed based on the analysis of
composite beams with partial shear connection under uniformly distributed loading. As
part of this approach, the rotation at yield was calculated using an iterative procedure.
This procedure can be simplified as follows:

(k1+2ksj
o=xT 7 6.33
¢J,y Dr FY ( )
ks _ Nscksc (H d ) , kr _ EIrDA (634)
pb 0, —_c
[,3' ((,3—1)/(1+05))(|_Ib/Z+dr)J ( 2 j
(H,/2+d,) (EA). a ) (EA),

where L, is the length of the beam under hogging bending moment adjacent to the
connection. E, and E, are the moduli of elasticity of steel beam and reinforcement, I is
the second moment of area of the steel beam section, and A, is the area of the
reinforcement. The yield force, Fy, is calculated as follows:

181



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

F =

y
SC' sC,max

{fwA when  7,>1 (6.36)
N, F when 7, <1

Eq. (6.36) assumed that the yielding may start in reinforcement or shear connectors
depending on the shear connection ratio. These expressions overcome some
shortcoming in the (Anderson and Najafi, 1994) procedure. However, the effect of
deformation in compression zone was not included since it was derived for composite

connection with stiffened column web.

6.5.2. Rotation capacity

In literature, there are many procedures to compute the rotation capacity of composite
connection. All these procedures are based on compatibility requirement of connection
at failure. Further, all of these procedures used the conventional mechanical models for
composite connection but the number of basic components being different from one

model to another as seen in Figure 6.4.

Figure 6.4: Conventional mechanical models: a) Benussi and Noe’s model;  (b)

Anderson and Najafi’s model; ¢) Ahmed and Nethercot model

Based on deformation of only one component; elongation of reinforcement, A;,SCI
Report (1992) suggested the following simplified relationship to calculate the rotation

capacity of composite connection ( see Figure 6.4-a):
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¢ =—" (6.37)

r

This simple relation did not take into account the effect of slip in shear connection
which has significant effect on rotation especially for partial shear connection cases
(Aribert, 1996). Also, the deformation of compression zone was ignored even though
this effect may be considerable for composite connection with high reinforcement ratio
or when the column web is unstiffened. Therefore, this relation may underestimate the
rotation capacity for many cases. Xiao et al. (1992) proposed an expression to calculate
the rotation capacity of composite connection. It is same as Eq. (6.37) but with different

procedure to calculate, A, as will be explained in the next section.

Xiao (1994) carried out twenty experimental tests with four different types of steel
connection: seating cleat with double web cleats, flush end-plates, partial depth end-
plates and finplate. The objectives were to investigate the effect of the interaction
properties of composite connection on the connections’ moment resistance, rotational
stiffness and rotation capacity. Based on the results of these tests, Xiao et al. (1996)
developed the following equation to calculate the rotation capacity of a flush end-plate

composite connection with any number of bolt-rows:

A A
e (6.38)
m m-d,

where m is the distance from the reinforcement to the centre of rotation (see Figure 6.4-

c) and it was calculated using the following equation:

m=d, +p,+p@i+2/3) (6.39)
where p; is the distance of the first bolt-row from the top of beam flange and p is the
bolt-row pitch. The variable i is the integer part of the number of bolt-rows in tension

(k). This number (k) was calculated as follows:

fb,ybbftbf - Fr + fb,ytbw(Hb - pl_tbf +£)
k = 3 (6.40)
Fb + fb,ytbwp

where f, is the yield strength of steel beam, and all other parameters are as defined
previously. The deformation distance, A, was ignored in derivation of Eq. (6.38) (see
Figure 6.4). This will lead to underestimation of the first part of this equation. Ahmed
and Nethercot (1997) investigated the validity of Eq. (6.38) and Eq. (6.39) against some
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experimental tests of composite connection with two bolt-rows and found that these
expressions gave an unacceptable result for the depth considered for the calculation of
rotation capacity, m. In some cases, this depth becomes greater than the combined beam
and slab depth.

Ren and Crisinel (1996) extended their equation for rotational stiffness which was
discussed in Chapter Three (Eg. (3.14)) to calculate the rotation capacity of a flush end-
plate composite connection but with different values of component stiffness. This

equation takes the form:

D;
he=T 1 1 (6.41)
kl’ kS kC

where Dy, ki, ks, ke have the same definition as before. It was assumed that the
reinforced-concrete slab is at the plastic cracked state. Also, it was assumed that
steelwork connection factor, k., is not the critical factor for causing failure, therefore it
was calculated using the same equation for initial stiffness. This assumption may be
valid for composite connection with relatively low amount of reinforcement ratio and
with stiffened column web but it could be unsafe for other cases. In addition, it was
assumed that stiffness of shear connector, ks, can be calculated using the same
expressions for initial stiffness but with maximum slip of shear connector even though it
was assumed that the maximum force in shear connector is about 60% of ultimate
strength of shear connector. This assumption may be valid only for composite
connection with high or full shear connection as explained in (section 6.3).

Based on the compatibility of deformations in the connection zone, Aribert (1996)

proposed the following approximate equation to calculate the rotation capacity:

A +A
.= rD s (6.42)

r

This equation was validated against three experimental tests of full and partial shear
connection of flush end-plate composite connections with 1.34, 0.95 and 0.63 of shear
connection ratio and showed good agreement with experimental results. Nevertheless,
this equation ignored the deformation of column web or flange in the compression zone
since all of the above experimental tests were stiffened with the column web stiffener.
This effect may be significant for high value of reinforcement ratio in composite

connection without column web stiffener.
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Ahmed and Nethercot (1997) proposed an equation to calculate the rotation capacity
of composite connection based on the deformation of three components: elongation of
reinforcement (Ay), slip of shear studs (As), and extension of tension bolts (A;). The

rotation capacity is calculated using the following equation:

b= A, + A, + A, (6.43)
’ Dr _dc,bw Dr _dc,bw _dr Dr _dc,bw _db

where d.pw IS the extended distance of compression zone in the beam web and can be
calculated from equilibrium considerations. This equation overestimates the rotation
capacity of connection since the rotation part due to the deformation of bolt-row, Ay, is
already included in other two part of rotation in Eq. (6.43) (see Figure 6.4-c). Therefore,

this equation doubles up the effect of bolts deformation.

Anderson et al. (2000) proposed the following equation to calculate the rotation

capacity of composite connection:

A A+A,
=—+
D, H,

r

(6.44)

;e

It was assumed that the centre of compression is in the mid-thickness of bottom beam
flange. This assumption is valid for connection with low ratio of reinforcement so that
the compression force in bottom flange can be in balance with tension forces in
reinforcement and top row of bolts. As the reinforcement ratio is increased, the
compression zone is extended to the beam web and the denominator of the two parts of

Eq. (6.44) needs to modify, otherwise the rotation capacity will be underestimated.

Kemp and Nethercot (2001) proposed an approach to calculate the available
rotation in continuous composite beams with semi-rigid connection. The same approach
with required modifications was used to calculate the rotation capacity of composite

connection. The final equation is:

A A,
=— 4 —
D, d

r c

4. (6.45)

where d. is the distance from the mid-thickness of bottom beam flange to the centre of
rotation. This equation ignored the effect of slip in shear connectors since it was
originally derived for the cases of composite beams with full interaction. This equation

underestimates the rotation capacity of connection with partial shear connection.
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It should be noted that even though the same symbols were used to represent the
deformation of reinforcement (A;), slip of shear connector (As), bolt-row deformation
(Ap), and deformation of compression zone (Ac), but each method used different

procedure to calculate each of them as will be demonstrated in the following sections.
6.6. Proposed procedure to predict the rotation at yield and rotation

capacity of a flush end-plate composite connection

It was demonstrated in Chapter Three that one of the advantages of the proposed
mechanical model to calculate the rotational stiffness of composite connection is its
applicability in the post-linear range of moment-rotation curve using appropriate
component values. Therefore, this model is used to calculate the rotations of composite
connection at first yield and at failure. This model with the required deformations and

distances terms is shown in Figure 6.5.

Reinforcement
A
Rotational spring, ke

Bolts row spring, k, ,

Column web shear and

compression spring, ke

Figure 6.5: Mechanical model for calculating the rotations at yield and ultimate

6.6.1. Rotation at yield

It was found in Chapter Three that the elastic forces in reinforcement and top row of
bolts can be calculated using Eq. (3.37) and Eqg. (3.39) which was rewritten in (section

6.3) as Eq. (6.7) and Eqg. (6.8). Also, in section 6.4, the rotation at yield, ¢,y, was
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defined as the rotation of composite connection when the first component yields. In
addition, all of the previous experimental and numerical studies demonstrated clearly
that for normal range of reinforcement ratios in composite connections (0.7% to 1.4%),
the reinforcement or shear connectors are the first expected component to yield
depending on the shear connection ratios. Therefore, it can be assumed that Eq. (6.7) is
valid up to the first component yield (i.e. reinforcement or shear connectors). Then, the

rotation at yield can be calculated as follows:

1 1 1
(k+k+(k+k)j
¢ _ r S c b F (646)

iy K y
Dr - Db .
k. +k,

Therefore, the rotation at yield and the associated moment, M;y, can be calculated

depending on the shear connection ratio as follows:

1. Full interaction case (7,>1.1): for this perfect interaction between steel beam and
composite slab, it is expected that the reinforcement will yield first and the strain in
reinforcement will control the rotation of composite connection since the slip in
shear connectors is negligible. Therefore, the yield force, Fy, is calculated as

follows:

F=f,A (6.47)

The force of top row of bolts, Fy, is calculated using Eq. (6.9), Eqg. (6.11) and Eg.
(6.12). The yield moment can be calculated as follows:

M,, =F,D, +FD, (6.48)
2. High to full shear connection case (0.8 <7;<1.1): for this high ratio of shear
connection, the yield of reinforcement and shear connectors are expected to take
place simultaneously. Therefore, the rotation at yield is computed using Eq. (6.46)

with the yield force computed as:

f
F, :smaller{ sy (6.49)

sc' sc,y

The linear range of the stiffness of shear connector can be assumed to be valid up to
50% of its strength as explained in Chapter Three (section 3.6.4) and Chapter Four
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(section 4.3). This range can be extended up to 60% of its strength as suggested by
(Ren and Crisinel, 1996) or up to 70% as stated by (Eurocode 4, 2004) 8A.3. In the
present work, the ratio of 60% was selected since it's the average value. Therefore,

the yield force of shear connector is calculated as follows:

F., =0.6F (6.50)

SC,max

The yield moment is calculated using the same procedure as in the previous case.

3. Partial shear connection case (0.4 <7, <0.8): for this low ratio of shear
connection, it is expected that the shear connector yields first. Therefore, the
rotation at yield is computed using Eq. (6.46) with the yield force being computed

as:

F,, =0.6N_F (6.51)

sC' sc,max

The yield moment is calculated using the same procedure as in case 1.

6.6.2. Rotation capacity

The proposed mechanical model is used to compute the rotation capacity of a flush end-

plate composite connection as follows:

A +A
o= - (6.52)

Also, the compatibility of deformations in composite connection leads to the following

equations:
A +A, A
m m—d,
m:db Ar +As (653)
A, +A,—A,
Then,
A +A, —A
i =rd—sb (6.54)
b

It should be noted that the effect of compression zone, A, is taken implicitly in Eq.

(6.54) since its value is proportional to the deformation of other components.

The advantages of the proposed equation (Eqg. (6.54)) upon all other previous

models are:
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It considered the deformation of all the effective components of composite

connection (i.e. reinforcement, shear connectors, bolts and compression zone).

It can be used to calculate the rotation of a flush end-plate composite connection for
the whole range of moment-rotation behaviour with appropriate value of its
parameters since the equilibrium and compatibility are always satisfied under

increasing loading. The other models were derived for special stage of rotation.

It can be used for a flush end-plate composite connection with all degrees of shear
connection (i.e. full and partial shear connection) and for stiffened or unstiffened

column web cases.

It is simple to use and contain the least number of variables (i.e. three variable)
since other models used the estimated deformation of components (A, As, Ac, and
Ap) in addition to the variable distances such as (Dy, d¢, dcpw and Hy) which may
change with the magnitude of loading due to the position of the centre of
compression being at a higher level than the bottom compression flange. Therefore,
the accumulated error from all the variables will be the minimum in the proposed

expression in relative to other expressions.

As with moment resistance procedure, the calculation of rotation capacity of a flush

end-plate composite connection depends on the expected mode of failure. As explained

in (section 6.3), there are four modes of failure for composite connection:

6.6.2.1. Shear stud failure mode (p<0.8 and 0.4<#,<1)

The deformation in reinforcement, shear connector and bolt-row are:

A =D (6.55)

K,

where &, I and Sy ¢ are as defined in (section 6.3.1). The force of top row of bolts, Fy, is
calculated using Eqg. (6.9), Eq. (6.11) and Eq. (6.12).

6.6.2.2. Reinforcement fracture failure (p<0.8 and #,>1)

For this high shear connection ratio, the shear connector is assumed to be in elastic

range and the slip is calculated as:
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S (6.56)

S k == sc,C

>
Il
A

Also, the deformation in the top row of bolts is calculated as:

A, = i (6.57)
kb

Anderson et al. (2000) proposed the following procedure to determine the deformation

of embedded reinforcement at ultimate strain as:

Au,r = 2I‘(‘C"smu (658)
where &, and L; are the ultimate strain of embedded reinforcement and the
transmission length of crack respectively which can be calculated using Eg. (5.18) and

Eq. (5.23) in Chapter Five.

6.6.2.3. Local buckling of beam flange or column web (p>0.8 and #,<1.2)

Since the strain in reinforcement may be at the onset of hardening, the force in top row
of bolts, Fy, is calculated using Eq. (6.10), Eq. (6.11) and Eqg. (6.12). Whether the
reinforcement may yield or not depend on the reinforcement ratio (p). Also, by
considering the tension-stiffening effect and the conclusions from the available
experimental results in literature, the strain in the embedded reinforcement for the
composite connection with partial shear connection cannot achieve the onset of the
strain hardening (Fu et al., 2010). These conditions can be represented by the following

expressions:

NSCFSC max f NSCFSC max <1
, "= mex
g — EI‘A‘ ! A fr,y
E + &
Zry Trhogf n, >1

where gy and & are the strains at yield and at the onset of strain hardening of
reinforcement. In the absence of enough experimental data, (Amadio and Fragiacomo,
2003) assumed, after their experimental results, that the onset of strain hardening and
the modulus in hardening phase are:

&n,=3, and E, =0.02E, (6.59)
The shear connector is assumed to be in elastic range and its slip is calculated using Eq.
(6.56). The deformation in top row of bolts is calculated using Eq. (6.57) and, F, may
need to be modified as follows:
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Unstiffened column web (Local buckling of column web)

If F

c,cw, R

«<F+F =>FKR=F , n—F=0

Cc r

Stiffened column web (Local buckling of beam flange)

If Fre<F+F =FK=F,qz—-F=0

(o} o} r

6.6.2.4. Yielding of reinforcement with buckling of column web or beam flange
(p>0.8 and n,<1.2)

The same procedures in the previous mode are used to calculate the slip in shear
connectors, A, and the deformation in the top row of bolts, A,. The deformation of
embedded reinforcement is calculated using (Anderson et al., 2000)'s procedure as:

[%+ hjesmu when p, <,
(6.60)

u,r

D
(?+ L[jgsmu +( Py — L )& Whenpy > L

where D and po are the column depth and the distance from the face of column to the
first stud. The strains &smy, esmu are respectively yield and ultimate strain of embedded
reinforcement which can be calculated using Eq. (5.17) and Eq. (5.18) in Chapter Five.

The ultimate rotation is calculated using Eq. (6.54).

6.7. Validity of the proposed procedures

6.7.1. Rotation at yield

Three sets of experimental tests were considered to check the validity of the proposed
procedure to calculate the rotation at yield. These tests were selected to represent three
cases of shear connection (i.e. full interaction, full shear connection and partial shear
connection). Only a limited numbers of tests in the literature have the measurement of
strain for reinforcement or slip of shear studs in order to check the first component to
yield. The selected three sets of tests were conducted by (Aribert, 1996; Li et al., 1996;
Fu and Lam, 2006 ). The results of calculation are presented in Table 6.3. It is clear

from the results that the proposed procedure can provide a good estimation of rotation at
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yield of composite connections for most cases. The accuracy of the procedure is

affected by the accuracy involved in the choice of the behaviour of the components.

Table 6.3: Comparison between the proposed and test results for rotation at yield

Ref Test A N fry Fsemax | % | @y By By | @y (test)
(mm?) (N/mm?) (kN) (test)

Li et al. (1996) CSJ-1 780 14 480 120 >300 | 5.89 6.5 0.91
CSJ-5 780 14 480 120 >300 | 6.1 6.4 0.95
Aribert and C1 405 17 540 30 135 391 43 0.909
Lachal (1992) C2 405 12 540 30 95 4.1 3.8 1.08
C3 405 8 540 30 63 5.1 45 1.13
Fu and Lam Ccl1 628 7 535 120 234 3.9 4.5 0.866
(2006) CJ3 628 2 535 120 105 4.57 5 0.914
CJ5 628 3 535 120 66 4.8 5.8 0.83
Average 0.95
Stdev 0.103

6.7.2. Rotation capacity

Six sets of experimental tests with 21 cases of composite connection were considered to
check the validity of the proposed procedure to calculate the rotation capacity of flush
end-plate composite connection. These tests represent the usual cases of failure modes.
It consists of full interaction, full shear connection and partial shear connection of

composite connections. The results of calculation are presented in Table 6.4.

It is clear from these results that the proposed procedure can estimate the rotation
capacity of flush end-plate composite connections for most cases even though it
underestimates or over-estimates the rotation for some cases. The accuracy of the
procedure is affected by the accuracy of the assumed strain at failure for the steelwork
components and reinforcement. Also, it depends on the assumed slip capacity of shear
studs for the composite connection with low partial shear connection where the shear
studs failure mode is expected. From Table 6.4, it can be seen that the proposed
procedure gives an average of 1.08 with a standard deviation of 0.2. In addition, the
maximum and minimum of prediction/test ratios are 1.42 and 0.7 respectively. The
equation developed by Ahmed and Nethercot (1997) (i.e. Eq. (6.43)) gives an average
of 1.04 with a standard deviation of 0.27 and the maximum and minimum of

prediction/test ratios are 1.73 and 0.72 respectively.
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Table 6.4: Comparison between proposed and test results for rotation capacity

Rotation (mrad) Shear Ahmed and Proposed
Studs L, Nethercot (1997) ®)
Ref.  ISpecimen P”° At At 1)
: : Rotation Rotation
uml(t)IQ:;et fa(l_l;])m No. 7y (mm) Nec capacity | (/T | capacity| P/T
(mrad) (mrad)

Anderson S4F |0.55| 15.70 [26.60|7 | 1.91 |(121| 5.51 30.29 | 1.14 | 35.01 | 1.32
and Najafi

(1994) S12F [1.65| 2270 |55.70|7 | 1.27 | 81 5.94 61.04 | 1.10 | 60.51 | 1.09

Xiao et. SCJ3 [0.30| 7.20 |26.60|6 | 2.00 |133| 5.28 2323 | 0.87 | 3486 | 1.31

al.(1994) SCJ4 |1.00| 23.40 [41.10|6| 2.00 |133| 5.28 3494 | 0.85 | 58.38 | 1.42

SCJ7 [1.20| 26,50 |46.90|6 | 1.67 |111| 5.47 40.28 | 0.86 | 59.61 | 1.27

Liet al. CJS-1 [1.20| 47.00 |47.00|14| 461 |111| 4.58 4364 | 093 | 4419 | 0.94

(1996) CJS-2 (1.20| 42.00 |42.00|14| 461 |111| 4.58 4364 | 1.04 | 4419 | 1.05

CJS-4 [1.20| 58.00 |58.00|14| 4.61 |111| 4.58 4364 | 0.75 | 4419 | 0.76

CJS-5 [1.20| 60.00 |60.00|14| 4.61 |111| 4.58 43.64 | 0.73 | 44.19 | 0.74

Liewet. al. | SCB2 |1.12| 5190 |51.90|14| 1.52 [ 119| 5.59 90.01 | 1.73 | 6455 | 1.24
(2000)

Loh et al. CJ1 [1.29| 30.00 |58.00|5 | 1.09 |103| 5.00 51.82 | 0.89 | 68.85 | 1.19

(2006) CJ2 [1.29| 38.00 |53.00|3|0.65|103| 3.00 58.20 | 1.10 | 67.98 | 1.28

CJ3 [1.29| 45.00 |55.00|2 | 043 |103| 2.00 67.69 | 1.23 | 65.14 | 1.18

CJ4 |0.65| 21.00 |50.00|3 | 1.16 | 69 5.75 46.25 | 092 | 54.04 | 1.08

CJ1 |0.60| 3540 |35.40|7 | 250 |222| 5.06 2993 | 0.85 | 33.99 | 0.96

Fu and Lam CJ4 |0.60| 37.40 |37.40|3 | 143 |222| 4.00 35.84 | 096 | 35.69 | 0.95

(2006) CJ5 |0.60| 31.70 |31.70|3 | 0.71 | 222 | 2.00 3955 | 1.25 | 35.69 | 1.13

CJ6 |0.60| 46.80 |46.80|6 | 1.07 | 222 | 3.00 3772 | 081 | 52.69 | 1.13

CJ7 |0.60| 30.00 |30.00|2 | 1.07 |222| 3.00 4930 | 164 | 3569 | 1.19

CJ8 |0.60| 4230 |4230|4 | 1.68 |222| 5.29 4222 | 1.00 | 29.43 | 0.70

Average | 1.04 1.08

Stdev | 0.27 0.2

Maximum| 1.73 1.42

Minimum| 0.72 0.7
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6.8 Relation between the ductility of connection and ductility of frame

A steel frame with three bays and four storeys was used to demonstrate the relation

between the ductility of connection and ductility of frame (see Figure 6.6).
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Figure 6.6: Steel frame

Two different flush end-plate connections are used to evaluate the effect of ductility of

connection on the ductility of steel frame. These connections were tested by (Davison et

al., 1987) and the moment-rotation curves of these connections are shown in Figure 6.7.

They are considered as semi-rigid connections, as shown in Figure 6.8.
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Figure 6.7: Moment-rotation curve of isolated connections
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Figure 6.8: Connection classification

The ductility of frame is calculated using the following relation

>

My =—
A,
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where gz« is the ductility of frame. Ay, A, are respectively the top horizontal displacement
at first yield and ultimate load due to horizontal point load at the top of frame. The

ductility of connection is calculated using Eqg. (6.30), as:

The available ductility of isolated connections (see Figure 6.7) are:

Flash end-plate-1 (Conn-1)

22.88
. =———=5725
Hiw =134
Flash end-plate-2 (Conn-2)
22.88
. =———=0.86
Him =75 32

6.8.1. Finite element modelling

The analysis of the frame in Figure 6.6 with one type of connection each time was
performed using ABAQUS package. All columns and beams were modelled using B31
beam element. The concentred load and boundary conditions were simulated, as shown
in Figure 6.6. Steel elastic material was assigned to all columns and beams. This option
ensures that the whole behaviour of the frame will control by only its connections
behaviour. All connections were modelled using connector elements with non-linear
behaviour. The constant extrapolation option in connector section was selected for
connection curve. This option ensures that the curve of connection will continue with
zero slope up to unlimited value in order to ensure that the connection can reach
unlimited ductility. Also, it ensures that the frame can reach ultimate resistance and then
its resistance is reduced due to accumulative deformations of all columns, beams and
connections without any local failure of connection. Furthermore, this option permits to
plot the relation between the instantaneous ductility of frame with the associated

ductility of control connection.
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Results and discussions

Figure 6.9 shows the deflected frame under lateral concentrated load at top left point.

Figure 6.9: Deflected shape of frame

Figure 6.10 and Figure 6.11 show the load-rotation curves for all connections in the
frame up to the ultimate load. Some of these connections have positive rotations and
other have negative rotations depend on its location in the frame. Also, it is clear that
many of the connections reached the experimental rotation capacity before the frame
reached its ultimate resistance whereas other connections varied between the linear and

post linear ranges.
Figure 6.12 shows the load-displacement curve for the frame with each type of

connection. The horizontal point load at first yield of connection is 100 kN for the
frame with Conn-1 and 225 kN for the frame with Conn-2. The associated horizontal
displacement at top of the frame is 160 mm for the frame with Conn-1 and 225 mm for
the frame with Conn-2. Also, the ultimate horizontal point load is 410 kN and the
associated displacement is 1843 mm for the frame with Conn-1. The ultimate horizontal
point load is 533 kKN and the associated displacement is 735 mm for the frame with

Conn-2.
197



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

Point Load (kN)
g &

N
o
o

[any
o
o

.
.

O'|||I||||I||||I|| PR N R TR T SR NN T TR TR TR N S T T
L B p e B B e L B m e e e s | B B m s p e e p e B R H B B B m

-0.024 -0.018 -0.012 -0.006 3E-17 0.006 0.012 0.018 0.024

Rotation (rad)

Figure 6.10: load-rotation curves of connection in the frame with Conn-1 (the black

dash line represents the yield limit of connection and black dots line represent the
rotation capacity of connection)
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Figure 6.11: load-rotation curves of connection in the frame with Conn-2 ((the black
dash line represents the yield limit of connection and black dots line represent the
rotation capacity of connection)
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Calculation of the ductility of frame and connection can be summarized as follows:

Available ductility of the frame

(i) Frame with Conn-1

A,. 485

v A, 160
where Ay is the top horizontal displacement of the frame when rotation of any
connection in the frame reaches the yield rotation. A, is the top horizontal

displacement of the frame when the rotation of any connection in the frame
reaches the rotation capacity.

(if) Frame with Conn-2

650
(,uf )av :E:ZQ

Required ductility of the frame to reach its ultimate resistance

i. Frame with Conn-1

1843
(41)g =750 125

ii. Frame with Conn-2

735
(421),., = e =327

Required ductility of the connection to provide the required ductility of frame

The required ductility of the connection in order to provide the required ductility for the
frame in order to reach its ultimate resistance is:

i. Frame with Conn-1

95.9
('uC )req :m =216

ii. Frame with Conn-2
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247

(/JC )req = E :106

The percentage of available connection ductility to the required ductility

i. Frame with Conn-1

((“)) _ 52’122 <100 = 24.3%
M req '

ii. Frame with Conn-2
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Figure 6.12: load-displacement curve of frame

200



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

Figure 6.13 shows the moment rotation of the connection in the frame up to failure of
frame. It demonstrates the advantage of extending the moment-rotation curve
horizontally in the modelling of connection to overcome the possibility of terminating
the processing of ABAQUS programme due to failure in connection before the frame
reaches its maximum load resistance. Figure 6.14 shows the relation between the top
horizontal displacements of frame with the associated rotation of control connection in
the frame.
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Figure 6.13: Moment-Rotation of connection in the frame
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Figure 6.14: Frame displacement-connection rotation curve
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The above results show that both types of connection provide the nearly same available
ductility to the frame. However, this value of available ductility is equal to about 93 %
of the required ductility for the frame with Conn-2 to reach its ultimate resistance but it

is only equal to about 24% of the required ductility for the frame with Conn-1.

Furthermore, the frame with (Conn-1) has much ductility with less load resistance
than the same frame with (Conn-2), as the moment resistance of the (Conn-1) is less

than the moment resistance of (Conn-2).

The results from Figure 6.12, Figure 6.13 and Figure 6.14 were used to construct the
relation between the instantaneous ductility of connection and the instantaneous
ductility of frame, as shown in Figure 6.15. It is clear from these figures that the
ductility of any frame is strongly dependent on moment resistance and ductility of its

connection.

13

11

Instant frame Ductility
\‘

/ —E—Conn-2 —&—Conn-1

1 7 13 19 25

Instant connection Ductility

Figure 6.15: Instant frame ductility-Instant connection ductility relationship
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6.9. Summary and conclusions

1. A flowchart to predict the failure mode of composite connection has been
developed based on the practical range of shear connection ratio (7,>0.4) and

reinforcement ratio (0.5<p<1.7%).

2. A procedure to calculate the moment resistance of composite connection has been
developed using the concept of a rigid-plastic, stress blocks. This procedure is
compatible with the proposed flowchart in Figure 6.1 and with the procedure to
estimate the rotation at failure. Also, it considered the cases of full interaction, full

shear connection and partial shear connection.

3. The prediction of moment resistance of composite connection from the proposed
procedure is in agreement with the experimental results for most cases. The ratio of
the results from the proposed procedure and the experiments gives an average of
1.001 with a standard deviation of 0.13. In addition, the maximum and minimum of

prediction/test ratios are 1.28 and 0.84 respectively.

4. The proposed mechanical model to calculate the rotational stiffness of composite
connection is extended to calculate the rotations at yield and at failure using the

appropriate post-linear values of its components.

5. The validity of the proposed procedure to calculate the rotation at yield was
evaluated against three sets of experiments. These tests were selected to represent
three cases of shear connection (i.e. full interaction, full shear connection and
partial shear connection). The results from the proposed procedure can estimate

well the rotation at yield of composite connections for most cases.

6. Six sets of experimental tests with 21 cases of composite connection were
considered to check the validity of the proposed procedure to calculate the rotation
at failure. These tests represent all of the usual failure modes. The proposed
procedure can estimate the rotation at failure of composite connections for most

cases.

7. The relationship between connection ductility and frame ductility was investigated.
It was found that the moment resistance and ductility of connection affect

significantly the whole behaviour of frame.
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Chapter Seven
Analysis of a uniform beam with semi-rigid

connections under gravity loading

7.1. Introduction

The semi-rigid behaviour of a connection significantly affects the overall behaviour of
the structural member to which its ends are attached. Deflection of a structural member
is greatly influenced by the flexibility of the connections involved. Many approximate
practical procedures have been used to compute the deflection of a beam with semi-
rigid connections at its ends. Recently, (Ahmed, 2001; Ahmed et al., 2008) proposed a
new practical procedure to determine the maximum deflection of a beam under gravity
loading with semi-rigid connections using basic structural principles. Based on this
maximum deflection, they constructed practical charts to evaluate the practical
allowable span/depth ratio for rectangular and UB sections. Even though this method
can give good predictions of the maximum deflection of a beam with semi-rigid

connection, it has many shortcomings which are listed below:

1. This method entails the use of explicit expressions for the maximum deflection of a
beam which are subject to only three standard cases of loading: central, third point
and uniformly loading. As a result, it can provide only an approximate result for

other types of loading.

2. It only gives the deflection at the estimated point of maximum deflection. It cannot
be used to calculate the deflection at other points.

3. It cannot be extended to calculate the shear force or bending moment under
serviceability loading.

4. It deals with statically indeterminate members.

In the following section, a new procedure which can be used to calculate the
deflection for a beam with semi-rigid connections under any arbitrary loading will be
proposed. This procedure will overcome the shortcomings of the procedure used by

(Ahmed et al., 2008). The proposed procedure has the following virtues:

204



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

1. It is based on the flexibility parameters of a simply-supported beam which means

that all calculations deal with a statically determinate member.
2. It can be used to calculate the deflection at any point of the beam.

3. It can be used to calculate the deflection for an arbitrary loading without any

approximation.
4. It can be also used to compute shear force and bending moment as well.

5. It can be extended to compute the deflection of a composite steel-concrete member
after making some modifications to account for beam stiffness.

7.2. Proposed procedure

The beam with a semi-rigid connection in Figure 7.1 is used for the derivation of the
required parameters. The beam can be subjected to any arbitrary type of loading. The
procedure is based on the principle of superposition to find the rotation at the two ends
of the simply-supported beam using the moment-area method or any other simple

methods.

Derivation of the required parameters

The slope deflection equations for a beam with semi-rigid connections are:

2EI 2EI
= = T(2¢B +n) (7.1)

where E, | and L are the modulus of elasticity, second moment of inertia and length of

MA (2¢A+¢B) & MB

beam. In order to show the effect of the semi-rigid end-springs, Eg. (7.1) can be

rewritten as:

2El 2El
M, :T(ZSAQA +Sebk) & My ZT(ZSBQB +S4805) (7.2)
where @) =0, % and ¢, =6, % (7.3)
A B
From (Wong et al., 2007 ):
1 1 1 7.4
SA=E(1+3RB)1 SB:E(1+3RA) & SAB:SBAzﬁ (7.4)
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El El
R, = 0 & R,= i & R=1+4(R,+R;)+12R,R, (7.5)
;Angg«mg+a@+%) &h%=35(6&+a@+@) (7.6)
LR LR
LMAZZH(waQh%+1@J 2 MBzza(@aﬁzh%+£@j
L R R L R R
2EI ( f 1 2EI ( f 1
;MA:7T6§@+E&J & MB:TTP§%+E@J (7.7)
(7.8)

f,=6R,+2 & f,=6R,+2

G 1 g
MA \’% @ MB
Va Vi

General semi-rigid beam
i~
AN%\Asem'i B

Deflection of a general semi-rigid beam

SN 5] (
A é;imole B

Deflection due to applied loading

H T~

A L Ored I B

Deflection due to end moments (S=M/k)

Figure 7.1: Semi-rigid beam with a general load system
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7.3. Eurocode 3 (2005) classification for joints

Eurocode 3 (2005) classifies joints for braced and unbraced steel structures as:

1. Rigid a) braced El zl b) unbraced El zi
Lk, 8 Lk, 25
2. Semi-rigid a) braced 1 B, b) unbraced ER YR
8 LKk, 25 LKk,
3. Pinned El <2
Lk

S

where ks is the stiffness of the connection. El and L are the flexural stiffness and length
of the beam respectively. Therefore, the semi-rigid range for unbraced steel structure

joints:
0.O4<(RA& RB) <2

7.4. Comparison with (Ahmed et al., 2008)'s equations

The equations proposed in Section 7.2 are for semi-rigid beams with symmetrical or
asymmetrical loading. However, (Ahmed et al., 2008)'s equations are for semi-rigid

beams with symmetrical loading only (i.e. /65 =-1).

In order to compare the result from the proposed equations with (Ahmed et al.,
2008)'s equation for symmetrical loading, the same definition used by (Ahmed et al.,
2008) for semi-rigid factors are used:

El Kg m

Assume R,=——=m and n=—2% —=R,=— (7.10)
Lk, Ky n

2
& R=1+4m+l)+12™0
n n

Egs. (7.7) and (7.8) are rewritten in terms of m and n:

f,=—-+2 & f,=6m+2 (7.11)
n
v 2Bl (10,46, & M. 2B (fe0:+6,) (7.12)
AT 1, mw L L™
1+4m(l+ﬁ)+127 1+4m(1+ﬁ)+12?
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For all cases of symmetrical loading:

0, =6, (7.13)

.'.MA=2—EI (f, =) —~6  and MB=% (fe -) —~o0 (7.14)
(1+4m(1+i)+12“” (1+4m(1+i)+12":]]

In order to find the end moments for a fixed end case with symmetrical loading (Mga
and MFB), then:

Ky =kg =
from Eq. (7.10): ~Ry,=0==m=0 & n=1 = R;=0
from Eq. (7.11): (fA)Fixz(fB)FixzszFAzz—Ele & MFBzz—EIH

Then, by substituting (Mga and Mgg) in Eq. (7.14) the proposed equations for

symmetrical loading:

f,-1 fg —1
M, =M., ( . ) - & Mg =M ( N ) — (7.15)
[1+4m(1+n)+12n] [l+4m(1+n)+12n]

Eq. (7.15) can be rewritten as:

M, =M_f & M,=M_T, (7.16)

Comparing Eg. (7.16) and Eqg. (7.15) gives:

f,—1 fo—1
f = (fa-1) - & f,= (f -1) - (7.17)
[1+4m(1+1)+12mj (1+4m(1+1)+12mj
n n n n
6ﬂ+k8 kB [?_?4_1]
= L and f,= A
' 4El 3El kg, (A4El > 4El 3El kg, (4El
—(—+2)+| —+k; —(——+ )+ —+Kkg
L "Lk, Kk, L L "Lk, Kk, L

From (Ahmed et al., 2008)'s equations for symmetrical loading:
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6E1

+Kg
_ 7.18
() omes = 25 3EI k,. (A4El (7.18)
—(—+ )+ —+k;
L Lk, k,
[(50)
(fZ)Ahmed:4E| 3ElI Kk i 4E| (7.19)
(+B)+(+k8j
L Lk, K, L

It is clear that f; and f, in Eq. (7.17) are identical to Eqg. (7.18) and Eq. (7.19). In
addition, the above discussion show that the proposed equations and (Ahmed et al.,
2008)'s equation are equivalent for symmetrical loading cases. The proposed equations
are for semi-rigid beams with symmetrical or asymmetrical loading. However, (Ahmed
et al., 2008)'s equations are for semi-rigid beams with symmetrical loading only (i.e.
6l G5 =-1). Therefore, it is clear that (Ahmed et al., 2008)'s equations are only special

case from the proposed equations.
7.5. Deflection of a semi-rigid beam

Based on the pre-determined values of fixed end moments at two ends of a beam,
(Ahmed et al., 2008) proposed design charts to calculate only the maximum deflection
at the point of maximum moment for only three standard cases of symmetrical loading.
However, the proposed equations (i.e. Egs. (7.7) & (7.8) can be used to calculate

deflection at any point along the beam and for any arbitrary type of loading.

The proposed procedure is based on the principle of superposition by considering
the beam as simply-supported to find the deflection at a point, dsimpiy, USing any
conventional methods such as the moment area method or the virtual work method.
Reduction factors are then used to account for the semi-rigid effect. The net deflection

at any point is:

Ay =0,

simply

+(5red )MA +(5red )MB (720)

semi

I\/IA
6EI

(a;ed)MA:( j(3x2-x3/L-2|_x) 0<x<L frompointA  (7.21)
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(St D, =[2/'?Blj(3x2 -x*/L-2Lx)  0<x<L from point B (7.22)

7.6. Steps for analysis of a beam with a semi-rigid connection under

gravity loading

7.6.1 End moment and reaction V, and Vg

(i) Compute 6y & 6 for simply-supported boundary condition by any
conventional method such as the moment area method or the virtual work
method. Also, if the fixed end moment is already known (Mra &Mgg) for this
kind of loading then:

L L
HAZE(Z MFA'MFB) & QBZE(ZMFB-MFA) (7'23)
(i)  Use Egs. (7.7) & (7.8) to compute Ma and Mg.

(ilf)  Use the principle of superposition method to plot the bending moment diagram

for the whole beam.

(iv) Use the equilibrium equations to calculate the end reactions and a shear force

diagram.

7.6.2. Deflection at any point

(i) Calculate the deflection at any point for simply-supported boundary conditions

(dsimply) by any conventional method.

(i)  Using Ma and Mg, compute the reduction in deflection (drq) due to the semi-
rigid effect using Egs. (7.21)& (7.22).

(iii) Calculate the net deflection at any point using Eqg. (7.20).

Example 1: For the semi-rigid beam shown in Figure 7.2: (b=0.2 m, h=0.4 m, L=20 m,
E=200GN/m?, I= 107x10"° m4, ka=1000 N-m/rad, ks=10000 N-m/rad)
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50 kN

5m —»k

< < B

MA@ 1om y P )MB
A v semi B

VA 4

Va Semi-rigid beam Ve
50 kKN
< 10m > l
e, .y
A Asimply B
v

Simply-supported beam

Figure 7.2: Example 1

End moments

1. Compute 6n & 6 for simply-supported boundary condition by any

conventional method.

_ 50000x5x15x(20+5)
B 6EIL

2. Use Eq. (7.5) to compute:

0, =0.00366 rad & 6, =0.00513rad

RA=§=10.7 & R, =%=1.07 &R=1+4(R, +R,) +12R,R, =184

A B

3. Use Eq. (7.7) to find:

5

M, = %(2(“ 3x1.07) x 0.00366 —0.00513) = 2.96 kNm
5

M, = %(2(1+3><10.7)><0.00513—0.00366) =38.7 kNm

Reactions Va and Vg

Using the equilibrium equations, end reactions can be calculated as:

 2.96+50x5-38.7
20

v, =10.7kN =V, =50-10.7 =39.3kN
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Deflection at a distance of 10 m from point A

1. Calculate the deflection at 10m from point A for simply-supported boundary

condition (Ssimply):
(5simply):0.0269 m

2. Using Ma and Mg, compute the reduction in deflection (dreq) due to semi-rigid

effect:
3 3
(5red ) = 2996X10 = 3x10° —£ -2x20x10 |=-0.000347m
Ma 6x200x10° x106.7x10 20
3 3
(5red) = 38'97X10 — 3x10? -£—2x20x10 =-0.00453m
Me 6x200x10° x106.7 %10 20

3. Calculate the net deflection at the point:

Agri =0

simply

+(Sreg )yn + (Sreg ), = 0-0268—0.000347 —0.00453 = 0.0219m = 21.9mm

semi

Comparison with ABAQUS results

The same beam was analysed using the ABAQUS software. The steel beam was
modelled with beam element and the semi-rigid connections were simulated as
rotational springs at the ends. The JOINT option was used in conjunction with the
SPRING option to simulate the connections as stated in (ABAQUS/ Keywords
Reference Manual §18.29). Euler-Bernoulli cubic beam elements (B23) available in
ABAQUS/Standard were used to simulate the beam, as this element is highly accurate
for simulations of dynamic vibration analyses (Getting Started with ABAQUS 8§6.3). An
analysis step with a FREQUENCY procedure option was used to obtain natural
frequencies of the beam. A Static, general step was used to calculate the reaction forces
at two ends of the beam. Table 7.1 shows the comparison of the results from the

proposed procedure and the ABAQUS results.
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Table 7.1: Comparison of the results of the proposed procedure with those given by

ABAQUS

End moment Reaction
Parameters Ma Mg Va Vg Deflection (mm)
(kNm) (kNm) | (kN) (kN)
Proposed 2.964 38.71 10.71 39.29 21.98
ABAQUS 2.965 38.70 10.71 39.29 21.99
Proposed/ABAQUS 100% 100% 100% 100% 100%

It is clear from Table 7.1 that the proposed procedure can give results that are nearly

identical to those given by ABAQUS modelling for this simple example.

7.7. Natural frequency of a uniform beam with semi-rigid connections

using the effective length concept

For most practical cases, the stiffness of two end connections are equal (i.e. ka=Kkg).
Therefore, the concept of effective length can be used to compute the natural frequency
of a beam with semi-rigid connections. The procedure is based on the natural frequency
of a simply-supported beam in conjunction with the effect of a semi-rigid connection

using the effective length concept as follows:

For simply-supported beam (ka=kg=0)

4
fpin=M Bl _1 |Eln” (7.24)
2n WL3 2n | W |_3

For a fixed-end beam (ka=kg=c0)

22.37 | El
f R = —_—
fix 2n WL3

where W is the total mass of beam. fi, and frix are the natural frequency of a beam with

(7.25)

pinned-pinned and fixed-fixed boundary conditions respectively. The natural frequency

for general cases of boundary conditions is:
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_L [ o
21 \| W (KL)3

where kL is the effective length of the beam and « is the effective length factor. The

(7.26)

value of k depends on the boundary conditions of the beam, as shown in Figure 7.3.
This value can be determined from the chart in Figure 7.4. This chart was developed by
normalising the natural frequency of a beam to the natural frequency of the simply-
supported condition and assuming that (kpin =~ 0.5EI/L), as in the Eurocode 3 (2005)
classification.

4
Fa 1 E "3
n In W(ICL)

x=0.579 05T <k<1
Fixed-Fixed Semi-rigid Pinned-Pinned

Figure 7.3: Natural frequency for beams of uniform mass with different boundary

conditions

1.00

092 -

083 -

K

075 -

066 -

058 : : :

1 10 100 1000 10000
ks/kpm

Figure 7.4: Effective length factor [ABAQUS results]
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Example 2: The same beam as in Figure 7.2 was used to verify the proposed procedure
with ABAQUS software for different stiffnesses and loading. (b=0.1m, h=0.2m,
L=20m, E=200GPa)

7.8. Results and conclusion

It can be seen from Table 7.2 that the results of deflection and frequency given by the
proposed procedure are well in agreement with the results of finite element modelling
for different rotational stiffnesses. The proposed method however does not take into

account any shear deformation or rotational inertia.

Table 7.2: Comparison with ABAQUS software for different stiffnesses and loading

" I kaka | M | Mo | Sy | Gedun | Gedwe | Bem | f | f
(\) ABAQUS | ABAQUS
10000 1000 11.7 16.4 0.0859 | -2.19E-05 | -3.07E-05 | 0.0859 | 1.15 0.0858 1.14
20000 1E4 232 326 0.172 | -0.000435 | -0.000611 | 0.1708 | 1.15 0.171 1.15
30000 1E5 3238 4611 0.258 -0.00607 -0.00864 | 0.2431 | 1.18 0.243 1.18
40000 1E6 24644 | 39645 0.344 -0.0462 -0.0743 0.2232 | 1.41 0.223 1.42
50000 1E7 49238 | 116204 | 0.429 -0.0923 -0.2179 0.1195 | 2.14 0.119 2.13
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Chapter Eight
A simplified procedure to calculate by hand the

natural periods of semi-rigid steel frames

8.1. Introduction

In the literature, far too little attention has been paid to incorporate the effect of beam-
column joint stiffness in approximate formulae in order to calculate by hand the natural
periods of semi-rigid steel frames, which is the aim of this chapter. The proposed
formulae have been developed by modifying the existing formulae in literature for rigid-
jointed plane steel frames. The accuracy of these approximate formulae has been
verified by finite element analysis using ABAQUS software. Finally, a parametric study
has been conducted to quantify the effects of semi-rigid connections on the natural
periods of vibration of plane steel frames. The parametric study highlights the
justification for incorporating the effect of connection stiffness in estimating natural

vibration period.

8.2. Brief literature review

Traditionally, the beam-to-column connection is assumed to be either absolutely pinned
or ideally rigid. However, a number of previous experimental investigations clearly
demonstrated that almost all types of connections of a steel frame are semi-rigid with
different degree of flexibility (Davison et al., 1987; Chen and Kishi, 1989; Kishi et al.,
1997). Conventionally, frames with semi-rigid connections were considered to be
unsuitable for use in seismic area due to their flexibility. Subsequently, experimental
studies found that semi-rigid frames have considerable potential in resisting seismic
loads due to their higher energy dissipation capacities (Astaneh et al., 1989; Elnashai
and Elghazouli, 1994; Nader and Astaneh, 1996). Also, analytical studies by (Rosales,
1991; Sekulovic et al., 2002) showed that the increase in flexibility of semi-rigid
frames may significantly reduce the vibration frequencies, especially the fundamental
frequency, and thus semi-rigid frames attract lesser inertia forces (Nader and Astaneh,
1991). This may result in a more satisfactory earthquake-resistant structure, even in the

areas of moderate to high peak ground motion.
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Previous research works including design codes provide empirical formulae to
estimate the fundamental period for buildings. These formulae are usually dependent on
the building material (steel, reinforced concrete, etc.), building type (frame, shear wall,
etc.) and overall dimensions (Goel and Chopra, 1997; BS EN 1998-1, 2004). None of
these empirical formulae takes into account the joint behaviour. The period of a semi-
rigid frame, which is the category that most real frames will fall into, can be twice that
of a rigid frame (Smith and Crowe, 1986). It must be mentioned that the actual vibration
period of a real building is most likely to be affected by many factors, including non-

structural members and fixtures.

In this study, a simple hand-calculation procedure is proposed to calculate the first
three natural periods of steel frames with semi-rigid connections, which is not available
in the literature. The proposed procedure is based on a shear-flexure cantilever model of
rigid frames (Smith and Crowe, 1986), which in turn was based on the models of other
authors such as (Skattum, 1971; Heidebrecht and Smith, 1973; Rutenberg, 1975). The
accuracy of the proposed simplified procedure has been verified by finite element
analysis of a plane steel frame with semi-rigid connections using ABAQUS software.
The procedure is limited to plane frames with uniform geometric and material properties
along their height. Finally, a parametric study has been conducted to quantify the effects
of the flexibility of connections on the natural frequencies of vibration of plane steel

frames with semi-rigid connections.

8.3. Derivation of an approximate formula to calculate the natural

periods of a cantilever beam

Heidebrecht and Smith (1973) assumed a plane framed structure to be a combination
of shear-flexural cantilever beams. The free vibration of this beam is governed by the
following differential equation:

4 2 2
gy ,0 y+ﬂa Y_o (8.1)

(24
ox* ox*  EI ét?
where y is the horizontal deflection, x is the axial coordinate of the beam. m is the mass

per unit length of the assumed beam. The parameter « account for the effect of flexural

and shear rigidity (E/and GA) of the assumed cantilever beam as follows:
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2 _GA
El
where E, G are the Young’s modulus of elasticity and modulus of rigidity respectively.

a (8.2)

A, I are the second moment and the cross-sectional area of the beam respectively.

Rutenberg (1975) introduced a characteristic parameter, k, in Eq. (8.1) in order to

consider the effect of axial rigidity:

I
k®=1+— (8.3)
Ac?
where c is a distance parameter that will later be explained in the context of a frame.

The modified version of Eq. (8.1) will be in the following form:

o'y 20°y  m 0%y
— _(ak) —=+—=—=0 (8.4)
ox* (k) ox>  El ot?
The assumed product solution for Eq. (8.1) or (8.4) is:

y(x.t) =w (T (t) (8.5)
where T(t) is a harmonic function with a circular frequency of ®. Using the boundary

conditions for a cantilever beam of length H, fixed at x = 0 and free at x = H:

y(0,t)=0, [@j =0, V(H,t)=0, M(H,t)=0 (8.6)
X Joy)

where V, and M are shear force and bending moment respectively. Heidebrecht and

Smith (1973) derived the following characteristic equation for the shear-flexural motion

(Eq. (8.4)) of a prismatic cantilever with height H as:

2{(%} +(%} ]cosﬂ1 H cosh 4, H {%—%}sinﬁz Hsinh ,H =0 (8.7)
The eigenvalues A; and A, are written as follows:
2 _ (ak)4 > M _(ak)z
& \/T” B2 (69)
2 _ (ak)4 2 M (“k)z
ﬂ,z —\/T-l-a) E-l-T (89)
and M=o % (8.10)
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Then, by substituting Eq. (8.10) in Eq. (8.8) and Eqg. (8.9) the following is obtained:

A2= @_’_14 _@314 _114[1_’_(%‘() } (8.11)
A= —(“Z) +/14+—(a:) = A2=A2*(ak) (8.12)

By multiplying Eq. (8.11) with H? and rearranging it, it gives:

(AH) =(4H) (1{3%:}2} (8.13)

And substituting Eq. (8.11) and Eq. (8.12) into Eq. (8.7) gives:

2+{2+(0;L:T:ICOS(% H )cosh(4,H )+[0;L|:|Tsin(%2 Hjsinh (%2 Hj: 0 (8.14)

8.3.1. Purely flexural motion (i.e. A=4)

In the case of the purely flexural motion, the parameter « is

2 _GA_
El

Substituting Eq. (8.15) in Eq. (8.11) and Eq. (8.12) gives:

o 0 (8.15)

A=A =2, and A=21, (8.16)
Further substituting Eq. (8.15) and Eg. (8.16) in Eq. (8.14) gives:

1+cos(4, H)cosh(4,H) =0 (8.17)

The eigenvalues of purely flexural vibration, A; of Eq. (8.17) are:

(4H), =1875; (4H) =(n-05)7 forn=234,.
i AH) - _|1.875 for n=1 8.18
° (4H), =2, = a = (n-05)z for n=2,3,4,.. (8.18)
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8.3.2. Coupled shear-flexural motion (i.e. A=Ag)

In the case of shear-flexural motion, Eq. (8.13) and Eq. (8.14) gives:

(AH) =(4H) [1{%” (8.19)

sf sf

2+[2+(ZKEJ }cos(&H)cosh(ﬂlH){jk:} sin(%zH]sinh(%zH]:O (8.20)

For values of kaH >6, Skattum (1971) proposed the following equation:

22 = (n—0.5)7|:(21+kaH) for kaH >6 (8.21)

For a practical range of (O<kaH<6), Heidebrecht and Smith (1973) obtained:

AH = A H (8.22)
Substituting in Eq. (8.13) gives:

2
J J for kaH <6 (8.23)

8.3.3. Combined effect of pure flexural and shear-flexural free vibration

According to the assumption of isolated components of motion by (Rutenberg, 1975)

the lateral deflection can be written as:

1 1
y:Fysf +(1_FJ Y¢ (8.24)

The Southwell-Dunkerley approximation could then be used to compute the frequencies

of vibration as:

1 1 1 1)1 1)1
IR S O I N PR S 8.25
o @ o (kzja)szf [ kzja)f (8.25)
1 1)1 1)1
Thus, — = (—j—+(1——j— (8.26)
22 \/k2 2 K2 ) A°
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27 [m

and ===
A% \VEI

(8.27)

8.4. Approximate formulae for natural periods

Based on Egs. (8.26 and 8.27), the natural period can be expressed as:
m 13)1 131
T=2 /_ ~ =412 | = (8.28)
"\E \/[ij ( kZL;‘

Using Egs. (8.18, 8.21, 8.23 and 8.28), and after rearranging the parameters, the natural

period of vibration can be written as:

1(1
T,=(T) 1+F[R__1j (8.29)
2
1+(M—HJ for kaH <6

2 an
where (T) _2rH” Im and R =
i ka? VEI " 2
n 1+k0[H
(n-0.5)7 . for kaH >6

8.5. Evaluation of characteristic parameters

The concept of modelling a plane framed structure as a shear-flexural cantilever beam is
applicable for any type of uniform frame structure, provided that the centres of mass
and resistance are coincident (Smith and Crowe, 1986). The characteristic parameters of

a frame can be expressed in terms of geometrical and material parameters as:

Q- CA (8.30)

-
21:1 EICJ'
- 2
I + 2 AyC;
j-1

:
DAL
i1

Also, the equivalent GA for rigid frame is:

r

k2 _j=

(8.31)
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12E
GA=—7 h 1 (8.32)

sty
= h =
where A;; and £; are the cross-sectional area and second moment of area of the j-th
column; h is the storey height; £; and ly; represent the second moment of area and span

of the beam in the i-th bay. The term c; denotes the distance of the j-th column from the

centroid of the column assembly.

8.6. Simplified procedure to calculate natural periods of a steel frame

1. Calculate the equivalent shear rigidity of the steel frame using Eq. (8.32).

2. Calculate the characteristic parameters of the steel frame, k’ and o using Egs. (8.30
and 8.31).

3. Calculate kaH

4. Calculate the natural periods, Ty, using Eq. (8.29).

8.7. Effect of connection flexibility on natural frequency of steel frames

To investigate the effect of the flexibility of connection on the natural frequency of a
steel frame, a simple portal steel frame was used. The beam had UB 254x146x37
section, and the columns were of UC 203%203x60 sections. (ABAQUS, 2005) was used
to compute the natural frequencies. Rotational spring elements were attached to the
beam ends to simulate the effect of connection flexibility of beam-to-column
connections. The stiffness of the springs ranged from those close to perfectly-pinned to
an almost perfectly-rigid connection. The same modelling procedure that detailed in
Chapter Seven (Section 7.6.2) was used to simulate the steel frame. A parametric study
was carried out for various ratios of the second moment of area of the beam (0.25, 0.5,
2, 4 and 8) from the original (/5537 mm®) in order to show the effect of flexural

stiffness of a beam on the natural frequency of a steel frame.

The results of the frequency analysis are non-dimensionalised using the pinned case
as zero and the natural frequency of a rigid case as one, as shown in Figure 8.1. The

spring stiffness ratio, ki/ (EZL),, was used as abscissa instead of the spring stiffness as
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the effect of flexibility of connection is highly affected by the flexural stiffness of the
beam to which it is attached.

It is evident from Figure 8.1 that the flexibility of the connection must be taken into
account in any frequency analysis of steel frames. This means that the original equations
used to calculate the characteristic parameters, ® and k? of a steel frame should be

modified to account for the flexibility of the connections.

>
=

e M e —

A UC 203X203X60
B: UB 254X246X37
S: Rotational Spring- kg

Normalized Fundamental Natural frequency (Hz)
(=
w»

0.4 i
0.3 .
—8—0.25 1
0.2 ——051 |
+ I
——21
0.1 — |
81
0 A = | |
107 107 10”7 10’ 10° 10°

Joint stiffness ratio | ks/ (El/L)]

Figure 8.1: Plots of normalized fundamental Natural Frequency versus the joint stiffness
ratio. The variable | in the legend indicates the second moment of area of the beam

cross-section

8.8. Modification of the approximate formulae for semi-rigid frames

The approximate formulae for determining the natural periods for rigid frames
cannot be used directly for frames with semi-rigid connections. The difference is
appreciable in the range of stiffness ratio between 0.01 to 100 (see Figure 8.1). The
flexural stiffness of beams needs to be modified to take into account the effect of the

flexibility of connections.
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Many procedures for the modification the stiffness of a beam to consider the effect
of the flexibility of end connections are detailed in the literature, such as the procedures
developed by (Chen and Lui, 1985; Chui and Chan, 1997; Wong et al., 2007). For this
work, the procedure suggested by (Chen and Lui, 1985) was adopted to assess the
stiffness of beams because it is applicable for both braced and unbraced frames. The

modified second moment of area of a beam, 7, , can be calculated using the equation:

Tooto (8.33)
(1+ ’BEIb]
Ik,

where =6 and 2 for unbraced and braced frames respectively, and ks is the rotational

stiffness of semi-rigid connections. This modified second moment of inertia of a beam,
1, , should be used in Eq. (8.32).

Example: In order to investigate the accuracy of the proposed procedure and the effect
of joint stiffness, a three-bay, six-storey plane steel frame (Figure 8.2) was analysed for
a wide range of flexibilities of beam-to-column connections. The span of each bay was
6 m and the storey height was 3.75 m. The section properties of columns and beams
were HEB 260 and IPE 300 respectively. The properties of the steel frame are shown in
Table 8.1. The same procedure as that detailed in Section 7.6.2 was used to simulate the

beams, columns, boundary conditions and connections.
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Figure 8.2: Three-bay, six-storey steel frame

Table 8.1: Properties of the steel frame shown in Figure 8.2

Section | I(m) [ A(m?) | 7(m* E (GPa) | Density (kg/m)

IPE 300 6 | 0.00538 | 8.36x10™ 200 7800

HEB 260 | 3.75 | 0.0118 | 0.000149 200 7800

Sample calculations

All calculations were carried out using Microsoft Excel spreadsheets. In the following
section, sample of calculations for an almost rigid connection and one case for a semi-

rigid connection are shown using the proposed steps.
A. Rigid connection case

(i) Calculate the equivalent shear rigidity of a steel frame using Eqg. (8.32).
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GA= 12E =2.12x10* kN
1 1
3.75
(0.000149)Jr (0.0000835j
dx| ————— | x| ———
3.75
(i) Calculate the characteristic parameters of a steel frame, k* and o using Egs.
(8.30 and 8.31).
S CGA  _ 2.12x10’ B 1
z”_ (E1.). 4x200x10°x(0.000149) m’
j=17 e
Elg 4E (0.000149
k?=1+ 2., —1+ ( ) —1.00028

> EAC Ex0.0118x(2x 9 +2x3)

(ii1) Calculate keH

karH = [(1.00028x0.178) x225=9.48>6

(iv) Calculate T, using Eqg. (8.29)

™) _ 27x(225)? [ 573 697
“/n1.00028xa 2 \11.9x10" a?

n

2
1+[9'479] for kaH <6
an
R, = )
((n—O.S)z[lOAZgD for kaH >6
an

The natural frequencies were calculated for f; to fs (f=1/T,) using both parts of
Eqg. (8.29) and ABAQUS modelling. The results of the calculations and finite element

analysis are presented in Table 8.2 and Figure 8.3.

226



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

Table 8.2: Result of natural frequencies from the proposed equation and ABAQUS
modelling for the rigid connection case

kaH <6 kaH >6
an (Ton ABAQUS
n R, f,=1T, | R, f, =1/T,
1.875 | 1.982 | 26.557 | 2.59 |[21.921| 2.35 2.29
4712 | 0314 | 5047 | 7.15 | 4.946 | 7.08 7.37

7.854 | 0.113 | 2.456 | 13.87 1.78 11.80 13.73
11.0 | 0.057 | 1.742 | 2290 | 0.907 | 16.53 21.64
14.137 | 0.035 | 1.449 | 3453 | 0.549 | 21.26 30.78

gl B W N

44
38
—~ 32
N
<
>, 26
(&)
[
S 20
on
L
L 14 == kaH<6
== kaH>6
8 X, ABAQUS (KaH=9.479)
/ .
2 \///
1 2 3 4 5 6 7

Figure 8.3: Natural frequencies from the proposed equation and ABAQUS for the rigid

connection case.

The results of the calculations from the proposed equations and finite element
modelling show clearly that both parts of Eq. (8.29) work well for the fundamental and
second natural frequencies. From f; to fg, the first part of Eq. (8.29) (i.e. kaH <6)
dominate the frequency behaviour of the frame, even though the (kaH) values in these
cases are more than 6. After fg, the second part of Eq. (8.29) becomes more effective in
controlling the frequency of the frame.

Therefore, as the second part of Eq. (8.29) underestimated the frequency in the range
between f; to fg and the first part of Eq. (8.29) overestimated the frequency after fg, it
was recommended to calculate the natural frequency for the first and second frequencies
using the relevant equations, then using both parts of Eq. (8.29) for the third frequency
and above. The selection of lowest frequency (i.e. lowest stiffness for safe design) or

highest frequency depends on the main purpose of the analysis under consideration.

227



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

B. Semi-rigid connection case [ks/ (EI/L), =7.18]
(i) Calculate the modified second moment of inertia of a beam using Eq. (8.33).

I
= b =—2b _=0.54471
° BEL) 1, 6 °
1+ +
Ik, 7.18

(if) Calculate the equivalent shear rigidity of a steel frame using Eq. (8.32).
GA= 12E =12740kN

375 0 0100149 i 10 0000836

4x| —————"| 3x0.545x| ————

3.75 6

(iii) Calculate the characteristic parameters of a steel frame, k* and o, using Egs.
(8.30, 8.31).

) GA 12740000 01072

o =

= 107 —
" (El) 4x200x10°x(0.000149 m?
Zj:l( C)J

2 (B, 4E(0.0001492)

2_ J—
k?=1+= _ : 2
> (EACH, Ex0.0118x(2x 9 +2x3?)

=1.000281

(iv) Calculate karH =[(1.00028x0.107) x22.5=7.35> 6

(v) Calculate T, using Eq. (8.29)

a

n

2
((n—O.S)ﬁ(S'BZSD for kaH >6
a

n

2
1+[7'—35] for kaeH <6

As with the rigid connection case, the natural frequencies are calculated for f; to fs using
both the proposed equations and ABAQUS modelling. The results of calculation and

finite element analysis are presented in Table 8.3 and Figure 8.4.

228



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

Table 8.3: Result of natural frequencies from the proposed equation and ABAQUS

modelling for the semi-rigid connection case.

kaH <6 kaH >6
an (To)n — ABAQUS
n R, f, =1T, | R, f, =1/T,
1| 1875 | 1982 | 16.373 | 2.035 | 13.935| 1.878 | 1.874
2| 4712 [ 0314 | 3431 | 5903 | 3138 | 5645 | 6.235
3| 7.854 | 0113 | 1875 | 12124 | 1129 | 9.411 | 12.159
4] 11.0 | 0057 | 1.446 | 20872 | 0576 | 13.177 | 20.0
5[ 14137 [ 0.035 | 1.270 | 32.331 | 0.348 | 16.942 | 2950
43
37
E 31
& 25
S g
g 19
T
13 v
=>é=KoH<6
7 v —a—KkoH>6
. )/A ABAQUS (KaH=7.35)
1 2 3 4 5 6

Figure 8.4: Natural frequencies from the proposed equation and ABAQUS for the semi-

rigid connection case

As with the rigid connection case, the results of the calculations show clearly that both
parts of Eq. (8.29) work well for the fundamental and second natural frequencies. Then,
the first part of Eq. (8.29) (i.e. kaH <6) is seen to dominate the frequency behaviour of
the frame. After fg, the second part of Eq. (8.29) resumes the control of the frequency of
the frame.

Therefore, the same recommended procedure for the rigid connection case was used

with the semi-rigid connection case to calculate frequency.

Also, the fundamental natural time periods (T;) obtained from the hand-calculations
(Egs. 8.29-8.33) were compared in Table 8.4.
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Table 8.4: Comparisons of fundamental time period

Type of Frame | T; -Proposed | ABAQUS | (1)/(2)
Egs. (8.31) 2
1)
Rigid —Frame 0.425s 0.4366s | 0.971
Semi-rigid Frame 0.5324 s 0.5336s | 0.999

In order to investigate the whole range of the semi-rigid connection, a parametric study
using the proposed procedure and ABAQUS for the same frame with different stiffness
of connections was carried out. The value of stiffness varied from approaching perfectly
pinned to approaching perfectly rigid. The results of the parametric study are presented

in Figure 8.5, Figure 8.6 and Figure 8.7.

It can be observed that the fundamental natural frequency calculated by the proposed
procedure is very similar to the ABAQUS results for the whole range of semi-rigid

connection.

The proposed procedure is sensitive to any changes in connection stiffness. In
addition, it was found that the frames with connections of low and very low stiffness
always gave values of (kaH) that were less than 6. On the other hand, the relatively rigid

frames give values of (kaH) greater than 6.

The results for the second and third natural frequencies were also close between the
ABAQUS and the proposed procedures, with a maximum difference of about 6%. This
is the case if the recommended procedure in the previous section is followed by

calculating the natural frequency using both parts of Eq. (8.29), as explained previously.
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Figure 8.5: Joint stiffness ratio versus the fundamental natural frequency of the steel

frame shown in Figure 8.2
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Figure 8.6: Joint stiffness ration versus the second natural frequencies of the steel frame

shown in Figure 8.2
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Figure 8.7: Joint stiffness ration versus the third natural frequencies of the steel frame
shown in Figure 8.2

8.9. Parametric study on the effect of different kaH values
The parametric study involved evaluating the effect of the following factors:
1. Height of the frame, H
2. Flexibility of the connections, and
3. Axial, flexural and shear rigidity of the frame.

It is clear from Eqg. (8.31) that the parameter k considers the effect of relative ratio of
flexural stiffness to axial stiffness, and its value will approach unity for axially rigid
columns. The parameter « incorporates the effect of relative ratio of shear stiffness to
the summation of flexural stiffness of the columns and beams. Using Egs. (8.21, 8.23

and 8.29), the ratio of shear-flexural period to total period can be expressed as:

o

LERN 1 (8.34)
T \/klz(l— R)+R,

For the fundamental period (i.e. n=1 and a,=1.875) and for kaH=6
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Ty 1
h \/9.782—8.78212
k

For k?=1 (i.e. flexural stiffness/axial stiffness—0)

Tsf
— =1
Tl

and for k= (i.e. flexural stiffness/axial stiffness—o)

Tsf
— = 0.319
T

1
For any given values of a and k, as the height of a frame (H) increases, the percentage
of pure-flexural period will increase proportionally, and the ratio of shear-flexural to
total period (Ts /T1) will decrease, as shown in Figure 8.8. In summary, the percentage
of shear-flexural period to the total period is inversely proportional to the height of the

frame, connection flexibility, and the flexural to shear rigidity ratio.

—o—kaH=6
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Figure 8.8: Effect of frame parameters on shear-flexural to total periods.
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8.10. Summary and conclusions

It is evident from Figure 8.1, Figure 8.5, Figure 8.6 and Figure 8.7 that the flexibility of
a connection has a considerable effect on the natural frequencies (or natural periods) of
a steel frame. Further to this, the “Ideal-Rigid” assumption for beam-to-column
connections may lead to overestimation of the natural frequency or underestimation of
the natural periods of a frame. Inaccurate values for the fundamental period may result
in unsafe design, as the design value of the seismic base shear force depends on the
fundamental period (BS EN 1998-1, 2004), Clause 4.3.3.2.2.(1). In addition, Figure 8.5
and Figure 8.6 show clearly that the proposed procedure can predict the natural periods
of a frame for a wide range of flexibilities of beam-to-column connections. The validity
of the proposed procedure is confirmed by comparing the results with the results

obtained from ABAQUS, and good agreement between them was demonstrated.
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Chapter Nine
An approximate analytical method for calculating the
natural periods of unbraced steel frames with semi-

rigid connections

9.1. Introduction

Recently, increasing attention has been paid to the study of the effect of seismic ground
motion on the behaviour of steel buildings. The calculation of the design base shear
force plays a centre role in these considerations. This force greatly depends on the
fundamental period of vibration of the structure, as well as other factors such as soil
conditions and level of ductility. In turn, the mass, strength and stiffness of the structure

are factors which affect the magnitude of the fundamental period of vibration.

The stiffness of a structure greatly depends on the stiffness of its beam-to-column
connections. As mentioned in the previous chapters, for reasons of simplicity and lack
of understanding of the response characteristics of semi-rigid connections under seismic
loading, beam-column connections are conventionally assumed to be either perfectly
pinned or perfectly rigid. Additionally, it was mentioned in Chapter Eight that the semi-
rigid frames were regarded as inappropriate for use in seismic areas due to their
flexibility, even though they offer significant gains in resisting seismically-induced
loads due to their ability to attract lesser inertia forces and higher energy dissipation

capacities.
9.2. Brief literature review

Natural periods of any structure can be found by using finite element packages such
as ABAQUS, ANSYS and ADINA. However, due to the amount computational cost and
time that these calculations require, they are not appropriate for routine design work,
except when it is not feasible to use simplified methods.

Current seismic design codes provide empirical equations which relate the
fundamental period to the height of the frame. Eurocode 8 (2004) 84.2.3.3 gives the
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following empirical expression to determine the fundamental natural period for the steel

frames for heights (H) up to 40 m:

T, =0.085H%* 9.1)
In addition, there are many other empirical formulae in the literature which have the
same general form as Eq. (9.1) but with different constants depending on the structural

forms.

Considering the limitations of the empirical equations, the design codes allow for
estimation of the fundamental natural period using alternative methods, such as
Rayleigh's method or computer-based eigenvalue analysis. These methods require more
complex procedures and computer programmes which make them impractical for many
situations. Therefore, many researchers have investigated the applicability of using
approximate hand-calculation methods, which have the merits of simplicity with enough
accuracy (Rutenberg, 1975; Smith and Crowe, 1986; Qiusheng et al., 1994; Goel and
Chopra, 1998; Zalka, 2001; Chrysanthakopoulos et al., 2006). All of the above
approximate methods assumed the beam-column connections as rigid even though the
period of a semi-rigid frame can be twice to that of a rigid frame (Smith and Crowe,
1986).

In this Chapter, a simple hand-calculation method is presented to calculate the
fundamental natural period of steel frames with rigid or semi-rigid connections. The
original equations of the well-known Muto’s method are firstly improved by

introducing new factors to take into account the following:
(i)  the actual position of the inflection point in the beams,
(if) the effect of the boundary condition of the first storey on the upper stories, and

(iii) the effect of applied load at any storey on the deflection of the adjacent unloaded

upper storey.

The improved equations were then combined with the conventional matrix method for
vibration analysis to construct a simple “hand’’ procedure in order to determine the first
three natural periods of a structure. The lumped-mass idealization and the concept of
“master’’ degree of freedom were used to formulate the “dynamic matrix” of the
structure. The power method was used to find the eigenvalues and eigenvectors for the

dynamic matrix. A step-by-step worked example with instructions was presented as a
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guide for using the proposed procedure. The accuracy and sensitivity of the approximate
procedure were validated by finite element analysis of semi-rigid jointed steel frames
using ABAQUS.

9.3. Muto’s original method (D value method)

Muto (1974) proposed an approximate analytical method for the analysis of multi-
storey frames with rigid connections. It is considered the most accurate manual method
for the elastic analysis of sway frames with rigid connections (Wong et al., 2007 ). The
assumptions of this method are:

1. At each floor, the above and below columns equally utilize the stiffness of the

beam.
2. The rotations of adjacent beam-column connections are equal.

3. The sum of beam stiffness at the top and bottom of any storey are similar and
approximately equal to the average stiffness.

Using these assumptions, the storey drift of a multi-storey frame was approximated by

V, IS
A =- where V, :Z;Fi'i (9.2)
j=

where V; and Y D;; are the shear and the lateral stiffness of the i-th storey respectively.
Figure 9.1 shows an example of a frame with multi-degrees of freedom and Figure 9.2
shows the sub-frame which is used in the derivation of the D-values.
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Figure 9.2: Simplified sub-frame used for lateral force analysis
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9.3.1. Equations of Muto’s original method

First storey

1. Fixed base

= 0.5+3aK. .
D, == | e i, | 2 ©3)
TUA | T 243aK
| L ke o4k
where Kij=—L Ky =—rt; K =—nt—24
hi I_B,i,j kC,i,j

and « is the factor which depends on K; ; - It was taken as 1/3 for the first storey.

2. Pinned base

D, =i _[12E | [ 05aKy, (9.4)
A h? | 1+2K

and « is the factor which depends on Kiyj . It was taken as 1 for the first storey.

Middle and top stories (i >1)

F. |12E K. .
=i = Kers| 72 9.5
L] Ai |: hi2 :| C,I,J(1+ Ki’jJ ( )
where K . = kaivH + kaivi + kB,i—l,H + kB,i—l,j
" 2k,

Position of inflection point of column in the first storey

3K, +1 (9.6)
6K, +1

The distance to the inflection point, y. 1 is measured from the base.

yc,l,j =
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9.4. Improvements of Muto’s method

The proposed procedure to calculate the vibration period of a structure depends on the
accuracy of the calculated flexibility matrix. This matrix is calculated by sequentially
applying unit lateral load at each storey and the resultant deflections are found. One of
the main objectives of the present work is to improve the original Muto’s method in
order to take into account the factors which affect this deflection. This improvement
requires the introduction of new factors to account for the effect which are listed in
Section 9.2.

9.4.1. The position of inflection point of beams

It can be clearly seen from the simplified model in Figure 9.2 that the derivation of
D values for Muto’s method was based on the assumption that the position of inflection
point in all beams is located at the mid-length of the beam. In fact, there are many
situations where this assumption is not valid, and consequently inadequate results may
be given due to the shift of the inflection point from the middle of the beam. The
magnitude of this shifting depends on the relative stiffness of two adjacent columns at
the same level, and could be significant if the stiffness ratio is three or more. Therefore,
a modified factor (m) is introduced in Muto’s original equations to account for this

effect.

The derivations of the modified equations are illustrated in appendix A. The

resultant modified equations are:

First storey

1. Fixed base
3K, ., +m, .

D1,j—1 :|:12_2E:| kC,l,j—l _1,1—1 ml,J*l (9.7)

h1 3Kl,j—1+4ml,j—l

3K, . —m, ., +1
D, :{125}&’1’] Koy =My +1) 9.8)

h, 3K1¥j —4ml’H+4

3K, +4

ml,jfl = — L (99)

B(Klyj_1+lz1’j)+8
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2. Pinned base

b, = 2E] [ K (9.10)
T T | AR am,
D _FEE}k (1-m,; . )K,, (9.11)
1j ¢l j _ '
S L 4@anH)K“4+4@—nh4f

M= 9.12)
' (KM4+KM+2)
Middle and top stories
K. .
Di -1 = 125 kci j-1 s (9'13)
x h o Kijq+2m
K .
hi Ki’j +2(1—mi’j_1)
mo o uit2 9.15)
(K + K +4)
Position of inflection point of column in first storey
3K, . +2m, .
ylyj,l — _l.]—l ml,J—l (916)
GKLJ._1 +2m1,j—1
3K, . +2(1-m, .
ylyj _ 1] ( ml,j—l) (917)

6K, +2(1-m, )

In Muto’s original method, the position of the inflection point of the beam is at the

centre of the span (i.e. m=0.5). This case requires thatK,  , ~ K. If this equality is

substituted in Egs. (9.9), (9.12) and (9.15), we get m=0.5 for the three cases discussed
above. Also, if m=0.5 is substituted in Egs. (9.7), (9.8), (9.10), (9.11), (9.13), (9.14) and
(9.16), the original Muto's equations will be obtained.
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9.4.2. Effect of boundary conditions of columns at the first storey on the
deflection of upper storey

It can be seen in the original Muto’s equation for the first storey that there is a factor (o)
which represents the distribution factor of the moments between beams and upper and
lower columns. This factor depends on K, and K; ;and on the relative stiffness of the
column at the first and second storey. It was assumed as 1/3 for the fixed base case and
1 for the pinned base case. In the present work, the actual effect is accounted for

introducing new relative stiffness factors, A3

1, K'j, K, for the upper and lower storeys.
9.4.3. Storey deflection due to load applied at immediately beneath the
storey in question

The effect due to load applied at any storey on the deflection of the adjacent unloaded
upper storey is taken into account by introducing a new factor, Aj", in the improved

equations.

The definitions of the above new factors and derivations of the modified equations
are illustrated in Appendix B. Only the final equations and selected sub-frames are

presented in the next section.

9.5. Improved equations and corresponding sub-frames

First storey (for the case m=0.5)

1. Fixed base

D, =125 e {1{ 34, (1+6K3)) D (9.18)

Mg (1+45,;+6K{,)(1+6K} ;) -1

A= o) (_1+3K;”')_ A, (9.19)
! (1+4ﬁl,j+6K;{j)(1+6K;j)—1 K
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Fi;C kfj—l A kE,;'

L1ja/2 La.i/2

A

\ 4
A
v

Figure 9.3: First storey-fixed base

2. Pinned base

7 d 17 u s7d [Fu
5 {125 " (K{;+K3; +6K{ K5 ;) (9.20)
1j 2 1
hl IB VAl va vall 7d [zu
4 %+3ﬁ“K2J+K§jd+K2,j+6Kf‘jK2,j
o 3ﬁ1,j(_1+3|<g,,)_ N (0.21)
Y| (1438, +6KY ) (146K, ) -1 |
where
B kg <d kpia K Zu :kZB,i-1+kZBJ
ST T T TG
kB_ If,j-l B _ IZB,j . k1B' :Ilt?j-l. kls_zllE,;j
S B P Y
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F kia B kg
T A
o A&
ke
h
Fij B B
LJ;C i g1 A Al,j kl,] D
) L11/2 R /Llii/Z .
k)
E
o
Figure 9.4: First storey-pinned base
Middle stories (for case m=0.5)
1+3K?, ’
12E 1(1+6K? ¥ 213K°
D, =| 28 | | 2 28 | 922)
! hi 2 2+3Ki,j _ 28 1
1+45 j +6Ki+1,j _(2+3|Z5j)_1+6|2f+1,j

6/, (1+3KP;)(1+3K ;)

u

i+j T — — — — — A (923)
1| (1448, + 6K, ) (146K, ) (243K ) - B (2+12KY, ) - (2+3KD, ) |
Where __“1_ _ ki?—l,j-1+kik-3¢-1,j) . B _ Iilil,j-l KB Ii?—l,j
! I(iil, j 1 L 2 I‘i+1, j1 B 2 Li +1,j
Ke = kPt ke e W KB B
L= N T R N
I(i(il,j : I‘i,j—l : LIJ

244



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections
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Figure 9.5: Middle storey model

Top storey (for the case m=0.5)

1 d U cd eu
o _|12E].c (Ki,, +K:, +6KS, Kh))
ML M 2(1+ 2Ky + 2K, 43K K )

n n-1j n-1,j

B B B B
-0 Katke s lojia. e o
nj 1™, j1 T 1 Mn,j T
! knc. ! L . U I
v n,j-1 n, ]
where 5 B B B
go Ktk e b e g
nlj [$ '™ j1 T r B j —
kn,j 2 Ln-l, j-1 2 Ln.l,j
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B B
Fn.i C kn,j—] A knvj D
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777 Ln1j-1/2 7 L, j /2 e

Figure 9.6: Top storey model

9.6. Proposed procedure to compute flexibility matrix for plane frame
structures

Since the flexibility matrix of a frame is symmetrical, only half of the flexibility matrix
needs to be computed. Moreover, the most important coefficients of flexibility matrix
are the coefficients in and around the diagonal region. The effect of coefficients far
from the diagonal is minimal. The conventional matrix method is used to determine the
“condensed’” flexibility matrix. This matrix is computed by applying unit load at one of
the “Master’” degrees of freedom of the frame at a time. The resultant lateral deflections
are calculated by using the improved equations based on Muto’s method. The axial
deformation of the beams and columns are neglected by omitting the corresponding
degrees of freedom. The steps of the calculation are as follows:

1. Calculate kf;,k? for each bay of the frame.

2. Calculate K, ; for each bay.

3. Apply unit load at one of the “master’ degrees of freedom at a time. The
horizontal displacement of any floor is the master degree of freedom which is

associated with inertia forces (lumped-mass idealization).
4. Calculate m;j(i.e. position of the point of inflection) for each bay.

5. Calculate D-values for each column.
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6. Calculate the summation of the D-values for all columns in the same storey (i.e.
>.D).

7. Calculate the deflection of master degrees of freedom due to shear force (unit

load) in the storey using the following equation:

A, :J:r— (9.25)
2 Di,j
j=1

8. From the results of the deflections in step 7, the symmetrical condensed flexibility

matrix, F,is constructed.

It should be noted that all of the above calculations can be carried out easily by hand for
two or three storey frames and an Excel spreadsheet will be sufficient for multi-storied
frames. The procedure can also be programmed using any programming language for

day-to-day use.
9.7. Lumped-mass matrix for a multi-storey plane frame

Lumped-mass idealisation is very popular in practice due to its simplicity. The lumped-

mass matrix,m, is a diagonal matrix. Each coefficient on the diagonal represents the
mass associated with the corresponding master degree of freedom in each storey. This
mass represents the mass of all the beams in the relevant storey added to the percentage
of column mass. This percentage ranges between 35% and 50%, as stated by (Chan and
Lui, 2005) depending on the stiffness of the connection. These coefficients are usually
calculated by “hand’’ and a lumped-mass matrix can easily be constructed. It takes this

form:

(9.26)

<

[l
o o <
oN§ o
< o o
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9.8. Fundamental period of a multi-storey plane frame

The conventional matrix method of vibration is used to find the fundamental period of a

multi-storey plane frame. This procedure consists of the following simple steps:

1. Calculate the “dynamic matrix’> DM by simply multiplying the flexibility

matrix, F, with the lumped-mass matrix, M .

DM = EM (9.27)

2. The resulting dynamic matrix is not symmetrical. The dominant eigenvalue of

this matrix is the reciprocal of the square of the circular natural frequency iz

o)

. : 2
of the system, which corresponds to the natural period T, =t (or the natural
ol

frequency f, = 1 .

Tl
3. The well-known “power method’’ is used to find the eigenvalues. This simple
method is suitable for “hand-calculation’” and can be easily programmed
depending on the number of degrees of freedom, as it merely involves

multiplying the “dynamic matrix’’ with an arbitrary unit vector, ¢,, to yield

another vector, ¢, , as follows:

DM @, = ¢, =i2¢70 where [(ﬁo]T =[1 1 1] (9.28)

1

4. If p, is already the correct eigenvector, the corresponding eigenvalue ﬁ is the

1

correct eigenvalue. In contrast, if ¢, is only distantly related to the true
eigenvector, then ¢, is a better approximation of the “first mode shape’’.
Multiplying DM by ¢, for the second time will give a more accurate eigenvalue

(by up to 95%) in most cases. Repeated multiplication will improve the results
to desired accuracy. The procedure can also be used to determine the largest
eigenvalue which corresponds to the largest natural period and the lowest

frequency and corresponding mode shape by first inverting the dynamic matrix

DM and applying the previous procedure with DM . In addition, all of the
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remaining eigenvalues and eigenvectors can be found by the same method, as

explained in details in textbooks such as that by (Meskouris, 2000).

9.9. Modified Muto’s method for a semi- rigid framed structure

Muto’s method was originally derived to analyse plane frames with rigid connections.
Recently, a simplified modification was proposed by (Wong et al., 2007 ) in order to
make Muto’s method suitable for plane frames with semi-rigid connections. This
modification is based on the concept of “equivalent” beam stiffness for beams with

elastic springs attached at two ends. Figure 9.7 shows a hybrid beam element with

rotational springs of stiffness k; and kg at its two ends.

Node i Node j

Figure 9.7: Hybrid beam element with connection springs attached

The equivalent bending stiffness iB’eq_ and ié’eq. of the hybrid beam element at end
nodes i and j respectively are defined as:
e =Py & i3 =P (9.29)
where L _Blg i _142R L, 1H2R
T R ' R

R=-2: R4='_B; R=1+4(R4+R4)+12R.R-
I ksi J ij | J -

The procedure given in Section 9.8 can be used for rigid and semi-rigid frames using

the nominal or equivalent bending stiffness of the beams.
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Example: The following example is given to investigate the accuracy of the proposed
procedure by comparing the results of the frequencies with the corresponding results
from the ABAQUS software package. The example also illustrates the effect of semi-
rigid connections on natural periods (i.e. frequencies). The steel frame, (Es =200Gpa
and density is 7800 kg/m®), under consideration has four bays and six storeys, as shown
in Figure 9.8. The frame is analysed for rigid and semi-rigid connection cases. For
simplicity, the same rotational stiffness is used for all of the spring connections. Two
values are used for the stiffness of the rotational springs, which are 1x10°* N-mm/rad

for the rigid case, and 1.076x10* N-mm/rad for the semi-rigid case.

IPE 240 IPE 240 IPE 240 IPE 240
o »
2 = S 8 =
-~ ~l —
= o = e e
= = = = |
- IPE 300 - IPE300 ~ IPE 300 IPE 300
o g S = e
=) ~ ~ -~ —
= e =) - -
Z = = = = =
< -~ IPE 300 B IPE300 ™ IPE 300 ™ IPE300 —
Z >
h‘ 1 —
o = S = = a
2 & & a - ~
or = ea &8 = o
= = 5| =) = —
a T = = = =
_h — — =
Z IPE 330 IPE 330 IPE 330 IPE 300 ",
z — 3
= g
= —
= = = - = “
g ~ 5 5 F S z
| 8 ~ -1 -1 ~1 -
= - -] -} -5 -]
= ) = = = =
= - = = = =
f—
s IPE 360 IPE 360 IPE 360 IPE 360
g >
o
= [—] = = =
-1 = = = o1
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Figure 9.8: Layout of the steel frame
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Table 9.1: Properties of the steel frame shown in Figure 9.8

Section [I(m) ] A(m? I(m*)

IPE 240 6 0.00391 | 3.89x10™
IPE 300 6 0.00538 | 8.36x10™
IPE 330 6 0.00626 | 11.77x10™
IPE 360 6 0.00727 | 16.27x10™

IPE 400 6 0.00845 | 23.13x10™
HEB 160 | 3.75 | 0.0054 | 0.000025
HEB 200 | 3.75 | 0.0078 | 0.000057
HEB 220 | 3.75 | 0.0091 | 0.000081
HEB 240 | 3.75 | 0.0106 | 0.000113
HEB 260 | 3.75 | 0.0118 | 0.000149

e Results and discussions:

For the sake of brevity, only the final coefficients of the dynamic matrices, DM , using
the proposed procedure are shown below:

(1255 1393 1267 1178 979 830 |
1535 3141 3109 2891 2403 2038
1535 3585 5168 5253 4366 3708
1535 3585 5707 7556 6783 5752
1535 3585 5707 8259 9942 8894

11535 3585 5707 8259 10494 12096

WRigid =107 x

[1897 2749 2661 2473 2056 1743 |
2981 7017 7449 6925 5756 4880
3222 8318 12061 13125 10909 9250
3222 8318 14118 17909 16519 14007
3222 8318 14118 19875 21709 19848

13222 8318 14118 19875 23407 25028 |

WSemi—Rigid =10" x

The results of the natural periods from the proposed procedure and ABAQUS package
are shown in Table 9.2.
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Table 9.2: Results of natural periods

Period Proposed procedure ABAQUS

©) T L] T | ] ] T

Rigid 0.348 | 0.14 | 0.082 | 0.358 | 0.141 | 0.080

Semi-rigid | 0.532 | 0.194 | 0.109 | 0.526 | 0.184 | 0.10

It can be clearly seen that the results from the proposed procedure are in good
agreement with the FE results. The proposed procedure, which takes into account the
realistic connection stiffness, reflects the behaviour of the frame with high accuracy. In
addition, if the procedure is implemented in a spread sheet program like Excel, the
effect of changing the geometric properties of any element can be easily obtained.
Furthermore, the merit of the proposed procedure is in its ability to tune the flexibility
of the beam-to-column connection in order to get the value of the fundamental natural

period within a desired range.
9.10. Sensitivity of the proposed procedure

In order to evaluate the sensitivity of the proposed procedure for changes in the
stiffness of semi-rigid connections, the same semi-rigid frame shown in Figure 9.8 was
analysed using the proposed procedure for a wide range of semi-rigid connections (i.e.

05< 5 <70).
El

Eurocode 3 (2005) 8§5.2 consider connections with relative stiffness (Lks/El) between

0.5 and 25 as semi-rigid connection.

The results from the proposed procedure and ABAQUS for the fundamental period
are presented in Figure 9.9. It is clear from this figure that the proposed procedure can
accurately predict the fundamental period for a whole range of stiffness. The important
results are for the range between 0.5 and 25, which is considered as semi-rigid range by
Eurocode 3. In this range, the original equation of Muto's method substantially
underestimates the fundamental period, which is unsafe as the original equations are
valid for rigid connection only. In addition, this figure shows that the proposed

procedure is very sensitive to changes in stiffness, even for low range.
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Figure 9.9: Relationship between relative stiffness and fundamental natural period

Figure 9.10 and Figure 9.11show that the proposed procedure can reliably predict the
second and third natural periods for a wide range of semi-rigid connections. The
discrepancy between the approximate procedure and ABAQUS modelling, particularly
when the connection approaches a pinned connection, is expected and acceptable for

any approximate procedures.

Furthermore, it can be seen that the decrease in stiffness of semi-rigid frame may
significantly increase its natural periods, especially the fundamental period. The semi-
rigid frames have longer period and thus attract lesser inertia. This behaviour confirms
the results of analytical studies by (Rosales, 1991; Sekulovic et al., 2002) as stated

above.
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Figure 9.10: Relationship between relative stiffness and second natural period
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Figure 9.11: Relationship between relative stiffness and third natural period
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9.11. Summary and conclusions

A simple “hand’’ procedure has been proposed to calculate the fundamental natural
period of rigid and semi-rigid plane steel frames. This procedure, based on Muto’s
method, is capable of calculating the fundamental natural periods of multi-storey steel
frames with rigid and semi-rigid connections. The results of the calculations indicate
that the concept of semi-rigid design is not optional for designers and must be taken into
account for safe design. It has been shown that this simple approximate procedure
yields agreeable results compared with other accurate and approximate methods. The
small discrepancy between them is due to the overturning of the entire frame, resulting
in shortening and elongation of the columns at opposite sides of the frame. The
contribution of the overturning moment may be about 10-20% of the total sway for
unbraced rigid frames up to 20 to 30 stories. Furthermore, as with any other
approximate methods, the results need to be multiplied by an adequate safety factor as
some results may underestimate the natural period, which is considered as unsafe.
Nevertheless, the accuracy of the proposed procedure is high when compared with the
finite element results obtained using ABAQUS. The proposed procedure can easily be
extended to unbraced composite frame depending on the modified Muto’s method
developed by (Wong et al., 2007 ) for the analysis of unbraced composite frame systems

by introducing the concept of improved equivalent beam stiffness.
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Chapter Ten

Summary and Conclusions

10.1. Introduction

The importance of inclusion of semi-rigid concept in analysis or design of any structural
system has been presented with the help of many experimental and numerical studies in
literature. These studies showed clearly that the consideration of the semi-rigid concept

is necessary in order to achieve economical and safe design.

The detailed literature review showed that even though the finite element modelling
can predict well the behaviour of a semi-rigid connection, the reliable test results are
essential to calibrate the model before it can be used for a different connection. In
addition, the intensive computational effort and time that is required in finite element
modelling make it impractical to analyse large structures. All of these considerations
make the component-based mechanical models as potential alternative to the finite

element approach.
10.2. Mechanical model for predicting the rotational stiffness of a
flush end-plate composite connection incorporating the effect of partial

interaction

A new component-based mechanical model was developed to calculate the rotational
stiffness of a semi-rigid connection. The effect of each component of connection was
well studied and modelled. The traditional axial spring which had been used to model
the effect of shear connectors was replaced by a simple rotational spring to consider the
actual rotation of concrete slab under loading and to make this model general enough so
as to use with steelwork and composite connections. Further, a simple and effective
procedure to evaluate the equivalent stiffness of shear connection was developed. The
validity of the model was evaluated by comparing with the results from other existing

models and experimental results.

Besides the generality of the proposed model for bare steel and composite

connections, the model could be implemented in any finite element software and was
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able to extend further than the linear region with appropriate input data for component

stiffness.

10.3. Prediction of the load-slip behaviour of a stud shear-connector

A simple approach to estimate the secant stiffness and strength of standard diameters of
shear connector for different compressive strength of concrete was developed. The
proposed chart can be used to estimate the secant stiffness and strength for other
diameters of shear connectors by drawing parallel lines at the required levels. Also, a
simplified multi-linear curve was derived based on the proposed chart for initial
stiffness as well as the derivation of post-yield stiffness from the empirical equations in

the literature.

The proposed model is in agreement with the test results. It can be used when no
push-out test curve is available since the empirical equations that researchers have used

in the past can lead to unrealistic shear stiffness of the shear connector in some cases.

10.4. Stiffness of a reinforced concrete slab in a composite connection

A new component model for composite slab was developed. This model incorporates
the components of embedded reinforcement and concrete in one single component
(RCC). The tension-stiffening effect of concrete was considered implicitly in the
stiffness of (RCC) by modified modulus of elasticity concept En. In addition, the
component model is further simplified by replacing all (RCC) components along the
composite connection by equivalent springs. Shear studs was modelled as linear or
nonlinear springs depending on the range of loading. Furthermore, a simplified
procedure was proposed to calculate the “lump”’ stiffness of (RCC) and shear studs (S)
springs. The proposed models and calculation procedures were verified against finite

element and experimental results for some selected composite connections.

A parametric study was carried out to investigate the effect of relative stiffness of
(RCC) to (S) on the distribution of forces on all components of (RCC) and shear stud
springs along a composite connection. The results of the parametric study show clearly
that the first and second shear studs and first and second reinforcement zones provide
the most resistance to the longitudinal shear force in the composite connection. Also,
the results of the parametric study show that the stiffness of a shear stud has little effect

on the distribution of forces acting on the shear studs along the composite connection
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for constant values of krcc/kse. However, comparison of the results for the same kg, and

different krcc/kse Shows the significant effect of krcc/kse on this distribution of forces.

The proposed a mechanical component model for an (RCCS) can be used as a
simplified model in the finite element modelling of a composite connection to overcome
the convergence problems in explicit modelling of concrete when the concrete slab
begins to crack. This will also reduce the computational time significantly with

adequate accuracy.

The analytical expression for the initial stiffness of (RCCS) can be used in the
manual calculation of the initial stiffness of an overall composite connection. This
expression can be used to overcome the shortcoming in the estimation of the effective

length of reinforcement, I; in calculating the stiffness of the reinforcement component

(ko).

A new procedure to find the maximum number of “active’’ studs was developed.
The relation between the number of “active’’ shear studs and maximum number of
shear studs for full shear connection requirement was derived. Modification to the
proposed mechanical model to calculate the initial stiffness of composite connection
was performed by two approaches. The first approach was achieved by developing new
expressions to calculate the stiffness of “active’’ shear studs and modified embedded
reinforcement. The second approach was undertaken by replacing both the springs for

reinforcement and shear studs by a “lump’’ spring in the original mechanical model.

Furthermore, it was concluded that it is preferable to use a higher number of soft
shear studs with a lower strength than to use fewer stiff shear studs with high strength

in order to avoid local concrete failure.
10.5. Moment resistance and ductility of flush end-plate composite

connections

A flowchart to predict the failure mode of composite connection had been developed
based on the practical range of shear connection ratio (7,>0.4) and reinforcement ratio
(0.5<p<1.7%). Then, a procedure to calculate the moment capacity of composite
connection was developed using the concept of a rigid-plastic, stress blocks. This
procedure is compatible with the proposed flowchart and with the procedure to estimate
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the rotation at failure. Also, it considered the cases of full interaction, full shear

connection and partial shear connection.

The prediction of moment capacity of composite connection from the proposed

procedure is in agreement with the experimental results for most cases.

The proposed mechanical model to calculate the rotational stiffness of composite
connection was extended to calculate the rotations at yield and at failure using the
appropriate post-linear values of the components. The validity of the proposed
procedure to calculate the rotation at yield was evaluated against three sets of
experimental test data. These tests were selected to represent three cases of shear
connection (i.e. full interaction, full shear connection and partial shear connection) and

covered the usual cases of failure modes.

The proposed procedure was observed to be applicable for estimation the rotation at

yield and rotation capacity of a flush end-plate composite connection.
10.6. Analysis of a beam with semi-rigid connections under gravity

loading

A new analysis procedure for beam with semi-rigid connections under gravity load was
developed. The proposed procedure was based on the principle of superposition. The
accuracy of this procedure has been verified by a finite element analysis using the
ABAQUS software. It overcomes the shortcomings of Ahmed et al. (2008)'s procedure,
where only certain symmetrical loadings were allowed. In contrast, the proposed
procedure is applicable to any arbitrary loading. Also, it can be used to calculate the
deflection at any point of the beam and to compute shear force and bending moment as
well. It can be extended to compute the deflection of a composite steel-concrete member

after making some modifications to account for beam stiffness.
10.7. A simplified procedure to calculate by hand the natural periods

of semi-rigid steel frames

Simplified formulae to calculate by hand the natural periods of semi-rigid steel frames
are presented. The proposed formulae have been developed after modifications of
existing formulae in literature for rigid-jointed plane steel frames. A parametric study

has been conducted to quantify the effects of semi-rigid connections on the natural
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periods of vibration of plane steel frames. The results of the parametric study show
clearly that the flexibility of a connection has a considerable effect on the natural
frequencies of a steel frame. Inaccurate values for the fundamental period may result in

unsafe design.

The proposed procedure can predict the natural periods of a frame for a wide range
of flexibilities of beam-to-column connections. The validity of the proposed procedure
Is confirmed by comparing the results with the results obtained from ABAQUS, and
good agreement between them was demonstrated.

10.8. An approximate analytical method for calculating the natural

periods of unbraced steel frames with semi-rigid connections

A simple “hand’’ procedure has been proposed to calculate the fundamental natural
period of rigid and semi-rigid plane steel frames. This procedure, based on Muto’s
method, is capable of calculating the fundamental natural periods of multi-storey steel
frames with rigid and semi-rigid connections. The results of the calculations indicate
that the concept of semi-rigid design is not optional for designers and must be taken into
account for safe design. It has been shown that this simple approximate procedure
yields agreeable results compared with other accurate and approximate methods. Also,
the accuracy of the proposed procedure is high when compared with the finite element
results obtained using ABAQUS. The proposed procedure can easily be extended to
unbraced composite frame depending on the modified Muto’s method developed by
(Wong et al., 2007 ) for the analysis of unbraced composite frame systems by
introducing the concept of improved equivalent beam stiffness.

10.9. Recommendation for future work

1. The proposed mechanical model for calculating the rotational spring need
further improvement by adding another springs in appropriate position such as
the spring to consider the effect of concrete around column flange. This spring
can be active only in asymmetrical cases of connection or in external
connection. The stiffness of this spring needs more experimental and numerical
work to be evaluated. Another suggestion is to use a spring to take into account
the effect of concrete in compression zone around the shear connectors but the
stiffness and strength of this spring needs more experimental and numerical

work to be evaluated.
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2. The proposed chart of strength and stiffness of shear connector may need more
improvement since it is based on a limited number of numerical and
experimental tests. Nevertheless, it can be used for estimating the strength and
stiffness of shear connector if push out test data is not available. In addition, the
experimental and numerical data for other diameters of shear connector are

needed to extend this chart for other diameters.

3. Due to very few experimental tests in the literature on isolated composite slab,
the proposed model for lump component (RCCS) was validated using the results
from finite element modelling and available test data in the literature. This can
substantially reduce the amount of calculation required to evaluate stiffness of
composite connections. Therefore, the procedure needs further validation using
experimental test data for full and partial shear interaction.

4. The proposed procedures for evaluating the frequency of semi-rigid frames
need to extend to composite structure. Combining an equivalent stiffness of
composite beam with the springs simulating the semi-rigid connection can be
used for this purpose. However, the validity of such modelling needs the
computational power of a super computer to run the required finite element
model of composite frame. Experimental tests are essential to validate the
approximate analytical model as well as the validity of finite element model in
order to carry out a parametric study on the combined effect of flexibility of

connection and shear connection ratio on the frequency of composite structure.
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Appendix-Al
- Iy Py E 6 Iy &
Icl I
IC2 IC]. c2
8, o
i | -1 ase-1 Ghase-2
< > J | R
a) b)
Figure A. 1: a) First b) Middle and Top storey frames
6 a 6 )
' 6 g & &
(1-m)l
ml / :m, BB aml
le1 ) ey Iy
_r _n Ghase-1 K Ghase-2
a) b)
Figure A. 2: a) First storey model b) Middle and top storeys model
1. Derivation of the main equations:
6, 0
Let S, =2+ and S, =2+-22¢
o 0,
Left side of model (a and b)
(A1)

2El,

3A
M, = —(81‘91 'Tj

h
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_2El,
ml

M,, (26,+6) (A2)

Right side of model:

2El 3A
M, = hcz (8202 TJ (A3)
2El
M, = b _(26,+0 A4
b-r (1-m)L( 2+ r) ( )

At virtual hinge:

2El O,
M,, = mlb(ze,ﬁl):o - 4 :_El (A5)

2El o.
M _ =—2(20+6,)=0 0 =--2 A6
o-r (1_m)|( r 2) - r 2 ( )

mi Mo-r
(1-m)l
Mg

Figure A. 3: Bending moment diagram of beam

From Figure A.3, it is seen that:

M, mi m

M,, (1-m)l (@-m) AD
My ®00) e

"M, (12_Er:]b)l(292+9r) (m)(26, +6,)

w25 ) g ) e
M., (m)(zez-gzzj (m)(6,)
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From Eq. (A.7) & Eq. (A.8), results:

(A.9)
(2-m)’

M, +M,, =0 & M_,+M,, =0

2E| 3A) 2EI 2E| 3AY) 2EI
h°1(516’1-7j+ —(20,+0)= hcl(slel-r} —(26,-6,12)=0

2EI 3A) . 2El
and hcz(3292'7j+(1-mb)| (26,-6,12)=0

_ b
h h I
Rlzﬁ &Rz—ﬁ
kcl kc2
SAla Sl+3K1 _% S, + 3K (A.10)
h 3 2m 3 2(1-m)

From Eq. (A.9) and Eq. (A.10), results:

S_|_37R2 _
(my (72 2a-m))  m (25.0-m)+3K:

(1-m)* (Sﬁﬁlj ~(1-m)  (2sm+3Ki)

2m

SN~

m  (28,@-m)+3K:)

“(tm) (28,m+3K)

2m* (8, - S,) +m(3K1+3K: +48, )-(2S, +3K2) =0 (A.11)

271



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections

2. Determine S & m

First storey

1. Fixed base

M, :2Ekcl(201-%j &M, =2Ek02(292 %Aj

By comparing with Eq. (A.1) & Eq. (A.3):
S5 =S5,=2 (A.12)
By substituting Eq. (A.12) in Eq. (A.11), results:

3R2+4
m=——— (A.13)
3(K1+K2)+8

2. Pinned base

Mcl = 2Ekc1(261 T Opase1 ~ %) & Mbase-l = 2Ekcl(20base-l + 01 - %j =0
(‘91 _3hAj A
JBpe s = B & M, =3Ek, (91 - F) (A.14)
By substituting Eq. (A.14) in Eq. (A.1), results:
3Ekc1(01 - é) _ 2Ekc1(81(91 _ 3—Aj
h h
A6,
S—=—=(25,-3 A.15
o= (25-3) (A.15)
By substituting Eq. (A.15) in Eq. (A.10), results:
3K,
S, =|3+— A.16
' ( 2m ] (A-16)

In the same manner, it can be found that:
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3K
SZ = (3 + 2(1—_2[“)) (Al?)

By substituting S; & S; in Eq. (A.11), results that:
mz(Rl + Ko +2)—m(R1+2R2 +3)+(R2 +1):0

Kz +1
m= (A.18)

(Rl +Ka+ 2)

Middle and top stories

M, = 2Ekcl(36?l —STA) & M, =2Ek, (392 _%Aj

By comparing with Eq. (A.1) and (A.3), results:
55 =5,=3 (A.19)
By substituting S1 & S2 in Eq. (A.11), results that:

Ko +2

m:(R1+R2 +4)

(A.20)

3. Determine Dyaje in term of m

First storey

1. Fixed base
Fl > Mcl Mc2
(1-y)h'!
EY1h
Mg Mg,

Figure A. 4: First storey-fixed ends
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w-FEh=M_+M, & -Fh=M_, + M,

.—Fh= 2Ekcl(201 —%) + 2E|<01(6»l —%j :12Ekcl(% - %)

12E ho,
Flz[ e M ' le
(A.21)

By substituting Eq. (A.10) and Eq. (A.12) in Eq. (A.21), results that:

Dlziz{lzzE}kcl 3_K1+m 2 D2=i=[122|1kc2 3L<2—m+1)
A h 3K1+4m A h 3K2—-4m+4

2. Pinned base

A
Figure A. 5: First storey-pinned ends

+-Eh=M_, & -Fh=M,,
..-Eh= 2Ekcl(81(91 STA) (A.22)

By substituting Eq. (A.10) and Eq. (A.16) in Eq. (A.22), results that:

D1:5:|:122E}k01 —Kl &D2:5:|:12—2E}kc2 = L
A h 4K +4m A h 4K +4(1-m))
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Middle and top stories

—Eh=2M_, & -Fh=2M,, (A.23)

By substituting Eq. (A.1), Eg. (A.10) and Eqg. (A.19) in Eq. (A.23), results that:

~Fh=4Ek | 3| ——— |-

Dlzi: 122E kcl —Kl & Dzzi: % kcz v "2
A h Ki+2m A h K2 +2(1-m)

Position of inflection point of column in first storey

Mc1:2Ekcl(2(91—3TA] & MEI:ZEkcl(Q—gTAJ (A.24)
Mc2:2Ekc2(26?2—3TAj & ME2=2EkC2(92—3TAj (A.25)
MEl yl

- (A.26)
Mcl (1_y1)

5-%)

1 _
. h)_ % N é:ﬂ{(l 3y1)} (A.27)
(291_3?j (1-v) h 3[(1-2y,)

By substituting Eq. (A.10) and Eqg. (A.12) in Eq. (A.27), results that:

|

= 8K+ 2m V278K, +2(1—m)

_3Kitom o 3Kz +2(1-m)

(A.29)
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Appendix-B

First storey (for case m=0.5)

1. Fixed base (Figure 9.3)

MAB:ZEkfj(20A+6’B-3A%’j] ; MBA:ZEij(293+9A-3%] (B.1)
Mg+ Mg, =0 —>2Ek§j [20A+¢9B -3A%"'}+2Ek§j (‘9;\““293 -3%}:0 (B.2)
let k., =-=%; kbzlfb ; ,31,,-:%:1

:(9N+%):2%%- (B.3)
Mg, +Mg, + Mg =0 (B.4)

AL
2EK;, (293 +0, -3%}+4Ekfj_l @98}45(;]. (298) =0

C
2,

0, +06, kg . +Ks;
[2495+49A-3—( A; B)j+393[—2’” “j:o

HA HA

Oy = = Gp=—TI (B.5)
146 kZB:j—1+k2B,j 1+6K2,j
ko
From Eq. (B.3) and Eq. (B.5), results:
AL 1 [ 246K, (B56)
h 2" 1+6Rlzj,j
Myg+Mye+M,.+M,, =0 (B.7)
Ay A 3 3
2EK;, (2@\ +0, -3%} 2EkS, (2@\ -3%)+4Ekﬂ_l(§ eAj+4Ekffj (E eAj =0
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0, +6 A, .
kS, [2¢9A +0, -3(A—;E‘)j+ kS, (2@ -3%}3@,\(@}1 +k2 ) -0

1 le'-l + le' 6 A1 j
O,| = +2B,;+3| =L | |- 2 =35, —L
A(z & L ks | 2~

A, A
ine) ine)
0, = - 0, = (B.8)
(1 K, +k? (1 <
= 1j1 ] —+20, . +3Ky
Ezﬂ[’“ s J (2 & “j
6,81'1.(1+6R;,j) N
0, = L) (B.9)

(48, +6K2 ) (1+6Kz, )1 | D
From Eq. (B.6) and Eq. (B.9), results:

64, (1+3K2,

Ay = — — | A (B.10)
(148, +6Ks ) 1+6Kz, )L
‘F,h=M, +M,, (B.11)
A, . A, .
-F, ;h =2Ek, ZHA-B%J+2EK&(0A-3%}
C Alj
-Fyh=6EKS | 6,-2—2 (B.12)
By substituting Eq. (B.9) in Eq. (B.12), results:
A 65111.(1+6R2,,-)
F,;h=6Ek;, —L| 2- — —
| (1, 6K J(1eeKEs )L
- 3ﬂ,(1+6R2,,-)
D, | :A:[lzf}kfj 1- lj_ — (B.13)
) h ) d u
. (1+4p,, +6K.; )(1+6K2, ) -1

where
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B B B B
_; L kz,j-1+k2,j B _ IZ,j-l kB — |2,j
1J _T 1 2'j.l_ 1 211 -
K ; 2L, i, 2L, ;
B B B B
—o ke s B I

L= K= K =
kz,j Ll,j-l Ll,j

2. Pinned base (see Figure 9.4)

AL AL
MAB:2Ek§j(29A+HB-3%J i Mg, =2Ek;, {293+9A-3%J (B.14)
Ay AY
MAB+MBA=O—>2Ek§{29A+QB-3%}+2EKEJ(HA+ZHB-3%]=O (B.15)
AL
(0A+05):2% (B.16)
Mg, = 0— 2EKS (29 +0 -3ﬁJ=o—>e =1[3ﬁ- j (B.17)
EA . E A h E 2 h A :
Mg, + Mg + My, =0 (B.18)
BA BF BG

AL
2EKS, {205 +0, -3%J+4Ek§j_l (205J+4Ek;j (293) =0

0, +6, kP . +k2
[2‘93 +6, _3(A—72L5)j+398 [MJ =0

C
2,]

HA HA

Oy = —0, = — (B.19)

° 146 kZB,j—1+sz,j ° 1+6K2,j
ko

From Eq. (B.16) and Eq. (B.19), results:

AL Ko,

Bu 1y |2¥0K2; (B.20)
h 2 " 146K,

Mg+Me+M +M =0 (B.21)

u

Ay A,
2EK;, {2@\ + 6, -3%} 2Bk, {2@\ + 6 -3%} 6E0, (kSj, +k'j)=0
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c
K ;

0,+6 A, ke +kP.
(ZHA +0; '3@j+ﬁu (ZHA + 6. -3%j+39/4 (—LH -] J=0

O,

0, =

%(1+3ﬁl,j)+3(

1

—d 1 A,
§(1+3ﬂl,j )+3K1,j]=§(3,8“ 1

34, (1+ 6K, j) A

eA

h

Lj

1+ GRLZI,j

K ia+ ke 1 A,
== =238 —=L 40
kZC’J 2 ﬁl,] h B

|

(B.22)

(1+3,81’j+6Ri;)(1+6§;,;)-1 h

From Eq. (B.20) and Eq. (B.22), results:

34, (1+ 3K ,-)

(1+35,,+6KL, (146K, ) -1

A= A,

g

F (B.23)

1j

h:MAE

A A,
-Fih = 2Bk (ZGA + 0 3%) =3EkS, [eA %J

[ e(KE K oKL RS
J

A
F, jh=3EKC, _ —
(1+3ﬂ1,j 16KS )(1+ 6K2,,-)-1

= (Rld,j-FR;,j-FGR;,jRij)
_ Ly

v | ——— 20
i 4{;J+3ﬁ1,j|<‘£,,-+|<1,,-+|<2,,-+6K‘£,,~K1,,}

where:
B B B B
RU L kz,j-1+k2,j B _ I2,j-1 kB — |2,j
2T S T BT
2,j 2,j-1 2.]
B B B B
Rd- _ kl,j-l+k1,j . kB _ Il,j—l 'kB _ Il,j
Li= KC v K = L K =1
2, ,J-L ]
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Middle stories (for case m=0.5) (see Figure 9.5)

A A
MAB=2EkiS—l,j{29A+gB_3 ';]l"j ; MBA=2EkiC+1,,-£26’B+‘9A'3 ';]1"] (B.25)
C Aiu+1j C Aiu+1j
Mg +Myg, =0 2Bk}, ;| 20, +6; -3 h’ +2Ek;;, ;| 0, +26; -3 h’ =0 (B.26)
| | ke
Let k =-%; k== ; »]
Tho ST AT
_ A?ﬂ,j
(49A+498)_2T (B.27)
Mgy + Mg + M, =0 (B.28)

A. .
2Eki‘fj [26% +0, -3%}+4Ekfl‘ i1 (gHEj+4Ekflv j @ 9Ej =0

A A
(3 2 -eAj (3 s -QAJ
0. = - - >0 =~——— (B.29)
p o of Kai Tk, (2+3Ko)
ki
Mg, + Mg, + Mg, =0 (B.30)
C Aiu+1,j B 3 B 3
2BKSy 5| 205 + 00 -3 |+ 4BKE ju| 05 | +4EKE, | 265 |=0
0. +6 kB . +kB .
20,+0, -3\ %) | gg [ Ko tkias |
2 ki+1,j
0, = /NN Y - (B.31)
1+6(ki+1,jlc+ ki+1,j ] 1+ 6Kiij
i+1, ]
From Eqg. (B.27) and Eqg. (B.31), results:
Ay _1, (246K, (B.32)
h 2 g 1+ 6R?+1,j
OMz+M+M,\ . +M,, =0 (B.33)
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2EkS

i+1, ] i,j-1 i,]

AV A. .
{29“98-3%}25&3(29A+9E-3fj+65gA(kB +KE ) =0

ij

1 1 [3 h QAJ A kivja K

EHA—FZﬂH-E@B +ﬂi’j — -3—= |+36, —’kc = =0
(2+3Ki.1,,-)

i+1, j

1 ﬂi,j —d Ai,j 1+3Ri|:—)1,j 1
9A E+2ﬂi:j-——D+3Ki’j :3ﬂi,j h — +_98
(2+3Ki-1,j) (2+3Ki-1,j)
- _ A Ko
0, 1+2ﬂi’j-'B—"_‘D+3Kid,j-;_u =34, — 1+35D1"
2 (2+3Ki_1,,-) 2412K h (2+3Ki.1,j)
143Kia,
e .
0, = o hJ (B.34)
125 +3K) - ﬂED 1
2 (2+3Kil,j) 2+12Ki+1,j

o 6/, (L+3K, (143K (6.35)
Aoy = (1+ 4ﬁi,j +6Rid,j )(1+ 6R?+l,j )(2+3RiD—l,j )—ﬂiv]— (2 +12K?+1,j )—(2+3KiD—l,j) A .
'Fi,jh = MAE+MEA (B-36)

c A c A
-F, ;h = 2Ek, 249A+¢9E-BT +2Ek;; 26?E+6?A-3T

c Ai,j c Ai,i
-F, ;h=2Ek’, 36?A+36?E-GT =6Ek, .9A+9E-2T
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143Ki; | [ 146K |A
F, h=6EKC | 6, okl || ZEERIL T
243Kz ) (243Kiz; ) N

K%, )

1+3Kiaj

3B, =t
2+ 3K,

~F, jh=6EKS,

_(14—6?51,]} Ai'j
D h
14_ ﬂI’J ] 1 2+3K|—1,J

2 (2+3Rf.’1,,-) 2+12K b

—D 2
3B, %
2+3Ki1j

28, +3K; -

F, [12E] | 1] 1+ 6Ril?l,j
Di,j :A—: h2 ki,j E 2+3RD -
| i1,
J 2:Bi,j i 1
(2+3Ri|?1,j) 1+6K:J+1,j

1445 +6Ki, -

where
B B B B
K 1= ki+1li-l + ki+1,j) . 1B _ Ii+1.j—1 . LB _ Ii+1,j
Rl C v R ja = y Kipj =
ki+1,j 2|-i+1,j-1 2|—i+1,j
B B B B
d ki,j—1+ki,j . kB — Ii,j—l . KB — Ii,j
Kij = KC R T T M T
i+l Li,j—l |—. i
B B B B
_.Dl. _ ki-l,i-l+ki-l,1 . KB = Ii-l,j-l - KB Ii-l,j
L= c v Kigja = v Kigj =
ki,j 2Li-1,j-1 2|—i.1,j
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Top storey (for the case m=0.5) (see Figure 9.6)

Meg+M,.+M,; =0 (B.37)
2EKC | 20, + 6 ?,A"'j 4EK® 39 4EK® 39 =0
n,j At Og— T + n,j-1 E A | T n,j E A |~
A, kﬁjfﬁkrffj A, —u
0, =31 -0, 243 L | |3 —eA(2+3Kn,j) (B.38)
n,j
Mg, + Mg + Mg =0 (B.39)

A
2Ek. (26’5 +0,-3- ]+4EknB_lyj_l £298j+4|5kf_1,j Gesj =0

C
n,j

A kB +kB. A —
0, =3—2 —93[2+3(MD=3 ut —HB(2+3Kﬁ1,j)
h h

A, A, —d —u —d
0, =3 h'l—(s . (2+3Kn_1,,~)—9A(2+3Kn,,-)(2+3Kn_1,j))

—u —d Ai ; —d
eA((2+3Kn,,- )(2+3Kn_1,,- )—1) =3TJ(1+3KH,J-)

3(1+3Kn A
0, = — . = (B.40)
((2+3Kn,j)(2+3Kn1,,- )—1)
“F, h=M,M,, (B.41)

C An,j C An,j
~Fo i =2BK7; | 20, +0, —3— |+ 2EK7 | 26, +6, -3 —

F h=6EK® |0, +0 2Ai'j
"ttt — n,j At Og— T

: —u\ A,
F, ,h=6EK, eA(1+3Kn,,-)—
1 ) h

A 3(1+3Rﬂ.1,j)(1+3RE,,—)-((2+3RL—)(2+3Kﬁ.1,,-)-1)
C n,
F, h = BEKS, = — —
((2+3Kn,,-)(2+3|<n.1,,-)-1)
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_ (Rglj +R:’J],j +6Rg-l,jR:,j)
n.j

A
F, jh=6EKC, )
(1+2Kn,,-+2Kn.1,,-+3Kn.1,,-Kn,,-)

12E7 . (Rzlj +Rl:1,j +6Rg-l,jR:,j)
o, 5]

h? n.J —u —d —d —u (B.42)
2(1+2Kn,,- + 2K 43K na Kn,,-)
where:
B B B B
WY _ k”rl"1+knvl' . kB _ In,j,j-l . kB _ In’j
e S ; ni =L
nxj Ln,j-l n’j
B B B B
Rd L kn-lyj-l +I(n-l.j L In-1,j-1 . LB |n.1,j
n-l,j - kC ] n—l,j—l - 2L ] n—l,j - 2L
I"I,j n—l,j—l n—l,j
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