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Abstract 

 
Protein based biopharmaceuticals are becoming increasingly popular therapeutic agents. 

Recent changes to the legislation governing stem cell technologies will allow many further 

developments in this field. Characterisation of these therapeutic proteins poses numerous 

analytical challenges. In this work we address several of the key characterisation 

problems; detecting glycosylation, monitoring conformational changes, and identifying 

contamination, using vibrational spectroscopy. Raman and infrared spectroscopies are 

ideal techniques for the in situ monitoring of bioprocesses as they are non-destructive, 

inexpensive, rapid and quantitative.  

 

We unequivocally demonstrate that Raman spectroscopy is capable of detecting 

glycosylation in three independent systems; ribonuclease (a model system), transferrin (a 

recombinant biopharmaceutical product), and GFP (a synthetically glycosylated system). 

Raman data, coupled with multivariate analysis, have allowed the discrimination of a 

glycoprotein and the equivalent protein, deglycosylated forms of the glycoprotein, and 

also different glycoforms of a glycoprotein. Further to this, through the use of PLSR, we 

have achieved quantification of glycosylation in a mixture of protein and glycoprotein. We 

have shown that the vibrational modes which are discriminatory in the monitoring of 

glycosylation are relatively consistent over the three systems investigated and that these 

bands always include vibrations assigned to structural changes in the protein, and sugar 

vibrations that are arising from the glycan component.  

 

The sensitivity of Raman bands arising from vibrations of the protein backbone to 

changes in conformation is evident throughout the work presented in this thesis. We used 

these vibrations, specifically in the amide I region, to monitor chemically induced protein 

unfolding. By comparing these results to fluorescence spectroscopy and other regions of 

the Raman spectrum we have shown that this new method provides improved sensitivity 

to small structural changes.  

                                 

Finally, FT-IR spectroscopy, in tandem with supervised machine learning methods, has 

been applied to the detection of protein based contaminants in biopharmaceutical 

products. We present a high throughput vibrational spectroscopic method which, when 

combined with appropriate chemometric modelling, is able to reliably classify pure 

proteins and proteins ‘spiked’ with a protein contaminant, in some cases at contaminant 

concentrations as low as 0.25%. 
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Chapter 1: Introduction. 
 

  
 

1.1 Background. 

Biotechnology is becoming an increasingly important area of the pharmaceutical market, 

generating an annual revenue in excess of 50 billion dollars (Greer, 2008). A wide variety 

of biopharmaceuticals can be produced from various cell lines including: yeast, bacteria, 

mammalian and plant cells. These biological pharmaceuticals can range from small 

molecules, such as antibiotics, to large protein therapeutics. One of the earliest examples 

of protein biopharmaceuticals was the use of recombinant DNA technology to modify 

Escherichia coli for the production of human insulin, which was closely followed by the 

development of human growth hormone and human blood clotting factor (Goddard, 

1991). There are now over 50 therapeutic proteins approved by the FDA, the most 

routinely prescribed being erythropoietin, used to treat anaemia, and an additional 500 

proteins are under development (Greer, 2008). A major area of the biopharmaceutical 

market is the production of antibodies, a specific group of proteins which aid the immune 

system, for example in fighting bacteria and viruses. More recently, legislation controlling 

stem cell technologies has been relaxed, allowing further developments of 

biopharmaceuticals.  

 

Effective monitoring of the complex biological systems used to produce 

biopharmaceuticals is essential both for product yield optimisation and quality assurance 

purposes. There is therefore a pressing need to develop robust process analytical 

technologies (PATs) for this purpose.  This project will be concerned with developing 

optical spectroscopies, in particular Raman spectroscopy, as a non-invasive, rapid 

method of characterising proteins. This work will focus on detecting structural changes 

such as glycosylation and aggregation, which may occur in the time frame between 

protein translation, secretion, downstream recovery and administration. 

 

Raman spectroscopy is a particularly suitable method for on-line analyses of 

bioprocesses, since it is non-destructive, inexpensive, rapid and quantitative. The con-
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focal nature of the technique means that one can focus through a window in a fermenter, 

thus obviating the need for introducing additional probes into the bioreactor. The utility of 

Raman spectroscopic instrumentation is greatly increased by the ability to interface with 

microscopes for trace analysis, fibre optic probes for in situ identification and also other 

types of analytical instrumentation for sample clean up, such as liquid chromatography. 

The versatility of Raman spectroscopy is also increased by the lack of sample 

preparation required and the ability to profile samples through a variety of transparent 

materials. Unlike mid infrared spectroscopy, Raman spectroscopy provides the capability 

to analyse compounds in aqueous solution with minimal interference from water 

absorption, which is a critical factor when considering biological applications. The 

combination of all of the above properties makes Raman spectroscopy a very promising 

technique for analysis of biopharmaceuticals and the rapid monitoring of complex 

bioprocesses. 

 

1.2 Aims and Objectives. 

The major aim of this project is to develop the application of Raman spectroscopy for 

monitoring bioprocesses, concentrating in particular on structural changes of proteins 

such as post translational modifications. The hypothesis that Raman spectroscopy with 

appropriate chemometrics can be used to detect and quantify glycosylation in 

recombinant proteins will be tested using the approaches outlined below. Raman 

spectroscopy will be used initially to differentiate between protein and glycoprotein 

standards and glycoproteins which have been deglycosylated. In this cognate approach, 

measurements from various spectroscopies will be used to detect and quantify 

glycosylation, identify the structural changes brought about by glycosylation, and 

investigate how these changes affect stability and aggregation. 

 

Spectroscopic data will be benchmarked against gold standard techniques such as matrix 

assisted laser desorption ionisation-mass spectrometry (MALDI-MS), to determine if the 

protein is glycosylated or not, fluorescence spectroscopy, to provide information on 
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structural changes of proteins, and static light scattering (SLS), to monitor protein 

aggregation.   

 

In order to extract meaningful information from the data, spectra will be subjected to 

multivariate data analysis methods. In the first instance, principal components analysis 

(PCA) will be used to separate glycosylated and deglycosylated spectra. A partial least 

squares (PLS) model will also be used in the quantification of glycosylation status; 

assessing how much protein is glycosylated. In addition, the loadings from the PCA and 

PLS models will allow us to derive the most important features in the Raman spectra 

without bias, as it is currently unknown which vibrational modes will be the most selective 

for glycosylated proteins.  

 

1.3 Vibrational spectroscopy.  

Raman and infrared spectroscopy are both branches of vibrational spectroscopy. Both 

techniques involve a sample being illuminated with a radiation source.  The photons from 

this radiation source can interact with the molecules in one of four ways, they can be 

reflected by the sample, transmitted through the sample, absorbed by the sample (as in 

infrared spectroscopy) or scattered by the sample (as in Raman spectroscopy).  

 

1.3.1 Principles of vibrational spectroscopy. 

1.3.1.1 Molecular vibrations.  

If the electrical energy possessed by a molecule remains constant, its energy can be 

divided into a number of components, called degrees of freedom. The first three degrees 

of freedom describe the translation of the molecule in space. A further three are used to 

describe rotational movement, unless the molecule is linear and thus then only has two 

possible types of rotation, and hence only two vibrational degrees of freedom, since the 

rotation about the intermolecular axis is not a proper rotation (Banwell and McCash, 

2006). So, for linear molecules the number of vibrational degrees of freedom and also the 

number of possible vibrations is given by 3N-5, where N is the number of atoms in the 
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molecular. For all molecules which are not linear the number of vibrational degrees of 

freedom is given by 3N-6 (Smith and Dent, 2005, Atkins, 1998  ).  

 

When a molecule vibrates there is a combination of changes in the position of atoms 

within the molecule, called the vibrational coordinate. There are six main types of 

molecular vibrations; stretching (symmetric or asymmetric), scissoring, rocking, wagging 

and twisting (Figure 1.1) (Harris and Bertolucci, 1978).  

 

 

Figure 1.1: Cartoon Diagrams Depicting the Six variations of Molecular 

Vibrations. 
 

 

When two or more bonds of similar energies are close together in a molecule, the 

vibrations can interact. Observed vibrations in these cases, relate to the vibrations of 

groups of atoms. By contrast, where there is a large energy difference between the 

vibrations of different bonds and the atoms are well separated, the molecular vibrations of 

individual atoms will have distinct effects on spectra and can be considered separately.   
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1.3.1.2 Polarisability. 

All electromagnetic radiation including infrared and visible light has electric and magnetic 

fields associated with it, which will interact with molecules and may change the molecular 

properties. Some molecules already have an electric dipole moment due to charge 

separation, and this dipole interacts with the electric field of the incident light. Other types 

of molecules may acquire a temporary dipole, induced as they vibrate within the electric 

field.  Methane molecules, CH4, for example, which are normally non-polar may gain a 

temporary dipole as their C-H bonds stretch. Some molecules neither have nor acquire 

dipole moments but can still be polarised. This happens because the electron cloud of the 

molecule is distorted by the electric field. The polarisability (α) of the molecule can be 

calculated using the equation below (Smith and Dent, 2005): 

 

μ = αE                                         Eq. 1.1 

 

where μ is the induced dipole, E is the electric field of the incident photon and α is the 

polarisability; a measure of how easily the electron cloud around a molecule can be 

distorted. As the effect on the electron cloud applies in all directions, the change in the 

dipole of a molecule can be described in each of the Cartesian co-ordinates, x, y and z. In 

order to illustrate the effect of linearly polarised radiation on molecular polarisability, all 

three co-ordinates must be considered. To allow for this, the polarisability components 

are usually labelled αxx, αyy, αyx etc, where the first subscript character refers to the  

polarisability of the  molecule and the second to the polarisation of the incident light, 

therefore a more suitable equation is (Long, 2002): 

 

μx = αxxEx
 + αxyEy +αxzEz                                           Eq.1.2 

 

Similar expressions exist for μy and μz, thus the polarisability of a molecule is best 

described by the tensor (Long, 2002): 
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                            Eq.1.3

 

 

Equation 1.3 is valid for linear Raman spectroscopy in which the Raman scattering 

efficiency is linearly related to the laser power. However, Raman spectroscopy can also 

be nonlinear, when more than one photon interacts with a molecule at the same time, 

resulting in a nonlinear relationship between the magnitude of the scattering and the laser 

power. In this case, the dependence of the polarisability against the electric field strength 

is better defined as the power series, where β and γ are the hyper-polarizability:  

 

   μ = α E +1/2 βE2 + 1/6 γE3 
……..                                Eq.1.4 

 

1.3.2 Infrared Spectroscopy. 

The basic selection rule of infrared spectroscopy states that for a molecule to absorb 

infrared radiation, i.e. be IR active, there must be a change in the dipole moment of the 

molecule during a vibration (Banwell and McCash, 2006). A simple example of a 

molecule which is IR active is carbon monoxide, which has a just one fundamental 

vibrational frequency of 2168 cm
-1

. The molecule has a permanent dipole which will 

change as the molecule stretches, meaning that it will interact with IR radiation to 

produce an absorption peak close to 2168 cm
-1

 in the IR spectra. Absorption will only 

occur when the frequency of the incident radiation matches the frequency of the vibration 

or alternatively when the energy of the incident photon is equal to the energy gap 

between the ground and excited states of the molecule (Kealey, 2002). The molecule 

may be promoted to a vibrationally excited state by the incident radiation, causing the 

molecule to gain energy and the radiation to lose energy; it is this loss in energy that is 

detected as heat.  
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1.3.2.1 Fourier Transform – Infrared Spectroscopy. 

Fourier transform-infrared spectroscopy (FT-IR) involves a different measurement 

technique for collecting spectra compared to a dispersive instrument. In traditional 

infrared spectroscopy, the amount of energy absorbed by a sample at different 

wavelengths is measured using a polychromatic beam, which changes wavelength over 

time using a monochromator (Chalmers, 2001). However, a FT instrument allows the 

measurement of all wavelengths simultaneously using a Michelson interferometer. A 

Michelson interferometer, depicted in Figure 1.2, splits the incident radiation into two 

separate beams using a half silvered mirror. One beam is then reflected off a fixed mirror 

and the other from a movable mirror.  The position of the movable mirror can be altered, 

changing the relative distances travelled by the two beams and, therefore introducing a 

difference into their journey times. The two beams are then recombined and interference 

between the two beams allows measurement of their temporal coherence, a 

measurement of how well the radiation interferes with itself at different points. The light is 

then passed through a sample where it is absorbed, transmitted, scattered or reflected, 

the transmitted light is then detected. The signal is measured at various different time 

delays, produced by altering the position of the moving mirror and then a mathematical 

Fourier-transform is performed, resulting in spectrum that is similar to the conventional 

dispersive spectrum of the sample (Chalmers, 2001, Banwell and McCash, 2006).  

 
Figure 1.2: Schematic Diagram of Michelson Interferometer. 
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FT-IR spectroscopy has many advantages over dispersive IR spectroscopy. FT-IR is a 

much faster technique, as the information at all wavelengths/frequencies is gathered 

simultaneously. As the time taken to record a spectrum is less, there will be less shot 

noise and hence a higher signal to noise ratio in an FT instrument, this is known as the 

Fellgett advantage (Banwell and McCash, 2006). The Jaquinot advantage states that an 

FT instrument will have a more efficient throughput of radiation than a dispersive 

instrument; this is because a dispersive instrument focusses light through a slit, thus 

limiting the total amount of energy passing through the system. By contrast, in an FT 

instrument the two parallel beams need only be focused at the sample and detector, so 

all the light will pass through the instrument (Banwell and McCash, 2006, McCreery, 

2000).  

 

1.3.3 Raman Spectroscopy. 

Raman spectroscopy arises from the inelastic scattering of photons, which was initially 

proposed theoretically by Smekal in 1923 (Smekal, 1923). The Raman effect was first 

observed experimentally by Raman and Krishnan in 1928 and was reported in the journal 

Nature the same year (Raman and Krishnan, 1928). 

 

As Raman spectroscopy is concerned with the scattering of light, unlike infrared 

spectroscopy, there is no need for the photons to have a specific energy which matches 

the energy gap between the ground and vibrational excited states of the analyte. (Kealey, 

2002). In Raman spectroscopy, when a sample is irradiated with monochromatic radiation 

(in the UV/visible or near infrared regions) the photons will be scattered by the molecules 

in the sample, causing the energy of the inelastically scattered photons to change by one 

vibrational unit of energy (∆ν = ± 1).  For a molecule to be Raman active there must be a 

change in the polarisability (α) of the molecule during the induced molecular vibrations. 

 

The scattering of photons occurs because the electric field associated with the radiation 

causes the electron cloud around the nuclei of a molecule to become polarised for a short 
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time, i.e. there is a change in the polarisability of the molecule (Smith and Dent, 2005). 

This electron cloud distortion causes a type of elastic scattering called Rayleigh 

scattering which is shown in terms of the energy levels in Figure 1.3. If nuclear motion is 

also induced during the scattering process, then energy is either transferred to the 

scattered photon from the molecule or from the incident photon to the molecule, so the 

energy of the scattered photon is different to that of the incident photon, hence the 

scattering is inelastic, Raman scattering.  Raman scattering is normally very weak and 

typically only one photon in every 10
6
- 10

8
 photons are Raman scattered, but this 

problem is overcome in modern spectroscopic instruments by the use of high powered 

lasers, sensitive radiation detectors and more efficient filters optics. (Banwell and 

McCash, 2006). 

 

There are two different types of Raman scattering, Stokes and anti-Stokes. Stokes 

scattering occurs when a molecule in its ground vibrational state is promoted to a higher 

energy excited state by the absorption of energy. Some molecules are already present in 

an excited state and energy is transferred from the molecule to the photon, thus the 

molecule is demoted from the higher excited energy state to the ground state, this is 

known as anti-Stokes scattering. At room temperature, Stokes scattering is more intense 

 
Figure 1.3: Jablonski energy diagram showing the Raman scattering effect, 

showing Rayleigh (elastic) scattering and both Stokes and anti-Stokes Raman 
(inelastic) scattering. 
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than anti-Stokes scattering, due to the fact that only a small number of molecules are 

present in an excited state. Typically Raman scattering is recorded between 100 and 

4000 cm
-1

 Raman shift from the V0 line, so only Stokes scattering is observed. 

Observation of anti-Stokes scattering can be preferred in certain circumstances, such as 

when there is a large amount of fluorescence present (McCreery, 2000). 

 

If a molecule is promoted to an upper vibrationally excited state by electronic excitation 

from the laser, the excess energy may be lost through a mechanism known as 

fluorescence emission (see section 1.4.1). For fluorescence to occur, the incident 

radiation must populate an excited electronic state. The lower the wavelength of the 

incident radiation the more energy is put into the system, therefore it is more likely that 

fluorescence will occur. If fluorescence is observed in a sample, then little or no Raman 

signal will be observed, this can be overcome by using a longer wavelength laser (or 

shorter in the case of UV-resonance Raman), photo-bleaching  the sample (exposing the 

sample to the laser for a time period), or collecting the anti-Stokes spectrum. 

 

1.3.3.1 Interpretation of Raman Spectra. 

Raman scattering is measured in terms of the shift in energy from the energy of the 

exciting radiation, which is expressed as either Raman shift/cm
-1

 or wavenumber/cm
-1

.    

It is possible to identify frequency ranges for the most common functional groups in which 

infrared absorption or Raman scattering will occur. According to Hooke’s law, vibrational 

frequency is related to the force constant k, which is dependent on the strength of the 

bond, and the mass of the atoms attached to the bond. It can therefore be deduced that 

stronger bonds with lighter atoms will have a higher vibrational frequency, whereas heavy 

atoms with weak bonds will have relatively low vibrational frequencies. 

 

The intensity of the different bands in a Raman spectrum varies with the nature of the 

vibration being studied, for example, symmetric vibrations cause the greatest changes in 

the electron cloud around the molecule and therefore give the greatest Raman scattering 

(Smith and Dent, 2005). The most environmentally sensitive Raman bands, such as 
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those from OH and NH vibrations tend to be broad and weak due to hydrogen bonding, 

whereas bands arising from the structural backbone of a molecule (C-H, C-C) are often 

strong and sharp (Banwell and McCash, 2006).  

 

Raman scattering occurs because there is a change in the polarisability (α) of a molecule 

caused by molecular vibrations. This change can be described using the polarisability 

derivative, dα/dQ, where Q is the vibrational normal co-ordinate. The scattering intensity 

(I) of a Raman active molecule is proportional to the square of dα/dQ, or in other words 

proportional to the square of the induced dipole moment (Banwell and McCash, 2006). 

Hence if the polarisability of a molecule does not change with the molecular vibration then 

dα/dQ = 0, so the resulting Raman band will have a low intensity.   

 

The intensity of a band in a Raman spectrum can be calculated using the following 

equation known as the Kramer-Heisenberg-Dirac equation (Smith and Dent, 2005): 

 

I = K l α
24                                                     

Eq. 1.5 

 

Where: K  is constant which varies between instruments but always contains the speed of 

light, l is the power of the laser power, α is the polarisability and  is the frequency of the 

incident radiation.  

 

1.3.3.1.1 Multivariate Analysis of Vibrational Spectroscopic Data. 

Raman spectral data, particularly that collected from biological systems, are often 

complex and contain many overlapping bands, making the spectra difficult to interpret by 

visual examination of the data set alone, hence multivariate data analysis strategies are 

often employed. Multivariate data are data which consists of the results of observations of 

many different variables (in Raman data, wavenumber shift) for a number of different 

samples (Brereton, 2005).  Each variable may be described as constituting a different 

dimension. If the number of variables is n, each object can be described as existing at a 
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unique position referred to as n-dimensional hyperspace (Otto, 1999). This dimensional 

hyperspace can be difficult to visualise, so multivariate analysis can simplify the 

dimensionality (Ellis and Goodacre, 2006). Further details on the data analysis methods 

used in this work can be found in Chapter 2, Section 2.3.   

 

1.3.3.2 Variations of Raman spectroscopy. 

1.3.3.2.1 Resonance Raman spectroscopy. 

Resonance Raman spectroscopy is achieved when a sample is excited with a frequency 

of light which is within the molecular absorption bands of a chromophore within the 

sample. This excitation is in resonance with the electronic transitions. Scattering 

enhancements as high as 10
5
 have been observed using this technique (Chi and Asher, 

1998, Smith and Dent, 2005). As well as vibrational information, electronic information 

about a molecule can also be deduced from the intensities of bands in the resonance 

Raman spectrum and from the energy separations in overtone progression. 

 

1.3.3.2.2 SERS and SERRS. 

Surfaced enhanced Raman scattering relies on the analyte being in close proximity to, or 

adsorbed onto, a roughened metal surface or a colloidal solution, usually of silver or gold. 

The interaction of the electric field of the incident light with the metal gives rise to a 

surface plasmon (an oscillating electric field) which is believed to enable an 

electromagnetic enhancement effect (via surface-plasmon polariton resonances), for 

analytes adsorbed or in close proximity to the metal surface (Smith and Dent, 2005). 

Additional signal enhancement is also thought to arise from a chemical or charge transfer 

effect often associated with adsorption of the analyte onto the metal surface.  The overall 

Raman signal enhancement can be as much as 10
8 

over conventional Raman scattering, 

and even higher (10
14

) since single molecule spectra have been reported (Nie and 

Emory, 1997). In addition, further enhancement can be achieved through a combination 

of the RR effect with SERS, known as surface-enhanced resonance Raman scattering 

(SERRS), which makes use of reporter dye molecules to allow SERRS to be observed at 

specific incident wavelengths (Faulds et al., 2008, Graham and Faulds, 2008). 
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1.3.3.2.3 Raman Optical Activity (ROA). 

Another variation on traditional Raman spectroscopy is Raman optical activity (ROA) 

which uses circularly polarised light to observe the changes in the spectra of optically 

active, chiral molecules (Zhu et al., 2006). ROA relies on interference between the 

scattered photons and the optical activity tensors of a chiral molecule. This leads to small 

differences in the relative intensities of right and left handed circularly polarised scattered 

light, which will give information on the chirality of the molecule (Barron, 2004).    

 

1.4 Other Analytical Techniques Used in This Thesis.  

1.4.1 Fluorescence Spectroscopy.                                                                                                                                                                                                           

Fluorescence Spectroscopy, also known as spectrofluorometry, is a branch of 

spectroscopy which 

analyses the 

fluorescence emissions 

from a sample. A sample 

is illuminated with a light 

source, typically UV light, 

which may promote the 

molecules in the sample 

to an electronically 

excited vibrational state. 

The excess vibrational 

energy may be lost by 

series of intermolecular 

collisions, known as ‘radiationless’ transitions, in which the vibrational energy is 

converted to kinetic energy which appears as heat within the sample. The resultant loss 

of energy causes the molecule to move to a lower vibrational energy state within that 

electronic state. When the excited molecule reaches the excited state (E1) it can emit 

radiation, known as fluorescence, and return to the ground state (E0). The emitted 

 

Figure 1.4: Schematic of fluorescence emission. 
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fluorescence is usually of a lower frequency than the laser used to excite the molecule. 

By analysing the emission spectrum, structural details of the sample can be determined 

(Banwell and McCash, 2006, Sharma, 1999). 

 

The fluorescence spectrum of a protein sample is composed of emissions from individual 

aromatic amino acid residues of tryptophan and tyrosine. There may also be some small 

contributions from phenylalanine and the disulfide bonds. The fluorescence emission of 

tryptophan is known as solvatochromatic, meaning the emitted radiation varies in 

wavelength depending on the solvent environment. Monitoring the fluorescence of a 

protein is a useful probe of its conformational state. As tryptophan is hydrophobic, it is 

usually found in the core of a folded protein. When the protein’s structure is disordered, 

the tryptophan becomes exposed to the aqueous atmosphere, and changes in the 

polarity of the tryptophan’s local environment will cause a change in the fluorescence 

emission spectra (Sharma, 1999, Royer, 2006).  

 

1.4.2 Static Light Scattering. 

In static light scattering (SLS) the amount of light scattered by a macromolecule, such as 

a protein, is measured in order to obtain information on the size of the particles in the 

sample. In a light scattering experiment, solutions of analyte are illuminated with laser 

light and a detector is used to measure the scattering intensity, usually at an angle of 90 

degrees. In multi-angle light scattering (MALS), numerous detectors are used to measure 

the intensity of scattered light at many different angles (Wyatt, 1993).  

 

The intensity of scattered light is dependent on the polarisability of the molecules, which 

is dependent on the molecular weight of the sample. Therefore, larger particles with 

higher molecular weights will give higher intensities of scattered light. Hence, by simply 

plotting the intensity of scattered light, it is possible to crudely track whether a sample’s 

average particle size is increasing or decreasing. A more precise indication of particle 

size is achieved by calculating the weight average molecular weight from the scattering 

intensity, using Zimm’s formula (Wyatt, 1993, Wen et al., 1996): 
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=

 

      
+ 2𝐴 𝑐                                   Eq.1.6 

 

 

where:  Mw
 
 is the weight average molecular weight, c is the sample concentration (in 

g/mL), A2 is the second viral coefficient, Rθ is the Rayleigh ratio (excess intensity of 

scattered light at angle θ), P(θ) is the angular dependence of scattered light and K is an 

optical parameter, calculated using equation 1.7, in which no is the refractive index of the 

solvent, dn/dc is the refractive index increment of the solution, NA is Avagadroes’s 

number (6.023 x 10
23

) and λ is the wavelength of the light source.  

 

 

K= 4𝛱 𝑛 
  𝑑𝑛/𝑑𝑐  𝑁   𝜆

                            Eq. 1.7 

 

 

 

1.5 Protein structure. 

The primary level of structure in a protein is the linear sequence of amino acids and any 

other covalent bonds, such as disulfide bonds. (Stryer et al., 2002). Protein secondary 

structure involves the folding of regions of the polypeptide chains, most commonly into α-

helices and β-sheets. α-helices occur when the amino acids arrange themselves in a 

regular helical conformation in which the carbonyl oxygen of each peptide bond is 

hydrogen bonded to the hydrogen on the amino group of the fourth amino acid away 

(Figure 1.5). By contrast, in a β-sheet, hydrogen bonds form between the peptides bonds 

either in different polypeptide chains or in different sections of the same polypeptide 

chains (Figure 1.6). 
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Figure 1.5: Cartoon diagram of α-

Helical Structures. 

Figure 1.6: Cartoon Diagram of β-

Sheet Structures. 

 

 

The third level of structure found in proteins refers to the spatial arrangement of amino 

acids that are far apart in the linear sequence as well as those residues that are adjacent. 

The protein is folded by hydrophobic interactions, and tertiary structure is maintained by 

electrostatic forces, hydrogen bonding and disulfide bonds (Stryer et al., 2002).  

 

1.5.1 Recombinant Proteins. 

A recombinant protein is a protein which is coded for by recombinant DNA; DNA which is 

engineered by combining or inserting one or more DNA strands into a host. Recombinant 

DNA technology, through the ability to isolate, analyse and change genes, has now 

become common place. In recombinant protein expression mRNA is coded for by 

recombinant DNA, which has been inserted into a host cell. The cell will produce proteins 

based on this DNA.  

 

Since the development of recombinant DNA technology many therapeutic proteins, which 

were previously harvested from animals, have become mass produced recombinant 

biopharmaceuticals. The most notable being human growth hormone, which stimulates 

growth and cell reproduction; human insulin, a hormone that metabolises glucose and 

follicle stimulation hormone which regulates reproductive processes (Goddard, 1991). 

Many other proteins which were not harvestable from animals or humans have since 
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become available as recombinant protein drugs. Such drugs include,  tissue plasminogen 

activator, a protein which breaks down blood clots, and erythropoietin, a glycoprotein 

which controls red blood cell production (Goddard, 1991).   
 

 

1.5.2 Post translational modifications. 

After a protein pharmaceutical has been transcribed and translated by the recombinant 

DNA and mRNA, other chemical modifications may occur, these are known as post 

translational modifications. These modifications include glycosylation, phosphorylation 

and methylation, amongst many others (Table 1.1). The majority of biopharmaceuticals 

will contain a modification of some sort, whether it is intentional, or unintentional. These 

modifications are important in generating heterogeneity in proteins and in utilizing 

identical proteins for different cellular functions in different cell types (Greer et al., 2008).  

 

Post translational modifications to 

a protein drug can affect the 

stability, immunogenicity (ability of 

a substance to produce an 

immune response), 

pharmacokinetics (the fate of a 

substance after administration) 

and efficacy (capacity of a 

substance to produce an effect). 

Understanding post translational 

modifications will not only help 

resolve these clinical problems 

but may also help refine the 

fermentation and purification 

processes, increasing the yield of 

the biopharmaceutical product. 

                     

Table 1.1: Common post 
Translational modifications 

Addition of a functional Group 

Acetylation 
Acylation 
Alkylation  
Amidation (deamidation) 
Carbamylation 
Carboxylation 
Formylation 
Glycosylation (N/O linked) 
Glycation 
Hydrosylation  
Lipoylation  
Methylation 
Phosphorylation (dephosphorylaton) 
Sulfation 
Methionine oxidation 

Addition of other peptides 

SUMOylation 
Ubiqutinination 

Changes to amino acids 

Deamidation (glutamine, asparagine) 
Citrullination (arginine) 
Eliminylation (serine, threonine,cysteine)   

Structural changes 

Disulfide bridges 
Proteolytic cleavage 
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1.5.2.1 Glycosylation. 

Glycosylation is the covalent linking of short chains of carbohydrates to the peptide chain 

of a protein and is probably the most common of the post translational modifications 

(Apweiler et al., 1999), in fact over a third of the biotechnology derived proteins are 

glycosylated in their native form (Greer et al., 2008). It is widely agreed that glycosylation 

patterns and their heterogeneity are very important to both the biological activity and 

clinical efficiency of protein therapeutics, most notably erythropoietin and tissue 

plasminogen activator, in which correct glycosylation is needed for biological activity 

(Berman, 1985). In addition,  glycosylation has been proved to play a major role in the 

biological activity of recombinant antibodies (Greer, 2007). The carbohydrate moiety of an 

immunoglobulin molecule can play many roles in the activity of the protein; it may target 

the molecule to a specific location or perform a structural function such as supporting the 

three-dimensional shape of the active site. Furthermore, it has been shown recently that 

protein glycosylation can greatly increase the stability of pharmaceutical proteins both in 

vitro and in vivo by increasing the internal non-covalent forces which hold the protein in 

its folded form, and destabilising the unfolded state of the protein (Sola and Griebenow, 

2009). The production of glycosylated biopharmaceuticals by host-expression systems 

suffers technical difficulties in the form of very low expression yields and glycosylation 

heterogeneity (Chang et al., 2007).   

 

The covalent bond which forms between a sugar residue and a protein is called a 

glycosidic bond and can be one of two types O-linked or N-linked. In an O-linked 

glycoprotein the glycan is attached to the peptide chain through the OH group of serine or 

threonine side chains (Figure 1.7).  N-linked glycans are linked to proteins via  a 

glycosidic bond  to the NH2 group of an asparagine residue but only when it appears in 

the sequence; asparagine- X- serine or threonine, where X can be any amino acid except 

proline (Hames and Hooper, 2000) (Figure 1.8).  

 

 



 

- 40 - 

 

O

NH

H

C O

CH3

OH

H

OH

H

CH2OH

H

Glycan residue
(N-acetyl

galactosamine)

O C

CH3

CH

H
NH

C O

Serine

Glycosidic
bond

polypeptide chain

 

O

NH

C O

CH3

OH

H

OH

H

CH2OH

H

Glycan residue
(N-acetyl galactosamine)

N C CH

NH

C O
Glycosidic

bond

polypeptide chain

H H

O

CH2

Asparagine

 

Figure 1.7:  O-linked glycosylation. Figure 1.8: N-linked glycosylation. 

 

O-linked glycans are synthesised by the sequential addition of monosaccharide units as it 

passes through the Golgi complex of the cell. N-acetlygalactosamine (GalNAc) is 

transferred to serine or theronine amino acids by the protein GalNAc transferase, other 

monosacharides such as galactose, fructose and N-acetylglucosamine are then added. 

N-linked glycosylation occurs as the translated protein passes through the rough 

endoplasmic reticulum (RER). All N-linked glycans are based on a common 

pentasaccharide core structure which consists of three mannose residues and two 

GlcNAc residues and an R group, which can be divided into two types; high mannose 

(where the R group is a variable number of mannose residues) and complex (where the 

R group can be a variety of number of monosacchrides). In N-linked glycosylation the 

oligosaccharide is made prior to attachment to the peptide backbone, by adding 

monosaccherides to a lipid carrier, dolichol phosphate which is attached to the cytosolic 

face of the RER membrane. Cleavage of the high energy pyrophosphate bond, which 

links the sugars to the dolichol phosphate provides the energy for transfer of the 

oligosaccharide to the protein (Hames and Hooper, 2000).  

 

1.5.3 Other structural changes. 

As well as post translation modifications, there are other protein structural changes which 

can affect the efficiency of a protein therapeutic. It is widely known that the hydrophobic 

forces, hydrogen bonds and disulfide bonds which keep proteins in their tertiary structure 

play a large role in the activity of the protein, therefore one of the most problematic 

structural changes in biopharmaceutical proteins is the unfolding of the native protein into 
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a disordered structure (Konermann, 2004). Protein unfolding can be induced by 

fluctuations in pH and temperature, or the introduction of a chaotropic agent such as 

guanidine or urea, all of which cause disruption of the intra-molecular non-covalent forces 

that stabilise the molecule. The unfolding of a pharmaceutical protein is problematic as it 

may lead to loss of activity, aggregation and decreased solubility.  

 

Protein aggregation is another common issue encountered in the production of 

biopharmaceuticals. Aggregation occurs when hydrophobic protein molecules are 

attracted to each other and bonds form between them, often forming large insoluble 

particles. In some proteins an associated state is the native form and aggregation is 

necessary for protein activity. However in the majority of therapeutic proteins aggregation 

is undesirable as it may affect the immunogenicity of the drug and in larger aggregate 

particles can lead to an adverse effect upon administration (Cromwell et al., 2006). It is 

possible to take steps during cell culture, product purification and formulation processes 

that will minimise the occurrence of protein aggregation or remove aggregates from the 

final product.  

 

A further problem which may be encountered with protein production is mutagenesis, 

when a change occurs in the DNA sequence, and therefore a change in the amino acid 

sequence of a peptide chain. This change in primary structure can lead to the incorrect 

folding of proteins into their secondary structure, and hence will have an impact on 

protein activity (Goddard, 1991). In some cases mutagenesis can be intentional in order 

to improve the stability of the protein, for example, the removal of chemically susceptible 

amino acids such as asparagine (Grimsley et al., 2009) or the removal of amino acid 

sequences which are commonly subjected to proteolytic cleavage (Markert et al., 2003).  
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1.6 Biopharmaceutical characterisation. 

Biopharmaceutical characterisation involves gaining a comprehensive understanding of 

the chemical structure, biological properties, product stability and degradation pathways 

of the drug (Greer, 2008). Analysis of protein pharmaceuticals is more complex than that 

of small molecule drugs due to the heterogeneity of the protein, with variations in 

secondary and tertiary structure and post translational modifications, all of which play a 

role in activity (Goddard, 1991). In 1999 the International Conference on Harmonisation 

of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) 

published guidelines for the characterisation of biopharmaceuticals, which are 

summarised in Table 1.2 (ICH, 1999).   

 

Table 1.2: Summary of the ICH guidelines for ‘specification and acceptance 
criteria for biotechnological/biological products’ (ICH, 1999) 

Structural Characterisation Physiochemical Properties 

Amino acid sequence 
Amino acid composition 
Terminal amino acid sequence 
Peptide map 
Sulfhydryl groups and disulfide bridges 
Carbohydrate structure of glycoproteins 

Molecular weight/size 
Isoform pattern 
Extinction co-efficient 
Electrophoresis patterns 
Liquid chromatography patterns 
Spectroscopic profile 

 

 

Mass spectrometry (MS) has been routinely applied to the characterisation of 

biopharmaceuticals of varying size, from small synthetic peptides to conjugated antibody 

molecules (Greer, 2008). The most commonly utilised forms of mass spectrometry for 

biopharmaceutical analysis are ESI-MS (electrospray ionisation) and MALDI-MS (matrix 

assisted laser desorption ionisation), which are capable of ionising and detecting intact 

proteins of up to 150KDa and 500KDa, respectively (Baldwin, 2005). These methods are 

useful for initial confirmation of molecular weight to determine whether a drug has the 

correct anticipated m/z, and any mass differences may give an indication as to the type of 

modifications present. Mass spectrometry has been used to produce peptide maps by 

initially digesting the whole protein by enzymatic methods and producing a peptide mass 

fingerprint (PMF) using either MALDI-MS (Padliya and Wood, 2008, Henzel et al., 2003) 

or ESI-MS (El-Aneed et al., 2009). In cases where the PMF is too complex, LC-MS has 
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been used to separate peptide fragments (Rapp et al., 2009). MS peptide mass 

fingerprints do not confirm the actual sequence of amino acid residues, however, 

sequential ion data can be gained by using ESI-MS/MS (Liu, 2008, Cannon and Jarman, 

2003), triple quadrupole instruments (Josephs and Sanders, 2004) or Q-TOF-MS 

(quadrupole-time of flight-MS) (Mouls et al., 2007).  

 

1.6.1 Post translational modifications. 

The ICH guidelines require that all modifications to protein pharmaceuticals be well 

characterised in terms of structure of the attached functional group, modification site and 

quantification of modified proteins (ICH, 1999). Mass spectrometry is again the gold 

standard technique for this purpose (Greer et al., 2008). ESI-MS and MALDI-MS can be 

used for initial molecular weight measurements to determine if any modifications are 

present (Liu, 2008, Fenn et al., 1990, Baldwin, 2005). This may also give an indication as 

to the types of modification present, i.e. a mass difference of 40 Da would suggest 

acetylation or trimethylation, whereas a mass increase of 1000 Da would suggest the 

addition of a glycan or another protein. More sophisticated MS technologies such as ESI-

CID-MS/MS and Q-TOF-MS have been used in order to determine specific sites of 

modifications (Liu, 2008, Mouls et al., 2007).  

   

Other, non-MS based methods for characterising post translational modifications include 

2D gel electrophoresis based techniques, in which antibodies specific to the modification 

being studied have been used to identify and quantify modifications (Kaufmann and 

Fussenegger, 2001). Rajkumar et al. demonstrated a 2D gel method for detecting 

glycosylation and phosphorylation in proteins from epithelial cell membranes using three 

different fluorescent dyes (Ge et al., 2004). Affinity chromatography based approaches 

have also been used to identify modifications prior to MS analysis. These approaches 

include immunoprecipitation with modification-specific antibodies (Sun et al., 2005) and 

affinity capture using anchor molecules (Elortza et al., 2003). To increase the specificity 

of these methods, the chemical derivatisation and selective tagging of glycosylation and 

phosphorylation has also been demonstrated (Lambert et al., 2005).      
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1.6.1.1 Glycosylation Status. 

Glycosylation is the most common (Apweiler et al., 1999) and also the most complex of 

the post translational modifications (Greer, 2007). This complexity is largely due to the 

fact that glycoproteins are a mixture of ‘glycoforms’, meaning the same polypeptide 

backbone is attached to various different glycans (Taylor, 2006). From a regulatory 

standpoint, it is accepted that some degree of variation occurs in the carbohydrate moiety 

of engineered glycoproteins, however this heterogeneity must be consistent between 

production batches and the content and structure of the glycans must be well 

characterised (ICH, 1999).   

  

The first glycoprotein primary structure determination by mass spectrometry was carried 

out over 30 years ago (Morris et al., 1978). Since then, advancing ionisation and mass 

separation techniques have made MS the primary method for glycoprotein 

characterisation. Modern soft ionisation methods (ESI and MALDI) have made it possible 

to analyse intact glycoproteins (Morris, 1980, Fenn et al., 1990). However, full structural 

characterisation of glycoproteins requires determination of branches, linkages and the 

determination of same-mass sugar isomers (ICH, 1999), for which GC-MS using electron 

impact ionisation is still a commonly utilised technique (Dell and Morris, 2001).  

 

Q-TOF instruments have been used extensively in the carbohydrate sequencing of 

glycans. The glycosidic bonds between sugars vary in strength depending on the 

monosaccharide units, and therefore some saccharides will fragment more easily than 

others. This has been exploited in collision activation MS/MS where fragmentation 

patterns have been used to determine carbohydrate sequences (Teng-umnuay et al., 

1998) and also glycosylation sites (Zheng et al., 2009).   

 

Structure determination of glycans released from glycoprotiens (or glycolipids) has been 

achieved in a qualitative and quantitative fashion using reverse-phase LC-MS (Anumula, 

2006). Ion mobility MS has been used to successfully distinguish between structural 

isomers of the same sugars based on the differences in the 3D shape of the ions 
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(Clowers et al., 2005, Shvartsburg et al., 2009). Finally. tandem MS with collision induced 

dissociation (CID) has also been shown to be capable of differentiating between isomeric 

forms of saccharides (Chai et al., 2001).  

 

1.6.2 Aggregation. 

The most routinely used analytical method for the detection and quantification of protein 

aggregation is size exclusion chromatography (SEC) (Cromwell et al., 2006, Garcia-

Fruitos et al., 2011). However, due to problems encountered through non-specific binding 

to the column, matrix free techniques such as analytical ultra-centrifugation (AUC) and 

light scattering based approaches are now being favoured (Arakawa et al., 2007). AUC is 

a method which monitors the concentration distribution of solutes within a centrifuge cell 

as the rotator is spinning. AUC is able to detect and quantify aggregates, as fractionation 

is dependent on particle size (Berkowitz, 2006, Gabrielson et al., 2010). Protein 

aggregates can also be detected using light scattering, as the intensity of the scattered 

light is proportional to the molecular weight of the protein molecules (Wyatt, 1993). There 

are a number of light scattering based techniques used in the detection of 

biopharmaceutical protein aggregation, including static light scattering (SLS) (Roberts et 

al., 2011, Demeule et al., 2007), dynamic light scattering (DLS) (Wang et al., 2012) and 

multi-angle light scattering (MALS)  (Sahin and Roberts, 2012).  

 

1.6.3 Conformation and Stability.                                                                                                                                                                                                                                                                                  

Many of the methods used to monitor conformation and stability in biopharmaceuticals 

are spectroscopic techniques. Fluorescence spectroscopy, as described in section 1.4.1, 

can be used to probe conformational changes by monitoring changes in tryptophan and 

tyrosine fluorescence (Sharma, 1999, Royer, 2006). In addition to monitoring the native 

intrinsic fluorescence, fluorescence spectroscopy can be used to track changes in the 

fluorescence emission of probe dyes which bind to the hydrophobic regions of a protein 

(Samanta et al., 2011, Bhattacharya et al., 2011).  A variation on fluorescence 

spectroscopy which has also been used for stability studies is fluorescence resonance 

energy transfer (FRET). FRET utilises variations in fluorescence brought about by energy 
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transfer between two chromphores to monitor structural changes as a function of physical 

conditions (Serrano et al., 2012). This method has been particularly useful in 

conformational studies measuring the distances between the different domains of a multi-

domain protein (Truong and Ikura, 2001). 

 

There are many examples of the use of vibrational spectroscopy to detect changes in 

protein structure, in particular determining changes in the α-helix or β-sheet content of a 

protein (Wen, 2007, Kong and Yu, 2007). More information on the uses of infrared and 

Raman spectroscopy in biopharmaceutical analysis is given in section 1.6.4.  Circular 

dichroism (CD) spectroscopy is much more common in therapeutic protein analysis than 

vibrational spectroscopic methods, and is also used primarily for secondary structure 

analysis (Li et al., 2011) . 

 

There are a number of non-spectroscopic methods for profiling the stability of proteins. 

The most notable is differential scanning calorimetery (DSC), a thermo-analytical 

technique which measures the amount of heat required to increase the temperature of a 

sample. DSC allows calculations of the transition midpoint temperatures (Tm) for protein 

unfolding and, along with fluorescence spectroscopy, is one of the gold standard 

techniques for profiling protein stability (Walters et al., 2009, Konermann, 2004, Bruylants 

et al., 2005).  

                                                                                                                                                                                                    

1.6.4 Applications Vibrational Spectroscopy in Biotechnology. 

Vibrational spectroscopy has been applied to the study of protein conformation both in 

solution (Tuma, 2005, Barth, 2007)
 
and in solid states (Sane et al., 2004, Kong and Yu, 

2007). It is particularly useful for qualitatively and quantitatively assessing secondary 

structure and providing structural information about proteins with very little secondary 

order, where methods such as X-ray crystallography and circular dichorism are not very 

informative.  
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The use of FT-IR spectroscopy for the classification of protein secondary structure was 

first demonstrated in the 1950’s (Elliot and Ambrose, 1950, Ambrose and Elliot, 1950) 

and emerged in the late 1980’s as a popular tool for the detection of α-helix and β-sheet 

structures within proteins (Jackson and Mantsch, 1995, Byler and Susi, 1986, Jackson et 

al., 1989). Since then methods of quantifying the levels of α-helix, β-sheet and disordered 

structure have been developed by combining chemometrics with IR data (Hering et al., 

2002, Yu, 2005). Similar approaches have been established using Raman, SERS and 

ROA (Das et al., 2011, Barron et al., 2002, Yamamoto, 2012, Shashilov and Lednev, 

2010, Oladepo et al., 2012). 

 

Traditionally, interpretation of protein spectra has centred on the analysis of the intensity 

and position of the amide bands, which arise due to the coupled vibrational modes of the 

peptide back bone. As these bands tend to be fairly broad, interpretation is usually based 

on spectral decomposition and deconvolution of the amide bands into its component 

bands (Sane et al., 1999, Ganim et al., 2008). The main contributor to the amide I band, 

which occurs at around 1650 cm
-1

, is the C=O stretching modes from the carbonyl groups 

of the peptide. As these carbonyl groups act as acceptors of hydrogen bonds in the 

secondary structure of a protein, the position of the amide I band is strongly dependant 

on secondary structure. In addition, vibrational coupling between motions of different 

peptides within an ordered structure will cause excitionic coupling of amide I modes, 

producing a further spectral shift (Wen, 2007). A further application of deconvolution of 

the amide I band into its component peaks has been to help predict the conformational 

changes of tumor necorsis factor in solution (Tuma et al., 1995) and to study the 

fibrillation in globular proteins, specifically the insulin fibrillation mechanism (Huang et al., 

2006). Raman spectroscopic analysis of insulin has also provided information on protein 

aggregation, showing the transition of the native α-helical structure into β-sheets by 

reduction of the disulfide bonds (Zheng et al., 2004). 

    

The sensitivity of the amide III band (C-N stretching and N-H bending) to protein structure 

has been exploited in many studies of protein conformation, using infrared spectroscopy, 



 

- 48 - 

 

conventional Raman and UV resonance Raman (UVRR). Many infrared spectroscopy 

studies have involved tracking changes in the intensity and frequency of the amide III 

bands as a way to monitor protein denaturation by chemical and thermal means (Kong 

and Yu, 2007, Fabian and Mantsch, 1995, From and Bowler, 1998).  This approach has 

also been applied to conformational changes in UVRR spectra of horse myoglobin and 

apomyoglobin after acid denaturation (Chi and Asher, 1999, Chi and Asher, 1998).  

 

Raman spectroscopy and UVRR have been used to characterise the side chains of 

pharmaceutical protein molecules. An excellent example of this is the work carried out by 

Wen et al., in this study, Raman spectroscopic techniques were used to study cysteine 

side chains of the recombinant protein human interleukin-1 receptor antagonist (rhIL-1ra). 

Raman spectra of rhIL-1ra were able to show that the protein has four cysteine side 

chains, all in a free sulfhydryl state (Wen et al., 2008).  

 

As previously mentioned, one of the most important areas of biopharmaceutical 

characterisation is the identification of post translational modifications. Raman 

spectroscopy has been used in this area to detect and quantify phosphorylation in the 

protein casein sucessfully, and also to determine the structural changes which occur 

upon dephosphorylation (Jarvis et al., 2007, Ashton et al., 2011). Raman microscopy has 

also been used in conjunction with computer modelling methods to determine the 

glycosylation status of the enzyme fungal β-N-acetylhexosamidas (Ettrich et al., 2007). 

SERS has been developed for the detection of acetylation, trimethylation, ubiqutination 

and phosphorylation in a variety of synthetic peptides and biological samples. Attempts 

were made to combine wavelet decomposition analysis with SERS spectra in order to 

yield information on the position of these modifications (Sundararajan et al., 2006).  

Torreggiani et al. combined Raman and FT-IR spectroscopies in order to characterise 

radical base modifications to the methionine residue of proteins (Torreggiani et al., 2011).  

 

Both Raman spectroscopy and ROA have been used to characterise various 

glycoproteins and carbohydrates (Zhu et al., 2006, Zhu et al., 2005b). Raman 
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spectroscopy has been used to provide structural information about glycoprotein-C of the 

herpes simplex virus (Kikuchi et al., 1987) and α1-acid glycoprotein from blood plasma 

(Kopecky et al., 2003), and also to monitor the binding of the glycoproteins found in 

antifreeze (Cui et al., 2005). SERS and ROA have been used to study interactions 

between pharmaceutical molecules, in particular anti-cancer drugs and P-glycoprotein, 

which plays a crucial role in mediating the drug resistance of cells (Fleury et al., 1999). 

Raman spectra of glycoproteins have been used to determine the amount of the 

monosaccharide N-acetylneuraminic (sialic) acid in a glycan; Oleinikov and colleagues 

showed that the Raman spectra of cell surface glycoproteins displayed variations in the 

position of the glycerol band between  873-830 cm
-1

, depending on the amount of sialic 

acid present (Oleinikov et al., 1998).  

   

Finally, advances in spectroscopic instrumentation and data analysis techniques have 

facilitated the application of vibrational spectroscopy to monitor complex bioprocesses. 

One of the first examples of this was in the on-line monitoring of the biotransformation by 

yeast, of glucose to ethanol, allowing accurate predictions to be made of glucose and 

ethanol concentrations simultaneously during the fermentation processes, without 

recourse to time consuming chromatography (Shaw et al., 1999). Following this, a range 

of fermentation broths containing the fungus Gibberella fujikuroi producing gibberellic acid 

were studied
 
and Raman spectroscopy was able to accurately monitor the progress of the 

fermentation (McGovern et al., 2002). SERS has also proved to be extremely effective for 

the off-line monitoring of bioprocesses, enabling the quantification of secondary 

metabolites present in microbial fermentations (Clarke et al., 2005). FT-IR spectroscopy 

has been used predict levels of glucose, ethanol and ammonia in Saccharomyces 

cerevisiae culture (Schenk et al., 2007), and more recently has been successfully 

combined with chemometrics to quantify glucose and lactate in CHO cell cultures and 

also predict antibody titres in supernatants taken from mammalian cell cultures (Sellick et 

al., 2010, Rhiel et al., 2002). 
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Chapter 2: Materials and Methods. 

 

2.1 Instrumentation. 

2.1.1 Raman Spectroscopy. 

2.1.1.1 Renishaw Raman Microscope. 

Unless stated otherwise all Raman data it this thesis were collected using a Renishaw 

2000 Raman microscope (Renishaw Plc., Old Town, Wotton-under-Edge, 

Gloucestershire, U.K.), equipped with a near-infrared 785 nm diode laser and a 

thermoelectrically cooled charge coupled device (CCD) detector. The spectrometer is 

coupled to an Olympus microscope with 50x and 20x objectives, providing a spectral 

footprint of around 2-4 microns. The diffraction grating gives a spectral range of 0-4000 

cm
-1

 with a spectral resolution of 6 cm
-1

. The laser power was approximately 27 mW at 

source and 2-4 mW at sample. The instrument was wavelength calibrated with a silicon 

wafer focused under the 50x objective and collected as a static spectrum centred at 520 

cm
-1

 with 1s exposure, an offset correction was performed to ensure the position of the 

silicon band was 520.5 ± 0.1 cm
-1

.  The GRAMS WiRE software package (Galactic 

Industries Corp., 395 Main St., Salem, NH) running under Windows 95 was used for 

instrument control and data capture. 

 

2.1.1.1.1 Tienta Spectra RIM™ Slides. 

With the exception of Chapter 7, all samples analysed on the Renishaw Raman 

microscope were prepared on Tienta Spectra RIM™ slides, purchased from from Tienta 

Sciences Inc. (Tienta Sciences Inc, Indianapolis, IN, USA). These slides have a 

hydrophobic coating which causes the liquid samples to ‘bead up’ on the surface, 

increasing the concentration of protein in the spot. This can increase the Raman intensity 

by as much as 4 times (Kreimer et al., 2004, Tienta Sciences, 2004a) and can also help 

to reduce fluorescence emission (Kreimer et al., 2004, Tienta Sciences, 2004b). Samples 

were prepared by pipetting 2 μL aliquots of aqueous protein solutions onto Tienta Spectra 
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RIM
TM

 slides and allowing the protein spots to dry at room temperature for approximately 

1 h.  

 

As a data quality control measure, the 

reproducibility of data acquired from these 

slides was tested. First, spectra were taken 

from four different protein spots (A-D), at six 

different positions (1-6) within each spot 

(shown in Figure 2.1), in order to assess the 

variation that occurs between and within 

protein spots. The PCA plot in Figure 2.2 

describes the variation in the Raman 

spectra of the glycoprotein, RNase B 

collected from different positions within various spots on a Tienta slide.  There appears to 

be no clustering of the data recorded from independent spots or observable trends in 

relation to sampling position within a spot. This strongly suggesting that the spectral 

output is independent of the sampling position between and within protein spots.  

 

  

Figure 2.2: Raman Spectra and PCA Scores plot (PC1 vs PC2) showing the variation in 

the Raman spectra of RNase B recorded from six different positions (1-6) on four spots (A-

D). (Raman data have been smoothed (Sav-Gol), Baseline corrected (ALS) and column 

mean centred). 

 
Figure 2.1: Photograph of Tienta Spectra 

RIM™ slide and 5 x objective microscope image 

of a protein spot on a Tienta slide (Red numbers 

indicate points from which measurements were 

recorded). 



 

- 52 - 

 

As a further validation step, the reliability of protein spectra collected from Tienta Spectra 

RIM
TM

 slides was tested by comparing the data collected previously from RNase B 

spotted onto a Tienta slide to data collected from the lyophilised protein power. Figure 2.3 

shows the PCA scores plot for this comparison, in which there is little or no distinction 

between the two groups of RNase B spectra, indicating that precipitation on a Tienta slide 

does not affect the Raman spectra of a protein.  

 

 

 

 

2.1.1.2 Biotools SCP ChiralRAMAN Spectrometer.  

Raman data in this thesis referred to as collected on a Biotools ChiralRAMAN 

Spectrometer, were collected on the ROA instrument detailed below, with the 

spectrometer in Raman only mode.  The spectrometer consists of a 532.5 nm laser, 

which is focussed  through a prism to a quarter wave plate and two synchronised 

counter-rotating half wave plates. The light then passes through an incident shutter, 

which controls the illumination period and onto the sample solution which is contained in 

 

Figure 2.3:  PCA Scores plot (PC1 vs PC2) showing the variation in the Raman 

spectra of RNase B recorded from lyophilised powder and a Tienta Spectra RIM
TM

 

slide.(Raman data have been smoothed (Sav-Gol), Baseline corrected (ALS) and 

column mean centred). 
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a quartz cell in a sample holder. Back scattered light is divided by a beam splitter into 

right and left circularly polarised components and projected onto a CCD camera.  

 

2.1.2 FT-IR Spectroscopy. 

FT-IR data were recorded on a Bruker Equinox 55 infrared spectrometer (Bruker ltd, 

Coventry, UK) equipped with a deuterated triglycine sulfate (DTGS) detector.  Opus 4 

manufacturer’s software operating under MS windows 2000, was used for instrument 

control and data capture.  A microplate module HTS-XT
TM

 was used for high thoughput 

analysis. Initially a ‘blank’ spectrum was recorded from a reference well to provide a 

background spectrum which was used to correct the sample spectrum. Spectra were 

collected from each of the 96 wells over a wavenumber range of 4000-600 cm
-1

, with a 

resolution of 4 cm
-1

. For each well 64 spectra were collected, co-added and averaged, 

with an average collection time of 30s per sample. Data were exported from Opus 

software in to Microsoft Excel.  

            

2.1.3 Avacta Optim 1000. 

Optim 1000 is a multi-modal instrument designed by Avacta Analytical (Avacta Analytical, 

Leeds, UK) which obtains fluorescence and light scattering data simultaneously over a 

temperature gradient. The instrument set up, depicted in Figure 2.4, includes two lasers 

operating at 226 and 473 nm and a cooled CCD detector. Samples are held in a micro-

cuvette array (MCA) made up of 16 quartz cuvettes which each hold 9µL of sample. A 

thermo electric plate is used for heating and cooling, with an added aluminium plate to 

help transfer heat to the samples. The instrument is controlled by Avacta’s Optim Client 

software. Raw data can be exported directly to Excel or transferred to the Optim Analysis 

software which allows automated primary and secondary analysis of the data to be 

carried out.  
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2.2 Data Pre-Processing. 

2.2.1 Cosmic-Ray Removal. 

The CCD detectors used in Raman spectrometers are susceptible to cosmic rays which 

pass through the detector adding charge to one or more pixels resulting in an intense 

sharp peak in the spectrum. For the Raman data in this thesis cosmic rays were removed 

manually in GRAMS Ai software (Galactic Industries Corp., 395 Main St., Salem, NH), 

using the ’Zap’ function which removes the selected peak, replacing it with a linear trend.  

 

2.2.2 Smoothing. 

Smoothing filters are often applied to spectroscopic data in order to remove noise. 

Smoothing of the spectroscopic data reported in this work (Raman, IR and Optim) was 

carried out in Matlab R2010a (The MathWorks, Inc., Natick, MA., USA) using a Savitzky-

Golay smoothing algorithm, exact details of this process are reported in the appropriate 

 

Figure 2.4: Schematic diagram showing the optical setup of the Optim 1000 and 

example Optim spectrum. 
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results chapters.  This  works by preforming a polynomial regression on the data in order 

to determine a smoothed intensity value for each wavenumber (Savitzky and Golay, 

1964).  

 

2.2.3 Baseline Correction. 

Fluorescence backgrounds are common artefacts in the Raman spectra of proteins; 

hence baseline corrections are often applied to the data in order for the spectra to be 

compared. For the majority of the Raman data in this thesis baseline corrections were 

performed in Matlab using an asymmetric least squares (ALS) algorithm, where a 

smoothing function is used to give a varying estimate of the baseline, in which positive 

deviations are weighted much higher than negative deviations (Peng et al., 2010).  

 

2.2.4 Normalisation. 

In order to reduce differences caused by shifts in spectral intensity all Raman and 

infrared spectra presented in this thesis were subjected to normalisation through an 

extended multiplicative scatter correction (EMSC) prior to multivariate data analysis. This 

pre-processing step was performed in Matlab for IR data and either Matlab or PyChem 

3.0.5 (Jarvis et al., 2006) for Raman data. The EMSC method was originally developed to 

reduce the effects of light scattering in near-IR data (Naes and Isaksson, 1992). This type 

of normalization takes the information registered in the spectra and attempts to separate 

physical light-scattering effects from the actual light absorbed by molecules. EMSC also 

makes the spectra collapse on top of each other so that their difference in terms of 

spectral intensity shift is largely reduced. 
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2.3 Data Analysis. 

 

2.3.1 Principal Components Analysis (PCA). 

PCA is ideally suited to the interpretation of vibrational spectroscopic data due to the 

extremely large number of measured variables. PCA  will simplify the dimensionality 

whilst preserving most of the variance and deriving the most important descriptors in a 

data set (Brereton, 2005, Jolliffe, 1986). PCA displays trends not in individual variables, 

but in how variables co-vary (change with respect to each other), by finding combinations 

of variables, factors, which describe the major trends in the data. These factors are 

termed principal components (PCs) and are ranked so that the first PC describes the 

greatest variance and the second PC the second greatest variance and so on (Jolliffe, 

1986, Lindon, 2001).   

 

The key idea behind PCA is to separate the original matrix (X) into two smaller matrices; 

the scores matrix (T), which contains information on how samples relate to each other, 

and the loadings matrix (L) which describes how variables relate to each other. The PCA 

model will then consolidate the remaining small variance factors into a residual matrix (E) 

(Otto, 1999).   

 

Mathematically, PCA uses an eigenvector decomposition of the correlation (covariance) 

matrix of variables. For a data matrix, X, with m rows and n columns, in which each 

variable is a column and each sample is represented as a row, the covariance matrix 

(cov(X)) is given by: 

1
)cov(




m

XX
X

T

                                         Eq. 2.1
 

 

PCA decomposes X into the vectors pi and ti, where pi vectors are the loadings and ti 

vectors are the scores. An eigenvector decomposition is then applied to the covariance 

matrix, where, λi is the eigenvalue associated with each loading vector, which is a 
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measure of the variance described by the loadings and scores vectors. A PCA model is 

therefore a combination of the scores and loadings vectors and their associated 

eigenvalues (Brereton, 2005, Otto, 1999, Lindon, 2001).  

 

PCA performed on data in this work was for the most part carried out in PyChem 3.0.5 

software, with the exception of chapters 9 and 10 where data was analysed using R  

software v. 2.9.2 (R: A Language and Environment for Statistical Computing, Vienna, 

Austria, 2012, http://www.R-project.org).  

 

2.3.1.1 Multiblock PCA. 

Multiblock PCA (MBPCA), also known as consensus PCA (cPCA) is a variation of PCA in 

which there is multiple X blocks. This method will produce scores and loadings bi-plots 

which relate to each individual block and a superscores plot which describes the 

covariance across the whole data set (Westerhuis et al., 1998). 

 

2.3.1.2 Parallel Factor Analysis (PARAFAC). 

PARAFAC is a generalisation of PCA which is applied to multi-way arrays. A multi-way 

array consists of several (3 or more) sets of categorical variables measured in a crossed 

fashion, were the data can be arranged 

in a cube with X, Y and Z dimensions, 

as opposed to a standard X,Y data 

matrix (Figure 2.5). PARAFAC will 

decompose an array into the 

summation over the outer product of 

the vectors (Bro, 2006). PARAFAC 

models in this work have been 

calculated in R.  

 

 

 
Figure 2.5: Example of Multi-Way data to be 

analysed by PARAFAC. 
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2.3.2 Discriminant Function Analysis (DFA). 

Discriminant function analysis (DFA) is a supervised technique that discriminates groups 

using a priori knowledge of class membership. The algorithm works to maximize 

between-group variance and minimize within-group variance. The primary goal of DFA is 

to find linear combinations (discriminant functions) of the data variables which best 

discriminate between the groups (Otto, 1999). The magnitude of the absolute value of 

each coefficient from the discriminant function indicates the importance of the 

corresponding variable to the discrimination of the objects. Principal components from 

PCA are often used as inputs to DFA. In the present work DFA and PC-DFA were carried 

out in PyChem 3.0.5 software and R.  

 

2.3.3 Partial Least Squares Regression (PLSR).  

Partial least squares regression (PLSR) is a supervised multivariate analysis method 

which attempts to find factors, called latent variables, which can both describe the 

covariance and achieve correlation (Brereton, 2005). There are a number of methods for 

calculating PLS parameters, however the most common method, is non-iterative partial 

least squares (NIPALS) (DeJong et al., 2001). PLS calculates scores and loadings 

vectors, but also calculates an additional set of vectors known as weights (W), which are 

required to maintain orthogonal scores.  

 

PLS will work when there is more than one predicted variable (Y). The Y matrix is split 

into loadings (Q) and scores (U) vectors. The PLS algorithm will attempt to find latent 

variables which maximise the amount of variation in X that is relevant for predicting Y, in 

contrast to PCA where the principal components are selected based only on the amount 

of variation they explain in X. In Brief, the PLS decomposition works by sequential 

calculation of the scores, weights and loadings vectors for Y and X and calculation of the 

inner-coefficients, which describe the relationship between X and Y. After scores and 

loadings have been calculated for the first latent variable X and Y residuals are 

calculated; the procedure is then repeated for the other latent variables (Brereton, 2005, 
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Otto, 1999). Once again a combination of PyChem and R software have been used in the 

application of PLSR to the data in this thesis.  

 

2.3.3.1 Validation. 

Supervised multivariate data analysis strategies such as PLSR need to be validated as 

both X and Y data are used in the model formation, and therefore the results may be 

subject to bias. 

  

2.3.3.1.1 Bootstrap Cross Validation 

Bootstrap is a re-sampling technique that has been applied as cross-validation to 

estimate the prediction performance of PLSR models in this thesis. The basic idea of this 

method is to select randomly, with replacement, N samples from a set containing exactly 

N samples. All selected samples, including the repetitions, are then used as training set 

and the non-selected samples are used as test set. This process is repeated a number of 

times, usually 100 to 1000 times, to try to approximate the real distribution of samples in 

the global population of cases (Efron and Tibshirani, 1994). 

 

2.3.3.1.2 Permutation Testing  

To validate the PLS models further and to confirm that the predictions are not occurring 

“just by chance” we have also applied a set of permutation tests to the bootstrap cross-

validated models. In a permutation test the original class labels, or Y values, are 

randomly swapped and this allows the generation of a null or random model. A prediction 

model is then built on these permutated data, and this process is repeated several times. 

The accuracy value of the permutated models and is then compared to the accuracy 

value of the models with the original class labels. If the accuracy of the original models is 

significantly higher than the permutated models, then the original models are valid and 

not based on chance (Welch, 1990). 
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2.3.4 2D Correlation Analysis.  

2D correlation analysis is a method of visualising a set of spectra in the form of contour 

maps, developed by Noda in the late 1980’s (Noda, 1993, Noda, 1989, Noda and Ozaki, 

2004). 2D correlation analysis can be applied to any system where a sample is subjected 

to external perturbation, undergoing changes which are measured by a detection method 

(Figure 2.6). 

 

 
Figure 2.6: Flow diagram showing the general scheme for obtaining 

perturbation Induced 2D Correlation Analysis. 

 

 

In order to calculate 2D correlations, data are first converted into dynamic spectra, most 

commonly by subtracting a perturbation-averaged spectrum from each of the spectra. 2D 

correlations are then calculated by applying a cross-correlation analysis to the data set, 

giving two orthogonal components: synchronous and asynchronous data.  These data are 

then plotted in the form of contour plots, from which it is possible to identify bands which 

are changing within the data set and also probe sequential changes across a 

perturbation. The synchronous plot will display relative similarities, whereas the 

asynchronous will highlight relative differences.  

An extension to 2D correlation analysis, moving windows, has also been used (Ashton 

and Blanch, 2008). Moving windows partitions the data into small sets, or “windows”, in 

order to locate key transition points. This analysis is then plotted as a contour plot, which 

relates the spectral changes to the perturbation.  
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2D correlation calculations were performed using 2D Shige freeware 

(http://science.kwansei.ac.jp/ozaki/index-e.html) and moving window contour plots were 

plotted in Matlab. 
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Chapter 3: Monitoring the Glycosylation Status of 

Ribonuclease Proteins Using Raman Spectroscopy. 

Work presented in this chapter has been adapted from work published in; Brewster V.L., 

Ashton L. and Goodacre R. (2011). "Monitoring the Glycosylation Status of Proteins 

Using Raman Spectroscopy." Analytical Chemistry 83(15): 6074-6081. L. Ashton gave 

advice and assistance with data interpretation and analysis, in particular 2D correlation 

analysis. 

3.1 Introduction. 

Protein-based biopharmaceuticals are becoming increasingly popular therapeutic agents, 

with over 50 recombinant protein products approved for use and hundreds more under 

development (Greer, 2008). Over one-third of these therapeutic proteins are glycosylated, 

in which short chain carbohydrates are covalently linked to the peptide chain of a protein 

following translation (Apweiler et al., 1999). The glycosylation status of a protein drug is 

of great importance because it can affect the stability, pharmacokinetics and perhaps 

most importantly immunogenicity (Greer, 2007). Consequently it is necessary to 

characterise the glycosylation status of a biopharmaceutical. This means determining not 

only whether a protein is glycosylated or not, but also that the correct glycan has been 

linked to the correct amino acid.  

Raman spectroscopy has been used previously to characterise and quantify various 

carbohydrates (Oleinikov et al., 1998, Zhu et al., 2005a, Arboleda and Loppnow, 2000, 

Mrozek et al., 2004), as well as providing structural information about glycoproteins; in 

particular, glycoprotein-C of the herpes simplex virus (Kikuchi et al., 1987) and α1-acid 

glycoprotein from blood plasma (Kopecky et al., 2003). However, despite the fact the 

Raman spectroscopy has an extensive history in protein and glycoprotein analysis, it is 

relatively under utilised in the monitoring of PTMs. Past work on glycoproteins centres on 

structural interpretations of the protein or glycan and not the differentiation of the 

glycosylated form from the native protein. This is essential now that the frequency of 
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glycoprotein use in therapy has increased significantly, and is expected to continue to 

increase over the next decade. 

 

In this study we aim to develop Raman spectroscopy as a rapid approach to characterise 

the glycosylation status of proteins. Bovine pancreatic Ribonuclease proteins, RNase A 

and B, were chosen for the initial investigation as they provide a simple model system. 

While both proteins have an  identical amino acid sequence and reported secondary and 

tertiary structure, RNase B is glycosylated with one N-linked high mannose glycan at 

asparagine residue 34 (Figure 3.1) (Taylor, 2006). Although RNase B is only glycosylated 

at one site, unlike the majority of therapeutic glycoproteins (which have numerous and 

more complex arrangements of glycans), the availability of a native non-glycosylated form 

makes it an ideal model glycoprotein for initial investigation.  

 

By directly comparing RNase A and B spectra, and chemical and enzymatic 

deglycosylations of RNase B, we have been able to demonstrate the potential of Raman 

spectroscopy for characterising the glycosylation status of this protein. Furthermore 

through the implementation of chemometric approaches, we have established a method 

of quantifying levels of glycosylation in a mixture of glycosylated and non-glycosylated 

protein. 

.  
Figure 3.1: Cartoon representation of the native state of bovine RNase drawn from 
atomic coordinates in the PDB file (5RSA) using PyMOL; showing the Asn34 residue 
and the RNase B glycan. Optional mannose (indicated by red circles) refers to the 
variation in number and possible arrangements mannose residues which occurs 

naturally in the glycoforms of RNaseB 
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3.2 Materials and Methods. 

3.2.1 Materials. 

Ribonucleases A and B, monosaccharaides, PNGase F enzymes, 

trifluoromethanesulfonic acid, and other deglycosylation reagents were obtained from 

Sigma-Aldrich (Dorset, U.K.). MALDI matrix and calibration standards were also obtained 

from Sigma-Aldrich. Spectra RIM slides were purchased from Tienta Sciences Inc (Tienta 

Sciences Inc. Indianapolis, IN, USA).  

 

3.2.2 Raman Spectroscopy.  

Raman data were collected using the Renishaw 2000 Raman microscope described in 

Chapter 2.  All spectra were single accumulations, extended scans between 200 and 

2000 cm
-1

, with an exposure time of between 120 s.  Samples were prepared for analysis 

as follows; 2 μL aliquots of 2mg/ml protein solutions were spotted onto a hydrophobic 

SpectraRIM
TM

 slides, detailed in section 2.1.1.1, and allowed to dry out at room 

temperature for approximately 1 h. Each reported spectrum is an average of 6 spectra 

collected from different positions within each sample spot, as depicted in 2.1.1.1.  

 

3.2.3 Mass Spectrometry.  

MALDI-MS was performed on an Axima CFR
TM

plus MALDI-TOF mass spectrometer 

(Shimadzu Biotech, Manchester, UK), equipped with a nitrogen pulsed UV laser (337 

nm), in the positive ion mode. The instrument was calibrated before each use using 

apomyoglobin, aldolase and albumin as calibration standards. Intact protein samples 

were analysed in linear time-of-flight (TOF) mode whereas protein digests were analysed 

in reflectron TOF mode. A total of 10 shots were recorded per profile and 1000 profiles 

were averaged per sample. Data were collected over a mass-to-charge (m/z) range of 

5000-20000 with a typical laser power of 125 mW for proteins and 1-3000, laser power 75 

mW for protein digests. 1 μL of sample was spotted onto a MALDI target plate and 

allowed to dry at room temperature, 1 μL of 10 mg/mL matrix (sinapinic acid for proteins 
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and α-cyano-4-hydroxycinnamic acid for tryptic digests) was then spotted on top of each 

sample and dried at room temperature prior to analysis. 

 

3.2.4 Deglycosylation Methods. 

Deglycosylation methods and protein recovery protocols have been adapted from those 

found in the literature (Edge et al., 1981, Edge, 2003, Tarentino et al., 1985, Hansen et 

al., 2010). Although there are established methods for both deglycosylation techniques 

the required amount of deglycosylating agent and incubation time vary depending on the 

protein, the glycan and the type of glycosylation. Therefore some degree of trial and error 

was involved in initial experiments in order to determine optimum conditions for ensuring 

complete deglycosylation. Optimised methods for both chemical and enzymatic 

deglycosylation of RNase B are detailed below. 

 

3.2.4.1 Chemical Deglycosylation Method. 

Trifluromethansulfonic acid (TFMS) is an established deglycosylating agent which will 

remove both O- and N- linked glycans by solvolytic cleavage. Glycosidic links are 

sensitive to cleavage by TFMS, whereas peptide bonds are stable even after prolonged 

exposure to the acid; hence sugars can be completely removed whilst the protein 

backbone remains intact. The reaction is performed in the presence of anhydrous 

anisole, which acts as a scavenger to protect amino acid side chains from acidic 

degradation.     

   

Pre-cooled TFMS and anisole were mixed to form a solution of 10% anisole in TFMS (15 

μL anisole in 140 μL TFMS). 150 μL of anisole/TFMS solution was then added to 1 mg of 

pre-cooled lyophilised RNase B in a reaction vial and shaken until all the protein had 

dissolved. The sample reaction vial was incubated on ice for 3 h, with occasional shaking. 

4 μL of 0.4% bromophenol blue was then added as an indicator dye, the colour of the 

solution turned deep red. The sample reaction vial and a 60% pyridine solution were then 

cooled to -15 °C in a methanol dry ice bath. The cooled pyridine solution was then added 

drop wise to the sample, with mixing and cooling between drops, until the colour changed 
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to yellow and then to blue. A total of ~ 300 μL of pyridine solution was added. A 10-fold 

excess of diethyl ether with 10% hexane was then added to the reaction mixture, mixed 

and left to stand at -80 °C for 1 h. The sample vial was centrifuged at 8765 x g for 5 min 

and the supernatant containing the pyridinium salts was removed. The deglycosylated 

protein was then recovered by precipitation with ethanol, 500 μL of ethanol was added to 

the reaction vial, mixed and stored at -20 °C for 1 h, centrifuged at 10956 x g for 15 min 

and supernatant removed. The resulting protein pellet was re-suspended in water. 

Control samples were created by subjecting RNase B samples to the same experimental 

conditions as the deglycosylated protein with the exception of adding the deglycosylation 

agent. 

 

3.2.4.2 Enzymatic Deglycosylation Method.  

Peptide N-glycosidase F (PNGase F) is one of the most widely used endoglycosidase 

enzymes for the removal of N-linked glycans. As with the chemical method, 

deglyosylation with PNGase F leaves the protein intact, with the exception of the 

deamination of the asparagine at the glycosylation site to aspartic acid.  

 

RNase B was prepared as a 1 mg/mL solution using 20 mM ammonium bicarbonate 

reaction buffer. 90 μL of glycoprotein solution was then added to a reaction vial, along 

with 5 μL of denaturant solution (2% octyl β-D-glucopyranoside with 100 mM 2-

mercaptoethanol) and the vial was placed in a heating block at 100 °C for 10 min. The 

vial was allowed to cool to room temperature and the 5 μL of reaction buffer was added 

and the vial spun briefly, at 503 x g for 15 s, in a micro-centrifuge. 10 μL of PNGase F 

enzymes (500 unit/mL) was then added, mixed, spun and incubated at 37 °C for 24 h. 

The reaction was stopped by heating to 100 °C for 10 min. PNGase F enzymes were 

removed by precipitation (Hansen et al., 2010). Deglycosylated RNase B was recovered 

using the ethanol precipitation method described in the chemical deglycosylation method. 

RNase B control samples were created, subjecting the protein to identical conditions, 

minus the addition of PNGase F enzymes.  
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3.2.4.3 Tryptic Digests. 

Protein digests were performed on deglycosylated proteins using the enzyme trypsin. 15 

μL of digestion buffer (50 mM ammonium bicarbonate) and 1.5 μL of reducing buffer (100 

mM DDT) were added to 10 μL of protein and incubated at 95 °C for 5 min. 3 μL of 

alkylation buffer (100 mM idoaceamide) was then added and incubated at room 

temperature for  20  min.  1 μL of trypsin (0.1 μL/μL) was then added and incubated at 37 

°C for 3 h. Finally an additional 1 μL of enzyme was added and the sample incubated at 

30 °C over night (Pierce-Biotechnology, 2010).
 

 

3.2.5 Data Analysis. 

Raman spectroscopic data were exported into Matlab for pre-processing. PyChem was 

employed for PCA and PLSR. 2D correlation calculations were performed using 2D shige 

freeware. Spectral figures were plotted in GRAMS Ai.  

 

3.3 Results and Discussion. 

3.3.1 Detecting Glycosylation. 

The ability of Raman spectroscopy to distinguish between glycosylated and non-

glycosylated proteins was tested using RNase A and B. Figure 3.2 shows the average 

Raman spectra of RNase A and B, along with the spectra of the sugars which make up 

the RNase B glycan: mannose and N-acetylglucosamine (GlcNAc). A full table of band 

assignments for these spectra is given in Table 3.1. 

 

The spectra show one of the main differences to be in the amide III region centred around 

~1245 cm
-1

, where a broad doublet appears in RNase A, and a more intense single peak 

in RNase B. The amide III band at ~1256 cm
-1 

in RNase A is a region which has 

previously been assigned to less-ordered proteins structure, and could be assigned to the 

disordered loops of the RNase protein (Ellepola et al., 2006, Ashton et al., 2007). The 

loss of this band in RNase B could be due to stabilisation of these structures, which are in 

close proximity to the glycosylation site, by the carbohydrate moiety.  
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Figure 3.2: Average Raman spectra of RNase A and B, mannose and GlcNAc, 
astrix indicate bands indicted by PCA loadings as being important in detecting 

glycosylation. (Spectra have been smoothed, baseline corrected and normalised). 
 

 
Figure 3.3: PCA scores plot (PC1 vs PC2) of RNase data showing RNase A and B 

spectra resolved into separate clusters. 
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Table 3.1: Raman band assignments for RNase A, GlcNAc and Mannose 
(Siamwiza et al., 1975, Socrates, 2001, Tuma, 2005, Oleinikov et al., 1998, 

Arboleda and Loppnow, 2000, Mrozek et al., 2004) . 

~Wavenumber  (cm-1) Proposed Assignment 

RNase A 

511 S-S stretch (disulfide bonds) 

640 C-S stretch 

829 Hydroxylphenyl ring deformation (tyrosine) 

850 

901 C-C stretch (peptide backbone) 

935 Symmetric CH3
 stretch (alanine) 

998 Phenyl ring breathing (phenylalanine) 

1025 Phenyl ring vibration (phenylalanine) 

1206 Phenyl ring vibration (tyrosine) 

1254 Amide III vibrations (C-N stretch, N-H bend) 

1318 Ring deformation (tryptophan) 

1446 Asymmetric CH3 stretch (alanine) 

1608 Phenyl ring vibration (tyrosine) 

1667 Amide I vibrations (C=O stretching) 

 

GlcNAc 

413 C-C-C vibration 

786 Symmetric ring breathing  

863 Symmetric C-O-C stretch 

927 C-C stretch 

998  
C-O-C Glycosidic ring vibrations 1011 

1034 

1083 

1120 Asymmetric ring breathing 

1253 NH2 twist 

1642 C=O stretch 

 

Mannose 

453 C-C ring deformation  

663 Symmetric skeletal stretch 

826 Ring vibration 

876 Symmetric C-O-C stretch 

963 C-C stretches 

1004  
C-O-C glycosidic ring breathing 1096 

1135 

1163 Ring breathing 

1259 Ring stretch 

1894 C=O stretch 
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Alternatively, this difference could be attributed to bands arising from the sugar molecules 

which mask the protein signal. Both the sugars in the glycan of RNase B exhibit bands in 

this region: NH2 twisting in GlcNAc at  ~1253 cm
-1

 and ring stretching in mannose at 

~1259 cm
-1 

(Arboleda and Loppnow, 2000). 

 

Also highlighted in figure 3.2 is the amide I 

band, which exhibits a small shift; from 

~1665 cm
-1

 in RNase A to ~1676 cm
-1

 in 

RNase B (Figure 3.4). Amide I features at 

~1665 cm
-1 

are traditionally assigned to β- 

sheet structure (Ashton et al., 2007), 

whereas bands occurring at ~1675 cm
-1 

have 

been associated with turn structure 

(Takekiyo et al., 2006). Consequently, the upward shift in peak position could be 

attributed to conformational changes in tertiary structure and, specifically, the turn 

structure of RNase brought about by the addition of a carbohydrate group.    

 

By employing PCA (Figure 3.3), we were able to separate these data easily into two 

distinct clusters of glycoprotein and protein. The separation was largely accounted for by 

the first principal component score (PC1), that accounts for 45.5%of the total explained 

variance. Inspection of the PCA loadings matrix from PC1 revealed two major area of 

significance: the amide I and amide III regions as highlighted in the Raman spectra in 

Figure 3.2. It can be seen from the plot that the glycoprotein data does not cluster as well 

as the protein data. This could be due to the heterogeneous nature of the glycan attached 

to RNase B, but is more likely caused by orientation effects which are likely more 

significant for sugars than proteins.  

 

3.3.2 Deglycosylated RNase B. 

The ability of Raman spectroscopy to differentiate between deglycosylated and native 

glycosylated proteins was investigated using both chemical and enzymatic 

 
Figure 3.4: Amide I region of RNase A 

and B spectra, displaying an upward shift 

in the glycosylated protein. 
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deglycosylation methods. Following deglycosylation, RNase B samples were first 

analysed by MALDI-MS to confirm that deglycosylation had been successful. Figure 3.5 

shows the mass spectra of a chemically deglycosylated protein and an enzymatically 

deglycosylated protein. Theoretically, RNase A has a mass of 11.7 KDa and RNase B 

has a mass of approximately 13 KDa, depending on the number of mannose residues in 

the glycan. The spectra show that in both cases deglycosylation was successful, as an 

average m/z shift of ~1460 Da can be observed (average from 10 measuremts; which 

equates to six mannose sugars in the glycan plus two GlcNAc). Additional conformation 

that this mass difference was, in fact, due to the loss of a sugar from Asn
34

 was gained by 

performing tryptic digests on the control and deglycosylated protein samples. As trypsin 

enzymes cleave RNase at positions 33 and 36, a fragment containing the amino acids 

arginine, asparagine and leucine with a m/z of approximately 450 Da can be observed in 

the deglycosylated protein, whereas in the control protein this fragment has a much 

higher average m/z of 2130 Da, due to the glycan at position 34 (data not shown).   

 

 

 
 

Figure 3.5: MALDI-MS spectrum of RNase B and degylcosylated RNase B, 
showing an average m/z difference of 1460 Da confirming that the protein has been 

successfully deglycosylated. 
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Raman spectra were recorded for both controls (RNase A and B) and for deglycosylated 

RNase B samples. The Raman spectra of deglycosylated RNase B in Figure 3.6 show 

that deglycosylated RNase B follows the same trends in amide I and amide III bands as 

observed in RNase A spectra.  

 

To assess the changes in the Raman spectra from the deglycosylated proteins further, 

PCA was performed. Figure 3.7 shows the scores plot for both chemically and 

enzymatically deglycosylated protein spectra along with the two controls (RNase A and 

RNase B). This scores biplot shows glycosylated and non-glycosylated proteins 

separated across PC1. The spectra from deglycosylated RNase B fall very close to the 

RNase A spectra, suggesting that the differences observed are, indeed, due to the 

removal of sugars rather than minor changes in tertiary structure. On closer inspection of 

this PCA scores plot, it is clear that enzyme treated samples more closely match RNase 

A than the chemically deglycosylated proteins. This may be due to changes in the protein 

conformation induced by the extreme pH needed to perform chemical deglycosylation; 

this is likely to be structural because MALDI-MS showed no degradation of the intact 

deglycosylated RNase protein when analysed in linear TOF mode. A number of samples 

appear to fall in the middle of the RNase A and B groups, it could be that in these 

         

 
Figure 3.6: Raman spectra of control RNase B and deglycosylated 
RNase B, astrix indicate the amide I and III bands referred to in text. 
(Spectra have been smoothed, baseline corrected and normalised). 
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samples the deglycosylation reaction did not go to completion, hence some protein 

molecules may still have glycans attached.   

 

 

 3.3.3 Quantifying Glycosylation. 

The next step in this study was to determine whether it was possible to predict the extent 

of glycosylation using Raman spectroscopy. In order to test this hypothesis, RNase A and 

B mixtures were used to create a model system.  

 

Raman data were acquired randomly from 21 different mixtures of RNase A and B at 5% 

concentration intervals. The total protein concentration in each sample was kept constant 

at 1mg/ml (~70 nM). Five replicates of each mixture were analysed.  

 

Partial least squares regression (PLSR) was applied to the data using PyChem software. 

Because PLSR is a supervised learning method that uses both X-data (Raman spectra) 

and Y-data (RNase B percentage), alternate samples were used for training and cross-

validation or testing; that is to say, 0,10,20…..,90, 100% were used for training and 

5,15,25%, etc. for cross validation and testing. The test data used the same series as the 

 
 

Figure 3.7: PCA scores plot (PC1 vs PC2) of Raman data from control RNase A 
and B and chemically and enzymatically deglycosylated RNase B. 
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cross-validation data, where the first two replicates are used for cross validation and the 

remaining three for the test data.  

 

Initially data were pre-processed the same as previous RNase spectra (baseline 

corrected, smoothed and normalised). Figure 3.8 shows the PLSR predictions for this 

data, where an obvious correlation between Raman spectra and glycoprotein 

concentration is evident. However the test error for this model was determined to be 

relatively high, at 13.75%.    

 

 

3.3.3.1 Pre-processing Development. 

In order to improve the accuracy of the PLSR model, many different spectral pre-

processing methods were tested in different combinations, and the RMS error from the 

test data compared.  Tables 3.1 and 3.2 show the results of this testing. The optimum 

combination of spectral pre-processing was determined to be Smoothing (Sav-Gol (filter 

width 14) followed by ALS baseline correction, then scaling (min 0, max 1) and finally 

EMSC (polynomial order 10). 

 

 
Figure 3.8: PLSR predictions from Raman data of RNase mixtures, mean 

predictions of five measurements are plotted with standard error bars. (Data pre-
processing: Sav-Gol smoothing, ALS baseline correction and EMSC). 
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Table 3.3: Results (PLS error) from investigation of smoothing filter widths and 

EMSC polynomial order. 
 
 

 
 

 

 

Table 3.2: Results (PLSR RMS test errors) from investigation of the most effective pre-
processing methods. 

  Pre-process class Method PLS model test 
errors 

Raw data  22.20 

Baseline correction Weighted Least Squares 23.25 

Baseline correction Asymm Least Squares 21.90 

Smoothing + BL Savitzky-Golay + ALS 21.45 

Smoothing + BL Fourier Smoothing + ALS 22.50 

Smoothing +BL Un-weighted sliding average smooth +ALS 21.60 

Normalisation EMSC 11.50 

Normalisation + BL +Smth EMSC + ALS + Sav-Gol 9.85 

Normalisation + BL +Smth Total signal +1 + ALS + Sav-Gol 15.35 

Normalisation + BL +Smth Most intensive bin +1 +ALS + Sav-Gol 14.00 

BL +Smth+ Scaling Min 0 max+1 +ALS + sav-Gol 15.05 

BL+ Norm+Scaling ALS+EMSC + Min 0 Max +1 10.75 

BL +Smth + Scaling+ Norm Min 0 max+1 +ALS + sav-Gol +EMSC 8.35 

BL+Smth+Norm+ scaling Min 0 max+1 +ALS + sav-Gol +EMSC 9.00 

Smth+ BL+ Scaling + Norm Min 0 max+1 +ALS + sav-Gol +EMSC 6.1 
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Figure 3.9 shows the PLSR plot of predicted vs. actual concentrations of RNase B 

created from the data pre-processed as described above. This clearly shows that Raman 

spectroscopic data can accurately quantify relative concentrations of protein and 

glycoprotein, with an RMS test error in this case of only 5.56%.  

 

 

3.3.3.2 Model Validation. 

The PLS loadings from the first two latent variables (LVs), which account for the majority 

of the variance in the model are plotted against each other in Figure 3.10. In this 

depiction each point represents a different wavenumber with each symbol coding for a 

different spectral region. The outer circle indicates 95% confidence level and only points 

outside this 95% confidence boundary have been plotted. The spectral regions that have 

been indicated by the loadings plot as being of importance to this model have been 

highlighted on the spectra in Figure 3.11 (a reproduction of Figure 3.2 with added 

indicators of the regions highlighted by the PLS loadings). It is clear from this 

representation that each of the six major areas of importance correspond to visible 

differences in the Raman spectra of RNase A and B, including band broadening and  

 
Figure 3.9: PLSR predictions from Raman data of RNase mixtures after pre-
processing method development, mean predictions are plotted with standard 

error bars. 
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Figure 3.10: PLS loadings plot of the first two latent variables. The green circle 

indicates 95% confidence. 

 
Figure 3.11: Average Raman spectra of RNase A and B, mannose and GlcNAc. 

Bands indicted by PLS loadings as being important are highlighted. 
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changes in peak intensities and position. In addition, the spectra of both sugars that form 

the glycan (GlcNAc and mannose) show features in the majority of these regions. 

 

Assignments for the changes occurring in the amide I and amide III regions of the spectra 

have been discussed previously. Changes in the other regions (~830, 880, 1000 and 

1450 cm
-1

) could be attributed to conformational protein changes, such as changes in the 

local solvent environment of the aromatic amino acid side chains. However, because 

there are no aromatic residues close to the glycosylation site, it is more likely that these 

spectral differences are brought about by the presence of sugar bands in the spectra of 

RNase B.  

 

The loadings plot in 3.10 is of particular value because it not only informs us which 

vibrational modes are the most selective for determining glycosylation status, but also 

assists in confirming that the quantification model is based on real spectral features, as 

opposed to artefacts in the baseline or nose. 

 

Further confirmation of the importance of these regions was gained by preforming a 

Gaussian curve fit on the pre-processed data, using GRAMS Ai software, in order to 

calculate peak areas and locate peak centres. Positive correlations were found between 

peak parameters and RNase B concentration in five out of the six spectral regions 

highlighted as important by the PLSR; two examples of this are shown in Figures 3.12 

and the assignments and correlation values are detailed in Table 3.4.    

 

Table 3.4: Summary of correlations found between peak parameters and RNase B 
Concentration. 

Wavenumber 
(cm

-1
) 

Protein 
Assignment 

Sugar 
Assignment 

Peak 
parameter 

Correlation 
found? (Y/N) 

 
R

2 

830 Tyr ring glycosidic ring Area N 0.403 

880 C-C backbone C-O-C stretch Area Y 0.872 

1000 Phe ring glycosidic ring Area Y 0.924 

1350 amide III NH2  twist Area Y 0.894 

1450 alanine CH3 glycosidic ring Area Y 0.732 

1690 amide I n/a Centre  Y 0.910 
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Figure 3.12 : (A) A Graph to show the correlation between peak area of the 

amide III band and RNase B concentration. (areas are the mean of five 
measurements with standard error bars shown) and (B) A Graph to show the 

correlation between peak centre of the amide I band and RNase B concentration. 
(plotted values are the mean of five measurements with standard error bars 

shown). 

 

To investigate these correlations further, a variation of 2D correlation analysis, using 

moving windows, was applied as an alternative method of displaying the changes that 

occur within the data. Although this is not strictly a quantitative technique, it has been 

performed to compare the regions in which the most changes occur to those indicated by 

the PLS loading plot (Figure 3.10).  

 
Figure 3.13: 2D-correlation moving windows contour plot as a function of 
spectral wavenumber and average translating window concentration of the 

RNase data. 
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A 2D moving windows contour plot for the Raman data from the RNase A and B mixtures 

(pre-processed in the same manner as the PLS data) is shown in Figure 3.13. The 

spectral regions where the most change occurs across the full percentage range, 

indicated by the largest number of contours, are highlighted. When compared to the 

spectra in Figure 3.11 and the PLSR loadings plot, it is clear that the results from both 

data analysis methods correlate as to which vibrational modes are the most important. It 

should also be noted that in the moving windows plot, contours can be observed to form 

two distinctive groupings at 0-30% and 80-100% RNase, which may be simply due to the 

detection limits of each species or errors in sampeling occurring due to issues with mixing 

of samples. This suggests that the majority of spectral changes are not continuous, with 

many occurring in two stages; 0-30% and 80-100%.   

 

The final step in this stage of analysis was to challenge the PLS model by adding the 

spectra from the earlier deglycosylation experiments (Figure 3.14).  The model was able 

to predict the control and deglycosylated spectra correctly. However, there was a much 

larger error margin for the whole model (10.50%) than with the standard mixtures alone 

(5.56%). This increase in error is likely to be due to the error associated with the 

deglycosylated samples, which could be caused by incomplete deglycosylation in some 

of the samples. Another possible cause of the higher error in this model is that many of 

the pre-processing methods used are global algorithms, which are influenced by the 

whole data set, rather than treating each spectrum separately.  

 
Figure 3.14: PLSR predictions from Raman data of RNase mixtures with control 

and deglycosylated spectra added as test data. Mean predictions are plotted 
with standard error bars. 
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3.3.3.3 Intra-Instrument Calibration Transfer. 

In order to test this model for glycosylation quantification further, we investigated how 

transferable the model was to other instruments. Data from RNase A and B mixes was 

recollected on a different Renishaw 2000 microscope, with an identical optical set up and 

collection parameters. The data were pre-processed as described previously and then 

used to challenge the PLS model. In this analysis, the previously collected data were 

used for training and cross-validation and the newly acquired data were used to test the 

model. We used only 5 PLS factors, as this was the number of factors used in the 

previous models.  

 

 

The PLSR predictions from this experiment are shown in Figure 3.15. The plot clearly 

shows a correlation between the Raman spectra in the test data and relative 

concentrations of protein and glycoprotein. These results show that it is possible to train 

the PLSR model to predict concentrations of RNase B using data collected from one 

Raman spectrometer, and then used this model to predict glycosylation levels accurately 

from data collected from a different instrument. However it should be noted that the RMS 

test error increased nearly two fold, to 9.23%.  

 

 
Figure 3.15: PLSR predictions from Raman data of RNase mixtures collect from 
two different instruments. Original data has been used for training and validation 

and new data from a second instrument has been used for testing. Mean 
predictions are plotted with standard error bars. 
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This is an important result as it demonstrates the possibilities for Raman spectroscopy to 

be used in the biopharmaceutical industry as a technique for detecting glycosylation. In 

theory these results show that it possible to use data collected in one laboratory to build a 

quantification model and then use the same model to test data collected in another 

laboratory. By removing the need to build a new model for each analyses, this will 

increase the throughput and accessibility of Raman spectroscopy as a tool for monitoring 

glycosylation in therapeutic proteins.  

  

3.4 Conclusions.  

The results in this chapter clearly show the potential for Raman spectroscopy to be 

developed as a technique for monitoring glycosylation and deglycosylation. We have 

demonstrated that Raman spectroscopy with appropriate chemometric strategies is 

capable of distinguishing between the glycoprotein RNase B and the non-glycosylated 

equivalent RNase A, and also deglycosylated forms of RNase B. This work has also 

illustrated the potential for Raman spectroscopic data to be combined with multivariate 

analysis methods for the successful quantification of the glycosylation status of target 

proteins. Through the use of these chemometric techniques we have also identified the 

most selective vibrational modes for the detection and quantification of glycosylation in 

this system. 

 

Although the chemometric models discussed in this chapter are specific to RNase 

proteins, the identification of the most informative vibrational modes can be applicable to 

other Raman glycoprotein investigations. By further developing these methods and 

building up a knowledge base of glycan standards, it should be possible to adapt the 

chemometirc models for this simple system to facilitate the use of Raman spectroscopy 

for the characterisation of glycosylation in the far more complicated glycoproteins 

produced by the biopharmaceutical industry. In fact since the publication of the work in 

this chapter, Raman spectroscopy and PLSR have been demonstrated successful in the 

quantification of glycosylation in two medically relevant examples; haemoglobin and 

albumin (Dingari et al., 2012, Barman et al., 2012).  



 

- 83 - 

 

Chapter 4: Characterising Glycosylation, Stability 

and Aggregation in Transferrin Using Optical 

Spectroscopies. 

 

4.1 Introduction. 

The use of Raman spectroscopy coupled with multivariate data analysis strategies to 

detect and quantify glycosylation in a simple model system was described in Chapter 3. 

Following on from this, we have in the present work, applied these techniques to a more 

complex system. As one of the major application areas for Raman spectroscopy in 

protein and PTM characterisation is in the biotechnology industry, we focus here on the 

detection of glycosylation in a real biopharmaceutical recombinant protein product. For 

this study a number of variants of transferrin proteins were kindly supplied by Novozymes 

Biopharma.     

 

Transferrin is an iron binding globular protein which is responsible for iron transport. It 

occurs naturally in two forms: with iron (holo) and without iron (apo). The structures of 

these proteins depicted in Figure 4.1 show transferrin to be in two domains, comprised 

predominately of α-helical secondary structure with some turn structure and a small 

contribution of β-sheet structures. The iron binding site lies between these two globular 

lobes. As can be seen from the structures in Figure 4.1, when iron is removed to form 

apotransferrin the two domains are held together less tightly, and hence apotransferrin 

has a much more open structure than its iron containing counterpart.  

 

Transferrin is produced as a biopharmaceutical product, not as a therapeutic protein, but 

as a fusion protein. Its role is to bind to other therapeutics which have short half-lives and 

improve the pharmacokinetics of these drugs by extending their activity. Although it is not 

being used as the active ingredient in a product, it is part of a drug formulation and hence 

these proteins still need to be robustly characterised. Complete characterisation of the 
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product will not only maintain the quality of the product, but more importantly help to 

prevent any harmful immunogenic affects.  

 

 

The samples received from 

Novozymes are 

recombinant transferrins 

produced in yeast. The un-

purified product will contain 

a mixture of non-

glycosylated and 

glycosylated proteins. As 

these proteins are produced 

in yeast cell lines, all of the 

glycans will be of the high mannose type. The product can therefore be purified using a 

Con A (Concanavalin A) column which selectively binds high mannose glycans.This 

experiment yields three different samples for analysis: Con A flow through, containing un-

mannosylated proteins, Con A retarded fraction which consists of mono-mannosylated 

transferrin and finally the fractions which binds to the Con A containing mainly oligo-

mannosylated transferrin. After this purification step, some of the samples have been 

apoised to give the ‘iron-less’ form of the protein.  

 

Initial work in this chapter centred on detecting glycosylation in transferrin. However as it 

is widely accepted that glycosylation can cause changes to the conformation of a protein, 

and we observed these for RNase B earlier (Chapter 3), we have in the present work 

investigated the structural changes brought about by glycosylation further. To do this we 

have employed the previously described (2.1.3) Avacta Optim 1000 instrument to profile 

how unfolding and aggregation profiles change with glycosylation status.  

 

 

 
Figure 4.1: Cartoon representation of apotransferrin and 

holotransferrin drawn from atomic coordinates in the 
PDB files (2HAU and 1H76) using PyMOL. 
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4.2 Materials and Methods. 

4.2.1 Samples. 

Transferrin samples were received from Dr Malcolm Saxton at Novozymes Biopharma. 

Samples of glycosylated variants of both apo- and holo-transferrin were received, as 

detailed in Table 4.1. All samples were 1mg/ml (~12 mM) and were supplied in standard 

PBS buffer.  

 

Table 4.1: Summary of Transferrin Samples. 
Sample Name Apo/

Holo 
Glycosylation Status Abbreviation used 

in this work 

Transferrin Holo Un-mannosylated Tf 

Mono-mannosylated transferrin Holo Mono-mannosylated mmTf 

Oligo-mannosylated transferrin Holo Oligo-mannosylated omTf 

Apo Transferrin Apo Un-mannosylated ApoTf 

Mono-mannosylated apotransferrin Apo Mono-mannosylated mmApoTf 

Oligo-mannosylated apotransferrin Apo Oligo-mannosylated omApoTf 

Product Apo Unknown mixture P 

 

 

4.2.2 Raman Spectroscopy. 

Raman data were collected using a Renishaw 2000 Raman microscope described in 

Chapter 2. All spectra were single accumulation, extended scans between 400 and 1800 

cm
-1

, with an exposure time of 60 s.  2 μL of sample were spotted onto a hydrophobic 

SpectraRIM
TM

 slides, detailed in section 2.1.1.1, and allowed to dry out at room 

temperature for approximately 1 h. Each reported spectrum is an average of 6 spectra 

collected from different positions within each sample spot, as depicted in 2.1.1.1. For the 

wavelength comparison study in 4.3.1.1., the previously described Renishaw Raman 

spectrometer was used operating both 785 and 633 nm excitation wavelengths. For the 

spectra collected at 532 nm a Biotools chiral Raman spectrometer (detailed in 2.1.1.2) 

was employed. Data were pre-processed (smoothed, baseline correction and 

normalisation) according to the method optimised in Chapter 3 (3.3.3.1). 
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4.2.3 FT-IR spectroscopy. 

FT-IR spectra were collected on a Bruker FT-IR instrument described in 2.1.2. 4 µL of 

each sample was spotted onto a 96 well silicon plate and allowed to dry at room 

temperature. Spectra were recorded over 4000-600 wavenumbers, with 64 

accumulations per sample.  

 

4.2.4 Optim 1000. 

The Avacta Optim 1000 is a multi-modal platform which simultaneously collects 

fluorescence emission and light scattering data. The instrument set up is described fully 

in 2.1.3.  

 

4.2.4.1 Optim Thermal Ramp Experiments. 

9 µL of three replicates of each sample were loaded into a micro cuvette array (MCA). A 

temperature ramp from 30 to 85 °C was applied to the samples with a temperature 

tolerance of 0.3 °C. Spectra were recorded at 1 °C intervals with a 60 s hold time at each 

temperature. Spectra were collected with 1 s exposure time with the slit width set to 100 

µm. Each run was performed in triplicate, with three analytical replicates of each sample 

per run.   

 

4.2.4.2 Optim Isothermal Experiments. 

9 µL of three replicates of each sample were loaded into an MCA.  Samples were rapidly 

heated to, and held at, a set temperature, chosen from observing the results of the 

previous thermal ramp experiments. In this case three separate experiments were 

performed at 45, 55 and 67 °C. Samples were held at these temperature, with a tolerance 

of 0.5 °C and spectra were recorded at 60 s intervals for 200 min. Spectra were collected 

with 10 s exposure time with the slit width set to 100 µm. Each run was performed in 

duplicate, with three analytical replicates of each sample per run.   
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4.2.5 Data Analysis. 

Vibrational spectroscopic data were exported into Matlab for pre-processing. PyChem 

was employed for PCA and PLSR. PLSR models with bootstrapping and permutation 

testing were performed in R. Spectral figures were plotted in GRAMS Ai. Optim data were 

imported into Optim Analysis software for preliminary analysis. Data were then exported 

into Origin for further analysis and for plotting figures. 2D correlation calculations were 

performed using 2D shige freeware. 

 

4.3 Results and Discussion.  

4.3.1 Vibrational Spectroscopy. 

4.3.1.1 Wavelength Selection. 

The initial step for this study was to determine which of the available laser excitation 

wavelengths was most suitable for Raman spectroscopic analysis of transferrin proteins. 

Spectra of Holotransferrin (un-mannosylated) were recorded at 785, 633 and 532 nm. 

Typical spectra from each wavelength can be viewed in supplementary information 

(Figure S4.1). The spectrum recorded at 532 nm, shows little or no bands which can be 

assigned to protein structure. We believe this is due to the iron in holotransferrin being 

resonant at this wavelength, causing the majority of bands in the spectra to arise from the 

iron group. The Raman spectra recorded at 633 nm exhibited a large amount of 

fluorescence background. Although protein bands were observed in the spectrum, the 

levels of background signal encountered were problematic and the resolution of bands 

was poor. By contrast, the spectrum recorded at 785 nm exhibits minimal background 

interference and intense, well resolved protein bands. These results make a 785 nm 

excitation wavelength the obvious choice for future analysis of transferrin samples.     

 

4.3.1.2 Comparing Holo- and Apo-Transferrin. 

Before analysing glycosylated transferrin samples, the Raman spectra from un-

mannosylated holo- and apo-transferrin were compared to see what effect the presence 
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of the iron group has on the Raman spectra of transferrin. The PCA scores plot in Figure 

4.2 shows that the two forms of transferrin are easily distinguishable by their Raman 

spectra. The loadings from PC 1, which accounts for 75.44% of the total explained 

variance (TEV), correlate well with bands that can be seen to be changing in the Raman 

spectra in Figure 4.3.  The PCA scores plot also appears to separate the holotransferrin 

into two groups across PC2, however inspection of PC2 loadings (not shown), show no 

particular features and are mainly comprised of noise. It should be noted that all spectra 

were acquired on the same day and sample collection order was randomised.  

 

The Raman spectra in Figure 4.3 show numerous changes which can be attributed to 

structural differences which occur between apotransferrin and holotransferrin. The bands 

highlighted in the spectra are those which are indicted by the PCA loadings plot (PC1) as 

being significant. The features which are highlighted in red font refer to those indicated by 

the positive loadings, hence relating to the positive side of the PCA plot where Tf falls. 

The blue font indicates bands which are changing in ApoTf as indicated by the negative 

loadings. 

 

The spectra show changes in the amide I and amide III regions, which is to be expected 

with such an alteration in protein conformation. There are also changes in the intensities 

 
  

Figure 4.2: PCA scores plot (PC1 vs PC2) of Raman data from holotransferrin 
and apotransferrin, showing the data clearly resolved into two distinct clusters. 
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of a number of bands that can be assigned to individual amino acids, which increase or 

decrease in intensities as the residues become more or less exposed to the surrounding 

environment by the changes in tertiary structure. Finally the band indicted by the green 

asterisk, at ~500 cm
-1

, which appears only in the holotransferrin spectrum can be 

specifically assigned to the iron-ligand vibrations, arising from both Fe-O and Fe-NO 

complexes (Villar et al., 2006, Soldatova et al., 2010).      

 

 

 

4.3.1.3 Detecting Glycosylation in Transferrin. 

4.3.1.3.1 Detecting Glycosylation in Holo-transferrin.  

We began investigating the use of Raman spectroscopy for the detection of glycosylation 

in this system by comparing the spectra of the un-mannosylated and oligo-mannosylated 

variants of holotransferrin (Tf and omTf). It is clearly evident from the PCA scores plot 

displayed in Figure 4.4A that we are easily able to distinguish between the glycosylated 

and non-glycosylated forms of transferrin based on their Raman spectra. The figure 

shows clearly defined clusters of Tf and omTf separated across PC1, which describes 

              
 

Figure 4.3: Average Raman spectra of holotransferrin (Tf) in red and apotransferrin 
(ApoTf) in blue. Asterisks indicate the bands highlighted by the PCA loadings. 

(Spectra have been smoothed and baseline corrected). 
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58.78% of the variance in the data. An interesting point to note is that there is much more 

variation in the glycoprotein spectra than in the protein spectra. This is a trend we have 

seen previously with the RNase study, and was ascribed to the poor reproducibility in the 

bands arising from the vibrations of the glycan component of the molecules, which may 

be due to orientation effects when the proteins are dried on the SpectraRIM
TM

 slides.   

 

The average Raman spectra of Tf and omTf are shown in Figure 4.5, along with the 

loadings for PC1 in Figure 4.6. The area of the loadings plot shaded blue highlights the 

negative loadings, which correspond to bands which can be seen to be increasing in 

intensity in the spectra of Tf (shown in blue). The assignments for these bands are given 

in Table 4.2. The majority of these features are bands which are indicative of changes in 

tertiary structure, showing that as with the RNase system, changes in the conformation of 

transferrin occur upon glycosylation and these changes are visible in the Raman spectra.   

 

The positive bands from the loadings (shaded red) agree well with bands observed to be 

increasing in the Raman spectra of omTf. The changes in these bands can be attributed 

to contributions from glycosidic vibrations. It can be seen from the spectra of mannose 

shown in Figure 4.5 that the sugar exhibits bands in each of the regions highlighted in the 

spectra and loadings plot.  However as these bands could also be assigned to bands 

arising from the amino acids of the protein, an alternative explanation could be that the 

spectral differences are due to changes that occur in the  structures of the two proteins.  

 

Table 4.2: Raman band assignments for bands highlighted in the Raman spectra 
of Tf and omTf (Fig 4.5) and the PCA loading plot (Fig 4.6). 

(Siamwiza et al., 1975, Socrates, 2001, Tuma, 2005, Oleinikov et al., 1998, 
Arboleda and Loppnow, 2000, Mrozek et al., 2004) . 

~Wavenumber  (cm-1) Proposed Assignment 

645 Tyrosine ring 

820 Glycosidic ring vibration 

962 Disordered structure 

1009 Glycosidic ring breathing 

1250 Amide III 

1320 CH2OH side chain def (mannose) 

1445 Aliphatic bending 
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Figure 4.4: PCA scores plot (PC1 vs PC2) of Raman data from  (A) un-mannosylated 
holotransferrin (Tf) and oligo-mannosylated holotransferrin (omTf),(B) un-mannosylated 

holotransferrin (Tf) and oligo-mannosylated holotransferrin (omTf) and mono-
manosylated holotransferrin (mmTf), (C) un-mannosylated apotransferrin (ApoTf) and 
oligo-mannosylated apotransferrin (omApoTf) and (D) un-mannosylated apotransferrin 

(apoTf) and oligo-mannosylated apotransferrin (omApoTf) and mono-manosylated 
apotransferrin (mmApoTf). 
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Finally, although no changes can be observed by eye in the Raman spectra, the PCA 

loadings show the amide I region (~1630-1690 cm
-1

) as being important in the separation 

of the two different forms of transferrin. This again indicated a notable change in protein 

conformation occurring upon glycosylation.    

 

 

              
Figure 4.5: Average Raman spectra of transferrin (Tf) and oligo mannosylated transferrin 

(omTf) and mannose (inset). Asterisks indicate the bands highlighted by the PCA loadings. 
(Spectra have been smoothed and baseline corrected). 

 
 
 

                                                                                               
Figure 4.6: PCA loadings plot for PC1 from Raman data of un-mannosylated 

holotransferrin (Tf) and oligo-mannosylated holotransferrin (omTf). 
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The next step was to add the data from the mono-mannosylated protein (mmTf) into the 

PCA plot (Figure 4.4B). It is clearly evident from this plot that it is possible to distinguish 

mmTf from Tf and omTf, however this occurs in a rather unexpected manner with the two 

glycosylated variants falling at opposite sides of the of the non-glycosylated transferrin. 

 

In order to confirm this result was a true trend (i.e., not caused by any instrumental 

artefacts in the spectra) we performed FT-IR analysis on the same samples. A PCA 

scores plot of this FT-IR data (seen in supplementary information Figure S4.2) showed a 

similar trend to the Raman data with mmTf and omTf separating in opposite directions. 

 

 

Inspection of the Raman spectra (Figure 4.7) show that bands previously seen to be 

increasing in omTf, which were thought to be due to glycosidic vibrations, are not 

increasing in the mmTf spectrum. In addition, many of the bands which are increasing in 

mmTf are features which we have previously assigned to protein structural changes. 

Therefore our hypothesis is that separation in the positive direction is based on a 

combination of sugar and protein bands, whereas separation in the negative direction is 

purely structural. The loadings from PC1 (not shown) appear to confirm this as the 

 
Figure 4.7: Average Raman spectra of transferrin (Tf) and oligo-mannosylated transferrin 

(omTf) and mono-mannosylated transferrin. Asterisks indicate the bands highlighted by the 
PCA loadings (Figure 4.6; positive loadings in red and negative loadings in blue). (Spectra 

have been smoothed and baseline corrected). 



 

- 94 - 

 

negative loadings indicate structural bands and the positive loadings are very similar to 

the bands seen in the separation of omTf and Tf in Figure 4.6. 

 

4.3.1.3.2 Detecting Glycosylation in Apo-transferrin.  

The un-glycosylated and oligo-glycosylated variants of apotransferrin (ApoTf and 

omApoTf) were then compared to each other, and again showed two distinct clusters in 

the PCA scores plot (Figure 4.4C). ApoTf and omApoTf show very similar results to their 

holo- counterparts: good separation across PC1, a large amount of variation in 

glycosylated spectra, and PC1 loadings again reveal a combination of glycosidic and 

protein conformational bands.  

 

When adding the mono-mannosylated transferrin (mmApoTf) spectra into the data matrix, 

the PCA scores plot shows a  more expected trend than that seen with the holotransferrin 

data: with the mono-mannosylated samples falling in the middle of the un-glycosylated 

and the oligo-mannosylated samples (Figure 4.4D). The loadings for this PCA (not 

shown) are almost identical to the loadings for the PCA of omTf and Tf (Figure 4.4A and 

Figure 4.6) and the PCA of omApoTf and ApoTf (Figure 4.4C). A possible reason for this 

inconsistency in the behaviour of apo- and holo- glycosylated variants, could be that the 

differences in tertiary structure of the two transferrins leave the glycan more accessible in 

the apotransferrin than in the holotransferrin.  

 

Finally, we have combined all the data from apo- and holo-transferrin, and also added the 

spectra from the pre-Con A purification product samples and performed PCA. The PCA 

scores plot for all transferrin data (Figure 4.8) displays how Raman spectroscopy can be 

used to distinguish between glycosylated variants of proteins (across PC1) and also 

between iron containing and apoised proteins (across PC2). The data from the product 

samples can be seen to overlay the un-mannosylated data which possibly suggests that 

the product is largely un-glycosylated transferrin.   
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4.3.1.4 Quantifying Glycosylation in Transferrin. 

In order to develop the application of Raman spectroscopy for the analysis of 

glycosylated transferrin further, spectra were recorded from mixtures of glycosylated and 

non-glycosylated protein in order to attempt to quantify glycosylation from the Raman 

spectra. Mixtures of ApoTf and omApoTf were made, with increasing concentrations of 

omApoTf at 5% intervals, keeping the total protein concentration the same for each 

sample (1mg/ml).  Three repeat measurements were recorded from each of the 21 

samples and collection of all spectra was randomised. Prior to analysis data was pre-

processed using the method optimised in the previous chapter (3.3.3.1). 

 

PLSR was applied to the data, initially using PyChem software. Alternate samples were 

used for training and testing the PLSR model (i.e. 0%, 10%, 20% … 100% for training 

and model calibration and 5%, 15%, 25% etc. for test). Figure 4.9 shows the PLSR 

predictions, demonstrating a good correlation between predicted and actual 

concentrations of glycosylated proteins. However the RMS test error for this model is 

fairly high at 15.54%. 

 

 
 

Figure 4.8: PCA scores plot (PC1 vs PC2) of Raman data from all transferrin 
samples. 
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In order to refine the PLSR model and to improve the error we have applied bootstrap 

cross validations to the data set. In this analysis we have randomly chosen which data 

are used for test and training and then used this selection to build the PLSR model.  We 

have chosen to compare two bootstrapping methods for this analysis: In the first method 

we have made different samples of the same level of glycosylation available for use in 

training and testing data sets (i.e., one sample of 5% omTf could be used in training and 

the another sample of 5% omTf could be used for test).  For the second method we have 

kept all replicate samples of the same glycosylated protein concentration exclusively in 

either the test or training sets (i.e., all 5% omTf samples were used in training and all 

10% omTf samples were used for test).  This process has been repeated 1000 times and 

the typical model achieved by each method is shown in Figure 4.10. It should be noted 

that in for these models additional data for lower concentrations of omTf have been used; 

spectra recorded at 1, 2 ,3 ,4 … 9% omTf have now been introduced to the data set. 

 

The PLSR predictions shown in Figure 4.10 show that models produced from both of 

these methods outperform the original model, which was calculated without bootstrap 

cross validation (Figure 4.9). The range of R
2
 values for each of the 1000 models and null 

models (permutations; where the target concentrations are randomised) were calculated 

 
Figure 4.9: PLSR predictions from Raman data of transferrin mixtures, mean 
predictions of three measurements are plotted with standard error bars. (Data 

pre-processing: Sav-Gol smoothing, ALS baseline correction and EMSC). 
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and are plotted in the inset as box and whisker plots; these show that the error is 

significantly reduced from the initial model. It is clear from Figure 4.10 that the validation 

method in which samples were free for use in both testing and training (Figure 4.10A) 

preforms much better than the alternative method, with an average R
2 

of 0.85 in method 

A and 0.6 in method B. It could be said that the model shown in Figure 4.10B is a much 

more valid demonstration of the capability of this method to predict the concentration of 

glycosylated protein and that method A is perhaps an overly optimistic representation. 

However the loadings from model A (Figure S4.3), are very similar to the PCA loadings 

for ApoTf and omApoTf (Figure 4.6), and show a number of features which can be 

assigned to both sugar and protein vibrations. This provides conformation that these 

PLSR models are based on real spectral differences between the two variants of 

transferrin which are changing in the Raman spectra as the relative concentrations of 

each species vary.  

 

In order to test the validity of these PLSR models further, permutation testing has also 

been applied to the data (see insets in Figure 4.10), showing that the model does not 

perform well when all the class labels are randomly swapped. This indicates that both our 

PLSR models are true results which have not occurred by chance.  

 
 

Figure 4.10: Typical PLSR predictions from Raman data of transferrin mixtures over 
1000 bootstrap cross validations with (A) samples free for use in both training and test 
data sets and (B) Samples of same concentration kept together in either the training or 
test set.(Data pre-processing: Sav-Gol smoothing, ALS baseline correction and EMSC). 
INSET: Box and whisker plot showing R2 values for the original and permuted models. 
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The PLSR model was then used to predict the level of glycosylated transferrin in the 

product sample and this prediction was 75%. Correlation analysis of the product spectra 

and the spectra of 75% omApoTf appears to confirm this (Figure S4.4).  However the 

value supplied by Novozymes was ~50% concentration of oligo-mannosylated protein. As 

it possible that the product is a three component mixture of all three variants, this 

discrepancy could be due to an unknown concentration of mono-mannosylated transferrin 

in the product. Data on levels of mono-mannosylated protein in the product sample were 

not supplied by Novozymes. 

  

4.3.2 Optim 1000 Analysis. 

The Raman data presented in this chapter shows clear evidence of structural differences 

between the glycosylated variants of transferrin proteins. It was therefore of interest to 

determine how these structural changes could affect the stability of the recombinant 

protein product. This was achieved using temperature ramps and temperature holds of 

proteins in an Avacta Optim 1000 instrument and measuring fluorescence at light 

scattering in real time. This method  has been developed by our industrial collaborators to 

probe protein stability in terms of unfolding and aggregation (Webster, 2010).  

 

4.3.2.1 Optim Spectra of Transferrin. 

The Optim spectra of all transferrin variants are shown in Figure 4.11. These spectra 

show apotransferrin to have a much larger intrinsic fluorescence emission band than 

holotransferrin, which is maybe to be expected as the apo-protein has a more open 

structure which leaves tryptophan and tyrosine residues more solvent exposed.  

 

It can also be seen from the Optim spectra that there is much more variation in the 

intrinsic fluorescence emission of the different variants of holotransferrin than there is with 

the apotransferrin. The oligo-mannosylated holotransferrin has a much smaller 

fluorescence emission band than the non-glycosylated transferrin, which is indicative of a 

change in higher order structure which causes the aromatic amino acids to be less 

exposed to the environment.   
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4.3.2.2 Optim Thermal Ramp Experiments. 

4.3.2.2.1 Profiling Stability.  

As described in 4.2.4.1, a temperature ramp from 30 ºC to 85 ºC was applied to the 

samples, with spectra recorded at 1 ºC intervals. Optim spectra were then imported into 

the Optim analysis software for primary analysis. This allows unfolding curves to be 

drawn from many different spectral parameters of the Optim data (maximum fluorescence 

intensity, integrated peak areas, spectral centre of mass etc.) plotted against 

temperature. For this study we have chosen to use the ratio of fluorescence intensity at 

350 nm to the fluorescence intensity at 330 nm (ratio 350:330), as this will allow us to 

track changes in band shape as well as intensity.  

 

  
Figure 4.11: Optim 1000 spectra of (A) holo- vs. apo-transferrin, (B) glycosylated variants of 

holotransferrin and (C) glycosylated variants of apotransferrin. 
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Figure 4.12 shows the unfolding curves for all transferrin samples generated from the 

Optim spectra, where it is clearly evident that the unfolding profiles of apotransferrins and 

holotransferrins are vastly different. Apotransferrin has two sharp cooperative transitions,  

whereas holotransferrin has two (or maybe more) broad overlapping transitions. In 

addition, the initial higher ratio values in holotransferrin suggest that it has more solvent 

exposed tryptophan.  

 

 

 

There is little or no variation between the different glycosylated variants of transferrin that 

can be observed from these curves. Therefore more information has been extracted from 

these data by plotting the first derivative of the curves in order to calculate the transition 

midpoints; the temperature at which approximately half of the protein molecules are 

unfolded. The transition midpoints (Tm) for all transferrin samples are summarised in 

Table 4.3.  

 
Figure 4.12: Graph to show the ratio of fluorescence intensity at 330 and 350 nm as a 

function of temperature. Plotted values are the mean of three independent runs, each of 
which contained three replicates. 
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The first thing to be noted from Table 4.3 is that, overall, the calculated Tm values are 

higher for holotransferrin than for apotransferrin. This increase in stability in the iron 

containing protein is most likely due to the more closed structure it adopts, which is held 

in place by the iron.  

 

 

 

 

 

Glycosylation can be seen to have only small effects on the stability of transferrin, 

particularly in the apotransferrin, where the variation in Tm between the different 

glycosylation states is only 0.4 ºC. The Tm calculations for holotransferrin show much 

larger differences in stability, with the oligo-mannosylated form being the most stable 

(highest Tm) and the un-mannosylated protein the least stable (lowest Tm), with mono-

mannosylated transferrin falling between the two.  

 

In order to try to highlight the differences between glycosylated variants further, 2D 

correlation analysis was applied to the data set. When 2D correlation calculations were 

performed on the whole Optim spectra, the resulting contour plots were found to be 

Table 4.3: Tm values calculated from the first derivative of the unfolding 
curves. Each value is the mean nine measurements over three 

independent runs. (SD=standard deviation)  

Sample Name 1st  Transition (ºC) 2nd Transition (ºC) 

 
Mean SD Mean SD 

Tf 
51.53 0.34 70.58 0.88 

mmTf 
55.14 1.02 66.63 0.89 

omTf 
53.14 0.58 69.17 1.23 

ApoTf 
50.09 0.11 63.55 0.08 

mmApoTf 
49.69 0.17 63.21 0.28 

omApoTf 
49.42 0.06 63.66 0.10 
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dominated by the light scattering bands at 266 and 473 nm. Therefore plots shown here 

have been calculated from only the intrinsic fluorescence region of the spectrum (280-400 

nm). The synchronous 2D correlation plots for all samples, which display the relative 

similarities in the spectra, can be seen in supplementary information (Figure S4.6). These 

plots corroborate the conclusions from the Tm calculations showing that all of the 

apotransferrins have very similar unfolding profiles, whereas differences can be observed 

in unfolding behaviour between the different glycosylation states of holotransferrin.   

 

 

A variation of 2D correlation analysis, moving windows, was also been applied to the data 

set. Figure 4.13 shows the moving windows contour plots for all six transferrin proteins. 

The first thing to be noted from these plots is that the regions of maximum change (where 

there are the most contours, shown in red) correlate well with the transitions regions seen 

in the unfolding curves. Although the centers of these red contour regions do not match 

Tm calculations exactly, the Tm values do fall within these regions of maxium change. In 

addition the trends displayed here in stability between the glycosylated variants of 

transferrin are consistent with those observed in the unfolding curves and Tm  

calculations. calculations. However, unlike the unfolding curves, the moving windows 

analysis shows at least two clear transitions for both apo- and holo-transferrin.  In 

addition, the regions of maximum change in the holotransferrin samples appear to be 

higher in the glycosylated proteins (omTf and mmTf) than in the non-glycosyated from; 

this further confirms that glycosylation can increase stability in transferrin, but only for the 

holo- form of the protein.  

 



 

- 103 - 

 

  

Figure 4.13: 2D-correlation moving windows contour plots as a function of 
spectral wavelength and average translating window temperatures for Optim 

transferrin data. 
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4.3.2.2.2 Profiling Aggregation.  

In addition to unfolding profiles, Optim spectra allow us to monitor aggregation behaviour 

at different temperatures by tracking changes in the light scattering bands at 266 and 473 

nm. The light scattering data collected from transferrin proteins suggests that 

glycosylation has huge effects on the aggregation propensity of the samples; this can be 

seen in Figure 4.14, where the intensity of the 266 nm band is plotted as a function of 

temperature.  

 

The data for holotransferrin shows that initially aggregation is slow, but then there is a 

sharp increase in aggregation rates at ~50-60 ºC, which is associated with the unfolding 

transitions. The drop in light scattering intensity at ~75 ºC indicates that the protein is 

precipitating out of the solution, and this was confirmed visibly (data not shown). There is 

considerable increase in the temperature at which aggregation begins with increasing 

number of glycans and also a small increase in the temperature at which precipitation 

begins. 

 

 

Apotransferrin data again shows that the onset of aggregation coincides with the 

beginning of the unfolding transition. It can easily be seen from Figure 4.14B that 

 
 

Figure 4.14: Graphs to show the intensity of light scattering at 266 nm as a function of 
temperature for (A) holotransferrin and (B) apotransferrin. Each trace is the mean of three 

repeat measurements.  
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glycosylation dramatically reduces the total amount of aggregated protein and also 

slightly increases the temperature at which aggregation begins to occur.  

 

4.3.2.3 Optim Isothermal Experiments. 

In order to probe the effects of glycosylation on stability and aggregation further a series 

of isothermal experiments were performed. In this type of experiment samples were held 

at a specified temperature and spectral changes were monitored as a function of time. In 

this case three separate experiments were carried out at 45, 55 and 67 ºC, with spectra 

recorded every 60 s. 

 

The isothermal data for unfolding display how glycosylation increases stability much more 

clearly than with the data collected in the thermal ramp experiments, particularly at 55 

and 67 ºC.  Figure 4.15 shows how the maximum fluorescence intensity of the 

holotransferrin proteins changes over time when held at 67 ºC.  These data clearly show 

that oligo-mannosylated holotransferrin is much more stable at 67 ºC than its un-

mannosylated equivalent. In addition, we can also see that mono-mannosylated protein 

appears to have a slightly slower rate of unfolding compared to the non-glycosylated 

transferrin. As with previous results apotransferrin samples show much less variation, 

with only very small differences in the rates of unfolding (data not shown).  

 
Figure 4.15: Graph to show the maximum fluorescence intensity of 

holotransferrin held at 67 °C as a function of time. Each trace is the mean of 
three replicate measurements.  
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Examination of the light scattering data from the isothermal experiments confirms that 

glycosylation is very effective at suppressing aggregation in transferrin proteins. At all 

three of the temperatures tested glycosylated proteins exhibit slower rates of aggregation 

and decreased total amount of aggregate in both holo- and apo-transferrin.  In addition, 

these results show that apoised transferrin is much less prone to aggregation than 

holotransferrin, particularly at 45 and 55 ºC.  It should be noted that in Figure 4.16B it 

may appear that the glycosylated transferrins aggregate more than the non-glycosylated 

holotransferrin, however this sample has a very fast initial rate of aggregation and then 

appears to be precipitating after ~8 min, causing a significant decrease in the intensity of 

light scattering observed.   

 

 

4.4 Conclusions. 

We have shown in this study that the Raman spectroscopic methods developed in 

Chapter 3 for detecting glycosylation in a simple model system are transferable to more 

complex biopharmaceutical samples. Trends that were observed in the Raman data 

collected from transferrin were consistent with those seen previously with the RNase 

proteins, in particular which vibrational modes were used for discrimination and 

 
Figure 4.16: Graphs to show the intensity of light scattering at 473 nm as a function of time at (A) 

45 °C and (B) 55 °C.  Each trace is the mean of three replicate measurements 
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quantification. We have extended the utility of Raman spectroscopy in this area further by 

demonstrating the ability to differentiate between different glycosylated variants of the 

same protein (omTf and mmTf), as well as apo- and holo-forms of these proteins. This 

was an important progression for this project as many cell lines express a variety of 

glycoforms, of which only one is the desired biopharmaceutical product.  

 

The conformational changes which occur upon glycosylation are again clearly evident in 

the Raman data. For this reason we went on to characterise the implications of these 

structural changes with respect to stability and aggregation; two factors which need to be 

robustly characterised and controlled in any therapeutic protein product.  Both thermal 

ramp and isothermal experiments show that in holotransferrin glycosylation can enhance 

the stability of the product, particularly in the oligo-mannosylated form.  In addition, for 

both holo- and apo- proteins it has been found that glycosylation can greatly reduce the 

aggregation propensity of transferrin. These results may be useful to Novozymes in the 

design of a better product, especially with regards to the shelf-life of the protein.  

 

4.5 Supplementary Information 

 

 

 
Figure S4.1: Raman spectrum of Holotransferrin recorded with (A) a 532 nm excitation 

wavelength, (B) a 633 nm excitation wavelength and (C) a 785 nm excitation wavelength. 
(Data have been baseline corrected (ALS) 
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Figure S4.2:  PCA scores plot (PC1 vs PC2) of FT-IR data from un-mannosylated 

holotransferrin (Tf) and oligo-mannosylated holotransferrin (omTf) and mono-
manosylated holotransferrin (mmTf). 

 
N.B. it should be noted that although Tf and mmTf look to separate across PC2, the total 
explained variance by PC2 is negligible compared the amount of variance explained in PC1. 
Therefore discounting the separation in the PC2 direction this plot looks similar to the 
corresponding Raman plot in Figure 4.4(B). 
 

 

 
Figure S4.3: Loadings from the first LV from the PLSR model for the quantification of 

glycosylation in transferrin.  

 
Figure S4.4: Correlation analysis of product samples with unknown levels of 

glycosylation and 75% glycosylated transferrin. 
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Figure S4.5: 2D-correlation synchronous contour plots of temperature dependent 
variations in the Optim spectra of transferrin proteins 
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Chapter 5: Characterising Different Variants of GFP 

Using Vibrational Spectroscopy and the 

Optim 1000. 

 

5.1 Introduction. 

Following on from the previous work, we now aim to characterise a set of green 

fluorescent protein (GFP) mutants which have been artificially glycosylated with various 

sugars at different glycosylation sites, using both vibrational spectroscopy and an Optim 

1000 spectrometer.  

 

GFP is comprised of at β-barrel type structure, with an α-helix running through the middle 

of the barrel (Figure 5.1). The α-helix has a chromophore covalently bound, which is 

responsible for the green fluorescence emission of GFP (centred ~510-550nm) (Tsien, 

1998). Fluorescence emission is made possible due to interactions between oxygen 

atoms in the chromophore and 

neighbouring basic amino acid 

residues. Therefore when GFP is 

denatured, disruption to the 

network of hydrogen bonds causes 

a loss of fluorescence emission, 

making green fluorescence a 

suitable indicator of changes to 

tertiary structure (Tsien, 1998, 

Cubitt et al., 1995).     

 

GFP samples received for analysis 

in this study had undergone point mutations to incorporate extra free cysteine residues at 

various positions. The proteins have then been artificially glycosylated, with either 

 
Figure 5.1: Cartoon diagram of GFP 

showing the positions of cysteine 
mutations and the Chromophore. 
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glucose or mannose, through the thiol on the cysteine. This has been achieved by 

attaching an amino ethyl linker to the sugar and reacting the linker with the thiol group.  

 

First, we aim to determine if it is still possible to detect glycosylation is systems such as 

this where the protein is larger (twice the size of RNase) and the glycan is much smaller 

than with the previously studies system.  In addition, we also aim to characterise the 

effects of these mutations and modifications on the conformation and stability of the 

protein, in particular whether artificial glycosylations of this type still bring about the same 

type of structural changes as seen in natural glycosylation.    

 

 

 

5.2 Materials and Methods. 

5.2.1 Samples. 

GFP samples were made by Andrew Martin and Sabine Flitsch at the University of 

Manchester. Four different mutants of GFP were received: A wild type, E6C mutant, 

which has a point mutation of glutamate 6 to cysteine, I229C mutant, which has a point 

mutation of isoleucine 229 to cysteine and a ‘double’ mutant which, has both of the 6 and 

229 point mutations. The positions of these mutations are shown on the protein structure 

in Figure 5.1. In addition to the point mutation the I229 mutant has another mutation 

which clipped five amino acids from the end of the sequence.  

 

Three different chemically modified variants of both E6C and I229C mutants were 

supplied: two glycosylated forms of the protein; one with a single mannose residue 

attached through the mutated cysteine, and one with a single glucose. We also received 

E6C, I229C and double mutants with only the amino ethyl linker which attaches the 

sugar. Samples are summarised in Table 5.1.   
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5.2.2 Raman Spectroscopy. 

Raman data were collected using the Renishaw 2000 Raman microscope described in 

Chapter 2. All Spectra were all were single accumulation, extended scans between 400 

and 1800 cm
-1

, with an exposure time of 120 s.  2 μL of sample were spotted onto a 

hydrophobic SpectraRIM
TM

 slides, detailed in section 2.1.1.1, and allowed to dry out at 

room temperature for approximately 1 h. Each reported spectrum is an average of 6 

spectra collected from different positions within each sample spot, as depicted in 2.1.1.1. 

Data were pre-processed (smoothing, baseline correction and normalisation) according to 

the method optimised in Chapter 3 (3.3.3.1). 

 

5.2.3 FT-IR spectroscopy. 

FT-IR spectra were collected on a Bruker FT-IR instrument described in 2.1.2. 4 µL of 

each sample was spotted onto a 96 well silicon plate and allowed to dry at room 

temperature. Spectra were recorded over 4000-600 wavenumbers, with 64 

accumulations per sample.  

Table 5.1: Summary of GFP Samples. 

Mutant Type Modification Abbreviation used 
in this work 

Wild Type None WT 

E6C None E6C 

E6C Glycosylated- Glucose E6CG 

E6C Glycosylated-Mannose E6CM 

E6C Linker Only E6CL 

I229C None I229C 

I229C Glycosylated- Glucose I229G 

I229C Glycosylated-Mannose I229M 

I229C Linker Only I229L 

Double (E6C & I229C) None D 

Double (E6C & I229C) Linker Only DL 
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5.2.4 Optim 1000. 

5.2.4.1 Optim Thermal Ramp Experiments. 

9 µL of three replicates of each sample were loaded into a micro cuvette array (MCA). A 

temperature ramp from 35 to 95 °C was applied to the samples with a temperature 

tolerance of 0.3 °C. Spectra were recorded at 1 °C intervals with a 60 s hold time at each 

temperature. Spectra were collected with 1 s exposure time with the slit width set to 100 

µm. Each run was performed in triplicate, with three analytical replicates of each sample 

per run.  Spectra reported in the application note in Appendix 2B, were recorded with and 

extended grating in order to capture the full green fluorescence peak, in this experiment 

data were collected with a slit width of 25 µm and a 10 ms exposure time.   

 

5.2.4.2 Optim Isothermal Experiments. 

9 µL of three replicates of each sample were loaded into an MCA.  Samples were rapidly 

heated to, and held at, a set temperature, chosen from observing the results of the 

previous thermal ramp experiments. In this case samples were held at 70 °C with a 

tolerance of 0.5 °C and spectra were recorded at 60 second intervals for 200 min. 

Spectra were collected with 10 s exposure time with the slit width set to 100 µm. Each run 

was performed in triplicate, with three analytical replicates of each sample per run.   

 

5.2.5 Microscopy. 

Microscope images and Fluorescence correlation spectroscopy (FCS) measurements 

were recorded on a Zeiss LSM 51 ConfoCor 2 setup (Zeiss, Jena, Germany), equipped 

with an Argon laser and a 40 x objective lens. 400 µL of sample was analysed in a Lab-

Tek-Nunc® eight-well chamber slide (Fisher Scientific, Leicestershire, UK). FCS 

measurements were performed at 90 runs each of 10 s duration. Single-component fits 

were applied to the FCS data and diffusion times were calculated by the instrument 

software. 
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5.2.6 Data analysis. 

Vibrational spectroscopic data were exported into Matlab for pre-processing and PyChem 

was employed for PCA. Spectral figures were plotted in GRAMS Ai. Optim data were 

imported into Optim Analysis software for preliminary analysis. Data were then exported 

into Origin for further analysis and for plotting figures. 2D correlation calculations were 

performed using 2D shige freeware. PARAFAC of Optim data was performed in R. 

 

5.3 Results and Discussion.  

5.3.1 Raman Spectroscopy. 

The initial aim of this section of work was to detect artificial glycosylation in E6C and I229 

GFP using Raman spectroscopy. However as it became apparent that each mutant, and 

the different variants of each mutant, had much more conformational variation than 

previously expected, we also began to focus on structural interpretations of the Raman 

data.  

 

5.3.1.1 Raman Spectroscopy of the I229C Mutant. 

To begin with comparisons were made between non-glycosylated I229C and the protein 

glycosylated with glucose (I229G). PCA of this Raman data shows, once again, that 

differentiation between native and glycosylated forms is easily achieved. Figure 5.2A 

shows the two samples to be separated into two distinctive clusters across PC1, with 

80.69% of the variance explained by this PC.  

 

The Raman spectra of these samples are displayed in Figure 5.3, with the major bands 

from the PCA loadings indicated by the red asterisks. The most notable difference in the 

spectra is the band appearing at ~933 cm
-1 

in the glycosylated spectra. This band could 

be attributed the ring deformation modes from the sugar residue (Oleinikov et al., 1998).  

In addition we see a shoulder band increasing in intensity in the glycosylated GFP 

spectra at ~1046 cm
-1

, again this band could be assigned to vibrations arising from the  
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Figure 5.2: PCA scores plots (PC1 vs PC2) of Raman data from (A) I229C GFP and I229C 

GFP glycosylated with glucose, (B) I229C GFP and I229C GFP glycosylated with either 
glucose or mannose, (C) I229C GFP and E6C GFP and (D) E6C GFP and E6C GFP with 

glucose. 
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glucose molecules, in this case glycosidic ring breathing (De Gelder et al., 2007). 

Furthermore we see a number of bands changing in the spectra which can be assigned 

to conformational differences between the two proteins; most notably in the band centred 

at ~1550 cm
-1

 arising from tryptophan residues (Barron et al., 2002). We also see 

variations in the amide I and amide III bands, comparable with the trends observed in 

these regions in the RNase system. 

 

Following on from this we compared the Raman spectra from mannosylated I229C to the 

previous data. The PCA plot in Figure 5.2B shows the ability to distinguish between un-

modified and glycosylated variants of I229C GFP across PC1. It could also be said that in 

this plot the two different glycans (mannose or glucose) appear to form separate clusters; 

suggesting that Raman spectroscopy has the ability to distinguish between different 

glycoforms of the same protein. Inspection of the Raman spectrum of mannosylated 

I229C (not shown) showed the same ring vibrations at ~933 and ~1046 cm
-1

 as observed 

in the I229G variant. This provided further proof that these vibrational modes are indeed 

glycosidic based. 

 
Figure 5.3:  Average Raman spectra of I229C GFP and I229C GFP with 

glucose.  Asterisks indicate the bands highlighted by the PCA loadings. (Spectra 
have been smoothed and baseline corrected). 
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In order to verify that these bands were due to the sugar moiety specifically, and are not 

just due to conformational differences in the proteins or bands arising from the amino-

ethyl linker itself, we then examined the spectra of the I229C mutant with only the linker 

attached (I229L). The spectra, shown in Figure 5.4, display none of the features assigned 

to the glycosidic ring, and exhibit similar spectra to the un-modified protein in these 

regions. However it is still possible to distinguish between I229C and I229L based on 

differences attributed to structural changes in the proteins.  

 

All of the I229C spectra suggest conformational 

differences between the proteins, the most notable 

difference being in the tryptophan band at ~1550 

cm
-1

, specifically due to the indole ring breathing 

mode of the amino acid side chain (Figure 5.5), 

which is indicative of changes in the higher order 

structure of the protein. GFP has only one 

tryptophan residue, which is located on the central 

 
Figure 5.4:  Average Raman spectra of I229C GFP and I229C GFP with 

glucose and I229C GFP with linker.  Asterisks indicate the bands discussed in 
the text. (Spectra have been smoothed and baseline corrected). 

 
Figure 5.5: Raman spectra of 

all I229C GFP mutants 
focussed on the Indole ring 

breathing mode (~1550 cm-1). 
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alpha helix. The changes in this band suggest that the different variants have differences 

in tertiary structure which alter the solvent exposure of the tryptophan residue. 

 

5.3.1.2 Raman Spectroscopy of the E6C Mutant. 

First we compared the Raman spectra of unmodified E6C to the spectra recoded from the 

I229C mutant. The two mutants were certainly distinguishable by PCA, with 87.61% of 

the variance described by PC1 (Figure 5.2C). This strongly suggest a notable variation in 

tertiary structure between the two mutants as a single point mutation alone is unlikely to 

cause this much variance in the Raman spectra.  

 

This difference in higher order structure brought about by the mutations is confirmed by 

examining the average Raman spectra of E6C and I229C and the PCA loadings for PC1. 

Once again the most notable difference can be ascribed to a change in the environment 

around the tryptophan residue. This is corroborated by the increase in intensity of the 

~1630 cm
-1

 region of the amide I band in the I229C spectra, which suggests that α-helix 

structures, which is where the tryptophan is, are becoming more solvated (Takekiyo et al., 

2006). Furthermore, the amide III region exhibits a shoulder at ~1240 cm
-1

 which is more 

intense in the I229C mutant. This band can be specifically assigned to ordered β-sheet 

structure (Huang et al., 2006, Liang et al., 2006), suggesting disruptions to the β-barrel 

structure in one of the mutants.  

 

Spectra recorded from glycosylated E6C, shown in Figure 5.6, do not show the same 

trends as seen in the I229C samples. The glycosidic bands seen in I229G and I229M at 

~933 and ~1046 cm
-1

 are not present in the spectra of E6C glycosylated with either 

mannose or glucose. Nonetheless it is still possible to distinguish between glycosylated 

and un-modified E6C variants using PCA, as displayed in Figure 5.2D. PCA loadings 

show that this separation is based primarily on the structural features discussed 

previously: amide I, amide III and tryptophan bands. 
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The final step in this analysis was to compare the data collected from all E6C and I229C 

variants. This comparison displaying the trends between all samples is shown in Figure 

5.7. There is a clear separation across PC1 of the modified (glycosylated and linker) and 

the un-modified mutants, with sub-clusters of glycosylated variants and protein with only 

the linker attached. It could also be argued that there is a separation between the 

proteins glycosylated with mannose and the proteins glycosylated with glucose. Moreover 

the E6C and I229 mutants separate based on structural differences across PC2.  

 

 
Figure 5.6:  Average Raman spectra of E6C GFP and E6C GFP with glucose 
and I229C GFP with glucose.  Asterisks indicate the bands discussed in the 

text. (Spectra have been smoothed and baseline corrected). 

 
 

Figure 5.7: PCA scores plot (PC1 vs PC2) of Raman data from all I229C variants 
and all E6C variants. 
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In conclusion, Raman data clearly shows structural differences between the I229C and 

E6C mutants. The major difference in the Raman spectra of these mutants was found to 

be in the indole ring breathing mode of the tryptophan residue; which could be due to a 

change in higher order structure which leaves the tryptophan more exposed.  A change in 

conformation of this magnitude is unlikely to be caused by a single point mutation alone, 

but could be due to the additional mutation which deleted 5 amino acids from the end of 

the I229C sequence (Figure 5.8).  An alternative hypothesis for the variation in the data 

collected from these GFP samples is that the free cysteine residues which are present in 

the un-modified mutants make the molecules more prone to aggregation and therefore 

altering the structural bands which arise from the proteins.  

 

We have also shown that we are able to distinguish between glycosylated and non- 

glycosylated proteins in this artificially produced system. In the I229C mutant we have 

identified bands in the spectra which are solely due to the glycan vibrations. However 

these bands were not detected in the spectra of the glycosylated E6C mutants, and 

distinction in this case was based on the structural differences brought about by 

glycosylation. This leads to the question: why can we see these sugar vibrations in one 

mutant and not in the other?  One theory is that the glycan is simply more accessible in 

the I229C mutant. Although the glycosylation sites appear to be equally exposed in the 

cartoon shown in Figure 5.1, a closer look at the amino acid sequences of these 

particular mutants show us that the addition of a polyhistidine-tag (to aid in purification) at 

the start of the sequence and the clipping of five amino acids at the end, will leave the 

I229C mutation much closer to the end of the sequence than the E6C glycosylation.  

 

5.3.2 FT-IR Spectroscopy. 

FT-IR spectroscopy was performed in order to corroborate the structural differences 

alluded to by the Raman data. For FT-IR spectra and PCA plots see supplementary 

information (Figure S5.1). As with the Raman data it was possible to distinguish between 

E6C and I229 mutants based on their IR spectra; again the PCA loadings indicate a band 

and ~1550 cm
-1 

to be instrumental in this separation (Figure S5.1A and C). FT-IR spectra 
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Figure 5.8: Amino acid sequences of I229C and E6C mutants. Red font indicates the 
his tag sequence, green font indicates sites of cysteine mutations and blue font 

highlights the amino acids which are clipped from the end of the sequence in I229C. 

 

of I229C and glycosylated I229C can be easily separated by PCA, with loadings 

indicating that separation across PC1 is largely due to a band at ~1064
 
cm

-1
, possibly 

arising from glycosidic vibrations (Figure S5.1B and D). Glycosylated E6C spectra do not 

exhibit this band. The PCA plot drawn from FT-IR data of all samples displays a similar 

trend to the Raman data with separation of modified and unmodified mutants across PC1, 

although distinction between mutants is less clear.  

 

 

 

 

 
Figure 5.9: PCA scores plot (PC1 vs PC2) FT-IR data from all I229C variants and 

all E6C variants. 
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5.3.3 Optim 1000 Analysis. 

Both thermal ramp and isothermal Optim experiments were performed on the GFP 

mutants, with the aim of confirming or disproving our hypotheses as to why there is so 

much variance displayed in the vibrational spectroscopy data. Furthermore, we wished to 

explore the effects of these conformational differences on the stability of the proteins. In 

addition to the I229C and E6C mutants have also compared here the profiles from the 

wild type and double mutants.  

 

5.3.3.1 Optim Spectra of GFP. 

The initial spectra at 30 °C recorded from each mutant are shown in Figure 5.10. We can 

observe from these spectra that the I229C sample has a substantially bigger 

fluorescence emission band when compared to other three mutants; indicating a change 

in the environment around the tryptophan residue. In addition we observe a red shift in 

the peak centre of the I229C mutant, ~323 nm in I229C compared with an average of 

~305 nm in the other three spectra. This shift is indicative of more solvent exposed 

tryptophan in this sample, which was also suggested by the Raman data.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10: Optim 1000 spectra of all four GFP mutants 

showing a zoom of the intrinsic fluorescence region. 
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5.3.3.2 Optim Thermal Ramp Experiments. 

A temperature ramp from 35 ºC to 95 ºC was applied to the samples, with spectra 

recorded at 1 ºC intervals. By plotting the Optim spectra collected at each temperature 

(Figure 5.11), we can observe a decrease in the natural GFP fluorescence (~500 nm) 

with increasing temperature and also changes in the intensity and shape of the intrinsic 

fluorescence band (~280-360 nm). Furthermore we can see increases in the intensity of 

both 266 and 473 nm light scattering bands above 75 °C. 

 

 

 

 

 

 

 

 

 

 

 

Optim spectra were then imported into the Optim analysis software for primary analysis, 

where unfolding curves were drawn from many different spectral parameters of the Optim 

data (maximum fluorescence intensity, integrated peak areas, spectral centre of mass 

etc.) plotted against temperature. A traditional unfolding curve was drawn by plotting the 

maximum intrinsic fluorescence intensity as a function of temperature, Figure 5.12A. This 

graph shows no particular unfolding transitions, which was also true for graphs drawn 

from the integrated peak area and the ratio of intensities at 350:330 nm (not shown), 

suggesting that it is not possible to track unfolding in GFP by monitoring changes in 

intrinsic fluorescence emission.  

 

 
Figure 5.11: Optim 1000 spectra of Wild Type GFP over a 

temperature range showing a zoom of the intrinsic 
fluorescence region. 
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However, Figure 5.12B appears to indicate that we are able to monitor unfolding in GFP 

by plotting the barycetric mean (the spectral centre of mass) as a function of temperature. 

Although this particular spectral feature is heavily influenced by the changes in the 

natural green fluorescence of GFP, hence we are technically measuring disruption to the 

chromphore rather than unfolding of the protein. Work was carried out to investigate the 

accuracy of using of green fluorescence to monitor GFP denaturation, which lead to the 

production an application note for Avacta Analytical, which can be viewed in the 

appendix.  

 

 
Figure 5.12: Graphs to show: (A) the maximum intrinsic fluorescence intensity as a function of 
temperature for unmodified mutants, (B) the barycentric mean of Optim spectra of unmodified 
mutants as a function of temperature, (C) the barycentric mean of Optim spectra of all I229C 

variants as a function of temperature and (D) the barycentric mean of Optim spectra of all E6C 
variants as a function of temperature. 
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The unfolding profiles calculated from the barycentric mean display slightly different 

unfolding behaviour for each mutant. Tm values, calculated by potting the derivatives of 

the curves, are summarised in Table 5.2. Tm calculations confirm that there are small 

variations in the stability of each mutant; with I229C being the least stable and the wild 

type the most stable. Furthermore when comparing the profiles for modified I229C and 

E6C variants to the un-modified proteins (Figures 5.12A,C and D), we can see that in 

both mutants all of the modified proteins display similar behaviour which is distinctly 

different from the un-modified samples.  In addition all of the GFP mutants investigated in 

this study exhibit slightly lower Tm values than those quoted in the literature for other GFP 

mutants which range between 83 to 85 
o
C (Alkaabi et al., 2005, Melnik et al., 2011). 

 

 

 

5.3.3.2.1 Data analysis strategies for Optim 1000 data. 

Various data analysis strategies were then investigated for use in extracting more useful 

information from the Optim data.  As the curve drawn using the barycentric mean of the 

Optim spectra was largely based on the loss of green fluorescence and not changes in 

intrinsic fluorescence, we aim to use a variety of chemometric approaches to extract more 

meaningful information from the intrinsic fluorescence emission spectra. Even though the 

curve drawn fluorescence intensity showed no unfolding transitions, we were hopeful that 

data analysis can provide valuable information on the variations in intrinsic emission 

between mutants, as the raw spectra shown in Figures 5.10 and 5.11 display obvious 

differences in this region both between mutants and across a temperature range.  

Table 5.2: Summary Tm values calculated from the first derivative of the 
unfolding curves. Calculations were made from three independent 

measurements; Tm1, Tm 2 & Tm 3.  

Sample Name Tm1 Tm2 Tm3 Mean Tm 

WT 
77.99 77.99 77.06 77.68 

E6C 
76.99 76.96 75.93 76.62 

I229C 
74.98 75.35 75.37 75.23 

D 
75.42 75.97 75.04 75.48 
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2D correlation analysis was applied to Optim spectra, however due to interference from 

the light scattering and green fluorescence bands, calculations were performed on the 

intrinsic fluorescence region only (280-400nm). 2D correlation contour plots, Figure 5.13, 

show that there is a large amount of variation in the unfolding profiles of the I229C 

samples, but that the E6C proteins all have very similar unfolding behaviour. 2D 

correlation spectroscopy was investigated in more detail for use in the analysis of Optim 

1000 data which show little or no transitions in the Optim primary analysis, using the GFP 

data set. This work has been compiled as an application note for Avacta Analytical which 

can be found in the appendix.  

 

Principal components analysis was also applied to the data set to determine if any more 

information about the variations in unfolding profiles could be extracted, and also to aid in 

the visualisation of differences and similarities between the samples. Although the 

unfolding curves in Figure 5.12 showed only small variations in unfolding behaviour, in 

the PCA plot of the Optim data from all GFP samples the un-modified I229C protein 

shows a very different trend to all the other samples, and the plot is dominated by the 

I229C profile (Figure 5.14A). When re-plotting the PCA with the I229C data removed we 

can easily see differences between all of the samples (Figure 5.12B).  

 

Figure 5.15C shows the PCA of only the E6C samples, unlike with the 2D correlation 

analysis we are now able to see obvious differences in the unfolding behaviour of each 

variant. An interesting point to note here is that all of the modified mutants appear to be 

grouped together, a validation of the conformational differences between modified and 

un-modified proteins alluded to by the Raman spectra. Furthermore if we remove the 

sample labels and instead label each point with the temperature at which each spectrum 

was recorded we are able to observe the transition region for each sample, which 

correlates well with the Tm calculations in Table 5.2 (Figure 5.15D) 
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Figure 5.13: 2D-correlation asynchronous contour plots of temperature dependant variations in 
the intrinsic region (208-400 nm) of the Optim spectra of the E6C and I229C mutants. 
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Figure 5.14: PCA Scores plots (PC1 vs PC2) of Optim data from (A) all mutants, (B) all mutants 
without I229C, (C) E6C mutant and (D) E6C mutant with samples labelled by temperature. 
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In order to simplify visualisation of the similarities between GFP samples further we have 

used parallel factor analysis (PARAFAC). The scores plot, seen in Figure 5.15 confirms 

that the un-modified I229C is the most different and also shows a separation between the 

modified and unmodified proteins.  

 

 

A third application note detailing how PCA and PARAFAC can be used to highlight 

transitions which cannot be seen in a traditional curve, and also simplify visualisation of 

similarities and differences between unfolding profiles was produced and can be viewed 

in the appendix. 

 

5.3.3.2.2 Optim Light Scattering Data. 

Finally we examined the light scattering data collected in Optim thermal ramp 

experiments. The intensity of the light scattering band at 266 nm for all four of the GFP 

mutants is shown as a function of temperature in Figure 5.16A, where the I229C mutants 

can be seen to have a vastly different profile from all the other samples. The Wild type 

and Double mutants both begin to aggregate at around ~74 °C which coincides with the 

 
 

Figure 5.15: PARAFAC sample scores plot (PC1 vs PC2) of intrinsic region of Optim 
spectra. 
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beginning of unfolding transition, whereas in the I229C mutant has a much higher 

aggregation propensity with aggregation beginning much earlier (~35 °C). The E6C 

mutants appears much less prone to aggregation, giving credence to the hypothesis that 

variation in the Raman data of E6C and I229C mutants could be in part due to differences 

in aggregation behaviour. The levels of aggregation seen in I229C could be due to the 

I229C already having a more open structure, which was hinted to by the red shift in the 

initial Optim spectrum and the tryptophan band in the Raman spectrum. However, the 

increase in aggregation is more likely to be due to the unreacted cysteine on the outside 

of the protein, a theory which is confirmed by the aggregation profiles of the modified 

I229C (Figure 5.16B); which show a much lower aggregation propensity when the free 

thiol group is bound to the amino ethyl linker.  

 

 
Figure 5.16: Graphs to show the intensity of light scattering data at 226 nm as a function of 

temperature for (A) all GFP mutants and (B) all I229C variants. 
 

 

5.3.3.3 Optim Isothermal Experiments. 

In order to probe the variations in the thermal unfolding of these samples further an 

isothermal experiment was performed. Samples were held at 70 °C with spectra recorded 

every 60 s. As with the thermal ramp experiments, these data indicate that the I229C 

mutant has a very different profile, however in these experiments this is clearly evident 

from the curves without further data analysis. Figure 5.17A shows I229C to be much less 

stable than the other mutants at 70 °C, with a very fast rate of unfolding recorded in the 
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first 20 min. All three of the other mutants appear to be stable at 70 °C. Once again this 

trend was shown to be unique to only the unmodified I229C protein (Figure 5.17B).  

 

 

` 

5.3.4 Investigating Aggregation Further- Microscopy.  

To understand the variations in the aggregation propensity of the GFP samples indicated 

by the Optim data better, further investigations were carried out on the un-modified 

mutants using optical microscopy. 100 images were collected from a well containing 400 

µL of sample. The images collected from the wild type sample showed little or no signs of 

aggregates (Figure 5.18A), whereas both the E6C and double mutants exhibited 

aggregates between 2-4 µm in size, which occurred more frequently in the images 

collected from the double mutant. The I229C sample was found to have very large 

aggregates (~10 µm) which were observed in nearly every frame (Figure 5.18B). A larger 

collection of microscope images can be viewed in supplementary information (Figure 

S5.2). In addition images were also collected from the bottom of the well plate, Figure 

5.18C and D. These images indicated that both the I229C and double GFP mutants had 

a large amount of protein precipitated on the bottom of the well; in the I229C images 

these aggregates are as big as 100 µm and appear to be fibril like in nature.  

 
Figure 5.17: Graphs to show: (A) the integrated area of intrinsic fluorescence in all GFP 

mutants held at 70 °C as a function of time and (B) the integrated area of intrinsic 
fluorescence in all I229C variants held at 70 °C as a function of time. 
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Further proof of these observations was gained by performing FCS on the microscope 

images. FCS is a technique that calculates a correlation analysis of the fluctuations in 

fluorescence intensity within a sample, which are caused by the Brownian motion of 

particles. Using this method it is possible to calculate the diffusion time for each sample, 

which is proportional to the size of the particles in the sample, i.e. larger particles will 

have longer diffusion times.  

 

The results from this analysis are summarised in the box and whisker plot in Figure 5.19 

and the average diffusion time for each sample (mean of 90 measurements) is given in 

Table 5.3. Wild type GFP has the smallest average diffusion time and also the smallest 

deviation between the measurements, confirming that the wild type GFP is the least 

 
 

Figure 5.18: (A) Microscope Image from Wild Type GFP, (B) Microscope Image from I229 
GFP, (C) Microscope Image from bottom of sample well for the I229C GFP mutant and (D) 

Microscope Image from bottom of sample well for the double GFP mutant. 
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prone to aggregation of the four mutants tested. The E6C mutant has a slightly higher 

average partial size than the wild type sample, which verifies the observations from the 

microscope images, but contradicts the previous Optim data which shows the E6C 

mutant to be the most resistant to aggregation at elevated temperatures (Figure 5.16A).  

 

Finally, both the I229C and double mutants have 

similar average diffusion times, with I229C being 

slightly higher. In addition Figure 5.19 shows the I229C 

sample to have a much higher frequency of larger 

particles than the other three samples. This confirms 

the results from the Optim experiments which show the 

I229C to be much more prone to aggregation. If, as 

suggested earlier, this increase in the aggregation 

propensity in this particular GFP is in fact due to the un-reacted cysteine residue in the 

protein, then we must ask ourselves, why does this only occur in the I229C sample when 

the E6C mutant also has a free thiol. The most plausible explanation for this is that the 

cysteine mutation at position 229 is more available than the one at position 6; due to the 

clipping of five amino acids from the end of the chain after the 229 cysteine and the 

addition of a His-tag at the opposite end of the sequence (see Figure 5.8). The 

 
Figure 5.19: Box and whisker plot displaying diffusion times for GFP mutants 

calculated from FCS measurements. 

Table 5.3: Average diffusion 
timed for GFP mutants calculated 
from FCS results. (values are the 

mean of 90 measurements) 

Sample 
Name 

Mean Diffusion 
Time (µs) 

WT 120.468 

E6C 148.376 

I229C 169.089 

D 162.416 
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hypothesis that the changes in aggregation profiles is due specifically to the cysteine 

mutations is substantiated by the fact that the wild type sample, which has no external 

free cysteine residues has been shown by microscopy and FCS to be significantly less 

prone to aggregation that all of the other samples. 

 

5.4 Conclusions.  

Raman spectroscopy has for a third time in this thesis, been shown to be capable of 

distinguishing between glycosylated and non-glycosylated proteins; in this case a series 

of synthetic glycosylations in GFP mutants. Data collected from these proteins have 

highlighted that the position of the glycan is an important factor for the detection of 

glycosidic bands. Moreover, It has been shown that in cases where sugar vibrations are 

not observed in the Raman spectrum of a glycoprotein we are still able to easily 

differentiate between the glycoprotein and it’s non-glycosylated equivalent based on 

structural differences between the two proteins.  

 

Raman data has also been proved able to detect differences in the vibrations 

corresponding to higher order structure, indicating conformational variations between the 

E6C and I229C mutants. Further investigations by light scattering and fluorescence 

correlation spectroscopy indicate that there are vast differences in the aggregation 

propensity of these two GFP mutants; which could account for the unusual variations 

observed in vibrational spectroscopic data.  

 

In addition, fluorescence emission spectra of the intrinsic protein fluorescence suggests 

that the I229C sample has more solvent exposed tryptophan than the E6C GFP, 

corroborating the variations in the indole ring breathing mode observed in the Raman and 

IR spectra. This points towards additional structural changes between the mutants. Optim 

thermal ramp and isothermal experiments suggests that these structural differences 

decrease the stability of the I229C GFP.  
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5.5 Supplementary Information.  

 

Figure S5.1: (A) FT-IR Spectra of I229C mutant and E6C mutant, (B) FT-IR Spectra of I229C 
mutant and I229C mutant glycosylated with glucose and mannose, (C) PCA scores plot (PC1 vs 
PC2) of FT-IR data from E6C and I229C and (D) PCA scores plot (PC1 vs PC2) of FT-IR data 

from I229C and I229G 
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Figure S5.2: Microscope Images From GFP. 
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Chapter 6: Detection of the Sickle Cell Mutation in 

Haemoglobin Using Raman Spectroscopy. 

 

Portions of the data in this chapter we collected by Sarah Newton as part of a MChem 

project under my supervision.  

 

6.1 Introduction.  

This portion of work was concerned with the use of Raman spectroscopy for the 

discrimination and quantification of the sickle cell mutation in haemoglobin. In these 

preliminary investigations we aimed to assess the suitability of Raman spectroscopy as 

an approach that could be used as a point-of-care diagnostic tool for the detection of 

sickle cell anaemia and the sickle cell trait from biological samples.  

 

Haemoglobin (HbA) is the main constituent of red blood cells (erythrocytes) and is 

responsible for the transport of oxygen around the body (Silverstein and Nunn, 1997). 

Haemoglobin is a globular protein comprised of four chains and four haem groups (Figure 

6.1). The four chains are organised 

into two pairs, two α-subunits and two 

β-subunits, in a tetrahedral 

arrangement (Stryer et al., 2002, 

Nienhuis and Bunn, 1974).   

 

Sickle cell haemoglobin (HbS) is one 

of approximately 500 possible genetic 

mutations of HbA, most of which are 

point mutations (Stryer et al., 2002). 

The mutation in HbS, shown in Figure 

6.2A, is a point mutation that results 

 
Figure 6.1: Cartoon diagram of HbA 

showing the position and structure of haem 
groups. Drawn in PyMol from PDB file 

2HHB. 
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in the single amino acid substitution of a glutamic acid for a valine at position 6 on the β-

chain (Silverstein and Nunn, 1997). The side chain of valine is neutral, whereas the 

glutamic acid has a negative charge; this leads to a ‘sticky’ hydrophobic point on the 

surface of the β-chain which causes increased levels of aggregation in HbS (Weiss et al., 

2009, Pumphrey and Steinhar.J, 1973, Murayama, 1972).  

 

Sickle cell anaemia is a hereditary blood disorder which will affect one in every four 

hundred African-American children every year. Children of other ethnic origins are also 

affected but with a much lower probability (Aygun and Odame, 2012). A homozygous 

child, with two copies of the sickle cell gene will suffer from sickle cell anaemia, whereas 

a heterozygous individual, with one normal HbA gene and one HbS gene, will be a carrier 

of the sickle cell trait, but will not suffer the symptoms of the disease (Silverstein and 

Nunn, 1997). In a sufferer of sickle cell anaemia approximately 97% of haemoglobin will 

be HbS, compared to around 40% HbS in a carrier of the trait (Silverstein and Nunn, 

1997, Pumphrey and Steinhar.J, 1973). 

 

In a patient suffering 

from sickle cell 

anaemia, the HbS 

molecules are able to 

bind to oxygen just as 

efficiently as HbA, the 

problematic properties 

of HbS are 

encountered only after 

deoxygenation of 

haemoglobin 

(McCavit, 2012). The hydrophobic point on HbS can cause molecules to polymerise into 

stiff, rod-like, fibril structures after deoxygenation (Figure 6.2B). The formation of these 

fibrils will cause erythrocytes to adopt a sickle shape; these sickle shaped erythrocytes 

 
Figure 6.2: (A) Cartoon diagram of HbS showing the position 
of the glutamic acid substitution in red. Drawn in PyMol from 
PDB file 2HHB and (B) Cartoon depiction of HbS fibrillation. 
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will have difficulty passing through capillaries and can ‘stack-up’ in blood vessels, causing 

blockages which result in blood deprivation to the affected tissues (Silverstein and Nunn, 

1997, Meier and Miller, 2012, Chien et al., 1970).  In addition, sickle cell erythrocytes will 

have a shorter life cycle than normal erythrocytes and can rupture and die after 20 days, 

resulting in a reduced red blood cell count, which can lead to anaemia (Silverstein and 

Nunn, 1997).  A carrier of the sickle cell trait will have none of the symptoms described 

here, as the majority (~60%) of their haemoglobin will be HbA (McCavit, 2012, Meier and 

Miller, 2012). 

 

The most routine method of diagnosing sickle cell disease is the sodium metabisulfate 

test; in which a sample of patient’s blood is mixed with sodium metabisulfate which 

causes defective erythrocytes to sickle. The sample is placed on a glass slide and sickled 

cells are identified using microscopy. However, this method cannot distinguish between 

samples from patients with sickle cell anaemia and samples from patients with the sickle 

cell trait, and therefore has a high rate of false positives (Aygun and Odame, 2012, 

Silverstein and Nunn, 1997). The Sikledex method is another chemical test which uses 

haemolysis of erythrocytes. Once cells are lysed HbA will dissolve readily in solution but 

HbS will aggregate; therefore a cloudy solution will indicate the presence of HbS. 

However this method can be inaccurate in new born babies, and again cannot 

differentiate sickle cell anaemia from the sickle cell trait (Meier and Miller, 2012, Nalbandi 

et al., 1971). The most reliable approaches, which do offer diagnosis of both sickle cell 

anaemia and the sickle cell trait, are electrophoresis-based tests (Cotton and Gulbis, 

2013, Meier and Miller, 2012). Although these methods are reliable and relatively 

inexpensive, a Raman spectroscopy based approach would be a less laborious, higher 

throughput alternative, with the potential for portable in situ diagnosis. 

 

The suitability of Raman spectroscopy as a tool for the diagnostic analysis of 

haemoglobin, erythrocytes and whole blood has been well documented in the literature. 

Many previous studies have centred on the imaging of erythrocytes using Raman 

microscopy (Wood et al., 2011). This approach was also used to investigate the 
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aggregation of HbS inside blood cells and also to detect haemozoin in blood for the 

diagnosis of malaria (Webster et al., 2008, Wood et al., 2005). More recently, the ability 

of Raman spectroscopy to detect glycated haemoglobin (Hb1Ac) was investigated for use 

in the assessment of glycaemic control in patients with diabetes mellitus (Barman et al., 

2012). Raman spectra taken from whole blood have also allowed the quantification of 

blood glucose concentrations (Shao et al., 2012).  

 

In this study we have investigated the use of Raman spectroscopy as a method that may 

be able to discriminate between HbA and HbS in both pure protein samples and mock 

biological samples, in which proteins were spiked into human plasma stock. In addition, 

we have attempted to quantify relative concentrations of HbA and HbS in a sample, in 

order to distinguish between patients with sickle cell anaemia and carriers of the sickle 

cell trait. Finally, we have studied aggregation profiles of HbS and HbA using light 

scattering data in order to compare this method to the results obtained using Raman 

spectroscopy.         

 

6.2 Materials and Methods. 
 
6.2.1 Materials. 

Haemoglobin A (HbA) and haemoglobin S (HbS) were purchased as lyophilized powders 

from Sigma-Aldrich (Dorset, U.K.). Human plasma stock was also purchased from Sigma-

Aldrich and was prepared using a protein A chromatography cartridge to remove plasma 

proteins. 

 

6.2.2 Raman Spectroscopy. 

Raman data were collected using a Renishaw 2000 Raman microscope described in 

Chapter 2. All spectra were single accumulation, extended scans between 400 and 1800 

cm
-1

, with an exposure time of 120 s.  2 μL of sample were spotted onto a hydrophobic 

Tienta SpectraRIM
TM

 slides (section 2.1.1.1) and allowed to air dry at room temperature 

for approximately 1 h. Each reported spectrum is an average of 6 spectra collected from 

different positions within each sample spot. For the wavelength comparison study in 
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6.3.1, the previously described Renishaw Raman spectrometer was used, operating 

either 785 nm or 633 nm excitation wavelengths. For the spectra collected at 532 nm a 

Biotools chiral Raman spectrometer (detailed in 2.1.1.2) was employed.  

 

A Delta Nu® Advantage 200A portable Raman probe equipped with a diode laser 

operating at 785 nm was used in the preliminary investigations (Delta Nu Inc, Laramie, 

WY, USA). The spectral range was 200 to 2000 cm
-1 

with a spectral resolution of 8 cm
-1

. 

The output of the laser is ~60 mW at source and ~30 mW at sample. Daily calibration of 

the instrument was achived by obtaining a spectrum of polystyrene using the calibration 

routine built into the software. The spectrometer was controlled using Delta Nu, Nu 

Spec™ software.  

 

6.2.3 Optim 1000. 

An Avacta Optim 1000 (described in 2.1.3) was used to collect light scattering data. 9 µL 

of three replicates of each sample (1 mg/ml haemoglobin in ultra-pure water) were loaded 

into a multi cuvette array (MCA). A temperature ramp from 25 to 80 °C was applied to the 

samples with a temperature tolerance of 0.3 °C. Spectra were recorded at 1 °C intervals 

with a 60 s hold time at each temperature. Spectra were collected with 1 s exposure time 

with the slit width set to 100 µm. Each run was performed in triplicate, with three 

analytical replicates of each sample per run.   

 

6.2.4 Data Analysis. 

Raman data were pre-processed in Matlab (smoothing, baseline correction and 

normalisation) according to the method optimised in Chapter 3 (3.3.3.1). PyChem was 

employed for PCA and PLSR. Spectral figures were plotted in GRAMS Ai. Optim data 

were imported into Optim Analysis software for preliminary analysis. Data were then 

exported into Origin for further analysis and for plotting figures.  
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6.3 Results and Discussion. 

6.3.1 Preliminary Investigations.  

Prior to further experiments, we investigated the most suitable excitation wavelength for 

Raman analysis of haemoglobin and spectra were recorded at 532, 633 and 785 nm 

(data not shown). Due to the large amount of fluorescence background present in both 

the 532 and 633 data, we determined that 785 nm was the most suitable available 

wavelength for this application.  

 

Initial experiments were conducted to investigate the feasibility of a Raman based 

method to detect haemoglobin in biological samples at relevant physiological 

concentrations (2.2-2.4 mM or ~35% of total blood content) (Barman et al., 2012). HbA 

was spiked into human plasma stock at 5% wt/vol increments from 0-100%. For these 

preliminary studies protein depleted plasma was used in order to identify which bands are 

due to haemoglobin, without the complication of bands arising from other plasma 

proteins. Samples were analysed on Tienta Spectra RIM
TM

 slides using a Renishaw 

Raman microscope with 785 nm excitation. 

 

The Raman spectra for 0, 50 and 100% HbA shown in Figure 6.3 display increases in the 

intensities of Raman bands with increasing HbA concentrations. This data set was then 

subjected to analysis by PLSR, where alternate concentrations were used for training and 

test sets. The PLSR predictions in Figure 6.4 indicate a strong correlation between HbA 

concentration and the Raman data, with a RMS error of 8.5% for the test data. 

Predictions were accurate at the lowest concentration tested of 5% HbA (or ~3.5 µM); 

significantly lower than the concentration range of haemoglobin which would be 

encountered in biological samples. Loadings from the PLSR analysis (not shown) indicate 

that the bands rising from amide I, amide III and phenylalanine vibrations, at ~1650,  

~1230, and ~998 cm
-1

, respectively, were the most selective for predicting HbA 

concentrations (Tuma, 2005, Lord and Yu, 1970).  
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We also carried out this same experiment on a portable Raman probe (Delta Nu 

advantage 200A) in order to simulate an in situ diagnostic test. Although the raw spectra 

(Figure S6.1A) were heavily plagued by fluorescence with poor peak resolution, PLSR 

predictions (Figure S6.1B), still show an ability to predict HbA concentrations from the 

Raman spectra, but with a higher RMS test error than that achieved with the microscope 

data. The loadings plot for this model (Figure S6.1C) exhibits many bands which can be 

attributed to proteins, most notably the hydroxyphenyl ring deformation mode of tyrosine 

 
Figure 6.3:  Raman Spectra of protein depleted plasma (0% HbA), 
Plasma with 50% Haemoglobin (50% HbA) and pure Haemoglobin 

(100% HbA) collected on Renishaw Raman Microscope. 
(Spectra have been Baseline corrected (ALS) and normalised (EMSC). 

 

 
Figure 6.4:.PLSR predictions from Raman data of HbA in plasma collected 

on Renishaw Raman Microscope. 
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at ~830 cm
-1 

(Siamwiza et al., 1975), which confirms that this model is based on real 

spectral features rather than differences observed in the background or baseline.  

 

6.3.2 Detecting Sickle Cell Haemoglobin using Raman Spectrscopy. 

Spectra were recorded from HbA and HbS on a Raman microscope. The average Raman 

spectra for each protein are displayed in Figure 6.5. Key features in the spectra are 

highlighted with asterisks and assignments for these bands are detailed in Table 6.1. 

Without the need for further chemometrics, visual inspection of the data shows that it is 

easy to discriminate between the two haemoglobin variants based on their Raman 

spectra. 

 

 

 

The band in the spectra at ~820 cm
-1

 has been attributed to the amino acid tyrosine; this 

band is known to increase in intensity as tyrosine residues become less exposed (De 

Gelder et al., 2007, Prevelige et al., 1993). Therefore, the sharp increase in the intensity 

of this peak observed in the spectrum of HbS suggests that HbS has an altered 

conformation which leaves tyrosine residues more buried than in HbA.  This change in  

 
Figure 6.5: Average Raman Spectra of HbA and HbS. Asterisk indicate key 

features which are assigned in Table 6.1. 
(Spectra have been Baseline corrected (ALS) and normalised (EMSC). 
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higher order structure could 

be brought about by the 

glutamic acid mutation 

which increases the 

aggregation propensity of 

HbS. Aggregation of HbS 

molecules may leave 

internal tyrosine residues less exposed to the external environment and therefore cause 

an increase the band observed at ~820 cm
-1

. These conformational differences are also 

reflected by the variations detected in the amide III (~1230 cm
-1

)  and  amide I  (~1650 

cm
-1

) regions of the spectra. 

 

Most interestingly, there is a sharp peak at ~1380 cm
-1

 in the spectrum of HbA which can 

be specifically assigned to the ionised carboxyl group of glutamic acid (Ashton et al., 

2007, De Gelder et al., 2007). This difference corresponds to the substitution of a 

glutamic acid residue on the outer surface of the β-chain of HbS. The spectral variations 

described here correlate well to the bands described in studies by Wood and colleagues, 

which monitored the aggregation of HbS and HbA inside red blood cells (Wood et al., 

2005).  

 

PCA was applied to this data set and the PCA scores (Figure 6.6A) show an excellent 

discrimination between HbA and HbS across PC1 with 78.71% TEV. The PCA loadings 

for this separation, shown in Figure 6.6B, correlate well with the bands which can be seen 

to be changing in the Raman data (Figure 6.5). Positive loadings, relating to HbA, show a 

good agreement with the spectrum of HbA, likewise the negative loadings correspond to 

the bands highlighted in the spectrum of HbS, most notably the previously discussed 

tyrosine vibrations at ~820 cm
-1

. 

 

 

Table 6.1: Raman band assignments for bands highlighted in 
the Raman spectra of HbA and HbS (Fig 6.5) (Ashton et al., 

2007, Tuma, 2005, Chen and Lord, 1980, Lord and Yu, 1970, 
De Gelder et al., 2007). 

~Wavenumber  (cm-1) Proposed Assignment 

820 Tyrosine ring 

1050 Phenylalanine Ring 

1220 Amide III  

1380 Glutamic Acid 

1420 CH2/CH3 from amino acid side chains 

1600 Amide I 
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The next step in this investigation was to spike HbA and HbS into human plasma stock in 

order to ascertain if these differences can still be identified in a complex ‘mock’ mixture. 

For this experiment we used plasma stock prior to protein A purification (i.e. with plasma 

proteins), in order to simulate more accurately a biological sample. Solutions were 

prepared at relevant, physiological concentrations of ~35% haemoglobin (equivalent to ~ 

2 mM), by dissolving 129 mg of lyophilised haemoglobin into 1 mL of plasma. PCA was 

then applied to this data and PCA scores in Figure 6.7 show a clear separation of HbA 

and HbS across PC1, with the loadings for PC1 (not shown) being comparable with those 

show in in Figure 6.6B. This result confirms that it is possible to differentiate between 

HbA and HbS in a mock biological sample.  

 
Figure 6.6: (A) PCA scores plot (PC1 vs. PC2) for the discrimination of HbA and HbS 

and (B) PCA loadings from PC1 

 
Figure 6.7: PCA scores plot (PC1 vs PC2) for the discrimination of ~ 

2mM HbA and HbS in plasma. 
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6.3.3 Detecting the Sickle Cell Trait using Raman Spectroscopy.  

Having previously demonstrated the ability of Raman spectroscopy to differentiate 

between mock samples from patients with sickle cell anaemia (HbS) and mock samples 

from healthy patients (HbA), we next attempt to quantify relative concentrations of HbA 

and HbS in a sample in order to discriminate between sickle cell anaemia and the sickle 

cell trait.  

 

Initially, spectra were recorded from a mixture of HbA and HbS at the medically relevant 

ratio of 40% HbS and 60% HbA, in order to simulate a sample from a carrier of the sickle 

cell trait. These data were then compared, through the use of PCA, to the spectra 

recorded previously from pure HbA and HbS. This experiment was performed twice; once 

with the proteins in aqueous solutions and once with the proteins spiked into human 

plasma stock.  

 

 

PCA scores plots for both analysis of protein samples and analysis of mock biological 

samples are shown in Figure 6.8A and 6.8B, respectively. Results from both experiments 

display clearly that we are able to differentiate 100% HbA and 100% HbS from the 

mixture of 40% HbS and 60% HbA. This suggests that it may be possible to diagnose not 

only sickle cell anaemia but also the sickle cell trait using Raman spectroscopy. However, 

 
Figure 6.8: PCA scores plot for the discrimination of  (A) HbA, HbS and a mixture 

of 40% HbS and 60% HbA and (B) HbA, HbS and a mixture of 40% HbS and 
60% HbA spiked in human plasma stock. 



 

- 148 - 

 

it should be noted that, unexpectedly, the spectra from pure samples lie closer together 

than the spectra collected from the mixtures, and it was thought that this could be due to 

protein-protein interactions between HbA and HbS. For this reason we have chosen to 

further investigate HbS and HbA mixtures by analysing a wider range of HbS 

concentrations; from 0-100% at 10% increments. Due to the success of previous 

experiments carried out on mock biological samples, we carried out this analysis solely 

on samples of haemoglobin spiked into human plasma.    

 

Raman spectra collected from all concentrations of HbS in HbA show changes in a 

number of peak intensities with varying HbS concentration (data not shown). To 

determine if these trends are linear, we focussed on the tyrosine band at ~820 cm
-1

. As 

this band was previously seen to increase in intensity in the Raman spectrum of HbS 

(Figure 6.5), we would expect this band to increase in intensity as the concentration of 

HbS increases. Using GRAMS Ai software, a peak fitting function was applied to this 

band in order to calculate the peak area at each concentration. Normalised peak areas 

were then plotted as a function of HbS concentration, in Figure 6.9A, and a linear trend 

was observed. This indicates that it may be possible to use this band to predict relative 

concentrations of HbS and HbA in a sample, and hence diagnose sickle cell anaemia and 

the sickle cell trait. There are a number of anomalous results in the graph, particularly at 

40 and 60% HbS. This could possibly be due to drying effects and orientation effects 

introduced by using drop-coating method on the Tienta Spectra RIM
TM 

slides.  

 

Data were then subjected to interrogation by PCA. The PCA scores plot in Figure 6.9B 

indicates a clear trend across PC1 with increasing HbS concentration. There is a definite 

distinction between pure HbS, pure HbA and the mixed samples, which once again 

suggests that Raman spectroscopy is capable of diagnosing both sickle cell anaemia and 

the sickle cell trait. There is also a clustering of individual HbS concentrations within the 

mixed samples. This quantitative trend is displayed more clearly by plotting PC1 scores  
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Figure 6.9: (A) Graph to show the correlation between HbS concentration and 

peak area of the band at ~820 cm-1
 (3 independent measurements are shown with 

the mean measurement indicated by the blue cross), (B) PCA scores plot of 
Raman data from HbS and HbA mixtures, (C) Graph of PCA scores from PC1 

plotted as a function of HbS concentration (values are the mean of 5 
measurements with standard error bars) and (D) PCA loadings from PC1, with 

bands discussed in the text highlighted by the red asterisk.  
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as a function of HbS concentration in Figure 6.9C, where mean PC1 scores for five 

measurements are plotted with standard error bars. Although there is some overlap 

between samples of different HbS concentrations in both Figure 6.9B and 6.9C, for this 

diagnostic application there is no need to quantify the exact amount of HbS, only to 

discriminate between HbA, HbS and a 40% HbS and 60% HbA mixture; which these 

results clearly demonstrate is possible.  

 

The loadings from PC1 for this analysis, shown in Figure 6.9D, show that all of the bands 

which were discussed previously for the discrimination of pure HbA and HbS were used 

in this separation, including the ~820 cm
-1

 tyrosine band, ~1000 cm
-1 

phenyl ring 

breathing mode, ~1230 cm
-1 

amide III vibrations, ~1380 cm
-1

 glutamic acid band, and the 

amide I vibrations at ~1650 cm
-1

. In addition, there are three large peaks present at ~785 

cm
-1

, ~698 cm
-1

 and ~650 cm
-1

, which can all be attributed to vibrations arising from the 

amino acid side chains, specifically; vibrational stretching of the indole ring in tryptophan 

(Liang et al., 2006), NH2 bending in glycine (Kumar et al., 2005) and ring vibrations from 

tyrosine (Lord and Yu, 1970), respectively.  

 

As with the previous PCA analysis in Figure 6.8, it could be said that the two pure 

samples are closer to each other, with separation of pure and mixed samples across 

PC2. However the amount of variance explained by PC2, 0.51% TEV, is negligible 

compared to the 99.37% TEV found in PC1. Nevertheless, we have explored the 

possibility of a trend occurring between pure and mixed samples due to protein-protein 

interactions by investigating the aggregation profiles of mixed samples using light 

scattering experiments.  

 

6.3.4 Investigating HbS aggregation using light scattering.  

Thermal ramp experiments were carried out in order to analyse variations in light 

scattering data between HbA, HbS and mixtures of HbA and HbS. In addition to 

investigating any interactions which maybe occurring between HbA and HbS, we also 

discuss the potential use of light scattering experiments carried out on a Optim instrument 
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as a high throughput method of diagnosing the sickle cell trait based on the aggregation 

profile of a sample.  

 

6.3.4.1 Comparing HbA and HbS. 

Initially, we compared the variations in light scattering intensities over a temperature 

range of 25-80 ºC, for both HbA and HbS. Figure 6.10 shows the intensity of light 

scattering at both 473 nm (Figure 6.10A) and 266 nm (Figure 6.10B) as a function of 

temperature. Traces shown are the average values from nine measurements across 

three independent runs.  

 

Significant differences between the curves from HbA samples and HbS samples can be 

observed. Both 473 and 266 nm curves indicate that aggregation begins at slightly earlier 

temperatures in HbS, and the 473 nm graph displays a sharper increase in aggregation 

of HbS at lower temperatures, which is not observed in the HbA data. The drop in light 

scattering intensities seen at higher temperatures (above 65 ºC) is due to the precipitation 

of aggregates in the solution. We can see from both Figures 6.10A and 6.10B that 

precipitation begins at a much lower temperature in HbS than in HbA; ~61 ºC in HbS 

compared with ~70 ºC in HbA. This suggests that it may be possible to use aggregation 

profiles monitored using light scattering data to diagnose sickle cell anaemia.  

 

 
Figure 6.10: Graphs to show the intensity of light scattering a function of temperature 

for HbS and HbA at (A) 473 nm and (B) 266 nm. Each trace is the mean of nine 
repeat measurements, which overlay well with each other.  
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6.3.4.1 Diagnosing the Sickle Cell Trait using Light Scattering. 

By comparing the light scattering intensities at 266 nm for mixtures of HbA and HbS, 

Figure 6.11A, we are able to observe differences in the aggregation profiles of mixed 

samples. A decrease in the temperature at which precipitation begins is observed from 

the data over increasing HbS concentrations, which suggests that we are able to 

differentiate between sickle cell anaemia and the sickle cell trait using light scattering 

data.  

 

 
Figure 6.11: (A) Graphs to show the intensity of light scattering at 266 

nm a function of temperature for HbS and HbA and mixtures of HbS and 
HbA. Each trace is the mean of nine repeat measurements and (B) PCA 
scores plot for the discrimination of HbS samples using light scattering 

data. 
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In order to simplify this discrimination based on aggregation profiles we used the average 

trace of light scattering intensity vs. HbS concentration for each of the triplicate runs as 

input variables for a PCA model. The resulting scores plot (Figure 6.11B) clearly displays 

that both 100% HbS and 40% HbS samples can be easily identified, hence it is possible 

to diagnose both sickle cell anaemia and the sickle cell trait from the light scattering data.  

 

Furthermore, this PCA shows a trend in the scores plot with increasing HbS 

concentrations. Unlike previous Raman analysis (Figures 6.8 and 6.9B), these data do 

not show any grouping of un-mixed samples. A more expected trend is apparent, with 

HbS and HbA falling at opposite sides of the plot and mixed samples lying in between. 

This would seem to indicate that the variations observed between mixed and pure 

samples in the Raman data are due to instrumental artefacts in the data set rather than 

differences introduced by variations in protein conformation brought about by interactions 

between HbA and HbS.  

 

 

6.4 Conclusions. 

Work by Wood and colleagues clearly displayed the potential of Raman spectroscopy to 

detect structural information about haemoglobin molecules from within red blood cells 

(Wood et al., 2005). However, this study focussed on investigations into the mechanisms 

of aggregation in haemoglobin and sickle cell haemoglobin, rather than differentiation of 

the two proteins with a view to being applied in a diagnostic setting.  

 

In these preliminary investigations we have shown Raman spectroscopy to be capable of 

distinguishing between HbA and HbS proteins both in pure protein samples and when 

spiked into human plasma. We have also demonstrated the potential of Raman analysis 

to quantify levels of HbS in this mock biological sample containing a mixture of HbS and 

HbA. This is an important result as it shows how Raman spectroscopic analysis of 

samples can allow diagnosis of both sickle cell disease and the sickle cell trait, which 

current routinely used methods such as the sodium metabisulfate test and the Sickledex 
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test do not allow (Silverstein and Nunn, 1997, Aygun and Odame, 2012, Nalbandi et al., 

1971, Meier and Miller, 2012).  

 

Furthermore, we have shown the feasibility of this method as a point-of-care diagnostic 

tool, by demonstrating that a portable Raman probe is capable of detecting haemoglobin 

at physiologically relevant concentrations in protein depleted plasma. These encouraging 

preliminary results motivate future work comparing the Raman spectra of HbA and HbS in 

mock biological fluids recorded on a portable Raman instrument, leading on to the 

analysis of HbS in a complex biological sample which will more accurately simulate a 

patient’s blood sample. 

 

Finally, due some unusual trends visible in the PCA scores plot drawn from Raman data 

of mixed HbA and HbS samples, we have investigated the possibility of interactions 

between the two proteins using light scattering. Results here showed no distinction 

between mixed and un-mixed samples, suggesting that the variations observed in the 

Raman data were potentially analytical artefacts, possibly introduced by drying effects on 

the Tienta Spectra RIM
TM 

slides. It is hoped that future experiments in solution based 

systems will not have this error associated. Nevertheless, light scattering data showed it 

to also be a suitable method for the analysis haemoglobin samples, which, as with the 

Raman method, allows distinction of mock samples from healthy patients, carriers of the 

sickle cell trait and sufferers of sickle cell anaemia. 
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6.5 Supplementary Information. 

 

 

 

 

 

 

 
Figure S6.1: (A)  Raw Raman Spectra of protein depleted plasma (0% HbA), Plasma 

with 50% Haemoglobin (50% HbA) and pure Haemoglobin (100% HbA) collected on 
Delta Nu portable Raman probe, (B)  PLSR predictions from Raman data of HbA in 
plasma collected on Delta Nu portable Raman probe (Data pre-processing: Sav-Gol 

smoothing, ALS baseline correction and EMSC) and (C) Loadings from the first LV of the 
PLSR model for the quantification of HbA in plasma built from Raman data collected on 

Delta Nu probe. 
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Chapter 7: Monitoring Guanidinium-Induced 

Structural Changes in Ribonuclease Proteins Using 

Raman Spectroscopy and 2D Correlation Analysis. 

 

Work presented in this chapter has been adapted from work accepted for publication in 

Analytical Chemistry; Brewster V. L., Ashton L. and Goodacre R. "Monitoring 

Guanidinium-Induced Structural Changes in Ribonuclease Proteins Using Raman 

Spectroscopy and 2D Correlation Analysis”. L. Ashton gave advice on production and 

interpretation of 2D correlation contour plots.  

 

7.1 Introduction. 

It is widely known that changes in the tertiary, three-dimensional (3D) structure of a 

protein-based pharmaceutical can directly affect drug activity and may also induce protein 

aggregation (Goddard, 1991). Therefore it is essential that the stability of a 

biopharmaceutical product is well characterised. In this study we investigate Raman 

spectroscopy as an alternative to the current gold standard analytical methods for 

monitoring protein unfolding: fluorescence spectroscopy and differential scanning 

calorimetry (DSC) (Spink, 2008, Serrano et al., 2012). 

 

The tertiary structure of a protein depends largely on its solvent environment. When in 

aqueous solutions at neutral pH, proteins will adopt an extremely ordered ‘native’ 

conformation. For most protein biopharmaceuticals this native tertiary structure is the 

biologically active conformation (Goddard, 1991). When the solvent environment is 

perturbed by extreme temperatures, pH or the addition of a chemical denaturant, the 3D 

protein structure will unfold into a disordered or denatured state. Guanidine hydrochloride 

(GuHCl) is one of the most commonly used chaotropic agents for protein unfolding 
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studies. However, despite its widespread use as a chemical denaturant the mechanism of 

action is still unclear. It is thought to involve the formation of hydrogen bonds between the 

denaturant and the peptide backbone and also an increase in the solubility of both polar 

and non-polar amino acid side chains (Konermann, 2004).  

 

It has been reported in the literature and demonstrated in the work displayed in this thesis 

(Chapter 4) that the stability of a protein molecule is enhanced by the addition of a glycan 

group (Sola and Griebenow, 2009). Therefore, we will in this study also compare the 

unfolding behaviour of a protein and its glycosylated equivalent. The addition of an 

oligosaccharide increases the internal non-covalent forces which hold the protein in its 

folded form by decreasing exchange rates of the backbone amide protons and hence 

increasing the concentration of denaturant required (Taylor, 2006). The Ribonuclease 

(RNase) proteins, RNase A and its glycosylated equivalent RNase B, previously used in 

this thesis for glycosylation studies (Chapter 3), were again chosen as a model system. 

This was largely due to their similarity in secondary and tertiary structure, but also 

because these proteins are well characterised in literature in terms of the structure and 

stability of both proteins (Taylor, 2006, Naidu and Prabhu, 2011, Scheraga, 2011).   

 

Much of the previous work investigating the perturbation of protein molecules by Raman 

spectroscopy takes advantage of the sensitivity of the amide III region to conformational 

changes, in particular monitoring changes which occur during acid induced unfolding of 

proteins by UV Resonance Raman. (Tuma, 2005, Tuma et al., 1995, Chi and Asher, 

1998, Zheng et al., 2004). Other studies have focussed on changes to the tryptophan 

modes as the hydrophobic amino acids become more or less exposed (Liang et al., 2006, 

Chen and Lord, 1980). The thermal unfolding of RNase A has been measured previously 

by Raman spectroscopy, however this approach centred on analysis of the C-H 

stretching modes in the 3000 cm
-1

 region (Verma and Wallach, 1977). Raman 

spectroscopy has also been used to characterise various glycoproteins, including RNase 

B, but these studies did not investigate unfolding but rather the detection of the glycan 

(Barman et al., 2012, Dingari et al., 2012, Brewster et al., 2011).  



 

- 158 - 

 

In this chapter we report the use of Raman spectroscopy to monitor the unfolding of 

Ribonuclease proteins in the presence of GuHCl. Through the use of unfolding curves 

and 2D correlation analysis, we compare the results derived from Raman spectroscopy to 

those obtained by a conventional fluorescence unfolding experiment. We also acquired 

Raman and fluorescence data from the glycosylated equivalent of RNase A, RNase B in 

order to evaluate how the addition of a complex glycan affects the stability and unfolding 

of RNase proteins.   

 

7.2 Materials and Methods. 

7.2.1 Materials. 

Ribonuclease A (RNase A), Ribonuclease B (RNase B), guanidine hydrochloride (GuHCl) 

and phosphate buffered saline (PBS) tablets were all of analytical grade and purchased 

from Sigma Aldrich (Dorset, U.K). 

 

7.2.2 Method. 

For fluorescence spectroscopy 10 mg/mL solutions of RNase A and RNase B were 

prepared in PBS solution (0.01 M phosphate buffer, 0.0027 M KCl, 0.137 M NaCl; pH 

7.4). A 7 M stock solution of GuHCl in PBS was made and subsequently diluted with the 

RNase solutions into three sub-stocks of 2, 4 and 6 M GuHCl. Sub-stocks were then 

diluted into the desired GuHCl range (between 0-6 M at 0.2 M intervals), where the final 

protein concentration was 0.1 mg/mL (~7 µM) and the final sample volume 1 mL. 

Samples were then incubated at 37 °C overnight before analysis. Each unfolding 

experiment was performed in triplicate. For Raman spectroscopy initial solutions of 400 

mg/mL RNase A and B were prepared in PBS. The above method was then employed so 

that the final protein concentration was 10 mg/mL (~700 µM) within a sample volume of 

400 µL. 
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7.2.3 Fluorescence Spectroscopy. 

Fluorescence spectra were obtained on a Shimadzu RF-5301PC 

spectrofluorophotometer (Shimadzu Biotech, Manchester, UK) equipped with a 150 W 

xenon lamp and a holographic grating with 1300 grooves/mm. The excitation wavelength 

range was 220-990 nm and the measurement range was 220-750 nm. Shimadzu Pop Up 

Scan software was used for instrument control. For this study the excitation wavelength 

was set at 280 nm and the excitation slit was set at 3 μm. The emission slit was set at 5 

μm with an emission wavelength range of 220-550 nm. Samples were analysed in a 

quartz cell with a fast scanning speed and sensitivity set to high. 

 

7.2.4 Raman Spectroscopy. 

Raman data were collected using the Renishaw 2000 Raman microscope described in 

Chapter 2. 100 µL of each sample was pipetted into a 96 well plate, and a 20x objective 

lens was focussed on the top of the solution. Spectra were collected over a spectral 

range on 200-2000 cm
-1

, over five accumulations with 120 s exposure time. Raman data 

were pre-processed by smoothing (Sav-Gol, Filter width: 7) followed by a baseline 

correction (ALS), both performed in Matlab.  

 

7.2.5 Data Analysis. 
 
Raman spectroscopic data were exported from the instrument software into Matlab where 

data pre-processing was performed, in order to allow direct comparison of the data. 2D 

correlation calculations were performed using 2D Shige freeware and moving window 

contour plots were plotted in Matlab. Spectral subtractions and peak fitting were 

calculated in GRAMS Ai software. GRAMS Ai was also used to plot Raman spectral 

figures and fluorescence data were plotted in Excel. Unfolding curves were drawn using 

Origin software.   
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7.3 Results and Discussion. 

7.3.1 Fluorescence Spectroscopy. 

The fluorescence spectra of RNase A (7 µM) at a number of different guanidine 

hydrochloride concentrations are shown in Figure 7.1. It can be seen from these spectra 

that fluorescence emission increases as the concentration of the denaturant increases, 

this is due to fluorescent, hydrophobic groups such as tryptophan and tyrosine being 

exposed as the protein unfolds into a less ordered state. The intensity of the fluorescence 

emission at the approximate peak centre (345 nm) was calculated for each GuHCl 

concentration and plotted as an equilibrium curve in Figure 7.2.  

It is possible from this plot to calculate the fractions of folded (ff) and unfolded (fu) protein 

molecules at each GuHCl concentration using equations 7.1A and B, in which X is the 

observed signal, XN is the signal observed from the native protein and XU is the signal 

observed from the unfolded protein.    

 

  =
    

      
                                        Eq. 7.1 (A) 

 

  =                                      Eq. 7.1 (B) 

 
Figure 7.1:  Fluorescence spectra of 7µM RNase A at different GuHCl 

concentrations. 
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From these calculations it is possible to estimate the concentration of denaturant which is 

needed to unfold half of the protein molecules, the [D]50. The [D]50 calculated for RNase A 

in this study was 3.1 M, which is consistent with [D]50 quoted in the literature for RNase A 

as 3.1-3.2 M (Arnold and Ulbrich-Hofmann, 2000, Greene and Pace, 1974). 

 

7.3.2 Raman Spectroscopy. 

Raman spectra of RNase A (700 µM) over a similar concentration gradient of GuHCl 

were recorded along with a control spectrum of GuHCl in PBS at each concentration; the 

latter was used since GuHCl denaturant itself has a Raman spectrum and this needs to 

be compensated for. Thus prior to data analysis the control spectrum at each 

concentration was subtracted from the corresponding spectrum of protein and GuHCl; the 

resulting spectra are shown in Figure 7.3A, which focuses on the amide I region (1600-

1700 cm
-1

). A notable shift in this band as the concentration of denaturant increases can 

easily be observed along with a change in the band shape. In order to find the peak 

centre of the band a Gaussian curve fit was applied to the amide I region, using the peak 

fitting function in GRAMS Ai. Peak centre values were then plotted as a function of 

 
Figure 7.2: Protein unfolding curve for RNase A drawn from 

fluorescence data (intensity at 345nm). The red line indicates the 
mean of the triplicate measurements taken. 
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denaturant concentration giving a traditional protein stability curve drawn from the Raman 

data (Figure 7.3B).  

 

 

 

 

 
Figure 7.3:  (A) Amide I region of the Raman spectra of 700 µM RNase A 

at various GuHCl concentrations after subtraction of the control GuHCl 
spectra, smoothing and baseline correction. (B) Protein unfolding curve for 
RNase A drawn from Raman Spectroscopy data (peak centre of Amide I 

band). The red line indicates the mean of the triplicate measurements 
taken.   
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7.3.3 Method Comparison. 

In order to validate the use Raman spectroscopy for monitoring denaturant-induced 

unfolding in proteins, we compare the results gained from the Raman experiments to 

those obtained by ‘traditional’ fluorescence spectroscopy. We start by simply comparing 

the protein unfolding equilibrium curves drawn by each method; it can be seen easily that 

the curves compare favourably with each other, both indicating that the main unfolding 

events take place between GuHCl concentrations of 2.5-4 M. In order to compare both 

methods directly the data from both curves are plotted against each other in Figure 7.4. If 

the two methods produced identical results a linear trend would be seen in the graph and 

the best-fit line indicates this. The general shape of this curve (blue diamond symbols) 

does increase concomitantly confirming that the Raman results are somewhat 

comparable with the traditional fluorescence based method. 

 

However it is evident when comparing the stability curves in Figures 7.2 and 7.3A that the 

curves drawn from the Raman data appears to hint towards a two-stage transition, 

whereas the fluorescence data shows only one. This could be due to an inaccuracy in the 

Raman method, but as this the trend is observed consistently over three independent 

measurements it is more likely that the Raman spectroscopy data are able to highlight 

smaller conformational changes not observable by fluorescence spectroscopy. This 

 
 

Figure 7.4:  A Graph to compare RNase A unfolding data obtained by 
Raman and fluorescence spectroscopy. 
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Raman method is therefore able to separate out two distinct transitions which overlap in 

the fluorescence data to appear as one transition, which has never before been reported 

for RNase A.  

 

We have also compared our Raman method to the more traditional Raman-based 

approach for detecting conformational changes in proteins; this involves measuring 

changes in intensity of the tryptophan vibration centred at ~875 cm
-1

; a band which will 

decrease in intensity as the protein unfolds and tryptophan residues become more 

exposed. This method, like the fluorescence method shows only one unfolding transition 

which occurs at ~3.1M GuHCl (Data are shown in Supplementary Information, Figure 

S7.1). This has been confirmed by adding this data to the method comparison graph in 

Figure 7.4 (orange circle symbols), where to allow ease of comparison the normalised 

reciprocal of the data has been plotted.   

 

The [D]50 values calculated from each of the triplicate measurements and the average 

[D]50 from each method for RNase A are shown in Table 7.1. The values calculated from 

the Raman data are in very good agreement with the fluorescence results calculated from 

this study, and most encouragingly both values fall within the literature values for the [D]50 

of RNase A: 3.1-3.2 M GuHCl (Arnold and Ulbrich-Hofmann, 2000, Greene and Pace, 

1974). The standard deviation of the triplicate measurements are also given in Table 7.1, 

and these show that the Raman spectroscopy to be a reproducible method of tracking 

protein unfolding and calculating [D]50 values.  

 

Furthermore, it is also possible to calculate the Gibbs free energy (ΔG) of a protein at 

each given denaturant concentration from the unfolding curves (Becktel and Schellman, 

1987), using equation 7.2:  

  =       (
  

  
)                                        Eq 7.2 

where R is the ideal gas constant and T is the temperature in K. 
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The ΔG values for RNase A at the [D]50 concentration (3.1 M) were calculated for both 

the Raman and fluorescence methods, also shown in Table 7.1, and were found to be in 

good agreement.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Values are the mean of triplicate repeats and standard deviation is provided in 
parentheses. ΔG values quoted are the free energy at the [D]50 concentration: for RNase 

A this was at 3.1, and at 3.5 for RNase B. 

 

As an extra comparison step, and also to probe the two-step transition seen in the 

Raman unfolding profiles further, we have applied 2D correlation moving windows 

analysis to the data. The results of the 2D correlation moving windows analysis on the 

fluorescence and Raman data are shown in Figure 7.5A and B, respectively. Like with the 

stability curves, the 2D contour plots show that both methods indicate that unfolding 

transitions occur between guanidine concentrations of 2.8 and 4 M. The regions where 

the most changes are occurring in the spectra, indicated by the red contours, correspond 

well with the calculated [D]50 values. Interestingly, as with the Raman equilibrium curve in 

Figure 7.3B, Figure 7.5B also shows the unfolding transition to be comprised of two 

separate events (and all three repeats show the same transitions; data not shown). 

Figure 7.5 shows the 2D correlation moving windows contour plot for the 860-900 cm
-1

 

region of the Raman spectra, showing that the changes occurring in the tryptophan band 

are in one single transition. These results confirm that not only is this Raman 

spectroscopic method a suitable alternative to fluorescence spectroscopy for probing 

Table 7.1: Comparison of [D]50 and ΔG values for 
RNase A and RNase B obtained from the fluorescence 

and Raman methods. 

 [D]50 (M) ΔG (J mol
-1

) 

RNase A 

Raman 3.14 (0.08) -10971.47 (30) 

Fluorescence 3.13 (0.04) -11043.58 (12) 

RNase B 

Raman 3.51 (0.06) -3866.82 (41) 

Fluorescence 3.56 (0.04) -4037.50 (15) 
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protein structural changes, but that it can also provide additional information on more 

subtle changes which are not observed by the fluorescence method. 

 

7.3.4 Comparing the Stability of RNase A and B. 

We used the Raman spectroscopy method detailed and tested above to monitor the 

unfolding of RNase B, the glycosylated form of RNase A.  Both proteins have identical 

primary and secondary structure and very similar tertiary structures, with the differences 

that do occur being due to the addition of the glycan group. Therefore an additional aim of 

this work was to investigate whether Raman spectroscopy can be used to detect 

differences in protein stability which are brought about by glycosylation.  

 
 

Figure 7.5:  2D Moving Window Contour Plots as a function of average 
translating window of GuHCl concentration from RNase A using: (A) 

fluorescence spectra; or Raman spectra from: (B) amide I region (1620-1720 
cm-1) or (C) tryptophan region (860-900 cm-1). 
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The Raman spectra of RNase B at various GuHCl concentrations show, as with the 

RNase A data, an upward shift in the position of the amide I band as the denaturant 

concentration increases (Figure 7.6A). Using the method described previously, protein 

unfolding curves were generated from triplicate measurements and the average curve 

from RNase B is shown in Figure 7.6B, compared to the average RNase A curve.  It is 

clear in these stability curves that the concentration of GuHCl needed to denature RNase 

A is significantly lower than that needed for RNase B, confirming that the presence of a 

sugar group does indeed increase stability in RNase proteins.  

 

The equilibrium curve was used to find the [D]50 for RNase B (Table 7.1), which was 

calculated as 3.5 M, compared to 3.1 M GuHCl [D]50 for RNase A, confirming that the 

glycoprotein is, indeed, the more stable molecule; unfortunately there are no literature 

values to confirm this, but the fluorescence measurements of RNase B shown in Table 

7.1 do corroborate the Raman data. In addition, we can compare the ΔG values of each 

protein at the same GuHCl concentration, as ΔG will decrease (become negative) as the 

stability of a protein decreases. Therefore, comparing ΔG at 3.0 M GuHCl gives further 

proof that RNase B is the more stable system as ΔG for RNase B is -1002.7 J mol
-1

 

compared with -9905.5 J mol
-1

 for RNase A. 

 
Figure 7.6:  (A) Amide I region of the Raman spectra of RNase B at various 

GuHCl concentrations after subtraction of the control GuHCl spectra, smoothing 
and baseline correction. (B) Protein unfolding curves for RNase A and RNase B 
drawn from Raman Spectroscopy data (peak centre of Amide I band). Plotted 

values are the mean of three measurements. 
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7.4 Conclusions. 

We have described a novel Raman spectroscopy-based method for monitoring the 

unfolding of proteins in the presence of a chemical denaturant, and have shown the 

potential of this technique through comparisons with fluorescence spectroscopy. Through 

the use of unfolding curves and [D]50 calculations we have shown that the results 

obtained from Raman spectroscopy are very comparable to those obtained by a 

conventional fluorescence unfolding experiment. By employing 2D correlation moving 

windows analysis, we have been able to demonstrate that Raman spectroscopy is more 

sensitive to smaller conformational changes than fluorescence emission data.  Finally, 

using RNase A and B as model proteins, we have shown that this Raman method is 

capable of evaluating increases that occur in stability when this protein is glycosylated.   

 

7.5 Supplementary Information . 

 

 

 

 

 
Figure S7.1: (A) Tryptophan region of the Raman spectra of RNase A at various 

GuHCl concentrations after subtraction of the control GuHCl spectra, smoothing and 
baseline correction and (B) Protein unfolding curve for RNase A drawn from Raman 
Spectroscopy data (peak area of tryptophan band). The red line indicates the mean 
of the triplicate measurements taken, reciprocal values (1/N) have been plotted to 

make curves easily comparable with Figures 7.2 and 7.3 B. 
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Chapter 8: Detecting Foreign Protein Contamination 

in Protein Samples Using High Throughput FT-IR 

Spectroscopy and Multivariate Analysis. 

 

Work presented in this chapter has been adapted from the following paper submitted for 

publication; Correa E., Brewster V.L., and Goodacre R. "Fast Detection of Low Levels of 

Protein Contamination Using FT-IR Spectroscopy Coupled to Chemometric Analysis”.  

E. Correa performed multivariate analysis on the data and assisted in interpretation of the 

results. 

 

8.1 Introduction. 

As protein based therapeutics begin to dominate the pharmaceutical market, the 

purification and characterisation of these products continue to pose many analytical 

challenges. One of these is the separation of the protein product from any other proteins 

that the bioprocess yields, and the validation of this step (Greer, 2008). Removal of host 

cell protein (HCP) based contaminants is a vital downstream processing step, as these 

“foreign” proteins can give the product undesirable immunogenic effects (Goddard, 1991). 

This study was concerned with the development of a high throughput method that uses 

vibrational spectroscopy coupled to chemometric models to detect protein contaminants 

in a biopharmaceutical product.  

 

Lysozyme and cytochrome c (cyt c) were used to mimic a therapeutic protein 

contaminated with a single foreign protein and to establish a model. Ribonuclease 

(RNase) A and B were also used to simulate a protein contaminated with a glycosylated 

equivalent. FT-IR spectroscopy was chosen as the analytical technique for this 

application because it allows high throughput (typically 30s per sample) and automated 
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data acquisition, an essential criteria for biopharmaceutical process analytical technology 

(PAT). 

 

FT-IR spectroscopy has a long history as a versatile, non-destructive, qualitative and 

quantitative method of monitoring proteins. The Infrared spectra of proteins are 

information rich and contain many bands which are highly sensitive to secondary and 

tertiary conformational changes (Manning, 2005). Infrared spectra of biological molecules 

contain large numbers of variables, and are often complex containing many overlapping 

bands, therefore, changes in the FT-IR spectra can be difficult to identify by visual 

examination of the dataset alone, and hence the application of multivariate analysis 

(MVA) becomes necessary.  

 

In this work we demonstrate the ability of FT-IR spectroscopy coupled with MVA 

techniques to detect low level (1-5%) contamination of proteins in two model systems. 

Several well-known chemometric methods were employed for data analysis, all analyses 

were rigorously tested using resampling methods, and the results are discussed and 

compared against each other. 

 

8.2 Materials and Methods. 

8.2.1 Materials. 

Initially, well characterised proteins were chosen to establish a model. Lysozyme and 

cytochrome c were chosen to mimic a protein product contaminated with a foreign 

protein. These proteins were chosen because lysozyme contains both α-helix and β-

sheet structures, whereas cyt c is mainly helical as shown in Figure 8.1. RNase A and 

RNase B were used as a mock system where a protein is contaminated with a 

glycosylated equivalent. Bovine pancreatic Ribonuclease A and B, lysozyme from 

chicken egg white and cytochrome c from equine heart were all purchased from Sigma-

Aldrich (Dorset, UK). 
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8.2.2 Method. 

Lyophilised proteins (cyt c, lysozyme, RNase A and RNase B) were dissolved in ultra-

pure water at a concentration of 5mg/mL. The spiked samples were then created by 

mixing the appropriate amount (5% v/v and 1% v/v) of lysozyme into cyt c and RNase B 

into RNase A. 5 µL of each sample was loaded into a 96 well silicon plate, which had 

been pre-washed in methanol and deionised water. The plate was then left to air dry at 

room temperature for 60 min, until completely dry. Eight different 96 well silicon plates 

were prepared as described in Table 8.1 and to minimise instrumental drift being 

incorporated into the measurements the samples were semi-randomised by being 

positioned in alternate rows on each plate. 

 

Table 8.1: Summary of samples spotted onto each of the 96 
well silicon plates. 

 Sample and Number of wells 

Plate 1  Cyt c (94) 

Plate 2 Cyt c (47) Lysozyme (47) 

Plate 3 Cyt c (47)  Cyt c with 5%  Lysozyme (47) 

Plate 4 Cyt c (47)  Cyt c with 1%  Lysozyme (47) 

Plate 5 RNase A (94) 

Plate 6 RNase A (47) RNase B (47) 

Plate 7 RNase A (47) RNase A with 5% RNase B (47) 

Plate 8 RNase A (47) RNase A with 1% RNase B (47) 
 

 

 

 
Figure 8.1: Cartoon representations of the three-dimensional structures of 

cytochrome c (left), lysozyme (middle) and RNase B (right).  Drawn from PDB files 
(1CRC, 3IJV and 5RSA) using PyMOL 
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8.2.3 FT-IR Spectroscopy. 

FT-IR spectra were collected on a Bruker FT-IR instrument, as described in 2.1.2. 

Spectra were collected from each of the 96 wells over a wavenumber range of 4000-600 

cm
-1

, with a spectral resolution of 4 cm
-1

. For each well 64 accumulations were collected 

and co-added to improve the signal-to-noise ratio. A total of 752 spectra were collected 

over 8 plates with an average collection time of 30s per sample. Data were exported from 

the instrument manufacture’s Opus software to Excel spread sheets, which were later 

analysed in R. 

 

8.2.4 Data Analysis. 

Prior to multivariate analysis data were pre-processed in R. Spectra were normalised 

using EMSC (polynomial order 3), and auto-scaled so that each data column, 

corresponding to a wavenumber variable, had a mean equal to zero and a standard 

deviation equal to one. Data were then analysed using R to perform PCA, DFA, PLSR, 

PLS-DA, support vector machine (SVM) and artificial neural networks (ANNs). As these 

are supervised multivariate data analysis methods (with the exception of PCA), results 

need to be validated as both X and Y data is used in the model formation, and therefore 

the results may be subject to bias. The bootstrap cross validation method described 

previously in 2.3.3.1.1 was used, with results calculated over 1000 bootstrap cross 

validations.  

 

8.3 Results and Discussion. 

8.3.1 FT-IR Spectra. 

FT-IR spectra were recorded of pure cytochrome c, pure lysozyme and cytochrome c 

spiked with lysozyme at 5 and 1%. This was repeated for RNase A, RNase B and RNase 

A spiked with RNase B. Data are shown in Figure 8.2. The need for chemometrics is 

highlighted here as little or no changes are visible by eye in the spectra of the spiked and 

pure samples, particularly in the RNase A/B system.    
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8.3.2 Unsupervised Clustering - PCA. 

First we applied PCA to both of the model systems tested; scores plots for this analysis 

are shown in Figure 8.3. We can see from Figures 8.3A and 8.3B that with both the cyt c 

and RNase samples we are unable to differentiate between pure samples and those 

spiked with 1% contamination. When the concentration of spiked lysozyme and RNase B 

is increased to 5%, the PCA scores plots (Figure 8.3C and 8.3D) show a slight 

improvement in the ability to distinguish between the FT-IR spectra of pure and 

contaminated samples. However there is still a large amount of overlap for the two 

groups, particularly in the cyt c-lysozyme system. As PCA plots show significant overlap 

of spiked and pure samples for both of the data sets, we have then applied more 

sophisticated supervised MVA methods to aid in discrimination of the samples.  

 

 

 

Figure 8.2: Average FT-IR spectra of (A) lysozyme (LY), cytochrome c (CC) and CC 

contaminated with 5% LY (CC5%LY) and (B) RNase A (RA), RNase B (RB) and RA 

contaminated with 5% RB (RA+5%RB). 
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8.3.3 Supervised Clustering. 

8.3.3.1 PC-DFA. 

In an attempt to improve discrimination, and also to find out how much variance among 

the proteins the FT-IR analysis has detected, we have applied DFA to the data. In this 

case we used the first 10 PCs from PCA as the input variables, as opposed to the full FT-

IR spectra.  

 

Figure 8.4 shows the resulting DFA scores plot for all samples. As expected, the analysis 

detected more similarities in the proteins which have similar secondary and tertiary 

structures; RNase A and B. As with the PCA results, this method clearly discriminates 

between pure cyt c and lysozyme, but there is still a large amount of overlap between 

pure and spiked cyt c samples. 

 

Figure 8.3:  PCA scores plots of (A) pure vs. 1% contaminated cyt  c, (B) pure vs. 1% 

contaminated RNase A, (C) pure vs. 5% contaminated cyt  c  and (D) pure vs. 5% contaminated 

RNase A. 
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The numbers in the parenthesis the figure ledgend report the percentage of samples 

which fall within the 95% confidence interval for each class, which has been estimated 

over 1000 bootstrap cross validations. The statistics here indicate a good discrimination 

across all protein classes, with the exception of RNase A spiked with 5% contamination, 

where the model performs particularly poorly with only 2-4% of samples correctly 

classified. 

 

From these results we propose that PC-DFA could be used as a filtering step for these 

samples; proteins analysed by PC-DFA would be either classified as (A) unequivocally 

identified as lysosome and no further action is needed, (B) recognized as being cyt c type 

(either pure or spiked) where further MVA is required, or (C) identified as being RNase 

proteins, where again subsequent MVA is needed for further discrimination. Therefore 

additional supervised methods have been employed to resolve the identity of samples 

classified in group B or C, where each group has been treated as a separated data set.       

 

 

 
Figure 8.4:  PC-DFA applied to the full dataset. 10 PCs (TVE = 99.2%) were 

used as input variables for DFA. The inset reports 95% confidence intervals for 
correct classifications estimated over 1000 bootstrap cross-validations. 
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8.3.3.2 PLSR. 

Once samples were separated into sub-classes of RNase and cyt c PLSR models were 

applied to classify samples as pure or contaminated. We aimed to use these models to 

quantify contamination; i.e., distinguish between 0%, 1% and 5% contamination.  

 

Figures 8.5A and 8.5B show the distribution of PLSR predictions over 1000 bootstrap 

cross validations for the discrimination of pure samples and samples spiked with 1% 

contamination. For comparison, we also show the distribution of predicted values when 

we try to differentiate pure samples from pure samples, i.e. a null distribution (Figures 

8.5C and 8.5D). For RNase samples we see that in the null distribution the curves lie on 

top of each other; indicating, as one would expect that the model can not discriminate 

between these identical samples. Figure 8.5A shows that the curves for RNase A and 

RNase A spiked with 1% RNase B lie offset from each other indicating that in the majority 

of cases the model can discriminate between pure and contaminated RNase samples. 

Figure 8.5B shows significantly poorer results for the cyt c system, showing that the 

 
Figure 8.5:  Graphs to show (A) the distribution of predicted values for RNase A and 
RNase A spiked with 1% RNase B, (B) the distribution of predicted values for cyt c 
and cyt c spiked with 1% lysozyme, (C) the null distribution of predicted values for 

RNase A and RNase A and (D)  the null distribution of predicted values for cyt c and 
cyt c. 
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model can only correctly classify a small portion of the samples. Whilst this contradicts 

the results for the PC-DFA, which discriminated poorly between pure and spiked RNase 

A, but performed much better for the cyt c samples, this is likely to be because we are 

now treating each protein set separately.  

 

The R
2 

values for the PLSR models over the 1000 bootstrap cross validations are shown 

in Figure 8.6. The PLSR model for the cyt c data, Figure 8.6A, shows a mean R
2
 of 0.99. 

This very high prediction result indicates that FT-IR spectroscopy detected significant 

differences between pure and contaminated samples. By contrast, the permuted model 

shows poor prediction results, with a cross validated mean R
2
 of –1.1, confirming that the 

success of the original PLSR model did not occur by chance. 

 

Figure 8.6B shows the equivalent results for the RNase A and B system, where original 

bootstrap models suggest a successful quantification of contamination levels; with a 

mean R
2
 of 0.87. Once more, results of the permutation testing confirm the validity of the 

models built from the correctly labelled data. Figure 8.6 also reports the p-values from t-

tests performed on each respective bootstrap and permutation test result; in both cases 

p-values are ~10
-6

, providing additional confirmation that the PLSR results correctly 

reflect the patterns within the data rather than results which are occurring by chance.  
 
  

 
 

Figure 8.6: PLS model validation. (A) reports 1000 cross-validations for the PLS 
models applied to pure and contaminated cyt c. (B) reports 1000 cross-validations for 

the PLS models applied to pure and contaminated RNase A.  
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8.3.4 Optimising discrimination of pure and contaminated proteins. 

In order to assess the best chemometrics approach for discrimination from the FT-IR 

data, we compared three additional supervised classification algorithms: partial least 

squares-discriminant analysis (PLS-DA), support vector machines (SVMs) and artificial 

neural networks (ANNs). PLS-DA is a particular case of PLSR which finds a linear 

function which best defines or separates the data (Wold et al., 2001). In PLS-DA the 

dependant variable is a binary or dummy variable. A dummy variable is a transformed 

variable that encodes the presence or absence of a characteristic or property, in the 

present work the dummy variable encoded the following characteristics: “pure protein” 

(absence of contamination encoded as 0) and “contaminated protein” (presence of 

contamination encoded as 1). SVM is an alternative supervised algorithm, which uses 

data points which are near the 

border of the two groups to 

create a support vector (Burges, 

1998). These vectors are used 

to form separating hyperplanes 

which are applied to define the 

boundaries between groups. 

ANNs are non-linear methods 

which are designed to simulate 

the way brain neurons 

communicate (Burges, 1998). A 

neural network consists of 

groups of interconnecting nodes 

which receive numerical inputs 

and process them into multiple outputs. The nodes are organised into layers, and each 

node of one layer is connected to all nodes of the next layer. The network used in this 

work was the most common ANN model: a single hidden layer feed-forward back-

propagation network, which consists of one input layer (comprising 1764 inputs), one 

hidden layer (consisting of 150 nodes) and a final single node output unit.  

 
 

Figure 8.7: Schematic diagram 
representing an artificial neural network with 

3-4-2 topology, in this study the topology 
was 1764-150-1. 
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For this analysis the data set from each model system was partitioned into the sub-sets 

as described in Table 8.2, thus giving results for discrimination between pure and pure 

samples, pure and 1% contaminated sample and pure and 5% contaminated samples.  

 

The results from all three classification algorithms for all three data sub-sets were 

calculated over 1000 bootstrap cross-validations and the hold out sets are summarised in 

the classification matrix displayed in Table 8.3. As expected, for the ‘null models’ CC vs. 

cc and RA vs. Ra, all algorithms predicted an average of 50% of the samples correctly. 

For discrimination between pure and spiked samples PLS-DA on average outperformed 

the other methods. The PLS-DA model performed particularly well with the RNase 

samples; correctly identifying over 80% of the 1% samples and 94% of the 5% samples. 

For the cyt c system, PLS-DA was able to correctly identify 98% of samples with 5% 

contamination, but only 57% of the samples contaminated with 1% lysozyme.   

 

The loadings from PLS-DA for both RNase and cyt C data were examined to allow 

identification of the bands in the IR spectra which contribute significantly to the 

discrimination between pure and spiked samples. Figure 8.8 shows the loadings from the 

model which discriminated between pure cyt c and cyt c spiked with 5% lysozyme, with 

assignments given in Table 8.4. The band at ~1665 cm
-1

 arises from the amide I 

vibrations (C=O), and can be specifically assigned to β-sheet contributions (Tuma, 2005). 

This difference most likely arises because lysozyme has ~10% β-sheet content and cyt c  

Table 8.2: Summary of data partitions into sub-sets for MVA. 

DATA SET NAME DISCRIPTION 

CC 1 CC vs cc 94 pure cyt c samples, 47 of which are intentionally 
mis-labelled as spiked. 

CC 2 CC vs CC1%LY 47 pure cyt c and 47 cyt c with 1% lysozyme 

CC 3 CC vs CC5%LY 47 pure cyt c and 47 cyt c with 5% lysozyme 

RA 1 RA vs ra 94 pure RNase A samples, 47 of which are 
intentionally miss-labelled as spiked. 

RA 2 RA vs RV1%RB 47 pure RNase A and 47 RNase A with 1% 
lysozyme 

RA 3 RA vs RV5%RB 47 pure RNase A and 47 RNase A with 5% 
lysozyme 
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Table 8.3: Classification matrix for ANN, PLS-DA and SVM 

applied to discriminate between pure and contaminated 
protein samples. Data shown are from the test sets only. 

   
Predicted class 

   
ANN PLSDA SVM 

   
CC Cc CC Cc CC Cc 

R
e

al
 c

la
ss

 

C
yt

o
ch

ro
m

e
 C

 

CC 53% 47% 51% 49% 54% 46% 

cc 45% 55% 56% 44% 48% 52% 

 
ANN PLSDA SVM 

 
CC CC1%LY CC CC1%LY CC CC1%LY 

CC 63% 37% 69% 31% 66% 34% 

CC1%LY 42% 58% 43% 57% 37% 63% 

 
ANN PLSDA SVM 

 
CC CC5%LY CC CC5%LY CC CC5%LY 

CC 95% 5% 100% 0% 99% 1% 

CC5%LY 5% 95% 2% 98% 2% 98% 

 

        

 
ANN PLSDA SVM 

 

 
RA Ra RA Ra RA Ra 

R
ib

o
n

u
cl

e
as

e
 A

 

RA 51% 49% 57% 43% 59% 41% 

ra 50% 50% 54% 46% 51% 49% 

 
ANN PLSDA SVM 

 
RA RA1%RB RA RA1%RB RA RA1%RB 

RA 75% 25% 84% 16% 82% 18% 

RA1%RB 27% 73% 20% 80% 23% 77% 

 
ANN PLSDA SVM 

 
RA RA5%RB RA RA5%RB RA RA5%RB 

RA 87% 13% 96% 4% 92% 8% 

RA5%RB 11% 89% 6% 94% 8% 92% 
 

 
Figure 8.8:  PLS-DA loadings plot for the discrimination between pure cyt c 

and cyt c + 5% LY. 
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only ~1% β-sheet content, so the addition of lysozyme to cyt c increases the percentage 

of β-sheet structures in the sample. A similar explanation can be attributed to the ~1242 

cm
-1

 amide III band (C-N and N-H), which can also be assigned to β-sheet structure 

(Socrates, 2001). Other features in the loadings can be assigned to the contributions from 

the side chains of amino acids which increase in number when lysozyme is added. For 

instance, the  bands at ~1622 cm
-1

 and ~874 cm
-1

 can both be assigned to the aromatic 

side chain of tryptophan (Liang et al., 2006). Variations in this band can be explained by 

the fact that cyt c has only 1 tryptophan residue but lysozyme has 6, therefore spiked 

samples will have a higher concentration of tryptophan, and therefore these bands are 

likely to increase in intensity in spiked samples.  

 

 

 

Figure 8.9 presents the loadings for the discrimination between pure RNase A and 

RNase A + 5% RNase B. As with the loadings from the cyt c data, the RNase loadings 

show contributions from amide I and III bands. This could be because the RNase B 

spectra exhibited a change in these bands as a result of the changes to the higher order 

structure of the protein transformed by the addition of a glycan. Other bands can be 

assigned to glycosidic vibrations arising from the sugar component of RNase B. Full 

assignments for the bands highlighted in these loadings are discussed in Table 8.5. 

Table 8.4: Assignment and Discussion of FT-IR bands identified as relevant 
for the discrimination between pure cyt c and cyt c + 5%LY. 

~Wavenumber 
(cm-1) 

Assignment Justification 

1665 Amide I – β-sheet Lysozyme is 10% β-sheet, cyt c only 
1% 

1622 Tyrosine and Tryptophan Cyt c has 4 Tyr and 1 Trp, Lysozyme 
has 3 Tyr and 6 Trp  

1443 Alanine Increase in number of alanine, cyt c 
has 6 and lysozyme 12 

1242 Amide III – β-sheet Lysozyme is 10% β-sheet, cyt c only 
1% 

1105 Α-helix Cyt c is mainly α-helix and lysozyme is 
α-helix and β-sheet 

874 Tryptophan Lysozyme as 6, cyt c 1; Trp is more 
buried in cyt c.  
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Table 8.5: Assignment and Discussion of FT-IR bands identified as relevant 
for the discrimination between pure RNase A and RNase A +5% RNase B. 

~Wavenumber 
(Cm-1) 

Assignment Justification 

1678/1651 Amide I  Conformational changes brought 
about by addition of glycan 

1335 Amide III/ NH2 twist  NH2 twisting mode of GlcNAc in glycan 
appears as a shoulder of amide III 

1092 Glycosidic ring Glycosidic ring deformation modes of 
the glycan component of RNase B  

993 Phenylalanine Change in local environment due to 
conformational changes 

887 C-O-C stretch Glycan based vibrations from RNase 
B 

 

8.3.4.1 Probability of Correct Classification. 

In this final step we have converted the PLS-DA results from Table 8.3 into numerical 

values which describe the precision of this method; this is a measure which assesses the 

percentage of samples identified as contaminated that actually are contaminated. The 

precision of our chemometric models was calculated using equation 8.1; where TP is the 

rate of true positives and FP is the false positive rate. This value is essentially a Bayesian 

 
 

Figure 8.9:  PLS-DA loadings plot for the discrimination between pure RNase A 
and RNaseA + 5% RNase B. 
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or conditional probability that a sample identified by FT-IR spectroscopy as contaminated 

is in fact a real contaminated sample.  

    𝑐    𝑛 =  
  

     
                                       Eq. 8.1 

Table 8.6 reports the calculated probabilities of correct classification for each model. This 

table illustrates that this method is a precise method of detecting contamination in RNase 

proteins;  with the probability a sample is correctly identified as contaminated being 0.963 

for 5% contamination, along with 0.863 for 1% RNase B. The precision is equally high for 

detection of cyt c spiked with 5% lysozyme, 0.998, but falls significantly to 0.649 when the 

contaminant concentration is lowered to 1%.     

 

Table 8.6: Model precision: probability of correct identification of contaminated samples 
for spiked cytochrome c and ribonuclease A samples. 

Precision for spiked samples 

Pr(X) = Pr(spiked|predict_as_spiked) = probability that a sample is in fact spiked given that the 
algorithm identified the sample as spiked 

Algorithm Comparison Pr(X) Comparison Pr(X) 

PLSDA 
(100%CC) vs (99%CC+1%LY) 0.649 (100%CC) vs (95%CC+5%LY) 0.998 
(100%RA) vs (99%RA+1%RB) 0.830 (100%RA) vs (95%RA+5%RB) 0.963 

ANN 
(100%CC) vs (99%CC+1%LY) 0.608 (100%CC) vs (95%CC+5%LY) 0.954 
(100%RA) vs (99%RA+1%RB) 0.746 (100%RA) vs (95%RA+5%RB) 0.868 

SVM 
(100%CC) vs (99%CC+1%LY) 0.647 (100%CC) vs (95%CC+5%LY) 0.994 
(100%RA) vs (99%RA+1%RB) 0.815 (100%RA) vs (95%RA+5%RB) 0.924 

Precision for non-spiked (pure) samples 

Pr(Y) = Pr(pure|predict_as_pure) = probability that a sample is in fact pure given that the 
algorithm identified the sample as pure 

Algorithm Comparison Pr(Y) Comparison Pr(Y) 

PLSDA 
(100%CC) vs (99%CC+1%LY) 0.694 (100%CC) vs (95%CC+5%LY) 0.998 
(100%RA) vs (99%RA+1%RB) 0.836 (100%RA) vs (95%RA+5%RB) 0.963 

ANN 
(100%CC) vs (99%CC+1%LY) 0.627 (100%CC) vs (95%CC+5%LY) 0.953 
(100%RA) vs (99%RA+1%RB) 0.750 (100%RA) vs (95%RA+5%RB) 0.868 

SVM 
(100%CC) vs (99%CC+1%LY) 0.661 (100%CC) vs (95%CC+5%LY) 0.994 
(100%RA) vs (99%RA+1%RB) 0.824 (100%RA) vs (95%RA+5%RB) 0.924 
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8.3 Conclusions. 

Successful identification of low levels of protein contamination has been achieved using 

FT-IR spectroscopy and chemometric analysis. Initial inspection of FT-IR data and PCA 

scores plots highlighted the need for a sophisticated chemometric approach, as only 

small amounts of variation were observed in the spectra of pure and contaminated 

proteins. DFA results demonstrated that the analytical technique chosen recorded 

spectral information from the samples that matched the expected protein clustering 

according to prior biological knowledge of their respective structures. The DFA approach 

can be applied as a filter step to narrow down possibilities and the final identity of the 

samples resolved by other MVA methods. Low levels of protein contamination were 

consistently quantified correctly by PLSR regression models.  

 

We tested three supervised classification methods, all of which demonstrated a high level 

of discrimination between pure and contaminated proteins based of their FT-IR spectra. 

On average, PLS-DA produced the best discrimination results for the dataset analysed, 

and PLS-DA loadings indicated bands that could be assigned to secondary structure 

features or the side chains of amino acids, which increase in quantity in the protein 

contaminant, and therefore in the spiked sample.  

 

These results confirmed that this approach of FT-IR spectroscopy coupled to 

chemometric analysis can be used for fast and reliable detection of low levels of protein 

contamination and this has several possible applications for validation of the recovery 

and purification of biosynthetic products. The positive results from this study motivate and 

suggest future work using even lower concentrations of protein contamination and the 

inclusion of other protein types closer to those that would be encountered in the 

biopharmaceutical industry. 
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Chapter 9: Detecting Protein Contamination Using 

FT-IR Spectroscopy and Chemometrics: A 

Biopharmaceutical Example.  

 

9.1 Introduction. 

We have previously demonstrated the ability for FT-IR spectroscopy coupled with 

multivariate analysis to discriminate successfully between pure and contaminated 

proteins in two models systems. Although this approach is not as sensitive as the 

currently favoured immunoassay based approaches, it is much less laborious and less 

prone to human error; making it an ideal high-throughput screening method, with the 

potential for automated ‘at-line’ use. Following on from the work described in Chapter 8, 

we have investigated the detection of contamination in a more biopharmaceutically 

relevant system; Immunoglobulin G (IgG) spiked with transferrin. In addition, in this study 

we have explored a much wider range of contaminant concentrations: 0.25-60%.  

 

IgG was chosen as a mock protein product due to the fact that over 60% of the products 

produced by biotechnology are antibodies or antibody derived (e.g. antibody fragments) 

(Redwan, 2007). Transferrin was chosen to use as a protein contaminant as it a 

commonly encountered HCP in the mammalian cell lines which are used to produce 

IgGs. 

 

In this work we once more demonstrate the ability of FT-IR spectroscopy combined with 

MVA techniques to detect low level contamination of proteins, in this case we have 

successfully detected contamination levels as low as 0.25%.  
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9.2 Materials and Methods. 

9.2.1 Materials. 

Polyclonal human IgG and human apotransferrin were both purchased from Sigma-

Aldrich (Dorset, UK). Phosphate buffered saline (PBS) tablets for the light scattering 

studies were also purchased from Sigma-Aldrich. 

 

9.2.2 Method. 

Lyophilised IgG and transferrin were dissolved in ultra-pure water at a concentration of 

5mg/mL. The spiked samples were then created in triplicate by mixing the appropriate 

amount of transferrin into IgG (0.25, 0.5, 0.75, 1, 2, 3, …10, 20 … 60% v/v). 5 µL of each 

sample was loaded into a 96 well silicon plate, which had been pre-washed in methanol 

and deionised water. The plate was then left to air dry at room temperature for 60 min, 

until completely dry. To minimise instrumental drift being incorporated into the 

measurements samples were positioned in alternate rows on each plate. 52 analytical 

replicates of each sample were analysed with replicates coming from 3 independent 

mixtures and spread over multiple plates and measurement days.  

 

9.2.3 FT-IR Spectroscopy. 

FT-IR spectra were collected on a Bruker FT-IR instrument, as described in 2.1.2. 

Spectra were collected from each of the 96 wells over a wavenumber range of 4000-600 

cm
-1

, with a spectral resolution of 4 cm
-1

. For each well 64 accumulations were collected, 

co-added and averaged to improve the signal-to-noise ratio. Data were exported from the 

Opus software to Excel spread sheets, which were later analysed in R. 

 

9.2.4 Raman Spectroscopy. 

Raman data were collected using a Renishaw 2000 Raman microscope described in 

Chapter 2. All spectra were all were single accumulation, extended scans between 400 

and 1800 cm
-1

, with an exposure time of 60 s.  2 μL of sample were spotted onto a 

hydrophobic SpectraRIM
TM

 slides (section 2.1.1.1) and allowed to air dry out at room 
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temperature for ~1 h. Each reported spectrum is an average of 6 spectra collected from 

different positions within each sample spot. Data were pre-processed using an ALS 

baseline collection and EMSC normalisation (Polynomial order, 9).  

 

9.25 Light Scattering. 

Light scattering experiments were performed by employing composition-gradient multi-

angle light scattering (CG-MALS). A Wyatt Calypso II (Wyatt Technology Corp., Santa 

Barbara, CA, USA) was used for sample injection, and a Wyatt miniDAWN TREOS was 

used as a light scattering detector, in which detection angles were; 49°, 90° and 131°. 

The setup also included a Waters 2487 dual wavelength UV detector operating at 280 

and 254 nm (Waters Corp., MA, USA). Calypso 1.2.9.1 software was used for instrument 

control and data capture, data were then exported into Excel for further analysis. The 

method used in this analysis is depicted in supplementary information, Figure S9.1A.  

 

9.2.6 Data Analysis. 

Prior to multivariate analysis FT-IR data were pre-processed in R. Spectra were 

normalised using EMSC (polynomial order 3), and auto-scaled so that each data column, 

corresponding to a wavenumber variable, had a mean equal to zero and a standard 

deviation equal to one. Data were then analysed using R to perform PCA, DFA, PLSR, 

PLS-DA, SVMs and ANNs. Raman data were pre-processed in Matlab prior to analysis in 

R. 

 

9.3 Results and Discussion.  

9.3.1 FT-IR Spectra. 

FT-IR spectra were recorded of pure IgG, pure transferrin (Tf) and samples of IgG spiked 

with varying amounts of Tf. Spectra of both pure proteins and IgG with 1% and 5% Tf 

contamination are shown in Figure 9.1, once again the need for further analysis is 

highlighted here as little or no variations between the spectra of pure and spiked IgG can 
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be observed by eye, and only very small differences are visible in the spectra of two pure 

proteins.  

 

Traditionally, the most effective way to differentiate IR spectra recorded from various 

proteins, without the application of MVA, is to perform a spectral de-convolution on the 

amide I region (~1600-1700 cm
-1

) (Byler and Susi, 1986, Jackson and Mantsch, 1995, 

Sane et al., 1999, Ganim et al., 2008). This will allow us to view the component peaks 

underneath this band, which can then be assigned to structural features in order to 

discriminate between proteins based on their secondary structure. Peak fitting and de-

convolution has been performed in GRAMS Ai software using the inbuilt Gaussian and 

Lorentzian peak fitting function.  

 

Spectral differences in the proteins understudy in this chapter should be easily visible in 

the amide I region, as IgG is predominantly formed of β-sheet structures (39% as 

opposed to 18% in Tf), with only 5% of its structural features being classified as α-helical, 

compared to 31% α-helix in Tf (Wikstrom et al., 1994, Novotny et al., 1986, Zikan et al., 

1985, Bailey et al., 1988, Matsuo et al., 2005). The results of this analysis on the spectra 

of IgG and transferrin are shown in Figure 9.2A-B. It is clear from the de-convolved 

spectra of this region that the spectra indicate very different structural features for the two 

 
Figure 9.1:  Average FT-IR spectra of IgG, transferrin (Tf), and IgG contaminated 

with 1 and 5% Tf.  
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proteins. The spectra of IgG show large bands arising from β-sheet structures at ~1624 

and 1685 cm
-1 

(Liang et al., 2006, Chen and Lord, 1980, Zheng et al., 2004). In 

comparison the transferrin spectra show numerous bands which can be assigned to α-

helix structures (at ~1629, ~1630, ~1648 and ~1652 cm
-1 

(Takekiyo et al., 2006, Barron et 

al., 2002, Ellepola et al., 2006), but only very small contributions from β-sheet features. In 

addition the Tf spectra also exhibit a large band at ~1678 cm
-1

 which can be attributed to 

the turn structures in the protein (Takekiyo et al., 2006).   

 

We next investigated this approach for detecting contaminated IgG; the de-convolved 

amide I regions for the samples of IgG spiked with 1% and 30% Tf are displayed in 

Figure 9.2C-D. In both cases we can observe an increase in the intensity of bands 

assigned to α-helix compared to the spectra of pure IgG, this is associated with the 

increase in α-helix content in Tf. Furthermore there is also an increase in bands assigned 

to turn structure in spectra of contaminated IgG, which corresponds to the large band 

attributed to turn structure seen in the spectra of Tf.  

 
Figure 9.2: Spectral de-convolution of the amide I region of the FT-IR spectrum of 
(A)Pure IgG (with cartoon structure inset, drawn from PDB file 1HGY), (B) Pure Tf 

(with cartoon structure inset, drawn from PDB file 2HAU), (C) IgG spiked with 1% Tf 
and (D) IgG spiked with 30% Tf. 
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Although this method appears to allow us to distinguish between pure and spiked 

samples it is a time consuming approach which requires a certain level of expertise in 

order to make correct assignments. It also could be argued that this method is a 

subjective approach as results may vary depending on the proposed assignments which 

could differ between analysts. Therefore there still remains a need for an objective 

chemometrics based method to facilitate rapid and reliable detection of contamination. 

 

9.3.2 Unsupervised Clustering - PCA. 

We next applied PCA to this data set and scores plots for the analysis of 1% and 5% 

contamination levels are shown in Figure 9.3. The results show that although we are able 

readily to separate the two pure protein samples there is a significant overlap of spiked 

and pure IgG samples. As PCA alone shows little discrimination between contaminated 

and non-contaminated proteins supervised machine learning is needed to aid in 

identification of the contaminated samples.  

 

 
Figure 9.3:  PCA scores plots (PC1 vs. PC2) of pure IgG, pure Tf, and IgG 

contaminated with 1% and 5% Tf. 
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9.3.3 Supervised Clustering. 

9.3.3.1 PC-DFA. 

DFA was first applied to the data to improve discrimination between pure and spiked 

samples and also to attempt to quantify how much contaminant is in a sample. We have 

used the PCs calculated in the previous analysis as input variables for this model (200 

PCs). In our preliminary tests to determine the number of PCs that should be retained, 

200 was the number of PCs (input variables to DFA) that maximized the predictive 

accuracy of the DFA models. One possible explanation for the high number of PCs 

required for DFA to discriminate so many different levels of contamination, ranging from 0 

to 60%, is that the first PCs do discriminate well between very low and very high levels of 

contamination (between 0.5% and 60% for instance) but many more PCs are needed to 

clearly separate the lowest contaminated samples (0.5% and 0.75% for instance). 

 

 
Figure 9.4: (A) PC-DFA scores from the full dataset, (B) PC-DFA scores from IgG 

samples spiked with 0-10% Tf (C) DF 1 Scores from A plotted as a function of Tf 
concentration and (D) DF 1 Scores from B plotted as a function of Tf concentration. 
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Figure 9.4A shows the resulting DFA scores plot for all IgG samples. A clear trend can be 

observed across DF1 with increasing Tf concentration; however there is still a large 

amount of overlap between pure IgG and the samples with lower levels of contamination 

(0.25-3%). As an alternative way to display this quantitative trend we have plotted a 

graph with the scores from DF1 as a function of Tf concentration (Figure 9.4C), where a 

strong correlation between the FT-IR spectra and contamination levels is evident. If we 

calculate DFA scores using only PCs from samples contaminated with between 0 and 

10% Tf, we can see a marked improvement in the resolution on clusters from lower Tf 

concentrations (Figure 9.4B and D). When further reducing the number of samples used 

to build the DFA model to only those spiked with 0-1% Tf (Figure 9.5), we can easily 

discriminate between pure and contaminated IgG samples based on their IR spectra, 

even at much lower contaminant concentrations than those investigated in the previous 

chapter.  

    

 

 

 

 

 

 

 

 

9.3.3.2 PLSR. 

Next a PLSR model was applied to attempt to improve quantification of contamination. 

Figures 9.6A-B show the distribution of PLSR predictions over 1000 bootstrap cross 

validations for the discrimination of pure IgG and samples spiked with 5 and 1% Tf, 

respectively. The null distribution is also shown in Figure 9.6C, as seen previously for cyt 

c and RNase these curves lie directly on top of each other. The distribution curves for 

 
Figure 9.5: PC-DFA scores from pure IgG and IgG spiked 

with 0.25-1% Tf. 
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spiked samples indicate an excellent discrimination of pure and 5% contaminated 

samples, with only a small amount of overlap seen between the two groups. The 1% Tf 

samples also show good discrimination results with the model being able to correctly 

classify spiked IgG in a majority of samples. Furthermore, if we compare these curves to 

those produced from the cyt c and RNase samples in the previous chapter (Figure 8.5), it 

can be seen that discrimination by PLSR in this biopharmaceutical example appears to 

be more successful than the results achieved with our model systems (Chapter 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.6: Graphs to show (A) the distribution of predicted values for IgG and IgG spiked 
with 5% Tf, (B) the distribution of predicted values for IgG and IgG spiked with 1% Tf and 

(C) the null distribution of predicted values for IgG and IgG. 

 
Figure 9.7: Typical PLSR predictions from FT-IR data of IgG 

spiked with Tf over 1000 bootstrap cross validations. 
INSET: Box and whisker plot showing R2 values for the original and 

permuted models. 
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A typical model showing the PLSR predictions from models built using all of the IgG 

samples, with Tf concentrations between 0 and 60% and also pure Tf (100%) is shown in 

Figure 9.7. It is clear from this plot that FT-IR analysis of this particular system provides 

an excellent method of quantifying contamination. There is a very strong correlation 

between the FT-IR spectra and Tf concentration, with the majority of models having R
2
 

values close to 1 (the R
2
 values for the 1000 models are shown in the box and whisker 

plot inset in Figure 9.7). The box and whisker plot also shows the results obtained from 

permuted models, which confirm that the original model is a true result.   

 

9.3.4 Supervised Classification Methods: PLS-DA, SVM, ANN and RF. 

As with the previous work, we next compare the three different supervised algorithms 

discussed in the last chapter, PLS-DA, SVM and ANN, in order to find the best 

classification model for our FT-IR data and improve the precision of spectroscopy and 

MVA based detection of contamination. We have, in the present work, also investigated a 

fourth classification method; random forests (RFs). RF is an alternative supervised 

learning algorithm which uses many decision trees (i.e. a forest), where the input for each 

decision tree is a bootstrapped version of the original training data, and each node of the 

trees has a degree of randomness incorporated (Breiman, 2001).  

 

Data for this analysis was partitioned into many subsets, allowing discrimination between 

pure IgG and contaminated IgG at each level of contamination. Results were calculated 

over 1000 bootstrap cross validations for each method and are summarised in Table 9.1. 

The values quoted in this table refer to the precision of the method at each concentration, 

which have been calculated from the classification results using the method described in 

Chapter 8 (8.3.4.1).  

 

All four of the methods tested performed extremely well; however on average PLS-DA 

was the most successful with the highest average precision over all contaminant 

concentrations. PLS-DA showed excellent discrimination between pure and spiked 
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samples, demonstrated by a precision value of 1.00 for the majority of higher Tf 

concentrations and 0.97 for the lowest Tf concentration (0.25%).   

 

It is difficult to precisely compare computation time between the classification algorithms 

used in this work as they require different parameters to optimize performance; such as 

the number of input variables, the number of latent variables computed and the network 

structure for ANN. However, an estimation of the elapsed time that each algorithm takes 

to perform 100 bootstrap cross-validations using exactly 10 input variables is shown in 

Figure 9.8. The results are averaged over 100 independent runs (100 bootstrap cross-

 

Table 9.1:  Precision (probability that the classification is correct) of 
ANN, PLS-DA, SVM and RF applied to discriminate between pure 

and contaminated protein samples. 
 

 

Null distribution 
 

 

pure 
IgG 

pure 
IgG 

pure 
IgG 

pure 
IgG 

pure 
IgG 

pure 
IgG 

pure 
IgG 

pure 
IgG 

 0 0.50 0.50 0.49 0.49 0.50 0.50 0.50 0.50 
 

 
ANN PLSDA SVM RF 

 % Tf 
added 

pure 
IgG 

IgG+Tf 
pure 
IgG 

IgG+Tf 
pure 
IgG 

IgG+Tf 
pure 
IgG 

IgG+Tf 

 
0.25 1.00 1.00 0.96 1.00 0.97 0.99 1.00 1.00 

 
0.50 0.98 0.97 1.00 1.00 0.99 1.00 0.97 1.00 

 
0.75 0.98 0.97 0.96 0.98 0.93 0.95 0.97 0.92 

 
1 0.85 0.93 0.92 0.97 0.89 0.96 0.81 0.84 

 
2 0.90 0.94 0.96 0.97 0.93 0.96 0.89 0.85 

 
3 0.91 0.96 0.96 0.99 0.94 0.97 0.96 0.90 

 
4 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.97 

 
5 0.74 0.78 0.85 0.87 0.73 0.74 0.72 0.74 

 
6 0.96 1.00 0.96 1.00 0.96 0.99 0.98 0.95 

 
7 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.95 

 
8 0.95 0.98 0.98 1.00 0.96 0.98 0.96 0.95 

 
9 0.97 0.98 0.98 1.00 0.97 0.98 0.96 0.95 

 
10 0.97 1.00 0.99 1.00 0.96 0.98 0.93 0.94 

 
15 0.97 0.99 0.98 1.00 0.97 0.98 0.93 0.98 

 
20 0.97 1.00 0.97 1.00 0.98 0.98 0.92 0.98 

 
25 0.98 0.99 0.99 1.00 0.99 0.99 0.95 0.98 

 
30 0.95 1.00 0.98 1.00 0.97 1.00 0.96 0.96 

 
40 0.98 1.00 1.00 1.00 0.96 1.00 0.93 0.97 

 
50 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 

 
60 0.96 1.00 1.00 1.00 1.00 1.00 0.94 0.98 

 
100 1.00 1.00 1.00 1.00 0.98 1.00 0.94 0.93 

 
Average 0.95 0.98 0.97 0.99 0.96 0.97 0.93 0.94 
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validations repeated 100 times). As it can be seen from Figure 9.8 PLS-DA also shows 

the fastest computational time with ANN and RF being the most time consuming 

approaches. 

 

 

 

 

 

 

 

 

 

 

The loadings plot for the classification of pure IgG and IgG spiked with 1% Tf, displayed 

in Figure 9.9, show that a mixture of bands from secondary structure features and amino 

acid side chains are responsible for the discrimination. Bands at ~1636, ~1300 and 

~1105 cm
-1 

can all be assigned to α-helix structure (Takekiyo et al., 2006, Prevelige et al., 

1993, Barron et al., 2002), which could be attributed to the increase an in α-helix content 

in the sample when Tf is added, as IgG is only 5% α-helix but Tf is 31%. In addition the 

band at ~1456 cm
-1

 could be attributed to turn structure (Tuma, 2005) which correlates to 

the increase in turn structure indicated by the amide I region of the Tf spectrum displayed 

in Figure 9.2 B. There are also a number of bands (~1589, ~1558, and ~1032 cm
-1

) which 

have been assigned to the ring breathing and ring deformation modes from the side 

chains of aromatic amino acids (Prevelige et al., 1993, Howell and LiChan, 1996, Lord 

and Yu, 1970). As these bands will vary in intensity depending on the burial or exposure 

of residues, this difference may be due to the tyrosine, tryptophan and phenylalanine 

residues being more exposed in one of these proteins.    

 
Figure 9.8: Estimation of the elapsed time that each algorithm 

takes to perform 100 bootstrap cross-validations using exactly 10 
input variables. The results are averaged over 100 independent 

runs (100 bootstrap cross-validations repeated 100 times). 
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An important point to note from the PLS-DA results is that the discrimination between 

pure and 5% contaminated IgG yields strangely low results compared to all other 

contamination levels; this was usual and was not due to experimental error as this was 

repeatable (x2; data not shown). The precision for 5% contamination was calculated to be 

0.73, in contrast with 0.96 for 6% Tf and 1.00 for 4% Tf. This result is consistent over the 

four different MVA methods tested. If we inspect the PLS-DA loading for 4,5 and 6% 

contamination (Figure 9.10), we can see that the 5% sample is indeed the odd one out, 

as the 4% and 6% loadings are not only similar to each other, but also correlate well with 

the previously reported loadings for IgG spiked with 1% Tf. The major bands appearing in 

the 5% Tf sample can be assigned to disordered turns (~1456 cm
-1

) and β-turns (~1358 

cm
-1

) (Tuma, 2005, Barron et al., 2002, McColl et al., 2003), although the reason for 

these changes occurring in only the 5% samples is unclear and needs to be investigated 

further.   

 
Figure 9.9:  PLS-DA loadings plot for the discrimination between pure IgG and IgG + 

1% Tf, with assignments relating to secondary structure given in red font and 
assignments for amino acid in blue font. 
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9.3.5 Investigating IgG spiked with 5% transferrin. 

Having previously detected an anomalous result for the PLS-DA analysis of IgG samples 

contaminated with 5% Tf, we investigated this occurrence further. If we look back to the 

PC-DFA results from 9.3.3.1 and re-plot the DFA scores showing just 1 and 5% Tf 

concentrations (Figure 9.11) we see that the 1% and 5% samples separate in opposite 

directions across DF2; with 1% falling below the pure IgG with negative scores and 5% 

sample having positive scores.  

 

Our initial thoughts were that this change in the FT-IR spectra of IgG contaminated with 

5% Tf could be due to protein-protein interactions between IgG and Tf. Although there is 

no known reason why this would happen only at this particular contaminant 

concentration, due to the fact that we know transferrin to be used as a fusion protein we 

investigated this theory using a light scattering experiment to detect any complex 

formation that may be occurring between IgG and Tf. The results of this analysis are 

shown in supplementary information (Figure S9.1B). From the light scattering data it was 

possible to calculate the weight average molecular weight of each individual species and 

the two proteins together. As the weight average molecular weight of IgG and Tf mixed 

together was much lower than the combined values calculated from the injections of the 

individual proteins, this suggests that no complex was being formed between IgG and Tf.  

 
Figure 9.10:  Comparison of PLS-DA loadings for the discrimination 

between pure IgG and IgG spiked with 4, 5 and 6% Tf. 
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We further investigated the spectra of IgG spiked with 5% Tf by applying a peak fitting 

function to the amide I region and comparing this to the spectra displayed in Figure 9.2. 

The de-convolved amide I region of IgG with 5% Tf (Figure 9.12) looks comparable to the 

amide I band of IgG spiked with 1% Tf, with the exception of the additional band seen at 

~1700 cm
-1

. The only assignment found in the literature for protein features in this 

wavenumber region was for protonated amide I bands (Ashton et al., 2007, Chi and 

Asher, 1998). A possible reason for this band, which was also present in the spectra of 

IgG with 6, 7, 10, 15 and 30% Tf (not shown), is that the sialic acid present in the glycan 

of IgG is effecting the environment of the proteins and hence has an effect on the IR 

spectrum of Tf.  In addition, we have confirmed that the presence of acid groups affects 

the spectrum of Tf in this region by adjusting the pH of a solution of Tf; in this experiment 

a shoulder can be seen appearing on the amide I band at ~1720 cm
-1 

when at low pH 

(Figure S9.2). Although this is a potential hypothesis as to why transferrin spectra may 

alter when IgG is added, as this band was also observed in the spectra of IgG at higher 

Tf concentrations, it still does not provide an explanation for the anomalies which occur 

solely in the 5% samples.    

 

 
Figure 9.11:   PC-DFA scores from FT-IR data of IgG, Tf 

and IgG spiked with 1 and 5% Tf. 
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In an attempt to explain this trend we repeated the experiment using Raman 

spectroscopy with 785 nm excitation. As Raman spectra of proteins tend to be more 

information rich than the IR spectra it was hoped that this analysis may reveal structural 

bands which highlight possible conformational changes occurring in the 5% sample. The 

DFA scores for this Raman analysis are shown in Figure 9.13 (Raman spectra can be 

viewed in supplementary information, Figure S9.3), where we can observe that when 

using this complementary technique we see a much more expected trend in the scores 

plot, with separation across DF2 with increasing Tf concentration.  

 

 

 

 

 

 

 

 

 
Figure 9.12:  Spectral deconvolution of the amide I region of 

the FT-IR spectrum of IgG spiked with 5% Tf. 

 
Figure 9.13:  PC-DFA scores from Raman data 

of IgG, Tf and IgG spiked with 1 and 5% Tf.  
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All of the results from the exploration of 5% samples seem to suggest that the strange 

PLS-DA and PC-DFA results for the samples of IgG spiked with 5% Tf are likely to be 

caused by analytical artefacts, such as noise, instrumental drift or baseline differences, 

rather than structural changes in the proteins under study.  However this is equally 

unlikely as measurements were collected across numerous 96 well plates, on different 

days, with replicates coming from three independent mixtures of IgG and Tf. Therefore 

this anomaly in the IR data must unfortunately be left unexplained for the present work.  

 

9.4 Conclusions. 

We have successfully identified low levels of Tf contamination in IgG samples using 

supervised MVA methods applied to FT-IR data. FT-IR data showed little variation 

between samples, although we were able to detect contaminated IgG samples by de-

convolving the amide I region of the spectra. However, as this method is lengthy and 

subjective, a MVA method is still need to facilitate fast and precise discrimination.  

 

Both PC-DFA and PLSR show an excellent ability to discriminate between pure and 

contaminated IgG samples at the lowest concentration of Tf tested, 0.25%. In addition 

both methods clearly display effective quantification of contaminant concentration. 

Classification by PLS-DA showed vastly improved results for this system compared to 

those analysed in the previous chapter, with precision being close to 1.00 for the majority 

of higher Tf concentrations and 0.97 for the 0.25% Tf samples. The loadings for this 

discrimination are largely due to variations in bands assigned to secondary structure.  

 

The PC-DFA and PLS-DA results both indicate an anomalous result for the sample of IgG 

contaminated with 5% Tf. Further investigations carried out by FT-IR, Raman and CG-

MALS analysis did not yield any plausible explanations for this unusual trend.  

 

Results shown here have provided further evidence that FT-IR spectroscopy coupled to 

chemometric analysis, in particular PLS-DA, is a suitable method for the rapid and 

reliable detection of protein contamination in biopharmaceutical products. The positive 



 

- 202 - 

 

results presented in this chapter could lead to further work in which multiple proteins are 

spiked into a monoclonal IgG sample in order to more accurately simulate a protein 

therapeutic contaminated with HCPs, and ultimately analysis of a real biopharmaceutical 

samples.  
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9.5 Supplementary Information. 

 

 

 

 
Figure S 9.1: (A) Diagram summarising the method used for CG-MALS experiment 
and (B) A graph to show the results of CG-MSLS experiment, where the Pink line 

indicated UV absorbance results and the blue points indicate MALS results.  
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Figure S 9.2:  Comparison of the amide I region of the FT-IR 

spectra of Tf at pH 2, 4, 7 and 9. 

 
Figure S 9.3:  Average Raman spectra of IgG, Tf, and IgG spiked with 1, 5 and 10% Tf 

(Data have been baseline corrected (ALS) and normalised (EMSC, polynomial=9)). 
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Chapter 10: Conclusions 

 

It is estimated that by the year 2016, 8 out of the top 10 selling pharmaceuticals will be 

recombinant protein or antibody products (Redwan, 2007). With this growth in 

biotechnology-derived therapeutics comes an increasing need to develop reliable and 

high throughput process analytical technologies (PATs) for the robust characterisation of 

such products. Many of the current methods employed for this purpose are off-line 

destructive techniques (Greer, 2008). Raman spectroscopy provides an attractive 

alternative. The non-invasive, confocal nature of this technique coupled with the ability to 

obtain both quantitative and qualitative data, makes Raman spectroscopy a unique and 

valuable candidate to be developed for the in situ analysis of bioprocesses and 

biopharmaceuticals. The data which arise from these biopharmaceutical systems are 

often complex and difficult to interpret. The use of chemometrics and machine learning to 

convert these large data sets into meaningful information about the system under study is 

key to the success of vibrational spectroscopy in this arena.  

 

10.1 Monitoring the Glycosylation Status of Proteins. 

Glycosylation is the most common PTM, with over half of human gene products and one 

third of biological therapeutics being glycoproteins (Apweiler et al., 1999, Greer, 2007). 

As it is widely known that the glycosylation status of a protein drug is important for both 

biological activity and clinical efficiency, this modification must be fully characterised 

(Greer, 2007, Berman, 1985). The complexity of this characterisation challenge is greatly 

increased by the fact that the majority of glycoproteins are expressed in a variety of 

glycoforms. Consequently, complete characterisation of a glycosylated product involves 

not only detecting if a protein is glycosylated, but also that the correct glycan has been 

attached to the correct glycosylation site, and that the level of glycosylation is within 

acceptable limits (ICH, 1999).  
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The current gold standard techniques for glycoprotein analysis are chromatography and 

mass spectrometry based methods (Greer, 2008, Morris, 1980, Anumula, 2006). 

Although these techniques provide precise and reliable results, a Raman spectroscopy 

based method would hold the advantages of being non-destructive, involving minimal 

sample preparation and having the potential for at-line or on-line analysis. Despite the 

fact that Raman spectroscopy has a rich history of successful use in protein analysis 

(Tuma, 2005, Wen, 2007), it is relatively under-utilised in the study of PTMs, particularly 

glycosylation. Previous work carried out by Raman (and ROA) spectroscopy on glycans 

and glycoproteins has involved structural interpretations of proteins and carbohydrates, 

rather than the discrimination of glycosylated and non-glycosylated forms of a protein. 

Such studies include; characterising and quantifying sugar moieties (Oleinikov et al., 

1998, Arboleda and Loppnow, 2000, Mrozek et al., 2004) and investigations into the 

interactions of glycoproteins (Fleury et al., 1999, Cui et al., 2005). 

 

Through the work presented in this thesis we have undoubtedly demonstrated the 

potential for Raman spectroscopy to be developed as a tool for detecting and quantifying 

protein glycosylation. For the first time we have shown Raman spectroscopy to be 

capable of distinguishing between a glycoprotein and its non-glycosylated equivalent, and 

also quantifying relative concentrations of protein and glycoprotein. This was initially 

demonstrated in a simple model system of RNase A and B, then subsequently in a real 

biopharmaceutical sample (transferrin), as well as in an artificially glycosylated system 

(GFP).  

 

Initial studies carried out on RNase A and its glycosylated equivalent RNase B showed 

that through the use of Raman spectroscopy combined with PCA the protein and the 

glycoprotein can be readily identified. In addition Raman spectra of chemically and 

enzymatically deglycosylated RNase B were found to be similar to that of RNase A, 

confirming that the previous discrimination between RNase A and B was indeed due to 

the addition of a carbohydrate moiety. Furthermore, by applying PLSR analysis to data 

that were acquired from mixtures of RNase A and B, we have clearly established the 
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potential of Raman spectroscopy to be used in predicting levels of glycosylation. Since 

the publication of this work (Brewster et al., 2011), other studies have proved to be 

successful in the detection and quantification of glycosylation in haemoglobin and 

albumin by Raman spectroscopy combined with PCA and PLSR (Barman et al., 2012, 

Dingari et al., 2012).   

 

Following on from this, it was proven that the methods developed in Chapter 3 were 

transferable to more complex systems. Identification and quantification of glycosylation in 

a recombinant biopharmaceutical sample was demonstrated using transferrin proteins; 

where in addition to the discrimination between glycosylated and non-glycosylated forms 

we were also able to distinguish between the holo- (iron containing) and apo- (without 

iron) forms of the protein. Successful detection of glycosylation in a synthetic system has 

also be displayed in Chapter 5, where GFP mutants with sugars attached through free 

cysteine residues were subjected to interrogation by Raman spectroscopy and PCA. Both 

studies on GFP and transferrin have extended the value of Raman spectroscopy in this 

application by successfully identifying different glycoforms of the proteins.  

 

Through the use of PCA and PLSR we have identified the vibrational modes which are 

most selective in the detection of glycosylation. The Raman bands used for the 

discrimination and quantification of glycosylation consisted of a mixture of features 

attributed to both protein vibrations and bands arising from the glycan components. It was 

found that these vibrational modes were relatively consistent over the three models 

investigated. From this we are able to deduce some general rules for the identification of 

proteins and glycoproteins based on variations in their Raman spectra: All three of our 

systems, and also results subsequently published for haemoglobin and albumin, showed 

variations in both the amide I and amide III regions of the spectra, at ~1650 cm
-1

 and 

~1250 cm
-1

 respectively, due to conformational differences between glycosylated and 

non-glycosylated proteins (Ellepola et al., 2006, Ashton et al., 2007, Tuma, 2005, Barman 

et al., 2012, Dingari et al., 2012). In addition we also saw changes in the bands which 

arise from the side chains of aromatic amino acids, specifically the ~830 cm
-1 

band in 
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RNase assigned the tyrosine (Siamwiza et al., 1975), the band at ~1550 cm
-1

 in GFP due 

to the indole ring mode of tryptophan (Howell and LiChan, 1996) and the ~650 cm
-1 

tyrolsyl ring vibrations in transferrin (Lord and Yu, 1970). Furthermore, in all three cases 

glycosylated proteins exhibited bands between ~1000 and ~1046 cm
-1

, which could be 

assigned to the ring breathing modes of the glycosidic rings in the carbohydrate moiety 

(Arboleda and Loppnow, 2000, Oleinikov et al., 1998). Bands from glycosidic ring 

stretching were also observed at ~1259 cm
-1

 in the spectrum of RNase B (Socrates, 

2001) and ~820 cm
-1

 in the spectrum of mannosylated transferrin (Degen, 1997) and ring 

deformation modes were seen in spectrum of glycosylated GFP at ~933 cm
-1 

(Dollish et 

al., 1974). 

 

Results obtained in Chapters 4 and 5 have highlighted the importance of glycan position 

in the observation of vibrational modes which can be attributed to the sugars. 

Nevertheless, in both of these cases the protein and glycoprotein were still easily 

identified in the absence of glycosidic bands, by examining bands in the spectra which 

were attributed to conformational differences in the protein molecules brought about by 

the addition of a glycan.  

 

In order to ensure the success of Raman spectroscopy in this application, the ability to 

distinguish between different glycoforms of proteins must be developed further. This task 

would be greatly assisted by building up a knowledge base of glycan standards and 

gaining a better understanding of how sensitive glycosidic vibrations are to variations in 

glycan structure. Some preliminary investigations into this area, presented in the 

appendix, have shown Raman data to be capable of distinguishing between various 

monosaccharaides, glycan fragments and whole glycans; of particular importance was 

the fact that glycans with the same sugar residues in different spatial arrangements are 

able to be classified using PCA. Chemometric analysis of this data set coupled with 

further investigations, which compared monosaccharaides to disaccharides and complex 

glycans, have highlighted the potential to use bands arising from glycosidic links in the 

discrimination of free sugars and glycans. Future work will focus on determining if there is 
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a linear trend between these bands and the number of glycosidic bonds present in a 

sample, hence allowing quantification of the number of sugar residues in a glycan.  

 

In order for the work presented in this thesis to be transferable to an at-line or on-line 

method, another avenue of further investigation would be to determine if glycosylation 

can still be detected by Raman spectroscopy in a more complex sample which contains 

free sugars as well as those attached to the protein. This is an important step as at either 

end of the biopharmaceutical pipeline the samples encountered will include carbohydrate 

molecules: these may be in the form of feeds and metabolites in cell culture media (Butler 

and Meneses-Acosta, 2012), or the sugars used as stabilisers at the formulation stage 

(Hajare et al., 2011, Ohtake and Wang, 2011).  In these more complex systems the 

identification of glycosylated proteins may be confused by the glycosidic vibrations from 

the free sugars. However, as we have previously shown that the discrimination of 

proteins and glycoproteins is partly based on changes in bands assigned to protein 

conformation and also that the spectrum of a glycan differs from that of is component 

monosaccharaides, we are hopeful that successful detection and quantification of 

glycosylation will still be possible.  

 

10.2 Monitoring the Conformation and Stability of Proteins. 

We have discussed previously how the Raman data collected from glycosylated proteins 

has highlighted conformational differences between a protein and equivalent 

glycoprotein. It was therefore of interest to investigate how these structural changes 

affect the stability of the glycoproteins studied. The stability of a biopharmaceutical 

product is an important consideration, as disordered or unfolded proteins may suffer from 

loss of activity, increased aggregation and decreased solubility (Goddard, 1991). 

 

Experiments to determine the unfolding and aggregation profiles of transferrin and GFP 

were carried out by utilising a Optim 1000 spectrometer developed by Avacta analytical, 

which simultaneously measures light scattering and fluorescence emission as a function 

of temperature. Results from these experiments have clearly displayed that glycosylation 
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in transferrin proteins greatly reduces aggregation propensity, with an increase in the 

temperature at which aggregation begins of ~15-20 ºC with increasing number of glycans. 

Analysis of unfolding curves drawn from transferrin and GFP data has shown that in both 

cases glycosylation can increase the stability of the proteins.   

 

As well as differences between proteins of different glycosylation states, Raman data 

from GFP samples also alluded to structural differences between the I229C and E6C 

mutants. The light scattering investigations into these samples suggested that these 

differences may be due to increased levels of aggregation in I229C GFP and this was 

confirmed by microscopy and FCS data. 

 

The interpretation of fluorescence data collected on the Optim 1000 was assisted by the 

development of data analysis strategies for this type of spectroscopic data. 2D correlation 

analysis of fluorescence data from transferrin samples was able to resolve the broad 

overlapping transitions seen in the unfolding curves into multiple distinct transitions. In 

addition, comparison of moving windows contour plots from each transferrin species 

allowed the increase in the temperature at which transitions occur to be more readily 

observed. 2D correlation moving windows analysis of the data collected from GFP 

samples was also able to display multiple unfolding transitions in cases where 

conventional instrument manufacturer’s analysis methods failed to describe any 

transitions. Furthermore using the synchronous and asynchronous contour plots drawn 

from GFP data we have been able to deconvolve the intrinsic fluorescence emission 

spectrum into two overlapping features, determine if these bands are changing in the 

same or opposite directions and sequence the changes with respects to the temperature 

at which they occur. Multivariate data analysis methods were also applied the GFP data: 

Both PCA and PARAFAC were successfully used to simplify a matrix of Optim data into a 

visual depiction of the relative similarities and differences between samples. We were 

also able to pinpoint the temperatures at which the most variations were occurring in the 

spectra, and these transition regions were in good agreement with Tm
 
values published 

for other GFP mutants (Alkaabi et al., 2005, Cubitt et al., 1995).   
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Due to the obvious indications of conformational differences observed in the Raman data 

of proteins, mainly indicated by the amide I vibrations, we investigated the use of this 

region of the Raman spectrum to monitor protein unfolding induced by a chemical 

denaturant. We have compared this method to one of the gold standard methods, 

fluorescence spectroscopy (Serrano et al., 2012) and also to a previously established 

Raman method which focusses on observing changes in the tryptophan modes as the 

residues become more exposed to the external environment (Prevelige et al., 1993, Liang 

et al., 2006, Chen and Lord, 1980). Through the use of unfolding curves, [D]50 and ΔG 

calculations we have shown that results obtained through this novel Raman 

spectroscopic method are comparable with those obtained by a conventional 

fluorescence unfolding experiment. By employing 2D correlation moving windows 

analysis to both data sets we have demonstrated that this Raman based approach is 

more sensitive to smaller conformational changes than both the fluorescence method and 

the tryptophan region of the Raman spectrum.  

 

10.3 Detecting Foreign Protein Contamination in Proteins. 

Another commonly encountered characterisation challenge in biopharmaceutical 

production is the contamination of a therapeutic protein product with any other proteins 

produced by the bioprocess. The removal of these HCPs and the validation of this step is 

an important stage of downstream processing, as these foreign proteins can have 

undesirable immunogenic effects (Greer, 2008, Goddard, 1991). Although the sensitivity 

of the current immunoassay based methods of detection is unrivalled, the FT-IR method 

described in this thesis is a high-throughput and precise alternative for the rapid 

screening of samples.  We have successfully demonstrated that FT-IR spectroscopy 

combined with supervised machine learning is capable of detecting low-level protein 

contamination in three separate systems.  

 

Initial model systems, mimicking a protein product contaminated with HCP (cytochrome c 

and lysozyme) and a protein contaminated with a glycosylated equivalent (RNase A and 

B), both highlighted the need for sophisticated supervised learning chemometrics by the 
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small amount of variance seen in the spectra of pure and spiked samples and poor 

discrimination by PCA, an unsupervised learning approach. Results from PLS-DA 

showed that discrimination of 5% contaminated samples was easily achieved for both 

cytochrome c and RNase samples. Examination of the loadings plots from these models 

showed that this identification was based on bands that could be assigned to secondary 

structure features or the side chains of amino acids which increase in quantity in the 

protein contaminant, and therefore also increase in the spiked samples.  

 

This method was then tested using a more biopharmaceutically relevant example of IgG 

spiked with transferrin, where encouraging results were achieved. PLS-DA showed an 

excellent ability to discriminate between pure and spiked samples at a wider contaminant 

concentration range of 0.25-60%; precision values of ~1.00 were achieved at higher 

concentrations of contaminant, and ~0.97 for the lowest concentration of Tf tested 

(0.25%). In addition, both PC-DFA and PLSR achieved successful quantification of 

contamination with low prediction errors.  

 

Due to the success of this method of detecting protein contamination using FT-IR and 

multivariate analysis, future work will involve numerous proteins being spiked into a 

monoclonal IgG sample in order to more accurately simulate a protein therapeutic 

contaminated with HCPs. Following on from this it is hoped that this method can be 

tested on real biopharmaceutical samples.  

 

10.4 Detecting Sickle Cell Anaemia and the Sickle Cell Trait. 

Finally, we have investigated the application of Raman spectroscopy to a medical 

diagnostic problem: the detection of sickle cell anaemia and the sickle cell trait. Many of 

the currently used diagnostic tests are unable to differentiate between the disease and 

the trait, thus leading to a high rate of false positives (Nalbandi et al., 1971, McCavit, 

2012, Meier and Miller, 2012). Therefore we have attempted to use Raman spectroscopy 

to not only detect sickle cell anaemia by identifying the defective form of haemoglobin 

(HbS), but also differentiate between samples of pure HbS and mixtures of HbA and HbS, 
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which would be characteristic of a blood sample from a carrier of the sickle cell trait 

(Silverstein and Nunn, 1997). This study will build on previously published work in which 

Raman microscopy was used to monitor aggregation of HbA and HbS inside erythrocytes 

(Wood et al., 2005). 

 

We have shown the potential for Raman Spectroscopy in this application by initially 

distinguishing between HbA and HbS proteins both in pure protein samples and mock 

biological samples. We went on to demonstrate the potential of Raman analysis to 

quantify levels of HbS in mock biological samples containing a mixture of HbS and HbA, 

displaying how Raman spectroscopic analysis can allow diagnosis of both sickle cell 

disease and the sickle cell trait. Moreover, we have shown the viability of this method as 

a point-of-care diagnostic tool, by demonstrating that a portable Raman probe was 

capable of detecting haemoglobin at physiological concentrations in mock biological 

samples. These successful preliminary experiments will lead to future work carried out on 

a portable Raman instrument, beginning with the mock biological samples previously 

analysed by Raman microscopy and leading on to the analysis of HbS in a complex 

biological sample which will more accurately simulate a patient’s blood sample. 

 

10.5 Concluding Remarks. 

Throughout this thesis the utility of vibrational spectroscopy in the detection of protein 

modifications has been undoubtedly displayed. We have investigated applications of 

these techniques in both biopharmaceutical characterisation and medical diagnostics. 

These ‘proof of principle’ type studies have shown Raman spectroscopy to be capable of 

determining the glycosylation status of a protein, detecting mutant forms of proteins and 

monitoring conformational changes in proteins. In addition we have shown FT-IR 

spectroscopy coupled with MVA to be successful in the identification of foreign protein 

contamination. Moving forward, since the potential of these techniques has been so 

clearly demonstrated in these studies, we hope to transfer these methods to real on-line 

and at-line analyses.   
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Towards Glycan Characterisation by Raman 

Spectroscopy. 

 
 
 
Preliminary Investigations have shown the ability to distinguish between various 

monosaccharaides and glycan fragments based on their Raman spectra (Figure 1 and 2). 

We then investigated the Raman spectra of whole glycans, which were supplied by Chris 

Jones from NIBSC, where PCA was able to differentiate between glycans easily, even 

glycans with the same sugars in different spatial arrangements and ratios (Figure 3).   

 

 

 

 
Figure 1: (A) Average Raman spectra and structures of 6 different monosaccharaides, 

and (B) PCA Scores plot of Raman data from monosaccharaides.  

 
Figure 2: (A)Structures of Glycan fragments analysed, and (B) PCA Scores plot of 

Raman data from glycan fragments .  



 

- 229 - 

 

 

When comparing all data from monosaccharaides, glycan fragments and whole glycans 

(Figure 4), the monosaccharaides appear to all fall at the left hand side of the PCA scores 

plot, indicating that separation a cross PC1 may be partly due to glycosidic bond 

vibrations. This was investigated further by comparing the Raman spectra of mannose 

and mannobiose (Figure 5), where bands which can be specifically assigned to the C-O 

stretching of the C-O-C glycosidic linkages are observed at ~708, ~900 and ~1009 cm
-1

.  

 

 

Subsequently, we also compared the Raman spectra of the RNase B glycan and the α-1-

acid glycoprotein glycan to the spectra of the component monosaccharaides and a 

mixture of these sugars in the relevant ratios (Figure 6 and 7). Spectra of 

monosaccharide mixtures and sugars differ vastly, with sharp peaks which can be 

assigned to glycosidic bond vibrations.    

 
Figure 3: (A) Structures of whole glycans analysed, and (B) PCA Scores plot of Raman 

data from whole glycans.  

 
 

Figure 4: PCA plot of Raman data from all 
sugars.  

Figure 5: Raman spectra of Mannose 
and Mannosbiose, with bands due to 

glycosidic link highlighted. 
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Figure 6: (A) Raman Spectra of the RNase Glycan and a mixture of GlcNAc and Mannose, 

and (B) PCA scores plot for Raman data of RNase glycan, Mannose, GlcNAc and the 

monosaccharaide mixture.   

 

 
Figure 7: (A) Raman Spectra of the α-1-acid glycan and a mixture of GlcNAc, Sialic acid and 

Mannose, and (B) PCA scores plot for Raman data of α-1-acid glycan, Mannose, GlcNAc, 

Sialic acid and the monosaccharaide mixture.   


