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Abstract  
 

 

With the increasing demand for electrical power and the growing need for the 

restructuring of the power industry, electric power systems have become highly 

complex with inherent complicated dynamics. Therefore, the study of power system 

stability has continued to receive significant attention from both academic 

researchers and industrial practitioners. This thesis focuses on supervisory wide-area 

control for rotor angle stability of multi-machine power systems using Linear 

Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) control theory with 

guaranteed robustness. The supervisory controllers are developed in both continuous-

time and discrete-time framework and their performances and robustness are 

assessed using both frequency-domain tools, and time-domain simulation results.  

The impact of the communication time-delays that commonly exist in wide-area 

power system control on the performance and robustness of the closed-loop system is 

investigated. In particular, different methods of incorporating such time-delays into 

the design of the supervisory LQG controller are considered. This thesis proposes a 

modified supervisory LQG controller that utilizes the Extended Kalman Filter to 

estimate the unknown/varying time-delays. Simulation results obtained using 

numerical examples involving non-linear power system models demonstrate the 

benefits of the proposed scheme for both time-invariant and time-varying delays. The 

resulting supervisory control scheme is well suited for maintaining power system 

stability in the presence of communication time-delays. 
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Chapter 1  

Introduction  
 

 

 

1.1 Background  

Power system stability has been recognized as an important issue for secure system 

operation since the 1920s. It is defined by Kundur [1] as “the property of a power 

system that enables it to remain in a state of operating equilibrium under normal 

operating conditions and to regain an acceptable state of equilibrium after being 

subjected to a disturbance”. With the increasing demand for power supply and the 

growing need for the restructuring of the power industry, electric power systems 

have become highly complex dynamic systems. Therefore, the study of power 

system stability has continued to receive significant attention from both academic 

researchers and industrial practitioners.   

Stability problems are broadly characterized in two categories: rotor angle stability 

and voltage stability. Rotor angle stability refers to the ability of a power system to 

maintain all the synchronous machines in synchronism. Instability is then usually 

caused by the loss of synchronism, which may exist between one machine and the 

rest of the system or between different parts of the system. Voltage stability involves 

the ability of the power system to maintain voltages at all buses under normal 

operating conditions, even after experiencing a disturbance. The instability is mainly 
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caused by the failure of the power system to meet the demand for reactive power. 

This thesis focuses on the rotor angle stability of a multi-machine power system.  

As stated in [1], the issue of rotor angle stability involves the study of the 

electromechanical oscillations inherent in power systems. There are two main types 

of electromechanical oscillations: local mode oscillations in the frequency range of 

0.7 Hz and 2 Hz; and inter-area oscillations in the frequency range of 0.1 Hz and 0.7 

Hz. Local mode oscillations involve one or more synchronous machines at a power 

station swinging against the rest of the power system. Inter-area oscillations refer to 

the swinging of many machines in one part of the power system against machines in 

another part of the system. This type of oscillations is a system-wide phenomenon 

and the corresponding inter-area modes are usually poorly-damped in large 

interconnected power systems. This damping of inter-area mode becomes even worse 

due to the increasing long distance power transfers in today’s interconnected grid. As 

a result, poorly-damped inter-area oscillations may lead to the instability of the 

power system and may result in blackouts. Some notable incidents in the history of 

power system failures are listed as examples [2-5]: 

• Detroit Edison (DE)-Ontario Hydro (OH)-Hydro Quebec (HQ) systems 

experienced several power failures in both early 1960’s and 1985. 

• Over 70 incidents of unstable inter-area oscillations were observed in the 

Mid-Continent Area Power Pool (MAPP) system in North America in 1971 

and 1972.  

• In 1982 and 1983, the State Energy Commission of Western Australia 

(SECWA) experienced poorly damped system oscillations.  

• On August 10, 1996, a major outage occurred in the Western Electric 

Coordinating Council (WECC) system due to lightly damped low frequency 

inter-area oscillations. 

• In August 2003, oscillations were observed as the cause for the largest 

blackouts in the north-eastern US/Canada interconnection system.  

• On November 4, 2006, severe power oscillations were observed in the 

European interconnected power system.  
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The traditional approach for the damping of inter-area oscillations, as well as local-

mode oscillations, is to install power system stabilizers (PSSs). A PSS uses local 

signals, such as rotor speed, power or frequency in order to compute adequate 

supplementary input signals to the generation excitation system. PSSs have been 

shown to be effective in improving the damping of both local mode oscillations and 

certain inter-area oscillations when appropriately tuned [6, 7]. Since PSSs operations 

are based on local measurements, their effectiveness in damping inter-area modes is 

limited. The damping may be insufficient for severe disturbances or the increasing 

inter-area oscillations caused by the heavy power transfer in today’s interconnected 

power systems. Several researchers have proposed modifications to the design of 

PSSs in order to improve their performance [8-11]. In [8, 9], the design of a PSS was 

mainly modified by proposing an improved tuning method. On the other hand, PSS 

was retuned by selecting different input signals in [10], while work in reference [11] 

considered the coordination of PSSs in multi-machine power system. However, 

electromechanical oscillations in wide-area power system may be insufficiently 

damped with these modified local PSSs, particularly when subjected to large 

disturbance.         

Since the late 1990s, Flexible AC Transmission System (FACTS) devices have been 

proposed for the enhancement of power system stability. These include Static VAr 

Compensator (SVC) and Thyristor Controlled Series Compensation (TCSC) [12]. 

FACTS devices were initially designed for two main objectives: (1) to improve the 

power transfer capability of transmission systems and (2) to maintain the power flow 

over designated routes [13]. Many researchers also explored the potential of FACTS 

devices for damping of electromechanical oscillations [14]. These results led to 

increased interest in designing controllers for FACTS devices in order to improve 

damping of electromechanical oscillations [15-20]. However, the feasibility of 

FACTS devices for improving the damping of electromechanical oscillations has 

been questioned due to the high cost of their implementation [21, 22]. It is also 

important to note that both conventional PSS and FACTS devices are local 

controllers, and are only effective in damping local modes. Their effectiveness in 

damping inter-area modes is limited because inter-area modes are usually not 

controllable and observable in the generator’s local signals as compared to local 

modes [23].  
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There has recently been an increased interest in applying Wide Area Measurement 

System (WAMS) and control devices to improve damping of inter-area oscillations, 

hence improving the overall power system stability. These wide-area damping 

control schemes rely on the Phasor Measurement Unit (PMU) technology and have 

been shown to significantly improve the damping of inter-area oscillatory modes. For 

example, Kamwa and co-workers [23] illustrate that wide-area stabilizing controllers 

have significant potential for improving the dynamic performance of power system 

when implemented on few sites only. New PSSs were designed by using the 

supplementary input from remote PMUs which geographically spread over nine 

electrically coherent areas in this reference. Using Hydro-Quebec examples, Kamwa 

etal also shows that wide-area measurements result in both clean and robust 

observability of inter-area oscillations and the load voltage collapse phenomenon. It 

was also shown that the transient stability margin can only be extended with wide-

area control, and the impact on the inter-area mode damping with wide-area control 

is 1.5 to 2 times stronger than that of local PSSs. A more comprenhencive overview 

about Wide Area Monitoring, Protection and Control Systems can be found in [24], 

in which Terzija etal discuss a number of challenging pointes relevant for current and 

future development of Smart Grid solutions, also those relevant for control 

applications based on wide area measurements.  

 

1.2 Literature Review 

Among the wide-area control schemes, the wide-area damping controller has been 

shown to have significant advantages in terms of reliability and operational 

flexibility [23]. Each generator may be equipped with a local controller, called Power 

System Stabilizer (PSS), whose role is to improve damping of the power system and 

therefore to deal with the oscillatory electromechanical modes. A supervisory 

controller is placed at a control centre receiving remote signals from PMUs, as well 

as providing supplementary control signals back to each machine together with the 

local control signals from the local PSS. The supervisory controller provides 

sufficient damping on the electromechanical modes if the local PSSs are not effective 

or if there is severe disturbance acting on a power system. In addition, from an 

economic viewpoint, it may be more cost effective to implement centralized 
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controllers that utilise existing control devices rather than to install new control 

devices [22].  

 

 

1.2.1 Controller Design 

Several design methods based on WAMS technology have been proposed to address 

the supervisory damping control problem. The simplest of these uses a lead-lag block 

compensator, which is similar to the conventional Power System Stabiliser (PSS) [10, 

23]. This controller is usually designed in a similar way to the conventional PSS, 

which is based on a fixed operating condition of the linearised power system model. 

H∞  control is a well-known advanced control technique for its robustness to the 

uncertainties and has been used in wide-area damping control by a number of 

researchers [18, 25-28]. However, it was found to be prone to pole-zero cancellation 

between the system plant and the controller when based on the solution of the 

Algebraic Riccati Equation (ARE) method, as shown in [29]. Also, since the H∞  

control method considers the worst-case scenario, the resulting controller is likely to 

be overly conservative when dealing with less severe disturbances. Furthermore, the 

feasibility of the whole design procedure may be questioned due to the difficulty in 

selecting the weighting functions [30, 31]. 

Linear Quadratic Gaussian (LQG) control is considered to be a cornerstone of 

modern optimal control theory and has been widely applied in the control of multi-

variable systems [32, 33]. This approach involves deigning an optimal full state-

variable feedback (linear quadratic regulator (LQR)) and the observer (Kalman filter) 

to provide the state estimates for the feedback function. The control method benefits 

from the separation principle, which allows the controller to be designed in a 

straightforward manner for multivariable systems even by solving two separate 

matrix equations [34]. The important feature of LQG control theory is that it enables 

controller designers to trade off regulation performance and control effort. In terms 

of control design, due to reference input changes, the LQG type of cost function is 

often a more practical criterion when minimizing tracking errors or control signal 

variations compared to the H∞  control method [35]. In addition, the process 
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disturbance and measurement noise can be taken into account during the LQG design 

procedure. This additional step can easily be accommodated in the standard LQG 

design. It is also straightforward to increase the roll-off of the LQG controller by 

adjusting the open-loop transfer function [36]. The resulting closed-loop system 

(under certain conditions) is guaranteed to be asymptotically stable. 

It has been pointed out that there are no guaranteed performance and robustness 

properties for the LQG-controlled system [29]. Kwakernaak [37] and Doyle and 

Stein [38, 39] proposed the Loop Transfer Recovery (LTR) procedure to recover the 

performance and robustness properties at either the plant input or the plant output. 

With the combination of the recovery procedure, a robust controller design technique 

(LQG/LTR) with guaranteed robustness is proposed in [39] and further discussed by 

Stein and Athans [40]. This control method has also been adopted in control of 

power system stability problems. In [41], the design of PSS based on the LQG/LTR 

technique is proposed to formulate more robust stabilizers. Later on, Dalela and 

Radman [42] proposed LQR and LQG control procedures as a supplementary 

controller to PSSs in order to increase stability and reliability of the system. However, 

they only considered simple power systems. LQG or LQG/LTR control methods 

have also been applied to the damping of inter-area oscillation modes by some 

researchers. Shaalan [43] implements an LQG controller for load frequency control 

problem. The LQG controller provides better robustness as well as tracking 

performance compared to the PI (Proportional and Integral) controller. LQG/LTR 

control based on closed-loop iterative identification method is proposed in [44] and 

applied to a SVC to increase the damping of low-frequency oscillations in multi-

machine power systems. Son [20] introduces the LQG/LTR technique into the design 

of TCSC devices for the damping controller design. More recently, Zolotas etal [31] 

presents LQG/LTR damping control scheme for a proposed minimum-phase square 

system augmentation to improve the inter-area mode oscillations of power systems. 

 

1.2.2 Discrete-Time Control 

The controllers reviewed in Section 1.2.1 are all designed under the assumption that 

the control algorithm executes instantaneously, i.e. assuming that the sampling 

period is infinitely small. In other words, all of these controllers are assumed to be 
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represented as continuous-time systems. In practice, however, this assumption may 

be highly unrealistic, especially when considering large-scale systems described by 

high-order dynamic models possessing potentially large numbers of input and output 

variables. This is particularly true when considering the problem of rotor angle 

stability for which the dominant dynamics are in the frequency range of 0.1 to 2.0 Hz. 

In such applications the issue of sampling may prove to be a critical performance-

limiting parameter. Therefore, it would be advantageous to investigate and 

understand this impact by addressing the problem of multi-area supervisory control 

using discrete-time framework. Several publications have focused on the design of 

discrete-time controllers for power systems. In particular, PSS was implemented 

using sampled values of voltage and current on a microprocessor in [45]. Digital 

control was adopted to generating units by updating the control parameters and set-

points at regular intervals in [46] and where each generating unit is configured with 

its own mini-computer for local digital control. Digital AVR and PSS were designed 

to enhance the stability of power systems in [47, 48]. In [49], the analysis of 

asymptotical stability of digital control in power systems with a special emphasis on 

digital PSS was considered. Power systems with digital controllers are treated as 

nonlinear hybrid dynamical systems, and analyzed in a more exact way compared to 

the conventional linear analysis for digital controls. 

Sampling of the continuous-time signal from the plant and its conversion to a 

sequence of numbers is the fundamental property of the design of the discrete-time 

controllers. These digital numbers are processed by a discrete-time controller. Then 

the digital signals from the discrete-time controller are reconstructed and applied to 

the plant. Various reconstructions are typically used: Shannon Reconstruction, Zero-

Order Hold (ZOH), and Higher-Order Holds [50]. For the design procedure of 

discrete-time controllers, it is quite common to carry out a continuous design first, 

followed by the discretisation of the continuous-time controller. Thus, it is important 

to perform discretisation in a proper manner to maintain the desired performance.  

In order to minimise the amount of degradation that occurs during discretisation it is 

desirable to maximise the sampling rate of the controller. However, the sampling rate 

is limited by several factors, such as PMU data reporting rates, bandwidth of 

communication links, the cost of hardware and capability of available instruments, 
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etc. Therefore, the selection of an appropriate sampling rate is a critical issue that has 

a direct impact on the design of discrete-time controllers and, subsequently, the 

performance and robustness of the resulting closed-loop system.   

 

1.2.3 Consideration of Communication Time-Delay 

As stated in Section 1.1, WAMS and wide-area damping control rely on the 

availability of PMU and communication equipment. The PMU devices are used to 

sample voltage and current waveforms of a bus at a sampling rate as high as 30 Hz 

[51]. Transmission of the measurement acquired might be between different 

generating units or substations over large distances. As a result, it is widely accepted 

that communication time-delays will inevitably be present [52]. These time-delays 

are typically in the range of 0.3-1.0 second [51], and may be caused by measurement 

processing, transmission, synchronization and control signal calculation or 

transmission. Since these time-delays are comparable to the time periods of some of 

the critical inter-area modes, their presence directly impacts the performance of the 

installed wide-area controllers that utilise this delayed information [52-54]. 

Therefore, time-delays should be accounted for in the design of the wide-area 

damping control. Classical control design procedures explicitly account for the 

presence of communication time-delays by utilising the concept of a phase margin, 

as explained in [29]. However, phase information is not readily available when 

considering multivariable control problems, such as the one addressed in this thesis.   

Several researchers have proposed power system damping controller design with the 

consideration of time-delays. In [55], time-delay was represented by the first-order 

Pade approximation in order to design a wide-area power system controller using 

TCSC. The designed controller was applied to a 24-generator system and the results 

showed the use of multiple input signals for the design of TCSC allows the controller 

be more effective in providing additional damping to the inter-area modes. Dotta etal 

[56] proposed a centralized optimal power system controller-based Linear Quadratic 

Regulation methodology (LQR) for the enhancement of power system small-signal 

stability by using the second-order Pade approximation of the transmission time-

delays. The Smith prediction approach was utilized to compensate time-delays 

associated with communication and measurements in [57]. When the open-loop of 
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the power system has lightly damped poles, however, the Smith predictor approach 

does not ensure a minimum damping ratio of the closed-loop poles [58]. In [51] and 

[58], a H∞  control strategy based on the unified Smith predictor (USP) was proposed 

to design a centralized power system damping controller which was a 2-input 1-

output controller. This design may be inappropriate for multi-input multi-output 

(MIMO) controller design. Wu etal [59] proposed the design of a supervisory power 

system stabilizer (SPSS) accounting for time-delays based on the H∞  gain 

scheduling theory. However, the designed SPSS can only tolerate time-delays on the 

order of 100 ms, which may be insufficient in wide-area damping control with some 

types of communication link, such as power line or satellite link [60]. The LMI 

approach was used by [61] to design an adaptive supervisory controller for the 

stabilization of a multi-machine power system considering signal transmission delays. 

The time-delay was considered as a structured uncertainty in the controller design. 

Since the supervisory adaptive controller was designed based on the H∞  

methodology and can tolerate 0.7 seconds time-delay, the designed controller may be 

overly conservative when dealing with less severe disturbances or longer time-delays.  

 

1.3 Aims of the Research 

In order to successfully introduce new technology to real-world problems it is critical 

to fully understand the impact of its practical implementation on the performance and 

the robustness of the resulting closed-loop system. Therefore, the main focus of this 

thesis is to investigate the impact of two critical factors on the performance of the 

designed wide-area supervisory controllers. These two critical factors are discrete-

time implementation and the presence of communication time-delays. 

Firstly, the design of the supervisory controller is to be conducted in the continuous-

time framework using optimal control theory and utilising the frequency-domain 

analysis tools in order to properly tune the resulting controller so that the closed-loop 

system possesses adequate robustness and performance qualities. In particular, 

Linear quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) methodology is to 

be used, which, compared to some other more advanced techniques such as H∞ , 
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addresses the ‘average’ rather than ‘worst case’ scenarios, resulting in less 

conservative controller. Furthermore, the tuning of LQG/LTR controller is typically 

performed using a small number of user-specified parameters, which significantly 

simplifies the design procedure when considering high-order multivariable systems 

such as the one used in this thesis. 

There has been a number of publications [99, 100] that discuss the danger of relying 

on the mathematical conveniences of the optimal control theory and ignoring the 

intuitive tools utilised by the classical control methodologies, which are mostly 

employing frequency-domain analysis methods. Therefore, these frequency-domain 

analysis tools and concepts will be employed throughout this thesis in order to assess 

the performance and the robustness of the closed-loop system. 

Once the continuous-time controller is successfully designed, then the next step will 

be to re-design supervisory wide-area controller but using discrete-time framework. 

Discrete-time controller will also be designed using LQG/LTR methodology and 

using frequency domain analysis tools. Additionally, dependence of the resulting 

closed-loop system performance on the critical factor of sampling period will be 

investigated in detail. Sampling period is particularly important in the applications 

that involve large-scale systems with relatively fast dynamics, such as the one 

employed in this thesis.  

The important additional implication of using discrete-time controller is that the 

impact of computational delays is automatically accounted for and assumed to be 

equal to the sampling period. Hence, this thesis aims to investigate the impact of 

computation time, required for the execution of a control algorithm, on the 

performance of the closed-loop system. It should be noted that the computation time 

may be an important factor when dealing with high-order large-scale systems that 

have relatively high open-loop bandwidth, such as the one considered in this thesis. 

In these cases the assumption of continuous-time implementation maybe highly 

inappropriate since it assumes unrealistic computational power. 

Due to the fact that the modern power systems are operated over large geographical 

areas and the fact that the final control element, e.g. generator, may be several 

hundred miles away from the supervisory controller, it is inevitable that some 
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communication time-delay will occur. Therefore, this thesis will investigate the 

impact that such communication time-delays have on the performance and 

robustness of the closed-loop system. Also, different methods of integrating the time-

delays into the design of the supervisory LQG/LTR controller will be investigated. 

These will include rational approximations of the time-delays in continuous-time 

framework and exact representation of time-delays when designing discrete-time 

supervisory controller. 

Finally, this thesis aims to propose a novel approach of estimating communication 

time-delays by using Extended Kalman Filter technique and combining it with the 

discrete-time LQG/LTR controller. Extended Kalman Filter will be employed to 

estimate the actual time-delays present in the communication channel, which are 

likely to be unknown and time-varying. Estimated time-delays will then be used to 

update the prediction model, which is utilised by the supervisory wide-area controller. 

As a result, the controller is expected to be capable of maintaining power system 

stability in the presence of communication time-delays. 

 

1.4 Main Contributions of the Thesis 

The main contributions of the thesis are summarized as follows: 

• Design of the supervisory continuous-time LQG/LTR-based wide-area 

controller that incorporates integral action and is based on loop shaping 

methodology. The desired power system specifications, such as system 

bandwidth, are met by using frequency-domain analysis tools.    

• Design of the supervisory discrete-time LQG/LTR controller used for the 

damping of inter-area oscillations that incorporates integral action and is 

tuned using frequency-domain analysis tools. Particular focus is placed on the 

impact that the sampling period has on the performance and robustness of the 

resulting closed-loop system. Finally, it is shown how to re-design discrete-

time controller, by reducing the bandwidth, in order to recover some of the 

performance sacrificed when increasing the sampling period.  
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• Detailed analysis of the impact that the communication time-delays have on 

the performance of the continuous-time and discrete-time LQG/LTR 

controller designed to improve damping of the inter-area electromechanical 

mode. Different rational approximations used to represent the time delay in a 

transfer function form are utilized for continuous-time controller design. 

These different approximations are compared and the results confirm that the 

Pade Approximation is the most appropriate method used when designing 

continuous-time controllers that are intended to be robust to communication 

time-delays. In the case of discrete-time controller design, time-delay is 

represented exactly without resorting to rational approximation. Nevertheless, 

the delay margin is found to be similar for both continuous-time and discrete-

time controllers.  

• Proposal of a modified supervisory LQG controller (MDLQG) for the system 

with unknown time delays that incorporates Extended Kalman Filter (EKF). 

Both constant and varying unknown time-delays are considered in the design. 

Methodology is demonstrated using both numerical examples and the test 

power system simulation. It is very important to point out, however, that the 

methodology of employing EKF has been proposed independently by [101] 

who applied the method to a far simpler single-input, two-output system. 

However, the author of this thesis was completely unaware of that research 

work, which was published at the same time as the submission of the 

conference paper detailing results from this thesis regarding employment of 

EKF. It is clear from the proximity of the publication dates of [101] and the 

conference paper written by the author of the thesis that the respective 

research projects were conducted independently of each other without any 

mutual awareness of each other’s work.  

 

1.5 Outline of the Thesis 

Chapter 1: Introduction describes the basic concepts related to the issue of the 

power system stability and rotor angle stability in particular. Review of WAMS 

based wide-area damping control methods is also provided. Particular focus in the 

review is placed on the control methods, discrete-time implementation and the 
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considerations of communication time-delays. Aim of the PhD project is then 

presented along with the main contributions of the thesis. Finally, the outline of the 

thesis is provided. 

Chapter 2: Power Systems: Stability, Modelling and Tools for Analysis 

introduces the basic concepts necessary to understand the issues surrounding power 

system stability and electromechanical oscillations. A detailed description of the 

modelling for each of the main power system components is presented. These 

components include synchronous generator, excitation system, power system 

stabilizers (PSS), transmission lines, transformer, FACTS devices, typical electrical 

loads and the electrical network. Modal analysis method is then introduced followed 

by the modelling and analysis of a test multi-machine power system.  

Chapter 3: Continuous-Time LQG/LTR for Multi-Machine Power System 

considers the design of a supervisory continuous-time LQG/LTR controller for wide-

area damping control of power systems, using the loop shaping methodology. The 

controller is tuned such that certain frequency domain characteristics are satisfied, 

such as the bandwidth and peak values of the closed-loop transfer functions. The 

proposed LQG/LTR controller is compared with the conventional local PSS 

regulators in order to demonstrate its effectiveness for the damping control of a 

multi-machine power system. Also, the controller is assessed in terms of its 

robustness to the changes in the operating conditions.  

Chapter 4: Discrete-Time LQG/LTR for Multi-Machine Power System focuses 

on the design of the supervisory LQG/LTR controller using discrete-time framework 

to represent open-loop dynamics of the studied power system. Also, this chapter 

focuses on the impact that the sampling period has on the performance of the closed-

loop control system. The effectiveness and robustness of the designed supervisory 

discrete-time LQG/LTR controller is then verified using the non-linear power system 

simulation with and without auxiliary Power System Stabilizers. Also, the robustness 

of the supervisory controller with respect to changing operating conditions is 

assessed by changing the power transfer between the two areas in the studied power 

system.  
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Chapter 5: LQG/LTR for Multi-Machine Power System with Time-Delay 

considers the design of both continuous-time and discrete-time LQG/LTR controller 

for multi-machine power system in the presence of communication time-delays. In 

the case of continuous-time LQG/LTR control, two main rational approximations are 

used to the model the time-delays. These two approximations are also extensively 

compared. Discrete-time LQG/LTR control of a power system is considered using 

exact expressions for the time-delays rather than resorting to rational approximations. 

Different time delays are used to examine the effectiveness of the proposed 

controllers in terms of the achieved delay margins and their influence on the damping 

of the critical inter-area mode. Performance and robustness of the designed 

controllers are assessed using both frequency-domain analysis, which relies on the 

linear description of the system dynamics, and time-domain analysis, which utilises 

high-fidelity non-linear simulation model of a power system. 

Chapter 6: Supervisory Controller Development using Extended Kalman Filter 

for System with Unknown Time-Delay proposes a modified discrete-time 

LQG/LTR controller that utilises Extended Kalman Filter technique in order to 

estimate unknown and varying communication time-delays. Effectiveness of the 

proposed approach is verified using numerical example followed by the evaluation 

on multi-machine power system for both small signal and large signal disturbances.  

Chapter 7: Conclusions and Future Work presents the main conclusions of the 

research presented in this thesis and suggests topics that should be considered in the 

future work.  
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Chapter 2  

Power System: Stability, Modelling 

and Tools for Analysis 
 

 

 

2.1 Introduction 

This chapter firstly introduces some basic concepts necessary to understand the issue 

of power system stability. The modelling of the main components of the power 

system is then described. These components include transmission lines, transformer, 

synchronous generator, excitation system, PSS regulators, FACTS devices, typical 

electrical loads and the electrical network. The effective power system analysis 

method, namely modal analysis, is then introduced together with the concepts of 

eigenvalues and eigenvectors, mode shapes as well as the participation and damping 

factors. 

Based on these fundamental concepts, the linearised state-space representation of the 

test power system, which is a 2-area 4-machine 8-bus power system, is presented and 

analysed using frequency-domain tools. This test power system and its linearised 

state-space model will be used throughout the thesis.  

As stated in the previous chapter, the focus of this thesis is on the issue of the rotor 

angle stability, especially on the damping of inter-area electromechanical oscillatory 

modes. The other issues regarding the stability of voltage and frequency will not be 

considered in this thesis due to the time constraints. 
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2.2 Power System Stability 

Rotor angle stability is defined as the ability of interconnected synchronous machines 

of a power system to remain in synchronous [1]. When a synchronous machine loses 

synchronism with the rest of the system, the speed of its rotor is different from that 

required to generate voltages at system frequency. DeMello and Concordia [62] 

developed insights into the inner workings of the synchronous machine, and 

established the concept of damping and synchronizing torque in the system. in 

particular, it can be shown that system stability depends on the changes of the 

following two components for each of the synchronous machines: 

                         e s DT T Tδ ω∆ = ∆ + ∆                                               (2.1) 

where 

sT δ∆  is the synchronizing torque component which is in the phase with the 

rotor angle perturbation δ∆  

DT ω∆  is the damping torque component which is in the phase with the speed 

deviation ω∆  

In the case of insufficient synchronising torque, the instability of the power system 

will occur through an aperiodic drift in rotor angle. On the other hand, insufficient 

damping torque may result in oscillatory instability.  

Rotor angle stability is usually characterized as either small-signal or transient 

stability, according to [1], both of which will be briefly introduced in the remainder 

of this thesis.  

 

2.2.1 Small Signal Stability 

Clearly as the name suggests, small signal stability is the ability of power system to 

maintain synchronism under small disturbances. Theses disturbances could be small 

variations in loads and generation. The disturbances are considered to be small if the 

resulting dynamic behaviour can be adequately represented using linear model 

description.  
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Due to the fact that the system dynamics can be represented using linear model, 

modal analysis can be readily applied for the determination of small signal stability. 

Instability arising from small-signal disturbances manifests itself in one of the 

following two forms: 

i. Steady increase in generator rotor angle due to lack of synchronizing torque.  

ii.  Rotor oscillations of increasing amplitude due to lack of sufficient damping 

torque.  

 

2.2.2 Transient Stability  

Transient stability is the ability of the power system to maintain synchronism when 

subjected to a severe transient disturbance [1]. Severe transient disturbances may be 

resulted from a loss of generation or a large load, faults on the transmission network, 

etc. System response subjected to such large disturbances involves large changes of 

generator rotor angles, power flows, bus voltages among other system variables and 

is influenced by the non-linear power-angle relationship. In large power system, 

transient stability may not always occur as first swing instability; it could be the 

result of the superposition of several modes of oscillation causing large excursions of 

rotor angle beyond the first swing [1].  

 

2.3 Electromechanical Oscillations 

As mentioned in the previous section, small signal stability problem is usually one of 

insufficient damping of system oscillations. It is caused by the interaction between 

the electrical and mechanical processes in the power system, also named as 

electromechanical oscillation. Theses oscillations are inherent in the power system. 

Electromechanical oscillations can be caused by small disturbances such as changes 

in generation or load. They may also be initiated by large disturbances such as faults 

in the system or heavy loading. The stability of the whole power system is largely 

depended on the stability of such electromechanical modes. If the electromechanical 

modes are unstable or poorly damped, the overall system response will be diverging 

or sustained oscillatory.  
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These electromechanical oscillations can be mainly divided into local mode 

oscillations and inter-area oscillations. They will be further discussed in the 

following. 

Local Mode Oscillations  

This type of oscillation generally involves one or more synchronous machines at a 

power station swing together against a comparatively large power system or load 

centre. The frequency of this oscillation is in the range of 0.7 to 2 Hz. The 

corresponding local modes are usually dealt with the more conventional methods of 

tuning as discussed in [63, 64]. 

Inter-Area Oscillations 

Inter-area oscillations usually involve combinations of many machines in one part of 

a power system swing against machines in another part of the power system. They 

are normally in the frequency range of 0.1 to 0.7 Hz [65]. Inter-area oscillation is a 

system wide phenomenon and the corresponding inter-area modes are usually poorly 

damped. The damping characteristic of the inter-area mode is dictated by the tie-line 

strength, the nature of the loads and the power flow through the interconnection and 

the interaction of loads with the dynamics of generators and their associated controls. 

Many researches have been made on the study of this oscillation, such as the 

dynamic properties of these oscillations [66], the review of the instances of such 

occurrences of poorly damped or unstable inter-area modes [65]. 

As stated above, electromechanical oscillations have serious impacts on the operation 

of the system. Inter-area oscillations in the interconnected large power system clearly 

identify inadequate damping as the primary factor leading to system separation. The 

amount of damping and the frequency of oscillation varies with system operating 

conditions [67]. Over the years, many incidents of system outage resulting from the 

inter-area oscillations have been reported: inter-connected Detroit Edison (DE)-

Ontario Hydro (OH)-Hydro Quebec (HQ) systems in early 1960’s [68]; the power 

blackout of August 10, 1996 in the Western Electricity Co-ordination Council 

(WECC) experienced unstable low frequency inter-area oscillations following the 

outage of four 400 kV lines [69]; and recent 2003 blackout in eastern Canada and US 
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[70]. Therefore, stability of the overall system is heavily influenced by the 

electromechanical oscillations. The damping of the inter-area oscillations will be 

mostly concerned in this thesis.  

 

2.4 Power System Modelling  

The modelling of different components of the power system is introduced. Due to 

this research is focused on the short-term stability, governor action and prime movers 

are not reviewed and modelled.  

2.4.1 Transmission Lines 

The most important roll to transmit and distribute power from power station to 

individual consumers within transmission and distribution networks or connect a 

power station to a substation is transmission lines. It can be either overhead lines or 

underground cables. Overhead lines are mostly used to transmit long-distance high-

voltage electric power in transmission system. On the other hand, underground 

cables are responsible for the transmission of low- and medium-voltage among urban 

distribution system. A transmission line is characterized by four parameters: series 

resistance R, series inductance L, shunt conductance G and shunt capacitance C with 

the following description. 

Series Resistance, R. Resistance of the lines, which are determined from 

manufacturers’ database.  

Series Inductance, L. The line inductance depends on the flux linkages within the 

conductor across section and external flux linkages. The value of inductance per 

phase depends on the self geometric mean distance, denoted as sD , and the 

geometric mean of the distances between the conductors of the three phase, denoted 

as eqD . 

Shunt Conductance, G. It indicates the losses raised by leakage currents along 

insulator strings and corona, which is usually ignored due to the small effect on the 

power lines.  
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Shunt Capacitance, C. The capacitance between conductors is the charge per unit of 

potential difference, which is the charge between the conductors of a transmission 

line. Its value mostly depends on the conductor radius r, the permittivity of the 

dielectric medium k, and eqD .  

The four parameters are distributed throughout the length of the line. The line 

performance can be represented by the following equations on a per-phase basis.  

z R j Lω= +                                                   (2.2) 

y G j Cω= +                                                  (2.3) 

Equation (2.2) represents the series impedance per unit length per phase, and 

equation (2.3) shows the shunt admittance per unit length per phase.  

 

2.4.2 Transformers 

The transformer is a well-known device that links the parts of the power system with 

different voltage levels. In addition to changing the voltage levels, transformers are 

also used to control the voltage and reactive power flow. Due to their functions, 

power system transformers can be classified into three categories [71]: 

Generator step-up transformers. They connect the generator to the transmission 

system. 

Transmission transformers. They connect different parts of the transmission systems 

that operate at different voltage levels; or connect the transmission and distribution 

systems.  

Distribution transformers. They transform the voltage from a high level to a low 

voltage level required by the individual consumer.  

Due to the large number of voltage levels involved in a power system, as well as 

system variables, the per unit values and equations are used for simpler computation 

and solutions [71]. Figure 2.1 shows the per unit equivalent circuit of a two-winding 

transformer. The resulting equivalent circuit equations are expressed in (2.4) and (2.5) 

as follows [1]. 
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p p p p s s s s
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n n
v n Z i v n Z i

n n
= + −                                   (2.4) 

2 2
0 0

s s
s p p p p s s s

p p

n n
v v n Z i n Z i

n n
= − +                                   (2.5) 

where the superbars denote per unit values, pv , sv , pi , si  are the per unit phase 

voltages and currents, and  

       0p pZ Z=  at nominal primary side tap position 

       0s sZ Z=  at nominal secondary side tap position 

       0pn =  primary side nominal number of turns 

       0sn =  secondary side nominal number of turns 

The standard equivalent circuit of Figure 2.1 is shown in Figure 2.2 with: 

0

0

p p s

s p s

n n n
n

n n n
= =                                                     (2.6) 

             ( ) ( )
2

2
0 0 0 0

0

s
e s p s p s

s

n
Z n Z Z Z Z

n

 
= + = + 

 
                         (2.7) 

This standard representation form of equivalent circuit equations is widely used of 

two-winding transformer in power systems [1].  

 

 

pv sv
pi si

2
0p pn Z 2

0s sn Z
:p sn n

 

Figure 2.1 Per unit equivalent circuit of a two-winding transformer [1] 
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Figure 2.2 Standard equivalent circuit of Figure 2.1 [1] 

 

2.4.3 Synchronous Generator 

As previously mentioned, the power system stability problem is largely one of 

keeping interconnected synchronous machines in synchronism. Therefore, an 

understanding of their characteristics and accurate modelling of their dynamic 

properties are of fundamental importance to the study of the power system stability. 

There are two basic types of synchronous machines, round rotor machine and salient 

pole machine. Figure 2.3 shows the block diagram of the generator with the 

associated excitation control. More details on the structure and introduction of 

synchronous machine can be found in [1, 71, 72]. 

A practical model derived by Saidy and Hughes [73] is used in this thesis, it is also 

named model 2d2q. This model is considered appropriate for representation of round 

rotor machines, as well as salient pole machines. The set of different equations that 

describes the dynamics of this model are given below [73].  

( )" ' ' " " '
"
0

1
q q d d d q q

d

E E X X I E E
T

 = − − − + 
ɺ ɺ                            (2.8) 

( )' ' '
'
0

1
q fd d d d q

d

E E X X I E
T

 = − − − 
ɺ                                  (2.9) 

( )" ' ' " "
"
0

1
d d q q q d

q

E E X X I E
T

 = − − − 
ɺ                                  (2.10) 

( )' ' '
'
0

1
d q q q d

q

E X X I E
T

 = − − 
ɺ                                          (2.11) 
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02 fδ ω π= −ɺ                                                                 (2.13) 

" "
d d q qV E X I= +                                                              (2.14) 

" "
q q d dV E X I= −                                                              (2.15) 

2 2
t d qV V V= +                                                               (2.16) 

e d d q qP V I V I= +                                                              (2.17) 

where 

ω                            rotor speed; 

δ                            rotor angle; 

dX , '
dX , "

dX           d-axis synchronous, transient, sub-transient reactance; 

qX , '
qX , "

qX            q-axis synchronous, transient, sub-transient reactance; 

'
0dT , "

0dT                  d-axis open-circuit transient, sub-transient time constant; 

'
0qT , "

0qT                  q-axis open-circuit transient, sub-transient time constant; 

H                           inertia constant; 

dI , qI                     generator d-axis, q-axis current; 

dV , qV , tV               generator d-axis, q-axis, terminal voltage; 

eP                          electrical power. 

For salient pole machines, there is 'q qX X= , the d-axis transient voltage component, 

'
dE , is equal to zero. Consequently, equation (2.11) is eliminated. 

 

refV
tV

PSSV

tV

, ,Pω θ
 

Figure 2.3 Block diagram of the generator with excitation control 
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2.4.4 Generator Excitation System 

The generator excitation system consists of an exciter and an Automatic Voltage 

Regulator (AVR). An exciter can be either rotating or static. The AVR regulates the 

generator terminal voltage by controlling the amount of current supplied to the 

generator filed winding by the exciter [71]. The standard IEEE type DC1A exciter 

block diagram is shown in Figure 2.4. EK  is the ratio of the resistance of the exciter 

field circuit and the slope of the air-gap line or the line tangent to the linear portion 

of the open circuit saturation curve. ET  refers to the integration of the forward loop. 

( )E fdS E  represents the saturation function. The voltage regulator is represented by a 

gain AK  with time constant AT . The outputs of these regulators are usually limited 

by either by the effects of saturation or the power supply limitation [1]. The 

measured generator terminal voltage tV  is compared with the reference voltage refV  

to produce the voltage error V∆ . The final inputs of the generator excitation system, 

iV , is the error voltage compensated with the voltage from Power System Stabilizer 

(PSS) PSSV . The output of AVR is the field voltage which is usually limited by either 

the effects of saturation or the power supply and can be easily represented as limits 

on the output values of the regulator.  

 

refV

tV

PSSV

fdE1

1AVRT s+

minRV

maxRV

1

E EK T s+

( )E fdS E

1

1FT s+
 

Figure 2.4 Block diagram of IEEE type DC1A exciter 
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2.4.5 Power System Stabilizer  

Power system stabilizers (PSS) are used to provide damping torque for the 

synchronous machines by generating supplementary control signals for the excitation 

system in order to suppress oscillations. Electromechanical oscillations of small 

magnitude and low frequency exist in the interconnected power system and often 

persist for long periods of time, and in some cases even impose limitations on the 

power transfer capability. In addition, the generator voltage regulator action will pose 

a detrimental impact upon the dynamic stability of the power system when the 

synchronizing torque of synchronous machines is increased in order to improve the 

transient stability of the power system. Figure 2.5 shows the general structure of a 

PSS. Equation (2.18) represents the transfer function of the general structure of PSS. 

1

1

1

1

1
( ) ( ) ( )

1

1 1

1 1 1

N

PSS

N

W A
PSS

W B

T s
H s K W s F s

T s

T sT s T s
K

T s T s T s

α

α

 +=  + 

    + +=     + + +    

                        (2.18) 

N is the number of lead-lag blocks, W(s), F(s) is washout and low pass filter 

respectively. PSSK  is the gain of the transfer function, α  and 1T  refers to the lead-lag 

constant and time constant respectively. WT , AT , and BT  ( 1 ~ 20WT s s= , typically 

3 ~10s s; 10B AT T < ) are time constants of W(s) and F(s).  
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Figure 2.5 Major elements of a PSS [1] 

 



44 
 

2.4.6 FACTS Devices 

Flexible AC Transmission Systems, named FACTS, was first issued in the United 

States to improve the control of the transmission systems in the late 1980s [13]. The 

FACTS devices have been widely introduced for various applications with two 

original main objectives [13]: 

1) To increase the power transfer capability of transmission systems; 

2) To keep power flow over designated routs. 

The FACTS devices are typically categorised into two types. The first type utilizes 

reactive impedances or a tap-changing transformer with thyristor switching to 

provide the control; the second type uses static converters as voltage sources [13]. 

The devices, the Static Var Compensator (SVC), thyristor-controlled series capacitor 

(TCSC) and phase-shifter all belong to the first group. Each device acts on one of the 

three parameters determining power transmission. SVC acts on voltage, TCSC acts 

on transmission impedance and phase-shifter acts on transmission angle. The second 

type of FACTS devices employs converter-based synchronous voltage source. 

Devices such as Static Synchronous Compensator (STATCOM), Static Synchronous 

Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and the 

Interline Power Flow Controller (IPFC) all belong to the second type of FACTS 

devices. The STATCOM controls the voltage by reactive shunt compensation. The 

SSSC controls the effective transmission impedance through series compensation. 

The UPFC can control all three transmission parameters (voltage, impedance, 

voltage angle), as well as the real and reactive power flow in the line [13]. 

SVC was firstly used in mid-1970s. It has been known that SVC has significant 

benefits on voltage regulation, as well as the improvement of transient stability and 

dynamic stability [1]. In addition, SVC can mitigate the power oscillations and has 

been utilized to damp the inter-area modes and to maintain system stability. The 

structure and modelling of SVC is described in the following mainly from reference 

[74]. The model of SVC is represented by the per unit equations (2.19). Figure 2.6 

depicts the block diagram of the transient model of the SVC [74].  
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where most variables are defined in Figure 2.6, cx  and ( )f ⋅  denote the control 

system state variables and the control system function respectively. The control 

function ( )f ⋅  depends on the type of control system used. 

refV +
−
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iV
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( )eB αα

 

Figure 2.6 Block diagram of the transient stability model of SVC [74] 

 

2.4.7 Loads 

It is known that load characteristics have a significant impact on system stability [1, 

75]. Load models are typically classified into two types: static loads and dynamic 

loads. Static load models express as algebraic functions of the bus voltage magnitude 

and frequency. Dynamic loads need to be modelled with dynamic equations or 

differential equations. For static load models, the voltage dependency of load 

characteristics has been expressed by the following exponential model: 
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                                                (2.20) 
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where P and Q are active and reactive components of the load when the bus voltage 

is V. The subscript 0 identifies the values of the respective variables of the initial 

operating condition. With the exponents a and b equal to 0, 1, 2, the model represents 

constant power, constant current, and constant impedance characteristics respectively.  

 

2.5 Multi-Machine Network Power Flow Analysis 

Previous sections of this chapter introduce and discuss different power system 

components. Next, the analytical techniques for detailed analysis of power system as 

a network are described in this section.  

2.5.1 Bus Classification 

There are four quantities are associated with each bus: active power P, reactive 

power Q, voltage magnitude V, and voltage angle θ . Depending on which of these 

variables are specified, buses are classified as follows: 

• PV bus: named voltage-controlled bus. Active power and voltage 

magnitude are specified. Depending on the characteristics of the 

individual devices, limits to the reactive power are specified. 

• PQ bus: named load bus. Active and reactive power are specified.  

• Slack bus: voltage magnitude and phase angle are specified. The slack 

bus is the only bus with known voltage.  

 

2.5.2 Network Equations 

The electrical network consists of inter-linked transmission lines and transformers, 

each of which can be modelled by the π -equivalent circuits described in Section 

2.4.1 and 2.4.2. The nodal network equations in terms of the node admittance matrix 

are formed by the combined individual models as follows [1]: 
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                                (2.21) 

where  

N       total number of nodes; 

iiY
�

    self-admittance of node i, and is equal to the sum of all the admittances   

terminating at node i; 

ijY
�

     mutual admittance between nodes i and j, and is equal to the negative of 

the sum of all admittances nodes i and j; 

iI
�

    current injection at node i, and is equal to the algebraic sum of the 

currents in all the branches terminating at node i; 

iV
�

      voltage at node i. 

The complex admittance and voltage can be written as ij ij ijY Y θ= ∠
�

, and i i iV V δ= ∠
�

. 

The active power and reactive power then can be derived from equation (2.21) as 

follows: 
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∑

∑
                       (2.22) 

When the rectangular co-ordinate system (a, b) is used, the voltage and current is 

represented as follows, shown in Figure 2.7. 

j
a bV Ve V jVδ= = +

�
,      j

a bI Ie I jIβ= = +
�

 

and the real and reactive power now is represented as: 

i ai ai bi biP V I V I= + ,       i bi bi ai aiQ V I V I= −  

Expressing the complex admittance in rectangular co-ordinates in terms of 

conductance G and susceptance B, as ij ij ijY G jB= +
�

, and substituting it to 

equation (2.21), the current injection at each node i is obtained as:  

1 1

( )( )
N N

i ai bi ij j ij ij aj bj
j j

I I jI Y V G jB V jV
= =

= + = = + +∑ ∑
� � �

 

thus the real and imaginary parts of currents are represented as: 
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Figure 2.7 Voltage and current on the complex plane 

 

2.5.3 Linearisation of Power Network Equations 

The real and reactive power injection at each node is a non-linear function of the 

system voltages, i.e. ( , )P P V δ=  and ( , )Q Q V δ= . In order to linearise these 

expressions, Newton-Raphson method is used predominantly [1]. This linearisation 

method utilizes the first order Taylor expansion and neglects the higher-order terms. 

The resulting linear relationship between power flows and voltage magnitudes and 

angles can then be written as: 

11 12

21 22

J JP

J JQ V

δ∆ ∆    
=     ∆ ∆    

                                       (2.23) 

where P∆  and Q∆  denote the deviations of the real and reactive power at all the 

system nodes from their nominal values, respectively, δ∆  is the vector of voltage 

angle deviations from their nominal values, and V∆  is the vector of voltage 

magnitude deviations from their nominal values. The elements of Jacobian 

submatrices, 11J , 12J , 21J , 22J , are the partial derivatives of the functions shown in 

equation (2.24). 
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Substituting (2.24) into (2.23) produces the following linearised relationship: 

Imag b

a

 a bI I jI= +
�

 a bV V jV= +
�

 bI

 aI

 bV

 aV
Real  



49 
 

P P
P V
Q Q Q V

V

δδ

δ

∂ ∂ 
 ∆ ∆   ∂ ∂=     ∆ ∂ ∂ ∆    
 ∂ ∂ 

                                        (2.25) 

2.5.4 Network Reduction  

The size of the network can be reduced by eliminating some of the nodes. These 

nodes must be removed in such a way that the currents and nodal voltages at the 

retained nodes are unchanged [71]. Kron’s method is utilized in reduction of the 

network. Equation (2.26) performs Kron’s reduction formula. 

ik kj
ij ij

kk

y y
y y

y
= −ɶ                                               (2.26) 

for 1,2,..., ,...,i k N= , and 1,2,..., ,...,j k N= . ijyɶ  is the new admittance between node 

i and j after the elimination of node k. 

 

2.6 Modal Analysis  

2.6.1 Eigenvalues and Eigenvectors 

The eigenvalues of a matrix, A, are given by the values of the scalar parameter λ  for 

which there exist non-trivial solutions to the equation 

AΦ = λΦ                                                       (2.27) 

where A is an n n×  matrix, Φ  is an 1n×  vector. The n solutions of (2.27) are the 

eigenvalues of A, which are 1 2, ,..., nλ = λ λ λ . These eigenvalues may be real or 

complex. For any eigenvalue iλ , the n-column vector iΦ  which satisfies (2.27) is 

called the right eigenvector of A associated with the eigenvalue iλ . It is showed as  

i i iAΦ = λ Φ ,      1,2,...,i n=                                       (2.28) 

[ ]1 2

T

i i i niΦ = Φ Φ Φ⋯  

Similarly, the n-row vector iΨ  which satisfies i i iAΨ = Ψ λ , 1,2,...,i n=  is called the 

left eigenvector associated with the eigenvalue iλ .  
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Eigenvalues of a system physically refer to the modes of oscillations. They could be 

real or complex conjugate pairs. A real eigenvalue corresponds to a non-oscillatory 

mode, and each pair of complex eigenvalue corresponds to an oscillatory mode. The 

stability of a power system can be determined by the eigenvalues, that is, small 

signal stability would be maintained if all the eigenvalues in the system have 

negative real parts [1, 76]. Degree of stability is decided by how far the eigenvalues 

located away from the imaginary axis in the left half plane (LHP). The further away 

from the imaginary axis, the more stable the system will be. Right eigenvector 

associated with the mode accounts for the mode shape. It defines the relative 

distribution of the mode through the system dynamic states. The information of the 

observability of an oscillation mode can be reflected by the corresponding 

component of the right eigenvector. Left eigenvector associated with the mode gives 

the distribution of the states. It has a direct effect on the amplitude of a mode excited 

by a specific input. The information of the controllability of a mode can be reflected 

by the corresponding component of the left eigenvector [30]. 

 

2.6.2 Damping Factors  

As stated above, each pair of the complex conjugate eigenvalue corresponds to an 

oscillatory mode. They are in the form of jλ = σ ± ω . The real component of the 

eigenvalue gives the damping, and the imaginary component gives the frequency of 

oscillation. A positive real part represents oscillation of increasing amplitude 

whereas negative real part represents a damped oscillation [1]. To determine the rate 

of decay of the amplitude of the oscillation, the damping ratio ζ  is used and defined 

as  

2 2

−σζ =
σ + ω

                                                 (2.29) 

 

2.6.3 Mode Shapes 

As stated in the previous sections, electromechanical modes can be classified into 

local and inter-area model. Mode shape analysis could achieve the classification of 

the type of a mode simply based on its frequency. The mode shape could be specified 
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by the right eigenvector. In local oscillations, only a small percentage of the 

generators have significant involvement in the oscillation illustrated in Figure 2.8(a). 

Inter-area modes involve all or a large number of generators and can represent the 

case where the generators split into two or more sub-groups and oscillate against 

each other as shown in Figure 2.8(b). 

ω
kjV

k
Vω

kiV

 

Figure 2.8 Mode shape of local and inter-area mode 

 

2.6.4 Participation Factors 

Participation factor [77] is a measure of the relative participation of the k-th state 

variable in the i-th mode, and vice versa. It is calculated as follows 

ki ki ikp = φ ϕ                                                    (2.30) 

where kiφ  is the k-th entry of the right eigenvector iΦ  and ikϕ  is the k-th entry of the 

left eigenvector iΨ . kiφ  measures the activity of k-th state in the i-th mode; ikϕ  

weighs the contribution of this activity to the mode; kip  measures the net 

participation of the k-th state in the i-th mode. By using the eigenvector 

normalization, the sum of the participation factors associated with any mode 
1

( )
n

ki
i

p
=
∑  

or with any state variable 
1

( )
n

ki
k

p
=
∑  is equal to 1.  

Participation factors play an important role to identify the electromechanical modes. 

For electromechanical modes, the corresponding participation factors for generator 

state variable, such as angular speed, angular deviation, electrical power etc, will be 
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among of the highest compared with other states. Participation factors are also 

applied in model reduction, which is useful in large power systems [29]. 

2.7 Test Power System 

2.7.1 System Modelling 

A single line diagram of the test system is shown in Figure 2.9. This two-area system 

was created by Ontario Hydro for a research report commissioned by the Canadian 

Electrical Association. This system was designed to exhibit the different types of 

oscillations that occur in an interconnected system [78, 79]. The two-area system 

consists of two active networks in which each one has two generators. The two active 

areas are connected via one AC transmission line. A Static Var Compensator (SVC) 

connects to bus 7 for providing reactive power support.  The full set of the system 

parameters i.e., the generator, transformer and transmission line parameters, as well 

as the controller settings of the AVR and Governor are given in Appendix A.1.  

 

Figure 2.9 Single Line Diagram of Test System 

 

The system base set for p.u. system is 100MVA. At a steady sate, Generator 2, 3, 4 

supply 90 MW active power to the system respectively i.e. 0.9 p.u., whereas 

Generator 1 produces 193 MW active power. The loads modelled in system are all 

consumed to be of constant impedance type for all operation conditions. The load in 

Area 1 consumes 253 MW active power, and the load in Area 2 consumes 210 MW 

active power. As a consequence, the there is an active power flow of 30 MW over 
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the AC tie line from Area 1 (generation area) to Area 2 (demand area). Modelling of 

each components of this power system is given in the following.  

 

Generators  

The block diagram of the generator with the associated excitation control 

implemented in this test power system has been shown in Figure 2.3. Generator 1, 3 

and 4 are round rotor machines, Generator 2 is a salient pole machine, and Generator 

1 is the reference generator. Each generator is controlled by the AVR. In the 

modelling of this study, speed deviation ω∆  and angle deviation δ∆  will be utilized 

instead of speed ω  and angle δ   stated in equations (2.11) and (2.12). The speed 

deviation of Generator 1, ω∆ , is set to be the reference speed, namely refω∆ . Hence, 

the 1st order derivative of angle speed of Generator 2, 3 and 4 will be equal to the 

speed deviation minus the reference speed refω∆ . The state-space model 

representation of each generator can be referred to Appendix A.2.  

 

Generator Excitation System 

The standard IEEE type DC1A exciter in the 2nd order and AVR are implemented for 

this test power system, which has been shown in Figure 2.4. The parameter values of 

AVR are given in Appendix A.1. The voltage limits shown in Figure 2.4 are given as 

follows. 

max 5.5RV = , min 5.5RV = −  

 

Power System Stabilizer (PSS)  

In the application of the 4-machine, 8-bus test power system, the transfer function of 

the structure of PSS is the same as shown in (2.18). Two lead-lag blocks are used, 

that is N is equal to 2. For each PSS, the input signal is the speed deviation from the 

corresponding generator, and the output signal of the PSS is the complementary 
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voltage which will be fed into the AVR.  The parameter values of PSS are given in 

Appendix A.1. 

 

 

Load 

As the modelling of loads has been stated in Section 2.4.7, the load model used in 

this study is the constant impedance model and represented by a constant shunt 

admittance connected to the bus. The resulting model is expressed as follows  

0 0
2

0

load

P jQ
Y

V

−=                                               (2.31) 

where 0P , 0Q  and 0V  are given in (2.20). 

   

Bus Classification 

There are 8 buses in this 2-area 4-machine power system. Bus 1 is the slack bus, Bus 

2 ~ 4 are PV buses, and Bus 5 ~ 8 are PQ buses. Table 2.1 shows the reactive power 

limits of slack bus and PV buses applied in this test power system.  

 

Table 2.1 Reactive power limits 

Bus No. Bus Type minQ  maxQ  

1 Slack −∞  +∞  
2 PV -0.6 4 

3 PV -0.6 4 

4 PV -0.6 4 
 

 

2.7.2 Modal Analysis  

The linearized state-space model of the test power system contains 35 states, 4 inputs, 

and 12 outputs. All the eigenvalues corresponding to the states are listed in Appendix 

A. As stated in the previous sections, each pair of complex conjugate eigenvalues 

corresponds to an oscillatory mode. Figure 2.10 shows the location of the dominant 
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eigenvalues with positive imaginary parts. The dashed line in Figure 2.10 shows the 

location of all the eigenvalues with damping ratio of 5%, which is utilised as a 

margin used to classify modes as either poorly-damped or well-damped. The 

eigenvalues located above the margin correspond to the poorly-damped modes, and 

the eigenvalues located bellow the margin refer to the well-damped modes.  It can be 

seen in Figure 2.10 that there is one eigenvalue with the damping ratio smaller than 

5%, which is related to inter-area mode.  

 

Figure 2.10 Dominant eigenvalues of the test power system without PSS 

 
 

Table 2.2 Electromechanical modes between 0.1Hz and 2.5Hz 

Modes Eigenvalues Modes Eigenvalues 

19, 20 7.6715 7.2435i− ±  21, 22 8.5474 4.4955i− ±  

23, 24 1.1962 8.2158i− ±  25, 26 0.8186 6.9826i− ±  

27, 28 0.0353 3.6734i− ±    

 

As only the electromechanical modes are concerned, all the electromechanical modes 

with the frequencies in the range of 0.1 Hz and 2.5 Hz and corresponding eigenvalues 

are calculated listed in Table 2.2. Figure 2.11 is the stem plot of the location of the 

states with the largest and second largest Participation Factors values for each of the 

modes located in the frequency range between 0.1 Hz and 2.5 Hz.  
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The eletromechanical modes are then identified based on participation factors in 

Figure 2.11 and the corresponding speed state or angle state of the four generators. 

This test power system model has three primary oscillatory modes of interaction. 

These modes and the corresponding damping factors are shown in Table 2.3. Mode 1, 

1.1962 8.2158i− ± , is dominated by Generators 2 and 3. The second mode, 

0.8186 6.9826i− ± , is dominated by Generators 1 and 4. Mode 1 and mode 2 are 

local modes in frequency 1.31 Hz and 1.11 Hz respectively.  Mode 3 is an inter-area 

mode in frequency 0.58 Hz which is of particular interested. This mode represents 

the interactions of Generators 1 and 4 against Generators 2 and 3 through the tie line 

between bus 5 and bus 7. The damping ratio of the three modes is 14.4%, 11.6%, and 

0.96% respectively. It is clear that the damping ratio of the 3rd mode is quite small, 

that means the inter-area mode is poorly damped. 

 

Figure 2.11 Location of maximum and 2nd maximum PF values 

 
 

Table 2.3 Electromechanical modes of the test power system 

Modes Eigenvalues Frequency (Hz) Damping Ratio % 

1 1.1962 8.2158i− ±  1.31 14.4 

2 0.8186 6.9826i− ±  1.11 11.6 

3 0.0353 3.6734i− ±  0.58 0.96 
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Figure 2.12 shows the mode shapes of the three modes with positive frequencies. 

Figure 2.12(a) shows the first local mode dominated by Generators 2 and 3. Figure 

2.12(b) shows the second local mode dominated by Generators 1 and 4. The mode 

shape of the inter-area mode is shown in Figure 2.12(c). It is obvious the inter-area 

mode that Generators 1 and 4 (Area 1) oscillate in phase against of Generators 2 and 

3 (Area 2).  

 

   

Figure 2.12 Mode shapes of the three modes 

 

2.8 Summary  

The basic concepts regarding power system stability, modelling and modal analysis 

method have been briefly introduced in this chapter. It has been shown that the 

power system stability can be analysed using system eigenvalues, eigenvectors and 

damping ratios. Thus, it is highly recommended to apply modal analysis in order to 

study stability issues considered in this thesis. The test power system, which is a 2-

area 4-machine 8-bus power system simulation, has also been described. Due to the 

flexibility of the available tools, all the work involving the power system and 

associated controller design, including the closed-loop system implementation, will 

be performed using Matlab and Simulink throughout the thesis.     
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Chapter 3  

Continuous-Time LQG/LTR for 

Multi-Machine Power System 
 

 

 

3.1 Introduction  

Classical control methodologies focus on the regulation problem in which a single 

resource, which is considered as the system input, is manipulated in order to control 

a single variable-of-interest, considered to be controlled variable. This normally 

leads to satisfaction of some local objective but it rarely leads to the satisfactory 

control of the system as a whole. Also, the problem of non-effective or even 

destabilising interaction amongst local controllers is often cited as a typical problem 

when employing this type of control structure. On the other hand, implementation of 

the multivariable control scheme allows for the coordinated manipulation of several 

different resources in order to simultaneously control multitude of variables-of-

interest that may be dispersed across the large-scale system, such as the one studied 

in this thesis. 

The Linear Quadratic Gaussian control design methodology that employs the Loop 

Transfer Recovery (LQG/LTR) is a well-known advanced multivariable control 

technique. The continuous-time LQG/LTR design for multivariable systems was 

initially proposed by Doyle and Stein [39] and later expanded by Stein and Athans 

[40]. This approach consists of designing both the optimal full state- feedback 

controller (Linear Quadratic Regulator abbreviated as LQR) [37, 85] and the 
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associated observer, termed Kalman Filter, that provides the optimal state estimate to 

the full state-feedback controller. Using the method of Loop Transfer Recovery 

(LTR), the well-documented robustness and performance qualities obtained when 

utilising LQR controller are then partially recovered by the LQG controller.  

The continuous-time LQG/LTR approach has been extensively used for the control 

of multivariable systems [32, 33]. It also has been applied specifically to power 

systems [20, 31, 41, 80, 81]. In particular, the Power System Stabiliser (PSS) was 

designed by utilizing LQG/LTR method in [41] but only for the case of single-input 

single-output (SISO) one-machine infinite-bus power system. LQG controller was 

also used in [80] to regulate the local electromechanical modes using excitation 

control but also restricted to SISO single machine infinite-bus power system. In [20], 

LQG/LTR technique was introduced into the design of TCSC devices for damping 

electromechanical oscillations. Only local signals were considered as the input signal 

in this damping controller design. Zolotas etal [31] also presented LQG/LTR 

damping control scheme in order to improve the inter-area mode oscillations via a 

proposed minimum-phase square system augmentation.  

This chapter details the design of the continuous-time supervisory LQG/LTR 

controller applied to the 2-area, 4-machine power system simulation. Control design 

is based on the LQG methodology, which includes the procedure of recovering the 

robustness and performance properties of the classical optimal control regulator 

using the technique known as Loop Transfer Recovery (LTR). Designed controller is 

firstly assessed using linearised small-signal model of the power system and then it is 

applied to the non-linear simulation. In both of these case studies, it is assumed that 

the power system is not equipped with the local acting PSSs. In the final case study 

reported in this chapter, supervisory LQG/LTR controller is implemented on the 

power system simulation in which each of the generators is equipped with its own 

local PSS regulator. 

 

3.2 Multivariable Frequency-Domain Design 

The methodology of loop shaping represents a pillar stone of the modern MIMO 

control system design. The use of singular values to analyse and design multivariable 
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feedback control systems in the frequency domain was initially introduced by Doyle 

and Stein in 1981 [39]. In their pioneering paper they showed how the classical loop 

shaping ideas of feedback design could be generalized to multivariable systems 

through the use of singular values, and also how to deal with the unstructured 

uncertainty when designing the feedback controllers. To describe this methodology, 

the standard feedback configuration is considered and illustrated in Figure 3.1. The 

plant G is shown to be interconnected with controller K in the classical feedback 

configuration. Closed-loop system shown in Figure 3.1 has three types of exogenous 

inputs, which are reference commands r, disturbances d, and measurement noise n. 

Controller outputs are designated by u and the measured outputs utilised by the 

controller are denoted by y. Some fundamental definitions are given in the remainder 

of this section. More details can be found in [29, 39]. 

Loop Transfer Function is formally given as a product of the controller transfer 

function and the open-loop system transfer function:  

L GK=                                                      (3.1) 

Sensitivity Transfer Function describes the relationship between the output 

disturbances and the controlled outputs:    

( ) 1
S I L

−= +                                                  (3.2) 

Complementary Sensitivity Transfer Function describes the relationship between the 

set-points and the controlled outputs:    

( ) 1
T L I L I S

−= + = −                                         (3.3) 

For a constant m n⋅  complex matrix A, the i-th singular value iσ  is the square root 

of the i-th eigenvalue of HA A, where HA  is the complex conjugate transpose of A: 

( )( ) H
i iA A Aσ λ=                                             (3.4) 

where ( )λ ⋅  denotes eigenvalues and the maximum and minimum singular values are 

defined respectively as: 

( ) ( )max
HA A Aσ λ= ,  ( ) ( )min

HA A Aσ λ=                      (3.5) 
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Figure 3.1 Standard Feedback Configuration 

 

3.2.1 Frequency-Domain Performance Specification 

It could be reasonably argued that it is impossible for any system to be fully 

characterised by a given man-made dynamic model. In other words, the model 

uncertainty is inevitable. This uncertainty may be caused by parameter changes, or 

by neglected dynamics, or by a host of other unspecified effects [39]. Then the actual 

plant 'G  can be expressed by the nominal plant G with the model uncertainties of 

two types.  

For additive uncertainties:  

'( ) ( ) ( )G j G j G jω ω ω= + ∆                                       (3.6a) 

with                                 

[ ]( ) ( )aG j lσ ω ω∆ <        0ω∀ ≥                                 (3.6b) 

For multiplicative uncertainties: 

[ ]'( ) ( ) ( )G j I M j G jω ω ω= +                                    (3.7a) 

with                                 

[ ]( ) ( )mM j lσ ω ω<        0ω∀ ≥                                   (3.7b) 

where ( )al ⋅  and ( )ml ⋅  are known positive scalar functions of frequency ω . The 

uncertainty descriptions above belong to the class of unstructured uncertainties [29]. 

In this thesis, discussion will be restricted to the multiplicative uncertainties of (3.7a). 

The bounding functions ( )ml ω  in (3.7) commonly have the properties that they are 

small at low frequencies and increase to unity and above at higher frequencies [39]. 

This reflects the fact that the model adequately represents system dynamics in the 

low-frequency region while the discrepancy between the model and the system is 

much more pronounced in the high-frequency region. Once a design model, ( )G s , is 
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specified along with the unstructured uncertainty description in the form of (3.7), the 

feedback control design should satisfy the Performance Condition and the Stability 

Condition through the use of frequency shaping method [39]. These two conditions 

are described in more detail in the following.  

Performance Conditions – Low-Frequency Specifications 

For MIMO systems, frequency domain conditions for performance objectives should 

satisfy the following inequality: 

[ ]( ) 1GK jσ ω ≫ ,    for dω ω<                                  (3.8) 

Where dω  denotes the range of frequencies that are present in the spectral density 

function of the disturbance, ( )GK jω  is the frequency response of the loop gain GK. 

In words, this condition requires high feedback in the low-frequency region in order 

to adequately reject the disturbances. By ensuring that GK is very large, the 

sensitivity transfer function relating disturbance to the controlled variable is made to 

be very small.  

Another low-frequency performance bound may be derived from the steady-state 

error considerations. In order to make the steady-state error in response to a unit step 

at r equal to zero, the integral action may be included for the controller design. A 

final consideration in terms of the low-frequency behaviour of GK refers to the issue 

of balancing the singular values at low frequencies. In other words, it is highly 

desirable to have maximum and minimum singular values, namely ( )GKσ  and 

( )GKσ , close to each other, i.e. minimising the condition number of the loop 

transfer function matrix GK. This would ensure that the system responds to set-point 

changes and persistent disturbances in a similar manner in all ‘input channels’.  

Stability Conditions – High-Frequency Specifications 

The control design needs to satisfy not only the stability of the nominal feedback 

system, [ ] 1
GK I GK

−+ , but also the robustness stability of the nominal system G with 

uncertainties, [ ] 1
' 'G K I G K

−+ . The following constraint is derived: 

[ ]( ) 1 ( )mGK j lσ ω ω< ,    for all                           (3.9) 0 ω≤ < ∞
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3.3 Continuous-Time LQG/LTR Control  

A linear multivariable plant described by a transfer function ( )G s  can be represented 

by the following linear time-invariant state-space model: 

       
x Ax Bu w

y Cx Du v

= + +

= + +

ɺ

                                           (3.10) 

Where ( ) nx t ∈ℝ , ( ) mu t ∈ℝ , and ( ) ry t ∈ℝ  are system state, input and output 

vectors respectively, w and v are the process noise and measurement noise 

respectively, which are assumed to be uncorrelated zero-mean Gaussian white noise 

processes with the following covariances: 

{ } { }
{ } { }

, ,

0, 0.

T T

T T

E ww W E vv V

E wv E vw

= =

= =
                                (3.11) 

where E is the expectation operator.  

 

3.3.1 LQG Control 

The LQG control problem is to find the optimal control ( )u t  which minimizes  

*

0

1
lim

T T T

T
J E x Qx u Ru dt

T→∞

  = +   
∫                             (3.12) 

where Q and R are constant weighting matrices such that 0TQ Q= ≥  and 

0TR R= > . The solution to the LQG problem is achieved by solving the two related 

problems described below. First problem is concerned with the design of the optimal 

state-feedback controller which is normally referred to as Linear Quadratic Regulator 

(LQR). Second problem is concerned with the design of the optimal state estimator, 

which takes form of a state observer. 

Optimal State-Feedback. For the following system state-space model:  

x Ax Bu

y Cx

= +

=

ɺ

                                                (3.13) 
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with non-zero initial state (0)x , find the optimal control ( )u t  which minimizes the 

cost function 

 0
( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t dt

∞
 = + ∫                              (3.14) 

The optimal state-feedback control law is given in the state-feedback form: 

( ) ( )ru t K x t= −                                                 (3.15) 

where  

1 T
r rK R B P−=                                                  (3.16) 

And rP  is the unique symmetric nonnegative definite solution of the algebraic 

Riccati equation (ARE): 

1 0T T
r r r rA P P A P BR B P Q−+ − + =                                (3.17) 

Kalman Filter. Provide the optimal estimate ̂x of the state x, so that 

[ ] [ ]{ }ˆ ˆ
T

E x x x x− −  is minimized. The Kalman filter has the structure of  

ˆ ˆ ˆ( )fx Ax Bu K y Cx= + + −ɺ                                      (3.18) 

The optimal Kalman filter gain fK  is given by 

1T
f fK P C V−=                                                (3.19) 

where fP  is the unique symmetric nonnegative definite solution of ARE 

1 0T T
f f f fP A AP P C V CP W−+ − + =                               (3.20) 

LQG controller. The LQG controller consists of both LQR regulator and Kalman 

Filter, as shown in Figure 3.2. Optimal regulator is applied not to the measured state 

variables but their estimates provided by the Kalman Filter-based observer. The 

state-space realisation of the resulting LQG controller is given in the following form:  

( )
0

r f f
LQG

r

A BK K C K
K s

K

− − 
=  −                             

(3.21) 

 



65 
 

fK

∫

rK−

w v

yu

ŷ −x̂ɺ

x̂

+
+

+ +

 

Figure 3.2 LQG control closed-loop 

 

One of the main theoretical results concerning LQR regulator and Kalman Filter is 

the fact that the optimal gain matrices rK  and fK  exist, and the closed-loop system 

is internally stable, provided the systems with state-space realizations ( ), ,A B Q  

and ( ), ,A W C  are stabilizable and detectable. This result revolutionised the 

manner in which the controller design was viewed. While previously the control 

engineer would explicitly choose the values of the controller gains and then check to 

see if the nominal stability is ensured, now the control engineer simply picked the 

cost function weights and the controller gains were synthesised automatically by a 

computer, which solved the Algebraic Riccati Equations given in (3.17) and (3.20).  

 

3.3.2 Performance and Robustness Properties of LQR 

Assuming the system is deterministic and all the states are directly measured, LQR 

controller is well known for the possession of sound performance and robustness 

properties [82, 83]. One of these properties, which is termed the optimal return 

difference relation, will be discussed and utilized in this thesis. This relation is 

concerned with the following LQR loop transfer matrix:   



66 
 

( ) 1
( )r rL s K sI A B

−= −                                        (3.22) 

In particular, the optimal return difference relation shows that the following return 

difference identity holds true [85]: 

[ ] [ ]( ) ( )
H H

r r r rI L j R I L j R G QGω ω+ + = + ,   0 ω∀ ≤ ≤ ∞      (3.23) 

where  

( ) 1

rG M sI A B
−= −                                           (3.24) 

TR R= , 0TQ Q= ≥  and TQ M QM= . Using the definition of singular values with 

R Iη=  implies that  

( ) ( )

( ) ( )

( )

1 2 1 2

1 2 1 2

2 1 2

1
[ ( )]

1

1

H

i r i r r

H

i r r

i r

I L j I G Q G Q

I G Q G Q

I G Q

σ ω λ
η

λ
η

σ
η

 + = + 
 

 = +   

= +

                     (3.25) 

This result governs the following performance and stability robustness properties of 

LQG loop at the plant inputs. 

Performance Properties 

For all frequencies where [ ] 1i rLσ ≫ , the following approximation of (3.25) is 

established for the LQR loop: 

[ ] ( ) 1
( )i r iL j QM sI A Bσ ω σ η− ≈ −

 
                      (3.26) 

for each singular value iσ , thus we can choose M and η  to tune the multivariable 

loop such that ( )rLσ  and ( )rLσ  are reasonably close together [39]. 

Robustness Properties 

According to (3.24), for all ω  the minimum singular value satisfies  

[ ]( ) 1rI L jσ ω+ ≥ ,  0 ω∀ ≤ ≤ ∞                            (3.27) 
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This implies that [39] 

1( ) 1 2rI L jσ ω− + ≥    ,  0 ω∀ ≤ ≤ ∞                       (3.28) 

In [39], it is shown that the LQR loop is guaranteed to remain stable for all 

unstructured uncertainties at plant input which satisfies ( ) 0.5ω∆ < .  

 

3.3.3 Loop Transfer Recovery (LTR) 

Both the optimal state-feedback regulator LQR and the Kalman filter possess some 

robustness and performance qualities [29]. However, when combined together to 

form the resulting LQG controller, these properties are lost [29]. Both Kwakernaak 

[37] and Doyle and Stein [38, 39] proposed a method of either designing the Kalman 

filter such that the LQR robustness properties are recovered at the plant input, or 

designing the LQR such that Kalman filter robustness properties are recovered at the 

plant output. Both of these variants are collectively known as Loop Transfer 

Recovery (LTR) procedure because they attempt to recover sound properties attained 

using either LQR or the Kalman Filter. Note that the structure of the resulting 

LQG/LTR controller remains the same as the one shown in Figure 3.2. However, the 

approach of tuning either LQR or Kalman Filter is modified in order to partially 

recover optimal loop transfer function. 

Recovery at the Plant Input: Kalman Filter gain fK  is calculated such that the loop 

transfer function ( ) ( )LQGK s G s  approaches 1( )rK sI A B−− , which is the loop transfer 

function obtained using optimal full-state feedback LQR regulator. The system must 

be minimum phase and must have at least as many outputs as inputs i.e. r m≥ . The 

resulting procedure consists of the following two steps [39]: 

Step 1 Additional columns of zeros are appended to B and the additional rows of 

zeros are appended to rK  so that ( ) 1
C sI A B

−−  and ( ) 1

rK sI A B
−−  are both 

square. 

Step 2 Kalman Filter gain fK  is synthesised by solving (3.20) with modified noise 

intensity matrices given as  and vV q I= . Parametervq  is then 0
TW W BB= +
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reduced until the LQG loop gain at the plant input has converged sufficiently 

closely to the optimal regulator loop gain. Note that typically 0W  can be 

chosen as a zero matrix.  

Recovery at the Plant Output: LQR controller gain rK  is chosen such that the loop 

transfer function ( ) ( )LQGG s K s  approaches ( ) 1

fC sI A K
−− , which is the loop 

transfer function obtained using optimal state observer. Once again, it is required that 

the open-loop system is minimum phase. In addition, it is necessary for the open-

loop system to have at least as many inputs as outputs in order to recover loop 

transfer  The recovery at plant input can be considered as a dual to the recovery at 

plant output with the details regarding the procedure found in [29, 32]. 

Due to the fact that the power system considered in this thesis has more outputs than 

inputs the recovery of the loop transfer function at the plant input is performed and 

the detailed design is presented in Section 3.5.2.  

 

3.4 Selection of Cost Function Weights  

Finding the appropriate values for the cost function weights specified in (3.14) is not 

a trivial task. Conceptually, the control designer selects the weights in order to 

appropriately reflect the inevitable compromise between the requirement to regulate 

system outputs and the requirement of physically realisable controller action. 

Typically, values used in the cost function weights are chosen by trial and error with 

the evaluation done predominantly in the time-domain. The control performance 

specifications are often given in terms of the maximum allowed deviations of the 

states and the control signals for a given disturbance. In particular, Bryson and Ho 

[84] suggest structuring the weight matrix TQ M QM=  so that the cost function 

specified in (3.14) can be reformulated in terms of the controlled outputs rather than 

state variables: 

0
( ) ( ) ( ) ( )T TJ y t Qy t u t Ru t dt

∞
 = + ∫  for M C=  

 Then Q  and R can be selected to be diagonal matrices with their entries equal to the 

inverse values of the squares of the allowed deviations for each of the outputs.  
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Denote the maximum deviations of the r outputs as 1y∆ , …, ry∆ , and the maximum 

deviations of the m inputs as 1u∆ , …, mu∆ . Then the resulting weight matrices Q 

and R are constructed as follows:  

2
1

2

1 0

0 1 r

y

Q

y

 ∆
 =  
 ∆ 

⋯

⋮ ⋱ ⋮

⋯

                                        (3.29) 

and  

2
1

2

1 0

0 1 m

u

R

u

 ∆
 =  
 ∆ 

⋯

⋮ ⋱ ⋮

⋯

                                       (3.30) 

Note that there is a scalar ratio between the state and the control terms, denoted as  

ρ , which can be explicitly included in the parameterisation of the weighting 

matrices, i.e. we have TQ M QMρ= . Thus (3.25) can be rewritten as  

[ ] 2 1 2( )i r i rI L j I G Qσ ω ρσ  + = +                             (3.31) 

From (3.31) it can be observed that an increase in ρ  by a factor of  α  leads to an 

increase in regulator gain rK  and loop gain rL  by a factor of α . The implication 

of this is that the closed-loop system’s bandwidth and the peak values of the 

sensitivity and the complementary sensitivity transfer function are directly related to 

the changes in ρ . More specifically, increase in the value of ρ  is likely to cause 

closed-loop system bandwidth to increase, which results in faster response to set-

point changes and disturbances. However, as a result of increasing ρ , the peak 

values of the sensitivity and complementary sensitivity transfer function are highly 

likely to rise too, resulting in the deterioration of robustness. 

 

3.5 Continuous-Time LQG/LTR for Power System 

The schematic block diagram of the closed-loop system, including 2-area 4-machine 

power system simulation and the supervisory controller, is shown in Figure 3.3. The 

modelling of the power system is detailed in Chapter 2. Output (measured) signals 
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are chosen to be electrical power, terminal voltage and speed deviation of each of the 

four generators. These 12 measurements are then continuously fed back to the 

supervisory controller, which computes the appropriate control signal for each of the 

four generators. The control signals from the supervisory controller are then injected 

into the power system by being added to the set-points of the local AVR for each of 

the generators. It is important to note that the work reported in this chapter mainly 

focuses on the power system that does not include Power System Stabilizers (PSSs), 

as shown in Figure 3.3. However, in Section 3.7, the PSSs are assumed to be 

implemented for each of the four generators in order to investigate the impact that 

their presence has on the overall closed-loop system when controlled using 

LQG/LTR.   

−
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−
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Figure 3.3 Schematic Block Diagram of the Supervisory Controlled Power System 

 

 

3.5.1 Optimal Regulator Design 

In order to increase the loop gain at low frequencies and, therefore, reduce the 

sensitivity transfer function at low frequencies, the integral action should be 

incorporated into the supervisory optimal controller. By incorporating the integral 

action, it is ensured that the ( )(0)Lσ = ∞  and therefore ( )(0) 0Sσ = , which ensures 

complete rejection of the persistent disturbances and satisfactory tracking of 

piecewise-constant set-points [32]. Placing poles of the augmented model at the 

origin, however, violates the assumption of asymptotic stabilizability, which is 
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required during the loop transfer recovery step in the controller design. Therefore, 

the poles are placed in the vicinity of the origin. In this particular application the 

poles are placed at -0.001, which is virtually at the origin when compared to the 

closed-loop system’s bandwidth [32]. The state-space representation of the integrator 

sub-system is given as: 

i i ix A x y= +ɺ                                                 (3.32) 

Where 120.001iA I= − . By augmenting the original state-space model given in (3.13) 

with this additional sub-system, the overall model of the power system is represented 

as follows: 

  

[ ]

0

0

0

i i i

i

x A x B
u

x C A x

x
y C Du

x

       
= +       

      

 
= + 

 

ɺ

ɺ

                                  (3.33) 

where 
0

a
i

A
A

C A

 
=  
 

, 
0a

B
B

 
=  
 

, [ ]0aC C= , and aD D=  are the augmented 

model state-space matrices. The dimensionality of the weighting matrices Q and R 

needs also to be modified in order to accommodate for the presence of the additional 

integrator states. The optimal regulator gain is then obtained by solving the ARE 

(3.17) and applying (3.16) using the augmented state-space model given in (3.33). 

Two controllers are designed using different values of the cost function weights. 

These controllers are designated as 0
rK  and *

rK , respectively. In both cases the 

parameter ρ , discussed in Section 3.4, is set equal to 100 in order to ensure 

satisfactory bandwidth and robustness properties, quantified by the peak value of the 

complementary sensitivity transfer function.  

In the case of 0
rK  the cost function weights are selected pragmatically: 

10
ei ti iP VQ Q Q ω∆= = =  for   1,..., 4i = .                        (3.34) 

On the other hand, the cost function weights used to design *
rK  were obtained 

initially according to (3.32) and (3.33). Then, the further refinement of their values 

was performed by ensuring that the performance measures, such as the bandwidth 
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and the peak of the complementary sensitivity transfer function, are satisfied. Their 

final values were given as follows: 

                      
1

24 10
ePQ −= ⋅ , 

2

14 10
ePQ −= ⋅ , 

3

14 10
ePQ −= ⋅ , 

4

24 10
ePQ −= ⋅ , 

1

15 10
tVQ −= ⋅ ,  

2

15 10
tVQ −= ⋅ , 

3

15 10
tVQ −= ⋅ , 

4

15 10
tVQ −= ⋅ ,               (3.35) 

                     
1

31 10Q ω∆ = ⋅ ,  
2

31 10Q ω∆ = ⋅ ,  
3

31 10Q ω∆ = ⋅ ,  
4

31 10Q ω∆ = ⋅ . 

The maximum and minimum singular value plots of ( )L jω , ( )Lσ  and ( )Lσ , 

obtained using 0
rK  and *

rK , denoted as 0 0 1( ) ( )r r a aL s K sI A B−= −  and 

* * 1( ) ( )r r a aL s K sI A B−= − , respectively, are shown in Figure 3.4. Figure 3.5 shows the 

corresponding singular value plots of ( )S jω  and ( )T jω . Also, Table 3.1 

summarises the important performance measures obtained for the power system 

when controlled using 0
rK  and *

rK . In the case of *
rK , it is observed that the cross-

over frequencies for ( )Lσ  and ( )Lσ  as well as the bandwidth Bω  are reduced when 

compared to 0
rK . The consequence of such reduction in the closed-loop system’s 

bandwidth is improved robustness to the uncertainties present in the high frequency 

region at the expense of a more sluggish response to disturbances or set-point 

changes. Such reduction in the bandwidth is a direct consequence of the reduction in 

the cost function weightings 
ePQ  and 

tVQ , which play the dominant role in 

influencing system performance. Also, as shown in Figure 3.5 as well as in Table 3.1, 

maximum peak of ( )T jω , ( )T jω
∞  denoted as TM , is reduced from 1.65 dB using 

0
rK  down to 1.1dB for *

rK , indicating the improvement in the performance and 

robustness. Finally, damping of the inter-area electromechanical mode is increased 

from 52.66% to 67.1% when using optimal regulator *
rK . This further demonstrates 

the benefits of implementing *
rK  as opposed to 0

rK  in terms of the improved 

damping of the inter-area mode as well as the robustness of the closed-loop system.  
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Figure 3.4 Singular value plots of loop transfer function 0
rL  vs. *

rL  

 

 

Figure 3.5 ( )Sσ and ( )Tσ  of the optimal regulator loop using 0rK  and *
rK  

 

 

Table 3.1 System performance properties 

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (% )ζ  ( )f Hz  
0
rK  52.66 0.44 0 1.65 80 113 211 20 

*
rK  67.10 0.60 0 1.10 30.2 40.4 58.5 20 
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3.5.2 Recovery at Plant Input 

Since the 4-machine, 8-bus power system contains more outputs than inputs, Kalman 

Filter is designed so that the optimal regulator loop gain is recovered at the plant 

input, as discussed in Section 3.3.3. Recovery is achieved by setting 

( )T TW E ww W= = Γ Γ  and ( )TV E vv qI= =  where W and V are the noise intensity 

matrices discussed in Section 3.3.3. By setting aBΓ = , W I= , the recovery is 

achieved as q tends to zero. The Kalman filter gain fK  is then obtained by solving 

the ARE (3.20) and applying (3.19). 

Once fK  has been designed, the state-space realization of the LQG controller is 

given as: 

*
*

*
( )

0
a a r f a f

LQG

r

A B K K C K
K s

K

 − −
=  −   

Figure 3.6 shows the singular values of the LQG loop transfer function *
LQG aK G−  

(the solid lines), compared with the singular values of the LQR regulator loop 

transfer function ( ) 1*
r a aK sI A B

−−  (the dashed lines), for 1q = , 210− , 410−  and 610− . 

It can be observed that for 610q −=  virtually the full recovery is achieved. Figure 3.7 

shows the Bode plot of ( )S jω  and ( )T jω  with loop transfer recovery achieved 

using 610q −= . The closed-loop bandwidth is then equal to 29.5 rad/s, and the 

maximum peaks of ( )S jω  and ( )T jω , ( )S jω
∞  and ( )T jω

∞  denoted as SM  and 

TM , respectively, are smaller than 2 dB, indicating satisfactory robustness and 

performance. Table 3.2 compares the system performance measures obtained for the 

closed-loop system when controlled by using *
LQGK  and 

*
rK . It is clearly shown in 

this table that the two closed-loop control systems achieve very similar performance, 

thereby demonstrating successful recovery of the loop transfer function at the plant 

input. Furthermore, the damping ratio of the electromechanical mode is reduced 

insignificantly from 67.1% to 67.05% when using LQG/LTR as opposed to LQR 

controller. This further demonstrates the fact that the performance deterioration when 



75 
 

using LQG/LTR is minimal and that almost complete loop transfer recovery is 

achieved in this particular case study.  

 

                                         (a)                                                                     (b)  

  

                                        (c)                                                                     (d)  

Figure 3.6 LTR for (a) 1q = , (b) 210q −= , (c) 410q −= , (d) 610q −=  

 

 

                          (a) S(s)                                                              (b) T(s) 

Figure 3.7 ( )Sσ and ( )Tσ  of the closed-loop using *LQGK  and *
rK  
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Table 3.2 System performance properties using *
LQGK  and *

rK  

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (% )ζ  ( )f Hz  
*
rK  67.10 0.60 0 1.10 30.2 40.4 58.5 20 

*
LQGK  67.05 0.60 0 1.11 29.5 39.9 57.6 20 

 

 

3.5.3 Robustness to Various Operating Conditions 

The robustness of the designed supervisory continuous-time LQG/LTR controller 

*
LQGK  is assessed by changing the operating conditions under which the power 

system operates. Due to the nonlinearity of the power system model, it is expected 

that the linear realisation will differ for different operating conditions. However, the 

supervisory controller is expected to be sufficiently robust to maintain stability and 

satisfactory performance of the closed-loop system for all these different operating 

conditions.  

Changes in operating conditions are realized by decreasing and increasing the power 

output of Generators 2, 3 and 4 by 10%. Figure 3.8 shows the singular value plots of 

( )L jω , ( )S jω  and ( )T jω  for different operating conditions: (a) generation of 

Generator 2 is decreased by 10%; (b) generation of Generator 2 is increased by 10%; 

(c) generation of Generator 3 is decreased by 10%; (d) generation of Generator 3 is 

increased by 10%; (e) generation of Generator 4 is decreased by 10%; (f) generation 

of Generator 4 is increased by 10%. It can be observed that there is insignificant 

change in the performance of the LQG/LTR controlled system for various operating 

conditions compared to that at the nominal operating condition. This indicates that 

the optimally-tuned supervisory continuous-time LQG/LTR controller designed for 

nominal operating condition is sufficiently robust to maintain the satisfactory 

performance for various operating conditions.  
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(a) Generation of Generator 2 decreased by 10% 

 

(b) Generation of Generator 2 increased by 10% 

 

(c) Generation of Generator 3 decreased by 10% 
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(d) Generation of Generator 3 increased by 10% 

 

 

(e) Generation of Generator 4 decreased by 10% 

 

(f) Generation of Generator 4 increased by 10% 

Figure 3.8 ( )Lσ , ( )Sσ  and ( )Tσ  for various operating conditions 
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Table 3.3 lists closed-loop system’s performance measures for different operating 

conditions. Of particular interest is degradation of the inter-area mode’s damping 

when the operating conditions change. This is particularly evident in the cases where 

the power output of generators 2 and 3 is increased. In those cases the damping ratio 

reduces to less than 34%. It can also be observed that the maximum peak of ( )T jω , 

TM , is increased, indicating degradation of the performance and robustness. 

However, these changes in the performance measures are not significant. Also, the 

bandwidth is arguably unaffected and remains between 28 rad/s and 30 rad/s. 

Therefore, it can be concluded that for small-signal disturbances the designed 

controller is sufficiently robust when controlling the power system under different 

operating conditions. However, it is important to note that the robustness analysis 

reported in this section was performed using linear realisation of the power-system, 

which facilitates the usage of frequency response tools. In order to properly assess 

robustness of the designed LQG/LTR controller to large-signal disturbances, 

nonlinear model of the power system is used and the results are reported in Section 

3.6.  

 

 

Table 3.3 System performance properties for various operating conditions 

Loop TF 
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (% )ζ  ( )f Hz  

Nominal Case 67.1 0.60 0 1.11 29.5 39.9 57.6 20 

G2 decreased 
by 10% 

60.1 0.59 0 1.29 28.5 39.0 57.5 20 

G2 increased 
by 10% 

32.4 0.51 0 1.16 29.7 40.4 57.4 20 

G3 decreased 
by 10% 

59.8 0.56 0 1.30 28.7 39.2 56.5 20 

G3 increased 
by 10% 

33.1 0.45 0 1.13 29.7 40.3 58.4 20 

G4 decreased 
by 10% 

56.1 0.42 0 1.36 28.7 40.3 57.6 20 

G4 increased 
by 10% 

50.8 0.41 0 1.18 29.0 39.2 57.6 20 
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3.6 Non-linear Power System Simulation 

In order to properly assess the suitability of the designed LQG/LTR controller for the 

control of the considered power system, it is necessary to implement it on the non-

linear simulation of the power system. Once implemented, the controller is assessed 

in terms of its ability to reject small-signal disturbances, which is discussed in 

Section 3.6.1, as well as the large-signal disturbances, discussed in Section 3.6.2 and 

3.6.3. Finally, the robustness of the designed controller with respect to the changing 

operating conditions is assessed in Section 3.6.4. 

 

3.6.1 Case 1: Small Disturbance  

The small-signal disturbance is implemented by increasing the set-point for the 

terminal voltage of Generator 2 by 2.5% at time 0.2 seconds. The nominal steady-

state value of the terminal voltages of each generator is 1 p.u.. Thus the new steady-

state value of the terminal voltage of Generator 2 is 1.025 p.u., and the rest of the 

generators’ terminal voltages are kept at 1 p.u. Steady-state values of the generators’ 

speed deviations and electric powers are assumed to remain unchanged. Dotted lines 

in Figure 3.9 represent the response of the original system to the small disturbance, 

while the solid lines refer to the system response with the supervisory continuous-

time LQG/LTR controller. Figure 3.9 clearly shows that the speed deviation of each 

generator of the open-loop system is under-dapmed, thus the open-loop power 

system is unstable when subjected to a small disturbance. On the other hand, 

LQG/LTR maintains the stability with satisfactory response to the applied 

disturbance.    
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Figure 3.9 System response to small disturbance 

 

3.6.2 Case 2: Self-cleared Three-phase Fault 

A three-phase fault is applied at bus 5 at time 1 second. The fault is then cleared with 

auto-reclosing of the circuit breaker after 4 cycles (80 ms). The time response of 

speed deviation, electrical power and terminal voltage of generators are shown in 

Figure 3.10 for both the open-loop and the closed-loop system configuration. The 

open-loop system is shown to be unstable when subjected to a large disturbance. On 

the other hand, the supervisory continuous-time LQG/LTR is effective in stabilising 

the power system after the fault has been cleared.  
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Figure 3.10 System response to a self-cleared three-phase fault 

 

3.6.3 Case 3: Three-Phase Fault by Disconnecting Line 4   

Figure 3.11 shows the open-loop and the closed-loop time responses of the power 

system following a three-phase short-circuit fault applied on the transmission line 

between buses 5 and 7, followed by the action of disconnecting the faulty 

transmission line after 4 cycles (80 ms). This case is modelled by doubling the 

reactance of the transmission line, which represents the scenario in which one of the 

two lines between buses 5 and 7 is permanently disconnected. The time responses of 

the open-loop system are found to be unstable for this particular disturbance, as 

shown in Figure 3.11. Once again, the supervisory LQG/LTR controlled system 

satisfactorily damps electromechanical oscillations and maintains the stability of the 

closed-loop system.  
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Figure 3.11 System response to a three-phase fault by disconnecting line 

 

3.6.4 Case 4: Varying Operating Conditions 

Robustness of the supervisory LQG/LTR controller to the changes in the operating 

conditions was assessed for small-signal disturbances in Section 3.5.3. However, in 

order to properly assess the robustness for large-signal disturbances it is necessary to 

implement the supervisory controller on the nonlinear model of the power system.  

Therefore, the supervisory controller *LQGK  is applied on the non-linear model of the 

power system under different operating conditions. Large-signal disturbance is a self-

cleared three-phase fault applied at bus 5 at time 1 second with the self-clearing time 

of 80 ms. Different operating conditions are realized by decreasing and increasing the 

power output of Generators 2, 3 and 4 by 10% at each time. Figure 3.12 shows the 

electrical power output of the four generators for different operating conditions, 

when controlled by *
LQGK . It is clearly observed that the open-loop power system is 

unstable for all the considered operating conditions when subjected to a large-signal 

disturbance. On the other hand, the stability is preserved by the supervisory 

controller in the presence of a self-cleared three-phase fault and under different 
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operating conditions. However, the settling time of the response is longer than that 

observed in Section 3.6.2. In particular, the settling time observed in Section 3.6.2 

was found to be 3.5 seconds while the settling time of the response considered in this 

section is equal to 5.5 seconds. Such degradation in performance is somewhat 

expected due to the fact that the controller was tuned for nominal operating condition. 

Nevertheless, it is clearly shown that the designed supervisory controller is 

sufficiently robust when controlling power system under different operating 

conditions. 
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(b) Generation of Generator 2 increased by 10% 

 

 

(c) Generation of Generator 3 decreased by 10% 
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(d) Generation of Generator 3 increased by 10% 

 

 

(e) Generation of Generator 4 decreased by 10% 
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(f) Generation of Generator 4 increased by 10% 

Figure 3.12 Electrical power output for various operating conditions 

 

 

3.7 LQG/LTR for Power System Installed with PSS 

3.7.1 Power System Installed with PSS 

In this section, PSS is applied onto each generator of the considered power system in 

order to improve damping of the electromechanical oscillations by using the 

supplementary input signals to the generation excitation system. Figure 3.13 shows 

the block diagram that represents the structure of the power system with the 

supervisory controller implemented in addition to AVR and PSS regulators.  
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Figure 3.13 Schematic Block Diagram of the Supervisory Controlled Power System 

 

 

Modelling and tuning of PSS is discussed in Chapter 2, Section 2.4.5 where the 

controller order N is chosen to be 2 (two lead-lag blocks) in the application. The 

resulting linearised state-space model of the power system, including PSS regulators 

as its integral part, has 51 states, 4 inputs, and 12 outputs. Figure 3.14 shows the 

locations of the dominant open-loop poles with positive imaginary part for the 

system with and without PSS, respectively. It is observed that the damping of the 

electromechanical modes is improved by the application of PSS, which is 

unsurprising. Table 3.4 lists the frequencies and the damping ratios of the 

electromechanical modes. Both Figure 3.22 and Table 3.4 show that the damping of 

the three electromechanical modes has been improved by adding local PSS 

controllers. Also, it is observed that the two local modes are well-damped, while the 

damping to inter-area mode is still insufficient and, as a result, the supervisory 

controller may be required. 
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Figure 3.14 Dominant poles of the system without PSS & with PSS 

 

Table 3.4 Electromechanical modes of the 4-machine, 8-bus power system 

 Without PSS With PSS 
Modes Pole Locations f (Hz) ζ  (%) Pole Locations f (Hz) ζ (%) 

Local 1 1.1962 8.2158i− ±  1.32 14.4 1.6176 8.5822i− ±  1.39 18.5 

Local 2 0.8186 6.9826i− ±  1.12 11.6 1.2607 7.3485i− ±  1.19 16.9 

Inter-area 0.0353 3.6734i− ±  0.58 0.96 0.1693 3.5833i− ±  0.57 4.7 

 
 

Figure 3.15 shows the maximum and minimum singular value plots of the open-loop 

power system transfer function with and without PSS. It can be seen that the 

behaviour of the two systems is almost identical for the frequencies above 1 rad/s. At 

low frequencies, however, the gain of the system installed with PSS is smaller than 

that of without PSS. In particular, for frequencies up to 0.1 rad/s, ( )Gσ  for the 

system without PSS is greater by approximately 7 dB. Also, the resonant peaks, 

occurring at frequencies 3.7 rad/s and 7.2 rad/s, are observed to be reduced by 14 dB 

and 3 dB, respectively, for the system that has PSS controllers installed. This 

indicates that the damping of electromechanical modes is improved by applying local 

PSS controllers. 
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Figure 3.15 Singular value plots of open-loop power system 

 

3.7.2 Continuous-time LQG/LTR 

The state-space model of the power system installed with PSS is expressed in (3.36): 

PSS PSS

PSS

x A x B u w

y C x v

= + +
= +
ɺ

                                       (3.36) 

where ( )x t , ( )u t , and ( )y t  are system state, input and output vectors respectively. 

PSSA , PSSB , PSSC  are the matrices of the state-space model depicting 4-machine 

power system with local PSS installed for each of the generators. The same synthesis 

procedure as discussed in Section 3.5 is followed in this section to design the 

supervisory continuous-time LQG/LTR controller. The integral action is also 

introduced by applying model (3.33) in order to form an augmented state-space 

model. The augmented model is denoted as _PSS aG , which is expressed by the 

following state-space model. 

_ _

_ _

a PSS a a PSS a

PSS a a PSS a

x A x B u w

y C x D u v

= + +

= + +

ɺ
                                 (3.37) 

where _PSS aA , _PSS aB , _PSS aC  and _PSS aD  are the augmented state-space model 

matrices, and ax  is the augmented state vector. The cost function weightings used for 

the controller design are denoted as 'Q , 'R , 'W  and 'V , respectively, and are 

expressed as follows:  
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' ' 'TQ M QMρ= ,  'R I= , ' ' 'TW W= Γ Γ , 'V qI= .                (3.38) 

where  

_' PSS aM C= , { }, ,
e tP VQ diag Q Q Qω∆= , _' PSS aBΓ = .               (3.39) 

with   

                      
1

24 10
ePQ −= ⋅ ,  

2

14 10
ePQ −= ⋅ , 

3

14 10
ePQ −= ⋅ , 

4

24 10
ePQ −= ⋅ , 

1

15 10
tVQ −= ⋅ ,  

2

28 10
tVQ −= ⋅ , 

3

28 10
tVQ −= ⋅ ,  

4

15 10
tVQ −= ⋅ ,             (3.40) 

                      
1

31 10Q ω∆ = ⋅ ,   
2

22 10Q ω∆ = ⋅ , 
3

22 10Q ω∆ = ⋅ , 
4

31 10Q ω∆ = ⋅ . 

This particular choice of the cost function weighting matrices was made to ensure 

that the closed-loop system performance and robustness measures, discussed in 

Section 3.3, are satisfied.  

The resulting supervisory continuous-time LQG/LTR controller is denoted as P
LQGK . 

The supervisory controller *
LQGK  designed for the system without PSS in Section 3.5 

is also applied onto the system with PSSs. This represents the scenario in which the 

controller is initially designed for the power system that has no PSS regulators 

implemented and then it is deployed in the situations in which PSS regulators are 

present. Figures 3.16 and 3.17 show the maximum and the minimum singular value 

plots of closed-loop transfer function ( )L s , sensitivity transfer function( )S s  and the 

complementary sensitivity transfer function ( )T s  of the system with P
LQGK  and *

LQGK , 

respectively. Table 3.5 lists the corresponding performance measures obtained for 

the power system when controlled by PLQGK  and *
LQGK . In the case of P

LQGK  the cross-

over frequencies for ( )Lσ  and ( )Lσ  are reduced by 1.6 rad/s when compared to 

*
LQGK . Maximum peak of the complementary sensitivity transfer function is smaller 

indicating the improvement in terms of the performance and robustness, when 

compared to *
LQGK . Applying controller P

LQGK  improves the damping of the inter-area 

electromechanical mode when compared to *
LQGK , improvement of 64.44% 

compared 56.08% respectively. However, it is also very reassuring to observe that 

the supervisory controller designed assuming absence of PSS regulators, i.e. *LQGK
,
 

behaves satisfactorily even if they are present.  
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Figure 3.16 ( )Lσ  of the system with PSS applying PLQGK  and *
LQGK  

 

Figure 3.17 ( )Sσ and ( )Tσ  of the system with PSS applying PLQGK  and *
LQGK  

 

Table 3.5 System performance properties 

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (% )ζ  ( )f Hz  
P
LQGK  64.44 0.57 0 1.2 29.2 38.4 56.0 20 

*
LQGK  56.08 0.43 0 1.0 29.6 40.0 57.6 20 

 

 

3.7.3 Non-linear Simulation 

In order to fully assess the effectiveness and the robustness of the designed 

continuous-time LQG/LTR controller, non-linear simulation of the power system, 
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including PSS regulators is utilised. A three-phase fault is applied at bus 5 at time 1 

second. The fault is cleared with auto-reclosing the circuit breaker after 4 cycles (80 

ms).  

The unstable time response of the open-loop system without PSS or supervisory 

controller implemented is shown in Figure 3.18 with a dotted line. The inclusion of 

PSS resulted in an increase of the damping of the inter-are oscillation mode. As a 

result, the responses are stable as shown in Figure 3.18 (blue dashed line). However, 

the inter-area mode is still lightly-damped and as a result the system’s response is 

still rather oscillatory with the settling time greater than 10 seconds when subject to a 

severe disturbance. The solid lines in Figure 3.18 represent the time response of the 

power system equipped with both PSS and the supervisory LQG/LTR controller 

p
LQGK . The resultant response of the closed-loop system is clearly shown to achieve 

satisfactory level of damping with the minimal settling time. 
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Figure 3.18 System responses to a self-cleared three-phase fault 

 

Next, controllers P
LQGK  and *

LQGK  are compared in the presence of the three-phase 

fault and the results are shown in Figure 3.19. It can be observed that the speed 

deviation and the magnitude of the electrical power output are smaller when the 
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power system is controlled by the supervisory controller P
LQGK  when compared to 

*
LQGK  during transient period, which illustrates the superiority of P

LQGK  and *
LQGK  in 

terms of the improved damping of the inter-area mode as well as the effectiveness in 

stabilising the power system and rejecting large disturbances. Nevertheless, the fact 

that *
LQGK  managed to achieve satisfactory response is a positive result indicating 

satisfactory robustness of the controller that was designed for the power system 

without any PSS regulators implemented. 
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Figure 3.19 System responses for P
LQGK  and *

LQGK  

3.8 Summary  

This chapter was concerned with the design of the supervisory optimal controller 

using LQG/LTR design procedure in order to improve the damping of the 

electromechanical oscillations of the multi-machine power system. This supervisory 

controller used the local information (rotor angle, voltage and electrical power output) 

from each generator in order to improve the rotor-angle stability in the presence of 

both small-signal and large-signal disturbances. Loop transfer recovery procedure at 

the plant input was used to recover the robustness and performance properties of the 

classical optimal control regulator.  

The performance and the robustness of the resulting closed-loop system were 

analysed using frequency domain tools and assuming linear system model. Also, the 

small-signal and large-signal disturbances were applied to assess the stability of the 

non-linear power system regulated by the designed supervisory controller. In 

addition, the robustness of the designed controller was assessed by considering 

power system operation under different operating conditions. All the results 

demonstrated the ability of the designed supervisory controller to improve rotor 

angle stability of the multi-machine power system.  
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Additionally, the supervisory continuous-time LQG/LTR controller was designed for 

the multi-machine power system equipped with the local PSS regulators. 

Corresponding results clearly showed that the designed controller was sufficiently 

effective and robust in enhancing the wide-area power system stability in the 

presence of PSS regulators and regardless of whether or not PSS regulators were 

assumed to be installed during the supervisory controller’s design. 
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Chapter 4  

Discrete-Time LQG/LTR for Multi-

Machine Power System 
 

 

 

4.1 Introduction  

In Chapter 3, a continuous-time supervisory LQG/LTR controller was designed to 

improve the closed-loop system response by increasing the damping of the 

oscillatory electromechanical modes. This controller is assumed to execute 

continuously in time, i.e. with the sampling frequency tending to infinity. Such 

assumption is not unusual in the field of power system control. In fact, majority of 

the researchers assume continuous-time implementation when designing wide-area 

controllers [20, 31, 41-44]. However, the resulting control systems’ capabilities are 

heavily reliant on a critical assumption that the sampling rates of the practical 

computers used to implement designed controllers are sufficiently high to ensure that 

the performance is not compromised. Such assumption may become inadequate 

when considering control of large-scale power systems, containing many areas and 

generating units, for which computation time may not be sufficiently small to 

warrant the controller design in continuous-time. This is particularly true when 

considering the problem of rotor angle stability for which the dominant dynamics are 

found in the frequency range of 0.1 to 2.0 Hz. In such control applications the 

sampling and computation time may prove to be critical performance-limiting 

parameters. Therefore, it would be advantageous to investigate and understand this 



102 
 

impact by addressing the problem of multi-area supervisory control using discrete-

time framework. Then, the performance of the resulting discrete-time controller can 

be assessed for different values of the sampling period. 

When developing discrete-time controllers, it is quite common to carry out 

continuous-time design first, followed by the discretisation of the resulting 

continuous-time controller. Such practice is often followed despite the availability of 

the design methods in discrete-time framework [86]. However, it is argued in this 

thesis that it would be advantageous to consider controller design in the discrete-time 

framework by firstly discretising the open-loop system dynamics. As a result, the 

early design decisions regarding sampling period, and possible sampling skew or 

computational delay can be incorporated into the actual controller design through 

their integration into the discrete-time model of an open-loop system [86].  

Therefore, this chapter focuses on the design of the supervisory LQG/LTR controller 

using discrete-time framework to represent open-loop dynamics of the studied power 

system. Also, this chapter focuses on the analysis of the impact that the sampling 

period has on the performance of the closed-loop control system. The effectiveness 

and robustness of the designed supervisory discrete-time LQG/LTR controller is then 

verified on the non-linear power system simulation with and without Power System 

Stabilizers. Both small-signal and large-signal disturbances are applied to the power 

system simulation in order to evaluate the designed controller. Also, the robustness 

of the supervisory controller with respect to changing operating conditions is 

assessed by changing the power transfer between the two areas in the studied power 

system. 

 

4.2 z-Plane Specifications 

In order to use the design methods discussed in Chapter 3 for the synthesis of the 

discrete-time controllers it is necessary for the system model as well as the 

performance specifications to be translated into the z-plane. Poles in the s-plane 

ns jσ ω= +  are mapped to ssTz e=  in the z-plane. Note that the real part of the pole 

in the s-plane (σ ) is mapped to the radius of the pole in the z-plane as sTr eσ= , 
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while the natural frequency in s-plane ( nω ) is mapped to the angle of the pole in 

polar coordinates in the z-plane as d sTθ ω=  where 21d nω ζ ω= −  [87]. The left half 

of the s-plane is mapped into the interior of unit circle centred at the origin in the z-

plane. The mapping of the margin to distinguish the poorly-damped and the well-

damped oscillation modes in the s-plane to the z-plane is shown in Figure 4.1. The 

eigenvalue located inside the dashed curve is well-damped, and between the dashed 

curve and the unit circle is poorly-damped.  

 

Figure 4.1 Mapping of the damping margin 

Figure 4.2 shows the mapping between the location of the pole in s-plane to the the 

location of that same pole in the z-plane for sampling period 0.01sT = . It can be seen 

that the dominant poles located near the imaginary axis in the s-plane are mapped to 

be located near the unit circle in the z-plane. Therefore, the pole located on the unit 

circle in the z-plane indicates that the open-loop power system is not stable. 

 

Figure 4.2 Eigenvalues of 4-Generator system without PSS 
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The left part of Figure 4.3 displays the three electromechanical oscillation modes in 

the s-plane, the right part of Figure 4.3 shows the corresponding discrete-time 

electromechanical oscillation modes for different sampling periods 0.001sT = , 0.01, 

0.05 and 0.1 seconds, respectively, in the z-plane.  The pole located above the dashed 

line in s-plane indicates that the inter-area oscillation mode is poorly-damped. The 

discrete-time eigenvalues corresponding to the inter-area oscillation mode for 

different sampling periods are all located between the margin curve and the unit 

circle in z-plane, i.e. they also appear to be poorly-damped. Thus, the properties of 

the oscillatory modes observed using discrete-time framework coincide with those 

observed using continuous-time framework. 

 

Figure 4.3 Electromechanical oscillation modes 

It is important to note that the frequency domain plot of ( )sj TG e ω  repeats for snω ω=  

to ( 1) sn ω+ , 0,1, 2,...n = . ( 2 /s sTω π= ). Thus it is necessary to plot ( )sj TG e ω  only 

for the range of 0ω =  to 2N s=ω ω , where 2N s=ω ω  is known as Nyquist 

frequency [50]. Once z is replaced by sj Te ω  in the z-domain transfer function, all the 

frequency-domain analysis techniques available for continuous-data systems can be 

applied to discrete-data systems [87].  

 

4.3 Discrete-Time LQG/LTR 

In order to design supervisory discrete-time LQG controller it is necessary to 

translate the corresponding control problem from the continuous-time into the 
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system model, given in (3.10), and the controller’s cost function, given in (3.12), into 

their discrete-time equivalents, under the assumption that the zero-order-hold (ZOH) 

devices are used for the signal reconstruction. 

  

4.3.1 Discretisation of the Plant  

Assuming periodic sampling with period sT : 

st kT= ,  0, 1,...k =  

The resulting input signal ( )u t , reconstructed using Zero-Order-Hold (ZOH) device, 

is constant over the sampling period, and the equivalent discrete-time system 

corresponding to (3.10) is given by [50]: 

( 1) ( ) ( )

( ) ( )
k

k

x k x k u k w

y k Cx k v

+ = Φ + Γ +
= +

                                     (4.1) 

with  

sATeΦ = , 
0

sT Ase dsBΓ = ∫ .                                          (4.2) 

Where kw  and kv  are discrete-time Gaussian white noise processes with zero mean 

and covariance given as [88]: 

{ }
0

( )
sTT As As T

k k kW E w w e W e ds= = ∫ ,  

{ } ( )T
k k kV E v v V k= = ,                                               (4.3)  

{ } 0T
k kE w v = , { } 0T

k kE v w = . 

The calculation of Φ  and Γ  is usually done by using the following series expansion: 

( )
2 2 3 1

0 2! 3! 1 !
s

i i
T As s s s

s

AT A T A T
e ds IT

i

+

Ψ = = + + + + +
+∫ ⋯ ⋯                (4.4) 

Where Φ  and Γ  are calculated by:  

I AΦ = + Ψ , BΓ = Ψ .                                          (4.5) 
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4.3.2 Discretisation of the cost function 

The continuous-time cost function (3.14) is transformed into its discrete-time 

equivalent by integrating (3.14) over a time interval of length sT  , which denotes the 

sampling period [50]: 

0

( ) ( ) ( ) ( )T T
k k k

k

J E x k Q x k u k R u k
∞

∗

=

 = + 
 
∑                            (4.6) 

where  

0

0

( ) ( ) ,

( ) ( ) .

s

s

T T
k

T T
k

Q s Q s ds

R s Q s R ds

= Φ Φ

 = Γ Γ + 

∫

∫
                                     (4.7) 

and ( )sΦ  and ( )sΓ  are defined as  

 ( ) Ass eΦ = , 
0

( )
s Ats e dtBΓ = ∫ .                                    (4.8) 

 

It is assumed that kQ  is positive semidifinite and that kR  is positive definite. 

Note that the discrete-time cost function weighting matrices kQ  and kR  given in (4.6) 

and (4.7) are affected by the sampling period sT . Numerical calculations involved in 

computing Φ  and Γ can be referred to reference [87].  

 

4.3.3 Discrete-Time LQG  

The discrete-time LQG control problem is to find the optimal control sequence ( )u k  

which minimizes the cost function (4.6) when the process is described by (4.1). Note 

that the control sequence as well as the cost function in (4.6) and the system 

dynamics in (4.1) are defined in discrete-time assuming the presence of ZOH 

reconstruction devices. Analogous to continuous-time, discrete-time separation 

theorem is used to allow the synthesis of discrete-time LQG controller to be split into 

two sub-problems, which can be solved separately. One of these is the discrete-time 

optimal regulator control problem, solution of which is full state feedback control 
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law gain _r kK . The other problem is concerned with optimal state estimation and its 

solution is the discrete-time Kalman Filter gain _f kK . 

Given the deterministic model of the plant (4.1) (without process and measurement 

noises), the discrete-time optimal control law that minimizes the cost function 

0

( ) ( ) ( ) ( )T T
k k k

k

J x k Q x k u k R u k
∞

=

= +∑                                  (4.9) 

is given by  

_ ˆ( ) ( | )r ku k K x k k= −                                              (4.10) 

where _r kK  is the optimal regulator gain 

( ) 1

_ _ _( ) ( )T T
r k k r k r kK R P k P k

−
= + Γ Γ Γ Φ                           (4.11) 

and _r kP  is the positive semidefinite solution of the discrete algebraic Riccati 

equation (DARE) 

( )_ _ _ _ _( ) ( 1) ( 1)T T T
r k r k r k k r k r k kP k P k K R P k K Q= Φ + Φ − + Γ + Γ +   (4.12) 

where kQ  and kR  are the discrete-time weighting matrices which are defined as in 

(4.7).  

The discrete-time Kalman filter provides the optimal estimate ̂ ( | )x k k  of the state 

( )x k , so that [ ] [ ]{ }ˆ ˆ( ) ( | ) ( ) ( | )
T

E x k x k k x k x k k− −  is minimized. The discrete-time 

Kalman filter implementation consists of two steps at each time k, described below. 

One of these is time update, by which ˆ( 1| 1)x k k− −  is updated to ̂( | 1)x k k− , and 

the other is measurement update, in which the measurement of ( )y k  at time k is 

incorporated to provide the updated estimate ˆ( | )x k k .  

Time update: 

                        ̂ ˆ( | 1) ( 1| 1) ( 1)x k k x k k u k− = Φ − − + Γ −                                     (4.13) 

       _ _( | 1) ( 1| 1) T
f k f k kP k k P k k W− = Φ − − Φ +                                (4.14) 

Measurement update: 

1

_ _ _( | 1) ( | 1)T T
f k f k f k kK P k k C CP k k C V

−
 = − − +                   (4.15) 
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_ _ _( | ) ( | 1)f k f k f kP k k I K C P k k = − −                                      (4.16) 

[ ]_ˆ ˆ ˆ( | ) ( | 1) ( ) ( | 1)f kx k k x k k K y k Cx k k= − + − −                       (4.17) 

where  _f kP  is positive definite, and _ ( )f kK k  is the discrete-time Kalman filter gain. 

 

The discrete-time LQG controller can then be described by the following: 

_ _ _

_

( )
0

r k f k f k

dLQG
r k

K K C K
K z

K

Φ − Γ − 
=  −                

(4.18) 

 

4.3.4 Loop Transfer Recovery  

Loop Transfer Recovery (LTR) is applied to the discrete-time LQG controller 

following the similar procedure to that presented in Section 3.3.3. First of all, note 

that ( )dG z  is denoted as the transfer function of the discrete-time model. Two cases 

are considered as follows. 

Recovery at plant input: Discrete-time Kalman filter gain _ ( )f kK k  is obtained such 

that the loop transfer function ( ) ( )dLQG dK z G z  approaches the optimal regulator loop 

gain 1
_ ( )( )r kK k zI A B−− . The open-loop system must be minimum phase and must 

have at least as many outputs as inputs i.e. r m≥ .  

Recovery at plant output: Discrete-time LQR regulator gain _ ( )r kK k  is obtained 

such that the loop transfer function ( ) ( )d dLQGG z K z  approaches the Kalman Filter 

loop gain 1
_( ) ( )f kC zI A K k−− . The open-loop system must be minimum phase and 

must have at least as many inputs as outputs i.e. r m≤ . 

 

4.3.5 Discrete-Time Cost Function Weighting Selection 

For discrete-time LQG, the cost function weights kQ  and kR  are calculated by 

applying transformation described in (4.7) and (4.8) to their continuous-time variants. 
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By doing this, the cost function used to synthesise the optimal controller is 

transformed from the continuous-time to the discrete-time framework. It can be 

shown that the value of ratio of k kQ R  is equal to the value of ratio of Q R, which 

is designated as ρ . The discrete-time LQR loop transfer matrices is derived as 

 1
_ _( ) ( )j

r d r kL e K zIω −= −Φ Γ                                    (4.19) 

which satisfies the following return difference identity: 

_ _ _ _( ) ( )
Hj j H

r d k r d k r d k r dI L e R I L e R G Q Gω ω   + + = +    ,  0 ω∀ ≤ < ∞     (4.20) 

where 

1
_ ( )r dG M zI −= −Φ Γ                                            (4.21) 

Therefore: 

( ) ( )

( ) ( )

1 2 1 2
_ _ _ _

1 2 1 2
_ _

2 1 2
_ _

[ ( )]
Hj

i d r d i r d k r d k

H

i r d k r d k

i d r d k

I L e I G Q G Q

I G Q G Q

I G Q

ωσ λ ρ

ρλ

ρσ

 + = +  

 = +   

 = +  

                   (4.22) 

From (4.22) we can see that an increase in ρ  by a factor α  leads to an increase in 

regulator gain _r kK  and loop gain _r dL  by a factor α .  

 

4.4 Discrete-Time LQG/LTR for Power System 

The block diagram of the closed-loop system, including 2-area 4-machine power 

system simulation, supervisory discrete-time controller, the analog-to-digital (A/D) 

converter, the digital-to-analog (D/A) converter and a zero-order hold (ZOH), is 

shown in Figure 4.4. The modelling of the power system is discussed in Chapter 2. It 

is assumed that the analogue measurements are sampled by A/D converter with the 

sampling period sT . Once the discrete-time supervisory controller computes the 

required digital control signals, D/A converts them to analogue signals which are fed 

to the power system. ZOH device is then used to complete the reconstruction of the 
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analogue signal by holding each sample value constant for a duration of one sample 

interval.  

The performance of the discrete-time control system is critically influenced by the 

choice of the sampling period sT  [50]. From the viewpoint of the controller design, it 

is desirable to select the sampling period to be as small as possible in order to 

recover the performance achieved by the equivalent continuous-time controller [87]. 

However, from the implementation perspective, if the sampling period is chosen to 

be too small then the computational requirement exerted on the control system may 

be prohibitively high. In the case of wide-area control design, this also leads to the 

problem of selecting suitable Phase Measurement Units (PMU) data reporting rates 

[89]. Therefore, there is an inevitable compromise between the cost and the 

performance when selecting an appropriate sampling period.  

 

sT
 

Figure 4.4 Block diagram of the supervisory discrete-time controlled power system 

 

The first step when designing discrete-time LQG/LTR controller is to discretise the 

open-loop power system model using the procedure outlined in Section 4.3.1. Once 

the model is transformed into the discrete-time framework then the standard discrete-

time LQG/LTR design procedure can be applied. Note, however, that the selection of 

sampling period directly influences realisation of the discrete-time model and, 

therefore, has far-reaching consequences on the performance and robustness of the 

resulting closed-loop control system. In this chapter it is initially assumed that the 

sampling period is equal to 0.01sT =  seconds. Decision to start with such small 

sampling period was made in order to allow the design of a benchmark discrete-time 
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controller. Subsequently, LQG/LTR controllers with larger sampling periods can 

then be compared against this benchmark.  

Once the open-loop system is discretised it is important to assess its fidelity with 

respect to the corresponding continuous-time model. Since both of these models are 

of linear time-invariant type, it is appropriate to compare them in frequency domain. 

Figure 4.5 shows the singular value plots of the open-loop frequency responses for 

the power system model given in discrete-time and the continuous-time power 

system model. It is clearly observed that the system performance of the discrete-time 

model is very similar to the performance of the continuous-time model within the 

range of frequencies from 0 Hz to 50 Hz. This indicates that the sampling period of 

0.01sT =  seconds is sufficiently small to allow discrete-time model to replicate the 

great majority of the continuous-time system behaviour.  

 

 

Figure 4.5 Singular value plot of open-loop transfer function 

 

4.4.1 Discrete-Time Optimal Regulator Design 

Similarly to its continuous-time counterpart, discrete-time LQG/LTR controller 

incorporates integral action in order to track persistent disturbances and ensure 

accurate set-point tracking. This is achieved by augmenting the state-space model 

with the integrator sub-system whose poles are placed on the unit circle, which is in 
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accordance with the mapping of poles from s-plane to z-plane as stated in Section 4.2. 

The nominal system model (4.1) is augmented as follows: 

( 1) ( )0
( )

( 1) ( ) 0i i

x k x k
u k

x k x kC I

+ Φ Γ      
= +      +       

                    (4.23) 

where 
0

a I

Φ 
Φ =  Γ 

, 
0a

Γ 
Γ =  

 
, [ ]0aC C= , and aD D=  are denoted as the state-

space matrices related to the discrete-time model.  

In order to translate continuous-time LQG cost function into its discrete-time 

equivalent, the weighting matrices kQ  and kR  are derived by using the discretisation 

procedure given in equation (4.7) on the matrices Q and R, stated in Section 3.7 and 

related to continuous-time LQG cost function. The discrete-time optimal regulator 

gain, denoted as _r dK , is then obtained by solving the discrete-time Riccatti equation: 

( )_ _ _ _ _( ) ( 1) ( 1)T T T
r k a r k a r k k a r k a r k kP k P k K R P k K Q= Φ + Φ − + Γ + Γ +  

where _r kP  is positive semidefinite. 

Figure 4.6 shows the maximum and minimum singular value plots of the resulting 

discrete-time optimal regulator loop transfer function 1
_ _ ( )r d r d a aL K zI −= − Φ Γ  (red 

dash line) compared with the continuous-time optimal regulator loop transfer 

function * * 1( ) ( )r r a aL s K sI A B−= −  (blue solid line), which was designed in Section 3.5. 

Figure 4.7 shows the corresponding singular value plots of the sensitivity transfer 

function S and complementary sensitivity transfer function T. Also, Table 4.1 

summarises the important performance measures obtained for the power system 

when controlled using *
rK  and _r dK , respectively. In the case of discrete-time 

optimal regulator _r dK , the cross-over frequencies for ( )Lσ  and ( )Lσ  as well as 

the bandwidth Bω  are somewhat reduced when compared to *
rK . Also, maximum 

peak of T, TM , is increased from 1.1 dB to 1.41 dB, thereby indicating the 

degradation in the performance and robustness when compared to *
rK . Finally, 

damping of the inter-area electromechanical mode is reduced from 67.1% to 66.9% 

when using optimal regulator _r dK . These changes in values indicate degradation of 
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discrete-time controller’s performance and robustness. However, the observed 

differences are deemed to be insignificant and it is expected that the discrete-time 

controller will deliver performance that is almost identical to that obtained using its 

continuous-time equivalent. 

 

Figure 4.6 ( )Lσ for *
rK  and _r dK  

 

Figure 4.7 ( )Sσ  and ( )Tσ for *
rK  and _r dK  

 

Table 4.1 System performance properties 

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (%)ζ  ( )f Hz  
*
rK  67.10 0.60 0 1.10 30.2 40.4 58.5 20 

_r dK  66.9 0.60 0 1.41 26.0 37.0 51.2 20 
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4.4.2 Loop Transfer Recovery at the Plant Input 

The discrete-time Kalman Filter is designed in order to recover the optimal discrete-

time regulator (discrete-time LQR) loop gain at the plant input. The covariance of the 

discrete-time Gaussian white noises kW  and kV  is given by (4.3), assuming ZOH 

type of analogue signal reconstruction. Similarly to continuous-time LQG/LTR 

procedure, it can be shown that as q tends to zeros, the recovery of the optimal 

regulator loop gain at the plant input is achieved [29]. The discrete-time Kalman 

filter gain _f dK  is then obtained by solving (4.14) and (4.16). Once _f dK  is 

calculated, the state-space realization of the discrete-time LQG controller is given as: 

_ _ _

_

( ) ( ) ( )
( )

( ) 0
a a r k f k a f k

dLQG
r k

K k K k C K k
K z

K k

Φ − Γ − 
=  −                    

(4.24) 

Figure 4.8 shows the singular values of the discrete-time LQG loop function 

_dLQG a dK G−  (dash lines), compared with the singular values of discrete-time 

regulator loop function 1
_ ( )r d a aK zI −−Φ Γ  (solid lines), for 210q −= , 410− , 610− , 

810−  and 1010− . As q is reduced, the discrete-time LQG loop gain approaches that of 

the optimal regulator loop gain. However, the recovery cannot be fully achieved for 

discrete-time design with 610q −= , with which a virtual full recovery is achieved for 

continuous-time LQG/LTR, as shown in Figure 3.6. Even if q is reduced to 1010q −= , 

the complete loop transfer recover is not achieved as shown in Figure 4.9. Table 4.2 

compares the system performance measures obtained for the closed-loop system 

when controlled by using _r dK  and  dLQGK . In the case of dLQGK , the cross-over 

frequencies for ( )Lσ  and ( )Lσ  as well as the bandwidth Bω  are reduced when 

compared to _r dK . Such reduction results in a more sluggish response to 

disturbances or set-point changes. The maximum peak of T, TM , is increased from 

1.2 dB to 1.5 dB, indicating some insignificant degradation of the closed-loop 

system’s robustness and performance. Furthermore, the damping ratio of the 

electromechanical mode has reduced insignificantly from 66.9% to 66.4% when 

using discrete-time LQG/LTR as opposed to discrete-time LQR controller. Therefore, 
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some degradation in performance is observed but this degradation is not deemed to 

be consequential and it can be concluded that the satisfactory loop transfer recovery 

has been achieved for the discrete-time LQG/LTR controller.  

 

    (a) 210q −=                                                   (b) 410q −=  

 

 (c) 610q −=                                                     (d) 810q −=  

 

(e) 1010q −=  

Figure 4.8 LTR for (a) 210 ,q −=  (b) 410 ,q −=  (c) 610 ,q −=  (d) 810 ,q −=  (e) 1010q −=  
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Figure 4.9 ( )Sσ  and ( )Tσ  of the closed-loop using dLQGK  and _r dK  

 

Table 4.2 System performance properties with *
LQGK  

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) 

Roll-off 
Rate 

dB/decade (%)ζ  ( )f Hz  

_r dK  66.9 0.60 0 1.2 27.8 37.0 51.2 20 

dLQGK  66.4 0.60 0 1.5 24.6 35.8 49.3 20 

 

 

4.5 Effects of Sampling Period  

In Section 4.4, a supervisory discrete-time LQG/LTR controller was designed for the 

sampling period of 0.01sT =  seconds. In this section, different values of sampling 

period are chosen and then their impact on system performance and robustness is 

assessed. These different sampling periods are selected to be: 0.01sT = , 0.02, 0.05, 

0.1 seconds. For each of these sampling period, the system open-loop model and the 

corresponding cost function of the LQG/LTR controller are discretised according to 

(4.1) and (4.9), respectively. Then the discrete-time controller is synthesised as 

detailed in Section 4.3. Singular value plots of L, S and T for the resulting closed-

loop system are shown in Figure 4.10. One notable observation from Figure 4.10 is 

that loop gains reduce as the sampling period, sT , increases indicating diminishing 

effect of feedback, which is somewhat expected. Table 4.3 also lists closed-loop 

system’s performance measures for different sampling periods. In particular, it is 
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observed that as sT  increases, the cross-over frequencies for ( )Lσ  and ( )Lσ  as well 

as the bandwidth Bω  are reduced. The maximum peak of T, TM , is increased from 

1.1 dB up to 10.1 dB when sT  is increased from 0.01 to 0.1, indicating significant 

degradation in terms of the closed-loop system’s performance and robustness. Also, 

the damping ratio of the critical mode is reduced from 67.1% to 62.8% as sT  is 

increased from 0.01 to 0.1. These results indicate that the sampling period is 

increased to an extent that the expected bandwidth, achieved using the continuous-

time controller, violates the standard sampling theory [87]. More specifically, it is a 

standard rule in discrete-time control systems to specify closed-loop bandwidth to be 

at least ten times smaller than the sampling frequency, i.e. 10s Bf > ω  in Hz, where 

1s sf T=  [90]. Therefore, the reduction of the closed-loop system’s bandwidth is 

necessary in order to retain some performance and robustness qualities while 

implementing discrete-time LQG/LTR controller with a relatively large sampling 

period.  

 

(a) 0.01sT =  

 

(b) 0.02sT =  



118 
 

 

(c) 0.05sT =  

 

(d) 0.1sT =  

Figure 4.10 ( )Lσ , ( )Sσ  and ( )Tσ for different sampling periods 

 

 

Table 4.3 System performance properties for different sampling periods 

sT  
critical  mode 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (%)ζ  ( )f Hz  

Continuous-time 67.1 0.60 0 1.1 29.5 39.9 57.6 

0.01 66.4 0.60 0 1.5 24.6 35.8 49.3 

0.02 66.4 0.60 0 3.1 16.9 26.2 31.8 
0.05 65.2 0.60 0 7.1 10.0 15.7 18.4 
0.1 62.8 0.59 0 10.1 0.5 5.7 11.2 

 

 

The closed-loop bandwidth Bω  obtained with 0.01sT =  seconds, is found to be equal 

to 24.6 rad/s, as shown in Table 4.3. Therefore, the recommended sampling period 

should be no greater than 0.025 seconds in order not to violate the requirement that 

10s Bf > ω . However, if the sampling period is to be increased above 0.025 seconds 

then the discrete-time LQG/LTR controller has to be redesigned with the reduced 

bandwidth in order to retain performance and robustness qualities.  
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The supervisory discrete-time LQG/LTR controller is firstly redesigned for 0.01sT =  

seconds, which would provide the benchmark controller against which other 

controllers with increased sampling period can be compared. According to (4.22), 

reduction in the bandwidth is achieved by reducing the scalar ratio between the cost 

function weights Q and R, ρ . The retuned value of ρ  is equal to 1. The redesigned 

discrete-time controller is denoted as '
dLQGK . Figure 4.11 shows the singular value 

plots of L, S and T using '
dLQGK  for 0.01sT =  seconds compared to that of its 

continuous-time counterpart. Corresponding system performance indicators are listed 

in Table 4.4. It is observed in Figure 4.11 that the performance of the redesigned 

discrete-time LQG/LTR controller is almost identical to that of the continuous-time 

controller up to the Nyquist frequency of 314 rad/s. By re-tuning the cost function 

weights, the closed-loop bandwidth Bω  is reduced from 24.6 rad/s down to 5.9 rad/s, 

which satisfies the sampling constraint 10s Bf > ω . Cross-over frequencies, closed-

loop bandwidth and TM  are also significantly reduced. Finally, the damping of the 

inter-area mode is reduced from 66.4% down to 47.9%.       

 

Figure 4.11 ( )Lσ , ( )Sσ  and ( )Tσ  using '
dLQGK  for 0.01sT =  

 

Table 4.4 System performances for retuned controller 

Controller 
critical  mode 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (%)ζ  ( )f Hz  

dLQGK  66.4 0.60 0 1.5 24.6 35.8 49.3 

Continuous-time 57.7 0.54 0 0.1 7.5 6.6 13.5 
'
dLQGK  47.9 0.60 0 0.1 5.9 5.7 12.5 
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It has been shown that the closed-loop system performance of the retuned discrete-

time LQG/LTR controller '
dLQGK  is very close to that of the equivalent continuous-

time LQG/LTR controller. Now, the discrete-time LQG/LTR controller design 

procedure is repeated for other sampling periods and the resulting closed-loop system 

is assessed and compared to that obtained with controller '
dLQGK . Figure 4.12 shows 

the singular value plots of L, S and T for sampling periods: 0.02sT = , 0.05 and 0.1 

seconds compared with 0.01sT =  seconds. It is observed that loop gains are reduced 

as the sampling period, sT , increases. Table 4.5 also lists closed-loop system’s 

performance measures for different sampling periods. As sT  increases, the cross-over 

frequencies for ( )Lσ  and ( )Lσ  as well as the bandwidth Bω  are reduced. Highly 

satisfactory result, however, is that the maximum peak of T, TM , remains almost 

unchanged when sT  is increased from 0.01 to 0.1. This fact indicates that the 

robustness of the closed-loop system is not greatly affected by the increase in the 

sampling period. Also, the damping ratio of the critical mode is reduced from 47.9% 

to 46.3% as sT  is increased from 0.01 to 0.1 seconds. This demonstrates that the 

closed-loop system performance and has deteriorated somewhat. Thus, the discrete-

time LQG/LTR controller is retuned for sampling period 0.1sT =  seconds in order to 

achieve the satisfactory performance and robustness.   

 

 

 (a) 0.01sT =  and 0.02 
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 (b) 0.01sT =  and 0.05 

 

 (c) 0.01sT =  and Ts=0.1 

Figure 4.12 ( )Lσ , ( )Sσ  and ( )Tσ  using '
dLQGK  for different sampling periods 

 

Table 4.5 System performances for different sampling periods 

sT  
critical  mode 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (%)ζ  ( )f Hz  

0.01 47.9 0.60 0 0.1 5.9 5.7 12.5 

0.02 47.7 0.60 0 0.1 5.1 5.4 12.1 
0.05 47.2 0.59 0 0.1 0.5 0.5 10.5 
0.1 46.3 0.59 0 0.1 0.3 0.4 9.3 

 

 

The discrete-time LQG/LTR controller with the sampling period of 0.1sT =  seconds 

is retuned by increasing the cost function weights corresponding to 
ePQ , 

tVQ  and Q ω∆  

in kQ  by a factor of 5, and increasing the weight corresponding to integrator state by 

a factor of 2 in order to obtain the satisfied performance. The resulting discrete-time 

LQG/LTR controller is denoted as *dLQGK . Figure 4.13 shows the singular value plots 

of L, S and T of the system controlled by *dLQGK . Table 4.6 lists the closed-loop 

system’s performance measures when the system is controlled by *
dLQGK  and by 
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'
dLQGK . It is clearly seen that the closed-loop system’s performance is improved 

using the retuned discrete-time controller *dLQGK . Its performance in frequency 

domain is almost identical to the performance of the discrete-time controller '
dLQGK  

designed for the sampling period of 0.01sT =  seconds. The cross-over frequencies 

for ( )Lσ  and ( )Lσ  are increased from 0.4 rad/s and 9.3 rad/s to 4.5 rad/s and 11.1 

rad/s, respectively. System bandwidth Bω  is also increased from 0.3 rad/s to 4.8 

rad/s, which indicates the faster response to set-point changes and persistent output 

disturbances. Finally, the damping ratio for the inter-area mode is increased from 

46.3% to 47.3%. Therefore, the closed-loop system’s performance for the retuned 

discrete-time controller with 0.1sT =  seconds is satisfied. Its effectiveness and 

robustness will also be assessed by applying it onto the non-linear power system 

model in the next section.  

 

Figure 4.13 ( )Lσ , ( )Sσ  and ( )Tσ  using *
dLQGK  

 

Table 4.6 System performances using '
dLQGK  and *

dLQGK  

Controller 
critical  mode 

SM
 

(dB) 
TM

 
(dB)

 Bω  
(rad/s)

 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (%)ζ  ( )f Hz  
'
dLQGK  47.9 0.60 0 0.1 5.9 5.7 12.5 
*
dLQGK  47.3 0.59 0 0.1 4.8 4.5 11.1 
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4.6 Non-linear Simulation  

In order to properly assess the suitability of the supervisory discrete-time LQG/LTR 

controller designed for 0.1sT =  seconds, *
dLQGK , for the control of the considered 

power system, it is necessary to apply it onto the non-linear model of the power 

system and compare with controller 'dLQGK , which is designed for 0.01sT =  seconds. 

 

4.6.1 Small Signal Stability  

Firstly, an increase of 2.5% on the terminal voltage of Generator 2 is applied at time 

0.2t =  seconds to simulate the small-signal disturbance. Dotted lines in Figure 4.14 

represent the resulting response of the system controlled by '
dLQGK , while the solid 

lines refer to the system response with controller *
dLQGK . It is observed that the power 

system variables deviate further from their nominal values when controlled by *dLQGK . 

This demonstrates that the digitisation of the controller does introduce some 

deterioration of the closed-loop system performance. However, both controllers are 

shown to maintain the stability. This demonstrates that the retuned discrete-time 

LQG/LTR controller for sampling period 0.1 seconds is sufficiently effective when 

addressing the issue of wide-area damping control of the multi-machine power 

system.  
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Figure 4.14 System responses to small disturbance 

 

4.6.2 Large Disturbance Stability  

In order to evaluate system performance in the presence of a large-signal disturbance, 

a three-phase short-circuit fault is applied on the bus 5 of the simulated power system 

at time 1t =  second. The fault is then cleared with auto-reclosing of the circuit 

breaker after 4 cycles (80 ms). The time response of the resulting speed deviation, 

electrical power and terminal voltage of generators are shown in Figure 4.15 for the 

power system controlled by *
dLQGK  (dashed lines) and for the one controlled by 

'
dLQGK  (solid lines). Once again, it is clearly observed that the maximum deviation of 

the controlled variables is generally higher when employing *
dLQGK  compared to 

'
dLQGK . Also, the settling time of the system controlled by *

dLQGK  is equal to 8 

seconds, compared to the sampling time of 5 seconds for the system controlled by 

'
dLQGK  . The main discrepancy between the two responses in terms of the maximum 

deviation from the nominal value is observed for the variables related to generators 1 
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and 4 which are both located in Area 1. On the other hand, the regulation of the 

terminal voltages of generators 2 and 3 located in Area 2 is more satisfactory when 

using *
dLQGK , which is somewhat surprising. Therefore, some deterioration in the 

performance is experienced as a result of discretisation. Nevertheless, it is clearly 

shown that the redesigned controller *
dLQGK  that utilises relatively large sampling 

period is effective in stabilising the power system and rejecting large-scale 

disturbance. 
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Figure 4.15 System responses to large disturbance 
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4.6.3 Robustness to Various Operating Conditions  

Designed discrete-time supervisory controllers are assessed in terms of their 

robustness to the changing operating conditions.  These various operating conditions 

are realized by changing the power transfer from Area 1 to Area 2 with the following 

different cases considered:  (a) power transfer reduced by 10%; (b) power transfer 

reduced by 15%; (c) power transfer reduced by 20%; (d) power transfer reduced by 

25%. Large-signal disturbance is a self-cleared three-phase fault applied at bus 5 at 

time 1t =  second with the self-clearing time of 80 ms. Solid lines and dotted lines in 

Figure 4.16 represent the resulting responses of electrical power output of the power 

system controlled by the supervisory discrete-time LQG/LTR controller *
dLQGK  and 

controller '
dLQGK , respectively. It is observed that the peak of responses of the system 

controlled by *
dLQGK  is higher than when controlled by '

dLQGK  . Also the 

corresponding settling time of the system reponse is longer in the case of *dLQGK  

when compared to the system controlled by '
dLQGK . In particular, for a large change 

of the power transfer from Area 1 to Area 2, i.e. power transfer reduced by 25%, the 

settling time of the response of the system controlled by *
dLQGK  and shown in Figure 

4.16(d) is found to be 8.5 senconds, which is much longer than the settling time of 

4.5 seconds recorded for the system controlled by '
dLQGK . However, the stability is 

preserved by controller *
dLQGK  designed for 0.1sT =  in the presence of a self-cleared 

three-phase fault and under different operating conditions, which is a welcoming 

result. Therefore, it is demonstrated that the designed supervisory discrete-time 

controller for 0.1sT = , *
dLQGK , is sufficiently robust when controlling power system 

under different operating conditions.  
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(a) Power transfer reduced by 10% 

 

(b) Power transfer reduced by 15% 
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(c) Power transfer reduced by 20% 

 

(d) Power transfer reduced by 25% 

Figure 4.16 Electrical power output for various operating conditions 
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4.7 Discrete-Time LQG/LTR for Power System Installed 

with PSS 

This section considers the application of the supervisory discrete-time LQG/LTR 

controller on the power system equipped with auxiliary PSS regulators, installed for 

each of the four generators. In many respects, this section is analogous to Section 3.7 

that considered application of the continuous-time supervisory controller onto the 

power system equipped with the PSS regulators. 

As already mentioned in Section 3.7, the linearised state-space model of the power 

system equipped with PSS regulators contains 51 states, 4 inputs and 12 outputs. 

This linearised continuous-time model is then discretised assuming the ZOH 

reconstruction. Resulting supervisory discrete-time LQG/LTR controller is 

synthesized by utilizing this model. In order to assess its effectiveness and robustness, 

the designed discrete-time LQG/LTR controller is applied to the non-linear power 

system model and assessed in terms of its ability to reject large-signal disturbance, 

which is a three-phase fault applied to one of the power system buses.  

 

4.7.1 Discrete-Time LQG/LTR Controller 

The discrete-time model is obtained by sampling the continuous-time augmented 

state-space model, _PSS aG , given in (3.37) with the sampling period sT . The resulting 

discrete-time state-space model is represented as follows:  

_ _

_

( 1) ( ) ( )

( ) ( )
PSS a PSS a k

PSS a k

x k x k u k w

y k C x k v

+ = Φ + Γ +

= +
                        (4.25) 

The same synthesis procedure as discussed in Section 4.4 is followed in this section 

to design the supervisory discrete-time LQG/LTR controller. The cost function 

weightings used for the discrete-time controller design are denoted as 'kQ , '
kR , '

kW  

and '
kV , respectively. They are obtained by applying (4.7) and (4.3) to the weighting 

matrices 
ePQ , 

tVQ  and Q ω∆  obtained in (3.34). Sampling period is chosen to be equal 

to 0.1sT =  and the tuning is performed using two parameters analogous to ρ  , which 
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was introduced in (4.22). These are 1ρ  and 2ρ  that correspond to the original system 

states and the integrator states, respectively. Appropriate values for these parameters 

are found be equal to 1 2ρ =  and 2 8ρ = . The resulting supervisory discrete-time 

LQG/LTR controller is denoted as *p
dLQGK  and is evaluated using both frequency-

domain analysis tools, which assume linear system description, and time-domain 

simulations, which utilise non-linear system model. In addition, the performance and 

robustness of the system controlled by *
dLQGK , which was designed in Section 4.5, is 

assessed. This additional assessment is performed in order to establish whether the 

controller designed for the system without Power System Stabilizers can be used 

without any modifications once these auxiliary local regulators are installed. 

Figures 4.17 and 4.18 show the maximum and the minimum singular value plots of L, 

S and T of the system controlled by *p
dLQGK  and *

dLQGK . Table 4.7 lists the 

corresponding performance measures obtained using the two controllers. In the case 

of *p
dLQGK , the cross-over frequencies for ( )Lσ  and ( )Lσ  as well as the bandwidth 

Bω  are higher when compared to *dLQGK . In particular, system bandwidth is 

significantly increased from 0.9 rad/s to 5.8 rad/s, which indicates a faster closed-

loop system response. Damping ratio of the inter-area mode is also increased from 

51.6% to 57.8%, which further demonstrates the superiority of *p
dLQGK  over *

dLQGK  in 

terms of the improved damping of the inter-area electromechanical mode.  

 

Figure 4.17 ( )Lσ  of the system with PSS using *p
dLQGK  and *

dLQGK  
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Figure 4.18 ( )Sσ  and ( )Tσ  of the system with PSS using *p
dLQGK  and *

dLQGK  

 

Table 4.7 System performance properties 

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  

(rad/s)
 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (%)ζ  ( )f Hz  
*p

dLQGK  57.8 0.57 0 0.1 5.8 11.1 14.2 

*
dLQGK  51.6 0.57 0 0.2 0.9 1.1 11.8 

   

 

4.7.2 Non-linear Simulation 

The effectiveness and robustness of the designed discrete-time LQG/LTR controller 

is also assessed using the simulation of the non-linear power system model when 

subjected to a large-signal disturbance, which is a three-phase fault applied on the 

bus 5 at time t=1 second. The fault is then cleared with the auto-reclosing of the 

circuit breaker after 4 cycles (80 ms). 

The time response of the system with PSS regulators installed but without 

supervisory controller is shown in Figure 4.19 with dotted lines. The solid lines and 

dash lines in Figure 4.19 represent the time responses obtained when the power 

system with the PSS regulators installed is controlled by the discrete-time controllers 

*p
dLQGK  and *

dLQGK , respectively. Firstly, it is shown that PSS regulators alone provide 

sub-standard control of the power system with the settling time much greater than 10 

seconds, thereby providing direct motivation for the development of the supervisory 
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multivariable controllers. Also, it is observed that the closed-loop system 

successfully recovers from the large disturbance using either of the two supervisory 

discrete-time controllers. In the case of *p
dLQGK , the settling time of the response is 

reduced to 3.5 seconds, when compared to 5 seconds achieved using *
dLQGK . 

Nevertheless, it is also shown that the controller *
dLQGK , which was designed 

assuming the absence of PSS regulators, can cope sufficiently well in their presence 

without any need for re-tuning or re-design. This is a significant result as it 

demonstrates satisfactory level of robustness of the supervisory controller *
dLQGK . 

More specifically, it is shown that once the supervisory controller is designed for the 

power system without PSS regulators, it requires no subsequent modifications after 

these auxiliary controllers are installed.   
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Figure 4.19  System responses of the power system with PSS  
to a self-cleared three-phase fault 
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4.9 Summary 

In this chapter a supervisory discrete-time LQG/LTR controller was designed for the 

multi-machine power system using the frequency-domain analysis tools. This 

procedure comprises of converting continuous-time system model, given in (3.5), 

and the controller’s cost function, given in (3.9), into their discrete-time equivalents, 

under the assumption that the zero-order-hold (ZOH) devices are used for the signal 

reconstruction. The optimal regulator loop transfer gain was recovered at the plant 

input in order to retain the robustness of the optimal regulator, which was verified 

using frequency analysis tools.  

The effect of the sampling period on the performance of the resulting discrete-time 

LQG/LTR controller was investigated. It was shown using both the frequency-

domain and the time-domain analysis that the closed-loop system performance and 

robustness deteriorated with an increase in a sampling period. However, it was also 

demonstrated that some of the performance and robustness can be recovered by 

reducing the bandwidth through the appropriate re-tuning of the cost function 

weights used to synthesise the supervisory discrete-time controller. 

Designed controllers were assessed using small-signal and large-signal disturbances 

as well as the changes in the nominal operating conditions applied to the non-linear 

simulation model of the power system. Also, the comparison between the discrete-

time and continuous-time LQG/LTR controllers was performed in both the frequency 

and time domain with the results demonstrating the effectiveness of the discrete-time 

LQG/LTR controller.  

Finally, discrete-time LQG/LTR controller was implemented on the non-linear 

power system simulation with local PSS stabilizers installed on each of the four 

generators. The resulting closed-loop system was compared with its continuous-time 

counterpart using both the frequency-domain and the time-domain tools when 

subjected to the large disturbance in order to demonstrate its suitability in wide-area 

control applications.  
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Chapter 5  

LQG/LTR for Multi-Machine Power 

System with Time-Delay 
 

 

5.1 Introduction  

Using the supervisory LQG/LTR control system architecture together with a large 

variety of measurement devices (e.g. PMU) and communication equipment, the 

wide-area control can be realized on a multi-machine power system. However, one 

of the main operational challenges for its implementation is the inevitable presence 

of time-delays, which occur due to the large geographical areas covered by these 

power systems. These time-delays may be caused by measurement processing, 

transmission and synchronization as well as the control signal calculation and 

transmission. It has been shown that time-delays can result in deteriorated 

performance of the supervisory control scheme [52-54]. Therefore, the impact of 

time-delays should be quantified so that their presence can be taken into 

consideration when designing wide-area control scheme for multi-machine power 

systems.  

Communication time-delays caused by the transmission of measurement and control 

signals over large geographical distances depend primarily on the type of 

communication link used in the wide-area control systems. Typical time-delays for 

different communication link technologies are provided in Table 5.1 and are defined 

as the time from the measurement instant to the instant that the corresponding input 

signals arrive at control centre [60]. It is important to note that the time-delays 
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resulting from the processing and routing of signals are much smaller when 

compared to communication time-delays, thus can be neglected without loss of 

generality [30].  

 

Table 5.1 Communication time-delays for different communication links 

Communication link Associated delay (ms) 
Fiber-optic cables 100 ~ 150 

Microwave links 100 ~ 150 

Power line carier (PLC) 150 ~ 350 

Telephone lines 200 ~ 300 

Satellite link 500 ~ 700 
 

The main aim of this chapter is to discuss the impact that the presence of the time-

delays has on the performance of the closed-loop system. Firstly, in the case of the 

continuous-time control problem, the discussion focuses on the impact that the order 

with which rational approximation of the time-delay is made has on the damping of 

the electromechanical modes and the overall stability of a given power system. Also, 

two alternative approaches of approximating time-delays are considered and 

compared with each other. Secondly, in the case of the discrete-time control problem, 

it is shown that the time-delay does not need to be represented using rational 

approximation. Instead, the exact representation of the time-delay can be made as 

shown in Section 5.5. 

 

5.2 Rational Approximation for Constant Time-Delay  

For a fixed time-delay of τ , the Laplace domain transfer function is given as se τ−  

which is not rational and therefore not in a standard transfer function form. One 

typical approach for incorporating time-delays into the standard controller design is 

to apply Taylor Series expansion onse τ−  in order to express it using finite-

dimensional rational approximation [91]. The resulting transfer function is denoted 

by ( )R sτ , which can then be readily integrated into the standard design or the 

analysis of the closed-loop control system. Therefore, if the delay-free system that is 

to be controlled is represented by ( )G s , then the aim of using rational approximation 
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is to approximate ( )se G sτ−  by ( ) ( )R s G sτ  as accurately as possible. In this chapter, 

the most commonly used rational approximations, namely Pade approximation and 

Bessel Thomason function, are used to approximate the time-delays and are 

compared to each other using frequency-domain and the time-domain analysis tools. 

It is important to point out that in the context of power system control, they tend to 

approximate communication delays using a simple 1st or 2nd order Pade 

Approximation [53, 55, 56]. These papers, however, do not compare different 

methods of approximating time-delays, and do not discuss the impact that the order 

of rational approximation has on the overall stability of a given power system. These 

deficiencies are addressed in this thesis. 

 

5.2.1 Pade Approximation 

A Pade approximant is the ratio of two polynomials constructed from the coefficients 

of the Taylor series expansion of a function. It was shown by Perron that for se τ− , its  

[ ]m n  ( )0,m n∈ℕ  Pade approximants can expressed by a ratio of two polynomials 

which are given in equation (5.1) [91]: 
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                           (5.1) 

It has been shown in [92] that for any denominator degree 1n ≥ , the proper Pade 

approximant [ ]m n  is stable if 2n m n− ≤ ≤ . This provides the guideline when 

selecting the appropriate order of the numerator and denominator of Pade 

approximation and will be used in this chapter.  

 
 

5.2.2 Bessel-Thomson Approximation 

Bessel-Thomson is an alternative form of rational approximation that utilises the 

ratio of two polynomials. This method leads to family of low pass all-pole transfer 

functions, which give approximately constant time-delay over as large frequency 
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range as possible [93]. The transfer function of Bessel-Thomson approximation of 

order n is presented as follows: 

0
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i n i
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⋅ −∑
                                    (5.2) 

It is known that the higher order of the rational approximation, the more accurate 

approximation is. On the other hand, higher order of these rational approximations 

may result in increased computational burden due to the overall increase in the 

system model and therefore, the controller order [91]. In next section, a comparison 

of the frequency domain and time domain performance of Pade approximation and 

Bessel-Thomson approximation are performed. 

 

5.2.3 Comparison of Pade and Bessel-Thomson Approximation 

The rational approximation transfer function ( )R sτ , obtained using either (5.1) or 

(5.2), can be represented by the following state-space model: 

  
x a x b u

y c x d u
τ τ τ τ τ

τ τ τ τ τ

= +
= +

ɺ
                                                (5.3) 

where xτ  represents the state variables related to a modelled time-delay. Figure 5.1 

shows the step responses of the 1st, 2nd, 3rd and 4th order Pade approximation and 

Bessel-Thomson approximation for 250 ms time-delay compared with the response 

of the actual time-delay. It is shown in Figure 5.1 that the lower order 

approximations sacrifice the accuracy. Also, Pade approximation results in an 

increased overshoot and more oscillatory behaviour when compared to its Bessel-

Thomson approximation counterpart, while also resulting in a faster response. Figure 

5.2 shows the phase response of the 1st, 2nd, 3rd and 4th order Pade and Bessel-

Thomson approximations compared with the exact response of the time-delay for 

150 ms (for fiber-optic cables) and 500 ms (for satellite links), respectively. The 

figure shows the phase responses at the typical frequency range of electromechanical 

modes, i.e. 0.1-2 Hz (0.6-12.5 rad/s). In the case of 150 ms time-delay, the second 

order Pade and Bessel-Thomson approximation are found to be sufficiently accurate. 
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However, for 500 ms time-delay, higher order of both Pade and Bessel-Thomson 

approximation are found to be necessary in order to represent time-delay more 

accurately. 

   

 

 

Figure 5.1 Step response of Pade and Bessel-Thomson approximation of 250msτ =  
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Figure 5.2 Phase responses of Pade & Bessel-Thomson approximation 

 

 

5.3 Continuous-Time LQG/LTR for System with Time-

Delay 

5.3.1 Augmented System  

The state-space representation of a deterministic continuous-time system has been 

provided in (3.5), which is rewritten here: 

                    
x Ax Bu

y Cx Du

= +
= +
ɺ

                                                    (5.4) 

Similarly, the communication time-delay can be expressed in the state-space form as 

follows:  

  d d d d d

d d d d d

x A x B u

y C x D u

= +
= +

ɺ
                                                (5.5a) 

where dx  represents the state variables of the communication time-delay. If time-

delay is the same for each input signal, then using Pade approximation or Bessel-

Thomson approximation results in the following state-space representation:  
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Figure 5.3 shows the delay-free open-loop power system connected with the time-

delay block.  
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Figure 5.3 Delay-free power system connected with time-delay block 

 

Time-delays can now be incorporated into the delay-free system’s model by 

integrating (5.4) and (5.5) into the following augmented state-space model: 

[ ]

0
d d

d d d d

d d
d

x A BC x BD
u

x A x B

x
y C DC DD u

x

       
= +       

       

 
= + 

 

ɺ

ɺ
                              (5.6) 

Thus the system with communication time-delay can be represented by the following 

form: 

x Ax Bu w

y Cx Du v

= + +

= + +

ɺ ɶ ɶɶ ɶ

ɶ ɶɶ
                                               (5.7a) 

where  

0
d

d

A BC
A

A

 
=  
 

ɶ , d

d

BD
B

B

 
=  
 

ɶ , [ ]dC C DC=ɶ , dD DD=ɶ .           (5.7b) 

and [ ]T T T
dx x x=ɶ  is the state vector of the augmented system model. w and v are 

the process noise and measurement noise, respectively, defined in (3.6). Also, u and 
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y are the input and output of the system model that incorporates communication 

delay along with the original open-loop dynamics. 

It is important to note that for power system, the frequency response usually displays 

the characteristic with cross-over frequencies less than 10 Hz. Therefore, time-delay 

can be approximated with the order of the rational approximation greater than 2 and 

smaller than 4 in order to provide an accurate representation [94].  

 

 

5.3.2 LQG/LTR Controller Design 

In the previous section the system model incorporating communication time-delay 

was presented in the standard state space form, see (5.7). In addition, the integral 

action is also introduced into the deterministic model, which results in the following 

augmented state-space model: 
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                                    (5.8b) 

with the denotation of  

0
a

i

A
A

C A

 
=  
 

ɶ
ɶ

ɶ
, 

0
a

B
B

 
=  
 

ɶ
ɶ , 0aC C =  

ɶ ɶ , aD D=ɶ ɶ .                 (5.8b) 

The transfer function of this augmented model is denoted as aGɶ . The separation 

theorem (3.8) ~ (3.16) and LTR procedure then can be applied to synthesize the 

continuous-time LQG/LTR controller for the system (5.8) as follows.   

Step 5.1 Optimal State-Feedback. Design the optimal regulator for the augmented 

state-space model (5.8) with the symmetric weighting matrices TQ M QMρ=ɶ ɶ ɶ

andR I=ɶ . Choose aM C= ɶɶ , { , , }
e tP VQ diag Q Q Qω=

△
, where ρ  and 

ePQ , 
tVQ , 

Q ω△  are selected by the control engineer such that the satisfactory system 

performance is achieved. The resulting optimal regulator gain is denoted as 
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rKɶ . Further details regarding optimal regulator design procedure are provided 

in Section 3.3. 

Step 5.2 Loop Transfer Recovery (LTR) at plant input. The Kalman filter is designed 

for the augmented state-space model with TW W= Γ Γɶ ɶ ɶ  and V qI=ɶ . By setting 

aBΓ = ɶɶ , the perfect recovery would be achieved as q tends to zero. The 

designed Kalman filter gain is denoted as fKɶ . Further details regarding LTR 

procedure are provided in Section 3.3. 

The resulting LQG/LTR controller can then be expressed as follows: 

( )
0

a a r f a f
LQG

r

A B K K C K
K s

K

 − −
=  − 

ɶ ɶɶ ɶ ɶ ɶ
ɶ

ɶ

                                

(5.9) 

The 2nd, 3rd and 4th order Pade approximation and Bessel-Thomson approximation 

are utilized in approximating the time-delay, hence different LQG/LTR controllers 

are developed using the corresponding state-space models of the rational 

approximations. It is assumed that the delay for each signal in model (5.5) is the 

same. The properly tuned cost function weights 
ePQ , 

tVQ , Q ω△  are set according to 

(3.34) and the weights ration is set to be equal to 100ρ = . Figure 5.4 shows the 

singular value plots of the LQG loop transfer function LQG aK G− ɶɶ , compared with that 

of the optimal regulator loop transfer function 1( )r a aK sI A B−− ɶɶ ɶ  when 810q −=  by 

using the two rational approximations for time-delay 250msτ = . It is noted that the 

Pade approximation has unit gain at all frequencies.  

It has been stated that higher order of the rational approximation results in more 

accurate approximation of time-delay. However, from the viewpoint of the 

performance of loop transfer recovery, higher order of the two approximations leads 

to increased discrepancy between the optimal regulator loop transfer function and the 

corresponding LQG loop transfer function shown in Figure 5.4. In the case of Pade 

approximation, cross over frequency of ( )Lσ  is 15.0 rad/s, 12.3 rad/s, 11.5 rad/s for 

2nd, 3rd and 4th order, respectively. Also, 100 dB/decade roll-off rate occurs at 220 

rad/s, 100 rad/s and 60 rad/s for the increase in the order of Pade approximation. On 

the other hand, cross over frequency of ( )Lσ  is 20.1 rad/s, 19.4 rad/s, 19.0 rad/s 
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when the order of Bessel-Thomson approximation is equal to 2, 3 and 4 respectively. 

Furthermore, 100 dB/decade roll-off rate occurs at 300 rad/s, 170 rad/s and 125 

rad/s for the increase in the order of Bessel-Thomson approximation. Table 5.2 lists 

maximum peak of sensitivity function SM  and complementary sensitivity function 

TM , as well as the system bandwidth Bω  of the closed-loop system by using 

different order delay approximations. In the case of Pade approximation, there is an 

insignificant increase in SM  and Bω  for the increase in the order, while TM  is 

decreased from 1.3 dB to 0.1 dB when the order is increased from 2 to 4, which 

demonstrates the superiority of the higher order Pade approximation. By using 

Bessel-Thomson approximation, SM  and TM are significantly increased when the 

order is increased. In particular for 4th order, SM  and TM  are increased to 2.8 dB 

and 3.6 dB, respectively, which are higher in values when compared to the 4th order 

Pade approximation. This is undesirable due to the fact that the increase of SM  and 

TM  indicates deterioration in terms of the closed-loop system’s performance and 

robustness. Therefore, it is clearly demonstrated that the Pade approximation is 

superior to Bessel-Thomson approximation of the time-delay.     
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Figure 5.4 Singular values of L using Pade and Bessel-Thomson for 250msτ =  

 

 

 

Table 5.2 System performance properties 

Approximation 
Order 

Pade approximation 
Bessel-Thomson 
approximation 

TM
 

(dB)
 

SM
 

(dB) 
Bω  

(rad/s)
 

TM
 

(dB) 
SM

 
(dB)

 Bω  

(rad/s)
 

2 1.3 1.3 12.1 1.9 1.4 12.6 

3 0.2 2.0 11.0 2.4 2.9 12.5 

4 0.1 2.1 10.4 2.8 3.6 11.1 
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5.3.3 Evaluation using Linear System Analysis Tools 

Communication time-delays are typically modelled using first or second order 

rational approximation [53, 55]. However, such low-order approximation may not be 

always appropriate, particularly in those cases for which time-delays are known to be 

relatively large. In order to investigate the impact that approximation order has on 

the performance of the closed-loop system, LQG controllers were designed with 

varying order of time-delay approximation. In the remaining sections of this chapter, 

n
PLQG  for 2,3,4n = will be used to denote the supervisory continuous-time 

LQG/LTR controller designed for the time-delay approximated using Pade 

approximation in 2nd, 3rd and 4th order, respectively. n
BLQG  for 2,3,4n =  will denote 

the controller designed for the time-delay approximated using Bessel-Thomson 

approximation in 2nd, 3rd and 4th order, respectively. Finally, the LQG/LTR controller 

designed without consideration of the communication time-delays and designed in 

Chapter 3 will be denoted as 0LQG  and compared to n
PLQG  and n

BLQG  in this 

chapter. 

 

 

5.3.3.1 Various Time-Delays 

Table 5.3 and 5.4 list the system performance measures of the closed-loop system 

controlled by LQG/LTR controller using Pade approximation and Bessel-Thomson 

approximation of the 2nd, 3rd, and 4th order, respectively, for different communication 

time-delays and compared to 0LQG . The performance measures are maximum peak 

of the sensitivity function SM  and the complementary sensitivity function TM , both 

of which are measured in dB, as well as the system bandwidth Bω  measured in rad/s. 

The observation of the increased SM  and TM  and the reduced Bω  demonstrate that 

the closed-loop system performance and robustness deteriorate for the increase in the 

communication time-delay for all considered LQG/LTR controllers. With 0LQG  

controller, the value of TM  reaches 4.2 dB for a time-delay of 250 ms. This shows 

that the closed-loop system with 0LQG  exhibits high sensitivity to time-delays. With 
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controllers n
PLQG   and n

BLQG  for 2,3,4n = , the SM  and TM are significantly 

reduced when compared to controller 0LQG  as shown in Table 5.3 and 5.4. This 

indicates improvement in the performance when using information regarding the 

time-delay to design the control system. It is also observed that SM  and TM  are 

smaller in the case of LQG controller that utilises Pade approximation compared to 

the one that uses the Bessel-Thomson approximation. Therefore, using frequency-

domain tools it is shown that the most appropriate controller to use in the presence of 

time-delays is the one that utilises Pade Approximation. 

Tables 5.5 and 5.6 list the damping of the inter-area mode using n
PLQG   and n

BLQG  

for 2,3,4n =  and 0LQG  for different communication time-delays. Results show that 

0LQG  only could maintain the closed-loop system stability for time-delay smaller 

than 250 ms, which is in accordance with the result stated above. For controllers 

n
PLQG   and n

BLQG , higher order results in more damping provided to inter-area 

mode. In addition, the designed LQG/LTR controller using Pade approximation 

provides more damping to the inter-area mode than the controller that uses Bessel-

Thomson approximation of the same order. Finally, it is observed that the system 

controlled by n
PLQG  could tolerate time-delay greater than 1 second, as shown in 

Table 5.5, while the time-delay tolerance of n
BLQG  is smaller than 800 ms.  

It can be concluded that the designed LQG/LTR controllers accounting for 

communication time-delay, namely n
PLQG   and n

BLQG , are more effective in 

stabilizing the power system than the conventional controller 0LQG . Higher order of 

the approximation results in more satisfactory system performance and robustness. 

Both system performance measures and damping of inter-area mode demonstrate the 

superiority of LQG/LTR controller designed using Pade approximation n
PLQG  

compared to that of using Bessel-Thomson approximation n
BLQG .  
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Table 5.3 System performance using Pade approximation for different time-delays 

Time-
delay 

τ  

0LQG  2
PLQG  3

PLQG  4
PLQG  

TM  SM  Bω  TM  SM  Bω  TM  SM  Bω  TM  SM  Bω  

100 ms 1.9 1.1 11.8 1.3 1.2 15.5 0.1 1.5 13.1 0.1 0.7 12.4 

250 ms 4.2 1.1 7.9 1.3 1.3 12.1 0.2 2.0 11.0 0.1 2.1 10.3 

500 ms 4.3 2.0 4.9 1.4 1.3 8.1 0.4 2.5 7.2 0.2 2.5 7.0 

800 ms 7.7 7.8 2.5 1.5 1.4 7.3 0.7 2.8 5.4 0.2 3.2 5.1 

1 s 7.9 10.5 1.8 1.7 1.5 7.0 0.8 3.0 4.9 0.3 3.6 4.3 

1.2 s 29.1 28.8 1.5 1.8  1.6 6.9 0.9 3.2 4.6 0.3 3.9 3.7 

1.5 s 41.4 41.3 1.2 2.1 1.7 6.7 0.9 3.3 4.3 0.3 4.4 3.2 

 

 

Table 5.4 System performance using Bessel-Thomson approximation 
for different time-delays  

Time-
delay 

τ  

0LQG  2
BLQG  3

BLQG  4
BLQG  

TM  SM  Bω  TM  SM  Bω  TM  SM  Bω  TM  SM  Bω  

100 ms 1.9 1.1 11.8 1.7 1.3 19.0 1.9 2.5 17.5 2.3 2.9 15.9 

250 ms 4.2 1.1 7.9 1.9 1.4 12.6 2.4 2.9 12.5 2.8 3.6 11.1 

500 ms 4.3 2.0 4.9 2.0 1.4 9.6 2.8 2.9 8.3 3.4 3.7 7.2 

800 ms 7.7 7.8 2.5 2.1 1.5 8.1 2.9 3.0 6.3 3.7 3.9 4.8 

1 s 7.9 10.5 1.8 2.4 1.5 7.6 3.0 3.0 5.6 3.8 3.9 3.8 

1.2 s 29.1 28.8 1.5 2.5 1.5 7.4 3.1 3.0 5.2 4.1 3.9 3.6 

1.5 s 41.4 41.3 1.2 2.9 1.6 7.1 3.3 2.7 4.9 4.2 4.0 3.4 

 

 

Table 5.5 Inter-area mode for different time-delays using 4
PLQG  

Time-
delay 

τ  

0LQG  2
PLQG  3

PLQG  4
PLQG  

( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) 

100 ms 0.60 20.2 0.54 29.0 0.54 30.3 0.55 31.5 
250 ms 0.60 3.4 0.54 28.1 0.55 29.2 0.55 31.1 
500 ms 0.70 -9.6 0.54 27.5 0.55 28.7 0.55 30.5 

800 ms 0.59 -11.3 0.55 20.2 0.55 26.3 0.56 30.0 
1 s 0.55 -11.5 0.55 15.6 0.56 19.2 0.56 28.4 

1.2 s 0.51 -15.1 0.55 10.7 0.56 14.6 0.56 26.5 

1.5 s 0.50 -16.6 0.56 7.2 0.56 11.9 0.57 22.1 
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Table 5.6 Inter-area mode for different time-delays using 4
BLQG  

Time-
delay 

τ  

0LQG  2
BLQG  3

BLQG  4
BLQG  

( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) 

100 ms 0.60 20.2 0.54 27.5 0.55 29.4 0.55 31.3 

250 ms 0.60 3.4 0.55 26.1 0.55 28.8 0.56 30.2 
500 ms 0.70 -9.6 0.55 11.0 0.56 15.6 0.57 27.4 
800 ms 0.59 -11.3 0.56 7.8 0.58 10.2 0.60 17.3 

1 s 0.55 -11.5 0.56 4.9 0.58 6.3 0.60 11.0 
1.2 s 0.51 -15.1 0.56 2.1 0.59 3.0 0.59 7.0 
1.5 s 0.50 -16.6 0.58 0.8 0.59 1.9 0.59 3.6 

 

 

5.3.3.2 Delay Margin 

In order to aid the comparison, Delay Margin term is introduced to quantify the 

ability of a given controller to retain stability when faced with the communication 

time-delays. More specifically, Delay Margin specifies maximum value of the time-

delay that a given controller can tolerate before the overall closed-loop system 

exhibits instability. Therefore, the aim of a control engineer is to ensure that the 

Delay Margin is sufficiently large. 

Delay margins for the stated controllers above are evaluated in this section. Table 5.7 

lists the delay margins for the supervisory LQG/LTR controllers using Pade 

approximation and Bessel-Thomson approximation in different orders, as well as 

controller 0LQG . In case of the conventional controller, 0LQG  designed without 

consideration of time-delay, the delay margin is found to be equal to 160 ms. Clearly, 

this delay margin is not sufficient for the wide-area power system control for the use 

of different types of communication link [60]. For the controllers that account for the 

presence of time-delays, namely n
PLQG  and n

BLQG  for 2,3,4n = , it is clearly shown 

that the delay margin is significantly increased compared to 0LQG . Table 5.7 shows 

that the delay margin is increased for the increasing order of the approximation. In 

particular for Pade approximation, not only does the denominator order n increase 

the delay margin, but also the numerator degree m increases the delay margin. Also, 

the delay margin of the closed-loop system that uses Pade approximation to 
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synthesise controller is higher than using Bessel approximation with the same order. 

In particular, it can be observed that the closed-loop system using 4th order Bessel-

Thomson approximation could only tolerate 520 ms time-delay, while the system 

using 4th order Pade approximation could tolerate 1.2 s time-delay, which is a 

sufficient communication time-delay tolerance for wide-area power system control 

application [60]. In conclusion, Table 5.7 clearly demonstrates the superiority of the 

controllers n
PLQG  and n

BLQG  compared to the conventional controller 0LQG  in 

terms of the robustness to the presence of time-delays.  

 

Table 5.7 Delay margin for different controllers 

Delay 
Margin 

0LQG  
n
PLQG  

n
BLQG  

 0m=  1m=  2m=  3m=  4m=  

1n =  160 ms 220 ms 350 ms — — — 220 ms 

2n =  160 ms 300 ms 460 ms 600 ms — — 300 ms 

3n =  160 ms — 480 ms 650 ms 850 ms — 400 ms 

4n =  160 ms — — 680 ms 910 ms 1.2 s 520 ms 

 

5.3.3.3 Various Operating Conditions 

In this section the closed-loop system’s performance and robustness are assessed in 

the presence of time-delays and under the changing operating conditions. The 

variation in power transfer from Area 1 to Area 2 provides these different operating 

conditions, which was realised by changing the generation power of Generators 2 

and 3. Different controllers designed by considering the presence of time-delay, 

n
PLQG  and n

BLQG  for 2,3,4n = , are applied onto the power system. Table 5.8 lists 

the delay margin for the six controllers and for each of the different operating 

conditions. Base case is denoted as the normal operating condition. It is observed that 

the increase of the power transfer from Area 1 to Area 2 significantly degrades the 

delay margin. For each operating condition, higher order of approximation results in 

larger delay margin and the delay margin resulting from the application of n
PLQG  is 

larger than that corresponding to n
BLQG , which indicates the closed-loop system is 
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more robust to variation of time-delay and of operating conditions when using 

n
PLQG  than n

BLQG . 

Using 4th order of Pade and Bessel-Thomson approximations, the performance and 

robustness of the resulting closed-loop system are analysed. Tables 5.9 and 5.10 list 

the resulting frequencies and damping ratios of the inter-area mode for varying 

operating conditions and communication time-delays obtained when using 4
PLQG  

and 4
BLQG , respectively. The damping of the inter-area mode is observed to be 

degraded by either the change in operating condition or the increase in the time-delay. 

As the power transfer increases, the damping of the inter-area mode is for both 

4
PLQG  and 4

BLQG  and for different values of time-delays. Degradation of the 

damping is observed to be more prominent in the case of 4
BLQG  when compared to 

4
PLQG . The inter-area mode becomes unstable in the case of 4

BLQG  for time-delays 

longer than 800 ms. On the other hand, controller 4
PLQG  sufficiently stabilises the 

system for all assessed time-delays, even under heavy power transfer.                  

It can be concluded that the communication time-delays and the changing operating 

condition result in the degradation of the performance observed through the 

reduction in the corresponding delay margin and the damping of the 

electromechanical mode. The closed-loop system is observed to be more robust when 

controlled using 4
PLQG  rather than 4

BLQG . These results will be verified in Section 

5.5 using the non-linear simulation of the power system and observing time-domain 

results  

 

Table 5.8 Delay margin for different power transfers 

Power transfer 
increase:  

Area 1 to Area 2 

Pade approximation Bessel-Thomson approximation 
2
PLQG  

3
PLQG  

4
PLQG  

2
BLQG  

3
BLQG  

4
BLQG  

Base case 600 ms 850 ms 1.2 s 300 ms 400 ms 520 ms 
10% 580 ms 750 ms 1.1 s 260 ms 360 ms 450 ms 

20% 500 ms 720 ms 1.1 s 240 ms 350 ms 450 ms 

30% 420 ms 690 ms 1.0 s 200 ms 320 ms 420 ms 

40% 380 ms 640 ms 950 ms 180 ms 290 ms 400 ms 



154 
 

 

Table 5.9 Inter-area mode for time-delays for different power transfers using 4
PLQG  

Time-
delay 

τ  

Power transfer from area 1 to area 2 
Base Case Increase 10% Increase 20% Increase 30% Increase 40% 
( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) 

100 ms 0.55 31.5 0.56 30.4 0.57 29.6 0.58 28.8 0.58 28.2 

250 ms 0.55 31.1 0.56 29.5 0.57 28.8 0.58 27.6 0.58 27.1 
500 ms 0.55 30.5 0.56 28.8 0.57 27.8 0.58 26.3 0.58 25.9 
800 ms 0.56 30.0 0.56 28.0 0.57 26.0 0.58 25.1 0.58 24.8 

1 s 0.56 28.4 0.56 26.8 0.57 25.2 0.58 24.7 0.58 23.9 
1.2 s 0.56 26.5 0.57 25.4 0.58 23.0 0.58 21.6 0.58 20.3 
1.5 s 0.57 22.1 0.59 21.9 0.60 20.1 0.61 19.2 0.61 18.6 
 

 

Table 5.10 Inter-area mode for time-delays for different power transfers using 4
BLQG  

Time-
delay 

τ  

Power transfer from area 1 to area 2 
Base Case Increase 10% Increase 20% Increase 30% Increase 40% 
( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) 

100 ms 0.55 31.3 0.56 30.2 0.57 29.4 0.58 28.7 0.58 28.0 
250 ms 0.56 30.2 0.57 29.0 0.58 28.2 0.59 27.5 0.59 26.8 
500 ms 0.57 27.4 0.59 26.1 0.60 25.1 0.61 24.5 0.60 24.0 

800 ms 0.60 17.3 0.61 16.0 0.62 15.2 0.63 14.7 0.62 14.6 
1 s 0.60 11.0 0.61 10.1 0.62 9.5 0.62 9.3 0.62 9.2 

1.2 s 0.59 7.0 0.61 6.4 0.62 6.1 0.62 6.1 0.62 5.8 

1.5 s 0.59 3.6 0.60 3.5 0.61 3.3 0.62 3.1 0.62 2.5 
 

 

 

5.3.4 Non-linear Simulation  

The performance and robustness of the power system controlled by 4
PLQG , 4

BLQG  

and 0LQG  in the presence of communication time-delays, are assessed in this 

section using the high-fidelity non-linear model of the power system in order to 

examine the suitability and effectiveness of the considered supervisory controllers. A 

large disturbance, which is a self-cleared three-phase fault, is applied onto the bus 5 

at time t=1 second.  
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Figure 5.5 shows the speed deviation, electrical power output, and terminal voltage 

of each generator of the power system controlled by 4
PLQG  and 0LQG  respectively. 

The time-delay is equal to 160 ms, which is the delay margin of controller 0LQG  

according to the results shown in Table 5.6. In the case of 160 ms time-delay, Figure 

5.5 clearly shows that the power system controlled by 0LQG  is unstable when 

subjected to a large disturbance. This illustrates the importance of considering 

communication time-delays when designing supervisory wide-area controllers. On 

the other hand, controller that employs 4th order Pade Approximation in order to 

model the time-delays, denoted as 4
PLQG , is shown to maintain the stability with 

satisfactory response to the applied disturbance. This further demonstrates the benefit 

of including appropriate communication time-delay description into the model 

utilised by the wide-area controller. 
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Figure 5.5 System response using 4
PLQG  and 0LQG  for 160dT = ms 
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Figures 5.6 and 5.7 show the speed deviation for each generator of the power system 

controlled by controllers 4
PLQG  and 4

BLQG  in the presence of 250 ms and 520 ms 

time-delays, respectively, when subjected to a self-cleared three-phase fault. The 

corresponding responses of electrical power output and terminal voltage are shown in 

Appendix B. In case of 250 ms time-delay, both 4
PLQG  and 4

BLQG  can stabilize the 

power system when subjected to the large disturbance, as shown in Figure 5.6. This 

confirms the result shown in Table 5.6 that the delay margin for either of these two 

controllers is greater than 250 ms. It is also observed that the settling time of the 

closed-loop system controlled by 4
PLQG  is smaller than that of the system controlled 

by 4
BLQG , which indicates the benefit in using Pade approximation to model the 

time-delays when compared to Bessel-Thomson approximation. In the case of 520 

ms, which is equal to value of the delay margin of 4
BLQG , controller 4

BLQG  cannot 

stabilize the power system when subjected to a large disturbance, as shown in Figure 

5.7. On the other hand, it is clearly shown in Figure 5.7 that the power system can be 

recovered from the large disturbance controlled by controller 4
PLQG  for 520 ms 

time-delay. Responses in both Figure 5.6 and 5.7 demonstrate the superiority of the 

controller that employs Pade Approximation to represent time-delays when 

compared to the controller that utilises Bassel-Thomson Approximation to describe 

time-delays in terms of the closed-loop system response and its stability.  

Figure 5.8 shows the speed deviation for each generator of the simulated power 

system controlled by 4
PLQG  when subjected to a large disturbance and with the 

communication time-delay of 1.3 s. The corresponding responses of electrical power 

output and terminal voltage of each generator are shown in Appendix B. In the case 

of 1.3 s time-delay, which exceeds the delay margin for controller 4
PLQG , Figure 5.8 

shows that 4
PLQG  is not effective in stabilizing the power system when subjected to 

a large disturbance, which is in accordance with the result from frequency-domain 

analysis in Section 5.4. 
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Figure 5.6 Speed deviation using 4
PLQG  and 4

BLQG  for 250dT = ms 

Figure 5.7  Speed deviation using 4
PLQG  and 4

BLQG  for 520dT = ms 
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Figure 5.8 Speed deviation using 4
PLQG for 1.3dT = s 
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5.4 Discrete-Time LQG/LTR for System with Time-Delay  

5.4.1 Disretising the System with Time-Delay 

A continuous linear time-invariant system that includes a time-delay is described by: 

( )x Ax Bu t w

y Cx v

τ= + − +

= +

ɺ

                                     (5.10) 

where 0τ >  denotes a communication time-delay, w and v represent process and 

measurement noises respectively. In sampling (5.10), two cases are considered. The 

first case is when the time-delay τ  less than one sampling period denoted as sT . The 

second case is when the time-delay τ  longer than one sampling period sT . These two 

cases are considered below.  

 

5.4.1.1 Delay Less than One Sampling Period 

Firstly the deterministic case with 0w = , 0v = , is considered and the 

communication delay is assumed to be less than one sampling period sT , i.e. sTτ < . 

Discretising the continuous-time plant (5.10) with sampling period sT  gives [95] 

0 1( 1) ( ) ( ) ( 1)

( ) ( )

x k x k u k u k

y k Cx k

+ = Φ + Γ + Γ −
=

                        (5.11) 

where  

0 0

( )
1 0

,

,

.

s

s

s

AT

T As

A T As

e

e dsB

e e dsB

τ

ττ

−

−

Φ =

Γ =

Γ =

∫

∫

                                            (5.12) 

Defining ( ) ( ) ( 1)
TT Tx k x k u k = − ɶ  as the augmented state vector, the resulting 

augmented state-space model of (5.11) is given by  

[ ]

1 0( 1) ( )
( )

( ) 0 0 ( 1)

( )
( ) 0

( 1)

x k x k
u k

u k u k I

x k
y k C

u k

+ Φ Γ Γ       
= +       −       

 
=  − 

                         (5.13) 
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The extra state variable ( 1)u k −  which represents the past value of the control signal 

is introduced. The continuous-time system of (5.10) is infinite dimensional; however, 

the corresponding sampled system is a finite-dimensional system. Thus, the time-

delay is represented exactly rather than described using rational approximation. 

 

5.4.1.2 Delay Longer than One Sampling Period 

If the communication delay is longer than one sampling period, then it can be 

represented as 

( 1) 'sd Tτ τ= − + , 0 ' sTτ≤ <                                   (5.14) 

Where d is an integer, selected such that integration of xɺ  in (5.10) is over the 

sampling interval ( ) ( )1 s sk d T k d T+ − +   . Therefore, the ZOH sampling of (5.10) 

is obtained as [95]: 

0 1( 1) ( ) ( 1) ( )

( ) ( )

x k x k u k d u k d

y k Cx k

+ = Φ + Γ − + + Γ −
=

                (5.15) 

where Φ , 0Γ  and 1Γ  are given by (5.12) with τ  replaced by 'τ . The corresponding 

augmented state-space model is  

[ ]

1 0( 1) 0 ( ) 0

( 1) 0 0 0 ( ) 0

( )

( 1) 0 0 0 ( 2) 0

( ) 0 0 0 0 ( 1)

( )

( )

( ) 0 0 0

( 2)

( 1)

x k x k

u k d I u k d

u kI

u k I u k

u k u k I

x k

u k d

y k C

u k

u k

+ Φ Γ Γ       
       − + −       
       = +
       − −       
       −       

 
 − 
 =
 − 
 − 

⋯

⋯

⋯ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⋯

⋯

⋯ ⋯

         (5.16) 

and ( ) ( ) ( ) ( 2) ( 1)
TT T T Tx k x k u k d u k u k = − − − ɶ ⋯  is the augmented state 

vector, with additional d m⋅  extra states used to describe the delay [95]. 

The discrete-time augmented state-space model of the system with communication 

delays is given as: 
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( 1) ( ) ( )

( ) ( )

k

k

x k x k u k w

y k Cx k v

+ = Φ + Γ +

= +

ɶ ɶɶ ɶ

ɶ ɶ

                                  (5.17) 

where kw  and kv  denote process and measurement noise, respectively, and were 

originally introduced in (4.1).  

Note that the augmented state vector means the dimension of the system can be 

considerably increased if the sampling period is relatively short compared with the 

time-delay, thus resulting in the increase of the LQG controller’s dimensionality. 

 

5.4.2 Controller Synthesis  

To synthesize the discrete-time LQG controller for system (5.17), the discrete-time 

cost function given in (4.9) is utilized. Thus the discrete-time cost function for the 

discrete-time system with time-delay is represented as following. Note that it is 

assumed that sTτ < . 

*
1

0

1 1

0

( ) ( ) ( ) ( )

( ) ( ) ( 1) ( 1) ( ) ( )

T T
k k

k

T T T
k k k

k

J x k Q x k u k R u k

x k Q x k u k R u k u k R u k

∞

=

∞

=

= +

= + − − +

∑

∑

ɶ ɶɶ ɶ

ɶ ɶ ɶ

          (5.18) 

where ( ) ( ) ( 1)
TT Tx k x k u k = − ɶ , and 

1

1

0
, ( ) ( ) .

0

sT Tk
k k

k

Q
Q R s Q s R ds

R τ
τ τ

 
 = = Γ − Γ − +   

 
∫

ɶ
ɶ ɶ

ɶ
          (5.19a) 

with 

1

0
( ) ( )

sT T
kQ s Q s ds= Φ Φ∫ɶ , 1

0
( ) ( )T

kR s Q s R ds
τ
 = Γ Γ + ∫ɶ .           (5.19b) 

( )sΦ  and ( )sΓ  are given by (4.7). It is assumed that 1
kQɶ  is positive semidefinite and 

that 1
kRɶ  and kRɶ  are positive definite.  

 

when sTτ >  and ( 1) 'sd Tτ τ= − + , 0 ' sTτ≤ <  the cost function is given by 

*
2

0

( ) ( ) ( ) ( )T T
k k

k

J x k Q x k u k R u k
∞

=

= +∑ ɶ ɶɶ ɶ                                   (5.20) 
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where ( ) ( ) ( ) ( 2) ( 1)
TT T T T Tx k x k u k d u k u k = − − − ɶ ⋯ , and 

1

1

1

0 0 0

0 0 0

, .0 0 0

0 0 0

k
d
k

d
k k sk

k

Q

R

Q R RTR

R

−

 
 
 
 = =
 
 
 
 

ɶ ⋯

ɶ ⋯

ɶ ɶɶ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

ɶ⋯

                    (5.21a) 

with  

1

0

'

0

1

'

2 1

( ) ( ) ,

( ) ( ) ,

( ') ( ') ,

.

s

s

T T
k

d T
k

T
d T
k

d
k k s

Q s Q s ds

R s Q s R ds

R s Q s R ds

R R RT

τ

τ
τ τ−

−

= Φ Φ

 = Γ Γ + 

 = Γ − Γ − + 

= = =

∫

∫

∫

ɶ

ɶ

ɶ

ɶ ɶ⋯

                        (5.21b) 

( )sΦ  and ( )sΓ  are given by (4.7). It is assumed that 1
kQɶ  is positive semidifinite and 

that d
kRɶ , … , 1

kRɶ  and kRɶ are positive definite.  

The discrete-time function *1J  in its original form, given in (5.18) includes the 

crossover terms 0( ) ( )Tx k M u kɶ  and 1( ) ( 1)Tx k M u k−ɶ . However, it is assumed here 

that 0 1 0M M= =ɶ ɶ . The first term 1

0

( ) ( )T
k

k

x k Q x k
∞

=
∑ ɶ  is only affected by the sampling 

period sT , and the second term 1

0

( 1) ( 1)T
k

k

u k R u k
∞

=

− −∑ ɶ  is only affected by the delays 

τ . The third term 
0

( ) ( )T
k

k

u k R u k
∞

=
∑ ɶ  is affected by both sT  and τ . 

Also, the discrete-time function *2J  in its original form, given in (5.20) includes the 

crossover terms 0( ) ( )Tx k M u kɶ , 1( ) ( 1)Tx k M u k−ɶ , …, and ( ) ( )T
dx k M u k d−ɶ . It is 

assumed that 0 1 0dM M M= = = =ɶ ɶ ɶ⋯ . The term of ( )u k d−  is only affected by the 

value of 'τ  and is not affected by sampling period sT . The term of ( 1)u k d− +  is 

affected by both sT  and 'τ . The rest of the terms in function (5.20) are only affected 

sT  with no relation to 'τ . 
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Given the discrete state-space model (5.17) for the continuous-time system with 

time-delay expressed in (5.10), the discrete-time LQG control problem is to find the 

optimal control law that minimizes the discrete-time cost function *
1J  or *

2J . The 

block diagram of the power system controlled by the supervisory discrete-time 

LQG/LTR controller for the time-delay is depicted in Figure 5.9. Similarly to the 

controller synthesised in Section 4.4, the integral action is incorporated and the 

resulting augmented discrete-time state-space model is described in the form of 

(4.19). The corresponding state-space matrices are denoted as aΦɶ , aΓɶ , aCɶ  and aDɶ .  

The augmented state-space transfer function is expressed as follows: 

( ) 1

d a a a aG C zI D
−

= − Φ Γ +ɶ ɶ ɶɶ ɶ                                      (5.22) 

The discrete-time LQG controller for the system with time-delay is then synthesized 

using the methodology described in Section 4.3. The discrete-time optimal regulator 

is synthesized by substituting aΦɶ  and aΓɶ  into (4.11) as follows: 

 ( ) 1'
_

T T
r d k a r a a r aK R P P

−
= + Γ Γ Γ Φɶ ɶ ɶ ɶɶ ɶ ɶ ɶ                                 (5.23) 

and rPɶ  is the positive semidefinite solution of DARE 

( )' '
_ _

T T T
r a r a r d k a r a r d kP P K R P K Q= Φ Φ − + Γ Γ + ɶɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ                    (5.24) 

where '
kQɶ  and '

kRɶ  are the corresponding weighting matrices. Thus, the discrete-time 

optimal state-feedback control law is constructed as: 

_
ˆ( ) ( )r du k K x k= − ɶ ɶ                                               (5.25) 

The discrete-time Kalman filter is synthesized by applying aΦɶ  and aΓɶ   into (4.13) – 

(4.17) with state vector xɶ and positive definite fPɶ . The discrete-time Kalman Filter 

gain is calculated as follows: 

1

_ ( | 1) ( | 1)T T
f d f a a f a kK P k k C C P k k C V

−
 = − − + 

ɶ ɶ ɶɶ ɶ ɶ                   (5.26) 

The discrete-time LQG controller for system described in (5.22) is represented in the 

following form: 
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_ _ _

_

( ) ( ) ( )

( ) 0

a a r d f d a f d

dLQG

r d

K k K k C K k
K

K k

 Φ − Γ −
 =
 − 

ɶɶ ɶ ɶɶ ɶ
ɶ

ɶ
                 

(5.27) 

( )u t τ− ( )y t

( )y k

( )u k

w v

τ

_f dKɶ

1

z

_r dK− ɶ

ˆ( )y k −ˆ( 1)x k + +
+

+ +

aΦɶ

aCɶ

aΓɶ

ˆ( )x k

+
+

 

Figure 5.9 Schematic block diagram of the closed-loop system 

 

 

5.4.3 Controller Design for Delayed-Power System  

5.4.3.1 Delay Less than One Sampling Period 

For the case of sTτ < , the augmented state-space model of the power system with 

delay is given by (5.14) with additional 12 states used to model the time-delay. The 

discrete-time optimal state-feedback is computed according to (5.25). By setting 

0.01sT =  seconds and 0.005τ =  seconds which is shorter than one sampling period, 

the discrete-time optimal regulator gain _r dKɶ , the discrete-time Kalman filter gain 

_f dKɶ , and the discrete-time LQG controller dLQGKɶ  for system with time-delays is 

then synthesized via (5.22) – (5.26). The discrete-time cost function weights 'kQɶ  and 

'
kRɶ  are obtained via (5.19) using the continuous-time cost function weights Qɶ  and Rɶ  

used in Section 5.3. kW  and kV  are the same as used in Section 4.4.2. 
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For the delayed-power system, the solid lines in Figure 5.10 show the singular value 

plots of the discrete-time optimal regulator loop function 1
_ ( )r d a aK zI −− Φ Γɶ ɶ ɶ  , and the 

dashed lines represent the singular value plots of the discrete-time LQG loop 

function dLQG dK G− ɶɶ  for 210q −= , 410− , 610−  and 810− . As q decreases, the discrete-

time LQG loop gain closely approaches the optimal regulator loop gain, which 

indicates the recovery is achieved at plant input. Figure 5.11 shows the singular value 

plots of sensitivity function S and complementary sensitivity function T of the 

recovered closed-loop system. Table 5.11 lists system performance measures 

obtained for the delayed-power system when controlled using _r dKɶ  and dLQGKɶ . In 

case of dLQGKɶ , cross over frequencies of ( )Lσ  and ( )Lσ  as well as system 

bandwidth Bω  are reduced compared to _r dKɶ . The maximum peak of T, TM , is 

increased from 1.2 dB to 1.5 dB, indicating the degraded robustness and performance. 

However, system performances and robustness using dLQGKɶ  are still satisfied in the 

presence of the time-delays. The damping ratio of the electromechanical mode is 

reduced from 60.9% to 54.1% when using dLQGKɶ  as opposed to _r dKɶ . Therefore, 

some degradation in performance is observed but this degradation is acceptable.  

 

 

          (a) 210q −=                                                     (b) 410q −=  
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        (c) 610q −=                                                      (d) 810q −=  

Figure 5.10 LTR for (a) 210 ,q −=  (b) 410 ,q −=  (c) 610 ,q −=  (d) 810q −=  

 

Figure 5.11 ( )Sσ  and ( )Tσ  for _r dKɶ  and dLQGKɶ  

 

Table 5.11 System performance measures for _r dKɶ  and dLQGKɶ  

Controller  
Inter-area 

mode
 

SM
 

(dB) 
TM

 
(dB)

 Bω  

(rad/s)
 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (% )ζ  ( )f Hz  

_r dKɶ
 60.9 0.56 0 1.2 7.2 7.5 12.2 

dLQGKɶ  54.1 0.55 0 1.5 5.5 6.4 11.0 

 

 

5.4.3.2 Delay Longer than One Sampling Period 

In the case of sTτ > , the delay can be expressed using (5.15). The augmented state-

space model of the power system with delay is then given by (5.18). The discrete-
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time optimal state-feedback gain is obtained using (5.23). The weighting matrices in 

the corresponding cost function given in (5.20), namely kQɶ  and kRɶ , are obtained 

using (5.21) while kW  and kV  are the same as those specified in Section 4.4.2. For the 

design of discrete-time LQG/LTR controller, sampling period is set to 0.01sT =  

seconds, the assessed delays are 0.1τ =  and 0.5 seconds. The recovery at the plant 

input is achieved by designing the discrete-time Kalman filter, so that the discrete-

time LQG loop function dLQG dK G− ɶɶ  closely approaches to the discrete-time optimal 

regulator loop function 1
_ ( )r d a aK zI −− Φ Γɶ ɶ ɶ  as q tends to zero, as described in Section 

4.3.4. 

Figure 5.12 shows the singular value plots of the recovered discrete-time LQG loop 

function dLQG dK G− ɶɶ  (solid line) for 0.1τ = , and 0.5 seconds compared to that of the 

controller designed for 0.005τ =  seconds. It is observed that the loop gain is 

reduced for the same value of q due to the increase in time-delay, which indicates 

that system performance and robustness deteriorate when the time-delay is increased. 

Table 5.12 lists closed-loop system performance measures obtained for the delayed-

power system when controlled using dLQGKɶ  for 0.005, 0.1 and 0.5 seconds time-

delay, respectively. For the increase of time-delay, cross over frequencies of ( )Lσ  

and ( )Lσ  as well as system bandwidth Bω  are significantly reduced compared to 

time-delay of 0.005 seconds. The maximum peak of T, TM , is increased from 1.5 dB 

to 1.8 dB when the time-delay is increased from 0.005 seconds to 0.5 seconds, 

indicating the degraded robustness and performance. Furthermore, the damping ratio 

of the inter-area mode is reduced from 54.1% to 35.7% for the increase of time-delay. 

Therefore, the degradation in performance is observed for the increase of time-delay, 

but this degradation is acceptable as long as the time-delay is no greater than 0.5 

seconds. This demonstrates the effectiveness of the designed discrete-time LQG/LTR 

controller for the power system with communication time-delays.  
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                (a) 0.1τ =  s                                                    (b) 0.5τ =  s    

Figure 5.12 LTR for 0.1τ = , and 0.5 s 

 

Table 5.12 System performance measures using dLQGKɶ  

Time-delay 
τ  

Inter-area 
mode

 
SM

 
(dB) 

TM
 

(dB)
 Bω  

(rad/s)
 

( )Lσω  

(rad/s) 
( )Lσω  

(rad/s) (% )ζ  ( )f Hz  

5 ms 54.1 0.55 0 1.5 5.5 6.4 11.0 

100 ms 38.1 0.57 0 1.6 4.9 5.4 9.9 

500 ms 35.7 0.58 0 1.8 3.5 4.6 8.2 

 

 

For delay 0.1τ = , 0.5 seconds, 10 12⋅  and 50 12⋅ additional states are included in 

the augmented state-space model of the system in (5.17), respectively. Thus, the 

dimension of the augmented state-space model will be large if the delay is much 

longer than the sampling period, hence the dimension of the controller. This may 

results in the increased computational burden.  
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5.4.4 Evaluation using Linear System Analysis Tools 

This section reports on the results obtained when assessing the performance and 

robustness of the closed-loop system incorporating discrete-time LQG/LTR 

controller designed in Section 5.5 using the linearised model of a power system. The 

controller that incorporates the communication time-delays, denoted as mLQG , is 

compared to the conventional discrete-time controller that ignores the presence of the 

time-delays 0dLQG , which was designed and detailed in Section 4.4.  

 

5.4.4.1 Delay Margin 

Delay margins for discrete-time controllers 0dLQG  and mLQG  are identified for 

different sampling periods and are listed in Table 5.13. It is observed that the delay 

margin for controller 0dLQG   is quite small and is further reduced from 120 ms to 

100 ms when the sampling period is increased from 0.01 seconds to 0.1 seconds. This 

delay margin is shorter than the delay margin for continuous-time controller 0LQG , 

found to be equal to 160 ms in Section 5.4.2, due to the discretisation of the 

controller. In case of controller mLQG , the delay margin is significantly increased to 

be as long as 1.4 seconds compared to 120 ms achieved by 0dLQG  with the sampling 

period of 0.01sT =  seconds. This demonstrates suitability of mLQG  in the power 

system applications with communication time-delays. Also, the increase in sampling 

period has an insignificant deterioration on the delay margin for controller mLQG . 

One other very important observation is that the delay margin for the designed 

discrete-time LQG/LTR controller mLQG  using sampling period of 0.01sT =  

seconds is larger than that achieved by the continuous-time controller that uses 4th 

order Pade approximation 4
PLQG . This indicates the benefit of using discrete-time 

controllers rather than their continuous-time counterparts when dealing with the 

communication time-delays. The reason is primarily due to the fact that the design of 

mLQG  incorporates the exact time-delay description into the state-space model of the 

system, while controller 4
PLQG  is designed by representing the time-delay with 

rational Pade approximation.            
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Table 5.13 Delay margin for different sampling periods 

Sampling period 
(second) 

Delay Margin 

0dLQG  mLQG  

0.01 120 ms 1.4 s 
0.02 115 ms 1.3 s 
0.05 110 ms 1.1 s 
0.1 100 ms 1.1 s 

 

 
 

5.4.4.2 Frequency Domain Analysis  

The performance and the robustness of the closed-loop system comprising of the 

power system controlled by the designed discrete-time LQG/LTR controller mLQG  

are evaluated in the presence of communication time-delays and different sampling 

periods using linearised power system model and frequency-domain tools. The 

assessed time-delays range from 50 ms to 1.2 seconds. Sampling periods of 0.01, 

0.05, and 0.1 seconds are utilized when designing the discrete-time LQG/LTR 

controllers.   

Table 5.14 lists system performance measures of the closed-loop system controlled 

by mLQG  for different time-delays and sampling periods in terms of maximum peak 

of T, denoted as TM , and system bandwidth, denoted as Bω . For every sampling 

period, TM  is found to increase for the increasing value of time-delay, while Bω  is 

decreased when time-delay is increased from 50 ms up to 1.5 s. This indicates that 

system performance and robustness are degraded for the increasing communication 

time-delay. In particular, TM  exceeds 2 dB for the time-delay longer than 1 second 

for all sampling periods. In addition, TM  is increased and Bω  is decreased for the 

increase of sampling period for any constant time-delay. This finding demonstrates 

that system performance and robustness are degraded by the increase in the sampling 

period used when implementing controller, which is in accordance with the results in 

Chapter 4.  
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Tables 5.15 and 5.16 list the damping ratio and the frequency of the inter-area 

electromechanical mode for various time-delays using discrete-time controllers 

0dLQG  and mLQG , respectively. For each sampling period utilized in designing 

0dLQG , the damping of inter-area mode is dramatically reduced down to negative 

value, indicating onset of the closed-loop system’s instability, as the time-delay is 

increased from 50 ms to 1.5 s, as shown in Table 5.15. On the other hand, the inter-

area mode for all time-delays within the delay margin, as well as for different 

sampling periods, is well-damped using controller mLQG  as shown in Table 5.16. It 

is also observed that inter-area damping is degraded for the increase in either the 

time-delay or sampling period. However, such degradation is insignificant and the 

resulting system performance and robustness are still satisfied when using controller 

mLQG .    

 

 

Table 5.14 System performance measures using mLQG  

Time-

delay 
τ

 

Sampling Period (second) 

0.01 0.05 0.1 

TM  
(dB) 

Bω  
(rad/s) 

TM  
(dB) 

Bω  
(rad/s) 

TM  
(dB) 

Bω  
(rad/s) 

50 ms 1.5 5.3 1.5 4.8 1.7 4.3 

100 ms 1.6 4.9 1.6 4.0 1.7 3.8 

250 ms 1.7 4.1 1.8 3.6 1.9 3.1 

500 ms 1.8 3.5 1.9 2.9 1.9 2.5 

800 ms 1.8 3.0 1.9 2.7 2.0 2.0 

1 s 2.0 2.5 2.2 2.1 2.2 1.6 

1.2 s 2.6 0.8 2.8 0.6 3.1 0.2 

1.5 s 2.8 0.4 3.0 0.1 3.2 0.1 
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Table 5.15 Damping of inter-area mode for time-delays using 0dLQG  

Time-delay 
τ  

Sampling Period (second)  

0.01 0.05 0.1 
( )f Hz  ζ (%) ( )f Hz  ζ (%) ( )f Hz  ζ (%) 

50 ms 0.53 20.4 0.53 20.1 0.54 19.7 

100 ms 0.54 19.5 0.55 18.9 0.55 17.3 

250 ms 0.57 2.5 0.57 1.4 0.58 1.0 

500  ms 0.54 -12.6 0.56 -14.1 0.57 -16.8 

800  ms 0.55 -15.7 0.56 -16.8 0.56 -17.2 

1 s 0.55 -16.6 0.55 -17.7 0.56 -18.8 

1.2 s 0.54 -18.7 0.54 -19.1 0.54 -20.3 

1.5 s 0.54 -20.2 0.54 -21.9 0.53 -22.1 
 

 

Table 5.16 Damping of inter-area mode for time-delays using mLQG  

Time-delay 
τ  

Sampling Period (second) 

0.01 0.05 0.1 
( )f Hz  ζ (%) ( )f Hz  ζ (%) ( )f Hz  ζ (%) 

50 ms 0.55 38.5 0.56 37.2 0.57 35.7 

100 ms 0.56 38.1 0.56 35.7 0.57 33.2 

250 ms 0.57 37.5 0.58 33.2 0.59 29.4 

500  ms 0.59 35.7 0.59 27.9 0.60 22.9 

800  ms 0.58 34.1 0.59 24.5 0.60 19.4 

1 s 0.57 33.2 0.58 22.9 0.59 17.8 

1.2 s 0.56 32.5 0.57 21.5 0.58 16.5 

1.5 s 0.56 29.8 0.56 19.3 0.58 14.2 
 

 
 

5.4.4.3 Various Operating Conditions 

Changes in the operating conditions, identical to those used in Section 5.4.2, are 

utilised to assess the robustness of the discrete-time controller in the presence of the 

communication time-delays. The sampling period is set equal to 0.01 seconds. Table 

5.17 lists the delay margin for various different operating conditions for controller 

mLQG  compared to controller 0dLQG  and controller 4
PLQG . For the increase in the 
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power transfer from Area 1 to Area 2, the delay margin for 0dLQG  is significantly 

reduced from 120 ms to only 55 ms, and the delay margin for 4
PLQG  is reduced from 

1.2 seconds to 950 ms detailed in Section 5.4. However, in the case of controller 

mLQG , the delay margin is insignificantly reduced for the increase of power transfer 

from 1.4 seconds to 1.0 second, which demonstrates the robustness of the discrete-

time controller designed for the nominal operating conditions and incorporating the 

model for communication time-delays. It is also observed that the delay margin for 

mLQG  is greater than that for 4
PLQG  for each considered operating condition due to 

the fact that the time-delay is represented exactly in discrete-time formulation rather 

than using Pade approximation. This is a very important result that demonstrates the 

superiority of the controller mLQG  when compared to 4
PLQG  in terms of the closed-

loop system robustness to the changing operating conditions and in the presence of 

communication time-delays. Such superiority is due to the fact that the discrete-time 

controller design incorporates exact model of the time-delay rather than its rational 

approximation.      

Table 5.18 lists the damping ratio and the frequency of the inter-area mode for 

different operating conditions and various time-delays when using controller mLQG . 

The damping of the inter-area mode is degraded for either the change in operating 

condition or the increase in the time-delay. However, the inter-area mode is well-

damped for various operating conditions and different time-delays when the power 

system is controlled by mLQG , which demonstrates its effectiveness and robustness. 

 

Table 5.17 Delay margin for different power transfers for 0dLQG , mLQG , 4
PLQG  

Power transfer increase: 
Area 1 to Area 2 0dLQG  mLQG  

4
PLQG  

Base case 120 ms 1.4 s 1.2 s 
10% 110 ms 1.4 s 1.1 s 

20% 85 ms 1.2 s 1.1 s 

30% 70 ms 1.1 s 1.0 s 

40% 55 ms 1.0 s 950 ms 
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Table 5.18 Inter-area mode for time-delays for different power transfers using mLQG  

Time-
delay τ  

Power transfer from area 1 to area 2 
Base Case Increase 10% Increase 20% Increase 30% Increase 40% 
( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) ( )f Hz  ζ  (%) 

100 ms 0.55 38.5 0.55 34.9 0.55 34.4 0.54 33.6 0.54 32.8 
200 ms 0.56 38.1 0.55 32.4 0.55 31.9 0.55 31.2 0.54 30.5 
500  ms 0.57 37.5 0.56 27.2 0.56 26.7 0.55 26.2 0.55 25.7 
800  ms 0.59 35.7 0.57 23.9 0.56 23.5 0.56 23.0 0.55 22.7 

1 s 0.58 34.1 0.57 22.3 0.56 21.8 0.55 21.5 0.54 21.1 
1.2 s 0.57 33.2 0.56 20.9 0.55 20.5 0.55 20.2 0.53 19.9 

 

Note that the results in this section were all obtained assuming power system is 

represented by its linear model. In order to expand on this analysis, non-linear model 

of the power system is utilised in the next section. 

 

 

5.4.5 Non-linear Simulation  

In this section, the designed discrete-time LQG/LTR controller mLQG  is applied 

onto the non-linear model of the power system and the resulting performance is 

compared to that obtained using controller 0dLQG , as well as that of using 

continuous-time controller 4
PLQG  detailed in Section 5.4. A large disturbance, in a 

form of a self-cleared three-phase fault occurring on bus 5 at simulation time equal to 

1 second, is applied onto the power system.  

 

5.4.5.1 Case 1: Comparison between 0dLQG  and mLQG            

Figure 5.13 shows the speed deviation, electrical power output and terminal voltage 

of each generator using supervisory discrete-time controller mLQG  compared to

0dLQG  for time-delay 120τ =  ms. Note that this is the delay margin for 0dLQG , 

which is clearly shown in Figure 5.13. On the other hand, the discrete-time controller 

that uses information regarding time-delays, namely mLQG  , maintains the stability 

with satisfactory response to the applied disturbance. This demonstrates the 
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effectiveness and the superiority of the designed discrete-time controller mLQG . 

Note that the delay margin related to 0dLQG  is somewhat smaller than that obtained 

for its continuous-time counterpart in Section 5.4. This is mainly due to the 

discretisation of the system dynamics. 

 

 

0 5 10
-2

0

2

4
x 10

-3

Time (s)

∆w
  

(p
.u

.)

    Speed Deviation, GEN 1

0 5 10
-5

0

5

10
x 10

-3

Time (s)

∆w
  

(p
.u

.)

    Speed Deviation, GEN 2

0 5 10
-5

0

5

10
x 10

-3

Time (s)

∆w
  

(p
.u

.)

    Speed Deviation, GEN 3

 

 

0 5 10
-4

-2

0

2

4
x 10

-3

Time (s)

∆w
  

(p
.u

.)

    Speed Deviation, GEN 4

with LQG
m

with LQG
d0



177 
 

 

 

Figure 5.13 System responses using mLQG  and 0dLQG  for 120τ = ms 
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5.4.5.2 Case 2: Comparison between mLQG  with 0.01sT ====  and mLQG  with 

0.1sT ====       

Next, the impact of the sampling period on the performance of the discrete-time 

controller in the presence of communication time-delays is investigated and the main 

results are shown in Figure 5.14 and 5.15. These figures show the speed deviation for 

each generator of the power system controlled by controller mLQG  designed using 

sampling period 0.01sT =  and 0.1sT =  second in the presence of 500 ms and 1 s 

time-delays, respectively, and when subjected to a self-cleared three-phase fault. In 

the case of 500 ms time-delay, the results are shown in Figure 5.14 and indicate that 

mLQG  with either 0.01sT =  seconds or 0.1sT =  seconds can stabilize the power 

system when subjected to a large disturbance. It is also observed that the settling time 

of the response of the power system controlled by mLQG  using 0.01sT =  is shorter 

than that of using 0.1sT = , which indicates that the use of shorter sampling period 

results in larger bandwidth and, therefore, faster response, which is somewhat 

expected.  In the case of 1 second time-delay controller mLQG  using for 0.1sT =  

seconds sampling period cannot stabilize the power system when subjected to a large 

disturbance, as shown in Figure 5.15. This result confirms the finding that the delay 

margin for this controller is equal to 1.0 second. On the other hand, it is clearly 

shown that the power system can be recovered from the large disturbance when 

controlled by controller mLQG  using 0.01sT =  second sampling period. Hence, the 

controller with the faster sampling rate has higher delay margin compared to the 

controller that utilises longer sampling period.  
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Figure 5.14 System responses using mLQG  for 500τ = ms: 0.01sT =  vs. 0.1sT =  

 

Figure 5.15 System responses using mLQG  for 1.1τ = s: 0.01sT =  vs. 0.1sT =  
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5.4.5.3 Case 3: Comparison between mLQG  with 0.01sT ====  and 4
PLQG  

Figure 5.16 shows the speed deviation, electrical power output and terminal voltage 

of each generator obtained when using supervisory discrete-time controller mLQG  

using 0.01sT =  seconds and the 4
PLQG  controller for time-delay 1.2τ =  seconds. 

Note that this is the delay margin for 4
PLQG . The power system controlled by 4

PLQG  

could not be recovered from a large disturbance for 1.2 seconds time-delay, which is 

clearly shown in Figure 5.13. On the other hand, the discrete-time controller mLQG  

maintains the stability with satisfactory response to the applied disturbance. This 

demonstrates the effectiveness and the superiority of the designed discrete-time 

controller mLQG  due to the fact that the time-delays are represented exactly using 

discrete-time formulation rather than using rational approximation.  

Figure 5.17 shows the speed deviation of each generator of the power system 

controlled by mLQG  using 0.01sT =  when subjected to a large disturbance for 1.4 

seconds time-delay. It is shown that the power system controlled by 4
PLQG  could not 

be recovered from the large disturbance when the time-delay exceeds the delay 

margin.  
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Figure 5.16 System responses using mLQG  in 0.01sT =  and 4
PLQG  for 1.2τ = s 

 

Figure 5.17 System responses using mLQG  in 0.01sT =  for 1.4τ = s 
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5.5 Summary  

This chapter focused on the design of the supervisory continuous-time and discrete-

time controllers for the power system in the presence of communication time-delays. 

Continuous-time controllers were designed by firstly representing time-delay in the 

rational form using Pade Approximation and Bassel-Thomson Approximation. These 

were then assessed using linear representation of the power system and utilising 

frequency-domain analysis tools. Also, the continuous-time controllers were 

compared in the time-domain using non-linear simulation model of the power system. 

It was clearly demonstrated that the controller utilising Pade approximation achieves 

much better performance and robustness when compared to that designed using 

Bassel-Thomson approximation. Order of the time-delay approximation was also 

varied in order to assess its impact on the performance. The result of this assessment 

was that the 4th order approximation is the most appropriate for this particular power 

system application. 

Also, discrete-time controller was designed using exact representation of the time-

delay rather than resorting to rational approximation. As  a result of using exact time-

delay model, discrete-time controller was shown to achieve larger time-delay margin 

when compared to its continuous-time counterpart.  

In conclusion, it has been clearly shown that the proposed continuous-time and 

discrete-time LQG/LTR controllers can tolerate longer time-delays compared with 

the conventional LQG/LTR controllers designed without any consideration of the 

communication time-delays. Also, discrete-time control formulation is found to be 

more appropriate when dealing with communication time-delays because it uses their 

exact representation rather than rational approximation during controller design. The 

effectiveness and the robustness of the proposed controllers for various time-delays 

and different operating conditions were verified using both small signal and large 

signal disturbances.  
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Chapter 6  

Supervisory Controller Development 

using Extended Kalman Filter for 

System with Unknown Time-Delay 
 

 

 

6.1 Introduction  

In the previous chapter, the continuous-time and discrete-time LQG/LTR controllers 

were designed assuming a presence of a known and constant communication time-

delay existing between them and the power system. However, this assumption may 

be highly inappropriate in circumstances in which they are unknown and/or time-

varying. Therefore, in this chapter the Extended Kalman Filter (EKF) is designed and 

used to continuously estimate the time-delay so that it can be used to update the 

prediction model, which is utilised by the supervisory LQG/LTR controller. Both the 

simple single-input single-output system and the nonlinear power system model are 

used to demonstrate the benefits of the proposed scheme. Also, the proposed control 

scheme is compared with the conventional discrete-time LQG controller that 

assumes time-delay to be non-existent in order to demonstrate its effectiveness and 

applicability to multi-machine power systems. Effectiveness and performance of the 

closed-loop system controlled by supervisory LQG/LTR coupled with EKF filter is 

verified using both the small-signal and large-signal stability studies involving the 

non-linear power system model.  
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6.2 Estimation of Unknown Time-Delay 

It was shown in Chapter 5 that an effective way to incorporate time-delay into a 

standard transfer function is to represent it in the rational form using the Pade 

approximation of the appropriate order. In this form the actual value of the time-

delay appears as a linear model parameter. As a result, the Extended Kalman Filter 

can be used to estimate this parameter value so that it can be incorporated into the 

prediction model used by the supervisory wide-area controller.    

 

6.2.1 Augmented Model  

Using Pade approximation (5.1), it has been shown that the augmented model of the 

system with the constant time-delay can be represented by (5.6). Therefore, the time-

delay can be represented as a parameter that is assumed to linearly affect the 

dynamics of the process. In order to be able to estimate this parameter by using 

Extended Kalman Filter, auxiliary state of the state-space model is created by making 

the substation 1ex τ=  where τ  represents unknown time-delay for the open-loop 

system model specified in (5.6). Then the new augmented system model containing 

auxiliary state variable can be defined as follows:  

                                                       
x Ax Bu

y Cx Du

= +
= +

ɺ
                                                    (6.1a) 

where ( ) ( ) ( ) ( )
TT T T

d ex t x t x t x t =   . The structure of the state-space model matrices 

in (6.1a) is given as: 

                                 

[ ]

( ) 0 ( )

( ) 0 0 ( ) ( )

( ) 0 0 0 ( ) 0

( )

( ) 0 ( ) ( )

( )

d d

d d d d

e e

d d d

e

x t A BC x t BD

x t A x t B u t

x t x t

x t

y t C DC x t DD u t

x t

      
      = +      
            

 
 = + 
  

ɺ

ɺ

ɺ
                      (6.1b) 
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By incorporating the state space model for the time-delay, given in (5.5), into (6.1b), 

the state-space model given in (6.1b) is a function of the time-delay τ . Note that the 

state-space model matrices A  and B  are the functions of x  because dA  and dB  

depend on the value of ( )ex t . Therefore the model expressed in (6.1) is non-linear. 

It is important to note that the number of state variables for the system given in (6.1) 

will be higher than that for the original system defined in (5.6). In particular, if for a 

given system the number of the plant state, input and output variables is equal to n, m 

and r respectively, then, assuming the k-th order Pade approximation is used, the 

dimension of dx  is ( ) 1k m⋅ ⋅ . Subsequently, the dimension of x  is ( )1 1n k m+ ⋅ + ⋅ . 

If, however, time-delay is assumed to be the same for each channel, then only one 

auxiliary state variable is required. In this chapter it is assumed that the time-delays 

are all equal to each other so dimensionality of x  is ( )1 1n k m+ ⋅ + ⋅ . Such 

assumption is used to demonstrate the benefit of the proposed approach. It is, 

however, expected that its generalisation to the case with different time-delays 

present in different channels can be easily accomplished at the expense of increased 

computational burden.    

Discretisation  

The sampling procedure described in Chapter 4 and taken from [95] is applied in 

order to discretise the continuous-time augmented model given in (6.1). The resulting 

discrete-time model is provided in (6.2): 

                                            
( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

x k x x k x u k

y k Cx k Du k

+ = Φ + Γ
= +

                              (6.2a) 

0

s

s

AT

T As

e I A

e dsB B

Φ = = + Ψ

Γ = = Ψ∫
                                           (6.2b) 

Where the structure of the state vector is the same as that of the continuous-time 

model and is given as ( ) ( ) ( ) ( )
TT T T

d ex k x k x k x k =    , sT  is the sampling interval 

and the state transition matrix is given as: 
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2 2 3 1

0 2! 3! ( 1)!
s

i i
T As s s s

s

AT A T A T
e ds IT

i

+

Ψ = = + + + ⋅⋅⋅ + + ⋅⋅⋅
+∫  

Note that both Φ  and Γ  depend on x , hence model given in (6.2) is non-linear. 

This is due to the fact that A  and B  are non-linear functions of ( )ex t , which 

represents the value of the time-delay.   

 

6.2.2 Estimation of Time-Delay using Extended Kalman Filter 

In order to estimate the state vector of the non-linear model (6.2), the Extended 

Kalman Filter (EKF) is utilised. EKF is the well-known recursive algorithm used to 

estimate states for the nonlinear systems. For the nonlinear system model, a 

linearisation procedure is usually performed in order to get an approximate linear 

representation. The EKF can then be used to estimate the system states by applying 

the standard Kalman Filter algorithm on this approximated linear model [96].  

The non-linear model (6.2) with the standard exogenous inputs w and v, which 

denote process disturbances and measurement noise respectively, is represented as  

( 1) ( ( ), ( ))

( ) ( ( ), ( ))

x k f x k u k w

y k h x k u k v

+ = +
= +

                                          (6.3) 

where ( ) ( ) ( ) ( )
TT T T

d ex k x k x k x k =   , w and v represent the process disturbances 

and  the measurement noise, respectively, as defined in (3.5). Functions ( )f ⋅  and 

( )h ⋅  depict non-linear dynamics of the system. Let ( ), ( )F k H k  be the Jacobian 

matrices corresponding to ( )f ⋅  and ( )h ⋅ , respectively. They are formally defined as: 

ˆˆ ( ),( ),

ˆ ˆ( ), ( ),

( ( ), ) ( ( ), )
( ) , ( ) ,

( )

( ( )) ( ( ))
( ) , ( ) .

x u
x k ux k u

x u
x k u x k u

f x k u f x k u
F k F k

x k u

H x k H x k
H k H k

x u

∂ ∂= =
∂ ∂

∂ ∂= =
∂ ∂

               (6.4) 

The discrete extended Kalman Filter algorithm is performed by recursively executing 

the following four steps. 
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Step 1 – Initialization  

Initialize (0 | 0)P  and [ ]ˆ ˆ ˆ ˆ(0 | 0) (0 | 0) (0 | 0) (0 | 0)
T

d ex x x x= . P is defined 

as the error covariance of states x . 

Step 2 – Prediction  

 ˆ ˆ( 1| ) ( ( | ), )x k k f x k k u+ =                                                                           (6.5) 

ˆˆ( ) ( ( | ))y k h x k k=                                                                                         (6.6) 

2 1( 1| ) ( ) ( | ) ( ) ( ) ( )T T
x x u uP k k F k P k k F k F k W F k W+ = + +                              (6.7) 

Step 3 – Measurement Update 
1( 1) ( 1| ) ( ( 1| ) )T T

x x xL k P k k H H P k k H V−+ = + + +                                     (6.8) 

( 1| 1) ( ( 1) ) ( 1| )xP k k I L k H P k k+ + = − + +                                                 (6.9) 

ˆ ˆ ˆ( 1| 1) ( ( 1| ), ) ( 1)( ( ) ( ))x k k f x k k u L k y k y k+ + = + + + −                            (6.10) 

Step 4 – Repeat 

Increment the time and go back to Step 2. 

Here, 1W  is the covariance matrix of the system noise, 2W  is the covariance matrix of 

the input noise and V is the covariance matrix of the output noise. 1W  and 2W  are 

nonnegative definite symmetric matrices while V is a positive definite symmetric 

matrix. ( )L k  is the Kalman Filter gain at time step k and ˆ ( | )x k k  is the estimate of 

( | )x k k  at time step k.  

The algorithm provided above consists of two main steps: prediction and 

measurement update. During the prediction step, the predicted state vector 

ˆ ( 1| )x k k+  and the state error covariance matrix ( 1| )P k k+  are computed. During 

the measurement update step, estimated state vector ˆ ( 1| 1)x k k+ +  is obtained as the 

sum of the predicted state vector ˆ ( 1| )x k k+  and the correction term. Also, at the 

measurement update step the estimated state error covariance matrix ( 1| 1)P k k+ +  is 

calculated based on Kalman filter gain L. The schematic representation of the 

extended Kalman filter algorithm applied on the system with input time-delay is 

showed in Figure 6.1. 
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Figure 6.1 Schematic Representation of Extended Kalman Filter 

 

6.2.3 EKF for First Order Pade Approximation 

In order to clearly illustrate the proposed method the time-delay is firstly represented 

by the 1st order Pade approximation: 

                                                 
1 0.5

1 0.5
s s

e
s

τ τ
τ

− −≈
+

                                                     (6.11) 

The state-space model representing time-delay model (5.5) is given as: 

{ , ,..., }dA diag a a aτ τ τ= ,  { , ,..., }dB diag b b bτ τ τ= , { , ,..., }dC diag c c cτ τ τ= , and 

{ , ,..., }dD diag d d dτ τ τ=  with  

2 2
, ,

2, 1.

a b

c d

τ τ

τ τ

τ τ
= − =

= = −
                                                 (6.12)   

Substituting (6.6) into (6.1) results in the following augmented state-space model: 

                                 

[ ]

( ) 2 0 ( )

( ) 0 2 0 ( ) 2 ( )

( ) 0 0 0 ( ) 0

( )

( ) 0 0 ( ) ( )

( )

d e d e

e e

d

e

x t A B x t B

x t x x t x u t

x t x t

x t

y t C x t Du t

x t

−      
      = − +      
            

 
 = − 
  

ɺ

ɺ

ɺ
                     (6.13) 
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The equivalent discrete-time model, introduced in (6.2), for 1st order Pade 

approximation is then given as follows: 

                            

[ ]

2
2

2

( 1) 2 0 ( )

( 1) 0 2 ( ) 0 ( )

( 1) 0 0 ( )

( ) 2 ( )
2

2 ( )( ( )) ( )

0

( )

( ) 0 0 ( ) ( )

( )

s s

d s e d

e e

s
s s e

e s s e

d

e

x k I T A T B x k

x k I T x k x k

x k I x k

T A
B T T x k B

x k T T x k u k

x k

y k C x k Du k

x k

+ +    
    + = −    
    +     

 
− + + 
 
 + −
 
 
 
 

 
 = − 
  

                 (6.14) 

where ( ) ( ) ( ) ( )
TT T T

d ex k x k x k x k =   .  

Then ( )f ⋅  and ( )h ⋅ , defined in (6.3), and ( )F k  and ( )H k , defined in (6.4), can be 

represented using (6.15) and (6.16), respectively. 

 

2

2

( ) ( ) ( ) ( ) ( )
2

( ) (1 ( )) ( ) ( ( )) ( ) ( )
2

( )

s
s s d e

s
s e d s e e

e

T
I T A x k T Bx k Bx k u k

T
f k T x k x k T x k x k u k

x k

 
+ + + 

 
 = − + − 
 
 
 
 

,   ( ) ( )h k Cx k= .     (6.15) 

   

ˆ ( ),

2

2

( ( ), )
( )

( )

( )
2

( ) 0 1 ( ) ( ) ( ( )) ( )

0 0

x

x k u

s
s s

x s e s d s s e

f x k u
F k

x k

T
I T A T B Bu k

F k T x k T x k T T x k u k

I

∂=
∂

 
+ 

 
= − − + − 
 
 
  

       (6.16a) 

2

2

ˆ ( ),

( )
2

( ( ), )
( ) ( ( )) ( )

2
0

s
e

s
u s e e

x k u

T
Bx k

Tf x k u
F k T x k x k

u

 
 
 

∂  = = − ∂
 
 
 
 

                    (6.16b) 
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[ ]
ˆ ( )

( ( ))
( ) 0 0x

x k

H x k
H k C

x

∂= =
∂

                                  (6.16c) 

 

6.2.4 EKF for Second Order Pade Approximation 

Time-delay can also be represented by the 2nd order Pade approximation as follows: 

                                         

2 2

2 2

1 1
1

12 2
1 1

1
12 2

s
s s

e
s s

τ
τ τ

τ τ
−

− +
≈

+ +
                                              (6.17) 

The state space matrices of the approximated time-delay are derived as follows: 

[ ]

2 2

0 1 0
, ,12 6 12

0 , 1.

a b

c d

τ τ

τ τ

τ τ τ

τ

   
   = =
   − −
   

= − =

                                       (6.18)   

The augmented state variables are then 1 2

TT T
d d dx x x =   . By substituting (6.18) into 

(6.1) and introducing the auxiliary state ex , the overall augmented model can be 

represented as: 

   

1

1 1

22
2 2

11

2

( ) ( )0 0
( ) ( ) 00 0 1 0

( )
120 12 6 0( ) ( )

00 0 0 0( ) ( )

( )
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e

d d

ee ed d

e e

d

e

d

e

x t x t BA Bx
x t x t

u t
xx xx t x t

x t x t

x t

x t
y t C Dx D

x t

x t

−

−

      −
      
      = +      − −      
           

 
 
  = − +  
 
  

ɺ

ɺ

ɺ

ɺ

( )u t

        (6.19) 

where 1 2( ) ( ) ( ) ( ) ( )
TT T T T

d d ex k x k x k x k x k =   . 

 

Following discretisation, the system model in (6.2) incorporating 2nd order Pade 

approximation is given as follows: 
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d
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d

e

x k

x k
Dx Du k

x k

x k

−

 
 
  − +   
 
  

               (6.20) 

Now, ( )f ⋅  and ( )h ⋅  in (6.3) and ( )F k  and ( )H k  in (6.4) can be represented using 

(6.21) and (6.22) respectively: 

1
2

2 2
1 2

2 2
1 2

( ) ( ) ( ) ( ) [ 6 ( )] ( )
2

( ) ( ) 6 ( ) ( )
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[ ]( ) 0 0 0xH k C=                                          (6.22c) 
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6.3 Numerical Example I 

6.3.1 First Order Pade Approximation 

The estimation by EKF discussed in the previous section will now be illustrated 

using a numerical examples. First of all, a second order SISO system is considered 

with the transfer function expressed as: 

1

1
( )

(10 1)
g s

s s
=

+
                                             (6.23) 

The state space matrices of this system are given as: 

[ ]

0.1 0 1
, ,

1 0 0

0 0.1 , 0.

A B

C D

−   = =   
   

= =
                                    (6.24) 

Time-delay, τ , is approximated by 1st order Pade approximation given in (6.5). The 

actual time-delay applied is 1τ =  second. The sampling interval of the simulation is 

set to be 0.01sT =  seconds. The input applied is the random number signal. The 

weightings { }1 2,W diag W W=  and V are chosen to be the following: 

{ }5 2
1 11 22 33 2 2{ , , } 10 , 10 , 1W diag w w w diag I− −

×= = ,  2 1W = ,  410V −= .       (6.25) 

where 1W  is the model error covariance matrix, 2W  is the input noise covariance 

matrix, and V is the output noise covariance matrix. The estimated ˆex  is then 

obtained by applying EKF procedure in order to estimate the time-delay τ , which is 

given by ˆ ˆ1 exτ = . 

 

A. Investigating Impact of Different Initial Conditions 

The initial realization of (0 | 0)P , which is the error covariance of states x , is chosen 

to be the identity matrix. The initial values of the estimated state vector 

ˆ ˆ ˆ ˆ(0 | 0) (0 | 0) (0 | 0) (0 | 0)
TT T T

d ex x x x =   can be chosen arbitrarily. In this 

experiment̂ (0 | 0)x  and ˆ (0 | 0)dx  are set to be equal to zero while the initial estimate 

of the time-delay, i.e. ̂ (0 | 0)ex , was varied in order to assess its impact on the 
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performance of the proposed scheme. Figure 6.2 shows the estimated time-delay τ̂  

for four different choices of ̂ (0 | 0)ex . It is observed in the figure that for each of the 

four initial values of ̂τ , the estimated time-delay converges to the true value of 1τ = . 

Interestingly, convergence is observed to be much faster for those cases for which 

the initial estimate of the time-delay is higher than the true value. This phenomenon 

will be considered in the future research work expected to continue following PhD 

thesis submission.  

 

Figure 6.2 Estimated time-delay using EKF for different initial conditions 

 

B. Investigating Impact of Different Weighting Functions 

In order to investigate the impact of different weighting functions, ̂ (0 | 0)ex  is set to 

be equal to 0.5, 11w , 22w , 2W  and V  are set according to (6.19). Time-delay 

estimation error is defined as the difference between the estimated time-delay and the 

actual time-delay, that is τ̂ τ− . Figure 6.3(a) shows the estimation error for different 

weightings on ̂ ex , namely 2 1 2
33 10 , 10 , 1, 10, 10w − −= . It is observed in Figure 6.3(a) 

that larger values of 33w  result in more oscillatory response of the estimation error. 

On the other hand, the estimation error for small value of 33w  is less oscillatory but 

with a steady state error.  

The results have also shown that the estimation is not largely affected by the changes 

in the weighting 2W . On the other hand, the changes in the weightings 11w , 22w  and 

V  do have significant effect on the estimation. This is demonstrated in Figure 6.3(b), 
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which plots the estimation error for different values of 11w , 22w  and V  while setting 

33 1w = . In particular, it can be observed that the increase in 11w , 22w  and V results in 

the positive estimation bias, i.e. estimate is higher than the true value of the time-

delay.  

 

 

                       (a)                                                             (b) 

Figure 6.3 Estimation errors for different EKF cost function weightings 

 

6.3.2 Second Order Pade Approximation 

Using the numerical example system specified in (6.17) and (6.18), the second order 

Pade approximation (6.11) is applied in this section. The actual time-delay applied is 

kept at 1τ =  second. The sampling interval is kept at Ts=0.01 seconds while the 

input signal is the same as that used in Section 6.3.2. The weightings specified in 

(6.25) are applied with 2W = 1 0

0 1

 
 
 

 due to the fact that the second order Pade 

approximation is used for the time-delay.  

The initial realization of (0 | 0)P is set to be identity matrix. The estimated state 

vector is represented by 1 2
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

TT T T T
d d ex k x k x k x k x k =    with the initial 

conditions of the estimated state vector set as: ˆ(0 | 0) 0x = , 1ˆ (0 | 0) 0dx = , and  

2ˆ (0 | 0) 0dx = , ˆ (0 | 0)ex  = 0.5. Figure 6.4 shows the time-delay estimation error by 

using first order Pade approximation and the second order Pade approximation. It is 

observed in Figure 6.4 that the convergence of the estimation using 2nd order Pade 

approximation is much faster and free of steady state error. Therefore, when utilising 
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EKF to estimate time-delay, 2nd order Pade approximation is to be preferred when 

compared to the 1st order Pade approximation.  

 

Figure 6.4 Time-delay estimation error for 1st and 2nd order Pade Approximation 

 

6.4 Modified Discrete-Time LQG 

The supervisory discrete-time LQG controller is designed in conjunction with the 

EKF estimator, discussed in previous sections of this chapter, in order to improve the 

robustness of the wide-area control scheme when dealing with the inevitable 

presence of communication delays. The main difference of the proposed LQG 

controller, when compared to the conventional LQG, is that the estimated states are 

obtained by using the EKF filter instead of the standard linear Kalman Filter. The 

proposed approach is named as modified discrete-time LQG (MDLQG) approach. 

The discrete-time LQG is designed initially assuming that there is no time-delay, 

until the estimated value of time-delay is provided by EKF. The estimated time-delay 

is then applied to update the proposed discrete-time LQG procedure detailed in 

Section 5.5 [97]. Figure 6.5 shows the configuration of the modified discrete-time 

LQG control algorithm.  
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Figure 6.5 Configuration of MDLQG 

As described in the previous sections, the estimation of the unknown time-delay is 

achieved using the Extended Kalman Filter based on the discrete-time augmented 

model specified in (6.2). Also, the proposed discrete-time LQG controller is designed 

using the augmented model of (6.2) with the process and measurement noise. The 

state-space representation of the model considered during the synthesis is given as 

follows: 

                     
( 1) ( ) ( )

( ) ( ) ( )
s s s s

s s s

x k x k u k w

y k C x k D u k v

+ = Φ + Γ +
= + +

                               (6.26) 

where ( ) ( ) ( )
TT T

s dx k x k x k =   , and ,sΦ ,sΓ ,sC sD  are the sub-matrix blocks of 

,Φ ,Γ ,C D  corresponding to the first two states respectively.  

The discrete-time LQG control problem is to find the optimal control law which 

minimizes the cost function (5.18) or (5.20), depending on the length of the 

estimated time-delay. The discrete-time LQG procedure (5.23) – (5.27) is then 

applied to obtain the optimal LQG controller, which has the following structure: 

( )
0

s s r f s f
LQG

r

K K C K
K s

K

 Φ − Γ −
=  −                               

(6.27) 
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In the following sections of this chapter 0dLQG  denotes the conventional discrete-

time LQG controller, which does not consider the time-delay. On the other hand, 

pELQG   denotes the modified discrete-time LQG controller that incorporates EKF-

based estimate of the time-delay.  

 

6.5 Numerical Example II 

6.5.1 Unknown Constant Time-Delay 

The proposed MDLQG approach described in the previous section is applied to 

another numerical example system in this section. In particular, LQG is applied on 

the 4th order SISO system with the following transfer function: 

2 2 2

2.5
( )

( 1)
g s

s s
=

+
                                                (6.28) 

Note that that this system has two poles at the origin and two poles on the imaginary 

axis at 0 j+  and 0 j− . Hence this system is open-loop unstable.  

The first order Pade approximation (6.5) is applied to synthesize pELQG  in this 

example. The sampling period is set to 0.01sT =  seconds. The weightings are set as: 

{ }5
1 11 22 33 4 4{ , , } 10 , 1, 1W diag w w w diag I−

×= = ,  2 1W = ,  210V −= .       (6.29) 

where 11w , 22w , 33w are the weightings associated with the plant states, time-delay 

approximation state and ex , respectively. The initial realization of (0 | 0)P  is chosen 

to be identity matrix, and the initial estimate ˆ (0 | 0)x  to be [ ]0 0 2
T

, i.e. 

ˆ(0) 0.5τ = . The actual time-delay applied is 1 second. Figure 6.6 shows that the 

estimated time-delay approaches a true value fairly quickly. 
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Figure 6.6 Estimated time-delay using EKF 

The estimate of time-delay is then fed into the supervisory discrete-time LQG 

controller, pELQG , in order to adequately control the system in the presence of the 

unknown time-delay. The state weighting Q and the control weighting R are chosen 

as follows: 

0.1 TQ C C= ×        1R =                                        (6.30) 

The conventional discrete-time LQG controller, 0dLQG , is also synthesized with the 

same weightings as those specified in (6.30). Based on the estimated states of the 

augmented model, the Kalman filter gain is obtained for pELQG , denoted as fK  

and for 0dLQG , denoted as 0fK , shown as follows:.  
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                               (6.31) 

Then the optimal state-feedback control gain is obtained for pELQG , denoted as rK

and for 0dLQG , denoted as 0rK , shown as follows:     
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                              (6.32) 
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Figure 6.7 shows the step responses of the system controlled by pELQG  and 0dLQG  

when subjected to the unknown communication time-delay. It is clearly observed in 

Figure 6.7 that the conventional discrete-time LQG controller cannot stabilize the 

system. On the other hand, the pELQG  controller retains stability, thereby 

demonstrating the effectiveness of the proposed MDLQG approach. Note that during 

the early stages of the simulation controllers behave similarly, which is due to the 

fact that the time-delay is not properly estimated by the associated EKF filter during 

the first 5 seconds.. 

 

Figure 6.7 Step response for unknown constant time-delay 

 

6.5.2 Unknown Varying Time-Delay 

In the previous examples, the unknown time-delay considered was assumed to be 

constant. The example in this subsection demonstrates the estimation of the unknown 

and time-varying delay using EKF. In particular, the time-delay variation is 

described as a ramp function, varying at a steady rate of 0.5 per second during 10-

second time interval: 

0.5tτ = ,    0 10t≤ ≤                                           (6.33) 

where t is the simulation time.  

The first order Pade approximation is applied to model the varying time-delay given 

in (6.33) and the resulting augmented state-space model is given in the form 

described in (6.7). The corresponding state-transition matrix, Φ , is given as: 
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e

e
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x

x

 
 Φ = − 
 − 

 

The functions ( )f ⋅  and ( )h ⋅  are then obtained with the corresponding Jacobian 

matrices ( )F k  and ( )H k . Details of the derivations of ( )f ⋅ , ( )h ⋅ , ( )F k  and ( )H k  

are provided in the Appendix C.  

System described in (6.22) is also used in this sub-section. The sampling period is set 

to 0.01sT =  seconds. The weightings are selected to be { }2
1 4 410 , 10 , 1W diag I ×= ,  

2 10W = ,  10V = . The initial realization of (0 | 0)P  is chosen to be th identity matrix 

while the initial augmented state estimates ˆ(0 | 0)x  and ˆ (0 | 0)dx  are equal to zero. In 

order to examine the full range of the time-delay values, the initial value of ̂(0 | 0)τ  is 

set to be as small as possible, i.e. ˆ(0 | 0)τ = 0.01 which leads to ̂ (0 | 0)ex = 100. Figure 

6.8 shows the estimated time-delay compared with the actual time-delay, which 

appear to be almost identical to each other. This figure further illustrates that the 

proposed method can also be used in the cases where the unknown time-delay is 

time-varying.  

 

Figure 6.8 Estimation of the unknown varying time-delay 

 

Using the estimated time-delay, controller pELQG  is then synthesized according to 

the procedure proposed in this chapter and applied to the system described in (6.22). 

Also, the controller 0dLQG  that ignores the presence of the time-delay is 

implemented and compared to pELQG . The state weighting Q and control weighting 
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R are chosen to be the same as in (6.23). Figure 6.9 shows the responses of the two 

considered controllers. It is clearly observed that, for this particular scenario, 

conventional controller 0dLQG  is unable to stabilise the system while the proposed 

control scheme is capable to maintain stability in the presence of time-varying time-

delay.  Initial similarity of the two responses during the first 10 seconds of the 

simulation is due to the fact that the EKF filter takes some time to properly estimate 

the true value of the time-delay. 

 

Figure 6.9 Step response for unknown varying time-delay 

 

6.6 MDLQG for Wide-Area Damping Control 

In this section, the proposed MDLQG control system is applied onto the 2-area 4-

machine power system simulation in order to demonstrate its benefits. The linearised 

power system model used throughout the thesis is a 4-input 12-output state-space 

model. The order of the linearised model, with PSS regulators installed, is equal to 

51. If the time-delay is modelled by 1st order Pade approximation, the order of the 

augmented model utilised by the MDLQG control system is 56. Evaluation of the 

performance is made based on the time-domain results using both small-signal and 

large-signal disturbances. 

 

6.6.1 Estimation of Unknown Time-Delays 

The actual time-delay is assumed to be equal to 0.8 seconds. The sampling period sT  

is set as 0.01 seconds. The initial conditions are taken to be as following: 
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[ ]ˆ(0) 0 0 (0)
T

n n m m ex x× ×=ɶ ,  ( 1) ( 1)(0 | 0) 0.1 n m n mP I + + × + += , 

4
( ) ( )

2

10 0

0 10
n m n mI

W
−

+ × +
−

 
=  
 

,     r rV I ×= . 

where n, m and r are the state, input and output dimensions respectively and defined 

in (3.5). (0)ex  is the initial value of ex  defined in (6.1), which represents the inverse 

of the initial time-delay estimate, i.e. 1ex τ= . By changing the value of (0)ex , its 

impact on the estimation performance of the EKF filter is investigated next. Figure 

6.10 depicts the estimation of the unknown time-delays with different initial 

conditions. It is shown in Figure 6.10 that EKF provides fast and accurate estimation 

of the time-delays. Also, it is apparent from Figure 6.10 that large initial values result 

in faster convergence of the estimates. 

 

Figure 6.10 Estimated time-delay for different initial values 

 

6.6.2 Results 

The estimated time-delay is then incorporated into the supervisory discrete-time 

LQG controller by updating the state-space model matrices (6.26). This modified 

controller is denoted as PELQG . The state weighting Q and control weighting R are 

chosen as: 

2
' '10 n nQ I−
×= × ,  110 m mR I−

×= × . 
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Here, ' 56n =  is the state dimension of the model used in designing the controller. 

The conventional discrete-time LQG controller without consideration of the time-

delay, 0dLQG , is also designed with the same cost function weights. The simulation 

results are obtained by applying different disturbances and time-delays onto the 

power system in order to compare PELQG  and 0dLQG .  

Case 1 Small Signal Stability 

A 2.5% reference voltage increase for Generator 2 is applied at 1 second. Therefore, 

the steady-state terminal voltage tV  of Generator 2 after the disturbance is applied is 

equal to 1.025 p.u.. Figure 6.11 shows the electric power and terminal voltage of 

Generator 2 for the cases where the overall power system is controlled by the 

supervisory controllers PELQG  and 0dLQG . Two different values of input time-

delays are implemented, namely 0.8s and 1.2s, and the corresponding results are 

shown in Figure 6.11(a) and Figure 6.11(b) respectively. It can be clearly seen that 

the conventional discrete-time controller , cannot stabilize the power system 

following a small-signal disturbance. On the other hand, based on the estimation of 

the unknown time-delay, the final electric power and the terminal voltage of the 

power system with unknown input time-delays reach the steady-state values 

controlled by the proposed LQG controller  for both 0.8 seconds and 1.2 

seconds input time-delays.  

Case 2 Large Disturbance Stability 

A three-phase fault is implemented on the bus 7 at time t=1 second, with a self-

clearing time of 80 ms. This scenario simulates likely large-signal disturbance and is 

used to further assess the proposed controller. Figure 6.12 shows the performance of 

Generator 2 of the power system controlled by the two controllers  and 

 respectively. The same input time-delays as in case 1 are implemented. As 

the large disturbance occurs and a 0.8s input time-delay exists in the power system, 

Figure 6.12(a) shows that the oscillations of the power system cannot be damped 

when the system is controlled by the conventional discrete-time LQG controller 

. The damping is even worse when a longer input time-delay 1.2s is applied 

0dLQG

PELQG

PELQG

0dLQG

0dLQG
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as shown in Figure 6.12(b). On the other hand, based on the estimated time-delay, 

the post-fault rotor angle speed and the electric power of the power system controlled 

by controller  can reach the nominal steady-state values. This demonstrates 

the fact that the transient stability of the power system is greatly improved in the case 

of the supervisory discrete-time controller that uses continuously updated 

time-delay estimates.  

 

Figure 6.11 Electric Power & Terminal Voltage of Gen 2 
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Figure 6.12 Speed Deviation & Electric power of Gen 2 

 

6.7 Summary 

The Extended Kalman Filter (EKF) procedure for the estimation of the unknown 

time-delay is presented in this chapter. It is done by augmenting the state-space 

model of the system with additional state variables that are related to values of the 

actual time-delays, i.e. . The resulting augmented model is a non-linear 

function of the state and input, which is linearised by utilising Taylor Series 

expansion and deriving the corresponding Jacobian matrices. The first order and the 

second order Pade approximation are both used to demonstrate the proposed EKF 

procedure. Firstly, the estimation performance of the proposed EKF filter is assessed 

by using a numerical example of a second order system. The effect of the initial 

condition and the weightings on the estimation as well as the comparison of 1st order 

and 2nd order Pade approximation are also discussed in this section. Then, in Section 

6.5 the numerical example of a 4th order open-loop unstable SISO system is used to 

demonstrate the effectiveness of the proposed control system that combines the LQG 

controller with the EKF filter. The MDLQG controller is also applied on the 

simulated 2-area, 4-machine power system in section 6.6. Both the small signal 

stability and large disturbance stability are examined to show the effectiveness of the 

proposed controller  for the unknown communication time-delay.  
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Chapter 7  

Conclusions and Future Work 
 

 

 

7.1 Conclusions 

This thesis focused on the design of supervisory wide-area controllers, using optimal 

control theory, and the assessment of the impact that the communication time-delays 

have on the performance and the robustness of the resulting closed-loop system. Also, 

the impact that the discretisation of the controller has on the performance of the 

closed-loop system was investigated. This is particularly important when considering 

practical implementation of any control scheme that has to be realized using digital 

computers, which, while constantly improving in terms of their computational power, 

require finite time to execute any algorithm. This may be particularly acute in the 

cases where the scale of the system is very large and the dominant dynamics are 

relatively fast, as is the case with the power system studied in this thesis. 

Supervisory wide-area controller was firstly designed in Chapter 3 using continuous-

time LQG/LTR approach that relies on the optimal control theory and provides 

relatively simple method of developing multivariable control systems that guarantee 

nominal stability and are tuned using relatively small number of parameters. Its 

performance and robustness were assessed using both frequency-domain tools, 

assuming linear representation of the power system dynamics, and time-domain 

simulation results that utilised non-linear power system model. Results clearly 

illustrats the benefit in employing supervisory controller, which maintains closed-

loop stability in the presence of both small-signal and large-signal disturbances. 
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After the successful design of the continuous-time controller, the next step was to 

design its discrete-time equivalent in Chapter 4 and to assess the impact that the 

assumed sampling period has on the performance and the robustness of the resulting 

closed-loop system. Once again, the assessment was performed using both 

frequency-domain and time-domain tools. Results indicated some deterioration in the 

performance as a result of increasing sampling period. However, the approach of 

reducing the bandwidth by changing a single parameter in the cost function was 

shown to successfully recover some of the performance and the robustness. 

Developments described above were conducted assuming that there are no 

communication time-delays present, even though this may be highly inappropriate 

assumption given the large-scale of the modern interconnected power systems. 

Therefore, the consideration of time-delays was introduced in Chapter 5 when 

designing both continuous-time and discrete-time supervisory controller. The benefit 

of accounting for the time-delay was clearly demonstrated in both frequency-domain 

and time-domain. Additionally, the superiority of discrete-time controller compared 

to its continuous-time counterpart when dealing with time-delays was demonstrated. 

This superiority is primarily due to the fact that the design of discrete-time controller 

incorporates the exact time-delay description into the state-space model of the power 

system, while the continuous-time controller is designed by representing time-delay 

with rational Pade approximation. 

 However, development of the supervisory controllers that incorporate time-delays 

was conducted under an assumption that these time-delays are known, which may be 

highly inappropriate in some circumstances. In order to address this issue, modified 

supervisory controller was proposed that utilises Extended Kalman Filter to estimate 

the actual time-delay. That information was then fed into supervisory controller by 

updating its prediction model. Simulation results obtained using numerical examples 

and non-linear power system model demonstrated benefits of the proposed scheme 

for both time-invariant and time-varying delays, both of which were assumed to be 

unknown and had to be estimated. 

Finally, it should be pointed out that the main focus of the thesis was on the specific 

wide-area control problem involving a particular network topology. However, the 
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presented methodology can be easily applied to other wide-area control problems 

involving different network topologies. 

 

 

7.2 Directions for Future Research 

Model Predictive Control (MPC) will be an obvious next control methodology to be 

considered, due to its close connection to discrete-time LQG control technique and 

its ability to provide real-time constraint management. In order to facilitate this 

future development, the methods used in this thesis to tune LQG/LTR controller and 

to assess its performance and robustness can be directly re-utilized when considering 

Model Predictive Control. This is primarily due to the similarity between discrete-

time LQG/LTR and MPC in terms of the problem formulation and the structure of 

the solution, particularly when the constraints are inactive [98]. 

There has been a number of recent publications proposing various methods of 

designing Model Predictive Control such that the robustness to a particular type of 

uncertainty can be ensured. These methods will be investigated in terms of their 

applicability to deal with the communication time-delays. Also, the methodology of 

implementing MPC controllers using distributed architecture will be explored. This 

may be particularly relevant in wide-area power system applications where the large 

size and the criticality of a system may prohibit the use of the centralised control 

architecture.  

However, due to the fact that the MPC control methodology employs on-line 

numerical optimisation routine, which is executed at each sampling instant, the 

impact of the sampling period on the performance is likely to be very important. This 

impact needs to be fully understood in order to be able to mitigate its negative impact 

on the performance of the closed-loop system. The tools used in this thesis to assess 

impact of the sampling period on the performance of the discrete-time LQG/LTR 

controller will be re-used to assess that impact in the case of the Model Predictive 

Control. 



210 
 

Impact of discretisation should also be conducted in the future work for the case of 

robust H∞  control technique using those very same tools that were utilised in this 

thesis. This would facilitate practical application of H∞  control methodology to 

power systems. 

Issues regarding the application of Extended Kalman Filter will also need to be 

considered. In particular, further case studies will need to be conducted in order to 

comprehensively assess its suitability in other wide-area control problems. Also, 

further understanding of how to tune EKF estimator in various power system 

applications will be necessary in order to facilitate its acceptance as a viable tool in 

tackling the impact of communication time-delays.  

Considering the complexity of existing and future networks, a number of control 

loops will be so designed to support each other in order to make sure the stability of 

power systems. This will be particularly challenging in future networks with a 

complex and very diverse generation mix (e.g. parallel operation of inflexible nuclear 

power plants based on Pressurized Water Reactors, Combined Cycle Gas Turbines, 

Wind Turbines of different types, etc.), existence of High Voltage Direct Current 

connectors, energy storage units and strong requirements to minimize the economical 

costs of the system operation. However, this thesis is the contribution which will help 

future large scale power systems to operate in a more secure and reliable manner.  
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Appendices 

Appendix A  

A.1 Test Power System Parameters and Data 

Original data are taken from [6.3]. All values are in p.u. based on machine rating.  

Table A.1 Load flow data 

Contingency 1 (original) 

Voltage, p.u. Angle, ° , p.u. , p.u. , p.u. , p.u. 

1 0 1.93 0.488276 0.5 0.3 

1 16.8226 0.9 0.345003 0.1 0.05 

1 16.133 0.9 0.448285 0.1 0.08 

1 -1.76168 0.9 0.278265 0.1 0.07 

0.975949 12.7335 0 0 0.75 0.36 

0.995251 -3.69526 0 0 1.08 0.03 

0.977207 -12.0312 0 0 1.15 0.45 

0.995935 -2.05713 0 0 0.85 0.21 

 

Table A.2 Line data 

Line Start Bus End Bus , p.u. , p.u. , p.u. , p.u. 

1 2 3 0 0.45 0 -2.22222 

2 2 5 0 0.09 0 -11.1111 

3 3 5 0 0.07 0 -14.2857 

4 5 7 0 0.47 0 -2.12766 

5 7 6 0 0.47 0 -2.12766 

6 1 8 0 0.025 0 -40 

7 4 6 0 0.05 0 -20 

8 6 8 0 0.04 0 -25 

9 4 8 0 0.04 0 -25 

GP GQ LP LQ

R X G B
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Table A.3 Generator Data 

Gen            H 

1 0 0.86 0.121 0.089 5.9 0.33 0.828 0.198 0.089 0.535 0.078 13.3 

2 0 1.445 0.316 0.179 5.26 0.028 0.959 0 0.162 0 0.159 4.27 

3 0 0.86 0.121 0.089 5.9 0.33 0.828 0.198 0.089 0.535 0.078 6.34 

4 0 0.86 0.121 0.089 5.9 0.33 0.828 0.198 0.089 0.535 0.078 10.34 

 

 

Table A.4 AVR Data & PSS Data 

Parameter      

Values 198 0.055 5 0.0563 0.1126 

 

 
 
 

A.2 Modelling of Generators 

Generator 1 is the reference generator of this 2-area 4-machine power system. 

Generator 2 is the salient pole machine, while both Generate 3 and 4 are round rotor 

machines. The state space model of each machine is given as follows, where x, u and 

y is the state, input and output matrices of each machine, respectively. 

Generator 1 – Reference machine (5th order state-space model) 
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Generator 2 – Salient pole machine (5th order state-space model) 
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Generator 3&4 – Round rotor machine (6th order state-space model) 
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A.3 Modelling of Exciter & AVR 

The application of the generator excitation system to this 4-machin 8-bus power 

system is shown in Figure A.1, which is a 2nd order exciter & AVR. The transfer 

function of the regulator and the voltage limits are given as follows. 
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Figure A.1 Block diagram of 2nd order Exciter&AVR 

 

A.4 Full eigenvalues of the Test Power System without PSS 

 
Table A-5  Eigenvalues of the 35st order open-loop power system 

    

    

    

    

    

    

    

 

 

  

refV

tV

PSSV

fdE2 1

10 1AVR

s
K

s

+
+

1

1AVRT s+

minRV

maxRV

8760.3 65.3i− ± 50.8192 0.5810i− ± 17.0586− 0.0353 3.6734i− ±

6546.3− 39.1665− 14.7143− 1.3026−

6238.0− 31.9022− 7.6715 7.2435i− ± 0.0000

2244.4 139.9i− ± 28.7463− 8.5474 4.4955i− ± 0.5689 0.2066i− ±

2080.7 235.5i− ± 26.9679− 1.1962 8.2158i− ± 0.5312−

93.5768− 17.4607− 0.8186 6.9826i− ± 0.5078−

0.5139−
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Appendix B  

B.1 System Responses to 250 ms Time Delay 

 
 

 

Figure B.1 Electrical Power using  and  for  
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Figure B.2 Terminal voltage using  and  for  

B.2 System Responses to 520 ms Time Delay 

 

Figure B.3 Electrical Power using  and  for  
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Figure B.4 Terminal voltage using  and  for  

B.3 System Responses to 1.3 seconds Time Delay 

 

Figure B.5 Electrical Power using  for  
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Figure B.6 Terminal voltage using  for  
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Appendix C 

The discrete-time augmented model for unknown time delay given in (6.33) is 

expressed as follows. 

                     (C.1) 

The nonlinear model ,  are presented as follows: 

             (C.2) 

The Jacobian matrices of , ,  and  are the linearization of the 

nonlinear model (C.2) by using the current estimation of states  and input u are 
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                (C.4) 

                                    (C.5) 
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