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Abstract 
The concept of semi-rigid connection and steel-concrete composite action has been 

extensively researched in the past. However, they are not widely used in practice due to 
the lack of detailed information, not only about the advantages of the semi-rigid design 
philosophy, but also about the potential risks if its effect is not accounted for. The above 
considerations were the motivations in taking up this research.  

Firstly, a numerical study to investigate the effect of connection stiffness on the 
natural frequency of semi-rigid frame was carried out using ABAQUS software. The 
results of this numerical study confirmed the necessity of incorporating this effect to get 
safe and economical design. Consequently, an analytical procedure for a beam with 
semi-rigid connections under gravity load was developed which overcomes the 
limitations of previously published procedures. The frequency of a steel beam was also 
calculated using effective length concept. Furthermore, two new analytical “hand’’ 
calculation methods to estimate the first three frequencies of a semi-rigid frame were 
developed. Both methods were developed by modifying or improving for existing 
methods in the literature for rigid-jointed plane steel frame to incorporate the effect of 
connection stiffness. Fist method is suitable only for a semi-rigid plane steel frame 
which has uniform properties along its height so as it can be modelled as equivalent 
flexural-shear cantilever beam. The proposed second method is suitable for non-uniform 
plane steel frame. Both the above methods can be extended to composite structure using 
the equivalent stiffness concept of composite beam. Moreover, examples of steel frame 
were used to demonstrate the application of the proposed analytical methods. It was 
shown that the proposed methods not only can predict the difference in frequency of 
rigid and semi-rigid frames, but they are also simple enough to be used in day-to-day 
design practices.  

Secondly, as the stiffness of connection is essential in the calculation of natural 
frequency of a semi-rigid frame, a new simple mechanical component-based model was 
developed to determine the initial rotational stiffness of commonly used flush end-plate 
steel or composite connection incorporating the partial interaction effect. The traditional 
axial spring of shear connectors was replaced by rotational spring to make the model 
suitable to extending further than the linear region. A chart was developed to estimate 
the appropriate values of the secant stiffness and strength of a shear stud, since the 
empirical equations that researchers have used in the past can lead to unrealistic results 
in some cases.  

Thirdly, a simplified model, which combined three components of a composite 
connection in one “lump’’ component (RCCS), was developed. It can be used in the 
finite element modelling of a composite connection to overcome the convergence 
problems associated with cracking of concrete and also it will reduce the computational 
time significantly with adequate accuracy. A new procedure to determine the number of 
“active’’ studs was developed. The relationship between the number of “active’’ shear 
studs and the maximum number of shear studs required for a full shear connection was 
derived.  

Finally, the relationship between connection ductility and frame ductility was 
investigated. It was found that the moment resistance and ductility of connection affect 
significantly the whole behaviour of a frame. Consequently, a simple flowchart to 
predict the failure mode of a flush end-plate composite connection was developed. A 
procedure to estimate the moment resistance of a flush end-plate composite connection 
by modifying the existing procedures in the literature to incorporate the partial shear 
connection effect was proposed. Also, the proposed mechanical model was further 
extended using the appropriate post-linear values of its components in order to calculate 
the rotational ductility of a connection.   

All the suggested procedures have been validated with the numerical results using 
ABAQUS, the results from other existing models and experimental tests in the literature 
where available.  
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Notations 

Symbol Definition Unit 

Ab Area of beam  mm
2
 

Abf Area of beam flange mm
2
 

Ac Area of column  mm
2 

Acf Area of column flange mm
2
 

Acj Cross-sectional area of the j-th column  mm
2 

Ar Area of reinforcing bars mm
2
 

Asc Area of a stud mm
2
 

Avc Shear area of the column mm
2 

bbf Breadth of beam flange mm 

bcf Width of column flange mm 

beff,cwc Effective width of column web in compression mm 

cj Distance of the j-th column from the centroid of the column assembly mm 

d Diameter of shear connector mm 

Db Distance from the top row of bolts to the centre of the compression zone mm 

dcw Width of column web mm 

Di,j Lateral stiffness of the i-th storey N/mm 

Dr Distance from the reinforcement to the centre of the compression zone mm 

ds Distance between the centroid of the beam section and the centroid of the 

reinforcement 

mm 

Ec Young’s modulus of concrete N/mm
2
 

Em Mean modulus of elasticity for the embedded reinforcement  N/mm
2 

ERCC Modulus of elasticity of the (RCC) component N/mm
2 

Es Young’s modulus of steel N/mm
2
 

f Frequency 1/sec 

Fb Tensile force of the top row of bolts  N 

Fbase Design seismic base shear force N 

Fc Force in the centre of the compression zone  N 

Fc,bf,Rd The resistance of beam flange in compression N 

Fc,cw,Rd The resistance of column web in compression and buckling N 

Fc,t Force of the concrete tension member N 

fck Characteristic cylinder compressive strength of concrete N/mm
2 

fcm Mean compression strength of concrete N/mm
2
 

fcr Crack strength of concrete N/mm
2
 

fctm Mean tensile strength of concrete N/mm
2
 

fp Tensile strength of end plate  N/mm
2 

Fr Force in reinforcement N 

fr,u Ultimate strength of reinforcement N/mm
2
 

fr,y Yield strength of reinforcement N/mm
2
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FRCC Force in the (RCC) component N 

Fs Force acting on the studs  N 

Fs,T Tensile force of a reinforced concrete uncracked member  N 

Fsc,k Characteristic resistance of the shear stud N 

Fsc,max Ultimate shear strength of the shear stud N 

Fsc,y Yield force of shear connector N 

fu Ultimate tensile strength of shear stud N/mm
2
 

fy,cw Yield strength of column web N/mm
2
 

G Shear modulus N/mm
2 

h Storey height mm 

Hb Depth of the steel beam mm 

hc Depth of column mm 

hd Bending deflection height of the shear connector mm 

hsc Height of shear connector  mm 

hsl Thickness of the concrete slab mm 

I Second moment of area of the steel beam mm
4
 

bI  Modified second moment of area of a beam mm
4
 

J Lowest integer number of shear studs for full shear connection - 

k characteristic parameter account for the effect of axial rigidity  - 

kb Stiffness of bolt N/mm 

kbfc Stiffness of bottom flange of beam in compression N/mm 

kbt 
Stiffness of top row bolts in tension. N/mm 

kbwt Stiffness of beam web in tension N/mm 

kc Stiffness of a group of components in series at the level of the centre of the 

compression 

N/mm 

kcfb Stiffness of column flange in bending N/mm 

kcwc Stiffness of column web in compression N/mm 

kcws Stiffness of column web panel in shear N/mm 

kcwt Stiffness of column web in tension N/mm 

kpb Stiffness of end-plate in bending N/mm 

kr Stiffness of reinforcement in the concrete slab. N/mm 

kRCC Stiffness of an (RCC) spring  N/mm 

ks Stiffness of shear connection; Stiffness of connection spring N/mm 

ks,p Plastic stiffness of shear connectors N/mm 

ksc Secant stiffness of one shear connector N/mm 

Kslab Stiffness of composite slab in composite connection N/mm 

Lb Length of the beam under hogging bending moment adjacent to the connection mm 

lbi Span of the beam in the i-th bay mm 

lr Effective length of bars mm 

lRCC Length of the (RCC) component mm 

Lt Transmission length of crack mm 
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m Mass per unit length of beam kg/mm 

MF 

&MFB 

Fixed end moment in beam N-mm 

Mj,c Moment of composite connection N-mm 

Mj,Rd Moment resistance of connection N-mm 

Mj,s Moment of bare steel connection N-mm 

Mj,sw Moment resistance of steelwork in composite connection N-mm 

Mj,y Yield moment of connection N-mm 

Nact Number of active shear studs - 

Nfull Maximum number of shear studs for a full shear connection  - 

Nsc Number of studs in the hogging moment region - 

Nspr Number of (RCC) springs in series between any two consecutive shear studs  - 

p Spacing between shear studs mm 

p0 Distance between the column face and the first shear stud mm 

q behaviour factor - 

Rb Strength force of top row of bolts N 

Rr Resistance of reinforcement N 

Rs Resistance of shear connectors N 

Sd (T1) The ordinate of the design spectrum at period, T1 m/sec
2 

Sj,c Rotational stiffness of composite connection N-mm/rad 

Sj,s Rotational stiffness of bare steel connection N-mm/rad 

Sj,sw Stiffness of steelwork in composite connection N-mm/rad 

ssc Slip of shear connector mm 

ssc,c Slip capacity of shear connector mm 

ssc,u Ultimate slip of shear connector mm 

tbf Thickness of beam flange mm 

tbw Thickness of beam web mm 

tcf Thickness of column flange  mm 

tcw Thickness of column web mm 

tp Thickness of end plate  mm 

Vi Shear force in the i-th storey N 

wslab Width of concrete slab mm 

z Lever arm between the compressive and the tensile area mm 

 Height of building m 

bi Second moment of area of the beam in the i-th bay mm
4 

cj Second moment of area of the j-th column mm
4 

 Time period  sec 

sf Time period of coupled shear-flexural vibration sec 

 Effective length factor - 

f Ductility of frame. and  - 

j Rotational ductility of connection - 

β Interaction parameter - 
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Δb Extension of the top row of bolts mm 

Δc Extension  of a group of components at the level of the centre of the 

compression 

mm 

Δr Extension  of reinforcement mm 

δred Reduction in deflection mm 

Δs Slip of shear connection  mm 

Δu Top horizontal displacement at ultimate load  mm 

Δy Top horizontal displacement at first yield mm 

Δεsr Increase of embedded reinforcement strain in the cracking state - 

εcr Crack strain of concrete - 

εsmu Ultimate strain for embedded reinforcement - 

εsmy Yield strain for embedded reinforcement - 

εsu Ultimate strain of bare reinforcement - 

εsy Yield strain of bare reinforcement - 

η Degree of shear connection - 

κ shape factor - 

λ Correction factor that depends on T1 and number of storeys; Eigenvalue of the 

free shear flexural vibration of a prismatic cantilever 

- 

ν Poisson's ratio - 

τsm Average bond stress along the transmission length N/mm
2 

φcomp Rotation due to the deformation of connection’s components  mrad  

φsh Rotation due to shear panel of column web  mrad 

 Angular frequency  rad/sec 

 Parameter account for the effect of flexural and shear rigidity of the assumed 

cantilever 

1/mm
2 

j,c Rotation capacity of connection  mrad 

j,ult Rotation of connection at ultimate  mrad 

j,y Rotation of connection at yield  mrad 

u Shear connection ratio based on the ultimate strength of reinforcement - 

y Shear connection ratio based on the yield strength of reinforcement - 

f Eigenvalue of purely flexural vibration  - 

sf Eigenvalue of coupled shear-flexural vibration - 

 reinforcement ratio - 

c,t Stress of the concrete in tension member N/mm
2 

r Stress of the reinforcement in tension member N/mm
2
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Chapter One                                                           

Introduction 

1.1. Introduction  

Traditionally, the methods of analysis and design of steel and composite structures 

idealised the actual behaviour of beam-to-column connections into two simplified 

extreme cases: "perfectly rigid" or "ideally pinned". The “perfectly rigid’’ condition 

implies complete displacement and slope continuity between the column and the beam 

under all conditions of loading, whereas the "ideally pinned" condition implies that the 

rotation continuity is non-existent and almost free rotational movement occurs between 

the connected elements. Experimental investigations have clearly demonstrated that real 

connections have characteristics that fall between these simplified extremes. Thus, most 

of the practical connections of frame structures can be considered as semi-rigid 

connection, as shown in Figure ‎1.1. 

 

 

Figure ‎1.1: Types of connection and its moment- rotation curves (Chan and Chui,2000)  

In addition, the classification of a connection as rigid, semi-rigid and nominally pinned 

depends essentially on the flexural stiffness of the steel beam connected to its end. This 

means that a certain connection may be considered rigid when connected to a steel beam 

with low flexural stiffness (EIb/Lb). However, the same connection may be considered 

semi-rigid or even nominally pinned when connected to a steel beam with double the 

flexural stiffness or more. Consequently, Eurocode 3 (2005) §5.2 and 
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Eurocode 4 (2004) §8.2 use two procedures to classify pure steel and composite 

connections. Firstly, the connection may be classified as rigid, semi-rigid or nominally 

pinned by comparing its stiffness with the flexural stiffness of the beam (EIb/Lb) with 

which it connects. Secondly, the connection may be classified as full-strength, partial 

strength or nominally pinned by comparing the connection design moment resistance 

(Mj,Rd) with the fully plastic moment (Mp) of the member adjacent to the connection. 

Figure ‎1.2 and Figure ‎1.3 show the classification of four types of connection when 

connected to two different sections of steel beam (i.e. UB 610x305x176 and UB 

127x76x13). It is clear from these figures that the same connections can be considered 

nominally pinned when they are connected to the beam with high flexural stiffness. 

However, the connections are considered rigid or semi-rigid when they are connected to 

the beam with low flexural stiffness. These figures also show the boundaries of each 

category as adopted by Eurocode 3 (2005) §5.2 classification. 

     In summary, the category of a connection may change from rigid to semi-rigid or 

even to a nominally pinned connection as the flexural stiffness of the connecting steel 

beam increases. 

 

 

Figure ‎1.2: Examples of connections connected to beam UB 610x305x176 and 

Eurocode 3 boundaries 
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Figure ‎1.3: Examples of connections connected to beam UB 127x76x13 and Eurocode 3 

boundaries 

     Modern structures use composite members for greater performance under normal 

service loading as well as extreme loadings such as blast, impact, fire and earthquakes. 

In these structures, the composite action between the steel beam and the concrete slab 

intensifies the importance of the semi-rigid concept, since the resultant composite beam 

has high stiffness compared with the bare steel beam. Consequently, high beam stiffness 

lead to consider the most types of connection which connect to it as semi-rigid or partial 

strength connection as discussed above. 

     Although the assumption of "perfectly rigid" or "ideally pinned" connection 

behaviour greatly simplifies the structural analysis and design procedures, this 

assumption could result in unconservative predictions of structural response. The 

flexibility of connections significantly affect the internal force distributions and lateral 

displacement magnitudes in the beams and columns of a structure. Both effects can 

influence structural instability and collapse modes, as they are functions of the 

connection flexibility.  

      Recently, the influence of semi-rigid connections on the realistic response of steel 

and composite structures has been recognized, and a provision for semi-rigid joints has 

been given in several national design codes. Therefore, an understanding of typical 
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connection behaviour under load is essential for the analysis of flexibly-connected 

frames.  

     A number of researchers have explored the performance of semi-rigid steel and 

composite connections under static and cyclic loadings (Azizinamini and James, 1989; 

Nader and Astaneh, 1991; Vellascoa et al., 2006; Cabrero and Bayo, 2007).  The main 

conclusions from these studies are: 

1. The semi-rigid approach normally results in greater efficiency, lightness and 

economy of structures; 

2. The flexible and semi-rigid structures have considerable potential for resisting 

earthquake loading; 

3. Connection flexibility and hysteresis are considered to be a significant source of 

damping of vibration in low-mass structures;  

4. It is possible to adjust the flexibility of connections in order to control collapse 

mode and the absorption capacity of energy of frames during earthquakes; and 

5. The semi-rigid frames have the advantage of a longer period and might attract 

lower inertial loads due to seismic ground motions.  

Although the benefits of semi-rigid connections are widely documented, the semi-rigid 

connection design is still facing resistance from structural engineers. Reasons for this 

include: 

1. The complexities and uncertainties in predicting connection behaviour with simple 

analytical models to make it suitable for practical use; 

2. The lack of appropriate models, tools and design methods which incorporates the 

effect of semi-rigid connections in an adequate and simple way so as to bring this 

into everyday design-practice; and 

3. The lack of detailed information, not only about the advantages of the semi-rigid 

design philosophy, but also about the potential risks if its effect is not accounted 

for.  

    Therefore, the first part of this research (Chapters Three, Four, Five and Six) deals 

with isolated connection behaviour in order to develop new simple yet accurate models 

and procedures to predict the main features of steel and composite connection 
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behaviour: (i) initial rotational stiffness; (ii) moment capacity; (iii) rotation at yield and 

rotation capacity to overcome the barrier described in Point 1 above.  

    The second part of this research (Chapter Seven, Eight and Nine) investigate the 

effect of semi-rigid connection on the behaviour of an isolated steel beam and a frame 

with semi-rigid connections. Firstly, the significant effect of a semi-rigid connection on 

deflection, shear forces, bending moment and frequency of an isolated beam with semi-

rigid connections at its ends is presented. Secondly, the effect of a semi-rigid connection 

on the seismic behaviour of semi-rigid steel frame is investigated. New procedures to 

incorporate the effect of a semi-rigid connection in an adequate and simple way in the 

behaviour of a semi-rigid beam and frame are developed in order to overcome the 

difficulties identified in Points 2 and 3 above.  

    Thus, this research will cover both the behaviour of an isolated connection and the 

overall behaviour of semi-rigid structures. 

1.2. Research objectives  

The accuracy and reliability of an analysis or design depends on the degree of 

approximation of the model to the actual behaviour of a connection under loading. 

Rotational stiffness (Sj), moment capacity (Mj,Rd) and rotational ductility (=c/y) are 

the key parameters for the behaviour of steel and composite connections, as shown in 

Figure ‎1.4. 

                               

 

      

As explained above, depending on the first parameter (i.e. rotational stiffness), 

(Eurocode 4, 2004; Eurocode 3, 2005) classify the connections into three categories: 

rigid, semi-rigid and nominally pinned connections. In the same way, connections are 

j,c 

Mj,Rd 

Sj 

Mj,y 

j,y 

Figure ‎1.4: Typical moment–rotation curve of a connection 
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classified as: full strength, partial strength and nominally pinned connections in terms of 

the second parameter (i.e. moment capacity).  

    Even though the rotational ductility of a connection (j) has a significant effect on the 

behaviour of steel and composite structures under extreme loading such as an 

earthquake, there is no quantification of ductility available in the literature. The design 

codes assume that a certain level of ductility will be achieved if the prescribed detailing 

rules are followed. However, this does not cover all of the connection types that are in 

use. Moreover, there is no direct link between the element ductility and the overall 

frame ductility. The lack of detail arises due to the difficulty in estimating the ductility 

of composite connections, which has been attempted for flush end-plate connections in 

the current research. 

   Therefore, to achieve the general aims of this research, the following specific 

objectives are identified: 

1. Investigate, through literature, the key variables and different approaches to predict 

the behaviour of semi-rigid steel and composite connections. Review of the 

analytical and numerical models in the literature and identification of the key 

components of a connection; 

2. Develop a simple mechanical component-based model to calculate the rotational 

stiffness of a flush end-plate composite connection, as this connection is a common 

semi-rigid connection. The model should be general for use with pure steel and 

composite connections, suitable for calculation by hand and with the possibility of 

incorporating it into any finite element software; 

3. Develop a practical chart to estimate the stiffness and strength of a stud shear-

connector in relation to the strength of the surrounding concrete and the diameter of 

the stud;  

4. Develop a simple model to predict the load-slip behaviour of a stud shear-connector 

based on the experimental and numerical results from the literature for strength, 

stiffness and slip capacity; 

5. Develop a new model and derive the associated expression to evaluate the 

behaviour of a reinforced concrete composite slab (RCCS) as one “lump’’ 

component;  
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6. Derive an expression to estimate the active number of a stud shear-connectors in 

the shear span of a composite connection; 

7. Develop a flowchart to estimate the failure mode of a composite connection; 

8. Develop a simple procedure to predict the moment capacity of a flush end-plate 

composite connection; 

9. Develop a simple procedure to predict the rotation at yield and rotation capacity of 

a flush end-plate composite connection; 

10. Propose a new procedure to calculate deflection, shear forces and bending moment 

of a steel beam with semi-rigid connections under a general loading condition. It 

should also possible to use the procedure to compute the deflection of a composite 

steel-concrete member after making some modifications for beam stiffness;  

11. Modify the existing formulae in the literature for rigid plane steel frames to 

incorporate the effect of a semi-rigid connection in the natural periods of semi-rigid 

steel frames, which can be calculated by hand. In addition, conduct a parametric 

study to quantify the effects of semi-rigid connections on the natural periods of 

vibration of plane steel frames; and  

12. Improve the original equations of the well-known Muto’s method by introducing 

new factors to take into account: inflection point position, boundary conditions and 

deflection of an adjacent unloaded upper storey. Subsequently, construct a simple 

“hand’’ procedure in order to determine the first three natural periods of unbraced 

steel frame with rigid or semi-rigid connections.  

1.3. Outline of the thesis 

The main contents are divided into the following ten chapters, and the logical links 

among them are illustrated in a flowchart shown in Figure ‎1.5. 

Chapter One provides a brief introduction to the research background, objectives and 

the outline of the thesis. 

Chapter Two provides a literature review on the benefit of semi-rigid concept in the 

design of structures. Notable experimental tests and analytical approaches in the 

literature are also reviewed and the key components of a connection are identified. 
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In Chapter Three, a simple mechanical component model to calculate the rotational 

stiffness of a composite connection is developed. The effect of each component is well 

studied and modelled. The traditional axial spring is replaced by a simple rotational 

spring to account for the actual rotation of a concrete slab under loading and to make 

this simple model general enough to be used for steelwork and composite connections. 

The validity of the model is evaluated by comparing it with the results from other 

existing models and experimental results.  

Chapter Four presents a practical chart to evaluate the stiffness and strength of shear 

connectors with different diameters and for different strengths of concrete. 

In Chapter Five a “lump’’ component model of reinforced concrete composite slab 

(RCCS) is presented. An analytical expression for the initial stiffness of the “lump’’ 

component is derived. The validity of the result from the proposed expression has been 

verified by finite element analysis using ABAQUS software.     

Chapter Six presents the proposed flowchart to predict the failure mode of composite 

connections. In addition, the proposed procedures to estimate the moment resistance, 

rotation at yield and rotation capacity of composite connections are presented. The 

validity of these procedures is evaluated by comparing them with the results from other 

existing models and experimental results. 

 Chapter Seven presents an analytical procedure for a beam with semi-rigid 

connections under gravity load. The proposed procedure is based on the principle of 

superposition. It overcomes the limitations of previously published procedures.  The 

accuracy of the proposed procedure has been verified by finite element analysis using 

ABAQUS software.     

Chapter Eight presents the development of simplified formulae to calculate by hand 

the natural periods of semi-rigid steel frames. The proposed formulae have been 

developed by modifying of existing formulae in the literature for rigid-jointed plane 

steel frames. The accuracy of these approximate formulae has been verified by 

ABAQUS. Finally, a parametric study has been conducted to quantify the effects of 

semi-rigid connections on the natural periods of vibration of plane steel frames.  

In Chapter Nine an approximate analytical method for calculating the natural periods 

of unbraced steel frames with semi-rigid connections is presented. The original 

equations of the well-known Muto’s method are firstly improved by introducing new 
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factors. The improved equations are then combined with the conventional matrix 

method of vibration to construct a simple “hand’’ procedure to determine the first three 

natural periods of a structure. The accuracy and sensitivity of the approximate 

procedure has been validated by finite element analysis of semi-rigidly jointed steel 

frames using ABAQUS. 

Chapter Ten presents the conclusions of this study and recommendations for future 

work. 
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Chapter Two                                                                  

Literature review 

2.1. Introduction 

This chapter will give a brief overview of the experimental and numerical work 

recorded in the literature to investigate the behaviour of isolated semi-rigid steel and 

composite connections, as well as their effects on the behaviour of a structure with 

semi-rigid connections.  

      In current research, analytical models have been proposed to predict the behaviour 

of isolated semi-rigid connections, as well as to estimate the effect of a semi-rigid 

connection on the natural frequency of frames. Therefore, in this chapter, only the main 

features of experimental, numerical and analytical work will be briefly reviewed and 

discussed. A more specific literature review that clarifies the limitations of the available 

models and procedures will be provided in the relevant chapters. 

 2.2. Semi-rigid concept  

     In 1917, Wilson and Moore first performed experimental tests on the flexibility of 

riveted connections in steel structures. Since then, many experimental and numerical 

works have been carried out and various design methods have been proposed to 

incorporate the semi-rigid concept. Nevertheless, these methods did not gain much 

consideration because of the lengthy computational process involved when assuming 

semi-rigid behaviour.  

     In 1970, a semi-rigid composite connection was first proposed by Barnard. He 

continued some of the slab reinforcement across the column with enough shear studs to 

ensure full composite connection. Since then, extensive research has been carried out to 

investigate the behaviour of isolated semi-rigid composite connections and the effect of 

a composite connection on the behaviour of composite structures. Figure ‎2.1 shows an 

example of a semi-rigid composite connection.  

      The semi-rigid action in structural engineering has received much attention only 

during the past 20 years. The advancement of computer technology and the availability 

of low-cost and high-performance personal computers, together with the substantial 

increase in structural design knowledge, have increased awareness of the need to 
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include connection flexibility in the analysis and design of steel and composite 

structures. 

 

Figure ‎2.1: Example of a semi-rigid composite connection  

2.3. Main approaches to investigate the behaviour of isolated 

connection 

The behaviour of steel and composite structures is highly influenced by the moment-

rotation characteristics of its beam-to-column connections. The moment-rotation 

relationship is nonlinear over the entire range of loading. The rotational stiffness (Sj), 

moment capacity (Mj,Rd) and rotational ductility (j=j,c/j,y) are the key parameters for 

the behaviour of composite connection, as was shown in Figure ‎1.4. 

       It is well known that the experimental test is the best way to determine the actual 

moment-rotation curve of any connection. However, this is very expensive and requires 

a great amount of time, as well as may be impractical in some cases. Nevertheless, in 

some cases (i.e. very important and large structures), the experimental phase is essential 

for the complete investigation of any structural system. Furthermore, experimental 

investigation plays a central role in academic studies. On the other hand, the 

advancement of computer technology, together with the substantial development of 

analytical approaches to predict the moment-rotation behaviour of a connection, makes 

it a potential alternative to extensive experimental tests.  
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Various analytical approaches exist in the literature to predict the behaviour of semi-

rigid connection. These approaches can be classified into three main categories:  

I. Mathematical models based on curve fitting to the available test results, 

II. 2D and 3D finite element models and  

III. Component-based mechanical models.         

 2.3.1. Mathematical models 

These global models fit a skeleton curve through the experimentally obtained key 

parameters (i.e. initial stiffness, moment capacity, post-hardening stiffness and rotation 

capacity), which represent the full moment-rotation response of the connection. 

     Several arithmetic expressions have been proposed to fit the moment-rotation curves 

from the experimental data, such as linear, bilinear, tri-linear, power, the Ramberg-

Osgood, the Richard-Abbott, exponential and polynomial functions. Some researchers, 

such as (Kishi and Chen, 1986), collected the available moment-rotation experimental 

data, published from 1936 up to 1986 on riveted, bolted and welded connections, and 

constructed steel connection data banks at the Purdue university computer centre. These 

models are generally not recommended for a semi-rigid composite connection, as 

sufficient data on this type of connection were not available. Moreover, the mode of 

failure of a connection may change when the connection detailing, beam and column 

sizes are significantly different from the available calibration experiments. 

Consequently, the prediction of the connection behaviour may differ substantially from 

its actual behaviour. 

2.3.2. 2D and 3D finite element models  

Another way to model the behaviour of a connection is by means of finite element 

idealisation. Much work had been carried out in this category. Most of them were 

associated with experimental test which was used to calibrate the finite element models. 

Only notable examples are explained here to demonstrate the main feature of this type 

of modelling.     

      Ahmed et al. (1996) used ABAQUS software to generate a numerical 3D finite 

element model to simulate the response of semi-rigid steel and composite connections. 

One bare steel and three composite flush end-plate connections, tested by (Li et al., 

1996), were used to calibrate the finite element models. Due the symmetry of all of the 
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connections, only one side of the connection was modelled in order to reduce the size of 

the model. The beam, column and the end-plate were modelled using shell elements. 

Interaction elements were used to model the contact between the end-plate and the 

column flange. Bolts were modelled by joint elements. The load was applied equally on 

ten nodes of the beam web to overcome the local yielding problem. Since the tension-

stiffening effect was not included in the concrete material model, the solution did not 

proceed as the concrete slab started to crack. To solve this problem, concrete was 

ignored in the model and multi-point constraints were used in the stud sections to 

transfer the tensile force to the reinforcement. Studs and the reinforcement were 

modelled by beam and truss elements respectively. The slip between the slab and beam 

and the degree of shear interaction were modelled using joint elements.  

       Even though this procedure of modelling provided good agreement with the 

specific experimental test of full interaction composite connections, completely 

ignoring the concrete slab in the finite element model will limit its ability to investigate 

the actual behaviour of composite connections with a partial shear connection. Although 

the tension and compression strength of concrete may have a minor effect on the 

behaviour of a composite connection under hogging moment, the tension-stiffening 

action has a significant effect on the behaviour of reinforcement in the composite 

connection. This effect is augmented as the shear connection decreases. 

       Kattner and Crisinel (2000 ) developed a 2D finite element model to simulate the 

behaviour of a semi-rigid composite connection, as shown in Figure ‎2.2.  

 

 

Figure ‎2.2: 2D finite element model for composite connection using DIANA software 

(Kattner and Crisinel, 2000) 
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The model consisted of beam elements representing the steel profile, concrete slab and 

steel column, and translational spring elements representing the shear connectors, steel 

connection and concrete slab-steel column flange interaction. The model was analysed 

with DIANA, a general purpose, commercial finite element system based on the 

displacement method. Comparisons of simulation and test results showed good 

agreement. 

   (Fu and Lam, 2006 ; Fu et al., 2007 ; Fu et al., 2008; Fu et al., 2010) examined the 

behaviour of eight full-scale, semi-rigid composite connections with precast hollow-

core slabs (HCU), as shown in Figure ‎2.3. Different levels of shear connection, spacing 

and position of first studs from the column face were examined. 

 

 

Figure ‎2.3: General arrangement of test set-up (Fu and Lam, 2006) 

 

They built 3D finite element models using continuum elements with the ABAQUS 

package to simulate the structural behaviour of composite connections, as shown in 

Figure ‎2.4. The model also incorporated nonlinear material characteristics (see Figure 

‎2.5).The same model was used to carry out parametric studies to investigate the 

structural behaviour with variations in size of the beam, thickness of the end-plate, 

thickness of the column web and the depth of precast hollow-core slab. The model 

could predict the mode of failure of all the tests and the moment–rotation response of 

the composite connections with minimal discrepancy. 
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Figure ‎2.4: 3D finite element model of a composite connection using ABAQUS 

software and only part of slab was taken and ignored the tension-stiffening effect 

(Fu et al., 2007)  

 

Figure ‎2.5: The composite connection model with material model of concrete 

(Fu et al, 2007) 

    Gil and Bayo (2008) carried out an experimental program to test internal and external 

semi-rigid composite connections, as shown in Figure ‎2.6. Three tests were performed 

on semi-rigid composite joints with flush end-plates. One of the tests dealt with an 

internal joint with asymmetrical loads, while the other two focused on external 

connections. 

  

Figure ‎2.6: Example of experimental specimens (Gil and Bayo, 2008) 
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Figure ‎2.7: 3D Finite element model using ABAQUS software for internal and external 

connection incorporating the effect of tension-stiffening in concrete modelling 

(Gil and Bayo, 2008)  

The experimental results were used to calibrate the finite element models. The 

ABAQUS finite element models show limitations in modelling the interactions between 

different types of elements and surfaces. Moreover, it was found that solution-

processing of a finite element model is very sensitive to the chosen values of tension-

stiffening in the concrete characteristics model. Improper values can cause conflict in 

the convergence.  

     Many other researchers have used 2D and 3D finite element modelling to investigate 

the behaviour of steel and composite connections, such as (Kattner and Crisinel, 1997; 

Queiroza et al., 2007; Titoum et al., 2008; Dabaon et al., 2009; Queiroz et al., 2009; 

Gizejowski et al., 2010).    

     In fact, some of the finite element models were able to predict the behaviour of semi-

rigid composite connections accurately, i.e. the results were close to the experimental 

observations. A well-calibrated finite element model can reduce the number of 

experiments that needs to be carried out in order to understand certain behaviour in a 

parametric sense. However, the FE models incorporating semi-rigid connections require 

intensive computational effort and time which may be impractical for the analysis of 

large structures. 

2.3.3. Component-based mechanical models  

The mechanical models lie between the mathematical models and finite element models. 

The main feature of mechanical models is that they simplify the process of dealing with 

the complex behaviour of a connection. In addition, the degree of accuracy and 

applicability of this model without intensive computations compared with the detailed 
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finite element models make it the best practical tool to analyse a semi-rigid composite 

connection. Furthermore, it is the more realistic option from a perspective design.   

     The component-based method combines the analytical model of the individual 

connection’s components to model the complex behaviour of connections using only the 

material and geometrical properties of these components. Equilibrium and compatibility 

requirements are used in its formulation without the very high computational effort 

required by the finite element method. The connection is modelled through a series of 

mechanical springs (components), as shown in Figure ‎2.8.  

 

 

Figure ‎2.8: Example of mechanical model (Ahmed and Nethercot, 1997) 

Every spring is modelled using the stiffness and strength of the associated component 

by a process of simple bilinear modelling with the aid of experimental evidence. Silva et 

al. (2002) also incorporated the ductility of each component in one such model. 

The main outputs of a mechanical model are stiffness, moment capacity and rotational 

capacity of steel or composite connections.  

     A number of mechanical models exist in the literature. Most of them are adequate to 

simulate semi-rigid steel connections. Very few of the models are suitable for the 

simulation of semi-rigid composite connections. Furthermore, these models ignored or 

played down the effect of some of the important characteristics of semi-rigid composite 

connections, such as the slip between a concrete slab and steel beam in the case of 

partial shear interaction, the effect of the bond forces between concrete and the 

reinforcement between adjacent cracks and the effect of compression forces between the 

steel column and the concrete aligned to it.  

      The accuracy of any spring model not only depends on the number of component 

springs or procedures to find the equivalent spring for the whole composite connection, 
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but the results are also very sensitive to the stiffness of each individual spring. 

Therefore, an accurate model must be capable of representing not only the true relation 

between its components but also the stiffness of each effective parameter in the 

connection. 

    In Chapter Three, a literature review of notable mechanical models will be presented, 

as the main objective of that chapter is to develop a new mechanical model with a 

rotational spring to represent the shear connection effect. The proposed model may be 

used to calculate the rotational stiffness of bare steel and a composite flush end-plate 

connection. In Chapter Six, the same model will be used, with necessary modifications 

to calculate the moment resistance, rotation at yield and rotational capacity of a 

connection.  

2.4. Main approaches to investigate the effect of a semi-rigid 

connection on the natural frequency of structure 

As the second part of this research focuses on the effect of a semi-rigid connection on 

the whole behaviour of a steel beam (Chapter Seven) and on the natural frequency of a 

steel frame (Chapters Eight and Nine), this part of the literature briefly review the 

notable works in the literature in this field which confirm the necessity of considering 

the effect semi-rigid connection in the analysis or design of any structural system. A 

more specific literature review which critically analyses the available procedures will be 

provided in the relevant chapters. 

2.4.1. Background 

Recently, the influence of semi-rigid connections on the realistic response of steel and 

composite structures has been documented, and specification for semi-rigid connections 

has been given in several national design codes. Connection flexibility is the crucial 

source of non-linearity in the behaviour of structures under static and dynamic loading, 

and it plays an essential role in structure behaviour which is dominated by a deflection 

limit state, instability or vibration. Flexible connections affect significantly the 

deformations, stress distributions and dynamic responses of a structure. Moreover, 

connection flexibility and hysteresis are considered to be a significant source of 

damping for vibration in low-mass structures.  
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2.4.2. Beam with semi-rigid connections 

 Jones et al. (1983) demonstrated that the semi-rigid approach leads to smaller beam 

sizes and their rotational stiffness can be adjusted for an optimal distribution of the 

bending moments in the beams.  

       Nethercot et al. (1988) reviewed the effect of three cases of connection: fixed, semi-

rigid and nominally pinned on the behaviour of a steel beam. The end moments are 

critical for the design of an isolated beam with fixed connections, whereas the span 

moment is critical for the design of a simply supported beam. However, the end and 

span moments may be nearly balanced for a beam with semi-rigid connections. Also, 

the elastic deflection is reduced by end fixity compared to the simply-supported 

condition. Columns are another source of economy, where the consideration of actual 

restraint conditions may lead to more reliable methods of design. 

     McGuire (1995) performed a NASTRAN normal modes analysis to the finite 

element model of steel beam with semi-rigid connections in order to calculate the 

minimum natural frequency of beam for various values of connection stiffness. It was 

found that the beam behaves as pinned-pinned beam when the connection stiffness ratio 

(i.e. ks/ (EI/L)b) is less than 1.0 and as fixed-fixed beam when the connection stiffness 

ratio is more than 100. Consequently, the beam behaves as semi-rigid beam for the 

connection stiffness ratio between 1.0 and 100. 

     Chan and Chui (2000) investigated the effect of changing the stiffness of end 

connections on the natural frequency of beams. It was found analytically that the change 

of the stiffness of connection has the significant effect on the natural frequency of 

beams and ignoring this effect may lead to significant error in vibration analysis of 

semi-rigid beams.   

        The above discussion clearly demonstrates the necessity of considering the semi-

rigid concept in the design of a beam in order to develop a safe and economical design. 

2.4.3. Frame with semi-rigid connections 

In earthquake engineering, the estimation of the level of design seismic base shear force 

(Fbase) of a structure requires the fundamental period to be determined in advance.  

Eurocode 8 (2004) §4.3.3.2.2.(1) presents the following expression to compute the 

seismic base shear force for multi-storey buildings which can be transformed into an 
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equivalent Single Degree of Freedom (SDOF) system using the procedure of (Eurocode 

8, 2004)-Annex B: 

  1 .base dF S T m  (2.1) 

where Sd (T1) is the ordinate of the design spectrum at period, T1, 

 T1 is the fundamental period of vibration, 

  m is the total mass of the building, 

 λ is a correction factor that depends on T1 and number of storeys. 

In addition, Eurocode 8 (2004) §3.2.2.5 states that the design spectrum (Sd(T1)), which 

is the reduced spectrum to avoid inelastic structural analysis explicitly  in design, 

accounts for the  capacity of the structure to dissipate energy through its ductile 

behaviour. Three different expressions have been given in (Eurocode 8, 2004) 

§3.2.2.5.(4) to calculate the design spectrum for different ranges of fundamental period. 

These expressions relate the design spectrum to fundamental period and the behaviour 

factor (q). The behaviour factor is given for various materials and structural systems 

according to the relevant ductility classes of the structure.   

  It is clear from the above discussion that the natural period (or frequency) and ductility 

are the most important properties of a structure for seismic design.      

2.4.3.1. Experimental works 

Many tests are reported in the literature which has focused on the behaviour of semi-

rigid frames. Since the behaviour of any structure under seismic loading is related to the 

combined effects of its ductility and natural period, the determination of these properties 

is one of the objectives of this research.  

     Gerstle (1988) carried out a numerical study to investigate the effects of the 

rotational stiffness of connections on the overall behaviour of unbraced frames. These 

effects were found to be in the following two categories: (i) the reduction in connection 

stiffness for a nominally rigid frame will increase the frame sway deformation under 

lateral loads, and will increase the natural period of vibration of the frame; (ii) the 

connection rotation will influence the distribution of the internal forces and moments in 

beams and columns. Therefore, ignoring the connection flexibility in analysis may lead 

to unrealistic predictions of stresses and deflections. Gerstle (1988) also investigated the 

effect of connection flexibility on the top storey sways of many frames with heights 
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ranging from 5 to 25 stories (3.6 m per storey) with (height/width) ratio ranging 

between 0.5 and 3. The results of the investigation indicated that the sway of a semi-

rigid frame is about 40% over that predicted by assuming rigid-frame, and the sway for 

a nominally pinned-frame may exceed 100 to 200% of that of a rigid frame. Therefore, 

it was concluded that the share of connection rotation ranges from 1/3 to 2/3 of total 

sway. The result of the above study supports the previous conclusion for the necessity 

of considering the semi-rigid concept in design of frame structures under static or 

dynamic loading in order to get safe and economical design. 

      Nader and Astaneh (1991) investigated experimentally the effects of connection 

flexibility on the dynamic response of a single storey steel structure, as shown in Figure 

‎2.9.  

 

Figure ‎2.9: Test structure arrangement (Nader and Astaneh, 1991) 

Three types of connection had been used: nominally pinned, semi-rigid and rigid 

connections. Each of these structures was subjected to three types of earthquake with 

maximum peak acceleration ranges between 0.05 g and 0.5 g. These types of earthquake 

were the 1940 El Centro S00E, the 1985 Mexico S60E and the 1952 Taft N21E. 

 From these tests, it was found that: 

1. The response of the nominally pinned structure was considerably nonlinear. The 

rigid structure was almost elastic and the semi-rigid structure showed more inelastic 

hysteresis response, but with almost no degeneration in stiffness;  

2. The maximum base shear in the rigid structure was about 2.5 times of the 

maximum base shear for the nominally pinned structure;  

3. The maximum lateral drift in the nominally pinned structure was only 30% more 

than the maximum lateral drift in the rigid structure. The base shear and lateral drift 
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in the semi-rigid structure was in between the ranges for rigid and nominally pinned 

structures; and 

4. The semi-rigid connection had 20% more rotation than the rigid connection, while 

its maximum moment was only 15% less than the maximum moment for the rigid 

case. 

       In summary, an increase in connection stiffness results in an increase in the base 

shear forces for the same ground motion, while the associated lateral drift did not 

decrease in the same proportion. This conclusion reveals that the rigid connection is not 

the optimal solution for dynamic loading, since the optimal design of a structure should 

ensure the lowest possible base shear forces associated with an acceptable amount of 

lateral deformations. The test structures with semi-rigid connections behaved well and 

had moderate base shear forces and yet they did not develop large lateral deformations. 

       Moreover, Nader and Astaneh (1991) found that the semi-rigid connections can 

dissipate the energy in hysteresis behaviour better than the other type of connections. 

This virtue may improve the dynamic performance of semi-rigid frames in low-rise 

buildings.  Furthermore, the moment capacity of the semi-rigid connections was higher 

than expected.  Based on these results, it was concluded that the semi-rigid structures 

have considerable potential for resisting earthquake loading. Further experimental and 

numerical work on the effect of semi-rigid connections on the seismic behaviour of 

structure was recommended; the aforementioned is one of the objectives of the current 

research. 

        Ohi and Hyoukchoi (2006) investigated the effect of semi-rigid connections on the 

dynamic behaviour of structures under earthquake. It was shown that it is possible to 

adjust the flexibility of connections in order to control the collapse mode and the energy 

absorption capacity of frames during earthquakes. 

     Several authors, such as (Azizinamini and James, 1989; Dhillon and Malley, 1999; 

da S. Vellasco et al., 2006; Ihaddoudène et al., 2009), studied the performance of semi-

rigid steel beam-to-column connections under static and cyclic loadings. It was found 

that the use of semi-rigid connections for building frames will lead to potential 

economies by adjusting connection stiffness to achieve optimal distribution of the 

bending moments of the connected members. 
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All of the above numerical and experimental works confirm the potential effect of semi-

rigid connection on the behaviour of structures under static and dynamic loading.  

2.4.3.2. Approximate procedures  

Since one of the objectives of this research is to develop new hand calculation 

procedures to estimate the natural frequency of structures with semi-rigid connections, 

only a brief review of some of these procedures documented in the literature is 

presented here. A more specific literature review which identifies the shortcomings of 

the available procedures will be provided in the relevant chapters. 

      Current seismic design codes provide empirical equations which relate the 

fundamental period to the height of the frame, and the code implicitly assumes that the 

contribution from higher modes of vibration is insignificant. These formulae are usually 

dependent on the building material, building type (frame, shear wall, etc.) and overall 

dimensions. These formulas take the form: 

  T H   (2.2) 

in which α and β are constants which depend on the building behaviour. In addition, 

there are many other empirical formulae in the literature which have the same general 

form as Eq. (2.2) but with different constants. None of these empirical formulae take 

into account the effect of connection behaviour on the behaviour of a frame.  

    Also, the design codes allow estimation of the fundamental natural period using more 

complex procedures, such as Rayleigh's method and computer-based eigenvalue 

analysis, which makes them impractical for many situations. Consequently, many 

researchers have investigated the applicability of using approximate hand calculation 

methods which have the merits of simplicity while maintaining the required degree of 

accuracy.  

    Goel and Chopra (1998) developed a formula to calculate the fundamental natural 

frequency of concrete shear wall building as equivalent cantilever beam using 

Dunkerley’s method by calibrating a theoretical formula with the measured period data. 

This formula takes this form: 
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in which m is the mass per unit height; G is the shear modulus; A is the cross-sectional 

area of the equivalent beam; ν is Poisson's ratio and κ is the shape factor (=0.8333 for 

rectangular sections) and D is the plan dimension of the cantilever in the direction in 

question.  

   Assuming the frame as equivalent shear-flexure cantilever beam, Chrysanthakopoulos 

et al. (2006) proposed a procedure to estimate the first three vibration periods. A plane 

frame which has uniform properties along its height was modelled as equivalent 

flexural-shear cantilever beam for which the analytical expression of its natural period 

has the form (Smith and Crowe, 1986; Chrysanthakopoulos et al., 2006): 

 2

2 m
T

EI




  (2.4) 

Where                                                    
2

4 m

EI


   

in which m and EI are the approximate mass per meter and flexural rigidity of an 

equivalent uniform cantilever beam respectively. The ω is the circular natural 

frequency. Similar to the empirical equations, all of the approximate methods above 

assumed the beam-column connections as rigid, even though the period of a semi-rigid 

frame can be twice that of a rigid frame (Smith and Crowe, 1986).  

In this research, two new approximate procedures have been developed, taking into 

account the effects of semi-rigid connections by modifying some of the previous 

methods in the literature.  
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Chapter Three                                                                                     

Mechanical model for predicting the rotational 

stiffness of a flush end-plate composite connection 

incorporating the effect of partial interaction 

3.1. Introduction  

 The behaviour of a composite structure is highly influenced by the moment-rotation 

characteristics of beam-to-column connections. The rotational stiffness, ultimate 

moment and rotational capacity are key parameters in defining the aforementioned 

characteristics. Experiments, simplified analytical models, finite element models, and 

empirical equations based on existing experimental data are the main approaches to 

derive these parameters for a particular type of connection. Simplified models are the 

most realistic option from a design perspective. 

     A number of researchers in the past developed various simplified models to predict 

each of these parameters as closely to the experimental results as possible. These 

models may differ in form, but all of them are based on: spring models to estimate the 

equivalent rotational stiffness for the whole connection, a block model to estimate the 

ultimate moment, and the compatibility requirement in plastic range to predict the 

rotational capacity of the connection.  

     The rotational stiffness is more important than the other parameters, due to its use in 

classification of structures as rigid or semi-rigid. Rotational stiffness also plays a key 

role in the vibration design of composite structures. All simplified spring models have 

similar forms, but the springs vary in number; the number of springs represents the 

number of effective parameters in the composite connection. The accuracy of any spring 

model depends not only on the number of component springs or procedures to find the 

equivalent spring for the whole composite connection, but the results are also very 

sensitive to the stiffness of each individual spring. Therefore, an accurate model must be 

capable of representing not only the true relationship between its components but also 

the stiffness of each effective parameter in the connection. 
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 In this work, a simple mechanical component model is developed. The effect of each 

component is well studied and modelled. The traditional axial spring which is used to 

model the effect of shear connectors is replaced by a simple rotational spring to account 

for the actual rotation of a concrete slab under loading and to make this simple model 

suitable for using  with steelwork and composite connections, appropriate for modelling 

with any finite element software and able to extend further than the linear region with 

valid values for the stiffness of components, since it is based on the equilibrium and 

compatibility requirements. The theoretical basis of this model is also derived. 

Furthermore, a simple and effective procedure to evaluate the equivalent stiffness of the 

shear connection is developed. The validity of the model is evaluated by comparing the 

results with those recorded from other existing models and experimental tests. 

3.2. Flush end-plate composite connection 

 Some of the common bolted composite connections that can be classified as semi-rigid 

or partial strength are double web cleat, flush end-plate, and top and seat angle. Figure 

‎3.1 shows a typical flush end-plate composite connection. 

 

 

Figure  3.1: Typical flush end-plate composite connection 

3.2.1. Why flush end-plate composite connection? 

A Flush end-plate composite connection (Figure ‎3.1) was selected in this study for a 

number of reasons: 

1. Due to economic factors and ease of construction, it is the most common choice in 

design (Loh et al., 2006); 
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2. Experimental tests carried out by (Nethercot, 1995) showed that flush end-plate 

connections generally provide the appropriate rotational stiffness and considerably 

greater levels of moment capacities than the other types of connections; and 

3. The majority of the experimental work on composite connections published from 

1989 to 2006 involves composite flush end-plate connections to I-beam sections 

connected with H-section columns, as presented in the literature survey carried out 

by (Loh et al., 2006). As the current research does not have an experimental 

component, data from the literature are vital to validate the analytical and numerical 

models.  

3.2.2. Key parameters of a flush end-plate composite connection 

The most effective parameters for the behaviour of a composite connection under 

symmetrical loading are the following (see Figure ‎3.1): 

1. The stiffness and ductility of the reinforcement in the concrete slab.  

2. The stiffness and ductility of the shear connectors. 

3. The stiffness and ductility of the components in the level of the bottom flange of 

the beam (i.e. the column web in compression, bottom flange of the beam in 

compression, buckling strength of the column web and beam bottom flange if no 

stiffener of the column web is present in this level). 

4. The stiffness and ductility of the components at the level of the top row of bolts. 

These components consist of the column web in tension, the column flange in 

bending, the beam web in tension, the end-plate in bending and the top row of bolts 

in tension.  

 If there is asymmetrical loading, the effect of shear deformation of the column panel 

zone should be taken into account. Table  3.1 lists the effective components and their 

symbols which are used in the calculation of the rotational stiffness of a flush end-plate 

composite connection. A typical model of a flush end-plate composite connection with 

its force distribution and deformation is shown in Figure  3.2. 
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Table  3.1: Main parameters for a flush end-plate composite connection 

Component Stiffness symbol 

Reinforcement in the concrete slab. rk  

single shear connecter sck  

shear connection sk  

column web in compression cwck  

column web in tension cwtk  

column flange in bending cfbk  

bottom flange of beam in compression bfck  

beam web in tension bwtk  

end-plate in bending pbk  

top row bolts in tension. 
btk

 

 

 

 

 

                                                                               

Figure  3.2: Typical model of a flush end-plate composite connection with its 

deformation 
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In reference to Figure  3.2 , the following points should be noted: 

1. All forces and deformations shown in the figure are within the range of 

serviceability limit states.  

2. Fr and Fs are the forces acting on the reinforcement and studs respectively. 

3. Fb is the force acting on the top row of bolts, but kb is the stiffness of a group of 

components in series at the level of top row of bolts.  

4. Fc is the force in the centre of the compression and kc is the stiffness of a group of 

components in series at the level of the centre of the compression (Eurocode 3, 

2005) which are the column web in compression, kcwc, and column web panel in 

shear, kcws for the asymmetrical loading case. 

3.3. Background  

To date, various finite element and mechanical models have been developed and 

introduced to predict the rotational stiffness of beam-to-column connections. Most of 

them are applicable for pure steelwork connections and few of the models are applicable 

to predict the rotational stiffness of a composite connection. The mechanical models 

simplify the behaviour of the connection and approximate the response of the key 

elements. Furthermore, most of these models assume full interaction between the 

concrete slab and the steel beam, excluding the possibility of slip at the interface. 

Aribert (1996) carried out experimental tests and finite element numerical simulations 

on flush end-plate composite connections with different degrees of shear connection. 

Significant effect of interface slip was observed on the overall behaviour, even in the 

case of a full shear connection. Only a few models in the literature considered the slip 

when calculating the rotational stiffness.  

 3.3.1. Requirements of an “ideal model’’ 

In order to investigate the advantages and limitations of the previous simplified 

mechanical models, the basic requirements of an “ideal model’’ are described first. 

These are as follows: 

1. It should be simple; 

2. The model should be applicable to both composite and bare steel flush end-plate 

connections; 
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3. The actual behaviour of the composite connection  should be considered; 

4. The actual configuration of the composite connection after deformation should be 

reflected; 

5. The derivation of mathematical expressions to calculate rotational stiffness should 

use all existing forces and moments in the configured model; 

6. It should be possible to model it easily in any finite element software; 

7. The results of the analytical expressions and finite element modelling of the 

mechanical model should be identical; 

8. It should be able to extend further than the linear region, with valid values for the 

stiffness of the components, since it is based on the equilibrium and compatibility 

requirements; and  

9. It should use appropriate procedure to estimate the stiffness of each component.   

3.3.2. Significant models from the literature  

Aribert and Lachal (1992) carried out eight tests on a flush end-plate composite 

connection in order to evaluate the effective components of a composite connection and 

to investigate the whole behaviour of a composite connection. Based on these tests, they 

derived expressions to calculate the rotational stiffness of the composite connection Sj,c 

using a simple summation of the moment resistance of the steel connection Mj,s and the 

moment resistance of concrete slab Mslab for the same rotation θ , as follows: 

 , , ,,       jj c j s slab jc s bs laSM M M S S  (3.1) 

 , , , ,

2    j c j s slab j c j s sla rbS KS S S S D  (3.2) 

The term Kslab accounts for the contribution of the reinforcement and shear studs to the 

rotational stiffness of the connection: 
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 

 
  

 

 (3.3) 

where Dr is the distance from the reinforcement to the centre of the compression in the 

lower flange of the steel beam; Hb is the depth of the steel beam; Nsc and ksc are the 

number and secant stiffness of the shear connector; α is the increase factor, taken as ≈2. 

This simple approach did not consider the additional increase in compressive force, Fc  
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(see Figure  3.2), which leads to an increase in tensile force of the top row of bolts, Fb 

The difference between the moment resistance of the bare steel connection, Mj,s, and the 

moment resistance of the steelwork in the composite connection, M

j,s, for the same 

rotation can be calculated as follows (see Figure  3.3): 

 

 

 

 

 

 

 

 

 

 

 

 

                  

                         

                      a) Bare steel connection              b) Composite connection  

Figure  3.3: Internal forces and deformation in bare steel and composite connections 
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where  

   is the deformation of a bolt in a bare steel connection

   is the deformation of a bolt in a composite connection

   is the force of a bolt in a bare steel connection
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Substituting Eq. (3.6) in Eq. (3.5): 

    


bc bs b

b b b

F F D e

k k D
 (3.7) 

         


  b
bc bs

b

D e
F F

D
 (3.8) 

    , ,        and        j s bs b j c bc b r rM F D M F D F D  (3.9) 

  , 


     b
j c bs b r r bs b bs r r

b

D e
M F D F D F D F e F D

D
 (3.10) 

      , ,,          bs rj c j s r j s r rM M F e F D M F D  (3.11) 

    , ,     j bsj s sM M F e  (3.12) 

The moment resistance of the bare steel connection (Mj,s) can only be equal to the 

moment resistance of the steelwork in a composite connection (M

j,s) if there is a very 

low reinforcement ratio or at a lower applied moment, i.e. e≈0. 

      Benussi and Noe (1994) proposed a simple spring model to predict the rotational 

stiffness of a partial-depth end-plate composite connection without taking into account 

the slip of the shear connectors.  

                                        

Figure  3.4: (a) Benussi and Noe’s model   (b) Anderson and Najafi’s extended model 

This model was extended to an end-plate composite connection incorporating the effect 

of the slip of the shear connectors by (Anderson and Najafi, 1994), as shown in Figure 

‎3.4. They also performed four experimental tests on a flush end-plate composite 

connection in order to assess their model. In this model, the effect of the shear 

connectors was modelled as an axial spring at the level of the slab-beam interface, 

which has a stiffness of ks. The components of the steelwork connection were modelled 
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as one spring at the top row of bolts level, Db, with a stiffness of kb, and assumed that 

the rotation of the connection is around the centre of the bottom beam flange. The 

concrete was assumed to be cracked. From the equilibrium and compatibility the 

following equation was derived to evaluate the rotational stiffness of the whole flush 

end-plate composite connection: 

 
2

, 1 1
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

r b
j c b b

r s

D H
S k D

k k

 (3.13) 

The model did not consider the actual deformations of the compression components, as 

it was limited to a special case of stiffened column web, as in the experimental tests. 

Therefore, the stiffness of the column web, kc, was assumed to be equal to infinity, 

which may have a finite value in many situations, even if the column web is stiffened. 

Also, the stiffness of the shear connectors, ks, was calculated based on the assumption 

that the slip at the connection depends only on the nearest stud to the column; the 

stiffness of the shear connectors was therefore taken to be a constant value (200kN/mm) 

for all cases of the composite connection. In fact, a number of theoretical and 

experimental studies have shown that all shear connectors shared the longitudinal shear 

resistance in the interface between the concrete slab and the steel beam (Ahmed and 

Nethercot, 1996; Aribert and Dinga, 2000). In addition, the model did not reflect the 

actual configuration of the composite connection after deformation, as it used a vertical 

rigid bar to connect the axial studs' spring with the reinforcement's spring.  

      Ren and Crisinel (1996) proposed a simple mechanical model which reflected the 

actual configuration of the composite connection after deformation, as shown in Figure 

‎3.5.  

 

Figure  3.5: The spring model of (Ren and Crisinel 1995) 

They incorporated the column web deformation at the level of the beam's bottom flange 

in the derivation of a formula to relate the moment applied to the composite connection 
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with its rotation. This formula can be used to calculate the rotational stiffness of the 

flush end-plate composite connection:  
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 (3.14) 

where Dr, kr, ks and kc have the same definition as before. This derivation is based on 

the simple summation of the reinforcement and bare steel connection capacities to 

calculate the moment capacity of the composite connection. This simple approach did 

not consider the actual behaviour of the steelwork component in composite connection, 

as explained before in (Aribert and Lachal, 1992)'s model. 

     Ahmed and Nethercot (1997) developed a simple mechanical model which is the 

most common current model to predict the rotational stiffness of a flush end-plate 

composite connection, as shown in Figure  3.6. It also considered the increase in Fc and 

the effect of deformation of the compression zone. Based on this mechanical model, 

they derived mathematical expressions to calculate the rotational stiffness of a flush 

end-plate composite connection as follows: 
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 (3.15) 

The definition of all symbols is the same as before. 

                                 

Figure  3.6: Ahmed and Nethercot spring's model 
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In fact, they simply modified the mechanical model of (Anderson and Najafi, 1994) (see 

Figure ‎3.4) to incorporate the effect of the stiffness of the compression zone in their 

model. Therefore, the centre of rotation of the composite connection will not be in the 

centre of the beam's bottom flange, as assumed in (Anderson and Najafi, 1994)‘s model. 

(Ahmed and Nethercot, 1997)'s model did not consider the effect of shear in the column 

web panel, which is a very important factor in the overall behaviour of asymmetrical 

composite connections and its effect should be considered, as stated by (Eurocode 3, 

2005). Furthermore, the procedure employed to calculate the stiffness of all of the key 

parameters in this model was based on a statistical study of all previous available 

procedures and then the value which gave the best agreement for this specific model 

with the experimental results was chosen. These values may not represent the actual 

stiffness of these parameters and may not be valid for other cases. Furthermore, the 

model did not reflect the actual configuration of the composite connection after 

deformation, as the concrete slab rotates with the steel beam and this affects the 

deformation of the reinforcement. In addition, the derivation of the mathematical 

expression to calculate the rotational stiffness of the composite connection did not take 

into account the fixed moment required to keep the rigid bar, which connects the studs' 

spring with the reinforcement's spring, in a vertical orientation. Therefore, the 

mathematical expression did not represent the associated mechanical model. This 

inconsistency in reaction's forces leads to inconsistency in the gained results from the 

mathematical expression and the finite element modelling of the mechanical model. The 

expression always gives larger values of rotational stiffness and consequently less 

rotation for the same applied moment, as will be explained in detail in the following 

section. It may have little effect on the rotational stiffness of the composite connection 

in the linear region of the moment-rotation curve for some cases, but it will limit the 

ability of this model to extend further than the linear region, with valid values for the 

stiffness of the components.  

Liew et al. (2000) used  a procedure similar to (Aribert and Lachal, 1992)‘s model 

that was calculated the rotational stiffness of composite connection, Sj,c, by adding the 

stiffness of the steelwork, Sj,s, to the stiffness of the reinforced slab, which was 

considered to be made up of the combination of the reinforcement stiffness, kr, and the 

summation of the stiffness of shear connectors, Nsc ksc. 
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where hrs, hss are the equivalent lever arm of the reinforcement and shear connectors in 

the slab and Nsc is the number of shear connectors. This approach did not consider the 

difference in behaviour of the steelwork component in the composite connection and the 

bare steel connection, as explained before with (Aribert and Lachal, 1992)'s model.       

     Eurocode 4 (2004) used another approach to calculate the initial rotational stiffness 

of the composite connection. The effect of shear connectors was taken into account by 

modifying the stiffness of the reinforcement spring, kr, multiplied by a reduction factor, 

Kslip: 
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The stiffness of all of the studs in the slab-beam interface, ks, was calculated by an 

equation developed by (Aribert, 1996). This equation was derived assuming cracked 

composite cross-sections and using the elastic interaction theory of a composite beam, 

as will be explained in Section 3.9.4. In fact, this approach was an extension of the 

component model for the steelwork connection to be used with a composite connection 

by considering the reinforcement component as an additional row of bolts located at the 

level of reinforcement. This type of modelling did not consider the difference in 

behaviour of the concrete slab with shear connectors and the behaviour of an additional 

row of bolts, from the perspective of the distribution of forces and deformations. Also, 

this procedure combined the reinforcement steel and shear connectors in the same 

spring, despite the fact that they are on different levels. These considerations may have 

little effect on the rotational stiffness of high to full shear connection ratios of a 

composite connection, but this effect may be unacceptable in the case of partial shear 

connections.  In addition, this will limit the ability of the model to extend further than 

the linear region of the moment-rotation curve using valid stiffness of the components.  

      It should be noted that even though the symbols of the key parameters for all of the 

previous models have the same meaning, different procedures were used by different 

researchers to calculate them; this will be discussed in the following sections. 
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3.4. Proposed mechanical model 

3.4.1. Basic parameters and springs in the proposed mechanical model 

In general, the rotation of a composite connection, which is defined as the change in 

angle between the steel beam axes and the column axis, consists of two parts: 

(i) The rotation due to the deformation of the connection’s components, φcomp. 

(ii) The rotation due to the shear panel of the column web, φsh. (for asymmetrical 

loading).  

The total rotation of the connection is: 

    total comp sh  (3.18) 

In order to construct the proposed mechanical model, the following considerations were 

taken into account in order to make the model compatible with (Eurocode 4, 2004) 

requirements: 

1. The tensile strength of the concrete was ignored.  

2. Typical components of a flush end-plate composite connection are (see Figure ‎3.1): 

(i) longitudinal steel reinforcement in tension, kr, which has a vital effect on the 

overall behaviour of a composite connection; (ii) shear connectors located in the 

concrete slab–steel beam interface, ks, since the degree of interaction between them 

greatly affects the behaviour of composite connection; (iii) the column web panel in 

shear, kcws; (iv) end-plate in bending, kpb; (v) column flange in bending, kcfb; (vi) 

column web in compression, kcwc; (vii) column web in tension, kcwc; (viii) bolts in 

tension, kbt. 

3. Eurocode 3 (2005) §6.3.2 states that the stiffness coefficients of the following 

components need not be taken into account in calculation of the rotational stiffness 

of connections (i.e. stiffness coefficients equal to infinity): (i) beam's web in 

tension, (ii) beam's flange and web in compression and (iii) end-plate in tension or 

compression. Its deformations were assumed to include in the deformation of the 

beam in bending and does not contribute to the flexibility of the connection 

(Weynand et al., 1996).  
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4. Eurocode 3 (2005) §6.3.1(3) states that “for a bolted end-plate joint with more than 

one row of bolts in tension, the stiffness coefficients for the related basic 

components should be combined’’. Therefore, for simplicity, the flush end-plate 

with only one row of bolts will be considered. 

5. According to (Eurocode 3, 2005), the stiffness coefficient of the combined 

components at the level of the top row of bolts, kb, which are: column web in 

tension, kcwt; column flange in bending, kcfb; end-plate in bending, kpb; and bolts in 

tension, kbt is given by: 
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6. Following the procedure of (Eurocode 3, 2005), the column web panel in shear and 

the column web in compression were combined to yield an equivalent component 

with a stiffness coefficient, kc, which is given by: 
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 (3.20) 

Therefore, only four springs should be modelled in the mechanical model, as shown in 

Figure ‎3.7, in order to simulate: 

(i) Longitudinal steel reinforcement in tension, kr. 

(ii) Shear connectors located in the concrete slab–steel beam interface, ks. 

(iii) Combined components at the level of the top row of bolts, kb, from Eq. (3.19). 

(iv) Combined column web in shear and compression, kc, from Eq. (3.20). 
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Figure  3.7: Proposed mechanical model 

3.4.2. Derivation of the expressions for the mechanical model 

To define the rotational stiffness of the shear connection spring, k, in terms of linear 

spring stiffness, the moment in this spring, M, can be written using the following 

equation: 

   


  s

r

M k k
d

 (3.21) 

From the equilibrium of the upper part of the composite connection, the following 

relationship can be written: 

    r r s r s s rM F d F d k d  (3.22) 

From Eq. (3.21) and Eq. (3.22) we get:         
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The stiffness deformation relations are: 

    , ,      b b b r r r c c cF k F k F k  (3.25) 
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  s rd  (3.26) 

 tan   r s c rD  (3.27) 

     ta  tan n       b c cb bbD D  (3.28) 

For the small angle (tan=) where  is the total rotation of the composite connection, 

as mentioned in Eq. (3.18). Subtracting Eq. (3.28) from Eq. (3.27) results, in the 

following: 

      r s b r bD D  (3.29) 

The equilibrium condition gives: 
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Substituting Eq. (3.30) in Eq. (3.28) results in: 
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b b

r r b b b c r r
b

c c b

k k D k k
D

k k k
 (3.32) 

Substituting Eq. (3.31) and Eq. (3.32) in Eq. (3.29) results in: 

 
 

 
 


 

  

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 b c r r
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D k k
D D

k k

k

k
 (3.33) 
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 (3.34) 
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 (3.35) 
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 (3.36) 
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 (3.37) 

Substituting Eq. (3.36) in Eq. (3.32) results in: 
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   

 

 1 1 11
 

= 
1 1 1


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k
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 (3.38) 
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F  (3.39) 

By taking the moment about the centre of compression and assuming that there is no 

compression force in the beam web, provided that the internal forces for the calculation 

of rotational stiffness are low, then: 

 ,j c r r b bM F D F D   (3.40) 

Substituting Eq. (3.37) and Eq. (3.39) in Eq. (3.40) results in: 

   

 

,

  1 1 1
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 (3.41) 

 

 , ,     j c j cM S  ,   (3.42) 

and rearranging Eq. (3.41) gives: 
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 (3.43) 

       Many researchers attempted to provide methods to estimate the rotational stiffness 

which will be applicable for both composite and bare steel connections. This required 

that the rotational stiffness of bare steel connection, Sj,s, could be obtained when no 

reinforced concrete slab was present in the composite arrangement. To achieve this 

consistency, they derived their mathematical expressions by separating the moment 

resistance of the bare steel connection and the slab independently in advance (such as 

Eq. (3.1)). However, the moment resistance of the steelwork component and the 

reinforced slab are inter-related. As explained in Section 3.3, there is an additional 

increase in compressive force, Fc, which leads to increase in the tension force in the top 
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row of bolts, Fb. Hence, the moment resistance of the steelwork component in a 

composite connection is less than the moment resistance of the bare steel connection for 

the same amount of rotation (see Eq. (3.12)).  

   The required consistency can be achieved in the proposed model, as it dealt with the 

whole composite connection. The components of the bare steel connection were 

separated to obtain two terms in Eq. (3.43). The first term represents the effect of the 

steelwork components only and the other term is the effect of the correlation between 

the bare steel connection and the reinforced slab. The following procedure was used: 

1. Steelwork stiffness, Sj,sw (i.e. no reinforcement and Fr=0) 

From Eq. (3.30)          

           


       b b
c b c c b b c

c

k
F F k k

k
                                        (3.44) 

Substituting Eq. (3.44) in Eq. (3.28) gives: 
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                                                                                        (3.45) 
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M k D
S
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k
                                               

 (3.47) 

          Anderson and Najafi (1994) derived an equation to calculate the rotational 

stiffness of bare steel connection as follows: 

 
2

, 
bj s bS k D  (3.48) 

It is clear that Eq. (3.48) is a special form of Eq. (3.47) corresponding to the 

assumption of an infinite stiffness for the column web (i.e. kc=∞), as the 

connections that were tested by (Anderson and Najafi, 1994) had a stiffened 

column.  

Eq. (3.47) can be rewritten in this form:     

2

, 


b c b
j sw

c b

k k D
S

k k
 (3.49) 
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2. Concrete slab stiffness, Kslab 

 


r s
slab

r s

k k
K

k k
 (3.50) 

Substituting Eq. (3.49) and Eq. (3.50) in Eq. (3.43) gives: 
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 (3.51) 

Eq. (3.51) is a general equation to calculate the rotational stiffness for flush end-plate 

steelwork or composite connections and for stiffened or unstiffened column cases. 

3.5. The applicability of the proposed equation for general cases  

The applicability of Eq. (3.51) to calculate the rotational stiffness for all cases of flush 

end-plate connection can be checked as follows:  

1. Steelwork connection case (Kslab=0) 

i. Unstiffened connection (kc≠∞) 
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b c b slab sw b
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D k k D
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D k k

k D

k

k

K
 (3.52) 

ii. Stiffened connection (kc=∞) 

 
2

, ,   S S  j c j sw b bk D  (3.53) 

Eq. (3.53) is the same as (Anderson and Najafi, 1994)'s equation (i.e. Eq. 

(3.48)) for calculating the rotational stiffness of a stiffened bare steel 

connection. 

2. Composite connection cases 

i. Unstiffened connection (kc≠∞)  

Same as Eq. (3.51) 

ii. Stiffened composite connection (kc=∞) 
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,  S S   


r s
j c j sw bsla

r

b r rb

s

k k
k D

k k
K D D  (3.54) 

     In summary, Eq. (3.51) gives the same result as (Ahmed and Nethercot, 1997)'s 

equation (i.e. Eq. (3.15)) for calculating the rotational stiffness of an unstiffened 

composite connection, but after replacing (Hb ) with (Dr) to take into account the actual 

position of the concrete slab after deformation. The effect of the column web panel in 

shear should be considered in kc. Also, Eq. (3.54)  is similar for (Anderson and Najafi, 

1994) and (Ahmed and Nethercot, 1997)'s equations (i.e. Eqs. (3.13) & (3.15)) for 

calculating the rotational stiffness of a stiffened composite connection, but after 

carrying out the same adjustment above for Dr and kc. This means that Eq. (3.51) is an 

improved form of (Ahmed and Nethercot, 1997)'s equation for unstiffened case of 

composite connection as well as Eq. (3.54) is an improved form of (Anderson and 

Najafi, 1994; Ahmed and Nethercot, 1997)'s equations for a stiffened composite 

connection.  

3.6. Why a rotational spring?  

In order to show the considerable advantage of using the proposed rotational spring over 

the conventional axial spring in the modelling of shear connectors, three composite 

connections that had been tested by (Anderson and Najafi, 1994) were used to carry out 

this comparison. The details of these tests are listed in Table  3.2. 

Table  3.2: Properties of composite connections 

TEST 

kr 

kN/mm 

ks 

kN/mm 

kθ= ksdr
2 

kN.mm/rad 

kc 

kN/mm 

kb 

kN/mm 

Dr 

mm 

Db 

mm 

Hb 

mm 

dr 

mm 

S4F 220 602 5548032 68861 155 400 254 304 96 
S8F 435 509 4690944 68861 155 400 254 304 96 
S12F 654 433 3990528 68861 155 400 254 304 96 

 

(Ahmed and Nethercot, 1997)'s model was selected for the comparison, as shown in 

Figure ‎3.8. 
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                                    a)                                                         b)  

Figure  3.8: a) Proposed model       b) (Ahmed and Nethercot 1997)'s model  

3.6.1. Modelling  

ABAQUS software was used to evaluate the advantage of using the rotational spring 

over the conventional linear spring. Linear springs were used in the conventional 

models to represent: (i) the column compression zone, (ii) the top row of bolts, (iii) the 

reinforcement, and (iv) shear connectors. Linear spring of shear connectors was 

replaced by rotational spring in the proposed model. The column and lines of rotation of 

the steel beam and slab were modelled by rigid bars. In the conventional model, the 

connection between the shear connectors' spring and slab was modelled using a fixed 

joint on roller support. However, they were directly joined using a rotational spring in 

the proposed model. Sketches of the conventional model and the proposed model are 

illustrated in Figure ‎3.9 and Figure ‎3.10 respectively.  
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Figure  3.9: Modelling of conventional mechanical model in ABAQUS 

 

Figure  3.10: Modelling of the proposed mechanical model in ABAQUS 

All models of the composite connection were subjected to the same external moment, 

Mj,c. The magnitude of the external moment was 262 kN-m. This value of moment was 

higher than the elastic range of the experimental moment-rotation curve for all 

connections, in order to show the whole available range where the stiffness of 

components are valid or the region where the post-linear stiffness of components should 

be used.  
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This comparison using ABAQUS aims to verify the results from the conventional [Eq. 

(3.15)] and the proposed [Eq. (3.51)] analytical expressions in terms of satisfying the 

equilibrium and compatibility requirements.   

3.6.2. Results and discussion  

Figure ‎3.11 shows the result of rotations of the conventional and the proposed models 

due to the applied moment for the S4F composite connection.  

      

                     

Figure  3.11: ABAQUS results of rotation for the S4F composite connection 

Table ‎3.3 summarizes the results from ABAQUS modelling for both the conventional 

and the proposed models in column 2 and 4 respectively. Also, the results from the 

conventional mathematical expression (i.e. Eq. (3.15)) and the proposed mathematical 

expression (i.e. Eq. (3.51)) are listed in column 1 and 3. 

     In the conventional model the rigid bar connecting the horizontal springs for the 

reinforcement and shear studs had been assumed to remain vertical. However, in order 

to maintain the assumed configuration, a restraining bending moment would have been 

necessary, which was not considered in the analytical expression. The corresponding 

ABAQUS model using appropriate constraints ensured both equilibrium and 

compatibility. Hence the results were different for the conventional model using 

ABAQUS and the analytical expressions (columns 3 and 4). 

    For the proposed model, the ABAQUS and the analytical expression produces similar 

results (columns 1 and 2) ensuring the compatibility and equilibrium requirements being 

satisfied in the analytical expression.  
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  The restraining bending moment in the conventional model will increase the total 

applied moment or decrease the resistance moment of connection. As a result, it leads to 

an increase in rotation and a decrease in the stiffness of the composite connection shown 

in the ABAQUS model. In (Ahmed and Nethercot, 1997)'s model, this internal fixed 

moment was not included in the derivation of the mathematical expression, even though 

its effect (i.e. vertical orientation) was included in the configuration of the model. 

Therefore, the mathematical expression underestimates the rotation (i.e. overestimates 

stiffness) by about 20% for these cases of composite connections. This difference will 

increase significantly as the rotation increases beyond the elastic range. This inaccuracy 

may be acceptable in the elastic range for some cases of connections, especially when 

the thickness of the slab is very small compared to the depth of the steel beam, as the 

internal moment at the base of the vertical rigid bar will be minimal. Nevertheless, this 

makes the conventional mechanical model unsuitable for extending further then the 

elastic range to estimate the moment-rotation curve of composite connections using the 

elasto-plastic behaviour of its components, and limits it from being used with any other 

modelling software like ABAQUS. Since the proposed model connects the steel beam 

directly to the slab by a rotational spring to model the effect of the shear connectors, this 

overcomes all of these shortcomings of the conventional model. 

Table  3.3: Summary results of all connections (M=262 kN-m) 

Connection Parameter 

Expression 

(Proposed) 

1 

ABAQUS 

Modelling 

(Proposed) 

2 

Expression 

(Conventional) 

3 

 

ABAQUS 

Modelling 

(Conventional) 

4 

 

 

1/2 

 

 

3/4 

S4F 

Stiffness 

(kN/mm) 

35.63 35.65 29.46 25.69 0.99 1.15 

Rotation 

(mrad) 

7.35 7.35 8.89 10.2 1.00 0.87 

S8F 

Stiffness 

kN/mm 

47.27 46.80 38.31 31.50 1.01 1.22 

Rotation 

(mrad) 

5.54 5.60 6.84 8.32 0.99 0.82 

S12F 

Stiffness 

(kN/mm) 

51.39 50.87 41.43 33.87 1.01 1.22 

Rotation 

(mrad) 

5.10 5.15 6.32 7.73 0.99 0.82 
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   Furthermore, Figure ‎3.12 to Figure ‎3.14 show the applicability of the proposed model 

to predict the actual behaviour of composite connections in the whole linear range of the 

moment-rotation curve.  

 

Figure  3.12: Comparison of rotational and conventional spring's models with test results 

for test S4F 

 

Figure  3.13: Comparison rotational and conventional spring's models with test results 

for test S8F 
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Figure  3.14: Comparison rotational and conventional spring's models with test results 

for test S12F 

   In summary, using the rotational spring to simulate the shear connection can capture 

the actual behaviour of the composite connection in a linear range. In addition, it makes 

the proposed model better suited for estimating the rotation of the composite connection 

in the post-linear range using appropriate elasto-plastic behaviour for every component. 

3.6.3. Suggestion for modification of the conventional models 

In order to modify the conventional mathematical expression to match the mechanical 

model, the implicit internal moment should be deducted from the moment resistance of 

the connection, as follows: 

  , ,r r b b rj c j c r r r b brM F D F d F d M F D d F d        (3.55) 

Therefore, the modified stiffness expression for the conventional model (Eq. (3.15)) 

will be: 
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 (3.56) 
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b c r s c c

j c

r s c b c c

k k k k k k
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H D
H

k k k k
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S  

This modified expression ensures only the matching in results with the ABAQUS 

modelling for the associated mechanical model. However, it increases the 

underestimation of the rotational stiffness (or overestimation of rotation) due to the 

implicit fixed moment. The exclusion of the implicit fixed moment from the derivation 

of the conventional expression reduced the underestimation of stiffness due to the use of 

a linear spring in the conventional model. However, this omission does not have a 

reasonable structural basis.   

3.7. Main merits of the proposed model 

In summary, the main merits of the proposed model are 

1. Its simplicity.  

2. It can be applied both to bare steel connections as well as composite connections. 

3. It includes all the important aspects of behaviour of steelwork in a composite 

connection, as explained in Section 3.3.2 and Figure  3.3. 

4. It incorporates the rotation of the slab. 

5. The derivation of a mathematical expression to calculate the rotational stiffness 

includes all of the relevant forces.  

6. It can be modelled easily in any finite element software such as ABAQUS.  

7. It can be extended in the post-elastic non-linear region, with valid values for the 

stiffness of components, since it satisfies the equilibrium and compatibility 

conditions at large displacements.  

3.8. Determination of the effective terms in the mathematical 

expression 

The degree of accuracy of any mathematical expression for the rotational stiffness of a 

composite connection depends to a large extent on the accuracy of its effective 

parameters. Therefore, a parametric study was carried out to evaluate the effect of every 
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key parameter in the mathematical expression, kc, kb, kr, ks, on the rotational stiffness. 

The composite connection, CJS-1, which was tested by (Li et al., 1996), was selected in 

this parametric study. The properties of this composite connection and the basic 

stiffness coefficient of its components are shown in Table ‎3.4.  

Table ‎3.4: Properties of Cjs-1 composite connection 

Beam Column 
Hb 

(mm) 

Dr 

(mm) 

Db 

(mm) 

kr 

kN/mm 

ks 

kN/mm 

kc 

kN/mm 

kb 

kN/mm 

254x102UB25 203x203UC46 257.2 338 203 350 2800 6500 155 

 

The results of the parametric study are shown in Figure ‎3.15 to Figure ‎3.18. 

3.8.1. Effect of kc 

 

 

Figure  3.15: The effect of kc on rotational stiffness 

Figure ‎3.15 shows that the rotational stiffness of the connection is affected by the 

combined stiffness coefficients of the column web in shear and compression, kc, if all 

other coefficients are constant. This effect is minimal for high values of kc (i.e. a 

stiffened composite connection with a symmetrical loading system). However, it has a 

significant effect in the lower range of kc, (100 to 1000 kN/mm). This highlights the 

importance of using a stiffener at the column web to increase the rotational stiffness of 

the composite connection. On the other hand, it indicates the necessity of including the 

stiffness of the column web in shear into the proposed model. The model used by 

(Anderson and Najafi, 1994) is not affected by this factor since it was based on the 
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assumption of infinite stiffness of the compression zone (i.e. the fully stiffened case). 

Also, (Ahmed and Nethercot, 1997)'s model matches with (Anderson and Najafi, 

1994)'s model for higher values of stiffness, since the latter model was modified from 

the former model by including the stiffness of the column web in compression effect 

only. However, the effects of the column web in shear were not included. The additional 

difference between the proposed model and (Ahmed and Nethercot, 1997)'s model for 

higher values of kc, is due to the reasons which have been explained in the previous 

section.  

3.8.2. Effect of kb 

   

  

Figure  3.16: The effect of kb on rotational stiffness 

Figure ‎3.16 shows the effect of changing the stiffness coefficient of the row of bolts, kb, 

on the rotational stiffness of the composite connection. It is clearly seen that kb has little 

effect on the rotational stiffness. Also, the acceptable value for this parameter was taken 

as 155 kN/mm for all composite connections by a number of researches such as 

(Anderson and Najafi, 1994; Ahmed and Nethercot, 1997; Loh et al., 2006). 

3.8.3. Effect of kr 

Figure ‎3.17 shows the significant effect of the stiffness coefficient of steel 

reinforcement, kr, on the rotational stiffness of the composite connection, which 

increases steeply from about 15 to 80 kN-mm/mrad for changes in kr, from 100 to 

1000 kN/mm. This result is expected, since all of the previous numerical and 
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experimental studies confirmed considerable effect of steel reinforcement ratio on 

overall behaviour of the composite connection especially for small reinforcement ratios. 

 

 

Figure  3.17: The effect of kr on rotational stiffness 

3.8.4. Effect of ks 

The effect of shear connection on the rotational stiffness of the connection can be seen 

in Figure ‎3.18. (Anderson and Najafi, 1994)'s model has a constant value of stiffness, 

since it was based on a constant value of shear connection, ks, and equal to 200 kN/mm 

for all cases. Figure ‎3.18 also shows that the rotational stiffness of the composite 

connection is very sensitive to the changes in stiffness coefficient of the shear 

connection, ks, especially for a partial shear connection. This effect is reduced when the 

connection is close to full interaction. Since the partial interaction is commonly used in 

practice, the simple and reliable procedure to evaluate this factor is highly necessary.  

 

 

Figure  3.18: The effect of ks on rotational stiffness 
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3.9. Adopted procedure to calculate the key parameters 

As mentioned above, the accuracy of the results depends to a large extent on the 

successful selection of key parameters. In order to make the proposed model compatible 

with (Eurocode 3, 2005) and (Eurocode 4, 2004), the stiffness parameters kb and kc were 

calculated using the procedures in (Eurocode 3, 2005) §6.3.2 (1),Table 6.11 and 

(Eurocode 4, 2004) §A.2.1.1,Table (A.1). The procedures of calculation are 

demonstrated in Sections 3.9.1 and 3.9.2. Meanwhile the procedure to estimate the 

stiffness of reinforcement, kr, is explained in Section 3.9.3. A new procedure to estimate 

the stiffness of the shear connection, ks, is proposed in Section 3.9.4. 

3.9.1. Stiffness of the top row of bolts, kb 

This parameter can be calculated according to (Eurocode 3, 2005) using Eq. (3.19) as 

the stiffness coefficient of the combined components at the level of the top row of bolts. 

This was taken to be 155 kN/mm by (Anderson and Najafi, 1994) corresponding to the 

approximate linear stiffness of the steelwork connection. Ahmed and Nethercot (1997) 

adopted the same value, based on a statistical study of its variation with the results of 

their model. The same value was taken by (Loh et al., 2006). To simplify the 

comparison with other models, the same value was used in the current research if there 

was no sufficient data to calculate it using Eq. (3.19), since variation of this value has 

little effect on the rotational stiffness of the composite connection, as explained and 

shown in Figure ‎3.16 in the previous section. 

3.9.2. Stiffness of the column web in shear, kcws and compression, kcwc 

The column web panel in shear is a very important component in the overall behaviour 

of the connection, but it has little effect on the rotational stiffness for a stiffened 

composite connection or for symmetrical loading, as explained in the previous section. 

According to (Eurocode 3, 2005), the stiffness coefficient, kcws, for an unstiffened web 

is calculated using the following equation: 

 

 
0.38vc s vc

cws

b bf

GA E A
k

z H t 
 


 (3.57) 

where Avc is the shear area of the column and z denotes the lever arm between the 

compressive and the tensile area. Es is the Young’s modulus of steel. β is the interaction 
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parameter to account for asymmetrical loading and it is defined in (Eurocode 3, 2005) 

§5.3. (8). Its value varies in the range of 0 ≤β≤2.  

     The stiffness coefficient of the column web in compression, kcwc, is defined in 

(Eurocode 3, 2005)  for an unstiffened web case as follows: 

 
,0.71 eff cwc cw

cwc c

c c

b t
k EA E

h h
   (3.58) 

where, Ac and hc are the area and depth of column respectively. beff,cwc, is the effective 

width of the column web in compression and it is computed as follows: 

    , 2 2 5eff cwc bf b p cf cb t a t t r      (3.59) 

where all of the above terms are defined in (Eurocode 3, 2005) §6.2.6.2. For the 

stiffened web case, kcwc, is taken as equal to infinity. 

3.9.3. Stiffness coefficient of the steel reinforcement, kr
 
  

This coefficient is based on the assumption that the reinforcement obeys Hooke's law: 

 ( )   s r
r r r r

r

E A
F k

l
 (3.60) 

where, Ar, is the area of reinforcing bars. The main difficulty in calculating the stiffness 

of reinforcing bars is the assumed effective length, lr, of bars, having extension Δr. This 

length is measured from the centreline of the column and is extended along the 

reinforcement up to the point where considerable stress is attained. Nevertheless, this 

length is not the same along all parallel reinforcing bars, but it is commonly greater as 

the reinforcing bar is positioned further away from the column (Gil and Bayo, 2008). 

     Anderson and Najafi (1994) assumed this length to be equal to half the depth of the 

column, hc. However, they stated that if the flexibility of the shear connectors is taken 

into consideration, this length needs to increase up to the first row of shear connectors 

in order to overcome the overestimation of the stiffness of the reinforcing bars: 

 0
2

 c
r

h
l p  (3.61) 

where p0 is the distance between the column flange and the first shear stud. The same 

expression was used by (Liew et al., 2000; Brown and Anderson, 2001; Queiroz et al., 

2005; Titoum et al., 2009).  
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    Ren and Crisinel (1996) proposed the following empirical equation to calculate the 

effective length, lr, in (mm) as: 

  0.7 60 1.3 rl ks  (3.62) 

where k =0.5 for simple bending and k=1 for pure tension, and s is the spacing of the 

reinforcing bars in (mm).  

      Ahmed and Nethercot (1997) reviewed the effective length expressions adopted by 

various authors and concluded that if the first stud is very near the column's flange, the 

distance to the next stud should be used. They used the following expression to 

calculate lr: 

 0
2

  c
r

h
l p p  (3.63) 

where p0 is as above and p is the spacing between shear studs.  

     Rassati et al. (2004) developed the following equation to calculate the effective 

length: 

   ,  1  2.8  0.5     where       /   0.64  r c trans trans r s rb bf bl h K K A A t b      (3.64) 

where As,rb is the area of longitudinal reinforcement in the composite beam’s section 

adjacent to the connection, and Ar is the area of longitudinal reinforcement in the 

effective width of the slab. tbf and bb, are the thickness and the breadth of the steel beam 

flange respectively. 

       Eurocode 4 (2004) used several expressions which depend on the interaction 

parameter, β. The estimation of this parameter was explained in Section 3.9.2.  

      Gil and Bayo (2008) used the finite element method to carry out a parametric study 

for composite connections with different load conditions, varying the profiles, bolts and 

reinforcement ratio. Based on the reasoning and observation of the simulation results, 

an effective length was chosen for each case. They then established an expression to 

determine the effective length of the reinforcement, as follows: 

   0.8
2

 c
r r

h
l D  (3.65) 

It is clear from the above brief discussion that there is no guideline to favour any 

approach over the others, as some of them were empirical equations from limited tests 

and others were outcomes of statistical analysis for available data or simulation results.   
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     In Chapter Five, we will propose another procedure to combine the effect of 

reinforcement effect with the effect of the shear connector in one component, thus 

eliminating the need to estimate the effective length. In current chapter, Eq. (3.61) was 

adopted to simplify the comparison with other models.  

3.9.4. Stiffness of the shear connection, ks 

It has been demonstrated by many experimental and numerical studies that the slip in 

the interface between the concrete slab and the steel beam has a significant effect on the 

rotational stiffness and overall behaviour of a composite connection, even in full shear 

connection conditions (Aribert, 1996; Loh et al., 2006). This effect is more significant 

for partial shear connections as explained and shown in Figure ‎3.18. The elastic 

stiffness of a stud shear is: 

 
,sc k

sc

sc

F
k

s
  (3.66) 

where Fsc,k is the characteristic resistance of the stud and ssc is the corresponding slip. 

Anderson and Najafi (1994) reviewed and assessed the available push-out tests data of 

the load-slip behaviour of welded studs. The assessment led to assume the stiffness of 

stud, ksc to be 200 kN/mm. Furthermore, they interpreted the result of the assessment by 

assuming that the first stud provides resistance to slip under increasing load until it 

reaches its maximum resistance and becomes plastic. Its force then remains constant 

and any additional load is resisted by the next stud until it also reaches its maximum 

resistance, and so forth. Based on this behaviour, they concluded that the slip at the 

connection depends initially on the nearest stud to the column and the stiffness of the 

shear connection, ks, was taken as the stiffness of one stud (i.e. 200 kN/mm). The 

numerical study that was carried out by (Ahmed and Nethercot, 1996) showed that all 

studs shared the longitudinal shear force in the interface between the concrete slab and 

the steel beam even for the studs located at the end of the shear span, but with different 

loading ratio. 

      Ren and Crisinel (1996) suggested the following equation: 
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 (3.67) 
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where Rr and Rs are the resistances of the reinforced concrete slab and the shear 

connectors in the hogging moment region, respectively. Δs is the interface slip, taken as 

0.5mm for 19x100mm welded shear connectors. The assumption of a constant slip 

value of 0.5mm for complete, full and all partial shear connection conditions is not 

compatible with the experimental and numerical results. Lawson (1989) found that this 

slip may have negligible value for full shear interaction, and lower values for some 

partial shear interaction cases at average working load. Therefore, the estimated 

stiffness of the shear connection may be unsafe.  

     Ahmed and Nethercot (1997) reviewed and assessed the available push-out test data 

of the load-slip behaviour of welded studs. They stated that the elastic tangential 

stiffness of a shear stud vary between 110 and 350 kN/mm at 45% of its load- carrying 

capacity. They suggested the following expression to calculate the stiffness of the shear 

connection: 

 200s sck N  (3.68) 

where Nsc is the smaller number of studs in the hogging moment region or studs 

required for full interaction. The same expression was taken by (Gil and Bayo, 2008; 

Queiroz et al., 2009; Titoum et al., 2009) but with different values, ranging between 

100 and 350 kN/mm for the stiffness of a stud. The assumption of a constant stiffness of 

the shear connector for all cases is not reasonable, since the stiffness of the shear 

connector is related to the diameter and length of shear connector as well as to the 

compressive strength of the surrounding concrete. Therefore, the adoption of constant 

value of 100kN/mm or 200kN/mm for all cases may overestimate or underestimate the 

actual stiffness. A practical chart to estimate the secant stiffness of a stud depending on 

the above considerations has been proposed and is described in Chapter Four.  

      Eurocode 4 (2004), Annex A.3, adopts the following expressions to calculate the 

stiffness of the shear connection, ks.  

2
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 (3.69) 

where Er, Ar are the modulus of elasticity and area of reinforcement respectively. Ea, Ia 

are the modulus of elasticity and second moment of area of the steel beam respectively. 

l is the length of the beam adjacent to the connection in hogging bending. 
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ds is the distance between the centroid of the beam's steel section and the centroid of the 

reinforcement. All other symbols are as defined previously. 

     These expressions are based on the procedure which had been developed by 

(Anderson et al., 2000). It was derived assuming cracked composite cross-sections and 

using the elastic interaction theory of a composite beam, making it unsuitable to extend 

into the post-linear range. 

 3.9.4.1. Proposed procedure to calculate the stiffness of the shear connection, ks  

The behaviour of a shear stud is generally defined by a non-linear load-slip curve which 

is obtained from a push-out test. Ollgaard et al. (1971) proposed one of the most cited 

analytical functions for a shear stud which can be used to model the behaviour of a 

shear stud in a composite connection. This exponential function takes the following 

general form: 

  
,

1 scssc

sc max

F
e

F




   (3.70) 

where Fsc is the shear force acting on the stud connector; ssc is the corresponding slip; α 

is a non-dimensional parameter (its value being 0.5-1.5). The value of the parameter λ is 

0.5-2 mm
-1

. Fsc,max is the ultimate shear strength of a stud connector, which can be 

determined by the following equation, given by Eurocode 4 (2004) for a stud connector 

in a solid slab: 

 ,max

0.8 
min

0.37

sc u

sc

sc ck c

A f
F

A f E


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
 (3.71) 

where, fu, is the ultimate tensile strength of the shear stud; fck and Ec are the 

compressive strength and modulus of elasticity of concrete, respectively. Asc is the 

cross-sectional area of the stud. Eq. (3.71) is multiplied by a factor, kt, which ranges 

between 0.6 and 1.0 for a stud used with profiled steel sheeting. The details of 

calculating this factor are presented in (Eurocode 4, 2004) §6.6.4 The same forms of Eq. 

(3.70) were used by many researchers such as (Aribert and Labib, 1982; Aribert and Al 

Bitar, 1989; Razaqpur and Nofal, 1989; Johnson and Molenstra, 1991; Loh et al., 2004; 

Nie et al., 2004; Titoum et al., 2009; Vasdravellis et al., 2009 ) with different 

combinations of α and λ to model shear stud behaviour. Figure ‎3.19 shows some 

examples of these load–slip curves.   
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Figure  3.19: Load-slip curves for shear stud 

     The numerical study by (Ahmed and Nethercot, 1996) demonstrated that all studs in 

the shear span share the developed force, Fshear, in the interface between the concrete 

slab and the steel beam. Therefore, based on this study: 

 ,

1

scN

shear sc i

i

F F


  (3.72) 

where Nsc is the number of studs in the shear span. All shear studs in the shear span are 

replaced by one equivalent shear stud which has the equivalent force, Feq =Fshear and 

equivalent slip, Δeq, then: 

 eq s eqF k  (3.73) 
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1

scN

eq shear sc i

i

F F F


   (3.74) 

 , ,eq max sc sc maxF N F  (3.75) 

Even though Eq. (3.70) was developed from push-out tests of a single or two shear 

connectors, it is still valid to simulate the group of shear connectors as the equivalent 

shear stud, since it has the same overall behaviour. Then: 
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 (3.79) 

In the current research the combination of α=0.8 and λ=0.7 mm
-1

 was used in all 

calculations when there was no information about the behaviour of studs, since this 

curve is close to the real behaviour of a 19mm diameter headed stud, as this stud was 

used in most experimental tests of composite connections. The ultimate shear strength 

of connector  Fsc,max was taken to be 120 kN if there was not enough data to calculate it 

from Eq. (3.71).  

3.9.4.2. Estimation of Feq 

The rotational stiffness of a connection is always calculated for the average working 

load or where the moment–rotation curve of the connection can safely be assumed to be 

linear. This range is between 40% to 60% of the ultimate moment capacity of the 

connection. It was taken to be 50% of the maximum experimental moment of the 

composite connection by (Anderson and Najafi, 1994), while Ahmed and Nethercot 

(1997) assumed it to be 45% of the ultimate moment capacity. Based on this 

explanation, there are three requirements that must be satisfied in selecting the value of 

equivalent shear force, Feq:  

1. It should be in the level of moment where the moment–rotation curve of connection 

can be assumed to be linear up to this limit. In most cases, this limit is after the 

cracking of concrete and prior to the yield moment of the connection. Also, 

(Johnson and May, 1975; Lawson, 1989) found that the average working load of a 

shear connector is about 0.5 Fsc,max. 

2. It should be ensured that this limit of moment is in the linear range of the moment–

rotation curve. It was taken as 40-60% of the ultimate moment capacity of 

connection even when the linear range may be further then 60%. 
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3. It should be based on the force in the component which controls the behaviour of 

the connection in this range (i.e. the yield force in the reinforcing bar, Ar fr,y, or the 

strength of the shear studs, ∑Fsc,max).  

By studying the experimental results from (Li et al., 1996; Fu and Lam, 2006 ) for 

different reinforcement and partial shear connection ratios as shown in Table  3.5, it is 

clear that the yielding of reinforcement or the fracture of shear studs takes place after 

50% of the maximum moment for all complete, full and partial shear connection ratios. 

Hence, it was decided to calculate the equivalent shear force, Feq, as follows: 
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 (3.80) 

where η is the degree of the shear connection. 

 

Table  3.5: Percentage of moment for the control components in composite connection 

Test 

Shear 

Connection 

Ratio η 

Ultimate 

Moment 

(kN-m) 

% of ultimate moment for the 

control components 
Mode of failure 

Yield of 

Reinforcement 

Fracture of 

Shear Studs 

CJS-1 ≥300% 181.5 77% >100% Excessive deformation 

CJS-2 ≥300% 176 77% >100% Excessive deformation 

CJS-3 ≥300% 148.5 86% >100% Excessive deformation 

CJS-4 ≥300% 177.5 66% >100% Excessive deformation 

CJS-5 ≥300% 197.2 68% >100% Excessive deformation 

CJS-6 ≥300% 174 84% >100% Excessive deformation 

CJ-1 271% 370 67% >100% Reinforcement fracture 

CJ-2 155% 363 65% >100% Reinforcement fracture 

CJ-3 78% 250 >100% ≤100% Connector fracture 

CJ-4 116% 368 73% ≤100% Connector fracture 

CJ-5 116% 363 92% ≤100% Connector fracture 

CJ-6 120% 425 67% >100% Reinforcement fracture 

CJ-7 120% 274 71% >100% Reinforcement fracture 

 

This value of the equivalent shear force will ensure that the above three requirements of 

the equivalent shear force are satisfied. The resulting equations for shear stiffness are:  
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 (3.81) 

Eq. (3.81) overcomes the shortcomings of Eq. (3.67) and Eq. (3.68) by considering the 

shear connection ratio in the calculation of shear stiffness.  

3.9.4.3. Validity of the proposed procedure for, ks 

Five experimental composite connections (CJ1, CJ2, CJ3, CJ4 and CJ6) were selected 

from the experimental study on semi-rigid flush end-plate composite connections with 

steel beams and precast hollowcore slabs which were performed by (Fu and Lam, 2006 

). These samples represent the cases of complete interaction, full and partial shear 

connection respectively. The results of the shear stiffness calculations are listed in Table 

 3.6.  

Table  3.6: Results of calculations 
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Degree of  
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% 
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CJ1 271% 628 7 0.34 RF* 912 200 1400 402 237 

CJ2 155% 628 4 0.8 RF 421 200 800 402 174 

CJ3 78% 628 2 5.8 CF&SF 166 200 400 312 118 

CJ4 116% 828 3 3.5 CF 274 200 600 402 148 

CJ6 121% 800 4 0.84 RF 374 200 800 514 201 

*RF-Reinforcement Fracture; CF-Connector Fracture; SF-Slab shear failure  

 

Based on the degree of connection and mode of failure in the test, these results show 

clearly that (Anderson and Najafi, 1994)'s procedure underestimated the shear stiffness 

for most connections, as it did not take into account the effect of the shear connection 

ratio and used the same value for complete, full and partial shear connections, since the 

procedure depended on just the first shear connector for all cases. Ahmed and Nethercot 
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(1997)'s procedure overestimated the shear stiffness of all connections and estimate the 

same value for shear stiffness for CJ2 and  CJ6, even though they have different shear 

connection ratios. This is because this procedure depended only on the number of studs, 

Nsc, and its stiffness, ksc, and did not take into account the effect of the partial shear 

connection ratio. The assumption of constant slip (0.5mm) by (Ren and Crisinel, 1996)'s 

procedure leads to the estimation of a higher stiffness of the full shear connection (i.e. 

CJ6) than for a complete interaction (i.e. CJ1). The experimental results indicated that 

this estimation was not valid, since the end slip in CJ6 was more than twice the end slip 

in CJ1. Also, the results give the same stiffness for CJ4 and CJ1, even though the 

experimental failure mode showed that the failure of the CJ4 connection occurred due to 

the shear failure of the connection, while the failure of CJ1 connection took place 

because of the fracture of reinforcement. The Eurocode 4 (2004) procedure 

underestimated the shear connection stiffness for all connections. Furthermore, the 

stiffness of CJ2 is lower than the stiffness of CJ6, which is not consistent with the 

experimental results for the final slip of these connections. The proposed procedure can 

predict the actual differences in the shear stiffness of the connection due to the variation 

of the shear connection ratios.  

3.10. Validation of the proposed expression for the rotational stiffness 

of a composite connection  

The proposed expression for calculating the rotational stiffness of a composite 

connection was validated using the test results from many published papers. These tests 

can be divided into three groups of flush end-plate composite connections. These groups 

include: 

1. a conventional flush end-plate connected to an H-section steel column with metal 

deck flooring and solid concrete slabs as in (Anderson and Najafi, 1994; Xiao et al., 

1994; Li et al., 1996; Liew et al., 2000)'s tests; 

2.  a flush end-plate connected to a square hollow steel column filled concrete with 

metal deck flooring and solid concrete slabs as in (Loh et al., 2006)'s tests; and  

3. a flush end-plate connected to H-section steel column with precast hollowcore slab 

as in (Fu and Lam, 2006 ) tests.  

 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

91 

 

Two comparisons were carried out as follows: 

1. the test results were compared with the results from the proposed expression (i.e. 

Eq. (3.51)) of rotational stiffness of a composite connection using the calculated 

values of kr and ks, by: 

i. the Eurocode 4 procedure; 

ii. the procedure in Section 3.9.3 to calculate kr and the proposed procedure in 

Section 3.9.4 to calculate ks. 

The results of comparison are shown in Figure  3.20 and Figure  3.21.  

2. the same test results were compared with the calculated values of rotational 

stiffness using: 

i. the results from the proposed expressions in (1(ii)) above; 

ii.  (Anderson and Najafi, 1994) expressions; 

iii. (Ren and Crisinel, 1996) expressions; and 

iv. (Ahmed and Nethercot, 1997) expressions.  

The results of comparison are shown in Figure  3.22 and Figure  3.23. Table ‎3.7 lists the 

final procedures which were adopted in the proposed expression to calculate the 

rotational stiffness of flush end-plate composite connections.  

 

Table  3.7: Adapted procedures for parameters 

kb 
kc 

r r
r

r

E A
k

l
 

ks 

rl  

kcws kcwc Eurocode 4 Proposed Eurocode 4 Proposed 

Eq. (3.19)  

or 

155 kN/mm E
q

. 
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.5
7

) 

E
q

. 
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) Annex A, 
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(A.1) E
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. 
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1
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. 
(3
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1
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3.10.1. Results and conclusions  

It can be seen from Figure ‎3.20 and Figure ‎3.21 that the proposed expressions to 

calculate the stiffness of the steel reinforcement, kr, and the stiffness of the shear 

connection, ks, can give better results than the results using the calculated values of ks 

and kr from the Eurocode 4 procedure. However, the difference is minimal but the 

proposed procedure is simpler. Moreover, the procedure proposed to calculate the 

stiffness of the shear connection, ks, in elastic range can be extended easily to calculate 

the stiffness of the shear connection at any stage of loading where the Eurocode 4 

procedure is applicable only to the elastic range, since it is based on the elastic 

interaction theory of composite beams.  

 

 

 

Figure  3.20: Comparison of results using the proposed and Eurocode 4 procedures to 

calculate ks and kr 
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Figure  3.21: Comparison of results using the proposed and Eurocode 4 procedures to 

calculate ks and kr (after sorting the results in ascending order)  
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 Table  3.8 and Table ‎3.9, Figure ‎3.22 and Figure ‎3.23 indicate that (Anderson and 

Najafi, 1994)'s procedure underestimated the rotational stiffness of the composite 

connection for most cases, while Ren and Crisinel (1996)'s procedure overestimated the 

rotational stiffness for many cases. This means that these methods represent the lower 

and upper bound of rotational stiffness. Ahmed and Nethercot (1997)'s procedure gave a 

better agreement with the test results than the other procedures for many cases, but it 

overestimated the rotational stiffness for some cases. However, the expression proposed 

to calculate the rotational stiffness of a composite connection associated with the 

proposed procedure to calculate the stiffness of shear connection can predict well the 

rotational stiffness of a composite connection for most cases. In addition, comparison 

with the other procedures shows that the proposed procedure has the best average ratio, 

standard division and absolute error ratio (0.99, 0.28 and 0.23 respectively). The 

differences for some cases can be related to the assumptions made in calculating the 

effective length of reinforcement, since all other procedures show the same trend for 

these cases. Also, all of the procedures underestimated the rotational stiffness of the 

group of tests carried out by (Fu and Lam, 2006 ), since these tests incorporated recent 

precast concrete hollowcore slabs which may require modified procedures to calculate 

the stiffness of its components.  

    In summary, besides the generality of the proposed model for bare steel and 

composite connections, the other merit of the proposed procedure is its ability to be 

extended further than the linear range of the moment-rotation curve of connection using 

the proper component stiffness values for the non-linear range.  
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Figure  3.22: Comparison of the proposed procedure with other procedures to calculate 

the rotational stiffness of a flush end-plate composite connection 

 

 

Figure  3.23: Comparison of the proposed procedure with other procedures to calculate 

the rotational stiffness of a flush end-plate composite connection (after sorting the 

results in ascending order) 
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Chapter Four                                                                                          

Prediction of the load-slip behaviour of a stud shear-

connector 

4.1. Background 

The stiffness, strength and ultimate slip capacity of a stud shear-connector are essential 

properties in the analysis and design of composite beams and connections with full or 

partial shear interaction.  These parameters can be estimated from push-out tests. These 

test data are not always available in practice, and a set of empirical equations are used 

which may give unsafe or overly conservative values of stiffness. All of the available 

experimental and numerical studies clearly indicated that the strength and stiffness of a 

stud shear-connector are related. In addition, all of these properties are related to the 

diameter of the stud and the compressive strength of the concrete (Oehlers and 

Coughlan, 1986). Therefore, a simple and practical method for predicting the load-slip 

behaviour of stud shear-connectors incorporating these factors is highly desirable. One 

such model has been developed in this study which is based on the experimental and 

numerical results of the initial stiffness available in the literature. The complete load-

slip model was also compared with other test data that are available in the literature for 

different diameters of shear studs and concrete compressive strength. 

4.2. Current procedures to estimate the essential properties of a stud 

shear-connector   

In most composite construction calculations, the strength, stiffness and slip capacity of a 

stud shear-connector are necessary. Both strength and stiffness are fundamental in 

calculating the initial stiffness of composite beam or connection. Only the strength of a 

stud shear-connector is required to find the moment capacity.  Slip capacity is essential 

to estimate the rotation capacity or ductility. However, all of the above are necessary to 

investigate the whole behaviour of a composite beam or connection from the start of 

applying load until the point of failure. The current procedures to calculate each of the 

above properties are as follows: 
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4.2.1. Strength of the shear connector, Fsc,max 

Eurocode 4 (2004) §6.6.3.1 presents two formulae for determining the maximum 

strength of the shear connector, Fsc,max. 
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 (4.1) 

It is clear that the first equation is dominated when the ultimate tensile strength of the 

material of a stud shear-connector, fu, controls the behaviour of a shear connector (i.e. 

shear failure), but this value should not be greater than 500 N/mm
2
 for a solid slab and 

450 N/mm
2
 for a slab with profiled steel sheeting, as stated by (Eurocode 4, 2004)  

§6.6.3.1 and §6.6.4.2. Conversely, the second equation is dominated when the 

characteristic cylindrical compressive strength of the concrete, fck, and its corresponding 

modules of elasticity, Ecm, are determining factors for failure, typically the failure of the 

concrete around the connector (i.e. bearing failure). The reduction factor ( is taken to 

account for the ratio of the height (hsc) to diameter (d) of a shear connector and its value 

ranges (0.8-1). Most shear studs were used in composite building have, hsc/d>4. 

Therefore, the reduction factor ( is equal to unity. 

        Rocha et al. (2012) studied the influence of concrete strength and stud diameter 

variation on the reduction factor. The results from this study are summarized in Figure 

‎4.1. It can be seen that (Eurocode 4, 2004)'s equation underestimates the reduction 

factor for high strength concrete. In addition, Figure ‎4.2 shows the variation of  with 

hsc for constant (d=19 mm) and the variation of with d for constant (hsc=45 mm). It is 

clear that the reduction factor (is more influenced by height than by diameter. This 

behaviour can be interpreted as follows (see Figure ‎4.3): as the shear stud is subjected to 

the force transferred from the beam, the concrete around the shear stud is in bearing 

stress and the maximum stress is at the base of shear stud. As the load increases, the slip 

occurs between the steel beam and the slab. Also, the concrete at the base of the shear 

stud will become plastic, causing the shear stud to rotate. The resistance to this rotation 

comes from the bending moment, MB (see Figure ‎4.3), which correlates directly with 

the height of the shear stud, hsc. This moment plays a role of transferring some of the 

stress from the plastic zone at the base of the shear stud to the adjacent nonplastic zone. 
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This behaviour will increase the ability of the shear stud to resist greater loads before 

the concrete fails.  

  

   

Figure ‎4.1: Variation of α with hsc/d for constant diameters of shear stud  

 

  

Figure ‎4.2: Variation of α with hsc or d for constant diameters or heights of the shear 

stud 
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Figure ‎4.3: Forces and deformation of shear stud  

 In addition, Eq. (4.1) is multiplied by a factor kt, which ranges between 0.6 and 1.0 for 

a stud used in a slab with profiled steel sheeting. The details of calculating this factor 

are presented in (Eurocode 4, 2004) §6.6.4. The partial safety factor for shear 

connection, γv, is taken as 1.25.  

4.2.2. Stiffness of a shear stud connector, ksc 

4.2.2.1. Assumed constant value of ksc 

All of the previous experimental and numerical work by many researchers indicated 

clearly that the stiffness of a shear stud is related to the compressive strength of the 

concrete and the diameter of the shear stud, as in the works of (Ollgaard et al., 1971; 

Oehlers and Coughlan, 1986; Mottram and Johnson, 1990; Lam and El-Lobody, 2005; 

Xue et al., 2009; Wang et al., 2011; Xue et al., 2012). However, in many other works 

the stiffness of a shear stud was calculated or assumed unrelated to the compressive 

strength of the concrete.  

        A value of 200 kN/mm was assumed by (Anderson and Najafi, 1994) to compute 

the initial rotational stiffness of a flush end-plate composite connection for four 

experimental cases with different compressive strengths of concrete. The same value 

was also taken by (Gil and Bayo, 2008). Also, Al-Jabri (2004) used the same value in 

his component-based model to estimate the initial rotational stiffness of flexible end-

plate connection at elevated temperatures.  

      Based on the assessment of many experimental and numerical works by several 

researchers, Ahmed and Nethercot (1997) stated that the shear stiffness of the shear 

connector can range between 110 kN/mm and 350 kN/mm; however, no guidance was 

given for adopting a specific value from the above range. They adopted a value of 

200 kN/mm to calculate the initial rotational stiffness for the 32 cases of flush end-plate 

composite connections with different shear connectors that they investigated and 
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compressive strengths of concrete. Based on the previous range, Queiroz et al. (2009) 

assumed a value of 350 kN/mm in their two-dimensional FE model for the evaluation of 

composite beams. Eurocode 4 (2004) (Annex A) allows the assumption of an 

approximate value of (100 kN/mm) for headed studs with 19mm diameter when no 

push-out test data is available.  

     The above discussion indicates clearly the necessity for guidelines to choose certain 

values of shear stiffness or strength for the shear stud from the above range or a 

procedure to calculate it depending on its properties or the properties of the surrounding 

concrete.  

4.2.2.2. Equations to calculate the value of ksc 

   Based on the analysis of 116 push-out tests, Oehlers and Coughlan (1986) suggested 

the following empirical equation to calculate the stiffness of a stud shear-connector, 

assuming that the load-slip behaviour is nearly linear up to 0.5 Fsc,max. 

 
,

(0.16 0.0017 )

sc max

sc

cm

F
k

f d



 (4.2) 

where Fsc,max is the maximum strength of the stud shear-connector in N/mm
2
, d is the 

diameter of the shear connector in mm and the (fcm) is the mean compressive strength of 

the surrounding concrete which ranged from 20 to 70 N/mm
2
. Shim et al. (2004) stated 

that the value of 0.16 in Eq. (4.2) should be replaced by 0.08 and 0.24 to obtain the 

lower and upper limits of the characteristic stiffness, respectively. Eq. (4.2) can be 

rewritten in the form: 

 ,sc sc maxk F  (4.3) 

It is clear from Figure ‎4.4 that factor  ranges from 0.4 to 12 (1/mm) for the 

compressive strength of concrete with (20< fcm <90) in N/mm
2
. The empirical equation 

may overestimate or underestimate the actual value of stiffness of the shear connector, 

especially for low or high strength concrete.  
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Figure ‎4.4: Values of  for different compressive strengths of the surrounding concrete 

       Wang (1998) presented a practical procedure to estimate the stiffness of a stud 

shear-connector as the secant stiffness at the shear connector design strength (0.8Fsc,max) 

with an equivalent slip of 0.8 mm. Liew et al. (2000) presented a similar procedure but 

with (0.6Fsc,max) and limited the slip to 0.5 mm to calculate the stiffness of the stud 

shear-connector: 

 ,1.2sc max sck F  (4.4) 

     Nie et al. (2004) proposed a similar equation to estimate the shear connector stiffness 

as: 

 ,0.66sc max sck F  (4.5) 

The assumption of a constant slip for all conditions is not compatible with the 

experimental and numerical studies, since the slip of a shear connector in the elastic 

range may vary from negligible to more than 0.8 mm. Therefore, this assumption may 

unsafely underestimate or overestimate the stiffness of stud shear-connectors in some 

cases. 
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4.2.3. Empirical equations to estimate slip capacity, Ssc,c 

Oehlers and Coughlan (1986) defined the slip capacity of a stud shear-connector as the 

slip at failure when the peak load has reduced by 5%. Based on an analysis of 53 push-

out tests with different stud diameters and compressive strengths of concrete, they 

established the following empirical equation to estimate the slip capacity (in mm) of a 

shear stud: 

 
, (0.453 0.0018 ) sc c cS f d  (4.6) 

They also stated that the mean of the experimental slip capacity was 0.34d. 

Furthermore, they proposed the following empirical equation to estimate the slip at 

ultimate load capacity as: 

 , (0.389 0.0023 ) sc u cS f d  (4.7) 

A number of researchers adopted the above empirical equations to estimate the ultimate 

slip and slip capacity of a stud shear in their studies such as (Johnson and Molenstra, 

1991; Shim et al., 2004; Titoum et al., 2009).  

     Xue et al. (2008) conducted thirty push-out tests on stud shear-connectors to 

investigate the effects of stud diameter and height and concrete strength on the stud 

failure mode. They proposed the following empirical equation to estimate the slip 

capacity: 

 , tanφsc c dS h  (4.8) 

where hd is the bending deflection height of the shear stud, which is about 0.18–0.33 

times of the height of the shear stud (hsc) and φ ranges between 27-35
°
 for the stud 

shank failure and 55-65
° 

for the concrete failure. The selection of φ depends on the 

expected mode of failure (Eq. (4.1)). If the concrete controls the behaviour of the shear 

stud, the average value of φ (i.e. 60
0
) will be selected. The average adopted value of φ 

for stud shank failure is 31
0
. 

4.3. Proposed approach 

4.3.1. Basic relations 

The load-slip curve of shear connectors is generally nonlinear. Johnson and May (1975) 

found that it was too difficult to find a reliable formula for the shear connector stiffness 

due to the scattering of test results and there are too many parameters which affect its 
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magnitude. The proposed approach is based on the definition of the shear stud stiffness 

given by Johnson and May (1975) - as the secant stiffness at half the ultimate load of 

the shear connector. Empirical equations developed by (Ollgaard et al., 1971; Gattesco 

and Giuriani, 1996; Gattesco et al., 1997) were used to model the typical load-slip 

curves of a stud shear-connector in the present work. It is also based on the 

experimental and numerical results on the shear capacity of headed shear studs carried 

out by (Ollgaard et al., 1971; An and Cederwall, 1996; Gattesco and Giuriani, 1996; 

Kim et al., 2001; Shim et al., 2004; Dai and Liao, 2005; Lam and El-Lobody, 2005; 

Ellobody and Young, 2006; Lam, 2007; Xue et al., 2008) in order to select an 

appropriate model to calculate the stiffness of shear connector. The four most practical 

dimensions of shear connectors (i.e.13mmx65mm, 16mmx85mm, 19mmx100mm and 

22mmx100mm) have been used in this study to construct a set of design charts. The 

collection of the experimental data is comprised of tests conducted by different 

researchers with different set-ups. As a result, the slip capacity shows high degree of 

scatter depending on when the tests were stopped in a particular situation. In the 

absence of detailed information of the test procedure, a maximum slip value of 0.34d 

was adopted in the current study for all of the experimental data which was the mean 

slip value suggested by (Oehlers and Coughlan, 1986). Moreover, the emphasis of the 

present study is on the initial stiffness and the maximum load capacity of the shear 

studs, for which a slip capacity of 0.34 d will be sufficient. 

4.3.2. Methodology  

The following steps were used to construct a design chart for the strength and secant 

stiffness for different values of shear stud diameter. 

Step 1: Draw all available load-slip curves for each diameter with different compressive 

strength of concrete, as shown in Figure ‎4.5 to Figure ‎4.8.  

Step 2: The most cited analytical model of stud shear-connector behaviour which was 

proposed by (Ollgaard et al., 1971) was used to construct the typical load-slip curves. 

The model is as follows: 

  
,

1 scSsc

sc max

F
e

F




   (4.9) 

As explained in Chapter Three (Section 3.9.4.1), Aribert and Labib (1982) presented a 

combination of α=0.8, β=0.7 mm
-1

. Johnson and Molenstra (1991) provided another two 

combinations of α=0.558, β=1.0 mm
-1 

and α=0.989, β=1.535 mm
-1

. 
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Figure ‎4.5: Load-slip curves (experimental and numerical) of studs 

(22 mm diameter, 100mm high) for different compressive strength of concrete 

 

Figure ‎4.6: Load-slip curves (experimental and numerical) of studs 

(19 mm diameter, 100mm high) for different compressive strength of concrete  
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Figure ‎4.7: Load-slip curves (experimental and numerical) of studs 

(16 mm diameter, 85 mm high) for different compressive strength of concrete 

 

Figure ‎4.8: Load-slip curves (experimental and numerical) of studs 

(13 mm diameter, 65 mm high) for different compressive strength of concrete 
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Based on an experimental study on shear connectors subjected to cyclic loading, 

Gattesco and Giuriani (1996) proposed the following equation to simulate the behaviour 

of the shear connector with α=0.97, β=1.3 mm
-1 

and γ=0.0045 mm
-1

: 

  /

,

1 scSsc
sc

sc max

F
e s

F

  
    (4.10) 

In this study, four combinations of (α, β) were used to determine an optimum model for 

capturing the actual behaviour of a shear connector, particularly in the elastic range. 

These models are: 

Model 1: Eq. (4.10)     with      α=0.97, β=1.3 mm
-1 

and γ=0.0045 mm
-1   

Model 2: Eq. (4.9)     with      α=0.558, β=1.0 mm
-1 

Model 3: Eq. (4.9)     with      α=0.989, β=1.535 mm
-1

 

Model 4: Eq. (4.9)     with      α=0.8, β=0.7 mm
-1 

It should be noted that there are many other empirical relationships (An and Cederwall, 

1996; Xue et al., 2008) which are in between the curves for Model-1 and Model-4. The 

normalised experimental and numerical load-slip curves with the selected models are 

shown in Figure ‎4.9 to Figure ‎4.12. 

 

 

Figure ‎4.9: Comparison of experimental and numerical curves for different compressive 

strength of concrete across four models (d=22mm) 
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Figure ‎4.10: Comparison of experimental and numerical curves for different 

compressive strength of concrete across four models (d=19mm) 

 

 

Figure ‎4.11: Comparison of experimental and numerical curves for different 

compressive strength of concrete across four models (d=16mm) 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 6 7 8 

F
sc

/F
sc

,m
ax

 

Slip (mm) 

Ollgaard et. al. 1971-35 Mpa 

Gattesco&Giuriani 1996-32.5 MPa 

An&Cederwall 1996-38.5 Mpa 

An&Cederwall 1996-100 Mpa 

Lam&El-Lobody 2005-FE-20 Mpa 

Lam&El-Lobody 2005-FE-30 Mpa 

Lam&El-Lobody 2005-FE-35 Mpa 

Lam&El-Lobody 2005-FE-50 Mpa 

Xue et. al. 2008-38 Mpa 

Model 1 

Model 2 

Model 3 

Model 4 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 4 5 6 

F
sc

/F
sc

,m
ax

 

Slip (mm) 

Lam&El-Lobody 2005-FE-25 Mpa 

Lam&El-Lobody 2005-FE-30 Mpa 

Lam&El-Lobody 2005-FE-35 Mpa 

Xue-2008-Test-38 Mpa 

Lam&El-Lobody 2005-FE-40 Mpa 

Model 1 

Model 2 

Model 3 

Model 4 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

110 

 

 

Figure ‎4.12: Comparison of experimental and numerical curves for different 

compressive strength of concrete across four models (d=13mm) 
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    
2.16

0.8   0.37 u
u sc sc ck cm ck cmcontrol control

f
f A A f E f E


   (4.11) 

There are many procedures to calculate the modulus of elasticity of concrete based on 

its compressive strength, such as the formulas given in ACI code, BS 8110 (BSI 1997) 

and Eurocode 2 (2004). The Eurocode 2 (BS EN 1992-1-1:2004) relationship is as 

follows:    
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Also, the curve fitting of the left side of Eq. (4.13) for the whole range of compressive 

strength of concrete results:  
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It is clear from Eq. (4.14) that the mode of stud failure (i.e. the shear connector shearing 

off or failure of the concrete) depends on the tensile strength of the shear connector. 

Ollgaard et al. (1971) analysed statistically the test data of his push-out tests in addition 

to a number of other investigations. It was found that an upper bound to the shear 

connector strength is approached when 897MPa  ck cEf and Ec was calculated using 

the ACI formula. This experimental relation gives the estimation of fck≈28 MPa, which 

corresponds to fu≈450 MPa. This experimental result is compatible with Eq. (4.14). 

From Eq. (4.14): 

   500MPa            If       34 MPa        43.4 MPa   u ck cucontrol control
f f f   
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4.3.4. Secant stiffness of a stud shear-connector 

     The shear stiffness of a stud shear-connector is calculated as follows: 

  

1

,

,

          

ln

    

1

1    sc

sc

sc max

Ssc
sc

sc max

F

F

e s
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F










 
  

 
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


 

 


 


   (4.15) 

As noted in Section 4.3.1, the present work is based on Johnson and May (1975)’s 

definition of the stud shear-connector stiffness as the secant stiffness at half the 

ultimate load of the shear connector: 
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 (4.17) 

 

The results from Eq. (4.17) using the combinations of (α, β) for model-2, were used to 

construct a practical chart to the estimate strength and stiffness of stud shear-connectors, 

as shown in Figure ‎4.13. For a lower concrete strength (fcu-control zone at the left) the 

stiffness and strength both are governed by concrete failure. Whereas for higher 

concrete strength (fu,sc-control zone at the right), the stiffness is governed by the 

properties of stud material (shown by dashed horizontal lines).   
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Figure ‎4.13: Secant stiffness-strength-concrete strength relationship for stud shear-

connector with different d/hsc  

4.4. Validity of the proposed chart for larger diameters of shear 
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diameter to investigate the static behaviour of large studs which are beyond the scope of 

current design codes. The shear stiffness of the stud shear-connector, which was 

calculated using the empirical equation (i.e. Eq. (4.2)), was in the range of 25-50% of 

the test results. The proposed chart in Figure ‎4.13 was used to find the stiffness and 

strength of the stud shear-connector for the above diameters by constructing parallel 

lines at an appropriate level in the chart, as shown in Figure ‎4.14. The values from the 

proposed chart were compared with the average of the push-out test results; and a good 

agreement was found which is summarised in Table ‎4.1. It is clear from the results in 

the table that the proposed chart can predict the strength and stiffness of the shear 

connector, even for large diameters. 
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Figure ‎4.14: Secant stiffness-strength-concrete strength relationship for large shear stud 

connectors  

 

Table ‎4.1: Summary of results  

Stud 

diameter 

(mm) 

Concrete 
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Average stud strength (kN) Average stud stiffness (kN/mm) 

Test 
Proposed 

chart 
EC-4 Test 

Proposed 

chart 

Eq. 

(4.2) 

Eq. 

(4.4) 

Eq. 

(4.5) 

25 35.4 156 160 167 275 245 78 200 110 

25 49.3 180.1 181 167 366.3 290 96 200 110 

27 35.4 186.3 190 195 341.7 290 75 234 129 

27 64.5 211.2 215 195 304 330 155 234 129 

30 35.4 191.9 215 240 292.5 300 70 288 159 

30 64.5 232.3 240 240 290 325 154 288 159 
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plays the main role in the whole behaviour of composite beams and connections. 

Queiroz et al. (2009) assumed a multi-linear model for stud shear-connectors with 

(Fsc,max=128.7 kN) in their finite element parametric study for the evaluation of 

composite beams. This model is shown in Figure ‎4.15. 

 

            

                                                    

               

             

                                

                                                                             

                                                                                          

 

 

Figure  4.15: Multi-linear model (Fsc,max=128.7 kN) by (Queiroz et al., 2009) 

 

The assumed high initial stiffness (350 kN/mm) and constant values of slip at different 

levels of load in this model were due to the difference in the behaviour of the studs in a 

composite beam from those in a push-out test. They also found from a 2D FE model 

that the difference in various load-slip curves has insignificant effect on the behaviour 

of beams in the hogging moment region. 

 

            

                                                    

               

             

                                

                              

 

 

 

                   Figure ‎4.16: Tri-linear model by (Titoum et al., 2008) 
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       Titoum et al. (2008) proposed a tri-linear model for a stud shear-connector, to be 

used in their 2-D finite element approach to analyse semi-continuous composite beams 

with partial shear connection, as shown in Figure ‎4.16. The model was based on Eq. 

(4.2) to calculate the initial stiffness of a stud shear-connector and the slip at ultimate 

load. However, this equation may overestimate or underestimate the stiffness for many 

cases, as explained in Section 4.2.2.2. 

     In the present work, a multi-linear model of the load-slip curve of a shear connector 

was constructed using the proposed chart in Figure ‎4.13 to find the initial stiffness (ksc,i), 

and strength (Fsc,max) of the shear connector. Then, using Model-2 (Eq. (4.9)), the post-

yield stiffness (ksc,p-1) of the shear connector was calculated. In addition, based on the 

study of Wang (1998), it was assumed that the maximum load for the second part of the 

multi-linear curve was the design strength of the shear connector (0.8Fsc,max). The post-

limit stiffness for the second part of the multi-linear curve, ksc,p-1, can be calculated as 

follows:  

  0.558 0.55
,ma ,m

8
x axl(1 ) 1/ /  nscs

sc ss scc sc cF F FsF e


      (4.18) 
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sc sc i
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F k

 



 (4.19) 

4.5.1. Slip at maximum strength and slip capacity of the shear connector 

Eq. (4.6) and Eq. (4.7) were used to find the slip at maximum strength (ssc,u) and slip 

capacity (ssc,c) of shear connector. The ratio (ssc,u /ssc,c) for different compressive 

strength of concrete is:  

  , , 0.783 0.148 0.389 0.0023    sc c sc u cR s s f     (4.20) 

Therefore, the post-limit stiffness for the third part of multi-linear curve (ksc,p-2) can be 

calculated as follows: 

 
,max

, 2

,

0.2

1.11

sc
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sc u

F
k

s
 


 (4.21) 

The final multi-linear curve is shown in Figure  4.17. 
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Figure  4.17: Proposed multi-linear model of load-slip curve 

 

The validity of the proposed multi-linear load-slip curve is verified against some of 

experimental load-slip curves, as shown in Figure ‎4.18. It can be seen clearly from the 

figure that the proposed multi-linear model agrees well with the experimental results. 

 

Figure ‎4.18: Comparison of the proposed model with experimental load-slip curves 
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4.6. Summary and conclusion 

The chart in Figure ‎4.13 demonstrates a simple approach to estimate the appropriate 

values of the secant stiffness and strength of a shear connector for different compressive 

strength of concrete. It can be used when no push-out test curve is available. The 

empirical equations that researchers have used in the past can lead to unrealistic shear 

stiffness of the shear connector in some cases. In addition, Figure ‎4.13 shows clearly 

that the secant stiffness and strength of the shear connector are highly related. 

Furthermore, the proposed chart can be used to estimate the secant stiffness and strength 

for other diameters of shear connectors by drawing parallel lines at the required levels. 

A simplified multi-linear load-slip curve was also derived based on the proposed chart 

for initial stiffness, as well as the derivation of post-yield stiffness from empirical 

equations in the literature. The proposed model is in agreement with the test results, as 

shown in Figure ‎4.18.   
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Chapter Five                                                                   

Stiffness of a reinforced concrete slab in a composite 

connection 

5.1. Introduction 

The fundamental assumption of the present research task is that a beam-column 

composite connection can be modelled as a combination of components. These 

components can be divided into two main groups: a reinforced concrete slab and a 

steelwork connection. Shear studs connect these two groups compositely. Furthermore, 

the term “reinforced concrete composite slab’’ (RCCS) represents three components: 

the reinforcement, the concrete slab and the shear studs (S). In addition, each group can 

be subdivided into many components as explained in Chapter Three, where the 

components of the (RCCS) were modelled separately. However, the behaviour of the 

(RCCS) can be modelled as one “lump’’ component. Consequently, a model of the 

behaviour of this “lump’’ component is required; this is therefore the main objective of 

this chapter.  

5.2. Background  

In a composite beam-column connection, the reinforced concrete composite slab is 

mainly under the tension force of the reinforcement Fr (see Figure ‎5.1) which develops 

due to transfer of longitudinal shear force from the beam to the concrete through the 

shear studs. A model combining the three main components - the concrete, the 

reinforcement and the shear studs - is essential for understanding the behaviour of 

composite slabs under tensile load.  

                                  

Figure ‎5.1: Typical composite connection   
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 5.3. Brief literature review  

In the literature, three basic procedures are used to model the beam-column composite 

connection. These are simplified mechanical models, finite element models and 

empirical models based on the available experimental data.  

      In most of the simplified mechanical models, the components of (RCCS) are 

modelled separately, as in the works of (Anderson and Najafi, 1994; Ren and Crisinel, 

1996; Ahmed and Nethercot, 1997; Liew et al., 2000). In Chapter Three, the simplified 

mechanical models were explained in detail eliminating the need to repeat them here.             

     Eurocode 4 (2004) uses different procedure which combines the stiffness of the 

reinforcement (kr) and stiffness of the shear studs (ks) into one component which 

represents the stiffness of the composite slab (kslab). 

 
r s

slab

s r

k k
k

k k



 (5.1) 

In this procedure, all shear studs are modelled as one component (ks) which  can be 

calculated by (Anderson et al., 2000)'s formulae assuming cracked composite cross-

sections and using the elastic interaction theory of a composite beam, as explained in 

Chapter Three (Section 3.9.4).  Only a fraction of the reinforcement (lr) along the 

composite beam of the connection was assumed to influence the stiffness of the 

reinforcement (kr). It is also suggested that the effective length (lr) for reinforcement is 

to be measured from the centreline of the column up to the point where an assumed 

considerable stress is attained. 

     For the stiffness of the shear studs (ks), a numerical study was performed by (Ahmed 

and Nethercot, 1996) which showed clearly that the effect of each shear stud along the 

composite beam of the connection depends on its distance from the centreline of the 

column and on the degree of shear connection.  

    In addition, an experimental and numerical studies carried out by (Gil and Bayo, 

2008) found that the effective length (lr) is not the same along all parallel reinforcing 

bars, therefore an average length was suggested. 

    In Chapter Three (Sections 3.6.3 and 3.6.4), various other procedures to estimate the 

effective length and stiffness of shear studs had been described. These procedures were 

shown to give considerably different results. Therefore, potentially inaccurate 

estimation of the effective length and equivalent stiffness for all shear studs along the 
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composite beam of the connection is the main shortcoming which limits the accuracy of 

all the current mechanical models in the literature. Furthermore, all of the simplified 

mechanical models dealt with a cracked composite section; the tensile strength of the 

concrete and the effect of the concrete between cracks on the behaviour of the 

reinforcement (i.e. tension-stiffening effect) were thereby ignored.  

     A number of researchers used the finite element approach to simulate the beam-

column composite connection. In comparison with the simplified mechanical models, 

this approach is more realistic but it is computationally more expensive. The composite 

concrete slab (RCCS) components (concrete, reinforcement and shear connectors) are 

modelled in different ways, as follows. 

     As the main role of the concrete in the reinforced slab is to transfer the longitudinal 

shear force from the shear studs to the reinforcement, the concrete was ignored in the 

modelling of the composite connection using ABAQUS software by (Ahmed et al., 

1996) and replaced by multi-point constraints to join the shear stud (modelled as a beam 

element) to the reinforcement (modelled as a truss element). This procedure may reduce 

the computational time, but it also reduces the accuracy of the model, since the concrete 

plays another important role in increasing the stiffness of the reinforcement in tension. 

Therefore, if this effect is not taken into account, the stiffness of the reinforced bars will 

be underestimated.  

       Other researchers (Salvatore et al., 2005; Queiroza et al., 2007; Queiroz et al., 2009; 

Vasdravellis et al., 2009 ) modelled the concrete explicitly using finite element software 

such as ABAQUS, ANSYS and ADINA to model the beam-column composite 

connection. The behaviour of the plain concrete was considered independently of the 

behaviour of the reinforcement. The reinforcing bars were modelled as one-dimensional 

rods that can be defined either singly (as beam or truss elements) or embedded in 

oriented surfaces using elasto-plastic with strain hardening behaviour of the bare steel 

bars both in compression and tension. The bond interaction effects, such as bond slip 

and dowel action, were considered approximately by using the “tension-stiffening’’ 

concept in the concrete modelling to simulate load transfer across the cracks through the 

reinforcing bar. The shear studs were modelled as non-linear springs using different 

load-slip curves. Gil and Bayo (2008) used the same approach but with linear springs 

for modelling the shear studs and assuming a stiffness of 200 kN/mm. Solid elements 

with elasto-plastic material behaviour was used to model the shear connectors by (Fu et 

al., 2007 ; Fu et al., 2008). 
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     In summary, to date, two procedures have been used to model the reinforced 

concrete component (RCC). The first ignored the concrete completely and replaced it 

with multi-point constraints to join the shear studs to the reinforcement. The second 

modelled the concrete explicitly and the behaviour of the plain concrete was considered 

independently of the behaviour of the reinforcement. The tension-stiffening effect was 

considered in terms of the behaviour of the concrete. However, the reinforcement was 

modelled as bare steel bars. The second approach required extensive computational 

effort and often experienced convergence problem. A parametric study covering all 

possible parametric combinations will be difficult to achieve using this method. 

     In the present work, a new procedure, serving as a compromise between the two 

methods described above, has been developed to model the (RCC).   

5.4. Objectives  

The main objectives of this chapter are:  

1. To propose a mechanical component model for an (RCCS) which can be used as a 

simplified model in the finite element modelling of a composite connection to 

overcome the convergence problems in explicit modelling of concrete when the 

concrete slab begins to crack. This will also reduce the computational time 

significantly with adequate accuracy.  

2. To verify the proposed model against experimental tests. 

3. To derive analytical expression for the initial stiffness of (RCCS) to be used in the 

manual calculation of the initial stiffness of an overall composite connection. The 

target expression should combine the effect of the reinforcement, concrete and 

shear studs components in one “lump’’ component, avoiding the assumption of the 

effective length of reinforcement (lr) in calculating the stiffness of the 

reinforcement component (kr) and should not ignore the effect of the concrete (i.e. 

tension-stiffening), as in the procedures detailed in Chapter Three (Section 3.6.3). 

4. To verify the analytical expression against finite element results using ABAQUS 

software. 

5. To carry out parametric study using ABAQUS software to investigate the effect of 

the relative stiffness of the reinforced concrete component and  the shear stud 
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component - kRCC/ksc - on the initial stiffness of the composite slab (RCCS) as a 

“lump’’ component. 

6. To modify the proposed mechanical model of initial stiffness for a composite 

connection developed in Chapter Three in order to combine the effects of the 

reinforcement, the concrete, and the shear studs into one “lump’’ component.  

5.5. Proposed model for reinforced concrete composite slab, (RCCS)  

The hypothesis of the proposed model is that the force-deformation behaviour of the 

(RCCS) under tension can be modelled as a combination of the fundamental 

components: reinforcement, concrete and shear studs. In addition, the reinforcement and 

the concrete may be combined as one component which should be referred to as the 

reinforcement- concrete component (RCC). Therefore, only two major components are 

used to construct the proposed model of (RCCS): the (RCC) and the shear studs (S).  

The proposed model can be achieved by following two steps: 

1. Define the behaviour of each major component (i.e. the (RCC) and the shear 

studs (S)) ;  

2. Develop an approach to combine the major component behaviours in order to 

produce the approximate force-deformation behaviour of the (RCCS). 

5.5.1. Defining the behaviour of the major components 

5.5.1.1. Reinforcement- concrete component, (RCC) 

5.5.1.1.1. Plain concrete 

Plain concrete is a brittle material which has high compressive strength, fc
´
. However, it 

has a low tensile strength, fcr, with very limited crack strain, εcr, as shown in Figure ‎5.2. 

     As most concrete in a composite connection is under tension, the cracking and 

postcracking of the concrete are the most important aspects of its behaviour, and 

dominate its modelling. Therefore, only the behaviour of concrete under tension 

associated with the embedded reinforcement behaviour is discussed in this chapter. 
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5.5.1.1.2. Tension-stiffening effect 

The proposed model for the (RCC) takes into account the tension-stiffening effect. 

explanations of this effect are given in (CEB-FIP model code 1990, 1993; Kwak and 

Kim, 2006) along with Figure ‎5.3 below. 

 

 

Figure ‎5.3: Idealised behaviour of a RC tension member: (a) average stress–strain 

relationship of a reinforcement (b) average stress–strain relationship of concrete 

      When a reinforced concrete uncracked member is loaded in tension, the tensile 

force, Fs,T, is distributed between the reinforcement and the concrete in proportion to 

their relevant stiffness. The first crack in the concrete occurs when the mean strain, sm, 

reaches the crack strain of the concrete, cr, (point A). The crack formation phase 

continues or the concrete contribution decreases significantly until the last crack form 

fc
´ 

εt
 

εcr
 

fcr
 

εcₒ
 

εcu
 

εc
 

Figure ‎5.2: Typical Stress-strain relationship for plain concrete 
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(point B). A stabilized cracking phase then begins. In this phase, all tensile forces are 

balanced by the reinforcement alone in a cracked cross-section. However, tensile forces 

are transmitted from the embedded reinforcement to the surrounding concrete by bond 

forces in sections between any two successive cracks. As loading increases, the cracks 

gradually widens without the appearance of any additional crack, until the 

reinforcement at the cracked-sections yields (point C). Any additional increases in load 

after the reinforcement yields (i.e. in the post yielding phase) lead to an increase in the 

strain until the point of fracture of the reinforcement at the cracked section with a 

maximum strain that is less than the maximum strain of the bare steel bar. In this phase, 

the contribution of the concrete to the strength of a tension member comes through the 

remaining bond resistance.  

5.5.1.1.3. Combined reinforcement-concrete behaviour  

To date, the behaviour of the plain concrete has been considered independently of the 

behaviour of the reinforcement in finite element modelling of composite connections. In 

this type of modelling, the stress-strain relationship of the embedded reinforcement is 

the stress-strain relationship of the bare steel bar (see Figure ‎5.3-a) and the tension-

stiffening effect is taken into account by modifying the stress-strain relationship of the 

plain concrete, as in Figure ‎5.3-b.  

    In the proposed model, the contribution of the reinforcement and the concrete to the 

behaviour of the composite connection will be considered using a different approach. 

The proposed approach is based on the following considerations:   

1. The main roles of concrete in the composite connection are: 

i. To transfer the tensile force to the reinforcement from the shear studs and 

ii. To increase the stiffness of the reinforcement in tension by way of the tension-

stiffening effect. 

2. The embedded reinforcement has greater stiffness and lower ductility than the bare 

reinforcement, due to the tension-stiffening effect. 

3. The tension-stiffening effect should be taken into account in force-deformation 

relationship of the (RCC) as stated in Eurocode 4 (Annex L).  

Based on the above considerations, the roles of concrete were taken into account in the 

proposed model as follows:    
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1. The reinforcement is connected directly to the shear studs by multi point 

constraints to simulate the first role of concrete (1(i)) as described above. 

2. The second role of concrete (1(ii)) can be interpreted as increasing the stiffness of 

the reinforcement in tension by modifying the stress-strain relationship of the 

embedded reinforcement, as shown in Figure ‎5.3-a. This means that the 

significant effect of concrete on the reinforcement stiffness is taken implicitly into 

account in the stress-strain relationship of the embedded reinforcement. 

3. The insignificant tensile strength of concrete is ignored. As mentioned in Section 

5.3, Ahmed et al. (1996) ignored the concrete and all its contributions in their 

finite element modelling of composite connections. Nevertheless, they achieved 

adequate agreement with some experimental results. 

     The simplified proposed approach will reduce the computational time significantly 

and overcome the convergence problems in explicit modelling of concrete that occurred 

when the concrete slab begins to crack. Nevertheless, the most important role of 

concrete (i.e. transfer the tensile force to the reinforcement and tension-stiffening effect) 

are reflected implicitly by modifying the behaviour of the reinforcement. 

     In order to determine the stress-strain relationship for the (RCC) components, the 

basic properties of bare reinforcement should be used, which are the yield strain, sy, 

and ultimate strain, su. The corresponding mean yield strain, smy, and ultimate mean 

strain, smu, for modifying the behaviour of the embedded reinforcement can be 

calculated from the relationships shown in the next section. 

5.5.1.1.3.1. Pure tension member  

The behaviour of a reinforced concrete member under tension as shown in Figure ‎5.4 

can be described using the simplified stress-strain relationship for an embedded 

reinforcement, as shown in Figure ‎5.5. The total tensile force, Fs,T, can be calculated as 

follows: 

 , , ,s T c t r c c t r rF F F A A      (5.2) 

where Fc,t, c,t and Ac are the force, stress and area of the concrete respectively. Fr, r 

and Ar are the force, stress and area of the reinforcement respectively.  
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Figure ‎5.4: Tension-stiffening development (for Fs,T>Fs,cr) 

 

       

Figure  5.5: Simplified load-strain relationships for bare and embedded reinforcement 

 

Before first crack       , , , ,     s T s cr s T c c c t r r rF F F A E A E                           (5.3) 

where c,t and r are the strain in the concrete and the reinforcement respectively. 

 , , 1    where   and r r
c t r m s T c c m

c c

A E
F A E n n

A E
           

                

 (5.4) 
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where εm is the mean strain in the (RCC). 

At first crack        , ,                               and                   m cr s T s crF F     (5.5) 

    , 1 1s cr c c cr c crF A E n A f n       (5.6) 

where cr, fcr are the cracking strain and stress in concrete respectively. 

In the stabilized cracking phase    , , ,                                 s cr s T s yF F F    (5.7) 

 , ,s T c c t r rF A f A    (5.8) 

     In the literature, there are many relationships between the tensile strength of concrete 

after cracking, fc,t, and the crack strength, fcr. Hwang and Rizkalla (1983) performed 34 

experimental tests on rectangular reinforced concrete panels under uniaxial load. Based 

on the experimental results, they proposed the following relationship for the behaviour 

of concrete after cracking: 

 
1000( )

,
cr

c t crf f e
  

  (5.9) 

     Gupta and Maestrini (1990) proposed the same form of relationship as 

 
-550( - )

,
cr

c t crf f e
 

  (5.10) 

     Tamai et al. (1988.) proposed a power relationship for the tensile strength of concrete 

after cracking. It takes the form: 

 
,

c

cr
c t crf f





 
  

 
 (5.11) 

where the cracking strain, εcr is taken as 0.0002 and c is a constant depending on the 

bond characteristic, taken as 0.4 for a deformed bar. Jaeyeol et al. (2003) proposed the 

same form of Eq. (5.11) but after replacing 0.0002 with 0.000113 for the cracking 

strain. In the present work, the behaviour of the concrete after cracking was taken as 

exponential form (Eq. (5.9)), since this form represent the true trend for most cases. 

Therefore, Eq. (5.8) will be rewritten as:    

    1000( ) 1000( )

,
m cr m cr

s T c cr r c cr r mF A f e A f e E
        

     (5.12) 

At yield      , , ,                                and       0m cmy c t s y r r yf F A f               (5.13) 

At ultimate , , ,                             and       0m cmu c t s y r r uf F A f               (5.14) 
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In order to find the relevant strain at every load value, Fs,T, the increase in strain on the 

embedded reinforcement in the cracking state, Δsr, should first be calculated as follow: 

 
 , 1s cr c cr cr cr

sr cr

r r r r c r

F A f n f f

A E A E E E


 




       (5.15) 

  1 1sm cr t sr         (5.16) 

 cmy sy t sr       (5.17) 

In the (CEB-FIP model code 1990, 1993),
t  was defined as the integration factor for 

the steel strain along the transmission length, Lt. t  was taken to be 0.4 for 

instantaneous  loading. The ultimate strain in post-yielding state was also calculated, 

using the following relation (Anderson et al., 2000): 

  11 sr
smu sy t sr su sy

syf


      

 
       

 

 (5.18) 
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F A f n f

A A
n 




  


  (5.19) 

where 1sr is the stress in the reinforcement when the first crack has initiated.   is the 

coefficient that accounts for the ratio of ultimate strain to the yield strength of the 

reinforcement. It was taken as 0.8 for ductile steel with yield strength of 500 MPa. 

5.5.1.1.3.2. Verification of the procedure for pure tension against test results 

Tamai et al. (1988) conducted six uniaxial tests on prismatic reinforced concrete 

specimens. Steel stress distribution and elongations of each specimen were measured in 

order to evaluate the tension-stiffening effect on the average stress-strain relationship of 

a steel bar in the post-yield range. The main parameters of these tests are the concrete 

strength, reinforcement ratio, yield strength of steel and curing conditions. A deformed 

steel bar with a diameter of 19 mm was arranged in the centre of rectangular concrete 

cross-sections of 150 mm x 200 mm and 200 mm x 250 mm, reinforcement ratios of 

0.6% and 1% respectively. The length of all specimens was 2700 mm. The testing 

apparatus was set up horizontally, as shown in Figure ‎5.6. 
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Figure ‎5.6: Test arrangement (Tamai et al., 1988) 

Two specimens (No.1 and No.6) were selected from the experimental tests to verify the 

applicability of the analytical procedure to estimate the load-deformation curve of a 

reinforced concrete member under pure tension.  The results of the analytical procedure 

and experimental tests are compared in Figure ‎5.7 to Figure ‎5.10. It is clear from these 

figures that the analytical procedure can predict the behaviour of a reinforced concrete 

member under pure tension sufficiently accurately. 

 

 

Figure ‎5.7: Comparison of the stress in a steel bar of a reinforced concrete member and 

in a steel bar alone using the analytical procedure (specimen No.1) 
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Figure ‎5.8: Comparison of analytical and experimental results for a reinforced concrete 

member (specimen No.1)  

 

Figure ‎5.9: Comparison of stress of a steel bar in reinforced concrete member and a 

steel bar alone using an analytical procedure (specimen No. 6) 

 

Figure ‎5.10: Comparison of analytical and experimental results for a reinforced concrete 

member (specimen No. 6) 
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5.5.1.1.3.3. Modification for the combined actions of tension and bending  

Anderson et al. (2000) modified the relevant relationships for pure tension state in order 

to account for the combined action of tension and bending in the reinforced concrete 

slab. They defined the cracking moment of a composite connection as the moment that 

causes the mean tensile strength of concrete (fctm) to be reached at the upper fibre of the 

uncracked slab. Eurocode 4 (2004) gives the following expressions to calculate the 

mean tensile strength of concrete, fctm:  

 
 

2/3
0.3    C50/60

2.12ln(1 ( 8) /10) >C50/60

ck

ctm

ck

f
f

f

 
 

 

 (5.20) 

 

The cracking strength, fcr, was replaced by the mean tensile strength (fctm) multiplied by 

the factor (kcm) in all relevant relations for pure tension. kcm is a coefficient to account 

for the self-equilibrating stresses in the slab prior to cracking:  

 

0

1
 

1
2

cm
sl

k
h

Z





 (5.21) 

where hsl is the thickness of the concrete slab and Z0 is the vertical distance between the 

centroid of the uncracked, unreinforced concrete slab and the neutral axis of the 

uncracked, unreinforced transformed composite section.  

    The resultant stress-strain relationship for the modified behaviour of the embedded 

reinforcement is shown in Figure ‎5.11. In addition, the mean modulus of elasticity (Em) 

for the embedded reinforcement in the elastic range is shown in the same figure.   

     This stress-strain curve is required when undertaken finite element modelling of the 

(RCC). It should be noted that the length of the (RCC) element should be short enough 

to capture the cracking effect of the concrete adequately. The length of the (RCC) 

element (se) should be in the range: 

  2 1.5   and    t e t e t tav
L s L s L L p      (5.22) 

where p is the spacing between the shear studs.  Lt is the transmission length, as shown 

in Figure ‎5.4. It can be calculated as follows (Anderson et al., 2000): 
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4

cm ctm
t

sm

k f
L




  (5.23) 

where  is the diameter of the reinforcement and τsm is the average bond stress along the 

transmission length, taken as 1.8 fctm. 

 

                

 

 

In addition, the width of the (RCC) element (we) should be equivalent to the width of 

the transformed concrete slab: 

         where    slab c
e

r

w I
w n

n I
   (5.24) 

5.5.1.2. Shear stud component 

The load-slip curve for a shear stud is required in the proposed model for nonlinear 

analysis of the composite connection up to failure. However, only the linear stiffness of 

a shear stud may be required in the proposed model for (RCCS), depending on the 

following considerations: 

1. Eurocode 4 (2004) (Annex A.3) assume that the linear stiffness of an individual 

shear connector may be taken as up to 70% of its strength. The same percentage 

Embedded reinforcement  
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Em 

Figure ‎5.11: Stress-strain relationship of the (RCC) 
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was taken by (Queiroz et al., 2009). Johnson and May (1975) assumed this linear 

range to be up to 50% of the strength. Ren and Crisinel (1996) assumed the whole 

stiffness of the shear connection may be taken as linear up to a value of 60%.  The 

chart proposed in Chapter Four for estimating the initial stiffness of a shear 

connector was constructed based on the percentage of (Johnson and May, 1975).  

2. The linear stiffness of a shear connector, ksc, can be used in the analysis when it is 

expected that the maximum load on a shear connector is equal to or less than half 

its strength, Fsc,max, depending on the shear connection ratio.  

3. Since the maximum expected load on all shear connectors along the length of beam 

of a composite connection is equal to the maximum expected load in the 

reinforcement up to failure, Fr,u, then the use of the linear stiffness of the shear 

connector, ksc, may be required if the number of shear connectors satisfies the 

following condition: 

 
,

,min

,max

2 r r u

sc

sc

A f
N

F
  (5.25) 

where Ar and fr,u are the area and ultimate strength of the reinforcement 

respectively. Fsc,max is the strength of the shear connector, which can be determined 

easily from the proposed chart in Chapter Four.  

4. If the number of shear connectors did not satisfy the condition in Eq. (5.25), then 

the load-slip curve of the shear connector will be required for analysis of the 

composite connection. The proposed multi-linear load-slip curve in Chapter Four 

may be used for this purpose. 

5.5.2. Construction of the proposed model   

Only two major components are used to construct the proposed model of a composite 

slab. These are the (RCC) and the shear studs (S), as shown in Figure ‎5.12. Moreover, 

every region of the (RCC) between the shear studs is modelled individually, as the 

strain along the (RCC) is not uniform and depends on the distance from the centreline of 

the column.  Furthermore, in order to make the proposed model appropriate for both 

finite element modelling and manual calculations in the linear-elastic range, the 

conventional (RCC) are replaced by (RCC) springs, as shown in Figure ‎5.13. 
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Figure ‎5.12: Proposed model for a composite slab  

    

  

 

 

 

 

 

    In addition, the number of (RCC) springs in series between any two consecutive 

shear studs, Nspr, depends on p and se. This number is equal to the integer number of: 

 
spr

e

p
N

s
  (5.26) 

Hence, the force-displacement relationship of the (RCC) springs is required in the 

simplified spring model. The stress-strain relationship of the (RCC) in Figure ‎5.11 is 

converted to a force-displacement relationship for the (RCC) springs, as shown in 

Figure ‎5.14. This relationship is defined by multiplying all stresses by the area of 

reinforcement and all strain by the length of reinforcement over which this strain can be 

assumed to act.  

Figure ‎5.13: Simplified proposed spring model 
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5.6. Derivation of analytical expression for the initial stiffness of 

composite slab with shear studs (“lump’’ component) 

The analytical expression for the “lump’’ component is required to be used in the 

manual calculation of the initial stiffness of the overall composite connection. This 

expression combines the effects of the concrete, the reinforcement and the shear studs 

components in one “lump’’ component. Derivation of this expression is based on the 

principle of finding the equivalent stiffness of a group of springs in parallel and in 

series. Therefore, the stiffness of every spring should first be calculated; in this instance, 

the stiffnesses of the (RCC) springs and the shear stud springs must be derived. 

     The stiffness of an (RCC) spring, kRCC, can be determined using the axial stiffness of 

the (RCC) component as follows: 

 
RCC r

RCC

RCC

E A
k

l
  (5.27) 

where Ar is the area of reinforcement. RCCl  and RCCE  are the length and the modulus of 

elasticity of the (RCC) component respectively.  

     As the initial stiffness of the composite connection is assumed to be calculated at 

50% of the ultimate moment capacity of the connection, all (RCC) components can be 

Embedded reinforcement  

Δsr (1-βt) 

 

Δcr Δsm1 Δsmy 

 

Fr,y 

Δsmu 

 

Fr,u 

Fr,cr 

Δ 

Figure ‎5.14: Force-deformation relationship for an (RCC) spring 
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assumed to be in the elastic range, but they may be at any one of the three zones in the 

elastic range shown in Figure ‎5.15, depending on their distance from the centreline of 

the column. As an approximation, the stiffness of (RCC) spring, kRCC, can be taken as 

kRCC,m, for all (RCC) springs, as shown in Figure ‎5.15.  

                 

 

 

In addition, the initial stiffness of a shear stud, ksc, can be easily determined from the 

proposed chart in Chapter Four. This stiffness is representative of all parallel shear studs 

in the same row if there is more than one stud in every row.  The final model for the 

initial stiffness is shown in Figure ‎5.16. 

 

 

 

 

 

 

The equivalent stiffness of all (RCC) and shear stud springs (S), Klump, can be calculated 

as follows: 

1. The equivalent stiffness of the  kRCC,J and ksc,J (the set of springs at the extreme 

right as shown in Figure ‎5.16) is 
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Figure ‎5.16: Final model for initial stiffness 
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 (5.28) 

2. This equivalent spring, Keq,J, is in parallel with the previous shear stud spring, 

ksc,J-1, and is in series with the previous (RCC) spring, kRCC,J-1. Therefore: 
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 (5.29) 

and so on. 

3. The equivalent stiffness of all (RCC) and shear stud springs, Klump is 

 , 1 0eq JK    (5.30) 
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 (5.31) 

 ,1lump eqK K  (5.32) 

where J is the lowest integer number of shear studs for full shear connection but not 

greater than the total number of shear studs: 

 
,

,max

   and     
s sy

sc all

sc

A f
J J N

F
   (5.33) 

  

5.7. Distribution of forces in (RCC) and shear stud springs 

The proposed procedure can be used to calculate the distribution of forces in the elastic 

range for all (RCC) and shear stud springs as follow: 

1. Forces in (RCC) springs 
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2. Forces in shear stud springs 

,1

,1 ,1

,2 ,1

sc

sc RCC

eq sc

k
F F

k k



 

,2

,2 ,2

,3 ,2

sc

sc s

eq sc

k
F F

k k



 

 
,

, ,

, 1 ,

sc i

sc i s i

eq i sc i

k
F F

k k




 (5.36) 

5.8. Validation  

5.8.1. Verification of the analytical expression against finite element results 

using ABAQUS software  

5.8.1.1. ABAQUS model 

The analytical expressions used to calculate the equivalent stiffness of all (RCC) and 

shear stud springs, Klump, were verified against finite element modelling using ABAQUS 

software. In this modelling, the rotational stiffness of a steelwork connection was 

modelled as a pinned boundary condition in order to evaluate the rotational stiffness of 

the (RCC) and shear studs alone. The steel beam is 203x102UB23 and is 2.07m long. It 

was divided into two parts: one part was modelled with a beam element with a length of 

1.97m and the other part was modelled as a solid element with a length of 0.1m in order 

to calculate the rotation of the beam as the difference between the displacement at the 

top and bottom of the beam. These parts were connected using a coupling constraint. 

Both parts were assigned a high modulus of elasticity, 10Es, in order to account for the 

rotational stiffness of the composite connection due to the effect of composite slab with 

shear studs only. Nine shear studs were used which were distributed at 230mm c/c. The 

shear studs were modelled as rigid bars with rotational springs at the base, with stiffness 
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equal to 6600 kN-m/rad. This rotational stiffness is equivalent to 150 kN/mm of linear 

stiffness, which is the initial stiffness of a 19mm x100mm shear stud in concrete with a 

compressive strength of  30 MPa, as determined from the proposed chart in the previous 

chapter. The (RCC) springs were assigned 560 kN/mm of axial stiffness, equivalent to 

an axial stiffness of 4-12mm of reinforcement. The modulus of elasticity was set at 

285 GPa, which is the modified modulus to account for the tension-stiffening effect, as 

explained in Section 5.5 and Figure ‎5.15. A concentrated load was applied at the left-

hand end of the steel beam. The final model in ABAQUS is shown in Figure ‎5.17. 

 

 

Figure ‎5.17: ABAQUS model to verify the proposed analytical expressions. The part of 

the steel beam shaded in dark cyan (1.97 m) has been modelled by beam elements; the 

profile effect is due to rendering. The grey part at the right hand end (0.1 m) has been 

modelled by solid elements.   

 

5.8.1.2. Results and discussion 

The results of tensile stresses in the springs from the ABAQUS deformed model are 

shown in Figure ‎5.18. 
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Figure ‎5.18: Tensile stresses in the springs from the ABAQUS deformed model 

 

The moment-rotation curve is shown in Figure ‎5.19. The load was applied such that the 

moment was in the linear range in order to calculate initial stiffness of the composite 

connection.  

 

Figure ‎5.19: Moment-rotation curve 
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identical. These show the validity of the proposed expressions to calculate stiffness and 

forces in (RCC) springs and shear studs along a composite connection.  

 

 

Figure ‎5.20: Distribution of forces in (RCC) springs along a composite connection 

 

 

Figure ‎5.21: Distribution of forces acting on shear studs along a composite connection 
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second shear studs and first and second reinforcement zones (i.e. between the centreline 

of the column and the second stud) provide the most resistance to the longitudinal shear 

force in the composite connection. In addition, the first three studs provide 80% of the 

total shear resistance and the following six studs provide just 20%. This result is in good 

agreement with the experimental test results by many researchers such as (Loh et al., 

2006; Fu and Lam, 2006 ). What is more, Anderson and Najafi (1994) assessed their 

four experimental tests of  composite connections for different reinforcement ratios and 

concluded that the majority of resistance to longitudinal shear force in the steel-concrete 

interface depends on the first shear stud. Therefore, they considered only this shear stud 

in their procedure to calculate the initial stiffness of a composite connection. 

Furthermore, Ahmed and Nethercot (1996) performed numerical studies on a number of 

cases of composite connections with different shear connection ratios. From the results 

of the study, they concluded that all shear studs along the composite connection take a 

share of the longitudinal shear force but in different ratios, depending on their distance 

from the centreline of the column and the nearest shear stud providing the most 

resistance to slip. Their modelling was validated against the experimental results of (Li 

et al., 1996). In principle, their conclusions are compatible with the results from the 

present work, as shown in Figure ‎5.24 and Figure ‎5.25.   

     

 

Figure ‎5.22: Distribution of forces in (RCC) springs for increasing applied moments  
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Figure ‎5.23: Distribution of forces in shear studs for increasing applied moments 

 

 

Figure  5.24: Ratio of total reinforcement force in the in every (RCC) spring from total 
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Figure ‎5.25: Ratio from total reinforcement force in every shear stud along the 

composite beam 

On the other hand, the proposed procedure can be used to overcome the shortcoming in 

the estimation of the effective length of reinforcement, lr, as this length is measured 

from the centreline of the column up to the point where the assumed considerable stress 

is attained, as explained in Section 5.3. 

5.8.2. Verification of the proposed model for (RCC) and shear studs against 

the experimental test for a composite slab 

 In literature, limited experimental tests have been conducted on an isolated composite 

slab. Rex and Easterling (2000) performed experimental tests on four full-scale 

composite slabs with different numbers and positions of shear studs. The load-

deformation behaviour of an isolated composite slab under tension and bending was the 

main objective of these tests. In addition, a component model was developed to predict 

the load-deformation behaviour of an isolated composite slab and was compared with 

the experimental results. This model took into account the effect of concrete on 

reinforcement (i.e. tension-stiffening) by modelling the concrete as an axially loaded 

fictitious member with a special stress-strain behaviour acting in parallel with the 

reinforcing steel. The strain in the concrete was assumed to be the same as the strain in 

the reinforcing steel (i.e. a perfect bond). This type of modelling did not represent the 

actual behaviour in reinforcement due to the tension-stiffening effect, as explained in 

the previous section. A sketch of the test set-up is shown in Figure ‎5.26. 
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Figure ‎5.26: Sketch of the set-up used by (Rex and Easterling, 2000) 

    

One of the four slab tests (slab #1) was selected to verify the applicability of the 

proposed model for (RCC) and shear studs, in order to predict the force-deformation 

behaviour of the composite slab. The same modelling procedure used in the previous 

section was used to model the steel beam and the shear studs using ABAQUS software. 

The embedded reinforcement was modelled as a beam element with modified stress-

strain behaviour, as shown in Figure ‎5.11, in order to account for the tension-stiffening 

effect. The guideline for modelling in Eq. (5.22) and Eq. (5.24) was used to assign the 

profile of reinforcement. The final ABAQUS model is shown in Figure ‎5.27.  

 

Figure ‎5.27: ABAQUS model for a composite slab with shear studs 
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clearly shows that the proposed model can reliably predict the force-deformation 

behaviour of a composite slab with shear studs up to the maximum load.   

 

Figure ‎5.28: ABAQUS deformed shape of a composite slab model 

 

Figure ‎5.29: Comparison of force-deformation curves for the proposed model and 

experimental results 
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The model is based on the experimental tests of (Li et al., 1996). They performed a 

series of six end-plate beam-to-column composite connection tests. All composite 

connections were the same with variable shear/moment ratios. A seventh test was 

carried out on a pure steel connection for the sake of comparison. The specimens were 

assembled from 254x102UB25 beams and 203x203UC46 columns. Details of the 

composite connection and load arrangement are shown in Figure ‎5.30. 

 

 

a) 

 

                                                    b)                                       c) 

Figure ‎5.30: a) Load arrangement; b) composite beam section; c) end-plate 

5.8.3.1. Modelling of composite connection 

5.8.3.1.1. Modelling of steel connection  

A 3-D finite element model was constructed to simulate the rotational behaviour of end-

plate connections.  (Bursi and Jaspart, 1997; Bursi and Jaspart, 1998 ) suggested one of 

the three solid elements (C3D8, C3D3I and C3D8R) to be used to model the end-plate 

connection. A set of simulations were carried out to select the best element out of those 

three. It was found that the C3D8R element with the reduced integration is the best one 

considering accuracy, computational time and convergence problems.  
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     All components of the end-plate steel connection were modelled using C3D8R solid 

elements, as shown in Figure ‎5.31. Surface-to-surface contact interaction elements were 

used to simulate the function between: 

1. End-plate, 

2.  column flange, 

3. Shank, front and back nuts of bolts. 

The pre-tension in the shank of the bolt was modelled by applying contact pressure 

between the front nut and the end-plate and back nut of the bolts and flange of column. 

The normal and tangential contact properties were defined using the interaction type 

option in ABAQUS with a friction coefficient of 0.25.  

 

 

Figure ‎5.31: Steel end-plate connection 

 

A sensitivity study was conducted to determine an optimum mesh size. Furthermore, 

interaction elements were used to simulate all of the constrained surfaces. As the 

composite connection is symmetrical, only one side of the connection was modelled in 

order to reduce computing time.  

5.8.3.1.2. Modelling the steel beam and column  

C3D8R solid elements were used to simulate the neighbouring zones of the end-plate 

connection in order to avoid any conflicts between different types of contact elements. 
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As the steel beam and upper and lower parts of the column have relatively small strain 

for all stages of loading, beam element with a coarse mesh was used to model the 

remaining parts of the steel beam and column to reduce computation time. The surface-

to-surface constrain Tie option in ABAQUS was used to connect the steel beam and the 

end-plate; however, coupling constrains were used to connect both parts of the steel 

beam and column. 

5.8.3.1.3. Material modelling 

In order to reduce numerical problems, a simplified elastic-plastic model with 

symmetrical behaviour in both tension and compression was used to simulate all the 

structural steel components such as the beam, column, shank and nuts of bolts and the 

end-plate. The linear elastic part was defined by the ELASTIC option in ABAQUS 

using an elastic modulus of elasticity value of Es=200 GPa. This behaviour continues up 

to the experimental yield stress. Based on a study by (Amadio and Fragiacomo, 2003), 

the assumed linear post-limit part was modelled using the PLASTIC option using an 

assumed hardening modulus of Eh=0.015Es. This behaviour continues up to the ultimate 

stress, as shown in Figure ‎5.32. In ABAQUS material model, there are two automatic 

options to compute the stress for any strain greater than su by extending the last part of 

the stress-strain curve indefinitely along a direction of (i) constant slope, (ii) zero slope.  

The first option was taken in order to overcome the problem of convergence. 

 

 

 

 

 

 

 

 

                             

 

 

 

 

Figure ‎5.32: Elastic-plastic model for steel 
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5.8.3.2. Modelling of a reinforced concrete slab  

 The proposed model in Section 5.5 was used to simulate the embedded reinforcement 

incorporating the effects of concrete, which were taken implicitly. Eq. (5.22) and Eq. 

(5.24) were used to select appropriate dimensions for the element in order to capture the 

actual behaviour of a reinforced concrete slab. The embedded reinforcement and shear 

studs were connected by multi-point constraints. 

5.8.3.3. Modelling of shear studs  

  As there were two shear studs in every row along the composite connection, their 

effects were combined into one equivalent shear stud using the principle of equivalent 

springs in parallel. The resultant shear studs were modelled as rotational springs at the 

base of a rigid bar which was connected to the centreline of the beam with a modified 

embedded reinforcement. The non-linear moment-rotation behaviour of the rotational 

spring is shown in Figure ‎5.33.    

 

Figure ‎5.33: Behaviour of shear studs 
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5.8.3.4. Boundary conditions and load conditions 

  All of the test boundary conditions were modelled as close to reality as possible. The 

top and bottom of the column was assumed fixed in the FE model so as to represent the 

base plates. The final 3-D finite element model is shown in Figure ‎5.34.  

 

Figure ‎5.34: The final 3-D finite element model 

 

5.8.3.5. Validity of the finite element model  

The 3-D finite element model was validated by comparing the corresponding moment–

rotation curves from the test carried out by (Li et al., 1996). The preliminary validation 

was carried out against the experimental behaviour of a pure steel connection in order to 

assess the ability of the modelling procedures to capture the actual behaviour of a 

steelwork connection. The validity of a composite connection model was then evaluated 

against the experimental behaviour of a composite connection. Figure ‎5.35 shows the 

resultant deformed shape of the composite connection. In addition, Figure ‎5.36 shows 

good agreement between the moment-rotation curve from the test and finite element 

analysis. The small discrepancy between them may be related to the fact that the stress-

strain behaviour of steel components was assumed to be bilinear. This comparison 

clearly indicates the applicability of the proposed model to capture the actual behaviour 
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of a composite connection for a reinforced concrete slab. The extended part in Figure 

‎5.36 of the resultant ABAQUS curve for the behaviour of SJS-1 is related to the 

extension of the stress-strain curve of steel, as explained in Section 5.8.3.1.3.   

 

 

Figure ‎5.35: Deformed shape of the composite connection 

 

 

Figure ‎5.36: Comparison of the moment-rotation curves for experimental and numerical 

modelling 
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5.9. Parametric study to investigate the effect of kRCC/ksc on Klump 

A parametric study using the proposed expressions was carried out in order to 

investigate the effect of the relative stiffness of the (RCC) to that of the shear stud 

component (S) on the resultant stiffness (i.e. “lump’’ stiffness). ABAQUS was then 

used to check all the results. 

      Before carrying out the parametric study, the range of some important factors should 

be found first.    

5.9.1. Maximum and minimum ratios of kRCC/ksc 

Eurocode 4 (2004) states that the minimum and maximum spacing of shear connectors 

are five times the diameter of the stud and 800 mm respectively. Therefore, the practical 

range of geometry and properties of the materials for a composite connection are listed 

in Table ‎5.1.  

Table ‎5.1: Practical range of properties 

Em 

(kN/mm
2
) 

Ar 

(mm
2
) 

lr 

(mm) 

kRCC 

(kN/mm) 

ksc 

(kN/mm) 

kRCC/ksc 

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

200 300 412mm 1512mm 80 800 113 6360 100 250 0.45 63 

 

In this table, the relative stiffness kRCC/ksc varies between 0.45 and 63. In the parametric 

study, it was taken to be between 0.01 and 100 in order to investigate other possible 

values including the range given in the above table. The selected range also refers to the 

range between the low partial shear connection (kRCC/ksc = 100) and nearly full 

interaction (kRCC/ksc = 0.01) of a composite connection. Therefore, the main objectives 

of this parametric study are: 

1. Investigate the effect of using stiff or soft shear studs on the distribution of forces in 

the shear studs and reinforcement along the composite slab. 

2. Investigate the effect of shear connection ratio on the distribution of forces in the 

composite slab. 
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3. Estimate the maximum number of “active’’ shear studs in the shear span in relation 

to the shear connection ratio.  

4. Obtain the relationship between the required number of shear studs for a full shear 

connection and the maximum number of “active’’ shear studs in the shear span. 

5.9.2. ABAQUS model 

The same modelling procedure detailed in Section 5.7 (i.e. a spring model) was used; 

this is shown in Figure ‎5.37. 

 

Figure ‎5.37: Sample of ABAQUS Model for parametric study (20 studs) (same as 

Figure 5.17, but with different number of studs)   

5.9.3. Results and discussion 

Effect of shear stud stiffness  

The effect of the stiffness of a shear stud on the distribution of forces along the 

composite connection was investigated by performing four sets of calculation on 13 sets 

of shear stud in composite connections, with the number of shear studs varying between 

2 and 20. Each set of calculation had constant kRCC/ksc, with the stiffness of the shear 

stud varying between 100 kN/mm and 250 kN/mm. The kRCC/ksc varied between 1.0 and 

100. The results of these calculations are shown in Figure ‎5.38 to Figure ‎5.41. By 

comparing the results from every cycle of calculation (i.e. constant kRCC/ksc with varying 

ksc), it is clear that the stiffness of a shear stud has little effect on the distribution of 

forces acting on the shear studs along the composite connection for constant values of 

kRCC/ksc. However, comparison of the results for the same ksc and different kRCC/ksc 

shows the significant effect of kRCC/ksc on this distribution of forces. As kRCC/ksc 

increases (i.e. shear connection ratio decreases), greater redistribution of forces between 

shear studs is achieved and more of shear studs will take a share of the total tensile force 

in the reinforcement. This consequently means that the effective length of reinforcement 

increases.  
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Figure ‎5.38: Distribution of forces in shear studs for kRCC/ksc =1.0  

(The legend shows the number of studs for every connection) 

 

 

  

Figure ‎5.39: Distribution of forces in shear studs for kRCC/ksc =10 
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Figure ‎5.40: Distribution of forces in shear studs for kRCC/ksc =50 

 

  

  

Figure ‎5.41: Distribution of forces in shear studs for kRCC/ksc =100 
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Effect of changing kRCC/ksc with constant ksc 

 Following the observations from the previous part of the parametric study, a constant 

value of (ksc=150 kN/mm) was used in this part, with values of kRCC/ksc varying from 

0.01 to 100 (i.e. full interaction to partial shear connection range). The results from 12 

sets of calculation for 13 cases of composite connection with number of shear studs 

ranging from 2 to 20 are shown in Figure ‎5.42.  
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Figure ‎5.42: Distribution of forces in shear studs for ksc=150kN/mm and   kRCC/ksc    

=0.01 to 100 

The results of the analysis show the significant effect of kRCC/ksc on the distribution of 

forces along the composite connection. When the kRCC/ksc value is small (i.e. a high 

shear connection), only the shear studs nearer the column will share the total tensile 

force and the contribution from the other remaining shear studs is insignificant. 

However, almost all shear studs will share the total tensile force but with a linearly 

decreasing ratio in cases with a high value of kRCC/ksc (i.e. a low shear connection). 

Since the stiffness and strength of a shear stud are related, as explained in Chapter Four 

and Eq. (4.3), the results indicate that the assumption of  (Anderson and Najafi, 1994) of 

using only the first shear studs in their calculation of the initial stiffness of a composite 

connection is valid only for very stiff shear studs or low reinforcement ratio cases, even 

though the first stud has the largest percentage of resistance for all cases. This 
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percentage is reduced abruptly as kRCC/ksc increases or the partial shear connection ratio 

decreases, since more shear studs will take part in the resistance of the total tensile force 

at the steel-concrete interface. All shear studs transfer approximately the same amount 

of shear force for very low shear connection ratios. This behaviour is described in 

Figure ‎5.43. 

 

Figure ‎5.43: First stud force ratio from reinforcement force with varying kRCC/ksc 

 

Furthermore, these results confirm the results of the  finite element parametric study 

conducted by  (Ahmed and Nethercot, 1996) on composite connections with different 

shear connection ratios. They concluded that it is better to use a higher number of soft 

shear studs with a lower strength than to use fewer stiff shear studs with high strength in 

order to avoid local concrete failure. 

Maximum number of “active’’ shear studs  

In the present work, the “active’’ shear stud is defined as the stud that transfers more 

than 5% of the total tensile force at the steel-concrete interface. Therefore, the 

maximum number of “active’’ shear studs can be estimated by plotting the relationship 
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between kRCC/ksc and the maximum number of “active’’ shear studs from the results of 

156 cases of composite connections (13 composite connections with different numbers 

of shear studs and 12 values of kRCC/ksc). The relationship is shown in Figure ‎5.44, and 

can be best fitted with the following logarithmic expression: 

 
RCC

sc

ln( ) 3.75active

k
N

k
   (5.37) 

   

 

 

Figure ‎5.44: Relationship between the maximum number of “active’’ shear studs and 

kRCC/ksc.  

Relationship between Nfull and Nact  

In order to derive the relationship between the maximum number of shear studs for a 

full shear connection, Nfull, and the number of “active’’ shear studs, Nact, Eq. (5.38) is 
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The relationship between the stiffness and strength of a shear stud was defined in 

Chapter Four (i.e. Eq. (4.3)) as: 

,maxsc sck F  

where γ was assumed equal to 1.47 as explained in Chapter Four (Section 4.3). Then, 
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,max

ln( ) 3.75 8m r
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E A
N

p F
    

since                                       
,

,max ,max ,

r r y fullr
full

sc sc r y

A f NA
N

F F f
    

then, 

 

,

ln( ) ln( ) 3.75 8m
act full

r y

E
N N

p f
     (5.39) 

 Therefore, if the number of shear studs for a full shear connection is fewer than eight, it 

is preferable to increase this number to eight by using shear studs of lower strength. 

Also, if this number of shear studs is greater than eight, it is preferable to decrease this 

number to eight by using shear studs of higher strength. The required minimum strength 

of a shear stud can be calculated as: 

 
,

,maxmin
8

r r y

sc

A f
F   (5.40) 

5.11. Modified mechanical model of initial stiffness for a composite 

connection 

In Chapter Three, a mechanical model was proposed to calculate the initial stiffness of a 

composite connection, as shown in Figure ‎5.45.  

                                

 
Figure ‎5.45: The proposed mechanical model 
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In this model, the reinforcement and shear stud components were modelled separately. 

The proposed mechanical model can be modified in order to account for the tension-

stiffening effect and “active’’ shear studs. This modification is only valid to calculate 

the initial stiffness of a composite connection, but the original model with a rotational 

spring will be required for the analysis of a composite connection in post-linear range. 

This modification can be achieved using different methods: 

Method 1 

In the first method, the same mechanical model shown in Figure ‎5.45 is used with the 

following modifications to the stiffness of the reinforcement and shear studs: 

i. Stiffness of “active’’ shear studs, ks 

There are many procedures to calculate the stiffness of shear studs, as explained 

in details in Chapter Three. However, none of them consider the concept of an 

“active’’ shear stud or the diminishing share of shear resistance in proportion to 

the distance from the centreline of the column. This stiffness should be 

calculated considering the logarithmic decrease in contribution of an “active’’ 

shear stud in total stiffness proportional to its distance from the column. In order 

to calculate the initial stiffness of a composite connection, the average stiffness 

of shear connectors can be approximated as follows:  

    where  
2

act
s sc act all

N
k k N N   (5.41) 

ii. Stiffness of embedded reinforcement 

Generally, the stiffness of the reinforcement is calculated using the axial 

stiffness equation for a bar: 

 
r r

r

r

E A
k

l
  (5.42) 

where Ar, Es is the area and modulus of elasticity of the reinforcement. lr is the 

effective length of the reinforcement or the distance from the centreline of the 

column up to the point where the tensile stress decrease to about half the 

maximum stress. In Chapter Three (Sections 3.9.3), various procedures to 

estimate the effective length were described, which give considerably different 

results. In this study, the tension-stiffening effect is taken into account by 
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replacing Es with Em as explained in Section 5.5 (see Figure ‎5.11), and the 

effective length is calculated as follows: 

 

2 4

c act
r

h N p
l    (5.43) 

where hc and p are the depth of the column and the spacing of the shear studs 

respectively. These modifications will ensure that the requirements of effective 

length definition and stiffness of embedded reinforcement kRCC are met.  

Method 2 

The second method of modification of the proposed mechanical model can be 

achieved by replacing both the reinforcement and shear studs springs with a “lump’’ 

spring, as explained in Section 5.5. The stiffness of the “lump’’ spring can be 

calculated using Eq. (5.30). The final modified model is shown in Figure ‎5.46. 

 

 

 

 

 

 

 

 

 

 

 

5.12. Summary and conclusions 

 In this chapter, a new component model for a composite slab has been developed. This 

model combines the effects of embedded reinforcement and concrete in one component 

(RCC). The tension-stiffening effect of concrete was considered implicitly in the 

stiffness of the (RCC) by way of the modified modulus of elasticity concept Em. In 

addition, the component model was further simplified by replacing all (RCC) 

components along the composite connection with equivalent springs. Shear studs were 

modelled as linear or non-linear springs depending on the expected range of loading. 

Furthermore, a simplified procedure was proposed to calculate the “lump’’ stiffness of 
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Figure ‎5.46: Final modified mechanical model 
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the (RCC) and the shear stud (S) springs. The proposed models and calculation 

procedures were verified against finite element and experimental results for the selected 

composite connections. A parametric study was carried out to investigate the effect of 

the relative values of (RCC) to S stiffnesses on the distribution of forces acting on all 

components of (RCC) and shear stud springs along the composite connection. A new 

procedure to find the maximum number of “active’’ studs was developed. The 

relationship between the number of “active’’ shear studs and the maximum number of 

shear studs required for a full shear connection was derived. Finally, modification of the 

proposed mechanical model to calculate the initial stiffness of a composite connection 

was performed using two approaches. The first approach was achieved by developing 

new expressions to calculate the stiffness of “active’’ shear studs and the modified 

embedded reinforcement. The second approach used a single spring in place of the 

reinforcement and shear stud springs in the original mechanical model. The validity of 

all the proposed models and equations were verified using ABAQUS software as well 

as the results from experimental tests in the literature and they are in well agreement. 
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Chapter Six                                                                      

Moment resistance and Ductility of a flush end-plate 

composite connection 

6.1. Introduction  

In most of the previous works, the moment resistance and rotation capacity of 

composite connections had been dealt with separately. However, the values of the 

moment resistance and rotation capacity depend significantly on the mode of failure of 

connection. In addition, the composite connection cannot attain the plastic moment 

without sufficient rotation capacity to ensure the redistribution of forces between the 

components of connection. For that reason, there are many experimental cases where 

the test had to stop before the composite connection attained its plastic moment due to 

excessive deformation in just one of their components such as (Li et al., 1996)'s 

experimental tests. Also, there are some cases where the composite connection failed 

just at the expected moment resistance due to fracture of one component with very 

limited rotation capacity such as S8FD specimen which was tested by (Anderson and 

Najafi, 1994).  

     Therefore, the choice of a procedure to estimate the moment resistance or rotation 

capacity of composite connection should be dependent on the mode of failure. 

The objectives of this chapter are: 

1. Develop a simple flowchart to predict the failure mode of a flush end-plate 

composite connection, 

2. Develop a procedure to estimate the moment resistance of a flush end-plate 

composite connection by modifying the existence procedures in literature to 

incorporate the partial shear connection effect and to be compatible with the 

proposed flowchart of mode failure, 

3. Develop a new procedure to estimate the rotation at first yield and rotation capacity 

of a flush end-plate composite connection.   
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6.2 Prediction of failure mode of a flush end-plate composite 

connection 

The procedure to predict the failure mode of composite connection was developed by 

studying a number of experimental tests of composite connections in the literature. The 

main parameters that govern failure mode are: 

1. reinforcement ratio (), 

2. shear connection ratio based on the yield strength of reinforcement (y), and shear 

connection ratio  based on the ultimate strength of reinforcement (u),  

3. beam depth (Hb), and  

4. whether the column web is stiffened or unstiffened.  

The tests from the literature are listed in Table ‎6.1. The proposed flowchart to predict 

the failure mode of a flush end-plate composite connection is shown in Figure ‎6.1.  

     It should be noted that the proposed flowchart was constructed based on the practical 

range of shear connection ratio (y>0.4). Also, the reinforcement ratio was assumed in 

the range of (0.5<<1.7%) since most of the experimental tests in the literature were in 

this range. The normal range of reinforcement ratio in composite connections is in 

between 0.7% to 1.4% according to (Xiao et al., 1996). There are many other cases 

reported in the literature where the reinforcement ratio or shear connection ratio are 

either very high or very low compared to the above ranges. These cases are not 

considered in the present work. 
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Table ‎6.1: Parameters of experimental test of composite connections 

Ref. Specimen 

Column 

Web 

stiffened 

 

ρ% 

Moment 

resistance 

Rotation 
Shear 

Studs SLIP 

 

Failure 

Mode Ult. Max. No. y% 

Anderson 

and 

Najafi 

(1994) 

S4F YES 0.55 179 15.7 26.6 7 300 N.A B 
S8F YES 1.1 262 28 35.8 7 150 N.A E,B 

S12F YES 1.65 302 22.7 55.7 7 100 N.A E 
S8FD YES 1.1 416 14 14 7 150 N.A B 

Xiao et. 

al.(1994) 

SCJ3 Non 0.2 85.7 7.2 26.6 6 500 N.A B 

SCJ4 Non 1.0 202.9 23.4 .1 6 120 N.A D,C 
SCJ5 yes 1.0 240.8 26 35 6 120 N.A E 

SCJ6 Non 1.0 157.6 11.5 23 6 120 N.A D,C 
SCJ7 plate 1.2 204.5 26.5 46.9 6 100 N.A E 

Li et. al. 

(1996) 

CJS-1 Non 1.2 181.5 47 N.A 7 300 N.A E,B 
CJS-2 Non 1.2 176 42 N.A 7 300 N.A E,B 

CJS-3 Non 1.2 148.5 18 N.A 7 300 N.A D,B 

CJS-4 Non 1.2 177.5 58 N.A 7 300 N.A E,B 
CJS-5 Non 1.2 197.5 60 N.A 7 300 N.A E,B 

CJS-6 Non 1.2 174 23 N.A 7 300 N.A E,B 
Liew et. al. 

(2000) 

SCCB1 YES 0.5 271 24.9 N.A 7 155 N.A B 

SCCB2 YES 1.12 441 51.9 N.A 14 140 N.A E 

SCCB3 YES 1.56 449 37.3 N.A 10 145 N.A E 
Loh et. al. 

(2006) 

CJ1 C-F-SH 1.29 185.5 30 58 5 110 0.5 E 

CJ2 Fill-C 1.29 187.9 38 53 3 66 4.5 E 
CJ3 Fill-C 1.29 178.9 45 55 2 44 7.4 E 

CJ4 Fill-C 0.65 143.3 21 50 3 133 1.1 SLAB 
CJ5 Fill-C 1.94 192.1 19 30 8 118 0.2 E 

Fu and 

Lam  

(2006) 

CJ1 Non 0.6 370 35.4 N.A 7 275 0.34 B 

CJ2 Non 0.6 363 33.5 N.A 4 157 0.8 B 
CJ3 Non 0.6 250 6.1 N.A 2 78 5.8 G 

CJ4 Non 0.6 368 37.4 N.A 3 98 3.5 G 
CJ5 Non 0.6 363 31.7 N.A 3 98 3.5 G 

CJ6 Non 0.6 425 46.8 N.A 6 120 0.84 B 

CJ7 Non 0.6 274 30 N.A 2 120 0.4 B 
CJ8 Non 0.6 439 42.3 N.A 4 120 1.6 B 

B: fracture of the mesh reinforcement; 

C: excessive deformation of column flange; 

D: buckling of column web; 

E: buckling of beam flange; 

F: buckling of beam web; 

G: shear studs failure.  

C-F-SH: concrete-filled square hollow section. 
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Figure ‎6.1: Flowchart for failure mode predication 
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6.3. Moment resistance of a flush end-plate composite connection 

6.3.1. Brief literature review 

In the literature, there are two main procedures to estimate the moment resistance of 

composite connection. Both of them predict the moment resistance of composite 

connection using the concept of a rigid-plastic, stress blocks approach. In this approach, 

stresses in each components of a connection are represented by rectangular stress 

blocks. Consequently, these methods sometimes are known as blocks analysis methods.   

The moment resistance of a flush end-plate composite connection is mainly provided by 

three components:  

1. slab reinforcement; 

2. top row of bolts in tension; and 

3. steel beam bottom flange and web in compression. 

The main procedures to estimate the moment resistance of a flush-end composite 

connection are: 

Procedure One 

     The moment resistance of composite connection is calculated using rigid plastic 

analysis in which the strength of each of the components is multiplied by their lever 

arms.  The moment resistance, Mj,Rd is calculated using the following expression: 

                                           
,j Rd r r b bM F D F D                                                                                                (6.1) 

where Dr and Db are the distances from the reinforcement and top row of bolts to the 

centre of compression respectively. These forces and distances depend on the location 

of the neutral axis. Three general cases of locations are associated with three groups of 

assumptions: 

1. Neutral axis is in the bottom beam flange: 

(i). Force in the reinforcement            
,r r r yF A f                                    (6.2) 

(ii). Force in the top row of bolts          b bF R                                                   (6.3) 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

171 

 

where Rb is the strength force of top row of bolts which is determined using the 

procedure that will be explained in the next section. The centre of compression is 

assumed to be in the mid-thickness of bottom beam flange. 

2. Neutral axis is in the beam web below the top row of bolts: 

(i). Force in the reinforcement is determined using Eq. (6.2). 

(ii). Force in the top row of bolts is determined using Eq. (6.3). 

The centre of compression is calculated using equilibrium condition by assuming 

that the bottom flange and possibly part of the beam web is fully yielded. 

3. Neutral axis is in the beam web above the top row of bolts  

(i). Force in the reinforcement is determined using Eq. (6.2). 

(ii). Force in the top row of bolts is zero. 

The centre of compression is calculated using the same procedure in case (2) above. 

This procedure was adopted by most researchers such as (Anderson and Najafi, 1994; 

Li et al., 1996; Ren and Crisinel, 1996; Ahmed and Nethercot, 1997; Crisinel and 

Carretero, 1997). 

Procedure two  

      This procedure was proposed by (Brown and Anderson, 2001). The preliminary 

calculations of moment resistance are generally similar to procedure one using Eq. (6.1) 

to Eq. (6.3). The main differences are: 

1. The strength of bottom beam flange is assumed to increase up to 1.4 times of yield 

stress (i.e. strain hardening) in order to satisfy the equilibrium requirement between 

tension and compression forces. On the other hand, if this increase is not enough to 

satisfy equilibrium requirement, the compressive resistance is extended into the 

beam web but the strength of the bottom beam flange and part of beam web is 

assumed to be 1.2 times of yield stress.  

2. The tension forces in the top row of bolts are assumed to be equal to its maximum 

capacity, Rb, if the height between the bolt and the plastic neutral axis (db) is more 

than 200 mm to ensure that there is adequate straining of the bolt to reach its 
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maximum capacity. If this condition is not satisfied, the bolt force is reduced 

proportionally by a factor of (db/200). 

6.3.2. Proposed procedure to calculate moment resistance of a flush end-

plate composite connection  

In the present work, the same principles of the previous procedures are considered in 

order to develop an appropriate procedure which is compatible with the proposed 

mechanical model in Chapter Three (see Figure ‎6.2). In addition, it should be 

compatible with the proposed flowchart in Figure ‎6.1 and with the procedure to estimate 

the rotation at failure which will be developed in the following section. Furthermore, the 

previous methods dealt with full interaction of composite connection. Therefore, the 

force of the top row of bolts was ignored in some methods such as (Ren and Crisinel, 

1996) or was assumed to have maximum capacity for all cases such as (Anderson and 

Najafi, 1994; Brown and Anderson, 2001). However, the force of the top row of bolts 

depends on the properties of the composite connection. The force of the top row of bolts 

may be negligible in the composite connections with full interaction and high 

reinforcement ratio. However, it may be at ultimate for connections with full interaction 

and low reinforcement ratio. For partial interaction, the bolt forces will be in-betweens. 

Ignoring the bolt forces lead to underestimation of  the compression force on the 

column in the lower part of the connection and this may lead to an unsafe design (Loh et 

al., 2006). In the present work, the force of the top row bolts is included.   

 

               a) Deformations                                b) Free-body diagram 
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Figure ‎6.2: Proposed mechanical model with free-body diagram 
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6.3.2.1. Shear stud failure mode 

This mode of failure occurs when insufficient number of shear stud is used in the shear 

span. Often this failure mode is associated with the minimum moment resistance and 

rotation capacity of a composite connection. Consequently, this mode of failure is not 

preferable for practical use because it does not utilize the available reserve strength and 

ductility in the components of composite connection. This condition is characterized by: 

 
,max

,

< 0.8    and  0.4 1        where       
sc sc

y y

r r y

N F

A f
 (6.4) 

From the equilibrium considerations of the composite slab, we get: 

 
,max r s sc scF F N F  (6.5) 

In addition, since the force in the top row of bolts, Fb, develops as a result of the 

extension of bolt group component caused mainly by the extension of reinforcement 

(see Figure ‎6.2-a), this force needs to be checked whether it is in the elastic range or 

ultimate stage due to limited extension in the reinforcement. Further, the centre of 

compression can be assumed in the mid-thickness of bottom flange for the same reason. 

Consequently, Eq. (3.37) and Eq. (3.39) in Chapter Three to compute the force in the 

top row of bolts and the force in the reinforcement are still valid but after replacing the 

elastic stiffness of shear connectors, ks, by plastic stiffness, ks,p, to take into account the 

slip in shear connectors in the post-linear range:  

 
,max

,

,

sc sc

s p

sc c

N F
k

s
  (6.6) 

where ssc,c is the slip capacity of shear connector. Eq. (3.37) and Eq. (3.39) can be 

rewritten as: 
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 (6.8) 

Then, 
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For stiffened web column case (i.e. kc≈∞) 
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 (6.10) 

 
b r bF wF R   (6.11) 

where, Rb, is the strength of the top bolt-row. The Rb can be calculated using Eurocode 3 

(2005) §6.2.7.2 requirements: 

(i) column web in tension

(ii) column flange in bending

the smallest value of the  resistance for (iii) end-plate in bending

(iv) beam web in tension

(v) bolt in tension

bR





 


  

Also, Li et al. (1996) simplified Eurocode 3 procedure to calculate the resistance of 

column flange and end-plate in bending. The final equations for the resistance of bolt-

row are: 

, , ,

2

2

, , ,

(i)

(ii) (4.32 -  0.039   0.0116   0.009 )

the smallest of (iii) (5.5 -  0.021   0.017 )

(iv)  

(v) 1.8

eff t cw cw y cw

cf cf

b p p

eff t bw bw y bw

b b

b t f

m e p t f

R m e t f

b t f

A f
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

 


 





                    (6.12) 

It should be noted that all partial safety factors are removed from the above equations.  

The moment resistance of composite connection can be determined using Eq. (6.1). 

6.3.2.2. Reinforcement fracture 

This condition is characterized by: 

 < 0.8    and  1    y
 (6.13) 

 

In this mode of failure, the resistance force in the reinforcement, Rr, is calculated as 

follows: 
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,=r r r uR A f  (6.14) 

The moment resistance of composite connection depends on the resistance forces 

offered by the reinforcement as well as the bolts. The resistance of the top row of bolts, 

Rb, can be calculated using Eq. (6.12). The same procedure in the previous mode of 

failure is used to calculate the moment resistance of composite connection but with 

slight modification. The centre of compression should be checked whether it is in the 

mid-thickness of bottom flange of beam or in the web. This checking is performed using 

the following procedure: 

 
, ,if             r b bf b y j Rd r r b bR R A f M R D R D      (6.15) 

 
, ,if            r b bf b y j Rd r r b bR R A f M R D R D       (6.16) 

where 
rD  and 

bD  can be calculated as follows: 

                                        

     and         
2 2
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         (6.18) 

6.3.2.3. Local buckling of beam flange or column web 

  This condition is characterized by 

 >0.8     and   1.2y    (6.19) 

The force in the reinforcement and shear connectors are calculated as follows: 

 
,max

,

   
smaller of    

        

sc sc

r s

r r y

N F
F F

A f


  



 (6.20) 

Since the strain in reinforcement may be at the onset of hardening, it should be checked 

if the force in the top row of bolts is in elastic range or ultimate resistance. The force in 

the top row of bolts, Fb, is calculated using Eq. (6.11).  

 

Unstiffened column web (Local buckling of column web) 

The resistance of column web in compression and buckling can be calculated using 

(Eurocode 3, 2005)  §6.2.6.2 as follows: 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

176 

 

, ,

(i)  column web in compression
smaller

(ii) column web in buckling
c cw RdF


 


 

 

, ,

, ,

,

(i) 

smaller  1 0.2
(ii) 1

eff cw cw y cw

c cw Rd

eff cw y cw

b t f

F
b t f

 




    
   

                   

 (6.21) 

 

 

, , , , , ,

2
3

2

0.93  

3 1

eff cw cw y cw eff cw cw y cw eff cw cw y cw

cr cw
cw

cw

b t f b t f b d f

F EtEt

d

  




    
 
 
 
 

 (6.22) 

 

 ,  2 2 5( )eff cw bf p cf c pb t a t r s      (6.23) 

 

sp is the length obtained by dispersion at 45° through the end-plate (tp ≤sp≤2tp ). 

, , ,if    c cw Rd r b j Rd r r b bF F F M F D F D     
                             

 (6.24) 

, , , , ,if    0   c cw Rd r b b c cw Rd r j Rd r r b bF F F F F F M F D F D             (6.25) 

where 
rD  and 

bD  can be calculated using Eq. (6.17) and Eq. (6.18) respectively.  

 

Stiffened column web (Local buckling of beam flange) 

     The resistance of beam flange in compression can be calculated using (Eurocode 3, 

2005)  §6.2.6.7 and the simplified equation by (Li et al., 1996) as follows: 

          , ,

(i) column flange in compression

smaller (ii) beam bottom flange in compression

(iii) beam bottom flange in buckling

c bf RdF




 



 

, , ,

, , ,

2

,

(i) 

smaller (ii) 

(iii) 22 235

eff c cw cw y cw

c bf Rd bf bf y bf

fb y bf

b t f

F b t f

t f




 



 (6.26) 
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, , ,if    c bf Rd r b j Rd r r b bF F F M F D F D                                                                                      (6.27) 

, , , , ,if    0   c bf Rd r b b c bf Rd r j Rd r r b bF F F F F F M F D F D             (6.28) 

where 
rD  and 

bD  can be calculated using Eq. (6.17) and Eq. (6.18) respectively.  

6.3.2.4. Yielding of reinforcement with buckling of column web or beam flange  

This condition is characterized by: 

 >0.8     and   1.2y    (6.29) 

In this mode of failure, the force in the top row of bolts, Fb, and reinforcement, Fr, are 

calculated using Eq. (6.11) and Eq. (6.14) respectively. The expected fracture of 

reinforcement is associated with buckling of column web or beam flange. For the 

unstiffened and stiffened column webs, similar procedure described in the previous 

section is followed. 

6.3.3. Validity of the proposed procedure to calculate the moment resistance 

of a flush end-plate composite connection 

The validity of the proposed procedure is compared against 31 available experimental 

tests in the literature. It consists of tests with partial shear connection, full shear 

connection and full interaction. Also, reinforcement ratios range between 

0.3% to 1.94%. All failure modes are considered. Predictions and test values are 

compared in Table ‎6.2 and Figure ‎6.3.  

 

 

Figure ‎6.3: Validity of proposed procedure to calculate the moment resistance of 

composite connection  
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    It can be seen that the prediction of moment resistance of a flush end-plate composite 

connection from the proposed procedure agrees well with the experimental results for 

most cases. From Table ‎6.2, it can be seen that the proposed procedure gives an average 

of 1.001 with a standard deviation of 0.13. In addition, the maximum and minimum of 

prediction/test ratios are 1.28 and 0.84 respectively. Ahmed and Nethercot (1997) 

evaluated their procedure (procedure 1) against 32 experimental tests, some of which 

are not included in this study due to non-availability of data. They found that this 

procedure gives an average of 1.04 with a standard deviation of 0.15 and the maximum 

and minimum of prediction/test ratios are 1.33 and 0.82 respectively. The incorporation 

of expected failure mode and partial shear connection effect in the calculation of the 

moment resistance of composite connection are the merits of the proposed procedure 

over the other previous procedures. As the most of available experimental data are 

related to full shear connection cases, this merits are not clearly revealed in comparison.   

Also, Brown and Anderson (2001) investigated the applicability of their procedure 

(procedure 2) to predict moment resistance of composite connection against eight 

experimental tests. It was found that this procedure gives an average of 0.819 with a 

standard deviation of 0.033 and the maximum and minimum of prediction/test ratios are 

0.87 and 0.74 respectively. It is clear that the  (Brown and Anderson, 2001)'s procedure 

underestimate the moment resistance of composite connection for most of the cases. 

From the above discussion, it is clear that the proposed procedure in this study can give 

the best average, standard deviation, maximum and minimum prediction/test ratios. 
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6.4. Ductility of a flush end-plate composite connection 

Ductility means the ability of a structure to sustain deformations after its initial yield, 

without any significant reduction in the ultimate strength. The ductility of composite 

connection can be defined as: 

 
,

,  

j c

j

j y





  (6.30) 

where 

        j,c is the rotation of composite connection at failure (i.e. rotation capacity). 

        j,y is the rotation of composite connection when the first component yields. 

Since the proposed mechanical model (Figure ‎6.2) to calculate the initial stiffness is 

based on the equilibrium and compatibility requirements that must be satisfied at all 

load stages. Hence it can be used to calculate the rotation of a flush end-plate composite 

connection at yield and failure after making some necessary modification on stiffness of 

its components.   

6.5. Brief literature review  

6.5.1. Rotation at yield 

Eurocode 3 (2005) §6.1.2.1(2) emphasises the determination of moment resistance, 

rotational stiffness and rotational capacity of connections. The rotational capacity refers 

to the rotation at failure. However to calculate connection ductility, the rotation at yield 

is essential as described in the previous paragraph. The information on the latter is 

virtually non-existent in the literature.  

      Anderson and Najafi (1994) proposed the following equation to compute the 

rotation of a flush end-plate composite connection at yield of reinforcement: 

 ,

1 s

r

j y y
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k
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k H
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where Ar is the reinforcement area and all the others parameters are as defined 

previously. These expressions assumed that the first component in the connection to 

yield is the reinforcement. This assumption may be valid for a flush end-plate 

composite connection with full shear interaction. However, for the connection with 

partial shear connection the reinforcement may yield only after the yielding of shear 

connectors or may not yield at all. In addition, the effect of deformation in the 

compression zone was not included since these expressions were derived for composite 

connection with stiffened column web.    

     Aribert (1996) proposed an approach to predict the whole moment-rotation of a flush 

end-plate composite connection. This approach was developed based on the analysis of 

composite beams with partial shear connection under uniformly distributed loading. As 

part of this approach, the rotation at yield was calculated using an iterative procedure. 

This procedure can be simplified as follows:   

 
,
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 (6.33) 
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where Lb is the length of the beam under hogging bending moment adjacent to the 

connection.  Eb and Er are the moduli of elasticity of steel beam and reinforcement, Ib is 

the second moment of area of the steel beam section, and Ar is the area of the 

reinforcement. The yield force, Fy, is calculated as follows: 
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 (6.36) 

Eq. (6.36) assumed that the yielding may start in reinforcement or shear connectors 

depending on the shear connection ratio. These expressions overcome some 

shortcoming in the (Anderson and Najafi, 1994) procedure. However, the effect of 

deformation in compression zone was not included since it was derived for composite 

connection with stiffened column web. 

6.5.2. Rotation capacity 

In literature, there are many procedures to compute the rotation capacity of composite 

connection. All these procedures are based on compatibility requirement of connection 

at failure. Further, all of these procedures used the conventional mechanical models for 

composite connection but the number of basic components being different from one 

model to another as seen in Figure ‎6.4. 

 

   

          a)                          b)                                             c) 

Figure ‎6.4: Conventional mechanical models: a) Benussi and Noe’s model;      (b) 

Anderson and Najafi’s model; c) Ahmed and Nethercot model 

      

Based on deformation of only one component; elongation of reinforcement, Δr,SCI 

Report (1992) suggested the following simplified relationship to calculate the rotation 

capacity of composite connection ( see Figure ‎6.4-a): 
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rD



  (6.37) 

This simple relation did not take into account the effect of slip in shear connection 

which has significant effect on rotation especially for partial shear connection cases 

(Aribert, 1996). Also, the deformation of compression zone was ignored even though 

this effect may be considerable for composite connection with high reinforcement ratio 

or when the column web is unstiffened. Therefore, this relation may underestimate the 

rotation capacity for many cases. Xiao et al. (1992) proposed an expression to calculate 

the rotation capacity of composite connection. It is same as Eq. (6.37) but with different 

procedure to calculate, Δr, as will be explained in the next section. 

       Xiao (1994) carried out twenty experimental tests with four different types of steel 

connection: seating cleat with double web cleats, flush end-plates, partial depth end-

plates and finplate. The objectives were to investigate the effect of the interaction 

properties of composite connection on the connections' moment resistance, rotational 

stiffness and rotation capacity. Based on the results of these tests, Xiao et al. (1996) 

developed the following equation to calculate the rotation capacity of a flush end-plate 

composite connection with any number of bolt-rows: 

 



 r

ult
s

rm m d
 (6.38) 

where m is the distance from the reinforcement to the centre of rotation (see Figure ‎6.4-

c) and it was calculated using the following equation: 

 1 ( 2 / 3)   rm d p p i  (6.39) 

where p1 is the distance of the first bolt-row from the top of beam flange and p is the 

bolt-row pitch. The variable i is the integer part of the number of bolt-rows in tension 

(k). This number (k) was calculated as follows: 
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 (6.40) 

 

where fb,y is the yield strength of steel beam, and all other parameters are as defined 

previously. The deformation distance, Δm was ignored in derivation of Eq. (6.38) (see 

Figure ‎6.4). This will lead to underestimation of the first part of this equation. Ahmed 

and Nethercot (1997) investigated the validity of Eq. (6.38) and Eq. (6.39) against some 
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experimental tests of composite connection with two bolt-rows and found that these 

expressions gave an unacceptable result for the depth considered for the calculation of 

rotation capacity, m. In some cases, this depth becomes greater than the combined beam 

and slab depth. 

      Ren and Crisinel (1996) extended their equation for rotational stiffness which was 

discussed in Chapter Three (Eq. (3.14)) to calculate the rotation capacity of a flush end-

plate composite connection but with different values of component stiffness. This 

equation takes the form:   

 

2

, 1 1 1
r

j c

r s c

D

k k k

 

 

 (6.41) 

where Dr, kr, ks, kc have the same definition as before. It was assumed that the 

reinforced-concrete slab is at the plastic cracked state. Also, it was assumed that 

steelwork connection factor, kc, is not the critical factor for causing failure, therefore it 

was calculated using the same equation for initial stiffness. This assumption may be 

valid for composite connection with relatively low amount of reinforcement ratio and 

with stiffened column web but it could be unsafe for other cases. In addition, it was 

assumed that stiffness of shear connector, ks, can be calculated using the same 

expressions for initial stiffness but with maximum slip of shear connector even though it 

was assumed that the maximum force in shear connector is about 60% of ultimate 

strength of shear connector. This assumption may be valid only for composite 

connection with high or full shear connection as explained in (section 6.3).  

      Based on the compatibility of deformations in the connection zone, Aribert (1996) 

proposed the following approximate equation to calculate the rotation capacity: 

 ,
r s

c

r

j
D


 

  (6.42) 

This equation was validated against three experimental tests of full and partial shear 

connection of flush end-plate composite connections with 1.34, 0.95 and 0.63 of shear 

connection ratio and showed good agreement with experimental results. Nevertheless, 

this equation ignored the deformation of column web or flange in the compression zone 

since all of the above experimental tests were stiffened with the column web stiffener. 

This effect may be significant for high value of reinforcement ratio in composite 

connection without column web stiffener. 
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     Ahmed and Nethercot (1997) proposed an equation to calculate the rotation capacity 

of composite connection based on the deformation of three components: elongation of 

reinforcement (Δr), slip of shear studs (Δs), and extension of tension bolts (Δr). The 

rotation capacity is calculated using the following equation: 

 
,
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    
 (6.43) 

where dc,bw is the extended distance of compression zone in the beam web and can be 

calculated from equilibrium considerations. This equation overestimates the rotation 

capacity of connection since the rotation part due to the deformation of bolt-row, Δb, is 

already included in other two part of rotation in Eq. (6.43) (see Figure ‎6.4-c). Therefore, 

this equation doubles up the effect of bolts deformation. 

      Anderson et al. (2000) proposed the following equation to calculate the rotation 

capacity of composite connection: 

 
,

s cr
j c

r bD H


 
   (6.44) 

It was assumed that the centre of compression is in the mid-thickness of bottom beam 

flange. This assumption is valid for connection with low ratio of reinforcement so that 

the compression force in bottom flange can be in balance with tension forces in 

reinforcement and top row of bolts. As the reinforcement ratio is increased, the 

compression zone is extended to the beam web and the denominator of the two parts of 

Eq. (6.44) needs to modify, otherwise the rotation capacity will be underestimated. 

         Kemp and Nethercot (2001) proposed an approach to calculate the available 

rotation in continuous composite beams with semi-rigid connection. The same approach 

with required modifications was used to calculate the rotation capacity of composite 

connection. The final equation is: 

 ,

r

j c

c

cr

D d



   (6.45) 

where dc is the distance from the mid-thickness of bottom beam flange to the centre of 

rotation. This equation ignored the effect of slip in shear connectors since it was 

originally derived for the cases of composite beams with full interaction. This equation 

underestimates the rotation capacity of connection with partial shear connection. 
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     It should be noted that even though the same symbols were used to represent the 

deformation of reinforcement (Δr), slip of shear connector (Δs), bolt-row deformation 

(Δb), and deformation of compression zone (Δc), but each method used different 

procedure to calculate each of them as will be demonstrated in the following sections. 

6.6. Proposed procedure to predict the rotation at yield and rotation 

capacity of a flush end-plate composite connection  

It was demonstrated in Chapter Three that one of the advantages of the proposed 

mechanical model to calculate the rotational stiffness of composite connection is its 

applicability in the post-linear range of moment-rotation curve using appropriate 

component values. Therefore, this model is used to calculate the rotations of composite 

connection at first yield and at failure. This model with the required deformations and 

distances terms is shown in Figure ‎6.5.  

 

 

 

 

 

6.6.1. Rotation at yield 

It was found in Chapter Three that the elastic forces in reinforcement and top row of 

bolts can be calculated using Eq. (3.37) and Eq. (3.39) which  was rewritten in (section 

6.3) as Eq. (6.7) and Eq. (6.8). Also, in section 6.4, the rotation at yield, j,y, was 
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Figure ‎6.5: Mechanical model for calculating the rotations at yield and ultimate 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

187 

 

defined as the rotation of composite connection when the first component yields. In 

addition, all of the previous experimental and numerical studies demonstrated clearly 

that for normal range of reinforcement ratios in composite connections (0.7% to 1.4%), 

the reinforcement or shear connectors are the first expected component to yield 

depending on the shear connection ratios. Therefore, it can be assumed that Eq. (6.7) is 

valid up to the first component yield (i.e. reinforcement or shear connectors). Then, the 

rotation at yield can be calculated as follows: 
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 (6.46) 

Therefore, the rotation at yield and the associated moment, Mj,y, can be calculated 

depending on the shear connection ratio as follows: 

 

1. Full interaction case (y≥1.1): for this perfect interaction between steel beam and 

composite slab, it is expected that the reinforcement will yield first and the strain in 

reinforcement will control the rotation of composite connection since the slip in 

shear connectors is negligible. Therefore, the yield force, Fy, is calculated as 

follows: 

  
,y r y rF f A  (6.47) 

The force of top row of bolts, Fb, is calculated using Eq. (6.9), Eq. (6.11) and Eq. 

(6.12). The yield moment can be calculated as follows: 

  
,j y y r b bM F D F D   (6.48) 

2. High‎ to‎ full‎ shear‎ connection‎ case‎ (0.8‎ ≤y<1.1): for this high ratio of shear 

connection, the yield of reinforcement and shear connectors are expected to take 

place simultaneously. Therefore, the rotation at yield is computed using Eq. (6.46) 

with the yield force computed as: 

  
,

,
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r y r

y

sc sc y

f A
F

N F
 (6.49) 

 

The linear range of the stiffness of shear connector can be assumed to be valid up to 

50% of its strength as explained in Chapter Three (section 3.6.4) and Chapter Four 
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(section 4.3). This range can be extended up to 60% of its strength as suggested by 

(Ren and Crisinel, 1996) or up to 70% as stated by (Eurocode 4, 2004) §A.3. In the 

present work, the ratio of 60% was selected since it's the average value. Therefore, 

the yield force of shear connector is calculated as follows: 

  
, ,max0.6sc y scF F  (6.50) 

The yield moment is calculated using the same procedure as in the previous case. 

3. Partial‎ shear‎ connection‎ case‎ (0.4‎ ≤y <0.8): for this low ratio of shear 

connection, it is expected that the shear connector yields first. Therefore, the 

rotation at yield is computed using Eq. (6.46) with the yield force being computed 

as: 

  
, ,max0.6s y sc scF N F  (6.51) 

The yield moment is calculated using the same procedure as in case 1. 

6.6.2. Rotation capacity 

The proposed mechanical model is used to compute the rotation capacity of a flush end-

plate composite connection as follows: 
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  (6.52) 

Also, the compatibility of deformations in composite connection leads to the following 

equations: 
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Then,   

 ,
r s b

j c

bd


  
  (6.54) 

It should be noted that the effect of compression zone, Δc, is taken implicitly in Eq. 

(6.54) since its value is proportional to the deformation of other components. 

      The advantages of the proposed equation (Eq. (6.54)) upon all other previous 

models are: 
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1. It considered the deformation of all the effective components of composite 

connection (i.e. reinforcement, shear connectors, bolts and compression zone). 

2. It can be used to calculate the rotation of a flush end-plate composite connection for 

the whole range of moment-rotation behaviour with appropriate value of its 

parameters since the equilibrium and compatibility are always satisfied under 

increasing loading. The other models were derived for special stage of rotation. 

3. It can be used for a flush end-plate composite connection with all degrees of shear 

connection (i.e. full and partial shear connection) and for stiffened or unstiffened 

column web cases. 

4. It is simple to use and contain the least number of variables (i.e. three variable) 

since other models used the estimated deformation of components (Δr, Δs, Δc, and 

Δb) in addition to the variable distances such as (Dr, dc, dc,bw and Hb) which may 

change with the magnitude of loading due to the position of the centre of 

compression being at a higher level than the bottom compression flange. Therefore, 

the accumulated error from all the variables will be the minimum in the proposed 

expression in relative to other expressions. 

As with moment resistance procedure, the calculation of rotation capacity of a flush 

end-plate composite connection depends on the expected mode of failure. As explained 

in (section 6.3), there are four modes of failure for composite connection: 

6.6.2.1. Shear stud failure mode (ρ<0.8 and 0.4<ηy≤1) 

The deformation in reinforcement, shear connector and bolt-row are: 
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where εr, lr and Ssc,c are as defined in (section 6.3.1). The force of top row of bolts, Fb, is 

calculated using Eq. (6.9), Eq. (6.11) and Eq. (6.12).  

6.6.2.2. Reinforcement fracture failure (ρ<0.8 and ηy>1) 

For this high shear connection ratio, the shear connector is assumed to be in elastic 

range and the slip is calculated as: 
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Also, the deformation in the top row of bolts is calculated as: 

  (6.57) 

Anderson et al. (2000) proposed the following procedure to determine the deformation 

of embedded reinforcement at ultimate strain as: 

 
, 2  u r t smuL  (6.58) 

where εsmu and Lt are the ultimate strain of embedded reinforcement and the 

transmission length of crack respectively which can be calculated using Eq. (5.18) and 

Eq. (5.23) in Chapter Five.  

6.6.2.3. Local buckling of beam flange or column web (ρ>0.8 and ηy≤1.2) 

Since the strain in reinforcement may be at the onset of hardening, the force in top row 

of bolts, Fb, is calculated using Eq. (6.10), Eq. (6.11) and Eq. (6.12). Whether the 

reinforcement may yield or not depend on the reinforcement ratio (ρ). Also, by 

considering the tension-stiffening effect and the conclusions from the available 

experimental results in literature, the strain in the embedded reinforcement for the 

composite connection with partial shear connection cannot achieve the onset of the 

strain hardening (Fu et al., 2010).  These conditions can be represented by the following 

expressions: 
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where εr,y and εr,h are the strains at yield and at the onset of strain hardening of 

reinforcement. In the absence of  enough experimental data, (Amadio and Fragiacomo, 

2003) assumed, after their experimental results, that the onset of strain hardening  and 

the modulus in hardening phase are: 

 
, , , ,3       and   0.02  r h r y r h r yE E  (6.59) 

The shear connector is assumed to be in elastic range and its slip is calculated using Eq. 

(6.56). The deformation in top row of bolts is calculated using Eq. (6.57) and, Fb may 

need to be modified as follows:  

      b
b

bk

F
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Unstiffened column web (Local buckling of column web) 

, , , ,If    0c cw Rd r b b c wc Rd rF F F F F F       

 

 Stiffened column web (Local buckling of beam flange) 

, , , ,If    0c bf Rd r b b c bf Rd rF F F F F F       

6.6.2.4. Yielding of reinforcement with buckling of column web or beam flange 

(ρ>0.8‎and‎ηy≤1.2) 

The same procedures in the previous mode are used to calculate the slip in shear 

connectors, Δs, and the deformation in the top row of bolts, Δb. The deformation of 

embedded reinforcement is calculated using (Anderson et al., 2000)'s procedure as: 
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 (6.60) 

 

where Dc and p0 are the column depth and the distance from the face of column to the 

first stud. The strains εsmy, εsmu are respectively yield and ultimate strain of embedded 

reinforcement which can be calculated using Eq. (5.17) and Eq. (5.18) in Chapter Five. 

The ultimate rotation is calculated using Eq. (6.54). 

6.7. Validity of the proposed procedures 

 6.7.1. Rotation at yield 

Three sets of experimental tests were considered to check the validity of the proposed 

procedure to calculate the rotation at yield. These tests were selected to represent three 

cases of shear connection (i.e. full interaction, full shear connection and partial shear 

connection). Only a limited numbers of tests in the literature have the measurement of 

strain for reinforcement or slip of shear studs in order to check the first component to 

yield. The selected three sets of tests were conducted by (Aribert, 1996; Li et al., 1996; 

Fu and Lam, 2006 ). The results of calculation are presented in Table ‎6.3. It is clear 

from the results that the proposed procedure can provide a good estimation of rotation at 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

192 

 

yield of composite connections for most cases. The accuracy of the procedure is 

affected by the accuracy involved in the choice of the behaviour of the components.  

 

Table ‎6.3: Comparison between the proposed and test results for rotation at yield 

Ref Test Ar 

(mm2) 

Nsc fr,y 

(N/mm2) 

Fsc,max 

(kN) 

y % jy jy 

(test) 

jy / jy (test) 

Li et al. (1996) CSJ-1 780 14 480 120 >300 5.89 6.5 0.91 

CSJ-5 780 14 480 120 >300 6.1 6.4 0.95 

Aribert and 

Lachal (1992) 

C1 405 17 540 30 135 3.91 4.3 0.909 

C2 405 12 540 30 95 4.1 3.8 1.08 

C3 405 8 540 30 63 5.1 4.5 1.13 

Fu and Lam 

(2006) 

CJ1 628 7 535 120 234 3.9 4.5 0.866 

CJ3 628 2 535 120 105 4.57 5 0.914 

CJ5 628 3 535 120 66 4.8 5.8 0.83 

 Average 0.95 

Stdev 0.103 

 

6.7.2. Rotation capacity  

Six sets of experimental tests with 21 cases of composite connection were considered to 

check the validity of the proposed procedure to calculate the rotation capacity of flush 

end-plate composite connection. These tests represent the usual cases of failure modes. 

It consists of full interaction, full shear connection and partial shear connection of 

composite connections. The results of calculation are presented in Table ‎6.4.  

    It is clear from these results that the proposed procedure can estimate the rotation 

capacity of flush end-plate composite connections for most cases even though it 

underestimates or over-estimates the rotation for some cases. The accuracy of the 

procedure is affected by the accuracy of the assumed strain at failure for the steelwork 

components and reinforcement. Also, it depends on the assumed slip capacity of shear 

studs for the composite connection with low partial shear connection where the shear 

studs failure mode is expected. From Table ‎6.4, it can be seen that the proposed 

procedure gives an average of 1.08 with a standard deviation of 0.2. In addition, the 

maximum and minimum of prediction/test ratios are 1.42 and 0.7 respectively. The 

equation developed by Ahmed and Nethercot (1997) (i.e. Eq. (6.43)) gives an average 

of 1.04 with a standard deviation of 0.27 and the maximum and minimum of 

prediction/test ratios are 1.73 and 0.72 respectively. 
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Table ‎6.4: Comparison between proposed and test results for rotation capacity 

Ref. Specimen 

 

ρ% 

 

 

Rotation (mrad) Shear 

Studs 
Lt 

 

(mm) 

 

Nact 

Ahmed and 

Nethercot (1997) 

(1) 

Proposed   

    (P) 

At 

ultimate 

moment 

At 

failure 

(T) 

No. y 
Rotation 

capacity 

(mrad) 

(1)/T 
Rotation 

capacity 

(mrad) 

P/T 

Anderson 

and Najafi 

(1994) 

S4F 0.55 15.70 26.60 7 1.91 121 5.51 30.29 1.14 35.01 1.32 

S12F 1.65 22.70 55.70 7 1.27 81 5.94 61.04 1.10 60.51 1.09 

Xiao et. 

al.(1994) 

SCJ3 0.30 7.20 26.60 6 2.00 133 5.28 23.23 0.87 34.86 1.31 

SCJ4 1.00 23.40 41.10 6 2.00 133 5.28 34.94 0.85 58.38 1.42 

SCJ7 1.20 26.50 46.90 6 1.67 111 5.47 40.28 0.86 59.61 1.27 

Li et. al. 

(1996) 

CJS-1 1.20 47.00 47.00 14 4.61 111 4.58 43.64 0.93 44.19 0.94 

CJS-2 1.20 42.00 42.00 14 4.61 111 4.58 43.64 1.04 44.19 1.05 

CJS-4 1.20 58.00 58.00 14 4.61 111 4.58 43.64 0.75 44.19 0.76 

CJS-5 1.20 60.00 60.00 14 4.61 111 4.58 43.64 0.73 44.19 0.74 

Liew et. al. 

(2000) 

SCB2 1.12 51.90 51.90 14 1.52 119 5.59 90.01 1.73 64.55 1.24 

Loh et. al. 

(2006) 

CJ1 1.29 30.00 58.00 5 1.09 103 5.00 51.82 0.89 68.85 1.19 

CJ2 1.29 38.00 53.00 3 0.65 103 3.00 58.20 1.10 67.98 1.28 

CJ3 1.29 45.00 55.00 2 0.43 103 2.00 67.69 1.23 65.14 1.18 

CJ4 0.65 21.00 50.00 3 1.16 69 5.75 46.25 0.92 54.04 1.08 

Fu and Lam  

(2006) 

CJ1 0.60 35.40 35.40 7 2.50 222 5.06 29.93 0.85 33.99 0.96 

CJ4 0.60 37.40 37.40 3 1.43 222 4.00 35.84 0.96 35.69 0.95 

CJ5 0.60 31.70 31.70 3 0.71 222 2.00 39.55 1.25 35.69 1.13 

CJ6 0.60 46.80 46.80 6 1.07 222 3.00 37.72 0.81 52.69 1.13 

CJ7 0.60 30.00 30.00 2 1.07 222 3.00 49.30 1.64 35.69 1.19 

CJ8 0.60 42.30 42.30 4 1.68 222 5.29 42.22 1.00 29.43 0.70 

 

Average 1.04 

 

1.08 

Stdev 0.27 0.2 

Maximum 1.73 1.42 

Minimum 0.72 0.7 
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6.8 Relation between the ductility of connection and ductility of frame 

A steel frame with three bays and four storeys was used to demonstrate the relation 

between the ductility of connection and ductility of frame (see Figure ‎6.6).  
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Figure ‎6.6: Steel frame 

Two different flush end-plate connections are used to evaluate the effect of ductility of 

connection on the ductility of steel frame. These connections were tested by (Davison et 

al., 1987) and the moment-rotation curves of these connections are shown in Figure ‎6.7. 

They are considered as semi-rigid connections, as shown in Figure ‎6.8. 

 

 

Δ F 
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Figure ‎6.7: Moment-rotation curve of isolated connections 

 

 

Figure ‎6.8: Connection classification 
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where f is the ductility of frame. Δy, Δu are respectively the top horizontal displacement 

at first yield and ultimate load due to horizontal point load at the top of frame. The 

ductility of connection is calculated using Eq. (6.30), as: 

,

,

j c

j

j y





  

The available ductility of isolated connections (see Figure ‎6.7) are: 

Flash end-plate-1 (Conn-1) 

,

22.88
5.25

4.34
j av    

Flash end-plate-2 (Conn-2) 

,

22.88
9.86

2.32
j av    

6.8.1. Finite element modelling 

The analysis of the frame in Figure ‎6.6 with one type of connection each time was 

performed using ABAQUS package. All columns and beams were modelled using B31 

beam element. The concentred load and boundary conditions were simulated, as shown 

in Figure ‎6.6. Steel elastic material was assigned to all columns and beams. This option 

ensures that the whole behaviour of the frame will control by only its connections 

behaviour. All connections were modelled using connector elements with non-linear 

behaviour. The constant extrapolation option in connector section was selected for 

connection curve. This option ensures that the curve of connection will continue with 

zero slope up to unlimited value in order to ensure that the connection can reach 

unlimited ductility. Also, it ensures that the frame can reach ultimate resistance and then 

its resistance is reduced due to accumulative deformations of all columns, beams and 

connections without any local failure of connection. Furthermore, this option permits to 

plot the relation between the instantaneous ductility of frame with the associated 

ductility of control connection. 
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Results and discussions 

Figure ‎6.9 shows the deflected frame under lateral concentrated load at top left point.  

 

 

Figure ‎6.9: Deflected shape of frame  

Figure ‎6.10 and Figure ‎6.11 show the load-rotation curves for all connections in the 

frame up to the ultimate load. Some of these connections have positive rotations and 

other have negative rotations depend on its location in the frame. Also, it is clear that 

many of the connections reached the experimental rotation capacity before the frame 

reached its ultimate resistance whereas other connections varied between the linear and 

post linear ranges.  

      Figure ‎6.12 shows the load-displacement curve for the frame with each type of 

connection. The horizontal point load at first yield of connection is 100 kN for the 

frame with Conn-1 and 225 kN for the frame with Conn-2. The associated horizontal 

displacement at top of the frame is 160 mm for the frame with Conn-1 and 225 mm for 

the frame with Conn-2. Also, the ultimate horizontal point load is 410 kN and the 

associated displacement is 1843 mm for the frame with Conn-1. The ultimate horizontal 

point load is 533 kN and the associated displacement is 735 mm for the frame with 

Conn-2. 
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Figure ‎6.10: load-rotation curves of connection in the frame with Conn-1 (the black 

dash line represents the yield limit of connection and black dots line represent the 

rotation capacity of connection) 

 

 

Figure ‎6.11: load-rotation curves of connection in the frame with Conn-2 ((the black 

dash line represents the yield limit of connection and black dots line represent the 

rotation capacity of connection) 
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Calculation of the ductility of frame and connection can be summarized as follows: 

Available ductility of the frame 

(i) Frame with Conn-1 

  ,

,

485
3.0

160

u c

f av
y c




  


 

where y,c  is the top horizontal displacement of the frame when rotation of any 

connection in the frame reaches the yield rotation. u,c is the top horizontal 

displacement of the frame when the rotation of any connection in the frame 

reaches the rotation capacity. 

(ii) Frame with Conn-2 

 
650

2.9
225

f av
    

Required ductility of the frame to reach its ultimate resistance  

i. Frame with Conn-1 

 
1843

11.5
160

f req
    

ii. Frame with Conn-2 

 
735

3.27
225

f req
    

Required ductility of the connection to provide the required ductility of frame   

The required ductility of the connection in order to provide the required ductility for the 

frame in order to reach its ultimate resistance is:  

i. Frame with Conn-1 

 
95.9

21.6
4.43

c req
    

ii. Frame with Conn-2 
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 
24.7

10.6
2.32

c req
    

The percentage of available connection ductility to the required ductility  

i. Frame with Conn-1 

 

 
5.25

100 24.3%
21.6

c av

c req




    

ii. Frame with Conn-2 

 

 
9.86

100 93%
10.6

c av

c req




    

 

Figure ‎6.12:  load-displacement curve of frame  
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 Figure ‎6.13 shows the moment rotation of the connection in the frame up to failure of 

frame. It demonstrates the advantage of extending the moment-rotation curve 

horizontally in the modelling of connection to overcome the possibility of terminating 

the processing of ABAQUS programme due to failure in connection before the frame 

reaches its maximum load resistance. Figure ‎6.14 shows the relation between the top 

horizontal displacements of frame with the associated rotation of control connection in 

the frame. 

 

Figure ‎6.13: Moment-Rotation of connection in the frame 

 

 

Figure ‎6.14: Frame displacement-connection rotation curve 
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The above results show that both types of connection provide the nearly same available 

ductility to the frame. However, this value of available ductility is equal to about 93 % 

of the required ductility for the frame with Conn-2 to reach its ultimate resistance but it 

is only equal to about 24% of the required ductility for the frame with Conn-1. 

        Furthermore, the frame with (Conn-1) has much ductility with less load resistance 

than the same frame with (Conn-2), as the moment resistance of the (Conn-1) is less 

than the moment resistance of (Conn-2).  

The results from Figure ‎6.12, Figure ‎6.13 and Figure ‎6.14 were used to construct the 

relation between the instantaneous ductility of connection and the instantaneous 

ductility of frame, as shown in Figure ‎6.15. It is clear from these figures that the 

ductility of any frame is strongly dependent on moment resistance and ductility of its 

connection. 

  

 

Figure ‎6.15: Instant frame ductility-Instant connection ductility relationship 
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6.9. Summary and conclusions 

1. A flowchart to predict the failure mode of composite connection has been 

developed based on the practical range of shear connection ratio (y>0.4) and 

reinforcement ratio (0.5<<1.7%). 

2. A procedure to calculate the moment resistance of composite connection has been 

developed using the concept of a rigid-plastic, stress blocks. This procedure is 

compatible with the proposed flowchart in Figure ‎6.1 and with the procedure to 

estimate the rotation at failure. Also, it considered the cases of full interaction, full 

shear connection and partial shear connection. 

3. The prediction of moment resistance of composite connection from the proposed 

procedure is in agreement with the experimental results for most cases. The ratio of 

the results from the proposed procedure and the experiments gives an average of 

1.001 with a standard deviation of 0.13. In addition, the maximum and minimum of 

prediction/test ratios are 1.28 and 0.84 respectively. 

4. The proposed mechanical model to calculate the rotational stiffness of composite 

connection is extended to calculate the rotations at yield and at failure using the 

appropriate post-linear values of its components.  

5. The validity of the proposed procedure to calculate the rotation at yield was 

evaluated against three sets of experiments. These tests were selected to represent 

three cases of shear connection (i.e. full interaction, full shear connection and 

partial shear connection). The results from the proposed procedure can estimate 

well the rotation at yield of composite connections for most cases. 

6. Six sets of experimental tests with 21 cases of composite connection were 

considered to check the validity of the proposed procedure to calculate the rotation 

at failure. These tests represent all of the usual failure modes. The proposed 

procedure can estimate the rotation at failure of composite connections for most 

cases.  

7. The relationship between connection ductility and frame ductility was investigated. 

It was found that the moment resistance and ductility of connection affect 

significantly the whole behaviour of frame.  
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Chapter Seven                                                                                 

Analysis of a uniform beam with semi-rigid 

connections under gravity loading 

7.1. Introduction 

The semi-rigid behaviour of a connection significantly affects the overall behaviour of 

the structural member to which its ends are attached. Deflection of a structural member 

is greatly influenced by the flexibility of the connections involved. Many approximate 

practical procedures have been used to compute the deflection of a beam with semi-

rigid connections at its ends. Recently, (Ahmed, 2001; Ahmed et al., 2008) proposed a 

new practical procedure to determine the maximum deflection of a beam under gravity 

loading with semi-rigid connections using basic structural principles. Based on this 

maximum deflection, they constructed practical charts to evaluate the practical 

allowable span/depth ratio for rectangular and UB sections. Even though this method 

can give good predictions of the maximum deflection of a beam with semi-rigid 

connection, it has many shortcomings which are listed below: 

1. This method entails the use of explicit expressions for the maximum deflection of a 

beam which are subject to only three standard cases of loading: central, third point 

and uniformly loading. As a result, it can provide only an approximate result for 

other types of loading. 

2. It only gives the deflection at the estimated point of maximum deflection. It cannot 

be used to calculate the deflection at other points. 

3. It cannot be extended to calculate the shear force or bending moment under 

serviceability loading. 

4. It deals with statically indeterminate members. 

        In the following section, a new procedure which can be used to calculate the 

deflection for a beam with semi-rigid connections under any arbitrary loading will be 

proposed. This procedure will overcome the shortcomings of the procedure used by 

(Ahmed et al., 2008). The proposed procedure has the following virtues: 
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1. It is based on the flexibility parameters of a simply-supported beam which means 

that all calculations deal with a statically determinate member.  

2. It can be used to calculate the deflection at any point of the beam. 

3. It can be used to calculate the deflection for an arbitrary loading without any 

approximation. 

4. It can be also used to compute shear force and bending moment as well. 

5. It can be extended to compute the deflection of a composite steel-concrete member 

after making some modifications to account for beam stiffness. 

7.2. Proposed procedure 

The beam with a semi-rigid connection in Figure ‎7.1 is used for the derivation of the 

required parameters. The beam can be subjected to any arbitrary type of loading. The 

procedure is based on the principle of superposition to find the rotation at the two ends 

of the simply-supported beam using the moment-area method or any other simple 

methods.  

Derivation of the required parameters 

The slope deflection equations for a beam with semi-rigid connections are:  

    
2 2

2                 &         2A A B B B A

EI EI
M M

L L
        (7.1) 

where E, I and L are the modulus of elasticity, second moment of inertia and length of 

beam. In order to show the effect of the semi-rigid end-springs, Eq. (7.1) can be 

rewritten as: 

 
2 2

(2 )     &   (2 )  A A A BA B B B B AB A

EI EI
M S S M S S

L L
        (7.2) 

where                              -           and      -   A B
A A B B

A B

M M

k k
                      (7.3) 

From (Wong et al., 2007 ): 

 
1 1 1

(1 3 ), (1 3 )  &     A B B A AB BAS R S R S S
R R R

       (7.4) 
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     &         &     1 4( ) 12   A B A B A B

A B

EI EI
R R R R R R R

Lk Lk
       (7.5) 

  

2 2
((6 2) )     &   ( (6 2) )   A B A B B A B A

EI EI
M R M R

LR LR
           (7.6) 

 

(6 2) (6 2)2 1 2 1
   &   B A

A A B B B A

R REI EI
M M

L R R L R R
   

    
       

     

 

 
2 1 2 1

   &   A B
A A B B B A

f fEI EI
M M

L R R L R R
   

   
       

   
 (7.7) 

 

 6 2       &    6 2A B B Af R f R     (7.8) 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎7.1: Semi-rigid beam with a general load system 
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7.3. Eurocode 3 (2005) classification for joints 

Eurocode 3 (2005) classifies joints for braced and unbraced steel structures as: 

 

1 1
1. Rigid                       a) braced                    b) unbraced         

8 25

1 1
2. Semi-rigid              a) braced      2       b) unbraced      2

8 25

3. Pinned    

s s

s s

EI EI

Lk Lk

EI EI

Lk Lk

EI

L

 

   

2
sk


 (7.9) 

where ks is the stiffness of the connection. EI and L are the flexural stiffness and length 

of the beam respectively. Therefore, the semi-rigid range for unbraced steel structure 

joints: 

 0.04 &  2A BR R   

7.4. Comparison with (Ahmed et al., 2008)'s equations  

The equations proposed in Section 7.2 are for semi-rigid beams with symmetrical or 

asymmetrical loading. However, (Ahmed et al., 2008)'s equations are for semi-rigid 

beams with symmetrical loading only (i.e. A/B =-1).  

       In order to compare the result from the proposed equations with (Ahmed et al., 

2008)'s equation for symmetrical loading, the same definition used by (Ahmed et al., 

2008) for semi-rigid factors are used: 

Assume                             and        B
A B

A A

kEI m
R m n R

Lk k n
      (7.10) 

21
 1 4 (1 ) 12

m
R m

n n
      

Eqs. (7.7) and (7.8) are rewritten in terms of m and n:  

 
6

2       &    6 2A B

m
f f m

n
     (7.11) 

 

   
2 2

2 2
        &         

1 1
1 4 (1 ) 12 1 4 (1 ) 12

A A B B B A

A B

f fEI EI
M M

m mL L
m m

n n n n

    
 

     

 (7.12) 
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For all cases of symmetrical loading:  

 
A B    (7.13) 

   
2 2

1 12 2
           and             

1 1
1 4 (1 ) 12 1 4 (1 ) 12

A B

A B

f fEI EI
M M

L Lm m
m m

n n n n

 
 

  
   
        

   

 (7.14) 

 

In order to find the end moments for a fixed end case with symmetrical loading (MFA 

and MFB), then: 

A Bk k   

from Eq. (7.10): 0 0   &     1    0A BR m n R         

from Eq. (7.11):            
2 2

2    &   A B FA FBFix Fix

EI EI
f f M M

L L
       

Then, by substituting (MFA and MFB) in Eq. (7.14) the proposed equations for 

symmetrical loading: 

 
   

2 2

1 1
        &         

1 1
1 4 (1 ) 12 1 4 (1 ) 12

A B

A FA B FB

f f
M M M M

m m
m m

n n n n

 
  

   
        

   

 (7.15) 

Eq. (7.15) can be rewritten as: 

                                       1 2     &      A FA B FBM M f M M f    (7.16) 

 

Comparing Eq. (7.16) and Eq. (7.15) gives: 

 
   

1 22 2

1 1
      &     

1 1
1 4 (1 ) 12 1 4 (1 ) 12

A Bf f
f f

m m
m m

n n n n

 
 
   
        

   

 (7.17) 

1 2

66 1

      and     
4 3 4 4 3 4

( ) ( )

B
B

A

B B
B B

A A A A

EIEI kk LkLf f
k kEI EI EI EI EI EI

k k
L Lk k L L Lk k L

 
 

   
   

        
   

 

 

From (Ahmed et al., 2008)'s equations  for symmetrical loading: 
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 1 Ahmed

6

 
4 3 4

( )

B

B
B

A A

EI
k

Lf
kEI EI EI

k
L Lk k L




 

   
 

 (7.18) 

 

  2 Ahmed

6
1

 
4 3 4

( )

B

A

B
B

A A

EI
k

Lk
f

kEI EI EI
k

L Lk k L

 
 

 
 

   
 

 (7.19) 

 

It is clear that f1 and f2 in Eq. (7.17) are identical to Eq. (7.18) and Eq. (7.19). In 

addition, the above discussion show that the proposed equations and (Ahmed et al., 

2008)'s equation are equivalent for symmetrical loading cases. The proposed equations 

are for semi-rigid beams with symmetrical or asymmetrical loading. However, (Ahmed 

et al., 2008)'s equations are for semi-rigid beams with symmetrical loading only (i.e. 

A/B =-1). Therefore, it is clear that (Ahmed et al., 2008)'s equations are only special 

case from the proposed equations. 

7.5. Deflection of a semi-rigid beam 

Based on the pre-determined values of fixed end moments at two ends of a beam, 

(Ahmed et al., 2008) proposed design charts to calculate only the maximum deflection 

at the point of maximum moment for only three standard cases of symmetrical loading. 

However, the proposed equations (i.e. Eqs. (7.7) & (7.8) can be used to calculate 

deflection at any point along the beam and for any arbitrary type of loading. 

      The proposed procedure is based on the principle of superposition by considering 

the beam as simply-supported to find the deflection at a point, δsimply, using any 

conventional methods such as the moment area method or the virtual work method. 

Reduction factors are then used to account for the semi-rigid effect. The net deflection 

at any point is: 

     
A B

semi simply red redM M
       (7.20) 

  2 3( ) 3 - / - 2          0     from point A
6A

A
red M

M
x x L Lx x L

EI


 
   
 

 (7.21) 
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    2 33 - / - 2          0<x<L from point B            
6B

B
red M

M
x x L Lx

EI


 
  
 

 (7.22) 

7.6. Steps for analysis of a beam with a semi-rigid connection under 

gravity loading 

7.6.1 End moment and reaction VA and VB 

(i) Compute A & B for simply-supported boundary condition by any 

conventional method such as the moment area method or the virtual work 

method. Also, if the fixed end moment is already known (MFA &MFB) for this 

kind of loading then: 

    2 -     &         2 -
6 6

A FA FB B FB FA

L L
M M M M

EI EI
    (7.23) 

 

(ii) Use Eqs. (7.7) & (7.8) to compute MA and MB. 

(iii) Use the principle of superposition method to plot the bending moment diagram 

for the whole beam. 

(iv) Use the equilibrium equations to calculate the end reactions and a shear force 

diagram. 

7.6.2. Deflection at any point  

(i) Calculate the deflection at any point for simply-supported boundary conditions 

(δsimply) by any conventional method. 

(ii) Using MA and MB, compute the reduction in deflection (δred) due to the semi-

rigid effect using Eqs. (7.21)& (7.22). 

(iii) Calculate the net deflection at any point using Eq. (7.20). 

 

Example 1: For the semi-rigid beam shown in Figure ‎7.2: (b=0.2 m, h=0.4 m, L=20 m, 

E=200GN/m
2
, I= 107x10

-5
 m4, kA=1000 N-m/rad, kB=10000 N-m/rad) 
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End moments  

1. Compute A  & B for simply-supported boundary condition by any 

conventional method. 

 50000 5 15 20 5
0.00366 rad     &     0.00513 rad

6
A B

EIL
 

   
    

2. Use Eq. (7.5) to compute:  

10.7   &   1.07  & 1 4( ) 12 184  A B A B A B

A B

EI EI
R R R R R R R

Lk Lk
        

 

3. Use Eq. (7.7) to find: 

52 107 10
(2(1 3 1.07)  0.00366 0.00513) 2.96 kNm

185
AM

 
       

52 107 10
 (2(1 3 10.7) 0.00513 0.00366) 38.7 kNm   

185
BM

 
       

  

Reactions VA and VB 

Using the equilibrium equations, end reactions can be calculated as: 

2.96 50 5 38.7
10.7 kN    50 10.7 39.3 kN

20
A AV V

  
       

Figure ‎7.2: Example 1 

kB 

Simply-supported beam 

Semi-rigid beam 

A B 
Δsemi 

kA 15m 5m 

VA 

MA 
MB 

VB 

A B 

50 kN 

ϴA ϴB 

A B Δsimply 

kB 

50 kN 

50 kN 

10 m 
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Deflection at a distance of 10 m from point A 

1. Calculate the deflection at 10m from point A for simply-supported boundary 

condition (δsimply):  

(δsimply)=0.0269 m 

2. Using  MA and MB, compute the reduction in deflection (δred) due to semi-rigid 

effect: 

 
3 3

2

9 5

2.96 10 10
3 10 - 2 20 10 -0.000347m

6 200 10 106.7 10 20A
red M




  
       

     
 

     

 
3 3

2

9 5

38.7 10 10
3 10 - 2 20 10  -0.00453m

6 200 10 106.7 10 20B
red M




  
       

     
 

3. Calculate the net deflection at the point: 

     0.0268 0.000347 0.00453 0.0219m 21.9mmsemi simply red redMA MB
            

  

Comparison with ABAQUS results 

The same beam was analysed using the ABAQUS software. The steel beam was 

modelled with beam element and the semi-rigid connections were simulated as 

rotational springs at the ends. The JOINT option was used in conjunction with the 

SPRING option to simulate the connections as stated in (ABAQUS/ Keywords 

Reference Manual §18.29). Euler-Bernoulli cubic beam elements (B23) available in 

ABAQUS/Standard were used to simulate the beam, as this element is highly accurate 

for simulations of dynamic vibration analyses (Getting Started with ABAQUS §6.3). An 

analysis step with a FREQUENCY procedure option was used to obtain natural 

frequencies of the beam. A Static, general step was used to calculate the reaction forces 

at two ends of the beam. Table ‎7.1 shows the comparison of the results from the 

proposed procedure and the ABAQUS results. 

 

 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

213 

 

       Table ‎7.1: Comparison of the results of the proposed procedure with those given by 

ABAQUS 

Parameters 

End moment Reaction 

Deflection (mm) MA 

(kNm) 

MB 

(kNm) 

VA 

(kN) 

VB 

(kN) 

Proposed 2.964 38.71 10.71 39.29 21.98 

ABAQUS 2.965 38.70 10.71 39.29 21.99 

Proposed/ABAQUS 100% 100% 100% 100% 100% 

 

It is clear from Table ‎7.1 that the proposed procedure can give results that are nearly 

identical to those given by ABAQUS modelling for this simple example. 

 

 7.7. Natural frequency of a uniform beam with semi-rigid connections 

using the effective length concept  

For most practical cases, the stiffness of two end connections are equal (i.e. kA=kB). 

Therefore, the concept of effective length can be used to compute the natural frequency 

of a beam with semi-rigid connections. The procedure is based on the natural frequency 

of a simply-supported beam in conjunction with the effect of a semi-rigid connection 

using the effective length concept as follows: 

For simply-supported beam (kA=kB=0) 

 

49 869 1
pin 3 32 2

. EI EI
f

WWL L


 

 
 (7.24) 

 

For a fixed-end beam (kA=kB=) 

 

 

422 37 1

3 32 2 0 579

. EI EI
f

Wfix WL . L


 

 
 (7.25)  

where W is the total mass of beam. fpin and ffix are the natural frequency of a beam with 

pinned-pinned and fixed-fixed boundary conditions respectively. The natural frequency 

for general cases of boundary conditions is: 
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 

4

3

1

2

EI
f

W L




 
 (7.26) 

 where L is the effective length of the beam and  is the effective length factor.  The 

value of  depends on the boundary conditions of the beam, as shown in Figure ‎7.3. 

This value can be determined from the chart in Figure ‎7.4. This chart was developed by 

normalising the natural frequency of a beam to the natural frequency of the simply-

supported condition and assuming that (kpin ≈ 0.5EI/L),  as in the  Eurocode 3 (2005) 

classification. 

 

 

Figure ‎7.3: Natural frequency for beams of uniform mass with different boundary 

conditions 

.  

 

Figure ‎7.4: Effective length factor [ABAQUS results]  

 

ks/kpin 
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Example 2: The same beam as in Figure ‎7.2 was used to verify the proposed procedure 

with ABAQUS software for different stiffnesses and loading. (b=0.1m, h=0.2m, 

L=20m, E=200GPa) 

7.8. Results and conclusion  

It can be seen from Table ‎7.2 that the results of deflection and frequency given by the 

proposed procedure are well in agreement with the results of finite element modelling 

for different rotational stiffnesses. The proposed method however does not take into 

account any shear deformation or rotational inertia. 

  Table ‎7.2: Comparison with ABAQUS software for different stiffnesses and loading 

P 

(N) 
KA=KB MA MB δsimply (δred)MA (δred)MB Δsemi f 

Δsemi 

ABAQUS 

f 

ABAQUS 

10000 1000 11.7 16.4 0.0859 -2.19E-05 -3.07E-05 0.0859 1.15 0.0858 1.14 

20000 1E4 232 326 0.172 -0.000435 -0.000611 0.1708 1.15 0.171 1.15 

30000 1E5 3238 4611 0.258 -0.00607 -0.00864 0.2431 1.18 0.243 1.18 

40000 1E6 24644 39645 0.344 -0.0462 -0.0743 0.2232 1.41 0.223 1.42 

50000 1E7 49238 116204 0.429 -0.0923 -0.2179 0.1195 2.14 0.119 2.13 
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Chapter Eight                                                                                                    

A simplified procedure to calculate by hand the 

natural periods of semi-rigid steel frames 

 

8.1. Introduction 

In the literature, far too little attention has been paid to incorporate the effect of beam-

column joint stiffness in approximate formulae in order to calculate by hand the natural 

periods of semi-rigid steel frames, which is the aim of this chapter. The proposed 

formulae have been developed by modifying the existing formulae in literature for rigid-

jointed plane steel frames. The accuracy of these approximate formulae has been 

verified by finite element analysis using ABAQUS software. Finally, a parametric study 

has been conducted to quantify the effects of semi-rigid connections on the natural 

periods of vibration of plane steel frames. The parametric study highlights the 

justification for incorporating the effect of connection stiffness in estimating natural 

vibration period. 

8.2. Brief literature review  

Traditionally, the beam-to-column connection is assumed to be either absolutely pinned 

or ideally rigid. However, a number of previous experimental investigations clearly 

demonstrated that almost all types of connections of a steel frame are semi-rigid with 

different degree of flexibility (Davison et al., 1987; Chen and Kishi, 1989; Kishi et al., 

1997).  Conventionally, frames with semi-rigid connections were considered to be 

unsuitable for use in seismic area due to their flexibility. Subsequently, experimental 

studies found that semi-rigid frames have considerable potential in resisting seismic 

loads due to their higher energy dissipation capacities (Astaneh et al., 1989; Elnashai 

and Elghazouli, 1994; Nader and Astaneh, 1996). Also, analytical studies by (Rosales, 

1991; Sekulovic et al., 2002)  showed that the increase in flexibility of semi-rigid 

frames may significantly reduce the vibration frequencies, especially the fundamental 

frequency, and thus semi-rigid frames attract lesser inertia forces (Nader and Astaneh, 

1991). This may result in a more satisfactory earthquake-resistant structure, even in the 

areas of moderate to high peak ground motion.   
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    Previous research works including design codes provide empirical formulae to 

estimate the fundamental period for buildings. These formulae are usually dependent on 

the building material (steel, reinforced concrete, etc.), building type (frame, shear wall, 

etc.) and overall dimensions (Goel and Chopra, 1997; BS EN 1998-1, 2004). None of 

these empirical formulae takes into account the joint behaviour. The period of a semi-

rigid frame, which is the category that most real frames will fall into, can be twice that 

of a rigid frame (Smith and Crowe, 1986). It must be mentioned that the actual vibration 

period of a real building is most likely to be affected by many factors, including non-

structural members and fixtures. 

     In this study, a simple hand-calculation procedure is proposed to calculate the first 

three natural periods of steel frames with semi-rigid connections, which is not available 

in the literature. The proposed procedure is based on a shear-flexure cantilever model of 

rigid frames (Smith and Crowe, 1986), which in turn was based on the models of other 

authors such as (Skattum, 1971; Heidebrecht and Smith, 1973; Rutenberg, 1975). The 

accuracy of the proposed simplified procedure has been verified by finite element 

analysis of a plane steel frame with semi-rigid connections using ABAQUS software. 

The procedure is limited to plane frames with uniform geometric and material properties 

along their height. Finally, a parametric study has been conducted to quantify the effects 

of the flexibility of connections on the natural frequencies of vibration of plane steel 

frames with semi-rigid connections.  

 

8.3. Derivation of an approximate formula to calculate the natural 

periods of a cantilever beam 

     Heidebrecht and Smith (1973) assumed a plane framed structure to be a combination 

of shear-flexural cantilever beams. The free vibration of this beam is governed by the 

following differential equation: 

 

4 2 2
2

4 2 2
0

y y m y

x x E t


  
  

   
 (8.1) 

where y is the horizontal deflection, x is the axial coordinate of the beam. m is the mass 

per unit length of the assumed beam. The parameter  account for the effect of flexural 

and shear rigidity (Eand GA) of the assumed cantilever beam as follows: 
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2 GA

EI
   (8.2) 

where E, G are the Young’s modulus of elasticity and modulus of rigidity respectively. 

A, І are the second moment and the cross-sectional area of the beam respectively.  

  Rutenberg (1975) introduced a characteristic parameter, k, in Eq. (8.1) in order to 

consider the effect of axial rigidity: 

 
2

2
1k

Ac


   (8.3) 

where c is a distance parameter that will later be explained in the context of a frame. 

The modified version of Eq. (8.1) will be in the following form: 

  
4 2 2

2

4 2 2
0

y y m y
k

x x EI t


  
  

  
 (8.4) 

The assumed product solution for Eq. (8.1) or (8.4) is: 

 ( , ) ( ) ( )y x t x T t  (8.5) 

where T(t) is a harmonic function with a circular frequency of ω. Using the boundary 

conditions for a cantilever beam of length H, fixed at x = 0 and free at x = H: 

  
 

   
0,

0, 0 ,             0,        , 0,     , 0
t

y
y t V H t M H t

x

 
    

 
 (8.6) 

where V, and M are shear force and bending moment respectively. Heidebrecht and 

Smith (1973) derived the following characteristic equation for the shear-flexural motion 

(Eq. (8.4)) of a prismatic cantilever with height H as: 

2 2

1 2 2 1
1 1 2 2

2 1 1 2

2 cos   cosh sin   sinh 0H H H H
   

   
   

      
          
       

 (8.7) 

The eigenvalues 1 and 2 are written as follows: 

 
   

4 2

2 2

1
4 2

k km

EI

 
     (8.8) 

 
   

4 2

2 2

2
4 2

k km

EI

 
     (8.9) 

and                                                    2 m

EI
                                                (8.10) 
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Then, by substituting Eq. (8.10) in Eq. (8.8) and Eq. (8.9) the following is obtained: 

 
    4

24 2

2 4 4

1 1

12
1

4

k k k  
   



 
  

 
 
 


  
  

   (8.11) 

 
   

 
4 2

22 4 2

2 2 1

2        +  
4 2

k k
k

 
          (8.12) 

 

By multiplying Eq. (8.11) with H
2
 and rearranging it, it gives: 

    
2

2 2

1

1

1H
H

kH
H


 



  
 
 


 
  

   (8.13) 

And substituting Eq. (8.11) and Eq. (8.12) into Eq. (8.7) gives: 

   
4 2 2 2

1 1

1 1

si2 2 cos   cosh sinh 0n
kH kH

H H H H
H H

   
 

   

        
           

         

 (8.14) 

 

8.3.1. Purely flexural motion   (i.e. f) 

In the case of the purely flexural motion, the parameter is  

 
2 0

GA

EI
    (8.15) 

Substituting Eq. (8.15) in Eq. (8.11) and Eq. (8.12) gives: 

 
1 2    and f        (8.16) 

Further substituting Eq. (8.15) and Eq. (8.16) in Eq. (8.14) gives: 

 1 cos( )cosh( ) 0f fH H    (8.17) 

The eigenvalues of purely flexural vibration, f of Eq. (8.17) are:  

                       
1

1.875;              0.5       for   2,3,4,..f f n
H H n n       

or                
 

1.875             for   1

0.5       for   2,3,4,..
f n nn

n
H a a

n n





   

 
                       (8.18) 
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8.3.2. Coupled shear-flexural motion (i.e. sf)  

In the case of shear-flexural motion, Eq. (8.13) and Eq. (8.14) gives: 

    
2

2 2

1

1

1sf

kH
H

H
H


 



 
   



 
 
  
 

 (8.19) 

 

   

4 2
2 2

1 1

1 1

si2 2 cos   cosh sinh 0n
sf sf

kH kH
H H H H

H H

   
 

   

        
                       

 (8.20) 

 

For values of 6k H  , Skattum (1971) proposed the following equation: 

 
   2

2

0.5 1
         for     6sf

n k H
k H

H

 
 

 
   (8.21) 

For a practical range of (0<kH<6), Heidebrecht and Smith (1973) obtained: 

 
1 fH H   (8.22) 

Substituting in Eq. (8.13) gives: 

    
2

2 2

1          for     6sf f

f

kH
H HH

H
k


  



 
 
 


 
  



 
 

 (8.23) 

8.3.3. Combined effect of pure flexural and shear-flexural free vibration  

According to the assumption of isolated components of motion by (Rutenberg, 1975) 

the lateral deflection can be written as: 

 
2 2

1 1
1sf fy y y

k k

 
   

 
 (8.24) 

The Southwell-Dunkerley approximation could then be used to compute the frequencies 

of vibration as: 

 2 2 2 2 2 2 2

1 2

1 1 1 1 1 1 1
1

sf fk k    

   
       

   
 (8.25) 

Thus,                           
2 2 4 2 4

1 1 1 1 1
1

sf fk k  

   
     

   
                        (8.26) 
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and                                         
2

2 m
T

EI




                                                 (8.27) 

 

8.4. Approximate formulae for natural periods  

Based on Eqs. (8.26 and 8.27), the natural period can be expressed as: 

 
2 4 2 4

1 1 1 1
2 1

sf f

m
T

EI k k


 

   
     

   
 (8.28) 

 

Using Eqs. (8.18, 8.21, 8.23 and 8.28), and after rearranging the parameters, the natural 

period of vibration can be written as: 

   2

1 1
1 1n f n

n

T T
k R

 
   

 
 (8.29) 
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2 2
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k H

aH m
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ka EI k H
n k H

a

T







 

  
   
  

 
   

    
  



 

8.5. Evaluation of characteristic parameters 

The concept of modelling a plane framed structure as a shear-flexural cantilever beam is 

applicable for any type of uniform frame structure, provided that the centres of mass 

and resistance are coincident (Smith and Crowe, 1986). The characteristic parameters of 

a frame can be expressed in terms of geometrical and material parameters as: 

 
2

1

r

cjj

GA

EI







 (8.30) 

 

2

1 12

2

1

r r

cj cj j

j j

r

cj j

j

I A c

k

A c

 







 


 (8.31) 

Also, the equivalent GA for rigid frame is: 
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11

12

1 1

cj bi

ij
bi

zr

E
hGA

I I

lh 







 (8.32) 

where Acj and cj are the cross-sectional area and second moment of area of the j-th 

column; h is the storey height; bi and lbi represent the second moment of area and span 

of the beam in the i-th bay. The term cj denotes the distance of the j-th column from the 

centroid of the column assembly.  

8.6. Simplified procedure to calculate natural periods of a steel frame  

1. Calculate the equivalent shear rigidity of the steel frame using Eq. (8.32). 

2. Calculate the characteristic parameters of the steel frame, k
2 

and 
2
 using Eqs. (8.30 

and 8.31). 

3. Calculate  kH  

4. Calculate the natural periods, Tn, using Eq. (8.29).  

 

8.7. Effect of connection flexibility on natural frequency of steel frames 

To investigate the effect of the flexibility of connection on the natural frequency of a 

steel frame, a simple portal steel frame was used. The beam had UB 254×146×37 

section, and the columns were of UC 203×203×60 sections. (ABAQUS, 2005) was used 

to compute the natural frequencies. Rotational spring elements were attached to the 

beam ends to simulate the effect of connection flexibility of beam-to-column 

connections. The stiffness of the springs ranged from those close to perfectly-pinned to 

an almost perfectly-rigid connection. The same modelling procedure that detailed in 

Chapter Seven (Section 7.6.2) was used to simulate the steel frame. A parametric study 

was carried out for various ratios of the second moment of area of the beam (0.25, 0.5, 

2, 4 and 8) from the original (=5537 mm
4
) in order to show the effect of flexural 

stiffness of a beam on the natural frequency of a steel frame.  

      The results of the frequency analysis are non-dimensionalised using the pinned case 

as zero and the natural frequency of a rigid case as one, as shown in Figure ‎8.1. The 

spring stiffness ratio, ks/ (E/L)b, was used as abscissa instead of the spring stiffness as 
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the effect of flexibility of connection is highly affected by the flexural stiffness of the 

beam to which it is attached.  

      It is evident from Figure ‎8.1 that the flexibility of the connection must be taken into 

account in any frequency analysis of steel frames. This means that the original equations 

used to calculate the characteristic parameters, α
2
 and k

2
, of a steel frame should be 

modified to account for the flexibility of the connections. 

 

Figure ‎8.1: Plots of normalized fundamental Natural Frequency versus the joint stiffness 

ratio. The variable I in the legend indicates the second moment of area of the beam 

cross-section 

8.8. Modification of the approximate formulae for semi-rigid frames  

       The approximate formulae for determining the natural periods for rigid frames 

cannot be used directly for frames with semi-rigid connections. The difference is 

appreciable in the range of stiffness ratio between 0.01 to 100 (see Figure ‎8.1). The 

flexural stiffness of beams needs to be modified to take into account the effect of the 

flexibility of connections.  
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     Many procedures for the modification the stiffness of a beam to consider the effect 

of the flexibility of end connections are detailed in the literature, such as the procedures 

developed by (Chen and Lui, 1985; Chui and Chan, 1997; Wong et al., 2007).  For this 

work, the procedure suggested by (Chen and Lui, 1985) was adopted to assess the 

stiffness of beams because it is applicable for both braced and unbraced frames. The 

modified second moment of area of a beam,
b , can be calculated using the equation: 

 

1

b
b

b

b s

I
I

EI

l k

 
 





  (8.33) 

where β=6 and 2 for unbraced and braced frames respectively, and ks is the rotational 

stiffness of semi-rigid connections. This modified second moment of inertia of a beam,

b , should be used in Eq. (8.32). 

Example: In order to investigate the accuracy of the proposed procedure and the effect 

of joint stiffness, a three-bay, six-storey plane steel frame (Figure ‎8.2) was analysed for 

a wide range of flexibilities of beam-to-column connections. The span of each bay was 

6 m and the storey height was 3.75 m. The section properties of columns and beams 

were HEB 260 and IPE 300 respectively. The properties of the steel frame are shown in 

Table ‎8.1. The same procedure as that detailed in Section 7.6.2 was used to simulate the 

beams, columns, boundary conditions and connections.  
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Figure ‎8.2: Three-bay, six-storey steel frame 

 

Table ‎8.1: Properties of the steel frame shown in Figure 8.2 

   

 

 

 

 

Sample calculations 

All calculations were carried out using Microsoft Excel spreadsheets. In the following 

section, sample of calculations for an almost rigid connection and one case for a semi-

rigid connection are shown using the proposed steps.  

A. Rigid connection case 

(i) Calculate the equivalent shear rigidity of a steel frame using Eq. (8.32). 

Section l (m) A (m
2
)  (m

4
) E (GPa) Density (kg/m

3
)  

IPE 300 6 0.00538 8.36x10
-4

 200 7800 

HEB 260 3.75 0.0118 0.000149 200 7800 
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412

2.12 10  kN

1 1
3.75

0.000149 0.0000835
4 3

3.75 6

E
GA   

 
 
 

             

 

(ii) Calculate the characteristic parameters of a steel frame, k
2
 and 2 

using Eqs. 

(8.30 and 8.31). 

   

7
2

9 2

1

2.12 10 1
0.177  

4 200 10 0.000149 m
n

c jj

GA

EI





  

  
 

 

 
12

2 22

1

4 0.000149
1 1 1.00028

0.0118 2 9 2 3

n

cjj

n

cj jj

EI E
k

EEA c





    
    




 

 

(iii) Calculate kH  

 1.00028 0.178 22.5 9.48 6k H       

(iv) Calculate Tn using Eq. (8.29) 

                                
2

2 7 2

2 (22.5) 573 6.97

1.00028 11.9 10n
n

n

f
a a

T
 


 

  

 

2

2

2

9.479
1                        for   6  

10.479
0.5        for 6 

n

n

n

k H
a

R

n k H
a



 

  
   
  

 
  

    
  

 

 

The natural frequencies were calculated for f1 to f5 (f=1/Tn) using both parts of 

Eq. (8.29) and ABAQUS modelling. The results of the calculations and finite element 

analysis are presented in Table ‎8.2 and Figure ‎8.3.  
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Table ‎8.2: Result of natural frequencies from the proposed equation and ABAQUS 

modelling for the rigid connection case  

 

n 
an (Tf)n 

6k H   6k H   
ABAQUS 

Rn fn =1/Tn Rn fn =1/Tn 

1 1.875 1.982 26.557 2.59 21.921 2.35 2.29 

2 4.712 0.314 5.047 7.15 4.946 7.08 7.37 

3 7.854 0.113 2.456 13.87 1.78 11.80 13.73 

4 11.0 0.057 1.742 22.90 0.907 16.53 21.64 

5 14.137 0.035 1.449 34.53 0.549 21.26 30.78 

 

 

Figure ‎8.3: Natural frequencies from the proposed equation and ABAQUS for the rigid 

connection case. 

The results of the calculations from the proposed equations and finite element 

modelling show clearly that both parts of Eq. (8.29) work well for the fundamental and 

second natural frequencies. From f3 to f6, the first part of Eq. (8.29) (i.e. kαH <6) 

dominate the frequency behaviour of the frame, even though the (kαH) values in these 

cases are more than 6. After f6, the second part of Eq. (8.29) becomes more effective in 

controlling the frequency of the frame.  

     Therefore, as the second part of Eq. (8.29) underestimated the frequency in the range 

between f3 to f6 and the first part of Eq. (8.29) overestimated the frequency after f6, it 

was recommended to calculate the natural frequency for the first and second frequencies 

using the relevant equations, then using both parts of Eq. (8.29) for the third frequency 

and above. The selection of lowest frequency (i.e. lowest stiffness for safe design) or 

highest frequency depends on the main purpose of the analysis under consideration. 
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B. Semi-rigid connection case [ks/ (EI/L)b =7.18] 

(i) Calculate the modified second moment of inertia of a beam using Eq. (8.33). 

0.5447
6

11
7.18

b b
b

b

s

b

b

I I
I

EI

l k

I


  
 

 
 

 

(ii) Calculate the equivalent shear rigidity of a steel frame using Eq. (8.32). 

12
12740 kN

1 1
3.75

0.000149 0.0000836
4 3 0.545

3.75 6

E
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 
 
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              

 

 

(iii) Calculate the characteristic parameters of a steel frame, k
2
 and α

2
, using Eqs. 

(8.30, 8.31). 
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(iv) Calculate                     
 1.00028 0.107 22.5 7 5× .3 6k H    

 

(v) Calculate Tn using Eq. (8.29) 
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T
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n k H
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 

  
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  

 
  

    
  

 

As with the rigid connection case, the natural frequencies are calculated for f1 to f5 using 

both the proposed equations and ABAQUS modelling. The results of calculation and 

finite element analysis are presented in Table ‎8.3 and Figure ‎8.4. 
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Table ‎8.3: Result of natural frequencies from the proposed equation and ABAQUS 

modelling for the semi-rigid connection case. 

 

n 
an (Tf)n 

6k H   6k H   
ABAQUS 

Rn fn =1/Tn Rn fn =1/Tn 

1 1.875 1.982 16.373 2.035 13.935 1.878 1.874 

2 4.712 0.314 3.431 5.903 3.138 5.645 6.235 

3 7.854 0.113 1.875 12.124 1.129 9.411 12.159 

4 11.0 0.057 1.446 20.872 0.576 13.177 20.0 

5 14.137 0.035 1.270 32.331 0.348 16.942 29.50 

 

 

Figure ‎8.4: Natural frequencies from the proposed equation and ABAQUS for the semi-

rigid connection case 

As with the rigid connection case, the results of the calculations show clearly that both 

parts of Eq. (8.29) work well for the fundamental and second natural frequencies. Then, 

the first part of Eq. (8.29) (i.e. kαH <6) is seen to dominate the frequency behaviour of 

the frame. After f6, the second part of Eq. (8.29) resumes the control of the frequency of 

the frame.  

     Therefore, the same recommended procedure for the rigid connection case was used 

with the semi-rigid connection case to calculate frequency. 

      Also, the fundamental natural time periods (T1) obtained from the hand-calculations 

(Eqs. 8.29-8.33) were compared in Table ‎8.4.  
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Table ‎8.4: Comparisons of fundamental time period 

 

 

 

 

 

 

In order to investigate the whole range of the semi-rigid connection, a parametric study 

using the proposed procedure and ABAQUS for the same frame with different stiffness 

of connections was carried out. The value of stiffness varied from approaching perfectly 

pinned to approaching perfectly rigid.  The results of the parametric study are presented 

in Figure ‎8.5, Figure ‎8.6 and Figure ‎8.7. 

     It can be observed that the fundamental natural frequency calculated by the proposed 

procedure is very similar to the ABAQUS results for the whole range of semi-rigid 

connection.                                                                                                                    

     The proposed procedure is sensitive to any changes in connection stiffness. In 

addition, it was found that the frames with connections of low and very low stiffness 

always gave values of (kαH) that were less than 6. On the other hand, the relatively rigid 

frames give values of (kαH) greater than 6.  

    The results for the second and third natural frequencies were also close between the 

ABAQUS and the proposed procedures, with a maximum difference of about 6%. This 

is the case if the recommended procedure in the previous section is followed by 

calculating the natural frequency using both parts of Eq. (8.29), as explained previously. 

 

Type of Frame T1 -Proposed 

Eqs. (8.31) 

(1) 

ABAQUS 

(2) 

(1)/(2) 

Rigid –Frame 0.425 s 0.4366 s 0.971 

Semi-rigid Frame 0.5324 s 0.5336 s 0.999 
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Figure ‎8.5: Joint stiffness ratio versus the fundamental natural frequency of the steel 

frame shown in Figure ‎8.2 

 

Figure ‎8.6: Joint stiffness ration versus the second natural frequencies of the steel frame 

shown in Figure ‎8.2 
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Figure ‎8.7: Joint stiffness ration versus the third natural frequencies of the steel frame 

shown in Figure ‎8.2 

 

8.9. Parametric study on the effect of different kH values  

The parametric study involved evaluating the effect of the following factors:  

1. Height of the frame, H 

2. Flexibility of the connections, and  

3. Axial, flexural and shear rigidity of the frame.  

It is clear from Eq. (8.31) that the parameter k considers the effect of relative ratio of 

flexural stiffness to axial stiffness, and its value will approach unity for axially rigid 

columns. The parameter α incorporates the effect of relative ratio of shear stiffness to 

the summation of flexural stiffness of the columns and beams. Using Eqs. (8.21, 8.23 

and 8.29), the ratio of shear-flexural period to total period can be expressed as:  

 

 2

1

1
1

sf

n

n

n

T

T
R

k
R 

  (8.34) 

For the fundamental period (i.e. n=1 and an=1.875) and for kαH=6 

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07 1.E+09 

N
at

u
ra

l 
F

re
q

u
en

cy
 (

H
z)

 

Joint stiffness ratio [ks/(EI/L)b ]   Log Scale 

f3-Proposed<6 

f3-Proposed>6 

f3-ABAQUS 

kαH=6 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

233 

 

1

2

1
=

1
9.782 8.782

sfT

T

k


 

For k
2
=1 (i.e. flexural stiffness/axial stiffness0)  

1

1
sfT

T
  

and for k
2
=∞ (i.e. flexural stiffness/axial stiffness∞) 

1

 0.319
sfT

T
  

For any given values of α and k, as the height of a frame (H) increases, the percentage 

of pure-flexural period will increase proportionally, and the ratio of shear-flexural to 

total period (Tsf /T1) will decrease, as shown in Figure ‎8.8. In summary, the percentage 

of shear-flexural period to the total period is inversely proportional to the height of the 

frame, connection flexibility, and the flexural to shear rigidity ratio. 

 

Figure ‎8.8: Effect of frame parameters on shear-flexural to total periods. 
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8.10. Summary and conclusions  

It is evident from Figure ‎8.1, Figure ‎8.5, Figure ‎8.6 and Figure ‎8.7 that the flexibility of 

a connection has a considerable effect on the natural frequencies (or natural periods) of 

a steel frame. Further to this, the “Ideal-Rigid” assumption for beam-to-column 

connections may lead to overestimation of the natural frequency or underestimation of 

the natural periods of a frame. Inaccurate values for the fundamental period may result 

in unsafe design, as the design value of the seismic base shear force depends on the 

fundamental period (BS EN 1998-1, 2004), Clause 4.3.3.2.2.(1). In addition, Figure ‎8.5 

and Figure ‎8.6 show clearly that the proposed procedure can predict the natural periods 

of a frame for a wide range of flexibilities of beam-to-column connections. The validity 

of the proposed procedure is confirmed by comparing the results with the results 

obtained from ABAQUS, and good agreement between them was demonstrated.  
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Chapter Nine                                                                             

An approximate analytical method for calculating the 

natural periods of unbraced steel frames with semi-

rigid connections 

9.1. Introduction  

Recently, increasing attention has been paid to the study of the effect of seismic ground 

motion on the behaviour of steel buildings. The calculation of the design base shear 

force plays a centre role in these considerations. This force greatly depends on the 

fundamental period of vibration of the structure, as well as other factors such as soil 

conditions and level of ductility. In turn, the mass, strength and stiffness of the structure 

are factors which affect the magnitude of the fundamental period of vibration.  

      The stiffness of a structure greatly depends on the stiffness of its beam-to-column 

connections. As mentioned in the previous chapters, for reasons of simplicity and lack 

of understanding of the response characteristics of semi-rigid connections under seismic 

loading, beam-column connections are conventionally assumed to be either perfectly 

pinned or perfectly rigid. Additionally, it was mentioned in Chapter Eight that the semi-

rigid frames were regarded as inappropriate for use in seismic areas due to their 

flexibility, even though they offer significant gains in resisting seismically-induced 

loads due to their ability to attract lesser inertia forces and higher energy dissipation 

capacities. 

9.2. Brief literature review 

     Natural periods of any structure can be found by using finite element packages such 

as ABAQUS, ANSYS and ADINA. However, due to the amount computational cost and 

time that these calculations require, they are not appropriate for routine design work, 

except when it is not feasible to use simplified methods.           

      Current seismic design codes provide empirical equations which relate the 

fundamental period to the height of the frame. Eurocode 8 (2004) §4.2.3.3 gives the 
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following empirical expression to determine the fundamental natural period for the steel 

frames for heights (H) up to 40 m: 

 
3/4

1 0.085T H  (9.1) 

In addition, there are many other empirical formulae in the literature which have the 

same general form as Eq. (9.1) but with different constants depending on the structural 

forms.  

    Considering the limitations of the empirical equations, the design codes allow for 

estimation of the fundamental natural period using alternative methods, such as 

Rayleigh's method or computer-based eigenvalue analysis. These methods require more 

complex procedures and computer programmes which make them impractical for many 

situations. Therefore, many researchers have investigated the applicability of using 

approximate hand-calculation methods, which have the merits of simplicity with enough 

accuracy (Rutenberg, 1975; Smith and Crowe, 1986; Qiusheng et al., 1994; Goel and 

Chopra, 1998; Zalka, 2001; Chrysanthakopoulos et al., 2006). All of the above 

approximate methods assumed the beam-column connections as rigid even though the 

period of a semi-rigid frame can be twice to that of a rigid frame (Smith and Crowe, 

1986).  

    In this Chapter, a simple hand-calculation method is presented to calculate the 

fundamental natural period of steel frames with rigid or semi-rigid connections. The 

original equations of the well-known Muto’s method are firstly improved by 

introducing new factors to take into account the following:  

(i) the actual position of the inflection point in the beams, 

(ii) the effect of the boundary condition of the first storey on the upper stories, and   

(iii) the effect of applied load at any storey on the deflection of the adjacent unloaded 

upper storey.  

The improved equations were then combined with the conventional matrix method for 

vibration analysis to construct a simple “hand’’ procedure in order to determine the first 

three natural periods of a structure. The lumped-mass idealization and the concept of 

“master’’ degree of freedom were used to formulate the “dynamic matrix” of the 

structure. The power method was used to find the eigenvalues and eigenvectors for the 

dynamic matrix. A step-by-step worked example with instructions was presented as a 
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guide for using the proposed procedure. The accuracy and sensitivity of the approximate 

procedure were validated by finite element analysis of semi-rigid jointed steel frames 

using ABAQUS.  

9.3. Muto’s‎original method (D value method) 

 Muto (1974) proposed an approximate analytical method for the analysis of multi-

storey frames with rigid connections. It is considered the most accurate manual method 

for the elastic analysis of sway frames with rigid connections (Wong et al., 2007 ). The 

assumptions of this method are:  

1. At each floor, the above and below columns equally utilize the stiffness of the 

beam.  

2. The rotations of adjacent beam-column connections are equal. 

3. The sum of beam stiffness at the top and bottom of any storey are similar and 

approximately equal to the average stiffness. 

Using these assumptions, the storey drift of a multi-storey frame was approximated by  

 ,

1

,

1

    where  
j r

i
i i i jj r

j

i j

j

V
V F

D








  


 (9.2) 

where Vi and ∑Di,j are the shear and the lateral stiffness of the i-th storey respectively. 

Figure ‎9.1 shows an example of a frame with multi-degrees of freedom and Figure ‎9.2 

shows the sub-frame which is used in the derivation of the D-values. 
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Figure ‎9.1: Steel frame with multi-degree of freedom 
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Figure ‎9.2: Simplified sub-frame used for lateral force analysis 
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9.3.1. Equations of Muto’s‎original‎method 

First storey 

1. Fixed base 
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1, ,1,2

1 1 1
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,

0.5 312
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 (9.3) 

 

where           
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and is the factor which depends on
,i jK . It was taken as 1/3 for the first storey. 

 

2. Pinned base 
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 (9.4) 

and is the factor which depends on
,i jK . It was taken as 1 for the first storey. 
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Position of inflection point of column in the first storey 

 
1,
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,1,

1

3 1
   

6 1

j

j

c j
K

y
K 




 (9.6) 

The distance to the inflection point, yc,1,j is measured from the base. 
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 9.4. Improvements of Muto’s‎method   

  The proposed procedure to calculate the vibration period of a structure depends on the 

accuracy of the calculated flexibility matrix. This matrix is calculated by sequentially 

applying unit lateral load at each storey and the resultant deflections are found. One of 

the main objectives of the present work is to improve the original Muto’s method in 

order to take into account the factors which affect this deflection. This improvement 

requires the introduction of new factors to account for the effect which are listed in 

Section 9.2. 

9.4.1. The position of inflection point of beams 

It can be clearly seen from the simplified model in Figure ‎9.2 that the derivation of 

D values for Muto’s method was based on the assumption that the position of inflection 

point in all beams is located at the mid-length of the beam. In fact, there are many 

situations where this assumption is not valid, and consequently inadequate results may 

be given due to the shift of the inflection point from the middle of the beam. The 

magnitude of this shifting depends on the relative stiffness of two adjacent columns at 

the same level, and could be significant if the stiffness ratio is three or more. Therefore, 

a modified factor (m) is introduced in Muto’s original equations to account for this 

effect.  

      The derivations of the modified equations are illustrated in appendix A. The 

resultant modified equations are: 
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2. Pinned base 
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Middle and top stories  
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Position of inflection point of column in first storey 
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In Muto’s original method, the position of the inflection point of the beam is at the 

centre of the span (i.e. m=0.5). This case requires that
i, j 1 i, jK K  . If this equality is 

substituted in Eqs. (9.9), (9.12) and (9.15), we get m=0.5 for the three cases discussed 

above. Also, if m=0.5 is substituted in Eqs. (9.7), (9.8), (9.10), (9.11), (9.13), (9.14) and 

(9.16), the original Muto's equations will be obtained. 
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9.4.2. Effect of boundary conditions of columns at the first storey on the 

deflection of upper storey  

It can be seen in the original Muto’s equation for the first storey that there is a factor (α) 

which represents the distribution factor of the moments between beams and upper and 

lower columns. This factor depends on 
i, j 1 i, j and  K K

and on the relative stiffness of the 

column at the first and second storey. It was assumed as 1/3 for the fixed base case and 

1 for the pinned base case. In the present work, the actual effect is accounted for 

introducing new relative stiffness factors, 
, , ,,  ,  u d

i j i j i jK K for the upper and lower storeys.  

9.4.3. Storey deflection due to load applied at immediately beneath the 

storey in question 

   The effect due to load applied at any storey on the deflection of the adjacent unloaded 

upper storey is taken into account by introducing a new factor, i,j
u
, in the improved 

equations.  

      The definitions of the above new factors and derivations of the modified equations 

are illustrated in Appendix B. Only the final equations and selected sub-frames are 

presented in the next section.  

 

9.5. Improved equations and corresponding sub-frames  
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2. Pinned base 
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Figure ‎9.3: First storey-fixed base 
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Middle stories (for case m=0.5)  
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Figure ‎9.4: First storey-pinned base 
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Top storey (for the case m=0.5)  
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Figure ‎9.5: Middle storey model 
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9.6. Proposed procedure to compute flexibility matrix for plane frame 

structures 

  Since the flexibility matrix of a frame is symmetrical, only half of the flexibility matrix 

needs to be computed. Moreover, the most important coefficients of flexibility matrix 

are the coefficients in and around the diagonal region. The effect of coefficients far 

from the diagonal is minimal. The conventional matrix method is used to determine the 

“condensed’’ flexibility matrix. This matrix is computed by applying unit load at one of 

the “Master’’ degrees of freedom of the frame at a time. The resultant lateral deflections 

are calculated by using the improved equations based on Muto’s method. The axial 

deformation of the beams and columns are neglected by omitting the corresponding 

degrees of freedom. The steps of the calculation are as follows: 

1. Calculate 
, ,,c B

i j i jk k for each bay of the frame.  

2. Calculate
,  i jK for each bay.  

3. Apply unit load at one of the “master’’ degrees of freedom at a time. The 

horizontal displacement of any floor is the master degree of freedom which is 

associated with inertia forces (lumped-mass idealization). 

4. Calculate mi,j (i.e. position of the point of inflection) for each bay.  

5. Calculate D-values for each column.  
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Figure ‎9.6: Top storey model 
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6. Calculate the summation of the D-values for all columns in the same storey (i.e.

D ). 

7. Calculate the deflection of master degrees of freedom due to shear force (unit 

load) in the storey using the following equation: 

 

,
1

i
i

j r

i j

V

j

D

 






 (9.25) 

8. From the results of the deflections in step 7, the symmetrical condensed flexibility 

matrix,      is constructed. 

It should be noted that all of the above calculations can be carried out easily by hand for 

two or three storey frames and an Excel spreadsheet will be sufficient for multi-storied 

frames. The procedure can also be programmed using any programming language for 

day-to-day use.  

9.7. Lumped-mass matrix for a multi-storey plane frame  

Lumped-mass idealisation is very popular in practice due to its simplicity.  The lumped-

mass matrix, M , is a diagonal matrix. Each coefficient on the diagonal represents the 

mass associated with the corresponding master degree of freedom in each storey. This 

mass represents the mass of all the beams in the relevant storey added to the percentage 

of column mass. This percentage ranges between 35% and 50%, as stated by (Chan and 

Lui, 2005) depending on the stiffness of the connection.  These coefficients are usually 

calculated by “hand’’ and a lumped-mass matrix can easily be constructed. It takes this 

form: 

 

1

2

3

0 0

0 0

0 0

M

M M

M

 
 


 
  

 (9.26) 
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9.8. Fundamental period of a multi-storey plane frame  

The conventional matrix method of vibration is used to find the fundamental period of a 

multi-storey plane frame. This procedure consists of the following simple steps: 

1. Calculate the “dynamic matrix’’ DM  by simply multiplying the flexibility 

matrix,   , with the lumped-mass matrix, M .  

 DM FM  (9.27) 

 

2. The resulting dynamic matrix is not symmetrical. The dominant eigenvalue of 

this matrix is the reciprocal of the square of the circular natural frequency    
2

1

1


  

of the system, which corresponds to the natural period 
1

1

2
T




  (or the natural 

frequency
1

1

1
f

T
 .  

3. The well-known “power method’’ is used to find the eigenvalues. This simple 

method is suitable for “hand-calculation’’ and can be easily programmed 

depending on the number of degrees of freedom, as it merely involves 

multiplying the “dynamic matrix’’ with an arbitrary  unit vector, 0 , to yield 

another vector, 1 , as follows: 

    0 1 0 02

1

1
        where         1 1 1

T
DM          

ω
 (9.28) 

4. If      is already the correct eigenvector, the corresponding eigenvalue  
 

  
   is the 

correct eigenvalue. In contrast, if 0  is only distantly related to the true 

eigenvector, then 1 is a better approximation of the “first mode shape’’. 

Multiplying DM by 1  for the second time will give a more accurate eigenvalue 

(by up to 95%) in most cases. Repeated multiplication will improve the results 

to desired accuracy. The procedure can also be used to determine the largest 

eigenvalue which corresponds to the largest natural period and the lowest 

frequency and corresponding mode shape by first inverting the dynamic matrix 

DM  and applying the previous procedure with
1

DM


. In addition, all of the 
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remaining eigenvalues and eigenvectors can be found by the same method, as 

explained in details in textbooks such as that by (Meskouris, 2000).   

9.9. Modified‎Muto’s‎method for a semi- rigid framed structure 

Muto’s method was originally derived to analyse plane frames with rigid connections. 

Recently, a simplified modification was proposed by (Wong et al., 2007 ) in order to 

make Muto’s method suitable for plane frames with semi-rigid connections. This 

modification is based on the concept of “equivalent” beam stiffness for beams with 

elastic springs attached at two ends. Figure ‎9.7 shows a hybrid beam element with 

rotational springs of stiffness 
sik  and sjk at its two ends.   

 

 

 

 

 

 

 

 

 

The equivalent bending stiffness , .  
i

B eqi  and , .  B eq

ji of the hybrid beam element at end 

nodes i and j respectively are defined as: 

 

 
, . , .      &       i i j j

B BB eq eq Bi i i i   (9.29) 

 

where                           1 21 2
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The procedure given in Section 9.8 can be used for rigid and semi-rigid frames using 

the nominal or equivalent bending stiffness of the beams.  
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Figure  9.7: Hybrid beam element with connection springs attached 
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Example: The following example is given to investigate the accuracy of the proposed 

procedure by comparing the results of the frequencies with the corresponding results 

from the ABAQUS software package. The example also illustrates the effect of semi-

rigid connections on natural periods (i.e. frequencies). The steel frame, (Es =200Gpa 

and density is 7800 kg/m
3
), under consideration has four bays and six storeys, as shown 

in Figure ‎9.8. The frame is analysed for rigid and semi-rigid connection cases. For 

simplicity, the same rotational stiffness is used for all of the spring connections. Two 

values are used for the stiffness of the rotational springs, which are 1x10
22 

N-mm/rad 

for the rigid case, and 1.076x10
10

 N-mm/rad for the semi-rigid case. 

 

 

Figure ‎9.8: Layout of the steel frame 
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Table ‎9.1: Properties of the steel frame shown in Figure 9.8 

 

 

 

 

 

 

 

 Results and discussions: 

For the sake of brevity, only the final coefficients of the dynamic matrices, DM , using 

the proposed procedure are shown below: 

 

7

1255 1393 1267 1178 979 830

1535 3141 3109 2891 2403 2038

1535 3585 5168 5253 4366 3708
10

1535 3585 5707 7556 6783 5752
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2981 7017 7449 6925 5756 4880
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3222 8318 14118 19875 23407 25028
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The results of the natural periods from the proposed procedure and ABAQUS package 

are shown in Table ‎9.2. 

 

Section l (m) A (m
2
)  (m

4
) 

IPE 240 6 0.00391 3.89x10
-4

 

IPE 300 6 0.00538 8.36x10
-4

 

IPE 330 6 0.00626 11.77x10
-4

 

IPE 360 6 0.00727 16.27x10
-4

 

IPE 400 6 0.00845 23.13x10
-4

 

HEB 160 3.75 0.0054 0.000025 

HEB 200 3.75 0.0078 0.000057 

HEB 220 3.75 0.0091 0.000081 

HEB 240 3.75 0.0106 0.000113 

HEB 260 3.75 0.0118 0.000149 
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Table ‎9.2: Results of natural periods 

Period 

(s) 

Proposed procedure ABAQUS 

T1 T2 T3 T1 T2 T3 

Rigid 0.348 0.14 0.082 0.358 0.141 0.080 

Semi-rigid 0.532 0.194 0.109 0.526 0.184 0.10 

 

It can be clearly seen that the results from the proposed procedure are in good 

agreement with the FE results. The proposed procedure, which takes into account the 

realistic connection stiffness, reflects the behaviour of the frame with high accuracy. In 

addition, if the procedure is implemented in a spread sheet program like Excel, the 

effect of changing the geometric properties of any element can be easily obtained. 

Furthermore, the merit of the proposed procedure is in its ability to tune the flexibility 

of the beam-to-column connection in order to get the value of the fundamental natural 

period within a desired range.  

9.10. Sensitivity of the proposed procedure  

 In order to evaluate the sensitivity of the proposed procedure for changes in the 

stiffness of semi-rigid connections, the same semi-rigid frame shown in Figure ‎9.8 was 

analysed using the proposed procedure for a wide range of semi-rigid connections (i.e.

0.5 70sLk

EI
  ).  

     Eurocode 3 (2005) §5.2 consider connections with relative stiffness (Lks/EI) between 

0.5 and 25 as semi-rigid connection. 

     The results from the proposed procedure and ABAQUS for the fundamental period 

are presented in Figure ‎9.9. It is clear from this figure that the proposed procedure can 

accurately predict the fundamental period for a whole range of stiffness. The important 

results are for the range between 0.5 and 25, which is considered as semi-rigid range by 

Eurocode 3. In this range, the original equation of Muto's method substantially 

underestimates the fundamental period, which is unsafe as the original equations are 

valid for rigid connection only. In addition, this figure shows that the proposed 

procedure is very sensitive to changes in stiffness, even for low range. 
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Figure ‎9.9: Relationship between relative stiffness and fundamental natural period 

          

    Figure ‎9.10 and Figure ‎9.11show that the proposed procedure can reliably predict the 

second and third natural periods for a wide range of semi-rigid connections. The 

discrepancy between the approximate procedure and ABAQUS modelling, particularly 

when the connection approaches a pinned connection, is expected and acceptable for 

any approximate procedures. 

       Furthermore, it can be seen that the decrease in stiffness of semi-rigid frame may 

significantly increase its natural periods, especially the fundamental period. The semi-

rigid frames have longer period and thus attract lesser inertia. This behaviour confirms 

the results of analytical studies by (Rosales, 1991; Sekulovic et al., 2002) as stated 

above.  
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Figure ‎9.10: Relationship between relative stiffness and second natural period 

 

 

Figure ‎9.11: Relationship between relative stiffness and third natural period 

 

 

0.1 

0.2 

0.3 

0.4 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

P
er

io
d

 (
s)

 

ks/(EI/L)b 

T2-ABAQUS 

T2-Proposed 

0.05 

0.1 

0.15 

0.2 

0.25 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 

P
er

io
d

 (
s)

 

ks/(EI/L)b 

T3-ABAQUS 

T3-Proposed 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

255 

 

9.11. Summary and conclusions  

 A simple “hand’’ procedure has been proposed to calculate the fundamental natural 

period of rigid and semi-rigid plane steel frames. This procedure, based on Muto’s 

method, is capable of calculating the fundamental natural periods of multi-storey steel 

frames with rigid and semi-rigid connections. The results of the calculations indicate 

that the concept of semi-rigid design is not optional for designers and must be taken into 

account for safe design. It has been shown that this simple approximate procedure 

yields agreeable results compared with other accurate and approximate methods. The 

small discrepancy between them is due to the overturning of the entire frame, resulting 

in shortening and elongation of the columns at opposite sides of the frame. The 

contribution of the overturning moment may be about 10-20% of the total sway for 

unbraced rigid frames up to 20 to 30 stories. Furthermore, as with any other 

approximate methods, the results need to be multiplied by an adequate safety factor as 

some results may underestimate the natural period, which is considered as unsafe. 

Nevertheless, the accuracy of the proposed procedure is high when compared with the 

finite element results obtained using ABAQUS. The proposed procedure can easily be 

extended to unbraced composite frame depending on the modified Muto’s method 

developed by (Wong et al., 2007 ) for the analysis of unbraced composite frame systems 

by introducing the concept of improved equivalent beam stiffness. 
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Chapter Ten                                                                  

Summary and Conclusions 

10.1. Introduction 

The importance of inclusion of semi-rigid concept in analysis or design of any structural 

system has been presented with the help of many experimental and numerical studies in 

literature. These studies showed clearly that the consideration of the semi-rigid concept 

is necessary in order to achieve economical and safe design.  

     The detailed literature review showed that even though the finite element modelling 

can predict well the behaviour of a semi-rigid connection, the reliable test results are 

essential to calibrate the model before it can be used for a different connection. In 

addition, the intensive computational effort and time that is required in finite element 

modelling make it impractical to analyse large structures. All of these considerations 

make the component-based mechanical models as potential alternative to the finite 

element approach. 

 10.2. Mechanical model for predicting the rotational stiffness of a 

flush end-plate composite connection incorporating the effect of partial 

interaction 

A new component-based mechanical model was developed to calculate the rotational 

stiffness of a semi-rigid connection. The effect of each component of connection was 

well studied and modelled. The traditional axial spring which had been used to model 

the effect of shear connectors was replaced by a simple rotational spring to consider the 

actual rotation of concrete slab under loading and to make this model general enough so 

as to use with steelwork and composite connections. Further, a simple and effective 

procedure to evaluate the equivalent stiffness of shear connection was developed. The 

validity of the model was evaluated by comparing with the results from other existing 

models and experimental results.  

       Besides the generality of the proposed model for bare steel and composite 

connections, the model could be implemented in any finite element software and was 
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able to extend further than the linear region with appropriate input data for component 

stiffness. 

 10.3. Prediction of the load-slip behaviour of a stud shear-connector 

 A simple approach to estimate the secant stiffness and strength of standard diameters of 

shear connector for different compressive strength of concrete was developed. The 

proposed chart can be used to estimate the secant stiffness and strength for other 

diameters of shear connectors by drawing parallel lines at the required levels. Also, a 

simplified multi-linear curve was derived based on the proposed chart for initial 

stiffness as well as the derivation of post-yield stiffness from the empirical equations in 

the literature.  

    The proposed model is in agreement with the test results. It can be used when no 

push-out test curve is available since the empirical equations that researchers have used 

in the past can lead to unrealistic shear stiffness of the shear connector in some cases. 

10.4. Stiffness of a reinforced concrete slab in a composite connection 

 A new component model for composite slab was developed. This model incorporates 

the components of embedded reinforcement and concrete in one single component 

(RCC). The tension-stiffening effect of concrete was considered implicitly in the 

stiffness of (RCC) by modified modulus of elasticity concept Em. In addition, the 

component model is further simplified by replacing all (RCC) components along the 

composite connection by equivalent springs. Shear studs was modelled as linear or 

nonlinear springs depending on the range of loading. Furthermore, a simplified 

procedure was proposed to calculate the “lump’’ stiffness of (RCC) and shear studs (S) 

springs. The proposed models and calculation procedures were verified against finite 

element and experimental results for some selected composite connections. 

   A parametric study was carried out to investigate the effect of relative stiffness of 

(RCC) to (S) on the distribution of forces on all components of (RCC) and shear stud 

springs along a composite connection. The results of the parametric study show clearly 

that the first and second shear studs and first and second reinforcement zones provide 

the most resistance to the longitudinal shear force in the composite connection. Also, 

the results of the parametric study show that the stiffness of a shear stud has little effect 

on the distribution of forces acting on the shear studs along the composite connection 
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for constant values of kRCC/ksc. However, comparison of the results for the same ksc and 

different kRCC/ksc shows the significant effect of kRCC/ksc on this distribution of forces.  

    The  proposed a mechanical component model for an (RCCS) can be used as a 

simplified model in the finite element modelling of a composite connection to overcome 

the convergence problems in explicit modelling of concrete when the concrete slab 

begins to crack. This will also reduce the computational time significantly with 

adequate accuracy.  

   The analytical expression for the initial stiffness of (RCCS) can be used in the 

manual calculation of the initial stiffness of an overall composite connection. This 

expression can be used to overcome the shortcoming in the estimation of the effective 

length of reinforcement, lr in calculating the stiffness of the reinforcement component 

(kr).  

     A new procedure to find the maximum number of “active’’ studs was developed. 

The relation between the number of “active’’ shear studs and maximum number of 

shear studs for full shear connection requirement was derived. Modification to the 

proposed mechanical model to calculate the initial stiffness of composite connection 

was performed by two approaches. The first approach was achieved by developing new 

expressions to calculate the stiffness of “active’’ shear studs and modified embedded 

reinforcement. The second approach was undertaken by replacing both the springs for 

reinforcement and shear studs by a “lump’’ spring in the original mechanical model. 

   Furthermore, it was concluded that it is preferable to use a higher number of soft 

shear studs with a lower strength than to use fewer stiff shear studs with high strength 

in order to avoid local concrete failure. 

 10.5. Moment resistance and ductility of flush end-plate composite 

connections 

 A flowchart to predict the failure mode of composite connection had been developed 

based on the practical range of shear connection ratio (y>0.4) and reinforcement ratio 

(0.5<<1.7%). Then, a procedure to calculate the moment capacity of composite 

connection was developed using the concept of a rigid-plastic, stress blocks. This 

procedure is compatible with the proposed flowchart and with the procedure to estimate 
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the rotation at failure. Also, it considered the cases of full interaction, full shear 

connection and partial shear connection.  

    The prediction of moment capacity of composite connection from the proposed 

procedure is in agreement with the experimental results for most cases.  

       The proposed mechanical model to calculate the rotational stiffness of composite 

connection was extended to calculate the rotations at yield and at failure using the 

appropriate post-linear values of the components. The validity of the proposed 

procedure to calculate the rotation at yield was evaluated against three sets of 

experimental test data. These tests were selected to represent three cases of shear 

connection (i.e. full interaction, full shear connection and partial shear connection) and 

covered the usual cases of failure modes.  

     The proposed procedure was observed to be applicable for estimation the rotation at 

yield and rotation capacity of a flush end-plate composite connection. 

10.6. Analysis of a beam with semi-rigid connections under gravity 

loading 

A new analysis procedure for beam with semi-rigid connections under gravity load was 

developed. The proposed procedure was based on the principle of superposition. The 

accuracy of this procedure has been verified by a finite element analysis using the 

ABAQUS software. It overcomes the shortcomings of Ahmed et al. (2008)'s procedure, 

where only certain symmetrical loadings were allowed. In contrast, the proposed 

procedure is applicable to any arbitrary loading. Also, it can be used to calculate the 

deflection at any point of the beam and to compute shear force and bending moment as 

well. It can be extended to compute the deflection of a composite steel-concrete member 

after making some modifications to account for beam stiffness. 

  10.7. A simplified procedure to calculate by hand the natural periods 

of semi-rigid steel frames 

 Simplified formulae to calculate by hand the natural periods of semi-rigid steel frames 

are presented. The proposed formulae have been developed after modifications of 

existing formulae in literature for rigid-jointed plane steel frames. A parametric study 

has been conducted to quantify the effects of semi-rigid connections on the natural 
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periods of vibration of plane steel frames. The results of the parametric study show 

clearly that the flexibility of a connection has a considerable effect on the natural 

frequencies of a steel frame.  Inaccurate values for the fundamental period may result in 

unsafe design.  

      The proposed procedure can predict the natural periods of a frame for a wide range 

of flexibilities of beam-to-column connections. The validity of the proposed procedure 

is confirmed by comparing the results with the results obtained from ABAQUS, and 

good agreement between them was demonstrated.  

 10.8. An approximate analytical method for calculating the natural 

periods of unbraced steel frames with semi-rigid connections 

 A simple “hand’’ procedure has been proposed to calculate the fundamental natural 

period of rigid and semi-rigid plane steel frames. This procedure, based on Muto’s 

method, is capable of calculating the fundamental natural periods of multi-storey steel 

frames with rigid and semi-rigid connections. The results of the calculations indicate 

that the concept of semi-rigid design is not optional for designers and must be taken into 

account for safe design. It has been shown that this simple approximate procedure 

yields agreeable results compared with other accurate and approximate methods. Also, 

the accuracy of the proposed procedure is high when compared with the finite element 

results obtained using ABAQUS. The proposed procedure can easily be extended to 

unbraced composite frame depending on the modified Muto’s method developed by 

(Wong et al., 2007 ) for the analysis of unbraced composite frame systems by 

introducing the concept of improved equivalent beam stiffness. 

10.9. Recommendation for future work 

1. The proposed mechanical model for calculating the rotational spring need 

further improvement by adding another springs in appropriate position such as 

the spring to consider the effect of concrete around column flange. This spring 

can be active only in asymmetrical cases of connection or in external 

connection. The stiffness of this spring needs more experimental and numerical 

work to be evaluated. Another suggestion is to use a spring to take into account 

the effect of concrete in compression zone around the shear connectors but the 

stiffness and strength of this spring needs more experimental and numerical 

work to be evaluated. 
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2. The proposed chart of strength and stiffness of shear connector may need more 

improvement since it is based on a limited number of numerical and 

experimental tests. Nevertheless, it can be used for estimating the strength and 

stiffness of shear connector if push out test data is not available. In addition, the 

experimental and numerical data for other diameters of shear connector are 

needed to extend this chart for other diameters. 

3.  Due to very few experimental tests in the literature on isolated composite slab, 

the proposed model for lump component (RCCS) was validated using the results 

from finite element modelling and available test data in the literature. This can 

substantially reduce the amount of calculation required to evaluate stiffness of 

composite connections. Therefore, the procedure needs further validation using 

experimental test data for full and partial shear interaction. 

4.  The proposed procedures for evaluating the frequency of semi-rigid frames 

need to extend to composite structure. Combining an equivalent stiffness of 

composite beam with the springs simulating the semi-rigid connection can be 

used for this purpose. However, the validity of such modelling needs the 

computational power of a super computer to run the required finite element 

model of composite frame. Experimental tests are essential to validate the 

approximate analytical model as well as the validity of finite element model in 

order to carry out a parametric study on the combined effect of flexibility of 

connection and shear connection ratio on the frequency of composite structure. 

 

  



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

262 

 

References 

ABAQUS. 2005. Theory manual, version 6.10.Hibbit, Karlsson&Sorenson. 

Ahmed, B. (2001). "Deflection of semi-rigidly connected beams." Journal of Civil 

Engineering, CE 29(2), 133-150. 

Ahmed, B., Li , T. Q., and Nethercot, D. A. "Deflection of semi-rigidly connected 

beams " Proc., International Conference on Structures and Granular Solids - 

From Scientific Principles to Engineering Applications, CRC Press-Taylor & 

Francis Group,2008, 293 - 303  

Ahmed, B., and Nethercot, D. A. (1996). "Effect of high shear on the moment capacity 

of composite cruciform endplate connections." Journal of Constructional Steel 

Research, 40(2), 129-163. 

Ahmed, B., and Nethercot, D. A. (1997). "Design of flush endplate connections in 

composite beams." The Structural Engineer, 75(14 ), 233-244. 

Ahmed, B., and Nethercot, D. A. (1997). "Prediction of initial stiffness and available 

rotation capacity of major axis composite flush endplate connections." Journal 

of Constructional Steel Research, 41(1), 31-60. 

Ahmed, B., Nethercot, D. A., and Li, T. Q. "Modelling composite connection response." 

Connections in Steel Structures III: Behaviour, Strength and Design, ed. R. 

Bjorhovde, A. Colson and R. Zandonini. Proceedings of the Third International 

Workshop, Trento University, 29-31 May 1995.,1996: 259-268. 

Al-Jabri, K. S. (2004). "Component-based model of the behaviour of flexible end-plate 

connections at elevated temperatures." Composite Structures, 66(1-4), 215-221. 

Amadio, C., and Fragiacomo, M. (2003). "Analysis of rigid and semi-rigid steel–

concrete composite joints under monotonic loading. Part I: Finite element 

modelling and validation." Steel and Composite Structures, 3(5), 349-369. 

An, L., and Cederwall, K. (1996). "Push-out tests on studs in high strength and normal 

strength concrete." Journal of Constructional Steel Research, 36(1), 15-29. 

Anderson, D., Aribert, J. M., Bode, H., and Kronenburger, H. J. (2000). "Design 

rotation capacity of composite joints." Structural engineer London, 78(6), 25-29. 

Anderson, D., and Najafi, A. A. (1994). "Performance of composite connections: Major 

axis end plate joints." Journal of Constructional Steel Research, 31(1), 31-57. 

Aribert, J.-M., and Al Bitar, A. (1989). "Optimisation du dimensionnement en 

connexion partielle des poutres de planchers mixtes r´ealises avec un bac en 

tˆole mince nervur´ee." Construction m´etallique, 43-55 (in French). 

Aribert, J. M. "Influence of slip of the shear connection on composite joint behaviour." 

Proceedings of the 3rd International Workshop on Connections in Steel 

Structures, Trento, Italy,1996: 11–22. 

Aribert, J. M., and Dinga, O. N. "Modeling and experimental investigation of bolted 

flush end-plate composite beam-to-column joints." Composite Construction in 

Steel and Concrete IV,, Banff, Alta.,2000: 711-724. 

Aribert, J. M., and Labib, A. G. (1982). "Model of elasto-plastic design for composite 

beams with partial interaction." Modele de calcul elato-plastique de poutrres 

mixtes a connexion partielle, 19(4), 3-51. 

Aribert, J. M., and Lachal, A. "Experimental investigation of composite connections in 

global interpretation ", Proceedings of COST C 1 conference on semi-rigid 

Joints, Strasbourg, France,1992: 158-169. 

Astaneh, A., Nader, M. N., and Malik, L. (1989). "Cyclic behavior of double angle 

connections." Journal of structural engineering New York, N.Y., 115(5), 1101-

1118. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

263 

 

Azizinamini, A., and James, B. R. (1989). "Static and cyclic performance of semi-rigid 

steel beam-to-column connections." Journal of Structural Engineering, 115(12), 

2979-2999. 

Brown, N. D., and Anderson, D. (2001). "Structural properties of composite major axis 

end plate connections." Journal of Constructional Steel Research, 57(3), 327-

349. 

BS EN 1998-1 (2004). "Design of structures for earthquake resistance." part 1: General 

rules, seismic actions and rules for buildings, European Committee for 

Standardization (CEN), Brussels. 

BSI. BS 5400-5:Steel, concrete and composite bridges, Part 5: Code of practice for the 

design of composite bridges. London, British Standards Institution; 2005. 

Bursi, O. S., and Jaspart, J. P. (1997). "Benchmarks for finite element modelling of 

bolted steel connections." Journal of Constructional Steel Research, 43(1-3), 17-

42. 

Bursi, O. S., and Jaspart, J. P. (1998 ). "Basic issues in the finite element simulation of 

extended end plate connections." Computers and Structures, 69, 361-382. 

Cabrero, J. M., and Bayo, E. (2007). "The semi-rigid behaviour of three-dimensional 

steel beam-to-column joints subjected to proportional loading. Part I. 

Experimental evaluation." Journal of Constructional Steel Research 63, 1241-

1253. 

CEB-FIP model code 1990. Comite Euro-International du Beton, General models. 

London, Thomas Telfored Services Ltd. 

Chan, S.-L., and Chui, P.-T. (2000). Non-linear static and cyclic analysis of steel frames 

with semi-rigid connections, ELSEVIER SCIENCE Ltd, The Boulevard, 

Langford Lane, Kidlington, Oxford OX5 1GB, UK. 

Chan, S. L., and Lui, E. M. (2005). Hand book of structural engineering  

Chen, W. F., and Kishi, N. (1989). "Semirigid steel beam-to-column connections: Data 

base and modeling." Journal of structural engineering New York, N.Y., 115(1), 

105-119. 

Chen, W. F., and Lui, E. M. (1985). "Stability design criteria for steel members and 

frames in the United States." Journal of Constructional Steel Research, 5(1), 31-

74. 

Chrysanthakopoulos, C., Bazeos, N., and Beskos, D. E. (2006). "Approximate formulae 

for natural periods of plane steel frames." Journal of Constructional Steel 

Research, 62(6), 592-604. 

Chui, P. P. T., and Chan, S. L. (1997). "Vibration and deflection characteristics of semi-

rigid jointed frames." Engineering Structures, 19(12), 1001-1010. 

Crisinel, M., and Carretero, A. "Simple prediction method for moment-rotation 

properties of composite beam-to-column joints."1997: 823-835. 

da S. Vellasco, P. C. G., de Andrade, S. A. L., da Silva, J. G. S., de Lima, L. R. O., and 

Brito Jr, O. (2006). "A parametric analysis of steel and composite portal frames 

with semi-rigid connections." Engineering Structures, 28(4), 543-556. 

Dabaon, M. A., El-Boghdadi, M. H., and Kharoob, O. F. (2009). "Experimental and 

numerical model for space steel and composite semi-rigid joints." Journal of 

Constructional Steel Research, 65(8-9), 1864-1875. 

Dai, Y. M., and Liao, S. (2005). "Experimental study on stud shear connectors in 

composite steel-fdpcp beams." Build. Tech. Dev., , 32(5), 27–28. 

Davison, J. B., Kirby, P. A., and Nethercot, D. A. (1987). "Rotational stiffness 

characteristics of steel beam-to-column connections." Journal of Constructional 

Steel Research, 8(C), 17-54. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

264 

 

Davison, J. B., Kirby, P. A., and Nethercot, D. A. (1987). "Rotational stiffness 

characteristics of steel beam-to-column connections." Journal of Constructional 

Steel Research, 8, 17-54. 

Dhillon, B. S., and Malley, J. W. O. (1999). "Interactive design of semi-rigid  steel 

frames." Journal of Structural Engineering 125(5), 556-564. 

Ellobody, E., and Young, B. (2006). "Performance of shear connection in composite 

beams with profiled steel sheeting." Journal of Constructional Steel Research, 

62(7). 

Elnashai, A. S., and Elghazouli, A. Y. (1994). "Seismic behaviour of semi-rigid steel 

frames." Journal of Constructional Steel Research, 29(1-3), 149-174. 

Eurocode 3. BS EN 1993-1-8:2005: Design of steel structures Part 1-8: Design of joints. 

European Committee of Standardization. 

Eurocode 4. EN1994-1-1:2004 : Design of composite steel and concrete structures part 

1-1: general rules and rules for buildings. European Committee of 

Standardization. 

Eurocode 8. Design of structures for earthquake resistance Part 1:general rules. 

Brussels, CEN (European Committee for Standardization). 

Fu, F., and Lam, D. (2006 ). "Experimental study on semi-rigid composite joints with 

steel beams and precast hollowcore slabs." Journal of Constructional Steel 

Research 62 771-782. 

Fu, F., Lam, D., and Ye, J. (2007 ). "Parametric study of semi-rigid composite 

connections with 3-D finite element approach." Journal of Engineering 

Structures, 29 888-898. 

Fu, F., Lam, D., and Ye, J. (2008). "Modelling semi-rigid composite joints with precast 

hollowcore slabs in hogging moment region." Journal of Constructional Steel 

Research, 64(12), 1408-1419. 

Fu, F., Lam, D., and Ye, J. (2010). "Moment resistance and rotation capacity of semi-

rigid composite connections with precast hollowcore slabs." Journal of 

Constructional Steel Research, 66(3), 452-461. 

Gattesco, N., and Giuriani, E. (1996). "Experimental study on stud shear connectors 

subjected to cyclic loading." Journal of Constructional Steel Research, 38(1), 1-

21. 

Gattesco, N., Giuriani, E., and Gubana, A. (1997). "Low-cycle fatigue test on stud shear 

connectors." Journal of Structural Engineering, 123(2), 145-150. 

Gerstle, K. H. (1988). "Effect of connections on frames." J. Construct. Steel Research 

10  (1988), 241-267. 

Gil, B., and Bayo, E. (2008). "An alternative design for internal and external semi-rigid 

composite joints. Part II: Finite element modelling and analytical study." 

Engineering Structures, 30(1), 232-246. 

Gizejowski, M. A., Barcewicz, W., and Salah, W. (2010). "Finite element modelling of 

the behaviour of a certain class of composite steel-concrete beam-to-column 

joints." Archives of Civil Engineering, 56(1), 19-56. 

Goel, R. K., and Chopra, A. K. (1997). "Period formulas for moment-resisting frame 

buildings." Journal of Structural Engineering, 123(11), 1454-1461. 

Goel, R. K., and Chopra, A. K. (1998). "PERIOD FORMULAS FOR CONCRETE 

SHEAR WALL BUILDINGS." Journal of structural Engineering, 124(4), 426-

433. 

Gupta, A., and Maestrini, S. (1990). "Tension-stiffness model for reinforced concrete 

bars." Journal of Structural  Engineering, ASCE, 116(3), 769-790. 

Heidebrecht, A. C., and Smith, B. S. (1973). "Approximate analysis of tall wall-frame 

structures " ASCE J Struct Div, 99(ST2), 199-221. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

265 

 

Heidebrecht, A. C., and Smith, B. S. (1973). "Approximate analysis of tall wall-frame 

structures." Journal of the Structural Division, 99(ST2), 199-221. 

Hwang, L. S., and Rizkalla, S. H. (1983). "Behavior of reinforced concrete in tension at 

post-cracking range." Engineering Report, Department of Civil Engineering, 

University of Manitoba, Winnipeg, Canada. 

Ihaddoudène, A. N. T., Saidani, M., and Chemrouk, M. (2009). "Mechanical model for 

the analysis of steel frames with semi rigid joints." Journal of Constructional 

Steel Research 65(2009), 631-640. 

Jaeyeol, C., Namso, C., Namsik, K., and Youngsun, C. "Stress-strain relationship of 

reinforced concrete subjected to biaxial tension." Proc., Transactions of the 17th 

International Conference on Structural Mechanics in Reactor Technology 

(SMiRT 17), August 17 -22,2003. 

Johnson, R. P., and May, I. M. (1975). "Partial-interaction design of composite beams." 

Structural Engineer, 53(8), 305-311. 

Johnson, R. P., and Molenstra, N. (1991). "Partial shear connection in composite beams 

for buildings." Proceedings - Institution of Civil Engineers. Part 2. Research 

and theory, 91, 679-704. 

Jones, S. w., Kirby, P. A., and Nethercot, D. A. (1983). "The analysis of frames with 

semi-rigid connections-A Stata-of the Art Report." Journal of Constructional 

Steel Research, 3(2), 2-13. 

Kattner, M., and Crisinel, M. (1997). "Finite element modelling of semi-rigid composite 

joints." FE-modellierung halbsteifer verbundknoten, 66(12), 819-829. 

Kattner, M., and Crisinel, M. (2000 ). "Finite element modelling of semi-rigid 

composite joints." Journal of Computers and Structures 78 341-353. 

Kemp, A. R., and Nethercot, D. A. (2001). "Required and available rotations in 

continuous composite beams with semi-rigid connections." Journal of 

Constructional Steel Research, 57(4), 375-400. 

Kim, B., Wright, H., and Cairns, R. (2001). "The behaviour of through-deck welded 

shear connectors: an experimental and numerical study." Journal of 

Constructional Steel Research, 57, 1359-1380. 

Kishi, N., and Chen, W. F. (1986). "Data base of steel beam-to-column connections." 

Struct. EnonO Rap. No. CE-STR-86-26, I and ll, School of Civil Engineering, 

Purdue University, West Lafayette. 

Kishi, N., Hasan, R., Chen, W. F., and Goto, Y. (1997). "Study of Eurocode 3 steel 

connection classification." Engineering Structures, 19(9), 772-779. 

Kwak, H.-G., and Kim, D.-Y. (2006). "Cracking behavior of RC panels subject to 

biaxial tensile stresses." Computers and Structures, 84 305-317. 

Lam, D. (2007). "Capacities of headed stud shear connectors in composite steel beams 

with precast hollowcore slabs." Journal of Constructional Steel Research 63 

1160-1174. 

Lam, D., and El-Lobody, E. (2005). "Behavior of headed stud shear connectors in 

composite beam." Journal of Structural Engineering, 131(1), 96-107. 

Lawson, R. (1989). "Design of composite slabs and beams with steel decking." SCI 

Publication 055, The Steel Construction Institute, Ascot. 

Li, T. Q., Nethercot, D. A., and Choo, B. S. (1996). "Behaviour of flush end-plate 

composite connections with unbalanced moment and variable shear/moment 

ratios - I. Experimental behaviour." Journal of Constructional Steel Research, 

38(2), 125-164. 

Li, T. Q., Nethercot, D. A., and Choo, B. S. (1996). "Behaviour of flush end-plate 

composite connections with unbalanced moment and variable shear/moment 

ratios - II. Prediction of moment capacity." Journal of Constructional Steel 

Research, 38(2), 165-198. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

266 

 

Liew, J. Y. R., Teo, T. H., Shanmugam, N. E., and Yu, C. H. (2000). "Testing of steel-

concrete composite connections and appraisal of results." Journal of 

Constructional Steel Research, 56(2), 117-150. 

Loh, H. Y., Uy, B., and Bradford, M. A. (2004). "The effects of partial shear connection 

in the hogging moment regions of composite beams Part II - Analytical study." 

Journal of Constructional Steel Research, 60(6), 921-962. 

Loh, H. Y., Uy, B., and Bradford, M. A. (2006). "The effects of partial shear connection 

in composite flush end plate joints Part i - Experimental study." Journal of 

Constructional Steel Research, 62(4), 378-390. 

Loh, H. Y., Uy, B., and Bradford, M. A. (2006). "The effects of partial shear connection 

in composite flush end plate joints Part II - Analytical study and design 

appraisal." Journal of Constructional Steel Research, 62(4), 391-412. 

McGuire, J. (1995). "Notes on Semi-Rigid Connections." Jim Loughlin - NASA 

Goddard Space Flight Center. 

Meskouris, K. (2000). Structural dynamics : models, methods, examples, Ernst & Sohn, 

Berlin. 

Mottram, J. T., and Johnson, R. P. (1990). "Push tests on studs welded through profiled 

steel sheeting." Structural engineer London, 68(10), 187-193. 

Muto, K. (1974). Aseismic design analysis of buildings Maruzen Company,Ltd., Tokyo. 

Nader, M. N., and Astaneh, A. (1991). "Dynamic behavior of flexible, semirigid and 

rigid steel frames." Journal of Constructional Steel Research, 18 179--192. 

Nader, M. N., and Astaneh, A. (1991). "Dynamic behavior of flexible, semirigid and 

rigid steel frames." Journal of Constructional Steel Research, 18(3), 179-192. 

Nader, M. N., and Astaneh, A. (1996). "Shaking table tests of rigid, semirigid, and 

flexible steel frames." Journal of Structural Engineering, 122(6), 589-596. 

Nethercot, D. A. (1995). "Semirigid joint action and the design of nonsway composite 

frames." Engineering Structures, 17(8), 554-567. 

Nethercot, D. A., Davison, J. B., and Kirby, P. A. (1988). "Connection flexibility and 

beam design in non-sway frames." Engineering Journal / AISC, THIRD 

QUARTER/1988, 99-108. 

Nie, J., Fan, J., and Cai, C. S. (2004). "Stiffness and deflection of steel-concrete 

composite beams under negative bending." Journal of Structural Engineering, 

130(11), 1842-1851. 

Oehlers, D. J., and Coughlan, C. G. (1986). "The shear stiffness of stud shear 

connections in composite beams." Journal of Constructional Steel Research, 6, 

273-284. 

Ohi, K., and Hyoukchoi, J. (2006). "Hybrid simulation on semi-rigid partial-strength 

connection." International Journal of Modern Physics B 20(25), 4445-4450. 

Ollgaard, J. G., Slutter, R. G., and Fisher, J. W. (1971). "Shear strength of stud 

connectors in lightweight and normalweight concrete." Eng J Amer Inst Steel 

Constr, 8(2), 55-64. 

Qiusheng, L., Hong, C., and Guiqing, L. (1994). "Analysis of free vibrations of tall 

buildings." Journal of Engineering Mechanics - ASCE, 120(9), 1861-1876. 

Queiroz, F. D., Queiroz, G., and Nethercot, D. A. (2009). "Two-dimensional FE model 

for evaluation of composite beams, I: Formulation and validation." Journal of 

Constructional Steel Research, 65(5), 1055-1062. 

Queiroz, F. D., Queiroz, G., and Nethercot, D. A. (2009). "Two-dimensional FE model 

for evaluation of composite beams, II: Parametric study." Journal of 

Constructional Steel Research, 65(5), 1063-1074. 

Queiroz, G., Mata, L., and Franco, J. (2005). " Analysis of composite connections in 

unbraced frames subjected to wind and gravity loading." Journal of 

Constructional Steel Research, 61, 1075-1093. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

267 

 

Queiroza, F. D., Vellascob, P. C. G. S., and Nethercota, D. A. (2007). "Finite element 

modelling of composite beams with full and partial shear connection." Journal 

of Constructional Steel Research, 63, 505-521. 

Rassati, G. A., Leon, R. T., and Noe, S. (2004). "Component modeling of partially 

restrained composite joints under cyclic and dynamic loading." Journal of 

Structural Engineering 130(2), 343-351. 

Razaqpur, A. G., and Nofal, M. (1989). "A finite element for modelling the nonlinear 

behavior of shear connectors in composite structures." Computers and 

Structures, 32(1), 169-174. 

Ren, P., and Crisinel, M. "Prediction method for moment-rotation behaviour of 

composite beam-to-column connection." Connections in Steel Structures 

III:Behaviour, Strength and Design, ed. R. Bjorhovde, A. Colson and R. 

Zandonini. Proceedings of the Third International Workshop, Trento University, 

29-31 May 1995. , Pergamon, Oxford,1996: 33-46. 

Rex, C. O., and Easterling, S. (2000). "Behavior and modelling of reinforced composite 

slab in tension." Journal of Structural Engineering, 126(7), 762-771. 

Rocha, J. D. B., Arrizabalaga, E. M., Quevedo, R. L., and Morfa, C. A. R. (2012). 

"Behavior and strength of welded stud shear connectors in composite beam." 

Rev. Fac. Ing. Univ. Antioquia (63), 93-104. 

Rosales, J. G. P. (1991). "Seismic resistance of steel frames with semi-rigid 

connections." MSc dissertation, University of London, London, UK. 

Rosales, J. G. P. (1991). "Seismic resistance of steel frames with semi-rigid 

connections. ." MSc dissertation, Imperial College, University of London, 

London, UK. 

Rutenberg, A. (1975). "Approximate natural frequencies for coupled shear walls." 

Earthquake Engineering and Structural Dynamics, 4, 95-100. 

Rutenberg, A. (1975). "Approximate natural frequencies for coupled shear walls " 

Earthquake Engineering and Structural Dynamics, 4(1), 95-100. 

Rutenberg, A. (1975). "Approximate natural frequencies for coupled shear walls." 

Earthquake Engineering and Structural Dynamics, 4(1), 95-100. 

Salvatore, W., Bursi, O. S., and Lucchesi, D. (2005). "Design, testing and analysis of 

high ductile partial-strength steel–concrete composite beam-to-column joints." 

Journal of Computers and Structures 83 2334-2352. 

SCI Report. Partial strength moment resisting connections in composite frames. The 

Steel Construction Institute April, 1992. 

Sekulovic, M., Salatic, R., and Nefovska, M. (2002). "Dynamic analysis of steel frames 

with flexible connections." Computers and Structures, 80(11), 935-955. 

Shim, C. S., Lee, P. G., and Yoon, T. Y. (2004). "Static behavior of large stud shear 

connectors." Engineering Structures, 26(12), 1853-1860. 

Silva, S. d., Santiago, A., and Real, P. V. (2002). "Post-limit stiffness and ductility of 

end-plate beam-to-column steel joints." Computers and Structures 80 (2002), 

515-531. 

Skattum, K. S. (1971). "Dynamic analysis of coupled shear walls and sandwich 

beams."PhD Thesis, California Institute of Technology, Pasadena, California. 

Skattum, K. S. (1971). "Dynamic analysis of coupled shear walls and sandwich beams." 

PhD Thesis, California Institute of Technology, Pasadena, California. 

Smith, B. S., and Crowe, E. (1986). "Estimating periods of vibration of tall buildings." 

Journal of structural engineering New York, N.Y., 112(5), 1005-1019. 

Smith, S. B., and Crowe, E. (1986). "Estimating periods of vibration of tall buildings " 

Journal of structural engineering New York, N.Y., 112(5), 1005-1019. 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

268 

 

Tamai, S., Shima, H., Izumo, J., and Okamura, H. "Average stress-strain relationship in 

post yield range of steel bar in concrete." Concrete Library of JSCE,1988: 117-

129. 

Tamai, S., Shima, H., Izumo, J., and Okamura, H. (1988.). "Average stress-strain 

relationship in post yield range of steel bar in concrete." Concrete Library of 

JSCE 11, 117-129. 

Titoum, M., Tehami, M., and Achour, B. (2009). "Effects of partial shear connection on 

the behavior of semi-continuous composite beams." International Journal of 

Steel Structures, 9(4), 301-313. 

Titoum, M., Tehami, M., Achour, B., and Jaspart, J. P. (2008). "Analysis of semi-

continuous composite beams with partial shear connection using 2-D finite 

element approach." Asian Journal of Applied Sciences, 1(3), 185-205. 

Vasdravellis, G., Valente, M., and Castiglioni, C. A. (2009 ). "Behavior of exterior 

partial-strength composite beam-to-column connections: Experimental study and 

numerical simulations." Journal of Constructional Steel Research 65 23-35. 

Vellascoa, P. C. G., Andradec, S. A. L., and Silvab, J. G. S. (2006). "A parametric 

analysis of steel and composite portal frames with semi-rigid connections." 

Journal of Engineering Structures, 28 543-556. 

Wang, Q., Liu, Y., Luo, J., and Lebet, J. P. "Experimental study on stud shear 

connectors with large diameter and high strength." Lushan,2011: 340-343. 

Wang, Y. C. (1998). "Deflection of steel-concrete composite beams with partial shear 

interaction." Journal of Structural Engineering, 124(10), 1159-1165. 

Weynand, K., Jaspart, J. P., and Steenhuis, M. "The Stiffness Model of revised Annex J 

of Eurocode 3." Connections in steel structures III [Proceedings of the 3rd 

international workshop on connections in steel structures],1996: 441-452. 

Wong, Y. L., Yu, T., and Chan, S. L. (2007). "A simplified analytical method for 

unbraced composite frames with semi-rigid connections." Journal of 

Constructional Steel Research, 63(7), 961-969. 

Wong, Y. L., Yu, T., and Chan, S. L. (2007 ). "A simplified analytical method for 

unbraced composite frames with semi-rigid connections." Journal of 

Constructional Steel Research 63 961-969. 

Xiao, Y. (1994). "Behaviour of composite connections in steel and concrete."PhD 

Thesis, Department of Civil Engineering, University of Nottingham, UK. 

Xiao, Y., Choo, B. S., and Nethercot, D. A. (1994). "Composite connections in steel and 

concrete. I. Experimental behaviour of composite beam-Column connections." 

Journal of Constructional Steel Research, 31(1), 3-30. 

Xiao, Y., Choo, B. S., and Nethercot, D. A. (1996). "Composite connections in steel and 

concrete. Part 2 Moment Capacity of End Plate Beam to Column Connections." 

Journal of Constructional Steel Research, 37(1), 63-90. 

Xiao, Y., Nethercot, D. A., and Choo, B. S. (1992). Design of semi-rigid composite 

beam-column connections ,F. K. Garas et al. E & FN Spon, London. 

Xue, D., Liu, Y., Yu, Z., and He, J. (2012). "Static behavior of multi-stud shear 

connectors for steel-concrete composite bridge." Journal of Constructional Steel 

Research, 74, 1-7. 

Xue, W., Ding, M., Wang, H., and Luo, Z. (2008). "Static behavior and theoretical 

model of stud shear connectors." Journal of Bridge Engineering, 13(6), 623-634. 

Xue, W., Ding, M., Wang, H., and Luo, Z. (2009). "Experimental studies on behavior of 

stud shear connectors under monotonic loads." Jianzhu Jiegou Xuebao/Journal 

of Building Structures, 30(1), 95-100. 

Zalka, K. A. (2001). "A simplified method for calculation of the natural frequencies of 

wall-frame buildings." Engineering Structures, 23(12), 1544-1555. 

 



Modern Engineering Design: Analytical and Numerical Modelling of Semi-rigid Connections 

269 

 

Appendix-A1  

 

                                           

 

 

 

 

1. Derivation of the main equations:  

Let                 1

1

2 baseS



                     and         

2

2 2 baseS



   

Left side of model (a and b) 

1
1 1 1

2 3
-c

c

EI
M S

h h


 
  

 
                                                                               (A.1) 

a) b) 

Ic1 

 

Ic2 

 

Ic1 

 

Ic2 

 

 
 

l r 

l
r

ml 
(1-m)l 

(1-m)l ml 

base-1  base-2

1 

 

1 

 

2 

 

2 

 

F 

 
F 

 

Ic1 

 
Ic2 

 

Ib 

 

Ib 

 

Ic2 

 

Ic1 

 

Ib 

 

a) 

 

b) 

 

base-1  base-2 
l 

 
l 

 

Figure A. 1: a) First    b) Middle and Top storey frames 

Figure A. 2: a) First storey model   b) Middle and top storeys model 
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 - 1

2
2b

b l l

EI
M

ml
                                                                                      (A.2) 

Right side of model: 

2
2 2 2

2 3
-c

c

EI
M S

h h


 
  

 
                                                                              (A.3) 

 
 - 2

2
2

1-

b
b r r

EI
M

m L
                                                                               (A.4) 

At virtual hinge: 

  1
- 1

2
2 0                 -  

2

b
o l l l

EI
M

ml


                                                (A.5) 

 
  2

- 2

2
2 0          -

1- 2

b
o r r r

EI
M

m l


                                              (A.6) 

 

 

 

From Figure A.3, it is seen that:   

 
-

- 1- (1- )

b l

b r

M ml m

M m l m
                                                                                (A.7) 

 

 
 

  
  

1
1-

- 2
2

2
2 1- 2

2 2
2

1-

b
l

lb l

bb r r
r

EI
mM ml

EIM m

m l

   

  

 
 




 

 

 

  
  

1
1

1-

2- 2
2

1- 2 -      
1-     2

2 -
2

b l

b r

m
mM

M m
m






 


 
 
   
 
 
 

                                           (A.8) 

ml 

 (1-m)l 

 
Mb-l 

 

Mb-r 

 

Figure A. 3: Bending moment diagram of beam 
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From Eq. (A.7) & Eq. (A.8), results: 

 

 

2

1

2

2 1-

m

m




                                                                                                   (A.9) 

1 - 2 -0       &     0c b l c b rM M M M   
 

   1 1
1 1 1 1 1 1 1

2 3 2 2 3 2
- 2 - 2 - / 2 0c b c b

l

EI EI EI EI
S S

h h ml h h ml
     

    
       

   
 

and             
 

 2 22
2

2

2 3 2
- 2 - / 2 0
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c bEI EI
S

h h m l
  

 
  

 
 

Let        
1 2

1 2   &          &       c c b
c c b

I I I
k k k

h h l
    

1
1 2

1 2

     &  b b

c c

k k
K K

k k
   

1 21 2
1 2

3 3

3 2 3 2(1- )

K K
S S

h m m

    
       

   
                                                   (A.10) 

From Eq. (A.9) and Eq. (A.10), results: 

 

   

 
 

2

2 2
22

2
1 11

1

3

2 (1- ) 32(1- )

1-3 2 31-

2

K
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S m Kmm m

mK S m Km
S
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 
    

  
 

 

 

 

 
 

22

11

2 (1- ) 3
 
1- 2 3

S m Km

m S m K


 


 

     2
1 2 21 2 2 22 - 3 3 4 - 2 3 0m S S m K K S S K                                (A.11) 
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2. Determine S & m  

First storey 

1. Fixed base  

1 1 1 2 2 2

3 3
  2 2 -    &   2 2 -c c c cM Ek M Ek

h h
 

    
    

   
 

By comparing with Eq. (A.1) & Eq. (A.3): 

1 2 2     S S                (A.12) 

By substituting Eq. (A.12) in Eq. (A.11), results:   

 
2

1 2

3 4
   

3 8

K
m

K K




 
   (A.13) 

2. Pinned base  

1 1 1 -1 -1 1 -1 1

3 3
2 2 -    &  2 2 - 0c c base base c baseM Ek M Ek
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   
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   
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base c c

h
M Ek
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         

 
  (A.14) 

By substituting Eq. (A.14) in Eq. (A.1), results:   

1 1 1 1 1

3
3 2c cEk Ek S

h h
 

    
     

   
 

 1
12 3

3
S

h


     (A.15) 

By substituting Eq. (A.15) in Eq. (A.10), results: 

1

1

3
3

2

K
S

m

 
  
 

  (A.16) 

In the same manner, it can be found that: 
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2

3
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2(1 )

K
S

m

 
  

 
  (A.17) 

By substituting S1 & S2 in Eq. (A.11), results that:  

     2
1 2 1 2 22 2 3 1 0m K K m K K K         
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K
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Middle and top stories  
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3 3
  2 3       &     2 3c c c cM Ek M Ek

h h
 

    
      

   
 

By comparing with Eq. (A.1) and (A.3), results: 

1 2 3S S                                                                                                     (A.19) 

By substituting S1 & S2 in Eq. (A.11), results that:  
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1 2

2

4

K
m

K K




 
                                                                                        (A.20) 

3. Determine Dvalue in term of m 

First storey  

1. Fixed base 

 

 

Mc1 

 

ME1 

 

ME2 

 

Mc2 

 

y1h 

 

(1-y1)h 

 

F1 

 

Figure A. 4: First storey-fixed ends 
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1 1 1 2 2 2-       &        -c E c EFh M M F h M M     

1
1 1 1 1 1 1

3 3
2 2 2 12

2
c c cFh Ek Ek Ek

h h h


 

       
           

     
 

1
1 12

12
-

2
c

E h
F k

h

   
    

                                                                                (A.21) 

By substituting Eq. (A.10) and Eq. (A.12) in Eq. (A.21), results that:  

1 21 2
1 1 2 22 2

1 2

12 3 12 3 1)
   &   

3 4 3 4 4
c c

F E K m F E K m
D k D k

h hK m K m
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                 

 

2. Pinned base 

 

 

1 1 2 2-   &  -c cFh M F h M   

1 1 1 1

3
- 2 -cFh Ek S

h


 
   
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                                                                            (A.22) 

By substituting Eq. (A.10) and Eq. (A.16) in Eq. (A.22), results that: 

1

1 1

1

3 3 3
- 2 3 -

2 3
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F h Ek

m hK
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  
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   

     

 
1 21 2

1 1 2 22 2
1 2

12 12
   &  

4 4 4 4 1 )
c c

F E K F E K
D k D k

h hK m K m

     
                    

 

Mc1 

 

Mc2 

 

F1 

 

Figure A. 5: First storey-pinned ends 
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Middle and top stories  

1 1 2 22      &       2c cFh M F h M                                                         (A.23) 

By substituting Eq. (A.1), Eq. (A.10) and Eq. (A.19) in Eq. (A.23), results that: 

1 1

1

3 3
4 3

3
3

2

cF h Ek
hK

h
m

  
  

     
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     

   

 

1 21 2
1 1 2 22 2

1 2

12 12
   &  

2 2(1 )
c c

F E F E K
D k D k

h h

K

K m K m

      
                  

 

Position of inflection point of column in first storey 

1 1 1 1 1 1

3 3
  2 2     &      2c c E cM Ek M Ek

h h
 

    
      

   
                           (A.24) 

2 2 2 2 2 2

3 3
2 2     &      2c c E cM Ek M Ek

h h
 

    
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   
                         (A.25) 

 
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1

E

c
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


                                                                                               (A.26) 

 
 
 

1
11 1

1 1
1

3
 

1 3
        

3 1 3 1 2
2

yyh

y h y

h






 
         

      
 

                               (A.27) 

By substituting Eq. (A.10) and Eq. (A.12) in Eq. (A.27), results that: 

 
 

11

1

1 3 3
2

1 2 2

y K

y m

   
    
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  
 
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                                                 (A.29) 
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Appendix-B 

First storey (for case m=0.5)   

1. Fixed base (Figure ‎9.3) 

1, 1,

2, 2,2 2 -3   ;      2 2 -3

u u

j jC C

AB j A B BA j B AM Ek M Ek
h h

   
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              (B.2) 
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A B
h

 


                                                                                                        (B.3) 
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2,2, -1 2,
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1 6

1 6

A A
B B uB B

jj j

C

j

k k K

k

 
   

  
   

 

                                                         (B.5) 

From Eq. (B.3) and Eq. (B.5), results: 

2,1,
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1 2 6

2 1 6

uu
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A u

j

K

h K
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  
  
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0AB AE AC ADM M M M                                                                                       (B.7) 
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j A B j A j A j AEk Ek Ek Ek
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    
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                  
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 
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j A B j A A j jk k k k
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 
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k
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
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  
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  

2,1,
1,

1, 2,1,

6 1 6
 

1 4 6 1 6 -1

u

jj
j

A d u

j jj

K

hK K






   
  

    

                                                            (B.9) 

From Eq. (B.6) and Eq. (B.9), results: 

 
  

2,1,

1, 1,

1, 2,1,

6 1 3

1 4 6 1 6 -1

u

jj
u

j jd u

j jj

K

K K





 
 

   
    

                                                          (B.10) 

1,- j AE EAF h M M                                                                                                 (B.11) 

1, 1,

1, 1, 1,- 2 2 -3 2 -3
j jC C

j j A j AF h Ek Ek
h h

 
    

    
   

 

1,

1, 1,- 6 - 2
jC

j j AF h Ek
h


 

  
 

                                                                                    (B.12) 

By substituting Eq. (B.9) in Eq. (B.12), results: 

 
  

2,1,
1,

1, 1,

1, 2,1,

6 1 6
6 2 -

1 4 6 1 6 -1

u

jj
jC

j j d u

j jj

K
F h Ek

h K K





     
   

      

 

 
  

2,1,
1,

1, 1,2

1, 1, 2,1,

3 1 6
12

1-
1 4 6 1 6 -1

u

jj
j C

j j d u
j j jj

KF E
D k

h K K





  
    

               

                           (B.13) 

where 
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2, -1 2, 2, -1 2,
2, 2, -1 2,

2, 2, -1 2,

   ;       ;  
2 2

B B B B
u j j j jB B

j j jC

j j j

k k I I
k k

k
K

L L


    

1, -1 1, 1, -1 1,
1, 1, -1 1,

2, 1, -1 1,

  ;  ; 

B B B B
d j j j jB B

j j jC

j j j

k k I I
k k

k L
K

L


    

2. Pinned base (see Figure ‎9.4)  

1, 1,

2, 2,2 2 -3   ;        2 2 -3

u u

j jC C

AB j A B BA j B AM Ek M Ek
h h

   
    

         
   

                   (B.14) 

 

1, 1,

2, 2,0  2 2 -3 2 2 -3 0

u u

j jC C

AB BA j A B j A BM M Ek Ek
h h

   
    

            
   

            (B.15) 

  1,
2

u

j

A B
h

 


                                                                                                       (B.16) 

1, 1,

1,

1
0 2 2 -3 0  3 - 

2

j jC

EA j E A E AM Ek
h h

   
    

       
   

                                (B.17) 

0 BA BF BGM M M                                                                                                 (B.18) 

1,

2, 2, -1 2,

3 3
2 2 -3 4 4 0

2 2

u

jC B B

j B A j B j BEk Ek Ek
h

   
     

              

 

  2, -1 2,

2,

2 -3 3 0
2

B B

j jA B

B A B C

j

k k

k

 
  

  
      

   

 

2,2, -1 2,

2,

1 6
1 6

A A
B B uB B

jj j

C

j

k k K

k

 
   

  
   

 

                                                                 (B.19) 

 

From Eq. (B.16) and Eq. (B.19), results: 

2,1,

2,

1 2 6

2 1 6

uu
jj

A u

j

K

h K


  
 
  

                                                                                           (B.20) 

0AB AE AC ADM M M M                                                                                      (B.21) 

 1, 1,

2, 1, 1, -1 1,2 2 -3 2 2 -3 6 0

u

j jC C B B

j A B j A E A j jEk Ek E k k
h h

    
   

         
  
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  1, 1, -1 1,

1,

2,

2 -3 2 -3 3 0
2

B B

j j jA B

A B j A E A C

j

k k

h k

 
     

     
          

    

 

  1, -1 1, 1,

1, 1,

2,

1 1
1 3 3 3

2 2

B B

j j j

A j j BC

j

k k

k h
   

    
             

 

  1,
1,1, 1,

2,

1 1
1 3 3 3

2 2 1 6

d j A
jA j j u

j

K
h K


  

  
          

 

 
  

2,1,
1,

1, 2,1,

3 1 6

1 3 6 1 6 -1

u

jj
j

A d u

j jj

K

hK K






   
  

    

                                                             (B.22) 

 

From Eq. (B.20) and Eq. (B.22), results: 

 
  

2,1,

1, 1,

1, 2,1,

3 1 3

1 3 6 1 6 1

u

jj
u

j jd u

j jj

K

K K





 
 

   
     

 

1,- j AEF h M                                                                                                             (B.23) 

1, 1,

1, 1, 1,- 2 2 -3 3 -
j jC C

j j A E j AF h Ek Ek
h h

  
    

     
   

 

 
  

1, 2, 1, 2,
1,

1, 1,

1, 2,1,

6 6
3

1 3 6 1 6 -1

d u d u

j j j j
jC

j j d u

j jj

K K K K
F h Ek

h K K

    
  

   
 

 

 1, 2, 2, 1,
1,

1, 1,2
1,1,

2, 1, 2, 2, 1,1,

6
12

4 3 6
2

d u u d

j j j j
j C

j j
u d u u djj

j j j j jj

K K K KF E
D k

h
K K K K K




 
  

           
     

  

              (B.24) 

where: 

2, -1 2, 2, -1 2,
2, 2, -1 2,

2, 2, -1 2,

   ;       ;  
2 2

B B B B
u j j j jB B

j j jC

j j j

k k I I
k k

k
K

L L


    

1, -1 1, 1, -1 1,
1, 1, -1 1,

2, 1, -1 1,

  ;      ; 

B B B B
d j j j jB B

j j jC

j j j

k k I I
K k k

k L L


    
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Middle stories (for case m=0.5) (see Figure ‎9.5) 

1, 1,

1, 1,2 2 -3         ;        2 2 -3

u u

i j i jC C

AB i j A B BA i j B AM Ek M Ek
h h

   
 

 

    
         

   

     (B.25) 

1, 1,

1, 1,0  2 2 -3 2 2 -3 0

u u

i j i jC C

AB BA i j A B i j A BM M Ek Ek
h h

   
 

 

    
            

   

     (B.26) 

,

,

1,

Let   ;        ;  

C

i jc b
c b i j C

i j

kI I
k k

h L k




                  

  1,
2

u

i j

A B
h

 


                                                                                                    (B.27) 

0EA EF EGM M M                                                                                               (B.28) 

,

, -1, -1 -1,

3 3
2 2 -3 4 4 0

2 2

i jC B B

i j E A i j E i j EEk Ek Ek
h

   
     

        
    

 

 

, ,

-1, -1 -1,

,

3 - 3 -

     
2 3

2 3

i j i j

A A

E EB B
Di j i j

C

i j

h h

Kk k

k

 

 

    
   
   

  
   

    
  

                                                 (B.29) 

0BA BH BIM M M                                                                                               (B.30) 

1,

1, 1, -1 1,

3 3
2 2 -3 4 4 0

2 2

u

i jC B B

i j B A i j B i j BEk Ek Ek
h

   


  

     
              

 

  1, 1 1,

1,

2 3 3 0
2

B B

i j i jA B

B A B C

i j

k k

k

 
  

  



  
       

   

 

1,1, 1 1,

1,

1 6
1 6

A A
B B uB B

i ji j i j

C

i j

k k K

k

 
 

  



  
  

   
 

                                                      (B.31)  

From Eq. (B.27) and Eq. (B.31), results: 

1,1,

1,

1 2 6

2 1 6

uu
i ji j

A u

i j

K

h K






  
 
  

                                                                                   (B.32) 

‎0 0AB AE AC ADM M M M                                                                                 (B.33) 
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 1, ,

1, , , -1 ,2 2 -3 2 2 -3 6 0  

u

i j i jC C B B

i j A B i j A E A i j i jEk Ek E k k
h h

    




   
         

  

  

 

,

, , -1 ,

, ,

1,-1,

3 -
1 1

2 - -3 3 0
2 2 2 3

i j

B BA

i j i j i j

A i j B i j A CD
i ji j

k kh

h kK



    


   
                      
 

 

   
-1,, ,

,, ,

-1, -1,

1 1 3 1
2 - 3 3

2 22 3 2 3

D
d i ji j i j
i jA i j i j BD D

i j i j

K
K

hK K


   

   
    

      
    

   

 

   
-1,, ,

,, ,

1,-1, -1,

1 1 1 3
2 - 3 -  3

2 2 122 3 2 3

D
d i ji j i j
i jA i j i juD D

i ji j i j

K
K

hKK K


  



   
    

     
    

   

 

 

1,

,

1, ,

,
,,

1,1,

1 3
3

2 3

1 1
2 3

2 2 122 3

D

i j

i j D

i j i j

A

d i j
i ji j uD

i ji j

K

K

h

K
KK














 
  
  

    
  

  
        
   

 

                                   (B.34) 

  
       

1, 1,,

1, ,

, 1, 1, 1, 1,, ,

6 1 3 1 3

1 4 6 1 6 2 3 2 12 2 3

D u

i j i ji j
u

i j i jd u D u D

i j i j i j i j i ji j i j

K K

K K K K K



 

 



   

  
 

   
        

 

       (B.35) 

,- i j AE EAF h M M                                                                                                    (B.36) 

, ,

, , ,- 2 2 -3 2 2 -3
i j i jC C

i j i j A E i j E AF h Ek Ek
h h

   
    

      
   

 

, ,

, , ,- 2 3 3 -6 6 - 2
i j i jC C

i j i j A E i j A EF h Ek Ek
h h

   
    

      
   
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-1, -1, ,

, ,

-1, -1,

1 3 1 6
- 6 -

2 3 2 3

D D

i j i j i jC

i j i j A D D

i j i j

K K
F h Ek

hK K

      
    

         

 

 

2

-1,

,

-1, -1, ,

, ,

-1,

,
,,

1,-1,

1 3
3

2 3 1 6
6 -

2 3
1 1

2 3 - - 
2 2 122 3

D

i j

i j D D

i j i j i jC

i j i j D

i j
d i j
i ji j uD

i ji j

K

K K
F h Ek

hK

K
KK








  
      

            
                   

 

 

2

-1,

,

-1,-1,,

, ,2

, -1,

,
,,

1,-1,

1 3
3

2 312 1 1 6
-

2 2 3
2 1

1 4 6 - - 
1 62 3

D

i j

i j DD

i ji ji j C

i j i j D
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Top storey (for the case m=0.5) (see Figure ‎9.6) 

0AB AC ADM M M                                                                                          (B.37) 
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,n j AB BAF h M M                                                                                           (B.41) 
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where: 

, -1 , , , -1 ,
, , -1 ,

, , -1 ,

   
  ;       ;      

B B B B
u n j n j n j j n jB B
n j n j n jC

n j n j n j

k k I I
k k

k L
K

L


    

-1, -1 -1, -1, -1 -1,
-1, -1, -1 -1,

, -1, -1 -1,

   
  ;         ;    

2 2

B B B B
d n j n j n j n jB B
n j n j n jC

n j n j n j

k k I I
K k k

k L L


    

 

 

 


