
SUPPORT CONSUMERS’ RIGHTS IN

DRM: A SECURE AND FAIR

SOLUTION TO DIGITAL LICENSE

RESELLING OVER THE INTERNET

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2012

By

Tarek Gaber

School of Computer Science

Contents

Abstract 17

Declaration 19

Copyright 21

Dedication 23

Acknowledgement 25

Abbreviations 27

Definitions 29

Notaitons 31

1 Introduction 33

1.1 Introduction to Digital Rights Management (DRM) 33

1.2 Introduction to Concurrent Signature Scheme 34

1.3 DRM and Consumers’ Rights . 36

1.4 Research Motivation and Challenges 38

1.5 Research Aim and Objectives . 40

1.6 Research Methodology . 41

1.7 Novel Contributions and Publications 42

1.8 Thesis Structure . 46

2 Digital Rights Management Overview 47

2.1 Chapter Introduction . 47

2.2 What is DRM . 48

2.3 DRM History . 48

3

2.3.1 First Generation DRM Systems 49

2.3.2 Second Generation DRM Systems 49

2.4 DRM Fundamental Principle . 50

2.5 DRM System Entities . 52

2.6 DRM System Components . 53

2.7 How a DRM System Works . 55

2.8 Existing DRM Systems . 56

2.8.1 Windows Media DRM . 56

2.8.2 FairPlay DRM . 58

2.8.3 Open Mobile Alliance (OMA) DRM 61

2.9 Open Issues in Current DRM Systems 65

2.9.1 Consumer Privacy . 65

2.9.2 Interoperability . 66

2.9.3 First-sale: License Reselling 67

2.10 Chapter Summary . 68

3 A literature Survey 71

3.1 Chapter Introduction . 71

3.2 Current License Selling Solutions 71

3.2.1 License Selling Process in WM-DRM 72

3.2.2 License Selling Process in FairPlay 73

3.2.3 OMA DRM License Selling 74

3.3 Current License Reselling Solutions 77

3.3.1 Full-trusted Hardware based Solutions 79

3.3.1.1 Kwok’s DRM System 79

3.3.1.2 Sun’s System . 80

3.3.1.3 NPGCT DRM System 82

3.3.1.4 Nuovo DRM System 87

3.3.2 Partial-trusted Hardware Based Solution: Conrado’s System 89

3.3.3 Non-trusted Hardware based Solution: Laila’s System . . . 91

3.4 What is Missing? . 94

3.5 The Best Way Forward . 96

3.6 Chapter Summary . 97

4 A Reselling Deal Signing (RDS) Protocol 99

4.1 Chapter Introduction . 99

4

4.2 A Survey of Fair Exchange Protocols 100

4.2.1 Protocols without TTP . 100

4.2.1.1 Gradual Secret Release Protocols 101

4.2.1.2 Probabilistic Protocols 101

4.2.2 TTP-based Protocols . 102

4.2.2.1 In-line TTP-based Protocols 103

4.2.2.2 On-line TTP-based Protocols 104

4.2.2.3 Off-line TTP-based Protocols 105

4.2.3 Concurrent Signature (CS) based Protocols 108

4.3 A Novel Idea for The RDS Protocol 109

4.4 Preliminaries . 112

4.4.1 Notations . 112

4.4.2 Design Assumptions . 113

4.4.3 Design Requirements . 113

4.5 RDS Protocol Overview . 114

4.6 RDS Protocol Informal Analysis 115

4.6.1 Fairness Analysis . 116

4.6.2 Non-repudiation Analysis 119

4.6.3 Abuse-freeness Analysis 120

4.6.4 Security Analysis . 121

4.7 RDS Protocol Formal Verification 122

4.7.1 Formal Methods: An Overview 122

4.7.2 Mocha Model Checker . 125

4.7.2.1 Alternating Transition System (ATS) 125

4.7.2.2 Alternating-time Temporal Logic (ATL) 127

4.7.2.3 Guarded Command Language 128

4.7.3 Model Checker and RDS Protocol Modelling 129

4.7.3.1 Modelling the RDS Protocol 130

4.7.3.2 Modelling the Properties of the RDS Protocol . . 135

4.7.3.3 RDS Verification Using Mocha 141

4.8 Protocol Performance Analysis . 151

4.8.1 RDS Protocol Computational Cost 151

4.8.2 RDS Protocol Communication Cost 153

4.8.3 Comparison with Related Work 154

4.8.4 Prototyping and Evaluation 155

5

4.8.4.1 RDS Protocol Design 155

4.8.4.2 RDS Protocol Implementation 157

4.8.4.3 Hardware and Software Architecture 159

4.8.4.4 RDS Protocol Evaluation 159

4.8.4.4.1 Performance Evaluation 159

4.8.4.4.2 Test against Security Attacks 162

4.9 Chapter Summary . 165

5 Reselling Deal Method 167

5.1 Building Blocks . 167

5.1.1 Market Power . 167

5.1.2 Existing License Distribution Infrastructure 168

5.1.2.1 License Issuer (LI) 169

5.1.2.2 DRM Client . 169

5.1.3 License Revocation List (LRL) 170

5.1.3.1 LRL Types . 171

5.1.3.2 Delivering LRL to Reseller 173

5.1.3.2.1 Pull Mode 173

5.1.3.2.2 Push Mode 174

5.1.3.3 The Need for Imposing a Reselling Deal Validity

Deadline . 174

5.1.4 Reselling Permission (RP) 176

5.2 Preliminaries . 177

5.2.1 Notations . 177

5.2.2 Design Assumptions . 180

5.2.3 Design Requirements . 181

5.3 Fair and Secure License Reselling Protocol (FSLRP) Suite: An

Overview . 184

5.4 The FSLRP Protocol Suite in Detail 186

5.4.1 2-Messages RD Signing (2M-RDS) Protocol 186

5.4.1.1 2M-RDS Protocol Overview 186

5.4.1.2 2M-RDS protocol Analysis 186

5.4.2 RD Activation (RDA) Protocol 187

5.4.2.1 RDA Protocol Overview 187

5.4.2.2 RDA Protocol Analysis 188

5.4.3 RD Completion (RDC) Protocol 190

6

5.4.3.1 RDC Protocol Overview 190

5.4.3.2 RDC Protocol Analysis 191

5.5 Threat and Attack Analysis . 192

5.5.1 Threats Analysis . 192

5.5.1.1 Double Use of a License 193

5.5.1.2 Installing an Out-of-date LRL-update 194

5.5.2 Attack Analysis . 194

5.5.2.1 Collusion Attack 1 194

5.5.2.2 Collusion Attack 2 195

5.6 FSLRP suite Evaluation . 196

5.6.1 FSLRP Suite Computational Cost 196

5.6.2 Comparison with Related Work 197

5.7 Chapter Summary . 201

6 Two Methods Supporting Multi-Reselling 203

6.1 Chapter Introduction . 203

6.2 Additional Design Building Block 204

6.3 Preliminaries . 204

6.3.1 Definitions . 204

6.3.2 Design Assumptions . 206

6.3.3 Design Requirements . 206

6.4 Method One: Repeated RP based Multi-reselling 207

6.4.1 RRP-MR Method Overview 208

6.4.2 RRP-MR Method in Detail 208

6.4.3 Verifications used in the RRP-MR Method 214

6.4.3.1 Buyer’s Verifications 214

6.4.3.2 LI’s verifications 217

6.4.4 RRP-MR Method Analysis 219

6.4.4.1 Analysis against Requirements 219

6.4.4.2 Analysis against Potential Attacks 220

6.4.4.3 RRP-MR Method Weaknesses 222

6.5 Method Two: Hash Chain based Multi-reselling 222

6.5.1 HC-MR Method Overview 225

6.5.2 Multiple Reselling Permission (MRP) 226

6.5.3 Read-only Public Directory (RPD) for Multi-Reselling Check-

ing . 229

7

6.5.4 HC-MR Method in Detail 229

6.5.5 Verifications Used in the HC-MR Method 235

6.5.5.1 Buyer’s Verifications 236

6.5.5.2 LI’s verifications 242

6.5.6 The HC-MR Method Analysis 243

6.5.6.1 Analysis against Requirements 243

6.5.6.2 Security Analysis against Potential Attacks . . . 245

6.6 Evaluation of the Two Multi-reselling Methods 248

6.6.1 Computational Costs of the Two Methods 248

6.6.2 Comparison with Related Work 250

6.7 Chapter Summary . 253

7 Conclusion and Future Work 255

7.1 Thesis Contributions . 256

7.2 Directions for Future Work . 260

7.3 Deployment Requirements . 262

Bibliography 264

A All Protocols in Detail 281

A.1 RDS Protocol in Detail . 281

A.2 2M-RDS Protocol in Detail . 284

A.3 RDA Protocol in Detail . 288

A.4 RDC Protocol in Detail . 294

B Building Blocks Used in DRM 299

B.1 Chapter Introduction . 299

B.2 Symmetric Cryptography . 300

B.3 Asymmetric Cryptography . 300

B.4 Hash Functions . 302

B.5 Digital Signatures . 303

B.6 Public-key Infrastructure (PKI) 305

B.6.1 Digital Certificate . 305

B.6.2 Certification Authority (CA) 306

B.6.3 Certificate Lifecycles and Key Management 307

B.7 Individualization . 308

B.8 Tamper resistance . 309

8

B.9 SSL/TLS Protocol . 309

B.10 Chapter Summary . 310

C Formal Verification Code: RDS Protocol 311

C.1 The RDS Protocol Model . 311

C.2 ATL Formulae Used in The Verification of The RDS Protocol . . 323

Word Count: 79,151

9

List of Tables

3.1 State-of-the-art of the current License reselling proposals 95

4.1 Actions and consequences of delaying Msg2 145

4.2 Exponentiation operations performed by protocol participants . . 151

4.3 Items and their size in each RDS protocol message 154

4.4 Communication cost of each RDS protocol message 154

4.5 Comparison between Chen’s protocol and the RDS protocol . . . 155

5.1 Exponentiation operations performed by FSLRP participants . . . 196

5.2 Comparison between our solution (FSLRP) and related work . . 199

6.1 Exp# performed when executing the RRP-MR and HC-MR methods248

6.2 Comparison with related work . 250

11

List of Figures

2.1 A typical DRM system architecture 49

2.2 DRM fundamental principle: separation between license and content 50

2.3 Dataflow of WM-DRM System 56

2.4 Dataflow of Apply FairPlay DRM 59

2.5 OMA DRM Delivery Schemes of Version 1.0 [1] 62

2.6 OMA DRM V2.0 general architecture [2] 64

3.1 License acquisition method in OMA-DRM [3] 75

3.2 Consumer-to-consumer protocol of NPGCT system 84

3.3 Consumer-to-consumer protocol of Nuovo system 88

4.1 Zhou et al protocol with in-line TTP 103

4.2 Zhou and Gollmanns protocol [4] with on-line TTP 105

4.3 Sokan and Shoup’s contract signing protocol with an off-line TTP 107

4.4 Schematic figure of the RDS protocol 116

4.5 Possible actions taken by Alice and Bob at each stage of a protocol

execution . 117

4.6 General approach of formal methods 123

4.7 MOCHA Verification Tool . 126

4.8 A simple program written by the Game Guarded Command language129

4.9 RDS verification by MOCHA . 131

4.10 A segment of the communication channel model 131

4.11 A segment of LI’s model . 132

4.12 An example of guarded commands of A’s description 133

4.13 Part of guarded commands of B’s description 134

4.14 Part of guarded commands describing the player, Dis A 134

4.15 Part of Dis A’ description using guarded commands 135

4.16 RDS protocol verification using Mocha 142

13

4.17 Schematic figure of the AoAF1 on the abuse-freeness property . . 143

4.18 Schematic figure of the countermeasure to the AoAF1 Attack . . . 148

4.19 RDS protocol participants . 157

4.20 Classes created for the implementation of the RDS protocol . . . 158

4.21 Comparing the RDS protocol with related work 160

4.22 The average time taken by Alice vs a number of deals signed for

one license . 161

4.23 The average time taken by Bob vs a number of deals signed for

one license . 161

4.24 The average time taken by LI vs a number of deals signed for one

license . 162

5.1 The RP structure of a License Lic 177

5.2 A schematic diagram for the FSLRP suite 185

5.3 The Reselling Deal Signing (RDS) protocol 187

5.4 Reselling Deal Activation (RDA) Protocol 188

5.5 The structure of the Pre-official RD 188

5.6 Reselling Deal Completion (RDC) Protocol 191

6.1 N resellings of a license, Lic, using the RRP-MR method 209

6.2 The outline of the RD method . 210

6.3 The outline of the RRP-MR method 211

6.4 The structure of an RD activation request of the RRP-MR method 212

6.5 LI’s RPD after reselling Lic 2 times 213

6.6 The RS check . 215

6.7 The verification process of LI’s signature on RP 216

6.8 The LA verification . 216

6.9 Verifications performed by LI . 217

6.10 Using hash chain to design MRP 224

6.11 The outline of the HC-MR method 225

6.12 Schematic diagram illustrating the structure of MRP in different

resellings . 228

6.13 Schematic diagram showing the structure of LI’s RPD at different

resellings . 230

6.14 The process of the 1st and 2nd resellings of Lic 232

6.15 The MrC1 check . 236

14

6.16 The verification process of LI’s signature on MRP 237

6.17 The MrCi check . 238

6.18 The AKF check of the 2nd reselling 239

6.19 The verification process of LA1 241

6.20 The verification process of LAi, where i ≥ 2 242

6.21 LI’s verifications during the HC-MR method 244

6.22 LI’s computational cost when one license is resold 5 times with the

methods RRP-MR and HC-MR 249

A.1 Verification of RPLic authenticity 283

A.2 ASignA signature generation on RD 284

A.3 Verification BV 1 . 285

A.4 Verification of BV 5 . 286

A.5 ASignB signature generation on (RD||ASignA) 287

A.6 Verifying ASignB() by Alice . 288

A.7 Verification LIV 3 . 290

A.8 RPD hosted by LI . 291

A.9 The verification AV 3 . 295

B.1 The process of symmetric encryption 301

B.2 The process of asymmetric encryption 302

B.3 Digital signature generation and verification 304

B.4 A digital certificate structure . 307

15

Abstract
Consumers of digital contents are empowered with numerous technologies allowing them
to produce perfect copies of these contents and distribute them around the world with
little or no cost. To prevent illegal copying and distribution, a technology called Digital
Rights Management (DRM) is developed. With this technology, consumers are allowed
to access digital contents only if they have purchased the corresponding licenses from
license issuers. The problem, however, is that those consumers are not allowed to resell
their own licenses- a restriction that goes against the first-sale doctrine. Enabling a
consumer to buy a digital license directly from another consumer and allowing the two
consumers to fairly exchange the license for a payment are still an open issue in DRM
research area.

This thesis investigates existing security solutions for achieving digital license re-
selling and analyses their strengths and weaknesses. The thesis then proposes a novel
Reselling Deal Signing (RDS) protocol to achieve fairness in a license reselling. The
idea of the protocol is to integrate the features of the concurrent signature scheme
with functionalities of a License Issuer (LI). The security properties of this protocol is
informally analysed and then formally verified using ATL logic and the model checker
MOCHA. To assess its performance, a prototype of the RDS protocol has been de-
veloped and a comparison with related protocols has been conducted. The thesis also
introduces two novel digital tokens a Reselling Permission (RP) token and a Multiple
Reselling Permission (MRP) token. The RP and MRP tokens are used to show whether
a given license is single and multiple resalable, respectively. Moreover, the thesis pro-
poses two novel methods supporting fair and secure digital license reselling. The first
method is the Reselling Deal (RD) method which allows a license to be resold once.
This method makes use of the existing distribution infrastructure, RP, License Revo-
cation List (LRL), and three protocols: RDS protocol RD Activation (RDA) protocol,
and RD Completion (RDC) protocol. The second method is a Multiple License Re-
selling (MLR) method enabling one license to be resold N times by N consumers. The
thesis presents two variants of the MLR method: RRP-MR (Repeated RP-based Multi-
Reselling) and HC-MR (Hash Chain-based Multi-Reselling). The RRP-MR method is
designed such that a buyer can choose to either continue or stop a multi-reselling of a
license. Like the RD method, the RRP-MR method makes use of RP, LI, LRL, and
the RDS, RDA, and RDC protocols to achieve fair and secure reselling. The HC-MR
method allows multiple resellings while keeping the overhead on LI at a minimum level
and enable a buyer to check how many times a license can be further resold. To do so,
the HC-MR utilises MRP and the hash chain cryptographic primitive along with LRL,
LI and the RDS, RDA and RDC protocols. The analysis and the evaluation of these
three methods have been conducted.

While supporting the license reselling, the two methods are designed to prevent a

17

reseller from (1) continuing using a resold license, (2) reselling a non-resalable license,
and (3) reselling one license a unauthorised number of times. In addition, they enable
content owners of resold contents to trace a buyer who has violated any of the usage
rights of a license bought from a reseller. Moreover, the methods enable a buyer to
verify whether a license he is about to buy is legitimate for re-sale. Furthermore, the
two methods support market power where a reseller can maximise his profit and a
buyer can minimise his cost in a reselling process. In comparison with related works,
our solution does not make use of any trusted hardware device, thus it is more cost-
effective, while satisfying the interests of both resellers and buyers, and protecting the
content owner’s rights.

18

Declaration

No portions of the work presented in this thesis have been submitted in support

of an application for another degree or qualification of this or any other university

or educational institute.

19

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, De-

signs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library’s regulations

(see http://www.manchester.ac.uk/library/aboutus/regulations) and

in The University’s policy on presentation of Theses.

21

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations

Dedication

In the name of Allah

Thy Lord hath decreed, that ye worship none save Him, and (that ye show) kind-

ness to parents. If one of them or both of them attain old age with thee, say not

”Fie” unto them nor repulse them, but speak unto them a gracious word. (23)

And lower unto them the wing of submission through mercy, and say: My Lord!

Have mercy on them both as they did care for me when I was little. (24) [Al-Isra

Chapter, The Holly Quran]

To those who have been always beside me, supporting me, and encouraging me

for no personal benefits

To my father Mohammed and to my mother Horyia who passed away Febru-

ary 2010, may she be given mercy and peace.

I love you, I really do . . .

Tarek

23

Acknowledgement
First of all, I thank Allah (the lord) for all his blessings; I would not have com-

pleted my PhD without his guidance and success.

Secondly, I would thank many people who helped in different ways for this

thesis to come true.

To my supervisor Dr. Ning Zhang for her dedication, guidance and valu-

able advice throughout my PhD. Her support, comments and feedback from the

starting date until submission were invaluable and I really appreciate her effort.

To my advisor Dr. David Lester for this help and support. Also, to my

colleagues, Rima, and Osama from IMG group. In particular, to Peter and Ali

for their understanding, our valuable discussions, and for being on the same boat

as me.

To Prof. Aboul Ella, for his endless help and support for more than 11 years.

To Prof. H. Nassar, for all his kind help and encouragement, To Dr. Hatem, who

is always beside me, for his inestimable help and support in different aspects. To

my friends, Abdelmoneem, Dr. Mahmoud, Azab, M.Noor, and I.Achour for their

various help and support. To my grandmother Hekmat and all her family for

their endless prayers and help.

To my beloved mother Horyia who spent and sacrificed a lot of her life to see

the moment of me getting a PhD but sadly, she passed away in 2010. To my

father Mohammed who takes the most pride in me coming this far. I am very

thankful for your love and endless support. To all my brothers, sisters, and uncles

(especially Mr. Omar and Dr. Sayed) for being always helpful and supportive.

Last but definitely not least, I really want to thank my wife, Sally, for all

the support and kindness that I have been overwhelmed with. Taking care of

our kids, Yousif and Malik, has really made me concentrate on my studies and

progress faster.

I would like to acknowledge the Suez Canal University, Ismailia, Egypt, for its

financial support. I would like also to deeply thank the University of Manchester

and the entire staff for all kind of help and support during pursuing my PhD.

25

Abbreviations

DRM Digital Rights Management
ATL Alternating Temporal Logic
HC Hash Chain
DSS Digital Signature Standard
CRL Certificate Revocation List
PKI Public Key Infrastructure
CA Certificate Authority
SSL/ TLS Secure Socket Layer/Transport Layer Security protocol
TTP Trusted Third Party
LRL License Revocation List
REL Rights Expression Language
WM-DRM Windows Media DRM
OMA DRM Open Mobile Alliance DRM
SMPTE Motion Picture and Television Engineers
ODRL Open Digital Rights Language
WMA Windows Media Audio
WMV Windows Media Video
SDK Software Development Kits
GUID Globally-Unique IDentifier
SCMS Serial Copy Management System
DAT Digital Audio Tape
RD Reselling Deal
CEDK Content Encryption/Decryption Key
RP Reselling Permission
SR Single Resalable
MR Multiple Resalable
MRP Multi-Reselling Permission
AKF Active Keystone Fix
RPD Read-only Public Directory
RRP-MR Repeated Reselling Permission-based Multi-Reselling
HC-MR Hash Chain-based Multi-Reselling

27

Definitions

Digital Rights Mangement (DRM): A protection technology which refers to
a set of hardware and software technologies and services which (1) control
the authorised use of a given digital content, (2) and manage, through asso-
ciated usage rights, any consequences of this use during the entire lifetime
of the content.

Authorised Domain: A domain in which a group of devices are equally autho-
rized to play/view digital contents, e.g. a home network where a number of
devices are interconnected, so a digital content can be moved from device
to device seamlessly.

Fair license reselling: A license reselling process such at the end of a reselling
process undertaken between a reseller and a buyer, either the reseller re-
ceives the payment and the buyer receives the license, or neither of them
receives anything useful

Reselling permission: A digital token showing that an associated license is
resalable and can be resold within a particular period.

Multiple Reselling Permission: A digital token proving that an associated
license is multiple resalable (i.e. authorising a license to be resold N-times).

Non-resalable license: A license which is issued without any reselling permis-
sion.

Single resalable license: A license that comes with a reselling permission
showing that this license can only be resold once. When a buyer has bought
this license from a reseller, it becomes a non-resalable one, so the buyer
cannot resell it again.

Multiple resalable license : A license that is provided with a multi-reselling
permission allowing the license to be resold multiple times (N-times).

MR Type I (MR-I) License: An MR License which can be resold N times
by N different consumers. Suppose that a consumer, C1, owning an N-time
resalable license, can resell it to another consumer, C2. Then, C2 can also
resell it to a third consumer, C3, and so on, until the number of times this

29

license has been resold is N. Once a reseller(e.g. C1 or C2) has resold this
MR-I license once, he cannot reuse nor resell it again. In other words, for
this type of licenses, a reseller can only resell it once. Every time the license
is moved from one consumer to another, a reselling counter associated to
this license is decremented by one till it reaches to zero at which point the
license cannot longer be resold.

MR Type (MR-II) License: An MR license which can be resold N times
by only one consumer, C1. This means that (a) after each reselling of the
license and provided that the number of times the license has been resold
is less than N times, C1 will still be able to use it on his device and able
to resell it; (b) once this license is resold N times, C1 can no longer resell
or reuse it. There is one restriction with this MR-II type license. That is,
any consumer, who has bought a copy of this MR-II license from another
consumer, will not be able to resell it again.

MR Type (MR-III) License: An MR license which can be resold N times
by M consumers where N ≥ M . In other words, a consumer, C1, owning
an N-time MR-III license, can resell it to another consumer, C2 with the
right for C2 to resell this license again X times, where X < N . Both of C1

and C2 can use and/or resell this license as long as the upper limit, N and
X, respectively, do not reach to zero. Once both of X and N become zero,
the owner of the license can use it but can no longer resell it.

Reselling Deal: A contract to be agreed between a reseller and a buyer for
a license reselling/purchase. It includes: (a) terms and conditions for this
deal, (b) the price to be paid by the buyer, (c) the RD validity period, and
(d) both Alice’s and Bob’s signatures.

Keystone: A random number that is used to bind ambiguous signatures to
their respective signers.

Keystone fix : The hash value of a keystone.

Active Keystone Fix: A keystone fix of an MRP permission. It is needed in
the latest reselling process of a license specified in the MRP. This keystone
fix is a hash value of a random number called keystone. This keystone is
created by LI and shared between LI and the authorised license reseller.

License Revocation List : A signed list containing all the revoked licenses
issued by a particular LI.

Pre-official reselling deal: A reselling deal which is carrying both a reseller’s
and a buyer’s ambiguous signatures.

30

Notaitons

A Alice (a Reseller).
B Bob (a buyer).
LI License Issuer.
Lic The identity of the license to be resold, i.e. Alice’s license.
RD A contract, called Reselling Deal (RD), that has been agreed by

Alice and Bob.
ks A random number called Keystone to be used in the concurrent

signature.
f a keystone fix that is a hash value of the keystone ks.
RPLic A reselling permission for a license, Lic.
MRPLic A Multiple Reselling Permission of a license, Lic.
PKi Public key of entity i.
SKi Private key of entity i.
M ||N Concatenation of two messages M and N.
EPKi

Asymmetric encryption using entity i’s public key.
ASigni An ambiguous signature created by entity i.
Signi A digital signature created by entity i.
H() A cryptographic hash function.
Lic− File The license file containing usage rights signed and granted by LI.
RDDLA

A deadline for Alice to confirm that she has revoked her license.
RDDLB

A deadline for Bob to activate a signed RD.
EK a symmetric encryption using a secret key, K.
TA A time read from the clock of Alice’s DRM client.
RPperiod A period within which a reselling permission, RPLic, is valid to

be used in reselling the associated license, Lic.
Ni A nonce which is created by entity, i.
RDPre−official This is a pre-binding RD carrying both Alice’s and Bob’s am-

biguous signatures.
Install-Status The status of installing a up-to-sate LRL on Alice’s device.
PaymentB The payment which Alice and Bob have agreed on in the nego-

tiation phase. This is the amount that Bob should pay to LI to
obtain Lic.

31

Chapter 1

Introduction

1.1 Introduction to Digital Rights Management

(DRM)

With the vast use of the Internet and the technological improvements of media

streaming and compression, digital contents (e.g. music, images, video, eBooks

and games) can be instantaneously distributed over the Internet to content con-

sumers. Nowadays many digital providers use these technology improvements to

sell their digital contents over the Internet along with selling them through CDs.

However, if these digital contents distribution is done without protection and

management of digital rights, digital contents can be illegally and easily copied,

altered, and distributed to a large number of recipients. Consequently, media

companies could experience significant loss of revenue. A recent report [5] states

that the revenue loss for 2007 due to music piracy for US recording companies

reached to $ 5.3 billion. To protect the intellectual property of the digital con-

tents and to avoid digital piracy, there is a need to prevent unauthorised access

to digital contents and to manage usage rights of digital contents properly.

One of the most promising technologies to protect and manage digital contents

is the Digital Rights Management (DRM) technology1 [7]. This technology offers

a persistent content protection against unauthorised access to the digital contents.

It also allows content owners to manage usage rights over their digital contents.

Examples of these rights include copy permit, pay-per-view, one-week rental, etc.

1The SmartLM project [6] and the DRM system share the concept of managing licenses.
The former manages licenses used in Grid environment while the latter manages licenses used
in copyrighted digital contents.

33

34 CHAPTER 1. INTRODUCTION

It only allows authorised consumers to access digital contents. The authorised

consumers are those who buy digital licenses of digital contents to be accessed.

Upon getting the licenses, they can access the contents according to the usage

rights granted in these licenses [7]. More detail about DRM is given in Chapter

2.

1.2 Introduction to Concurrent Signature Scheme

The concurrent signature scheme is a digital signature scheme where two entities

can initially exchange two non-binding signatures that are somehow linked to their

respective signers. With an additional piece of information, called a keystone,

being released either both signatures are binding to their true signers, or neither

is. The CS scheme was first introduced by Chen et al. at in [8]. This CS

scheme consists of four algorithms: (1) a SETUP algorithm used to establish

system parameter values necessary for creating and verifying signatures; (2) an

ASIGN algorithm used to create an ambiguous signature on a message; (3) an

AVERIFY algorithm used to verify an ambiguous signature produced by the

ASIGN algorithm; and (4) a VERIFY algorithm used to bind an ambiguous

signature to its rightful signer. These algorithms are described below.

SETUP Algorithm: The SETUP algorithm is a probabilistic algorithm,

which takes a security parameter as its input and outputs some public and pri-

vate parameter values. For the public parameter values, the SETUP algorithm

randomly generates two large prime numbers, p and q, such that q|(p − 1), and

creates a generator g of a multiplicative subgroup of order q in Z∗p . In addi-

tion, it outputs two cryptographic hash functions, H1 and H2 : {0, 1}∗ → Zq.

The hash function, H1, is only used for generating a keystone fix (i.e. a hash

value of the keystone ks) , whereas H2 is used to create other hash values to

be used for computing the required signatures. Moreover, the SETUP algorithm

defines descriptions of message space M , signature space S, keystone space K,

and keystone fix space f . These spaces are defined as follows: S ≡ F = Zq

and M ≡ K = {0, 1}∗. For the private parameter values, the SETUP algorithm

outputs a private key for each of the participants (two signers in our case). These

private keys, SKi, i ∈ 1, 2, are chosen uniformly at random from Zq. The partic-

ipants’ public keys, PKi, i ∈ 1, 2, are then computed as PKi = gSKi(mod p) and

they are also declared as public values.

1.2. INTRODUCTION TO CONCURRENT SIGNATURE SCHEME 35

ASIGN Algorithm: Once the system parameter values are established, the

initial signer uses the ASIGN algorithm to ambiguously sign a message m. The

ASIGN algorithm is a probabilistic one that takes (PKi, PKj, SKi, f,m) as its

input and outputs an ambiguous signature, ASign, where PKi and PKj are two

public keys PKi 6= PKj, SKi is the private key corresponding to PKi, f is equal

to H1(ks), ks is a keystone, and m ∈ M is the message to be signed. Upon

providing this input, ASIGN performs the following operations:

1. Pick a random number as the keystone ks ∈ K and compute f = H1(ks),

where f ∈ F ;

2. Generate a random number, r ∈ Zq ; and

3. Calculate the following values:

(a) h = H2(g
r PKf

j (mod p)||m) ;

(b) h1 = h− f(mod q);

(c) s = r − h1 SKi(mod q).

The output of the ASIGN algorithm is an ambiguous signature on m, denoted as

ASign = (s, h1, f).

AVERIFY Algorithm: The ambiguous signature is verified using a AVER-

IFY algorithm. AVERIFY is a deterministic algorithm that takes the tuple,

(ASign, PKi, PKj,m), as its inputs, where ASign = (s, h1, f), s ∈ S, h1 and

f ∈ F , PKi and PKj are public keys, and m ∈M is the message signed. The al-

gorithm then checks whether equation (1.1) holds. If it holds, AVERIFY outputs

an accept. If the equation does not hold, AVERIFY outputs a reject.

h1 + f = H2(g
s PKh1

i PK
f
j (mod p)||m)mod q (1.1)

VERIFY Algorithm: Once the keystone is released, a VERIFY algorithm is

used to determine the originator and the recipient of a given ambiguous signature.

The VERIFY algorithm is defined in terms of the keystone hash function H1()

and the AVERIFY algorithm. The VERIFY algorithm takes two inputs: ks

and Si, where ks is the keystone from which the keystone fix f is computed,

Si = (ASign, PKi, PKj, RDi), and ASign = (s, h1, f) is an ambiguous signature

on m. Given the inputs (ks, Si), the VERIFY algorithm first checks whether the

hash value of the ks is equal to the keystone fix f used in creating Si, (i.e., checks

36 CHAPTER 1. INTRODUCTION

whether H1(ks) = f). If they are not equal, the VERIFY outputs a reject result.

If they are equal, AVERIFY (Si) is executed. If AVERIFY (Si) outputs reject,

VERIFY likewise outputs reject. If AVERIFY (Si) outputs accept, VERIFY

also outputs accept. The pair (ASign, ks) is called concurrent signature and

ASign becomes binding to its respective signer. In other words, the VERIFY

algorithm is one that is used to bind a given ambiguous signature to its actual

signer/originator.

1.3 DRM and Consumers’ Rights

Although DRM enables content owners to protect the rights of their digital con-

tents, it does not do the same with content consumers. It has been reported in [9]

that current DRM systems give too much power to the rights’ holders, neglecting

the rights of consumers. In the physical world, when music or other audio-visual

materials are put onto records or cassettes, buying these materials is very simple.

Consumers buy records or cassettes from content providers or distributors. The

consumers, consequently, own these physical contents. They can then (1) play

them on all their players, (2) lend them out to friends, (3) donate them to charity

shops, or (4) even resell them to other consumers. In addition, they could copy

them, but the quality of the copied content is not as good as the original. With

these types of contents, consumers’ rights were relatively clear and could often

be enforced.

Digital contents which can be put onto CDs, DVDs and other recording media,

are very easy to copy and distribute. Digital content can be perfectly copied

with nearly no effort and no cost. From this a problem arises where content

authors, artists and creators cannot be sufficiently rewarded if their work can

be freely copied and distributed/sold without restriction. In other words, in the

digital world, there is a need for new rules and regulations to protect the rights

of the owner of the original digital work. Access controls should be used to

govern how digital contents may be used and persistent protection should remain

with the digital content. This is achieved by a technology called Digital Rights

Management (DRM).

The DRM technology, as reported in [10], [11], and [12], can provide integrity

protection, and manage intellectual ownership throughout the whole value chain.

It can also increase consumer choice between different business models such as

1.3. DRM AND CONSUMERS’ RIGHTS 37

rental, and pay-per-view. With this DRM technology consumers who have paid

for a digital content should be given the rights equivalent to those that are given

to the buyers of a non-digital content (e.g. the right to resell a digital content).

Sadly, the current DRM technologies allow consumers to practise very few rights

over digital contents.

A report produced by the INDICARE 2 project [13] has pointed out a number

of consumer issues that have not been addressed in current DRM solutions. These

issues include the following points (for more detail, please read [13]).

• Access and usage control: Consumers of digital contents should be en-

titled to the rights similar to those that are available to the consumers of

the physical contents [14].

• Fair use: Any restrictions on digital contents should be in line with the

consumer rights granted by copyright law [15].

• Privacy: If personal data has been collected using DRM technologies, con-

sumers should know where their personal data are stored and who gathers

the data, and who may use information about one’s actual consumption of

digital content.

• Interoperability: The interoperability for consumers is described as the

possibility of using digital contents in multiple ways and on multiple devices

[14]. DRM technologies should support this interoperability.

• Software and hardware: Almost all the current DRM systems require

the installation of specific software or hardware. Therefore, consumer or-

ganisations, e.g. BEUC [16], have demanded that DRM systems must not

limit the use of other protection software on consumers’ machines.

• Pricing and product diversity: DRM technologies should not establish

monopolistic market structures and the prices of DRM-protected contents

should be reflected upon potential usage restrictions.

We believe that a DRM system should provide a fair balance between the

rights of content owners and the rights of consumers. Yes, it is a very difficult

2The acronym INDICARE stands for Informed Dialogue about Consumer Acceptability
of DRM Solutions in Europe. INDICARE focused on consumer issues with Digital Rights
Management (DRM). While the project formally ended in February 2006, members of the
project team are still working on the topics.

38 CHAPTER 1. INTRODUCTION

and protracted task to achieve this balance. Here, in this thesis, we will focus on

one right (i.e. the reselling right) and propose a solution that could realise the

reselling of a digital content in a fair and secure manner.

1.4 Research Motivation and Challenges

By investigating current DRM systems [17, 18, 19] and as reported in [13], it can

be concluded that current DRM systems mainly focus on the protection of content

owners’ rights. They have not given due consideration to consumers’ rights. In

particular, these systems do not permit consumers to resell the licenses they have

purchased. Reselling something that a consumer rightfully owns (including digital

licenses) is a legitimate right under the first-sale doctrine [20]. This observation

has motivated the research reported in this thesis.

Supporting license reselling is in the interest of consumers and content own-

ers. A license reselling would give consumers a right to resell what they have

already bought, so they could gain money from unwanted contents. It would

also enable content owners to establish a new business model. In this model,

licenses can be divided into two categories, non-resalable licenses, and resalable

licenses. A resalable license may be set at a higher price than a non-resalable

one. A consumer (i.e. reseller) in this model actually plays the role of a proxy

for a content distributor helping content distributors to reach out to a broader

market, increasing license distributions.

To support this legitimate right (i.e. reselling a digital license), there are three

main challenging issues that need to be addressed:

1. Content owner’s rights: How to support a license reselling facility while

protecting content owners’ rights;

2. Fair license reselling: How to make a reselling process fair to the buyer

and the reseller;

3. Reseller’s and buyer’s interests: How to accommodate a reseller’s and

a buyer’s monetary interests in a reselling process.

Content owner’s rights: With regard to protecting content owners’ rights

in a reselling process, the following issues should be addressed: (1) the reseller

must not be able to continue to use a license after it has been resold; (2) the

1.4. RESEARCH MOTIVATION AND CHALLENGES 39

reseller should only be allowed to resell a resalable license, i.e. the reseller must

not be allowed to resell a non-resalable license (we assume there are two types

of license: resalable and non-resalable, and each of the resalable licenses has a

reselling validity period); (3) a resalable license should only be allowed to be

resold once; (4) a resalable license can only be resold within its reselling validity

period. (5) a content owner must be able to trace a buyer of a resold license if

this buyer has violated any of the usage rights of the license.

Fair license reselling: Fair license reselling process means that at the end of

a reselling process undertaken between a reseller and a buyer, either the reseller

receives the payment and the buyer receives the license, or neither of them receives

anything useful. In addition to achieving this fairness property, two further issues

have to be resolved in order to support fair license reselling. The first is the issue

of DRM license transfer. When a license is originally purchased from a License

Issuer (LI), the license is released to and bound to the original buyer’s (i.e. now

the reseller’s) device. If this license is to be resold to a new buyer using the

reselling facility, the license will need to be removed from the original buyer’s

device, and installed on the new buyer’s device. However, this new buyer may

not be able to access or operate this license after the license is moved onto his

device. This is because during the license issuing process, this license was bound

only to the old buyer’s device (i.e. the reseller’s device). If the new buyer has

paid the reseller for the license, the buyer should be able to access the license

received from the reseller. In other words, the reselling facility should allow a

buyer to operate and use a second-hand license once he has paid for and acquired

the license from the reseller. The second issue is the non-repudiation of engaging

in a reselling process. There should be a way to prevent the reseller and the buyer

from falsely claiming to have engaged in a reselling process or not. Without this

protection, a reseller may have indeed resold his license but falsely claim he has

not, thus attempting to resell the license more than once. If this happens, the

content owner’s rights will be violated.

Reseller’s and buyer’s interests: In addition to the security and fairness

issues discussed above, it would also be beneficial to accommodate both buyers’

and resellers’ monetary interests in a reselling process. Implementing the market

power supporting both entities’ interests will make the license reselling facility

much more attractive. A buyer’s interest, in this case, is to pay as little as

possible for a second-hand license. A reseller’s interest, on the other hand, is to

40 CHAPTER 1. INTRODUCTION

maximise the price of the license as much as possible. The challenge here is how to

address these two conflicting interests in the reselling process. Furthermore, while

accommodating the buyer’s monetary interest, the buyer wants to be assured that

the license he is about to purchase is a legitimate one. A license is said to be

legitimate for re-sale if (1) it is resalable, (2) it is still within its reselling validity

period, (3) it has not yet been resold.

The scope of this thesis is to find answers to these challenging issues by inves-

tigating and designing effective mechanisms to support a fair and secure solution

to the problem of digital license reselling.

1.5 Research Aim and Objectives

The aim of this research is to investigate the state-of-the-art solutions to a license

reselling problem in a DRM context and design a fair, secure and cost-effective

solution supporting digital license reselling in the Internet environment. By em-

bedding the fairness property in the reselling process, we aim not only at helping

consumers to practise their rights (i.e. reselling their licenses) but also at helping

all the involved entities (i.e. a reseller and a buyer) to overcome any mistrust

or misbehaviour committed while engaging in a license reselling process over the

Internet. To achieve this aim, the objectives of this research are as follows.

1. To identify, analyse and specify requirements for the design of a fair and

secure license reselling solution.

2. To investigate and critically analyse the current state-of-the-art solutions

to the license reselling problem for DRM-protected contents against the

specified requirements.

3. To investigate, examine and design methods to address the weaknesses iden-

tified in the current state-of-the-art solutions.

4. To investigate, examine and design methods for achieving the fairness and

non-repudiation properties in the license reselling process.

5. To design protocols that integrate the methods designed in (4) to support

fair, secure and cost-effective license reselling in the Internet environment.

These protocols are aimed at satisfying the requirements specified and over-

coming the weaknesses and limitations seen in existing solutions.

1.6. RESEARCH METHODOLOGY 41

6. To informally and formally verify the security strength of the designed se-

curity methods and protocols.

7. To evaluate the performance of the designed security3 methods and proto-

cols.

1.6 Research Methodology

The research in this thesis has followed the following methodology.

Literature Research: The first task of this research was to study in-depth

the related work in the literature. We started by investigating the characteristics

of the current DRM systems and understanding its mechanism. Then a research

was done to identify gaps in these systems. This led to choosing the license re-

selling problem to be the subject of the research of this thesis. The next point was

to critically analyse the related works of this problem to identify weaknesses and

limitations in existing solutions and the main cause of the problems. Based on

the features of the existing solutions and our vision of supporting license reselling,

requirements were specified. The related work was then analysed against these

requirements. From this analysis, gaps were identified and hypotheses were pro-

posed. This led to the area of supporting consumers’ rights in DRM by allowing

fair and secure license reselling of DRM-protected contents. The literature review

was carried on throughout the entire project period, as new work was published

it was reviewed and necessary findings were taken into account.

Theoretical Work: Upon specifying the requirements in the literature re-

search stage, solutions addressing these requirements were proposed and designed.

The solution ideas were repeatedly refined by considering input from existing

work. Other considerations (e.g. supporting market power) were given to make

the proposed solutions attractive to all the entities involved. At the end of this

stage, two novel methods consisted of three protocols were proposed. The first

method allows reselling of a license once whereas the second method allows one

license to be resold N times.

Analysis: The next stage was to analyse the security of the proposed solu-

tions. The analysis included two methods: informal analysis and formal analysis.

The informal analysis was first used to verify the proposed methods against the

3 The security, in this thesis, means that the designed methods support the properties of
non-repudiation, fairness, and abuse-freeness.

42 CHAPTER 1. INTRODUCTION

security requirements and attacks identified from the problem and from the lit-

erature review. The formal analysis was then applied to provide a more in-depth

and systematic analysis of the proposed methods. Mocha model checker [21] was

used to carry out the formal analysis.

Evaluation: After the completion of the security analysis stage, the evalu-

ation stage was done. The evaluation consisted of theoretical-based evaluation

and prototype-based evaluation. In the theoretical one, the computational costs

were calculated and compared with the most relevant work to show the merits of

the proposed solutions over the related work. In the prototype-based evaluation,

a prototype was first built using Java and then the execution time was measured

to confirm the theoretical evaluation results. The prototype was also used to test

the system against attacks identified in the analysis stage.

Publish Results: To report the results obtained from the research con-

ducted, we published our research results in journals, conferences proceedings

and book chapters. Section 1.7 gives a list of publications produced from the

research in this thesis.

1.7 Novel Contributions and Publications

The research work presented in this thesis has led to the following novel contri-

butions and achievements.

Novel Contributions

1. The design, analysis, and evaluation of the Reselling Deal Signing (RDS)

protocol. This is a novel fair and abuse-free contract signing protocol al-

lowing a reseller and a buyer to sign a negotiated contract, called Reselling

Deal (RD).

a. To the best of the authors’ knowledge, this is the first protocol that inte-

grates the Concurrent Signature (CS) scheme [8] with what is already

available in the existing license distribution infrastructure (i.e. LI) to

support fair and abuse-free RD signing process in a license reselling

process. With the use of this protocol, we are able to achieve a secure

license reselling with strong fairness and abuse-freeness protections.

b. The RDS protocol does not make use of a dedicated TTP to achieve

fairness. Rather, it introduces some additional tasks into LI to ensure

1.7. NOVEL CONTRIBUTIONS AND PUBLICATIONS 43

fairness. In this way, the additional computational cost introduced as

the result of introducing security can be kept at a minimum level.

c. The analysis of the security properties of this protocol is performed. This

analysis involves: (1) informal analysis of the protocol against the se-

curity requirements and well-known and identified attacks; (2) formal

verification of the security properties using the Alternating Temporal

Logic (ATL) and the model checker MOCHA.

d. The evaluation and the performance of the RDS protocol are conducted.

The evaluation is given in terms of the computational costs and these

costs are compared with related work. The performance is evaluated

based on an implemented prototype of the protocol. The security is

also evaluated by testing the prototype against different attacks.

2. The design, analysis, and evaluation of the Reselling Deal (RD) method, a

novel method supporting fair and secure digital license reselling. The RD

method allows a license to be resold once while protecting content owner’s

rights. To achieve fair and secure license reselling, this method makes use

of (1) a novel Reselling Permission (RP) token which has enabled differen-

tiation between a resealable license and a non-resalable license and allows

a buyer to confirm that a license he is about to purchase is resalable, and

(2) three protocols, 2M-RDS (2-Message Reselling Deal Signing) protocol,

RDA (Reselling Deal Activation) protocol, and RDC (Reselling Deal Com-

pletion) protocol. The 2M-RDS protocol is first executed between a reseller

and a buyer to sign a deal, RD. The RDA protocol is then run between the

buyer and LI to activate RD. Finally, the RDC protocol is executed between

LI and the reseller to revoke the resold license on the reseller’s device.

3. The design, analysis, and evaluation of two Multiple License Reselling

(RRP-MR and HC-MR) methods, novel methods enabling one license to

be resold N times by N consumers. The RRP-MR method enables buyers

to choose to continue or to stop a multi-reselling process of a license. This

method makes use of (1) the novel RP token, RPD (Read-only Public Di-

rectory) running by LI, and (2) three protocols, 2M-RDS protocol, RDA

protocol, and RDC protocol. The RRP-MR method is a straightforward

extension of the RD method but the former allows a buyer (if he pays extra

fees to LI) to repeatedly obtain new reselling permission for a license being

44 CHAPTER 1. INTRODUCTION

resold. The buyer can then use this permission to resell the license once

more. The multi-reselling process stops when the buyer does not request a

new reselling permission. The RRP-MR method achieves the same level of

security and fairness as the case of the RD method. The HC-MR method

introduces two more features over the RRP-MR method, (1) reducing over-

head imposed on LI by not issuing RP at each reselling of a license, and (2)

allowing a buyer to verify how many times a license can be further resold

prior to engaging in the license reselling. These two features are accom-

plished by making use of (1) a novel MRP (Multiple Reselling Permission)

token which is generated and signed by LI to be used N times to enable a

buyer to verify that a corresponding license can be further resold N times,

(2) an online check of a Read-only Public Directory (RPD) updated by LI

after each reselling. Once this MRP is generated, it can be used N times

without having been signed by LI at each reselling, so reducing costs im-

posed on LI. Along with RPD, the MRP token allows a buyer to check the

remaining number of resellings of a license. The HC-MR method, like both

of the RD and RRP-MR methods, makes use of the protocols, 2M-RDS,

RDA, and RDC to facilitate the multiple resellings, and LI to achieve fair

and secure license reselling.

The proposed three methods, RD, RRP-MR, and HC-MR have the following

features. (1) They do not require any additional trusted hardware. Instead,

They make use of the existing distribution infrastructure (i.e. LI and DRM

client). By doing so, we ensure that whatever is available at LI will also

be made available in a license reselling process, thus keeping the cost low

for consumers who are the most important entity in the value chain. (2)

To the best of our knowledge, our solution is the first that supports mar-

ket power in the context of reselling a digital license, a feature not seen in

solutions proposed seen in the literature. This market power enables both

buyers and resellers to maximise their respective monetary interests. In ad-

dition, our solution is the license reselling proposal that supports multiple

resellings of a digital license. (3) our solution is the first piece of work that

makes use of software mechanisms to support fairness, non-repudiation, and

abuse-freeness in a license reselling process. This is achieved using LI along

with the Reselling Dealing Signing (RDS) protocol. (4) With the use of

the RD, RRP-MR, and HC-MR methods, content owners can establish a

1.7. NOVEL CONTRIBUTIONS AND PUBLICATIONS 45

new business model. In this model, the content owners can differentiate

between non-resalable, single-resalable, and multi-resalable licenses. The

multi-resalable licenses should be more expensive than the single-resalable

ones which should be more expensive than the non-resalable ones. With

this model, not only the resellers will be able to gain monetary benefits, but

also the content owner will do. This is because, in our reselling solution,

the resellers actually play the role of being proxies for the content distrib-

utors, which have the potential to increase market penetration, and license

distribution.

Published Papers

Parts of the research work presented in this thesis have been published in the

following journals, and conference proceedings.

Journal papers

1. Tarek Gaber, Ning Zhang, “License Revocation Protocol Supporting Digi-

tal License Reselling in Consumer-to-Consumer Model”, International Jour-

nal of Online Marketing (IJOM),Volume 2, Issue 1, pp. 38-49, 2012.

2. Tarek Gaber, Ning Zhang, “R-DRM: Towards a DRM System Support-

ing Fair License Reselling”, to be submitted to Journal of Network and

Computer Applications (In progress).

Conference proceedings papers

1. Tarek Gaber, Ning Zhang, “Fair and Abuse-free Contract Signing Proto-

col Supporting Fair License Reselling”, the 4th IFIP International Confer-

ence on New Technologies, Mobility and Security, NTMS’11, Paris-France,

pp. 1-7, 2011.

2. Tarek Gaber, Ning Zhang, “A Novel Method for Supporting Fairness in

Digital License Reselling,” the 5th International Conference on Internet

Monitoring and Protection, ICIMP’2010, Barcelona, Spain, pp.89-98, 2010.

Book Chapter

1. Tarek Gaber, Ning Zhang, “Analysing the Digital License Reselling Prob-

lem and Its Impact on E-commerce”, to appear in E-Marketing in Developed

and Developing Countries: Emerging Practices, IGI Global publisher (The

chapter proposal is accepted and the chapter is submitted).

46 CHAPTER 1. INTRODUCTION

1.8 Thesis Structure

The structure of this thesis is organised as follows.

Chapter 2 gives an insight into the DRM technology, how a typical DRM

system works, examples of current DRM systems, and open issues in the research

area of DRM. Appendix B presents the background of the cryptographic concepts

used in DRM systems and introduces the building blocks that will subsequently

be used in the design of the methods and protocols. chapter 3 investigates the

state-of-the-art in the area of selling and reselling of digital licenses, identifies

missed problems in the existing license reselling solutions, and describes ideas to

address these problems.

Chapters 5, 6, and 7 present our contributions and results of the conducted re-

search, which have been published in [22], [23], and [24]. chapter 4 focuses on fair

exchange (i.e. contract signing protocols). It outlines the security requirements

of a contract signing protocol in a license reselling process, reviews and analyses

existing research on signature exchange and presents the novel contract signing

protocol (i.e. RDS protocol) that forms the basic components in our license re-

selling solution. It also presents the informal (analysis against requirements and

identified attacks and threats) and formal analysis of the RDS protocol using the

model checker Mocha. In addition, it introduces theoretical and prototype-based

evaluation of the protocol. Based on this RDS protocol, chapter 5 introduces our

Fair and Secure License Reselling Protocol (FSLRP) suite which allows a digital

license to be resold once. It also presents analysis and evaluation of the FSLRP

suite. Based on the RDS protocol and the idea of the FSLRP suite, chapter 6 in-

troduces two methods allowing one license to be resold N times with N consumers.

chapter 6 additionally gives analysis and evaluation of the multi-reselling solution

of digital licenses. chapter 7 concludes the thesis and suggests future research.

Chapter 2

Digital Rights Management

Overview

2.1 Chapter Introduction

In the physical world, the physicality of contents helps in the rights management

of the contents. In other words, it helps in the copyright protection of these

contents. This physicality provides some barriers to unauthorised use of the

contents. In the digital world, contents are in a digital form. Digital files can

be copied and transmitted to many consumers without limitation. This ease of

copying and transmission has caused many serious problems for content owners

who want to maintain ownership right over their contents.

To address these problems, Digital Rights Management (DRM) technology

has been developed. DRM is a technology that allows only authorised consumers

to access digital contents. It also enables content owners to manage usage rights

over these contents. The usage rights are a set of privileges the consumers can

practice on a digital content. Examples of these rights are copy permit, pay-per-

view, and one-week rental, etc.

This chapter gives an overview of DRM systems, and it is organised as follows.

Section 2.2 explains what DRM is and Section 2.3 gives a historical overview of

DRM. A fundamental principle of a DRM system is given in Section 2.4 whilst

the DRM involved entities are introduced in Section 2.5. In Section 2.6, the DRM

components are described. Section 2.7 then addresses how a DRM system works

whereas Section 2.8 describes three exemplar DRM systems. A number of DRM

open issues are discussed in Section 2.9. Finally, the chapter is summarised in

47

48 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

Section 2.10.

2.2 What is DRM

DRM refers to digital technologies, which enable legal distributions of digital

contents (e.g. ringtones, songs, video clips) while enforcing usage rights speci-

fied by content owners of these contents. DRM also refers to a set of hardware

and software technologies and services which (1) control the authorised use of

a given digital content, (2) and manage, through associated usage rights, any

consequences of this use during the entire lifetime of the content [25]. These

hardware and software technologies include trusted hardware, encryption, digital

signature, and individualisation (more details in Appendix B).

In a typical DRM system, as depicted in Figure 2.1, a content owner first

encrypts a digital content with a key and defines usage rights over this content.

The content owner then sends the encrypted content and the key along with the

usage rights to a content provider and a license issuer (LI), respectively. When a

consumer is interested in the content, he gets the encrypted form of this content

from the content provider. However, the consumer cannot access this encrypted

content until he pays LI for a corresponding license. This license contains the key

by which the consumer can decrypt the encrypted content. It also contains the

usage rights that control the usage of the content [25, 26, 27, 28].

2.3 DRM History

DRM technologies were initially developed for software copy protection in IT

industries and for controlling the access of paid TV programs on set-top boxes in

audiovisual consumer electronics. One of the earliest DRM systems was the Serial

Copy Management System (SCMS). SCMS was developed in the mid-1980s to

prevent illegal copies of the first generation of digital recording technology, Digital

Audio Tape (DAT). SCMS is based on copy-control bits that can be set either

to 00, “unrestricted digital copies allowed”, 11 “one generation of digital copies

allowed”, and 10 “no digital copies allowed” [35].

DRM technologies have undergone two generations of development. The first

has paid the full attention to security and encryption to prevent unauthorised

copying. The second generation (i.e. the current one) has a broad aim. It covers

2.3. DRM HISTORY 49

Content provider

License Issuer

Content Owner

License

Content

Protected Content

Consumer

License

Protected
content

(5) play

(4
) L

ic
en

se

(3) Protected content(1
) P

ro
te

ct
ed

 c
on

te
nt

(2) Usage rules+
 CED

K

CEDK:Content Encryption/Decryption Key

content

$

$

Figure 2.1: A typical DRM system architecture

the protection, description, identification, trading, monitoring and tracking of all

types of usage rights over digital contents.

2.3.1 First Generation DRM Systems

In the 1990s, InterTrust introduced the term “Digital Rights Management”(DRM)

to describe technological means of restricting access to digital contents [35]. At

that time, DRM systems were indented to prevent a consumer from making il-

legal copies and illegal distributions. The 1st generation of DRM systems used

encryption techniques to bind digital contents to a single device. Consequently, a

consumer could not share the content with his/her friends. He may make copies

and distribute them, but receivers of these copies need a new decryption key. In

other words, the receivers of the copied content have to contact and pay a license

issuer to obtain the decryption key before they can play/view the content.

A well-known example of a DRM system representing this generation is Digi-

Box [29]. DigiBox is a protection technology that enables packaging of a digital

content and its usage rights into a secure container so that this content can only

be accessed according to the associated usage rights.

2.3.2 Second Generation DRM Systems

By the end of the 1990s, the Internet became increasingly popular and a cost-

effective means for content distribution. This led to the issue of protecting digital

50 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

contents from illegal distributions becoming more urgent. Therefore, there was

a need to develop solutions to control the use of digital contents after their dis-

tribution. In addition to encrypting digital contents, the 2nd generation of DRM

systems has addressed the protection, description, identification, trading, moni-

toring and tracking of all types of usage rights over the digital content [30].

With the 2nd generation of DRM systems, consumers are allowed to view/play

their contents on more than one device, and to share their contents with their

family members and friends. This is achieved through a concept called Authorised

Domain. Examples of these DRM systems include OMA DRM [18] and Apple’s

FairPlay [19].

2.4 DRM Fundamental Principle

A basic concept underlying DRM systems is the separation between two files, i.e.,

a digital content and a license. As demonstrated in Figure 2.2, when trading non-

DRM contents, the content is the main asset. On the other hand, when trading

DRM contents, a license of a content is the main asset. In DRM systems, prior

to sending a content to a consumer, this content is encrypted using a symmetric

key known as Content Encryption/Decryption Key (CEDK). Once this content is

obtained by a consumer, it will remain protected. To access it, the consumer must

purchase a corresponding license. This license contains usage rights (explained

below) that are previously defined by an owner of this content.

Content
Encrypted
 Content

DRM License
 (Key,
 Rights)

$$$ $$$

Once decrypted,
easy to duplicate
 and distribute

Easy to duplicate
 and distribute
 but useless

Valuable information
needs to be protected

Without DRM With DRM

Figure 2.2: DRM fundamental principle: separation between license and content

With the DRM technology, there are two modes for delivering the encrypted

content and its associated license: combined or separated. This feature allows a

2.4. DRM FUNDAMENTAL PRINCIPLE 51

flexibility of different business models for a content owner. For instance, a content

owner may use Super-distribution business model [31]. In this model, a consumer

can send his encrypted content to a second consumer, and the second consumer

has to purchase a license from a license issuer before being able to access the

content.

A DRM-protected content

A DRM-protected content is a digital file that contains an encrypted content

object and other objects including:

• Unique identifier (i.e. Content ID) for this encrypted content object to link

this content with its usage rights

• Information about the encryption algorithm used

• Information about LI of this DRM-protected content (e.g. LI’s URL and/or

License Acquisition URL)

• Information describing the content, for example, the content’s title

• Content hash value (optional) to protect the integrity of the content.

A License of a DRM-protected content

A license is an XML-based file which is generated to describe usage rights for

a DRM-protected content. A typical license file contains usage rights, CEDK,

metadata, and LI’s signature. The usage rules are a set of rights that a consumer

can practise with his digital content, such as copy permit, pay-per-view, a one-

week rental, etc. CEDK is a symmetric key which is used to encrypt or decrypt

the associated digital content. A metadata file contains the following fields, [2]:

• License ID: A serial number which uniquely identifies a license.

• Content ID: An identification number to uniquely identify a digital content.

• Content Provider ID: An identification number to uniquely identify a con-

tent provider.

• License Acquisition URL: an URL from which a license can be downloaded.

• Cryptographic Parameters: (Where needed/applicable)

52 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

• Hash of DRM-protected Content: This is to protect the integrity of the

content. Note that this hash value will be included in LI’s signature, so if

the content is modified, the signature will be invalid.

LI’s signature is a digital signature generated by LI on the license file to

protect its integrity and prove its authenticity.

2.5 DRM System Entities

The implementation of DRM systems differs from system to system (see Section

2.8). The entities involved in a DRM system often have different names and use

different ways to achieve their designated functions. However, the basic DRM

process is the same, which usually involves four entities: a content owner, a con-

tent provider (or content distributor), a clearing house (or license issuer) and a

consumer. In the OMA DRM system [3], only three DRM entities are considered

a content provider, a clearing-house and a consumer. A content owner and a

provider are held to be one entity. This entity is responsible for content encryp-

tion, packaging, defining usage rules and distribution. However, this thesis uses

the former model, i.e. a content owner is separated from a content provider. This

separation copes with the internet era. The content owner can be located in one

country and the content provider in another far away country. Figure 2.1 shows

the entities involved in a typical DRM system and the interaction among these

entities.

Content Owner

A content owner is an entity that holds the ownership rights of a content and

defines usage rules of the content. A content owner is responsible for (1) encrypt-

ing his content with a symmetric key called Content Encryption/Decryption Key

(CEDK), (2) creating metadata, including Content ID, License Acquisition URL,

and encryption algorithm used, (3) sending this encrypted content to a content

provider, (4) defining usage rights over this content, (5) sending these rights and

the CEDK key to a license issuer. Examples of content owners are a film studio

and e-publisher.

Content Provider

A content provider is an entity which provides consumers with encrypted

content. It receives an encrypted content from a content owner, creates metadata

2.6. DRM SYSTEM COMPONENTS 53

(e.g. to promote the content), and presents the content in web catalogues for the

consumer.

License Issuer

A license issuer (LI) is an entity that is responsible for (1) authenticating a

consumer (actually authenticating a consumer’s DRM client), (2) issuing a license

for a given content to a consumer, (3) processing payments, (4) monitoring the

consumption of a licence by a consumer. In addition, LI may also facilitate the

reselling of a license (as in our case).

Consumer

A consumer is an entity that represents a person who wants to purchase a

DRM-protected content and play/view it on his device. To do so, the consumer

may need to install a DRM client and to buy a license associated to this content.

The consumer could download this DRM client from a content provider’s website

and then install it on his device. To buy the license, he needs to authenticate

himself to an LI and then make a payment to LI through a clearinghouse. He

can then get the license to play/view the content.

2.6 DRM System Components

As described in Section 2.5, a DRM system needs to perform different tasks

during a content life-cycle. As described below, various components and tools

are needed to achieve these tasks.

1. Secure Containers: They are used to make a digital content accessible

only to authorised consumers (i.e. those who have paid). These contain-

ers can be achieved by using cryptographic techniques, e.g. DES [32] or

AES [33]. Examples of these containers include InterTrusts DigiBox, and

Microsoft eBook file format (.lit).

2. Rights Expressions: They are used to express digital rights (licenses)

associated to a digital content in a machine-readable format. Rights ex-

pression languages mainly consist of rights, assets, and entity. DRM sys-

tems use Rights Expression Language (REL) to specify rights to contents.

Currently, there is no uniform format for REL languages. Different REL

languages for various applications have been developed by standardisation

organisations. All these REL languages are typically based on eXtensible

54 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

Markup Language (XML). The main REL languages include ODRL(Open

Digital Rights Language) [34], MPEG-21REL [35], and OMA(Open Mobile

Alliance) DRM-REL [36]. These RELs have been widely used with mul-

timedia contents, electronic publishing, mobile communication, and other

fields.

3. Content Identification and Description Systems: They are used to

(1) uniquely identify a digital content (e.g. International Standard Book

Number), and (2) to associate contents with metadata describing them (e.g.

SMPTE’s Metadata Dictionary1).

4. Identification of People and organisation: Like digital contents, all

entities involved in a DRM system need to be uniquely identified. For

example, a consumer has to be uniquely identified before he is issued a

license. These identification systems are very important for DRM systems

as they only enable access of legitimate consumers to digital contents.

5. Authentication Systems: To support authorised access, DRM systems

need techniques to authenticate legitimate consumers requesting access to

digital contents. This can be accomplished by using cryptographic-based

authentication methods (e.g. PKI). Typically, a Trusted Third Party (TTP)

would be needed to issue digital certificates to all the involved entities.

These certificates will then be used in an authentication process in a DRM

system. Here are two examples:

• LI has to authenticate a consumer’s DRM client, resident on a con-

sumer’s device, before issuing a license to this client (i.e. to the con-

sumer).

• Different entities, involved in a DRM system, authenticate each other

to establish an authenticated and secure channel between each pair of

them.

6. Watermarking and Fingerprinting: These are technologies which per-

sistently bind specific information (e.g. an identifier) to a digital content.

In DRM context, watermarking and fingerprinting are typically used to help

1SMPTE Metadata Dictionary has been introduced by the Society of Motion Picture and
Television Engineers (SMPTE). It consists of a set of metadata items describing video/audio
content: http://www.smpte-ra.org/mdd/.

2.7. HOW A DRM SYSTEM WORKS 55

a content owner to detect if there is a violation of their usage rights. This

is why these technologies are known as forensic DRM technologies.

7. Reporting Events: In some business models, such as pay-per-view, a

reporting event mechanism is required to enable event-based payments to

proceed. This mechanism could also be used by organisations of collecting

royalties.

8. Payment Systems: They are used to enable the monetary transactions

between a consumer and a license issuer. Two types of payment systems

can be used for making payments in DRM systems, (1) credit card/ bank

account, or (2) electronic cash.

2.7 How a DRM System Works

A typical DRM system works as follows. On a content owner’s side, (1) a digital

content is symmetrically encrypted with a CEDK key, (2) a content metadata

(e.g. Content ID, and License acquisition URL) is generated, (3) usage rights

over the content are defined, (4) the content and its metadata are finally packaged

through a packager. The packaged content is sent to a content provider, and the

usage rights are delivered to a License Issuer (LI). When receiving the packaged

content, the content provider prepares different methods (e.g. Website catalogue,

CDs) to deliver the content to a consumer. Also, upon the receipt of the usage

rights, LI puts them in the form of a license as discussed in Section 2.4. To do so,

LI makes use of a Rights Expression Language (REL), described in Section 2.6.

When a consumer wants to purchase a particular DRM-protected content,

he first uses his web browser to select and download this content from the web

catalogue of the content provider. To access this content, the consumer needs

first to install a DRM client on his device and then purchase a corresponding

license from LI. To get the license, the consumer must (1) make a payment to

a payment gateway (which is working in association with LI), (2) authenticate

himself to LI’s system (i.e. the consumer’s DRM client authenticates itself to LI’s

server). Upon successful payment and authentication, LI issues (i.e. generates

and signs) a license to the consumer. LI then encrypts this license with the public

key of the consumer’s DRM client and sends it to the consumer’s DRM client.

After receiving the license, the client first verifies LI’s signature on the license,

56 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

ensuring that it is definitely issued by the authentic LI. The client then decrypts

the license using its private key and extracts CEDK. Finally, it uses the CEDK

to decrypt the encrypted content and passes it to a content render to play or view

it on the consumer’s device.

2.8 Existing DRM Systems

There are many commercial DRM systems on the market, e.g. FairPlay DRM [19],

WM-DRM [17], OMA DRM [18], and DReaM (developed by Sun Microsystems),

Intertrust Rights—system [37], RealNetworks’ Helix [38], and IBM’s Electronic

Media Management System (EMMS) [39]. In this section, we will give an overview

of the most successful DRM systems in the commercial market, i.e. WM-DRM,

FairPlay DRM, and OMA DRM.

2.8.1 Windows Media DRM

Windows Media DRM (WM-DRM) is a DRM system that is developed to support

a secure distribution of multimedia content based on the Windows Media Player

and Server. As illustrated in Figure 2.3, WM-DRM consists of four components

Windows Media Packager, License/Key Distribution Server, Content Distribution

System, and DRM Client.

License/Key
Distribution System

Windows Media
Packeger

License

Content

Protected Content

DRM Client

(5) play

(4
) L

ice
nse

(3) Protected content

(1
) P

ro
te

ct
ed

 c
on

te
nt

(2) U
sage rules+

 CED
K

 CEDK:
Content Encryption/Decryption Key

content

Content
Distribution System

$

$

Figure 2.3: Dataflow of WM-DRM System

Windows Media Packager is used by content owners to perform two tasks

2.8. EXISTING DRM SYSTEMS 57

(1) packaging a digital content in a particular format, and (2) setting usage and

distribution rights for the content. In the packaging process, a content is first

encoded to WMV or WMA (Windows Media Video/Audio), and then encrypted

using CEDK key. A metadata about the content is also generated. This metadata

includes:

• Content ID: It is a unique value, which identifies each digital content.

• License acquisition URL: It is the address of a web page from which a

consumer can initiate a license acquisition process.

• Key ID: It is a string used by LI in the generation of the CEDK to be

included in a license.

• Individualisation version number: It indicates that a consumer has to accept

the Individualisation process. Otherwise, the content cannot be played/viewed.

See Appendix B for more details about the Individualisation process.

• Other attributes: This field holds other information about the content such

as artist, title, and content owner.

Once the content is packaged, it is sent to a Content Distribution System

(i.e. content provider). Also, the usage rights and the key CEDK are sent to a

License Server (i.e. LI). The Content Distribution System is the component that

distributes the contents using various distribution methods (e.g. online shopping

or CDs). The License Server is responsible for (1) distributing usage rights (i.e.

licenses) and keys to consumers, (2) handling payment, and (3) authenticating

consumers’ DRM clients.

The DRM client is the entity on a consumer’s device that enables the con-

sumer to play/view a content. It first mutually authenticates a consumer to the

License Server before the License Server issues a license to the consumer’s DRM

client. It then acquires a content from the Content Distribution System and its

associated license from the License Server. It finally allows the content to be

played/viewed on a consumer’s device according to usage rights defined in the

license.

WM-DRM in the Market: Different business models are supported by

WM-DRM. These models include download, subscription, on-demand streaming,

counted operations, and secure transfer of a protected content to portable devices.

58 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

As reported in [40], WM-DRM is adopted by large online music companies, e.g.

Universal, Sony, EMI Music and many independent labels, to offer music tracks in

digital format. Also many companies, e.g. BuyMusic, MusicMatch, Napster, Mu-

sicNow, DirectSong, MTVs URGE and Unbox, use WM-DRMs Windows Media

Audio (WMA) format [41]. WM-DRM is additionally used by hardware device

vendors such as Motorola, SanDisk, Philips and Toshiba [42].

WM-DRM Advantages: WM-DRM enjoys the following advantages. Firstly,

it uses Windows operating system, whose media format is largely used over the

Internet, and whose Media Player is implemented to support DRM technologies.

Secondly, WM-DRM has got a flexible SDK (Software Development Kits) which

can be used to design and implement various applications.Thirdly, it supports a

flexible rights specification mechanism in which the content encryption and the

rights specification are separate processes, supporting different business models.

Finally, WM-DRM enables licenses to be transferred to mobile devices.

WM-DRM Disadvantages: The main disadvantages of WM-DRM sys-

tem are: 1) it only supports two types of media format Windows Media Audio

(WMA) and Windows Media Video (WMV) (i.e. Microsoft proprietary media

formats); and 2) its DRM client is embedded into Microsoft Media Player for

various devices, but does not support plug-in for other players.

2.8.2 FairPlay DRM

FairPlay DRM [19] is a protection technology developed by Apple to protect dig-

ital contents purchased from iTunes stores. It is built into a multimedia technol-

ogy, known as QuickTime. It only works if Quicktime is installed on a consumer’s

device2. FairPlay also allows a consumer to play/view his content on five separate

devices.

As illustrated in Figure 2.4, FairPlay DRM mainly consists of two components:

an iTunes store and an iTunes application (i.e. DRM client). For the iTunes

Store, a digital content is first encrypted using the AES algorithm with a key

called a master key. The master key is stored in a ciphered form by encrypting it

by another key known as a user key. This user key is generated when a consumer

is purchasing a digital content from the iTunes store. When the consumer has

2Apple does not provide any information about FairPlay internal details. It also does not
release any development kit for developing a compatible store or device. All the details in the
literature are mainly taken from papers such as [43, 44, 45, 46].

2.8. EXISTING DRM SYSTEMS 59

 User A
Computer 1(iTunes)

 User A
Computer 2

iTunes music store

1. Buy a track
 (music.aac)

5. Send User A the
track of this form:

EMK(Track)

2. Generate a new random User Key (UK)
3. Store UK and account information
4. Encrypt Master Key (MK) with UK

iTunes or iPod

AES

Decrypt

MK

Track: Audio stream Play

U K
iPod

AES

Decrypt

EUK(MK) UK

EUK(MK)

EMK(Track)

Figure 2.4: Dataflow of Apply FairPlay DRM

bought the content, the iTunes store sends the consumer: the user key, the master

key (encrypted by the user key), and the content encrypted by the master key.

To buy a track (i.e digital content) from an iTune store, a consumer first

registers his device with the store by creating an account with the store. During

this registration, the iTunes application creates a unique identifier for the device

by hashing device identifiers such as drive name (C:), BIOS, CPU name and

Windows ID. This unique identifier serves as the user key for this device. The

user key along with the account information are stored on the iTunes store server.

This registered device can later retrieve a user key to decrypt the corresponding

master key.

On the consumer’s device, every time the consumer wants to play/view the

content, the iTunes application, installed on the device, performs the following

steps:

1. Uses the user key to decrypt the master key;

2. Uses the master key to decrypt the digital content;

3. Plays/views the content according to usage rights allowed.

60 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

Note that, on the consumer’s device, the master key is stored as encrypted

by the user key which is unique. Therefore, the master key cannot be transferred

between devices. Also, this allows secure addition and removal of a device to and

from the five registered devices.

As mentioned above, FairPlay permits a consumer to play/view his content

on five devices. If the consumer wants to play his content on two devices (at

home and at work), he has to authorise the new device with an iTunes store.

This authorisation is performed by having the iTunes application send a unique

machine identifier for the new device to the iTunes store. This device will then

receive all the user keys corresponding to the account information. If the con-

sumer has already registered five devices and wants to add a sixth device, he

should de-authorise one device from the registered devices, and then authorise

the new device. In the de-authorisation, the iTunes application will contact the

iTunes server to remove the unique machine identifier and the user key of this

device from the consumer database.

With authorisation and de-authorisation, Apple is able to restrict the number

of devices to 5 authorised devices and ensures that each of these has got all the

user keys required to play the digital content purchased from iTunes stores.

FairPlay DRM in the Market: FairPlay is mainly used by Apple products

such as iTunes, iPhone, iPod, iPad and iTunes Store. The only exception is that

Apple allowed Motorola mobile telephone company to use FairPlay DRM with

the following three mobile phones sold by Motorola in the years 2005 and 2006:

the Motorola ROKR E1, the Motorola RAZR V3i, and the Motorola SLVR L7.

FairPlay DRM Advantages: FairPlay DRM enjoys the following advan-

tages. It allows consumers to play their content on up to 5 devices and on unlim-

ited iPods; it also permits unlimited CD burnings but with quality degradation;

it allows burning to CD (any single playlist of music can be burnt to CDs up to

7 times); and it enables a consumer to re-download an encrypted content from

an iTunes Music Store.

FairPlay DRM Disadvantages: The disadvantages of the FairPlay DRM

are that (1) it only supports two operating systems, Mac OS and Microsoft Win-

dows, thus leaving Linux (as major operating systems) out of the usage, and (2)

it only supports two types of digital format: MP4 (video) and AAC (audio).

2.8. EXISTING DRM SYSTEMS 61

2.8.3 Open Mobile Alliance (OMA) DRM

The Open Mobile Alliance (OMA) [18] is a standardisation organisation that

develops open standards to enlarge the interoperability of mobile services. Mem-

bers of OMA include device manufacturer members, e.g. Nokia, Sony Ericsson,

Philips, Motorola, Samsung, and mobile operators (e.g. Vodafone, Orange, T-

Mobile, LG Telecom). The DRM technology is one of OMAs standardization

activities. OMA DRM is an end-to-end technology developed to protect and dis-

tribute digital contents to devices. There are two versions of OMA DRM: OMA

DRM V1.0 and OMA DRM V2.0.

OMA DRM V1.0

OMA DRM V1.0 was initially developed in 2002 to protect digital content such

as video and audio clips, ring tones, wallpapers, and java games. OMA DRM

V1.0 provides fundamental building blocks for a DRM system. As illustrated in

Figure 2.5, it supports three simple protection schemes: forward-lock, separate

delivery, and combined delivery [1].

• Forward-Lock : With this protection, a digital content cannot leave a device

to which it was delivered. In other words, a consumer cannot transfer a

DRM-protected content to another consumer’s device. Thus, Forward-lock

supports a basic copy protection which protects content owners’ rights.

• Combined Delivery : This enables defining usage rights in addition to

forward-lock. As shown in Figure 2.5(b), a DRM-protected content con-

sists of two combined objects, a content and its usage rights (e.g. number

of playing times and expiry date). With this feature, a content owner can

create different kinds of business models, such as preview, and usage-based

constraints.

• Separate Delivery : This is similar to the combined delivery except that the

separate delivery adds extra security to the content. With this protection,

a content is delivered in two separate files: one contains an encrypted con-

tent and the other contains usage rights for the content. The content is

encrypted into DRM Content Format (DCF) by using a symmetric encryp-

tion technique and the usage rights and a symmetric Content Encryption

Key (CEK) are put into a file called a license. The content and its license

are delivered separately. This means that the content is useless without

62 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

Forward-lock Combined delivery

DRM Message DRM Message

Content Content Rights

 WAP
Download

Consuming
 device

Consuming
 device

 WAP
Download

Consuming
 device

Separate delivery

Content Rights

 WAP
Download

WAP
un
Push

You can play
 only once

You can play
 only once

(a) (b) (c)

Figure 2.5: OMA DRM Delivery Schemes of Version 1.0 [1]

its license. The separation between a content and its license supports the

superdistribution business model. In this model, DRM protected content

can be transferred from device to device but the receiver of the content has

to acquire a new licence from a license issuer.

OMA DRM V2.0

OMA DRM V2.0 is designed to achieve a higher level of security and func-

tionality than OMA DRM V1.0. Security, such as secure distribution, the au-

thentication of devices, revocation and license integrity, are achieved through (1)

providing mutual authentication between a Right Issuer (RI)3 and a consumer’s

device, based on digital certificates, and (2) confidentiality and integrity pro-

tecting license based on public key encryption. The functionality is improved

by introducing an authorised domain in which a consumer can have a limited

number of devices and can access his content on all these devices [2].

Based on the market feedback, two sub-versions (OMA DRM V2.1 and OMA

DRM V2.2) of OMA DRM V2.0 have been released. OMA DRM V2.1 [47] was

released in 2008. The main features of OMA DRM V2.1 over OMA DRM V2.0

include (a) metering: gathering information about the actual content usage, (b)

RO installation confirmation, (c) content differentiation: with this mechanism

a music track cannot be used as a ring-tone. OMA DRM V2.2 [3] was released

3Known as License Issuer (LI) in our case.

2.8. EXISTING DRM SYSTEMS 63

in 2011 and it supports new features such as (1) the management of the adver-

tisement based on the content acquisition and the content consumption, and (2)

extended support of games and executables.

OMA DRM 2.0 consists of three major components a content issuer, a Rights

Issuer (RI), and DRM agent.

Content Issuer (CI) is responsible for delivering a DRM content to con-

sumers. CI first puts a content in a DCF format and then protects it using

a symmetric Content Encryption Key (CEK)4. CI also includes additional data

such as unique content ID and RI’s address into the packaged content. CI can

deliver the DRM content to a DRM agent using different transport mechanisms,

such as MMS (Multimedia Messaging Service) or Bluetooth. In addition, CI

delivers CEKs to a Rights Issuer (RI).

Rights Issuer is an entity that specifies usage rights to DRM contents. RI

may use Rights Expression Language (REL) [36] to generate these rights. RI

also generates licenses or Rights Object (RO) containing CEKs, received from CI,

and these usage rights. This license is an XML file which expresses permission

and constraints to be applied to the associated content. The license is then

cryptographically bound to a DRM agent during its issuing process. Thus, the

content can only be accessed with the appropriate license (i.e. RO).

DRM agent is a trusted entity which is hosted by a consumer’s device re-

ceiving a DRM content and its license. Each DRM agent is embedded with a

public/private key pair and a digital certificate containing the public key. This

certificate additionally contains information about the DRM agent such as issuer,

device type, software version, and serial numbers. Based on this certificate, RI

authenticates a given DRM agent before issuing and delivering it with a requested

license. Furthermore, RI uses the agent’s public key to encrypt the license prior

to sending it to this DRM agent. To access a given DRM content, the DRM

agent opens the associated license and then renders the content according to the

usage rights of this license.

If the DRM agent attempts to access a content but does not find the corre-

sponding license, it sends a license request to RI. The request contains the device’s

identity (i.e. its certificate) and the content ID obtained from the content package,

DCF. Prior to issuing a license to this DRM agent, RI authenticates this DRM

agent and makes sure that a financial transaction is performed. If positive, RI

4CI may receive the content pre-packaged from different sources.

64 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

Protected
Content

Content
Issuer

Rights
Issuer

Rights
Object

DRM Agent

Protected
Content

Network Store

Removable
 Media

DRM System
Content
Provider

Other DRM
 Agents

Protected
 Content

User

Figure 2.6: OMA DRM V2.0 general architecture [2]

issues a license containing usage rights and a CEK key which is further encrypted

using a symmetric key called REK (Right-object Encryption Key). RI is then

encrypting the REK key by the device public key, thus cryptographically binding

this license to the target DRM agent. Therefore, only the target DRM agent

containing the corresponding device private key can use the license to render the

content.

OMA DRM in the Market: Producers of the most well-known mobile

communication devices have agreed to adopt the OMA DRM V2.0. Examples of

producers include Nokia, LG, Motorola, Samsung, Sony-Ericsson, and Siemens.

Also, a number of mobile phone network operators are using OAM DRM 2.0.

Vodafone, Orange, O2, and Cingular are examples of these operators [48].

OMA DRM Advantages: The main advantage of OMA DRM is that it has

defined a standard for Mobile DRM which has allowed many mobile producers

and operators to adopt it.

OMA DRM Disadvantages: The main disadvantage of OMA DRM is that

it is only used with mobile phones. It does not support PCs.

2.9. OPEN ISSUES IN CURRENT DRM SYSTEMS 65

2.9 Open Issues in Current DRM Systems

Consumers’ convenience and satisfaction with current DRM systems are still not

addressed properly. Consumers’ privacy, DRM interoperability, first-sale doctrine

(i.e. license reselling) are among open issues that need further research. In this

section, we give an overview of these issues.

2.9.1 Consumer Privacy

DRM is a very helpful tool for content owners to deliver and distribute their

digital contents, but it may affect consumers’ privacy. DRM systems do not give

much attention to protecting consumers’ privacy. This is because consumers’

privacy is not in the direct interest of the content owners. To access a DRM-

protected content, consumers are generally asked to disclose their identities to

content providers or license issuers. Consumers may need to register with a

content provider to either purchase content from the content provider (e.g. iTunes

Stores), subscribe to read an eBook, or watch/play a content in the pay-per-view

business model. Also, consumers’ identify information is collected to track the

consumers in case of usage rights violation. For example, WM-DRM [17] makes

use of a globally-unique identifier (GUID) to track consumers [49]. Also, FairPlay

DRM uses a unique hardware identifier for the consumer’s device to limit the

consumer to using the content on 5 computers only. Moreover, a client DRM

installed on a consumer’s device can collect consumer’s playing statistics and

send them to a License Issuer, who can use the statistics for different purposes,

such as improving their services.

It is a challenging task to address these privacy problems. The main challenge

to address the privacy problem in a DRM context is that of how a consumer can

receive and play/view his digital content in an anonymous/pseudonymous way

while the underlying security of DRM systems is not compromised. The literature

contains a number of methods to address the consumer’s privacy problem and

this includes:

• Anonymity - With this method, a consumer may use a content or service

without his identity being revealed.

• Pseudonymity - It is a process with which a consumer can access a content

or a service under a pseudonym. Thus, he does not need to disclose his real

66 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

identity.

• Unlinkability - It means that a sender and a receiver can communicate with

each other without being identified as doing so.

• TTP-based - A Trusted Third Party can be involved to preserve a con-

sumer’s privacy in a DRM context.

Based on the anonymity and pseduonymity, Conrado et al in [50] have pro-

posed a DRM system preserving consumer’s privacy. A number of techniques,

such as the unlinkability method [51] and blind signature [52, 53], blind decryp-

tion and hash chain [54], and anonymous cash [55], have been used to address

privacy problems in a DRM context.

It is worth noting that the privacy concern is not only related to DRM-

protected content, but also to DRM-free content. Recently, Apple iTunes stores

launched a new service with which consumers can get a digital track without

DRM restrictions. To get this type of content, a consumer has to pay a higher

price, $1.29 instead of 99 cents. The consumer is then allowed to make many

copies of the content he has bought and is permitted to play this content on

different devices (i.e. iPod and others). However, within this DRM-free content,

Apple iTunes have embedded the consumer’s identifier information including the

consumer’s full name and account information including his e-mail address. This

information is a great privacy concern to this consumer sharing the contents over

p2p networks [56]. In general, consumers want to access digital contents in a way

that their behaviour of consumption is not tracked nor profiled (i.e, using the

content anonymously).

2.9.2 Interoperability

Interoperability is an important issue in the digital world. It can be noticed that

computing devices used around the world are heterogeneous, but they access the

Internet. With the DRM technology, it is also recommended that heterogeneous

devices should have a similar level of accessibility with DRM-protected contents.

As reported in [57], current DRM systems do not have a common DRM inter-

operability scheme. This is based on the fact that existing DRM systems make

use of proprietary techniques (i.e. data formats, encryption, trusted hardware/-

software) in their system design. Without DRM interoperability, consumers need

2.9. OPEN ISSUES IN CURRENT DRM SYSTEMS 67

to buy the same digital contents many times to be able to use them on their

heterogeneous computer machines. A recent survey [13] has shown that Euro-

pean consumers would be happy to pay a higher price for digital contents with

an interoperability feature.

The research literature contains several schemes [57, 58, 41, 59] to address the

DRM interoperability problem. Generally, to achieve DRM interoperability, one

of the following approaches could be used [58, 41]:

• DRM Standardization: This is the most obvious solution to the DRM

interoperability problem, but it is the most difficult to achieve. As reported

in [58], there are many challenges to achieving one DRM standardization.

One of these challenges is that there would be little incentive for content

owners to support for innovative business models, which are the ultimate

goal for all involved entities in content distribution value chains, more im-

portantly consumers.

• Devices with Multiple DRM Systems: With this approach, it is sug-

gested that devices could be designed to support multiple DRM systems.

However, this is an expensive approach as each device should support dif-

ferent hardware requirements, which are necessary for each DRM system.

• DRM Translator: In this approach, content and rights are translated

from one system to another. The main challenge of this approach is the

scalability issue. That is, as there are many DRM systems on the market,

it is more difficult to find one DRM translator for all of them. This approach

is used in [60, 57].

• Connected Interoperability: In this approach, as proposed in [59], an

external TTP manages interoperability between different DRM systems.

In this case, the TTP must to know all the security properties (such as

encryption methods, and formats of both content and license) of involved

DRM technology. However, it is very difficult for DRM providers to release

their security properties to an external entity.

2.9.3 First-sale: License Reselling

Distribution of different types of items has individual focuses. In distributing a

physical item like a book, the focus is on the controlled release of the physical

68 CHAPTER 2. DIGITAL RIGHTS MANAGEMENT OVERVIEW

item subject to the required payment. However, in distributing a digital item

such as a software or other digital content, the focus is on trading the license of

the digital item. Thus, when a buyer wants to buy a digital content, he can first

get the encrypted form of this content either from a content provider or from

another consumer. Nonetheless, the buyer cannot access this content until he

pays LI for the corresponding license. This license contains the key needed to

decrypt the content. In this context, it is seen that if a consumer wants to resell

the content, he actually resells the license of this content.

DRM follows the approach that usage rights, which are not specified in a

license, are not permitted to consumers. For example, if you have bought a

license allowing you to print 50 pages from an eBook, you cannot print 51 pages.

Under this approach, consumers cannot resell their digital content as existing

DRM systems do not allow consumers to do so in the granted licenses. It is

believed that DRM solutions should be consistent with a first-sale doctrine in

the sense that consumers should be allowed to resell what they have legitimately

bought.

Current DRM systems, e.g. [17, 18, 19, 38], mainly focus on the protection

of content owners’ rights. They have not given due consideration to consumers’

rights. In particular, these systems do not permit consumers to resell the licenses

they have purchased. Reselling something that a consumer rightfully owns (in-

cluding digital licenses) is a legitimate right under the first-sale doctrine [20]. To

support this legitimate right, a number of license reselling proposals have been

presented in the literature [61, 62, 50, 63, 64, 65]. These proposals fall into three

classes depending on approaches used: full-trusted hardware, partial-trusted hard-

ware, and non-tusted hardware. Proposals suggested in [61, 62, 63, 64] followed

the full-trusted hardware approach. In this approach both a reseller and a buyer

have to obtain a trusted device to perform any DRM-related process including

reselling. On the other hand, solutions introduced in [50], and [65] followed the

partial-trusted and non-trusted approach, respectively. A survey of all these ap-

proaches is given in chapter 3.

2.10 Chapter Summary

In this chapter, we have presented an introduction to DRM and identified the

current open issues observed in DRM context. The chapter started by explaining

2.10. CHAPTER SUMMARY 69

what a DRM system is and its history in protecting digital contents. It then

showed that the separation between a content and a license is the main principle

of a DRM system. This principle could enable various business models for con-

tent owners. In addition, the main entities involved and their roles in a DRM

system are presented. Additionally, the chapter introduced the components of a

DRM system and illustrated how this system works. Moreover, three well-known

commercial DRM systems have been highlighted, and a number of open issues in

the DRM research area have been discussed in this chapter. To understand how

a DRM technology protects a digital content, the next chapter introduces the

cryptographic mechanisms and other protection technologies used in the design

of a DRM system.

Chapter 3

License Selling and Reselling

solutions: A literature Survey

3.1 Chapter Introduction

This Chapter gives an overview of current solutions used to sell digital licenses

in existing DRM systems and then discusses license reselling solutions proposed

to support license reselling of a digital license. In detail, Section 3.2 presents

an overview of the current license selling solutions being used with the existing

DRM systems. A detailed survey on the proposed license reselling solutions is

introduced in Section 3.3. In Section 3.4, we discus what is missing in the current

proposed solutions, while in Section 3.5 we introduce the best way to address the

missing bits in the current reselling solutions. Finally, in Section 3.6, a summary

of the chapter is given.

3.2 Current License Selling Solutions

Most of the current DRM systems are proprietary systems which make use of

different approaches to secure and sell their protected contents. This leads to

various selling methods which consumers have to use to purchase contents from

different DRM systems. In this section, we give an overview of the license selling

solutions used in the most well-known DRM system (i.e. WM-DRM (Window

Media-DRM) [17], FairPlay DRM [19], and OMA (Open Mobile Alliance) DRM

[18]).

71

72 CHAPTER 3. A LITERATURE SURVEY

3.2.1 License Selling Process in WM-DRM

License selling used in WM-DRM is supported with the use of a protocol known

as a License Acquisition Protocol [66]. This protocol allows consumers to acquire

a license using one of the two modes, silent or non-silent.

• Silent license acquisition: It is a process where a consumer has no in-

teraction during a license acquisition. In this process, a consumer’s DRM

client sends a license request to and receives a license response from LI

without any involvement from the consumer. This type of license acquisi-

tion is only suitable when there is no need for any additional input from

the consumer. For example, a consumer may have already registered and

paid a subscription fee.

• Non-silent license acquisition: This is a process when a consumer is in-

volved during a license acquiring process. During this process, the consumer

may be asked to provide information (e.g. payment and/or username). This

license acquisition method is typically used when a content owner wants to

ensure that a consumer has checked particular information, e.g. terms and

conditions, before issuing a license.

Here, we will describe the process of obtaining a license using a non-silent

method [66]. Firstly, a DRM client installed on a consumer’s device creates a

license request. This request contains content header file and consumer’s system

information. The content header file contains Content ID, License Acquisition

URL, and key ID1, while the consumer’s system information contains operating

system type, DRM client ID, and client digital certificate. Secondly, the DRM

client signs the license request and then sends it to LI.

Once LI receives the license request, LI verifies the DRM client’s signature

on the request. If the verification is positive, LI uses the information provided in

the request to issue a license to the consumer. LI first searches in its database to

find whether the content ID, provided in the license request, matches with any

content ID in the database. If LI does not find matching, it then terminates the

process. If LI finds matching, LI issues a license to the consumer by performing

the following steps:

• Generate a license containing usage rules and CEDK key whose Key ID is

provided in the license request.

1key ID is a string used by LI in the generation of the CEDK to be included in a license.

3.2. CURRENT LICENSE SELLING SOLUTIONS 73

• Sign the license to protect its integrity.

• Use the DRM client’s public key to encrypt the license.

Once the above operations are performed, LI sends the license to the consumer’s

DRM client. Upon receiving the license, the DRM client verifies LI’s signature.

If it is not valid, the DRM client declines the license response and terminates the

process. If the signature is valid, the DRM client uses its private key to decrypt

the license. It then uses the CEDK provided in the license to decrypt the content

and allows the consumer to view/play the content.

3.2.2 License Selling Process in FairPlay

FairPlay DRM is designed such that usage rights (i.e a license) are built into

the DRM client (i.e. iTunes player) installed on a consumer’s device. Thus, the

process of acquiring a content in FairPlay DRM corresponds to the process of

acquiring a license in other DRM system2.

To buy protected content (e.g. a song) through the iTunes store, a consumer

must first install the iTunes media player which is embedded with a FairPlay

DRM client. The consumer should then register with the iTunes store and then

pay for the content through a credit card or other payment method (e.g. Paypal).

In more details, a process of purchasing a content involves the following steps:

1. Download and install the iTunes media player.

2. Through the iTunes player, a consumer creates an iTunes account with

Apple’s servers or iTunes stores. During the creation of this account, the

device, e.g. PC or Mac running the player, will be authorised. In this

authorisation, the iTunes player (1) generates a globally unique ID number

for this device on, (2) sends this ID to Apple’s server which allocates this

ID to the consumer’s iTunes account.

3. A consumer chooses a song from the iTunes music store and makes a pur-

chase request to the iTunes server.

4. The iTunes player, installed on the consumer’s device, sends the purchase

request along with the consumer’s system information to the iTunes server.

2As mentioned in Chapter 2, there are no technical details available about the FairPlay DRM,
so the description of the content/license selling process in FairPlay DRM in this thesis is mainly
taken from Wikipedia ((en.wikipedia.org/wiki/FairPlay)) and papers such as [43, 44, 45, 46].

74 CHAPTER 3. A LITERATURE SURVEY

5. A consumer uses his credit card or bank card to make a payment for the

song.

6. After a successful payment, iTunes server generates a key called master key

and uses this key to encrypt the song. The iTunes server then generates

another key, known as a consumer key and uses it to encrypt the master

key. It then sends the encrypted form of the song and the consumer key to

the iTunes player.

7. Upon the receipt of these keys and the content, the iTunes player will use

the consumer key to recover the master key. It will then use the master key

to decrypt the encrypted content and view/play it according to the usage

rights embedded in the iTuens player (i.e. DRM client).

3.2.3 OMA DRM License Selling

The process of selling or acquiring a license (or a Right Object as known in

the context OMA DRM) in OAM DRM consists of two stages Registration and

License Acquisition [2].

Registration stage: In this stage, a protocol called 4-pass Registration Pro-

tocol is executed between a consumer’s DRM client and LI (Right Issuer in OMA

DRM context). This protocol is a handshaking and security information exchange

protocol. Generally, it is only executed when a consumer contacts LI for the first

time. However, if an update of the exchanged security information is required

by LI, this protocol may be further executed. The registration protocol includes

negotiation of the following items: protocol version, protocol parameters, device

ID, LI ID, cryptographic algorithms, message integrity protection, and time syn-

chronisation of the DRM client. Upon the successful completion of the protocol

execution, the consumer can run the License acquisition protocol to obtain a

license from LI.

License acquisition stage: In this stage, a protocol known as License Ac-

quisition Protocol3 is executed between a consumer’s DRM client and LI to allow

the client to acquire a license from LI. Upon successful completion of the protocol

execution, the consumer’s device will obtain a license signed by LI and encrypted

with the public key of the DRM client. As shown in Figure 3.1, this protocol

3This protocol is know as RO Acquisition Protocol in the context of OMA DRM

3.2. CURRENT LICENSE SELLING SOLUTIONS 75

consists of two messages4, a License Request and a License Response

DRM Client

1

2

 License
request

 License
response

a

b

Rights
Issuer

 OCSP
Responder

OCSP
Request

OCSP
Response

Figure 3.1: License acquisition method in OMA-DRM [3]

License Request: To obtain a license from LI, a consumer’s DRM client

sends a License Request message to this LI. This message consists of the following

items:

• Device ID: This item is to identify the requesting device.

• LI ID: It identifies the requested LI.

• Device Nonce: It is a random nonce generated by the consumer’s device to

counter a replay attack.

• Request Time: It is the current DRM Time as measured by the device.

• License Info: This item identifies the requested license.

• Certificate Chain: It is a certificate chain containing the device certificate.

If the Peer Key Identifier indicates that LI has already stored the necessary

4OCSP (Online Certificate Status Protocol) request and OCSP response messages, shown
in Figure 3.1 are performed between Rights Issuer and OCSP Responder. In other words, they
are not seen to DRM client. In addition, they are only executed if the license request contains a
flag for OCSP. OCSP is an internet protocol to check the revocation status of an X.509 digital
certificate.

76 CHAPTER 3. A LITERATURE SURVEY

information of the device certificate, the Certificate Chain item is not sent

by the user.

• Extensions: A number of extensions can be included in the License Request

which include:

– Peer Key Identifier: This item indicates to LI that the LI’s public key

has already been stored in the consumer’s device.

– No OCSP Response: It tells LI that it is not required to send the

OCSP response.

– OCSP Responder Key Identifier: It identifies a trusted OCSP respon-

der key which is stored in the consumer’s device.

– Transaction Identifier: This item enables a device to provide LI with

information for transactions tracking.

• Signature: This is the DRM client signature on the current message.

License Response: This is the second message of the license acquisition pro-

tocol. This message is sent from LI to the consumer’s device. Prior to sending

this message to the device, as illustrated in Figure 3.1, LI may check the revo-

cation status of the device certificate. Generally, the license response message

contains the following items:

• Request Status: It shows whether the License Request has succeeded or

failed.

• Device ID: This item is equal to the Device ID item sent by the device in

the License Request message.

• LI ID: This item is the same value of LI ID item sent by the device in the

License Request message.

• Device Nonce: This is a nonce value which is equal to the Device Nonce

sent by the device in License Request message.

• Protected Licene: This item contains usage rights and CEDK (Content

Encryption/Decryption Key) which are encrypted using the device’s public

key.

3.3. CURRENT LICENSE RESELLING SOLUTIONS 77

• Certificate Chain: This is a certificate chain including LI’s certificate. LI

only sends this item the License request message does not contain the peer

key identifier.

• OCSP Response: This is a complete set of valid OCSP responses.

• Extensions: An example of these extensions is Transaction Identifier that

enables LI to provide the consumer’s device with information to track trans-

actions.

• Signature: This is LI’s signature on the license response message.

For more information about the License acquisition protocol in OMA DRM

system, see [3].

3.3 Current License Reselling Solutions

The literature contains a number of solutions [61, 62, 50, 63, 64, 65] proposed to

address the license reselling problem. These solutions fall into three approaches:

full-trusted hardware based, partial-trusted hardware based, and non-trusted hard-

ware based. There are four solutions, [61, 62, 63, 64], which make use of the

full-trusted hardware approach. As discussed in Section 3.3.1, these solutions

require both a reseller and a buyer to obtain a trusted device to support digital

license reselling. In the category of the partial-trusted hardware based approach,

there is one solution [50]. This solution, discussed in Section 3.3.2, only utilises a

smart card technology to perform the DRM related process. Finally, the solution

presented in [65] makes use of the non-trusted hardware based approach. It does

not require any trusted hardware in its design. This solution will be presented in

Section 3.3.3.

Before giving a survey about the current license reselling solutions, we high-

light the requirements for supporting fair license reselling in DRM systems. As

discussed in Chapter 1, these requirements can fall into three categories:

1. Protecting content owners’ rights: This means that while supporting

a license reselling facility, current owners’ rights should be preserved. These

rights include:

• Preventing continued use: A reseller must not be able to continue to

use a license after it has been resold.

78 CHAPTER 3. A LITERATURE SURVEY

• Reselling resalable license: A reseller should only be allowed to resell a

license if this license is resalable. We differentiate between two type of

licenses: resalable and non-resalable. During the issuance of a license,

LI will determine if the license involved is resalable or non-resalable

and when this license can be resold (i.e LI can only allow a resalable

license to be resold after one or two years from its release).

• Preventing unauthorised reselling: A reseller must not be allowed to

resell a resalable license an unauthorised number of times.

• Buyer’s traceabality: A content owner or LI must be able to trace a

buyer of a resold (second-hand) license if this buyer has violated any

of the usage rights of the license.

• Non-repudiation: A reseller, who has already resold his license, should

not be able to falsely deny having resold this license.

2. Achieving fair license reselling: A fair license reselling means that at

the end of a reselling process undertaken between a reseller and a buyer,

either the reseller receives a payment and the buyer receives a license, or

none of them receives anything useful.

3. Considering reseller’s and buyer’s interests: This includes monetary

interest for both buyers and resellers, and other interests for a buyer. The

monetary interest concerns maximising the benefits of both the buyer and

the reseller. In other words:

• Allowing a buyer to pay as little as possible for a second-hand license.

• Allowing a reseller to maximise the price of the license as much as

possible.

• Not adding additional cost to both a reseller and a buyer to resell and

buy a second-hand license, respectively.

For the other interests for a buyer, the buyer should be assured that:

• License legitimacy: A license he is about to purchase is a legitimate

one (i.e. it is issued by an authentic LI).

• Resale-ability check: A license he is about to buy is resalable and it is

still within its reselling validity period.

3.3. CURRENT LICENSE RESELLING SOLUTIONS 79

3.3.1 Full-trusted Hardware based Solutions

There are four license reselling solutions [62, 63, 64, 61]5 making use of trusted

hardware. With these solutions consumers (a reseller and a buyer) have to get

special trusted devices to be able to play/view and resell his digital content/li-

cense. More details are given in the following sections.

3.3.1.1 Kwok’s DRM System

Kwok work [61] was the first solution to address the license reselling problem.

The work proposed a DRM system (here after referred to as Kwok’s system) to

support license purchase and resale. With this system, a consumer could use the

system to acquire/purchase a license from a license issuer (LI) and to resell it

later to another consumer.

Kwok’s system consists of two services: a DRM External Service Centre (ESC)

and a Local Service Centre (LSC). The ESC service is located on LI’s side, and

it is used for issuing a license to a consumer. The LSC service is located on a

consumer’s device, and it is used for acquiring and using a license. ESC and LSC

each has a public/private key pair.

To acquire a license from LI, a consumer, Alice, uses her LSC as follows.

She first registers with LI’s ESC and makes a payment for the license to LI.

Upon the successful completion of these steps, LI encrypts the license, called an

official license, with Alice’s (i.e, LSC’s) public key and sends it to Alice. The

LSC service, located at Alice’s device, receives the encrypted license from LI and

decrypts it with its private key. It then stores the decrypted form of the license

in a database provided by LSC.

To resell her license, LicA, Alice first searches for a buyer, Bob. She then asks

Bob to register with her LSC, LSCA. Bob then uses his LSC, LSCB to register

as a peer-consumer of Alice. Bob then makes a payment for LicA to Alice. When

Alice receives the payment, she uses her LSCA to generate a license called a peer-

license. LSCA then encrypts the peer-license using LSCB’s public key and sends

it to LSCB on Bob’s device. Once the peer-license is sent to Bob, Alice’s official

5In [61], Kwok et al did not mention that their system is designed under the assumption
that the reseller’s device should be trusted. However, we believe that without making use of
this assumption, the underlying security of the DRM system will be compromised. This is
because the authors mentioned that the official license will be stored in consumer’s device in
a decrypted form. This means that a reseller could resell this license to many consumers and
could keep continuing using it as well, thus violating content owners’ rights.

80 CHAPTER 3. A LITERATURE SURVEY

license is disabled on her device by using her LSC, i.e. Alice can no longer use

it. Also, upon receiving the peer-license, Bob can use it on his device.

Limitations of Kwok’s system

Kwok’s system was the first DRM system allowing a consumer to resell his

license to another consumer. However, it only discussed the reselling problem

from an abstract level. It did not give technical details on how a reselling is

achieved and how content owners’ rights will be kept protected during and after

the reselling. In other words, it fails to address the following problems.

• Preventing continued use: Although it has been mentioned that a reseller

will not be able to reuse her license after its reselling, Kwok’s system fails

to give technical details as how the reseller is prevented to continue using

a resold license.

• Preventing unauthorised reselling: Kwok’s system does not address how a

consumer is prevented to resell his license unauthorised number of times.

• Consumer Traceability: As described above, LI is not involved in a reselling

process which is only performed between a reseller and a buyer. As a result,

LI cannot obtain the buyer’s identity that allows LI to trace the buyer if

she/he violates any of the usage rights of the license.

• License legitimacy: This is not discussed in Kwok’s system description.

• Fairness: Kwok’s system also does not have a mechanism to support fair-

ness in the reselling process. As shown above, a reseller receives a buyer’s

payment before sending the license to the buyer. In this case, the reseller

could prematurely abort the protocol execution once he receives the pay-

ment. As a result, the buyer could be left in a disadvantageous position

(i.e. made his payment without getting the license).

3.3.1.2 Sun’s System

In 2005, Sun et al [62] introduced another DRM system supporting license re-

selling. Sun’s system also makes use of trusted hardware (trusted device and

smart card) to enable playing/viewing and reselling digital licenses. This system

permits a consumer to (1) acquire a license from LI, (2) play/view a content

corresponding to this license through an online service provided by LI, (3) and

resell the license to another consumer through LI and a Second-hand Store (SS).

3.3. CURRENT LICENSE RESELLING SOLUTIONS 81

To play/view a content, Alice first gets a digital content from a content

provider. She then registers with LI. In this registration, Alice’s smart card

sends LI Alice’s ID and content ID. Alice then makes payment to LI for a re-

quest license. Alice then uses LI’s online service to play/view the content. That

is, Alice first authenticates herself, and makes the payment to LI via her smart

card before obtaining a license corresponding to the content. With the license

and the enclosed key, Alice can play/view the content. Each access to the content

requires Alice to repeat the authentication process to get the key needed to de-

crypt the content. When Alice finishes playing/viewing the content, the trusted

device is instructed to delete the license and the decrypted content. Thus, Alice

can not abuse the decrypted content.

To resell her license LicA, Alice makes use of a third party called SS acting

as TTP between LI, Alice, and Bob. Alice first sends SS a reselling request

containing content ID, Alice’s ID, and Alice private key. To accept this request,

SS first checks with LI whether Alice is the legitimate owner of LicA. If Alice is

not the owner of LicA, the reselling operation will be terminated. Otherwise, SS

publishes on its website that LicA is for sale. When a buyer is interested in LicA

posted on SS’s website, he sends SS a purchase request containing a payment for

LicA and Bob’s identity. SS then requests LI to update the ownership of LicA

such that Bob becomes the new owner the license (i.e. LicA will become LicB).

This means that Alice can not use LicA any more. Once the update has taken

place and SS has received an acknowledgement with this update from LI, SS

then sends the license, LicB to Bob. SS also sends the payment to Alice, thus

achieving transfer (reselling) of LicA ownership from Alice to Bob.

Advantages of Sun’s System

It can be noticed that Sun’s system has addressed a number of limitations

identified in Kwok’s one. Sun’s system has provided solutions to the following

problems:

• Preventing continued use: Sun’s system only allows a reseller, Alice, to use

a license through LI’s online services. Thus, once Alice has resold LicA and

then she attempts to reuse it again, LI can prevent Alice from using this

license.

• Buyer traceability: Since LI (and SS) has to receive Bob’s identity during

the reselling process, Bob’s identity can be traced by LI.

82 CHAPTER 3. A LITERATURE SURVEY

• License Legitimacy: As discussed above, prior to accepting a reselling re-

quest from Alice to resell LicA, SS checks with LI whether LicA is a license

issued by LI. Hence, the license legitimacy is checked before permitting the

reselling process.

• Preventing unauthorised reselling: It can be noticed that a reselling pro-

cess is only performed through SS and LI. This allows LI to detect any

unauthorised reselling of a license.

Limitations of Sun’s System

The limitations of Sun’s system are given below.

• Using SS: Adding SS in a reselling process makes it inefficient as SS adds

more communication messages to the reselling process. In addition, SS

must be unconditionally trusted by Alice, Bob and LI. Finding such an

entity could be very difficult in the Internet-based DRM environment. If

SS misuses any information obtained during the reselling process, SS can

compromise the whole process. For example, SS can maliciously send LI

the content ID and Alice’s ID, which are received from Alice in the reselling

request, to play/view Alice’s content.

• Fair reselling : This has not been addressed in Sun’s system.

• Adding cost to consumers : As shown above, Sun’s system makes use of

trusted hardware to prevent a consumer from keeping the license after the

playing/viewing session is finished. It also utilises the smart cards to au-

thenticate the consumer to LI and SS during playing content and reselling

the license, respectively. The trusted hardware and the smart card usually

introduce an additional cost to the consumers.

3.3.1.3 NPGCT DRM System

In 2005, Nair et al [63] proposed a trusted hardware based DRM system. This

system is later called NPGCT6. NPGCT system allows a consumer not only to

buy rights (license) from LI to access a specific content, but also to resell N-

copies of this license to other consumers (buyers). To support this reselling while

6NPGCT is an abbreviation for the authors of this system. These authors are Nair, Popescu,
Gamage, Crispo, and Tanenbaum

3.3. CURRENT LICENSE RESELLING SOLUTIONS 83

avoiding the problems seen in Kwok’s and Sun’s system, NPGCT system heavily

relies on the use of trusted devices.

Here we give an overview of these trusted devices. They are tamper-proof

devices that only execute their embedded certified rules. These devices are also

able to locally perform atomic actions. The atomic actions are actions that can

be logically coupled such that either all or none of them is executed. The trusted

devices provide two main features. Firstly, once a copy of a license is resold, a

reseller’s device, DR, automatically updates the original license to reflect how

many copies of the license are left, i.e. how many copies the reseller can further

resell. As a result, the reseller can not resell his license more than the legitimate

N copies authorised by LI in the original license. Secondly, once DR receives

a payment order from buyer’s device DB, DR performs two automatic coupled

actions (i.e.atomic actions): (1) updating the license to reflect that one copy of it

has been resold; (2) storing the payment order received from DB. The atomicity

of these two actions is very critical in the reselling process as it ensures that

DR can not store the payment order without simultaneously updating the license

indicating that one copy has been resold.

The license reselling process of NPGCT is as follows. Suppose that a con-

sumer, Alice, has got a license, LicA, from LI. In addition, Alice has been au-

thorised to resell 5-copies of this license. To resell a copy, Lic1A, of LicA, Alice

follows a protocol known as Consumer-to-Consumer (C2C) protocol. Before ex-

ecuting the C2C protocol, Alice first searches for a buyer, Bob, to buy Lic1A.

Alice and Bob then negotiate a price for Lic1A.

Once they agree on a payment amount, they allow their relative trusted de-

vices to execute the C2C protocol. As illustrated in Figure 3.2, Bob’s device, DB,

first sends Alice’s device, DA, a purchase request for Lic1A. Then DA and DB

mutually authenticate each other. In this authentication, DA and DB exchange

and verify each other’s public key certified by CA (Certificate Authority). Upon

valid authentication, DA generates a symmetric key, KAB, and uses it to encrypt

the content, M , associated to Lic1A. It also signs Lic1A with its private key.

DA then generates and sends DB a message containing Lic1A signed by DA, LicA

received from LI, M encrypted by KAB, and the key, KAB. Once DB receives this

message, it performs the following verifications: (1) it verifies that the original

right, R, and the content, M , are indeed issued by LI, i.e. it verifies LI’s signature

on LicA, and (2) it verifies that R′ is generated by DA, it verifies DA’s signature

84 CHAPTER 3. A LITERATURE SURVEY

1-DB DA: Buying request for a content, M

2-DB DA: Mutual authentication between DA & DB

3-DA DB: {E{M}k'||E{K'}PKDB
||R||R'||LicA||Lic1A||Mmt}

 3.1 DB verifies Lic1A, R and M
4-DB DA: { {payment} & AkgDB

}

: Alice's trusted device
: Bob's trusted device
: Content being resold
: The original rights granted by LI to DA

: Rights granted by DA to DB

: Symmetric key generated by DA

: Public key of DB

: License generated by LI and
 L = {PkLI||PkDA

||M||Mmt||R||SigSkLI
(PkLI||PkDA

||M||Mmt||R)}
: License generated by DA and
 L` ={PkDB

||PkDB
||M||Mmt||R'||SigSkDA

(PkDB
||PkDB

||M||Mmt||R')}
: Aknowlegement that DB has received M and its L` where
 AkgDB

 ={PkDA
||PKLI|||E{M}k'||Mmt||R'||SigSKLI

(PkDA
||PKLI|||E{M}k'||Mmt||R')}

: Metadata about M, e.g. artist name, and album and song title

DA

DB

M
R
R`
K`
PKDB
Lic1A

LicA

AkgDB

Mmt

Protocol Notations

Figure 3.2: Consumer-to-consumer protocol of NPGCT system

on Lic1A; (3) it checks that R′ can be derived from R, (4) and it checks Mmt to

make sure it matches the requested content. If these verifications are positive,

DB sends DA the payment agreed prior to starting the C2C protocol. Also, DB

sends DA sends an acknowledgement, AkgDB
, which serves as evidence of receipt

of the license Lic1A.

The purpose of sending LicA and Lic1A is to form a chain of licenses. This

chain serves the same purpose which LicA serves for DA. In addition, the chain

proves that DB has been issued rights, R′, with respect to the content, M . If R′

is authorising further redistribution, DB can use the chain, LicA and Lic1A, to

do so in the same manner as DA has used LicA in the redistribution protocol.

Advantages of NPGCT system: NPGCT system enables a consumer to

resell N-copies of his original license and during reselling these copies, it is suc-

cessful in addressing the following issues:

• Second-hand store: A license reselling process is performed without using a

second-hand store. This is achieved by using the trusted device. Not using

this store reduces the communication overhead.

• LI: Even though NPGCT system does not use LI during a reselling process,

3.3. CURRENT LICENSE RESELLING SOLUTIONS 85

thanks to the trusted devices which enable NPGCT system to do so, per-

forming a reselling process without LI further reduces the communication

overhead of the system as there is no communication message between LI,

and Alice or Bob.

• Preventing unauthorised reselling: This is also achieved by using the trusted

devices. As explained above, with these devices, a license can only be resold

N times specified in the original license.

• License legitimacy: Furthermore, the trusted device has helped NPGCT

system to accomplish license legitimacy checks. As described above, prior

to sending a payment to Alice, DB verifies DA’s signature on Lic1A and

LI’s signature on LicA sent along with Lic1A. If these two verifications

are positive, it means that Lic1A is legitimately derived from a legitimate

license issued by LI (i.e. LicA). As result, Lic1A is legitimate.

Limitations of NPGCT System

The limitations of the NPGCT DRM system can be summarised as follows.

• Adding cost to consumers: NPGCT system makes use of special hardware

devices (i.e., trusted devices), this introduces an additional cost into the

underlying reselling process (i.e. adding an additional cost to consumers).

This makes NPGCT system less competitive in terms of cost-effectiveness.

• Reselling the original license: NPGCT does not address reselling of original

licenses. The main aim of the NPGCT solution is to allow a consumer

to obtain a main license with the right to resell N-copies of the license.

The solution has not considered the scenario and the implications of a

reseller wanting to resell the main license once he has resold the N-copies of

the license. These implications include (1) how to prevent a reseller from

reselling the original license an unauthorised number of times, (2) how to

prevent a reseller from continuing using a resold license.

• Fair Reselling: The NPGCT system, likes Kwok’s and Sun’s systems, has

failed to address fair reselling of a digital license. As discussed above, Bob

sends Alice the payment after he receives the license, Lic1A, from Alice.

Thus, it is possible for Bob to obtain Lic1A and then prematurely aborts

the reselling process. This leaves Alice in a disadvantaged position.

86 CHAPTER 3. A LITERATURE SURVEY

• Buyer traceability: Only in one case, NPGCT system is able to trace a

buyer, Bob. This case takes place when LI is involved in the payment

issues (i.e Bob has to pay Alice’s payment to LI). In this case, to collect

this payment deposited by Bob, Alice has to report to LI the transaction

taking place between her and Bob. However, as specified in the description

of NPGCT system, Alice and Bob can choose another payment method.

If this is the case, LI can not know Bob’s identity to trace Bob if he does

violate usage rights of the license received from Alice.

3.3. CURRENT LICENSE RESELLING SOLUTIONS 87

3.3.1.4 Nuovo DRM System

In 2007, Jonker et al [64] identified two weaknesses in NPGCT system: replay

attack and unfair reselling. They then designed the Nuovo system to address

these weaknesses while allowing consumers to resell N-copies of a digital license to

other consumers. In other words, the Nuovo system is considered as an extension

of NPGCT.

As reported in [64], the NPGCT system is subject to replay attacks because

the authentication step of the C2C protocol, shown in Figure 3.2, does not include

any replay attack countermeasures. As a results, after the authentication phase,

a malicious buyer could obtain two or more licenses from a previous session before

sending payment for one license to a reseller. To overcome the replay attack, as

depicted in Figure 3.3, the Nuovo system uses a nonce to ensure freshness of the

entire exchange.

As discussed in Section 3.3.1.3, the NPGCT system does not provide a fair

reselling as Bob could receive Alice’s license and then prematurely abort the C2C

protocol without sending payment to Alice. To achieve fairness, Nuovo system

makes use of LI7. However, LI is only involved if there is a dispute (e.g. hardware

failure) between Alice and Bob during a reselling process. In other words, Nuovo-

C2C protocol comprises two sub-protocols: main-C2C and recovery-C2C.

Main-C2C protocol: The main-C2C protocol is executed between Alice

and Bob. As shown in Figure 3.3, they first let their devices DA and DB to

run a reselling process. If the reselling is successfully executed (i.e. if Alice

receives Bob’s payment and Bob gets Alice’s license), the main-C2C protocol is

considered as successful. If there is any problem (e.g. hardware failure) occurred

during the protocol execution, LI is invoked to resolve this problem by launching

the recovery-C2C protocol.

The recovery-C2C protocol: If Alice receives Bob’s payment at step 3 of

the main-C2C protocol, and Bob does not receive Lic1A at step 4, Bob will invoke

the recovery-C2C protocol with LI. As illustrated in Figure 3.3, in the first two

steps of the recovery-C2C protocol, Bob’s device and LI authenticate each other.

In step 3, Bob’s device sends LI a recovery request. This request contains the

items of the message sent to Alice’s device in step 3 of the main-C2C protocol.

This is to prove that Bob’s device has sent Alice’s device the payment. LI then

responds with Lic1A to Bob’s device.

7 In Nuovo system, a content provider is acting as LI and a content provider.

88 CHAPTER 3. A LITERATURE SURVEY

1-DB DA: {PKDB
||NDB

}

2-DA DB: {PKDB
||NDB

||NDA
|| SigSKDA

(PKDB
||NDB

||NDA
)}

3-DB DA: {PKDB
||NDB

||NDA
|| H(M)||Lic1A||

 SigSKDA
(PKDB

||NDB
||NDA

||H(M)||Lic1A)}

4-DA DB: {E{M}K`||E{K'}PK

DB
||Lic1A||ND

B
||SigSK

DA
(Lic1A||ND

B
)}

Before executing the following protocol, Bob gets:
(1) the hash of the desired content, possibly from
 Alice or from a trusted public directory,
(2) the license Lic1A, and
(3) the identity of Alice (i.e. PKDA

).
Bob then provides this infromation to his DB

1-DB LI: {PKDB
||N`DB

}

2-LI DB: {PKDB
||N`DB

||NLI|| SigSKLI
(PKDB

||NDB
||NLI)}

3-DB LI: {N`DB
||NLI|| (NDA

||NDB
||H(M)||Lic1A||PKDB

)|| PKLI||
 SigSKDB

(N`DB
||NDA

|| (NDA
||NDB

||H(M)||Lic1A||PKDB
)|| PKLI)}

4-LI DB: {E{M}K``||E{K``}PKLI||Lic1A||NDB||SigSKLI(Lic1A||NDB)}

Main-C2C Protocol

Recovery-C2C Protocol

Pre-run C2C Protocol

Protocol Notations

: Alice's trusted device
: Bob's trusted device
: Content being resold
: Symmetric key generated by DA

: Public key of DB

: License generated by DA to be resold
: Nonce generated by DB

: Nonce generated by DB

: Nonce generated by DA

: Signature generated by private key, X

DA

DB

M
K`
PKDB
Lic1A

NDB
N`DB
NDA
SigX

Figure 3.3: Consumer-to-consumer protocol of Nuovo system

Advantages of Nuovo System

Like the NPGCT system, the use of trusted devices enable Nuovo system to

achieve the properties: preventing an unauthorised reselling, checking a license

legitimacy, and not involving Second-hand Store. In addition, Nuovo system has

achieved a fair reselling by making use of LI along with the trusted devices.

Limitations of Nuovo System

Like the NPGCT system, the Nuovo system fails to address the problems of

3.3. CURRENT LICENSE RESELLING SOLUTIONS 89

adding cost to consumers, reselling the original license, and buyer traceability (see

Section 3.3.1.3 for more details).

3.3.2 Partial-trusted Hardware Based Solution: Conrado’s

System

There is one system designed using partial-trusted hardware (i.e. smart card). In

2004, Conrado et al. [50] proposed a DRM system that supports reselling digital

license. Conrado’s system only makes use of a smart card technology as trusted

hardware. Each smart card is embedded with public/private key pair. The public

is known to the owner of the card and the private key cannot leave the card. It

also contains a compliance certificate issued by a compliance certificate issuer for

the smart card (CA-SC). This certificate indicates the validity of a smart card.

Moreover, the smart cared contains a revocation list corresponding to the smart

card public key. This revocation list contains a list of licenses, which have been

issued to the smart card and have been revoked for some reasons, e.g. resold ones.

This list must be periodically updated from CA-SC to contain any new revoked

licenses.

In Conrado’s system, a smart card performs two operations. Firstly, It uses

its public key for authentication operations (e.g. authenticate a buyer’s identity

to LI when acquiring a license). Secondly, the smart card uses its secret key to

perform any secure operation, i.e. decrypting the license received from by LI.

With the use of Conrado’s system a reselling process consists of four main

steps: (1) getting an anonymous license, (2) reselling the anonymous license, (3)

personalising the anonymous license, and (4) confirming license revocation.

Getting an anonymous license: In order for a reseller, Alice, to resell her

license, LicA, Alice sends LI a request to resell LicA. Prior to allowing Alice to

resell LicA, LI authenticates that LicA was indeed issued to Alice (i.e., confirm

whether Alice is a legitimate owner of LicA). If the authentication is valid, LI

then marks LicA as revoked and sends Alice an anonymous license8, LicAnon. LI

additionally sends CA-SC a message indicating that LicA has been revoked.

Reselling the anonymous license: Once Alice obtains LicAnon, she searches for

a buyer, Bob, to purchase this license. When Alice and Bob agree on a price for

LicAnon, they exchange LicAnon for the price (i.e. the payment). Note that, at

8An anonymous license is a license which is not associated to any consumer yet and can only
be used if it is personalised by LI.

90 CHAPTER 3. A LITERATURE SURVEY

this stage, though Alice has already resold her LicAnon to Bob, Alice is still able

to use the resold license, i.e. LicA, until she renews the compliance certification

of her smart card from CA-SC.

Personalising the anonymous license: Upon receiving LicAnon from Alice, Bob

connects LI to activate this LicAnon (i.e. personalise it to be associated to Bob).

Bob first authenticates himself to LI and then sends LicAnon to LI which will

associate it to Bob’s identity (i.e. his smart card public key). LI then sends it to

Bob who can then use it to access the corresponding content.

Confirming license revocation: In this step, LI will ensure that Alice can

not continue using LicA. As mentioned above, when LI issues Alice LicAnon, LI

informs CA-SC that LicA has been marked as revoked. When the next time

Alice renews the compliance certificate of her smart card, CS-SC adds LicA to

the revocation list embedded in Alice’s certificate. Once the new certificate is

received by Alice’s device, it will be stored in Alice’s smart card. Whenever Alice

attempts to use LicA, the revocation list is checked against the identity of LicA.

If it is in the list, the smart card does not decrypt the license. Thus, Alice can

not continue to use the license once it has been resold.

Advantages of Conrado’s System

The main advantages of Conrado’s system are that it enables a consumer

to resell his license to another consumer. While supporting license reselling,

Conrado’s system has addressed the following issues:

• No Second-hand store: As shown above, a license reselling process is per-

formed without any intervention form a second-hand store.

• License legitimacy: As explained above, to resell LicA, Alice has to present

LicA to LI who checks whether LicA is indeed issued by LI to Alice (i.e.

LicA is legitimate).

• Unauthorised reselling: As Alice has to contact LI to resell LicA, if LI has

indeed allowed reselling LicA, LI can then detect any unauthorised reselling

of LicA. LI can then prevent this reselling.

• Buyer’s traceability: With Conrado’s system, a buyer’s identity can be

traced. As Bob must contact LI to personalise the anonymous license,

LicAnon, received from Alice, LI is able to get Bob’s identity. LI then is able

to trace this identity if Bob has violated content owners’ rights provided in

LicB.

3.3. CURRENT LICENSE RESELLING SOLUTIONS 91

Limitations of Conrado’s System

It does not address the following issues.

• Preventing continued use: Conrado’s system provides a mechanism by which

a reseller is prevented from continuing using his resold license. As described

above, this is done by making use of a license revocation list embedded in

a smart card. However, this mechanism fails to prevent a continued use of

a resold license once it has been resold. Consider the following scenario.

Alice has asked LI to resell LicA. When LI issues Alice LicAnon, LI only

marks LicA as revoked. LI does not indeed revoke LicA from Alice’s device.

In other words, Alice will get LicAnon and will continue to use LicA. At this

stage, there is no problem for LI or the content owner as only Alice can use

LicA. Now suppose that Alice has just renewed the certificate of her smart

card (i.e. the revocation list is just updated). In addition, suppose that the

next renewal is due after 60 days. Also suppose that one day after Alice has

renewed her certificate, she has resold her LicAnon to Bob. This means that

to prevent Alice from using LicA on her device, Alice should wait 59 days

during which she can continue to use her LicA. On the other side, once Bob

has activated LicAnon, he will be able to use the activated license (call it

Bob’s license (or LicB for short) which is equal to LicA). This means that

one license can be used on two different devices (Alice’s and Bob’s device)

for 59 days. As a result, content owners’ rights could be violated.

• Fair reselling: As it can be seen above, Conrado’s system does not address

the problem of fairness when Alice and Bob exchange LicAnon for a payment,

respectively.

• Adding cost to consumers: Conrado’s system makes use of the smart card

technology which imposes an additional cost on the consumers. Such cost

could hinder this system from wide adoption.

3.3.3 Non-trusted Hardware based Solution: Laila’s Sys-

tem

Under this category, there is one solution which is recently introduced by Laila

et al [65]. Laila proposed a scheme called Reselling Digital Content Scheme

92 CHAPTER 3. A LITERATURE SURVEY

(RDCS)9. This RDCS enables a consumer to buy a digital license embedded into

its content either from a content provider or from another consumer.

The RDCS scheme consists of four entities, an artist, a Trusted Authority

(TA), a buyer, and a reseller. An artist is a person who has created a digital

content and wants to sell it to consumers. TA (LI in our case) is an entity that (1)

helps an artist to sell his contents, (2) assists a reseller to resell his content, and

(3) tracks a dishonest consumer. A buyer is a consumer who wants to purchase

a content either from an artist or from a consumer (i.e. a reseller). A reseller

is a consumer who has bought a content from an artist and wants to resell it to

another consumer. Each of these entities has got a public/private key pair.

The RDCS scheme works as follows. An artist, ART , first registers his con-

tent, C, with TA. In this registration, TA stores information including content

ID, IDC , and the artist’s public key. TA then publicises this information on a

website. When a buyer, Alice, wants to buy C from ART , Alice sends ART

her public key, PKA. ART then sends Alice C and OwnershipCA
proving

that Alice is the owner of C. This ownership is of the form OwnershipCA
=

{C||PKA||SigSKART
(C||PKA)}, where SKART is the artist’s private key. To play

C, Alice has to let her device contact TA to register that Alice is the current

owner of C (i.e. TA adds Alice’s identity to C’s information). Also, whenever

Alice wants to play C, her device must send a playing request to TA to check

that Alice is still the owner of C.

To resell the content, C, to a consumer, Bob, Alice first needs to contact TA

to agree on a public/private key pair called a proxy key pair (i.e. PKP/SKP).

Alice will use it to produce one-time proxy signature during the reselling process.

TA also updates C’s information reflecting that Alice has got a proxy key pair to

resell C. Alice then uses SKP to create a new ownership for C, OwnershipCB
,

proving that Bob is the current owner of C. This ownership is of the form

OwnershipCB
= {C||PKB||SigSKP

(C||PKB)} where PKB is Bob’s public key.

Alice then sends Bob C and OwnershipCB
. Note, prior to engaging in buying C

from Alice, Bob can check whether Alice is the legitimate owner of C. This is

achieved by checking AT’s website to verify whether PKA is included C’s record.

When Bob receives C, and its OwnershipCB
from Alice, he first contacts TA to

register that he is the current owner of C (i.e. Alice can not play/view or resell

9The author of RDCS mentioned that RDCS could be implemented using either trusted
hardware or software. In this thesis, we will analyse it as a software-based solution.

3.3. CURRENT LICENSE RESELLING SOLUTIONS 93

C again as C’s ownership is transferred to Bob). Bob can then play/view the

content, C.

Advantages of Laila’s System

While supporting a license reselling, Laila’s system has also addressed the

following issues:

• No Second-hand store: A license can be resold without making use of a

second-hand store. Laila’s system only makes use of LI to enable Alice to

resell C to Bob.

• License legitimacy: This is achieved by making use of TA’s website. Prior

to reselling a content, C, Bob can verify that C is registered at TA’s website

(i.e. it has an artist and a current owner).

• Unauthorised reselling: This is done as TA is involved in a reselling process.

To resell a content, C, Alice has to get a proxy key pair from TA. If TA has

indeed issued a proxy key pair for C, LI can then decline to issue another

key pair, thus preventing any unauthorised reselling of C.

• Preventing continued use: As a content has to be played/viewed and resold

with TA’s help, and TA can prevent a reseller from continuing using a resold

license.

• Buyer’s traceability: As explained above, when Bob has got C from Alice,

he must contact TA to register that he is the current owner of C. Thus,

TA is able to get Bob’s identity. TA is then able to trace this identity if

Bob has violated the content owners’ rights.

Limitations of Laila’s proposal

Laila’s system fails to address the following issues:

• Fair reselling: It does not address the problem of fairness in the reselling

process between a reseller and a buyer.

• Limited applications: As reported by the author, the RDCS scheme does

not consider the mass market of music tracks and video clips, rather it only

supports limited scenarios. It is designed to support content reselling for

a piece of digital art (e.g, photographs or compositions of music) which

could only be shown in private collections, like showrooms or museums. A

94 CHAPTER 3. A LITERATURE SURVEY

museum, for example, could buy artwork to show it for a period of time

and then want to resell it to another museum.

• Online use: Laila’s system only supports online use of a digital content. A

consumer has to contact TA whenever he wants to play/view the digital

content. This is not convenient for consumers.

• Adding cost to consumers : Laila’s system adds an additional cost to con-

sumers if it is implemented using trusted hardware but this additional cost

can be avoided if it is implemented using software.

3.4 What is Missing?

This section shows the findings of our survey of the current license reselling solu-

tions. These findings are summarised in Table 3.1. From this table and from the

discussion in Section 3.3, the following remarks can be drawn:

• None of the current reselling solutions has addressed the fairness property

while supporting original license reselling. A license reselling process is a

type of exchange process. A reseller exchanges his licenser for a payment

from a buyer. At the end of this exchange, it is important for both reseller

and buyer to either get their relative item or none of them get anything

useful. Note that, Nuovo system has achieved fairness while reselling a

copy of the main license, but, as explained earlier, this system does not

address the scenario where the main license is being resold.

• None of these solutions have considered the monetary interests of both

reseller and buyer. Implementing the market power supporting both buyers’

and resellers’ interests would make the license reselling facility much more

attractive. A buyer’s interest, in this case, is to pay as little as possible for a

second-hand license. A reseller’s interest, on the other hand, is to maximise

the price of the license as much as possible.

• None of the existing reselling solutions have supported multi-reselling10.

This means that an original license can be resold N times with N consumers

10Nuovo system supports multi-reselling from a different prospective. It allows a consumer
to resell N copies of his license while the consumer can continue using the main license. As
discussed earlier, it does not consider a scenario where the consumer wants to resell the main
license.

3.4. WHAT IS MISSING? 95

Table 3.1: State-of-the-art of the current License reselling proposals
Kwok Sun NPGCT Nuovo Conrado Laila

Use second-hand store No Yes No No No No
Use license issuer No Yes No Yes Yes Yes
Play content: Online No Yes No No No Yes
Use trusted hardware Yes Yes Yes Yes Yes Yes/No+

Prevent continued use Yes* Yes No No Yes Yes
Prevent unauthorised
reselling

No Yes No No Yes Yes

License legitimacy No Yes Yes Yes Yes Yes
Buyer traceability No Yes Yes No ++ Yes Yes
Resell original license Yes Yes No No Yes Yes
Support fair reselling No No No Yes** No No
Add cost to consumers Yes Yes Yes Yes Yes No/Yes+

Support non-
repudiation

No No No Yes** No No

Resale-ability check No No No No No No
Support monetary in-
terest

No No No No No No

Support multi-
reselling

No No No No No No

* Kwok only mentioned that resold license will be disabled on reseller’s device but no
technical details are given
** Fairness and non-repudiation are only achieved with reselling copies of an original license
+ Yes, if Laila’s system is implemented with trusted hardware, and No if not
++ Yes, if LI is involved in the payment process. Otherwise, No

where a reseller should not be able to resell nor continue to use a license once

he has resold it. In other words, a consumer, Alice, can resell a license to

another consumer, Bob. Once this is done, Alice should not be able either

resell it again or continue using it and Bob should be able to resell the

license again to a third consumer, Charlie. Bob then must not be allowed

to resell nor continue use the license. This process is repeated until the

license is resold N times.

• None of these solutions have achieved non-repudiation property in a license

reselling process. Non-repudiation of reselling is very crucial for a content

owner as it provides this owner with evidence that a reseller has indeed

resold his license. Without such evidence, the reseller could indeed have

resold his license but falsely claim having resold it, requesting to resell the

96 CHAPTER 3. A LITERATURE SURVEY

license again, thus violating the content owners’ rights.

• All the current solutions make use of trusted hardware, thus imposing an

additional cost on their consumers. The only exception of this is Laila’s so-

lution which could be implemented by software mechanisms. However, this

solution has limitaions. As reported in [65], Laila’s solution only considers

digital artwork, e.g. photographs or digital imagery, which shall only be dis-

played in some private collections or museums (i.e does not support tracks

and video contents such as iTunes). In addition, with this solution, the

consumers have to contact trusted party to play/view their digital contents

(i.e. it is not convenient for consumers).

• None of the existing solutions differentiate between resalable and non-

resalable licenses. This differentiation allows content owners to establish

a new business model in which a resalable license would be more expensive

than a non-resalable one.

• As there is no differentiation between a resalable and non-resalable license,

current solutions do not consider a resale-ability check. This check enables

a buyer to verify whether the license is about to buy is resalable.

The following section highlights our vision of supporting fair license reselling

while preserving the underlying security of a DRM system.

3.5 The Best Way Forward

This section introduces the ideas used to design a license reselling facility while

addressing the missing issues discussed above. These ideas are:

• Taking a more flexible approach to digital license reselling such that different

types of digital license can be accommodated in a single framework in a

DRM system. These type include (1) a single resalable license that comes

with a digital token (reselling permission) showing that this license can

only be resold once; (2) a multi-reselling license that is provided with a

multi-reselling permission allowing the license to be resold multiple times

(N times); (3) a non-resalable license that is issued without any reselling

permission. In this way, different types of licenses can be supported, which,

3.6. CHAPTER SUMMARY 97

in turn, can support the use of various business models. This flexibility can

accommodate different market needs as well as various rights protection

requirements imposed by the content owners.

• Integrating the existing LI infrastructure with the CS scheme, presented in

Chapter 1, to design a contract signing protocol to sign a contract called a

reselling deal, RD, between a reseller and a buyer. This deal will be used to

address (1) non-repudiation property necessary in a reselling process, and

(2) the monetary interests of both the reseller and the buyer. In addition,

this deal, with a help from LI, will be used to achieve fair license reselling.

• Using a hash chain primitive to design a multi-reselling permission which

will be used with the RD deal to achieve multi-reselling of one license.

• To avoid using trusted hardware, we will make use of (1) the existing li-

cense distribution infrastructure, and (2) the CS scheme along with other

cryptographic primitives to design a fair and secure license reselling facility.

3.6 Chapter Summary

This chapter has given an overview of the existing solutions deployed by current

DRM systems to sell licenses to consumers. It has also presented a detailed

survey on the existing license reselling solutions proposed in the literature. It has

highlighted their strengths and limitations. From this survey, we have identified

a number of issues which should be addressed in a license reselling facility, i.e. (1)

to support fair reselling, (2) to preserve current content owners’ rights, and (3) to

accommodate buyers’ and resellers’ requirements. Finally, the chapter outlined

our prospective ideas to design a fair and secure license reselling solution of DRM-

protected contents.

To support fair reselling, the next chapter will introduce a contract signing

protocol which is called Reselling Deal Signing (RDS) protocol.

Chapter 4

A Reselling Deal Signing (RDS)

Protocol

4.1 Chapter Introduction

This chapter introduces a novel fair and abuse-free contract signing protocol

known as Reselling Deal Signing (RDS) protocol. The RDS protocol is to support

fair reselling of a DRM license without using a dedicated TTP. This protocol

makes use of the concurrent signature (CS) scheme [8] and the existing license

distribution infrastructure. By making use of the CS scheme and integrating it

into the existing license distribution infrastructure, we avoid the use of a dedicated

TTP, thus introducing no additional communication overhead while providing

fair license reselling. A protocol is said to be fair if at the end of a protocol

execution, either both involved entities obtain each other’s items or none of them

gets anything useful. Also, the protocol is designed such that none of the two

signers can prove to an outside entity that he is in control of the outcome of the

protocol execution, thus achieving abuse-freeness. The abuse-freeness property

[9] is required in a digital license reselling case to prevent Bob (the second signer,

i.e. the buyer) from using the RD that is only signed by Alice (the first signer,

i.e. the reseller) to gain any advantage by showing this RD to another reseller.

The chapter starts by giving a survey on existing approaches of contract sign-

ing protocols in Section 4.2. Section 4.3 presents a novel idea for the design of

the RDS protocol. Section 4.4 gives the protocol design preliminaries (require-

ments, notations, and assumptions). In Section 4.5 and Section A.1 an overview

and a description of the RDS protocol are given, respectively. In Section 4.6,

99

100 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

an informal analysis of the protocol is presented, while in Section 4.7 a formal

verification of the protocol is given. This section first gives an overview of the

formal methods in Section 4.7.1. It then, in Section 4.7.2 presents an overview

of the Mocha model checker which has been used to verify the RDS protocol.

The model of the RDS protocol and the verification results are then discussed in

Section 4.7.3.2 and Section 4.7.3.3, respectively. In Section 4.8, we analyse the

performance of the RDS protocol by (1) computing its computational cost, (2)

comparing it with related work, (3) prototyping it and measuring its execution

time. Finally, the chapter summary is given in Section 4.9.

4.2 A Survey of Fair Exchange Protocols

Contract signing protocols are a type of fair exchange protocols. This section

gives a survey of existing fair exchange protocols. A fair exchange protocol

should possess two important properties, fairness and non-repudiation. The fair-

ness property means that at the end of an exchange, either both involved entities

obtain each other’s exchanged items or none of them get anything useful. Non-

repudiation is a security property that provides exchanged entities with undeni-

able evidence that a given item has indeed been sent (i.e. Non-repudiation Of

Origin or NOO) or received (Non-repudiation of Receipt or NOR). An exchange

protocol is said to be fair, if both non-repudiation and fairness properties are

achieved.

Fair exchange protocols published in the literature can largely be classified into

two categories. The first category is known as protocols without TTP, as they do

not make use of any TTP to achieve fair exchange between the participants. The

second category is referred to as TTP-based protocols, as they rely on a dedicated

TTP to guarantee fairness.

4.2.1 Protocols without TTP

With the protocols without TTP, two entities exchange their respective items

without making use of a dedicated TTP to achieve fairness. These protocols can

be further classified into gradual exchange protocols and probabilistic protocols.

4.2. A SURVEY OF FAIR EXCHANGE PROTOCOLS 101

4.2.1.1 Gradual Secret Release Protocols

In the early 1980s, gradual secret release protocols [67, 68, 69, 70, 70] were among

the first fair exchange protocols proposed. These protocols typically work as

follows. Two entities first engage in dividing their signatures into N parts, each

of which being a verifiable component. They then exchange their respective

signatures part-by-part. This exchange process continues until both entities have

fully released their respective signature. To ensure fairness, it is assumed that

the entities involved have equal computational power.

The contract signing protocol [70], proposed by Okamoto and Ohta, has used

the gradual exchange approach. In this protocol, two entities, Alice and Bob, first

agree on a contract, Cont. Each of Alice and Bob choose a secret, SA and SB

respectively. Each of them then declares that they are committed to this agreed

contract if each entity can know the secret of the other entity. In other words,

Alice first signs a message saying that “I am committed to a contract Cont if Bob

can show my secret SA”. Bob acts in the same way. Alice and Bob then engage in

the execution of a gradual exchange protocol to gradually (part-by-part) release

their respective secrets SA and SB.

The main advantage of this approach is that there is no involvement of a ded-

icated TTP during the protocol run. However, this approach is not practical for

the following two reasons. Firstly, it assumes that both involved entities should

have equivalent computational power. If one of them has a superior computing

capability, then this approach can achieve neither fairness nor abuse-freeness.

This is because the entity with a superior computing capability may terminate

the protocol execution prematurely and use his resources to compute the remain-

der of the other entity’s secret. As a result, the other entity could be left in

a disadvantageous position. Secondly, this approach requires: (1) N messages

(each contains one part of the secret), and (2) a high level computational cost

to compute and to verify each of the exchanged parts. Thus, it is inefficient in

terms of communication overheads and computational cost.

4.2.1.2 Probabilistic Protocols

Another type of protocols that do not use TTP is probabilistic protocols [71, 72].

A probabilistic protocol is the one that can achieve probabilistic fairness. A

probabilistic fairness means that an execution of a protocol can achieve fairness

with a probability of (1- ε), where ε is set as a negligible value. To achieve an

102 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

adequate security level, however, an execution of a probabilistic protocol consist

of a large number of repetitive rounds. Guilin [73] reported that the Markowitch-

Roggenman protocol [71] (one of the probabilistic protocols) has to be repeated

2n + 2 rounds of transmissions to achieve a security level of ε = 1/n. This large

number of rounds of transmissions makes this type of protocols inefficient as they

need a high level of communication and computation costs.

We here use the probabilistic contract signing protocol proposed by Ben-Or et

al. [71] to further explain the idea used by of this class of fair protocols. With the

Ben-Or protocol, entities exchange privileges rather than bit information. It is

said that an entity, Alice, is more privileged than the other, Bob, when Alice has

a greater ability (than Bob) to convince an adjudicator1 that a contract has been

signed by Alice and Bob. During the execution of a contract signing protocol,

each entity is privileged in turn. Each entity sends to the other a message stating

that with a probability, λ, a contract will be considered signed by both entities

at a deadline, T . The probability, λ, must increase with each protocol round.

The protocol execution ends when λ = 1 or when the deadline T is expired.

After the deadline T , each entity can present to the adjudicator the last received

message. Upon the receipt of this message, the adjudicator selects a random

value between 0 and 1 and matches this value with the probability, λ, extracted

from the message. The adjudicator declares that the two entities committed to

the contract if λ is equal to or greater than the selected value. Otherwise, the

adjudicator states that no entity is committed to the contract as λ is too small.

Unlike the gradual secret release approach, the probabilistic approach does

not impose the impractical requirement that the involved entities should have

equal or similar computational power to achieve fairness. However, it requires a

high number of rounds transmission protocol rounds to provide fairness. Thus,

with this approach, communication and computational overheads are still high.

4.2.2 TTP-based Protocols

To overcome the problems associated with the protocols without TTP, TTP-based

protocols are proposed [74, 75]. The main idea behind this class of protocol is

that a dedicated TTP is invoked to provide fairness for an exchanging process.

Depending on the level of the TTP’s involvement in the exchange process, the

1An adjudicator is a natural judge who is only involved to resolve a dispute if the protocol
is terminated prematurely. In this case, the adjudicator examines the signed messages

4.2. A SURVEY OF FAIR EXCHANGE PROTOCOLS 103

protocols of this category is further classified to three sub-classes, in-line TTP-

based, on-line-based TTP, and off-line TTP-based protocols.

4.2.2.1 In-line TTP-based Protocols

With in-line TTP-based protocols [76, 77, 78], a TTP acts as an intermediary or

a delivery authority in an exchange process. The TTP gathers exchanged items

from the two involved entities. It then checks the correctness of these items and

subsequently forwards them to the corresponding recipients.

A TTP : Msg1=M, EOO

A TTP : Msg2=L, EOS

TTP B : Msg3=L, EOO

B TTP : Msg4=L, EOR

B TTP : Msg5=L, M

A TTP : Msg6=L, EOR, EOD

Protocol Notations:

 M: message to be delivered,

 L: unique label chosen by the TTP to identify message M,

 EOO=SigA(M): evidence of origin,

 EOS=SigTTP(L,EOO):evidence of submission of M to TTP,

 EOR=SigB(L,EOO):evidence of reception of message labelled L,

 EOD=SigTTP(L,EOR):evidence of delivery of M.

Figure 4.1: Zhou et al protocol with in-line TTP

We can use the protocol proposed by Zhou et al [76] to illustrate the idea

of using an in-line TTP. An overview of the protocol is given in Figure 4.1. An

entity, Alice (A), initiates a protocol run by sending M and its EOO in a message,

Msg1 to TTP. Upon the receipt of Msg1, TTP verifies Alice’s signature in EOO.

If this verification is positive, TTP generates EOS of Msg1 and a unique label,

L, for Msg1. TTP then makes EOS and L public for Alice to fetch in Msg2.

In Msg3, TTP informs the second entity, Bob (B), that Msg1 labelled with L

received from Alice is ready for collection. If Bob decides to collect Msg1, he

sends EOR to TTP in Msg4. EOR serves as Bob’s commitment to collect Msg1.

Once TTP receives L and EOR, TTP generates EOD of Msg1 and publicizes

all of Msg1, EOD, EOR in a read-only directory. Bob can then use the label, L

to fetch the message, M from the TTP’s directory, while Alice downloads EOD

in the same way.

With EOO, Bob can verify that Msg1 has been generated by Alice. With

EOS, Alice can prove that TTP has indeed received Msg1, whereas EOR proves

104 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

that Bob has committed to collect Msg1, and EOD proves that Msg1 has been

indeed publicized for Bob to retrieve.

Although the in-line TTP-based protocols are simple, they suffer from several

disadvantages. Firstly, they require TTP to maintain and manage large databases

of data and exchanged evidence. TTP must preserve all messages it receives.

Managing these databases places a significant level of responsibility including

security on TTP. Secondly, as TTP is involved in every step of the execution of

the exchange protocol and its availability is very important for the success of the

protocol, it is prone to become a communication and computation bottleneck.

In addition, TTP could be at risk of becoming a security bottleneck. This is

because a compromise of TTP would make all the transactional evidence and the

exchanged items at risk. Thirdly, TTP can easily get access to the items being

exchanged and any transactional evidence. This puts the confidentiality of the

exchanged items at risk from. This is why in this class of protocols, TTP has to

be an unconditionally trustworthy entity.

4.2.2.2 On-line TTP-based Protocols

To overcome the weakness of in-line TTP-based protocols, on-line TTP-based

protocols [4, 79, 80, 81] have been proposed. With this latter approach, TTP

does not act as a delivery authority, rather it plays an assistant role to ensure

fairness. In other words, an on-line TTP does not involve in every message

transmission. It generates, validates, and/or stores evidence of transactions for

the involved entities. The transitioned message is encrypted by a symmetric key

and sent directly from a sender to a receiver.

To further explain the idea of the on-line TTP-based approaches, an overview

of the Zhou and Gollmanns protocol [4] is given below. In this protocol, Alice

starts a protocol execution by first ciphering her message, Msg1, using a session

key k shared between Alice and Bob. Alice then sends Bob this ciphertext directly

along with EOO for the ciphered message to a recipient, Bob. Bob then confirms

the reception of the ciphertext by sending EOR of the ciphered message to Alice.

Upon the receipt of EOR, Alice signs the decryption key, SubK , and lodges it

with the TTP. After receiving this key and Subk, the TTP notarises the key

submission by Alice by generating a confirmation of the key, Conk.

Bob will then fetch k and Conk from the TTP, and Alice will receive Conk

from the TTP as well. With this kind of protocols, a non-repudiation of origin

4.2. A SURVEY OF FAIR EXCHANGE PROTOCOLS 105

A B : Msg1=L,TA, Ek(M),EOO

B A : Msg2=L, EOR

A TTP : Msg3=L,k,TA,Subk

B TTP : Msg4=L, k, Conk

A TTP : Msg5=L, Conk

Protocol Notations:

- M: message to be delivered,

- K: message encryption key,

- L: unique label,

- TA: time limit specified by A, after which TTP will not make k public,

- EOO=SigA(L,TA,Ek(M))): evidence of origin of encrypted message ,

- EOR=SigB(L,TA,Ek(M)): evidence of reception of encrypted message,

- Subk=SigA(L,TA,k): evidence of origin and submission of key, k, to TTP,

- Conk=SigTTP(L,TA,k): confirmation of k which is issued by TTP,

- (EOO,Conk): non-repudiation of origin proof,

- (EOR, Conk): non-repudiation of receipt proof.

Figure 4.2: Zhou and Gollmanns protocol [4] with on-line TTP

evidence consists of two items: EOO and Conk. Also, a non-repudiation of

receipt evidence consists of two items: EOR and Conk.

It can be seen that the TTP is not involved in the first two messages of the

protocol run. In other words, the TTP does not act as a deliver authority as in

the case of the in-line TTP-based approach, but only provides the decryption key

to the participants.

With the introduce of the on-line TTP-based protocols, the level of TTP’s

involvement is minimised in comparison with the in-line TTP-based protocols.

However, with the on-line TTP-based protocols, the on-line TTP is still required

to be involved in every protocol run. In addition, it is required to host a secure

public server for the involved entities to post/fetch their messages or decryption

keys. These operations make these protocols subject to Denial of Service (DoS)

attacks. This means that the TTP of this solution can still be a bottleneck

problem in terms of performance and security.

More efforts have been made to further minimise the level of TTP’s involve-

ment. These efforts have resulted in a third approach known as off-line TTP-based

approach.

4.2.2.3 Off-line TTP-based Protocols

Off-line TTP-based protocols [82, 83, 84, 85, 86, 87, 88, 89, 90] aim to further

reduce the involvement of TTP. A TTP is said to be off-line if it only intervenes

106 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

in an exchange protocol if a problem takes place. A problem could occur if a

protocol participant misbehaves or there is a network error. If such a problem

happens, TTP is invoked to help the participants to finish the protocol run in a

fair way. With off-line-based protocols, it is supposed that most of the time, a

protocol is successfully executed without any problems. For this reason, protocols

with off-line TTP are also known as optimistic protocols.

An off-line TTP-based protocol typically consists of two sub-protocols: a main

exchange protocol and a recovery protocol. With the main exchange sub-protocol,

involved entities attempt to exchange their items without invoking the TTP. If

they fail to do so, one of them invokes the TTP by launching the recovery sub-

protocol. With this sub-protocol, the TTP resolves this fail by recovering the

disputed items and enforcing fairness.

Some off-line TTP-based protocols, e.g. the one described in [85], have an

extra sub-protocol, called an abort protocol. An abort sub-protocol is executed

with a TTP if an entity wants to terminate the execution of a main exchange

sub-protocol before its normal end. With this sub-protocol, TTP digitally signs

an affidavit to confirm that the protocol has been aborted.

An off-line TTP-based protocol may support one of two types of fairness, weak

fairness and strong fairness. A weak fairness means that the fairness can be only

achieved, if the TTP can generate, during the recovery sub-protocol, an affidavit

confirming what happened during the main exchange. The disadvantaged entity

will be given this affidavit to use in an external dispute resolution system, e.g. a

court of law, to prove that the other entity has misbehaved and reinforce fairness.

A strong fairness can be achieved when either both involved entities have received

what they expect, or neither entity receives anything useful. In other words, if,

during the protocol run, a TTP can revoke an exchanged item, which has already

been released during the main exchange, or can generate a replacement for an

exchanged item, which failed to arrive to intended recipient during main exchange,

then a protocol with off-line TTP can guarantee strong fairness.

To illustrate the idea of the off-line TTP-based approach, an overview of the

Asokan and Shoup’s contract signing [85] is given below. As depicted in Figure

4.3, the protocol consist of three sub-protocols: exchange, abort and recovery.

With the exchange sub-protocol, two parties, Alice (A) and Bob (B), exchange

their respective signatures. Alice first generates her signature on both contract

Cont and her nonce NA to form a token denoted as me1. She then sends me1 to

4.2. A SURVEY OF FAIR EXCHANGE PROTOCOLS 107

 A B : Msg1:=SigA(C,h(NA))
 B A : Msg2:=SigB(me1,h(NB)
 A B : Msg3= NA or A invokes a bort sub-protocol (if me2 fails to arrive)
 B A : Msg4= NB or B invokes recovery sub-protocol (if NB fails to arrive)
 If A timeouts waiting for NB, then A invokes recovery sub-protocol

 Final contract is of the form (Msg1,NA,Msg2,NB).

Exchange sub-protocol:

A bort sub-protocol:

 1. A TTP : SigA(aborted, Msg1)
 If recovered then ma:=Signttp(Msg1,Msg2)
 else aborted :=true; ma :=SigTTP(aborted,SigA(aborted,Msg1))
 2. TTP A,B :ma

Recovery sub-protocol:

 1. A or B TTP : Msg1, Mdg2
 If aborted then mr := SigTTP(aborted,SigA(aborted,Msg1))
 else recovered :=true; mr := SigTTP(Msg1,Msg2)
 2. TTP A,B :mr

 Final contract is of the form SigTTP(Msg1,Msg2).

 Protocol Notations:

 C: contract to be signed,
 NA: nonce generated by Pa,
 NB: nonce generated by Pb,
 SigA(aborted,Msg1): a signed abort request,
 ma:= SigTTP(Msg1,Msg2) or ma := SigTTP(aborted,SigA (aborted,Msg1)),
 mr :=SigTTP(Msg1,Msg2) or mr := SigTTP(aborted,SigA(aborted,Msg1)),
 vaild final contract is either (Msg1,NA,Msg2,NB) or SigTTP(Msg1,Msg2)

Figure 4.3: Sokan and Shoup’s contract signing protocol with an off-line TTP

Bob. Bob then produces his signature on both ma1 and his nonce NB to from

me2. Bob then, in Msg2, send me2 to Alice. In Msg3 Alice will reply with

NA to Bob. Optimistically, Bob will also send NB to Alice in Msg4. At this

point, both Alice and Bob have received a jointly signed contract of the form

[me1, NA,me2, NB].

An abort sub-protocol is invoked if Alice has sent Msg1 but did not receive

Msg2 from Bob. With this protocol, upon receiving an abort request (Reqa) from

Alice, a TTP will sign and sends both entities an abort-token, ma, to revoke me1

which has already been released.

A recovery sub-protocol is invoked if either NA or NB has failed to reach its

intended recipient. For example, if Bob does not receive NA for any reason, he

should invoke the recovery sub-protocol with TTP by sending (me1 and me2) to

108 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

the TTP. If the sub-protocol has not already been aborted, TTP generates its

signature in (me1 and me2) and sends it to both of Alice and Bob as a replacement

of the final signed contract. Alice can do the same procedure if she does not receive

NB.

Recently, a sub-class of the off-line TTP-based protocols has been introduced,

which is called a transparent TTP [82, 83, 90]. With this type of protocols, at

the end of a protocol execution, it is impossible to tell whether TTP has been

indeed involved in the protocol execution. To achieve this property, the protocol

makes use of a special cryptographic primitive called Verifiable and Recoverable

Encrypted Signatures (VRES). The VRES represents a digital signature which is

encrypted in such a way that its receiver can verify:

• the correctness of the encrypted signature without having any information

about the original signature, i.e. verifiability, and

• in the case where the original signature sender refuses to send his original

signature, the designated TTP can help to recover it from the VRES (i.e.

recoverability).

Although the use of the TTP-based approach is simple, and it has been made

efficient recently, TTP could results in one of the following problems:

• The TTP may become a performance and security bottleneck leading to

Denial of Service (DoS) attack.

• When the TTP is involved in a protocol run, it decreases its efficiency.

• As TTPs provide services for the participants, they need to be paid for such

services [15]. Consequently, the transaction cost will be increased.

• Last but not least, it may be difficult to find a third party which is trust-

worthy and could serve as TTP all the time.

To address these TTP-associated problems, a new signature scheme called

Concurrent Signature [8] is suggested.

4.2.3 Concurrent Signature (CS) based Protocols

This class of signature fair exchange protocols makes use of The CS scheme pre-

sented in [8] and [91]. This scheme, as explained in Appendix B, allows two

4.3. A NOVEL IDEA FOR THE RDS PROTOCOL 109

entities to generate and exchange two ambiguous signatures, which are not bind-

ing to their respective signers until the release of a keystone, ks,(an extra piece of

information). Upon the release of the keystone, both signatures become binding

to their respective signers concurrently, thus achieving fair signature exchange.

Other variants of the CS scheme can also be seen in the literature, e.g. an

identity-based concurrent signature [92] and a concurrent signature with nego-

tiable binding control [93].

The CS scheme is very practical in the sense that, to fairly exchange signa-

tures, (1) it does not require the signers to have the same level of computational

power as in the case of gradual exchange approach; (2) it does not need many

rounds of messages transmission as in the case of gradual secret release and prob-

abilistic fairness approaches; (3) it does not require any assistance of a TTP.

However, as reported in [8], the CS scheme can only provide a weak fairness.

With the CS scheme, only one of the two entities could decide whether the signa-

tures exchange process can be fairly completed. The entity holding the keystone

can decide when and whether the keystone can be released (i.e. sent to the other

entity). Thus, if the keystone is not released, neither fairness nor abuse-freeness

can be achieved.

4.3 A Novel Idea for The RDS Protocol

Neither protocols without TTP nor TTP-based protocols are readily applicable

to a signing of an RD contract in a digital license reselling process. The gradual

secret release protocols, the first type of the protocols without TTP, are not

suitable due to the following two reasons. The first reason is that it is not practical

to assume that both a reseller and a buyer have equal computational power. In

real life, the reseller could use a desktop computer while the buyer may use a

mobile phone, in which case neither fairness nor abuse-freeness can be achieved.

The second reason is that the gradual secret release approach imposes a high

level of communication and computation costs as it requires: (1) N message flows

to exchange the N parts of the entities’ signatures, and (2) the computation

and verification of each of the exchanged parts. Thus, it is inefficient in terms

of communication overheads and computational cost. For similar reasons, the

probabilistic protocols (the second type of the protocols without TTP) are also

not suitable to sign an RD contract in a digital license reselling.

110 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Also, TTP-based protocols can not be adopted to sign a RD contract with a

license reselling process because of the following reasons. In a DRM infrastruc-

ture, there is already a trustworthy entity, i.e. LI, to support a license reselling

process [22]. Introducing another TTP in order to support fairness in this infras-

tructure would add more cost into a transaction. One could say that LI itself

could be used to serve as a TTP in the signing process to help to achieve fairness.

Indeed, this should be planned out carefully. Otherwise, the following scenario

may occur. For example, if the TTP-based protocol proposed by Nenadic et al

[94], (the authors report that this protocol is efficient in comparison with related

work), is used, and LI serves as the TTP during the signing process, LI will need

to perform the following additional tasks: (1) prior to executing a signing pro-

cess, LI has to issue and sign a special digital certificate to certify an additional

public/private key pair for the initial signer; (2) in case of a dispute, LI has to

perform a number of signature verifications in order to resolve the dispute [94].

These tasks would add on to the existing workload which LI is already performing

in the current license distribution processes.

In addition, if Nenadic’s protocol is used to sign a given RD, the communica-

tion overhead of the reselling process would also be increased. This is because:

(a) Nenadic’s protocol requires 7 messages: 4 messages for main exchange pro-

tocol and 3 for recovery protocol; (b) further messages (at lest 2 messages) are

required for the initiator to get a digital certificate from LI before he initiates a

protocol execution with the other party. Thus, if the RD contract signing process

is performed normally between a reseller and a buyer, LI must engage in the 2-

massage protocol to issue the reseller (the initiator) the special digital certificate.

If there is any dispute, LI will need to engage in executing the recovery protocol

consisted of 3 further messages. This means that LI, in the worst case scenario,

will need to send and receive 5 messages during the process of signing an RD.

This would increase the communication overhead of a license reselling process.

In their work [86], Zhang et al have proposed an optimistic exchange protocol

based on bilinear pairing. They have also proven that their protocol is more

efficient than Nenadic’s one [94]. However, if Zhang’s protocol is used to sign a

given RD in a reselling process, the communication overhead would be increased

as well. This is because Zhang’s protocol requires three sub-protocols to achieve

fairness. It requires 4 messages for the main exchange protocol, and additional

3 messages for both the abortion and dispute resolution. In other words, if this

4.3. A NOVEL IDEA FOR THE RDS PROTOCOL 111

protocol is used in our case [22], LI may have to execute a protocol of 3 messages

either for the abortion operation or for the dispute resolution.

The communication and processing overheads imposed on LI can be reduced

if the RD signing protocol makes use of the Concurrent Signature (CS) scheme

[8]. However, as reported in [8], the CS scheme, described in Appendix B, can

only provide a weak fairness. Recalling our discussion of the fairness property

can be assured under two conditions: (1) the initial signer releases a secret token,

i.e. a keystone, ks, at the end of the exchange, and (2) the initial signer does not

abuse a pre-binding token signed by the other signer before the completion of the

exchange process (i.e. it can provide the abuse-freeness property).

We also observed that in the existing license distribution infrastructure, the

distribution of licenses is coordinated via LI. In other words, we remarked that the

services and properties offered by LI and CS are complementary. If we integrate

the CS scheme with the existing license distribution infrastructure (i.e. LI), which

is already used to issue digital licenses, we can then get the best out of the two

components LI and the CS scheme. The idea is that we can design a contract

signing protocol by integrating the CS scheme with the functions already offered

by LI. This contract signing protocol can provide the fairness and the abuse-

freeness properties. In addition, it does not require a dedicated TTP, and the

overhead introduced would be less than that required by other approaches. Based

on this motivation, we have designed a contract (Reselling Deal) Signing (RDS)

protocol. This protoocl can overcome the two weaknesses of the CS scheme,

described above by integrating LI functionalities with the CS scheme. The role

of LI in the RD signing process is the same as the role played by LI in the license

reselling process described in chapter 5. In other words, LI is only involved in

one case, which takes place if an RD has been signed, and Bob (the buyer) wants

to activate the license stated in the signed RD. In this case, which is called RD

activation process, LI is invoked to receive a payment from Bob and to verify both

entities’ signatures on the RD. LI then sends Bob the license and sends Alice the

payment. This means that LI is only involved in the RDS protocol if a license

will indeed be resold. By this way, LI can ensure fairness and abuse-freeness to

prevent cheating by either Alice or Bob in the middle of a signing process.

The RDS protocol can also be used to enable a consumer, C1, who is sub-

scribed to access a media website, to fairly resell her access permissions to another

consumer, C2. In such a scenario, C1 can use the RDS protocol to sign a deal

112 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

with C2. This signed deal can then be used by C2 to claim C1’s access permissions

from the owner of the website. This can only be done should C2 make a payment

stated in the signed deal to the owner. Also, C1 can use this deal to claim the

agreed payment paid to the owner by C2.

The remaining part of this chapter is dedicated to the description, informal

and formal analysis, end valuation of the RDS protocol.

4.4 Preliminaries

4.4.1 Notations

The notations used in the RDS protocol are given below.

1. A, B, and LI : Alice, Bob and License Issuer.

2. Lic: A resalable license that Alice has bought from LI and she wants to

resell to Bob.

3. RD : A contract, called Reselling Deal (RD), that has been agreed by Alice

and Bob.

4. ks and f : Keystone and its keystone fix, respectively. They are used in the

signing process.

5. RPLic: A reselling permission issued for Lic. It proves that Lic is resalable.

It is of the form RPLic = {Lic||f ||SigLI(Lic||f)}.

6. PKi and SKi: Public and private keys of entity i.

7. M ||N : Concatenation of two messages M and N.

8. EPKi
: Asymmetric encryption using entity i’s public key.

9. ASigi: An ambiguous signature created by entity i.

10. Sigi: A digital signature created by entity i.

11. H(): A cryptographic hash function.

4.4. PRELIMINARIES 113

4.4.2 Design Assumptions

The RDS protocol has used the following assumptions.

1. Similar to the current DRM systems, LI is assumed to be a trustworthy

entity which is responsible for issuing a license and facilitating a license

reselling process.

2. Alice has got a license, Lic, with a reselling permission, RPLic, and a key-

stone, ks, from LI. We assume that RPLic and ks for a given license are

always embedded in the original license. Thus, when Alice bought Lic

from LI, she should have been issued with ks and RPLic that contains the

keystone fix, f. This means that there is no need for LI to perform any

additional operation with Alice before she starts an execution of the RDS

protocol.

3. The buyer can make payment for the license to LI in a secure manner and

the reseller can receive the payment from LI in a similarly secure manner.

4. Keystone, ks, can only be used once.

5. Hash functions are collision-free.

6. Alice and Bob have agreed on the terms and conditions of a reselling deal,

RD.

7. Each entity, Ei, where (i ∈ A,B,LI), has a public/private key pair, PKi/SKi.

PKi has been certified by a certification authority and SKi is kept secret

by their respective holders.

8. Communication channels between any pair of entities are resilient.

9. Communication channels are authenticated, confidential and integrity-protected.

These channels can be established using the Secure Socket Layer (SSL) pro-

tocol [95].

4.4.3 Design Requirements

The RDS protocol is designed to satisfy the following requirements.

114 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

• (R1) Non-repudiation of signature origin - the recipient of a signature is

assured that the signature is indeed generated by the claimed signer.

• (R2) Non-repudiation of signature receipt - the sender of a signature is

provided with evidence that the intended recipient has indeed received this

signature.

• (R3) Abuse-freeness: before the completion of a protocol execution, neither

of the signers can prove to an outside entity that he is in control of the

outcome of the protocol execution.

• (R4) Strong fairness: upon the completion of a protocol execution or upon

an acceptance of an RD activation request, either both the signers are

committed to the contract or neither is.

4.5 RDS Protocol Overview

As shown in Figure 4.4, the protocol consists of three messages: Msg1, Msg2,

and Msg3. In Msg1 and Msg2, Alice and Bob exchange their respective am-

biguous signatures on a given RD. Alice first creates ASignA, where ASignA=

ASignA(RD), and sends it along with RPLic to Bob. Upon receiving, Msg1, Bob

checks the license ID by performing BV 1. Bob then verifies the correctness of

RPLic and ASignA by performing BV 2 and BV 3, respectively. If these verifica-

tions are positive, Bob creates ASignB, where ASignB = ASignB(RD||ASignA).

The purpose for Bob to sign RDASignA
, instead of signing on the RD directly, is to

prevent Alice from abusing ASignB once she receives it in Msg2 (i.e. to achieve

abuse-freeness). He then sends it to Alice. After receiving ASignB, Alice verifies

its correctness using AV 1 and AV 2 and then, in Msg3, sends ks to Bob. Upon

releasing ks, Alice obtains Bob’s binding signature, i.e. (ks,ASignB) and Bob

gets Alice’s binding signature, i.e. (ks,ASignA), thus achieving fair RD signing

process.

Upon the successful completion of a protocol execution, both Alice and Bob

(1) can not falsely deny having created their respective signatures, (ks, ASignA)

and (ks, ASignB), thus achieving non-repudiation of signature origin, (2) will

have a proof that each one of them has received the other’s signature (Bob can

use ks as a proof that Alice has indeed received ASignB sent in Msg2 and Alice

ASignB as a proof that Bob has certainly received ASignA in Msg1), achieving

4.6. RDS PROTOCOL INFORMAL ANALYSIS 115

non-repudiation of signature receipt, and (3) either both Alice and Bob are com-

mitted to the the RD deal or neither is, thus accomplishing fairness. More details

see Appendix A .

4.6 RDS Protocol Informal Analysis

In this section, the RDS protocol is analysed against the requirements set in

Section 4.4.3. In a license reselling process, after RD has been signed by a reseller

and a buyer, LI has to be invoked by the buyer to activate this signed RD. This

activation process can deter both the reseller and the buyer from misbehaving

during the RD sign process. As indicated below, it is hard for any entity to benefit

from misbehaving. During the activation process, LI will perform the following

verifications and will only accept a given RD if they are all positive.

1. (LIV 1): Confirming that the payment, P, equal to the amount stated in RD,

has been made by Bob and verifying Bob’s signature on the RD activation

request.

2. (LIV 2): Checking that Lic is legitimate to resell. This check consists of

two further checks: LIV 2.1 and LIV 2.2. In LIV 2.1, LI verifies whether Lic

has a valid RP. This is done by verifying SigLI(Lic||f). If this signature

is invalid, it means that either Lic or f is incorrect. Hence, Lic is deemed

as non-resalable and LI will reject RD. If the signature is valid, Lic is

considered as resalable. LI then proceeds to perform LIV 2.2 in which LI

ascertains whether ks, corresponding to f , has already been released. If ks

has already been publicised, it means that Lic has already been resold. So,

LI will reject RD. Otherwise, LI proceeds to perform (LIV 3).

3. (LIV 3): Checking whether the license identity, Lic, specified in RPLic, is

identical to the license identity, Lic, specified in RD. This check can prevent

Bob from replacing RPLic with another less valuable reselling permission,

RPLic2.

4. (LIV 4): Verifying ASignB to confirm Bob has signed RD.

5. (LIV 5): Verifying ASignA to ensure Alice has signed RD.

116 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

A B

Msg1={RD||ASignA||RPLic}

Msg2={RDASignA||ASignB}

Msg3={f||EPKB
(ks)}

BV1&BV2&BV3

B has got:
RD&ASignA

AV1&AV2

Signed RD

BV1: Confirming that RD received is identical to RD agreed; and
 the license ID in RD agreed and in RPLic are identical
BV2: Checking the correctness of RPLic

BV3: Checking the correctness of ASignA

BV4: Confirming that H1(ks) equals f which is provided in RPLic

AV1: Confirming that the same f is used in both ASignA and ASingB

AV2: Checking the correntness of ASignB

Protocol Verifications:

Signed RD
BV4

A has got:
RD&ASignA

RD&ASignA

&ASignB

RD&ASignA

&ASignB

Figure 4.4: Schematic figure of the RDS protocol

4.6.1 Fairness Analysis

This section analyses the fairness2 property of the RDS protocol. Figure 4.5

shows every possible action Alice or Bob could take when she or he, respectively,

creates and/or receives a protocol message. This section introduces analysis of

all these possible actions. The analysis assumes that any payment, P, made to

LI is equal to the amount stated in the submitted RD. Otherwise, this RD will

be rejected.

The discussions are structured based on three cases (a) Alice and Bob behave

properly; (b) Alice misbehaves; and (c) Bob misbehaves.

Alice and Bob behave properly: As depicted in Figure 4.5, there are two

scenarios for Alice and Bob to achieve fairness. These two scenarios are depicted

as dashed lines in the figure. In the first scenario, Alice and Bob honestly follow

the protocol described in Section A.1.

In the second scenario, like in the first scenario, Alice sends Msg1 to Bob

who may be very happy with the RD to be signed. Thus, instead of sending

Msg2 to Alice, Bob may construct an RD activation request and sends it to LI.

2 In the context of the RDS protocol, fairness means that at the end of a deal signing process
undertaken between a reseller and a buyer, either the reseller receives a deal signed by the buyer
and the buyer receives a deal signed by the reseller, or neither of them receives anything useful.

4.6. RDS PROTOCOL INFORMAL ANALYSIS 117

LI

LI

A1:Msg1

LI

LI

LI

LI

LI

B2:Msg1+Msg2+P

B5:Msg1

B6:Msg1+P

B8:Msg1+Msg2

B9:Msg2+P

B1:Msg2

LI

B7:Msg2

LI

LI

LI

LI

B

A10:Msg1+Msg2

A11:Msg2

A8:Msg1+Msg2+ks

A7:Signed RD

A6:No Response

LI

A9:Msg2+ks

BA5:Msg3 with ks1≠ks

B
A4:Msg3 with ks

Signing Done

Follow Msg1
 scenarios

Reject

Reject

Accept

A
B10:No Response

Stop

A AB

A3:Msg1

A2:Msg1+ks

Reject

Ask A to
re-send ks

Follow Msg1
scenarios

LIB3:Msg2+RPLic+P

LIB4:Msg2+RPLic2+P

A

Figure 4.5: Possible actions taken by Alice and Bob at each stage of a protocol
execution

This request is of the form {Msg1|Msg2||P} or {Msg2||RPLic||P}. Although the

signatures in Msg1 and Msg2 are still ambiguous, LI can use ks to convert them

into binding signatures. LI can then activate the RD. In this activation, LI sends

Bob the activated license Lic, makes ks public and sends Alice the payment, P .

In this case, Alice will not be affected as her license has been resold (this is the

main aim of designing the RDS protocol). She can also get the signed RD along

with the payment. Thus, in the second scenario, both Bob and Alice can obtain

a signed RD (i.e. achieving fairness).

Alice misbehaves: As shown in Figure 4.5, Alice may misbehave in three

occasions. In the first occasion, when Alice creates Msg1, she may take two

malicious actions against LI: A2 and A3. A malicious action here means to send

a fake RD activation request to LI in attempt to cause DoS (Denial of Service)

attacks against LI. For both of these actions, upon performing LIV 1, LI will reject

the RD request as A2 and A3 do not contain a payment. In others words, we

118 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

have made the payment verification as the first one in the verification chain to

minimise the risk of DoS attacks. In addition, Alice cannot gain anything useful

by taking A2 and A3.

In the second occasion, upon the receipt of Msg2, Alice may take one or more

of five malicious actions (i.e. A7, A8, A9, A10, and A11). In all these actions, as

shown in Figure 4.5, Alice may send some incomplete RD activation requests to

LI. However, as Alice did not provide a payment in these actions, she will gain

nothing by taking any of these actions. This is because, upon performing LIV 1,

LI will reject these RD submissions.

In the third occasion, after creatingMsg3, Alice may perform two misbehaving

actions with Bob: i.e. A5 and A6. In A5, Alice, in Msg3, may send Bob ks1 6= ks.

If this happens, Bob will not be affected as he can detect this misbehaviour

when he performs BV 4. Bob then has three choices: (1) ask Alice to resend the

correct ks; (2) terminate the protocol run as Bob may no longer be interested in

completing the signing process of this RD with Alice (for example, he may have

got another deal which is better than that offered by Alice); or (3) send an RD

activation request to LI to activate the license and get the ks with the activated

license. In A6, Alice may abort the protocol run. However, this abortion will not

affect Bob as he can still be able to activate the agreed RD with LI. He can send

LI an RD activation request containing {Msg1||Msg2||P}, in which case, he can

get ks along with the activated license from LI. In any of the above cases, Bob

will not experience any loss as he can still able to activate RD.

Bob misbehaves: As shown in Figure 4.5, Bob may misbehave in two oc-

casions. In the first occasion, once Bob receives Msg1, he may take one of two

malicious actions: (a) either submit B5 or B6 to LI as RD activation requests,

and (b) misbehave with Alice (i.e. send Alice B10). If Bob submits B5 or B6 to

LI, LI will reject his submission as LIV 1 and LIV 4 will be negative, respectively.

Therefore, if Bob does any of B5 or B6, he can neither bring any harm to Alice

nor gain anything useful for himself. Bob can do B10 as it is his right to abort

the protocol run if he does not wish to go for the deal. However, if this happens,

similar to the case of B5 and B6, Alice will not be affected as, at this stage, Bob

has only got ASignA which is not yet binding to Alice.

In the second occasion, upon the creation of Msg2, Bob may take one of four

malicious actions against LI, i.e submitting B4, B7, B8, or B9 to LI to activate

the RD. In B4, although Bob has submitted an RD activation request containing

4.6. RDS PROTOCOL INFORMAL ANALYSIS 119

all the required elements, upon the verification of LIV 3, LI will reject this request.

In B7 and B8, LI will also reject these requests as LIV 1 will produce a negative

result. In B9, though the payment is included, after performing LIV 2.1, LI will

reject Bob’s submission as RPLic is not provided. Thus, by doing B4, B7, B8,

or B9, Bob will not gain any benefit. In addition, since Bob has only got an

ambiguous signature, ASignA, from Alice, he can not bring any harm to Alice

using this signature.

From the above discussions, three remarks can be drawn. Firstly, Alice can not

bring any harm to Bob if she refuses to send ks to Bob in Msg3. This is because

once Bob has received Msg1 and created Msg2, he can activate RD directly with

LI and this activation can only be successful if Bob sends LI {Msg1||Msg2||P}
which include the payment. Secondly, Bob can not gain any advantage by first

receiving ASignA as ASignA is not binding to Alice before Alice releases ks.

Thirdly, all Alice’s submissions to LI will be rejected unless she provides a pay-

ment. Of course, it does not make any sense that Alice, as the reseller, would

make any payment to resell her license.

4.6.2 Non-repudiation Analysis

This section analyses the RDS protocol against the non-repudiation requirements,

i.e. the non-repudiation of origin (NOO) and non-repudiation of receipt (NOR)

of signatures being exchanged.

In our problem context, NOO means that upon the successful completion of a

protocol execution, both Alice and Bob can not falsely deny having created their

respective signatures, (ks, ASignA) and (ks, ASignB). When ks is released in

Meg3, both ASignA and ASignB, exchanged in Msg1 and Msg2, will become

binding to their respective signers. Hence, neither entity can falsely deny having

created their signatures. If ks is not released or if what is released is not identical

to the keystone used in the signing process (i.e. if ks1 6= ks), then only Alice

will have (ks, ASignB) and Bob will not have (ks, ASignA). In this case, Alice

could deny having signed RD. However, if Bob submits {Msg1||Msg2||P} to LI

for activating RD, he will receive ks with the activated RD from LI. Bob then

uses this ks to obtain (ks , ASignA). This means that once ks is publicised, nei-

ther Alice nor Bob could falsely deny having created their respective signatures.

Consequently, our protocol meets the NOO requirement.

Regarding NOR of the signatures, upon the successful completion of a protocol

120 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

run, both Alice and Bob will have a proof that each one of them has received

the other’s signature. For Bob, once he receives ks in Msg3, this ks serves as a

proof that Alice has indeed received ASignB sent in Msg2. This is because Alice

only releases ks once she receives ASignB. If Bob does not receive ks, he will

not be able to tell that Alice has indeed received ASignB. However, if Bob sends

LI an RD activation request of the form {Msg1||Msg2||P}, Alice will receive

ASignB from LI during the RD activation process. In other words, a successful

RD activation process ensures Bob that Alice has indeed received ASignB when

LI sends Alice both the payment and the signed RD.

For Alice, once she receives ASignB in Msg2, she can use this ASignB as a

proof that Bob has certainly received ASignA in Msg1. This results from the

idea that ASignA is a part of ASignB. If Alice does not receive ASignB, she

will not be certain that Bob has indeed received ASignA. However, when Bob

sends LI an activation request of the form, {Msg1||Msg2||P}, Alice will receive

ASignB from LI during the RD activation process. So, this request to LI serves

as a proof that Bob has indeed received ASignA.

From the above discussions, it can be concluded that upon a successful execu-

tion of the protocol or upon a successful RD activation, both Alice and Bob will

have received the other party’s signatures. This implies that our protocol meets

NOR requirement.

4.6.3 Abuse-freeness Analysis

The section shows that the RDS protocol is abuse-free. We discuss whether

Alice or Bob could gain any benefit by showing any intermediate result of a

RDS protocol run to a third party. In fact, the RDS protocol produces two

intermediate results: (1) RD ambiguously signed by Alice, i.e. RDASignA
, and (2)

RD ambiguously signed by both Alice and Bob, i.e. [RDASignA
]ASignB

. RDASignA

is received by Bob in Msg1. [RDASignA
]ASignB

is received by Alice in Msg2.

For RDASignA
, Bob can not abuse it to gain an advantage over Alice. Of

course, Bob can show this result to another reseller, Eve. However, Bob can not

prove to Eve that RDASignA
is indeed signed by Alice as ASignA is an ambiguous

signature and it could have been produced by Bob. Thus, Bob can not abuse

RDASignA
.

With respect to [RDASignA
]ASignB

, although it is an ambiguous signature, Al-

ice is able to make it a binding signature to Bob and then show it to a third

4.6. RDS PROTOCOL INFORMAL ANALYSIS 121

party, Carol. As Alice holds the ks, she can use it to prove to Carol that

[RDASignA
]ASignB

is indeed signed by Bob. However, Carol can also see that

this RD has also been signed by Alice as ASignA is a part of ASignB (see Sec-

tion A.1). Hence, it would be difficult for Alice to gain anything useful by doing

so as it does not make sense for Alice to show Carol RD which is binding to both

of Alice and Bob. So, we say that Alice can not abuse [RDASignA
]ASignB

.

From this analysis, we can conclude that neither Alice nor Bob can abuse each

others’ signatures if the protocol is not successfully completed. Thus, the RDS

protocol satisfies the abuse-freeness property.

4.6.4 Security Analysis

As mentioned early in this Chapter, the CS scheme is the main cryptographic

primitive used in the RDS protocol design. Hence, the security of the RDS

protocol lies in the security of the CS scheme [8]. In other words, the security level

of the RDS protocol is the same as the security level of the CS scheme provided

that LI is trustworthy. In addition, since communications between entities A

and B are carried out through a confidential channel (owing to assumption 8),

the exchanged data is not exposed to any outsiders. This prevents any intruder

from gaining anything useful from the messages while they transmit through the

network. SSL protocol also protects against any replay attack [96].

Also, it is crucial for the security of the RDS protocol to ensure that the

keystone ks is not reused. If ks is reused, Alice will be able to resell her li-

cense, Lic, multiple times. Consequently, the security of the DRM system will be

compromised, i.e. the content owner’s rights will be violated.

The authenticity of the RD contract is protected by Alice’s and Bob’s sig-

natures. As Alice signs RD first, if she has modified the negotiated RD before

signing and sending it to Bob, Bob can detect such modification and then he can

refuse to sign this RD. Also, as Bob is responsible for sending an RD activation

request to LI, Bob would be able to modify RD before he sends the request to

LI. However, as Bob has to jointly sign RD, which has been already signed by

Alice, Bob can not modify the RD unless he can create Alice’s signature on this

modified RD. In other words, in order for a given RD to be activated, this RD

has to be jointly signed by both Alice and Bob and none of them would be able

to make any unilateral alteration to RD without being detected.

The authenticity of RPLic is protected by LI’s signature. If Bob attempts to

122 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

modify it, during performing LIV 2, LI can detect such modification. LI can then

reject Bob’s RD activation request.

With our protocol, either Alice or Bob could replace a reselling permission,

RPLic, with another less valuable reselling permission. Firstly, if Alice has com-

mitted this misbehaviour, with verification BV 1, Bob can detect that the license

ID contained in the deal, RD, and in the permission, RPLic are not identical. Bob

can then stop the protocol execution. Secondly, if Bob has replaced RPLic with

another permission, LI can detect this misbehaviour while performing verification

LIV 3. LI can then reject the RD activation process. Thus, neither Alice nor Bob

can gain anything useful by doing this misbehaviour.

4.7 RDS Protocol Formal Verification

In this section, the RDS protocol is formally verified. Prior to the formal verifica-

tion of the RDS protocol, we give a brief overview of formal verification methods

that may be used in verifying fair exchange protocols.

A formal analysis and verification of security protocols can help to detect se-

curity flaws in the protocol design. Some of the flaws may be subtle and hard to

find [97]. As designing security protocols is an error prone process, it is essential

to formally verify these protocols to detect any subtle flaws which may not be

found by informal security analysis. The public key protocol [98], designed by

Needham-Schroeder, is a good example showing the importance of protocols for-

mal verification. This protocol was considered as secure for years before it was

formally verified by Lowe [99] [100] in 1995. Lowe verified this protocol using

FDR (Failures Divergences Refinement) checker [101] with the CSP (Communi-

cating Sequential Processes) logic [102], and discovered a flaw in the design of the

protocol. Since this date, formal methods have been widely used for the formal

verification of security protocols. Formal methods have been considered of crucial

importance and have been the subject of intense research over the past decade.

An overview of the formal methods is given below.

4.7.1 Formal Methods: An Overview

Generally, as illustrated in Figure 4.6, when a formal method is used to formally

verify a security protocol, three steps are performed. In the first step, the protocol

is formally modelled. In the second step, the security properties of the protocol

4.7. RDS PROTOCOL FORMAL VERIFICATION 123

are formally specified. The first two steps are accomplished by using a high-

level formal notation language. In the third step, using a tool (e.g. MOCHA in

our case) that understands the outputs of step one and step two, the protocol

modelled in step one is verified against its properties specified in step two. There

are various tools that can be used to help with the verification process. Examples

of these tools include theorem prover ISABELLE [103], finite-state analysers,

Murφ [104], NRL [105], Model checker Spin [106], Model checker Mocha [21] and

FDR [101].

Figure 4.6: General approach of formal methods

The literature contains many different formal methods, e.g. BAN belief logics

[107], SVO logic [108], and inductive theorem proving [99]. These methods are

used to formally analyse different security protocols with various security prop-

erties. BAN (Burrows, Abadi and Needham) belief logic, among the first formal

methods, has been used to formally verify authentication protocols, such as Ker-

beros [109] and Otway-Rees [110]. SVO (Syverson and van Oorschot) belief logic

has been used to verify non-repudiation protocol in [111]. The inductive theorem

proving method has also been used to formally analyse a number of well-known

protocols. Examples include the Kerberos protocol [109], TLS protocol [112], e-

commerce protocol, SET (Secure Electronic Transactions) [113], and smart card

protocols [114]. Finite-state exploration is another formal method which has been

used to analyse protocols such as Needham-Schroeder [115], Kerberos [104], and

SSL [116].

The effort on formal verifications of security protocols have largely been fo-

cused on authentication and key-establishment properties. The same level of

efforts has not been given to the fairness property. The nature of attacks on fair

124 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

exchange protocols is different from that of the attacks on authentication proto-

cols. Therefore, methods designed for the formal verification of authentication

protocols are not readily applicable to fair exchange protocols. In the model of

an authentication protocol, an attacker has control over the network, and pro-

tocol participants trust each other. For a fair exchange protocol, on the other

hand, protocol participants do not trust each other, and any one of them may

misbehave. As a result, a TTP is used, and only the TTP is assumed to be

trusted and to follow the protocol specification faithfully. These differences in

the protocol features should be reflected in the models of the respective protocols

to be analysed, and in the formalisation of their security properties.

A number of different formal methods [102], [108], [117], [118] have been used

to formally analyse fair exchange protocols. Schneider et al [119] used CSP to

formally analyse a non-repudiation protocol. Zhou et al [111] applied SVO logic

to analyse non-repudiation protocols. Shmatikov et al [120] applied the finite-

state tool Murφ to analyse a fair exchange protocol. Kremer et al [121] used a

temporal logic, ATL, with a game semantics and the corresponding model checker

Mocha to analyse non-repudiation, fair exchange, and contract signing protocols.

As a special type of fair exchange protocols, contract signing protocols have

been formally analysed with different verification tools. In [122], Chadha et al

have used the multiset rewriting formalism together with inductive methods to

analyse the abuse-free property in a contract signing protocol. The property

is expressed in terms of strategies, which provide a natural framework for the

analysis. In [120] and [123], Shmatikov and Mitchell applied the finite-state tool

Murφ to analyse abuse-free contract signing protocols. In [121], kremer et al used

the finite model-checker Mocha to analyse two contract-signing protocols one of

them is abuse-free. Spin model checker [106] is used to verify contract signing

protocols in [124]. More recently, a Strand space [125] and Petri-nets [126] have

been used to formally analyse contract signing protocols.

As described above, there are many tools to analyse the properties of contract

signing protocols. However, not all of them are suitable to analyse the abuse-free

property of these protocols. With the inductive method, the proof of the property

has to be carried out by hand, which is a time-consuming process. Using Murφ,

the protocol property is modelled as an invariant. This modelling method is not

sound for an abuse-free property which cannot be expressed using invariants. Spin

tool has not been used to analyse the abuse-freeness property. This is because,

4.7. RDS PROTOCOL FORMAL VERIFICATION 125

as reported in [127], Spin uses LTL (Linear Temporal Logic) to formulate the

properties of a fair exchange protocol but LTL cannot be used to express the

abuse-freeness property. Strand space is a time-consuming process as it is a pen

and paper tool.

Mocha is another tool which has been used to formally analyse contract sign-

ing protocols with the abuse-free property. As reported by Kremer et al [121],

Mocha is advantaged over Murφ in that Mocha allows the specification of proto-

col properties in ATL. ATL is a temporal logic with game semantics and its use

allows a more natural expression of properties, especially the abuse-free property.

Owing to this advantage, Mocha has recently been used to verify a number of

multi-party contract signing protocols [128].

Based upon the above considerations, the finite model checker MOCHA and

ATL have been chosen to formally verify our RDS protocol in this thesis.

4.7.2 Mocha Model Checker

The Mocha verification tool is an interactive verification software environment

for the modular and hierarchical verification of heterogeneous systems [21], [129].

It is a software for specification, simulation, and verification. As depicted in

Figure 4.7, Mocha uses Alternating Transition Systems (ATS) [117] to model

protocols. ATS is a game based model. It uses a high level language called

Guarded Command Language to describe protocols. Mocha also uses Alternating

Temporal Logic (ATL) [117] to express requirements that the protocols must

verify. ATL is a game based logic to reason about protocol properties. A Mocha

model checker is then used to verify whether the requirements specified by ATL

meet the protocol modelled as ATS system. This section gives a brief overview of

the components of Mocha, i.e. ATS, ATL and its Guarded Command Language.

4.7.2.1 Alternating Transition System (ATS)

ATS is a game variant of usual Kripke structures. The first formal definition of

ATS was given in [117]. It is used to model a protocol as a game. In this thesis,

we only give an introduction about ATS. For more details, refer to [117]. An ATS

system, S, is defined as a 6-tuple, i.e. S = (Π,Σ, Q,Q0, π, δ), where:

• Π is a finite set of propositions;

• Σ is a finite set of players;

126 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Figure 4.7: MOCHA Verification Tool

• Q is a finite set of states;

• Q0 ⊆ Q is a set of initial states;

• π : Q→ 2Π is a labelling function that labels states with propositions;

• σ : Q × Σ → 2
∧

2Qø is a game transition function that maps a state and

a player to a nonempty set of choices, where each choice is a set of possible

next states. Furthermore, if Σ = a1, ..., an, then for every state q ⊆ Q and

each possible Q1, ..., Qn where Qi ⊆ σ(q, ai), Q1 ∩ ... ∩Qn is a singleton.

For every player, a, and state, q, the game transition function defines the set

of choices σ(q, a) = Q1, Q2, ..., Qn, with Qi ⊆ Q. This set of choices can be played

by the player in the state q. A choice is a set of possible next states. One step of

the game at a state, q, is played in the following way: each player a ⊆ Σ makes

his choice and the next state of the game q′ is the intersection (that is required to

be a singleton) of the choices made by all the players of Σ, i.e. q′ = ∩a ⊆ Σ(q, a).

A computation of a system S is an infinite sequence, λ = q0q1...qn, of states

obtained by starting the game in q0, where q0 ⊆ Q.

4.7. RDS PROTOCOL FORMAL VERIFICATION 127

4.7.2.2 Alternating-time Temporal Logic (ATL)

ATL is a logic in which one is able to reason about strategic abilities of players

[117]. This means that ATL is the best logic to reason about an ATS model

[121, 130, 131]. It is defined in terms of a finite set Π of propositions and a finite

set Σ of players. Given the finite set Π of propositions, and the finite set Σ of

players, an ATL formula could be of one of the following:

• p, where p ∈ Π, is a proposition.

• ¬ϕ or (ϕ1 ∨ ϕ2), where ϕ , ϕ1 , and ϕ2 are ATL formulae.

• ¬ << A >> ♦ϕ,<< A >> ◦ϕ1, << A >> �ϕ , or << A >> ϕ1 ∪ ϕ2,

where A ⊆ Σ is a set of players, and ϕ,ϕ1 and ϕ2 are ATL formulae.

The operators used in the above formulae are defined as follows:

• <<>> is a path quantifier, and

• ◦, �, ♦, and U are temporal logic operators, where ◦ denotes “next”, �

refers to “always”, ♦ denotes “eventually” and U refers to “until”.

• ¬, and ∧ are logical connectives that have the standard interpretation, i.e.

¬ denotes “negation”, and ∧ refers to “or”.

ATL logic enables the modelling of both cooperative and adversarial be-

haviours amongst the players. We use the following example to show its ex-

pressive power. For a set of players, Σ = a, b, c, consider the verbal reading of

the following formulae:

• << c >> ♦p, this formula means that the player, c, has a strategy against

both players, a and b, to eventually reach a state where the proposition, p,

is true;

• ¬ << b, c >> �p, this formula means that the coalition of the players, b

and c, does not have a strategy against the player, a, to reach a point where

the proposition, p, will always be true;

• << a, b >> ◦(p ∧ ¬ << c >> �p), this formula says that the players, a

and b, can cooperate so that the next state satisfies p, and from this state,

the player, c, does not have a strategy to impose p forever.

128 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

The above formulae illustrate how ATL can be used to express both cooperative

and adversarial behaviours among players. These cooperative and adversarial

behaviours are typical behaviours of a contract signing protocol (e.g. our RDS

protocol). To determine which player can win a game, ATL formulae (e.g. <<

A >> ψ at a state, q, of the ATS system, S) of this game need to be evaluated.

The idea of how to evaluate such ATL formula can be illustrated by the following

example. Consider a two-player game between a protagonist and an antagonist

with the following specifications. A set of players, A ⊆ σ, a set of computations

Λ, and a state, q, which is the starting state of the game and let the game be in a

position y, at each step of the game, to determine the next state, the protagonist

first chooses, for every player, a ∈ A, a set Qa ∈ δ(y, a). Then, the antagonist

chooses a successor, z, of y such that z ∈ Qa for all a ∈ A, and the game position

is updated to z. Following the same way, the game between a protagonist and

an antagonist continues forever and produces a computation. If the resulting

computation satisfies the formula, << A >> ψ, then the protagonist wins the

game. In other words, if the ATL formula << A >> ψ holds at the state q, it

means that the protagonist has a strategy to win this game. Note that, ψ is a

linear temporal formula whose outermost operator is ◦, �, ♦, or U .

4.7.2.3 Guarded Command Language

Using ATS notations to directly model a protocol (e.g. RDS protocol) is difficult

as it is not easy to understand. A more user oriented language, called the Guarded

Command Language, can be used to model the protocol as ATS system. This

modelling language is part of the Reactive Modules language [600] which is part

of the model checker Mocha. More details about the syntax and semantics of this

language can be found in [13]. Here, we give some description about the Guarded

Command Language.

In an ATS system, a description of a player, a ∈ σ, is represented by a set of

guarded commands of the following form:

[]guardζ → commandζ ,

where,

• Guard is a Boolean predicate over state variables;

• Command is an update predicate.

4.7. RDS PROTOCOL FORMAL VERIFICATION 129

Each player, a ∈ σ, selects one of his commands whose Boolean guard evaluates

to true. The next state is then obtained by taking the conjunction of the effects

of each updated part of the commands selected by the players.

Figure 4.8 shows a sample of guarded commands for players A,B, and C. To

illustrate these commands, the following syntactic assumptions are used. Firstly,

when updating state of a command, if a variable, p, does not appear in the right-

hand side of the command, it is considered as unchanged by the command. Hence,

implicitly, we have p = p′ for each such variable. For example, in the command

([]q → r′ := true), q does not show in the right-hand side. Thus, the value of q′,

in this case, will be the same as the value of q. Secondly, the command, true→,

means that the player owning this command can choose to leave its controlled

variables unchanged. This is considered as “idle” action. Note that as the guard

is true, that action can be taken at any step of the game if no fairness constraints

are imposed on the player.

Now the explanation of the commands in Figure 4.8 is as follows. The com-

mand ([]true → p′ := true) means that p is set to true as its guard is always

true. The command ([]p → q′ := true) says that when p is true, q will be true.

The command ([]q → r′ := true) means that when q is true r will be also true.

Figure 4.8: A simple program written by the Game Guarded Command language

4.7.3 Model Checker and RDS Protocol Modelling

The following assumptions are used in the modeling of the RDS protocol.

1. Only valid protocol messages can be sent.

2. Each protocol execution is uniquely identified.

130 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

3. Cryptanalysis is not considered in this model.

When choosing a model checker for a given protocol, one should consider the

properties of this protocol. There are two differences between modelling classical

security protocols, e.g. authentication and key-exchange protocols and contract

signing protocols. The first difference is that a classical security protocol typically

consists of only one protocol aimed at authentication and secrecy. On the other

hand, a contract signing protocol usually consists of more than one sub-protocol

that can be executed at any time. Executing a signing protocol at a time, which

is not anticipated by its designer, may cause unexpected errors. These errors may

be utilized by a signer to gain an advantage over the other signer. The second

difference is that a classical security protocol is usually designed to be secure

against external intruders while a contract-signing protocols is designed to be

secure against malicious insiders, i.e. signers. Therefore, when modelling a con-

tract signing protocol (e.g. an RDS protocol) two processes should be modelled,

one for a honest signer, and the other for a dishonest signer. The first process

describes an honest behaviour of a signer while the second process describes a

dishonest behaviour of the same signer.

A contract signing protocol is modelled as a game and its participants as

players. In the modelling of the RDS protocol, there are four players: Alice,

Bob, LI, and the communication channels. An instance of the RDS protocol

will first be modelled as an ATS system. Each protocol participant will then be

modelled as a player in the ATS system using the guarded command language

just described above. As illustrated in Figure 4.9, the verification process of the

RDS protocol comprises three steps:

1. Modeling the protocol using the guarded command language (i.e. creating

a ATS system for the RDS protocol);

2. Translating protocol properties, fairness, non-repudiation, and abuse-freeness

into ATL formulae; and

3. Running the model produced in the first step and the specification produced

in the second step using the MOCHA verification tool.

4.7.3.1 Modelling the RDS Protocol

This section describes the modelling of the players of the RDS protocol, i.e.

Communication channels, LI, Bob, and Alice.

4.7. RDS PROTOCOL FORMAL VERIFICATION 131

Figure 4.9: RDS verification by MOCHA

Communication Channels: Assuming that the channels between every pair

of the involved players are resilient (i.e. assumption 7 given in Section 4.4.2),

the communication channels are modelled using shared variables. The messages

transmitted through these channels are modelled by three steps. In the first step,

sending of a message, Msg1, through a channel, Chann, is modelled by setting

a variable called, SendMsg1, to true. In the second step, the delivery of Msg1

is modelled by setting another variable called, Msg1, to true. In the third step,

a guarded command representing the transmission is as follows: []SendMsg1 →
Msg1 := true. This means that when SendMsg1 is true, then Msg1 will be true

as well.

Figure 4.10: A segment of the communication channel model

Figure 4.10 gives part of the guarded command describing the communication

channel between LI and Bob. The first guarded command models that a channel

132 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

delivers the message RD Act Req6 to LI. The second command expresses that

the channel delivers the message Positive Result B to Bob.

License Issuer (LI)

In the RDS protocol, as LI is a trusted entity, it is considered as a special

player. In other words, LI is not baised. It does not have a strategy to help any

of the players to cheat the other. LI should be modelled in a deterministic way.

That is, at each stage of the RDS protocol execution, LI follows the protocol

specification faithfully, and only performs the actions defined in the protocol

design.

Figure 4.11: A segment of LI’s model

Figure 4.11 shows a sample of guarded commands describing LI’s model. The

first command expresses that LI has received the message, RD Act Req6 from

Bob. This means that once LI obtains the message, RD Act Req6, it will have

knowledge of the items, (ASign B l, ASign A l, RD L, Payment B l, RP Lic l)”.

The second command describes what LI performs when it accepts the RD: sending

ks and ASign B to Bob and Alice, respectively.

Alice and Bob

There are two ways of modelling Alice and Bob. The first way models both

Alice and Bob as honest players, i.e. both players execute the protocol honestly.

The second way models either Alice or Bob as a malicious player. Hereafter, we

will use A and B to refer to honest Alice and honest Bob, respectively, and Dis A

and Dis B denote dishonest Alice and dishonest Bob, respectively. Each player,

A, Dis A, B, and Dis B is represented by a set of guarded commands.

Modelling A and B: To model honest players, A and B, four actions are

described: initial state, creating messages, sending messages, and receiving mes-

sages). The initial state represents the initial knowledge of each player. For

example, the initial knowledge of the player, A, includes ks, f, and RD contract.

4.7. RDS PROTOCOL FORMAL VERIFICATION 133

These items are modelled as Boolean variables, and they are initialized to true.

Other variables (e.g. SendMsg 1, SendMsg 2) are set to false to indicate that

their values are not known prior to the protocol execution.

The following method is used to model the creation of a protocol message.

Assuming that entity A creates a message, Msgi, which consists of N items,

i.e., Msgi=itemi1, itemi2, ..., itemin. The creation of Msgi is modelled by adding

a guarded command, itemi1 ∧ itemi2 ∧ ... ∧ itemin → Msgi := true, to A’s

description.

Sending a message is another action taken by a player. This action is modelled

in the following way. Assuming that A sends B a message, Msgi, i.e. A → B :

Msgi = itemi1, itemi2, ..., itemin. Modelling this action is done by adding the

guarded command, itemi1 ∧ itemi2 ∧ ... ∧ itemin → SendMsgi := true, to A’s

description. This guarded command consists of the conjunction of all the elements

of the message. This means that A should only send a message if and only if he

has got knowledge of all the required items.

The transmission of this message is described by another guarded command,

SendMsgi → Msgi := true. This guarded command is added to the description

of the communication channel between A and B. In the case of delaying a message,

the communication channel executes an idle guarded command, i.e., (true →),

which is added to the player’s description. This is explained in Figure 4.8.

To model the reception of a message, Msgi, by B, the following guarded

command is added to B ’s description, Msgi → itemi1 := true; ...; itemin := true.

These N items are set to true for the first time in B ’s description. B could now

use the items set to true to create subsequent protocol messages.

Figure 4.12: An example of guarded commands of A’s description

Figure 4.12 shows part of A’s description in the guarded commands. The first

command expresses that “if Alice has knowledge of (RD, RP Lic and ASign A)

and Alice hasn’t stopped the RDS protocol execution, then she can send Msg1”.

The second command models the reception of Msg2 by A. It describes that “If

134 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Alice has got Msg2, and Alice hasn’t stopped the RDS protocol execution, she can

receive Bob’s signature, ASign Ba”.

Figure 4.13: Part of guarded commands of B’s description

Figure 4.13 illustrates part of guarded commands modelling B. The first

guarded command models the reception of Msg1 by Bob. In other words, it

says that “once Bob obtains Msg1, he gets (RD b, RP Lic b, and ASign A b)”.

This command means that Bob increases his knowledge once he receives Msg1.

The second and the third commands, respectively, describe that Bob performs

verifications B v1 and B v2 after receiving Msg1.

Modelling Dis A, and Dis B: In modelling dishonest players, Dis A and

Dis B), the guarded commands of Dis A and Dis B are obtained from their

honest counterparts, A and B. This is done by applying two operations: (1)

relax any predefined order of executing A’s and B ’s messages; and (2) add new

actions (guards) that describe malicious behaviours. Figure 4.14 illustrates part

of Dis A’s description. The first command in Figure 4.14 is the same as the

second command shown in Figure 4.12. The second command in Figure 4.14

expresses that Alice’s misbehaviour (prematurely stop the protocol execution) is

added to Dis A’s model. It says that “once Dis A has got Msg2, she prematurely

stops the RDS protocol execution”.

Figure 4.14: Part of guarded commands describing the player, Dis A

4.7. RDS PROTOCOL FORMAL VERIFICATION 135

Similar to the description of Dis A, Figure 4.15 shows part of the description

of Dis B. Most of the commands here describe the honest B, except that the

second command is added to express Bob’s misbehaviour. This command models

that “once Dis B has received Msg1, he sends LI an incomplete RD activation

request”.

Figure 4.15: Part of Dis A’ description using guarded commands

Protocol messages: The messages of the players,A, B, Dis A, and Dis B

are modelled in the following manner. All the protocol messages are modelled

as Boolean variables, which are initialized to false and then set to true when

they are sent by their senders. Signatures, ASign A and ASign B, keys and RD

contracts are also modelled as Boolean variables, which are initialised as false and

updated by their senders during the course of the protocol execution. We model

the action of sending out signatures, or other messages as guarded commands in

which the senders reset the corresponding variables to true. The modelling of the

reception of messages is done by making their receivers reset the corresponding

variables to true.

4.7.3.2 Modelling the Properties of the RDS Protocol

The second step of the verification process, as shown in Figure 4.7, is to specify

the security properties of the RDS protocol, namely, fairness, non-repudiation,

and abuse-freeness. Using the ATL formulae described in Section 4.7.2.2, these

properties are expressed as strategies.

Note that, in the following properties specification, the proof of a signed RD

for Bob is of the form (ASign A ∧ (ks ∨ ks LI)) and the proof of a signed RD

for Alice is of the form (ASign B ∨ ASign B LI).

Fairness

A protocol is said to be fair if, at the end of the protocol execution, either both

136 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Alice and Bob obtain a signed contract or none of them gets anything useful. This

definition can be split into two parts expressing fairness for Alice and fairness

for Bob.

Fairness for Alice: The RDS protocol is fair for Alice if “ a coalition of

Dis Bob and the communication channels do not have a strategy to reach a state

where Dis Bob can get his copy of the signed RD but Alice has no strategy to

obtain her copy of the signed RD’ ’. This definition can be modelled by the ATL

formula 4.1.

¬ << Dis Bob, Chann >> ♦((ASign A ∧ (ks ∨ ks LI))∧

¬ << Alice >> ♦(ASign B ∨ ASign B LI)) (4.1)

Here, Chann denotes the communication channels, (ASign A∧ (ks∨ ks LI))

denotes that Alice has generated ASign A (i.e. has signed the RD) and ks and

ks LI is the keystone sent either by Alice or by LI, respectively. (ASign B ∨
ASign B LI) refers to the proof that Bob has also signed the RD where (ASign B∨
ASign B LI) is Bob’s ambiguous signature sent either by Bob or by LI, respec-

tively. In addition, the operator♦ is an ATL temporal logic operator which means

”eventually” while the operators, ¬,∧,∨, and ⇒, are standard logic operations.

Fairness for Bob: The RDS protocol is said to be fair for Bob if ”Dis Alice

in collaboration with the communication channels do not have a strategy to reach

a state where Dis Alice can get her copy of the signed RD but Bob has no a

strategy to obtain his copy of the signed RD”. The ATL formula (4.2) expresses

the fairness for Bob:

¬ << Dis Alice, Chann >> ♦((ASign B ∨ ASign B LI) ∧

¬ << Bob >> ♦(ASign A ∧ (ks ∨ ks LI))) (4.2)

It is worth noting that with the ATL formulae (4.1) and (4.2), (a) Dis Bob

(Dis Alice) has been given all the power necessary for Dis Bob (Dis Alice) to

cheat Alice (Bob), and (b) we did not add ks to (ASign B ∨ ASign B LI) as

Alice has already got ks before the RDS protocol run is started.

Non-Repudiation

The non-repudiation property is the ability to make sure a sender of a message

cannot repudiate the sending of the message and to ensure that a receipt of a

4.7. RDS PROTOCOL FORMAL VERIFICATION 137

message cannot deny having received the message [132]. This property has two

sub-properties: Non-repudiation of Origin (NOO) and Non-repudiation of Receipt

(NOR). NOO, in our context, means that the recipient of a signature is assured

that the signature is indeed generated by the claimed signer. NOR means that

the sender of a signature is provided with evidence that the intended recipient

has indeed received this signature.

Non-repudiation of Origin (NOO): In the context of the RDS protocol,

there are two NOOs: NOOASignA
and NOOASignB

. NOOASignA
is a token which

proves to Bob that Alice has indeed created ASignA. The token contains either

(ASign A&ks) or (ASign A&ks LI). In other words, when Bob receives both

ASign A and ks from Alice, the NOO token is NOOASignA
= (ASign A&ks).

However, if Bob receives ASign A from Alice, but ks LI from LI, then the NOO

token is NOOASignA
= (ASign A&ks LI). This can be informally expressed in

the formula (4.3) as:

NOOASignA
= Bob.knows(ASign A) ∧ (Bob.knows(ks)

∨Bob.knows(ks LI)) (4.3)

Using ATL, NOOASignA
can be formally described as:

<< Bob >> �(ASign A ∧ (ks ∨ ks LI)) (4.4)

The above formula says that upon the successful completion of an RDS pro-

tocol run, Bob will obtain (ASign A&ks) or (ASign A&ks LI). Either of these

two tokens serves as NOO of Alice’s signature.

The other NOO evidence of the RDS protocol is NOOASignB
, which is a token

proving to Alice that Bob has indeed created ASignB. The token contains either

ASign B or ASign B LI. If Alice receives Msg2 from Bob, then the token is

NOOASignB
= ASign B. Otherwise, NOOASignB

= ASign B LI which is Bob’s

signature sent by LI during the RD activation process. Informally, NOOASignB

can be written as shown in the equation (4.5):

NOOASignB
= (Alice.knows(ASign B) ∨ Alice.knows(ASign B LI)) (4.5)

138 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Using ATL, NOOASignB
can be formally described as (4.6):

<< Alice >> �(ASign B ∨ ASign B LI) (4.6)

Formula (4.6) says that upon the successful completion of the RDS protocol,

Alice will obtain ASign B or ASign B LI. Either of these tokens serves as NOO

of Bob’s signature. Note that Alice always holds the keystone, ks, which can be

used along with ASign B or ASign B LI to form the NOO of Bob’s signature.

Non-repudiation of Receipt (NOR): Similar to the case of NOO, in the

context of the RDS protocol, there are two NORs, NORASignA
and NORASignB

.

NORASignA
is to prove to Alice that Bob has indeed received ASignA. The token

contains either ASignB or ASign B LI. If Alice receives ASign B from Bob in

Msg2, then the token will be NORASignA
= ASign B. This is because it is hard

for Bob to generate ASign B without receiving ASign A in Msg1, i.e. if Alice

receives ASign B from Bob, then Bob must have received ASign A. If Alice

receives ASign B LI from LI, after a successful RD activation process, the NOR

token will be NORASignA
= ASign B LI. Since LI only sends Alice ASign B LI

if LI receives from Bob a valid RD activation request that contains ASign B, and

ASign B already contains ASign A. Thus, if Alice has got ASign B LI, Bob

must have got ASign A.

NORASignA
can be informally written as:

NOOASignA
= (Bob.knows(ASign B) ∨Bob.knows(ASign B LI)) (4.7)

To formally verify NOOASignA
by Mocha, it should be written in ATL as:

<< Alice >> �(ASign B ∨ ASign B LI) (4.8)

Formula (4.8) means that, upon the successful completion of a RDS protocol

execution, Alice will obtain either ASign B or ASign B LI. Either of these two

items serves as NOR of ASign A for Alice.

The second NOO token is NOOASignB
which proves to Bob that Alice has

indeed received ASign B. The token contains either ks or ks LI. If Bob receives

ks from Alice in Msg3, the token will be NORASignB
= ks. If Bob gets ks LI

from LI after a successful RD activation process, ks LI serves as NOOASignB
for

4.7. RDS PROTOCOL FORMAL VERIFICATION 139

Bob, i.e.NOOASignB
= ks LI . This can be informally described as:

NOOASignB
= (Alice.knows(ks) ∨ Alice.knows(ks LI)) (4.9)

To formally verify NOOASignB
by Mocha, the token should be written in ATL

formula as:

<< Bob >> �(ks ∨ ks LI) (4.10)

Formula (4.10) says that upon the successful completion of a RDS protocol

run, Bob will obtain either ks or ks LI, either of which serves as an NOR of

ASignB for Bob.

Abuse-freeness

The RDS protocol is said to be abuse-free if, at any stage of a protocol exe-

cution, it is impossible for any signer, say Alice, to be able to prove to an outside

party that Alice is in control of the outcome of the protocol execution. To for-

malize the abuse-freeness property, two issues should be considered [121]: (a)

balance, and (b) abuse-free. The balance is a signer’s power to unilaterally decide

the outcome of a protocol run, and the abuse-freeness is the signer’s ability to

demonstrate this power to an outside party. The issue of the balance has been

analysed in [120] and [123]. In [121] Kremer et al have proved that when a proto-

col is balanced, it is also abuse-free. Kremer et al also proposed a new definition

for the abuse-freeness. In this definition, the abuse-freeness is split into two parts

expressing abuse-freeness for Alice and for Bob, respectively. With this defini-

tion, a contract signing protocol is said to be abuse-free for Bob “if Alice cannot

reach a state in the protocol execution, where Alice can prove to Charlie (a third

party) that the protocol has been initiated with Bob, without Bob having a strategy

to successfully complete the protocol”. Abuse-freeness for Alice is defined in the

same way.

In the following part, we model the abuse-free property for Alice and for Bob

in the context of the RDS protocol based on Kremer’s definition of the abuse-

freeness.

Abuse-freeness for Bob: We say that the RDS protocol is abuse-free for

140 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Bob if the following ATL formula holds.

∼<< Dis Alice >> ♦(Dis Alice Prove2TP ∧

¬ << Bob >> ♦(ks ∨ ks LI)) (4.11)

Formula (4.11) says that Dis Alice can not reach a state in a RDS protocol

execution, where she can prove to a third party (e.g. another buyer) that the pro-

tocol has been initiated with Bob, without Bob having a strategy to successfully

complete the protocol run. Note that, in the context of the RDS protocol, Bob

can only successfully complete an RDS protocol execution under two cases: (1)

if Bob can get the keystone, ks, from Alice (i.e. receives ks in Msg3); (2) if Bob

obtains the keystone, ks LI=ks, from LI after a successful RD activation process.

In formula (4.11), Dis Alice Prove2TP is a predicate representing the ability

of Alice to prove to a TP (Third Party) whether Bob has indeed signed RD. This

predicate can be defined as follows:

Dis Alice Prove2TP = Dis Alice.Knows(Msg2) (4.12)

If this predicate is true, it means that Dis Alice has indeed received Msg2. Con-

sequently, Dis Alice can prove to a TP (e.g. Charlie) that Bob has indeed been

involved in the RDS protocol execution. If this predicate is false, Dis Alice cannot

prove to Charlie that Bob has indeed started the RDS protocol execution.

Abuse-free for Alice: The abuse-free property for Alice can be modelled in

the same manner as the case of Bob. We say that the RDS protocol is abuse-free

for Alice if ATL formula (4.13) holds.

∼<< Dis Bob >> ♦(Dis Bob Prove2TP ∧

¬ << Alice >> ♦(ASign B ∨ ASign B LI)) (4.13)

Formula (4.13) says that Dis Bob cannot reach to a state in an RDS protocol

run, where Dis Bob can prove to a third party (e.g. Sally) that the protocol exe-

cution has been initiated with Alice, without Alice having a strategy to success-

fully complete the protocol run. Note that, in the context of the RDS protocol,

Alice can only successfully complete an RDS protocol run under two cases: (1)

Alice gets ASign B from Bob (i.e. receives ASign B in Msg2); (2) Alice obtains

ASign B LI = ASign B from LI after a successful RD activation process.

4.7. RDS PROTOCOL FORMAL VERIFICATION 141

In formula (4.13), Dis Bob Prove2TP is a predicate representing the ability

of Bob to prove to a TP whether Alice has indeed engaged with the RDS protocol

run. This predicate can be defined as follows:

Dis Bob Prove2TP = Dis Bob.Knows(Msg3) (4.14)

If this predicate is true, it means that Dis Bob has indeed received Msg3. Conse-

quently, Dis Bob can prove to a TP (e.g. Sally) that Alice has certainly involved

in an execution of an RDS protocol. If it is false, Dis Bob cannot prove to Sally

that Alice has indeed involved in the RDS protocol run with Bob.

4.7.3.3 RDS Verification Using Mocha

The third step of the formal verification process is to feed the ATL formulae

described in Section 4.7.3.1 to the Mocha model checker. Mocha then starts

verifying each formula to check whether it is satisfied in all possible moves of the

model players. Figure 4.16 shows a screenshot of Mocha while verifying the RDS

protocol. This section, further, discusses the results obtained from the formal

verification of the RDS protocol using Mocha.

Fairness

The RDS protocol is said to be fair if upon the completion of a protocol ex-

ecution or upon an acceptance of an RD activation request by LI, either both

the signers are committed to the contract RD or neither is. To verify this prop-

erty, we have applied formulae (4.1) and (4.2) to Mocha. The outcome of the

verification has shown that the RDS protocol is fair.

Non-repudiation

The RDS protocol is said to preserve the non-repudiation property if both

NOO and NOR are supported. To verify that NOO is supported, we have verified

the ATL formulae (4.4) and (4.6) with Mocha. NOR is also verified by checking

the ATL formulae (4.8) and (4.10) with Mocha. The results of these verifications

have shown that the RDS protocol satisfies both NOO and NOR properties.

Abuse-free

To check the abuse-free property of the RDS protocol, we have applied the

ATL formulae (4.13) and (4.11) to Mocha. The verification of this property has

led to the identification of two attacks on the abuse-free property. These attacks

142 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Welcome to MOCHA 1.0
Please report any problems to mocha@eecs.berkeley.edu
Module Alice is composed and checked in.
Module Dis_Alice is composed and checked in.
Module Bob is composed and checked in.
Warning at line 408: unprimed variable ks on left hand side of assignment.
Module Dis_Bob is composed and checked in.
Module LI is composed and checked in.
Module OperationalChann_B_LI is composed and checked in.
Module OperationalChann_A_LI is composed and checked in.
Module UnreliableChann_AB is composed and checked in.
Module OperationalChann_AB is composed and checked in.
Module RDS_Alice_Bob_UnreliableCh_AB is composed and checked in.
Module RDS_Alice_Bob_LI_UnreliableCh_AB is composed and checked in.
Module RDS_Dis_Alice_Bob_LI_UnreliableCh_AB is composed and checked in.
Module RDS_Alice_Dis_Bob_LI_UnreliableCh_AB is composed and checked in.
Module RDS_Dis_Alice_Bob_OperationalCh_AB is composed and checked in.
Module RDS_Dis_Alice_Bob_UnreliableCh_AB is composed and checked in.
Module RDS_Dis_Bob_Alice_UnreliableCh_AB is composed and checked in.
parse successful.
Fairness_for_Bob
Fairness_for_Alice
NOR_for_Bob
NOR_for_Alice
Abuse_free_for_Bob
Abuse_free_for_Alice
Converting formula to existential normal form...
Performing semantic check on the formulas...
SIM: building atom dependency info
Start model checking...
Building transition relations for module...
Ordering variables using sym_static_order
Transition relation computed : 5 conjuncts
Calling Dynamic Reordering with sift
Done initializing image info...
Building the initial region of the module...
Model-checking formula "Fairness_for_Bob"
ATL_CHECK: formula "Fairness_for_Bob" passed
Converting formula to existential normal form...
Performing semantic check on the formulas...
SIM: building atom dependency info
Start model checking...
Building transition relations for module...
Ordering variables using sym_static_order
Transition relation computed : 6 conjuncts
Calling Dynamic Reordering with sift
Done initializing image info...
Building the initial region of the module...
Model-checking formula "Fairness_for_Alice"
ATL_CHECK: formula "Fairness_for_Alice" passed

Figure 4.16: RDS protocol verification using Mocha

and their countermeasures are discussed below.

Attack 1 on Abuse-freeness (AoAF1): As illustrated in Figure (4.17), the

first attack could be mounted by Alice after she receives Msg2 from Bob. As

Alice has knowledge of the keystone, ks, once she receives Bob’s signature in

Msg2, Alice can determine the outcome of the RDS protocol run and prove to a

TP that Bob has indeed signed the RD. This attack is further illustrated by the

following scenario.

As depicted in Figure (4.17), to sign a deal, RD, with Bob, Alice first creates

and sends Msg1 to Bob. On the receipt of Msg1, Bob performs verifications Bv1

and Bv2. If they are positive, Bob creates and sends Msg2 (i.e. ASignB) to Alice.

4.7. RDS PROTOCOL FORMAL VERIFICATION 143

Alice BobLI Charlie

1- Alice sends Bob Msg1

Msg1={RD||ASignA(RD)||RPLic}

2- Bob performs Bv1 & Bv2

then sends Alice Msg2

Msg2 ={RDASignA
||ASignB(RDASignA

)}

Msg3= {f||EPKB
(ks)}

Msg1'={RD2||ASignA(RD2)||RPLic}

A period (from
receiving Msg2

till sending Msg3)
during which
Alice can cheat
Bob with AoAF1

Protocol Verifications:
BV1: Checking the correctness of RPLic

BV2: Checking the correctness of AsignA

BV3: confirming that H1(ks) equals f which was contained in RPLic

AV1: confirming that the same f is used in both AsignA and AsinB

AV2: checking the correctness of AsignB

8- Bob sends LI an RD activation request

Alice performs AV1 & AV2. if they are postive, Alice
delays sending Msg3 to Bob. She, instead, starts
another RDS protocol with Charlie who offered
a higher price than Bob did

3- Alice sends Charlie Msg'1

4- Charlie performs CV1 & CV2

5- Charlie sends LI an
RD2 activation request 6- After Alice sends Charlie Msg'1

she sends Bob Msg3

7- Bob performs BV3

Figure 4.17: Schematic figure of the AoAF1 on the abuse-freeness property

After receiving Msg2, Alice performs verifications, Av1 and Av2. If they are both

positive, it means that Bob is now committed to the RD. Now, Alice has the

ability to determine the outcome of the RDS protocol run. For example, Alice

could not send Bob ks contained in Msg3. Therefore, Bob will not be able to

make Alice bind to the RD, while Alice can. Alice can also use Bob’s signature,

ASignB, received in Msg2 along with ks to prove to a third party (e.g. Charlie)

that Bob has certainly signed the RD. This is because Alice is in control of ks

which makes ASignB binding to Bob. Therefore, Alice can abuse Bob’s signature.

The following scenario explains how Alice uses AoAF1 to cheat Bob. Alice

can delay sending Msg3, i.e. ks, to Bob and prove to Charlie that Bob has indeed

signed the RD deal. As illustrated in Figure 4.17, during the period (between

receiving Msg2 from and sending Msg3 to Bob) Charlie may be desperately

looking for a second-hand license, Lic. Charlie can then engage with Alice to sign

another deal for Lic, i.e., RD2. Once Charlie receives Msg′1 from Alice, Charlie

144 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

generates an RD2 activation request (RD2−Act−Req) and sends it to LI. Alice

then sends Msg3 to Bob who performs BV 4 and then generates an RD activation

request (RD−Act−Req) and sends it to LI. Bob’s RD−Act−Req, however, will

be rejected by LI, as LI has already received Charlie’s RD2 −Act−Req. In this

scenario, Bob’s signature has been abused. This means that the RDS protocol is

not abuse-free.

Countermeasure to AoAF1: The design of the RDS protocol has taken the

following measures to counter the AoAF1 attack.

Measure 1: Allowing Bob to send an RD activation request to LI once Bob

receives Msg1;

Measure 2: Allowing Bob to send Alice Msg2 and then also send an RD acti-

vation request to LI;

Measure 3: Send Alice Msg2 and then signs another RD3 with another reseller

(Sally), so Bob can choose either to activate RD or RD3.

Using one of these methods, the RDS protocol puts the control of accepting

or rejecting the RD in the hands of Bob. In other words, as depicted in Figure

4.18, these measures will allow Bob to choose from the following options:

Option 1: if Bob has chosen Measure 1, he can avoid the AoAF1 attack as

Bob will send his RD activation request to LI before Alice even starts another

RD signing protocol with Charlie

Option 2: if Bob has chosen Measure 2, Bob will counter the AoAF1 attack

as he will send LI his RD activation request before Charlie does.

Option 3: if Bob has selected Measure 3, he will not wait forMsg3 from Alice.

Rather, he will directly engage with another reseller (Sally) to sign another deal

(RD3). Thus, during the period between sending Msg2 and receiving Msg3, Bob

may get another RD3 which could be better than RD being signed with Alice.

In this case, Bob will get two deals (RD and RD3), and he can choose the better

one of the two to activate. Therefore, if Alice mounts the AoAF − 1 attack, Bob

will not be affected.

To further illustrate the consequences of the AoAF − 1 attack, we summarise

who gains and who loses in various scenarios in the following table:

4.7. RDS PROTOCOL FORMAL VERIFICATION 145

T
ab

le
4.

1:
A

ct
io

n
s

an
d

co
n
se

q
u
en

ce
s

of
d
el

ay
in

g
M
sg

2

A
ct

io
n
s

A
li

ce
B

o
b

lo
se

s
ga

in
s

lo
se

s
ga

in
s

1.
B

ob
w

ai
te

d
an

d
go

t
k
s

fr
om

A
li
ce

N
ot

h
in

g
S
ig

n
ed

R
D

th
at

m
ay

b
e

ac
ti

va
te

d

N
ot

h
in

g
S
ig

n
ed

R
D

th
at

m
ay

b
e

ac
ti

va
te

d

2.
B

ob
w

ai
te

d
an

d
go

t
k
s

fr
om

A
l-

ic
e.

H
e

al
so

si
gn

ed
a

b
et

te
r
R
D

3

w
it

h
an

ot
h
er

re
se

ll
er

N
ot

h
in

g
S
ig

n
ed

R
D

th
at

m
ay

b
e

ac
ti

va
te

d

N
ot

h
in

g
T

w
o

si
gn

ed
R
D
s,

R
D

3
an

d
R
D

,
to

ch
o
os

e
fr

om
.

T
h
e

b
es

t

on
e

w
il
l

b
e

ch
os

en
.

(b
es

t
ca

se
)

3.
B

ob
w

ai
te

d
fo

r
ks

fr
om

A
li
ce

b
u
t

d
id

n
ot

ge
t

it
.

O
n

th
e

ot
h
er

h
an

d
,

b
ot

h
B

ob
an

d
A

li
ce

si
gn

ed

tw
o

ot
h
er

d
ea

ls
.

B
ob

si
gn

ed
a

b
et

te
r

d
ea

l,
R
D

3
,

w
it

h
an

ot
h
er

re
se

ll
er

an
d

A
li
ce

al
so

si
gn

ed
a

b
et

te
r

d
ea

l,
R
D

2
,

w
it

h
an

ot
h
er

b
u
ye

r.

N
ot

h
in

g
T

w
o

si
gn

ed
R
D
s,

i.
e.

R
D

2
an

d
R
D

,
w

h
er

e

R
D

2
is

b
et

te
r

th
an

R
D

.
A

li
ce

ca
n

on
ly

ga
in

so
m

et
h
in

g
u
se

fu
l

if
R
D

2
is

ac
ti

va
te

d
b
y

it
s

b
u
ye

r.

N
ot

h
in

g
T

w
o

si
gn

ed
R
D
s

to

ch
o
os

e
fr

om
,

i.
e.

B
ob

go
t

R
D

3
an

d
R
D

,

w
h
er

e
R
D

3
is

b
et

-

te
r

th
an

R
D

.
N

ot
e

th
at

R
D

is
p
ar

ti
al

ly

si
gn

ed
b
u
t

ca
n

b
e

ac
ti

-

va
te

d
an

d
R
D

3
is

fu
ll
y

si
gn

ed
.

146 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL
T

a
b
le

4
.1

–
co

n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

A
ct

io
n
s

A
li

ce
B

o
b

lo
se

s
ga

in
s

lo
se

s
ga

in
s

4.
B

ob
w

ai
te

d
fo

r
ks

fr
om

A
l-

ic
e

b
u
t

h
e

n
ev

er
go

t
it

.
H

e
h
as

al
so

go
t

an
ot

h
er

b
et

te
r

d
ea

l,
R
D

3
,

si
gn

ed
w

it
h

an
ot

h
er

re
se

ll
er

.
O

n

th
e

ot
h
er

h
an

d
,

A
li
ce

m
ay

h
av

e

si
gn

ed
an

ot
h
er

d
ea

l,
R
D

2
,

w
it

h

an
ot

h
er

b
u
ye

r.

N
ot

h
in

g
T

w
o

si
gn

ed
R
D
s,
R
D

an
d
R
D

2
w

h
ic

h
is

b
et

-

te
r

th
an

R
D

.
If
R
D

2

is
ac

ti
va

te
d
,

A
li
ce

ca
n

ga
in

b
en

efi
ts

.

W
a
it

in
g

fo
r-

e
v
e
r:

A
s

A
li
ce

h
as

go
t

a
b

et
-

te
r

d
ea

l,
R
D

2
,

sh
e

m
ay

n
ev

er

se
n
d

B
ob

th
e

ke
y
st

on
e,

ks
.

In

ad
d
it

io
n
,

si
n
ce

B
ob

d
id

n
ot

si
gn

an
y

ot
h
er

d
ea

l,

h
e

m
ay

w
ai

t
fo

r

ks
th

at
n
ev

er

ar
ri

ve
s.

N
ot

h
in

g

4.7. RDS PROTOCOL FORMAL VERIFICATION 147

From Table 4.1, we can make two remarks. Firstly, if Alice refused to send

ks to Bob, Bob has three options, Option 1-to-Option 3, to overcome Alice’s

misbehaviour. Secondly, there is one case in which Bob may be affected. This

case happens if Bob wants to collect a full-signed RD from Alice (and from other

resellers) before Bob sends an RD activation request to LI. In this case, however,

Bob may never get Msg3 from Alice (and from the other resellers).

To prevent Bob from waiting forever, we suggest adding a time-out field to

Msg2. After sending Msg2 to Alice, Bob waits till this time-out expires and then

Bob may ask Alice to send Msg3 one more time and waits for another time-out.

If Bob still does not receive Msg3 within the second time-out, he may terminate

the protocol run. Note that Bob can always go back to choose Option 1 after

terminating the RDS protocol execution. This means that Bob has always got a

strategy to counter any misbehaviour by Alice.

148 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL
A

lic
e

Bo
b

LI
C

h
a
rl

ie

1-
 A

lic
e

se
nd

s
B

ob
 M

sg
1

M
s
g

1
=

{
R

D
||

A
S

ig
n

A
(R

D
)|

|R
P

L
ic
}

2-
 B

ob
 p

er
fo

rm
s

B v
1

&
 B

v2

th
en

 s
en

ds
 A

lic
e

M
sg

2

M
s
g

2
 =

{
R

D
A

S
ig

n
A
||

A
S

ig
n

B
(R

D
A

S
ig

n
A
)|

|T
im

e
-O

u
t}

M
s
g

3
=

 {
f|

|E
P
K

B
(k

s
)}

M
sg

' 1=
{R

D
2|

|A
Si

gn
A(

RD
2)

||R
P L

ic
}

P
r
o
t
o
c
o
l
V

e
r
ifi

c
a
t
io

n
s
:

B
v
1
:

C
h

e
c
k
in

g
 t

h
e
 c

o
r
r
e
c
t
n

e
s
s
 o

f
 R

P
L
ic

B
v
2
:

C
h

e
c
k
in

g
 t

h
e
 c

o
r
r
e
c
t
n

e
s
s
 o

f
 A

s
ig

n
A

B
v
3
:

c
o
n

fi
r
m

in
g

 t
h

a
t
 H

1
(
k
s
)
 e

q
u

a
ls

 f
 w

h
ic

h
 w

a
s
 o

r
o
v
id

e
d

 i
n

 R
P

L
ic

A
v
1
:

c
o
n

fi
r
m

in
g

 t
h

a
t
 t

h
e
 s

a
m

e
 f

 i
s
 u

s
e
d

 i
n

 b
o
t
h

 A
s
ig

n
A
 a

n
d

 A
s
in

B

A
v
2
:

c
h

e
c
k
in

g
 t

h
e
 c

o
r
r
e
c
t
n
e
s
s
 o

f

A
s
ig

n
B

A
li
c
e
 p

e
rf

o
rm

s
A

V
1
 &

 A
V

2
.

if
 t

h
e
y
 a

re
 p

o
st

iv
e
,

A
li
c
e
 d

o
e
s

n
o
t

se
n

d
 M

sg
3
 t

o
 B

o
b

,
b

u
t

si
g

n
s

R
D

2
 w

it
h

 C
h

a
rl

ie

3
-

A
li
c
e
 s

e
n

d
s

C
h

a
rl

ie
 M

sg
' 1

4
-

C
h

a
rl

ie
 p

e
rf

o
rm

s
C

V
1
 &

 C
V

2

5
-

C
h

a
rl

ie
 s

e
n

d
s

L
I
a
n

R

D
2
 a

c
ti

v
a
ti

o
n

 r
e
q

u
e
st

6
-

A
ft

e
r

A
li
c
e
 s

e
n

d
s

C
h

a
rl

ie
 M

sg
' 1

sh
e
 s

e
n

d
s

B
o
b

 M
sg

3

7
-

B
o
b

 p
e
rf

o
rm

s
B

V
3

O
p

ti
o
n
1

:
B

o
b

 s
e
n

d
s

a
n

 R
D

1
 a

c
ti

v
a
ti

o
n

 r
e
q

u
e
st

 t
o
 L

I

O
p

ti
o
n
 2

:
B

o
b

 s
e
n

d
s

a
n

 R
D

3
 (

R
D

 s
ig

n
e
d

 w
it

h
 S

a
ll
y
)

a
c
ti

v
a
ti

o
n

 r
e
q

u
e
st

 t
o
 L

I

O
p

ti
o
n
 3

:
B

e
fo

re
 T

im
e
-o

u
t

e
x
p

ir
e
s,

 B
o
b

 s
e
n

d
s

a
n

 R
D

 a
c
ti

v
a
ti

o
n

 r
e
q

u
e
st

 t
o
 L

I

Time-out

S
a
ll
y

Du
rin

g
tim

e-
ou

t,
Bo

b
sig

in
s R

D 3
: w

ith
 sa

lly

S
ig

n
e
d

 R
D

3

F
ig

u
re

4.
18

:
S
ch

em
at

ic
fi
gu

re
of

th
e

co
u
n
te

rm
ea

su
re

to
th

e
A
oA
F

1
A

tt
ac

k

4.7. RDS PROTOCOL FORMAL VERIFICATION 149

Specifying a time-out value for Msg2: There are a number of factors

that should be considered when specifying a value of the time-out. These factors

are:

• TDel−Msg2 : The time interval during which Msg2 should be delivered to

Alice across the network.

• TAv1+Av2 : Time required for Alice to perform verifications, Av1 and Av2.

• TProve2C : Time required for Alice to prove to Charlie (i.e. Prove2C) that

Bob has indeed signed a deal, RD. This indicates the time taken by Charlie

to perform verifications, Av1 and Av2, in order to make sure that Bob has

indeed signed the RD.

• TMsg3 = TGen−Msg3 + TDel−Msg3 : Time required for Alice to generate Msg3

and to deliver it to Bob.

• TMsg′1
= TGen−Msg′1

+ TDel−Msg′1
: Time required for Alice to generate Msg′1

(the 1st message of an RDS protocol run between Alice and Charlie) and

to deliver it to Charlie.

• TCv1+Cv2 : Time required for Charlie to perform verifications, Cv1 and Cv2,

after she receives Msg′1 from Alice.

• TRD2ActReq = TGen−RD2ActReq + TDel−RD2ActReq: Time required for Charlie to

generate an RD2 − Act−Req and to deliver it to LI.

In addition to the factors above, additional delays caused by network con-

gestions and/or delays variation due to capabilities of the signers’ devices should

also be considered. Based on all these factors, the inequality (4.15) specifies a

value of the time-out Bob should wait before he terminates the RDS protocol run

after sending Msg2 to Alice.

Time− out < TDel−Msg2 + TAv1+Av2 + TMsg1‘ + TCv1+Cv2 + TRD2−Ac−Req (4.15)

Attack 2 on the Abuse-freeness (AoAF2) : The formal verification of

the abuse-free property has also led to the identification another attack on the

abuse-free property (i.e. AoAF2). In this attack, Bob makes use of Alice’s binding

signature on another item contained in Msg1 to prove to a third party that Alice

150 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

has engaged in an RDS protocol with Bob. This engagement could motivate the

third party to sign a better deal with Bob.

The following scenario illustrates how AoAF2 may be committed. Suppose

that RPlic, provided in Msg1, is of the form,

RPlic = (Lic||f ||SigLI(Lic||f)||SignA(Lic||f)), where SignA(Lic||f) is to prove

that the license, Lic, is Alice’s license. In addition, suppose that Alice and Bob

have agreed to sign a deal, RD, for Lic. To do so, Alice first signs this RD and

sends it along with RPLic to Bob in Msg1. After receiving Msg1, Bob could use

Alice’s binding signature, SignA(Lic||f), to prove to another reseller (e.g. Sally)

that Alice has indeed started an RDS protocol run with Bob. Since Sally can

verify that the signature, SignA(Lic||f) is Alice’s signature, Sally will be assured

that Alice has indeed engaged in the RDS protocol run with Bob. In this way,

Bob may be able to coerce Sally to resell her license with a price less than what

has been agreed with Alice. Thus, the RDS protocol is not abuse-free.

Countermeasure to AoAF2: Our RDS protocol has taken the following

measure to counter the AoAF2 attack. We have designed RPlic with the follow-

ing form, RPlic = (Lic||f ||SigLI(Lic||f)). Since this form does not contain any

information linking Alice’s identity to Lic, it is hard for Bob to mount AoAF2.

Other Attacks: Eavesdropping Attack

In addition to analysing attacks on the abuse-free property, the formal verifi-

cation of the RDS protocol has also led to the identification of an eavesdropping

attack. If the underlying communication channels do not have authentication

and confidentiality protections, a dishonest reseller may be able to forge, delay,

and modify messages sent between the buyer and LI. As a result, the fairness

and the abuse-freeness property of the RDS protocol will be compromised. The

following scenario gives more details.

To sign a deal, RD, with Bob, Alice sends him Msg1. Bob then replies with

Msg2 after positive verifications of BV 2 and BV 3. Once Alice receives Msg2 from

Bob, she can simply refuse or delay sending Msg3 to Bob. As she does not want

Bob to successfully activate the RD with LI, she may eavesdrop on the channel

between Bob and LI. When Bob sends LI an RD activation request to activate

the RD partially signed by Alice and Bob, Alice may intercept this request. She

may change the message content such that LI rejects Bob’s request. For example,

if this request contains (A, ASignB, RPlic, and PaymentB). Alice may remove

ASignA from the request and put another cryptographic token. In this way, LI

4.8. PROTOCOL PERFORMANCE ANALYSIS 151

will reject the request as it does not contain Alice’s signature. This breaks the

fairness property for Bob as Alice has received ASignB in Msg2 but Bob does

not have ASignA from LI.

Here is another example. Alice may intercept Bob’s RD activation request

sent to LI and then delays this request till she abuses Bob’s commitment (i.e

ASignB) to the signed RD. For instance, Alice may get ASignB from Bob’s

request and then use ks she holds to prove to Charlie that Bob has indeed signed

a deal, RD, for a license, Lic. As shown in the AoAF1 attack, Alice can then

coerce Charlie to sign a better deal (RD2) for Lic. Charlie then sends LI an

activation request to activate RD2. Later, Alice may forwards Bob’s request to

LI. However, as Charlie’s request has been received by LI before Bob’s request,

LI will activate Charlie’s request and reject Bob’s one. Therefore, in this case,

Bob’s signature (ASignB) is abused.

Countermeasure to Eavesdropping Attack: To thwart the attack de-

scribed above, the channel between Bob and LI should be protected with confi-

dentiality and integrity service. By using SSL (i.e. Assumption 8) in the underly-

ing channels between each pair of the involved entities are confidentially protected

and authenticated, it is hard for the above mentioned attack to succeed.

4.8 Protocol Performance Analysis

4.8.1 RDS Protocol Computational Cost

In this section, the computational cost of the RDS protocol is evaluated. As the

exponentiation operations, Exp#, are the heaviest computational operations in

the designed protocol, the evaluation will be largely performed by computing the

number of the exponentiation operations used in the protocol. Table 4.2 shows

the number of the exponentiation operations for each entity in two cases: when

LI is not used and when LI is used.

Table 4.2: Exponentiation operations performed by protocol participants
Alice
Exp#

Bob
Exp#

LI
Exp#

Total
Exp#

Without LI’s help 7 8 0 15

With LI’s help
no ks 3 9 9 21

invalid ks 7 10 9 26

152 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Without LI’s help: This is the case when Alice and Bob faithfully followed

the designed protocol. During an execution the protocol, Alice performs 7 Exp#

(1 in the setup algorithm, 2 when ambiguously signing an RD deal, 3 when

verifying Bob’s ambiguous signature, and 1 when releasing ks, i.e. encrypting ks

with Bob’s public key). Also, Bob performs 8 Exp# (1 in the setup algorithm,

2 when ambiguously signing the RD deal, 3 when verifying Alice’s ambiguous

signature, 1 when verifying RP of Alice’s license, and 1 when verifying ks released

by Alice). In this scenario, LI is not involved, so LI performs 0 Exp#.

With LI’s help: There are two cases in which LI is involved to help. Firstly,

when Alice sends Msg1 to Bob but does not release ks at Msg3. To get ks, Bob

generates an RD activation request, RD−Act−Req, and sends it to LI to request

for ks while requesting for a license purchase. In this scenario, Alice performs

3 Exp# (1 in the setup algorithm, 2 when ambiguously signing the RD deal).

Bob performs 9 Exp# (1 the setup algorithm, 2 when ambiguously signing the

RD deal, 3 when verifying Alice’s ambiguous signature, 1 when verifying RP of

Alice’s license, 1 when signing RD −Act−Req, and 1 when verifying the result

of RD − Act − Req received from LI). In addition, to send Bob ks along with

the license, LI needs to perform 9 Exp# (1 when verifying Bob’s signature on

RD − Act − Req, 1 when verifying RP included in RD − Act − Req, 6 when

verifying Alice’s and Bob’s ambiguous signature, and 1 when sending Bob ks and

the license which require LI’s signature).

Secondly, when Alice sends Msg3 to Bob but does not include the valid ks

the message (i.e. send invalid keystone). In this case, Alice performs 7 Exp# (

the same exponentiation operations she does in the case of execution the RDS

protocol without LI’s help). Bob performs 10 Exp# (8 Exp# like the case of

executing the protocol without LI’s help and another 2 Exp# to get a valid ks

from LI, i.e. 1 when signing RD−Act−Req, and 1 when verifying the result of

RD − Act − Req received from LI). To send LI a valid ks, LI performs 9 Exp#

(the same as LI does when Bob does not receive ks).

It should be emphasized that (1) the 9 exponentiation operations, performed

by LI, will only be performed if Bob had paid LI the price agreed between him

and Alice. In other words, these operations are performed as part of the reselling

process of the license for which Alice and Bob have signed RD; (2) the extra

Exp# performed by Bob when he receives an invalid ks or does not receive any

ks, are computational costs required for Bob to not only obtain ks but also to

4.8. PROTOCOL PERFORMANCE ANALYSIS 153

activate the license on his device, i.e. completing the license purchase process.

4.8.2 RDS Protocol Communication Cost

Table 4.3 and Table 4.4 demonstrate the communication overhead of the RDS

protocol. This overhead is evaluated in terms of the number and the sizes of

messages exchanged between the protocols entities. To evaluate message size,

the following assumptions have been used:

• A random number generator of length 512-bits is used to generate the key-

stone, ks. This length is chosen to ensure security.

• Another random number of length 128-bits is used to generate a license ID,

Lic. The length of this random number could be changed to suit the scale

of licenses to be generated by LI.

• The MD5 algorithm is used to generate a keystone fix, f , from the keystone,

ks. Thus the hash value |H1()| is 128-bits long.

• The SHA-1 algorithm is used to generate other hash values in signature

generations. Thus the hash value |H2()| and any other hash value are 160-

bits long.

• The primes |p| = 1024 bits, |q| = 160 bits are used to (1) generate pub-

lic/private key pair for Alice and Bob during the signing process using the

CS scheme, (2) create the ambiguous signatures of Alice and Bob. To get

more secure key pair, other values for p and q could be considered, e.g. |p|
= 2048 bits, |q| = 512 bits.

• The RSA algorithm is used for encryption. The key used for RSA is 1024

bits long, thus the size of the output is in multiples of 1024-bits. Since ks

is 521-bits long, the ciphertext EPKB
(ks) using RSA is 1024-bits long.

• RPLic contains LI’s signature generated using a 1023-bits long RSA private

key. As the content to be signed is 160-bits long (the hash value produced

by SHA-1 algorithm), then the generated signature on RPLic will be of

length 1024-bits.

In summary, an execution of the RDS protocol will incur a communication

overhead of 12719 bits which are computed of 3 messages (total protocol mes-

sages).

154 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Table 4.3: Items and their size in each RDS protocol message
RDS messages Item Size(bits)

Msg1

RD* 4472

ASignA

f 128
hA 160
sA 160

RPLic

f 128
Lic 128
SigLic 1024

Msg2
RDASignA

4920

ASignB

f 128
hB 160
sB 160

Msg3
f 128

EPKB
(ks) 1024

* The RD deal size used in this evalution is 4472 bits long. The deal size could change based
on the terms and conditons specified in it

Table 4.4: Communication cost of each RDS protocol message
Protocol message Msg1 Msg2 Msg3

Communication cost (in bits) 6199 5368 1152

4.8.3 Comparison with Related Work

This section compares the RDS protocol with the related work published in the

literature. The signature exchange protocol (Chen’s protocol) proposed in [8] is

the most related work to the RDS protocol. Table 4.5 demonstrates a comparison

between the two protocols.

As can be seen from the table, the RDS protocol has got two major advantages

over Chen’s protocol. Firstly, the RDS protocol provides the abuse-freeness prop-

erty whereas Chen’s protocol does not. Secondly, with the RDS protocol, the key-

stone, ks, is integrity-protected regardless of channel security measures whereas

with Chen’s protocol ks is only protected when integrity-protected channels are

used.

Both protocols achieve the properties of strong fairness, NOO, and NOR. In

the case where the keystone, ks, is not released by the initial signer, both protocols

need help from a TTP to achieve these properties.

4.8. PROTOCOL PERFORMANCE ANALYSIS 155

Table 4.5: Comparison between Chen’s protocol and the RDS protocol
Chen’s Protocol RDS Protocol

Strong fairness Yes (with help from
TTP)

Yes (with help from
TTP)

Abuse-freeness No Yes
Computational
Cost

12 Exp# 15 Exp#

Number of Msgs 3 Msg 3 Msg
NOO Yes Yes
NOR Yes Yes
ks integrity Yes (if the communi-

cation channel is in-
tegrity protected)

Yes

The estimation of the computational costs of the compared protocols are eval-

uated in terms of the exponentiation operations taken in a protocol execution.

This estimation indicates that Chen’s protocol is cheaper than the RDS proto-

col by 3 Exp #. However, the extra 3 exponentiation operations performed by

the RDS protocol have allowed us to achieve the abuse-freeness and ks integrity-

protections.

4.8.4 Prototyping and Evaluation

This section describes the design and the implementation of the RDS protocol.

Based on this implementation, we evaluate the performance of the protocol.

4.8.4.1 RDS Protocol Design

The design of the RDS protocol, as shown in Figure 4.19 consists of three par-

ticipants: License Issuer (LI), reseller (Alice), and buyer (Bob). The role of each

participant is as follows:

• LI: It issues ks and RP for a license, Lic, and sends them to Alice. LI also

resolves any fairness problem that may happen during the RDS protocol

execution. Issuing ks and RP , and resolving any fairness disputes are done

7during a license issuing process and an RD activation process, respectively.

• Alice: She wants to resell her license, Lic, so she uses ks and RP to sign

an RD deal with Bob. Alice also needs to generate (1) a public/private key

156 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

pair3 to be used for RD singing, (2) public parameters, described in Section

A.1, i.e. p, q, and g. She shares these parameters and her public key with

Bob.

• Bob: He receives the public parameters from Alice. He also needs to gen-

erate his public/private key pair and share his public key with Alice. In

addition, Bob needs to sign an RD deal with Alice to buy Lic from Alice.

Moreover, Bob could ask LI to resolve any fairness problem in case Alice

does not complete the signing process fairly.

The design of the RDS protocol consists of four main parts:

• Issuing ks & RP: This part is achieved prior to the execution of the RDS

protocol. It is executed by LI to issue Alice ks and RP containing f . LI

performs this operation while it is issuing a resalable license, Lic, to Alice

for the first time. As the operation of issuing ks & RP is not supported

by the current DRM system, this operation needs to be implemented to

support the operation of the RDS protocol.

• RD Pre-Signing: This part is done by both Alice and Bob to (1) agree

on and exchange the public parameters p, q and g, (2) generate their pub-

lic/private key pairs (used only for the signing process), (3) exchange their

respective public keys.

• RD Signing: This part is run between Alice and Bob to sign a Reselling

Deal (RD) for a License, Lic. In this part, Alice and Bob perform the

actual signing process of the RD deal as described in Section A.1. In the

RD signing process, Alice and Bob need to engage in the following opera-

tions: (a) generating ambiguous signatures, (b) verifying these signatures,

(c) verifying binding signatures.

• RD Resolution: This part is executed between Bob and LI if Bob does

not receive ks from Alice and wants to continue to purchase Lic from Alice.

In this case, Bob will send LI an RD activation request containing (1) am-

biguous signatures for both of him and Alice, (2) payment, (3) agreed RD,

and (4) Bob’s signature on this request. On the receipt of this request, LI

3This pair and Bob’s pair (below) are created as part of the CS scheme setup algorithm and
it is only used during the RD signing process.

4.8. PROTOCOL PERFORMANCE ANALYSIS 157

ALice

LI

Fa
irn

es
s
re

so
lu

tio
n

/

RD a
ct

iv
at

io
n

RD Pre-Singing

ks & RP issuing /

License issuing

RD Singing
Bob

Figure 4.19: RDS protocol participants

needs to verify its validity. Thus, this phase involves the following opera-

tions: (a) digital signature generation, and (b) payment method, (c) digital

signature verification. Note that, the payment method is assumed to be

secure and similar to the one used in the current DRM systems.

4.8.4.2 RDS Protocol Implementation

Figure 4.20 describes the structure and the relation of the implemented classes

which are executed during a run of the RDS protocol.

As outlined in Figure 4.20, the RDS protocol implementation consists of seven

classes. There are three classes containing “main method”. They are Class Alice

(Reseller), Class Bob (Buyer), and Class LI. In addition, there are four other

classes, KeysGerneration, RSAsignature, RSAencryption, and RSAdecryption to

support the main three classes. For example, prior to sending the keystone, ks,

to Bob, Alice uses RSAencryption class to encrypt ks with Bobs public key.

The four parts of the RDS protocol, mentioned above, are implemented as

follows.

Issuing ks & RP is achieved by having LI run its class to generate the

keystone, ks, and the keystone fix, f , using the method, GenerateksAndf. LI then

issues the Reselling Permission, RP , containing f using the method, IssueRP. LI

then sends ks and RP while it sends the resalable license, Lic, to Alice.

158 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Figure 4.20: Classes created for the implementation of the RDS protocol

RD Pre-Singing is done by having Alice run her class to generate the public

parameters p, q and g using the method SetupA. Note that these parameters are of

class Biginteger to ensure their security. Alice also generates her public/private

key pair (ASetupPubk and ASetupPrvk) using the method SetupA. Alice then

sends the values g, p, q, and ASetupPubk to Bob using the method, SendMes-

sageA. In this case, Alice will be acting as a client and Bob will be run as a

server waiting for a connection from Alice. Once Bob receives these values, he

generates his setup public/private key pair (BSetupPubk and BSetupPrvk). Bob

then sends his BSetupPubk to Alice using the method SendMessageB. This ends

the RD Pre-Signing part.

RD Signing is implemented as follows. Once, Alice receives BSetupPubk

from Bob, she uses the method, AmbiguousSignA to ambiguously sign an RD

deal. She then uses the method SendMessageA to send the signed RD to Bob.

Using the method VerifySignA, Bob will verify Alice’s ambiguous signature and

4.8. PROTOCOL PERFORMANCE ANALYSIS 159

using the method VerifyRP he will verify the authenticity of RPLic sent with the

signed RD. Bob then uses the method AmbiguousSignB to ambiguously sign RD

and send it back to Alice using the method SendMessageB. Using the method

VerifySignB, Alice verifies Bob’s ambiguous signature and then sends ks to Bob

using the method ReleaseKs. Finally, Bob will use the method VerifyKs to verify

ks received from Alice.

RD Resolution is accomplished by having Bob send an RD activation re-

quest to LI using the method RDactivationReq. On the reception of this request,

LI will use the method VerifyRDActRequest to verify whether this request can be

activated (i.e. perform LI’s verifications described in Section 4.6). LI then sends

ks to Bob while sending the activated license to him.

4.8.4.3 Hardware and Software Architecture

To prototype the RDS protocol, the following hardware and software have been

used. We have used a desktop computer running Windows XP version 2003 with

a 2.66 GHs Intel Core2 and 1024 MB of RAM. The timing results of the RDS

protocol execution presented here are based on this computer specification.

To implement the RDS prototype, we have used JAVA 2 Platform, Standard

Edition (J2SE). JAVA is chosen because it supports a set of standard security

interfaces. Examples of these interfaces include the hash functions SHA-1 and

MD-5, and the symmetric key encryption algorithms DSA and AES.

4.8.4.4 RDS Protocol Evaluation

The evaluation of the RDS protocol consists of two parts: performance evaluation

presented in Section 4.8.4.4.1, and security test evaluation discussed in Section

4.8.4.4.2.

4.8.4.4.1 Performance Evaluation To evaluate the computational cost of

the RDS protocol, we have run the RDS prototype and measured the time taken

to execute the protocol under two scenarios. The first scenario is when only Alice

and Bob are involved in the protocol execution, i.e. when LI is not used. The

second scenario is when Bob does not receive the keystone, ks, and invokes LI

to get ks, i.e. when LI is used. For each these scenarios, the RDS protocol is

executed 10 times in which 10 different RDs are used, i.e. different license prices

and different terms and conditions are considered. The average time refers to the

160 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Figure 4.21: Comparing the RDS protocol with related work

average values of the execution times of these 10 cases. The results of these two

scenarios are shown in Figure 4.21.

As shown in the figure, when LI is involved, the time taken to perform the

RDS protocol (4134.14 milliseconds) is approximately 27% more than the time

taken when LI is not invoked (2929.07 milliseconds). This extra time is caused by

two reasons. Firstly, LI needs to perform LI’s verifications described in Section

4.6. Secondly, the extra communication between Bob and LI.

To evaluate the performance of the RDS protocol when the market power is

applied (i.e. signing 3 deals for one licenses), the RDS protocol is executed 10

times for each of the following cases: (1) fair signing : Alice and Bob faithfully

follow the protocol; (2) ks not sent : Alice receives Msg2 but does not send ks to

Bob; and (3) invalid ks : Alice receives Msg2 but send invalid ks to Bob. In the

case (2) and (3), Bob invokes LI to obtain ks while activating a signed deal. The

time measurements are then taken by computing the average of the 10 execution

rounds for each case. The results of these cases are shown in Figures 4.22, 4.23,

and 4.24.

These figures show two remarks. Firstly, as shown in Figure 4.24, LI’s per-

formance does not affect by the number of deals signed for one license. This is

because, if LI has received, for example, 3 deals for one license, LI only activates

the first deal received (i.e. first-come first-served). In addition, once a deal is

4.8. PROTOCOL PERFORMANCE ANALYSIS 161

Figure 4.22: The average time taken by Alice vs a number of deals signed for one
license

Figure 4.23: The average time taken by Bob vs a number of deals signed for one
license

activated for the license, LI rejects any further deals which may be received later.

Secondly, the cost of apply the market power is only imposed on the entity that

may benefit from it. For example, if Bob wants to collect 3 deals from different

resellers for one license, he needs to run the RDS protocol 3 times with these

resellers. As shown in Figure 4.23, the time required for Bob to sign these 3 deals

depends on the behaviour of the resellers (i.e. the three cases mentioned above,

162 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

Figure 4.24: The average time taken by LI vs a number of deals signed for one
license

fair signing, ks not sent, or ks invalid). The same can be applied to the case of

Alice if she wants to offer her license to 3 buyers. This is shown in Figure 4.22.

4.8.4.4.2 Test against Security Attacks To evaluate the security (i.e. the

integrity of a deal and keystone and the authorisation of using a reselling permis-

sion) strength of the RDS protocol, we have tested a number of identified attacks

against the protocol prototype. These attacks could be mounted either by Alice

or by Bob. The security evaluation has shown that the prototype can thwart all

these attacks. When an attack is detected, the prototype terminates the protocol

execution as designed. To further explain this evaluation, we have used a test

case for each of Alice’s and Bob’s attacks.

Alice’s Attacks: Examples of the attacks mounted by Alice include (a) a

reselling deal alteration, (b) a reselling permission swapping, and (c) an invalid

keystone.

A reselling deal alteration attack: In this attack, Alice tampers with a

reselling deal, RD1, agreed during a negotiation phase. Alice, in Msg1, may alter

a license ID agreed in RD1 to another less valuable license ID. This attempt

illustrates the scenario where a reseller wants to cheat a buyer by reselling a

higher-price license, agreed in the deal, with a lower-price one, sent in RD in

Msg1. In our prototype, before Alice sends RD1 in Msg1 to Bob, we deliberately

had Alice change the license ID, agreed in the negotiation phase, to another license

4.8. PROTOCOL PERFORMANCE ANALYSIS 163

ID. Upon receiving Msg1, the first verification, Bob performs, is to verify that

the license ID negotiated is identical to the one in the deal received, i.e. Bob

performs verification BV 1, depicted in Figure 4.4. With this verification, Bob can

detect the license ID alteration attack and can terminate the protocol execution

before signing RD1, even before performing heavy verifications such as BV 2 and

BV 3. Any other alteration in the deal, Bob can detect it with verification BV 3

as in this verification, Bob uses his copy of the deal to verify Alice’s ambiguous

signature.

A reselling permission swapping attack: In this attack, also in Msg1,

Alice swaps a reselling permission for a license, agreed in a deal RD, with another

less valuable permission. This attempt demonstrates another scenario where a

reseller wants to cheat a buyer by reselling a higher-price license, agreed in the

deal, with a lower-price one, sent in RD in Msg1. In our prototype, prior to

sending Msg1 to Bob, we had Alice replace this permission with another one.

Like the case of detecting the license ID alteration attack, with verification BV 1

Bob can detect the license ID contained in the received permission is not identical

to the one contained in the agreed deal4.

An invalid keystone attack: In this attack, in Msg3, a malicious Alice

sends Bob a keystone, but an invalid one, i.e. a keystone which is not corre-

sponding to the keystone fix contained in the reselling permission received in

Msg1. This attack demonstrates a case where a reseller wants to have a buyer’s

binding signature on a deal but the buyer can not have the reseller’s binding sig-

nature on the same deal5. In our prototype, we implemented this case by making

Alice send Bob an invalid keystone in Msg3. Once Msg3 is received, with verifi-

cation BV 4, Bob can detect that the keystone is invalid. Bob is given a choice to

initiate an RD activation process with LI to obtains the valid keystone along with

an activated license (i.e. Alice’s license which can be accessed on Bob’s device).

Bob’s Attacks: These attacks may be committed while Bob recovering a

keystone, ks, from LI if Alice does not send ks or sends an invalid ks to Bob.

Examples of the attacks mounted by Bob include (a) an insufficient payment,

and (b) a reselling deal alteration.

An insufficient payment attack: In this attack, Bob attempts to make a

4Note that at the end of a deal negotiation phase, each of Alice and Bob has an identical
deal, RD, containing a license ID, agreed price for the licence and other terms and conditions.

5As the reseller maintains the keystone,ks, she can have the buyer’s binding signature on
the deal once she receives Msg2 from a buyer.

164 CHAPTER 4. A RESELLING DEAL SIGNING (RDS) PROTOCOL

payment less than the amount agreed in a reselling deal ambiguously signed by

Alice. This case illustrates a scenario where a buyer wants to cheat LI by making

an insufficient payment. Note that with this attack, a reseller will not be affected

as he will claim from LI a payment equal to the amount stated in the deal but not

equal to the amount paid to LI. In our prototype, we implemented this case by

allowing Bob to make a payment less than that is specified in the deal contained

in the activation request. Upon receiving this request, LI can detect this attack

while performing verification LIV 1 (see Section 4.6). LI then stops the protocol

execution.

A reselling deal alteration attack: In this attack, Bob tampers with a

reselling deal, RD1, ambiguously signed by Alice and received in Msg1. Prior to

signing his ambiguous signature on RD1, Bob may modify the payment stated

in RD1, P1 into a smaller amount, P2. Bob then ambiguously signs RD1 and

contains RD1 into an RD activation request and sends it to LI. Bob also makes

the payment, P2, to LI. In this case, the payment verification, LIV 1, described

in Section 4.6, will be positive. This attempt shows a scenario where a buyer

wants to cheat a reseller by paying a little-price than agreed in the deal6. In

our prototype, before Bob sends an RD activation request to LI, we intentionally

allowed Bob to change the payment, agreed in RD1, to another little payment.

When receiving the request and while performing verification LIV 1, LI will not

notice this attack. However, with verification, LIV 5 (see Section 4.6), LI can

detect that RD1 used in Alice’s ambiguous signature is different than that is

used in Bob’s ambiguous signature. LI then terminates the protocol execution.

A reselling permission swapping attack: In this attack, like the case of

Alice mentioned above, Bob may swap a reselling permission received in Msg1

with another high-value permission. In an RD activation request, Bob then con-

tains this permission to get a high-value license. In our implementation, we

allowed Bob to do so. However, after receiving the request and while performing

verification LIV 3, described in Section 4.6, LI can detect this attack and terminate

the protocol execution.

6Note that, unlike the case of the insufficient attack, in the deal alteration attack, LI will
not be affected but Alice. This is because, LI will only forward the payment stated in the deal
to Alice.

4.9. CHAPTER SUMMARY 165

4.9 Chapter Summary

This chapter has first given a survey of the current approaches of designing a

contract signing protocol. It has then showed that none of the existing protocols

can be adopted to sign a Reselling Deal (RD) in the license reselling scenario.

The chapter has then presented a fair and abuse-free contract signing protocol

(i.e. RDS protocol). This protocol is designed such that it does not make use of a

dedicated TTP to help with achieving fairness. The protocol is designed to allow

a reseller and a buyer to fairly sign a contract called (Reselling Deal) to support

fair license reselling. The protocol design has made full use of the special features

provided by two building blocks: (1) the CS scheme that provides both weak

fairness and ambiguity, and (2) the existing license distribution infrastructure

(i.e. LI). By combining the weak fairness property of the CS scheme and the

existing LI, our protocol achieves strong fairness. Furthermore, by utilising the

ambiguity of the CS scheme and the joint signature of both Alice and Bob on the

RD contract, the protocol provides abuse-freeness. In addition, it has also shown

that our protocol has a range of potential applications, including supporting the

reselling of both digital licenses and access permissions.

Informal analysis of the protocol design has been conducted. In addition, to

informally analysing our RDS protocol, formal verification tools have been in-

vestigated. Through the investigation, the Mocha model checker is found to be

the most suitable tool for the verification of the RDS properties. The chapter

proceeded to formally verify the protocol using the Mocha model checker. The

verification results have shown that the fairness and the non-repudiation proper-

ties are satisfied. On the other hand, the verification has led to the identification

of two attacks on the abuse-freeness property, and we have discussed countermea-

sures to these attacks.

Moreover, this chapter has presented a theoretical performance analysis of the

RDS protocol. A comparison between the RDS protocol and its related work is

conducted, and the comparison results showed that the RDS protocol performs

better. To verify the theoretical analysis, a prototype of the RDS is then imple-

mented using JAVA. Using this implementation, further performance evaluation

and security test ware conducted. The results of this evaluation confirmed the

theoretical analysis results.

Chapter 5

A Fair and Secure License

Reselling Protocol

This chapter introduces the design and analysis of a novel protocol suite, called

Fair and Secure License Reselling (FSLRP) to support a single reselling of a

digital license. In detail, Section 5.1 gives an overview of the building blocks

used in FSLRP design. Section 5.2 presents the design preliminaries of FSLRP,

namely notations, assumptions and requirements. Section 5.3 gives an overview

of the FSLRP suite before describing it in detail in Section 5.4. Section 5.5

analyses FSLRP against potential threats and attacks while Section 5.6.2 presents

a comparison of the FSLRP suite with related work. Finally, Section 5.7 concludes

the chapter.

5.1 Building Blocks

This section gives an overview of the main building blocks used in the design of the

novel FSLRP suite. These building blocks are market power, License Revocation

List (LRL), existing license distribution infrastructure (LI and DRM client), and

Reselling Permission (RP).

5.1.1 Market Power

In a real-life marketplace, market power is defined as the ability of a seller and

a buyer to influence the price of a product being sold in the marketplace [133].

In this marketplace, the seller and the buyer are two separate decision-making

167

168 CHAPTER 5. RESELLING DEAL METHOD

entities. Each has its own decision variables. These variables could influence a

product price which is offered in the marketplace. On one hand, the seller wants

to maximize his profit. He may do so by using one of the following approaches:

(1) offering his product at a price that is as high as possible; (2) offering his

product at a price lower than others’ but selling as many copies as possible. The

buyer, on the other hand, would like to pay as little as possible for an item. To

get a lower or the lowest price, the buyer may need to search for and compare as

many offers as possible before finding a better or the best offer, i.e., the one with

lower or the lowest price, thus minimising his spending. Therefore, to support

the monetary interests of both the resellers and the buyers, the reselling facility

should allow the reseller of a license to sell it at any price and allow a buyer

to search for and be able to choose one matching his price expectation. While

supporting this market power, it should not be possible for either the two entities

to cheat or take any advantage over the other.

In designing the FSLRP suite, we have implemented this market power through

the use of three mechanisms: (1) a Reselling Deal (RD), (2) ambiguous signa-

tures offered by the Concurrent Signature (CS) scheme, (3) an existing license

distribution infrastructure including a License Issuer (LI), and a conditional key-

stone released by LI. With these supports, both resellers and buyers will have the

freedom to set or choose their respective deals. A reseller can sign as many deals

with as many potential buyers as possible. These deals may be at different prices.

Similarly, a buyer could sign as many deals as possible with different resellers.

All these deals will be inactive till one of them is submitted to, and accepted,

by LI. These inactive deals bear both the resellers’ and the buyers’ ambiguous

signatures. Ultimately, it is up to a buyer to decide which deal he would like

to select, i.e. to activate. When a buyer wants to activate a particular RD, he

sends this RD along with the required payment to LI. LI will then turn the corre-

sponding ambiguous signatures on the RD into binding signatures. This is done

by releasing the keystone used in generating these signatures, thus activating the

RD chosen by the buyer.

5.1.2 Existing License Distribution Infrastructure

As our reselling facility is built on the existing license distribution infrastructure,

this section describes this infrastructure. The infrastructure mainly consists of

two components: a License Issuer (LI) and a DRM client.

5.1. BUILDING BLOCKS 169

5.1.2.1 License Issuer (LI)

A License Issuer (LI) is a partner of a content owner. In a typical DRM system,

LI performs the following functions: (1) getting Content Encryption/Decryption

Keys (CEDK) from content owners who have encrypted their digital contents with

these keys; (2) assigning usage rights to DRM-protected contents, and (3) gener-

ating and distributing digital licenses which specify usage rights controlling the

access to DRM-protected contents. Typically, a digital license contains CEDK,

license-ID, content-ID, and usage right specifications. LI is also responsible for

authenticating DRM clients representing consumers. Of course, prior to issuing

licenses to consumers (or to DRM clients), LI makes sure that the consumers

have made payment for the requested license [134, 135].

5.1.2.2 DRM Client

A DRM client is a secure and tamper-proof software loaded on consumers’ devices.

It enables consumers to download and access encrypted contents. The client also

receives licenses from LI, authenticates both the licenses and the contents, and

uses CEDK keys to decrypt the contents before sending them to the content

rendering software for rendering. In addition, it is responsible for enforcing usage

rights associated with the digital contents. In other words, whenever digital

contents are received on consumers’ devices, DRM clients, installed on these

devices, are launched at this point to extract and decrypt the content. The DRM

client then consults the usage rights before passing the contents to media players

(e.g., Image Viewer or Video Player) on the devices. If these usage rights have

expired, the DRM clients inform the media players that the contents have become

unusable [136, 18].

Each DRM client is provided with a unique private key and the corresponding

public key that is certified in a digital certificate. In addition to the public key,

this certificate contains information such as device ID, software version, and serial

number. A certificate identifies a DRM client, and also certifies the binding

between the client and the key pair. This enables an LI to securely authenticate

the DRM client using the standard PKI procedure. To enable LI to authenticate

a DRM client, the certificate containing the public key of the DRM client is

transferred from the DRM client to LI during an execution of a license acquisition

protocol. As in the case of the CEDK key, the DRM client’s private key must

not leave the DRM client [134].

170 CHAPTER 5. RESELLING DEAL METHOD

To achieve authentication and to establish a confidential channel between a

DRM client and LI, the SSL protocol could be used. The procedure is as follows.

Each of the DRM client and LI obtains a public-key certificate, digitally signed by

a certificate authority. The client and LI first execute the SSL handshake protocol.

With this, both entities prove to each other that they are in possession of a private

key corresponding to the public key certified in their respective certificates. The

two entities also agree upon a session key to encrypt further communications.

These protected communications include payment transactions from the client to

LI, and the CEDK key from LI to the client. The client would then use this key

to decrypt the purchased content [137].

5.1.3 License Revocation List (LRL)

LRL is an up-to-date list of previously issued licenses that have been revoked.

These licenses are revoked for different reasons, e.g. they may have been resold,

or the private keys associated to the licenses have been compromised. In our case,

when a resalable license is resold, it will be added into LRL. This indicates that

this license is revoked because it has been resold.

Methods to terminate (revoke) the use of a license can be classified into two

categories: hardware-based and software-based. In a hardware-based method,

the client is equipped with a special hardware (trusted) device. This trusted

device is designed to terminate the use of a license under certain conditions. For

example, in the case of reselling a license, when a reseller has resold the license,

the trusted device automatically revokes the license, thus preventing its previous

owner from accessing it again. A software-based method, on the other hand, uses

a mechanism called a License Revocation List (LRL) to terminate the use of a

resold license. In the case of reselling a license, when a license is resold it is added

to an LRL. This LRL should have been installed on a reseller’s device to prevent

it from using the resold license any more.

The hardware-based and the software-based methods may be used in stand-

alone or in a combined manner. The hardware-based method was used in [64, 63].

However, this method is not cost-effective as the requirement for a special trusted

hardware device imposes additional costs to the underlying reselling process. The

software-based method along with the hardware-based methods were used in

[50]. Conrado et al use the LRL mechanism in combination with the smart

card technology. As this method requires the use of a trusted hardware device, a

5.1. BUILDING BLOCKS 171

smart card reader, it is more expensive than the pure software-based solution.

FSLRP, proposed in this thesis, is a software-only solution. It makes use of

the LRL mechanism to revoke a resold license. The LRL list is maintained by

LI. As will be discussed in Section 5.4, to complete a reselling of a license (i.e.

to receive a payment for his resold license), a reseller has to get an up-to-date

LRL from LI. This LRL contains the ID of the license being resold. Once this

LRL is received, the reseller has to install it on his device to revoke the license.

Upon the revocation, the DRM client installed on the reseller’s device will send

LI a message to confirm that the license has been revoked. This message assures

LI that the reseller will not be able to continue using the license which has been

resold.

To ensure a correct license revocation process, each DRM client, resident on

a consumer’s device, must be provided with the latest copy of LRL issued by LI.

In other words, whenever a consumer acquires a license from LI, the consumer

should be issued with an up-to-date LRL along with the license. Whenever the

consumer wishes to access any license on his device, the DRM client will first

check the installed LRL to make sure that this license is not on the LRL. If the

license ID is on the LRL, the DRM client will not be able to use the license.

Also, each time the consumer has confirmed that he has resold a license, LI

should add the ID of this license to LRL and generate an up-to-date LRL. To

complete the reselling process, the consumer (reseller) should get and install this

up-to-date LRL on his device. His DRM client should also notify LI by sending

a confirmation message. More details to be discussed in Section 5.4.3.

5.1.3.1 LRL Types

There are two types of LRL, Global-LRL and Private-LRL. This section de-

scribes these LRL types.

A Global-LRL is a signed list which contains all the revoked licenses issued

by LI. This list is embedded within each license issued by this LI. It is installed

on a consumer’s device on two different occasions. The first occasion happens

when a license is being issued to a given consumer’s device. LI appends an LRL

to the issued license and sends both items to the consumer. While installing the

license on his device, the LRL associated to the license is also installed on the

device. Every time the license is used, the associated LRL is checked. If the ID of

this license is on the LRL, the license cannot be used. Therefore, the associated

172 CHAPTER 5. RESELLING DEAL METHOD

content cannot be accessed.

The second occasion takes place when a license is being resold. As will be

discussed in Section 5.4, when LI has accepted an RD activation request from a

buyer, LI will generate an up-to-date LRL. This will include the ID of the license

which is stated in the RD. The reseller has to obtain and install this up-to-date

LRL to revoke his resold license before he claims for the payment from LI.

A license revocation approach making use of Global-LRL is efficient for LI

because of the following reason. To issue a Global-LRL, LI only needs to issue,

sign and manage one list for all his consumers. This makes the Global-LRL

cost-effective. However, there is one problem with the use of this Global-LRL

to support license transfer from a reseller’s device to a buyer’s device. Once a

license is resold, the ID of this license should be added into the Global-LRL to

prevent the reseller from using it again. When the buyer gets the license, he will

also receive an up-to-date Global-LRL containing the ID of the resold license.

As this LRL will be installed along with the license on the buyer’s device, the

buyer will not be able to access this license on his device. This problem is called

a license ID problem.

To overcome this problem, we suggest the following solution. Once the re-

selling of the license has gone through, LI re-issues this license such that the old

ID is replaced with a new ID. In other words, when LI transfers this license from

the reseller to the buyer, LI assigns a new ID to this license, and changes it to

a non-resalable one. Thus, after the buyer installs the license and the associated

LRL, he can access the license as the installed LRL does not contain the new ID

of this license.

A Private-LRL is a signed list that only contains revoked licenses belonging

to a particular consumer. In contrast to the Global-LRL that is used to revoke

all the licenses issued by a particular LI, a Private-LRL list is used for revoking

licenses issued to a particular consumer. The list is embedded within each license

issued by LI to a specific consumer. This LRL is only installed on a consumer’s

device from which a license is being installed/revoked. In more detail, when

LI issues a license to a consumer, LI also issues the consumer a Private-LRL

containing all the revoked licenses that have ever been issued to the identity

of the consumer. When the consumer wishes to resell his license, it should be

revoked to prevent him/her continuing to use it. In other words, once a license

has been resold, i.e. when LI has received the payment and has accepted RD

5.1. BUILDING BLOCKS 173

submitted by the buyer, LI will add the ID of this license onto the consumer’s

private-LRL. LI then sends this private-LRL to the consumer who must install it

on his device before the DRM client sends LI a confirmation message. Without

this confirmation message, the consumer cannot claim for the payment from this

reselling. By installing the private-LRL on his device, the consumer will no longer

be able to access his license. It is worth noting that, if the Private-LRL method

is used, the license ID problem discussed above can be avoided.

A Private-LRL could be implemented using the consumer’s identity. e.g.

consumer’s public key. When LI is about to issue a license to a consumer for

the first time, LI creates a Private-LRL with empty entry in the identity of the

consumer, i.e. his public key. LI then embeds the Private-LRL into the license

being issued to the consumer. This LRL is kept empty till one of the consumer’s

licenses is to be revoked. This could happen, as in our case, when LI is informed

that the consumer (the reseller) wants to resell his license (i.e. when LI has

received and accepted an RD from a buyer). In this case, LI will add the ID of

this license onto the reseller’s Private-LRL to update it. After this addition, LI

then sends this updated Private-LRL to the consumer who has to install it on his

device should he want to complete the reselling process. Once the Private-LRL

has been installed, this consumer can no longer access his license.

5.1.3.2 Delivering LRL to Reseller

As discussed above, a resold license should be revoked from the reseller’s device

to prevent the reseller from continuing to use it. To revoke this license, an up-

to-date LRL containing the ID of the resold license should be installed on this

device. To do so, this LRL should first be delivered to the device. This LRL

delivery could be realised by one of two modes: pull mode and push mode.

5.1.3.2.1 Pull Mode A pull mode is an LRL delivering method by which

a reseller fetches an LRL from LI’s website before installing it on his device in

order to revoke a license. Once LI has accepted a given RD for a license, e.g.

Alice’s license, LI can upload an up-to-date LRL into a read-only-directory. This

up-to-date LRL contains the license’s ID. LI will post in this directory too stating

that Alice’s license has been resold. It is the responsibility of Alice to regularly

check this directory to confirm whether her license has already been resold. If

it has, Alice should download the up-to-date LRL on her device. Alice can then

174 CHAPTER 5. RESELLING DEAL METHOD

install it to revoke her license as discussed in Section 5.4.3.

5.1.3.2.2 Push Mode With the push mode, an up-to-date LRL is sent by

LI to a reseller. It works as follows. Once LI has validated an RD activation

request, and has activated the resold license on the buyer’s device, LI will send

the reseller an up-to-date LRL containing the ID of the resold license. The reseller

has to install it on his device before a confirmation message is sent back to LI.

Without this message, the reseller cannot claim for the payment (for more details

see Section 5.4.3).

It is worth noting that the security of the license revocation software-based

approach lies in two requirements. The first is that the DRM client must be secure

or tamper resistant. This requirement has been addressed by the existing license

distribution infrastructure (see Section 5.1.2.2). The second requirement is that

without a valid License Revocation Confirmation (LRC) message from the DRM

client, the reseller will not be able to claim the payment from LI for this license

reselling. To send this LRC message to LI, the DRM client must have revoked the

license on the reseller’s device. This requirement has also been addressed by the

existing DRM technology as, in the current license distribution infrastructure, a

DRM client must digitally sign and send LI an LRC message. Therefore, to forge

such a confirmation message, one has to break the security of the DRM client.

In other words, we build this license reselling facility on the capabilities of the

existing license distribution infrastructure. Thus, for the license revocation part,

the security level afforded by our reselling facility is not lower than that of the

existing infrastructure.

5.1.3.3 The Need for Imposing a Reselling Deal Validity Deadline

Both the push and pull mode of delivering an up-to-date LRL to a reseller suffer

from a similar problem. In the pull mode, LI does not have any evidence to

prove that a reseller, Alice, has indeed been notified to download and install the

up-to-date LRL on her device. As a result, Alice could intentionally ignore the

responsibility of downloading the up-to-date LRL from LI’s website. She may

falsely claim that she has not been instructed to download this up-to-date LRL,

rejecting the license revocation, leaving LI in a disadvantageous position.

Similarly, in the push mode LI may not be able to get any evidence to prove

that Alice has indeed received the up-to-date LRL. Alice could falsely deny that

5.1. BUILDING BLOCKS 175

she has received this up-to-date LRL. Consequently, Alice may continue to use

the license after its reselling leaving LI in a disadvantaged position. The following

scenario further illustrates how LI may be disadvantaged in these cases.

Suppose LI is offering a newly released non-resalable license at the price of

£10. Alice is offering the same license at only £5. To buy Alice’s license, Bob,

a buyer, has made an RD with Alice to pay £5 for the license. After Bob has

paid the £5 to LI and has submitted an RD signed by him and Alice, Bob will

get a fresh non-resalable license from LI with £5. If the pull mode is used to

deliver the up-to-date LRL to Alice, Alice may simply ignore the responsibility

of downloading an up-to-date LRL (to revoke her license). If the push mode

is used, Alice may falsely claim she has not received any up-to-date LRL (even

though she has) and continues to use the license. At the same time, Bob will also

use the same license, i.e. Alice’s license. In these scenarios, though Alice will not

be able to claim for the payment from LI for the license reselling, she will still be

able to continue to use her license. In addition, Bob has gained the right to use

the same license too, thus violating the content owner’s rights. In these cases, it

is difficult for LI to take any further action against Alice, e.g. imposing a charge

on Alice to compensate LI for the difference between the two prices (the prices

of the newly released license and the second-hand one). This is because LI does

not have any evidence to prove that Alice has indeed got an up-to-date LRL.

To counter the above mentioned problem, we propose to add a deadline into

the signed RD (i.e. RDDL). Before this deadline, Bob must (1) pay LI a payment

stated in the RD, and (2) send LI an activation request for the signed RD. If

Bob misses the deadline, he will not be able to use the signed RD to claim for

the license. Similarly, before RDDL, Alice must install an up-to-date LRL to

revoke her resold license stated in RD. Although LI cannot prevent Alice from

committing the cheating, as discussed above, LI can now use the signed RD with

RDDL to bring a charge against Alice. It is also worth noting that Alice can only

commit such cheating once per LI. This is because LI can maintain a blacklist

and if Alice is on this list, it would be difficult for her to resell or acquire licenses

from this LI in the future.

This deadline is further divided into two sub-deadlines: Bob’s deadline, RDDLB
,

and Alice’s deadline, RDDLA
. Before RDDLB

, Bob should (1) make payment to

LI, and (2) send an RD activation request to LI. Before RDDLA
, Alice has to

regularly check LI’s website to determine whether her license has been resold. If

176 CHAPTER 5. RESELLING DEAL METHOD

her license has been resold, Alice has to install and allow her DRM client to send

an LRC message to LI before the expiry of RDDLA
. This RD deadline and its

terms can be negotiated by Alice and Bob and written into the negotiated RD

during the RD signing phase.

The pull and push modes may be used in a hybrid manner to deliver an up-

to-date LRL to Alice. For example, once Alice has seen on LI’s website that

her license has been resold, she can download an update of LRL (i.e. using the

Pull mode). If LI does not receive a LRC response from Alice and RDDLA
is

still valid, LI could send an LRC request to Alice to push Alice to send the LRC

response. If LI does not receive a LRC response before RDDLA
, the up-to-date

LRL installation should be considered as failed and Alice will not be able to claim

for the resale payment. In addition, LI may use the signed RD containing the

RD deadline, RDDLA
, to bring a charge against Alice. In other words, the signed

RD with RD deadline serves as evidence that Alice is aware of her responsibility

and the time frame to fulfil her responsibility in a reselling process.

5.1.4 Reselling Permission (RP)

This section gives a detailed description of a Reselling Permission (RP) which is

a main component of the RD method. It explains what RP is and when and how

RP is generated.

A Reselling Permission (RP) is a digital token authorising a license to be

resold. In other words, when a license is accompanied by RP, it is considered as

a resalable license. As illustrated in Figure 5.1, RP consists of a license ID, Lic,

a reselling validity period1, RPperiod, within which RP is valid, a keystone fix, f ,

to be used in signing a deal, RD, during the process of reselling Lic, and LI’s

signature, SigLI , to protect the integrity of RP .

RP is generated when a resalable license is generated. When LI is requested

by a consumer to issue a resalable license, Lic, LI will create RP for this Lic, i.e.

RPLic. LI then attaches this RPLic to Lic and sends them to the consumer.

The generation process of a permission, RP can be described as follows:

1. LI generates a random number called keystone, ks.

2. LI applies a hash function to this ks to generate a keystone fix, f .

1This validity period is an optional field in RP. An LI, for example, can use it to prevent a
license from reselling within the first two years of its new release.

5.2. PRELIMINARIES 177

3. LI generates an identity for the license being issued, i.e. Lic.

4. LI defines a reselling validity period for RP , i.e. RPperiod. It contains two

dates: Start date and End date. Within this period, RP is valid to authorise

Lic to be resold. In other words, this period allows content owners to specify

when a resalable license can be resold. With the reselling validity period,

the content owners can have different types of resalable licenses. They can

have resalable licenses which can be resold after one, two or three years

after their release. Therefore, they can protect their revenue by only allow

a newly released license to be resold after one or two years from its release.

5. LI then concatenates the items, Lic, f , and RPperiod and signs this concate-

nation, i.e. generates SigLI(Lic||f ||RPperiod) to protect the integrity of RP .

This concatenation and signature forms RPLic.

License
 Identity

Lic

Keystone
Fix

RP Validity
Period

StDate:
EnDate:

f

LI's
Signature

SigLI

Figure 5.1: The RP structure of a License Lic

5.2 Preliminaries

This section details the notations, assumptions, and requirements used in the

design of the FSLRP suite.

5.2.1 Notations

The following notations are used in the description of the FSLRP suite.

A: Alice (a reseller);

B : Bob (a buyer);

LI : License Issuer;

178 CHAPTER 5. RESELLING DEAL METHOD

Lic: The identity of the license to be resold, i.e. Alice’s license;

Lic − File: The license file containing usage rights signed and granted by LI.

LicActivated: A second-hand license activated by LI and can be accessed on

a buyer’s device.

RD : A Reselling Deal which includes: (a) terms and conditions for this deal, (b)

the price to be paid by the buyer, (c) the RD validity period, and (d) both

Alice’s and Bob’s signatures.

RDDLA
: It is a deadline for Alice to perform two tasks. Firstly, Alice regularly

checks LI’s website to find out whether her license has been resold. Secondly,

if Alice’s license has been resold, Alice downloads and installs an up-to-date

LRL on her device to revoke her license, thus her DRM client could send

LRC message to LI. In other words, LI should receive the LRC message

before the expiry of the deadline, RDDlA . Note that there is another way

by which Alice can be notified that her license has been resold. In this way,

once her license has been resold, LI sends Alice a message stating so and

containing an up-to-date LRL to be installed on Alice’s device to revoke her

license. The problem with this way is that LI can not be assured that Alice

has indeed received this message. This could lead to a cheating scenario as

described in Section (5.1.3.3).

RDDLB
: It is a deadline for Bob to additionally perform two tasks. In the first

task, Bob makes the payment stated in the signed RD to LI. In the second

task, Bob submits an RD activation request to LI to activate the signed

RD. In other words, Bob must activate the RD before the expiry of the

deadline, RDDlB .

ks : a keystone that is used to bind ambiguous signatures to their respective

signers.

f : a keystone fix that is a hash value of the keystone ks. f is used in creating

ambiguous signatures.

PKi: public key of entity i.

SKi: private key of entity i.

M ||N : concatenation of two messages, M and N.

5.2. PRELIMINARIES 179

EPKi
: an asymmetric encryption using a public key of entity, i, PKi.

EK : a symmetric encryption using a secret key, K.

sigi : a digital signature created by entity, i, using its private key, SKi.

ASigni : an ambiguous signature created by an entity, i, using a keystone fix, f

and public keys of both the entity, i, and a second entity.

H(): a cryptographic hash function.

LRC : a License Revocation Confirmation message which is created and sent by

Alice’s DRM client to LI to confirm that the license, Lic, has indeed been

revoked from Alice’s device.

LRL: a License Revocation List which is a signed list containing all the revoked

licenses issued by a particular LI.

TA: A time read from the clock of Alice’s DRM client.

RPLic: Reselling Permission of the license, Lic. It contains: (a) a keystone fix,

f, and (b) a reselling validity period for this permission, i.e. RPperiod, and

(c) LI’s signature.

RPperiod: A period within which a reselling permission, RPLic, is valid to be used

in reselling the associated license, Lic.

Ni: A nonce which is created by entity, i.

RDPre−official: This is a pre-binding RD carrying both Alice’s and Bob’s am-

biguous signatures.

Install-Status : The status of installing an up-to-date LRL on Alice’s device.

PaymentB: The payment which Alice and Bob have agreed on during the ne-

gotiation phase. This is the amount that Bob should pay to LI to obtain

Lic.

180 CHAPTER 5. RESELLING DEAL METHOD

5.2.2 Design Assumptions

The following assumptions are used in the design of the FSLRP suite.

1. The payment systems used for a license buyer to make a payment to LI and

for a license reseller to receive a payment from LI are secure.

2. License Issuer (LI) is a trustworthy entity. It issues fresh licenses (resalable

and non-resalable) to consumers. LI additionally assists to facilitate the

reselling of resalable licenses.

3. A resalable license is initially issued by LI. Each resalable license is attached

with a Reselling Permission (RP) that contains a unique keystone fix and

reselling validity period.

4. A Reselling Deal (RD) contains the terms and conditions of a reselling

agreement negotiated between a reseller and a buyer. The RD also includes

the price of the license to be resold and the two deadlines, RDDlA and

RDDlB .

5. Alice and Bob do not trust each other.

6. The keystone, ks, corresponding to the keystone fix, f, can only be used

once, i.e. each license is issued with a unique ks. In this way, each license

can be resold just once.

7. The hash functions used in the protocol are collision-free hash functions.

8. Each entity, i, where (i ∈ A,B,LI) has a public/private key pair. The pub-

lic key, denoted as PKi (i ∈ A,B,LI), has been certified by a certification

authority, CA. The private keys, denoted as SKi (i ∈ A,B,LI), are kept

secret by their respective holders.

9. Communication channels between each pair of entities are resilient. This

means that messages sent over these channels may be delayed, but will

eventually arrive at their intended destination.

10. Communication channels are authenticated, integrity-protected, and confi-

dential. These channels can be established using the Secure Socket Layer

(SSL)[95]/Transport Layer Security (TLS)[112] protocol. For example, two

entities can first use SSL to mutually authenticate each other and establish

5.2. PRELIMINARIES 181

a secret session key. They then execute our protocol using the secure chan-

nel established, encrypting all protocol messages with the agreed session

key

11. There is a DRM client resident on each consumer’s device. The DRM client

is assumed to be tamper-proof and it is embedded with a secure timer, called

a DRM Timer. This means that consumers cannot change or re-adjust this

timer. The DRM client is capable of performing the following functions: (1)

license decryption and usage rights enforcement, (2) license revocation, (3)

LRC message creation and time-stamping, (4) signature generation (signing

the LRC message), and (5) message transmission to LI (i.e. be able to send

LI a time-stamped and signed LRC message).

12. The DRM Timer embedded inside each DRM client measures the time in

the Coordinated Universal Time (UTC) time scale and it is synchronised

with LI’s timer whenever the DRM client has contact with LI.

5.2.3 Design Requirements

The FSLRP suite is designed to satisfy the following requirements.

(R1) Support license transfer: The reselling facility should be able to facil-

itate the transfer of a resold license from a reseller’s device to a buyer’s

device without compromising the content owner’s right. In other words,

after a successful execution of a reselling process, the reseller should not be

able to continue to use the license, while the buyer should be allowed to

access the license on his device.

(R2) Support market power: The reselling facility should be able to: (1)

allow a reseller to maximise his profit, i.e. to resell his license at the highest

possible price; and (2) allow a buyer to minimise his cost, i.e. to purchase

a license at the lowest possible price.

(R3) Protect content owners’ rights: The reselling facility should not weaken

the security level of the underlying license distribution infrastructure. In

other words, the reselling facility should not introduce additional flaws that

would put content owners’ rights at greater risk. LI must be able to detect

any unauthorised or illegitimate license resellings. These include multiple

182 CHAPTER 5. RESELLING DEAL METHOD

resellings of a resalable license, and reselling of a non-resalable license. LI

must also be able to prevent a reseller from the continued use of a resold

license. In addition, LI must be able to trace any buyer if this buyer has

violated any of the usage rights of a resold license.

(R4) Fair reselling: Upon the successful execution of a reselling process, (1)

either both the reseller and the buyer are concurrently bound to a given RD

or neither binds, i.e. neither entity receives anything useful from the signa-

ture signing process performed between them, and (2) the reseller should

be able to receive the payment, specified in the RD, from the buyer if and

only if the buyer has received the license from the reseller and vice versa.

R(5) Non-repudiation: Once LI has activated a given RD, the reseller should

not be able to falsely deny having signed the deal, RD, with the buyer. This

allows LI to add the reseller to a blacklist or impose a charge on the reseller

if he refuses to revoke his license after he has signed an RD. Similarly, the

buyer must not be able to falsely deny having signed the deal, RD, with

the reseller. This prevents the buyer from paying less than what has been

agreed on in the RD.

(R6) License legitimacy check: Anyone, e.g. a buyer or LI, should be able

to verify whether a license being resold is legitimate. In other words, any

entity should be able to verify whether (1) it is resalable, (2) it is still within

its reselling validity period, and (3) it has not yet been resold.

(R7) Abuse-freeness: The proposed reselling facility should possess an abuse-

freeness property. This means that, during the execution of an RD signing

process, neither the reseller nor the buyer could get anything that can be

used to prove to an outside entity that either is in control of the outcome

of the RD signing process.

The above requirements can be further interpreted into the following require-

ments for the three entities, respectively.

For Alice (the reseller):

(A1) There should be a mechanism to allow Alice to resell her digital license at

the highest possible price to maximise her profit.

5.2. PRELIMINARIES 183

(A2) Once a deal has gone through (i.e., after Alice has revoked the license),

Alice should be able to receive the payment for the resold license.

(A3) Alice should not have to experience a situation where a deal is bound

unilaterally. In other words, any dispute such as where Alice believes that

a deal has been reached, but Bob disagrees or repudiates, should be easily

resolvable by a third party.

For Bob (the buyer):

(B1) There should be a mechanism to allow Bob to purchase a digital license

from Alice, or anybody else who has got the same license to sell, at the

lowest possible price to minimise his expenditure.

(B2) Once a deal has gone through (i.e., after Bob has made the payment), Bob

should be able to receive the license he has paid for.

(B3) Bob should not have to experience a situation where a deal is bound uni-

laterally. In other words, any dispute such as where Bob thinks that a deal

has been agreed, but Alice disagrees or repudiates, should be easy to resolve

by a third party.

(B4) A deal should only be binding if the payment has been made by Bob.

In other words, prior to making the payment, Bob should not be held

accountable for any deals he has agreed to and signed with any reseller.

This requirement allows Bob to collect a number of deals before choosing

that which is best for him.

(B5) Bob should be able to verify whether the license he is about to buy is

legitimate.

(B6) After making payment and receiving the license he has paid for, Bob should

be able to access this license on his device.

For LI (the License Issuer):

(L1) A resalable license should not be allowed to be resold an unauthorized

number of times.

184 CHAPTER 5. RESELLING DEAL METHOD

(L2) LI must be able to check whether a license is legitimate. In other words,

LI should be able to confirm whether (1) it is resalable, (2) it is still within

its reselling validity period, and (3) it has not yet been resold. With these

checks, LI is able to detect and prevent reselling a non-resalable license and

an authorised reselling for a resalable license.

(L3) LI should only activate a license on Bob’s device if and only if Bob has

made the due payment for the license and provided a valid RD which is

signed by both Alice and Bob.

(L4) LI should only send Alice the payment from the license reselling after LI

has confirmed that Alice’s resold license has indeed been revoked on Alice’s

device.

(L5) Under the current DRM systems, LI is able to trace a consumer (a reseller

in our case) if the consumer has violated any of the license usage rights.

This capability should also be supported in our license reselling facility. In

other words, LI should be able to trace a buyer of a second-hand resalable

license if the buyer has violated any of the usage rights of the license he has

bought from the reseller.

5.3 Fair and Secure License Reselling Protocol

(FSLRP) Suite: An Overview

The Fair and Secure License Reselling Protocol (FSLRP) consists of three proto-

cols: (1)a 2-Message RD Signing (2M-RDS) Protocol, (2) a RD Activation (RDA)

Protocol, and (3) a RD Completion (RDC) Protocol. The 2M-RDS protocol is

executed between a reseller and a buyer. The RDA protocol is operated between

LI and the DRM client resident on the buyer’s device whereas the RDC protocol

is executed between LI and the DRM client resident on the reseller’s device. As

illustrated in Figure 5.2, the execution of this suite is performed in three phases.

In the first phase, the 2M-RDS protocol is used for Alice (a reseller) and Bob (a

buyer) to sign a negotiated Reselling Deal (RD). The signatures generated in this

phase are ambiguous signatures. They are not bound to their respective signers

till they are activated by LI in phase 2. In the second phase, the ambiguously

signed RD will be used by Bob to activate the license stated in RD, i.e. Lic, on

5.3. FAIR AND SECURE LICENSE RESELLING PROTOCOL (FSLRP) SUITE: AN OVERVIEW185

1- Alice generates her ASignA on RD and
sends (ASignA||RD) along with RPLic to Bob

2- Bob generates his ASignB

 on (ASignA||RD) and then
 sends it to Alice

On the completion 2M-RDS,
both Bob and Alice are still free to sign other

 RDs with other resellers and buyers, respectively

Alice BobLI

4- LI performs the verifications
 LIV1 to LIV6. If they are all positive,
 LI does step 5 and step 6

3- Bob sends LI an activation
 request for the signed RD
 along with the agreed payment

6- After sending Lic to Bob, LI performs the following:
 6.a- Mark Lic as resold
 6.b- Create an up-to-date LRL containing Lic's ID
 6.c- Publish this LRL-update on his website
 6.d- Post on his website that Lic has been resold

5- LI sends Bob Lic encrypted
 with Bob's public key

7-Alice fetches the up-to-date LRL
 from LI's website

8- Alice installs the up-to-date
 LRL on her device

9- Alice's DRM client generates
 and sends LI an LRC message

11-LI sends Alice the payment
 received from Bob at phase 2

10- LI performs the
 verificaions LIV7-to-LIV9

Ph
as

e 1
: 2

M
-R

D
S

Pr
ot

oc
ol

P
ha

se
 2

: R
D

A
 P

ro
to

co
l

R
D

C
 P

ro
to

co
l Ph

as
e

3

Figure 5.2: A schematic diagram for the FSLRP suite

his device. In other words, Bob will execute the RDA protocol with LI to activate

the signed RD. This is done provided that Bob (a) has paid the agreed price to LI;

and (b) has sent LI the signed RD produced from the execution of the 2M-RDS

protocol in phase 1. In the third phase, the reselling process will be finalised.

During this phase, Alice will (1) download an up-to-date LRL from LI’s website

and install this up-to-date LRL on her device; (2) executea the RDC protocol

with LI to (a) enable Alice’s DRM client to send LI an LRC message assuring LI

that the license being resold has been revoked on Alice’s device; and (b) collect

the payment2 for this reselling. In other words, the RDC protocol assures LI that

Alice has indeed revoked her resold license on her device and enables Alice to get

2This payment was deposited to LI by Bob in phase 2.

186 CHAPTER 5. RESELLING DEAL METHOD

the payment collected from the license reselling. Upon the successful execution

of the FSLRP protocol suite, Alice and Bob should have received the payment

and the activated license, respectively, thus achieving fair license reselling.

5.4 The FSLRP Protocol Suite in Detail

This section describes in detail the three protocols comprising the FSLRP suite .

5.4.1 2-Messages RD Signing (2M-RDS) Protocol

The 2M-RDS protocol is the first protocol of the FSLRP suite. This is a variant

of the RDS protocol described in chapter 4. With the 2M-RDS protocol, both

Alice and Bob place their respective ambiguous signature on a negotiated RD.

This is to (1) achieve non-repudiation and abuse-freeness properties, (2) support

market power, and (3) help Bob to check whether the license he is about to buy is

resalable. Bob, in phase 2, activates these ambiguous signatures to binding ones

by LI. An overview of this protocol is given in (Section 5.4.1.1) and a detailed

description is given in (Section A.2).

5.4.1.1 2M-RDS Protocol Overview

As shown in Figure 5.3, the 2M-RDS protocol consists of two messages: Msg1RDS

and Msg2RDS. Alice first uses f provided in RPLic to create her ambiguous signa-

ture, ASignA, on RD, where ASignA = ASignA(RD)). Upon creating ASignA,

Alice sends it along with RPlic and Lic − File to Bob as Msg1RDS. Once Bob

has received Msg1RDS, he performs the verifications BV 1, BV 2, BV 3, and BV 4.

Bob then ambiguously signs RD using the same f which has been used in cre-

ating ASignA. The resulting ambiguous signature is ASignB, where ASignB =

ASignB(RD||ASignA). Bob then, in Msg2RDS, sends ASignB to Alice. Upon

receipt of ASignB, Alice performs the verifications AV 1 and AV 2 to confirm that

ASignB is created by Alice.

5.4.1.2 2M-RDS protocol Analysis

The analysis of the 2M-RDS protocol is the same as that of the RDS protocol

presented and analysed in chapter 4.

5.4. THE FSLRP PROTOCOL SUITE IN DETAIL 187

A B

Msg1RDS={Lic-File||RD||ASignA||RPLic}

Msg2RDS={RDASignA
||ASignB}

BV1,BV2,
BV3,BV4,
&BV5

AV1&AV2

2M-RDS Protocol Verifications:
BV1: RPLic and Lic-FIle verification
BV2: Lic identity verification
BV3: f identity verification
BV4: RPLic first-use verification
BV5: ASignA verification
AV1: f consistency verification
 (i.e. f used in ASignA & ASingB is identical)
AV2: ASignB verification

Figure 5.3: The Reselling Deal Signing (RDS) protocol

5.4.2 RD Activation (RDA) Protocol

The RDA protocol is the second protocol of the FSLRP suite. It is designed for

a buyer (Bob) to activate a deal, which has been ambiguously signed by both

Bob and a reseller (Alice) using the 2M-RDS protocol. Bob can initiate the RDA

protocol with LI to activate the deal. Upon successful activation, Bob will receive

the license, Lic, stated in the deal. The following sections give an overview of the

protocol and a detailed description of the RDA protocol is presented in Section

A.3 .

5.4.2.1 RDA Protocol Overview

The RDA protocol, as shown in Figure 5.4, consists of two messages: Msg1RDA

and Msg2RDA. In Msg1RDA, Bob sends LI an RD activation request. This

request contains three items: (1) RDPre−official, (2) RPLic, and (3) PaymentB.

Upon the receipt of this RD activation request, LI performs the verifications,

LIV 1 through to LIV 6 described in the next section. If these verifications are

all positive, LI, in Msg2RDA, sends Bob the activate LicActivated such that Bob

can use it on his device. LI also performs two further tasks, (a) publishes on his

website that the license, Lic, has been resold, so it cannot be resold again; (b)

posts on LL’s website an up-to-date LRL containing the resold license ID, Lic,

so Alice can download it to revoke Lic from her device (see Section 5.4.3).

188 CHAPTER 5. RESELLING DEAL METHOD

LI B

Msg1RDA={RDPre-official||PaymentA||RPLic||SigB(PaymentA||RPLic)}

LIV1,LIV2,
LIV3,LIV4,

&LIV5

BV6

RDA Protocol Verifications:
LIV1: Payment check
LIV2: RDDLB

 verification
LIV3: SigB verification
LIV4: Lic legitimacy check
LIV5: ASignA verification
LIV6: ASignB verification
BV6: SigLI verification

Msg2RDA={LicActivate||SigLI(LicActivated)}PKB

Figure 5.4: Reselling Deal Activation (RDA) Protocol

License
Identity

License
Price

RD Validity
Deadlines

RD Terms &
Conditions

Reseller's
Signature

Buyer's
Signature

RDDLA
RDDLB

PaymentBLic Any terms and
conditions agreed
by Alice and Bob

ASignA ASignB

Figure 5.5: The structure of the Pre-official RD

5.4.2.2 RDA Protocol Analysis

This section analyses the RDA protocol against the requirements set in Section

5.2.3. In detail, it analyses the protocol against the requirements, L1, L2, L3, and

L5 for LI and against B2 and B6 for Bob. In this analysis, as LI is a trustworthy

entity, LI will not misbehave. In other words, LI will always follow the protocol

specifications and perform the protocol executions faithfully. In addition, as Alice

is not involved in the RDA protocol, she will not be considered in the analysis

below. This analysis will focus on any possible cheatings that may be committed

by Bob.

In the following discussion, it is assumed that (1) the RD activation request

contains the required payment that is (a) equal to the amount stated in the RD,

and (b) equal to the amount made to LI, and (2) the request is sent before the

deadline, RDDLB
. These assumptions allow us to focus our discussion here on

more subtle cheating than sending an incorrect payment, or refusing to send any

5.4. THE FSLRP PROTOCOL SUITE IN DETAIL 189

payment at all, or sending the request after the deadline RDDLB
. As, based on

LIV 1 and LIV 2, these misbehaviours will lead to rejection of the request.

Analysis against LI’s requirements

L1: (Preventing double reselling) With the RDA protocol, any double

reselling of a resalable license can be detected using the verification, LIV 4.1. This

verification allows LI to verify whether the license, Lic, has already been resold. If

it has been resold, LI will terminate the license reselling process, thus preventing

double reselling of the license, i.e. satisfying requirement L1.

L2: (Checking license legitimacy) With the verifications, LIV 4.2, LIV 4.3

and LIV 4.4, LI can verify whether the license, Lic, is legitimate for resale. LIV 4.2

confirms Lic is still valid to be resold while LIV 4.3 enables LI to check whether

RPLic has indeed been issued by LI. In addition, LIV 4.4 allows LI to confirm that

the license ID in RPLic is identical to that in Lic. LI will only activate the license,

Lic, on Bob’s device if all these verifications are positive, thus addressing L2.

L3: (Receiving Payment) The verification, LIV 1, enables LI to only pro-

ceed in the reselling process if Bob has made the payment stated in a deal, RD.

This satisfies requirement L3.

L5: (Tracing buyer’s identity) As discussed in Section A.3, during the

license re-issuance process, LI uses the public key of Bob’s DRM client to encrypt

the license, thus binding the activated license, LicActivated, to Bob’s identity. This

public key has been certified by LI, so LI can use this key to trace Bob in the

event of Bob violating any of the usage rights specified in the activated license,

thus satisfying (L5).

Analysis against buyer’s requirements

B2: (Receiving the license) Upon the successful execution of the RDA

protocol, Bob will receive the license he has paid for, thus satisfying B2. Since

LI is trusted, LI will send Bob the license if verifications, LIV 1 through to LIV 6,

are all positive.

B6: License transfer the license re-issuance process, discussed in Section

A.3, enables LI to bind the license, LicActivated, to Bob’s DRM client. Therefore,

once Bob obtains this license, he can access it on his device (i.e. solve the DRM

license transfer problem).

Bob’s Misbehaviour

Upon the execution of the 2M-RDS protocol, Bob will have an RD with two

signatures, (RD||ASignA) and (RD||ASignA||ASignB). (RD||ASignA) is the

190 CHAPTER 5. RESELLING DEAL METHOD

deal, RD, that has only been ambiguously signed by Alice. It is sent to Bob

in Msg1RDS (see Section 5.4.1). (RD||ASignA||ASignB) is the deal, RD, that

has been ambiguously signed by both Alice and Bob. It is generated by Bob

and sent to Alice in Msg2RDS (see Section 5.4.1). In sending an RD activation

request, Bob may try to send LI an RD activation request of the following form,

{(RD||ASignA)||RPLic||PaymentB}, i.e. he may exclude his signature from the

request. If this happens, Bob will gain nothing. This is because LI, based on

LIV 5, will reject the activation request.

5.4.3 RD Completion (RDC) Protocol

The RDC protocol is the third and also the final protocol in the FSLRP suite.

It is used to finalize a license reselling process. It accomplishes two tasks (1)

revoking Alice’s resold license, lic (2) and delivering Bob’s payment, PaymentB,

to Alice. In section, 5.4.3.1 an overview of the protocol is given, and in Section

A.4, a detailed description of it is presented.

5.4.3.1 RDC Protocol Overview

An overview of the RDC protocol is illustrated in Figure 5.6. From the figure,

it can be seen that the RDC protocol consists of two messages: Msg1RDC , and

Msg2RDC . In Msg1RDC , after installing an up-to-date LRL obtained from LI on

her device, Alice allows her DRM client to send LI a License Revocation Con-

firmation (LRC) message to confirm that the LRL-update has been successfully

installed on Alice’s device. Upon receipt of LRC, LI will perform the verifications,

LIV 7, LIV 8, and LIV 9. If all these verifications are positive, LI, in Msg2RDC ,

sends Alice the payment, PaymentB
3. Upon successful execution of the RDC

protocol, a fair license reselling has been accomplished. In other words, the RDC

protocol is used to ensure fairness for Alice in this license reselling process. Alice

will get the payment for the license she has resold, or she retains the license but

without payment.

3 Note that this payment was deposited to LI by Bob during the execution of the RDA
protocol.

5.4. THE FSLRP PROTOCOL SUITE IN DETAIL 191

Msg1RDC={APK||InstallTime|||LRLInfo||SigA(APK||InstallTime ||LRLInfo)}

Msg2RDC={Payment||NLI||SigLI(Payment||NLI)}

AV4

LIV7, LIV8

& LIV9

Alice's DRM
Client

License Issuer
(LI)

LIV7: The verification of SigA(APK||InstallTime||LRLInfo).
LIV8: LI confirms that LRLVersion is up-to-date.
LIV9: LI verifies that IDLRL-Update is up-to-date.
AV3: The verification of SigLI(LRLUpdate).
AV4: The verification of SigLI(Payment||NLI).

RDC Protocol Verifications:

AV3

Figure 5.6: Reselling Deal Completion (RDC) Protocol

5.4.3.2 RDC Protocol Analysis

The RDC protocol aims to (1) assure LI of the revocation of the resold license

and (2) send Alice the payment. This aim can be interpreted into requirements

A2 and L4 specified in Section 5.2.3. This section analyses the RDC protocol

against these requirements, and demonstrates that Alice can gain nothing if she

misbehaves with LI during the execution of a reselling process.

Alice’s Misbehaviour: As discussed in Section A.4, Msg1RDC is created by

Alice’s DRM client which is a tamper-proof software (see assumption 11). Hence,

it would be very difficult for Alice to create this message without installing the

latest LRL-update on her device. In addition, once this LRL-update is installed,

the client will dispatch a revocation confirmation message. Only with this con-

firmation, Alice could receive the payment, PaymentB, from LI. However, Alice

may refuse to install the LRL-update obtained from LI on her device to revoke

her resold license, Lic. If this happens, Alice’s DRM client will not generate

Msg1RDC and LI will not be able to confirm this revocation. Thus, LI will not

pay Alice for reselling her license. Another price for Alice to pay by committing

192 CHAPTER 5. RESELLING DEAL METHOD

this misbehaviour is that she will not be able to resell her license, Lic, again.

This is because, during the RDA protocol, LI has already marked this license as

resold. In other words, what Alice can gain from this misbehaviour is that she

may continue to use her resold license, but she will not receive any payment for

this unsuccessful reselling and will not be able to resell this license again (i.e. she

has effectively converted her resalable license to non-resalable one)

For the requirements A2 and L4: Alice can only be paid if she gets the

LRL-update from LI’s website, and then installs this LRL-update on her device.

If this installation is successful, Alice’s DRM client will generate and send LI

Msg1RDC which assures LI that Alice’s resold license has been revoked. As LI

trusts Alice’s DRM client, and if the verifications, LIV 7 through to LIV 9, are all

positive, LI will pay Alice an amount of money equal to the payment, PaymentB.

Therefore, once Alice resells (makes a deal and revokes her license), she will get

paid, thus addressing the requirement (A2).

A successful execution of the RDC protocol enables LI to be assured that

Alice can no longer use the license, Lic. This is because an LRC message, i.e.

Msg1RDC , can only be created by Alice’s DRM client which is a tamper-proof

software. Hence, it is hard for Alice to forge the LRC message. Therefore, when

LI has received the LRC message from Alice, LI can be assured that the license,

Lic, has been revoked on Alice’s device, thus satisfying (L4).

5.5 Threat and Attack Analysis

In this section, we discuss the possible threats and attacks that may be mounted

against our proposed solution (FSLRP). These threats and attacks are identified

based on the requirement set in Section 5.2.3 and the in-depth analysis of the

possible threats and attacks in the license reselling context Section 5.5.1 and

Section 5.5.2 discuss the threats and the attacks, respectively. They also introduce

countermeasures for these threats and attacks.

5.5.1 Threats Analysis

There are two potential threats to our proposed solution (FSLRP). This section

analyses these threats and discusses measures that are taken to counter these

threats.

5.5. THREAT AND ATTACK ANALYSIS 193

5.5.1.1 Double Use of a License

Double use of a license refers to a scenario where two consumers, e.g. a reseller

and a buyer, are able to use the same license simultaneously. In our case, by a

successful execution of the RDA protocol, Bob will receive an activated license,

LicActivated, before this license is revoked on Alice’s device, i.e. before executing

the RDC protocol. In this case, Alice and Bob will have a period of time (between

a successful execution of the RDA protocol till a successful execution of the RDC

protocol) during which both of them can use the same license (i.e. double use of

one license). This would violate the content owner’s rights.

One could say that during the process of issuing this resalable license to the

reseller, LI has received a payment, P1, from the reseller. Also, during the execu-

tion of the RDA protocol, LI has received another payment, P2, from the buyer

of this license. In other words, LI has got two payments for one license, one from

the original buyer (i.e. the reseller), and the other from the second buyer. Thus,

LI should not complain if the reseller and the buyer use the same license for a

period of time. This is true, but LI has to forward P2 to the reseller at the end of

a successful execution of the RDC protocol. Therefore, LI has to make sure that

this double use is not going to happen.

A solution to address this problem is for LI to issue the buyer, Bob, a date-

based license. A date-based license is one that is activated on a specific date. This

license can be issued to Bob after a successful execution of the RDA protocol with

LI. Upon receipt of this license, Bob’s DRM client will not allow Bob to use this

license till the time/date matches with the activation time/date specified. The

activation time/date is set to the day following expiry of the deadline, RDDLA
, at

which Alice’s license should have been revoked. Before the expiry of RDDLA
, LI

should execute the RDC protocol with the reseller, Alice, to revoke Alice’s resold

license. As discussed in Section 5.1.3.3, during the execution of 2M-RDS protocol,

Alice and Bob should have agreed to complete the reselling process before an RD

deadline which is divided into two deadlines, RDDLB
and RDDLA

.

Of course, it does not make sense for Bob to pay for a license and receive it

but then be able to directly access it on his device. However, this may be the

price to pay as after all, Bob will get a cheaper license in comparison with the

same license which is offered by LI.

194 CHAPTER 5. RESELLING DEAL METHOD

5.5.1.2 Installing an Out-of-date LRL-update

An out-of-date LRL-update , LRLOld, is an LRL which does not include the ID

of the license being resold (i.e. the one that should be revoked). As discussed

in Section 5.4.3, to get paid by LI, a reseller should download, install the latest

LRL-update on his device and then send LI a message confirming a successful

installation.

A reseller, Alice, may attempt to cheat LI by installing LRLOld on her device.

Upon a successful installation of this LRLOld, Alice’s license will not be revoked,

because LRLOld will not revoke Alice’s resold license. On the other hand, since

the installation is successfully done, Alice’s DRM client will generate Meg1RDC

and send it to LI. Consequently, Alice can claim for the payment from LI while

she can still be able to use the resold license, Lic. Nonetheless, by performing

Verification LIV 8, LI can detect that Alice has installed an out-of-date LRL-

update. Also, LI will not send any payment to Alice. Thus, by installing LRLOld,

Alice could not gain anything useful. Furthermore, LI can add Alice to a blacklist

to prevent her from further reselling licenses.

5.5.2 Attack Analysis

In this section, we discuss two attacks which may be mounted on our proposed

solution (FSLRP).

5.5.2.1 Collusion Attack 1

A collusion attack is one in which Bob and Alice collude to cheat LI. To form

this attack both Alice and Bob have to collude. Bob may accept an invalid RPLic

(e.g. EnDateRP is expired) of Alice’s license while Alice offers Bob a very cheap

price for her license. Then both could agree upon a very cheap deal to trade the

license. Then, by executing our proposed solution (FRLRS), (i.e. Bob makes

the payment to LI and sends an RD activation request), Bob will obtain a non-

resalable license. Alice, on the other hand, will receive this payment, agreed in

the RD, from LI should she confirm to LI that her license, Lic, has been revoked.

In this case, the content owner’s rights would be violated as a license with an

invalid RP has been resold, i.e. non-resalable license has been resold.

To counter this attack, the RP is constructed with a license reselling validity

period, i.e. it contains a Start Date (StDateRP) and an End date (EnDateRP

5.5. THREAT AND ATTACK ANALYSIS 195

). Prior to activating RD sent by Bob, as explained in Section 5.4.2, LI checks

whether RPLic is still valid (i.e. by performing LIV 4.2). If the validity period of

RPLic has expired, LI terminates the reselling process, thus preventing both Alice

and Bob colluding to cheat LI.

5.5.2.2 Collusion Attack 2

Another collusion attack could be mounted as follows. Alice and Bob may agree

on a very cheap deal for a license, so as to pay a small amount to LI. As described

in Section 5.1.3.3, the RD should have a validity deadline before which Bob should

make an agreed payment to LI to collect the license and Alice should confirm with

LI that she has revoked her license to collect the payment made by Bob. If the RD

has a single validity period for both Alice and Bob, the following cheating may be

possible. Alice may sign a very cheap deal ONLY with Bob. In other words, Alice

does not offer her license to any other buyer except Bob. Upon getting a signed

RD with Alice, Bob may delay sending the RD activation request to LI until

the last minutes of the RD validity deadline. Bob then, by following the FSLRP

suite, will get a fresh non-resalable license from LI. It is now difficult for LI to

obtain an LRC message from Alice. If LI requests Alice to revoke the license, she,

by colluding with Bob, may refuse to revoke his license as the validity deadline of

the RD is expired. In addition, Alice may receive an amount of money from Bob

as compensation for offering Bob a very cheap deal for Lic. Therefore, Alice can

still continue to use her license by simply refusing to revoke it. Now both Bob

and Alice can use the same license. In this case, LI will be unable to protect the

content owner’s rights.

The above attack has been countered by dividing the RD validity deadline

into two deadlines: RDDLA
and RDDLB

. Before RDDLB
expires, if Bob wants to

proceed with the deal, he should make the payment and send LI an RD activation

request. Also, before RDDLA
expires, to collect the payment from LI, Alice should

install an LRL-update to allow her DRM client to send LI an LRC message.

If Alice refuses to install the LRL-update, she will not get payment from LI.

In addition, as Alice has put her signature (see Section 5.4.1) on her deadline

RDDLA
, she cannot falsely deny having agreed to revoke her license by RDDLB

.

This allows LI to impose a charge on Alice if she has refused to revoke her resold

license, Lic.

196 CHAPTER 5. RESELLING DEAL METHOD

5.6 FSLRP suite Evaluation

In this section, we evaluate the FSLRP suite. This evaluation is conducted in

terms of computational costs and a comparison with related work.

5.6.1 FSLRP Suite Computational Cost

In this section, the computational cost of the FSLRP suite is evaluated. As the

exponentiation operations, Exp#, are the heaviest computational operations in

the designed protocol suite, the evaluation will be largely performed by computing

the number of the exponentiation operations used in the protocol. Table 5.1

shows the number of exponentiation operations performed by each entity during

an execution of an FSLRP suite.

Table 5.1: Exponentiation operations performed by FSLRP participants
Alice
Exp#

Bob
Exp#

LI
Exp#

During 2M-RDS 6 8 0
During RDA 0 2 9
During RDC 3 0 2
Total Exp# 9 10 11

From Table 5.1, it can be seen that an execution of the FSLRP suite requires

30 exponentiation operations, Exp#4. These operations are performed by the

participants (Alice, Bob, and LI) as follows. Alice performs 9 Exp# (during

an execution of the 2M-RDS and RDC protocols). She performs 6 Exp# when

executing a 2M-RDS protocol with Bob (1 Exp# in the setup algorithm, 2 when

ambiguously signing an RD deal, 3 when verifying Bob’s ambiguous signature). In

addition, Alice performs 3 Exp# during a running of an RDC protocol with LI (1

when verifying LI’s signature on LRLUpdate, 1 when signing a License Revocation

Confirmation (LRC) message, and 1 when verifying LI’s signature on the payment

message).

In an execution of an FSLRP suite, Bob performs 10 Exp# (during an execu-

tion of 2M-RDS and RDA protocols). During an execution of a 2M-RDS protocol,

Bob performs 8 Exp# (1 in the setup algorithm, 1 when verifying LI’s signature

4Note that, prior to a license reselling process, i.e. during issuing a resalable license for the
first time, LI performs one Exp# when signing a (single or multiple) reselling permission; and
Alice also performs one Exp# when verifying LI’s signature on the permission.

5.6. FSLRP SUITE EVALUATION 197

on RP, 1 when verifying LI’s signature on Lic−File, 2 when ambiguously signing

the RD deal, 3 when verifying Alice’s ambiguous signature). When running an

RDA protocol, he does 2 Exp# (1 when signing RD − Act − Req, and 1 when

verifying the result of RD − Act−Req received from LI).

In an execution of an FSLRP suite, LI performs 11 Exp# (when executing

the RDA and RDC protocols). During an execution of an RDA protocol, LI

does 9 Exp# (1 when verifying Bob’s signature on RD − Act − Req, 1 when

verifying RP included in RD − Act − Req, 6 when verifying Alice’s and Bob’s

ambiguous signatures, and 1 when sending Bob an activated license which require

LI’s signatures). LI also performs 2 Exp# when executing an RDC protocol with

Alice (1 when creating a signature on LRLUpdate, and 1 when verifying Alice’s

signature on an LRC message).

From the discussion above, it can be noticed that LI will be costed 11 exponen-

tiation operations to facilitate secure and at the same time fair license reselling.

As a reward for doing these operations, LI could establish a new business model

distinguishing between a resalable and non-resalable license.

5.6.2 Comparison with Related Work

In this section, we compare our proposed solution (FSLRP) with the related

work presented in chapter 3 (i.e. Kwok’s system [61], Sun’s sytem [62], NPGCT

system [63], Nuovo system [64], Conrado’s system [50], and Laila’s system[65]).

The features used in the comparison are summarised as follows:

• Protecting content owner’s rights, i.e.

– Preventing continued use: A reseller cannot continue using a resold

license.

– Preventing reselling a non-resalable License: A reseller cannot resell a

non-resalable license.

– Preventing unauthorised reselling: A reseller cannot resell a resalable

license an unauthorised number of times.

– Support buyer’s traceabality: A license issuer can trace the identity

of a buyer, who has bought a second-hand license, if this buyer has

violated the licensee’s usage rules.

198 CHAPTER 5. RESELLING DEAL METHOD

– Support non-repudiation: Once a license reselling is done, a license

issuer can obtain irrefutable evidence that a reseller has indeed resold

his license.

• Support fairness: A license reselling process is fairly achieved (i.e. at the

end of a reselling process, either the reseller receives a payment and the

buyer receives a license, or neither receives anything useful.

• Abuse-freeness: A license reselling process is conducted such that during

the execution of the process, neither reseller nor buyer could get anything

that can be used to prove to an outside entity that any one of them is in

control of the outcome of the RD signing process.

• Support reseller’s and buyer’s interests: This includes:

– Monetary interest: A buyer and a reseller are allowed to maximise

their respective monetary interests (i.e. a buyer could pay as little as

possible for a second-hand license; and a reseller could gain as much

as possible for reselling his license.

– Do not add additional cost: An additional cost is not added to a reseller

and a buyer to resell and buy a second-hand license, respectively.

– License authenticity: A buyer can verify that a license he is about to

purchase is indeed issued by an authentic LI.

– Resale-ability check: A buyer can verify that a license he is about to

buy is resalable.

• Other features: These features include:

– Play content online: Should a consumer play a content online to be

able to resell a license of this content?

– Use license issuer: In a reselling process, a license issuer’s role could

be either online, or, offline, or not involved at all.

– Use trusted hardware: A reselling process requires the use of trusted

hardware.

5.6. FSLRP SUITE EVALUATION 199

T
ab

le
5.

2:
C

om
p
ar

is
on

b
et

w
ee

n
ou

r
so

lu
ti

on
(F

S
L

R
P

)
an

d
re

la
te

d
w

or
k

K
w

ok
S
u
n

N
P

G
C

T
N

u
ov

o
C

on
ra

d
o

L
ai

la
O

u
r

so
lu

ti
on

D
iff

er
en

ti
at

e
b

et
w

ee
n

re
sa

la
b
le

an
d

n
on

-r
es

al
ab

le
li
ce

n
se

s
N

o
N

o
N

o
N

o
N

o
N

o
Y

es

P
la

y
co

n
te

n
t

on
li
n
e

N
o

Y
es

N
o

N
o

N
o

Y
es

N
o

R
es

el
l

or
ig

in
al

li
ce

n
se

Y
es

Y
es

N
o

N
o

Y
es

Y
es

Y
es

P
re

ve
n
t

co
n
ti

n
u
ed

u
se

Y
es

*
Y

es
N

o
N

o
Y

es
Y

es
Y

es
P

re
ve

n
t

u
n
au

th
or

is
ed

re
se

ll
in

g
N

o
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
L

ic
en

se
au

th
en

ti
ci

ty
N

o
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
B

u
ye

r
tr

ac
ea

b
il
it

y
N

o
Y

es
Y

es
**

Y
es

**
Y

es
Y

es
Y

es
U

se
tr

u
st

ed
h
ar

d
w

ar
e

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

/N
o*

N
o

A
d
d

co
st

to
co

n
su

m
er

s
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
/N

o*
N

o
S
u
p
p

or
t

fa
ir

re
se

ll
in

g
N

o
N

o
N

o
Y

es
N

o
N

o
Y

es
S
u
p
p

or
t

n
on

-r
ep

u
d
ia

ti
on

N
o

N
o

N
o

Y
es

N
o

N
o

Y
es

R
e-

sa
le

ab
il
it

y
ch

ec
k

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

S
u
p
p

or
t

co
n
su

m
er

s’
m

on
et

ar
y

in
te

re
st

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

S
u
p
p

or
t

ab
u
se

-f
re

en
es

s
N

o
N

o
N

o
N

o
N

o
N

o
Y

es
L

ic
en

se
is

su
er

’s
ro

le
N

o
on

li
n
e

N
o

offl
in

e
on

li
n
e

on
li
n
e

on
li
n
e

*
Y

es
,

if
L

ai
la

’s
sy

st
em

is
im

p
le

m
en

te
d

w
it

h
tr

u
st

ed
h
ar

d
w

ar
e,

an
d

N
o

if
n
ot

.
**

Y
es

,
if

L
I

is
in

vo
lv

ed
in

th
e

p
ay

m
en

t
p
ro

ce
ss

,
N

o
if

n
ot

.

200 CHAPTER 5. RESELLING DEAL METHOD

The results of the comparison are shown in Table 5.2. From this table, it

can be seen that our solution is the only reselling solution that supports a differ-

entiation between resalable and non-resalable license, license re-saleability check,

abuse-freeness, and consumer’s monetary interest. The features of the differen-

tiation between resalable and non-resalable license and the re-saleability check

are achieved by use of the novel digital token, a Reselling Permission (RP). A

resalable license comes with RP and a non-resalable one without RP. When a

reselling process is conducting, through a permission, RP, a buyer can ascertain

that a license he is about to buy is resalable before he engages in a purchase

process. The features of abuse-freeness and consumer’s monetary interest are

accomplished by integrating the CS scheme with the existing license distribution

infrastructure (i.e. LI). With these features, our solution has a more profound

implication in a marketplace; it offers a three-win facility. For LI, the reseller

actually acts as a proxy seller helping LI to reach out to a broader market. The

reseller is able to use and then resell his license at the highest possible price and

the buyer can buy a cheap second-hand license at the lowest possible price. This

is achieved by the fair and abuse-free RDS protocol.

The table also shows that only our solution and the Nuovo solution sup-

port license reselling with fairness and non-repudiation properties. However, the

two solutions differ in approach. The Nuovo solution makes use of a trusted

hardware-based approach, while our two follow a software-based approach. Us-

ing the trusted hardware helped the Nuovo system to achieve properties such

as preventing an unauthorized reselling, and keeping LI’s overheads at a mini-

mum level. Nonetheless, as mentioned earlier, using trusted hardware normally

imposes an additional cost on both reseller and buyer. In addition, the Nuovo

system has not considered the scenario and implications of a reseller wanting to

resell the original license once he has resold N copies of it. These implications

include (1) how to prevent a reseller from reselling the original license an unau-

thorised number of times, (2) how to prevent a reseller from continuing to use

a resold license. In our solution, trusted hardware is not required. Instead, the

solution makes use of a contract signing protocol (i.e. RDS protocol described in

chapter 4), a digital token (RP), and an assistance role from LI (i.e. the existing

license distribution infrastructure). The RDS protocol is used to bind a reseller

and a buyer to a reselling process. The RP is used to indicate that a license is

resalable.

5.7. CHAPTER SUMMARY 201

The assistance role played by LI in our solution is a simple extension of the role

already played by LI in the current DRM systems. For example, LI can, during

the process of issuing an original license, embed RP into this license to make

it resalable. In addition, payment processing, license activation and revocation

are all part of the functions already performed in the process of distribution

original licenses. Therefore, we can claim that, with the use of cryptographic

primitives, our solution supports a license reselling facility, and this novel facility

is built on the existing license distribution infrastructure. In this manner, our

solution does not add additional cost to consumers while providing fairness and

non-repudiation.

Moreover, the results of the comparison, shown in the table, demonstrate that

our solution and Laila’s solution5 are the only proposal that do not use trusted

hardware. However, as discussed in chapter 3, Lalia’s solution suffers from two

problems not scalable (i.e it does not support tracks and video contents) and the

consumers have to contact a trusted party to play/view their digital contents (i.e.

it is not convenient for consumers).

Like Sun’s, Liali’s, and Conrado’s solutions, our solution requires a License

Issuer (LI) to be online during an execution of a reselling process. LI helps in

preventing continued use and an unauthorised reselling of a license after it has

been resold. These two features can easily be achieved in Sun’s and Liali’s solu-

tions as users of these solutions are supposed to use an online service to play/view

their content. In Conrado’s system, a special hardware-based license revocation

mechanism is used whereas in our solution, we only make use of software-based

revocation mechanisms. Thus, our solution is more cost-effective. On the other

hand, in Kwok’s and NPGCT’s solution, LI is not involved at all as these solutions

make use of a full-trusted hardware based approach.

As with all other solutions, except Kwok’s, our solution enables LI to collect a

buyer’s identity during a license reselling process. Thus, if the buyer has violated

usage rights of a second-hand license, LI can trace this buyer’s identity.

5.7 Chapter Summary

This chapter has presented a novel solution (FSLRP) to support secure license

reselling with a fairness property. Supporting this reselling facility by FSLRP also

5If it is implemented with the use of software mechanisms.

202 CHAPTER 5. RESELLING DEAL METHOD

allows both resellers and buyers to maximise their relative monetary benefits. To

achieve these properties, the FSLRP design has made use of (1) the CS scheme,

and (2) the existing license distribution infrastructure (i.e. LI). The CS scheme

provides two interesting properties: (a) weak fairness in supporting exchange

of digital signatures and ambiguity in identifying the signers of signatures. By

combining the weak fairness property of the CS scheme with the License Issuer

(LI) in the existing license distribution infrastructure, our FSLRP suite achieves

strong fairness with non-repudiation property. Also, by utilising the ambiguity

property of the CS scheme, FSLRP allows resellers and buyers to search for

a deal that best suite their respective monetary interests, thus achieving the

aforementioned benefits. In addition, by embedding a Reselling Permission (RP)

token within a license, the buyer can check whether this license is resalable before

he engages in a reselling process with the reseller of this license. Moreover, the

use of a software-based mechanism (i.e. LRL) to revoke (terminate) the use of a

resold license by its reseller makes the FSLRP cost-effective. The FSLRP analysis

has shown that our solution satisfies the design requirements, and can thwart

potential threats and attacks in a process of digital license reselling. Furthermore,

the evaluation of the FSLRP suite has been conducted and it has demonstrated

that our solution is cost-effective and supports new features (supporting monetary

interest and differentiating between resalable and non-resalable licenses).

Chapter 6

Two Methods Supporting

Multi-Reselling of Digital

Licenses

6.1 Chapter Introduction

This chapter presents two methods to support Multi-reselling of a Digital License

(MRoDL). The first method is called Repeated Reselling Permission based Mul-

tiple Reselling (RRP-MR). This RRP-MR method is a straightforward extension

of the RD method (described in chapter 5). This method allows a buyer to con-

trol whether a multiple reselling can be continued or stopped. It also allows LI

(i.e. content owner) to gain more profit with every reselling of a license. The

second method is known as Hash Chain based Multiple Reselling (HC-MR). The

HC-MR method minimises the amount of overhead placed on LI as the result of

supporting multiple license reselling. It also allows a buyer to check how many

times a license can be further resold.

This chapter is organised as follows. Section 6.2 gives an overview of the build-

ing blocks used in the design of the two methods. Section 6.3 presents the design

preliminaries of the two methods, namely definitions, notations, assumptions and

requirements. Section 6.4 describes the RRP-MR method and its analysis. The

HC-MR method and its analysis are presented in Section 6.5. Section 6.6 com-

pares the two methods with each other and with related work. Finally, Section

6.7 summarises the chapter.

203

204 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.2 Additional Design Building Block

The design of the two license multiple reselling methods makes use of a number of

building blocks. They are a digital signature (described in Appendix B), 2M-RDS

protocol (described in chapter 5), License revocation list (described in chapter

5), existing license distribution infrastructure (described in chapter 5), and hash

chains. The remaining part of this section describes the additional building block

(the hash chains).

Hash chains as a cryptographic primitive were first introduced by Lamport

[138]. Lamport et al used the hash chains to implement the one-time password

(OTP) authentication scheme. As hash chains are low-cost techniques, in addition

to authentication [138, 139], Lamport finds many other applications including

micropayments [140, 141, 142], certificate revocation [143, 144], online auctions

[145], digital cash [146], and one time signature schemes [147].

A hash chain of length N is generated by applying a one-way hash function

to an initial random number, X0, iteratively. This process outputs a chain of the

form: X1 = H(X0); X2 = H(X1);. . .; XN = H(XN−1). The last hash value XN

is also called the tip, T , of the hash chain. XN , XN−1 cannot be generated by

anyone unless he knows the value X0. However, given XN−1, its correctness can

be verified using XN . This property of hash chains is inherited from the property

of one-way hash functions [138].

In most of the hash chain applications, the last hash value, XN , is first securely

distributed or used. Then starting from the value XN−1, the other values of the

hash chain are used one by one till the value, X0, is reached.

6.3 Preliminaries

This section gives the license type and digital token definitions, and design as-

sumptions and requirements of the RRP-MR and HC-MR methods.

6.3.1 Definitions

In addition to single resalable licenses, we have identified three types of Multiple

Resalable (MR) licenses.

Definition 1: MR Type I (MR-I) License

6.3. PRELIMINARIES 205

MR-I license can be resold N times by N different consumers. Suppose that

a consumer, C1, owning an N-time resalable license, can resell it to another con-

sumer, C2. Then, C2 can also resell it to a third consumer, C3, and so on, until

the number of times this license has been resold is N. Once a reseller(e.g. C1 or

C2) has resold this MR-I license once, he cannot reuse nor resell it again. In other

words, for this type of licenses, a reseller can only resell it once. Every time the

license is moved from one consumer to another, a reselling counter associated to

this license is decremented by one until it reaches zero at which point the license

can no longer be resold.

Definition 2: MR Type (MR-II) License

A multi-resalable license may be a MR-II license which can be resold N times

by only one consumer, C1. This means that (a) after each reselling of the license

and provided that the number of times the license has been resold is less than N

times, C1 will still be able to use it on his device and able to resell it; (b) once

this license is resold N times, C1 can no longer resell or reuse it. There is one

restriction with this MR-II type license. That is, any consumer, who has bought

a copy of this MR-II license from another consumer, will not be able to resell it

again .

Definition 3: MR Type (MR-III) License

An MR-III license can be resold N times by M consumers where N ≥ M . In

other words, a consumer, C1, owning an N-time MR-III license, can resell it to

another consumer, C2 with the right for C2 to resell this license again X times,

where X < N . Both of C1 and C2 can use and/or resell this license as long as

the upper limit, N and X, respectively, do not reach zero. Once both of X and N

become zero, the owner of the license can use it but can no longer resell it.

Definition 4: Single Resalable (SR) License

An SR license can only be resold once. Once a buyer has bought this license

from a reseller, it becomes a non-resalable one, so the buyer cannot resell it again.

The scope of this thesis is to support secure and fair resellings of SR and MR-I

types of licenses. Owing to the time limitation, we leave the task of supporting

MR-II and MR-II license reselling to future work.

Definition 5: Multiple Reselling Permission

A Multiple Reselling Permission (MRP) is a digital token which consists of a

license identity, an active keystone fix, N (an upper limit of the number of times

the license can be resold), and LI’s signature on these items. It is issued with a

206 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

given license to authorise this license to be resold N times. In other words, MRP

makes an associated license a multi-resalable license for N times.

Definition 6: Active Keystone Fix

An Active Keystone Fix (AKF) is a keystone fix of an MRP permission. It

is needed in the latest reselling process of a license specified in the MRP. This

keystone fix is a hash value of a random number called keystone. This keystone

is created by LI and shared between LI and the authorised license reseller.

6.3.2 Design Assumptions

The following assumptions are used in the design of the two methods, RRP-MR

and HC-MR:

1. LI is a trustworthy entity that issues fresh multi-resalable (MR), single-

resalable (SR) and non-resalable (Non-RS) licenses to consumers. It also

plays an assistant role during a reselling process. It verifies the license

legitimacy, activates a license on a buyer’s device, and deactivates the license

from a reseller’s device. It also receives a payment from a buyer and sends

it to a reseller.

2. A reseller has got either an SR license or MR license with RPLic or MRPLic,

respectively.

3. Hash functions are secure, one-way and collision free.

4. Communication channels among entities are resilient,

5. Communication channels are authenticated, confidential, and integrity-protected.

These security properties can be obtained by using the Secure Socket Layer

(SSL) protocol.

6.3.3 Design Requirements

The RRP-MR and HC-MR methods are designed to satisfy the following require-

ments:

R1- Detection of unauthorised multi-reselling: Any unauthorised reselling

of a (single or multiple) resalable license should be detected.

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 207

R2- License integrity protection: Given an N-time resalable license, it should

be possible for a consumer and LI to detect whether the upper limit, N, of

this license has been tampered with.

R3- Minimal overhead on LI: While providing the MRoDL facility, any ad-

ditional overhead on LI should be kept at a minimum level.

R4- Multi-reselling check: The recipient (i.e. a buyer, or LI) of an N-time

resalable license should be able to verify how many times the license can

further be resold.

R5- License authenticity: The recipient of a license should be able to confirm

the authenticity of the license (i.e. whether this license and its MRP or

RP are indeed issued by LI).

6.4 Method One: Repeated RP based Multi-

reselling

The RRP-MR (Repeated Reselling Permission based Multi-reselling) method is

designed to support multiple resellings of a License. This method is extended

from the RD method that has been described in chapter 5. It differs from the RD

method in that with the RD method, a buyer obtaining a resold license cannot

resell, i.e. the license is non-resalable. On the other hand, with the RRP-MR

method the buyer obtaining a resold license can resell it but only once, i.e. the

license is an SR license.

The main idea of the RRP-MR method is to allow a buyer of a second-hand

license to resell it again. As described in the RD method in chapter 5, a buyer,

once obtaining a signed deal, needs to send LI an RD activation request to activate

the a signed deal. This is necessary to activate the purchased license on his device.

With the RD method, the activated license will be a non resalable one. However,

by adding some extension to the RD method, we can allow the buyer to request

for a resalable license when a second-hand license is being activated. This can be

achieved by having LI issue a new RP with the activated license provided that

the buyer has paid an extra fee for this RP . Upon the receipt of this RP with

the activated license, the buyer can later use RP to resell the license again. The

multi-reselling of this license can continue in this way as long as a buyer asks LI

208 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

for a new RP with the license being activated. In other words, this multi-reselling

process will stop when a particular buyer does not wishes to obtain a resalable

license.

6.4.1 RRP-MR Method Overview

The overall process of reselling a SR license, Lic , N times using the RRP-MR

method is illustrated in Figure 6.1. The method starts when a consumer, Re-

seller1, wants to resell his SR−Lic to another consumer, Buyer1. Reseller1 and

Buyer1 first negotiate and sign a deal, RD1. Buyer1 then (1) requests LI to ac-

tivate RD1, and (2) requests LI to make Lic single-resalable again. Thus, when

Buyer1 gets Lic , he can further resell it to another buyer, Buyer2. To resell

Lic for the 2nd time, Buyer1 will act as Reseller2. In the 2nd reselling precess,

Reseller2 and Buyer2 first negotiate and sign another deal, RD2. Then, similar

to the case in the 1st reselling process, Buyer2 requests LI to activate RD2 and

to make Lic resalable as well. This process repeats until the N th reselling process

is completed, at which point the license obtained from LI is a non-resalable one.

6.4.2 RRP-MR Method in Detail

As illustrated in Figure 6.3, the RRP-MR method consists of four phases: RD

creation, RD signing, RD activation-request, and RD activation.

RD Creation Phase: A reseller and a buyer negotiate and agree on a deal,

known as RD, for the license reselling/purchasing process. This RD contains the

license identity, the price for this license, and the terms and conditions of the

license reselling process.

RD Signing Phase: To sign the negotiated RD, the buyer first performs

two verifications (License Authentication, LA), an (Re-Saleability (RS) Check)

(the LA and RS checks are detailed in Section 6.4.3). If these two checks are

positive, the buyer will execute the 2M-RDS protocol (described in chapter 5),

with the reseller to fairly sign the RD negotiated in the RD creation phase. The

buyer then initiates the RD activation-request phase with LI.

RD Activation-request Phase: In this phase, the buyer requests for RD

activation and also requests LI to make the license, Lic, as resalable. This is done

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 209

Act
iv

ate
 R

DN
 &

 R
equest

 N
on-R

S L
ic

Li
ce

n
se

 I
ss

u
e
r

Reseller1

Reseller2

Reseller3

Buyer1

Buyer2

BuyerN

Activate RD
1 & Request SR-Lic

Activate RD2 & Request SR-Lic

Get SR-Lic

Get SR-Lic

G
et

 N
on

-R
es

al
ab

le
 L

ic

N
e
g

o
ti

a
te

 &
 S

ig
n

 R
D

2
N

eg
ot

ia
te

 &
 S

ig
n

 R
D

1
N

eg
ot

ia
te

 &
 S

ig
n
 R

D
N

ResellerN

Buyer(N-1)

..

.

..

.

Figure 6.1: N resellings of a license, Lic, using the RRP-MR method

210 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

License
Issuer (LI)

Reseller
 (Alice)

Buyer
(Bob)

1. RD Creation
Alice and Bob agree on RD terms
and conditions.

2. RD Signing
Alice and Bob commit to the RD.

RD

Pre-official RD

3. RD Activation-request
Bob sends LI:
3.a A signed RD;
3.b A reselling permission;
3.c The agreed payment.

Official RD

4. RD Activation
LI performs the following:
4.a Revokes Alice's Lic;
4.b Sends Alice the Payment;
4.c Sends Bob re-issued Lic ;
4.d Marks Alice's Lic as resold.

RD done

Figure 6.2: The outline of the RD method

by having Bob launch the RDA protocol1 with modification in the RD activation-

request. As illustrated in Figure 6.4, the RD activation-request message comprises

the following items: Signed RD, License RP, Readability Flag, Payment, and

Buyer’s Signature.

• Signed RD: This is a reselling deal which has been signed in the RD

signing phase. It contains the license identity, agreed price, and terms and

conditions.

• License RP: This is the reselling permission for the license being resold.

• Re-saleability Flag (RF): This is a flag indicating the type of license the

buyer has requested for. The flag has two values: (1) ReSalable (RS), or

(2) Non-ReSalable (Non-RS). When it is set to RS (i.e. RF = 1), LI will

send Bob a SR license. If it is set to Non-RS (i.e. RF = 0), LI will send

Bob a Non-RS license.

1The RDA (Reselling Deal Activation) protocol is described in chapter 5.

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 211

License
Issuer (LI)

Reseller
 (Alice)

Buyer
(Bob)

1. RD Creation
Alice and Bob agree on RD terms
and conditions.

2. RD Signing
Alice and Bob commit to the RD.

RD

Pre-official RD

3. RD Activation-request
 Bob sends LI containing:
3.a Signed RD;
3.b Current RP (i.e. RP1Lic);
3.c Agreed payment + RS fees;
3.d Resalability flag =RS.
 LI performs:
The verifications in [1]: LIV1-to-LIV5

Official RD

4. RD Activation
 LI performs the following:
4.a Share ks2 with Bob
4.b Create a new RP (i.e.RP2Lic)
4.c Send Bob Lic and RP2Lic
4.d Mark Lic as resold using RP1Lic

4.e Revoke Lic on Alice's device
4.f Send Alice the Payment

RD done

Figure 6.3: The outline of the RRP-MR method

• Payment: This is the amount of money the buyer ought to pay to have his

purchased license activated by LI. There may be different payment amounts.

For example, if the amount is equal to the agreed price stated in the deal,

RD, this may indicate that the license to be activated is a Non-RS license.

However, for an SR license, the payment may be higher than the agreed

price specified in RD as LI may impose a service of re-saleability fee. The

fee is the amount of money paid to LI to make Lic resalable again.

• Buyer’s Signature: This is the buyer’s signature which is signed on all

the above items to protect the integrity of the RD activation request.

Once Bob has generated the RD activation request, he sends it to LI to invoke

the RD activation-request phase (i.e. step 3 in Figure 6.3). Upon the receipt of

this request, as depicted in Figure 6.9, LI will perform a number of verifications

known as LI’s verifications, LIV 1-to-LIV 6.

RD Activation Phase: In this phase, one of two procedures is performed.

Firstly, if the RF flag in the RD activation request is set to Non-RS, LI will

perform the RD activation procedure for Non-RS licenses. This procedure has

212 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

Resalablility FlagSigned RD License RP Buyer's Signature

RS/Non-RS

Payment

Price stated
in RD

Fees
for RS

Figure 6.4: The structure of an RD activation request of the RRP-MR method

been described in chapter 5. Secondly, if the flag is set to RS, as depicted in

Figure 6.3, LI will perform the RD activation procedure for RS licenses, which is

described below:

• Issuing a new RP to the activated License, Lic: This is achieved by:

1. Generating a new keystone, ks2 , and this will be shared with Bob.

2. Generating and signing a new reselling permission for Lic (i.e. RP2Lic).

RP2Lic is of the form, RP2Lic = [Lic||f2||SigLI(Lic||f2)] , where f2 is

the keystone fix of ks2 , i.e. f2 = H(ks2).

• Activating Lic on Bob’s device: This is done by:

1. Assigning a new ID to Lic to avoid the license ID problem mentioned

in chapter 5;

2. Encrypting Lic and RP2Lic using Bob’s public key;

3. Sending the encrypted message to Bob2.

• Marking the license with RP1Lic as resold: Once the license attached

with RP1Lic is resold, LI needs to revoke RP1Lic, so as to protect the license

from any unauthorised reselling in the future. One way of doing this is for

LI to host a Read-only Public Directory (RPD). As illustrated in Figure

6.5, LI publicises the keystone, ks1, contained in RP1Lic, on this RPD.

Publishing ks1 on RPD allows LI (through verification, LIV 4.3) to detect if

RP1Lic is used again to resell the license. In addition, any buyer, using the

Active Keystone Fix (AKF) check, can check this RPD to confirm that (a)

2This is achieved during the execution of the RDA protocol described in chapter 5.

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 213

a reselling permission, e.g. RP2Lic, is still fresh (i.e. it has not been used in

a previous reselling of the same license) before proceeding in the reselling

process.

• Revoking Lic on Alice’s device: LI revokes the resold license, Lic, on

Alice’s device. This can be done by using the RDC protocol described in

chapter 5.

• Sending payment to Alice: For the activation of a resalable license

reselling, LI will deduct the re-saleability fee from the payment received

from Bob and send the rest of the amount to Alice. This amount should be

equal to the price specified in the deal, RD, being activated. For activating

a non-resalable license, LI will send Alice the payment received from Bob.

This can also be accomplished during the execution o f the RDC protocol

described in chapter 5.

LI's RPD showing that Lic1 has been resold twice
using f1 and f2 and it can be further resold using f3

Licenses
Identities

Lic1

Licn

...

f3

Active
Keystone
Fix

Used Keystones

ks2ks1 ...

...

...

Figure 6.5: LI’s RPD after reselling Lic 2 times

Once RD1 is activated, Bob should have got the license and RP2Lic. This

means that Bob can use the license on his device and resell it again to a new

buyer using RP2Lic. If, for example, Charlie wants to buy this license from Bob,

Charlie and Bob will use f2 and ks2 to sign a new deal (RD2). In the RD

activation-request phase of RD2, to obtain a resalable copy of the license, Charlie

has to set the RF flag to RS again. While activating RD2, LI will issue a new

reselling permission, RP3Lic, to Charlie. Hence, Charlie can use RP3Lic to resell

the license for the 3rd time. The multi-reselling process of the license can continue

in this way till the N th buyer sends LI an RD activation request with RF=0 (i.e.

214 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

the flag RF is set to Non-RS). In this case, the N th buyer will get a non-resalable

license which can not be resold by the buyer.

It can be seen that, with the RRP-MR method, any of the buyers will have

the power to stop or to continue the multi-reselling process of a license. If the

buyer wants to get a resalable license, he has to pay LI an extra fee and set the

RF flag to RS in the RD activation request (see step 3 in Figure 6.3). In this case,

LI will issue a new RP for the license and send it to the buyer. Thus, the buyer

can resell the license again (i.e. continue the multi-reselling process). If the buyer

does not want to resell the license in the future, he can just set the resalablity flag

to Non-RS (non-resalable). LI will then send the buyer a non-resalable license

and the multi-reselling process of this license will stop.

6.4.3 Verifications used in the RRP-MR Method

This section describes all the verifications used during the execution of the RRP-

MR method. These verifications include checks and verifications performed by

both a buyer and LI. Prior to signing an reselling deal, RD, with a reseller,

the buyer performs the following verifications, i.e. Re-Saleability (RS) check,

License Authenticity (LA) verification , and Active Keystone Fix (AKF) check.

In addition, before activating a signed RD, LI performs the verifications: LIV 1

through to LIV 6.

6.4.3.1 Buyer’s Verifications

re-saleability (RS) Check: A buyer uses this check to verify whether a license

he is about to purchase is resalable.

The detail of the RS check is illustrated in Figure 6.6. It consists of two

further verifications. In the first verification, Bob verifies that equation (6.1)

holds, where LicRDAB
is the license ID contained in RDAB negotiated by Alice

and Bob, and LicRP1Lic
is the license contained in RP1Lic.

LicRDAB
= LicRP1Lic

(6.1)

This first verification ensures that the reselling permission granted to the

license indeed belongs to the license. In the second verification, as shown in

Figure 6.7, Bob verifies that LI’s signature, SigLI(Lic||f), on RP1Lic is indeed

valid. A valid signature proves that RP1Lic has not been tampered with after its

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 215

RP1Lic

LicRDAB
=LicRP1Lic

?
No

Stop

Yes

Is SigLI on
RP1LicValid?

Yes

No
Stop

Lic is Resalable

RDAB

Figure 6.6: The RS check

generation. If any of these verifications is negative, as illustrated in Figure 6.6,

Bob will stop the reselling process. If both of them are positive, it means that

Lic is resalable. Thus, Bob can proceed to sign RD for this license with Alice.

License Authentication (LA) Verification: This verification is designed

for a buyer to verify that a given license, Lic, and its associated RPLic are indeed

issued by LI.

RS check verifies that a reselling permission is indeed issued by LI. To confirm

that a license is certainly issued by LI, as illustrated in Figure 6.8, LI’s signature

on the license, Lic i.e. SigLI(Lic) is verified. If the RS check and the verification

of SigLI(Lic) are positive, the buyer will be assured that the license, Lic, and

its reselling permission, RP1Lic, are indeed issued by LI (i.e. they are both

authentic).

Active Keystone Fix (AKF) Check: This check allows the buyer to verify

that a keystone fix, provided in a reselling permission, is fresh (i.e. has not been

used yet). The AKF check is performed by the buyer before he signs a deal,

RD, with a reseller. If the check is negative, the buyer will not invoke a signing

process. For example, suppose that a buyer wants to check that a keystone fix, f ,

contained in a permission, RPLic = [Lic||f ||SigLic(Lic||f)], is fresh. To perform

the AKF check, the buyer performs the following operations:

(a) Get the keystone fix, f , from the permission, RPLic. Let us denote this

keystone fix as fRP ;

216 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

[Lic||f]

SigLI(Lic||f)

Public-Key
Decryption

LI's Puclic Key

Hash Function

Digest2

Digest1

Positive
result

Negative
result

Yes

NoDigest1
=

Digest2?

Figure 6.7: The verification process of LI’s signature on RP

RP1Lic

Is SigLI on
RP1Licvalid?

No Stop

Yes

Is SigLIon
Lic-file valid?

Yes

No StopSigLI(Lic-file)

Positive result

Figure 6.8: The LA verification

(b) Retrieve the corresponding keystone fix from the AKF field of LI’s RPD

and denote it as fRPD;

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 217

(c) Verify that the equation (6.2) holds.

fRPD = fRP (6.2)

If the verification in (c) is negative, it means that the keystone fix contained

in RPlic is not valid for this reselling process. The buyer should then terminate

the reselling process. If this verification is positive, it means that the keystone is

valid, and the reselling process should proceed.

6.4.3.2 LI’s verifications

St
op

 a
nd

 te
rm

in
at

e
th

e
pr

ot
oc

ol

Submitted RD

LI
V1

LI
V3.1

LI
V4.1

LI
V6

LI
V5

LI
V4.3

No Payment

Payment less than
Price stated in RD
+ RD Fees

Non-resalable Lic
(ks is not valid or
ks is already released)

RPLic is already used
(f in RPLic is in
UKF field of LI's RPD)

None or invalid Buyer's
Signature

None or invalid Seller's
Signature

Payment Provided

Payment =
Price stated in RD
+ RS Fees

Resalable

Lic is still resalable

Legitimacy
Check

Buyer's signature is valid

Seller's signature is valid

Accept and activate RD

LI
V4.2

Lic in both RPLic&RD
are not the same

Lic is matched

LI
V2

Resalability flag=RS

Resalability flag=Non-RS

LI
V3.2

Payment less than
Price stated in RD

Payment =
Price stated in RD

Payment
Check

Figure 6.9: Verifications performed by LI

LI performs a number of verifications before starting the RD activation pro-

cess. These verifications are designed to protect content owners’ rights. They

enable LI to detect (1) the reselling of non-resalable license; (2) unauthorised

218 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

reselling of a license. A license reselling is authorised if and only if the following

verifications are all positive.

(LIV 1): Confirm that the buyer has made the due payment and verify the correctness

of Bob’s signature on the RD activation request.

(LIV 2): Check the value of the re-saleability flag. If it is RS, LI performs LIV 3.

Otherwise, LI performs LIV 4.

(LIV 3): Verify the amount of the received payment. This verifications comprises

two further verifications, LIV 3.1, and LIV 3.2:

– In LIV 3.1, LI confirms that the payment made is equal to the amount

stated in the signed RD plus the RS fee.

– In LIV 3.1, LI checks that the payment made is equal to the amount

stated in the signed RD only.

(LIV 4): Check that the license, Lic, is valid and resalable. This check consists of

three further checks: LIV 4.1, LIV 4.2, and LIV 4.3.

– In LIV 4.1, LI confirms that Lic has a valid RPLic. This is done by

performing LI’s signature on RPLic. If this verification is not positive,

it means that RPLic has been modified. Lic is then deemed as non-

resalable. LI will then reject RD. Otherwise, Lic is considered as

resalable and LI proceeds to perform LIV 4.2.

– In LIV 4.2, LI ascertains that the license ID in RPLic and in the signed

RD are identical. This check prevents a reseller or a buyer from re-

placing RPLic with another less valuable reselling permission. If LIV 4.2

is positive, LI will perform LIV 4.3. Otherwise, LI stops the reselling

process.

– In LIV 4.3, LI verifies that RPLic has not been used yet. This is done by

checking whether the value of the keystone, corresponding to keystone

fix given in the RPLic exists in the Used Keystone field of the RPD.

If yes, it means that this RPLic has already been used. LI then stops

this reselling process. If this keystone does not exist in the LI’s RPD,

then RPLic has not been used yet. LI then proceeds to perform LIV 5.

(LIV 5): Verify the buyer’s signature on RD to confirm that the buyer has signed

RD.

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 219

(LIV 6): Verify the reseller’s signature on RD to ensure that the reseller has signed

RD.

If the re-saleability flag is RS and if all these verifications are positive, LI will

proceeds to the RD activation phase to activate Lic as a resalable license.

6.4.4 RRP-MR Method Analysis

This section gives an analysis of the RRP-MR method against its requirements

set out in Section 6.3.3. It also discusses potential attacks on the method and

describes countermeasures for these attacks.

6.4.4.1 Analysis against Requirements

Detection of unauthorised reselling: The RRP-MR method is designed such

that any unauthorised reselling can be detected. An unauthorised reselling may

be attempted in any of the following ways: (a) using a reselling permission granted

to a SR license twice, (b) reselling a non-resalable license, or (c) reselling a re-

salable license with an invalid reselling permission. A reseller may perform an

unauthorised reselling to cheat a buyer. Also, a buyer may attempt an unautho-

rised reselling to cheat LI. However, with the AKF check, the buyer can detect

attempt (a). Additionally, with the LA and RS verifications, the buyer can de-

tect attempts (b) and (c), respectively. Using the verifications, LIV 4.1, LIV 4.2,

and LIV 4.3, LI can detect any unauthorised reselling committed by the buyer

using (a), (b), and (c), respectively. More details about unauthorised reselling

attacks are given in Section 6.4.4.2.

License integrity protection: With the RRP-MR method, both a resalable

license and its RP are integrity-protected using digital signatures. During the

issuance stage of the license and its RP, LI digitally signs both of them. Therefore,

if any of them has been modified, during the verifications of LA (or LIV 4.1), a

buyer (or LI) can detect this modification, respectively.

Re-saleability check: Using the RRP-MR method, a buyer is enabled to

check whether a license he is about to purchase is resalable using the RS verifi-

cation and whether it has already been resold using the AKF check. Both checks

have been described in Section 6.4.3. Prior to signing a deal, a buyer first per-

forms these two checks. He only proceeds to sign the deal, if both of these two

checks are positive.

220 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.4.4.2 Analysis against Potential Attacks

There are two potential attacks that could be mounted on the RRP-MR method:

Unauthorised Reselling (UR) attack, and replay attack. This section describes

these attacks and discusses how the RRP-MR method counters these attacks.

Unauthorised Reselling (UR) Attacks We say that a reselling process is

under an UR attack if one of the following cases takes place:

1. No-RP: A license reselling is being attempted without a valid reselling

permission. That is, the reselling is attempted without any permission or

with an incorrect permission.

2. Double-used RP: A license is being resold using a permission that has al-

ready been used in a previous reselling of this license. For example, suppose

that a license, Lic, has already been resold using RP1Lic. When a reselling

of Lic is being attempted again using RP1Lic, we call this an unauthorised

(or double) reselling. This is because RP1Lic has already been used in a

previous reselling of Lic.

3. Unmatched-RP: A resalable license, Lic1, that should be resold using

RP1, is being attempted to be resold using RP2. This RP2 should be used

in reselling the license, Lic2. A motivation for this attack is that a reseller or

a buyer may want to replace a cheaper license with a more expensive one, or

they may want to use the RP of a resalable license to resell a non-resalable

one.

The RRP-MR method has taken a number of measures to counter these UR

attacks.

UR Attack by a reseller: The verifications RS, LC, and AKF are designed

to detect and thwart any UR attacks mounted by a reseller. In the No-RP attack

case, the buyer, using the LA verification, can detect that a given license is not

resalable (i.e. has no valid RP). As discussed in Section 6.4.3, the LA verification

takes RP as an input. If there is no RP, the buyer will terminate the reselling

process.

In the Double-used RP attack case, the buyer, using the AKF check, can

detect that a given RP has already been used in a previous reselling. As explained

in Section 6.4.3, if the equation 6.2 does not hold, then this RP has already been

6.4. METHOD ONE: REPEATED RP BASED MULTI-RESELLING 221

used in a previous reselling. This means that the reseller is trying to double use

the RP. The buyer can then stop the reselling process.

In the Unmatched-RP attack case, using the RS check, a buyer can detect

that a license and the associated RP do not match. For example, suppose that

Alice has got a license, Lic1, with RPLic1. This Lic1 can be used for another 10

years and it can be resold for £10 as a second-hand license. At the same time,

Alice has also got another license, Lic2, with RPLic2. Lic2 can be further used for

20 years and it can be resold for £15 as a second-hand license. In other words,

Lic2 is more valuable than Lic1. Furthermore, suppose that Alice and Bob have

negotiated a deal, RD2, for the license, Lic2. In RD2, they agreed on £15 as the

price for the reselling of Lic2. When signing RD2, instead of sending RPLic2 as

evidence that Lic2 is resalable, Alice may send Bob RPLic1 which is valid for the

license ,Lic1 but not for the license, Lic2. By doing this cheating, Alice takes

advantage of RPLic2 of the higher-priced license, Lic2, to resell a lower-priced

Lic1. If this happens and if Bob signs RD2 , Bob will be cheated as he may pay

a higher price for the license, Lic1, which is not worth this price. Also, this is

considered as an unauthorised reselling as Lic1 can only be resold using RPLic1.

However, using the RS check, Bob can detect that the ID of the license, Lic2,

agreed in RD2, is not identical to the ID of the license, Lic1, contained in RPLic1.

Bob can then quit this reselling/purchasing.

UR Attack by a buyer: A buyer may also mount an UR attack to cheat

LI by following any of the above cases. The verification, LIV 4.1, allows LI to

detect the No-RP attack case, the Verification, LIV 4.3, enables LI to detect the

Double-used RP attack case, and the verification, LIV 4.2, enables LI to detect

the Unmatched-RP attack by verifying if a given license identity provided in both

RD and RP are identical.

From the above analysis, we can conclude that the RRP-MR method enables

the detection of various cheating acts or attacks launched by a reseller or by a

buyer.

Replay Attack

By using the SSL protocol to establish confidential and integrity-protected

communication channels amongst the involved entities (see assumption 5), replay

attacks on the protocol messages of the RRP-MR method can be countered.

Using the SSL protocol, the protocol messages are not exposed to any outsiders.

This prevents any intruder from gaining anything useful from the messages while

222 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

they pass through the network.

6.4.4.3 RRP-MR Method Weaknesses

Although supporting multi-reselling by using the RRP-MR method is simple

and straightforward, the method suffers from two weaknesses: a fair amount

of additional overheads are imposed on LI, and their is a lack of a multi-reselling

check.

Additional overheads on LI: With the RRP-MR method, LI needs to issue

a new reselling permission, RP , for every license, Lic, being resold. For each RP

issuance, LI has to perform the following operations:

1. Generate a random number, i.e. a keystone ks,

2. Generate a hash value from ks to obtain a keystone fix,f ,

3. Construct a new RP, RPLic;

4. Generate a signature on RPLic.

Therefore, to resell a license, Lic, N times, LI will need to perform this set of

four operations N times. This results in a fair amount of overheads to be added

on LI, thus making the RRP-MR method inefficient.

Lack of Multi-reselling Check: With the RRP-MR method, a buyer can-

not check how many times a license can be further resold. The buyer can only

verify whether the license is authorised to be resold for the current reselling. This

is because the reselling permission used in this method can only authorise the li-

cense to be resold once. This means that the RRP-MR method does not support

the multi-reselling check.

6.5 Method Two: Hash Chain based Multi-reselling

The HC-MR method is proposed to address the two weaknesses of the RRP-

MR method described above. That is, it is designed to provide a multi-reselling

facility while minimising the level of overheads placed on LI, and enabling a

multi-reselling check by a buyer. Two ideas are used in the design of the HC-

MR method: (1) a novel hash-chain based MRP (Multiple Resalable Permission)

token is proposed to reduce the level of involvement by LI in a reselling process;

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 223

and (2) an online cross checking facility is used to allow buyers to confirm a current

MRP token is valid for a current reselling process. With the use of MRP, LI does

not have to generate and sign a new RP each time a license is being resold. It

will only need to perform two tasks. Firstly, when initially issuing a MR licence,

LI generates an MRP token and attaches it to the license. This token contains

the permissions for the resellings of the license and it is signed only once by LI

at the time when it is first generated. It will then be used in the 1st reselling

of the license. This MRP token will later be used by LI to generate further

(N-1) MRPs to be used for (N-1) resellings but without LI having to generate

any more signatures on these MRPs. This MRP token, as shown in Figure 6.10,

is generated by making use of a hash chain primitive. A hash chain of length N

is first generated from a root keystone, ks. The last two hash values (i.e. hN−1

and hN) are then used as a keystone and a keystone fix, respectively, for the

1st reselling of the license. In this reselling, hN , as the keystone fix for the 1st

reselling, will be included in the 1st MRP and hN−1 will be shared with the 1st

reseller as a keystone fix for the 1st reselling. In the 2nd reselling, hN−1, as the

keystone fix for the 2nd reselling, will be added to the 2nd MRP and hN−2 will

be shared with the 2nd reseller. The process continues until ks is used in the N th

reselling.

The HC-MR method also supports a multi-reselling check by a buyer. Includ-

ing the N reselling limit in the 1st MRP which is signed by LI, a buyer can find

out how many more resellings can be performed on this license. In the remaining

(N-1) resellings, the buyer can use the information published on LI’s RPD along

with the data contained in the xth MRP (where x is the number of times the

license has been resold so far -including the current reselling) to calculate how

many times the license can be further resold.

224 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

k
s

h
1

h
2

h
3

h
4

h
5

h
2
=

H
(h

1
)

h
1
=

H
(k

s)

h
3
=

H
(h

2
)

h
4
=

H
(h

3
)

h
5
=

H
(h

4
)

Chain Generation

Chain Use

h
4
 a

n
d

 h
5
 a

re

sh
a
re

d
 b

e
tw

e
e
n

 L
I

a
n

d
 1

st
 R

e
se

lle
r,

a
n

d
 u

se
d

 a
s

ks
 a

n
d

 f
 in

 1
st
 r

e
-s

a
le

 o

f
 L

ic

h
4
 w

ill
 b

e
 o

n
ly

re

le
a
se

d
 a

ft
e
r

1
st
 r

e
-s

a
le

h
3
 w

ill
 b

e
 o

n
ly

re

le
a
se

d
 a

ft
e
r

2
n
d
 r

e
-s

a
le

h
2
 w

ill
 b

e
 o

n
ly

re

le
a
se

d
 a

ft
e
r

3
rd

 r
e
-s

a
le

h
1
 w

ill
 b

e
 o

n
ly

re

le
a
se

d
 a

ft
e
r

4
th

 r
e
-s

a
le

ks
 is

 k
ep

t
se

cr
et

 a
n

d

on
ly

 r
el

ea
se

d
 a

ft
er

 5
th

 (
fi
n

al
)

re
-s

al
e

h
3
 a

n
d

 h
4
 a

re

sh
ar

ed
 b

et
w

ee
n

 L
I

an
d

 2
n
d
 R

es
el

le
r,

an

d
 u

se
d

 a
s

ks
 a

n
d

 f
 in

 2
n
d
 r

e-
sa

le

 o
f

 L
ic

h
2
 a

n
d
 h

3
 a

re

sh
ar

ed
 b

et
w

ee
n
 L

I
an

d
 3

rd
 R

es
el

le
r,

an

d
 u

se
d
 a

s
ks

 a
n
d

 f
 in

 3
rd
 r

e-
sa

le

 o
f

 L
ic

h
1
 a

n
d

 h
2
 a

re

sh
a
re

d
 b

et
w

ee
n

 L
I

an
d

 4
th
 R

es
el

le
r,

an

d
 u

se
d

 a
s

ks
 a

n
d

 f
 in

 4
th
 r

e-
sa

le

 o
f

 L
ic

ks
 a

n
d

 h
1
 a

re

sh
a
re

d
 b

e
tw

e
e
n

 L
I

a
n

d
 5

th
 R

e
se

lle
r,

a
n

d
 u

se
d

 a
s

ks
 a

n
d

 f
 in

 5
th
 r

e
-s

a
le

 o

f
 L

ic

F
ig

u
re

6.
10

:
U

si
n
g

h
as

h
ch

ai
n

to
d
es

ig
n

M
R

P

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 225

6.5.1 HC-MR Method Overview

A reselling process using the HC-MR method is illustrated in Figure 6.11. The

method consists of four phases: RD Creation, RD Signing, RD Activation-

request, and RD Activation. The first three phases are the same as those discussed

in the RRP-MR method. By the end of a successful execution of phase 3, (1) LI

should have received a payment from the buyer; and (2) both the buyer and the

reseller are officially committed to a signed deal, RD. In phase 4, LI starts the RD

Activation process in which, as shown in Figure 6.11, LI performs the following

tasks. LI first releases the keystone, hN−i, where N is the reselling upper limit

for the license, Lic, and i is the order of the current reselling. LI then generates

a new MRP (i.e. MRP (i + 1)Lic) to be used for the (i + 1)th reselling. LI also

activates Lic on the buyer’s device. Finally, LI revokes Lic from the reseller’s

device, and sends the reseller the payment received from the buyer in the RD

activation-request phase. From this point on, Lic can be further resold (N-i)

times.

License
Issuer (LI)

Reseller

Buyer

1. RD Creation
Reseller and buyer agree on RD
terms and conditions.

2. RD Signing
Reseller and Buyer commit to RD.

RD

Pre-official RD

3. RD Activation-request
 Buyer sends LI:
3.a A signed RD;
3.b A MRPiLic;
3.c An agreed payment.
 LI performs:
LI's verifications in Fig7: LIV1-to-LIV5

Official RD

4. RD Activation
 LI performs the following:
4.a Releasing/Publishing hN-i;
4.b Creating MRP(i+1)Lic;

4.c Activating Lic on buyer's device;
4.d Sending buyer's Lic;
4.e Revoking Lic on the reseller's
 license;
4.f Sending the payment to
 the reseller.

RD done

Modifying MRPiLic to be
MRP(i+1)Lic without
creating a new signature

Figure 6.11: The outline of the HC-MR method

226 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.5.2 Multiple Reselling Permission (MRP)

This section gives a detailed description of MRP which is the main component

in the HC-MR method. It explains when and how MRP is generated. It also

shows how MRP is linked to a license, Lic, to make it multi-resalable.

As illustrated in Figure 6.12, the association between a given license, Lic, and

its MRP is achieved by using a data structure containing:

• Lic : A license identity,

• f : A keystone fix,

• N : The maximum number of times Lic is allowed to be resold,

• SigLI : LI’s signature on the concatenation of the above items to protect

the integrity of the association.

An MRP for a license, Lic, is generated at one of two stages: (1) when Lic

is being issued, and (2) when Lic is being resold. When Lic is being issued for

the first time, LI generates the first MRP for Lic (i.e. MRP1Lic). MRP1Lic is

used for the 1st reselling of Lic. At the ith reselling of Lic, where i = 1, . . . , N-1,

LI will generate MRP (i+ 1)Lic to be used for the (i+ 1)th reselling. In fact, the

generation of MRP (i+1)Lic, as illustrated in Figure 6.12 , is done by only adding

a new keystone fix (i.e. hash value) into MRP (i)Lic. The generation process of

MRP at these two stages is described below.

Generating MRP when Lic is first being issued (i.e. Generating

MRP1Lic): MRP1Lic is the 1st MRP for a license, Lic. It authorises Lic to be

resold N times. To generate MRP1Lic, LI performs the following operations:

• Apply a one-way cryptographic hash function to a root keystone, ks, iter-

atively to generate a chain of hash values. The length of this chains equal

to N , the maximum number of resellings allowed for Lic. The root key-

stone, ks, will only be released at the last reselling of Lic. For example,

when N=5, the hash values, h1 is computed as h1 = H(ks), and other hash

values are computed such that hi = H(hi−1), for 2 ≤ i ≤ N .

• LI then uses hN (the last hash value of the chain) to generate the re-

selling permission for the 1st reselling which is of the form: MRP1Lic =

[Lic||hN ||N ||SigLI(Lic||hN ||N)] , where:

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 227

– Lic : is the identity of the multi-resalable license;

– N : is the maximum number of the times Lic can be resold;

– hN : is the N th (i.e. the last) hash value of the root keystone, ks. hN

is the hash value of hN−1 which should be securely sent to a consumer

(the reseller in our case). The hash values hN and hN−1 will be used as

a keystone fix and a keystone, respectively, in the 1st license reselling.

– SigLI(Lic||hN ||N) : is LI’s signature on MRP1Lic. This signature is

to prove that MRP1Lic is indeed generated by LI and the associated

Lic can be resold N times.

Once MRP1Lic is generated, LI will send it along with Lic to the 1st reseller

completing the process of issuing the multi-resalable license, Lic. In addition,

LI will securely send the hash value, hN−1 , where hN =H(hN−1), to the 1st

reseller for it to be used as a keystone in the 1st reselling. This can be accom-

plished by encrypting HN−1 with the reseller’s public key. The other hash values

(hN−2,, h1, ks) will be kept secret by LI to be used in future resellings.

Note that, by adding the number of resellings, N, to MRP1Lic, any verifier

of MRP1Lic can confirm that MRP1Lic is authorising Lic to be resold N times.

In addition, as N is included in LI’s signature, no one can modify (e.g. increase)

the value of N without being detected. Thus, by constructing the permission

token, MRP1Lic, where MRP1Lic = [Lic||hN ||N ||SigLI(Lic||hN ||N)] , any buyer

can verify whether the permission is authentic. The buyer can also perform the

multi-reselling check before he engages in a reselling process of the license.

Generating MRP (i+1)Lic at the ith Reselling of Lic : At the ith reselling

of Lic, where i=1,. . . ,N-1, LI should also give the ith buyer a multiple reselling

permission, MRP (i + 1)Lic, authorising Lic to be resold (N-i) times after this

current reselling. To upgrade MRP (i)Lic into MRP (i + 1)Lic, the only step LI

needs to do is to add the hash value, hN−i, into MRP (i)Lic to form MRP (i+1)Lic,

where hN−i was the keystone for the ith reselling. hN−i will be used as the keystone

fix in the (i+ 1)th reselling.

Assuming N = 5, the process of upgrading MRP (i) is as follows. At the 1st

reselling of Lic, LI will do the following operation to generate MRP2Lic from

MRP1Lic.

• As illustrated in Figure 6.12 .b, LI adds the keystone of the 1st reselling, i.e.

h4, to the AKF field of MRP1Lic. The output of this addition is MRP2Lic

228 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

AKF: 5th

reselling

Lic h5 SigLI(Lic||5||h5)h4 h3 h2 h1

(c) MRP5Lic (last) Reselling Permission of Lic

(a) MRP1Lic (first) Reselling Permission of Lic

(b) MRP2Lic (second) Reselling Permission of Lic

To be used for h4 till h1

To be used for h3 till h1

License
identity

Reselling
Times

5

LI's Signature

AKF: 2nd

reselling

Lic h5 SigLI(Lic||5||h5)h4

License
identity

Reselling
Times

5

LI's Signature

UKF: 1st, 2nd, 3rd, and 4th resellings

UKF: 1st

reselling

AKF: 1st

reselling

Lic h5 SigLI(Lic||5||h5)

License
identity

Reselling
Times

5

LI's Signature

Generated during 1st reselling
of Lic and to be used in

the 2nd reselling

Generated during 4th reselling
of Lic and to be used in
the 5th reselling

...
... Other MRPs

AKF: Active Keystone Fix
UKF: Used Keystone Fix

Generated during issuing
Lic and to be used in

the 1 st reselling

Figure 6.12: Schematic diagram illustrating the structure of MRP in different
resellings

which is of the form MRP2Lic = [Lic||h4||h5||5||SigLI(Lic||h5||5)]. Al-

though h4 is not signed by LI, anyone can still verify that it is generated

by LI. The idea is that, as (a) h5 = H(h4); (b) h5 is signed by LI in

SigLI(Lic||h5||5); (c) h4 is contained in MRP2Lic; (d) h4 is made public, as

discussed in Section 6.5.4, h4 must have been generated by LI. Therefore,

by using the hash chain primitive to get a hash chain of the root keystone,

ks, and by only signing the last hash value, hN , in MRP1Lic, the integrity

of all the hash values in the chain can be protected. Thus, LI only needs to

sign a single signature for generating N MRPs for Lic.

Figure 6.12 shows the structure of 5 MRP s of Lic generated (a) during issuing

Lic, and (b) during the 4 times of reselling Lic. It can be seen from this figure

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 229

that LI only signs MRP1Lic, thus reducing the overhead imposed on LI.

6.5.3 Read-only Public Directory (RPD) for Multi-Reselling

Checking

If a particular permission, MRP (i)Lic, for a MR license, Lic, has been used

there should be a way allowing any future buyers to be informed of this fact, i.e.

MRP (i)Lic has already been used and MRP (i+1)Lic is the next valid permission

to be used. This can be done by having LI publicise hi which is the keystone of

the ith reselling of Lic. One way to make hi public is to publish it on a Read-

only Public Directory (RPD). RPD, as illustrated on Figure 6.13, consists of

two fields: license identity (Lic), and hash values associated to Lic. These hash

values are grouped into two sub-fields: Used Keystone Fix (UKF), and Active

Keystone Fix (AKF). The UKF field contains the keystone fixes already used in

previous reselling processes (i.e. the keystone fixes were contained in used MRPs).

The AKF field contains the keystone fix that is valid to be used next (i.e. it is

contained in the current MRP). Figure 6.13 illustrates the structure of RPD of a

license, Lic, at different resellings.

Using RPD, any buyer can check whether a given keystone fix has been used

in a previous reselling. Also, as discussed in Section 6.5.5, using the AKF check,

a buyer can verify whether a keystone fix is the active/right one to be used in

the current reselling.

6.5.4 HC-MR Method in Detail

The HC-MR method, as illustrated in Figure 6.11, consists of four phases: RD

creation, RD signing, RD activation-request, and RD activation. These phases

are described below.

RD Creation Phase: In the RD creation phase, a reseller and a buyer ne-

gotiate and agree on a mutually acceptable deal, known as RD. This RD contains

terms and conditions of a reselling process of a license. In addition, it includes

the license identity and an agreed price for this license.

RD Signing Phase: To sign the negotiated Reselling Deal, RD, the buyer

first performs two verifications License Authentication (LA), and Multi-reselling

Check (MrC). As discussed in Section 6.5.5, if these two checks are positive, the

buyer will execute with the reseller the 2M-RDS protocol (described in chapter

230 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

(b) LI's public directory showing that Lic has been
resold once and h4 is the active keystone fix

Hash values representing authorised
numbers of reselling Licenses

Identities

Lic

Licn

...

h5 h4

Active
Keystone
Fix

Used Keystone Fix

(c) LI's public directory showing that Lic has been
resold 2 times and h3 is the active keystone fix

Hash values representing authorised
numbers of reselling Licenses

Identities

Lic

Licn

...

h5 h4

Active
Keystone
Fix

h3

Used Keystone Fix

(a) LI's public directory showing that Lic has not
 been resold yet and h5 is the active keystone fix

Licenses

Identities

Lic

Licn

...

h5

Active
Keystone
Fix

Hash values representing authorised
numbers of reselling

Used Keystone Fix

(d) LI's public directory showing that Lic has been
resold 5 times and it can not be resold again

Hash values representing authorised
numbers of reselling Licenses

Identities

Lic

Licn

...

h5 h4 h3 h2 h1

Used Keystone Fix
Active
Keystone
Fix

Nil

Figure 6.13: Schematic diagram showing the structure of LI’s RPD at different
resellings

5) to sign the RD negotiated. The buyer then initiates the RD activation-request

phase with LI.

RD Activation-request Phase: This phase is designed for the buyer to ask

LI to activate RD which is signed in the RD signing phase. The buyer also makes

the payment stated in RD to LI. In other words, the buyer invokes the RDA

protocol (described in chapter 5) and sends an RD activation request consisting

of the signed RD, agreed payment, and MRP (i)Lic, where i is the order of the

reselling. Upon the receipt of this request, LI will perform the verifications,

depicted in Figure 6.21 , and described in Section 6.5.5. If all these verifications

are positive, LI will proceed to the RD activation phase.

RD Activation Phase: In this phase, LI will perform two tasks: (a) sending

the buyer an activated multi-resalable license, and (b) sending the reseller the

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 231

payment received from the buyer. To send the multi-resalable license, LI will

perform the following operations:

• Release hN−i : This is to mark Lic as resold using MRP (i)Lic.

• Create MRP (i + 1)Lic: This is to make Lic as (N − i) times resalable

license. As discussed in Section 6.5.2, generating MRP (i + 1)Lic does not

require Ll’s signature, but MRP (i + 1)Lic will still be integrity-protected.

With the facility of RPD, the property of hash chain, and LI’s signature on

the root of the hash chain, MRP (i + 1)Lic can still be used to prove the

authenticity of the (i+ 1)th reselling. From this, future buyers can find out

how many times Lic can further be resold.

• Activate Lic on the buyer’s device: This is done by:

1. Having LI assign a new ID to Lic to avoid the license ID problem

mentioned in chapter 5;

2. Having LI encrypt Lic using the public key of the buyer’s device, and

3. Having LI send Lic and MRP (i+ 1)Lic to the buyer.

To send the reseller the payment, LI will do the following operations:

Revoke Lic on the reseller’s device: This can be achieved by using the RDC

protocol presented in chapter 5.

Send the reseller the payment: Once LI has received the confirmation that

Lic has been revoked on the reseller’s device, LI sends the payment received

from the buyer in the RD activation-request phase to the reseller.

Once the RD activation phase is successfully executed, the buyer will receive an

(N-i) resalable Lic, so he can resell it again if he wants to. The reseller will also

receive the payment for his resold license, Lic.

An exemplar illustration of using the HC-MR Method

The following scenario illustrates how the HC-MR method is used to resell a

license, Lic, 2 times out of N=5 times. The scenario will show (1) how MRP can

be used 5 times without being re-signed by LI at every reselling process; and (2)

how a buyer can use this MRP to check how many times Lic can further be resold

at or after each reselling. In this scenario, there are three consumers involved. As

232 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

Figure 6.14: The process of the 1st and 2nd resellings of Lic

illustrated in Figure 6.14, Alice will resell Lic to Bob in the 1st reselling process.

Then, in the 2nd reselling process, Bob will resell Lic to Charlie.

The 1st reselling of Lic: In this reselling, Alice, the 1st reseller, will sell her

multi-resalable license, Lic, to Bob, the 1st buyer. It is assumed that Alice has

got a 5-time resalable license, Lic, from LI prior to the 1st reselling process. This

means that Alice has got Lic, h4, andMRP1Lic = [Lic||H5||5||SigLic(Lic||H5||5)]).

In the 1st reselling of Lic, as illustrated in Figure 6.14, Alice and Bob perform

the following operations:

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 233

1. They negotiate a deal called RDAB. RDAB contains the terms and condi-

tions of the 1st reselling and the price for Lic.

2. They sign RDAB using the RDS protocol described in chapter 4. In this

signing process, Alice will use h4 as the keystone, and h5 = H (h4) as the

keystone fix.

3. Once the deal RDAB is signed, Bob will submit it along with the agreed

payment to LI for RDAB activation. Prior to activating the license on Bob’s

device, LI will perform the verifications, LIV 1 through to LIV 5, which are

discussed in Section 6.5.5 and depicted in Figure 6.21 .

4. If all these verifications are positive, in the RD activation phase, LI will

perform the following operations:

(a) Publicising h4 on RPD: To mark the license, Lic, as resold once,

LI will release h4 which is the keystone used in the 1st reselling of Lic.

After its publication, h4 can not be used as a keystone for any future

resellings. However, as discussed in Section 6.5.2, as h4 is equal to

H(h3), h4 will be used as a keystone fix for h3 in the 2nd reselling .

(b) Creating the 2nd reselling permission for Lic (i.e. MRP2Lic):

This is done by upgrading MRP1Lic to MRP2Lic. As discussed in

Section 6.5.2, this upgrading does not involve any new signature gen-

erations, but rather only requires the addition of a new item, i.e. h4,

into MRP1Lic, resulting MRP2Lic. The MRP2Lic will allow Lic to

be resold 4 times.

(c) Activating Lic on Bob’s device: This is accomplished by:

• Having LI assign a new ID to Lic to avoid the license ID problem

mentioned in chapter 5;

• Having LI encrypt Lic using Bob’s device public key;

• Having LI send the encrypted license, Lic, and MRP2Lic to Bob3.

(d) Lic Revocation: LI must perform the revocation of Lic on Alice’s

device to prevent Alice from using Lic after she has resold it. This can

be achieved by using RDC protocol described in chapter 5.

3This is achieved during the execution of the RDA protocol described in chapter 5.

234 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

(e) Sending the Payment to Alice: LI finishes off the 1st reselling by

sending Alice the payment received from Bob in the RD activation-

request phase. Like the case of Lic revocation, this can also be ac-

complished during the execution o f the RDC protocol described in

chapter 5.

Upon the successful execution of all these operations, Bob should have now

received the license, Lic, and its reselling permission, MRP2Lic. This means that

Bob has received a multi-resalable license which can be further resold 4 times. In

addition, Alice should have received the payment agreed in RD and will not be

able to access Lic on her device anymore.

The 2nd Reselling of the license, Lic: In this reselling, Bob, as the reseller,

will resell Lic to the 2nd buyer of the license, Charlie. As shown in Figure 6.14,

similar to the case in the 1st reselling of Lic, Bob and Charlie will first negotiate a

deal, known as RDBC . They then sign RDBC using the RDS protocol described

in chapter 4. In the signing process, h3 and h4 = H (h3) will be used as a

keystone and keystone fix, respectively. Charlie then invokes the RD activation-

request phase with LI. In this phase, she sends LI the payment stated in RDBC

along with an activation request for RDBC . After receiving this request, LI will

perform the verifications, LIV 1 through to LIV 5, illustrated in Figure 6.21. If the

verifications are all positive, LI will perform the following operations to activate

the license on Charlie’s device:

1. Publicising h3 on RPD: To mark Lic as resold twice, LI will release h3

which was used as the keystone for the 2nd reselling. This is done in the

same way as publicising h4 on RPD. Now, as illustrated in Figure 6.5.c,

LI’s RPD contains three hash values, h5 and h4 which are in the UKF field

while h3 is in the AKF field. This means that h3 can be used as a keystone

fix in the 3rd reselling.

2. Creating MRP3Lic: This is done by upgrading MRP2Lic to MRP3Lic.

As discussed in the 1st reselling above, this modification does not require

LI’s signature on MRP3Lic, but rather only includes the addition of a new

item, i.e. h3, into MRP3Lic, where

MRP3Lic = [Lic||H3||H4||H5||5||SigLic(Lic||H5||5)]. As explained in creat-

ing MRP2Lic, although h3 in MRP3Lic is not signed by LI, a recipient of

MRP3Lic is still able to verify that MRP3Lic is generated by LI.

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 235

3. Activating Lic on Charlie’s device: This is accomplished by:

(a) Having LI assign a new ID to Lic to avoid the license ID problem

mentioned in chapter 5;

(b) Having LI encrypt Lic using Charlie’s device public key. Hence, this

Lic can only be accessed on Charlie’s device which holds Charlie’s

private key;

(c) Having LI send the encrypted Lic and its MRP3Lic to Charlie.

4. Lic Revocation: Lic on Bob’s device should now be revoked. This is

achieved by using the RDC protocol introduced in chapter 5.

5. Sending the Payment to Bob: LI finishes off the 2nd reselling by sending

Bob the payment received from Charlie during the RD activation-request

phase.

After performing all the above operations successfully, Charlie will receive the

license, Lic, and its reselling permission, MRP3Lic. The MRP3Lic will allow Lic

to be further resold 3 times. In other words, Charlie will still be able to resell

Lic to another buyer. Also, Bob will obtain the agreed payment and will not be

able to use Lic anymore.

The 3rd , 4th, and 5th resellings of Lic will be performed in the same way.

After the 5th reselling, LI will not send an MRP to the 5th buyer and will update

LI’s RPD such that, as shown in Figure 6.5.d, the AKF field on LI’s RPD is

Nil. At this stage, Lic will no longer be resalable. In other words, when the

number of the hash values in the UKF field of LI’s RPD is equal to N, indicated

in MRP5Lic, which is equal to 5 (in this example), the owner of Lic can no longer

resell it.

6.5.5 Verifications Used in the HC-MR Method

This section describes all the verifications used during the execution of the RRP-

MR method. These verifications include those performed by a buyer and by LI.

Prior to signing a deal, RD, with a reseller, the buyer performs the verifications,

multi-reselling check, active keystone fix check, and license authentication verifica-

tion. Before activating a signed RD, LI performs the verifications, LIV 1- through

to LIV 6.

236 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.5.5.1 Buyer’s Verifications

Multi-reselling check: This is a check by which a buyer of a given license can

verify whether the license is a N-time resalable. This check is performed in two

different ways based on whether it is performed at the 1st reselling (MrC1), or

at the ith reselling (MrCi), where 2 ≤ i ≤ N .

MRP1Lic

LicRDAB
=LicMRP1Lic

? No
Stop

Yes

Is SigLI on
MRP1Lic valid?

Yes

No
Stop

NoR= N

RDAB

Figure 6.15: The MrC1 check

Multi-reselling Check at the 1st reselling (MrC1): MrC1 is illustrated

in Figure 6.15. It comprises two further verifications. In the first verification, Bob

verifies that equation (6.3) holds, where LicRDAB
is the license ID contained in the

negotiated deal, RDAB, and LicMRP1Lic
is the license ID contained in MRP1Lic.

LicRDAB
= LicMRP1Lic

(6.3)

In the second verification, as illustrated in Figure 6.16, Bob verifies LI’s sig-

nature, SigLic(Lic||h5), on MRP1Lic. If both these verifications are positive, it

means that NoRLic = 5. This is because NoRLic = 5 = N is signed by LI and the

signature is contained in MRP1Lic. By this verification, Bob can confirm that

Lic is multi-resalable and the maximum authorised number of resellings is 5.

Multi-reselling Check at the ith reselling (MrCi): MrCi, where 2 ≤
i ≤ N , is designed to allow the ith buyer to check how many times a license, Lic,

can be further resold after the ith reselling. One may ask why MrC1 can not be

used to verify NoRLic at the ith reselling. This is because starting from the ith

reselling (i > 1), Lic can only be resold (N − i+1) times not N times. The value,

(N − i + 1), is not signed by LI in the ith MRP of Lic, which is of the form

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 237

[Lic||5||h5]

SigLI(Lic||5||h5)

Public-Key
Decryption

LI's Puclic Key

Hash Function

Digest2

Digest1

Positive
result

Negative
result

Yes

NoDigest1
=

Digest2?

Figure 6.16: The verification process of LI’s signature on MRP

MRP (i)Lic = [Lic||hN ||hN−1||...||hN−i+1||N ||SigLic(Lic||hN ||N)], where 2 ≤ i ≤
N , and i is the number of times the license has been resold so far- including

the current one, and its value is equal to the number of hash values provided in

MRP (i)Lic. Thus, performing MrC1 on the ith MRP can only verify that the

maximum number of times Lic can be resold is N. It cannot verify that Lic can

be further resold (N-i +1) times. For example, when i = 2, and N = 5, the 2nd

MRP of Lic will be of the form MRP2Lic = [Lic||H4||H5||5||SigLic(Lic||H5||5)].

Performing MrC1 on MRP2Lic can only prove that Lic is a resalable license, and

it can be resold 5 times in total. However, it cannot verify that Lic is allowed

to be resold 4 more times after the completion of the 1st reselling. Hence, MrC1

cannot be used to prove to a buyer that Lic can only be resold 4 times.

In addition, with this form of MRP2Lic, any entity (e.g. including its owner)

can remove h4 from MRP2Lic without being detected. This is because h4 is not

signed by LI. Without any additional protection mechanism, it may be possible

for the owner of MRP2Lic to falsely claim that Lic is a fresh 5-time resalable

license even if it has been resold once. One benefit this cheating may bring to

the owner is that he may resell Lic for a higher price.

There are two possible solutions to the latter problem. The first is for LI to

add the value (N–i+ 1) into MRP (i)Lic and to sign his signature on MRP (i)Lic

at the ith reselling. With this method, LI needs to sign a digital signature for

238 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

every reselling undertaken. As signature generation is an expensive operation,

this solution, similar to the RRP-MR method, will add a fair amount of addi-

tional overhead on LI. The second solution is to let LI maintains an RPD table

publishing the used and active keystone fixes. By using the Active Keystone Fix

(AKF) check which is simply a table look-up check, any entity can simply use it

to calculate the actual remaining number of resellings (i.e. NoRLic) a license, Lic

is authorised for. The HC-MR method uses the second solution.

MRPiLic

AKF Check?
No

NoRLic = (N- hNo)+1

Latest h

LicRD =
LicMRPiLic

?
No

Stop

Yes

RD

AKF Check

Negative
result

Positive result

Figure 6.17: The MrCi check

The MrCi check consists of two verifications and one calculation of NoRLic.

As shown in Figure 6.17, the first verification is to confirm that the license ID

contained in the negotiated RD, i.e. LicRD, is identical to the license ID contained

in MRP (i)Lic, i.e. if the following equation holds.

LicRD = LicMRP (i)Lic
(6.4)

The second verification is called Active Keystone Fix (AKF) Check and it is

shown in Figure 6.18. The AKF check is designed for a buyer to ascertain that

the hash value, (hN−i+1), provided in MRP (i)Lic, where 2 ≤ i ≤ N , is the one to

be used in the ith reselling. This check makes use of LI’s RPD and MRP (i)Lic.

A buyer first gets hN−i+1 from MRP (i)Lic and then compares it with the hash

value published on the AKF field of LI’s RPD. If these two values are equal the

verification result is positive. Otherwise, the buyer stops the ith reselling.

Revisiting the example described in Section 6.5.4, in the 2nd reselling of Lic ,

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 239

h5 and h4

h5 = H(h4)?

hx

hx=h4?

H4 is the active
keystone fix

Yes

LI's public directory showing that Lic has been
resold once and h4 is the active keystone fix

Hash values representing authorised
numbers of reselling

Licenses

Identities

Lic

Licn

...

h5 h4

Active
Keystone
Fix

Used Keystone Fix

Retrieve

 MRP2Lic (2
nd) Reselling Permission of Lic

To be used for h3 till h1
Active
Keystone
Fix

Lic h5
SigLI(Lic||5||h5)h4

License
identity

Reselling
Times

5

LI's Signature
Used
Keystone
Fix

G
e
ts

No

h4

Yes

Stop

No

G
e
ts

Stop

Figure 6.18: The AKF check of the 2nd reselling

Charlie needs to perform the AKF check on

MRP2Lic = [Lic||H4||H5||5||SigLic(Lic||H5||5)]. As shown in Figure 6.18, to

perform the AKF check, Charlie does the following operations:

(a) Get h5 and h4 from MRP2Lic;

(b) Check that the equation (6.5) holds. If not, Charlie stops the 2nd pur-

chasing/reselling process with Bob. Otherwise, if yes, Charlie proceeds to

perform the operations (c) and (d);

h5 = H(h4) (6.5)

(c) Retrieve the hash value (e.g. hx) from the AKF field of LI’s RPD;

(d) Check that the equation (6.6) holds. If not, Charlie terminates the reselling.

240 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

If yes, it means that h4 is the AKF of the 2nd reselling.

hx = H(h4) (6.6)

If all the above checks are positive, Charlie can confirm that h4 is AKF for the 2nd

reselling. She can then proceed to calculate how many times Lic can be further

resold using equation (6.7).

Calculating the Number of Reselling of Lic (NoRLic): This calculation

is done using the following equation:

NoRLic = (N − hNo) + 1 (6.7)

where:

• N is the upper limit of the number of resellings, Lic, has been signed for in

LI’s signature, SigLI(Lic||hN ||N);

• hNo is the number of the hash values listed in MRP2Lic (i.e. h5 and h4)

in this example. hNo should be equal to the number of the hash values

published on LI’s RPD.

Note that the value of hNo given in MRP2Lic means that the associated license

has already been resold (hNo − 1) times. Using equation (6.7), Charlie can be

assured that Lic can still be resold 4 times.

License Authentication (LA) Verification: An LA verification is de-

signed to verify that a given license, Lic, and its MRP are indeed issued by LI

(i.e. authentic). It is performed in two different ways based on the order of a

reselling process; at the 1st reselling, LA1 is used, and at the ith reselling, LAi is

used, where 2 ≤ i ≤ N . These two ways are explained as follows.

LA Verification at the 1st Reselling (LA1): LA1 consists of two signature

verifications, as shown in Figure 6.19, (a) verifying LI’s signature on MRP1Lic,

and (b) verifying LI’s signature on the license file, Lic− File.
LA verification at the ith Reselling (LAi): Starting from the ith reselling,

where i=2,. . . ,N, MRP (i)Lic contains hash values which are not directly signed

by LI, but hash-chain linked to the token signed by LI. Thus, applying LA1 alone

is not sufficient to prove the authenticity of MRP (i)Lic.

Verification LAi consists of a Hash Chain (HC) check and LA1 check. LA1

check has just been described above. In the HC check, the buyer verifies that

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 241

MRP1Lic

Is SigLI on
MRP1Licvalid?

No
Stop

Yes

Is SigLI on
Lic-file valid?

Yes

No
StopSigLI(Lic-file)

Positive result

Figure 6.19: The verification process of LA1

the hash values contained in MRP (i)Lic are chained, i.e. hN = H(hN−1), hN−1 =

H(hN−2), , hN−i = H(hN−i+1), , h2 = H(h1). For example, in the

example described in Section 6.5.4, Charlie, during the 2nd reselling, performs

LA2 to make sure that Lic and MRP2Lic are authentic. In detail, as depicted in

Figure 6.20, LA2 involves the following operations:

(a) Confirm that equation (6.8) holds, where h5 and h4 are the two hash values

contained in MRP2Lic,

h5 = H(h4) (6.8)

(b) Verify LI’s signature, SigLI(Lic||h5||5), the 1stMRP ;

(c) Verify LI’s signature on the license, SigLI(Lic− File).

If (a) and (b) are both correct, it means that MRP2Lic is indeed issued by

LI. As h5 equals H(h4), and h5 is signed by LI, then MRP2Lic must have been

generated by LI. Also, if (c) is positive, then Lic is certainly issued by LI. Note

that SigLI(Lic||h5||5) is the same signature created by LI on MRP1Lic. This

means that LI had not needed to generate a new signature on MRP2Lic.

The process of performing the checks, LA3, LA4, . . . , LAN , is identical to

what has been described for LA2 above.

242 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

MRP2Lic

Is SigLI on
 MRP1Licvalid?

No Stop

Yes

Is SigLI on
 Lic valid?

Yes

No
Stop

h5 = H(h4)?

h5 & h4

No Stop

Yes

SigLI(Lic-file)

Positive result

MRP1Lic

Figure 6.20: The verification process of LAi, where i ≥ 2

6.5.5.2 LI’s verifications

As discussed in Section 6.5.5, LI performs a number of verifications before activat-

ing an RD for a buyer. With these verifications, LI can detect any unauthorised

reselling to protect content owners’ rights. LI only activates an RD if the following

verifications are all positive.

• (LIV 1): Confirm that the buyer has made the payment,

• (LIV 2): Verify that this payment is equal to the amount stated in the signed

RD and verify the correctness of Bob’s signature on the RD activation

request.

• (LIV 3): Check that Lic is legitimate to resell. This check consists of three

further checks: LIV 3.1, LIV 3.2, and LIV 3.3.

– In LIV 3.1, LI verifies whether a license, Lic, has a valid reselling per-

mission, MRP (i)Lic. This is done by performing the LA verification

described in Section 6.5.5.1. If this LA verification is not positive, Lic

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 243

is deemed as non-resalable. LI will reject the deal, RD. Otherwise, Lic

is considered as resalable and LI proceeds to perform LIV 3.2.

– In LIV 3.2, LI ascertains whether Lic in both MRP (i)Lic and in the

signed RD are identical. If not, LI will stop the reselling. This check

prevents anyone from replacing MRP (i)Lic with another less valuable

MRP (i)Lic2. If LIV 3.2 is positive, LI will perform LIV 3.3.

– In LIV 3.3, LI verifies that MRP (i)Lic has not been used yet. This is

done by checking if LI’s RPD contains hN−i which is the keystone fix

contained in MRP (i)Lic. If it does, the verification is negative. LI

then terminates this reselling. This is because LI only publishes hN−i

on LI’s RPD if MRP (i)Lic has already been used. If LI’s RPD does

not contain hN−i, LI proceeds to perform LIV 4.

• (LIV 4): Verify the buyer’s signature on RD to confirm that the buyer has

signed RD.

• (LIV 5): Verify the reseller’s signature on RD to ensure that the reseller has

signed RD.

6.5.6 The HC-MR Method Analysis

This section analyses the HC-MR method against its requirements, which are

set out in Section 6.3.3. It also discusses potential attacks on the method and

proposes countermeasures to these attacks.

6.5.6.1 Analysis against Requirements

Detection of unauthorised reselling: The HC-MR method provides a so-

lution to detect any unauthorised reselling. An unauthorised reselling could be

attempted by using anyone of the following means: (a) by double usage of a single

MRP, (b) by reselling a non-resalable license, (c) by reselling a resalable license

more than N times, or (d) by reselling a resalable license using a mismatched

MRP. Any of these means could be attempted either by a reseller to cheat a

buyer or by a buyer to cheat LI. If the reseller does any of them, using the verifi-

cations MrC1, MrCi, LA1, and LAi, the buyer can detect it. Also, if the buyer

does any of these unauthorised resellings, LI can detected it using (a) LIV 3, and

244 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

St
op

 a
nd

 t
er

m
in

at
e

th
e

pr
ot

oc
ol

Submitted RD

LI
V1

LI
V2

LI
V3.1

LI
V5

LI
V4

LI
V3.3

No Payment

Payment
Not Adequate

Non-resalable Lic
(ks is not valid or
ks is already released)

MRPiLic is already used
(AKF of MRPiLic is in

UKF field of LI's RPD)

None or invalid Buyer's
Signature

None or invalid Seller's
Signature

Payment Provided

Payment Adequate

Resalable

Still resalable

Legitimacy
Check

Buyer's signature is valid

Valid signature

Accept and activate RD

LI
V3.2

Lic in both MRPiLic&RD
are not the same

Lic is matched

Figure 6.21: LI’s verifications during the HC-MR method

(b) LI’s RPD. More detail about unauthorised reselling attacks has been given in

Section 6.4.4.2.

License integrity protection: With the HC-MR method, both the multi-

resalable license and its MRP are integrity-protected. This is achieved by making

use of the digital signature. During the generating process ofMRP and its license,

as described in Section 6.5.2, LI digitally signs both the license and the associated

MRP. Thus, any modification in any of them will be detected during signature

verifications described in Section 6.5.5.

In MRP (i)Lic, where 2 ≤ i ≤ N , the (N − i + 1) reselling times of Lic are

not signed by LI. However, with the verification MrCi described in Section 6.5.5,

any verifier can confirm that MRP (i)Lic is indeed issued by LI.

Minimal overhead on LI: Using the HC-MR method, the overhead on LI

is minimised. This is achieved by taking the following measures. Firstly, MRP is

designed such that LI only generates one signature. This signature is per license

for the N reselling checks needed for the license and it can be used on any other

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 245

MRPs to be generated during the N resellings of the license. Secondly, we made

use of the online cross checking (i.e. LI’s RPD) to ensure the security of the

multi-reselling process without putting much overhead on LI. In other words, the

design of MRP and the use of RPD can help to move some of the processing

workload from LI’s side to consumers’ side.

Multi-reselling check: The HC-MR method provides a way by which a

buyer is able to check how many times a given license can be further resold. This

is accomplished by designing two checks: MrC1 and MrCi, where i = 2N .

MrC1, as shown in Figure 6.15, is used at the 1st reselling to prove that a given

license can be resold N times. MrCi is used at the ith reselling to prove that a

license can be further resold (N − i+ 1) times. By these two checks, a buyer can

confirm at any reselling that a license he is about to purchase is resalable and

how many times it can be further resold. The buyer can then decide whether the

license is worth its offered price.

6.5.6.2 Security Analysis against Potential Attacks

We have identified two types of attacks on the HC-MR method: Unauthorised

Reselling (UR) attack4, and replay attack. This section describes how these

attacks may be mounted and discuss what countermeasures are used to protect

against them.

Unauthorised Reselling (UR) Attack

In the context of multi-resalable licenses, a reselling process is considered

unauthorised if one of the following cases occur.

1. No-MRP: A license without a MRP is being attempted to be resold;

2. Reselling Exceeds N times: A reselling of a license, which has already

been resold N times, is being attempted (N + 1)th reselling.

3. Double-used MRP: A license with a used MRP is being attempted to be

resold again using the same MRP. For example, suppose that Lic has been

resold with its permission, MRP2Lic. Later, this Lic is being attempted

to be resold again with MRP2Lic. This is called an unauthorised reselling

using double-used MRP.

4There is not a well-known or standard list of attacks in the license multi-reselling problem
context in the literature. Attacks discussed in this section are identified based on our in-depth
investigation and analysis of the problem and various scenarios of cheatings by different protocol
entities.

246 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

4. Unmatched-MRP: A multi-resalable license, Lic with a permissionMRP1

is being attempted to be resold using another permission MRP2, where

MRP1 authorises Lic to be resold N times, and MRP2 authorises another

license, Lic2 to be resold M times, where M > N . For example, a reseller or

a buyer may want to replace a cheaper N-time resalable license with a more

expensive one that is M-time resalable. Suppose that Alice has got a license,

Lic1, with a reselling permission, MRP1Lic1. This MRP1Lic1 allows Lic1

to be resold N times. Also, suppose that she has got another license, Lic2,

with MRP1Lic2 which authorises Lic2 to resold M-time, where M > N .

To make Lic1 more expensive (e.g. with a higher price), Alice could use

MRP1Lic2 to prove to a buyer, Bob, that Lic1 is M-time resalable. Alice

then asks Bob for a higher price. If this happens Bob will be cheated as he

may pay a higher price than the real cost of Lic1. This scenario is consid-

ered as an unauthorised reselling as Lic1 is only authorised to be resold N

times, not M times.

Any of the above forms of UR attacks can be mounted either by a reseller to

cheat a buyer or by a buyer to cheat LI. However, as discussed below, the HC-MR

method can thwart all these forms of UR attacks.

UR Attack by a Reseller: A reseller could mount any of the above forms

of UR attacks to cheat a buyer. If the reseller mounts a No-MRP attack, using

the verifications, MrC1 or MrCi, the 1st buyer or the ith buyer can detect that a

given license is not resalable. As discussed in Section 6.5.5, these two checks both

take an MRP permission as its input to verify whether its associated license is

multiple resalable. If there is no MRP, the buyer can not perform this check, so

wh will stop the reselling process.

If a reseller mounts a Resold N-time attack, using the AKF check, a buyer can

detect that a given license has already been resold N times. This is because, if

the license has already been resold N times, the AKF check will be negative as

the AKF field of Ll’s RPD is Nil.

In the case of a Double-used MRP attack, by using the AKF check, as

explained in Section 6.5.5, the buyer will get a negative result. As a result, the

buyer will terminate the reselling process.

In the case of an Unmatched-MRP attack, using the checks, MrC1 or MrCi,

the buyer can detect that there is a UR attack. For example, as discussed in

Section 6.5.5, in the 1st reselling, Bob can use MrC1 check to detect that the

6.5. METHOD TWO: HASH CHAIN BASED MULTI-RESELLING 247

license ID provided in the negotiated RD is not identical to that contained in

MRP1Lic. In the same way, in the ith reselling, using MrCi, any buyer can also

detect whether the license identity stated in a negotiated RD is identical to the

one provided in a given MRP. So, with the checks MrC1 or MrCi, an UR attack,

mounted using an Unmatched-MRP, can be detected.

UR Attack by a buyer, Bob: A buyer may also mount any of the above

forms of UR attacks to cheat LI. However, with our method, any such UR attacks

can be detected by LI. In the case of No-MRP attack, the buyer could send LI

an activation request to activate a license, Lic, but does not send MRP of the

license. However, with the verification LIV 3.1, LI can detect that this license has

no MRP (i.e. it is not resalable). LI then stops the reselling process.

In a Resold N-time attack, verification LIV 3.1 allows LI to detect this attack.

As this verification is performed before the RD activation process. Once LI

detects this attack, he can simply stop the reselling process.

In a Double-used MRP attack, with verification LIV 3.3, LI can detect that

MRP contained in an RD activation request has already been used. LI can then

terminate the reselling.

In an Unmatched-MRP attack, verification LIV 3.2 enables LI to detect that

MRP provided in an RD activation request does not match the license being

resold. LI can then stop the reselling process.

From the above discussions, it can be concluded that the HC-MR method

has built-in measures to thwart UR attacks. These measures are MrC1, MrCi,

LA1, LAi and AKF verifications which are built on the primitives such as digital

signatures, hash chains and RPD. These verifications allow a buyer to detect any

UR attack mounted by a reseller. Also, using verification LIV 3, LI can detect any

UR attack launched by a buyer.

Replay Attack

The HC-MR method can also protect against replay attacks that may be

mounted on the exchanged messages. This is achieved by making use of con-

fidential and integrity-protected communication channels amongst the involved

entities. These channels can be established by the SSL protocol. Thus, the ex-

changed data is not exposed to any outsiders. This prevents any intruder from

gaining anything useful from the messages while they pass through the network.

In addition, the SSL protocol can also protect against any replay attack [19].

Therefore, the RRP-MR method is protected against any replay attack.

248 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.6 Evaluation of the Two Multi-reselling Meth-

ods

The evaluation of the RRP-MR and HC-MR methods are performed by (1) eval-

uating the computational cost of each method as discussed in Section 6.6.1, and

(2) comparing the two methods with related work as presented in Section 6.6.2.

6.6.1 Computational Costs of the Two Methods

In this section, the computational cost of the RRP-MR and HC-MR methods is

evaluated. As the exponentiation operations, Exp#, are the heaviest computa-

tional operations in the design of the two methods, the evaluation will largely

be performed by computing the number of the operations used in the execution

of both methods. Table 6.1 shows the number of the exponentiation operations,

Exp#, performed by each entity during an execution of the RRP-MR method

and the HC-MR method.

Table 6.1: Exp# performed when executing the RRP-MR and HC-MR methods
RRP-MR Method HC-MR Method

Alice
Exp#

Bob
Exp#

LI
Exp#

Alice
Exp#

Bob
Exp#

LI
Exp#

During 2M-RDS 6 8 0 6 8 0
During RDA 0 2 10 0 2 9
During RDC 3 0 2 3 0 2
Sub-total Exp# 9 10 12 9 10 11
Total Exp# 31 30

Table 6.1 shows that each execution of the RRP-MR method and HC-MR

method requires 31 and 30 exponentiation operations, Exp#, respectively 5. Dur-

ing an execution of the RRP-MR method, (1) Alice performs 9 Exp# (during an

execution of the 2M-RDS and RDC protocols); (2) Bob performs 10 Exp# (when

executing the 2M-RDS and RDA protocols); (3) LI performs 12 Exp# (during

an execution of RDA and RDC protocol). From Table 6.1 and Table 5.1, it can

5Note that, prior to a license reselling process, i.e. during issuing a resalable license for
the first time, LI performs one Exp# when signing a (single or multiple) reselling permission;
and Alice also performs one Exp# when verifying LI’s signature on the permission. These two
operations should be added to the computational cost of issuing a resalable license.

6.6. EVALUATION OF THE TWO MULTI-RESELLING METHODS 249

be seen that (a) Alice and Bob perform the same number of exponentiation op-

erations when executing the RRP-MR method and the RD method; and (b) LI

performs one extra Exp# with each execution of the RRP-MR method than it

does with the RD method. This extra operation is performed when LI generates

a new reselling permission for an activated license during an execution of the

RDA protocol. In an execution of the HC-MR method, the participants Alice,

Bob and LI perform the same number of exponentiation operations which they

perform during an execution of the RD method (see Table 6.1 and Table 5.1).

Figure 6.22: LI’s computational cost when one license is resold 5 times with the
methods RRP-MR and HC-MR

As shown in Figure 6.22, when the HC-MR method is used, the computational

cost imposed on LI to resell one license 5 times is approximately 8.3% less than

the cost imposed on LI when the RRP-MR method is used. This improvement is

achieved by making use of a multiple reselling permission (MRP) which does not

require LI’s signature during each reselling process of the license.

From the discussion above, we can draw the following remarks. Firstly, the

HC-MR method is more efficient than the RRP-MR method. Secondly, the RD

method, described in chapter 5, and the HC-MR method have the same com-

putational cost. However, the HC-MR method supports two more features (a)

allows a license to be resold N-times with different N-consumers, and (b) allows a

buyer to verify how many times a license can be further resold before he engages

in a purchase/reselling process.

250 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

6.6.2 Comparison with Related Work

To the best of the author’s knowledge, the Nuovo DRM system [64] is the only

system seen in the literature that supports multi-reselling of digital licenses. This

system allows a consumer (a reseller) not only to buy license to access a specific

content, but also to resell/distribute N-copies of this license. To achieve this

multi-reselling, as described in chapter 3, the Nuovo system relies heavily upon

the use of trusted devices, which execute only their embedded certified rules. The

Nuovo system also makes use of a License Issuer (LI) if there is a dispute (e.g.,

caused by hardware failure) to resolve the dispute and achieve fair reselling. The

foremost disadvantage of the Nuovo system is that it is not cost-effective. Every

reseller/buyer has to use a tamper-proof hardware device. This would introduce

additional cost into the underlying reselling process. .

Table 6.2: Comparison with related work
Properties Nuovo

system
RRP-MR HC-MR

Support multi-reselling facility Yes Yes Yes
Support fairness Yes Yes Yes
Support Non-repudiation Yes Yes Yes
Require trusted hardware Yes No No
Add additional cost to consumers Yes No No
LI’s overhead Low High High
Support resalable and non-resalable licenses No Yes Yes
Multi-reselling check No No Yes
License integrity Yes Yes Yes
Can a reseller resell an original license? No Yes Yes
Can a reseller resell N-copies of a license? Yes No No
Can a buyer resell a license again? Yes Yes Yes
Can a buyer detect reseller’s cheating? No Yes Yes
Can a buyer stop a multi-reselling ? Yes Yes No
Support consumers’ monetary interest No Yes Yes

Computational cost (Exp#)
LI not used 6 N/A N/A
LI used 12 31 30

A comparison between our two methods (RRP-MR and HC-MR) and the

Nuovo system is performed. This comparison is summarised in Table (6.2). First

of all, our two methods and the Nuovo system support a multi-reselling facility

with fairness and non-repudiation properties. However, they use two different

approaches. The Nuovo system makes use of a trusted hardware-based approach,

6.6. EVALUATION OF THE TWO MULTI-RESELLING METHODS 251

while our two methods follow a software-based approach. Using the trusted hard-

ware helps the Nuove system to achieve properties such as preventing an unau-

thorised reselling, and keeping LI’s overhead at a minimum level. Nonetheless,

as mentioned above, using trusted hardware normally imposes an additional cost

on both the reseller and buyer.

In the design of our two methods, trusted hardware is not required. Instead,

they make use of a contract signing protocol (i.e. RDS protocol described in

chapter 4), two digital tokens (RP and MRP), and RPD hosted by the existing

license distribution infrastructure. The RDS protocol is used to bind a reseller

and a buyer to a reselling process. The RP and MRP are used to indicate that a

license is either resalable or multi-resalable. The assistance role played by LI is

a simple extension of the role already played by LI in the current DRM systems.

For example, the RP/MRP can be embedded in the original license. Payment

processing, license activation and revocation are all parts of the functions LI al-

ready performs in the existing digital license distribution. Therefore, we can claim

that the RRP-MR and HC-MR methods are built on the existing license distri-

bution infrastructure. These methods also extend this infrastructure to support

the license multi-reselling facility with the use of cryptographic primitives. Our

methods are more cost-effective and provide an alternative to hardware-based

solutions.

The RRP-MR and HC-MR methods and the Nuovo system can all protect the

integrity of a license. Our two methods make use of LI’s RPD and LI’s signature

on a license and its RP or its MRP to achieve this property, while the Nuovo

system achieves this property by using a trusted device resident on a reseller’s

device.

In our HC-MR method, a buyer is enabled to perform the multi-reselling check

on a license being resold. This is achieved by using the verifications MrC1 or

MrCi. With the RRP-MR method, the buyer can only verify whether a license

is resalable (i.e. by performing the RS check), he cannot verify how many times

this license can be further resold. In the Nuovo system, as an original license is

not resalable, this check is not supported.

In our two methods, the monetary interest of resellers and buyers is supported

but in the Nuovo system it is not. As described in Chapters 5 and 6, the monetary

interest is addressed by making use of the fair and the abuse-free RDS protocol

252 CHAPTER 6. TWO METHODS SUPPORTING MULTI-RESELLING

which integrates the CS scheme with the existing license distribution infrastruc-

ture (i.e. LI). The reseller is able to use and then resell his license at the highest

possible price and the buyer can buy a cheap second-hand license at the lowest

possible price. This is achieved by the fair and abuse-free RDS protocol.

The Nuovo system allows a consumer to buy rights to resell his license N

times. However, it has not considered the implications of a reseller wanting to

resell the original license once he has already resold it N times. This has been

addressed in the design of our RRP-MR and HC-MR methods.

Moreover, in the Nuovo system, LI’s overhead is low as it is only invoked if

there is a dispute between a reseller and a buyer. Nonetheless, in our two methods,

LI’s overhead is high as it plays an essential role in these methods, although in

the HC-MR method, LI’s overhead is better than that in the RRP-MR method.

Furthermore, with the use of trusted hardware, if a reseller has granted to

resell N-copies of his license, the Nuovo method allows the reseller to grant a

buyer a license with the right to resell M-copies, where N ≥ M . In our two

methods, a reseller can not do so.

With our two methods, a buyer of a second-hand license can detect any cheat-

ing committed by a reseller. This is accomplished by using the checks RS, LA,

and AKF designed for the RRP-MR method and using LA1, LAi, AKF , MrC1,

and MrCi designed for the HC-MR method. In the Nuovo system, once a re-

seller has circumvented his device, he can cheat a buyer, whereas the buyer cannot

detect this cheating.

In the Nuovo system and in our method, RRP-MR, a buyer can stop a multi-

reselling process of a license but the buyer can not do so with the HC-MR. This

is achieved by using the trusted hardware in the Nuovo system and by the RD

activation request in the RRP-MR method.

With the use of Nuovo system, a license reselling process requires 6 or 12

exponentiation operations (Exp#) when LI is not used and is used, respectively

(see chapter 3). On the other hand, a license reselling process needs 31 Exp#

when the RRP-MR method is used and 30 Exp# when the HC-MR method is

used. This means the Nuovo system is more efficient than our two methods.

Nonetheless, the Nuovo system achieves this efficiency by using a special trusted

hardware which usually incurs a charge to resellers and buyers.

6.7. CHAPTER SUMMARY 253

6.7 Chapter Summary

This chapter has presented two novel methods, RRP-MR and HC-MR, to support

a multi-reselling facility of digital licenses. While achieving this facility, the two

methods offer a number of interesting features: (1) they do not require the use

of any trusted hardware, thus making our methods more cost-effective; (2) they

are secure and fair, i.e. can thwart any attempts of unauthorised resellings, and

can prevent resellers from continuing using their resold licenses and they enable

buyers to check whether licenses they are about to purchase are resalable and

have not already been resold. These features are achieved by making use of (a)

the existing license distribution infrastructure (including LI); (b) two novel digital

tokens: RP with the RRP-MR method, and MRP with the HC-MR method; and

(d) the 2M-RDS protocol. LI can help to prevent any unauthorised reselling of

a license and to prevent a reseller from using his license after it has been resold.

In addition, LI can guarantee a fair reselling between a reseller and a buyer. LI

will not send the license to the buyer until LI has received the payment from

the buyer. LI also will not forward the buyer’s payment to the reseller until the

reseller has revoked the license, thus preventing continued use of the resold license

by the reseller. The two methods also benefit from the non-repudiation property

of the RDS protocol to prevent a buyer and a reseller from falsely denying having

participated in the reselling of a license, thus protecting the content owner’s right.

They also make use of the digital tokens, RP and MRP, to allow buyers to perform

the re-saleability and multi-reselling checks, respectively. These checks enable the

buyers to detect any unauthorised reselling at an early stage of a reselling process

reducing the risk of DoS attack. In addition, the use of MRP helps the HC-MR

method to keep LI’s overhead at a minimum level. Furthermore, comparison

with related work has shown that our two method support multi-reselling with

fairness and non-repudiation without making use of trusted hardware, thus they

are cost-effective. It has also shown that our two methods are the first piece of

work that support consumer’s monetary interest, making them more attractive.

Chapter 7

Conclusion and Future Work

The focus of this thesis was on designing secure and fair solutions to enable a

digital license reselling in a DRM context. The need for a license reselling facility

comes from the fact that current DRM systems do not allow reselling of a digital

license which is legitimately bought from a License Issuer (LI) whereas the first-

sale doctrine allows a consumer to resell what he/she has legitimately purchased

including a digital license.

Due to the nature of a digital content that can easily be copied and redis-

tributed at virtually no cost, current DRM systems only allow a device, to which

a license was issued, to use the license and its associated content. If this license

is moved to another device(s), it cannot be used to render its associated content.

Therefore, to support reselling of a digital license, the DRM systems have to en-

sure that (1) a license reseller cannot (a) continue to use or to resell a license once

he has resold it, and (b) falsely deny having resold his license if he has indeed

resold it; (2) a License Issuer should be able to trace a license buyer if he has

violated usage rights of the license; (3) a license buyer should be able to (a) use

the license to render its corresponding content once he has received it from the

reseller, and (b) be able to verify whether a license he is about to purchase is

resalable.

A license reselling process could be conducted between a reseller and a buyer

who had never met face-to-face beforehand or have no prior business history, i.e.

they do not trust each other to behave fairly. While conducting a reselling process

over the Internet, one entity (e.g. a buyer) must always initialise the process. The

buyer sends his/her item (i.e. a payment) before receiving the expected item (i.e.

a license) from the other entity (e.g. a reseller). In this case, upon the receipt of

255

256 CHAPTER 7. CONCLUSION AND FUTURE WORK

the payment, the reseller could refuse to send the license, terminate the reselling

transaction, and disappear from the Internet. As a result, the buyer will be left in

a disadvantageous position. Therefore, a license reselling process should support

not only the security of a DRM system but also the fairness of the reselling

process.

In addition to the security and fairness issues discussed above, if a license re-

selling process accommodates market power supporting both reseller’s and buyer’s

monetary interests, the process would be much more attractive. A buyer’s in-

terest, in this case, is to pay as little as possible for a second-hand license. A

reseller’s interest, on the other hand, is to maximise the price of the license as

much as possible.

7.1 Thesis Contributions

The aim of this thesis was to investigate and design solutions to support digital

license reselling in the current DRM systems while protecting the underlying

security of these systems and providing fairness in a reselling process. Achieving

this aim has led to the following novel contributions.

1. The design, formal verification, prototyping, and evaluation of the Reselling

Deal Signing (RDS) protocol, a novel fair and abuse-free contract signing

protocol that allows a reseller and a buyer to sign a contract called Reselling

Deal (RD). The novelty of the protocol lies in the following aspects:

(a) To the best of the author’s knowledge, the RDS protocol is the first

protocol that integrates the Concurrent Signature (CS) scheme with

the existing license distribution infrastructure (i.e. LI) to support

fair contract signing in a license reselling process. By this integra-

tion, the protocol captures the strengths of both the CS scheme and

the existing license distribution infrastructure while overcoming their

weaknesses. The protocol achieves the properties of strong fairness

and abuse-freeness.

(b) The RDS protocol does not require a dedicated TTP to achieve the

fairness property. Rather, it makes use of LI and the CS scheme that

minimise the involvement of LI while achieving the desired properties.

7.1. THESIS CONTRIBUTIONS 257

(c) The informal and the formal analyses of the security properties of the

RDS protocol have been conducted. The ATL logic and the model

checker MOCHA were used to perform the formal analysis.

(d) The theoretical and prototype-based evaluations have been carried out

demonstrating that the RDS protocol is more secure and more efficient

than other proposals.

2. The design, analysis, and evaluation of the Reselling Deal (RD) method, a

novel method supporting fair and secure digital license reselling. The RD

method ensures that a license can only be resold once. This method makes

use of (1) a novel Reselling Permission (RP) token (which is attached to

a resalable license to differentiate it from an non-resalable license. It also

allows a buyer to verify whether a license he is about to buy is resalable

before engaging in the license purchase process. This prevents the buyer

from experiencing denial of service (DoS) attacks and fraud and forgery

attacks by the reseller and other entities), and (2) three protocols, 2M-

RDS (2-Message Reselling Deal Signing) protocol, RDA (Reselling Deal

Activation) protocol, and RDC (Reselling Deal Completion) protocol. A

reseller and a buyer use the 2M-RDS protocol to sign a deal, RD, containing

a license price, and the terms and conditions for the license being resold.

During the execution of this protocol, the buyer uses the RP token to ensure

that the license is resalable and still valid for resale. The buyer then invokes

the RDA protocol with the LI who has issued the license. This invocation

allows the buyer to make the payment stated in the deal and to receive

an activated license from LI. Finally, LI executes the RDC protocol with

the reseller to revoke the resold license from the reseller’s device and to

forward the payment to the reseller. Upon a successful execution of the

RD method, the reseller and the buyer will receive the payment and the

activated license, respectively, thus achieving fairness. This fair reselling is

achieved while preserving content owners’ rights. That is, the method does

not allow a license reseller to (1) continue to use his resold license, (2) resell

his license more than once, and (3) resell a non-resalable license.

3. The design, analysis, and evaluation of the Multiple License Reselling (MLR)

the method. This novel method allows one license to be resold N times with

N different consumers. We have designed two variants of the MLR method,

258 CHAPTER 7. CONCLUSION AND FUTURE WORK

RRP-MR and HC-MR. The RRP-MR method is designed in favour of buy-

ers. It gives buyers the power to decide whether to continue or to stop a

multi-reselling process of a license. This method is a straightforward exten-

sion of the RD method. Like the RD method, the RRP-MR method makes

use of (1) the novel RP token, RPD (Read-only Public Directory) running

by LI, and (2) three protocols, 2M-RDS protocol, RDA protocol, and RDC

protocol. With this method, a buyer can repeatedly obtain new reselling

permission for a license being resold. Each such permission allows the resale

of the license once. In other words, while executing the RDA protocol with

LI, the buyer has an option to pay extra fees to LI to get a resalable license.

If the buyer does not request a new reselling permission, the multi-reselling

process of the license stops. The RRP-MR method achieves the same level

of security and fairness as in the case of the RD method.

The HC-MR method offers two extra features over the RRP-MR method,

(1) keeping LI’s overhead at a minimum level by not issuing RP at each

reselling of a license, and (2) allowing a buyer to verify how many times a

license can be further resold. These two features are achieved by utilising a

novel MRP token along with an online check of a Read-only Public Directory

(RPD) which is updated by LI after each reselling. The MRP is digital token

which is generated and signed by LI, and then attached to a multi-resalable

license while it is being issued by LI to a consumer. It can be used for

N resellings of a license without LI’s further signatures, thus so reducing

overhead costs imposed on LI. The MRP token makes use of the hash chain

primitive to reduce LI’s involvement in the process. It further enables a

buyer to check whether a license is multi-resalable and how many times it

can be further resold. The limit on the number of resellings for each license

is integrity-protected by LI’s signature which along with the online checking

facility allows a buyer to confirm how many more times the corresponding

license is allowed to be resold prior to its purchase. The HC-MR method,

like both the RD and RRP-MR methods, makes use of the protocols, 2M-

RDS, RDA, and RDC to facilitate the multiple resellings, and LI to achieve

fair and secure license reselling.

4. The novel methods, RD, RRP-MR, and HC-MR allow content owners to

7.1. THESIS CONTRIBUTIONS 259

establish a new business model in the DRM context. In this model, con-

tent owners can generate different types of licenses, non-resalable, single-

resalable, and multi-resalable licenses. They can set different prices for the

different types of licenses. For example, they may set a higher price for

multi-resalable licenses, a lower price for single-resalable ones, and the low-

est price for non-resalable ones. By reselling a resalable license, the reseller

actually acts as an agent for the content owner. This will not only bring

monetary benefits to the reseller, but also bring benefits to the content

owner. These benefits include increased market penetration and license

distributions.

Our solution consisting fo the novel methods, RD, RRP-MR, and HC-MR,

has the following features. Firstly, it is designed based upon the existing

distribution infrastructure (i.e. LI and DRM client). This will give us

the benefit that whatever technology is available at LI can easily be made

available to a license reselling process. Also, by this approach, the license

reselling facility does not require the use of any additional trusted hard-

ware, thus keeping the cost low for consumers who are the most important

entity in the value chain. Secondly, it is the first license reselling solution

which classifies licenses into three types, non-resalable licenses, single re-

salable licenses, and multiple resalable licenses, and proposed methods (as

summarised above) to support secure and fair single and multiple resellings

of resalable licenses. The novel RP token and the novel MRP token are

used to indicate that a license is single resalable and multiple resalable,

respectively, whereas a license, without any reselling permission, is non-

resalable. Thirdly, our solution is the first to support of the market power

with license reselling. This market power enables both buyers and resellers

to maximise their respective monetary interests. Embedding this idea in

the RDS protocol is novel. It allows resellers and buyers to sign as many

deals (contracts) as possible with other buyers and resellers, respectively,

without violating each other’s rights. To the best of our knowledge, our li-

cense reselling solution is the first that provides market power feature in the

context of reselling a digital license. Fourthly, our solution is also the first

piece of work to support fairness and non-repudiation in a license reselling

process. This is achieved using the Reselling Dealing Signing (RDS) proto-

col by which a reseller cannot falsely deny having resold his license if he has

260 CHAPTER 7. CONCLUSION AND FUTURE WORK

indeed done so. Fifthly, our solution is the first piece of research work that

supports multiple resellings of a digital license (i.e. it allows a license to be

resold N times by N different consumers). Sixthly, the solution is the first

license reselling proposal that only makes use of a software-based mecha-

nism (i.e. no trusted hardware is required) to revoke a resold license from

its reseller’s device. This is achieved by making use of the tamper-proof

DRM client installed on the reseller’s device and LI. This license revocation

is accomplished during the RDC protocol executed between LI and the re-

seller. The last, but no the least, our solution has been analysed against

its requirements and against potential attacks and threats. The analysis

showed that the methods satisfy their respective requirements. In addition,

they can thwart potential attacks and threats.

7.2 Directions for Future Work

We introduce the following recommendations as directions for future work:

Reselling a Domain-license: The concept of an Authorised Domain (or

a domain for short) was first introduced by Digital Video Broadcasting (DVB)

organisation [148]. A domain is a group of devices, which are equally authorized to

play/view digital contents. An example of such a domain is a home network where

a number of devices are interconnected, so a digital content can be moved from

device to device seamlessly. The main goal of the domain is to allow a trade off

between the interest of consumers and that of content providers. Consumers want

to freely access their contents on a number of devices they own whereas content

owners would like to ensure that usage rights of their content are protected.

FairPlay DRM is an example of DRM systems that have implemented the concept

of the authorised domain. It allows a consumer to play/view a content on up to

five devices and on an unlimited number of iPods.

In a domain-based DRM, a license (i.e. a domain-license) is issued to a domain

identity instead of a device identity. This means that any device belonging to

the domain can use the domain-license to access the corresponding content. This

concept allows consumers to play/view their contents on more than one device.

The main characteristics of the domain-based DRM are [3]:

• A license is bound to a domain when it is acquired;

7.2. DIRECTIONS FOR FUTURE WORK 261

• A license can be moved among the domain devices;

• A device may be a member of a number of domains.

To support a domain-license reselling, there is a main challenging issue that

needs to be addressed. That is, for a domain-license, once it has been resold, it

should be revoked from all the devices in the domain. This is a very challenging

task as a content owner or a License Issuer needs to first track on which domain

device the license was being accessed. LI then revokes or assures the revocation of

this license from all the domain devices. This is necessary to ensure that a license

reseller can no longer use the license on any domain device after the license has

been resold.

Further reducing LI’s involvement: In our solution, LI is involved in a

payment process carried out between a reseller and a buyer. As described earlier,

to get a resold license, a buyer pays LI a payment agreed with a reseller. LI

then forwards this payment to the reseller. Involving LI in the payment process

places an additional workload on LI. There may be a way by which the buyer can

directly pay the reseller without LI’s involvement and without compromising the

properties of fairness and abuse-freeness. For example, e-Payment (e.g. e-Cash

and e-Checks) method may be used to achieve this.

Privacy-preserving License Reselling: Protecting consumers’ privacy is

one of the main challenging issues in the digital world. In the context of digital

license reselling, an interesting privacy property issue is how to support a reseller

and a buyer to conduct a license reselling process in an anonymous/pseudonymous

manner without increasing the risk of compromising other security properties. In

our solution as discussed in Chapters 6 and 7, a reseller and a buyer have to sign a

contract called a Reselling Deal (RD) to conduct a reselling process. The signed

deal is then used by LI (1) as evidence that they have engaged in the license

reselling process, and (2) to achieve a fair reselling process. Consequently, LI can

learn the reseller’s and the buyer’s identities from the signed deal.

Another interesting area for further work could be investigating the use of

techniques such as the unlinkability method [51], blind signature [52, 53], blind

decryption, hash chain [54], and anonymous cash [55], to address the issue of

privacy-preserving of license reselling.

License Reselling in Cloud DRM: Recently, a growing number of organ-

isations are moving their contents into a cloud computing environment. Cloud

computing is a new trend in information technology and scientific computing.

262 CHAPTER 7. CONCLUSION AND FUTURE WORK

It is concerned with moving computing and data from desktops and portable

PCs into large data centres [149]. DRM could be used as a security technology

to protect the contents stored in the cloud. Zou et al, [150] have proposed the

first DRM-based cloud to realise this idea. Cloud computing usually involves

high commutation and communication costs [151]. If a new service (i.e. license

reselling) is to be added to the current DRM-based cloud, how this could be

achieved while keeping the commutation and communication costs at a minimal

level is an interesting area for future research.

License Reselling in Mobile DRM: The number of mobile phones is in-

creasing every day. In addition, mobile phones have become quite powerful de-

vices, which can be used to view video clips and long films. OMA DRM is a

standard DRM for mobile phones. It is widely used by many mobile phones, e.g.

Nokia, Sony Ericsson, Philips, Motorola, Samsung, and mobile operators. Allow-

ing a license reselling facility in this OMA DRM would make it very attractive to

both users and content owners. The users can gain some money by reselling un-

wanted contents whereas the content owners can establish a new business model

supporting the use of both resalable and non-resalable licenses. A main challenge

to support license reselling in OMA DRM (in addition to the issues addressed

in our solution in this thesis) is how to use lightweight encryption techniques

to achieve the required security properties making the solution more suited to

power-driven mobiles.

7.3 Deployment Requirements

The requirements needed to deploy the proposed methods differ for LI and re-

sellers’/buyers’ view. To adopt these methods, LI needs to support the following:

(1) modifying the structure of his licenses such that (a) a single resalable license

comes with a Reselling Permission (RP), and (b) a multiple resalable license

is attached with a Multiple Reselling Permission (MRP), whereas (c) the non-

resalable license remains the same, (2) modifying the issuing process of the license

such that LI and a consumer (reseller) securely share the keystone corresponding

to the keystone fix contained in RP or MRP, (3) modifying the DRM client by

implementing the proposed set of protocols. As the proposed set of protocols

are only based on software technology, we argue that it is not difficult for these

protocols to be adopt by the current DRM systems. The technologies required for

7.3. DEPLOYMENT REQUIREMENTS 263

deploying these protocols are the same technologies being used with the current

DRM system, e.g. DRM client and protected communication channels provided

by the use of SSL protocol. LI may need to increase the computational capa-

bilities of his servers to meet the additional processing load as caused by license

reselling processes.

On the other hand, resellers/buyers do not need any special requirement of

hardware or software. Like in the current DRM system, they need to get the

DRM client supported by LI to (1) perform the normal DRM operations (e.g.

playing, viewing, checking revoked license, etc) and (2) resell/buy a second-hand

license operations which should have implemented in the DRM client as discussed

above.

Bibliography

[1] OMA-DRM-V1.0, “OMA Digital Rights Management V1.0, DRM

Specification, Approved Enabler,” http://www.openmobilealliance.org/

Technical/release program/drm v1 0.aspx/, 2004, [Online; accessed in Jan

2012].

[2] OMA-DRM-V2.0, “OMA Digital Rights Management V2.0, DRM

Specification, Approved Enabler,” http://www.openmobilealliance.org/

Technical/release program/drm v2 0.aspx/, 2006, [Online; accessed in Jan

2012].

[3] OMA-DRM-V2.2, “OMA Digital Rights Management V2.2, DRM

Specification, Approved Enabler,” http://www.openmobilealliance.org/

Technical/release program/drm v2 2.aspx/, 2011, [Online; accessed in Jan

2012].

[4] J. Zhou and D. Gollman, “A Fair Non-repudiation Protocol,” In Proceedings

of the 1996 IEEE Symposium on Security and Privacy, 1996.

[5] K. Jones, “Music piracy costs u.s. economy $ 12.5 billion,” http://http:

//www.informationweek.com/news/201801704, 2007, [Online; accessed in

Jan 2012].

[6] SmartLM, “Grid-friendly software licensing for location independent ap-

plication execution,” http://www.smartlm.eu/, 2009, [Online; accessed in

April 2012.].

[7] E. Becker, W. Buhse, Gunnewig, and N. Rump, Digital Rights Management:

Technological, Economic, Legal and Political Aspects. Berlin, Hiedleberg,

New York: Springer-Verlag, 2003.

264

http://www.openmobilealliance.org/Technical/release_program/drm_v1_0.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v1_0.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_0.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_0.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_2.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_2.aspx/
http://http://www.informationweek.com/news/201801704
http://http://www.informationweek.com/news/201801704
http://www.smartlm.eu/

BIBLIOGRAPHY 265

[8] P. K. Chen Liqun, Kudla Caroline, “Concurrent Signatures,” Advances in

Cryptology - EUROCRYPT 2004, pp. 287–305, 2004.

[9] D. K. Mulligan, J. Han, and A. J. Burstein, “How DRM-based Content

Delivery Systems Disrupt Expectations of “Personal Use”,” In Proceedings

of the 3rd ACM workshop on Digital rights management, pp. 77–89, 2003.

[10] H. F. Slowinski, “What Consumers want in Digital Rights Management

(DRM): Making Content as widely available as possible in ways

that satisfy consumer preferences,” 2003. [Online]. Available: http:

//www.publishers.org/press/pdf/DRMWhitePaper.pdf

[11] F. Marc, “Present State and Emerging Scenarios of Digital Rights Manage-

ment Systems,” International Journal on Media Management, pp. 164–171,

2002.

[12] C. Loebbecke, “Electronic trading in on-line delivered content,” In Proceed-

ings of the 32nd Hawaii International Conference on System Sciences, pp.

43–59, 1999.

[13] N. Helberger, K. Kerenyi, B. J. Krings, R. Lambers, C. Orwat, U. Riehm,

S. van Gompel, and N. Dufft, “Digital Rights Management and Consumer

Acceptability: A Multi-Disciplinary Discussion of Consumer Concerns

and Expectations,” University Library of Munich, Germany, MPRA

Paper, 2004. [Online]. Available: http://econpapers.repec.org/RePEc:pra:

mprapa:6641

[14] F. Marc, Implications of Digital Rights Management on the Demand for

Digital. Dissertation.de (Berlin), 2006.

[15] W. F. Edward, “A Skeptical View of DRM and Fair Use,” Commun. ACM,

vol. 46, pp. 56–59, April 2003.

[16] K. Jones, “Bureau Europeen des Unions de Consommateurs/Euro-

pean Consumers’ Organisation (BEUC),” http://www.beuc.org/Content/

Default.asp?PageID=591/, 2007, [Online; accessed in Jan 2012].

[17] Microsoft-Corporation, “Architecture of Windows Media Rights Manager,”

http://www.microsoft.com/windows/windowsmedia/howto/articles/

drmarchitecture.aspx/, 2004, [Online; accessed in Jan 2012].

http://www.publishers.org/press/pdf/DRMWhitePaper.pdf
http://www.publishers.org/press/pdf/DRMWhitePaper.pdf
http://econpapers.repec.org/RePEc:pra:mprapa:6641
http://econpapers.repec.org/RePEc:pra:mprapa:6641
http://www.beuc.org/Content/Default.asp?PageID=591/
http://www.beuc.org/Content/Default.asp?PageID=591/
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx/
http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx/

266 BIBLIOGRAPHY

[18] OMA, “Open Mobile Alliance DRM ,” http://www.openmobilealliance.

org/, 2006, [Online; accessed in Jan 2012].

[19] Apple, “Apple FairPlay DRM,” http://www.apple.com/support/itunes/

authorization/, 2005, [Online; accessed in Jan 2012.].

[20] USA, “First Sale Doctrine, 17 U.S.C. 109,” http://www.copyright.gov/

title17/92chap1.html109/, 1984, [Online;accessed in Jan 2012.].

[21] L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar,

F. Mang, C. Meyer-Kirsch, and B. Wang, “MOCHA: Exploiting

Modularity in Model Checking,” 2000. [Online]. Available: http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9864

[22] T. Gaber and N. Zhang, “A Novel Method for Supporting Fairness in Digital

License Reselling,” In Proceedings of the 5th International Conference on

Internet Monitoring and Protection, vol. 0, pp. 89–98, 2010.

[23] ——, “Fair and Abuse-Free Contract Signing Protocol Supporting Fair Li-

cense Reselling,” In Proceedings of the 4th IFIP International Conference

on New Technologies, Mobility and Security (NTMS), pp. 1–7, Feb. 2011.

[24] ——, “A License Revocation Protocol Supporting Digital License Reselling

in a Consumer-to-Consumer Model,” International Journal of Online Mar-

keting (IJOM), vol. 2, no. 1, pp. 38–49, 2012.

[25] W. Zeng, H. H. Yu, and C. Y. Lin, Multimedia Security Technologies for

Digital Rights Management, Amsterdam ; Boston, 2006.

[26] Q. Liu, R. S. Naini, and N. P. Sheppard, “Digital Rights Management

for Content Distribution,” In Proceedings of the Australasian information

security workshop conference on ACSW Frontiers ’03, pp. 49–58, 2003.

[27] F. Joan, F. Michael, S. Tomas, and S. Adam, “Privacy Engineering for Dig-

ital Rights Management Systems,” Security and Privacy in Digital Rights

Management, pp. 153–163, 2002.

[28] W.-B. Lee, W.-J. Wu, and C.-Y. Chang, “A Portable DRM Scheme Using

Cards,” Journal of Organizational Computing and Electronic Commerce,

vol. 17, no. 3, pp. 247–258, 2007.

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.apple.com/support/itunes/authorization/
http://www.apple.com/support/itunes/authorization/
http://www.copyright.gov/title17/92chap1.html109/
http://www.copyright.gov/title17/92chap1.html109/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9864
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.9864

BIBLIOGRAPHY 267

[29] O. Sibert, D. Bernstein, and D. Van Wie, “DigiBox: a Self-protecting Con-

tainer for Information Commerce,” Proceedings of the 1st conference on

USENIX Workshop on Electronic Commerce- Volume 1, pp. 15–15, 1995.

[30] R. Iannella, “Digital Rights Management (DRM) Architectures,” D-

Lib Magazine, vol. 7, no. 6, 2001. [Online]. Available: http:

//www.dlib.org/dlib/june01/iannella/06iannella.html

[31] B. Wang and B. Lee, “A Study for License Distribution Mechanism using

Accumulated Device Identifier in DRM system,” 2007 International Confer-

ence on Multimedia and Ubiquitous Engineering (MUE’07), pp. 1118–1123,

April 2007.

[32] DES, “Data Encryption Standard,” In FIPS PUB 46, Federal Information

Processing Standards Publication, pp. 46–2, 1977.

[33] W. Stallings, “The Advanced Encryption Standard,” Cryptologia, vol. 26,

pp. 165–188, Jul. 2002.

[34] ODRL, “Open Digital Rights Language version 1.1,” http://www.

openmobilealliance.org/, 2002, [Online; accessed in Jan 2012].

[35] X. Wang, “MPEG-21 Rights Expression Language: Enabling Interoperable

Digital Rights Management,” IEEE MultiMedia, vol. 11, pp. 84–87, October

2004.

[36] OMA-DRM-REL, “OMA Digital Rights Management Right

Expression Language (REl),” http://www.openmobilealliance.

org/technical/release program/docs/DRM/V2 1 1-20100406-A/

OMA-TS-DRM REL-V2 1-20081014-A.pdf/, 2011, [Online; accessed

in Jan 2012].

[37] InterTrust, “Technology-Rights|System,” http://www.intertrust.com/

main/technology/index.html/, 2002, [Online; accessed in Jan 2012].

[38] RealNetworks, “Helix DRM 10 from Real,” http://www.realnetworks.com/

products/drm/index.html/, 2002, [Online; accessed in Jan 2012].

[39] IBM-Corporation, “EMMS: Electronic Media Management System,” ftp:

//ftp.software.ibm.com/software/emms/, 2001, [Online; accessed in Jan

2012].

http://www.dlib.org/dlib/june01/iannella/06iannella.html
http://www.dlib.org/dlib/june01/iannella/06iannella.html
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/technical/release_program/docs/DRM/V2_1_1-20100406-A/OMA-TS-DRM_REL-V2_1-20081014-A.pdf/
http://www.openmobilealliance.org/technical/release_program/docs/DRM/V2_1_1-20100406-A/OMA-TS-DRM_REL-V2_1-20081014-A.pdf/
http://www.openmobilealliance.org/technical/release_program/docs/DRM/V2_1_1-20100406-A/OMA-TS-DRM_REL-V2_1-20081014-A.pdf/
http://www.intertrust.com/main/techno logy/index.html/
http://www.intertrust.com/main/techno logy/index.html/
http://www.realnetworks.com/products/drm/index.html/
http://www.realnetworks.com/products/drm/index.html/
ftp://ftp.software.ibm.com/software/emms/
ftp://ftp.software.ibm.com/software/emms/

268 BIBLIOGRAPHY

[40] H. Abie, “Frontiers of DRM Knowledge and Technology,” IJCSNS Inter-

national Journal of Computer Science and Network Security, vol. vol.7, no.

No.1, pp. 216–231, Jan 2007.

[41] Koenen, J. Lacy, M. MacKay, and S. Mitchell, “The Long March to In-

teroperable Digital Rights Management,” Proceedings of the IEEE, vol. 92,

no. 6, pp. 883–897, Jun. 2004.

[42] U. Gasser and J. G. Palfrey, “Case Study: DRM-Protected Music

Interoperability and e-Innovation,” Social Science Research Network

Working Paper Series, Feb. 2008. [Online]. Available: http://ssrn.com/

abstract=1033231

[43] T. Fretland, L. Fritsch, and A.-K. Groven. (2008, May) State of the art

in Digital Rights Management. Privately Published. Norsk Regnesentral

(Norwegian Computing Center, NR).

[44] R. Venkataramu and M. Stamp, “P2PTunes: A Peer-to-Peer Digital

Rights Management System,” Handbook of Research on Secure Multimedia

Distribution, pp. 137–156, 2009. [Online]. Available: http://www.truststc.

org/pubs/425.html

[45] S. Michiels, W. Joosen, E. Truyen, and K. Verslype, “Digital Rights

Management - A Survey of Existing Technologies,” 2005, [Online; accessed

in Jan 2012.]. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.142.3576/

[46] E. Turcan, N. Shahmehri, and G. Caronni, “Usability and Security for DRM

Architectures,” In Proceedings of 5th e-Smart Conference & Demos, Sophia

Antipolis, French Riviera (22nd–24th September), 2004.

[47] OMA-DRM-V2.1, “OMA Digital Rights Management V2.1, DRM

Specification, Approved Enabler,” http://www.openmobilealliance.org/

Technical/release program/drm v2 1.aspx/, 2008, [Online; accessed in Jan

2012].

[48] OMA-DRM, “Open Mobile Alliance DRM

,” http://www.openmobilealliance.org/document/

oma-bod-cc-2004-0078r02-product-examples-on-drm-1.0.pdf/, [Online;

accessed in Jan 2012].

http://ssrn.com/abstract=1033231
http://ssrn.com/abstract=1033231
http://www.truststc.org/pubs/425.html
http://www.truststc.org/pubs/425.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.3576/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.3576/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx/
http://www.openmobilealliance.org/document/oma-bod-cc-2004-0078r02-product-examples-on-drm-1.0.pdf/
http://www.openmobilealliance.org/document/oma-bod-cc-2004-0078r02-product-examples-on-drm-1.0.pdf/

BIBLIOGRAPHY 269

[49] R. Smith, “Serious privacy problems in Windows Media Player for Windows

XP,” http://www.computerbytesman.com/privacy/wmp8dvd.htm/, 2002,

[Online; accessed in Jan 2012].

[50] C. Claudine, P. Milan, and J. Willem, “Privacy-Preserving Digital Rights

Management,” Secure Data Management, pp. 83–99, 2004.

[51] M. Petkovic, C. Conrado, G.-J. Schrijen, and W. Jonker, “Enhancing Pri-

vacy for Digital Rights Management,” Security, Privacy, and Trust in Mod-

ern Data Management, pp. 347–364, 2007.

[52] M. Feng and B. Zhu, “A DRM System Protecting Consumer Privacy,” In

Proceedings of the 5th IEEE Consumer Communications and Networking

Conference, CCNC 2008, pp. 1075 –1079, Jan. 2008.

[53] J. Yuan, W. Zhang, and F. Zhao, “Content Key Acquisition Protocols

Hiding The Usage Information in DRM System,” In Proceedings of IEEE

15th International Symposium on Consumer Electronics (ISCE), pp. 313

–317, June 2011.

[54] L. L. Win, T. Thomas, and S. Emmanuel, “A Privacy Preserving Con-

tent Distribution Mechanism for DRM without Trusted Third Parties,”

In Proceedings of IEEE International Conference on Multimedia and Expo

(ICME), pp. 1 –6, july 2011.

[55] R. Perlman, C. Kaufman, and R. Perlner, “Privacy-preserving DRM,” In

Proceedings of the 9th Symposium on Identity and Trust on the Internet,

pp. 69–83, 2010.

[56] J. Vilches, “Privacy Concerns over DRM-free iTunes Tracks,” http://www.

techspot.com/news/25513-privacy-concerns-over-drm-free-itunes-tracks.

html/, 2007, [Online; accessed in Jan 2012.].

[57] S. Lee, H. Park, and J. Kim, “A Secure and Mutual-profitable DRM In-

teroperability Scheme,” In Proceedings of IEEE Symposium on Computers

and Communications (ISCC), pp. 75–80, Jun. 2010.

[58] Coral-Consortium, “Coral Consortium. Creative Content Online: Coral re-

sponse to the EU Commission Consultation.” http://www.coral-interop.

http://www.computerbytesman.com/privacy/wmp8dvd.htm/
http://www.techspot.com/news/25513-privacy-concerns-over-drm-free-itunes-tracks.html/
http://www.techspot.com/news/25513-privacy-concerns-over-drm-free-itunes-tracks.html/
http://www.techspot.com/news/25513-privacy-concerns-over-drm-free-itunes-tracks.html/
http://www.coral-interop.org/main/20080228_Coral_Response_to_EU.pdf/

270 BIBLIOGRAPHY

org/main/20080228 Coral Response to EU.pdf/, 2008, [Online; accessed in

Jan 2012.].

[59] D. W. Kravitz and T. S. Messerges, “Achieving Media Portability Through

Local Content Translation and End-to-end Rights Management,” In Pro-

ceedings of the 5th ACM workshop on Digital rights management, pp. 27–36,

2005.

[60] D.-W. Nam, J.-S. Lee, J.-H. Kim, and K.-S. Yoon, “Interlock System for

DRM Interoperability of Streaming Contents,” In Proceedings of IEEE In-

ternational Symposium on Consumer Electronics, ISCE 2007., pp. 1 –4,

June 2007.

[61] S. H. Kwok and S. M. Lui, “A License Management Model to

Support B2C and C2C Music Sharing,” 2001. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.966

[62] K. W. Sun. H, K. Yang, “Transferable DRM System for Two New Business

Models,” Information Security Conference, June 2005.

[63] S. K. Nair, B. C. Popescu, C. Gamage, B. Crispo, and A. S. Tanenbaum,

“Enabling DRM-preserving Digital Content Redistribution,” In Proceedings

of the Seventh IEEE International Conference on E-Commerce Technology,

CEC 2005, pp. 151–158, July 2005.

[64] M. Torabi Dashti, S. Krishnan Nair, and H. Jonker, “Nuovo DRM Paradiso:

Towards a Verified Fair DRM Scheme,” In Proceedings of the International

Symposium on Fundamentals of Software Engineering, pp. 33–48, 2007.

[65] L. El Aimani and Y. Raekow, “Reselling Digital Content,” In Proceedings of

International Conference on Availability, Reliability, and Security, ARES

’10, pp. 391 –396, Feb. 2010.

[66] Microsoft-Corporation, “[MS-DRM]: Digital Rights Management License

Protocol Specification,” 2011, [Online; accessed in Jan 2012]. [Online].

Available: http://msdn.microsoft.com/en-us/library/cc227964%28v=prot.

10%29.aspx/

[67] S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for Signing

Contracts,” Communications of the ACM, vol. 28, no. 6, pp. 637–647, 1985.

http://www.coral-interop.org/main/20080228_Coral_Response_to_EU.pdf/
http://www.coral-interop.org/main/20080228_Coral_Response_to_EU.pdf/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.966
http://msdn.microsoft.com/en-us/library/cc227964%28v=prot.10%29.aspx/
http://msdn.microsoft.com/en-us/library/cc227964%28v=prot.10%29.aspx/

BIBLIOGRAPHY 271

[68] S. Even, “A Protocol for Signing Contracts,” SIGACT News, vol. 15, no. 1,

pp. 34–39, 1983.

[69] I. B. Damg̊ard, “Practical and Provably Secure Release of a Secret and

Exchange of Signatures,” In Proceedings of Advances in Cryptology - EU-

ROCRYPT ’93, pp. 200–217, 1994.

[70] T. Okamoto and K. Ohta, “How to Simultaneously Exchange Secrets by

General Assumptions,” In Proceedings of the 2nd ACM Conference on Com-

puter and communications security, pp. 184–192, 1994.

[71] O. Markowitch and Y. Roggeman, “Probabilistic Non-repudiation without

Trusted Third Party,” In Proceedings of the 2nd Conference on Security in

Communication Network, 1999.

[72] M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest, “A Fair Protocol

for Signing Contracts,” IEEE Transactions on Information Theory, vol. 36,

no. 1, pp. 40–46, Jan. 1990.

[73] G. Wang, “Generic Non-repudiation Protocols Supporting Transparent off-

line TTP,” J. Comput. Secur., vol. 14, pp. 441–467, September 2006.

[74] J. M. Park, E. K. P. Chong, and H. J. Siegel, “Constructing Fair-exchange

Protocols for E-commerce via Distributed Computation of RSA Signa-

tures,” In Proceedings of the 22nd annual symposium on Principles of dis-

tributed computing, PODC ’03, pp. 172–181, 2003.

[75] S. Micali, “Simple and Fast Optimistic Protocols for Fair Electronic Ex-

change,” In Proceedings of the twenty-second annual symposium on Princi-

ples of distributed computing, PODC ’03, pp. 12–19, 2003.

[76] J. Zhou and D. Gollmann, “Observations on Non-repudiation,” In Pro-

ceedings of the International Conference on the Theory and Applications of

Cryptology and Information Security: Advances in Cryptology, pp. 133–144,

1996.

[77] T. Coffey and P. Saidha, “Non-repudiation with Mandatory Proof of Re-

ceipt,” SIGCOMM Comput. Commun. Rev., vol. 26, pp. 6–17, January

1996.

272 BIBLIOGRAPHY

[78] J. A. Onieva, J. Zhou, M. Carbonell, and J. Lopez, “Intermediary Non-

repudiation Protocols,” In Proceedings of the IEEE International Confer-

ence on E-Commerce, CEC 2003, pp. 207–214, jun 2003.

[79] N. Zhang and Q. Shi, “Achieving Non-repudiation of Receipt,” The Com-

puter Journal, vol. 39, no. 10, pp. 844–853, Jan. 1996.

[80] S. Yang, S. Y. W. Su, and H. Lam, “A Non-repudiation Message Transfer

Protocol for e-Commerce,” Proceedings of the IEEE International Confer-

ence on E-Commerce, CEC 2003, pp. 320–327, jun 2003.

[81] H. Bürki and A. Pfitzmann, “Value exchange systems enabling security

and unobservability,” Computer and Security, vol. 9, pp. 715–721, January

1991.

[82] G. Ateniese, “Efficient Verifiable Encryption (and Fair Exchange) of Digital

Signatures,” In Proceedings of the 6th ACM conference on Computer and

communications security, pp. 138–146, 1999.

[83] N. Asokan, V. Shoup, and M. Waidner, “Optimistic Fair Exchange of

Digital Signatures,” IEEE Journal on Selected Areas in Communications,

vol. 18, no. 4, pp. 593–610, April 2000.

[84] J. A. Garay, M. Jakobsson, and P. D. MacKenzie, “Abuse-Free Optimistic

Contract Signing,” In Proceedings of the 19th Annual International

Cryptology Conference on Advances in Cryptology, pp. 449–466, 1999.

[Online]. Available: http://dl.acm.org/citation.cfm?id=646764.703965

[85] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous Protocols for Op-

timistic Fair Exchange,” in Proceedings of the 1998 IEEE Symposium on

Security and Privacy, pp. 86 –99, May 1998.

[86] Q. Zhang, Q. Wen, and G. Chen, “Efficient Fair Contract Signing Protocol

from Bilinear Pairings,” In Proceedings of the 2008 International Sympo-

sium on Electronic Commerce and Security, pp. 333 –337, 2008.

[87] W. Gao, F. Li, and B. Xu, “An Abuse-Free Optimistic Fair Exchange Pro-

tocol Based on BLS Signature,” In Proceedings of the International Confer-

ence on Computational Intelligence and Security, pp. 278–282, December

2008.

http://dl.acm.org/citation.cfm?id=646764.703965

BIBLIOGRAPHY 273

[88] S. Heidarvand and J. Villar, “A Fair and Abuse-Free Contract Signing Pro-

tocol from Boneh-Boyen Signature,” Public Key Infrastructures, Services

and Applications, vol. 6711, pp. 125–140, 2011.

[89] N. Zhang, Q. Shi, and M. Merabti, “An Efficient Protocol for Anonymous

and Fair Document Exchange,” Computer and Network, vol. 41, pp. 19–28,

January 2003.

[90] A. dić, N. Zhang, and Q. Shi, “RSA-based Verifiable and Recoverable En-

cryption of Signatures and its application in certified e-mail delivery,” Jour-

nal of Computer Security, vol. 13, no. 5, pp. 757–777, Jan 2005.

[91] G. Wang, F. Bao, and J. Zhou, “The Fairness of Perfect Concurrent Signa-

tures,” Information and Communications Security, vol. 4307, pp. 435–451,

2006.

[92] C.-H. Wang and C. C. Chen, “Identity-Based Concurrent Signature Scheme

with Improved Accountability,” In Proceedings of Fifth International Con-

ference on Innovative Mobile and Internet Services in Ubiquitous Comput-

ing (IMIS), 2011, pp. 514–519, July 2011.

[93] T. Yuen, D. Wong, W. Susilo, and Q. Huang, “Concurrent Signatures with

Fully Negotiable Binding Control,” Provable Security, vol. 6980, pp. 170–

187, 2011.

[94] A. Nenadic, N. Zhang, and S. Barton, “A Secure and Fair DSA-based Sig-

nature Exchange Protocol,” In Proceedings of the Ninth International Sym-

posium on Computers and Communications (ISCC”04) - Volume 02, pp.

412–417, 2004.

[95] A. O. Freier, P. Karlton, and P. C. Kocher., “SSL - Secure Socket Layer 3.0

Specification,” http://wp.netscape.com/eng/ssl3//, November 1996, [On-

line; accessed in Jan 2012.].

[96] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 Protocol,” In Pro-

ceedings of the Second UNIX Workshop on Electronic Commerce, pp. 29–40,

1996.

http://wp.netscape.com/eng/ssl3//

274 BIBLIOGRAPHY

[97] C. Meadows, “Formal Verification of Cryptographic Protocols: A Survey,”

In Proceedings of the 4th International Conference on the Theory and Ap-

plications of Cryptology: Advances in Cryptology, pp. 135–150, 1995.

[98] R. M. Needham and M. D. Schroeder, “Using Encryption for Authentication

in Large Networks of Computers,” Commun. ACM, vol. 21, pp. 993–999,

December 1978.

[99] G. Lowe, “An Attack on The Needham-Schroeder Public-key Authentica-

tion Protocol,” Inf. Process. Lett., vol. 56, pp. 131–133, November 1995.

[100] ——, “Breaking and Fixing the Needham-Schroeder Public-Key Protocol

using FDR,” In Proceedings of the Second International Workshop on Tools

and Algorithms for Construction and Analysis of Systems, pp. 147–166,

1996.

[101] Formal-Systems-(Europe)-Ltd., Failures Divergence Refinement: User

Manual and Tutorial, ser. 1.2./9 edition. Formal Systems (Europe) Ltd,

Oxford, England, October 1992, 1992.

[102] C. A. R. Hoare, “Communicating Sequential Processes,” Commun. ACM,

vol. 21, pp. 666–677, August 1978.

[103] L. C. Paulson, Isabelle: A Generic Theorem Prover, ser. Lecture Notes in

Computer Science. Springer – Berlin, 1994.

[104] J. Mitchell, M. Mitchell, and U. Stern, “Automated Analysis of Crypto-

graphic Protocols using Murφ,” in Proceedings of the IEEE Symposium on

Security and Privacy, pp. 141–151, May 1997.

[105] C. Meadows, “The NRL Protocol Analyzer: An Overview,” Journal of

Logic Programming, vol. 26, pp. 113–131, 1996.

[106] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, Sep 2003.

[107] M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication,”

ACM Trans. Comput. Syst., vol. 8, pp. 18–36, February 1990.

BIBLIOGRAPHY 275

[108] P. F. Syverson and P. C. V. Oorschot, “On Unifying Some Cryptographic

Protocol Logics,” In Proceedings of 1994 IEEE Computer Society Sympo-

sium on Research in Security and Privacy, pp. 14–28, 1994.

[109] G. Bella and L. C. Paulson, “Kerberos Version IV: Inductive Analysis of The

Secrecy Goals,” In Proceedings of the European Symposium on Research in

Computer Security - ESORICS ’98, no. 1485, pp. 361–375, 1998.

[110] D. Otway and O. Rees, “Efficient and Timely Mutual Authentication,”

SIGOPS Oper. Syst. Rev., vol. 21, pp. 8–10, January 1987.

[111] J. Zhou and D. Gollmann, “Towards Verification of Non-repudiation Pro-

tocols,” In Proceedings of 1998 International Refinement Workshop and

Formal Methods Pacific, pp. 370–380, 1998.

[112] T. Dierks and C. Allen, “RFC 2246 – The TLS Protocol Version 1.0.”

http://www.ietf.org/rfc/rfc2246.txt/, January 1999, [Online; accessed in

Jan 2012.].

[113] G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano, “Formal Verifica-

tion of Cardholder Registration in SET,” In Proceedings of the 6th European

Symposium on Research in Computer Security, pp. 159–174, 2000.

[114] G. Bella, “Mechanising a Protocol for Smart Cards,” In Proceedings of

the International Conference on Research in Smart Cards: Smart Card

Programming and Security, pp. 19–33, 2001.

[115] C. A. Meadows, “Analyzing the needham-schroeder public key protocol: A

comparison of two approaches,” In In Proceedings of the European Sympo-

sium On Research In Computer Security, pp. 351–364, 1996.

[116] J. C. Mitchell, V. Shmatikov, and U. Stern, “Finite-state Analysis of SSL

3.0,” In Proceedings of the 7th conference on USENIX Security Symposium

- Volume 7, pp. 16–16, 1998.

[117] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time Temporal

Logic,” Journal of the ACM, vol. 49, pp. 672–713, September 2002.

[118] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol Verifica-

tion as a Hardware Design Aid,” In Proceedings of the IEEE International

http://www.ietf.org/rfc/rfc2246.txt/

276 BIBLIOGRAPHY

Conference on Computer Design on VLSI in Computer & Processors, pp.

522–525, 1992.

[119] S. Schneider, “Formal Analysis of a Non-Repudiation Protocol,” In Pro-

ceedings of the 11th IEEE workshop on Computer Security Foundations,

pp. 54–, 1998.

[120] V. Shmatikov and J. C. Mitchell, “Analysis of Abuse-Free Contract Sign-

ing,” In Proceedings of the 4th International Conference on Financial Cryp-

tography, pp. 174–191, 2001.

[121] S. Kremer and J.-F. Raskin, “Game Analysis of Abuse-free Contract Sign-

ing,” In Proceedings of the 15th IEEE workshop on Computer Security

Foundations, pp. 206–220, 2002.

[122] R. Chadha, M. Kanovich, and A. Scedrov, “Inductive Methods and

Contract-signing Protocols,” In Proceedings of the 8th ACM conference on

Computer and Communications Security, pp. 176–185, 2001.

[123] V. Shmatikov and J. C. Mitchell, “Finite-state Analysis of Two Contract

Signing Protocols,” Theor. Comput. Sci., vol. 283, pp. 419–450, June 2002.

[124] A. Nenadic, “A SECURITY SOLUTION FOR FAIR EXCHANGE

AND NON-REPUDIATION IN E-COMMERCE,” Ph.D. dissertation, The

School of Computer Science, 2005.

[125] X. Li, Q. Guo, and Q. Wang, “Analysis of Offline Fair Exchange Proto-

cols in Strand Spaces,” In Proceedings of the International Conference on

Computational Intelligence and Security, CIS ’08, vol. 1, pp. 272 –276, Dec.

2008.

[126] P. Sornkhom and Y. Permpoontanalarp, “Security Analysis of Micali’s Fair

Contract Signing Protocol by Using Coloured Petri Nets: Multi-session

case,” In Proceedings of the 2009 IEEE International Symposium on Par-

allel&Distributed Processing, pp. 1–8, 2009.

[127] M. Aizatulin, “A Timely and Balanced Optimistic Contract-Signing Pro-

tocol,” Diploma Thesis, University of Kiel, March 2008.

BIBLIOGRAPHY 277

[128] R. Chadha, S. Kramer, and A. Scedrov, “Formal analysis of multi-party con-

tract signing,” In Proceedings of the 17th IEEE Computer Security Foun-

dations Workshop, pp. 266 – 279, June 2004.

[129] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,

and S. Tasiran, “MOCHA: Modularity in Model Checking,” In Proceedings

of the 10th International Conference on Computer Aided Verification, pp.

521–525, 1998.

[130] S. Kremer and J.-F. Raskin, “A Game-based Verification of Non-

repudiation and Fair Exchange Protocols,” J. Comput. Secur., vol. 11, pp.

399–429, April 2003.

[131] X. Wang and L. Weng, “Game-Based Analysis and Improvement of a Fair

Contract Signing Protocol,” In Proceedings of the International Conference

on the Computational Intelligence and Security (CIS), pp. 325 –328, Dec.

2010.

[132] S. Yang, S. Su, and H. Lam, “A non-repudiation message transfer protocol

for e-commerce,” In Proceedings of the IEEE International Conference on

E-Commerce, 2003, pp. 320 – 327, June 2003.

[133] C. Yihsu and H. B, “An oligopolistic power market model with tradable

NOx permits,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp.

119–129, January 2005.

[134] J. Nützel and A. Beyer, “How to Increase the Security of Digital Rights

Management Systems Without Affecting Consumer’s Security,” Emerging

Trends in Information and Communication Security, vol. 3995, pp. 368–

380, 2006.

[135] Q. Liu, R. S. Naini, and N. P. Sheppard, “Digital rights management for

content distribution,” In Proceedings of the Australasian information secu-

rity workshop conference on ACSW frontiers’03:, pp. 49–58, 2003.

[136] JiangZhang, N.-S. Wu, J.-G. Luo, and S.-Q. Yang, “A Scalable Digital

Rights Management Framework for Large-scale Content Distribution,” In

Proceedings of International Symposium on Intelligent Signal Processing

and Communication Systems,ISPACS 2005, pp. 761 – 764, Dec. 2005.

278 BIBLIOGRAPHY

[137] J. Lotspiech, S. Nusser, and F. Pestoni, “Anonymous Trust: Digital Rights

Musing Broadcast Encryption,” Proceedings of the IEEE, vol. 92, no. 6, pp.

898–909, June 2004.

[138] L. Lamport, “Password authentication with insecure communication,”

Commun. ACM, vol. 24, pp. 770–772, November 1981.

[139] N. Haller, “The S/KEY One-Time Password System,” In Proceedings of

the Internet Society Symposium on Network and Distributed Systems, pp.

151–157, 1994.

[140] R. L. Rivest and A. Shamir, “PayWord and MicroMint: Two Simple Mi-

cropayment Schemes,” In Proceedings of the International Workshop on

Security Protocols, pp. 69–87, 1997.

[141] R. Hauser, M. Steiner, and M. Waidner, “Micro-Payments based on iKP,”

1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.43.4150

[142] T. P. Pedersen, “Electronic Payments of Small Amounts,” in Proceedings

of the International Workshop on Security Protocols, pp. 59–68, 1997.

[143] S. Micali, “Efficient Certificate Revocation,” Massachusetts Institute of

Technology, Cambridge, MA, USA, Tech. Rep., 1996.

[144] E. N. Ed, W. Aiello, S. Lodha, and R. Ostrovsky, “Fast Digital Identity

Revocation,” in In Proceedings of the 18th Annual International Cryptology

Conference (CRYPTO’98), pp. 137–152, 1998.

[145] S. G. Stubblebine and P. F. Syverson, “Fair On-Line Auctions without

Special Trusted Parties,” In Proceedings of the 3rd International Conference

on Financial Cryptography, pp. 230–240, 1999.

[146] K. Q. Nguyen, Y. Mu, and V. Varadharajan, “Digital Coins based on Hash

Chain,” 1997. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.108.1526

[147] A. Perrig, “The BiBa One-time Signature and Broadcast Authentication

Protocol,” In Proceedings of the 8th ACM conference on Computer and

Communications Security, pp. 28–37, 2001.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4150
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4150
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.1526
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.1526

BIBLIOGRAPHY 279

[148] DVB-Consortium, “The Digital Video Broadcasting Consortium,” http://

www.dvb.org/, [Online; accessed in Jan 2012.].

[149] M. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud Com-

puting: Distributed Internet Computing for IT and Scientific Research,”

Internet Computing, IEEE, vol. 13, no. 5, pp. 10–13, Sept–Oct. 2009.

[150] C. Wang, P. Zou, Z. Liu, and J. Wang, “CS-DRM: A Cloud-based SIM

DRM Scheme for Mobile Internet,” EURASIP Journal on Wireless Com-

munications and Networking - Special issue on security and resilience for

smart devices and applications, vol. 2011, pp. 1–30, January 2011.

[151] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost

of doing science on the cloud: the montage example,” in Proceedings

of the 2008 ACM/IEEE conference on Supercomputing, ser. SC ’08.

Piscataway, NJ, USA: IEEE Press, 2008, pp. 50:1–50:12. [Online].

Available: http://dl.acm.org/citation.cfm?id=1413370.1413421

[152] W. Stallings, Cryptography and Network Security (4th Edition). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 2005.

[153] D. O’Mahony, M. Peirce, and H. Tewar, Electronic Payment Systems.

Artech House, Boston, 1997.

[154] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”

Internet Engineering Task Force, Dec. 2005. [Online]. Available:

http://www.ietf.org/rfc/rfc4301.txt

[155] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321 (Informa-

tional), Internet Engineering Task Force, Apr 1992. [Online]. Available:

http://www.ietf.org/rfc/rfc1321.txt/

[156] N. I. of Standards and Technology, Secure Hash Standard. Federal Infor-

mation Processing Standard Publication 180-1, 1995.

[157] National Institute of Standards and Technology, Secure Hash Standard.

Federal Information Processing Standard Publication 180-2, 2002.

[158] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Commun. ACM, vol. 21, no. 2,

pp. 120–126, 1978.

http://www.dvb.org/
http://www.dvb.org/
http://dl.acm.org/citation.cfm?id=1413370.1413421
http://www.ietf.org/rfc/rfc4301.txt
http://www.ietf.org/rfc/rfc1321.txt/

280 BIBLIOGRAPHY

[159] R. H. Brown and A. Prabhakar, Digital Signature Standard (DSS).

Federal Information Processing Standards Publication 186, 1994. [Online].

Available: http://www.itl.nist.gov/fipspubs/fip186.htm

[160] T. E. Gamal, “A Public Key Cryptosystem and a Signature Scheme based

on Discrete Logarithms,” In Proceedings of CRYPTO 84 on Advances in

cryptology, pp. 10–18, 1985.

[161] C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards,” In

Proceedings on Advances in cryptology, pp. 239–252, 1989.

[162] N. W. Group, “Internet X.509 Public Key Infrastructure Certificate and

CRL Profile,” http://http://www.ietf.org/rfc/rfc2459.txt.

[163] C.-L. Chen, “A Secure and Traceable E-DRM System based on Mobile

Device,” Expert Systems with Applications, vol. 35, no. 3, pp. 878–886, Oct

2008.

[164] S. Liang and S. Emmanuel, “Protection of DRM Agent Codes,” In Pro-

ceedings of the 10th Pacific Rim Conference on Multimedia: Advances in

Multimedia Information Processing, pp. 743–754, 2009.

[165] S. Ghosh, J. D. Hiser, and J. W. Davidson, “A secure and robust approach

to software tamper resistance,” In Proceedings of the 12th international

conference on Information hiding, pp. 33–47, 2010.

[166] J. T. Giffin, M. Christodorescu, and L. Kruger, “Strengthening Software

Self-checksumming via Self-modifying Code,” In Proceedings of 21st Annual

Computer Security Applications Conference, pp. 10–32, Dec. 2005.

[167] T. C. Group, “Trusted Computing Platform Alliance,”

http://www.trustedcomputinggroup.org/files/resource files/

64795356-1D09-3519-ADAB12F595B5FCDF/TCPA Main TCG

Architecture v1 1b.pdf/, 2003, [Online; accessed in Jan 2012.].

[168] A. M. Spencer Cheng, Paul Litva, “Trusting DRM Software,” W3C

Workshop on DRM, January 2001, 2001, [Online;accessed in Jan 2012.].

[Online]. Available: http://www.w3.org/2000/12/drm-ws/pp/cloakware.

html/

http://www.itl.nist.gov/fipspubs/fip186.htm
http://http://www.ietf.org/rfc/rfc2459.txt
 http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf /
 http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf /
 http://www.trustedcomputinggroup.org/files/resource_files/64795356-1D09-3519-ADAB12F595B5FCDF/TCPA_Main_TCG_Architecture_v1_1b.pdf /
http://www.w3.org/2000/12/drm-ws/pp/cloakware.html/
http://www.w3.org/2000/12/drm-ws/pp/cloakware.html/

Appendix A

All Protocols in Detail

This Appendix gives a description for the protocols proposed in chapter 4 and

chapter 5.

A.1 RDS Protocol in Detail

The main cryptographic primitive used in designing the RDS protocol is the CS

scheme outlined in Appendix B, Section 3.5.1. Prior to executing the protocol,

Alice and Bob first run the SETUP algorithm to agree on parameter values,

described in Appendix B, to be used in the signing process. They then engage

in executing the RDS protocol, depicted in Figure 4.4. As Alice holds f and ks

(assumption 2), she will initiate the protocol execution.

Step 1: Alice ambiguously signs RD and sends it in Msg1 to Bob. Signing

RD requires the following operations.

1. Choosing a random number, r ∈ Zq; and

2. Creating ASignA. To do this, she runs the ASIGN algorithm, described in

Appendix B, with the following inputs: PKA/SKA, PKB, RD and f that

is contained in RPLic (assumption 2). This is formally described as follows:

ASignA = (sA, hA, f) = ASIGN(PKA, PKB, SKA, f, RD), where:

(a) f = H1(ks)

(b) hA = (h− f)mod q; where: h = H2(g
r PKf

Bmod p||RD) ;

(c) sA = (r − hA SKA)mod q.

281

282 APPENDIX A. ALL PROTOCOLS IN DETAIL

Once ASignA is generated, Alice constructs and sends Bob Msg1, i.e.

Alice → Bob: Msg1= {RD||ASignA||RPLic}
RPLic contains the license identity, Lic, and the keystone fix, f . RPLic is to

assure Bob that Lic is resalable before he signs RD for it. RPLic also contains

LI’s signature, SigLI(Lic||f), to allow Bob to verify that: (1) f is indeed issued

by LI, and (2) f is bound to Lic.

Step 2: Once Bob receives Msg1, he performs verification BV 1 (i.e. he checks

whether equation (A.1) holds, where LicRD and LicRPLic
are the license ID con-

tained in RD and RPLic, respectively). If BV 1 is negative, Bob terminates the

protocol run1. If it is positive, Bob performs BV 2 shown in Figure A.1. If BV 2 is

positive, Bob performs BV 3 i.e. checking whether equation (A.2) holds.

LicRD = LicRPLic
(A.1)

hA + f = H2(g
sA PKhA

A PKf
Bmod p||RD)mod q (A.2)

If equation (A.2) holds, Bob creates ASignB on (RD||ASignA) = RDASignA
. The

purpose for Bob to sign RDASignA
, instead of signing on the RD directly, is to

prevent Alice from abusing ASignB once she receives it in Msg2 (i.e. to achieve

abuse-freeness). This is because if Bob signs on RD, Alice can use ks to make

ASignB binding to Bob and then show it to a third party. In this case, Alice can

gain some advantage over Bob.

To create ASignB on RDASignA
, Bob runs the ASIGN algorithm with the

following inputs: PKB/SKB, PKA, f (the same f used by Alice) and RDASignA
.

This is formally described as follows:

ASignB = (sB, hB, f) = ASIGN(PKB, PKA, SKB, f, RDASignA
), where:

1. f = H1(ks)

2. hB = (h − f)mod q; and h = H2(g
r′ PKf

Amod p||RDASignA
), and r′ is a

random number chosen from Zq;

3. sB = (r′ − hB SKB)mod q.

Upon generating ASignB, Bob sends Msg2 to Alice, i.e.

1Similar to the case of BV 1, if any of the verifications, BV 2, BV 3, BV 4, AV 1, and BV 2 is
negative, the protocol execution will be terminated

A.1. RDS PROTOCOL IN DETAIL 283

[Lic||f||RPPeriod]

SigLI(Lic||f||RPPeriod)

Public-Key
Decryption

LI's Puclic Key

Hash Function

Digest2

Digest1

Positive

Negative

Yes

NoDigest1
=

Digest2?

Figure A.1: Verification of RPLic authenticity

Bob→Alice:Msg2 = {RDASignA
||ASignB}.

Step 3: On the receipt of Msg2, Alice performs AV 1. If AV 1 is positive, she

performs AV 2, i.e. confirms that equation (A.3) holds.

hB + f = H2(g
sB PKhB

B PKf
Amod p||RDASignA

)mod q (A.3)

If AV 2 is positive, Alice uses ks to convert ASignA and ASignB to signatures

which are binding to their respective signers. As a result, Alice gets a signed RD

which is of the form (RD,ASignA, ASignB, ks). In order for Bob to also obtain

a signed RD, Alice encrypts ks using PKB, and then sends it in Msg3 to Bob.

The keystone fix, f , is included in Msg3 to enable Bob to identify that ks is the

one corresponding to f used in Msg1 and Msg2.

Alice → Bob: Msg3= {f ||EPKB
(ks)}.

Once Bob receives Msg3, he obtains ks and performs BV 4 to confirm that

the hash value of this ks is equal to f contained in RPlic. Bob then uses this

ks to convert ASignA and ASignB to signatures which are binding to their re-

spective signers. As a result, Bob will obtain a signed RD which is of the form

(RD,ASignA, ASignB, ks). At this stage, both Alice and Bob have obtained the

RD that has been signed by Alice and Bob, thus achieving fair RD signing.

284 APPENDIX A. ALL PROTOCOLS IN DETAIL

A.2 2M-RDS Protocol in Detail

The main cryptographic primitive used in designing the 2M-RDS protocol is the

CS scheme outlined in Appendix B. Prior to executing the 2M-RDS protocol,

Alice and Bob negotiate and agree on system parameter values to be used during

the protocol run. To establish these parameters, both run the SETUP algorithm

described in Appendix B. Upon the execution of this algorithm, both Alice and

Bob will generate their respective private parameters, namely their private keys

SKA and SKB. These private keys SKA and SKB are chosen uniformly at ran-

dom from Zq. The private keys are then used to generate the corresponding public

keys PKA and PKB, as follows: PKA = gSKA(mod p) and PKB = gSKB(mod p).

Alice and Bob should keep their respective private keys secret and only exchange

their public keys with each other. In addition, the execution of the SETUP algo-

rithm will generate the following items: two large prime numbers, p and q, such

that q|(p − 1), a generator g of a multiplicative subgroup of order q in Z∗p , and

two cryptographic hash functions, H1 and H2: {0, 1}∗ → Zq. H1 is only used in

creating a hash value of the keystone ks while H2 is used to compute other hash

values for signature generation. Also the public parameters include descriptions

of message space M , signature space S, keystone space K, and keystone fix space

F . These spaces are defined as follows: S ≡ F = Zq and M ≡ K = {0, 1}∗.
Once the execution of the SETUP algorithm is completed, Alice and Bob will

engage in executing the 2M-RDS protocol, depicted in Figure 5.3. As Alice holds

the keystone, ks, (see the assumptions), she will initiate the protocol execution.

Step 1: As illustrated in Figure A.2, Alice ambiguously signs RD and sends

Msg1RDS, to Bob. Signing RD requires the following operations.

Figure A.2: ASignA signature generation on RD

1. Choose a random number, r ∈ Zq ; and

A.2. 2M-RDS PROTOCOL IN DETAIL 285

2. Create ASignA. To do this, she runs the ASIGN algorithm, described in

Section ??, with the following inputs: PKA, SKA, PKB, RD and f given

in RPLic (assumption 2). This is formally described as follows:

ASignA = (sA, hA, f) = ASIGN(PKA, PKB, SKA, f, RD), where:

(a) f = H1(ks)

(b) hA = h− f(mod q);

where: h = H2(g
r PKf

Bmod p||RD) ;

(c) sA = r − hA SKA(mod q).

Once ASignA is generated, Alice sends Bob Msg1RDS, i.e.

Alice → Bob: Msg1RDS = {RD||ASignA||RPLic},
where: RPLic = {Lic||f ||RPperiod||SigLI(Lic||f ||RPperiod)}
Step 2: Once Bob receives Msg1RDS, he performs the following verifications.

Verification BV 1

In this verification, as shown in Figure A.3, Bob checks the correctness of LI’s

signature on each of RPLic and Lic−File. If BV 1 is negative, Bob terminates the

protocol run. If it is positive, it means that RPlic and LicF ile are indeed issued

by LI and not tampered with. In other words, Bob can verify that the usage

rights granted in the license file are identical to those he has negotiated.

[Lic||f||RPPeriod]

SigLI(Lic||f||RPPeriod)

Public-Key
Decryption

LI's Puplic Key

Hash Function

Digest2

Digest1

Positive

Yes

NoDigest1
=

Digest2?

[Lic-File]

SigLI(Lic-File)

Public-Key
Decryption

LI's Public Key

Hash Function

Digest2

Digest1

Positive

Stop

Yes

NoDigest1
=

Digest2?

Figure A.3: Verification BV 1

Verification BV 2

In this verification, Bob checks whether the equality (A.4) holds, where LicRD

is the license identity, Lic, contained in RD, LicRPLic
is the license identity given

286 APPENDIX A. ALL PROTOCOLS IN DETAIL

in RPLic, and LicLic−File is the license identity specified in the license file. With

this verification, Bob confirms that the license negotiated for RD is identical

to the one provided in the received RPLic. This says that the license has been

authorised for resale by LI.

LicRPLic
= LicRD = LicLic−File (A.4)

Verification BV 3

In this verification, Bob checks whether the equality (A.5) holds, where fRPLic

is the keystone fix provided in RPLic and fASignA
is the one used in generating

ASignA. BV 3 assures Bob that f is the right keysone fix to be used in the signing

process.

fRPLic
= fASignA

(A.5)

Verification BV 4

In this verification, Bob checks that RPLic has not already been used in a

previous reselling of Lic. This is to prevent unauthorised multiple resellings of

Lic. This is done by having Bob check LI’s website to verify that f , contained in

RPLic, is not on the resold license list published on this website. This verification

is discussed in detail in Section 5.4.2.

Verification BV 5

As illustrated in Figure A.4, in this verification, Bob checks the correctness

of ASignA. This is done by checking whether equation (A.6) holds.

hA + f = H2(g
sA PKhA

A PKf
Bmod p||RD)mod q (A.6)

Figure A.4: Verification of BV 5

If any of these verifications is negative, Bob aborts the protocol run. If they are

A.2. 2M-RDS PROTOCOL IN DETAIL 287

all positive, as depicted in Figure A.5, Bob creates ASignB on (RD||ASignA) =

RDASignA
. The purpose of Bob to signing RDASignA

, instead of signing on the

RD directly, is to prevent Alice from abusing ASignB once she receives it in

Msg2RDS. This is because if Bob signs on RD, Alice can use ks to make ASignB

binding to Bob and then show it to a third party. In this case, Alice may gain

some advantage over Bob. For example, Alice may use Bob’s signature on RD

to coerce Carol to sign a better deal, RD2, for Lic. However, if ASignA is a part

of ASignB, when ASignB becomes binding to Bob, ASignA will be binding to

Alice as well. In this way, it would be difficult for Alice to benefit by showing a

third party the RD that is already signed by both Alice and Bob, thus achieving

abuse-freeness.

Figure A.5: ASignB signature generation on (RD||ASignA)

To create ASignB on RDASignA
, Bob runs the ASIGN algorithm with the

following inputs: PKB, SKB, PKA, f (the same f used by Alice) and RDASignA
.

ASignB is of the following form:

ASignB = (sB, hB, f) = ASIGN(PKB, PKA, SKB, f, RDASignA
), where,

1. f = H1(ks);

2. hB = h−fmod q, and h = H2(g
r′ PKf

Amod p||RDASignA
), and r′ is a random

number chosen from Zq;

3. sB = r′ − hB SKBmod q.

Once ASignB is generated, Bob sends Msg2RDS to Alice, i.e.

Bob→Alice:Msg2RDS = {RDASignA
||ASignB}.

Step 3: Once Msg2RDS is received, Alice performs verifications AV 1 and AV 1.

Verification AV 1

In AV 1, Alice checks if equality (A.7) holds, where fASignA
is the keystone

fix used in generating ASignA and fASignB
is the keystone fix used in generating

288 APPENDIX A. ALL PROTOCOLS IN DETAIL

ASignB. This is to confirm to Alice that in generating ASignB, Bob has used

the same f Alice has used in generating ASignA.

fASignA
= fASignB

(A.7)

Verification AV 2

In this verification, as shown in Figure A.6, Alice confirms that the equality

(A.8) holds.

Figure A.6: Verifying ASignB() by Alice

hB + f = H2(g
sB PKhB

B PKf
A(mod p)||(RD||ASignA)(mod q)) (A.8)

If either AV 1 or AV 2 is negative, Alice aborts the protocol run. Otherwise,

if both are correct, Alice considers that she has signed a deal, RD, with Bob.

Alice may then choose one of the following options: (1) to check LI’s website to

find out whether Bob has paid LI for her license, Lic; and (2) to opt for another

deal, RD2, i.e. to sign another RD with a different buyer, as Bob may have also

accepted another deal, RD3 with another license reseller. In other words, both

Alice and Bob can sign as many deals as they like with other entities. Both

can then choose the best one to suit their respective interests. If Bob wants to

proceed with this deal, RD, he will execute the RDA protocol to be discussed in

Section 5.4.2.

A.3 RDA Protocol in Detail

The RDA protocol details are summarized in Figure 5.4. To activate theRDPre−official

deal, Bob generates an RD activation request. This request consists of:

A.3. RDA PROTOCOL IN DETAIL 289

• RDPre−official: This is a reselling deal that has been ambiguously signed by

both Alice and Bob. In other words, it is the outcome of the execution of

the 2M-RDS protocol and its structure is shown as Figure 5.5.

• PaymentB: This is the cost of the license, Lic that should be paid by

Bob to LI before Bob can activate Lic. This value should be equal to the

license price specified by both Alice and Bob in the deal, RD. As stated in

assumption 1, it is assumed that there is a payment system by which Bob

can make this payment to LI;

• (RPLic): This is the Reselling Permission for Lic which has been received

by Bob during the execution of the 2M-RDS protocol. This RPLic is of the

form: RPLic={Lic||f ||RPperiod||SigLI(Lic||f ||RPperiod)};

• SigB: This is Bob’s signature on RPLic and PaymentB.

Once Bob has generated the RD activation request, he sends it to LI in

Msg1RDA.

Bob → LI: Msg1RDA =

{RDPre−official||PaymentB||RPLic||SigB(PaymentB||RPLic)}
When LI receives Msg1RDA, LI performs verifications, LIV 1 through to LIV 6

described below. If all these verifications are positive, LI activates the deal, RD;

otherwise, LI rejects the activation request.

LI’s verifications:

LIV 1: Through this verification, LI confirms that equality (A.9) holds, where

PaymentBRDA
is the value of PaymentB provided inMsg1RDA; PaymentBRD

is the value of PaymentB stated in the received RD; and PaymentBLI
is

the value of PaymentB made to LI. If LIV 1 is positive, LI proceeds to LIV 2.

Otherwise, LI terminates the process.

PaymentBRDA
= PaymentBRD

= PaymentBLI
(A.9)

LIV 2: This is for LI to confirm that Bob has submitted the deal, RD, before

the deadline, RDDLB
, has expired. This check enables LI to be assured

that both Alice and Bob have agreed to activate the deal, RD, within the

specified deadline. Before RDDLB
, Bob should have sent LI an activation

290 APPENDIX A. ALL PROTOCOLS IN DETAIL

request, and before RDDLA
, Alice should have confirmed to LI that she

has revoked the license, Lic. If LI receives the RD activation request after

the deadline, RDDLB
, LI will reject the request. Otherwise, LI proceeds to

perform LIV 3.

LIV 3: LI checks the correctness of SigB(PaymentB||RPLic). As illustrated in Fig-

ure A.7, in this verification, Bob verifies Bob’s signature on the RD activa-

tion request.

[PaymentB||RPLic]

SigLI(PaymentB||RPLic)

Public-Key
Decryption

Bob's Public Key

Hash Function

Digest2

Digest1

Positive

Negative

Yes

NoDigest1
=

Digest2?

Figure A.7: Verification LIV 3

LIV 4: LI checks the legitimacy of Lic. This check consists of four further checks:

LIV 4.1, LIV 4.2, LIV 4.3, and LIV 4.4.

LIV 4.1: (Double Reselling Check) In this check, LI ascertains that the license,

Lic , has not already been resold. This is done by using a Read-

only Public Directory (RPD). As illustrated in Figure A.8, the RPD

consists of three fields: license identity, and keystone and keystone fix

assigned to this license identity. For example, once a license, Lic, has

been resold using RPLic, LI publicises ks and f corresponding to RPLic

on this RPD. While performing LIV 4.1, if LI finds ks, corresponding to

RPLic, has been published in the field, “Used keystone” of RDP, this

means that Lic has already been resold. Consequently, LI will reject

this RD activation request. Otherwise, LI proceeds to perform LIV 4.2.

A.3. RDA PROTOCOL IN DETAIL 291

By performing LIV 4.1, the license, Lic, is prevented from being resold

multiple times. In addition, any buyer can use this RPD to check

whether RPLic has already been used in reselling Lic.

LI's RPD showing that Lic has not been
resold as ks is not published yet

Licenses
Identities

Lic

Licn

...

f

Used
keystones

Used
keystones

fix

Figure A.8: RPD hosted by LI

LIV 4.2: (RPLic Validity) LI checks that the inequality (A.10) holds, where

RecDateRP is the date and time at which LI has received RPLic, and

EnDateRP is the date and time by which RPLic will expire. If this

inequality does not hold, then RPLic has expired and LI rejects the

activation request. If it holds, then RPLic is still valid to be used in

reselling Lic and LI proceeds to perform LIV 4.3 .

RecDateRP ≤ EnDateRP (A.10)

LIV 4.3: (RPLic authenticity) LI verifies whether RPLic has been altered. This

is done, as illustrated in Figure A.3, by verifying LI’s signature on

RPLic, i.e. verifying SigLI(Lic||f ||RPperiod). If this signature is invalid,

the license, Lic, is deemed as non-resalable and LI sends a negative

acknowledgement to Bob in Msg2RDA. Thus, performing LIV 4.3 helps

LI to prevent reselling a non-resalable license. On the other hand, if

LIV 4.3 is positive, the license, Lic, is considered as resalable. LI then

proceeds to perform LIV 4.4.

LIV 4.4 (License Identity Check) In this check, LI verifies that the equality

(A.11) holds, where LicRD is the license identity stated in RD, and

292 APPENDIX A. ALL PROTOCOLS IN DETAIL

LicRPLic
is the license identity specified in RPlic.

LicRD = LIRPLic
(A.11)

If this equality does not hold, LI will stop the reselling process. This

check prevents a reseller or a buyer from replacing RPLic with another

perhaps less valuable reselling permission. If LIV 4.4 is positive, LI then

proceeds to perform LIV 5.

LIV 5: (Reseller’s Signature Verification) LI verifies whether ASignA = (sA, hA, f)

attached to RDPre−official is indeed created by Alice. This is done by veri-

fying whether equality (A.12) holds.

hA + f = H2(g
sA PKhA

A PKf
Bmod p||RD)mod q (A.12)

If equality (A.12) does not hold, Alice is not the true originator of ASignA.

If equality (A.12) holds, and if f = H1(ks), then ASignA is indeed created

by Alice.

LIV 6: (Buyer’s Signature Verification) LI verifies whether ASignB = (sB, hB, f)

attached to RDpre−official is indeed created by Bob. That is, LI checks

whether equality (A.13) holds:

hB + f = H2(g
sB PKhB

A PKf
Bmod p||(RD||ASignA)mod q) (A.13)

If equality (A.13) does not hold, Bob is not the true originator of ASignB.

If equality (A.13) holds, and if f = H1(ks), it means that ASignB is created

by Bob.

From the discussion above, the following remarks can be drawn. Firstly, LIV 1

and LIV 2 prevent Bob from activating RD without making an adequate payment

before a pre-defined deadline, RDDLB
. Also, performing LIV 1 at this early stage

of RD activation reduces the risk of Denial of Service (DoS) attack on LI. This is

because before the required payment is received, no further verifications will be

performed. In other words, if an inadequate payment is received, LI will not need

to do signature verifications specified in LIV 3, LIV 4, LIV 5, and LIV 5 which are

computationally more expensive than LIV 1 and LIV 2. This design consideration

A.3. RDA PROTOCOL IN DETAIL 293

can reduce unnecessary computational load on LI, and reduce the chance of LI

becoming a target of DoS attack.

Secondly, LIV 2 and LIV 4 are necessary in order to protect the content owners’

rights. With LIV 2, LI will be assured that both Alice and Bob are responsible

for activating the deal, RD, within the specified deadlines: RDDLA
and RDDLB

.

Thus, as discussed in Section 5.1.3.3, neither Alice nor Bob can later falsely deny

that they are unaware of this responsibility. LIV 4 ensures LI that the license, Lic,

is legitimate. In other words, LIV 4 enables LI to prevent (1) the reselling of a

non-resalable license, (2) double reselling of a resalable license.

Thirdly, LIV 5 and LIV 6 are to make sure that both Alice and Bob have indeed

committed to the RD before the reselling is allowed to proceed. This can also

help to prevent any potential dispute between Alice and Bob as both entities

must have signed the given RD before the reselling process can be successfully

completed. LIV 5 also protects LI from any repudiation attack from Alice. In

other words, if Alice has indeed resold her license, Lic, but falsely denies doing

so, LI can use her signature on RD as evidence to prove that she has definitely

resold the license, Lic.

If all the verifications, LIV 1 through to LIV 6, are positive, LI accepts RD and

performs the following three tasks before sending licActivated to Bob in Msg2RDA.

1. LI re-issues the license, Lic, to become the activated license, LicActivated. In

this way, when it is installed on Bob’s device, Bob can access it on his device.

In the license re-issuance, LI does not issue another reselling permission to

LicActivated, thus making it non-resalable. The purpose of this license re-

issuance is for LI to assign a new ID to LicActivated, thus solving the license

ID problem (see Section 5.1.3) if the Global-LRL is used.

2. LI binds the license, LicActivated, to Bob’s device to address the DRM license

transfer problem (see Section 2.3). This license binding is achieved by

encrypting the license, LicActivated, using the public key of Bob’s DRM client.

In this way, only Bob’s DRM client can use its private key to decrypt

LicActivated and use it. This license binding enables LI to trace Bob should

Bob violate any of the usage rights specified in the license.

3. LI marks Alice’s license, Lic, as resold and publishes the license details

on LI’s website. This is done, as shown in Figure A.8, by LI running

a Read-Only Public Directory (RPD) containing resold licenses and their

294 APPENDIX A. ALL PROTOCOLS IN DETAIL

corresponding keystones and keystone fixes. LI can use this RPD to perform

the verification, LIV 4.1.

Once LI has performed all the above tasks, LI, in Msg2RDA, sends the license,

LicActivated, encrypted by Bob’s public key, to Bob, thus achieving fairness for Bob.

LI → Bob : Msg2RDA = {LicActivated||SigLI(LicActivated)}PKB

After Bob receives Msg2RDA, his DRM client uses its private key to decrypt

Msg2RDA to get the license, LicActivated. He then performs Verification BV 6 to

verify that LI has indeed created this message. Now, Bob is able to access the

license, LicActivated, on his device.

A.4 RDC Protocol in Detail

The RDC protocol is executed to assure LI that Alice’s resold license, Lic, has

indeed been revoked and to transfer payment for the license reselling to the re-

seller, Alice. After the successful execution of the RDA protocol, as described in

A.3, LI performs two tasks (1) prepares an LRL-update containing the ID of Lic

and posts this on LI’s website; (2) publishes on LI’s website that Lic has been

resold. Once this LRL-update is published on LI’s website, it is Alice’s responsi-

bility to regularly check LI’s website to see whether her license has been resold.

If so, Alice has to obtain the LRL-update, and install it on her device2. She then

executes the RDC protocol with LI. If the deadline, RDDLA
, expires and Alice

does not do so, she can neither claim for the payment, PaymentB, nor resell her

license again.

When Alice obtains the LRL-update which is of the form

{LRLupdate||SigLI(LRLupdate)}, Alice’s DRM client performs the verification, AV 3.

Verification AV 3:

In AV 3, Alice’s DRM client checks the authenticity of the downloaded LRL-

update. That is, as shown in Figure A.9, SigLI(LRLupdate) will be verified. If

AV 3 is negative, the DRM client will not allow this LRL-update to be installed.

If it is positive, the LRL-update will be installed on Alice’s device to update the

LRL already installed on her DRM client.

2Note that, in this case, LRL-update is delivered to Alice using the pull mode described in
Section 5.1.3.2. The push mode can also be used to deliver the LRL-update. That is, once LI
successfully executes the RDA protocol with Bob and prepares an LRL-update, he can send it
to Alice who installs it on her device and then launches the RDC protocol.

A.4. RDC PROTOCOL IN DETAIL 295

[LRLupdate]

SigLI(LRLupdate)

Public-Key
Decryption

LI's Public Key

Hash Function

Digest2

Digest1

Positive

Negative

Yes

NoDigest1
=

Digest2?

Figure A.9: The verification AV 3

Upon successful installation of the LRL-update on Alice’s device, Alice’s DRM

client generates and sends LI Msg1RDC . This Msg1RDC is to confirm that an up-

to-date LRL has been installed on Alice’s DRM client (i.e. Alice’s resold license

is revoked).

Alice’s DRM client → LI: Msg1RDC =

{APK ||InstallT ime||LRLInfo|| SigA(APK ||InstallT ime||LRLInfo)},
where:

APK : This is Alice’s DRM client ID.

LRLInfo: This is information about two LRLs, (1) the LRL-update being in-

stalled, and (2) the old LRL which was already installed on Alice’s device.

LRLInfo contains the following fields:

1. LRLV ersion: This is the latest version of the LRL being installed on

Alice’s device.

2. IDLRL−update: This is the identity of the LRL-update that is published

on LI’s website and that should be installed on Alice’s device;

3. LRLInstall−Status: This is either success or fail. This is to show

whether the LRL-update has been successfully installed or not.

InstallT ime: This is the time at which Alice’s license has been revoked. In other

words, it is the time when the LRL-update is installed on Alice’s device.

296 APPENDIX A. ALL PROTOCOLS IN DETAIL

This time is securely provided by Alice’s DRM client, and it is synchronized

with LI’s clock (See assumption 12).

SigA: This is the signature of Alice’s DRM client which is created on the

Msg1RDC .

Once LI receives Msg1RDC from Alice, LI performs the following verifications to

confirm if Alice’s license has indeed been revoked.

Verification LIV 7

In this verification, LI checks the correctness of Alice’s DRM client, SigA, on

Msg1RDC . If LIV 7 is negative, LI may ask Alice to re-execute the RDC protocol.

Of course, this re-execution should be done before the deadline, RDDLA
. If Alice’s

DRM client signature is valid, LI goes to LIV 8.

Verification LIV 8

In LIV 8, LI confirms that the equality (A.14) holds, where LRCLRLV ersion

is LRLV ersion installed on Alice’s device and provided in the LRC message, i.e.

Msg1RDC , and LILRLV ersion
is the latest version of LRL published on LI’s website.

LRCLRL−V ersion = LILRL−V ersion (A.14)

Verification LIV 9

In LIV 9, LI checks that the equality (A.15) holds, where LRCIDLRL−update
is

IDLRL−update installed on Alice’s device and provided in the LRC message, i.e.

Msg1, and LIIDLRL−update
is IDLRL−update of the latest update of LRL published

on LI’s website after reselling Lic. Note that IDLRL−update is very important for

LI as it assures LI that Alice has installed the current version of the LRL-update

published on LI’s website after reselling the license, Lic.

LRCIDLRL−update
= LIIDLRL−update

(A.15)

If all the above verifications are positive, LI is assured that Alice cannot use

her resold license, Lic, any more. LI can then forward Alice the payment received

from Bob during the execution of the RDA protocol. This could be done by having

LI send a cheque with this payment value to Bob. LI can inform Alice of this

payment by sending Msg2RDC . That is,

LI → Alice: Msg2RDC = {PaymentB||NLI ||SigLI(PaymentB||NLI)}
After Alice receives Msg2RDC , she performs Verification, AV 4. This verifica-

tion checks that the message is authentic, i.e. it is indeed generated by LI. If

A.4. RDC PROTOCOL IN DETAIL 297

AV 4 is positive, Alice should receive the payment stated in Msg2RDC . This will

complete the reselling of the license, Lic.

Appendix B

Cryptographic and Protection

Technologies Used in DRM

B.1 Chapter Introduction

DRM Systems make use of different protection technologies (i.e. building blocks)

to protect content owners’ rights, to secure digital contents, and to secure con-

tent distributions. Typically, symmetric encryption, e.g. Advanced Encryption

Standard (AES), is used to protect the contents. Asymmetric encryption is also

used to bind a license to a particular consumer (device). Digital certificates with

digital signatures are used to authenticate involved entities to each other. PKI

is utilised to manage and provide services related to digital certificates. In ad-

dition, digital signatures and hash functions are used to protect the integrity of

both contents and licenses. Digital watermarking and fingerprinting are used to

embed ownership information into contents and to trace copyright violations if a

system is successfully attacked, and its content made public. Individualisation is

used to make an instance of DRM client unique among all other clients. Tam-

per resistance technologies are utilized to ensure that the entire DRM system is

trusted, and fraud can be prevented. To make sure that a digital content re-

mains confidential and it is correctly received, a secure communication channel

is established using SSL.

This Chapter gives an overview of the building blocks mentioned above. In

Section B.2 and Section B.3, we discuss the concepts of symmetric and asym-

metric encryptions. The hash function and digital signature will be presented

in Section B.4 and Section B.5, respectively. Public Key Infrastructure (PKI)

299

300 APPENDIX B. BUILDING BLOCKS USED IN DRM

will be introduced in Section B.6. Individualisation and tamper resistance will

be discussed in Section B.7 and Section B.8, respectively. Finally, Section B.9

presents the Secure Socket Layer/Transport Layer Security (SSL/TLS) protocol.

B.2 Symmetric Cryptography

Symmetric encryption (also known as secret-key encryption, or one-key encryp-

tion) is an encryption technique in which the same secret key is used for both

encryption and decryption. Figure B.1 illustrates an example of the symmetric

encryption process.

Symmetric encryption can be used to achieve security of message confidential-

ity and message authenticity. Since a sender and a receiver are the only entities

that know the encryption/decryption key, message confidentiality is preserved.

Message authenticity is preserved due to the fact that the key is only known to

the two entities.

According to the way in which the plaintext is processed, symmetric encryp-

tion algorithms can be further categorised into two classes, stream and block

ciphers [152]. In the stream cipher, the plaintext is processed in a bit-wise or

byte-wise manner, whereas in the block cipher, the plaintext is broken up into

groups of bits (called blocks) of a fixed length and then one block is processed at

a time [152].

Well known symmetric encryption algorithms include the Data Encryption

Standard (DES [32]), and the Advanced Encryption Standard (AES) [33].

B.3 Asymmetric Cryptography

Asymmetric cryptography (also referred to as public-key cryptography) is another

type of the key-based encryption algorithms. Unlike the symmetric cryptography,

the asymmetric cryptography makes use of a pair of keys for encryption and

decryption. A key called public key is used to encrypt data, and another key

called private key is used to decrypt the data. The public key can be publicised

to anyone while the private key must be kept secret and known only to its owner.

There is a mathematical relation between the public key and the private key in

a pair so that data encrypted with either key can only be decrypted using the

other.

B.3. ASYMMETRIC CRYPTOGRAPHY 301

Message Encryption
algorithm CipheredMessage

Decryption
algorithm

Message

Sender

Receiver

Shared Secret Key

CipheredMessage

Network

Figure B.1: The process of symmetric encryption

As illustrated in Figure B.2, in order for a sender to send a confidential message

to a receiver, the sender uses the receiver’s public key to encrypt the message and

then sends it to the receiver. To decrypt the encrypted message, the receiver

must use his private key. Since this receiver alone is in possession of his private

key, only he can decrypt the message. By this way, message confidentiality can

be achieved.

Asymmetric encryption does not suffer from the key distribution problem as

in the case of symmetric encryption. However, asymmetric encryption is much

slower than symmetric encryption (up to 100 times in software and up to 10,000

times in hardware [153]). Therefore, asymmetric encryption is normally not used

for bulk message encryption. It is typically combined with symmetric encryption

to make use of the advantages of both encryptions. It is mainly used at the be-

ginning of a communication session to exchange a shared key (called session key)

between two entities. These two entities will then use this key for subsequent

message integrity and confidentiality protection using symmetric encryption. Ex-

amples of well known Internet security protocols that make use of this approach

are SSL/TLS [95, 112] and IPSec [154].

302 APPENDIX B. BUILDING BLOCKS USED IN DRM

Message Encryption
algorithm CipheredMessage

Decryption
algorithm

Message

Sender

Receiver

Receiver's
public Key

Reciver's
private Key

CipheredMessage

Network

Figure B.2: The process of asymmetric encryption

B.4 Hash Functions

A hash function, H(), is a function that takes an arbitrary block of data (M)

and produces an output of a fixed-size string (known as a hash value, h). Any

change to the data M will result in a change in the hash value, h. A typical

cryptographic hash function should satisfy the following requirements [152]:

• The input of H() can be of any length,

• The output of H() has a fixed length,

• H(x) is relatively easy to compute for any given input, x,

• H(x) is a one-way function. A hash function H() is said to be one-way if

it is computationally infeasible to compute x when H(x) is given.

B.5. DIGITAL SIGNATURES 303

• H(x) should be collision-free. This means that for a given message x, it is

computationally infeasible to find a message y 6= x such that H(x) = H(y).

• A strongly collision-free hash function, H(), is one for which it is computa-

tionally infeasible to find any pair (x, y) such that if H(x) = H(y).

The cryptographic hash function plays an important role in the creation of

digital signatures. A hash function can be used to generate a message digest

from an original message before a sender signs the message digest with his/her

private key. Examples of well-known hash functions are MD5 [155], SHA [156],

and SHA-512 [157].

B.5 Digital Signatures

A digital signature is an alternative for a hand-written signature. Typically, a

digital signature scheme comprises two main components [152]:

• A signature generation algorithm: This is to generate a digital signature.

• A signature verification algorithm: This is to verify a digital signature.

To digitally sign a message M , a sender first applies a hash function H() to

the message to generate a digest of the message (hash value), h. The sender then

encrypts this digest with his private key to generate a digital signature. He then

appends this signature to the original message and sends both to a receiver.

To verify the sender’s signature, the receiver first decrypts the signature with

the sender’s public key to obtain the message digest, h. The receiver then gen-

erates another fresh message digest, h′, from the received message. If the two

messages’ digest are equal, i.e. h = h′, then the signature is considered valid.

Otherwise, the signature is not valid. Figure B.3 illustrates the process of both

signature generation and signature verification.

Digital signatures are very important for the security services. They provide

the properties of message integrity, non-repudiation, and message/entity authen-

tication.

• Message integrity: Once a receiver of a signed message has successfully

verified the signature, he will be assured that neither the message nor the

signature has been modified in transit. Thus, a digital signature is used to

verify the integrity of a signed message.

304 APPENDIX B. BUILDING BLOCKS USED IN DRM

Signature Generation

Signature Verification

Hash
algorithm

Asymmetric
encryption

Sender's
private Key

SignatureHash value, H

Hash
algorithm

Asymmetric
decryption

Sender's public
 Key

H'

H

Compare

Message

Signature

Message

Concatenation

Sender Receiver

Message

Signature

Figure B.3: Digital signature generation and verification

• Non-repudiation: A signer of a message cannot later deny having signed

the message. As explained above, a signer uses his private key to generate

his signature on the message. As the signature is verifiable with the cor-

responding public-key, so the signature represents undeniable evidence for

any signed messages.

• Authentication. Digital signatures provide origin authentication for signed

messages. This is due to the fact that (1) messages are signed using the

private key of the senders; (2) the senders are the only entities that are

in possession of these private keys. Therefore, the signed messages should

have originated from the claimed senders.

Well-known examples of digital signature schemes, which have been proposed

in the literature, include RSA [158], DSA (Digital Signature Algorithm, [159]), El

Gamal [160], and Schnorr [161]. Recently, a new type of digital signature scheme,

called Concurrent Signature (CS) scheme has been proposed in [8] and [91]. The

main difference between the CS scheme and other digital signature schemes is

that the CS scheme allows two signers to exchange their respective signatures

concurrently. In the following section, we describe in more detail the generation

and verification process of the CS scheme. The scheme has been used in the

design of our contract signing protocol.

B.6. PUBLIC-KEY INFRASTRUCTURE (PKI) 305

B.6 Public-key Infrastructure (PKI)

Asymmetric cryptosystems are associated with an important security infrastruc-

ture, known as Public key Infrastructure (PKI). PKI is an infrastructure which

concerns with managing public keys certificates (digital certificates, see Section

B.6.1) of all involved entities in an asymmetric cryptosystem. In other words,

PKI exists to ensure how other entities can ascertain that a public key is authen-

tic, i.e. it indeed belongs to a particular entity. PKI involves a number of Trusted

Third Party (TTP) to manage and verify the identities of the entities wishing to

engage in a secure communication through the issuance of digital certificates for

these entities [152].

In a typical PKI, a TTP called a registration authority verifies an entity’s

identity and then instructs another TTP called a Certificate Authority (CA) to

generate and sign a digital certificate for the entity. This certificate contains the

public key of this entity which can later use this certificate to prove its identity and

establish secure transactions with other entities [152]. Generally, PKI provides a

number of services such as issuing, managing digital certificates, and maintaining

Certificate Revocation Lists (CRLs).

B.6.1 Digital Certificate

A digital certificate is a data structure which is issued and signed by a Certificate

Authority (CA) [152]. As shown in Figure B.4, a digital certificate contains a

public key, the purpose of use, e.g. encryption and/or signing, the owner of the

public key, the issuer, date of issuing, validity period, signature algorithm used to

sign the certificate, and optional extension fields that may be used to customise

certificates. The fields specified in a standard certificate are defined by the X.509

Certificate Specification [162].

One of the main application of digital certificates is electronic commerce. In

an E-commerce system, an owner of a secure site will maintain a digital certificate

that is checked by a web browser for a secure session. In this case, CA issuing

this certificate is asserting that the public key of the owner is authentic. To

establish the secure session, the owner and web browser will authenticate each

other using their public keys and then create a session key which is used to

establish an encrypted session. With this way, when personal details, like credit

card numbers, are in transit over the Internet, other entities cannot see them.

306 APPENDIX B. BUILDING BLOCKS USED IN DRM

Digital Certificate Structure

According to the X.509 standard [162], the structure of a digital certificate is

as follows:

• Version Number: It is the version of X.509 to which the certificate is

issued (at the time of writing the current X.509 version is 3).

• Serial Number: It is a unique number to identify the specific certificate

issued by a given CA.

• Issuing CA: It is the name of the certificate authority which has issued

the certificate.

• CA Digital Signature: It is the digital signature of the issuing CA.

• Subject/Owner: It specifies the owner of the certificate. It may be a

person, company, department, network device, or application etc.

• Owner’s Public Key: It specifies the public key contained in the certifi-

cate and corresponding to the owner’s private key.

• Validity Period: It defines two dates during which the certificate is

considered valid.

• Certificate Usage: It specifies the approved uses of the certificate (e.g.

signature and/or encryption).

• Signature Algorithm: This is the field containing the identifier of the

cryptographic algorithm used by CA to sign the certificate.

• Extensions: They allow addition of customised data to digital certificates.

B.6.2 Certification Authority (CA)

A certificate authority (CA) is a TTP which is responsible for validating the

identity of a person or organization requesting a certificate1. Upon the verification

of the identity, it issues a certificate containing the subject’s public key. The

certificate is then digitally signed with the CA’s private key [152].

1In some scenarios, CA delegates the identity’s validation to another TTP, called a Regis-
tration Authority.

B.6. PUBLIC-KEY INFRASTRUCTURE (PKI) 307

X-509 Certificate

Version(V3)

Certificate serial number

Signature algorithm identifier
 (algorithm, parameters)

Issuer's (CA's) name

Validity period

Subject's (Owner's) name

Subject's public Keyinfo
(algorithm, parameters, Key)

CA's unique identifier

Subject's unique identifier

Extensions

CA's signature

Digital
signature
algorithm

 CA's
private Key

C
o
n
c
a
te
n
a
te

Figure B.4: A digital certificate structure

B.6.3 Certificate Lifecycles and Key Management

A certificate lifecycle includes (but not necessarily all) the following stages [152]:

• Key Generation: It is the stage of creating a public/private key pair to

be associated with the certificate.

• Identify Submission: It is the stage where an entity’s credentials (e.g.

entity’s ID, address, email address) has to be submitted to the CA.

• Registration: It is the stage where the identity of the requesting entity is

verified and registered by the CA.

• Certification: In this stage, the identity of a requesting entity is validated,

and a certificate is issued, i.e. generated and digitally signed, by the CA.

• Distribution: It is the stage where certificates are published by the CA.

• Usage: It is the stage during which a certificate is used by the requesting

entity.

• Expiration: It is the stage where the certificate becomes expired unless it

is renewed or revoked.

308 APPENDIX B. BUILDING BLOCKS USED IN DRM

• Revocation: It is the stage where a certificate is revoked before it ex-

pires. For example, if the private key of a certificate is compromised, the

corresponding certificate has to be revoked.

• Suspension: In this stage a certificate is temporarily suspended. For ex-

ample, if a certificate holder goes on sabbatical leave and is not planning

on using his certificate during this period.

B.7 Individualization

Individualization is a process by which a DRM client becomes unique from all

other DRM clients. With the individualization, each license is tightly issued to

a unique DRM client (i.e. playback device). Thus, a license issued and stored

in a given device is difficult to move or to be used by another device. The

individualization, in DRM context, helps to prevent software hacking on a large

scale. It also decreases the potential to revoke all DRM clients if one device is

compromised [163, 26].

On the other hand, the individualization introduces a great concern regarding

rights portability. For example, a consumer usually wants to play/view her film

at her friend’s home or play/view it on her portable devices (iPad, mobile phones,

etc.). In this case, to play/view the film on each device, she needs to acquire new

licenses for every device. To address this problem, as described in Chapter 2,

FairPlay DRM system allows consumers to play/view their content on up to five

devices.

As used in Microsoft DRM, a DRM client can be individualised as follows.

A DRM system collects consumer’s hardware information or consumer’s identifi-

cation (e.g. consumer’s public key). The DRM system uses this information to

issue a public/private key pair to the consumer device. The private key is then

stored by the DRM client, and the public key is used to identify this DRM client.

At the time of issuing a license, a License issuer (LI) will use this key to encrypt

the license. To use this license, the DRM client will use the private key to decrypt

the license [163, 26].

B.8. TAMPER RESISTANCE 309

B.8 Tamper resistance

Tamper resistance is a technology that aims to protect trusted software running

on a non-trustworthy host. In the DRM context, consumers cannot be consid-

ered as trustworthy. Therefore, content owners need to protect their usage rules

contained in digital licenses against violations, malicious alterations, etc. Fur-

thermore, content owners may want to ascertain that their rights in the digital

license are properly enforced [40].

To prevent a malicious consumer from tampering with the rights entitlement

functions of the DRM-enabled applications, it is important to apply a tamper

resistance technology. This technology makes hacking extremely difficult and

ensures that the DRM client can be trusted to perform operations as designed

[26].

There are two types of tamper resistance technologies, software approach and

hardware approach. Software approach makes use of software mechanisms to

enable tamper resistance. Code obfuscation [164, 165] and self-modifying [166]

are two examples of software tamper resistance technology. Code obfuscation

transforms a piece of software into a functionally equivalent form which is difficult

to understand and analyse. For example, a piece of software may be encrypted

and executed in the encrypted form. Self-modifying code is a code which generates

a different code while it is being run. This can prevent consumers (hackers) from

viewing, understanding, accessing, and modifying the software.

Hardware approach relies on trusted hardware to provide tamper resistance.

In this hardware, code is protected from external software attacks. In DRM con-

text, operations such as authentication, rights rendering, and content decryption

are executed only in this trusted hardware. Examples of hardware tamper resis-

tant mechanism are the Trusted Platform Module (TPM) specifications [167] and

smart card technology which have been used in decoding the signals of satellite

TV to prevent subscription fraud [168].

B.9 SSL/TLS Protocol

The Secure Socket Layer (SSL) protocol [95] is one of the most crucial solutions

over the Internet. It provides the required level of authentication, confidentiality,

and message integrity for the exchanged data. SSL is a transport layer security

310 APPENDIX B. BUILDING BLOCKS USED IN DRM

protocol which is enveloped by Netscape Communications. Recently, another

version of SSL protocol called Transport Layer Security (TLS v1) protocol [112]

is developed based on SSL v3. TLS is proposed as Internet Standard from the

Internet Engineering Task Force (IETF). Since the design of the TLS v1, the

term SSL applies to both protocols SSL and TLS.

Currently, SSL is built into Web browsers and servers, and widely adopted

by the current e-commerce community to provide secure communications and

transfer of sensitive data (e.g. monetary transactions and credit card numbers).

Any URL that requires an SSL communication uses https:// instead of http://.

The SSL protocol comprises two phases. In the first phase, the SSL execution

starts with a protocol known as handshake in which communicating entities are

mutually authenticated using their public-key certificates and digital signatures.

The entities then jointly compute a key called a session key. In the second phase,

messages are exchanged between the entities. The session key is used to encrypt

the messages to protect their confidentiality.

B.10 Chapter Summary

This chapter has introduced the cryptographic primitives which form the basis for

the design of our fair and secure solution to the digital license reselling problem.

It has also given an overview of the protection technologies used in the design of

DRM systems. To advance the state-of-the-art, the next chapter investigates the

existing license reselling systems and analyses their advantages and limitations.

Appendix C

Formal Verification Code: RDS

Protocol

This Appendix gives the formal verification details of the RDS protocol. Section

C.1 presents the protocol model in the guarded command language. This model

is used for model-checking with Mocha. Section C.2 then gives a representation

of the security properties as ATL formulae that are used as inputs to Mocha.

C.1 The RDS Protocol Model

/ ∗∗∗∗∗∗∗∗∗∗∗∗∗Model l ing an Honest Al ice∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

module A l i c e
/∗ Var iab l e s that could be acce s s ed by Al i c e and other p l aye r s∗ /
ex t e rna l

Msg2,
RD Act Req6,
Pos i t i v e Resu l t A : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/
i n t e r f a c e

RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,
SendMsg3,
Stop A,
Asign Ba,
As ign Ba LI ,
Time Out A: bool

atom Al i c eS ign
c on t r o l s

RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,

311

312 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

SendMsg3,
Stop A,
Asign Ba,
As ign Ba LI ,
Time Out A

reads RD,
RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,
SendMsg3,
Stop A,
Asign Ba,
Msg2, Asign Ba,
RD Act Req6,
Po s i t i v e Re su l t A ,
As ign Ba LI ,
Time Out A

/∗ t h i s i s the i n i t i a l i z a t i o n s t a t e for the honest A l i c e∗ /

i n i t
[] t rue −>

RD’ :=true ; RP Lic ’ := true ; Asign A ’ := true ;
E ks ’ := f a l s e ; A v1 ’ := f a l s e ; A v2 ’ := f a l s e ;
SendMsg1 ’ := f a l s e ; SendMsg3 ’ := f a l s e ; Stop A ’ := f a l s e ;
Asign Ba ’ := f a l s e ; Asign Ba LI ’ := f a l s e ;
Time Out A ’ := f a l s e

update

/∗ Al i c e sends Msg1 to Bob∗/
[] RD & RP Lic & Asign A & ˜Stop A & ˜SendMsg1 −> SendMsg1 ’ := true
/∗ Al i c e has r e c e i v ed Msg2 from Bob, i . e . she w i l l r e c e i v e Asign−Ba∗/
[] Msg2 & ˜Stop A & ˜Asign Ba −> Asign Ba ’ := true ; Time Out A ’ := true
/∗ Once Al i c e has r e c e i v ed Msg2, she perofem the v e r i f i c a t i o n A−v1 and A−v2 ∗/
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & ˜A v1 −> A v1 ’ := true
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & A v1 & ˜A v2 −> A v2 ’ := true
/∗ I f the v e r i f i c a t i o n s A−v1 and A−v2 are p o s i t i v e , A l i c e encyrept ks with Bob ’

s key∗/
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & A v1 & A v2 & ˜E ks −> E ks ’ := true
/∗ Once Al i c e has encrypted the k s , she sends i t to Bob∗/
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & A v1 & A v2 & E ks & ˜SendMsg3 −>

SendMsg3 ’ := true
/∗In case Bob has not responded to A l i c e by Msg3 and he has sent LI RD Act Req6

(an va l i d RD ac t i v a t i o n reque s t) , A l i c e w i l l r e c e i v e a Post ive Resu l t A (
i . e Asign Ba) from LI so ach i ev ing f a i r n e s s for Al i c e∗ /

[] RD Act Req6 & ˜Stop A & Pos i t i v e Resu l t A & ˜Asign Ba LI −> Asign Ba LI ’ :=
true

[] ˜Stop A −> Stop A ’ := true
[] ˜Stop A −>

endatom
endmodule

/ ∗∗∗∗∗∗∗∗∗∗∗∗∗Model l ing a DisHonest Al ice∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

module D i s A l i c e
/∗ Var iab l e s that could be acce s s ed by A l i c e D i s and other p l aye r s∗ /
ex t e rna l Msg2 : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/
i n t e r f a c e ks A,

RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,
SendMsg3,

C.1. THE RDS PROTOCOL MODEL 313

Stop A,
Asign Ba,
Dis Al ice Prove2TP,
Time Out A: bool

atom Al i c eS ign2
c on t r o l s ks A,

RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,
SendMsg3,
Stop A,
Asign Ba,
Dis Al ice Prove2TP,
Time Out A

reads ks A,
RD,
RP Lic,
E ks ,
Asign A,
A v1,
A v2,
SendMsg1,
SendMsg3,
Stop A,
Asign Ba,
Msg2,
Asign Ba,
Dis Al ice Prove2TP,
Time Out A

i n i t
[] t rue −> ks A ’ :=true ;

RD’ :=true ;
RP Lic ’ := true ;
Asign A ’ := true ;
E ks ’ := f a l s e ;
A v1 ’ := f a l s e ;
A v2 ’ := f a l s e ;
SendMsg1 ’ := f a l s e ;
SendMsg3 ’ := f a l s e ;
Stop A ’ := f a l s e ;
Asign Ba ’ := f a l s e ;
Dis Alice Prove2TP ’ := f a l s e ;
Time Out A ’ := f a l s e

update

/∗ Al i c e sends Msg1 to Bob∗/
[] RD & RP Lic & Asign A & ˜Stop A & ˜SendMsg1 −> SendMsg1 ’ := true
/∗ Al i c e has r e c e i v ed Msg2 from Bob, i . e . she w i l l r e c e i v e Asign−Ba and she

w i l l be informed that she needs to send Msg3 with in an amount o f
time i . e . Time out A∗/

[] Msg2 & ˜Stop A & ˜Asign Ba −> Asign Ba ’ := true ; Time Out A ’ := true
/∗ Once Al i c e has r e c e i v ed Msg2, she perofem the v e r i f i c a t i o n A−v1 and A−v2 ∗/
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & ˜A v1 −> A v1 ’ := true
[] SendMsg1 & Msg2 & Asign Ba & ˜Stop A & A v1 & ˜A v2 −> A v2 ’ := true
/∗ I f A l i c e wants to prove to a Third Party (TP) that Bob has indeed invo lved

in the RDS, She w i l l use the f o l l ow i ng pr ed i ca t e∗ /
[] Asign Ba & ˜Stop A & A v1 & A v2 & ks A −> Dis Alice Prove2TP ’ := true
/∗ I f the v e r i f i c a t i o n s A−v1 and A−v2 are p o s i t i v e ,

A l i c e premuturly stop the RDS p r o t o c o l , i . e .
A l i c e n e i t h e r encyrept s ks with Bob ’ s key nor sends i t to Bob.
A l i c e may do t h i s as she ho lds the keystone k s , so she can use
i t to make Bob committed to the RD and she i s not∗/

[] ˜Stop A −> Stop A ’ := true
[] ˜Stop A −>

314 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

endatom
endmodule

/ ∗∗∗∗∗∗∗∗∗∗∗∗∗Model l ing an Honest Bob ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
module Bob

/∗ Var iab l e s that could be acce s s ed by Bob and other p l aye r s∗ /
ex t e rna l

Msg1,
Msg3,
RD Act Req6,
Pos t i v e Resu l t 1 : bool

/∗ Var iab l e s c on t r o l l e d by Bob ∗/

/∗RD b, RP Lic b, Eks b, Asign Ab, k s , Eks b
these are the variable Bob has r e c e i v ed in Msg1 and Msg3∗/

i n t e r f a c e
RD b,
RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
k s ,
SendRD Act Req6,
k s L I ,
OtherData B,
Time Out: bool

atom BobSign
c on t r o l s RD b,

RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
k s ,
SendRD Act Req6,
k s L I ,
OtherData B,
Time Out

reads RD b,
RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
Msg1,
Msg3,
k s ,
SendRD Act Req6,
RD Act Req6,
Po s t i v e Re su l t 1 ,
k s L I ,
OtherData B,
Time Out

−−awaits Time Out

C.1. THE RDS PROTOCOL MODEL 315

i n i t
[] t rue −>

RD b ’ := f a l s e ;
RP Lic b ’ := f a l s e ;
Eks b ’ := f a l s e ;
Asign Ab ’ := f a l s e ;
B v1 ’ := f a l s e ;
B v2 ’ := f a l s e ;
B v3 ’ := f a l s e ;
SendMsg2 ’ := f a l s e ;
Stop B ’ := f a l s e ;
Asign B ’ := f a l s e ;
Payment B ’ :=true ;
ks ’ := f a l s e ;
SendRD Act Req6 ’ := f a l s e ;
ks ’ := f a l s e ;
ks LI ’ := f a l s e ;
OtherData B ’ := f a l s e ;
Time Out ’ := f a l s e

update

/∗ Bob r e c e i v e s Msg1 from A l i c e , he w i l l r e c e i v e Asign−A and RP−Lic ∗/
[] Msg1 & ˜Asign Ab & ˜Stop B −> RD b ’ :=true ; RP Lic b ’ := true ; Asign Ab ’ :=

true
/∗ Once Bob has r e c e i v ed Msg1, he perofem the v e r i f i c a t i o n B−v1 and B−v2 ∗/
[] Msg1 & ˜Stop B & ˜B v1 −> B v1 ’ := true
[] Msg1 & ˜Stop B & B v1 & ˜B v2 −> B v2 ’ := true
/∗ I f the v e r i f i c a t i o n s B−v1 and B−v2 are p o s i t i v e , Bob generate Asign−B∗/
[] Msg1 & ˜Stop B & B v1 & B v2 & ˜Asign B −> Asign B ’ := true
/∗ Once Bobn has generated the Asign−B, he sends i t to Al i c e∗ /
[] Msg1 & ˜Stop B & B v1 & B v2 & Asign B & ˜SendMsg2 −> SendMsg2 ’ := true
/∗ Bob r e c e i v e s Msg3 from A l i c e , he w i l l r e c e i v e the keystone ks to make

Asign−A bind ig
t oA l i c e ∗/

[] SendMsg2 & Msg3 & ˜Stop B & ˜Eks b −> Eks b ’ := true
/∗ Once Bob has r e c e i v ed Msg3, he perofem the v e r i f i c a t i o n B−v3 ∗/
[] SendMsg2 & Msg3 & ˜Stop B & Eks b & ˜B v3 −> B v3 ’ := true
/ ∗ i f B v3 i s t r u e , Bob w i l l get the keystoen ks ∗/
[] SendMsg2 & Msg3 & ˜Stop B & Eks b & B v3 & ˜ks −> ks ’ := true
/∗ Bob may send LI an reque s t when the o f f e r i s very good, so he does not

r ep ly to A l i c e by Mes2 but d i r e c t l y send LI an completed RD ac t i v a t i o n
reque s t ∗/

[] Msg1 & Asign Ab & RD b & RP Lic b & ˜Stop B & B v1 & B v2 & Asign B &
Payment B & ˜SendRD Act Req6 −> SendRD Act Req6 ’ := true

/∗Or Bob has sent Msg2 to A l i c e but have not r e c e i v ed Msg3 with in the
t ime ou t , s o he sends LI an D ac t i v a t i o n r e qu e s t , SendRD Act Req6 = [
Msg1+Msg2+Payment B] ∗/

[] ˜Time Out −> Time Out ’ := true
[] Msg1 & Asign Ab & RD b & RP Lic b & ˜Stop B & B v1 & B v2 & Asign B &

Time Out & Payment B & ˜SendRD Act Req6 −> SendRD Act Req6 ’ := true

/∗In case o f sending RD Act Req6, Bob w i l l r e c e i v e a p o s i t i v e r e s u l t from LI
(i . e . the keystone ks and otherdate (the l i c e s e)) ∗/

[] SendRD Act Req6 & RD Act Req6 & ˜Stop B & Pos t i ve Resu l t 1 & ˜ ks LI −> ks LI
’ := true ; OtherData B ’ := true

[] ˜Stop B −> Stop B ’ := true
[] ˜Stop B −>

endatom
endmodule

/ ∗∗∗∗∗∗∗∗∗∗∗∗∗Model l ing a DisHonest Bob ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
module Dis Bob

/∗ Var iab l e s that could be acce s s ed by Dis Bob and other p l aye r s∗ /
ex t e rna l

Msg1,
RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,

316 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

RD Act Req5,
Nega t i v e Resu l t 1 ,
Nega t i v e Resu l t 2 ,
Nega t i v e Resu l t 3 ,
Nega t i v e Resu l t 4 ,
Negat ive Resu l t5 : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/
/∗RD−b, RP−Lic−b, Eks−b, Asign−Ab, these are the variable Bob has r e c e i v ed in

Msg1∗/
i n t e r f a c e

RD b,
RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
SendRD Act Req1,
SendRD Act Req2,
SendRD Act Req3,
SendRD Act Req4,
SendRD Act Req5,
k s L I ,
k s ,
Dis Bob Prove2TP : bool

atom BobSign2
c on t r o l s

RD b,
RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
SendRD Act Req1,
SendRD Act Req2,
SendRD Act Req3,
SendRD Act Req4,
SendRD Act Req5,
k s L I ,
k s ,
Dis Bob Prove2TP

reads
RD b,
RP Lic b,
Eks b,
Asign Ab,
B v1,
B v2,
B v3,
SendMsg2,
Stop B,
Asign B,
Payment B,
Msg1,
Nega t i v e Resu l t 1 ,
Nega t i v e Resu l t 2 ,
Nega t i v e Resu l t 3 ,
Nega t i v e Resu l t 4 ,
Nega t i v e Resu l t 5 ,
SendRD Act Req1,
SendRD Act Req2,
SendRD Act Req3,

C.1. THE RDS PROTOCOL MODEL 317

SendRD Act Req4,
SendRD Act Req5,
RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
k s L I ,
k s ,
Dis Bob Prove2TP

i n i t
[] t rue −>

RD b ’ := f a l s e ;
RP Lic b ’ := f a l s e ;
Eks b ’ := f a l s e ;
Asign Ab ’ := f a l s e ;
B v1 ’ := f a l s e ;
B v2 ’ := f a l s e ;
B v3 ’ := f a l s e ;
SendMsg2 ’ := f a l s e ;
Stop B ’ := f a l s e ;
Asign B ’ := f a l s e ;
Payment B ’ :=true ;
SendRD Act Req1 ’ := f a l s e ;
SendRD Act Req2 ’ := f a l s e ;
SendRD Act Req3 ’ := f a l s e ;
SendRD Act Req4 ’ := f a l s e ;
SendRD Act Req5 ’ := f a l s e ;
ks LI ’ := f a l s e ;
k s := f a l s e ;
Dis Bob Prove2TP ’ := f a l s e

update
/∗ Bob r e c e i v e s Msg1 from A l i c e , he w i l l r e c e i v e Asign−A, RP−Lic and RD ∗/
[] Msg1 & ˜Asign Ab & ˜Stop B −> RD b ’ :=true ; RP Lic b ’ :=true ; Asign Ab ’

:=true
/∗ Also Once Bob has r e c e i v ed Msg1, he may not r ep ly to A l i c e by Mes2 but send

LI an incompleted RD ac t i v a t i o n reques t∗ /
[] Msg1 & Asign Ab & RD b & RP Lic b & ˜Stop B & ˜SendRD Act Req1 −>

SendRD Act Req1 ’ := true
/∗ Bob may a l s o send LI another incompleted reques t∗ /
[] Msg1 & ˜Stop B & ˜B v1 −> B v1 ’ := true
[] Msg1 & Asign Ab & RD b & RP Lic b & ˜Stop B & Payment B & B v1 & ˜

SendRD Act Req2−> SendRD Act Req2 ’ := true
/∗ Bob may a l s o send LI a th i rd an incompleted reques t∗ /
[] Msg1 & ˜Stop B & B v1 & ˜B v2 −> B v2 ’ := true
/∗ I f the v e r i f i c a t i o n s B−v2 i s p o s i t i v e , Bob gene ra t e s Asign B ∗/
[] Msg1 & ˜Stop B & B v1 & B v2 & ˜Asign B −> Asign B ’ := true
/∗ I f the v e r i f i c a t i o n s B−v2 i s p o s i t i v e and Asign B i s generated,Bob sends

SendRD Act−Req3 to LI ∗/
[] Msg1 & ˜Stop B & B v1 & B v2 & Asign B & ˜SendRD Act Req3 −>

SendRD Act Req3 ’ := true
/∗ Bob may a l s o send LI a four th an incompleted r e qu e s t .∗ /
[] Msg1 & ˜Stop B & B v1 & B v2 & Asign B & Payment B & ˜SendRD Act Req4 −>

SendRD Act Req4 ’ := true
/∗ Bob may a l s o send LI a f i f t h an incompleted r e qu e s t .∗ /
[] Msg1 & Asign Ab & RD b & RP Lic b & ˜Stop B & B v1 & B v2 & Asign B & ˜

SendRD Act Req5 −> SendRD Act Req5 ’ := true
/∗ Bob r e c e i v e s Negat ive Resu l t from LI Bob reques t does not pass LI ’ s

v e r i f i c a t i o n s ∗ /
[] SendRD Act Req1 & RD Act Req1 & ˜Stop B & Negative Result1& ˜ks LI−>ks LI ’

:=false−−true
[] SendRD Act Req2 & RD Act Req2 & ˜Stop B & Negative Result2& ˜ks LI−>ks LI ’

:=false−−true
[] SendRD Act Req3 & RD Act Req3 & ˜Stop B & Negative Result3& ˜ks LI−>ks LI ’

:=false−−true
[] SendRD Act Req4 & RD Act Req4 & ˜Stop B & Negative Result4& ˜ks LI−>ks LI ’

:=false−−true
[] SendRD Act Req5 & RD Act Req5 & ˜Stop B & Negative Result5& ˜ks LI−>ks LI ’

:=false−−true
[] ˜Stop B −> Stop B ’ := true
[] ˜Stop B −>

318 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

endatom
endmodule

/ ∗∗∗∗∗Model l ing the L icense I s s u r e (LI) which eva luate the RD submited y Bob
∗∗∗∗/

module LI
/∗ Var iab l e s that could be acce s s ed by LI and other p l aye r s∗ /
ex t e rna l

RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6 : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/

i n t e r f a c e
L I v1 ,
L I v2 ,
L I v3 ,
L I v4 ,
L I v5 ,
RD L,
Payment B l,
RP L i c l ,
As i gn A l ,
As i gn B l ,
RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6,
SendNegat ive Resu l t1 ,
SendNegat ive Resu l t2 ,
SendNegat ive Resu l t3 ,
SendNegat ive Resu l t4 ,
SendNegat ive Resu l t5 ,
SendPos i t i v e Resu l t B ,
SendPos i t i v e Resu l t A : bool

atom LIchecks
c on t r o l s

L I v1 ,
L I v2 ,
L I v3 ,
L I v4 ,
L I v5 ,
RD L,
Payment B l,
RP L i c l ,
As i gn A l ,
As i gn B l ,
SendNegat ive Resu l t1 ,
SendNegat ive Resu l t2 ,
SendNegat ive Resu l t3 ,
SendNegat ive Resu l t4 ,
SendNegat ive Resu l t5 ,
SendPos i t i v e Resu l t B ,
SendPos i t ive Resu l t A

reads
L I v1 ,
L I v2 ,
L I v3 ,
L I v4 ,
L I v5 ,
RD L,
Payment B l,
RP L i c l ,
As i gn A l ,
As i gn B l ,

C.1. THE RDS PROTOCOL MODEL 319

RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6,
SendNegat ive Resu l t1 ,
SendNegat ive Resu l t2 ,
SendNegat ive Resu l t3 ,
SendNegat ive Resu l t4 ,
SendNegat ive Resu l t5 ,
SendPos i t ive Resu l t B ,
SendPos i t ive Resu l t A

i n i t
[] t rue −>

LI v1 ’ := f a l s e ;
LI v2 ’ := f a l s e ;
LI v3 ’ := f a l s e ;
LI v4 ’ := f a l s e ;
LI v5 ’ := f a l s e ;
RD L’ := f a l s e ;
Payment B l ’ := f a l s e ;
RP Lic l ’ := f a l s e ;
Asign A l ’ := f a l s e ;
Asign B l ’ := f a l s e ;
SendNegat ive Result1 ’ := f a l s e ;
SendNegat ive Result2 ’ := f a l s e ;
SendNegat ive Result3 ’ := f a l s e ;
SendNegat ive Result4 ’ := f a l s e ;
SendNegat ive Result5 ’ := f a l s e ;
SendPos i t ive Resu l t B ’ := f a l s e ;
SendPos i t ive Resu l t A ’ := f a l s e

update
/∗LI r e c e i v e s RD Act Req1 = [Msg1] from Bob∗/
[] RD Act Req1 & ˜RP Lic l −> RP Lic l ’ := true ; Asign A l ’ := true ; RD L’ :=

true
/∗ LI r e c e i v e s RD Act Req6 = [Msg1 + Msg2+ Payment B] from Bob (complete RD) ∗/
[] RD Act Req6 & ˜ As ign B l & ˜RP Lic l −> Asign B l ’ := true ; Asign A l ’ :=

true ; RD L’ := true ; Payment B l ’ := true ; RP Lic l ’ :=true
[] RD Act Req6 & Payment B l & As ign B l & Asign A l −> LI v1 ’ := true ; LI v2 ’

:= true ; LI v3 ’ := true ; LI v4 ’ := true ; LI v5 ’ := true
/∗ Since RD Act Req6 i s passed a l l LI ’ s v e r i f i c a t i o n s w i l l be p o s i t i v e , LI

sends Bob a Pos i t i v e Re su l t B (i . e Ks) and a l s o sends
Pos i t i v e Re su l t A to Al i c e (i . e . Asign B) ∗/

[] RD Act Req6 & LI v1 & LI v2 & LI v3 & LI v4 & LI v5 & ˜
SendPosit ive Result B−> SendPos i t ive Resu l t B ’ := true ;
SendPos i t ive Resu l t A ’ := true

/ ∗LI v1 w i l l not v e r i f i e d , so LI sends Bob Negat ive Resu l t s ∗/
[] RD Act Req1 & ˜Payment B l −> LI v1 ’ := f a l s e
[] RD Act Req1 & ˜LI v1 & ˜SendNegat ive Result1 −> SendNegat ive Result1 ’ :=

true
/∗LI r e c e i v e s RD Act Req2 = [Msg1 + Payment B] from Bob and LI v1 w i l l be t rue

∗/
[] RD Act Req2 & ˜RP Lic l −> RP Lic l ’ := true ; Asign A l ’ := true ; RD L’ :=

true ; Payment B l ’ := true
[] RD Act Req2 & Payment B l & RP Lic l & Asign A l & RD L −> LI v1 ’ := true ;

LI v2 ’ := true ; LI v3 ’ := true ; LI v5 ’ := true
/∗ As RD Act Req2 i s not complete , LI sends Bob a Negat ive Resu l t s as LI v4 i s

negat ive∗ /
[] RD Act Req2 & ˜ As ign B l −> LI v4 ’ := f a l s e
[] RD Act Req2 & ˜LI v4 & ˜SendNegat ive Result2 −> SendNegat ive Result2 ’ :=

true
/∗when RD Act Req3, LI v1 w i l l not be t rue as RD Act Req3 does not conta in

Payment ∗/
[] RD Act Req3 & ˜ As ign B l −> Asign B l ’ := true ; RD L’ := true
[] RD Act Req3 & Asign B l & RD L −> LI v5 ’ := true
/∗ Since RD Act Req has no Msg1, LI sends Bob a Negat ive Resu l t s as LI v1 i s

negat ive∗ /
[] RD Act Req3 & ˜Payment B l −> LI v1 ’ := f a l s e

320 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

[] RD Act Req3 & ˜LI v1 & ˜SendNegat ive Result3 −> SendNegat ive Result3 ’ :=
true

/∗As Payment B i s in RD Act Req4 LI v1 w i l l be t rue ∗/
[] RD Act Req4 & ˜ As ign B l −> Asign B l ’ := true ; RD L’ := true ; Payment B l ’ :=

true
[] RD Act Req4 & Asign B l & RD L & Payment B l −> LI v1 ’ := true ; LI v5 ’ :=

true
/∗ Since RD Act Req4 has no Msg1, LI a l s o sends Bob a Negat ive Resu l t s (LI v1

i s negat ive∗ /
[] RD Act Req4 & ˜ Asign A l −> LI v4 ’ := f a l s e
[] RD Act Req4 & ˜LI v4 & ˜SendNegat ive Result4 −> SendNegat ive Result4 ’ :=

true
/∗As RD Act Req5 does not conta in s payment, LI v1 i s n e g a t i v e , no ks ∗/
[] RD Act Req5 & ˜ As ign B l & ˜RP Lic l −> Asign B l ’ := true ; Asign A l ’ :=

true ; RD L’ := true ; RP Lic l ’ := true
[] RD Act Req5 & Asign B l & Asign A l & RD L & RP Lic l −> LI v2 ’ := true ;

LI v3 ’ := true ;
LI v4 ’ := true ; LI v5 ’ := true

/∗ Since RD Act Req5 does not conta in payment, LI a l s o sends Bob a
Negat ive Resu l t s ∗/

[] RD Act Req5 & ˜Payment B l −> LI v1 ’ := f a l s e
[] RD Act Req5 & ˜LI v1 & ˜SendNegat ive Result5 −> SendNegat ive Result5 ’ :=

true

endatom
endmodule

/ ∗Model l ing the ope r a t i ona l communication channel between Bob and LI ∗/

module OperationalChann B LI
/∗ Var iab l e s that could be acce s s ed by oerationalChann−AB and other p l aye r s∗ /
ex t e rna l

SendRD Act Req1,
SendRD Act Req2,
SendRD Act Req3,
SendRD Act Req4,
SendRD Act Req5,
SendRD Act Req6,
SendNegat ive Resu l t1 ,
SendNegat ive Resu l t2 ,
SendNegat ive Resu l t3 ,
SendNegat ive Resu l t4 ,
SendNegat ive Resu l t5 ,
SendPos i t i v e Resu l t B ,
SendPos i t i v e Resu l t A : bool

/∗ Var iab l e s c on t r o l l e d by OperationalChann B LI ∗/
i n t e r f a c e

RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6,
Nega t i v e Resu l t 1 ,
Nega t i v e Resu l t 2 ,
Nega t i v e Resu l t 3 ,
Nega t i v e Resu l t 4 ,
Nega t i v e Resu l t 5 ,
Po s i t i v e Re su l t B : bool

atom Channed B LI
c on t r o l s

RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6,
Nega t i v e Resu l t 1 ,
Nega t i v e Resu l t 2 ,
Nega t i v e Resu l t 3 ,
Nega t i v e Resu l t 4 ,

C.1. THE RDS PROTOCOL MODEL 321

Negat i v e Resu l t 5 ,
Po s i t i v e Re su l t B

reads
RD Act Req1,
RD Act Req2,
RD Act Req3,
RD Act Req4,
RD Act Req5,
RD Act Req6,
SendRD Act Req1,
SendRD Act Req2,
SendRD Act Req3,
SendRD Act Req4,
SendRD Act Req5,
SendRD Act Req6,
SendNegat ive Resu l t1 ,
SendNegat ive Resu l t2 ,
SendNegat ive Resu l t3 ,
SendNegat ive Resu l t4 ,
SendNegat ive Resu l t5 ,
SendPos i t i v e Resu l t B ,
SendPos i t i v e Resu l t A ,
Nega t i v e Resu l t 1 ,
Nega t i v e Resu l t 2 ,
Nega t i v e Resu l t 3 ,
Nega t i v e Resu l t 4 ,
Nega t i v e Resu l t 5 ,
Po s i t i v e Re su l t B

i n i t
[] t rue −>

RD Act Req1 ’ := f a l s e ;
RD Act Req2 ’ := f a l s e ;
RD Act Req3 ’ := f a l s e ;
RD Act Req4 ’ := f a l s e ;
RD Act Req5 ’ := f a l s e ;
Negat ive Resul t1 ’ := f a l s e ;
Negat ive Resul t2 ’ := f a l s e ;
Negat ive Resul t3 ’ := f a l s e ;
Negat ive Resul t4 ’ := f a l s e ;
Negat ive Resul t5 ’ := f a l s e ;
Pos i t i v e Resu l t B ’ := f a l s e

update
[] SendRD Act Req1 & ˜RD Act Req1 −> RD Act Req1 ’ := true
[] SendRD Act Req2 & ˜RD Act Req2 −> RD Act Req2 ’ := true
[] SendRD Act Req3 & ˜RD Act Req3 −> RD Act Req3 ’ := true
[] SendRD Act Req4 & ˜RD Act Req4 −> RD Act Req4 ’ := true
[] SendRD Act Req5 & ˜RD Act Req5 −> RD Act Req5 ’ := true
[] SendRD Act Req6 & ˜RD Act Req6 −> RD Act Req6 ’ := true
[] SendNegat ive Result1 & ˜ Negat ive Resu l t1 −> Negat ive Resu lt1 ’ := true
[] SendNegat ive Result2 & ˜ Negat ive Resu l t2 −> Negat ive Resu lt2 ’ := true
[] SendNegat ive Result3 & ˜ Negat ive Resu l t3 −> Negat ive Resu lt3 ’ := true
[] SendNegat ive Result4 & ˜ Negat ive Resu l t4 −> Negat ive Resu lt4 ’ := true
[] SendNegat ive Result5 & ˜ Negat ive Resu l t5 −> Negat ive Resu lt5 ’ := true
[] SendPos i t ive Resu l t B & ˜ Pos i t i v e Re su l t B −> Pos i t i ve Resu l t B ’ := true

endatom
endmodule

/ ∗Model l ing the ope r a t i ona l communication channel between Al i c e and LI ∗/

module OperationalChann A LI
/∗ Var iab l e s that could be acce s s ed by oerationalChann−A LI and other p l aye r s∗

/
ex t e rna l

SendPos i t i v e Resu l t A : bool
/∗ Var iab l e s c on t r o l l e d by OperationalChann A LI ∗/
i n t e r f a c e

Pos i t i v e Resu l t A : bool
atom Channel A LI

c on t r o l s

322 APPENDIX C. FORMAL VERIFICATION CODE: RDS PROTOCOL

Pos i t i v e Resu l t A
reads

SendPos i t i v e Resu l t A ,
Pos i t i v e Resu l t A

i n i t
[] t rue −> Pos i t ive Resu l t A ’ := f a l s e
update
[] SendPos i t ive Resu l t A & ˜ Pos i t i v e Resu l t A −> Pos i t ive Resu l t A ’ := true

endatom
endmodule

/ ∗Model l ing the un r e l i a b l e communication channel between Al i c e and Bob ∗/

module UnreliableChann AB
/∗ Var iab l e s that could be acce s s ed by the unrelialeChann−AB and other

p l aye r s∗ /
ex t e rna l

SendMsg1,
SendMsg2,
SendMsg3 : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/
i n t e r f a c e

Msg1,
Msg2,
Msg3: bool

atom ChannedAB
con t r o l s

Msg1,
Msg2,
Msg3

reads
Msg1,
Msg2,
Msg3,
SendMsg1,
SendMsg2,
SendMsg3

i n i t
[] t rue −>

Msg1 ’ := f a l s e ;
Msg2 ’ := f a l s e ;
Msg3 ’ := f a l s e

update
[] SendMsg1 & ˜Msg1 −> Msg1 ’ := true
[] SendMsg2 & ˜Msg2 −> Msg2 ’ := true
[] SendMsg3 & ˜Msg3 −> Msg3 ’ := true
[] t rue −>

−− i d l e ac t i on
endatom

endmodule
/∗∗∗/

/∗ Model l ing the ope r a t i ona l communication channel beteen Al i c e and Bob∗/

module OperationalChann AB

/∗ Var iab l e s that could be acce s s ed by perationalChann−AB and other p l aye r s∗ /
ex t e rna l

SendMsg1,
SendMsg2,
SendMsg3 : bool

/∗ Var iab l e s c on t r o l l e d by Al i c e ∗/
i n t e r f a c e

Msg1,
Msg2,
Msg3: bool

atom ChannedAB
con t r o l s

Msg1,
Msg2,

C.2. ATL FORMULAE USED IN THE VERIFICATION OF THE RDS PROTOCOL323

Msg3
reads

Msg1,
Msg2,
Msg3,
SendMsg1,
SendMsg2,
SendMsg3

i n i t
[] t rue −>

Msg1 ’ := f a l s e ;
Msg2 ’ := f a l s e ;
Msg3 ’ := f a l s e

update
[] SendMsg1 & ˜Msg1 −> Msg1 ’ := true
[] SendMsg2 & ˜Msg2 −> Msg2 ’ := true
[] SendMsg3 & ˜Msg3 −> Msg3 ’ := true

endatom
endmodule

/∗∗∗/
/∗Combinations o f p l ay e r s used in the execut ion o f the RDS pro to co l ana l y s i s∗ /

/∗∗∗/
RDS Alice Bob UnreliableCh AB := Al i c e | | Bob | | LI | | UnreliableChann AB
RDS Alice Bob LI UnreliableCh AB := Al i c e | | Bob | | LI | | UnreliableChann AB | |

OperationalChann B LI | |
OperationalChann A LI

RDS Dis Alice Bob LI Unrel iableCh AB:= Di s A l i c e | | Bob | | LI | | UnreliableChann AB | |
OperationalChann B LI

RDS Alice Dis Bob LI Unrel iableCh AB:= Al i c e | | Dis Bob | | LI | | OperationalChann AB | |
OperationalChann B LI | |

OperationalChann A LI
RDS Dis Alice Bob OperationalCh AB := Di s A l i c e | | Bob | | LI | | OperationalChann AB

| |
OperationalChann B LI

RDS Dis Alice Bob Unrel iableCh AB := Di s A l i c e | | Bob | | LI | | UnreliableChann AB | |
OperationalChann B LI

RDS Dis Bob Alice Unrel iableCh AB := Dis Bob | | Al i c e | | LI | | UnreliableChann AB | |
OperationalChann B LI | |

OperationalChann A LI

C.2 ATL Formulae Used in The Verification of

The RDS Protocol

a t l ‘ ‘ Fa i rne s s f o r Bob ”
˜(<<Dis Al ice ,Unre l iableChann AB,Operat ionalChann B LI>>

F (Asign Ba & ˜(<<Bob>> F(Asign Ab & (ks | ks LI))))) ;
a t l ‘ ‘ F a i r n e s s f o r A l i c e ”

˜<<Dis Bob,Unrel iableChann AB,OperationalChann B LI,OperationalChann A LI>>
F (Asign Ab &(ks | ks LI) & ˜(<<Alice>> F (Asign Ba | Asign Ba LI))) ;

a t l ‘ ‘ NOR for Bob”
E F (Msg1& Msg2& RD Act Req6& Pos i t ive Resu l t B& <<Bob>> F (ks | ks LI)) ;

a t l ‘ ‘ NOR for Alice ”
E F (Msg1& RD Act Req6& Pos i t ive Resu l t A& <<Alice>> F (Asign Ba |

Asign Ba LI)) ;

a t l ‘ ‘ Abuse f r e e f o r Bob ”
˜<<Dis Al i c e>> F(Dis Alice Prove2TP & ˜<<Bob>> F (ks | ks LI)) ;

a t l ‘ ‘ Abu s e f r e e f o r A l i c e ”
˜<<Dis Bob>> F (Dis Bob Prove2TP & ˜<<Alice>> F (Asign Ba | Asign Ba LI)) ;

	Abstract
	Declaration
	Copyright
	Dedication
	Acknowledgement
	Abbreviations
	Definitions
	Notaitons
	Introduction
	Introduction to Digital Rights Management (DRM)
	Introduction to Concurrent Signature Scheme
	DRM and Consumers' Rights
	Research Motivation and Challenges
	Research Aim and Objectives
	Research Methodology
	Novel Contributions and Publications
	Thesis Structure

	Digital Rights Management Overview
	Chapter Introduction
	What is DRM
	DRM History
	First Generation DRM Systems
	Second Generation DRM Systems

	DRM Fundamental Principle
	DRM System Entities
	DRM System Components
	How a DRM System Works
	Existing DRM Systems
	Windows Media DRM
	FairPlay DRM
	Open Mobile Alliance (OMA) DRM

	Open Issues in Current DRM Systems
	Consumer Privacy
	Interoperability
	First-sale: License Reselling

	Chapter Summary

	A literature Survey
	Chapter Introduction
	Current License Selling Solutions
	License Selling Process in WM-DRM
	License Selling Process in FairPlay
	OMA DRM License Selling

	Current License Reselling Solutions
	Full-trusted Hardware based Solutions
	Kwok's DRM System
	Sun's System
	NPGCT DRM System
	Nuovo DRM System

	Partial-trusted Hardware Based Solution: Conrado's System
	Non-trusted Hardware based Solution: Laila's System

	What is Missing?
	The Best Way Forward
	Chapter Summary

	A Reselling Deal Signing (RDS) Protocol
	Chapter Introduction
	A Survey of Fair Exchange Protocols
	Protocols without TTP
	Gradual Secret Release Protocols
	Probabilistic Protocols

	TTP-based Protocols
	In-line TTP-based Protocols
	On-line TTP-based Protocols
	Off-line TTP-based Protocols

	Concurrent Signature (CS) based Protocols

	A Novel Idea for The RDS Protocol
	Preliminaries
	Notations
	Design Assumptions
	Design Requirements

	RDS Protocol Overview
	RDS Protocol Informal Analysis
	Fairness Analysis
	 Non-repudiation Analysis
	Abuse-freeness Analysis
	Security Analysis

	RDS Protocol Formal Verification
	Formal Methods: An Overview
	Mocha Model Checker
	Alternating Transition System (ATS)
	Alternating-time Temporal Logic (ATL)
	Guarded Command Language

	Model Checker and RDS Protocol Modelling
	Modelling the RDS Protocol
	Modelling the Properties of the RDS Protocol
	RDS Verification Using Mocha

	Protocol Performance Analysis
	RDS Protocol Computational Cost
	RDS Protocol Communication Cost
	Comparison with Related Work
	Prototyping and Evaluation
	RDS Protocol Design
	RDS Protocol Implementation
	Hardware and Software Architecture
	RDS Protocol Evaluation
	Performance Evaluation
	Test against Security Attacks

	Chapter Summary

	Reselling Deal Method
	Building Blocks
	Market Power
	Existing License Distribution Infrastructure
	 License Issuer (LI)
	 DRM Client

	License Revocation List (LRL)
	LRL Types
	Delivering LRL to Reseller
	Pull Mode
	Push Mode

	The Need for Imposing a Reselling Deal Validity Deadline

	Reselling Permission (RP)

	Preliminaries
	Notations
	Design Assumptions
	Design Requirements

	Fair and Secure License Reselling Protocol (FSLRP) Suite: An Overview
	The FSLRP Protocol Suite in Detail
	2-Messages RD Signing (2M-RDS) Protocol
	2M-RDS Protocol Overview
	2M-RDS protocol Analysis

	RD Activation (RDA) Protocol
	RDA Protocol Overview
	RDA Protocol Analysis

	RD Completion (RDC) Protocol
	RDC Protocol Overview
	RDC Protocol Analysis

	Threat and Attack Analysis
	Threats Analysis
	Double Use of a License
	Installing an Out-of-date LRL-update

	Attack Analysis
	Collusion Attack 1
	Collusion Attack 2

	FSLRP suite Evaluation
	FSLRP Suite Computational Cost
	Comparison with Related Work

	Chapter Summary

	Two Methods Supporting Multi-Reselling
	Chapter Introduction
	Additional Design Building Block
	Preliminaries
	Definitions
	Design Assumptions
	Design Requirements

	Method One: Repeated RP based Multi-reselling
	RRP-MR Method Overview
	RRP-MR Method in Detail
	Verifications used in the RRP-MR Method
	Buyer's Verifications
	LI's verifications

	RRP-MR Method Analysis
	Analysis against Requirements
	Analysis against Potential Attacks
	RRP-MR Method Weaknesses

	Method Two: Hash Chain based Multi-reselling
	HC-MR Method Overview
	Multiple Reselling Permission (MRP)
	Read-only Public Directory (RPD) for Multi-Reselling Checking
	HC-MR Method in Detail
	Verifications Used in the HC-MR Method
	Buyer's Verifications
	LI's verifications

	The HC-MR Method Analysis
	Analysis against Requirements
	Security Analysis against Potential Attacks

	Evaluation of the Two Multi-reselling Methods
	Computational Costs of the Two Methods
	Comparison with Related Work

	Chapter Summary

	Conclusion and Future Work
	Thesis Contributions
	Directions for Future Work
	Deployment Requirements

	Bibliography
	All Protocols in Detail
	RDS Protocol in Detail
	2M-RDS Protocol in Detail
	RDA Protocol in Detail
	RDC Protocol in Detail

	Building Blocks Used in DRM
	Chapter Introduction
	Symmetric Cryptography
	Asymmetric Cryptography
	Hash Functions
	Digital Signatures
	Public-key Infrastructure (PKI)
	Digital Certificate
	Certification Authority (CA)
	Certificate Lifecycles and Key Management

	Individualization
	Tamper resistance
	SSL/TLS Protocol
	Chapter Summary

	Formal Verification Code: RDS Protocol
	The RDS Protocol Model
	ATL Formulae Used in The Verification of The RDS Protocol

