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Background: Currently, the development of microbial strains for biotechnological
production of chemicals and materials can be improved by using a rational metabolic
engineering that may involve genetic engineering and/or systems biology techniques.
Elementary flux mode analysis (EFM) and Flux balance analysis (FBA) are the two
most commonly used methods for probing the microbial network system properties for
metabolic engineering purposes. EFM can be used to identify all possible pathways.
However, combinatorial explosion of the number of EFMs obtained during EFM
analysis, especially for large reaction networks, hinders the use of EFM data for
developing gene knockout strategies. The objective of this project was to identify
interesting target products and design ‘proof of principle’ Saccharomyces cerevisiae
strains capable of overproducing a target product; in this case lysine was chosen.

Methods: EFMs were calculated for a reaction network from S. cerevisiae. In order
to make sense of the large EFM solution space, a novel approach based on com-
putational reduction and clustering of EFM datasets into subsets was developed,
which aided the prediction of knockouts for lysine production. A Pattern analysis
method, based on regular expression matching, was also developed to interpret the
EFM data. FBA frameworks, OptKnock and GDLS, were used to design in silco
production strains based on genome-scale models of yeast. Double and triple S. cere-
visiae lysine producing strains were constructed using a PCR-based deletion method.
Absolute and relative metabolome measurements for lysine and other metabolites in
the single and double mutants were achieved using GC-TOF-MS.

Results: The new computational and clustering methodology aided significantly the
EFM-based in silico design of S. cerevisiae strains for enhanced yield of lysine and
other value chemicals. Ethanol and lysine overproducing in silico strains were also
developed by OptKnock and GDLS. Remarkably, the production strains with single
deletions, lsc2 and glt1, excreted into the medium five times the amount of lysine
than the control strain. Five S. cerevisiae double mutant strains were successfully
constructed. Two-fold increase in flux towards lysine production was demonstrated
by S. cerevisiae double mutant M1, while both S. cerevisiae double mutants M4 and
M5 showed about four-fold increase in lysine production.

Conclusion: The general modelling and data reduction approaches developed here
contributed in obviating the enormous problems associated with trying to obtain
the EFMs from large reaction network models and interpreting the resulting of large
number of EFMs. EFM analysis aided the development of single and double S.
cerevisiae mutant strains, capable of increased yield of lysine. The computational
method was validated by construction of strains that are able to produce several fold
more lysine than the original strain.
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Chapter 1

Introduction

This chapter is divided into four sections. The first section outlines the motiva-

tion and aims for this PhD work, and also the objectives for achieving the aims are

described. The second section, “Thesis overview”, outlines the structure and arrange-

ments of the entire thesis. The last two sections,“Strategies employed in biotechno-

logical production of products” and “Production of value chemicals and materials

using metabolic engineering” are literature reviews covering the different aspects of

the PhD work.

1.1 Motivation, Aims and Objectives

1.1.1 Motivation

Since antiquity, production of materials and products have formed an important

and integral part of human activities. Notably, production of various products and

materials have been carried out by processes based on fermentation. As an example,

yeast (Saccharomyces cerevisiae) was used for thousands of years to ferment food

and beverages. A few chemical products were made from microbial sources before

the beginning of petrochemical industry in the 20th century. However, the extremely

low prices of petrochemical resources, largely contributed to a shift in the microbial
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production of many products using renewable resources to chemical synthesis of many

products. The production of broad range of modern products, broadly categorised

into fine chemicals, bulk chemicals, pharmaceutical products, plastics and fuels is

strongly based on the chemical industry. Unfortunately, the reliance of the chemical

industry on the petrochemical resources for production of chemicals and materials

involves the consumption of large amounts of fossil resources and emission of large

amounts of waste (Soetaert and Vandamme, 2006). Production of chemicals and

products is highly dependent on feedstock cost and currently fossil carbon sources,

such as oil and gas, will soon become too expensive. This, together with the increasing

environmental concerns about pollution due to fossil fuels, depletion of oil reserves

and advances in biotechnology are swaying policies towards sustainable raw materials

as feedstocks for production of chemicals. The paradigm shift into an era whereby bio-

renewable green products is beginning to serve as the feedstock is evidenced by policy

papers by governments and institutions (Werpy and Petersen, 2004). The application

of biotechnological principles and methods has made possible the production of many

bio-based products and this trend is set to continue.

In general terms, biotechnology is defined as “the application of microorganisms/-

cells, or components thereof (e.g., enzymes), for the production of useful goods and

services” (Rogers et al., 2005). Currently, three different areas of modern biotechnol-

ogy are recognised: red, white and green biotechnology. Red biotechnology describes

pharmaceutical and medical processes such as the design of organisms to produce

antibiotics, while white biotechnology refers to industrial processes such as the use

of microorganisms to produce chemicals, materials and energy mainly based on the

use of enzymes as catalysts, and green biotechnology focuses on genetically modi-

fied crops. White biotechnology is also known as industrial biotechnology and the

“white” designation refers to the positive environmental benefits of industrial biotech-

nology. A number of advantages have been associated with the implementation of

white biotechnology. White biotechnology contributes significantly to green chem-

istry involving the conversion of renewable resources, such as sugars or vegetable oils,
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into a wide variety of chemical substances such as fine and bulk chemicals, pharma-

ceuticals, biocolourants, solvents, bioplastics, vitamins, food additives, and biofuels

(Dale, 2003). Since the starting materials are from agricultural products instead of

fossil fuels, white biotechnology has a beneficial effect on greenhouse gas emission,

and also its cost-effective benefits may be significant. Other performance benefits are

associated with white biotechnology such as increased conversion efficiency, higher

product purity, lowered energy consumption and lower generation of chemical wastes

(Soetaert and Vandamme, 2006).

A phenomenal growth rate (16 - 20%) is predicted for the industrial biotechnological

production of fine chemicals which are currently produced through complex synthetic

and combinatorial methods (Hirche, 2006). Industrial biotechnology is predicted to

grow 1 - 20% in the areas of basic chemicals and commodities, speciality and added-

value chemicals, and polymers respectively (Otero and Nielsen, 2010). However,

a large proportion of the venture capital investment, about 88%, is raised by red

biotechnology, while white and green biotechnology attract only 5% and 7% respec-

tively (Hirche, 2006).

A very important issue in the implementation of white biotechnology is feedstock. It

was estimated that up to 40% of all bulk chemicals will be based on global biomass

(EuropaBio, 2004), as the new market for bio-renewable green products opens up

for large volumes of diverse products and processing technologies, and hemicelluloses

have shown to be important targets. Another vital issue for the successful imple-

mentation of red and white biotechnology is the efficient host organism. With the

increasing shift towards a bio-based economy, there is a rising demand for devel-

oping efficient microbial strains that can produce products within the categories of

fine chemicals, pharmaceuticals, food additives and supplements, flavour and aroma

compounds, colourants, vitamins, pesticides, bio-plastics, solvents, bio-plastics, bulk

chemicals and biofuels.

In the past two decades, metabolic engineering has been used extensively to achieve

the improved production of commodity chemicals and materials. In addition, a wide



1.1. MOTIVATION, AIMS AND OBJECTIVES 28

variety of compounds that are difficult to produce by classical chemical synthesis

are treated as biotechnologically attractive targets. Increasingly, rational metabolic

engineering is employing the use of advanced analytical tools for identification of ap-

propriate targets for genetic modifications, including the use of mathematical models

for design of optimised microbial strains (Burgard et al., 2003; Pharkya et al., 2003;

Patil et al., 2005). The recent integration of systems biology, mathematical modelling

and synthetic biology with metabolic engineering is also increasing the possibility for

better optimised microbial strains for increased yields of chemicals and products. It is

noteworthy that, despite the current trend in metabolic engineering, a large percent-

age of the successes in employing microbial cell factories have been achieved without

detailed modelling.

Based upon the above premise, therefore, the application of rational metabolic en-

gineering and systems biology to the production of biotechnologically attractive ma-

terials and products represents a credible alternative approach to solving a myriad

of problems associated with reliance on fossils. The progress in the shift from fossils

to renewable resources stands to benefit immensely, especially from the quantitative

and theoretical concepts of systems biology. Hence, the motivation for this thesis,

is based on the opportunity to apply cutting-edge in silico modelling and systems

biology approaches in a rational and systematic manner to the development of op-

timised production strains capable of improved yields of various bio-products (e.g.,

bioethanol, amino acids, fumaric acid, and trehalose) in microoganisms, with renew-

able materials used as the feedstock.

1.1.2 Aims

The aims of this PhD project were:

1. To identify interesting biotechnological products and suitable host strains.

2. To develop ‘proof‘ of principle production strains for a product of interest.
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3. To carry out in silico examination of the metabolic network of the organism

and develop in silico strains for improved production of the product.

4. To validate in silico hypotheses and in silico designed strains by using genetic

engineering to construct production strains for improved yield of target product.

1.1.3 Objectives

The following objectives (graphically represented in Figure 1.1) were employed to

achieve the aims of the project:

1. Extensive literature searches were carried out to identify value products and

suitable hosts.

2. In silico host design:

(a) Characterisation of the network topology of host organism:

Metabolic pathway analysis (EFM) was used to analyse a network of reac-

tions obtained from genome-scale metabolic network reconstructions (Dob-

son et al., 2010) and the literature (Cakir et al., 2004). Constraint-based

metabolic flux analysis (FBA) was also used to analyse the genome scale

metabolic network reconstructions of yeast (Duarte et al., 2004; Mo et al.,

2009; Dobson et al., 2010).

(b) Gene deletion phenotype analysis:

In silico gene deletion phenotype analysis was carried out to identify gene

knockout strategies for improving the yield of a product in yeast (S. cere-

visiae). The gene deletion strategy was to ensure deletion of competing

pathways and hence a redirection of flux to the pathway of interest.

3. Model validation in the laboratory (synthesis stage):

(a) Genetic engineering methods were used to knock out genes in the base

yeast strains (single deletion strain library from EUROSCARF). In-house
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made mutant strains were constructed using PCR generated strategies.

Double deletion strains from the Boone Lab (Boone Lab, Donnelly Centre,

University of Toronto,Toronto, Canada) were also involved.

(b) For maximization of products, the growth physiology of genetically modi-

fied yeast strains were assessed and optimal growth conditions established.

Strain growth characteristics of the yeast mutant strains were determined.

4. Model validation in the laboratory (analysis stage):

The changes in the level of the biological product of interest were monitored

using a systems biology technique (metabolomics). Measurements of metabolite

concentrations were carried out using GC-MS.

5. Optimisation of production strain:

In an attempt to fine tune and improve performance of production strain,

metabolic profiling of production strains were carried using GC-MS so as to

discover bottlenecks to metabolic engineering of the production strains for im-

proved yield of target product.
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Figure 1.1: Project pipeline for improved lysine production in yeast. This schema summarises the entire

project pipeline, starting from the identification of products from the literature to design stage, synthesis stage, and

finally analysis stage for developing an improved yeast production strain for improved product yield (e.g., lysine). The

diagram is further annotated to show different types of work carried for in silico modelling at the design stage, wet

experiment validation of in silco model at synthesis stage, and quantification of product at analysis stage. Metabolic

engineering cycle indicates how the results from the analyses of strains were fed back to the synthesis stage, while the

systems biology cycle depicts the feedback from the analysis stage to the design stage for improved in silico strain

optimisation, based on metabolic profiling of production strains.

1.2 Thesis overview

Chapter 1 is the introduction to the work carried out in this PhD research work.

Descriptions of the theoretical, computational and experimental strategies currently

employed in systems metabolic engineering are presented here. The chapter also cov-

ers a literature review of biotechnological production of value chemicals in microbial

strains and their methods of production.

In Chapter 2, the description of selection of biotechnological products and host strain
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for this PhD research is presented.

Chapter 3 covers the materials and methods for the all the computational mod-

elling studies carried out. Materials and methods for modelling using elementary

flux mode analysis for microbial strain development, methodologies for clustering

analysis, pattern analysis using regular expression and constraint-based microbial

strain development are presented.

In Chapter 4, materials and methods for all laboratory experiments are described

here. This chapter contains the description of the synthetic media used for the

cultivation of S. cerevisiae control and mutant strains. Materials and methods of

all genetic manipulations carried out, methods for confirmation of successful gene

deletions are covered; the extraction, derivatisation and GC-MS analysis are also

presented.

Chapter 5 is a report of the results of constraint-based flux analysis methods for

the development of S. cerevisiae strains. Results for characterising the genome scale

networks of S. cerevisiae using FBA and the results for knockout strategies based

on OptKnock and GDLS for enhanced production of several target metabolites are

included here.

Chapter 6 presents methodologies for deciphering the elementary flux modes (EFMs),

including data pre-processing and classification. The chapter also reports how the

EFM data was subsequently utilised for in silico phenotype gene deletion studies for

enhanced lysine production in S. cerevisiae.

The construction and the experimental validation of S. cerevisiae double mutant

strains using genetic engineering is reported in Chapter 7. This report describes

the cultivation of mutant strains and the results of gene deletions. The results of

experimental validation for 6 single S. cerevisiae strains, 5 double mutant S. cerevisiae

strains and 1 triple mutant S. cerevisiae strain are also presented in this chapter.

In Chapter 8, studies carried out for comparing the endometabolome of each of the
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constructed S. cerevisiae double mutant strains are presented in this chapter. In ad-

dition, the discussions covers the differences and similarities in the metabolic profiles

of the mutants compared with the control strain.

1.3 Strategies employed in biotechnological pro-

duction of products

1.3.1 Rational metabolic engineering and systems biology

Metabolic engineering has been defined as the “directed improvement of product

formation or cellular properties through the modification of specific biochemical re-

actions or introduction of new ones with the use of recombinant DNA technology”

(Stephanopoulos, 1999). In a slightly different way, expanding the realm of genetic

engineering tools, Lee and Papoutsakis (1999) defined metabolic engineering as “di-

rected modification of cellular metabolism and properties through the introduction,

deletion, and/or modification of metabolic pathways by using recombinant DNA and

other molecular biological techniques”. Rational metabolic engineering refers to the

engineering of the cellular metabolism based on available information about the path-

ways, enzymes, and their regulation.

In essence, the main goals of metabolic engineering can be categorised as follows (Kern

et al., 2007): (1) Improvement in yield, productivity and phenotype, (2) extension

of the substrate range, (3) deletion or reduction of by-product formation and (4)

introduction of pathways leading to new products.

Metabolic engineering of the cellular systems of various microbial strains for improved

production of products have evolved over the decades. The traditional approach in-

volves metabolic pathway manipulation by way of classical breeding and random mu-

tation followed by selection (Parekh et al., 2000). The advent of recombinant DNA

technology made possible a replacement approach of metabolic engineering involving
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the introduction of targeted genetic changes whereby gene deletion and overexpres-

sion of genes are employed to develop strains capable of higher yield of metabolites of

interest. However, the inherent limitations of this method of metabolic engineering

also became apparent. There is now a recognition that rational metabolic engineering

requires a global approach incorporating integrated pathways and networks. The ap-

plication of mathematical and computational methods becomes desirable owing to the

intricate interconnectedness of enzyme-catalysed reactions, pathways and integrated

networks of pathways (Torres and Voit, 2002).

Currently, rational metabolic engineering exploits an integrated, systems-level ap-

proach for optimizing a desired cellular property or phenotype (Tyo et al., 2007), and

this new trend brings the application of systems biology to metabolic engineering into

focus. Systems biology aims at understanding a global picture of the various networks

in biological systems by integrating information generated from high-throughput ex-

periments and computational modelling and simulation (Barrett et al., 2006). This

approach provides a means of bridging the gap between molecules and physiology by

elucidating how dynamic interactions give rise to function (Bruggeman and Wester-

hoff, 2007). The approaches being exploited by systems biologists such as large-scale

functional genomics methods, genetic analysis of model organisms, bioinformatics,

mathematical and computer modelling have become important in the toolbox for

metabolic engineering of microorganisms.

Rational metabolic engineering usually involves three stages (Figure 1.2). The first

step is the identification of targets for genetic modification based on metabolic net-

works. The strategy at this phase usually involves the cataloguing of biochemical re-

actions of the host organism from the literature (KEGG, SGD, textbook, metabolic

network reconstructions etc); in silico modelling and simulations (e.g., metabolic

flux analysis, flux balance analysis, elementary flux mode analysis, kinetic modelling,

metabolic control analysis) are then carried out to either knock out competing path-

ways or extend metabolic pathways with the introduction of new enzymes. In the

second stage, synthesis involves carrying out genetic modification with the aid of
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plasmids or genomic alterations in order to effect in the host strain the genetic al-

teration(s) suggested by the in silico modelling and simulations. At synthesis stage,

gene deletions, increases in enzyme activity and novel pathways may be incorporated

into the strain. This stage also represents the interface of systems metabolic engi-

neering with the other disciplines. Examples are the systematic pathway design using

synthetic biology, the design of new catalytic function using protein engineering, and

selection of a desired phenotype in strains using evolutionary engineering. In the third

stage, analysis, whereby the recombinant strain is probed for physiological character-

istics (e.g., growth in media) and product yield (metabolomics). Transcriptomics and

flux analysis may be carried out for further characterisation of the developed strain

and the results are fed back to the analysis stage for further genetic improvement of

the strain, and this cycle is repeated until the construction of an optimal strain is

complete.
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Figure 1.2: Cycles of metabolic engineering. Figure depicts the fusion of systems biology with metabolic

engineering for biotechnological production of products, including the various methods and techniques currently

available. Systems biology cycle in metabolic engineering iterates between three stages: design, synthesis and analysis,

while the metabolic engineering cycle iterates between the synthesis stage and the analysis stage. Identification of

genetic targets occurs at the design stage, and genetic changes are incorporated into host strain at the synthesis stage,

and finally the recombinant strains are analysed for improved yield of product of interest.

1.3.2 Systems metabolic engineering modelling approaches

As indicated above, it is now a common practice to carry out the first step of target

identification of targets (Figure 1.2 - Design stage) in rational metabolic engineering

of microbial strains by employing in silico design strategies such as the characteri-

sation of the metabolic network space using a quantitative method. A quantitative

method can be used to probe the network topology analysis to identify gene knockout

strategy for developing strains capable of overproducing value chemicals and materi-

als. Further strain optimisation can benefit from coupling of experimental data from

the analysis stage (Figure 1.2) to these modelling strategies. Non-linear optimization
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of biochemical pathways (Mendes and Kell, 1998), metabolic flux analysis (Iwatani

et al., 2008; Maertens and Vanrolleghem, 2010), flux Balance Analysis (Savinell and

Palsson, 1992; Varma and Palsson, 1993) and metabolic pathway analysis (Schus-

ter et al., 1999) are the commonest modelling approaches for the characterisation of

strains for metabolic engineering purposes.

1.3.2.1 Theory of metabolic network analysis

Metabolism is the chemical engine that drives the living system. A metabolic network

can be described as a collection of enzyme-catalysed reactions and transport processes

whereby substrate metabolites are consumed and final metabolites are generated

(Schilling et al., 2001). The reactions involved in the transformation of one metabolite

to the other are referred to as internal reactions, while those involved in the transport

of metabolites in and out of the systems are referred to as exchange reactions. It is

possible to carry out a quantitative description of metabolic networks describing

the transient behaviour of metabolite concentrations, based on the dynamic mass

balances of each metabolite to generate a system of ordinary differential equations as

follows:

dXi

dt
=

∑
j

Sijvj (1)

where vj is the jth metabolic flux, [Xi] corresponds to the concentration of the metabo-

lite, and the stoichiometric coefficient, Sij, represents the number of moles of metabo-

lite i formed (or consumed) in one cycle of reaction j. The steady state in a chemical

network is defined by a constant concentration of metabolites. Mathematically, it

is expressed by a set of homogeneous linear algebraic equations in matrix form as

follows (Schilling et al., 2001):

Sv = 0 (2)

The stoichiometric matrix S is an m x n matrix, where m is the number of metabo-

lites and n is the number of reactions or fluxes within the network, while v is a
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vector with the activity of each flux. Furthermore, the null space of S represents the

capabilities of a given metabolic phenotype, including the building blocks that can

manufactured, the efficiency of the energy extraction and conversion of carbohydrates

into biomolecules for a given substrate, and also where the critical links are in the

network (Varma and Palsson, 1994). Decomposing every reversible reaction into a

forward and a backward reaction leaves all reactions with either a positive or zero

activity. Therefore there is an additional constraint added for each reaction that their

flux must be non-negative:

v ≥ 0 (3)

The solution space of Equation 2, considered with the inequality constraint, takes the

shape of a convex polyhedral cone with a finite number of edges (Figure 1.3) where

the edges represent the nonnegative linear combination of the generating vectors of

the cone (Schilling et al., 1999).
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Figure 1.3: Components of FBA and EFM. Components of FBA and EFM in terms of matrix, problem

statement and convex flux cone of admissible solution space. The edges of the cone contain all permissible fluxes.

For cellular metabolism, Equation 2 is typically an underdetermined system where

the number of independent metabolites is fewer than the number of reactions (Trinh

et al., 2009). The number of balance equations in Equation 2 depend on the number

of metabolites, while the number of reactions in Equation 2 defines the number of

unknowns. Given an invariant structure of stoichiometric matrix S, coupled with

experimentally determined fluxes, the linear Equation 2 together with the inequality

constraints (Equation 3) for a metabolic flux vector v, can be solved. Metabolic

pathway analysis, flux balance analysis and metabolic flux analysis are three methods

that can be used for this purpose.
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1.3.2.2 Metabolic flux analysis (MFA)

Metabolic fluxes can be used to characterise the phenotype of the cell (Kim et al.,

2008). Metabolic flux analysis (MFA) is a very powerful technique for measuring

intracellular fluxes. The conventional metabolic flux analysis involves calculation of

metabolic fluxes in a metabolic network based on determination of measurable fluxes

under a steady-state condition for intracellular metabolites. However, there are short-

comings inherent in this approach in that it does not yield information about parallel

or bidirectional metabolic segments, which is important (Iwatani et al., 2008). Fur-

thermore, certain cycle fluxes are not observable and energy metabolites must be

balanced in detail (Wiechert, 2002). Hence, an extension of the measurements is car-

ried out with 13C-labelled compounds. In 13C studies, cells are grown in 13C-labelled

tracer substrates, until the 13C label has distributed throughout the metabolic net-

work, and formed metabolic products. The 13C labelling pattern identified in specific

compounds depends on a particular flux distribution, which can be used for calcu-

lation of fluxes (Kohlstedt et al., 2010). Either mass spectrometry (MS) or nuclear

magnetic resonance (NMR) spectroscopy is then used to quantify the labelling pat-

tern. Using the 13C-based flux analysis, reliable in vivo fluxes can be calculated based

on isotope-labelled such as 13C-labelled glucose (Nielsen, 2003; Sauer, 2006), which

may be useful for analysing metabolic change or state as a result of genetic engineer-

ing (Iwatani et al., 2008). An example of application of 13C-MFA to improve the

yield of amino acids in microorganisms include increased lysine production (Ohnishi

et al., 2005).

1.3.2.3 Constraint-based flux analysis using Flux Balance Analysis (FBA)

Computational tools have been developed to probe the system properties of genome

scale models. Flux balance analysis is a widely used approach for studying bio-

chemical networks (Duarte et al., 2007; Feist et al., 2007; Feist and Palsson, 2008;

Oberhardt et al., 2009; Dobson et al., 2010). FBA is based on convex analysis and
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employs a linear programming (LP) optimisation method to determine the metabolic

flux vector optimal for a defined objective subject to a set of underlying physicochem-

ical (e.g., substrate uptake rates, and/or product secretion rates) and thermodynamic

constraints. In a metabolic network, with reaction flux column vector v and metabo-

lites (row) x in matrix S , the system of mass balance equations at steady state (dx/dt

= 0) is represented as Sv = 0. The constraints due to stoichiometry and the reaction

bounds (upper and lower) define the allowable solution space. In practical terms,

FBA uses linear programming to solve the equation Sv = 0, given a set of upper and

lower bounds on v and a linear combination of fluxes as an objective function, to

give an output of a flux distribution, v, which maximizes or minimizes the objective

function (Orth et al., 2010). For example, in order to use FBA to predict maximum

growth rate, objective functions take on the form (Figure 1.3):

Maximise Z = cTv (a linear combination of fluxes)

subject to:

Sv = 0 (mass balance equation)

Vmin ≤ v ≤ Vmax (reaction bounds)

where c denotes a row vector of coefficients (weights) that multiply into the column

vector.

In general terms, the standard form of linear programming (LP) is formulated as

follows:

maxv cTv

Subject to: Sv= b

v ≥= 0

where

v = vector of variable to be determined (decision variables)
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S = matrix of known coefficients

b = vector of known coefficients

c = vector of weights

cTv = scalar objective function, that is linear combination of the decision variables.

The components of every LP are:

1. An m x n matrix S, where n > m and typically n is much greater than m (i.e, an

underdetermined system - columns more than rows for an undetermined problem)

2. S vector b ∈ Rm

3. S vector c ∈ Rn

cv is the inner product of the two vectors c and v, and Sv is the product of the

matrix S and vector v. Hence, it is possible to find the maximum value that the

inner product cv can attain as v runs through all feasible vectors v ∈ Rn with

nonnegative components (v > 0) satisfying the additional, and important restriction

Sv = b.

Flux balance analysis identifies only one optimal solution in the presence of co-existing

alternative optimal solutions or suboptimal solutions (Trinh et al., 2009). The optimal

path, in this case, represents only a pathway that lies in the vertex of the admissible

flux cone (Figure 1.3), satisfying the defined objective function. Notable applications

of FBA are in the field of metabolic engineering. In this project, FBA is used for pre-

dicting the flux distributions for various gene (and reaction) knockout or knockdown

conditions, enabling the identification of specific changes that may facilitate optimal

yield of a particular product, which may then lead to experimental design of the

desired phenotype (Gianchandani et al., 2010). Examples of the use of flux methods

to engineer Escherichia coli strains include overproduction of threonine (Lee et al.,

2007), valine (Park et al., 2007), lactic acid (Fong et al., 2005) and succinic acid (Lee

et al., 2005a). Becker et al. (2007) developed a constraint-based reconstruction and
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analysis tool box (Cobra Toolbox) based on constraint-based analysis of genome scale

models for quantitative prediction of both steady-state and dynamic optimal growth

behaviour, the effects of gene deletion of cellular behaviour and sampling range of

possible metabolic states. Other similar tools are MetaFluxNet (Lee et al., 2005b)

and CellNetAnalyzer (Klamt et al., 2007).

A number of computational extensions based on FBA framework have been devel-

oped. An FBA formulation termed MOMA (minimization of metabolic adjustment),

using a quadratic equation to find flux states of mutants, was successfully used to

predict viability and quantitative flux distribution in E. coli after simulated gene

knockouts (Lee et al., 2006a). MOMA was also used in gene knockout simulations to

refine candidate mutations for increasing production of lycopene (Alper et al., 2005).

ROOM (regulatory on/off minimization) formulation minimizes the number of signif-

icant flux changes from the wild-type flux distribution in order to identify metabolic

flux state of mutants (Shlomi et al., 2005), and the resulting optimization problem

was solved by mixed integer linear programming (MILP). With the introduction of

a further extension of bi-level formulation of FBA called OptKnock, it has become

more practicable to predict gene deletion strategies for the overproduction of a desired

metabolite (Burgard et al., 2003). OptKnock solves for the optimal flux distribution

that simultaneously optimizes two objective functions, biomass growth and secretion

of the desired metabolite using a bi-level optimization, and have been experimentally

validated in E. coli for the production of lactate (Fong et al., 2005). OptGene (Patil

et al., 2005), an improved OptKnock algorithm using genetic algorithm to reduce

computational time, allows identification of target genes to be knocked out, while

OptReg (Pharkya and Maranas, 2006) extends OptKnock to allow for up- and/or

downregulation and knockout strategy for improving product yield. OptOrf (Kim

and Reed, 2010) Identifies metabolic engineering strategies for overproduction of de-

sired metabolite based on gene deletion and overexpression. GDLS (Lun et al., 2009)

is a heuristic algorithm search for knockout strategy which combines the strengths

of sequential approach with those of bi-level FBA (Burgard et al., 2003; Pharkya
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et al., 2004; Pharkya and Maranas, 2006). Optstrain (Pharkya et al., 2004) imple-

ments a combinatorial optimization on a multi-species database and then suggests

the non-native functionality and the gene deletions for maximising product yield in

the production strain.

1.3.2.4 Practical considerations for FBA

In FBA, a metabolic network of reactions is represented mathematically as a stoi-

chiometric matrix (S) of size m X n, that is m rows of metabolites and n columns

of reactions. The entries in each column are the stoichiometric coefficients of the

metabolites participating in a metabolic network of reactions. The coefficient is neg-

ative for each metabolite consumed, positive for every metabolite produced, and zero

for every metabolite not participating in a particular reaction. Since most biochem-

ical reactions involve only a few different metabolites, S is a sparse matrix (Orth

et al., 2010).

Vector v with length n describes the flux through all of the reactions in a network,

while vector x with length m defines the concentrations of all metabolites. At steady

state, the system of mass balance equations is as defined in section 1.3.2.1:

dX/dt = 0

Sv = 0

Since the system is characterised by n > m, there are more unknown variables than

equations, so there is no unique solution to this system of equations. The stoichiome-

tries impose constraints on the flow of metabolites through the network. Constraints

can either be in form an equation describing balanced reaction inputs and outputs and

as inequalities that impose bounds on the system. Even though a range of solutions

is possible in the solution space, it is possible to use FBA with linear optimization

to find the optimal solution at the edge of the polyhedral cone. Apart from the con-

straint imposed by the stoichiometry, ensuring Sv = 0 at steady state in the system,

upper and lower bounds can also be applied to define the maximum and minimum
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allowable fluxes of the reactions

The goal of FBA is to minimise or maximise an objective function Z = cTv, which

can be any linear combination of fluxes, where c is a vector of weights indicating

how much each reaction contributes to the objective function (Orth et al., 2010).

Equation Sv = 0 is then solved using Linear programming, subject to a set of upper

and lower bounds on v and linear combination of fluxes as an objective function.

The output of FBA is a set of flux distribution, v, which maximises or minimises the

objective function. c is a vector of weights indicating how much each reaction (v)

contributes to the objective, when minimising or maximising for a reaction. In the

case of minimizing or maximizing the biomass reaction for biomass production, c is

a vector of zeros with a value of 1 at the position for biomass.

It is possible to identify alternate optimal solutions either by using Flux variability

analysis (FVA), a method that uses FBA by minimizing or maximizing every reaction

in a network pathways (Mahadevan and Schilling, 2003) or by implementing a mixed-

integer linear programming-based algorithm (Lee et al., 2000). Robustness analysis

permits more detailed phenotypic analysis involving studying the effect of varying one

of the objective functions of interest and when two fluxes are varied simultaneously,

a phenotypic phase plane (Edwards et al., 2002) can be formed.

1.3.2.5 Pathway analysis

Pathway analysis is a powerful theoretical method applicable to rational metabolic

engineering, as it allows for the consideration of the metabolic network topology.

Two of the most prominent concepts applicable to pathway analysis are based on

elementary flux mode and extreme pathways. Elementary flux mode analysis, as

one of the metabolic pathway analysis tools (Schuster et al., 1999) allows for the

calculation of solution space containing all possible steady-state flux distributions

of a network (Kromer et al., 2006). All metabolic capabilities in steady states are

composed of elementary flux modes (EFMs). EFMs are unique for a given metabolic
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network and are minimal sets of reactions, each of which can generate a valid steady

state (Schuster et al., 1999). In a metabolic network represented by stoichiometric

matrix S of m rows and q columns, EFM is defined by flux vector e composed of

q elements (e1,e2,...eq), each describing the net rate of the corresponding reaction.

The pathway represented by e can be identified by the utilised reactions, denoted as

follows (Klamt and Stelling, 2006):

P(e) = {i :ei 6= 0}

Hence pathway P(e)satisfies all reactions that participate in EFM e. The concept of

EFM is associated with three fundamental conditions, namely a steady-state condi-

tion, a feasibility condition and a non-decomposability condition (Klamt and Stelling,

2003). In steady state, none of the metabolites is consumed or produced according to

Equation 2 (section 1.3.2.1). Hence, EFM e is in the null-space of S, thereby fulfilling

Se = 0.

EFM analysis does not require the knowledge of measured fluxes for the identification

of existing metabolic flux vectors in metabolism. It is possible to use EFM analysis

to carry out a rigorous examination of network topology in terms of the identification

of all possible pathways (Trinh et al., 2006). EFM analysis identifies all unique

solutions in the admissible flux space (Figure 1.3). Hence, the analysis of the flux

vectors of individual pathways allows the identification of the most efficient pathway

for the production of a metabolite of interest. The first reported application of EFMs

for biotechnological yield of products was in the optimisation of production of 3-

deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) in E. coli (Patnaik and Liao,

1994) and the optimal production of L-methionine in E. coli and Corynebacterium

glutamicum (Kromer et al., 2006). There are also reports of the use of elementary

flux mode analysis to identify knockout strategies, for example in the development

of E. coli strains producing ethanol from hexoses (Trinh et al., 2008), ethanol from

glucose (Trinh and Srienc, 2009) and carotenoids from glucose (Unrean et al., 2010).

PySCeS (Olivier et al., 2005), YANA (Schwarz et al., 2005), COPASI (Hoops et al.,
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2006), Metatool (von Kamp and Schuster, 2006) and CellNetAnalyzer (Klamt et al.,

2007) are among the available software tools for computing EFMs from a network

of reactions. Furthermore, (Terzer and Stelling, 2008) introduced a program written

in Java (EFMtool) and implemented in MATLAB with the capability to compute

large-scale EFMs based on the concept of bit pattern trees.

The analysis of EFM data has several issues: (1) calculation of the EFMs in large

metabolic networks is computationally expensive (Boghigian et al., 2010); (2) EFM

computation is characterised by a combinatorial explosion of the number of EFMs

(Klamt and Stelling, 2002); (3) analysis of EFM data is a difficult task (Rocha et al.,

2010), in that a lot of effort is required to process and interpret the large number of

EFMs in order to obtain useful information for metabolic engineering purposes. A

number of strategies have already been proposed to solve the intractable problem of

the large number of EFMs in order to obviate their limitations for use in metabolic

modelling and analysis (Schmidt et al., 2003; Schwartz and Kanehisa, 2005; Schus-

ter et al., 2002; Song and Ramkrishna, 2009). Aggregation around common motif

(AcoM) is a method developed for classifying elementary flux EFMs into subsets

based on substructures, which aids biological interpretation (Peres et al., 2006; Peres

et al., 2011). However, clustering analysis has been used to classify Petri net t in-

variants (subnetworks) into biologically meaningful groups (Grafahrend-Belau et al.,

2008). Even though these methodologies exist to help break the large original EFM

dataset into smaller subsets, they lead to EFM subsets that either are not sufficiently

reduced for metabolic modelling or do not yield enough useful information that would

enable the biotechnologist to make the best decisions for the design of an optimal

microbial strain. Hence, in order reduce the problems encountered with the use of

EFM for biotechnological production of fuels and value chemicals, there is a need to

develop computational algorithms and methods for the processing and classification

of EFM data.
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1.3.2.6 Kinetic modelling and metabolic control analysis

The concept of “rate-limiting step” dominated the traditional pathway engineering

approaches for changing the flux or the concentration of a particular metabolite in

a metabolic pathway (Moreno-Sanchez et al., 2008). Finding the correct targets for

modification in microorganisms for biotechnological improvement of product yield

with the aid of either intuitive or qualitative approaches is usually complicated by

compartmentation, cofactor coupling, allosteric effects etc. Unfortunately, one of

the shortcomings of stoichiometric network analysis is that it does not account for

kinetics and the regulation of the enzymatic reactions. Kinetic models, unlike FBA

and EFM, enable predictions based on how changes in kinetic properties, enzyme and

metabolite concentrations affect fluxes through metabolic pathways. Hence, analysis

of kinetic models allow for identification of changes necessary for improving cellular

phenotypes.

A set of differential equations can be used to describe the time dependence of the

metabolite concentrations. In kinetic modelling, kinetic equations are incorporated in

metabolic models based on mass balances of extracellular and intracellular metabo-

lites, expressed in the general form as follows (Maertens and Vanrolleghem, 2010):

dxSi

dt
= D(x0

Si
− xX
ρX

)
∑
j

SMij
rj (1.1)

dxMi

dt
=

∑
j

SMij
rj − µxMi

(1.2)

where:

xMi
= the concentration of intracellular metabolite Mi

xSi
= the concentration of extracellular metabolite Si

SMij
= the stoichiometric coefficient of metabolite Mi in reaction j
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rj = rate of reaction j

ρX = specific weight of biomass

xX = biomass concentration

D = dilution rate

x0
Si

= the concentration of extracellular metabolite S in the feed

µ = specific growth rate

µxMi
= dilution effect due to growth

In mechanistic dynamic modelling of metabolic models, complex mechanistic equa-

tions describing rate equations (rj) are used, such as Michaelis-Menten kinetics.

Alternative approaches employing non-mechanistic kinetics for approximate mod-

elling include power law approximation (Savageau, 1976), the loglinear approximation

(Hatzimanikatis and Bailey, 1996; Hatzimanikatis and Bailey, 1997), the linlog ap-

proximation (Visser and Heijnen, 2003; Visser et al., 2004) and convenience kinetics

(Liebermeister and Klipp, 2006).

Metabolic control analysis (MCA) is a mathematical framework for describing bio-

chemical networks. MCA quantifies how steady-state fluxes and concentrations change

in response to changes in network parameters (e.g., changed enzyme level) (Visser

and Heijnen, 2002). The MCA framework was developed by Kacser and Burns (1973)

and by Heinrich and Rapport (1974). In MCA, different coefficients, global and local,

are defined, and they are the quantitative indices of the effects of perturbations on

fluxes, concentrations and rates. Different coefficients can be distinguished - control

coefficients,kinetic response coefficients and elasticities. Control coefficients are a

measure of how a change of an enzyme level affects a flux or concentration. The flux

control coefficient for a change in the amount of enzyme xase on a flux Jydh measured

through step ydh is defined by (Fell, 1992):
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CJydh
xase =

∂Jydh
∂Exase

.
Exase

Jydh
=

∂lnJydh
∂lnExase

(1.3)

In the case of concentration control coefficients, the variable affected by the cho-

sen parameter such as enzyme xase, is a metabolite concentration, S. Concentration

control coefficients are given by (Fell, 1992):

CS
xase =

∂S

∂Exase

.
Exase

S
=

∂lnS

∂lnExase

(1.4)

The change in the rate of reaction as a result of change in metabolite level, while

everything else is constant, is described by a local property called the elasticity. Re-

sponse coefficients are used to describe the effect of a change of an external parameter,

such as the concentration of an extracellular component, on fluxes and concentrations.

Summation theorems provide relations between the various control coefficients of a

network such that they add up to one (flux-control) or zero (concentration-control).

This results in that the control coefficients depend on one another, thus are the sys-

tem properties (global). The relationships between elasticities and control coefficients

are best described by the connectivity theorems.

Kinetic modelling in combination with MCA was used for increased flux in the

metabolic engineering of Lactococcus lactis for improved lactic acid production (Hoef-

nagel et al., 2002). Yang et al (1999) developed a model ofC. glutamicum for intracel-

lular lysine synthesis in batch fermentation and used MCA to determine the control

on the overall lysine synthesis flux exerted by individual enzymatic reactions.

1.3.3 Experimental approaches to Systems metabolic engi-

neering

Traditionally, multiple rounds of random mutation and selection have been used to

develop production strains for various products. However, targeted metabolic engi-

neering employs genetic manipulation tools, including gene deletion, gene expression
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tuning, protein engineering and evolution. Gene deletion is used to redirect carbon

flux to the pathway of target product by deleting genes in competing pathways. Ho-

mologous recombination is the most common gene deletion strategy. Similarly, gene

expression tuning, is a commonly used genetic manipulation technique for metabolic

pathway re-design. Protein engineering has been used to increase enzyme activity.

Genetic engineering techniques have been used to achieve the following rational

metabolic engineering strategies:

1. Removal or inhibition of enzymes to ensure blockage of competing pathways (Shi-

mada et al., 1998).

2. Enhanced carbon flow to the primary metabolic pathways from central metabolism

(Stephanopoulos and Sinskey, 1993).

3. Amplification of gene(s) to improve the synthesis of existing products (Pines et al.,

1997).

4. Heterologous expression of enzyme(s) to extend the substrate range (Panke et al.,

1998) or to produce a novel product (Misawa and Shimada, 1997).

5. Modification of secondary metabolic pathways as necessary to enhance energy

metabolism and availability of required enzymatic cofactors.

6. A combination of modifications required to achieve the goal.

It is noteworthy that recent advances in transcriptomics, proteomics and metabolomics

technologies and computational systems biology have provided metabolic engineering

with a more complete understanding of the cell. In addition, advances in synthetic

biology enable the implementation of novel gene networks that are guided by pre-

dictive models (Tyo et al., 2010). The combined applications of synthetic biology

and systems biology to metabolic engineering is making a new trend whereby the

iterative engineering is moving to linear design-based engineering of microbial strains

(Tyo et al., 2010). Strain properties have also been improved due to additional tools

from protein engineering.
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Gene expression profiling enables the analysis of cell physiology and system-wide

global regulation at transcript level (Lee and Park, 2010). This can be used to analyse

the cell physiology and to select target genes to be engineered as well. Comparative

genome analysis can be used to identify the genes to be modified in order to obtain a

metabolic phenotype of interest (Lee and Park, 2010). Ohnishi et al. (2005) employed

this concept to develop an improved lysine producer, APG-4 strain, by introducing

a Ser − 361− > Phe mutation in the gnd gene, as a result of information obtained

from comparing the genomes of wild-type C. glutamicum and an L-lysine producing

strain. The final strain, capable of producing 95 g/L of L-lysine after the introduction

of mqo mutation, was also based on genome comparison.

Proteomics takes a broad, comprehensive and systematic approach to the investi-

gation of protein levels in the biological systems (Lee and Park, 2010). Proteomics

attempts to quantify the level of all proteins in the cell using methods such as MALDI-

TOF for peptide mass fingerprinting and electrospray (ESI), fourier transform ion cy-

clotron resonance (FT-ICR) coupling with tandem mass spectrometry (MS/MS) for

peptide identification. Comparative proteome analysis of Mannheimia succinicipro-

ducens was used to obtain gene targets for manipulation for enhanced production of

succinic acid in the same organism (Lee et al., 2006b).

Metabolomics focuses on the identification of metabolites and the measurement of

metabolite levels. It can be used to obtain a comprehensive picture of the biological

system (Oldiges et al., 2007). Metabololomics provides a platform for experimental

validation of in silico designed strains and for further optimisation of engineered

microbial strains for biotechnological production of bioproducts. Metabolite pro-

filing allows comparative analysis of physiological states under different conditions,

such as a wild-type versus its mutants, under different culture conditions (Lee et al.,

2006b). Metabolite profiling is an analytical method for relative quantification of

selected metabolites either from specific pathways or compound classes in biologi-

cal samples (Fiehn, 2002). Metabolite profiling is focused on (semi)-quantification

of a group or groups of chemical functionalities after minimal sample preparation.
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It is also characterised by lower analytical precision than targeted analysis. Quan-

tification in metabolite profiling is based on comparing samples against a reference

sample. Metabolite profiling involves techniques such as gas chromatography-mass

spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) or cap-

illary electrophoresis-mass spectrometry (CE-MS) which permit for separation of in-

dividual components by one technique and their identification by the other (Griffin,

2004). These techniques provide detailed chromatographic profiles of the sample, and

either relative or absolute quantifications of components in the sample. Production

strain improvement by metabolic engineering can be based on targeted approaches

of metabolic profiling or target analysis.

The complex components of biological samples are first separated into simpler com-

ponents based on the interactions with the stationary (analytical column) and mobile

phases (carrier gas) of GC-MS. Samples injected into GC-MS become vaporised and

then migrate through the GC column allowing individual components to interact with

the stationary phase to varying degrees. The separated components are eluted from

the analytical column and then ionized into molecular ions using an electron source

before being introduced into the mass spectrometer. Mass spectrometer generates

ion fragments from metabolites which are subsequently separated according to their

mass to charge ratio (m/z ) and detected to generate a mass spectrum of the eluent

peaks. Each eluted peak in the sample yields a fragmentation profile, characteristic

of the molecular mass and structure of the metabolite. Finally, compounds are iden-

tified based on ratios of isotopes and their distribution and also functional groups

characterizing the fragment ions. Comparison of fragmentation ions with similar

information in mass spectral databases aid identification of compounds.

Determination of the fluxome, the entire set of metabolic fluxes, can provide the

understanding the cellular metabolic capacities/activities under various conditions

(Lee et al., 2006b). Wang et al. (2006) combined constraint-based flux analysis

and MFA to identify target knockout, leading to the construction of a new strain

capable of high yield of 1.29 mol succinate/mol glucose. 13C tracer experiments based
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on different substrate labellings were combined with proteomics for determining the

flux distributions in lysine-producing C. glutamicum ATCC 21526 (Wittmann et al.,

2004); their findings suggested the reduction of secretion of dihydroxyacetone and

glycerol as metabolic engineering targets for optimising the strain for improved L-

Lysine yield.

There are various examples of combined omics analysis for enhance product yield

in mircoorganisms (Askenazi et al., 2003). Lee et al (2005a), combined comparative

genome analysis of mixed-acid-fermenting E. coli and succinic acid-overproducing M.

succiniciproducens with in silico metabolic analysis for the development of optimised

strains for enhanced succinic acid yield. The results of the study indicated that

combinatorial disruption of five genes, ptsG, pykF, sdhA, mqo, and aceBA identified by

genome comparative analysis alone did not redirect flux to benefit increased succinic

acid production as expected. However, further fine-tuning with in silico metabolic

analysis based on linear programming indicated the triple knockout combination of

ptsG, pykF, and pykA for enhanced succinic acid production. The triple-knockout

strain was experimentally verified to show over seven-fold increase in succinic acid

production.

1.3.4 Host organisms for metabolic engineering

The most industrially important host organisms (biocatalysts) for metabolic engineer-

ing are yeast and bacteria. Much has been carried out in both academic laboratories

and industry on bacteria and yeast. The development of these microorganisms has

been successful partly because they combine the advantages of rapid growth and ease

of genetic manipulation.

The yeast S. cerevisiae is extremely well suited for biotechnological production of

value chemicals, biofuels, pharmaceuticals, materials and food ingredients because

it is one of the most intensely studied eukaryotic model organisms, offering large
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amounts of data detailing its genetics, biochemistry, physiology, and large-scale fer-

mentation performance (Nielsen and Jewett, 2008). In addition, yeasts are eukaryotes

and have ability for protein folding, assembly and post translational modifications,

and lack oncogenic and viral DNA. Yeasts are a phylogenetically diverse group of

eukaryotic microorganisms (Kurtzman, 1994). Apart from the yeast S. cerevisiae,

there are alternative yeast whole-cell biocatalysts such as Candida sp.,Cryptococcus

sp., Geotrichum sp., Kluyveromyces sp., Pichia sp., alternative Saccharomyces sp.,

Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis,

Yarrowia lipolytica and Zygosaccharomyces rouxii (Pscheidt and Glieder, 2008). How-

ever, S. cerevisiae is of paramount importance as a biocatalyst because of its GRAS

(generally regarded as safe) status (American Food and Drug Administration) and

also the fact that abundant data on physiology and genetics of this organism are

available. The use of S. cereviasiae has beome more popularised by the availability

of various advanced genetic techniques, such as highly efficient transformation meth-

ods (Gietz and Woods, 2001), high efficiency of homologous recombination, many

specialised expression vectors, selectable markers (Guldener et al., 1996; Gueldener

et al., 2002; Janke et al., 2004) and immunotags.

On the other hand, bacteria are dominant in the production of metabolites, heterolo-

gous proteins, aromatic compounds, amino acids etc, due to the wealth of knowledge

about their physiology, genetics, molecular biology, biochemistry and fermentation

(Branduardi et al., 2007). E. coli possesses a clear genetic background and good

growth properties with low nutrient requirements (Yu et al., 2011), and it is becoming

increasingly important in biofuel production. Gram-positive bacteria, in particular,

C. glutamicum have a long industrial history in the production of amino acids.

1.4 Production of value chemicals and materials

The broad range of value products and materials that are produced using biotechno-

logical methods, especially pathway engineering, attests to the ever-growing strengths
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of this approach over several decades. In commercial terms, the products range from

very cheap bulk chemicals (e.g., ethanol: 38 million ton/year at 400 Euros/ton) to

extremely expensive fine chemicals (e.g., vitamin B12: a few ton/year at 25 000 Eu-

ros/kg) (Soetaert and Vandamme, 2006). Just as there is increasing concern for the

environment and an ever increasing demand for these products, there is also increase

in the drive to improve the production strategies and technologies by utilising safer

and cost-effective feedstock. Industrial biotechnology is being used as a platform for

either replacing a single step in a chemical synthesis or replacing an entire sequence

of chemical synthesis steps with one single fermentation or biocatalysis step. While

industrial biotechnology is already well established in the production of fine chemicals

and pharmaceuticals, there is an increasing trend in the production of bulk chemicals,

biofuels and bio-plastics. The choice of microorganism to be used as a biocatalyst

for the production of a particular product usually depends on the wealth of available

knowledge about the organism, productivity capacity for a desired product by the

organism and ease of handling. Consideration for safety is also given a high premium,

such as using yeast instead of other organisms, because of its GRAS status, in the

biotechnological production of products for human consumption. However, heterol-

ogous expression of genes (and an entire pathway) and the use of synthetic biology

in the modern era industrial biotechnology renders the consideration for the genetic

or physiological suitability of a particular microorganism for producing a product of

lesser importance. Demonstrative examples of the successes of metabolic engineering

for improved yield of various red and white products are reported in this section.

Tables 1.1 and 1.2 show examples of primary and secondary metabolites respectively,

indicating the metabolic engineering (with or without systems biology) strategies,

the microorganims employed, and the yields of bio-products.

1.4.1 Primary metabolites - Fine and Bulk chemicals

Fine chemicals (e.g., amino acids, vitamins and pharmaceutical products) are com-

mercially important and pure chemical substances, while the bulk chemicals (e.g.,
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biofuels) are produced in massive quantities.

1.4.1.1 Amino acids, amino acid intermediate products and derivatives

The amino acids for feed and food application can be divided, based on their method

of synthesis, into four different categories, namely: (1) those synthesized by chemical

methods, (2) those synthesised through enzymatic synthesis, (3) Glutamate produced

by C. glutamicum and (4) the other amino acids such as lysine, threonine, phenylala-

nine and the rest produced by fermentation (Kramer, 2005).

The ever-increasing demand for L-glutamic acid, L-lysine, L-threonine and others

as sources of nutrition has stimulated successful development of bacteria such as

C. glutamicum and E. coli as biocatalysts for the production of these amino acids

(Sprenger, 2007). Glutamate is the most widely used amino acid and mainly produced

in C. glutamicum with annual production estimated to be in excess of 1.5 million tons

per year (Schultz et al., 2007). C. glutamicum, E. coli and other microorganisms are

able to excrete glutamate.

L-Phenylalanine is produced by chemical, enzymatic or microbial processes (Sprenger,

2007), and it is used in the synthesis of the low calorie sweetener, aspartame, a

methyl ester of the dipeptide L-aspartyl-L-phenylalanine). Commercial interest in

L-tryptophan is also increasing for various uses. Low cost and the possibility to

obtain pure L-phenylalanine from microbial production have encouraged metabolic

engineering of C. glutamicum (Katsumata and Ikeda, 1993; Ikeda and Katsumata,

1999; Liu et al., 2004) and E. coli (Berry, 1996; Rueffer et al., 2004; Tatarko and

Romeo, 2001; Yakandawala et al., 2008). The best published L-phenylalanine yield

is 50 g/l from a genetically engineered E. coli strain with feedback-resistant pheA

(pheAfbr) and feedback-resistant aroF (aroFfbr) genes (Backman et al., 1990).

C. glutamicum (Katsumata and Ikeda, 1993) and E. coli (Berry, 1996) are mainly

used in the microbial fermentation of L-tryptophan. The engineering of efficient

tryptophan organisms entails similar alterations of precursor pathways and of the
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biosynthetic pathway to the approach for phenylalanine overproduction. In both C.

glutamicum and E. coli, there are several strictly controlled steps towards the produc-

tion of L-tryptophan, and hence improved yield of this amino acid requires removal

of all the metabolic controls in the common pathways as well as in the L-tryptophan

branch. (Azuma et al., 1993) obtained 50 g/l of L-tryptophan after 91 hours in a

genetically engineered E. coli strain (with plasmid containing trp operon) in fermen-

tation culture containing glucose and anthranilic acid. Using a rational engineering

approach, increase in the production of L-tryptophan up to 50 g/l was achieved in

a L-tryptophan producing C. glutamicum after the first enzyme (3-deoxy-D-arabino-

heptulosonate 7-phosphate synthase) in the common pathway towards chorsimate

was amplified, followed by sequential removal of intermediates (Katsumata and Ikeda,

1993; Ikeda et al., 1994). A further improvement was obtained by engineering the

central metabolism to increase the availability of PEP and E4P as shown in other

studies (Ikeda and Katsumata, 1999; Patnaik and Liao, 1994).

L-arginine is a metabolically versatile amino produced by bacterial fermentation. It

is a widely used amino acid with applications in the food flavouring and pharmaceu-

tical industries. Industrial production of L-arginine makes use of mutant strains of

Corynebacterium in microbial fermentations (Ikeda, 2003; Utagawa, 2004).

A L-lysine producing C. glutamicum strain, previously obtained by random muta-

genesis, was improved for L-isoleucine production by targeted metabolic engineering

efforts involving amplification of the feedback-resistant threonine dehydratase and

homoserine dehydratase, resulting in a final strain producing 18.1 g/l L-isoleucine

(Morbach et al., 1995; Morbach et al., 1996). A pyruvate dehydrogenase-deficient

C. glutamicum (∆aceE ∆pqo ∆pgi) overexpressing ilvBNCE (Blombach et al., 2007)

was improved for valine biosynthesis (Blombach et al., 2008) by deleting pgo and pgi

genes leading to increase in pyruvate and NADPH available respectively, and a final

strain of C. glutamicum(∆aceE ∆pqo ∆pgi) strain capable of producing 48 g/L of L-

valine. The the first reported systems metabolic engineering of E. coli for amino acid
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production by genome engineering combined transcriptome analysis and gene knock-

out simulation of the genome-scale model (Park et al., 2007). Based on an E. coli,

feedback inhibition and transcriptional attenuation controls on valine biosynthesis

were removed by site-specific genome engineering, genes of the competing pathways

were deleted, and the ikvBN operon (involved in first reaction of valine biosynthesis)

was amplified; moreover, ikvCED, lrp and ygaZH genes (encode the L-valine biosyn-

thesis genes, a global regulator leucine responsive protein and an L-valine exporter

respectively) identified by transcriptome analysis were overexpressed, lrp (prevents

uptake of L-valine). Further improvements on the strain include a triple knockout

(∆aceF, ∆mdh, ∆pfkA) from in silico prediction, resulting in a final strain producing

0.378 g L-valine/ g glucose. L-threonine overproducing E. coli strain was constructed

by a similar systems metabolic engineering approach.

The construction of an L-serine-producing strain of C. glutamicum (∆pabABC ∆sdaA)

producing 32.8g/L L-serine was based on targeted metabolic engineering, by over-

expressing the feedback-resistant 3-phosphoglycerate dehydrogenase, phosphoserine

phosphatase and reduced folate supply (Peters-Wendisch et al., 2005; Stolz et al.,

2007).

Transcriptome profiling has been applied to the mapping of metabolic characteristics

and identification of genes for metabolic engineering as exemplified by the improve-

ment of L-lysine production by the introduction of mutations identified through tran-

scriptome analysis to define L-lysine producer (Park and Lee, 2008). Transcriptome

analysis of a classical L-lysine producer C. glutamicum B-6 revealed the amino acid

biosynthetic genes that were induced (Mitsuhashi et al., 2006) leading to increased

lysine production.

Systems metabolic engineering approach was used to develop a genetically defined L-

threonine overproducing E. coli strain (Lee et al., 2007). Lee at al (2007) carried out

deletions of thrA and lysC gene to remove the feedback inhibitions of aspartokinase I

and III respectively, deletions of metA and lysA genes to ensure precursor availability

for threonine biosynthesis, removal of thrL transcriptional attenuation regulations,
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and deletion of tdh in combination with mutation of ilvA were carried out to prevent

degradation of threonine. In addition to these steps, overexpression of ppc gene

(encodes phosphoenolpyruvate carboxylase), threonine transporter genes rhtA, rhtB

and rhtC (involved in the export of threonine) and acs gene (encodes Acetyl-CoA

synthetase to reduce acetate accumulation). It was also necessary to carry out the

deletion of iclR genes (to encourage carbon flux through the glyoxylate shunt), tdcC

gene encoding a Thr transporter (uptake of threonine into the cell)predicted through

the use of transcriptome profiling and in silico flux simulations, in order to obtain

the final recombinant E. coli strain capable of 82.4 g/L of threonine in 50 hours of

fed batch culture.

Leinfelder and Winterhalter (1999) successfully engineered a cysteine overproducing

E. coli strain. L-ornithine is an intermediate in the biosynthesis of arginine that finds

application in the synthesis of pharmaceuticals for treatment of liver disorders in

humans. Commercial production of L-ornithine is from a citrulline-requiring mutant

of a coryneform bacterium (Choi et al., 1996).

D-phenylglycine (D-Phg) has an important application as a side chain building block

for semi-synthetic penicillins and cephalosporins (Muller et al., 2006). The cur-

rent approach for producing D-Phg involves a two-step chemo-enzymatic synthe-

sis (Wegman et al., 2001). Muller et al. (2006) reported the first completely fer-

mentative production of D-phg by introducing a heterologous pathway into an L-

phenylalanine producing E. coli strain involving genes from Amycolatopsis orien-

talis, Streptomyces coelicolor, and Pseudomonas putida, which together catalyses the

conversion of phenylpyruvate via mandelate and phenylglyoxylate to D-phg.

Natural end products of the aromatic amino acid pathway are tryptophan, tyro-

sine and phenylalanine; these pathways can be extended to yield products such as

melanin and indigo (Ensley et al., 1983). Catechol (Draths and Frost, 1991), adipic

acid (Draths and Frost, 1994) and quinic acid (Draths and Frost, 1992) are ex-

amples of other biosynthetic products that can be generated from intermediates in

the aromatic amino pathway incorporating foreign genes from other microorganisms
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(Chotani et al., 2000). Hence, the aromatic amino acid pathways are of interest since

they present multiple product opportunities contributing to reduced technical and

commercial development costs (Chotani et al., 2000).

1.4.1.2 Organic acids

This part of the review covers the metabolic engineering strategies for microbial

production of the following organic acids: Fumaric acid, citric acid, succinic acid,

malic acid, acetate and pyruvate.

The U.S Department of Energy listed succinic acid, fumaric acid and malic acid in

the top 12 of the most interesting chemical building blocks derivable from biomass

(Werpy and Petersen, 2004). Three intermediates of the oxidative citric acid cycle

(TCA), Fumaric acid, L-malic and citric acids, are synthesized and secreted to high

level of concentrations in Aspergillus sp. and Rhizopus sp. (Goldberg, 2006). Being

a naturally occurring organic acid in the TCA cycle, many of the microorganisms are

able to produce small quantities of fumaric acid (Roa Engel et al., 2008). Fumaric acid

is highly valuable in the food industry as intermediates in the production of L-malic

acid and L-aspartic acid (Goldberg, 2006); potential and interesting applications

of fumaric acid derives from its non-toxic nature and could be as a better option

for the polymer industry over other carboxylic acids (Roa Engel et al., 2008), and

also a highly pure fumaric acid could be used to treat psoriasis (Altmeyer et al.,

1994). Fumaric acid is currently produced chemically from a petroleum derivative,

maleic anhydride; however, the increasing prices of petroleum is encouraging renewed

interest in the fermentative fumaric acid production. The organic acid-producing

ability of fungi has been exploited in the production of fumaric acid by fermentation

(Goldberg, 2006). Genetic modification of microorganisms for production of fumaric

acid is sparse, and R. oryzae is the micoorganism with the highest productivity and

yield of fumaric acid by fermentation. The market size for citric acid is large and

it continues to increase, mainly due to is use in the expanding food and beverage

and also in the use of health-related products (Goldberg, 2006). Citric acid is the
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most important food acidulant, and further specific uses are in the manufacture of

pharmaceuticals, wines, ciders, candies, jellies, jams, soft drinks, vegetable juices,

toiletries and cosmetics. Global citric acid production is estimated to be 1.4 million

tonnes per year, with an annual increase of 3.5 - 4%. Currently, strain improvement

for citric acid production involves mutagenesis and selection.

Succinic acid is one of the most important green chemicals and has a broad spec-

trum of application, including its use as surfactant, ion chelators, food additives,

pharmaceutical supplements and antibiotics (Hong, 2007). It is also used in the

chemical industry as a precursor to important chemicals, such as 1,4-butanediol, a

monomer for various aliphatic polyesters (Willke and Vorlop, 2004; Song et al., 2006;

McKinlay et al., 2007). Bacterial strains growing under anaerobic conditions usually

produce succinic acid as the main product (Zeikus et al., 1999). Currently, most

of the world’s succinic acid production is based on a chemical process utilizing fos-

sil materials as feedstock. However,the most efficient succinic acid bacterial strains

are Anaerobiospirillum succiniciproducens and Actinobacillus succinogenes. Lee et al

(2008) engineered a M. succniciproducens strain, LPK7, capable of producing succi-

nate at 1.42-fold higher than the wild-type strain by knocking out the IdhA, pflB, pta

and acKA genes, albeit causing retarded cell growth, to prevent formation of lactic

and formic acids as by-products.

Jantama (2008) used a combination of gene deletions and metabolic evolution to

develop derivatives of E. coli capable of producing either succinate or malate in simple

fermentation consisting of mineral salts. The study reported that the best performing

succinate biocatalysts, strains KJ060 (IdhA, adhE, ackA, focA and pflB deleted) and

KJ073 (IdhA, adhE, ackA, focA, pflB, mgsA and poxB deleted), produced 622-733

mM of succinate, while strain KJ071 (IdhA, adhE, ackA, pflB and mgsA deleted),

the best malate producer, produced 516 mM malate.

Malic acid is a four carbon dicarboxylic acid, widely used in the polymer, food and

pharmaceutical industry, and its other non-food applications include metal cleaning

and finishing and electroless plating (Goldberg, 2006). It is produced by two different
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methods: Maleic anhydride from the petrochemical source, serves as the precursor

for the production of racemic maleic acid, while enantiomerically pure L-malic acid

is derived from fumarate by an enzymatic process (Chibata et al., 1983). However,

one-step fermentation strategy for the production of malic acid with glucose as the

feedstock has been established. A shift from the earlier Aspergillus flavus fermenta-

tion for malic acid to other microorganisms, including yeast, has been stimulated by

concern regarding the potential aflatoxin production of this organism (Zelle et al.,

2008). Malic acid, with an estimated annual production of around 140,000 tons

per year (Mecking, 2004), has a potential to move from its present position as an

intermediate-volume chemical to a very large volume, commodity-chemical interme-

diate derived from renewable sources. Metabolic flux analysis was used to predict

increasing production of malate in E. coli by amplification of phosphoenolpyruvate

(PEP) carboxylation flux, resulting in the development of a WGS-10 strain express-

ing PEP carboxykinase from M. succiniproducens, which produces 9.25 g/l of malic

acid in 12 hours of aerobic fermentation (Moon et al., 2008). Zelle et al. (2008) engi-

neered a malate producing yeast strain capable of producing 59 g/l at a yield of 0.42

mol (mol glucose). This new strain reflects the introduction of three genetic modifi-

cations into a C2-independent pyruvate decarboxylase-negative S. cerevisiae strain,

namely overexpression of the native pyruvate decarboxylase, high-level of expression

of the MDH3 gene allele for the cytosol-retargeted malate dehydrogenase and the

heterologous expression of Schizosaccharomyces pombe malate transporter gene.

1.4.1.3 Biofuel

Interest in renewable energy sources have intensified recently as a result of high cost

of oil and supply instability, and also because of increasing environmental concerns.

Ethanol is one of the candidates for replacing dependence on fossil-fuel, and this

enthusiasm for bioethanol productions has been been driven in part by mandates in

many countries to use bioethanol and by an abundant supply of corn in the United

States (Keasling and Chou, 2008). Due to inputs from advances from genomics
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and technology, metabolic engineering has emerged as the leading tool for deriving

renewable energy. Diverse biomass resources are available as sources of feedstocks

for microbial conversion into useful products and materials in form of agricultural

lignocellulosic residues, edible and non-edible crops and waste.

The most commonly used feedstocks for the industrial production of biofuels are

starches and simple sugars derived from sources such as sugar cane (sucrose) and

corn (starch). However, the current production of starch-based ethanol is unsus-

tainable due to competition from food and animal feed industry. Hence, other cost-

effective and sustainable feedstocks, such as lignocellulosic sugars and fatty acids are

being developed to replace sugar cane and corn as a feedstock for biofuel produc-

tion. Lignoceric feedstocks from agriculture and forestry are composed of cellulose,

hemicellulose and lignin; cellulose is a homopolymer of glucose, while hemicellulose is

composed of hexose sugars (glucose, mannose and galactose) and pentose sugars such

as xylose and arabinose (Hayn et al., 1993). The conversion of lignocellulosic sugars

into fermentable materials is a challenging task than with either sugar cane or corn.

This is due to problems in digesting lignin, a highly recalcitrant network polymer

of aromatic alcohols which accounts for 25% of most common sources of cellulosic

biomass (Aristidou and Penttila, 2000). A pretreatment step is usually required. In

the the process of pretreatment of lignoceric feedstocks, cellulosic and hemicellulosic

portions are partially hydrolysed into products that are digestible by celluloses, with

a concomitant generation of fermentation inhibitors. The presence of inhibitors is a

big challenge for industrial production of bioethanol in yeast.

The metabolic engineering strategies that have been applied to laboratory strains of

S. cerevisiae to improve xylose fermentation involved a number of different modifica-

tion categorised as follows (Hahn-Hagerdal et al., 2007): modifications of transport

(xylose transport), Xylose utilisation pathway (e.g., xylose reductase - XR/ xylitol

dehydrogenase - XDH), arabinose utilisation pathways (e.g., Fungal and E. coli ara-

binose pathways), xylose and arabinose combined (e.g., XR/XDH/XK pathways), re-

ducing xylitol formation (Aldolase reductase Gre3 deletion), improving the efficiency
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of metabolism (e.g., overexpression of TAL and the non-oxidative PPP) and anaer-

obic growth on xylose (e.g., evolutionary engineering). Industrial production yeast

hosts for ethanol production have been developed based on the xylose and arabi-

nose utilisation pathways, complemented with random mutagenesis (Wahlbom et al.,

2003) and evolutionary engineering (Sonderegger et al., 2004). Xylose-fermenting in-

dustrial yeast strains for ethanol include TMB 3400 and TMB 3006, engineered with

heterologous XR and XDH genes.

Despite many efforts in the genetic engineering of yeast and bacteria for the fermen-

tation of xylose and arabinose, bioconversion of pentoses to ethanol remains a huge

challenge. The expression levels of the native S. cerevisiae genes for xylose utilization

(Deng and Ho, 1990; Kuhn et al., 1995; Richard et al., 1999; Toivari et al., 2004)

are not high enough to support growth on xylose. S. cerevisiae possess the genes for

xylose assimilation, but their low expression prevents significant sugar assimilation

(Jeffries and Jin, 2004).

The Pichia stipitis genes XYL1 and XYL2 encoding XR and XDH, respectively, when

introduced in S. cerevisiae (Kotter and Ciriacy, 1993; Tantirungkij et al., 1993), re-

sulted in growth on xylose, and when combined with overexpression of the endogenous

XKS1 gene encoding xylulokinase (XK) allowed for xylose fermentation (Ho et al.,

1998; Eliasson et al., 2000; Toivari et al., 2001).

Although several yeasts and fungi can utilize L-arabinose as a carbon and energy

source, most of them are unable to ferment it into ethanol. Overexpressed of all the

structural genes of the fungal L-arabinose pathway (XYL1, lad1, lxr1, XYL2, and

XKS1) in S. cerevisiae, resulted in slow rate of L-arabinose into ethanol (0.35 mg

of ethanol g-1 h-1) under anaerobic condition (Richard et al., 2003). In a different

study, Wisselink et al. (2007) combined the expression of the structural genes for the

L-arabinose utilization pathway of Lactobacilllus plantarum, the overexpression of

the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate

pathway and extensive evolutionary engineering (Sauer, 2001) to develop a production

S. cerevisiae strain with a high fermentation rates of arabinose consumption (0.70 g /h
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[dry weight]-1) and ethanol production (0.29 g h-1 g [dry weight]-1) and a high ethanol

yield (0.43 g g-1) during anaerobic growth on L-arabinose. A high ethanol yield for a

recombinant Saccharomyces was obtained in a study involving fermentation of 53 g

glucose l-1 and 56 g xylose l-1 mixture by Saccharomyces sp. 1400 (pLNH33) mixture

to achieve an ethanol concentration of 50 g l-1 in 36 h (Krishnan et al., 1999).

In the bacterial pathway, the enzymes L-arabinose isomerase (AraA), L-ribulokinase

(AraB), and L-ribulose-5- phosphate 4-epimerase (AraD) are involved in convert-

ing L-arabinose into L-ribulose, L-ribulose-5-P, and D-xylulose-5-P, respectively. An

ethanologenic E. coli strain was engineered with heterologous genes for pyruvate de-

carboxylase (pdc) and alcohol dehydrogenase (adhB) genes from Zymomonas mobilis.

The resultant recombinant ferments hexoses and pentoses to ethanol at a high rate

and yield (Ingram et al., 1999).

Although ethanol is the major biofuel in the transport sector, it suffers from the

disadvantage that it has low energy content compared with petroleum-derived fuels

and also it is incompatible with the transportation infrastructure. These drawbacks

in the use of ethanol is paving the way for research into advanced biofuel, especially

those that can supplement or replace gasoline and biodiesel, such as short-chain

alcohols (or alkanes) and biodiesel (or cyclic isoprenoids) respectively (Lee et al.,

2008), (Peralta-Yahya and Keasling, 2010).

Several potential advanced biofuels have been successfully produced in microbes, ei-

ther by fine tuning discrete steps or redirecting flux to the desired production pathway.

Despite these successes, the majority of metabolic engineering efforts in this direc-

tion are yet to benefit from the application of iterative rounds of systems analysis and

metabolic engineering to ensure higher yields of advanced biofuels (Peralta-Yahya and

Keasling, 2010). Application of functional genomics for profiling engineered microor-

ganism will provide system-level information about metabolism and fuel toxicity,

while metabolic flux analysis may help reveal bottlenecks in the engineered path-

ways. However, combined gene expression and transcription network connectivity

data, genetic knockouts, and network component analysis (NCA) was used to study
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isobutanol response network of E. coli under aerobic conditions (Brynildsen and Liao,

2009).

The application of molecular, systems and synthetic biology to the engineering of

the microbial isoprenoid and fatty acid pathways enhances the feasibility for micro-

bial biosynthetic production of advanced biofuel candidates such as alcohols, esters,

alkanes and alkenes from these pathways (Peralta-Yahya and Keasling, 2010). Natu-

rally, various Clostridium species produce isopropanol. Isopropanol is currently used

as gasoline and diesel additive (http://www.epa.gov/otaq/regs/fuels/additive/web-

dies.htm, http://www.epa.gov/otaq/regs/fuels/additive/web-gas.htm), and the high-

est reported isopropanol is from Clostridium acetobutylicum is 1.8 g/l, while the

highest reported yield for butanol in Clostrdium beijerinckii is 19.6 g/l. The high-

est isopropanol production level of 4.9 g/l 4.9 g/L was achieved by reconstructing the

Clostrdium isopropanol pathway in E. coli, through the combined expression of C.

acetobutylicum thl and adc, E. coli atoAD, and C. Beijerinckii adh (Hanai et al.,

2007). In a reconstructed Clostridium isopropanol pathway in E. coli (Jojima et al.,

2008), C. Acetobutylicum thl, ctfAb, adc, and the C. beijerinckii adh were expressed

in E. coli to produce 13.6 g/l, corresponding to 51% of the maximum theoretical yield

in 36 h of cultivation.

There are also success stories about re-routing of biosynthetic pathways for the pro-

duction of medium-chain alcohols. Re-routing of the amino acid biosynthetic path-

ways in yeast through the “Ehrlich pathway” provides the opportunity to overproduce

higher alcohols, such as propanol and 2-methyl-1-butanol (2MB) from isoleucine via

two biosynthetic intermediates, 2-ketobutyrate and 2-keto-3-methylvalerate (KMV),

respectively (Peralta-Yahya and Keasling, 2010).
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1.4.1.4 Oligosaccharides and derivatives

Microbial synthesis of oligosaccharides and polysaccharides is challenging as it is a

carbon- and energy-intensive process with the precursor sugar nucleotides involv-

ing multiple interacting pathways. Despite these challenges, a number of successful

metabolic engineering efforts to synthesize oligosaccharides of diverse structures have

been carried out using engineered E. coli, Pichia pastoris, Corneybacterium ammoni-

agenes and C. glutamicum (Ruffing and Chen, 2006). A microbial coupling approach

successfully produced 188 g/l of oligosaccharides (Koizumi et al., 1998).

Trehalose is a stable, odour-free, non-reducing disaccharide composed of two molecules

of glucose linked by a alpha-1,10-glycosidic bond. The protein-stabilising properties

of trehalose have ensured its wide range of applications, from cosmetics to the food

industry. Trehalose is believed to have important metabolic roles as reserve carbohy-

drate and protective functions against adverse growth conditions such as heat shock,

osmotic shock or starvation in S. cerevisiae. The view that trehalose may contribute

to yeast viability is of great interest to the wine and brewing industries. Trehalose

is currently obtained by an imobilized enzyme method based on maltodextrins; how-

ever, a few microbiological alternative approaches based on heterologous expression

of genes in C. glutamicum have been reported. Padilla et al. (2004) reported the

heterologous expression of the otsBA operon from E. coli in a C. glutamicum re-

combinant lacking trehalose-maltose-isomerizing activity. The metabolic engineering

strategy resulted in a five- to six- fold increase in the flux of OtsAB pathway and

about four-fold increase in the trehalose excretion rate during the exponential growth

phase. In a different study, improved trehalose yield was achieved in C. glutamicum

by employing a simultaneous overexpression of C. glutamicum treY and trZ genes

in the TrYZ pathway and the E. coli galV gene in C. glutamicum (Carpinelli et al.,

2006).

Glycerol, a sugar alcohol, is a commodity chemical with a wide range of applications
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including cosmetics, food, pharmaceuticals, lubricants, antifreeze solutions and to-

bacco (Chotani et al., 2000). Most of the glycerol is produced biochemically, but

glycerol can also be synthesized through chemical means by way of propylene. Glyc-

erol production has been reported in certain species of bacteria, algae, protozoa and

yeast (Ben-Amotz and Avron, 1979; Steinbuchel and Muller, 1986; Albertyn et al.,

1994). Since the biochemical production of glycerol is inherently problematic and

isolation of glycerol from animal fat and other sources are laborious and inefficient,

efforts have been placed towards the biotechnological production of glycerol. Glyc-

erol is produced from the glycolytic intermediate, dihydroxyacetone-3-phosphate as

a result of catalytic conversions from two enzymes, dihydroxyacetone-3-phosphate

dehydrogenase and glycerol-3-phosphatase. The level of glycerol achieved in Saccha-

romyeces during alcoholic fermentation can be increased by osmotic stress. Osmotic

stress, which induces production of glycerol as a result of transcriptional activation of

GPD1 (Albertyn et al., 1994). Geertman et al. (2006) generated the highest glycerol

yield on glucose in S. cerevisiae, up to 1.08 mol/mol, by co-feeding of formate to

aerobic, glucose-limited chemostat cultures of S. cerevisiae lacking pyruvate decar-

boxylase, external NADH dehydrogenase and the respiratory chain-linked glycerol-

3-phosphate dehydrogenase. The production of 0.469 glycerol (g glucose) in aerated

batch culture of S. cerevisiae was achieved by the overexpression of GPD1 in a tpi1D

mutant defective in triose phosphate isomerase (Cordier et al., 2007).

1.4.1.5 Bioplastic and precursors for fibres

Synthetic polymers, such as polyethylene, polypropylene, polystyrene and polyvinyl

chloride rely almost entirely on fossil fuel as feedstock. Annual global production

of ethylene is the highest of all organic compounds (McCoy et al., 2006). Limited

amounts of ethylene are also produced biologically in plants (De Paepe and Van der

Straeten, 2005; Ecker, 1995), and also some microorganisms are able to produce it

naturally (Fukuda et al., 1993). Pirkov et al (2008) developed a genetically engineered

strain of S. cerevisiae expressing Psedomonas syringae (plant pathogenic bacterium)
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ethylene forming enzyme (EFE) (Fukuda et al., 1992; Goto et al., 1985; Nagahama

et al., 1994) which catalyses the formation of ethylene from 2-oxoglutarate, argi-

nine and oxygen (Fukuda et al., 1992). In this study, the highest productivity was

achieved during the respiro-fermentative growth on glucose and in addition, when

glutamate was used as the source, ethylene production was three times higher than

when ammonia was the source of nitrogen.

Poly lactic acid (PLA) is a polymer of lactic acid isomers currently regarded as po-

tential replacement for conventional petroleum-based plastics as renewable product,

and hence the urgent need for large-production of lactic acid. However, the degree

of optical purity of lactic acid affects certain important physical characteristics of

PLA, such as thermostability. Ishida et al (2006) metabolically engineered a strain

of yeast capable of producing 122 g/l of 99.9% optically pure L-lactic acid by delet-

ing the coding region of pyruvate decarboxylase and then inserted six copies of the

bovine L-lactate dehydrogenase genes into the genome under the control of pyruvate

decarboxylase promoter of a wild type yeast.

1,3-Propanediol is a monomer with the potential for use in manufacture of polyester

fibres, polyurethanes and cyclic compounds (Chotani et al., 2000). It finds an impor-

tant application in polymers prepared from 1,3-propanediol and terephthalic acid,

which has an estimated market value of one to two billion pounds per year in 10

years (Nakamura and Whited, 2003). 1,3-Propanediol is produced naturally from

glycerol by fermentation (Zeng and Biebl, 2002), albeit anaerobically in microor-

ganisms such as Cirobacter, Clostridium, Enterobacter, Klebsiella and Lactobacillus

species (Nakamura and Whited, 2003). The three currently known chemical produc-

tion of 1,3-Propanediol are capital intensive and also a large amount of pollutants are

generated by these processes. Biological efforts towards the economy required of the

competitive market for 1,3-propanediol is in the direction of building a single biocat-

alyst capable of utilizing the lower cost feedstock D-glucose. Even though D-glucose

as a feedstock is cheaper than glycerol, the demanding stoichiometric requirements of

D-glucose represent a drawback as it requires co-reactants for redox balance than the
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use of glycerol. However, the combination of lower cost and yield favour D-glucose

as a feedstock over glycerol for the production of 1,3-Propanediol. K. pneumoniae

(Menzel and Zeng, 1997), Citrobacter freundii (Boenigk et al., 1993) and Clostrid-

ium butyricum (Biebl, 1991) have been used in the biotechnological production of

1,3-propanediol from glycerol; K. pneumoniae or C. butyricum yielded 56 g/l of 1,3-

propanediol from glycerol (Biebl et al., 1992) in batch or fed-batch fermentations.

(Chotani et al., 2000) constructed a strain of E. coli expressing yeast genes for pro-

duction of glycerol from glucose and also expressing genes from K. pneumoniae for the

production of 1,3-Propanediol from glycerol; this strain produced 1,3-Propanediol at

levels equal or higher than any of the glycerol to 1,3-propanediol natural organisms.

1.4.1.6 Sweeteners

Sugar alcohols are commonly referred to sweeteners; xylitol, mannitol, and sorbitol

are examples reviewed here. The sugar’s carbonyl group in sugar alcohols is reduced

to the corresponding primary or secondary hydroxyl group and hence they are classed

as polyols (Akinterinwa et al., 2008).

Sugar alcohols are widely used in the manufacture of pharmaceuticals, personal care

products and animal nutrition (Silveira and Jonas, 2002), and in addition they serve

as intermediates in the chemical synthesis of various other products. Metabolic engi-

neering strategies now exist for improving microbial production of sugar alcohols such

as xylitol, mannitol, and sorbitol. Annual production of xylitol is between 20,000 and

40,000 ton per year (Granstrom et al., 2007), with a world market estimated to be

$340 million at price of $4-5 per kilogram (Kadam et al., 2008) and as such, the

microbial production and metabolic engineering of xylitol has recently attracted the

most attention of all other sugar alcohols. Xylitol is produced as an intermediate

during metabolism of D-xylose in yeasts, the natural producers of xylitol. A study

reported Candida tropicali capable of producing 12 g/l of xylitol from xylose with

glucose as cosubstrate (Kwon et al., 2006), and also xylitol was produced by Pichia

stipitis mutants, with distruptions in xylitol dehydrogenase (XDH) or D-xylulokinase
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(Jin et al., 2005).

Mannitol has a variety of clinical applications and it is also used as a sweetener. The

industrial production of mannitol involves a variety of organisms such as bacteria,

plants and Candida magnoliae (Lee et al., 2003), and currently lactic acid bacteria

(LAB), E. coli, Bacillus megaterium, S. cerevisiae and C. glutamicum are being

developed as efficient biocatalysts for production of mannitol (Akinterinwa et al.,

2008). Wisselink et al. (2004) were able to increase the production of mannitol in

L. lactis. The study reported the development of an effective mannitol producing L.

lactis as a result of relieving the bottleneck dephosphorylation of mannitol-phosphate

and addition of foreign gene encoding a dephosphorylase-activity in L. lactis based

on predictions from mathematical modelling of L. lactis glycolysis (Wisselink et al.,

2004).

1.4.1.7 Nutriceuticals

Nutriceuticals refer to a wide variety of foods or food components, believed to have

medical or health benefit (Pszczola, 1992). The products have a range of beneficial

actions, from supply of essential mineral or vitamins to protection against diseases.

Lactococcus lactis is a lactic acid producing bacterium employed in the dairy industry

for the production of fermented milk products. Hence it a perfect target for the

production of nutritional products (Pool et al., 2006) and has since been demonstrated

to be the ideal cell factory for the production of nutriceuticals.

Food products such as the dairy products (cheese, butter, butter milk and yoghurt),

fermented meat, plants and fruits (such as sausages, silage, sauerkraut, olives and

grapes) (Caplice and Fitzgerald, 1999) result from the bacterial acidification, leading

to longer shelf-lives (Ross et al., 2002). Lactic acid bacteria (LAB) are almost always

the bacteria involved in the fermentation of these products, and the acidifying bac-

teria (starter culture) may also contribute to flavour, the texture and the nutritional

value of the fermented product (Hugenholtz, 2008). Successful metabolic engineering
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include the production of the butter aroma compound, diactyl, by redirecting the

normal primary pathway in L. lactis towards the production of alpha-acetolactate

(precursor of diacetyl), from the usual route starting from lactose or glucose to lactic

acid (Hugenholtz, 2008).

Vitamin C (or L-ascorbic acid) is produced naturally by most eukaryotic organisms.

It is a water-soluble powerful antioxidant and acts as a scavenger of reactive oxygen

species (ROS). There is a wide range of applications for vitamin C, ranging from food,

animal feed and beverages to pharmaceutical and cosmetic uses. The world’s yearly

production of vitamin C was estimated to be between 60 000 to 70 000 metric tons

(Chotani et al., 2000), and about 50% of vitamin C synthesis is based on the chemical

synthesis. Most of the existing biotechnological approaches involve 2-keto-L-gulonic

acid (KLG) as the intermediate (Saito et al., 1997) which is convertible to ascorbic

acid by the conventional chemical process (2-KLG, (Chotani et al., 2000). Yeasts

lack the natural ability to synthesise L-ascorbic acid, but accumulate low levels of

erythro-ascorbic acid (Huh et al., 1998). The first report on biosynthesis of vitamin

C was based on a yeast engineered with both plant and animal, capable of covertion

D-glucose to L-ascorbic acid (Branduardi et al., 2007), which was further improved

by engineering with only the complete plant pathway (Fossati et al., 2010).
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Table 1.1: Primary metabolites produced by biotechnological methods

Metabolite Organism Carbon

Source

Strategy Yield Reference

L-tryptophan C. glutamicum Glucose Gene expression and in-

creased availability of PEP

and E4P

50g/L (Katsumata and

Ikeda, 1993;

Ikeda et al,

1994)

L-phenylalanine E. coli Glucose Multiple gene manipula-

tions

50 g/L Backman et al,

1990

L-valine E. coli Glucose Transcriptome analysis,

Genome-scale in silico

modelling, Multiple gene

manipulations

0.378 g/g of

glucose

Park et al, 2007

Threonine E. coli Glucose transcriptome profiling,

Genome-scale in silico

modelling, Multiple gene

manipulations

82.4 g/L Lee et al, 2007

Malate E. coli Glucose Metabolic flux analysis

(genome-scale metabolic

model of E. coli), Intro-

duction of heterologous

reactions, Multiple gene

manipulations

9.25 g/L Moon et al, 2008

Ethanol S. cerevisiae L-

arabinose

Introduction of heterolo-

gous metabolic pathways,

and Evolutionary engineer-

ing

0.43 g/g of L-

arabinose

Wisselink et al,

2007

Isopropanonol E. coli Glucose Introduction of heterolo-

gous metabolic pathways

4.9 g/L Hanai et al, 2007

Glycerol S. cerevisiae Glucose Multiple gene manipula-

tions

0.469 g/g of

glucose

Cordier et al,

2007

Sialic acid C. jejuni Lactose Introduction of heterolo-

gous metabolic pathways

25 g/L Fierfort and

Samain, 2008

L-lactic S. cerevisiae - Introduction of heterolo-

gous reactions

122 g/L Ishida et al,2009

Xylitol Candida tropi-

cali

xylose Multiple gene manipula-

tions

12 g/L/h Kwon et al, 2006

(glucose:

cosub-

strate)

Succinic acid E. coli Glucose Genome-scale in silico mod-

elling, comparative genome

analysis combined with in

silico metabolic analysis

More than 7-

fold yield in-

crease

Lee et al, 2005

L-lactic acid E. coli Glucose Genome-scale in silico mod-

elling, Adaptive evolution,

Multiple gene manipula-

tions

0.87 to 1.75

g/L

Fong et al, 2005
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Table 1.2: Secondary metabolites produced by biotechnological methods

Metabolite Organism Carbon Source Strategy Yield Reference

flavonones E. coli phenylpropanoic

acid

Introduction of heterolo-

gous metabolic pathway

700 mg/L Leonard et al

(2008)

lycopene E. coli Glucose systematic (model-

based) and combina-

torial (transposon-based)

methods to identify

gene knockout targets,

Genome-scale in silico

modelling, Multiple gene

manipulations

18 mg/g DCW Alper et al,

2005a; Alper et

al, 2005b

Beta-carotene E. coli Glycerol Multiple gene manipula-

tions

390 mg/L and

240 mg/L of

b-carotene in

50 L and 300

L fermenter

respectively

Kim et al, 2006

polhydroxyalkanoates

(PHA) and novel

PHAs

E. coli - Metabolic flux analysis

(MFA), Bioinformatics

and Proteome analy-

sis,Multiple gene manipu-

lations

Improved yield Park and Lee,

2005

Vanillin E. coli ferulic acid Introduction of heterolo-

gous reactions

16.1 g/L Barghini et al,

2007

Ectoine E. coli Glucose Introduction of heterolo-

gous reactions

4.6 mg/L of ec-

toine Rajan et

al, 2008

Penicillin Penicillium

chryso-

genum

- - 70 g/L Olano2008

carotenoids E. coli Glucose Elementary flux mode

analysis,Multiple gene

manipulations

Increased yield Urean2009



Chapter 2

Identification and selection of

biotechnological products and host

strains

2.1 Introduction

An extensive review of the literature covering the production of commercially valuable

products and materials, especially those produced through biotechnological, was car-

ried out at the beginning of this PhD research. This effort was required to understand

relevant information for choosing interesting biotechnological products from the large

variety of commodity products and materials. While many value products and ma-

terials are already being produced biotechnologically, most of them are still based on

petroleum resources. The literature also revealed the dynamics in the paradigm shift

from the use of random mutagenesis and rational metabolic engineering to the most

recent approach that combines rational metabolic engineering with systems biology

and Synthetic Biology.

The literature review in section 1.4 (Production of value chemicals and materials) of

this thesis contains all products reviewed. Products of interest were chosen based on

76
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commercial need of the product, its market value, current scientific knowledge about

the potential biocatalyst host and possibilities for achieving the goals of the research

in an academic environment and short time scale for research work. Bioethanol,

fumaric acid, lysine, glutamate and trehalose were considered the most interesting

products.

2.2 Specific products of interest

2.2.1 Ethanol

Bioethanol is an interesting product based on the following reasons:

1. There is world-wide demand for a replacement for fossil-fuel due to high cost

of oil and supply instability, and also because of increasing environmental con-

cerns.

2. Metabolic engineering, as a result of inputs from advances from genomics and

technology, has emerged as the leading tool for deriving renewable energy, es-

pecially from lignocellulosic fractions of plant biomass.

3. Construction of novel pathways in production strains based on lignoceric feed-

stocks offer possibilities for in silico modelling approach to enhance ethanol

production in yeast and other microbial strains.

2.2.2 Trehalose

Trehalose is an interesting product based on the following reasons:

a. Trehalose is an expensive carbohydrate, costing about £1000 per kg.

b. S. cerevisiae has a pathway to synthesize trehalose quite efficiently.
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c. There has been little work done in on in silico modelling to enhance production

of trehalose in yeast.

2.2.3 Amino acids

Amino acids have extensive industrial applications based on their nutritional value,

taste, physiological activities and chemical characteristics (Kramer, 2005). Further

applications include use as animal feed supplements, for cosmetics, in the pharma-

ceutical industry, and as building blocks for chemical synthesis. About 40% of to-

tal amino acids produced are used for food, majorly L-glutamate, L-aspartate, L-

phenylalanine, glycine and L-cysteine. The industrial production of amino acids has

been mostly carried out by fermentation through the use of bacteria. However, the

yeast S. cerevisiae is generally regarded as a safe microorganism, judging from its

widespread use in the food industry, and this coupled with its high nutritional value

in terms of protein and vitamin, explains its increasing use as a supplement and as

flavour enhancer (Farfan and Calderon, 2000).

Only a few cases and with limited success stories of overproduction of L-tryptophan

(Prasad et al., 1987) involved Hansenula or Candida yeasts. Studies on gene arrange-

ment and regulation of Trp biosynthesis revealed particular features in S. cerevisiae,

which are largely different from those of E. coli. TRP genes in E. coli are completely

clustered in an operon (Yanofsky, 1981), whereas in S. cerevisiae they are scattered

over the chromosomes. Hence, yeast and bacteria have different gene regulation in the

biosynthesis of L-tryptophan. Thus yeast, and in particular S. cerevisiae, otherwise

well characterized in fermentation processes, has hardly been used for L-Tryptophan

production (Prasad et al., 1987). However, S. cerevisiae strains overproducing thre-

onine have HOM3 allele encoding a feedback-resistant aspartate kinase.

The commercial production of amino acids in yeast are important due to the following

reasons:

1. Amino acids are among the major products in biotechnology in both volume and
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value, and the global market is growing. Amino acids have extensive industrial

applications and also as animal feed supplement, for cosmetics and building

blocks of chemical synthesis.

2. Wild-type yeast strains are poor in essential amino acids such as lysine, threo-

nine and methionine. Overproducing these amino acids in yeast strains might

be of great interest to the food industry (Farfan and Calderon, 1999) because of

the GRAS (generally regarded as safe) status of yeast. Moreover, phenylalanine,

glutamate, methionine and lysine are commercially important.

3. There is potential for multiple product opportunities (amino acids) in yeast

from one pathway, providing means to reduced technical and commercial de-

velopment costs.

4. Opportunities exist for enhancing production of various amino acids in yeast

through computational methods, especially pathway analysis using elementary

flux modes (EFMs), flux balance analysis (FBA) and other systems biology

tools.

2.2.4 Fumaric acid

The U.S Department of Energy listed fumaric acid as one of the top 12 most inter-

esting chemical building blocks derivable from biomass (Werpy and Petersen, 2004).

The other specific reasons why fumaric acid is an interesting product based as follows:

1. Fumaric acid is very valuable in the food industry.

2. Genetic manipulation has hardly ever been explored for fumaric acid production

(Roa Engel et al, 2008).

3. Opportunities exist for enhancing production of fumaric acid in yeast through

computational methods, especially pathway analysis using elementary flux modes

(EFMs), flux balance analysis (FBA) and other systems biology tools.
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2.2.5 Xylitol

Xylitol is an interesting product because:

1. Xylitol is expensive and has a large market.

2. Opportunities exist for overproducing xylitol in yeast through in silico methods

and other systems biology tools.

2.3 Choice of a production microbial host

Much research work have been carried out in both academic laboratories and the

industry on bacteria and yeast as hosts for biocatalysts. The development of these

whole-cell biocatalysts has been successful because they combine the advantages of

unicellular organisms in terms of rapid growth and ease of genetic manipulation.

Yeast emerged as the production host of choice because of the advantages it pos-

sesses over the other microbial hosts, especially for safety reasons in the production

of products, such as amino acids, for human consumption. Importantly, budding

yeast was already used in my host laboratory, the Manchester Centre for Integrative

Systems Biology, where I could benefit from the know-how and facilities. Overall S.

cerevisiae had the most benefits from this study.



Chapter 3

Materials and Methods for

computational modelling

3.1 Introduction

3.2 Metabolic pathway analysis

3.2.1 Identification of pathway reactions and modelling strate-

gies

The metabolic network used for most of this study was constructed from the liter-

ature (Dobson et al., 2010; Cakir et al., 2004) and from pathway databases (SGD

and KEGG). It includes the reactions of the central metabolism of S. cerevisiae, con-

sisting of 51 reactions of glycolysis, the pentose phosphate pathway, the TCA cycle,

the glyoxylate shunt and oxidative phosphorylation; 85 reactions of the biosynthetic

pathways of 17 amino acids and biomass; and 27 transport reactions. The num-

ber of reactions and metabolites included in the metabolic network are 163 and 172

respectively (see Appendix A).

The biosynthetic pathways of threonine, glycine and serine have been reported to have

81
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less than the direct flux value of 2 (relative to a glucose uptake of 100 arbitrary units)

based on 13C flux measurements of the respiro-fermentative metabolism of S. cere-

visiae in batch cultures (Gombert et al., 2001) and have therefore been excluded from

this network. In any reaction where isoenzymes are involved, only one reaction is rep-

resented, while metabolites and cofactors (NAD, NADH, NADP, and NADPH) were

compartmentalised. A simplified biomass reaction considering 5 central metabolic

intermediates (2-oxoglutarate, phosphoenolpyruvate, 3-phosphoglycerate, pyruvate

and oxaloacetate) is included in the reaction network to account for flux directed

to biomass production. Redox requirements for the synthesis of biological precursor

molecules and the energy requirements for polymerizing the monomers into macro-

molecules have not been considered. However, an energy requirement for maintenance

is accounted for in the model.
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Figure 3.1: Metabolic network of yeast. Metabolic network for yeast grown on glucose depicting the reactions

of central metabolism, the biosynthetic pathways of 17 amino acids, and reactions of biomass formation and energy

interconversion. Input and output metabolites defined as “external” are appended with EXT. Solid arrows indicate

steps of single reactions, while dashed arrows indicate steps of several reactions. Abbreviations of metabolites are

explained in a file (Metabolite abbreviations.xls in Appendix A). Abbreviations of enzymes (genes) are explained in

a file (Reactions abbreviations.xls in Appendix A). aas = amino acids (explained in Appendix A)
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Table 3.1: Stoichiometric models for EFM analysis. A summary of stoichiometric models used for EFM

analysis in terms of reactions, fixed external metabolites and EFM results

Model simulation

Stoichiometric Model No of reactions External

metabolite

Application

M1 163 GLUC, ETOH, SUC, AC-

ETAL, AC, GOH, CO2

and 5 aas

Statistical analysis only

M2 163 GLUC, ETOH, SUC, AC-

ETAL, AC, GOH, CO2

and 2 aas

Statistical analysis only

M3 163 GLUC, ETOH, SUC, AC-

ETAL, AC, GOH, CO2

and 3 aas

Statistical analysis only

M4 163 GLUC, ETOH, SUC, AC-

ETAL, AC, GOH, CO2

and 17 aas

Statistical analysis only

SM1 163 GLUC, TREH, ETOH,

GOH, SUC, FUM, BIOM,

CO2, NH3 and 12 aas

Statistical analysis only

SM2 163 GLUC, TREH , ETOH,

GOH, SUC, FUM, BIOM,

CO2, NH3, ATP and 4

aas

Statictical analysis and

Metabolic engineering for

lysine production

S1 163 GLUC, ETOH, GOH,

SUC, FUM, BIOM, CO2,

NH3, ATP and 10 aas

Statistical analysis

S2 163 GLUC, ETOH, GOH,

SUC, FUM, BIOM, CO2,

NH3, ATP and 17 aas

Statistical analysis and

Metabolic engineering for

ethanol and glutamate

production

S3 163 GLUC, ETOH, GOH,

SUC, FUM, BIOM, CO2,

NH3, ATP and 14 aas

Statistical analysis only

Teusink 17 GLUC, ETOH, SUC, AC-

ETAL, AC, GOH, CO2,

TREH

Statistical analysis and

Metabolic engineering for

trehalose production

Cakir TREH 69 GLUC, TREH,GLYC,

ETOH, GOH, SUC,

BIOM, CO2, ATP, FUM

Statistical analysis and

Metabolic engineering for

ethanol and fumaric acid

production

A number of different stoichiometric models (M1, M2, M3, M4, SM1, SM2, S1, S2 and

S3) were built for this study, based on the reaction network model (Figure 3.1). The
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stoichiometric models are different from each other depending on the number of amino

acids and other metabolites fixed (see Table 6.1) as “external metabolites”. The fixed

“external metabolites” are defined as (a) Inputs - Glucose, ammonia and ATP; or

(b) Outputs: carbon sinks (ethanol, glycerol, succinate, acetaldehyde, fumaric acid,

and carbon dioxide), biomass, and amino acids of interest. Glucose is the carbon

source and ammonia was included in the inputs as a nitrogen source in the minimal

medium. Other stoichiometric models used in the study are the reactions of the

glycolysis model (Teusink et al., 2000) and the Cakir reaction network (Cakir et al.,

2004) which was modified by adding trehalose pathway reactions (Cakir Treh model).

The stoichiometric models were used for statistical analysis, metabolic engineering or

both.

3.2.2 EFM modelling and classification of EFMs

COPASI 4.5 (Hoops et al., 2006) was used to compute EFMs for S.cerevisiae grown on

glucose, using the reactions of the stoichiometric models as input files. The COPASI

output files contain the original EFM results (EFM0) from the stoichiometric models

and are referred to as EFM datasets M1, M2, S1, S2, S3, Teusink and Cakir Treh.

3.2.2.1 Hierarchical and k-means clustering

Using the R statistical package (http://www.r-project.org/), k -means and hierar-

chical clustering analyses were performed on EFM data matrix based on with EFMs

on the columns and reactions on the rows. The steps involved in this process are

outlined in Figure 3.2. In this methodology, Mclust model clustering was used to

determine the value of k (number of clusters) which was then used for either k -means

or hierarchical clustering analysis of the EFM data. Mclust (a contributed package

in R stastistical package) is a model-based approach which apply maximum likeli-

hood estimation and Bayes criteria to identify the most likely model and number of

clusters. The value of k suggested by the analysis of within-group sum of squares is
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used for comparison with the mclust predicted values.

k -means clustering has a disadvantage in that a prior knowledge of the appropriate

number of clusters is required for the best cluster solution, and a further disadvantage

is that since k -means start by randomly allocating observations into clusters, different

runs may yield slightly different cluster solutions. Hence, k -means clustering of EFM

data were based on the value of k predicted by mclust models (available in R statistical

package) and within-group sum of squares. In addition, the following procedures were

carried out to validate all clustering analysis results:

(a) Visual inspection:

Clusters generated by k -means clustering were visually inspected for similarity of

EFM members in each partition. That is, the group members are checked for any

meaningful patterns that represent the distinguishing characteristics in each group.

Validity of a cluster solution is indicated when clusters show sensible and expected

results.

(b) Reclustering:

By reclustering the data with the same value of k, it is possible to identify a consistent

k -means solution. Hence. the k -means clustering was repeated 10 times at a specific

value of k predicted by mclust model clustering method and analysis of within-group

sum of squares and the most consistent set of clusters were chosen.

(c) Biological relevance:

Biological relevance of the EFMs partitioned into each clusters were verified by look-

ing for EFMs with similar biochemical routes from substrate to a specific external

metabolite partitioned into similar clusters. Clusters were compared with each other

to find out where modes are characterised by biochemical routes leading to different

external metabolites.

R statistical package was also used to investigate the best combination of metrics

and distance methods for hierarchical clustering of elementary flux mode data. Using
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the hierarchical clustering of the Teusink data matrix (Table 6.1), the metrics tested

are Spearman, Pearson’s correlation, and Euclidean and distance methods tested are

Ward, Single, Complete and Average. As a result of these prior investigations,further

hierarchical clustering analyses on the data matrices from models M1, M2, M3 and

M4 were carried out on “Euclidean” metrics and “Complete linkage” method. In

addition, for the hierarchical clustering of EFM data of these 4 models, dendrograms

were “cut” to the value of k predicted by mclust results.

Figure 3.2: Kmeans and hierarchical clustering of EFM. Figure depicts a schematic outline of steps

involved in the clustering analysis of the EFM data matrix. Mclust model clustering is used to determine the value

of k (number of clusters) which was then used for either k-means or hierarchical clustering. The value of k suggested

by the analysis of within-group sum of squares is used for comparison with the mclust predicted values.
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3.2.2.2 EFM complexity reduction and PAMK clustering

A new methodology (Figure 3.9) was developed to address the shortcomings of the

previous approach (see section 3.2.2.1 and Figure 3.2). As the number of EFMs

were quite large and difficult to interpret for biotechnological purposes, reduction of

complexity in the EFM data was therefore a very important issue to be tackled in this

project. This issue was not addressed in the first clustering approach (section 3.2.2.1).

Hence, as a focal point in this study, computational extraction and clustering methods

were combined to help reduce the complexity in EFM data. EFM subsets obtained

were expected to reveal characteristic patterns that may help in quickly locating the

most useful modes and reactions (enzymes) for biotechnological purposes in terms of

routes from the substrate (feedstock) to products of interest.

Figure 3.3 depicts the computational processing part of the new methodology, that

is how the computational data extraction steps (using Java programs) steps inter-

faced with the clustering analysis step. In addition, it shows that the integration of

computational analyses of EFM clusters allows for the determination of mean molar

yields of target metabolite in each cluster, and for comparisons of clustered EFMs in

terms of metabolites.
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Original EFMs: EFM0

“ORs” for target metabolite 
and biomass

“ORs” for target metabolite 
with or without biomass

Small matrix

Cluster  of EFMs 

Results : Comparison of 
clusters for metabolites 

Results: Mean metabolite 
yields of clusters

Original  “ORs”

GetOR.java extracts Overall stoichiometric

reactions (“ORs”) of EFMs: 

GetMetab2.java extracts “ORs”
(Target metabolite +\- biomass)  

GetMetab1.java extracts  “ORs”
(Target metabolite + biomass)  

SubsetMatrix.java extracts small matrix SubsetMatrix.java extracts small matrix 

Clustering analysis using R 

CompareClusMetab.java compares
clusters for metabolites in EFMs  

MeanClusYield.java obtains mean 
molar yields of metabolites in EFMs 

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 3.3: Computational processing of EFM data. A schematic representation of the entire pipeline for

computational processing of EFM data showing the how the computational data extraction (using Java programs

highlighted in red and purple) steps are interfaced with clustering analysis. In a systematic and stepwise manner,

original EFMs are parsed for overall stoichiometric reaction or “ORs”, from which can be extracted two types of

subsets of “ORs”, one type “ORs” are from EFMs containing target metabolite and biomass and the other type of

“ORs” are from EFMs containing target metabolite with or without biomass. Small matrix is then obtained from

either type of small subsets of “ORs” for clustering using R statistical package. Clusters of EFMs are then analysed

computationally for the mean molar yields of target metabolite in each cluster, and for comparisons of clustered

EFMs in terms of metabolites

I wrote 5 Java programs (GetOR.java, GetMetab1.java, GetMetab2.java, CompareClus-

Metab.java and MeanClusYield.java, all in Appendix B) for the implementation of

the computational part of the methodology.

In the first step of the computational extraction methodology, a Java program (GetOR.java,

Appendix B) was used to convert the EFMs in the original COPASI EFM output

(EFM0) into their stoichiometrically balanced overall equations (“ORs”) and the as-

sociated reactions for each EFM. The “ORs” obtained at this stage are the original

“ORs”. The output file, Figure 6.1 (as an example), shows both the “ORs” and the
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associated reactions for each EFM. The algorithm involved in the “ORs” extraction

by GetOR.java is explained with the pseudocode in Figure 3.4.

Step1 :

Programs looks in COPASI EFM output f i l e (EFM datase t )

Step2 :

f o r each EFM, program {

f i n d s and removes the i n t e r n a l metabo l i t e s

s t o r e s s t o i c h i o m e t r i c a l l y balanced e x t e r n a l metabo l i t e equat ions .

s t o r e s r e a c t i o n names ( i n c l u d i n g c o e f f i c i e n t s )

}

end

Output f i l e o f o r i g i n a l ‘ ‘ORs’ ’ saved .

Figure 3.4: Pseudocode for GetOR.java

The next step involves the extraction of 2 different subsets of “ORs” from the original

“ORs”, depending on the output choices. The original “ORs” output file from first

step was used as the input file for GetMetab1.java and GetMetab2.java programs

(Appendix B); GetMetab1.java extracts only “ORs” corresponding to EFMs starting

from external glucose and produces the target metabolite and biomass, while Get-

Metab2.java extracts “ORs” that are from EFMs starting from external glucose and

produces target metabolite, either with or without biomass (that is these EFMs may

or may not produce biomass). Figure 3.5 is a pseudocode explaining the how the two

programs carry out the extraction of the subsets of “ORs”.
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Step1 :

Programs looks in o r i g i n a l ‘ ‘ORs’ ’ output f i l e ( from o r i g i n a l EFM datase t )

Step2 :

f o r each l i n e ( ‘ ‘OR’ ’ ) in the input f i l e {

Get metabo l i t e s on the l e f t and r i g h t s i d e o f equat ions

i f s earch terms are found in the l e f t and r i g h t

then

save cur rent mode to f i l e

}

endforeach

Output f i l e o f ‘ ‘ORs’ ’ subset saved .

Figure 3.5: Pseudocode for GetMetab1.java and GetMetab2.java

The “ORs” subset output file from GetMetab1.java and GetMetab2.java Java pro-

grams was used as input for SubsetMatrix.java to extract the coefficients of the re-

actions to form a data matrix of rows of EFMs and columns of reactions according

to the algorithm in Figure 3.6.

Step1 :

Programs looks in the ‘ ‘ o v e r a l l r eac t i on ’ ’ output f i l e

Step2 :

program s t o r e s a l l r e a c t i o n s and a s s i g n s each r e a c t i o n to a column

f o r each row o f EFM {

s t o r e s the c o e f f i c i e n t va lue s o f the r e a c t i o n s to a matching p o s i t i o n in the column

Where a p a r t i c u l a r r e a c t i o n does not appear in a mode , a va lue o f ‘ ‘ 0 ’ ’ i s recorded

end}

Step 2 i s repeated f o r a l l r e a c t i o n s in every EFM to form a matrix

Output f i l e o f smal l matrix saved .

Figure 3.6: Pseudocode for SubsetMatrix.java

Hence, the element in ith row and j th column of the matrix is the coefficient of

reaction j for all rows of EFM. Program writes out a matrix data for all EFMs into

an output file used later in clustering analysis (see section 3.2.2.1).
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The output matrix was used for clustering analysis in R statistical package. After clus-

tering analysis, further computational processing was carried out using CompareClus-

Metab.java and MeanClusYield.java programs. CompareClusMetab.java was used to

compare the clusters for metabolites in the EFMs. Figure 3.7 is a pseudocode ex-

plaining the algorithm of CompareClusMetab.java program.

Step 1 :

Program accept s EFM f i l e and PAMK c l u s t e r i n g output f i l e as inputs

Step 2 :

f o r each <c l u s t e r −> mode> in \ $c lusterModes {

\ $currentClusterAl lMetabs = get a l l metabs from a l l modes from t h i s c l u s t e r

get common and not common metabs among the c l u s t e r modes

i f \ $metabo l i t e appears in a l l modes from cur rent c l u s t e r

then

add \ $metabo l i t e to \$currentClusterCommonMetabs

e l s e

add \ $metabo l i t e to \ $currentClusterOtherMetabs

e n d i f

wr i t e \$currentClusterCommonMetabs to output f i l e

wr i t e \ $currentClusterOtherMetabs to output f i l e

}

endforeach

Resu l t s output f i l e saved .

Figure 3.7: Pseudocode for CompareClusMetab.java

MeanClusYield.java program was used to compare clusters for their mean cluster

yields of metabolites. Molar yield is the ratio of the coefficient of a metabolite to the

coefficient of glucose substrate. The pseudocode in Figure 3.8 explains the algorithm

of MeanClusYield.java program.
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Step 1 :

Program reads c l u s t e r f i l e ( f o r e x t r a c t i n g the c l u s t e r modes )

Step 2 :

Program reads ‘ ‘ORs’ ’ f i l e

Search f o r e x t e r n a l g lu co s e (GLUC\ ex t ) and other metabo l i t e s

f o r each metabo l i t e

f o r each c l u s t e r

search i t ’ s modes in the c a l c u l a t e d ModeYield t r e e

c a l c u l a t e sum of y i e l d s

c a l c u l a t e and output mean

end

Resu l t s output f i l e saved

Figure 3.8: Pseudocode for MeanClusYield.java

Figure 3.9 presents graphically the computational and clustering methodology em-

ployed for the reduction and classification of the EFM data, which enabled in silico

gene deletion phenotype analysis.
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Figure 3.9: An improved EFM clustering methodology using PAMK. Schematic overview of steps

involved in the computational extraction and clustering analysis of EFM data, leading to gene deletion phenotype

analysis. “Route 1” is suitable for small EFM data and it consists of only computational extraction of the overall

stoichiometry of EFMs, while “Route 2” is applicable to large EFM data and it combines the computational extraction

of overall stoichiometry of EFMs with clustering analysis of EFMs. EFM datasets S1a and S2a contain the overall

stoichiometry of EFMs (and EFM reactions) starting from glucose and producing a metabolite of interest and also

biomass. EFM dataset S1b contains the overall stoichiometry of EFMs (and EFM reactions) starting from glucose

and producing a metabolite of interest, whether or not they also produce biomass.

In the first step of this methodology, COPASI was used to compute EFMs for sto-

ichiometric models SM1, SM2, SM3, S1, S2, Teusink and Cakir treh models. The

output files obtained from the computation (EFM No 6 example in the top part of

Figure 6.1), containing the original EFMs EFM0, was used as the input of a Java

script for the extraction of “ORs” of all EFMs (EFM No 6 example in the bottom

part of Figure 6.1). Two types of “ORs” files obtained are:

(1) SM1, SM2, SM3, S1a, S2, Teusink and Cakir treh
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(2) S1b

The “ORs” files for SM1, SM2, SM3, S1a, S2, Teusink and Cakir treh consisted of

all overall stoichiometric equations of EFMs starting from glucose and finishing with

production of a metabolite of choice (and biomass) while EFM data set S1b comprised

of overall stoichiometric equations of EFMs starting from glucose and producing a

metabolite of interest (the EFMs may or may not produce biomass). These two

different datasets were created for analysis showing the different effects of reducing

the EFM data by only one variable (metabolite of interest) and by two variables

(metabolite of choice and biomass).

The next step is split into two alternative routes: if the number of “ORs” (cor-

responding to number of EFMs) is small, manual inspection of extracted EFMs is

performed for the identification of the best ones (Route 1, Figure 2), otherwise the

“ORs” file was processed by the matrix extraction step (Route 2, Figure 6.1) involv-

ing the extraction of coefficients of all reactions into file forming an EFM matrix.

The next step along “Route 2” (Figure 2) is clustering analysis for the identification

of the best EFM for in silico gene deletion phenotype analysis as described in section

3.2.4.1.

3.2.2.3 Cluster sizes and validation of results

For this study, seven different clustering algorithms (UPGMA or agglomerative hi-

erarchical, kmeans, PAM, Diana, Clara, Fanny and Model based clustering) imple-

mented in the R statistical package, clValid (Team, 2009) were tested. A matrix of

EFMs (rows) and reactions (column) was derived from “ORs” (“Route 2”, Figure 3.9)

and used for clustering analysis. Using clValid, clustering analyses were performed

on the EFM data matrix. In order to find out the best clustering algorithm and vali-

dating metrics for EFM data, matrices from “ORs” of S1a and S1b were used for the

purpose of comparisons between the seven clustering methods (UPGMA or agglomer-

ative hierarchical, kmeans, PAM, Diana, Clara, Fanny and Model based clustering).
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The comparison study was based on the optimal number of clusters returned by the

internal validating measures (Connectivity, Dunn’s index and Silhouette width) avail-

able in clValid. The optimal number of clusters for the EFM datasets S1a and S1b

were determined by evaluating 2 to 10 clusters using different clustering methods.

The PAM clustering analysis using Dunn’s index as internal validation measure,

proved to be the best clustering method for obtaining subsets of EFMs yielding bio-

logically meaningful information. All subsequent clustering analyses involving EFM

datasets S1, S2, S3 and S4, were carried out using PAM clustering method, Dunn’s

index and the optimal number of clusters were determined by evaluating 2 to 10

clusters.

3.2.3 Pattern analysis using regular expression

Inspection of the overall stoichiometry of EFMs (“ORs”) show that the “ORs” contain

patterns which may be used to reduce the dimensionality of EFMs and also help to

classify EFMs into classes that permit their use for in silico gene deletion phenotype

analysis. Pattern analysis based on regular expression was implemented in Matlab. A

regular expression (regex or regexp) provides a flexible means of matching text strings

to patterns of characters. I wrote a matlab program, ProcessEFM.m (Appendix B),

to carry out the pattern analysis of “ORs”. The implementation of this pattern

matching algorithm using ProcessEFM.m involves the user to specify the substrate

name and the name of the product of choice. In this way, the program provides a

flexible EFM data classification for different substrate and products of interest. The

output files are of two types: the first one contains the different classes of EFMs

matching the class patterns and the molar yields for each substrate of choice, and

the second file contains the redundant EFMs not matching any of the class patterns.

Figure 3.10 shows the steps for the implementation of pattern analysis of EFMs.

The EFM overall stoichiometric (“ORs” file) is used as an input file for the Matlab

program. The Matlab program then matches the EFM class pattern supplied by the
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user to the “ORs” in the input file. The output file from the program contain the

matching classes of EFMs.

Feature selection 
pattern matching using regular 

expression  

 

Original EFM (EFM0) 

 
Output 

Classes of EFMs 

EFM Class 

patterns 

 

Input 
EFM overall stoichiometric  

(“ORs” file) 

Figure 3.10: Pattern analysis of EFMs. The Figure depicts the steps involved in the implementation of

pattern analysis of EFMs. The EFM overall stoichiometric (“ORs” file) is used as an input file for the matlab

program. The Matlab program then matches the EFM class pattern supplied by the user to the “ORs” in the input

file. The output file from the program contain the matching classes of EFMs.

In this study, EFM analysis has been used to simulate the growth of yeast in minimal

synthetic medium with glucose as the substrate, and NH3 is included in the reactions

to simulate the presence of ammonia in the medium. In order to obtain useful classes

of EFMs from metabolic engineering purposes, classes of patterns have been designed

based on different scenarios characterising the different EFMs as follows:

1. Pattern No1: Substrate = BIOM EXT + Product

This is a class of EFMs requiring only the main substrate and producing biomass
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and metabolite of interest.

2. Pattern No2: Substrate + NH3 ext = BIOM EXT + Product

This is a class of EFMs requiring main substrate and externally supplied ammonia

and producing biomass and metabolite of interest.

3. Pattern No3: Substrate + NH3 ext = BIOM EXT + Product + anything else

This is a class of EFMs requiring main substrate and externally supplied ammonia

and producing biomass, metabolite of interest and any other metabolite as a side

product.

4. Pattern No4: Substrate + NH3 ext + anything else = BIOM EXT + Product +

anything else

This is a class of EFMs requiring any other metabolite in addition to the main

substrate and externally supplied ammonia and producing biomass, metabolite of

interest and any other metabolite.

5. Pattern No5: Substrate + NH3 ext + anything else = BIOM EXT + Product

This is a class of EFMs requiring any other metabolite in addition to the main

substrate and externally supplied ammonia and producing biomass and metabolite

of interest.

The output classes (1 - 5) indicate ranking of classes of EFMs to help make important

decisions for metabolic engineering purposes. Class 1 EFMs are likely to give molar

yields nearest to the theoretical yields of products, followed by EFMs in class 2, and

so on, until class 5.
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3.2.4 In silico gene deletion phenotype analysis

3.2.4.1 The general concepts

EFMs can be considered as a minimal set of enzymes necessary for the production of

specific metabolites that operate at steady state, and represent all the capabilities of a

metabolic network, that is, all the phenotypes that can be expressed in the organism.

Hence, EFM analysis permits the design of in silico phenotype gene deletion studies.

In order to facilitate in silico gene deletion phenotype analysis, EFM clusters obtained

in section 3.2.2.2 were analysed for cluster mean yields for target metabolites and the

EFMs in the different clusters were compared based on their metabolite members.

The two analyses of cluster solutions for biological interpretation were based on two

stages as follows:

1. Computation of cluster mean molar yields:

The “cluster mean molar yields” of metabolite of interest were determined for

each cluster, in order to find out the cluster in which the EFMs with highest

molar yields of the target metabolite are located.

2. Comparisons of different EFMs cluster solutions:

Clusters were then compared with each other on the basis of different types of

EFM members in each cluster. The inspection of the stoichiometric equations

of the EFMs provide useful information such as utilisation of additional sub-

strate(s) in addition to the main substrate and the by-products associated with

EFMs.

3. Further analysis to choose the best EFM for biotechnological purposes

In this step, the best EFMs for biotechnological purposes were chosen by ap-

plying a number of criteria as discussed below.

Using the results from the analysis of cluster solutions above, potential gene target

knockouts were identified in four stages as follows:
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1. The best EFM was chosen based on the following criteria:

(a) EFM with the highest yield of product is selected if the conditions in (b)

and (c) are met.

(b) The EFM must start from the substrate and also produce the product of

choice and biomass

(c) A good candidate EFM must require either only glucose or the addition

of inorganic compounds such as ammonium sulphate

This process allowed the removal of cycles, incomplete EFMs (any EFM not

of a full length: glucose to target product), EFMs requiring the addition of

organic substrate (such as amino acids) as a second substrate and non-biomass

producing EFMs.

2. All reactions (genes) not found in the EFM chosen in stage 1 were considered

as potential target gene knockouts and hence compiled for in silico deletion

analysis.

3. The compiled reactions were then carried through in silico gene knockout sim-

ulations based on the iterative steps as follows:

(a) Deletion of a single reaction from the reaction network reaction network

(b) EFM analysis in COPASI performed and the number of remaining EFMs

recorded.

(c) Further deletion (step a) and EFM analysis (step b) are repeated on the

reduced reaction network until the number of recorded EFMs does not

change.

For multiple deletions (double, triple, etc), steps (a), (b) and (c) were repeated

iteratively in COPASI for the required combination set of reactions.

4. Ranking of the reactions (genes) used for knockout simulations according to

their effectiveness in lowering the number of EFMs lead to identification of
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the best target gene knockouts for improving the yield of product of choice.

For multiple knockouts, a small number of multiple deletions were chosen to

minimise labour and time costs for their construction in the laboratory.

3.2.4.2 Gene Deletion Phenotype Analysis for lysine

EFM set SM2 was carried forward to the in silico gene deletion phenotype analysis

stage without clustering since this data subset contained only 2 modes and hence not

suitable for clustering (Route 1, Figure 3.9). The best mode with the highest yield

for lysine and requiring only ammonia in addition to glucose was considered for in

silico gene deletion phenotype analysis involving the deletion of reactions (enzymes)

which are not found in the mode of choice but are present in all the other modes

contained in the original EFM set (EFM0) of model SM2.

The set of reactions marked for in silico deletion was simulated for effects of gene

deletion using COPASI EFM analysis by iterative sequential deletion of reactions

followed by the determination of the number of EFMs left intact (as described in

section 3.2.4.1). The reactions with the largest appreciable EFM reductions were kept

as the target ‘single genes knockout’ for lysine production in yeast. The reactions

of the target ‘single genes knockout’ were then combined with each other to derive

‘double-mutant’ reaction sets. The ‘double-mutant’ reaction (and genes) sets that

are of known in vivo lethality were removed. Each of the remaining ‘double-mutant’

reaction sets were then simulated for lysine production in the same way described

for the single reactions. Similarly, the reactions of the target ‘double knockout genes’

were then combined with the reactions of the target ‘single knockout genes’ and each

triple set of reactions were simulated for improved yield of lysine in yeast (as carried

out for single and double knockouts).



3.3. MODELLING USING FBA 102

3.3 Modelling using FBA

3.3.1 Formulating and solving an FBA problem

FBA involves the optimisation of a linear objective function with linear equality

and/or inequality. An objective function is a function that one desires to be max-

imised or minimised. Constraints were used to define the limits of allowable values

in the solution space. In this study, FBA problem was formulated as follows:

Maximise z = c.v

Such that S.v = 0

LB ≤ v ≤ UB

Given an FBA model, linear programming algorithm gives a set of fluxes that max-

imises cv while satisfying the bounds (LB = lower bound, UB = upper bound)

and stoichiometric constraints (Sv). Thermodynamic reversibility and mechanistic

constraints are enforced by the bounds. The FBA problem is solved as a unique

maximum flux through the objective function. In this work, the objective function

was either biomass yield or/and yield of any other metabolite.

3.3.2 Steps in FBA

This section describes the FBA methods for strain development towards overproduc-

tion of various metabolites in yeast using the yeast genome scale reconstructions. I

developed a four-step methodology for developing in silico production strains (Figure

3.11).
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Best  model chosen for strain 
development 

Evaluation of models using Growth Rates,  Robustness 
Analysis, Phenotypic Plane Analysis 

Reduced model for 
computational studies 

Final Gene knockouts 

Gene knockout predictions: 
MOMA, RobustKnock, OptKock, 

OptGene,  GDLS 

Characterisation of reduced model using  Robustness 
Analysis, Phenotypic Plane Analysis, Flux Variable 

Analysis, production envelope 

Determine  Increase/decrease flux span for each knockout 

 Genome reconstruction models 
(GSMMs) 

Model reduction based on  removal of some reactions 

Figure 3.11: Schematic overview of steps FBA steps for strain development. First, Genome scale models

were evaluated and the best was chosen for further studies. Next, the model chosen was reduced and characterised

for production of target products. Reduced model was used for knockout predictions, and the knockout sets were

further evaluated to obtain a final set of knockouts.

3.3.2.1 Models and FBA optimisation

Several yeast genome scale reconstructions are currently available, and it was decided

to evaluate yeast genome scale reconstructions iND750 (Duarte et al., 2004), iMM904

(Mo et al., 2009) and Yeast 4.38 (Dobson et al., 2010) in order to determine the most

suitable model for the purpose of optimal strain development. The models, iND750

and iMM904, have already been functionally validated under different substrate and

genetic environments to be predictive of growth rates, metabolite excretion and gene

essentiality.
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3.3.2.2 Evaluation of models

The best model was chosen based on the characterisation of the networks of the

genome scale models by carrying out “growth rate and product secretion optimisa-

tion”, “robustness analysis”, “Phenotypic plane analysis” and “flux variability anal-

ysis’. The 3 models were tested under 2 different substrates (glucose and xylose)

and 2 environmental conditions (aerobic and anaerobic). COBRA Toolbox 2 soft-

ware (Schellenberger et al., 2011) in Matlab environment was used for carrying out

the “growth rate and product secretion optimisation”, “robustness analysis”, “Phe-

notypic plane analysis” and “flux variability analysis”. The import and export of a

metabolite was simulated as a negative and positive flux respectively. The unit of

uptake rate, mmol gDW−1h−1, was used for all FBA simulations in this study.

In the growth rate and product secretion analysis, COBRA Toolbox was used to

simulate the microaerobic fermentation, oxidative-fermentative growth, and anaero-

bic growth using iND750 and iMM904 models for assessing yeast growth rates and

secretory capabilities for ethanol, fumaric acid, trehalose, lysine and glutamate under

specific substrate and environmental conditions. Table 3.2 summarises the environ-

mental conditions simulated for S. cerevisiae growth. Simulations involved the addi-

tion of ergosterol and zymosterol in order to investigate the metabolic capabilities of

S. cerevisiae in anaerobic fermentative condition because S. cerevisiae in anaerobic

conditions require ergosterol and zymosterol for maintenance of cell growth.
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Table 3.2: Environmental conditions simulated for yeast S. cerevisiae. Table summaries the environmental

conditions simulated for S. cerevisiae growth. LB = lower bound for simulating the uptake of a nutrient from growth

medium.

Condition Media Bounds for nutrient

intake (mmol gDW−1

hr−1)

Aerobic Glucose and oxygen Glucose: LB = -18.5

Oxygen: LB = -18.5

Microaerobic fermentation Glucose and oxygen Glucose: LB = -18.5

Oxygen: LB = -1.5

Oxidative fermentation Glucose and oxygen Glucose: LB = -14

Oxygen: LB = -10

Anaerobic Glucose, oxygen, ammo-

nia, ergosterol, zymosterol,

ATPM

Glucose: LB = -14, Oxygen: LB =

-0.01, Ammonia: LB = -5, Ergos-

terol: LB = -10, Zymosterol: LB =

-10, ATPM: LB = -20

Robustness analysis was performed by using FBA to analyse the network properties of

iMM904 model. The sensitivity of biomass production (objective) to glucose uptake

rate and oxygen uptake rate was investigated. In order to determine the effect of

varying glucose uptake rate on growth, the values of upper and lower bounds of

glucose exchange reaction was set to between 0 and 20 mmol gDW−1h−1 while setting

a fixed oxygen uptake rate of 20 mmol gDW−1h−1. The effect of varying oxygen on

growth was performed by setting the values of upper and lower bounds of oxygen

exchange reaction to between 0 and 20 mmol gDW−1h−1 while glucose uptake rate

was fixed at 20 mmol gDW−1h−1.

Further analysis of the network properties of iMM904 involved the phenotypic phase

plane analysis. In contrast to robustness analysis, which involves the calculation

of the network state based on varying one parameter, the results of varying two

parameters simultaneously can be plotted as a phenotypic phase plane. In this study,

the S. cerevisiae phenotypic phase plane was formulated to display the maximum

growth rates for different combinations of glucose and oxygen uptake rates. COBRA
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Toolbox was used to perform FBA for maximisation of growth for each combination

of glucose and oxygen uptake rates, and for plotting two-dimensional and three-

dimensional phenotypic phase planes of the results. The glucose uptake rate was

varied between 0 and 20 mmol gDW−1h−1 and oxygen uptake rate was varied from 0

to 20 mmol gDW−1h−1. In order to determine the sensitivity of the FBA solutions,

COBRA Toolbox was also used to calculate shadow prices (Edwards et al., 2002) and

reduced costs (Varma et al., 1993; Ramakrishna et al., 2001). Shadow prices are the

derivative of the objective function with respect to the exchange flux of a metabolite;

that is the sensitivity of the objective function to the addition of each metabolite.

Maximise z = c.v

Such that S.v = b

LB ≤ v ≤ UB

Shadow price (i) = dz
dbi

where bi represents ith metabolite

On the other hand, reduced costs are the derivatives of the objective function with

respect to an internal reaction with 0 flux; indicates the degree of change in objective

value if a particular reaction with zero flux is given a non-zero value.

Maximise z = c.v

Such that S.v = b

LB ≤ v ≥ UB

Reduced cost (j) = dz
dvj

where vj represents jth reaction

Flux Variability Analysis:

The flux distribution calculated by FBA is generally not unique. In many cases

it is possible for the biological system to achieve the same objective by using the

alternative pathways, meaning that phenotypically alternate optimal solutions are

possible. Flux variability analysis (FVA) (Mahadevan and Schilling, 2003) uses FBA

to identify alternate optimal solutions. FVA calculates the minimum and maximum
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allowable fluxes through a reaction using linear programming, with the objective

function flux constrained close to or equal to optimal solution.

Maximize/minimise vi

Such that S.v = 0

LB ≤ v ≤ UB

vobj=v*obj

where v*obj is the optimal value of the objective flux.

Using a COBRA Toolbox function, FVA for the S. cerevisiae model under aerobic

growth conditions was performed at a minimum growth of 90% of optimal growth.

FVA enabled the calculation of minimum and maximum fluxes in the S. cerevisiae

model.

3.3.2.3 Pre-processing of models

Genome scale reconstructions of yeast iND750, iMM904 and Yeast 4.38 were pre-

processed so as to obtain reduced models. The goal for the pre-processing of genome

scale reconstructions by the removal of some reactions was to increase the chance for

selection of valid gene deletion targets for optimised strains. All reactions with ‘zero’

minimum and maximum flux values and the dead end reactions were removed from

the network. The other reactions removed include spontaneous, diffusion and those

not associated with any gene. Only one reaction was allowed for every occurrence of

isoenzymes.

3.3.2.4 FBA and strain design

Two COBRA Toolbox functions, OptKnock (Burgard et al., 2003) and GDLS (Lun

et al., 2009) were used for the design of production strains based on the reduced

iMM904 model (see section 3.3.2.3). In principle, these algorithms use FBA to max-

imize the flux through each of the exchange reactions in the reduced iMM904 model
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for the targeted products. The OptKnock algorithm calculates the knockout reactions

sets for maximising the production of a specific product by solving a biLevel MILP

(mixed integer linear programming) problem using a Gurobi MILP solver (Gurobi op-

timisation, Houston, Texas, USA). Similarly, in the GDLS algorithm, a bilevel MILP

(mixed integer linear programming) problem was solved using Gurobi solver for the

identification of knockout reaction sets for the overproduction of target products. An

example of settings for both OptKnock and GDLS (implemented in COBRA Toolbox

2.0) is shown in Figure 3.12.

1 model = readCbModel(’iMM904_flux.xml’);

2 model = changeRxnBounds(model, {’EX_o2(e)’, ’EX_glc(e)’}, [-18.5, -10], ’l’);

3 selectedRxns = {model.rxns{[490, 446, 695, 691, 693, 379, 380, 848, 415, 696, 698,...

4 265, 768, 771, 115, 407,697, 465, 789, 839, 828, 840, 200, 55, 516, 518, 517, 90,...

5 822, 391, 394, 584, 588, 519, 584, 225, 241, 803, 802, 748, 184, 124, 123, 738, 524,...

6 857, 183, 734, 733, 862, 51, 556, 232, 554, 550, 662, 694, 753, 754, 209, 207, 683,...

7 143, 134, 484, 483, 492, 36, 34, 791, 792, 140, 131, 503, 504, 87, 505, 835, 834, 47,...

8 556, 232, 525, 438, 449, 442, 404, 405, 672, 46, 84, 56, 666, 656, 129, 128, 747, 151,...

9 741, 739, 522, 506, 494, 493 ]}};

10 options.targetRxn = ’EX_lys(e)’;

11 options.vMax = 1000;

12 options.numDel = 5;

13 options.numDelSense = ’L’;

14 constrOpt.rxnList = {’biomass_SC5_notrace’, ’ATPM’};

15 constrOpt.values = [0.05, 8.39];

16 constrOpt.sense = ’GE’;

17 optKnockSol = OptKnock(model, selectedRxns, options, constrOpt);

18 [gdlsSolution, bilevelMILPproblem, gdlsSolutionStructs] = GDLS(model, ’EX_lys(e)’,...

19 ’minGrowth’, 0.05,’selectedRxns’, selectedRxns, ’maxKO’, 5, ’nbhdsz’, 3);

20 gdlsSolution.KOs

Figure 3.12: Settings for Opknock and GDLS. Figure shows an example of Opknock and GDLS settings (in

Cobra Toolbox 2.0) used for the design of lysine producing in silico yeast strains.



Chapter 4

Materials and Methods for

laboratory experiments

4.1 Chemicals and reagents

4.1.1 Yeast strains, media and growth conditions

4.1.1.1 S. cerevisiae mutant strains for lysine production

Single, double and triple mutants of S. cerevisiae for increased production of ly-

sine were either sourced or constructed. Seven single mutant strains of S. cerevisiae

for increased production of lysine(∆alt2 (ALT2 mutant), ∆ kgd1 (KGD1 mutant),

∆kgd2 (KGD2 mutant), ∆lsc1 (LSC1 mutant), ∆lsc2 (LSC2 mutant) and ∆glt1

(GLT1 mutant) and a control strain (CS, metabolism unrelated HO gene knockout

strain) used in this study were obtained from EUROSCARF (Institute of Molecular

Biosciences, Wolfgang Goethe-University Frankfurt, Frankfurt, Germany) and are

listed in Table 4.1. Lysine accumulating control yeast mutant strains, lys80 (12T7c

∆lys80 ) and 02940c (lys20fbr and lys21fbr yeast mutants) were kindly provided by

(Evelyne Dubois, Institut de Recherches du CERIA, Belgium: (Feller et al., 1999)).

Table 4.2 lists the seven S. cerevisiae double mutants, (∆alt2 ∆kgd2, ∆alt2 ∆kgd1,

109
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∆alt2 ∆lsc2, ∆alt2 ∆lsc1, ∆alt2 ∆glt1, ∆kgd1 ∆kgd2, ∆lsc1 ∆lsc2 ) and one control,

YLR123CC (a random KAN and NAT double mutant), obtained from the Boone

Lab for this study. The five S. cerevisiae double mutants (∆kgd1 ∆alt1, ∆kgd2 ∆alt1,

∆lsc1 ∆alt1, ∆lsc2 ∆alt1 and ∆alt1 ∆glt1 ) constructed by me are listed in Table 4.3.

Table 4.1: EUROSCARF single mutant and control strains. S. cerevisiae single mutant and control

strains obtained from EUROSCARF.

Single Mutant Standard Name Systematic Name Background Genotype

∆alt1 YLR089C BY4741 Mata; his3∆1;leu2∆0;met15∆0;ura3∆0;YLR089c::kanMX4

∆alt2 YDR111C BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YDR111c::kanMX4

∆kgd1 YIL125W BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YIL125w::kanMX4

∆kgd2 YDR148C BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YDR148c::kanMX4

∆lsc1 YOR142W BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YOR142w::kanMX4

∆lsc2 YGR244C BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YGR244c::kanMX4

∆glt YDL171C BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YDL171c::kanMX4

CS YDL227C BY4741 Mata; his3∆1; leu2∆0; met15∆0; ura3∆0;YDL227c::kanMX4

Table 4.2: Toronto single mutant and control strains. S. cerevisiae double mutant and control strains

obtained from the Boone Laboratory (Toronto).

Strain Genotype

YLR123C -

∆alt2∆kgd2 YDR111CˆKanR YDR148CˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆLYS2+

∆alt2∆kgd1 YDR111CˆKanR YIL125WˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆSTE3pr-LEU2 LYS2+

∆alt2∆lsc2 YDR111CˆKanR YGR244CˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆLYS2+

∆alt2∆lsc1 YDR111CˆKanR YOR142WˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆLYS2+

∆alt2∆glt1 YDR111CˆKanR YDL171CˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆSTE3pr-LEU2 LYS2+

∆kgd1∆kgd2 YIL125WˆKanR YDR148CˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆLYS2+

∆lsc1∆lsc2 YOR142WˆKanR YGR244CˆNatR can1ˆ::STE2pr-Sp his5lyp1ˆLYS2+

Table 4.3: In-house S. cerevisiae double mutants. S. cerevisiae double mutants constructed in-house. Double

deletion strains have BY4741 background.

Double Mutant Mutant Name Background Genotype

∆kgd1∆alt1 DMOO1 BY4741 Mata; his3∆1; leu2∆0; met15∆0;ura3∆0;YIL125w::kanMX4;YLR089c::KlURA3

∆kgd2∆alt1 DMOO2 BY4741 Mata; his3∆1;leu2∆0;met15∆0;ura3∆0;YLR089c::kanMX4;YDR148c::KlURA3

∆lsc1∆alt1 DMOO3 BY4741 Mata; his3∆1; leu2∆0; met15∆0;ura3∆0;YOR142w::kanMX4;YLR089c::KlURA3

∆lsc2∆alt1 DMOO4 BY4741 Mata; his3∆1;leu2∆0;met15∆0;ura3∆0;YLR089c::kanMX4;YGR244c::KlURA3

∆alt1∆glt DMOO5 BY4741 Mata; his3∆1; leu2∆0; met15∆0;ura3∆0;YDL171c::kanMX4;YLR089c::KlURA3
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4.1.1.2 Synthetic minimal (SD) medium and selective media plates

Reagents were autoclaved for 20 minutes at 121 ◦C and 15 psi or filtered through a

0.22 µm filter disc (Anachem) for sterilisation.

S. cerevisiae strains were routinely grown in synthetic minimal medium (SD) sup-

plemented with various additions of uracil and amino acids (Table 4.4). The SD

medium composed of 0.17% w/v Yeast Nitrogen Base (YNB), 2% w/v glucose and

0.5% w/v ammonium sulphate. Minimal medium plates for uracil (URA) or leucine

(LEU) selection were prepared by adding 2% agar and supplements (excluding either

uracil or leucine respectively) to SD medium. The complete medium, YPD medium,

used in this study composed of 1% w/v yeast extract, 2% w/v bacto-peptone, 2%

w/v dextrose, and YPD plates were prepared by solidifying YPD medium with 2%

w/v agar.

Table 4.4: Supplements for SD medium. Uracil and amino acid supplements for SD medium. URA = uracil,

LEU = L-Leucine, HIS = L-Histidine, MET = L-Methionine, ALL = URA + HIS + MET + LEU.

Components of uracil and amino acids

Supplement Constituent Stock concentration

(g/100 ml)

volume of stock for 1 Litre

of medium (ml)

Final concentration (mg/l)

NC URA 0.2 10 20

LEU 1 3 30

HIS 1 2 20

MET 1 2 20

2 X LEU Two times the concentration of LEU and the same concentrations of URA, MET and HIS in NC above

3 X LEU Three times the concentration of LEU and the same concentrations of URA, MET and HIS in NC above

2 X ALL Two times the concentration of URA, MET, HIS and LEU in NC above

3 X ALL Three times the concentration of URA, MET, HIS and LEU in NC above

NC PH6 Same concentrations of URA, MET, HIS and LEU in NC above. SD medium also adjusted to PH6.0.

4.1.2 Oligonucleotide primers

Gene disruption oligonucleotide primers (see Table 4.5) were either sourced or de-

signed based on a PCR gene deletion strategy of (Baudin et al., 1993) to generate
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disruption cassette consisting of URA3 selectable marker gene amplified from plasmid

pBS1539 kl that was introduced into yeast cells. Confirmation primers (sourced and

designed) for the verification of successful gene disruption by URA3 and LEU2 mark-

ers are also listed in Table 4.7. Oligonucleotide primers were designed using “Primo

Optimum 3.6 Optimal Gene Synthesis And Expression” software in the package

BioToolKit 320 (http://www.changbioscience.com/download/biotoolkit.html).

Confirmation of successful gene disruption by URA3 and LEU2 selectable markers

were carried out according to Tables 4.8 and 4.9 respectively.

Table 4.5: Primers for URA3 and LEU2 cassettes. Primers for generating URA3 and LEU2 selectable

disruption cassettes (5’ - 3’). Primers used in generating disruption cassettes for deleting genes for the construction

of S. cerevisiae mutant strains for production of lysine.

Primer Name Primer Sequence

ALT1 Disrupt F GTTTCTGCTTCTCAATTGAACGCATATAAATATATTTCCCCAGTCTTTATTTTGCTCTCTCCACGA

TGTCGGTCTGCATTGGATGGTGG

ALT1 Disrupt R GATCACATTATTATAATAAACTAGCTATTTAAATGTTTATTGAAGACTGTTCTGCCCCCTTTTATT

CAGTTGCACCGTGCCAATGCAG

KGD2 Disrupt F ATAAACTTCACTACCACATTTGTTACAACCAAAGACACAACTTCAGATAATTATTTAAACAATGTC

GGTCTGCATTGGATGGTGG

KGD2 Disrupt R CACAGTAATAGCGGACAAGAATAATCATGAAATCAGATTGGTATGGGCTGCAAATTTCAAATCAGT

TGCACCGTGCCAATGCAG

LSC2 Disrupt F GATTAATAAGGATTGAGTCAATACAATCGAAAAAAATACTGAAGCATTGCAACTGAACAAAATGTC

GGTCTGCATTGGATGGTGG

LSC2 Disrupt R CTTTATTAATAGTAAAAAAGCATATATACTTTATTATTAACTCTTTTGTTTTTCTCGAGAAGCTTA

GTTGCACCGTGCCAATGCAG

ZWF1 disrupt F CCCCTCCTTCTCCCCCTTCCCCCTCTCCAATTGGCTGTATAGACAGAAAGAGTAAATCCAATAGAA

TAGAAAACCACATAAGGCAAGATGACTTCTAGTATATCTACATACC

ZWF1 disrupt R AACAAAGAGAGTGAGCTTGCAAGATAAAATCACTCGAAAAAAAAAATTTCAGTGACTTAGCCGATA

AATGAATGTGCTTGCATTTTTCTATCGACTACGTCGTTAAGGC
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Table 4.7: Confirmation primers for URA3 and LEU2 markers. A list of primers used for Confirmation

of successful gene disruption by URA3 and LEU2 selectable markers. Primers were used for 5 PCR confirmation

experiments: 3 positive and 2 negative.

Primer Name Primer Sequence (5’ - 3’) Source

ALT1 A TGAGACAACTTCACGTACTCTTCTG YKOs collection

ALT1 D TAGGTGCCATTGGTAAGAAGTAAAG YKOs collection

KGD2 A ACATTAGCACCATTCTACTACAGGG YKOs collection

KGD2 D ACATGTTAGGTCAATGGAAAGTCAT YKOs collection

LSC2 A CACCAAAGCCAGGTAGATACTAAAA YKOs collection

LSC2 D AAACGATAATATGTTCCTGAACTCG YKOs collection

URA3 F Cassette TCATGCAAGTCCGGTTGCATCG In-house generated

URA3 R Cassette CTCTTCCTCCCATATCGTTCTG In-house generated

ALT1 B CTGCTGTTCGTTTTGGTTTAATAGT YKOs collection

ALT1 C GAACATCCAGGTAAATTCGATAATG YKOs collection

KGD2 B TGACCTCAATATCAATTTTATCGGT YKOs collection

KGD2 C AATTAACCCTAGAAGATATGACGGG YKOs collection

LSC2 B TATATACAGCAGATACTGGCTTCCC YKOs collection

LSC2 C TGAAGGGTAACATTGGATGTTTAGT YKOs collection

ZWF1 A ATTATTAATGTGGGATTTTTGGCTC YKOs collection

ZWF1 D TCAATGATAAGTACAAGTCCAATCG YKOs collection

ZWF1 B CTTGAAGAACTGTTCGACCTTAGAG YKOs collection

ZWF1 C CGCTGTGTACCTAAAGTTTAATGCT YKOs collection

ZWF1 LEU2 Fcassette ACTTCTAGTATATCTACATACC In-house generated

ZWF1 LEU2 Rcassette TCGACTACGTCGTTAAGGC In-house generated

Table 4.8: Confirmation primer pairs for alt1, kgd2 and lsc2. An example of different combinations of

primer pairs for confirmation of gene disruption - alt1, kgd2 and lsc2 gene deletion. Primer set numbers 1 - 3 are for

positive controls and primer set numbers 4 - 5 are for negative controls.

Combination of primer sets for deletion of alt1, kgd2 and lsc2 genes

Primer set KGD1xALT1 KGD2XALT1 LSC1XALT1 LSC2XALT1 ALT1XGLT

1 ALT1 A KGD2 A ALT1 A LSC2 A ALT1 A

R Cassette R Cassette R Cassette R Cassette R Cassette

2 ALT1 D KGD2 D ALT1 D LSC2 D ALT1 D

F Cassette F Cassette F Cassette F Cassette F Cassette

3 ALT1 A KGD2 A ALT1 A LSC2 A ALT1 A

ALT1 D KGD2 D ALT1 D LSC2 D ALT1 D

4 ALT1 A KGD2 A ALT1 A LSC2 A ALT1 A

ALT1 B KGD2 B ALT1 B LSC2 B ALT1 B

5 ALT1 C KGD2 C ALT1 C LSC2 C ALT1 C

ALT1 D KGD2 D ALT1 D LSC2 D ALT1 D
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Table 4.9: Confirmation primer pairs for zwf1. An example of different combinations of primer pairs for

confirmation of gene disruption - zwf1 gene deletion. Primer set numbers 1 - 3 are for positive controls and primer

set numbers 4 - 5 are for negative controls.

Primer set No ∆kgd2∆alt1∆zwf1 ∆lsc2∆alt1∆zwf1 ∆alt1∆glt∆zwf1

1 ZWF1 A ZWF1 A ZWF1 A

R Cassette R Cassette R Cassette

2 ZWF1 D ZWF1 D ZWF1 D

F Cassette F Cassette F Cassette

3 ZWF1 A ZWF1 A ZWF1 A

ZWF1 D ZWF1 D ZWF1 D

4 ZWF1 A ZWF1 A ZWF1 A

ZWF1 B ZWF1 B ZWF1 B

5 ZWF1 C ZWF1 C ZWF1 C

ZWF1 D ZWF1 D ZWF1 D

4.1.3 Plasmids pBS1539 and pREP41

URA3 and LEU2 selectable markers used as gene disruption cassettes in this study

were amplified from Plasmids pBS1539 (Puig et al., 2001) and pPREP41 (Basi et al.,

1993) respectively. plasmid pBS1539 (see Figure 4.1)harbours a URA3 marker from

Kluyveromyces lactis and does not replicate in yeast. The plasmid pPREP41 is from

S. Pombe and contains the S. Cerevisiae LEU2 gene for auxotrophic selection of

transformants on media lacking leucine.
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Figure 4.1: Diagram of pBS1539. Diagram of pBS1539 from Seraphim Lab

(http://www.embl.de/ExternalInfo/seraphin/pBS1539.html)

4.1.4 Reagents for yeast competent cells and transformation

4.1.4.1 50% (w/v) polyethylene glycol (PEG)

100 ml of 50% (w/v) PEG was prepared by dissolving 50 g of PEG (MW 3350, Sigma)

in 35 ml of Milli-pore water in a 150 ml glass beaker by magnetic stirring for about

30 minutes. The volume of the PEG solution was then adjusted to 100 ml in a 100

ml graduated cylinder, and then mixed by inversion. PEG solution was autoclaved

in a securely capped bottle.

4.1.4.2 Salmon sperm DNA

2 mg/ml salmon sperm DNA was was prepared as follows: 200 mg of high molecular

weight DNA (Deoxyribonucleic acid Sodium Salt Type III from Salmon Testes, Sigma

D1626) were weighed into 100 ml of TE buffer (10 mM Tris-HCL pH 8.0, 1.0mM

EDTA) in a 200ml glass beaker. DNA was dispersed into solution by drawing it up
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and down repeatedly in a 10 ml pipette. DNA solution was then mixed vigorously

on a magnetic stirrer for 3 hours. DNA solution was then aliquoted into 50 ml falcon

and 1.5 ml Eppendorf tubes and stored in a −20 ◦C freezer.

4.1.4.3 10x Tris EDTA (TE) buffer PH 7.7

100 ml solution of 10X TE (PH 7.7) was prepared by mixing 10 ml of 1M Tris.Cl PH

8.0 [100mM], 2 ml of 0.5 M EDTA PH 8.0 [10mM] and 78 ml of milli-pore water in

a 250 ml glass beaker.The PH of the solution was then adjusted to 7.7 using a PH

meter (Sartorious PB-11).

4.1.4.4 Tris EDTA lithium acetate (TELiAc) PH 7.5

10 ml of 1 M lithium acetate (LiAc, PH 7.5, 100 mM) was prepared by mixing 1 ml

of 10x TE pH 7.7 [10mM Tris, 1mM EDTA], 1 ml of 1 M LiAc pH 7.5 [100 mM] and

8 ml sterile milli-pore water in a 50 ml falcon tube.

4.1.4.5 PEG/TELiAc pH 7.5

5 ml solution of (PEG/TELiAc pH 7.5) was prepared mixing 0.5 ml of 10x TE pH

7.7 [10mM Tris, 1 mM EDTA], 0.5 ml of 1 M LiAc pH 7.5 [100 mM] and 4 ml of 50%

PEG4000 [40%] in a 50 ml falcon tube.

4.2 Growth characterisation

20 ml SD medium (with NC supplement) (see Table 4.4) in 125 ml flask was inoculated

freshly from a plate and incubated overnight at 30 ◦C with shaking at 200 rpm. The

overnight culture was added to 60 ml fresh SD medium in 200 ml flask to give OD600 =

0.2 and the diluted culture was incubated at 30 ◦C with agitation at 200 rpm. For each

S. cerevisiae mutant strain, culture was set up in duplicate, and OD measurements
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carried out at different time points on JASCO V-630 spectrophotometer until 30 hrs

of growth. Samples for biomass measurements were also taken at mid-log phase and

early-stationary phase. Specific growth rate and doubling time for each mutant strain

were also determined.

Calculations of growth rate were carried out at the steepest part of S. cerevisiae

growth curves using the exponential function in Microsoft Excel software. The expo-

nential curve gives the following function:

Number of cells at a specific time = a x e(µt0)

a = number of cells at time = 0 (t0)

b = specific growth rate, µper hour

Doubling time, td is the amount of time it takes for a culture to double the number of

cells. The calculation of doubling time was carried out by deriving the relationship

between µ and td as follows:

dx

dt
= µx (where µ is the growth rate and x is the product)

dx

x
= µdt

Integrate for xt and x0 (x0 is the product at 0 time and xt is product at a specific

time after t(0)):

[lnx]xt
x0

= µt

xt
x0

= eµt

xt = x0e
µt

i.e., ODt = OD0e
µt
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For doubling time:

lnODt = µt+ lnOD0

µt =
lnODt

lnOD0

µtd = ln(2X
lnODt

lnOD0

) = ln(2)

td =
ln(2)

µ

=
0.6932

µ

The best concentrations of amino acid supplements in SC minimal medium for op-

timal growth of single mutant strains were determined by calculating the doubling

times and growth rates of the strains. This investigation was carried out by growing

strains, CS and ∆glt1, for 30 h in 20 ml of SC medium under 6 different conditions

based on different concentrations of supplemented amino acids (leucine, histidine and

methionine) and uracil in the SD medium supplemented with either 2 X LEU, 3 X

LEU, 2 X ALL, 3 X ALL or NC PH6 (see Table 4.4)

4.3 Cultivation of S. cerevisiae for GC/MS

4.3.1 Culture medium and batch cultures

All S. cerevisiae mutants were grown on minimal medium (SD)supplemented with 3 X

ALL (see section 4.1.1.2). Mutant strains were grown in triplicates and each replicate

culture was assigned a number. Cultures were then randomised into different batches

to reduce biological and analytical variations. Batches of cultures were started with 30

minute-interval between each batch, and the end points of batch cultures or transfer

to the next stage of experiment were adjusted accordingly.
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4.3.2 Steps for growing mutant strains

125 ml flasks containing 30 ml of culture medium were inoculated freshly from YPD

cultural plates of S. cerevisiae mutant yeast strains and allowed to grow overnight

at 30 ◦C with shaking at 200 rpm. Batch cultures of mutant strains were prepared

by inoculating pre-warmed (30 ◦C) 60 ml of culture medium in 250 ml flasks to

initial concentration of OD = 0.2 with washed inoculum from 30 ml starter culture

and cultures allowed to grow until the exponential phase was reached. Next, the

exponential phase cultures were were used to inoculate fresh batches of pre-warmed

(30 ◦C) 60 ml culture medium in 250 ml flasks to initial concentration of OD = 0.2

and exometabolome and endometabolome samples were from the growing cultures at

the start of log phase (7h of growth) and mid-log phase exometabolome (9h). All

samples were stored in (−80 ◦C ) freezer until analysed.

4.3.3 Determination of biomass

Eppendorfs containing pellets were weighed and then pellets were allowed to dry by

leaving Eppendorfs open for 24 hours. Eppendorfs were weighed again each subse-

quent 24 hours until the weights of Eppendorfs remained unchanged from previous

measurements. Then dry biomass was removed from each Eppendorf tube and the

Eppendorf tubes were weighed in order to determine the weights of empty Eppendorf

tubes. Dry weight of biomass for each culture was determined by subtracting the

weight of each empty Eppendorf tube from the last and unchanged weight of the

corresponding Eppendorf tube.

4.4 GC/MS quantitative metabolome measurements

This section describes the methods used for preparation of the samples for quantita-

tive exometabolome (footprinting) and endometabolome analysis. Quantitative mea-

surements were carried out on exometabolome and endometabolome samples (mid
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log-phase) of S. cerevisiae mutant and control strain using GC/MS for lysine and

other metabolites (glycerol, fumaric acid, glutamate, alpha-ketoglutarate and pheny-

lalanine).

Rick Dunn (Manchester Centre for Integrative systems biology) provided methods

for GC/MS sample preparation and carried out the GC/MS analysis.

4.4.1 Footprinting

For exometabolome analysis (footprinting), 1.0 ml of culture sample was syringe-

filtered (0.22 µm) into a clean Eppendorf tube and the filtered sample was then

stored at −80 ◦C.

4.4.2 Quenching of intra-cellular metabolism

Preparation of quenching solution: 2.5 l of quenching solution (methanol and water

60:40 ratio) was prepared by mixing 1.5 l of HPLC methanol with 1.0 l of HPLC

grade water, and 40 ml aliquots of the quenching solution in 50 ml falcon tubes were

stored in the −80 ◦C fridge.

For each mutant culture, triplicate samples were collected and quenched, each was

prepared by adding 14 ml of culture sample into the centre of 40ml of quenching

solution placed in dry-ice. Collection of triplicate samples ensured that the required

minimum of 20 mg dry weight biomass for each mutant sample for GC/MS analysis.

The quenched samples were then centrifuged at −9 ◦C to pellet biomass which was

then kept at −80 ◦C, and 5 ml of supernatant were kept to check for metabolite

leakage.
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4.4.3 Extraction of intra-cellular metabolites

For each sample, 500 µl of HPLC grade methanol:water (80:20, −48 ◦C in dry ice)

were added to cell pellets from the quenching step to vortex mix and solubilise the cells

into the extraction solution. The mixture was then transferred into a 2 ml Eppendorf

tube on dry ice and the tube was then placed in liquid nitrogen for 60 seconds. Next,

the tube was allowed to thaw on dry ice. At this stage, the process of freezing in the

liquid nitrogen followed by thawing on dry ice was repeated two more time before

the tube was then centrifuged at 32,368 g for 10 minutes and supernatant collected

into a clean Eppendorf. The entire process up to this stage was then repeated by

washing the remaining of pellet from falcon tubes with fresh 500 µl of HPLC-grade

methanol:water which was then transferred into the same Eppendorf tube used in the

first process.

4.4.4 Quantitative GC/MS analysis

With the exception of pyridine (extra dry), methoxylamine hydrochloride and N-

methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) which were obtained from Acros

Organics (Loughborough, UK), all other materials were purchased from Sigma-Aldrich

(Gillingham, UK) unless otherwise stated.

4.4.4.1 Derivatisation of metabolites for GC-ToF-MS analysis

The dried extracts were redissolved in 50 µl of 20 mg.ml−1 O-methoxylamine hy-

drochloride in pyridine, vortexed, and incubated at 60 ◦C for 30 minutes in a block

heater. 50l of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was then added.

and incubated at 60 ◦C for 30 minutes. On completion, 20 µl of retention index marker

solution was added (0.2 mg.ml−1 docosane, nonadecane, decane, dodecane and pen-

tadecane in pyridine) prior to centrifugation at 13,363 g for 15 minutes. The resulting

supernatant (90 ◦C) was transferred to GC-MS vials for analysis.
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4.4.4.2 GC-ToF-MS Analysis

Analyses were performed with a Gerstel MPS-2 autosampler (Gerstel, Baltimore,

USA) coupled to an Agilent 6890N Gas Chromatograph with a split/splitless injector

and Agilent LPD split-mode inlet liner (Agilent Technologies, Stockport, UK) which

was interfaced to a LECO Pegasus III (4D) GCxGC-MS operated in GC-MS mode

(Leco Corp., St. Joseph, MO). A 30m x 0.25 mm x 0.25 um VF17-MS bonded phase

capillary column (Varian, Oxford, UK) was used at a constant helium carrier gas

flow of 1 ml.ml−1. A temperature programme was performed to provide elution of

metabolites of differing volatility and polarity. The oven temperature was held at

70 ◦C for 4 minute followed by a temperature ramp of 20 ◦C /min to a temperature

of 300 ◦C and finally the temperature was held for 4 min. 1 µl sample injections

were performed. The injector was operated at 280 ◦C with a 4:1 split ratio, and a 25

ml.ml−1 gas saver flow switched on after 15 seconds. The transfer line was maintained

at 240 ◦C. The mass spectrometer was operated at 70eV ionisation energy with a

source temperature of 220 ◦C, acquiring m/z 45-600 at 20Hz.

4.4.4.3 Raw data processing

Raw data processing was performed using LECO’s ChromaTOF v3.25 software (Leco

Corp., St. Joseph, MO). Deconvolution was performed for each sample applying

the following parameters; peak width of 1.8 s, S:N ratio of 10:1 and baseline of

1.0. A reference database was constructed containing relevant information for each

metabolite of interest and included retention time, electron impact mass spectrum

and single quantification ion. Chromatographic peaks in the reference database were

searched for in each sample and if detected within specified ranges (retention time

difference less than 10 seconds and mass spectral match score greater than 70%) the

chromatographic peak area was calculated applying the quantification ion to define

the peak limits. These data were exported for further data analysis.
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4.5 Metabolite profiling

4.5.1 Sample preparation for GC/MS analysis

Six randomised replicates samples of S. cerevisiae double mutants and control strain

were carried through metabolic profiling analysis using GC/MS. Cultivation of S.

cerevisiae strains and sample preparation for GC/MS were carried out as described

in section 4.3. However, only the endometabolome samples were collected at log

phase of growth for metabolic profiling of S. cerevisiae strains.

The sample OD was employed to normalise for differences in the number of cells

extracted so that the sample volume lyophilised (and therefore the sample solution

analysed) was equivalent to the same number of cells for all samples. The lowest OD

was 1.6 and the volume lyophilised for this OD was 800 µL. For example, for two

samples with an OD of 1.6 and 2.0 the extraction solution volumes lyophilised were

800 and 640 µL, respectively. An internal standard (0.13 mg/ml; 100 µL) was mixed

with each sample followed by sample lyophilisation for 18 hours.

4.5.1.1 Biological experiment

Metabolic profiling experiment of six randomised replicate samples of each of the

five S. cerevisiae double mutants ∆kgd1∆alt1 (M1), ∆kgd2∆alt1 (M2), ∆lsc1∆alt1

(M3), ∆lsc2∆alt1 (M4) and ∆alt1∆glt1 (M5) together with the control strain (CS)

sample was carried out. Cultivations of S. cerevisiae strains and collection of log-

phase endometabolome samples for GC/MS were carried out as described in section

4.3. However, only four mutant samples (M2, M3, M4 and M5) and CS were avail-

able for GC-MS analysis because mutant M1 showed very poor growth and so was

eliminated from further investigations.
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4.5.1.2 GC/MS analysis of samples

Metabolic profiling of intracellular extracts was performed with the analysis of all

samples in a random order and with intermittent QC samples to allow appropriate

quality assurance processes to be performed. All samples were chemically derivatised

applying a two-stage process of heating the sample with a 20mg/ml O-methoxylamine

in pyridine solution at 40 ◦C for 90 minutes followed by heating the resultant solution

with MSTFA at 40 ◦C for 90 minutes. The samples were analysed using an Agilent

6890 GC and 7673 autosampler coupled to a LECO Pegasus III ToF mass spectrome-

ter using the optimal settings previously determined for S. cerevisiae (O’Hagan et al.,

2005).

The raw data were processed using LECO ChromaTof V2.12 and its associated chro-

matographic deconvolution algorithm with the following settings, baseline 1.0, data

point averaging of 3 and average peak width of 1.8s. Data were exported to a single

excel worksheet to construct a data matrix of chromatographic peak (with associated

metabolite identification, retention time and quantification mass) versus sample and

with the matrix infilled with chromatographic peak areas where a metabolite peak

was detected.

4.6 Polymerase chain reaction (PCR) procedures

In this study, routine PCR procedure (below) was used for amplification of disruption

cassettes from plasmids and PCR based gene deletion, while direct colony PCR was

used for the verification of gene deletion using direct PCR from whole yeast cells.

4.6.1 Routine PCR procedure

PCR reactions were carried out in a total volume of 50 µl. 5 µl of 10X Taq buffer,1 µl

of 10mM dNTPs, 1 µl of forward primer, 1 µl of reverse primer and 0.5 µl of template
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DNA were pipetted into a 0.2 µl PCR tube. Sterile water was used to make the volume

to 49.75 µl. The content of the tube was then thoroughly mixed by vortexing. 0.25 µl

of Taq polymerase was added into the mixture and the tube was gently mixed by

tapping. Master mixes of reagents were carried out routinely to accommodate for

multiple-sample analyses.

Amplification of DNA samples were performed using a thermal cycler machine (Ep-

pendorf MasterCycler Personal). The cycling profile of the PCR programme consisted

of initial denaturation at 95 ◦C for 30 seconds (s), followed by 30 cycles of denaturing

at 95 ◦C for 30 s, followed by annealing at 54 ◦C for 1 minute (min), and extending

at 68 ◦C for 2 min, and then finally, completion of unfinished extension at 68 ◦C for

10 min.

Subsequent modifications of this protocol involved the use of 2 µl of yeast spherob-

last instead of 0.5 µl of template DNA, and the volumes of the other reagents were

readjusted accordingly.

4.6.2 Direct PCR from whole yeast cells

The direct PCR from whole yeast cells using zymolyase (lyticase) method (Ling

et al., 1995) modified by Namjin Chung (http://www.duke.edu/web/ceramide/

protocols/0003.html\) was used in this study.

An average-size yeast colony on a plate was touched with a sterile pipette tip. The

pipette tip was rinsed with 10 µl Zymolyase solution by pipetting up and down three

times. The cell suspension was then incubated at 37 ◦C for 5 minutes. Next, 2 µl of

spheroplasted yeast cells were used instead of 1 µl of template DNA in a PCR reaction

as in the “Routine PCR” protocol above, and the volumes of the other reagents were

readjusted accordingly.
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4.6.3 Agarose gel electrophoresis

Electrophoresis using a 1% agarose (Genetic analysis grade, Fisher Bioreagents,

Fisher Scientific) gel in 300 mL of 1X TAE buffer (containing 40 mM Tris acetate PH

7.7 and 1 mM EDTA) and 10 µl of a 10mg/ml ethidium bromide (Sigma) was used

to detect the DNA products generated by PCR amplification. A comb was placed

at one end of molten agarose gel to create wells into which was loaded samples and

gel was allowed to cast as a thin, rectangular slab. For an electrophoretic run, the

gel was submerged in 1X TAE buffer contained in the Bio-RAD wide mini SUBTM

cell tank. 10 µl of PCR products buffered in 1 µl of loading buffer was loaded into

each gel well. Sizing of DNA bands was achieved by running a DNA marker along

with the PCR products. 1 µl of GeneRulerTM 1 kb DNA ladder (Thermo Scien-

tific Fermentas) buffered in 1 µl of 6X loading buffer (30% glycerol, 50mM EDTA,

0.25% bromophenol blue), and the buffered marker was mixed with 8 µl of sterile

water and then the mixture was loaded into one of the wells. Electrophoresis was

carried out at 100 volts for 45 minutes. Gels were then viewed on transilluminator

and photographed.

4.7 PCR based gene deletion of S. cerevisiae

Primers were designed for PCR-generated disruption cassette consisting of selectable

marker gene (URA3 or LEU2) amplified from from plasmid pBS1539 kl based on

the PCR gene deletion based on the method of (Baudin et al., 1993). S. cerevisiae

double mutants were constructed by disrupting the appropriate genes in yeast single

mutants using a PCR-generated disruption cassette consisting of URA3 selectable

marker gene amplified from from plasmid pBS1539 kl.
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4.7.1 Primer design for S. cerevisiae mutants

This section describes the primer design strategies for constructing 5 S. cerevisiae

double mutants based on EUROSCARF S. cerevisiae single mutants.

Table 4.10 lists the single mutants and the corresponding deletions required to con-

struct S. cerevisiae double mutant strains.

Table 4.10: Parents and single mutants for double mutants. A list of single mutants and their corre-

sponding deletions required for constructingS. cerevisiae double mutants for lysine production.

Construction of double mutants for lysine

No Double mutant required Parent Single Mutant Single deletion required

M1 ∆kgd1∆alt1 ∆kgd1 ∆alt1

M2 ∆kgd2∆alt1 ∆alt1 ∆kgd2

M3 ∆lsc1∆alt1 ∆lsc1 ∆alt1

M4 ∆lsc2∆alt1 ∆alt1 ∆lsc2

M5 ∆alt1∆glt ∆glt ∆alt1

Table 4.11: Parents and double mutants for double mutants. A list of double mutants and their corre-

sponding deletions required for constructing S. cerevisiae triple mutants for lysine production.

Construction of triple mutants for lysine

No Triple mutant required Parent Double Mutant Single deletion required

LT2 ∆kgd2∆alt1∆zwf1 ∆kgd2∆alt1 ∆zwf1

LT4 ∆lsc2∆alt1∆zwf1 ∆lsc2∆alt1 ∆zwf1

LT5 ∆alt1∆glt∆zwf1 ∆alt1∆glt ∆zwf1

4.7.1.1 Description of primers and PCR strategy

The primer design strategy for PCR based deletion using a selectable marker(URA3

selectable marker as example) for the construction of S. cerevisiae double mutants is
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depicted in Figure 4.2.

Figure 4.2: Primer design strategies for PCR based gene deletion. Primer design strategies for PCR

based gene deletion of S. cerevisiae.

The generalised strategy for primer design for gene deletion and confirmation of

results in all gene deletion experiments are described below:

1. YKO primers

UP 45 and DOWN 45 PRIMERS are ORF deletion primer sequences in the

Yeast Knock-Outs (YKO’s) from Saccharomyces Genome Deletion Project (http:

//www-sequence.stanford.edu/group/yeast\_deletion\_project/deletions3.
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html) consisting of primers used to make the MATa mating type strains (BY4741).

UP 45 PRIMERS are 45 bases directly upstream of each yeast open reading

frame, including the ATG while DOWN 45 are the 45 bases directly down-

stream of each yeast open reading frame, including the stop codon. All primers

were analysed for GC content, melting temperature, hairpin loops and dimers;

Artemis viewer was used to visualise the sequences for manual checks and NCBI

Blast searches were also carried out on the primers to ensure that primers bind

to the appropriate regions of the target gene in S. cerevisiae.

2. Extended YKO primers: Extended YKO primers were made by extending each

of the UP 45 and DOWN 45 PRIMERS at the 5’ end with the addition of

between 15 -18 nucleotides, with final lengths ranging from 61 to 68. All primers

were analysed for GC content, melting temperature, hairpin loops and dimers;

Artemis viewer was used to visualise the sequences for manual checks and NCBI

Blast searches were also carried out on the primers to ensure that primers bind

to the appropriate regions of the target gene in S. cerevisiae.

3. Kl-URA3 primers: F URA3 and R URA3 primers were designed by finding 20

bases upstream and 21 bases downstream respectively of the ORF of URA3

gene. A single set of F URA3 and R URA3 primers was valid for gene disrup-

tion in all yeast strains. All primers were analysed for GC content, melting

temperature, hairpin loops and dimers; Artemis viewer was used to visualise

the sequences for manual checks and NCBI Blast searches were also carried out

on the primers to ensure that primers bind to the appropriate regions of the

kl-URA3 gene in pBS1539.

4. URA3 disruption cassette primers: ALT1 Disrupt, KGD2 Disrupt,LSC2 Disrupt,

TDH1 Disrupt,TDH2 Disrupt and TDH3 Disrupt are gene disruption cassette

primers consisting of F URA3 and R URA3 primers added to UP 45 and DOWN 45

PRIMERS at the 3’ end respectively. The lengths of primers range from 84 to

112 nucleotides.
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5. SC-LEU2 primers F LEU2 and R LEU2 primers were designed by finding 22

bases upstream and 19 bases downstream respectively of the ORF of LEU2 gene.

A single set of F LEU2 and R LEU2 primers was valid for gene disruption in all

yeast strains. All primers were analysed for GC content, melting temperature,

hairpin loops and dimers; Artemis viewer was used to visualise the sequences

for manual checks and NCBI Blast searches were also carried out on the primers

to ensure that primers bind to the appropriate regions of the SC-LEU2 gene in

pREP41.

6. LEU2 disruption cassette primers: ZWF1 disrupt are gene disruption cassette

primers consisting of F LEU2 and R LEU2 primers added to UP 45 and DOWN 45

PRIMERS at the 3’ end respectively. The lengths of primers range from 109

to 112 nucleotides.

7. Verification primers: YKO collection primers A and D were obtained from

regions 200 to 400 bases upstream or downstream, respectively, of the open

reading frame. Primers B and C were chosen from regions within the open

reading frame and were designed to give PCR products with sizes of 300-1000

bases when used with A or D, respectively

(a) Positive - Confirmation set 1: A primer: A confirmation primer sequence

R Cassette primer

(b) Positive - Confirmation set 2: D primer: D confirmation primer sequence

F Casette

(c) Positive - Confirmation set 3 A primer: A confirmation primer sequence

D primer: D confirmation primer sequence

(d) Negative - Confirmation set 4: A primer: A confirmation primer sequence

B primer: B confirmation primer sequence

(e) Negative - Confirmation set 5 D primer: D confirmation primer sequence

C primer: C confirmation primer sequence
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4.7.2 pBS1535 and pREP41 disruption cassettes

Gene disruption cassettes were amplified from plasmids pBS1539 kl and pREP41

EGFPC using disruption primer sets (Table 4.5) and Routine PCR (see section “Rou-

tine PCR”).

4.7.3 Yeast transformation with disruption Casssettes

Transformation of yeast was carried out according to modified method of Gietz and

Woods (Gietz and Woods, 2006).

4.7.3.1 Incubation

20 ml YEPD in 125 ml flask was inoculated freshly from a plate and incubated

overnight at 30 ◦C in a shaker incubator (NewBrunswick Scientific I26). The overnight

culture was added to 20 ml fresh YEPD in 125 ml flask to give OD600 = 0.25 and the

diluted culture was incubated with agitation until cells have doubled to OD600 = 0.8

- 1.0.

4.7.3.2 Collection of cells

Cells were harvested in sterile 50ml Falcon tubes by centrifugation (Fischer Scientific

accuSpin Micro17R) at 1,008 g for 5 min at room temperature. Next, cells were

washed twice with 20 ml sterile millipore water, centrifuging as before. The cells

were then resuspend in 1 ml sterile millipore water and then transferred to 1.5 ml

eppendorf tube.

4.7.3.3 Preparation of competent cells

Cells were washed twice with 1 ml fresh TELiAc and collected by centrifuging (Fis-

cher Scientific accuSpin Micro17R) at 1,008 g for 5 minutes. Next, the cells were
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resuspended into a total volume of 1 ml TELiAc to give 2X109 cells / ml.

4.7.3.4 Transformation

Carrier DNA (sheared salmon sperm) was heated in the incubator at 95 ◦C for 10

mins and then snap-cooled in ice. 8 µg of plasmid DNA (disruption cassette) and

10 µl of carrier DNA were pipetted into a 1.5 mL eppendorf tube. Next, 50 µl of

yeast cells (∼ 108cells) were added into the mixture, followed by addition of 300 µl

PEG/LiAc and the tube was vortex-mixed briefly. The transformation mixture was

incubated at 30 ◦C for 30 min, followed by heat-shock of the cells at 42 ◦C for either

2 minutes, 15 minutes or 20 minutes.

4.7.3.5 Plating

The transformation mixture was centrifuged for 5 min at 1,008 g and the supernate

discarded. A second centrifugation was carried out and the remaining PEG/TELiAc

was removed by pipetting. Cell pellet was resuspended in 100 µl of sterile water and

then 90 µl of transformed yeast cells were spread on URA- plates (selective media

plates lacking URA) for 7 days of incubation at 30 ◦C.



Chapter 5

Constraint-based metabolic

engineering

In this chapter, the results of constraint based analysis of iMM904 for the design of

optimised S. cerevisiae strains are presented.

5.1 Results of Phenotypic flux plane analysis

Figure 5.1 shows the iMM904 three-dimensional phenotypic phase plane results for

FBA maximisation of growth for each combination of glucose and oxygen uptake

rates. The surface of the figure show 4 distinct regions of flat planes, indicative of

phenotypically distinct metabolic states. In addition, the surface of the iMM904

three-dimensional phenotypic phase plane indicate the maximum growth rates possi-

ble at various combinations glucose and oxygen uptake rates.

Phase 1 is indicative of no growth as there is insufficient glucose in the system for

ATP maintenance reaction. In phase 2, growth is hampered by the amount of oxygen,

until the point between phase 2 and 3 is reached where maximum growth occurs. The

remaining 2 phases show fermentative characteristics as growth becomes slower due

to insufficient oxygen for glucose oxidation. The production of four of the target

133
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products (lysine, fumaric acid, glutamate and trehalose) in S. cerevisiae is known to

be favourable under aerobic cultivation of the organism, and production of ethanol

in the same organism is more favourable under anaerobic growth.
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Figure 5.1: 3-D Phenotypic phase plane for iMM904. Figure depicts a three-dimensional phenotypic phase

plane for iMM904 model based on three dimensions of glucose uptake rate, oxygen uptake rate and growth rate.

In further characterising the phenotypic space of iMM904 so as to be as close as

possible to experimental conditions, Table 5.1 shows the fluxes to biomass and the

secretory profiles of the target products under four different growth conditions (aer-

obic, microaerobic, oxidative fermentation and anaerobic). This exploratory study

indicated that highest production of biomass occurred in aerobic condition as ex-

pected, and the highest ethanol secretion was under microaerobic condition. There
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are also appreciable amounts of fluxes to lysine in both aerobic and anaerobic con-

ditions. Glutamate did not show any flux value above 0, and fluxes to trehalose

decreased from aerobic to anaerobic conditions. Fluxes to fumaric acid did not follow

any particular pattern.

Table 5.1: Growth rates and product secretion. Growth rates and product secretion for ethanol, lysine,

fumaric acid, glutamate and trehalose.

Fluxes

Condition Biomass Ethanol lysine Fumaric acid Glutamate Trehalose

Aerobic 1.00268 18.58010 0.28697 5.43600 0 0.02300

Microaerobic 0.46309 30.84090 0.13254 0.17400 0 0.01100

Oxidative fermentation 0.63156 16.94870 0.18075 2.76300 0 0.01500

Anaerobic 0.17940 25.78130 0.05135 0 0 0.00210

5.2 Knockout predictions from OptKnock and GDLS

The results of OptKnock and GDLS strain design for production of ethanol are pre-

sented in Table 5.2. Using a full model of yeast iMM904 model and under mi-

croaerobic growth condition, GDLS identified 5 knockouts (glucokinase, hexokinase,

homoserine O-trans-acetylase, phosphoserine transaminase and ribulose 5-phosphate

3-epimerase) predicted to have growth rate of 0.24 and a synthetic flux of 36.6 for

ethanol. In comparison, OptKnock found only one knockout, citrate synthase, pre-

dicted to grow at the rate of 39.3. A knockout list for ethanol production under

anaerobic condition (simulated ammonia,ergosterol and zymosterol in medium) by

GDLS predicted lesser growth rate of 0.140 and ethanol excretion rate of 26.2 than

under microaerobic growth condition. In this case, OptKnock did not converge to any

solution, and hence the knockout list was empty. A knockout list based on a reduced

iMM904 model, including O-acetylhomoserine (thiol)-lyase, Glucokinase, hexokinase,

pyruvate carboxylase and phosphoglycerate dehydrogenase, was generated by GDLS;

knockout set predicted a growth rate of 0.160 and excretory rate of 17.3 for ethanol

under oxidative fermentation.
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Table 5.2: FBA strains for ethanol. Table shows the in silico designed strains for ethanol production using

OptKnock and GDLS. OUR = oxygen uptake rate (mmol gDW−1 hr−1) and GUR = glucose uptake rate (mmol

gDW−1 hr−1). GLU5K = glutamate 5-kinase, GLUK = Glucokinase, HEX1 = hexokinase (D-glucose:ATP), ME2m

= malic enzyme (NADP) mitochondrial and PSERT = phosphoserine transaminase, RPE = ribulose 5-phosphate

3-epimerase, HEX1 = hexokinase (D-glucose:ATP), ME2m = malic enzyme (NADP), mitochondrial, AHSERL2 =

O-acetylhomoserine (thiol)-lyase, PC = pyruvate carboxylase, PGCD = phosphoglycerate dehydrogenase, HSERTA

= homoserine O-trans-acetylase and CSp = citrate synthase.

OptKnock GDLS

Full model, GUR = -18.5,

OUR = -1.5:

Biomass flux - 0.2437

Synthetic flux 39.3872 36.6885

Knockout cost 5 5

Knockouts CSp GLUK, HEX1, HSERTA, PSERT

and RPE

Full model, GUR = -14,

OUR = -0.01, ammonia =

-5, ergosterol = -10, zy-

mosterol = -10:

Biomass flux - 0.1383

Synthetic flux - 26.3054

Knockout cost 5 5

Knockouts 0 GLU5K, GLUK, HEX1, ME2m and

PSERT

Reduced model, GUR = -

14, OUR = -1:

Biomass flux - 0.1608

Synthetic flux - 17.3687

Knockout cost - 5

Knockouts - AHSERL2, GLUK, HEX1,

PC,PGCD

Table 5.3 shows the knockout lists for in silico design of lysine producing S. cerevisiae.

The GDLS list, citrate lyase, pyruvate decarboxylase, oxoglutarate dehydrogenase,

isocitrate synthase and malic enzyme (NADP), mitochondrial, predicts the excretion

of lysine at a rate of 0.0100 and biomass production rate of 0.722 in aerobic condition.

Under the same environmental conditions, the OptKnock solution include 3 knockout

targets (citrate synthase, isocitrate lyase and pyruvate decarboxylase) for achieving a

synthetic lysine flux of 6.5039, but no solution for biomass was indicated. The lack of

biomass flux, and also the presence of large synthetic flux, in the OptKnock solution,

may indicate an unreliable strain knockout strategy for developing lysine producing

strains.
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Table 5.3: FBA strains for lysine. Table shows the in silico designed strains for lysine production using

OptKnock and GDLS. OUR = oxygen uptake rate (mmol gDW−1 hr−1) and GUR = glucose uptake rate (mmol

gDW−1 hr−1). AKGDam = oxoglutarate dehydrogenase,acetyl-CoA synthetase, ME2m = malic enzyme (NADP),

mitochondrial, PYRDC = pyruvate decarboxylase, CSp = citrate synthase, ICL = isocitrate lyase, and PYRDC =

pyruvate decarboxylase.

OptKnock GDLS

Full model, GUR = -10, OUR = -18.5:

Biomass flux - 0.7220

Synthetic flux 6.5039 0.0100

Knockout cost 5 5

Knockouts CSp, ICL and PYRDC KGDam, CSp, ME2m and PYRDC

GDLS and OptKnock generated knockout lists for fumaric acid, trehalose and gluta-

mate under various growth condition which predicted growth rates, but zero excretory

rates for the target products

5.3 Discussion

In the phenotypic phase plane diagram (Figure 5.1), the yeast model iMM904, demon-

strated the metabolic phenotypes useful for simulating in silico design of strains for

target products. Although it is a validated model for metabolic engineering pur-

poses, characterisation of the phenotypic space for secretion of target products was

important. The investigation to find out the right combinations of carbon source

and oxygen led to simulations under 4 different conditions with varying amounts of

glucose (carbon source) and oxygen.

Although, the GDLS knockout set, Glucokinase, hexokinase (D-glucose:ATP), malic

enzyme (NADP) mitochondrial and phosphoserine transaminase, and ribulose 5-

phosphate 3-epimerase, predicted the highest excretion rate of ethanol, the inclu-

sion of both glucokinase and hexokinase just like any other knockout target demands

caution. Glucokinase and hexokinase are two of the three enzymes phosphorylating

glucose in the first irreversible step of glycolysis, and the deletion of the two might

have disastrous consequences.
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The GDLS (Isocitrate lyase, pyruvate decarboxylase, oxoglutarate dehydrogenase,

isocitrate synthase and malic enzyme (NADP)) and OptKnock (citrate synthase,

Isocitrate lyase and pyruvate decarboxylase) proposals for a lysine producing strain

had two exact matches (citrate synthase and pyruvate decarboxylase), and most of the

other enzymes are from the TCA cycle (oxoglutarate dehydrogenase,acetyl-CoA syn-

thetase, malic enzyme (NADP), mitochondrial and citrate synthase,Isocitrate lyase).

Considering the pathway for improving lysine production, succinyl-CoA ligase and

oxoglutarate dehydrogenase, are among two of the TCA cycle enzymes identified by

elementary flux mode analysis for enhanced production of lysine. Oxoglutarate de-

hydrogenase catalyses a crucial step in the TCA cycle and predicted by OptKnock,

GDLS and EFM analysis as a point of intervention for lysine production in S. cere-

visiae. This result further testifies to the credibility of the demonstrated increased

lysine yield, based on EFM-designed strains, one of which included the deletion of

oxoglutarate dehydrogenase. In addition, the close agreements of the three methods

lends more credence to the usefulness of application of mathematical modelling to

strain development.

5.4 Conclusion

A genome scale model (iMM904) of yeast was characterised for production capacities

and in silico phenotype gene deletion analysis for target products. Design of in silico

strains were achieved for enhanced ethanol and lysine production in S. cerevisiae.



Chapter 6

Elementary flux mode analysis

6.1 Introduction

Elementary flux mode analysis was used to study the metabolic network of yeast

grown on glucose under aerobic condition. EFMs were computed for stoichiometric

models derived from the metabolic network of reactions (see section 3.2). The ul-

timate purpose of EFM analysis in this project was to use its results for in silico

phenotype gene deletion analysis, leading to prediction of knockout sets for enhanc-

ing the production of target products in S. cerevisiae. However, before the EFM

data could be applied for this purpose, computational and clustering methodologies

(section 3.2.2) were developed to reduce the dimensionality of the EFM data and also

to cluster EFMs into groups that facilitate a quick and easy use of the EFM data

for metabolic engineering purposes. A method based on regular expression was also

developed to classify EFMs based on pre-defined classes. The results of the stud-

ies involving the computational processing, classification and clustering of the EFM

data, including the in silico gene deletion knockout strategy for lysine production in

S. cerevisiae are presented and discussed in this chapter.

139
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6.2 Making sense of the elementary flux data

6.2.1 EFM analysis results

The results of COPASI computation of EFMs in stoichiometric models used in this

study (Table 6.1) revealed the following numbers of detected EFMs: 325 for M1; 98

for M2; 16 for M3; 3090 for M4; 151 for SM1; 28 for SM2; 361 for S1; 1935 for S2;

2497 for S3; 26 for the Teusink and 69 for Cakir Treh. Most of the EFMs obtained

represent biosynthetic pathways starting from glucose and leading to various amino

acids and other metabolites including ethanol, glycerol, acetate, succinate, malate,

succinate, citrate etc. In addition, the production of these metabolites occurred in a

number of different EFMs. Specifically, Table 6.1 shows the number of EFMs leading

to particular target products. As examples, the production of glutamate by 199

EFMs, lysine by two EFMs, ethanol by 253 EFMs, fumaric acid by 985 EFMs and

trehalose by five EFMs, in M1, SM2, S1, S3 and Teusink models respectively.

Table 6.1: EFM analysis of stoichiometric models. A summary of EFM analysis of stoichiometric models

in terms of reactions, fixed external metabolites and EFM results. Abbreviations of metabolites are explained in a

file (Metabolite abbreviations.xls in Appendix A).

Simulation output

Stoichiometric Model No of EFMs Metabolite (EFMs)

M1 325 TYR (293), PHE (293), ALA (200), GLUT (199), ASP (63)

M2 98 PHE (83)

M3 16 GLUT (1), ASP (1)

M4 3090 SUC (1448), GOH (2899), ETOH (1777)

SM1 151 ETOH (138)

SM2 28 LYS (2)

S1 361 ETOH (253)

S2 1935 ETOH (1405), GLUT (1101)

S3 2497 FUM (985), LYS (814)

Teusink 26 TREH(5)

Cakir TREH 69 ETOH (64)
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6.2.2 Extraction of overall reaction and data matrix

In the first step of the computational extraction methodology (section 3.2.2.2, Figure

3.3), GetOR.java was used to convert the original EFMs into their stoichiometrically

balanced overall equations (“ORs”) and the associated component reactions for each

EFM. Figure 6.1 is an example from a typical output file from GetOR.java program.

EFM number 147 from the stoichiometric model S1 and its corresponding overall

stoichiometry is presented as an example in Figure 6.1.

Elementary Flux mode: 
 

Mode 147 Irreversible 27 * R1:HXT1,2,4:   GLUC_ext = GLUC 

  27 * R6:FBA1:  FRUCDP = GA3P + DHAP 

  10 * R7:TPI1: DHAP = GA3P 

  37 * R8:TDH1,2,3:  GA3P + NADcyt = P13G + NADHcyt 

  37 * R9:PGK1: P13G + ADP = P3G + ATP 

  35 * R10:GPM1,2,3:   P3G = P2G 

  35 * R11:ENO1,2:  P2G = PEP 

  2 * R32:ACO1: CIT = ICIT 

  -12 * R40:FUM1:  FUM = MAL 

  -12 * R41:MDH1: MAL + NADmit = OAC + NADHmit 

  12 * TRA28:FUM:  FUM = FUM_EXT 

  12 * TRA2:ETOH: ETOH = ETOH_EXT 

  17 * TRA4:GOH: GOH = GOH_EXT 

  1 * TRA1:BIOMASS: BIOM -> BIOM_EXT 

  1 * R137:BIOM:  2 * 2OGLR + 2 * PEP + 2 * P3G + 3 * PYR + 2 * OAC -> BIOM 

  8 * R44:ShuttleX NADHcyt + NADmit -> NADcyt + NADHmit 

  2 * R33:IDH1,2: ICIT + NADmit -> 2OGLR + NADHmit + CO2 

  2 * R31:CIT1,3: OAC + ACCOAmit -> CIT 

  16 * R21:PYC1,2: PYR + ATP + CO2 -> OAC + ADP 

  2 * R20:PDA1,2,PDB: PYR + NADmit -> ACCOAmit + NADHmit + CO2 

  12 * R16:ADH1,4G: ACAL + NADHcyt -> ETOH + NADcyt 

  12 * R15:PDC1,2,5: PYR -> ACAL + CO2 

  17 * R14:GPP: GOH3P -> GOH 

  17 * R13:GPD1,2:  DHAP + NADHcyt -> GOH3P + NADcyt 

  33 * R12:PYK1,2G: PEP + ADP -> PYR + ATP 

  27 * R4:PFK1,2G:  FRUC6P + ATP -> FRUCDP + ADP 

  27 * R3:PGI1: GLUC6P -> FRUC6P 

  27 * R2:GLK1,HXKG: GLUC + ATP -> GLUC6P + ADP 

 

Overall reaction:  
 

Mode 147:  27 * GLUC_ext -> BIOM_EXT + 12 * ETOH_EXT + 17 * GOH_EXT + 12 * FUM_EXT 

Figure 6.1: An example of EFM and its overall stoichiometry. Figure shows the reactions (and their

coefficients) involved in the EFM, and also the corresponding overall stoichiometry. Sequence numbers of the reactions

in the EFM are denoted by “R”s followed by the abbreviated reaction names. Abbreviations of metabolites are

explained in a file (Metabolite abbreviations.xls in Appendix A). Abbreviations of enzymes (genes) are explained in

a file (Reactions abbreviations.xls in Appendix A).
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6.2.3 Clustering analysis of EFM data

6.2.3.1 Methodology based on Mclust and Wss approaches

In order to classify the EFMs into groups using hierarchical and kmeans clustering

methods, a methodology was developed (Figure 3.2) which involved Mclust and Wss

prediction and validation of optimal cluster number followed by clustering analysis.

Mclust (a contributed package in R stastistical package) is a model-based approach

which apply maximum likelihood estimation and Bayes criteria to identify the most

likely model and number of clusters. Wss is within groups sum of squares. Both

Mclust and a plot of the within groups sum of squares by number of clusters were

used to find the optimal number of clusters.

Mclust and Wss methods for predicting the optimal number of clusters (k) were

tested. Table 6.2 shows the optimal number of clusters predicted by mclust model

clustering and within-group sum of squares for the Teusink model and models M1,

M2, M3 and M4. For the Teusink model, mclust indicated two prediction models for

the number of clusters (Table 6.2) out of which the best was a model with diagonal,

equal volume and shape with 8 components, and the second best model contained 3

components. A plot of the within-group sum of squares carried out for the range of

1 to 10 cluster solutions suggested the best optimal number of clusters as either 2, 3,

5, 6, 7 or 8 clusters (Table 6.2) for the Teusink model.

Table 6.2: Mclust and Wss. Prediction of number of clusters by two methods - Mclust clustering method

and within-group sum of squares on different stoichiometric models with EFMs as observations. Number of clusters

suggested by second best model are in parenthesis. In addition, the numbers separated by comma represent the

number of EFMs in a cluster group.

Stoichiometric models and cluster solutions

Teusink M1 M2 M3 M4

mclust 8 (3) 9 9 9 8

Wss 2,3,5,6,7,8 2,3,6 2,8 8 4,6
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As Mclust model was able to suggest a more specific k value (8) for clustering the

Teusink model than the Wss method (Table 6.2), hence the hierarchical clustering of

the Teusink model was carried out by “cutting” the dendrograms based on k = 8 as

predicted by the Mclust model.

6.2.3.2 Metrics and methods for Hierarchical clustering analysis

The best combination of metrics and methods for hierarchical clustering of the EFM

data was investigated by carrying out hierarchical clustering analyses involving dif-

ferent metrics (Spearman, Pearson’s correlation, and Euclidean) and distance linkage

methods (Ward, Single, Complete and Average) on the Teusink data matrix. Table

6.3 indicates that the combination of Euclidean metrics with either “complete” or

“single” method gave the same pattern of 8 clusters (9 1 5 5 2 1 2 1) on the Teusink

glycolysis model. Figure 6.2 is a dendogram showing the 8-cluster solution using Eu-

clidean metrics and complete method. Hence, further hierarchical clustering analyses

on the data matrices from EFM datasets M1 - M4 were based on Euclidean metrics

and the Complete method.
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Figure 6.2: Dendogram of hierarchical clustering of EFMs. Dendogram of an 8-cluster solution of hierar-

chical clustering of EFMs in Teusink model.

6.2.3.3 k-means against hierarchical clustering of EFM data

Hierarchical clustering (using the Euclidean metric and complete method) and k -

means clustering were carried out on the EFM data from the Teusink model and the

stoichiometric models M1 - M4. Table 6.4 summarises the results of the compar-

isons of the EFMs in the different cluster groups based on different cluster solutions:

Teusink (8 clusters), M1 (9 clusters), M2 (9 clusters), M3 (9 clusters), and M4 (8

clusters). It is apparent from Table 6.4 that the two clustering methods, k -means

and agglomerative hierarchical clustering, yielded different clustering patterns when

data from the four different models were subjected to clustering analyses by these two

methods. Partitioning by the hierarchical method for both small and large datasets

(M1 - M4) seems to be characterised by lumping of most EFM members into one
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group, leaving only a few (one EFM each in 6 cluster of M3)in the remaining clus-

ters. k -means clustering partition large numbers into one group also, especially in

M4.

Figure 6.3 shows a clustplot of 8 cluster solutions against first two principal com-

ponents for the Teusink model based on k-means clustering, showing partitioning of

26 elementary flux modes into 8 cluster groups and cluster numbers appear in either

red, blue or purple colour.

Figure 6.3: Clustplot of 8 cluster solutions. Clustplot of 8 cluster solutions obtained by plotting the first

two principal components on the cluster solutions for the Teusink model. Cluster numbers appear in blue, red or

purple colour.
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6.2.3.4 Methodology involving clValid validation

This section reports the findings from “clValid” comparisons of 7 different clustering

algorithms based on EFM matrix from from stoichiometric model S1 (Table 6.1) cor-

responding to only EFMs producing both ethanol and biomass (i.e, EFM matrix S1a).

As EFM matrix S1a was fairly large, the strategy in “route 2” of the methodology

illustrated in Figure 3.9 was applicable. Hence, the results of clustering EFM matrix

S1a (contains rows of 64 EFMs and a subset of EFMs with glucose as substrate and

also producing ethanol and biomass) using 7 different methods, are presented here.

The optimal numbers of clusters were determined by evaluating 2 to 10 clusters, and

internal validation of cluster solutions was achieved using Dunn’s index and Silhou-

ette. Table 6.5 depicts the optimal numbers of clusters suggested and validated by

Dunn’s index and Silhouette in clValid package for EFM matrix S1a and also for the

Teusink matrix which was added for comparisons.

Table 6.5: Comparisons of seven clustering methods. Comparisons of seven different clustering algorithms

and the optimal number of clusters suggested by clValid for clustering EFMs in S1 and the Teusink models.

Agglomerative Hierarchical Diana K-Means PAM Clara Fanny Model (Mclust)

Teusink 10 10 10 10 10 - 8

EFM dataset S1a 4 4 4 4 4 3 5

Tables 6.6 - 6.12 show the cluster solutions as result of Diana, Clara, Model, Kmeans,

Fanny, PAM and Agglomerative Hierarchical clustering, respectively, of EFM matrix

S1a.
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Table 6.6: 4-cluster solution using Diana clustering method. A summary of a 4-cluster solution from

Diana clustering of EFM matrix S1a, in terms of external metabolites common (core members) and not common

(additional/Non-core members) to each cluster, and also the average molar yields of ethanol produced by EFMs in

each cluster. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 57 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.406

2 4 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-ALA EXT; L-LYS EXT;

SUC EXT

None 0.258

3 2 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-ALA EXT; L-LYS EXT;

SUC EXT

None 0.258

4 1 BIOM EXT; ETOH EXT; FUM EXT;

GOH EXT; L-LYS EXT

None 0.413

Table 6.7: 4-cluster solution using Clara clustering method. A summary of a 4-cluster solution from

Clara clustering of EFM matrix S1a, in terms of external metabolites common (core members) and not common

(additional/Non-core members) to each cluster, and also the average molar yields of ethanol produced by EFMs in

each cluster. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 31 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.392

2 7 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-LYS EXT

FUM EXT; L-ALA EXT; L-GLUT EXT 0.352

3 19 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-LYS EXT

0.449

4 7 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT;

SUC EXT

0.280
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Table 6.8: hierarchical 4 cluster solutions for model M1. A summary of a 4-cluster solution from model-

based (Mclust) clustering of EFM matrix S1a, in terms of external metabolites common (core members) and not

common (additional/Non-core members) to each cluster, and also the average molar yields of ethanol produced by

EFMs in each cluster. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix

A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 26 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLUT EXT

0.360

2 8 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT; L-

GLUT EXT

0.359

3 24 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT;

L-ASP EXT; L-GLN EXT; L-LYS EXT;

SUC EXT

0.472

4 6 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-ALA EXT; L-LYS EXT;

SUC EXT

None 0.258

Table 6.9: 4-cluster solution using k-means clustering method. A summary of a 4-cluster solution from

k-means clustering of EFM matrix S1a, in terms of external metabolites common (core members) and not common

(additional/Non-core members) to each cluster, and also the average molar yields of ethanol produced by EFMs in

each cluster. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 7 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT;

SUC EXT

0.280

2 7 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-LYS EXT

FUM EXT; L-ALA EXT; L-GLUT EXT 0.352

3 19 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-LYS EXT

0.449

4 31 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.392
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Table 6.10: 4-cluster solution using Fanny clustering. A summary of a 4-cluster solution from Fanny cluster-

ing of EFM matrix S1a, in terms of external metabolites common (core members) and not common (additional/Non-

core members) to each cluster, and also the average molar yields of ethanol produced by EFMs in each cluster.

Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 25 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.345

2 10 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-LYS EXT

0.471

3 13 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT; L-

GLUT EXT; SUC EXT

0.301

4 16 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLUT EXT; L-LYS EXT

0.491

Table 6.11: 4-cluster solution using PAM clustering methodA summary of a 4-cluster solution from

PAM clustering of EFM matrix S1a, in terms of external metabolites common (core members) and not common

(additional/non-core members) to each cluster, and in terms of the average molar yields of ethanol produced by the

EFMs in each cluster. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in Appendix

A).

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 50 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.414

2 7 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-LYS EXT

FUM EXT; L-ALA EXT; L-GLUT EXT 0.352

3 4 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT;

SUC EXT

0.292

4 3 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-ALA EXT; L-LYS EXT;

SUC EXT

None 0.264
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Table 6.12: 4-cluster solution using agglomerative hierarchical clustering. A summary of a 4-cluster

solution from agglomerative hierarchical clustering of EFM matrix S1a, in terms of external metabolites common (core

members) and not common (additional/non-core members) to each cluster, and in terms of the average molar yields

of ethanol produced by the EFMs in each cluster. Abbreviations of metabolites are explained in a file (Metabolite

abbreviations.xls in Appendix A)

Cluster No of

EFMs

Common/core metabolites Non-core members Ethanol

yield

1 50 BIOM EXT; ETOH EXT; GOH EXT CO2 EXT; FUM EXT; L-ALA EXT; L-

ASP EXT; L-GLN EXT; L-GLUT EXT;

L-LYS EXT; SUC EXT

0.414

2 7 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-LYS EXT

FUM EXT; L-ALA EXT; L-GLUT EXT 0.352

3 6 BIOM EXT; CO2 EXT; ETOH EXT;

GOH EXT; L-ALA EXT; L-LYS EXT;

SUC EXT

None 0.258

4 1 BIOM EXT; ETOH EXT; FUM EXT;

GOH EXT; L-LYS EXT

None 0.413

The results of Diana and Hierarchical methods (Tables 6.6 and 6.12) are similar

in that most of the EFMs are partitioned into cluster 1 (with 50 or more), and

cluster 4 in either case is made up of only one member (EFM number 359) with

ethanol yield of 0.413. The “outlier” EFM is interesting since it is a high ethanol

producing mode, compared with the all other EFMs; this EFM requires glutamine

as a co-substrate and in addition to ethanol, produces biomass and by-products

(lysine, fumaric acid, ethanol and glycerol). The reason for the agreements in the

Hierarchical and Diana 4-cluster solutions may be because Diana clustering method

is an example of divisive hierarchical approach to clustering which is implemented by

dividing clusters until each cluster contain a single observation, while agglomerative

hierarchical is a similar algorithm but works from the opposite direction. Even though

the classification of EFM 359 into one cluster by hierarchical and Diana clustering

methods may seem interesting, this may prove to be of limited use since further

reduction of the 50 EFMs in cluster 1 may be required to reveal further the intrinsic

groupings and characteristics of the EFM data. To achieve this, it is necessary to

“cut” the tree further, followed by re-clustering, and even then there is no guarantee

how many of the other EFMs would be redistributed to yield more meaningful clusters

for biotechnological purposes.
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Tables 6.7 and 6.9 show the same 4-cluster solutions (31, 7, 19, 7 and 7, 7, 19, 31

respectively) for the 64 EFMs in EFM S1a by Clara and Kmeans algorithms. The

4-cluster solutions (26, 8, 24, 6) obtained from Model clustering algorithm (Table

6.8) are also similar to those of Clara and Kmeans. The PAM partitioning of the

EFM data is similar to that of Hierarchical method in two clusters of 50 and 7 EFM

members (clusters 1 and 2 respectively) with ethanol molar yields of 0.414 and 0.352

respectively.

Out of the 7 clustering methods tested, only PAM-based 4-cluster solutions for EFM

dataset S1a (Table 6.11) showed cluster separations based on different “core metabo-

lites” as follows: cluster 1 (biomass, ethanol and glycerol), cluster 2 (biomass, carbon

dioxide, ethanol, glycerol and lysine), cluster 3 (biomass, ethanol, glycerol and ly-

sine) and cluster 4 (biomass, carbon dioxide, ethanol, glycerol, alanine, lysine and

succinate). The cluster solutions for the 6 other clustering methods (Tables 6.6 - 6.10

and 6.12) indicated that more than one cluster shared the same “core metabolites”.

In addition, the cluster mean yields for ethanol in the in PAM-based cluster solutions

were more representative of ethanol yields for each EFM than cluster mean yields

from other clustering algorithms. These findings may suggest that cluster separation

was better using PAM than with the other 6 clustering algorithms. Clusters were fur-

ther distinguished from each other based on the types of metabolites constituting the

“additional/non-core membership of each cluster, which indicates the by-products

associated with the EFMs in each cluster. Furthermore, if ETOH had been chosen

as the main product, a core member of every cluster, the information in the “core

metabolites” or “additional/non-core members” column would be instructive as to

the different types of potential by-products produced by EFMs from different clusters.

It can be concluded that from the analysis of the results of comparisons of 7 cluster-

ing methods for the clustering of EFM data that only the PAM clustering algorithm

partitions the EFM data into clusters with similar substructures distinguishable ac-

cording to different “core memberships” (ethanol, biomass and either glycerol or

amino acids), while also permitting opportunity to consider the types of metabolites
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constituting the “additional/non-core membership” of each cluster. Furthermore,

PAM clustering does not partition the EFM data into a cluster with a single mem-

ber and PAM Cluster mean yields of the target metabolite were more reliable than

the cluster mean yields from the other clustering methods. Hence, PAM clustering

method allows the interpretation of the EFM classes to find biological meaning ap-

plicable to gene deletion phenotype analysis. Henceforth, PAM clustering algorithm

was judged to be the most suitable algorithm for clustering the EFM data.

6.2.4 Complexity reduction in EFM data

6.2.4.1 Computational extraction of high-dimensional variables

The effects of dimensionality reduction in EFM dataset S1a was investigated by

comparing the results of PAM clustering of EFM dataset S1a reported (Table 6.11)

with the results of PAM clustering of EFM dataset S1b 6.13. EFM dataset S1a

was computed from model S1, and it comprises of all EFMs leading from glucose to

the external metabolite of interest (ethanol) and biomass; Ethanol and biomass are

regarded as the first and second biological variables of interest, respectively, for data

complexity reduction in this case. EFM dataset S1b, also computed from model S1,

comprises of all EFMs leading from glucose to the external metabolite of interest

(ETOH), whether or not they also produce biomass; biomass is not regarded as

the second biological variable of interest for data complexity reduction in this case.

Validation based on Dunn’s index suggested a 2-cluster partitioning of EFM dataset

S1b using PAM and agglomerative hierarchical clustering.

As shown in Table 6.13, 254 EFMs were partitioned into two clusters of 243 EFMs

with ethanol as the criterion for core-membership, and 11 EFMs with ethanol, glycerol

and lysine as the criteria for core-membership, with cluster mean yields for ethanol

of 0.481 and 0.305 respectively. The usefulness of these results for biotechnological

purposes is limited as the EFMs have been partitioned into only two clusters. This

ineffective data partitioning is reflective of inadequate data reduction as the structures
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of the EFM dataset S1b was not sufficiently exposed for effective partitioning using

clustering analysis. The information contained in the additional/core memberships

of this 2-cluster solution suggest that further partitioning could have been effected

by using another member such as biomass.

Table 6.13: 2-cluster solution using PAM clustering method. A summary of a 2-cluster solution using

PAM clustering for EFM dataset S1b. EFM clustering results show external metabolites that are common (core

members) and the external metabolites that are not common (additional/non-core members) to each cluster and the

average molar yields of ethanol produced by EFMs in each cluster. Abbreviations of metabolites are explained in a

file (Metabolite abbreviations.xls in Appendix A)

Clusters No of

EFMs

Core members Additional/Non-core members ETOH

yield

1 243 ETOH EXT BIOM EXT; CO2 EXT; FUM EXT;

GOH EXT; L-ALA EXT; L-ASP EXT; L-

GLN EXT; L-GLUT EXT; L-LYS EXT;

SUC EXT

0.481

2 11 ETOH EXT; GOH EXT; L-LYS EXT BIOM EXT; CO2 EXT; FUM EXT; L-

ALA EXT; L-GLUT EXT; SUC EXT

0.305

By way of comparison, the results of the 4-cluster partitioning of EFM dataset S1a

using PAM (Table 6.11) is more useful for making biotechnological decisions than the

results of the 2-cluster partitioning of EFM dataset S1b using the same clustering

method (Table 6.13). Table 6.11 indicates that there was a better separation of

clusters in a PAM-based 4-cluster solution for EFM dataset S1a. In addition, all

clusters had ETOH and BIOM as part of core members, but were distinguished from

each other based on the rest of the metabolites constituting the core membership of

each cluster. Clusters were further distinguished from each other based on the cluster

ethanol mean yields which are representative of the constituent EFMs.

6.2.4.2 Regular expression method

Figure 6.4 depicts an example of output of ranked EFM “ORs” (reduced to fit page)

as a result of pattern analysis on S2 dataset (containing 1935 EFM “ORs”) to find

the best EFMs for ethanol.
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Group 1: (No. of EFMs = 0)

No EFM Product Yield Biomass Yield

None

Group 2: (No. of EFMs = 0)

No EFM Product Yield Biomass Yield

None

Group 3: (No. of EFMs = 2)

No EFM Product Yield Biomass Yield

53 23 * GLUC_ext -> BIOM_EXT +

4 * FUM_EXT + 12 * ETOH_EXT +

17 * GOH_EXT + 8 * CO2_EXT 0.521739 0.043478

55 27 * GLUC_ext -> BIOM_EXT +

12 * FUM_EXT + 12 * ETOH_EXT +

17 * GOH_EXT 0.444444 0.037037

Group 4: (No. of EFMs = 0)

No EFM Product Yield Biomass Yield

None

Group 5: (No. of EFMs = 765)

No EFM Product Yield Biomass Yield

307 235 * GLUC_ext + 180 * L-GLN_EXT +

120 * ACAL_EXT -> 100 * L-ALA_EXT +

90 * L-LYS_EXT + 5 * BIOM_EXT +

120 * ETOH_EXT + 205 * GOH_EXT +

260 * CO2_EXT + 80 * L-GLUT_EXT 0.510638 0.021277

315 355 * GLUC_ext + 180 * L-GLN_EXT ->

100 * L-ALA_EXT + 90 * L-LYS_EXT +

5 * BIOM_EXT + 120 * ETOH_EXT +

325 * GOH_EXT + 380 * CO2_EXT +

80 * L-GLUT_EXT 0.338028 0.014085

Figure 6.4: An example of output of ranked and classes of EFM “ORs”. Figure depicts an example of

output of ranked and classes of EFM “ORs” (reduced) as a result of pattern analysis to find the best EFMs for lysine.

This example was based on finding all EFM “ORs” which produce ethanol according

to the class specifications in section 3.2.3. The outputs (Figure 6.4) are arranged

according to the user’s specifications of the defined classification implemented in the

algorithm. Out of 1935 EFM “ORs”, 767 were ranked into two groups of 2 and 765

respectively. There were no EFMs “ORs” ranked into the first and second groups. In

order for EFM “ORs” to be ranked in groups 1 and 2, it is required that the EFMs

consume either only glucose or glucose together with ammonia, respectively, and

are both producers of target metabolite, ethanol and biomass, with no by-products.

However, two EFM “ORs” (EFM No 53 and EFM No 55) were placed into group

3; they both consume glucose as the main substrate, and produce ethanol, biomass,
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fumaric acid and glycerol. The two modes produce the same amount of biomass

(molar yield = 0.04), but the molar yield of ethanol (0.52) produced in EFM No 53

was higher than in EFM No 55 (0.04).

In Group 5, the EFMs consume other substrates (fumaric acid, acetaldehyde and

amino acids) in addition to glucose as the main substrate, and they produce other

products, apart from ethanol. The two EFMs (EFM No 53 and EFM No 55) in group

3 are attractive from the biotechnological point of view. The EFMs in groups 5 are

less attractive in that since they consume other metabolites in addition to glucose

and also produce more by-products.

6.3 EFM modelling for strain development

6.3.1 Biological interpretation of a medium EFM data

In this section, a medium-sized EFM dataset was used to illustrate how the method-

ology involving cValid can be used to accomplish the tasks of finding, interpreting

and using the patterns revealed by clustering analyses of EFMs for aiding important

decisions that can facilitate in silico gene deletion phenotype analysis for ethanol

production in yeast.

Data extraction for biomass and ethanol yielded 767 out of 1935 EFMs contained

in the original EFM data from stoichiometric model S2 (Table 6.1), and these were

included in EFM dataset S2a. The extracted EFMs represent 60.4% reduction from

the thousands of EFMs in the original EFM data. Validation based on Dunn’s in-

dex and silhouette suggested a 5-cluster partitioning of EFM dataset S2a using the

PAM clustering method. Table 6.14 shows that there were similarities in the core

memberships of clusters 1 and 2 (based on biomass and ethanol), clusters 3 and 5

(biomass, ethanol and lysine), and only cluster 1 was partitioned based on biomass,

ethanol, glycerol and lysine. However, the 5 EFM clusters indicate different mean

ethanol yields. Clusters without glycerol in their core membership (clusters 1, 2, 3
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and 5) have cluster mean ethanol yield of greater than 1.0. Although, the non-core

members for clusters 1, 2, 3 and 5 indicate that some of the constituent members

produce glycerol. EFMs in cluster 4 had the lowest cluster mean ethanol yield of

0.345. The EFMs in all clusters produce biomass, ethanol and also by-products such

as glycerol, glutamate, succinate, lysine, aspartate and alanine.

Table 6.14: PAM clustering for EFM data set S2a. A summary of a 5-cluster solution using PAM clustering

for EFM data set S2a. EFM clustering results show external metabolites that are common (core members) and the

external metabolites that are not common (additional/non-core members) to each cluster and the average molar

yields of ethanol produced by EFMs in each cluster. Abbreviations of metabolites are explained in a file (Metabolite

abbreviations.xls in Appendix A)

Clusters No of

EFMs

Core members Additional/Non-core members ETOH

Yield

1 404 BIOM EXT; ETOH EXT CO2 EXT; FUM EXT; GOH EXT; L-

ALA EXT; L-ASN EXT; L-ASP EXT; L-

GLN EXT; L-GLUT EXT; L-LYS EXT;

SUC EXT

1.501

2 212 BIOM EXT; ETOH EXT CO2 EXT; FUM EXT; GOH EXT; L-

ALA EXT; L-ASN EXT; L-ASP EXT; L-

GLUT EXT; L-LYS EXT; SUC EXT

1.877

3 110 BIOM EXT; ETOH EXT; L-LYS EXT CO2 EXT; FUM EXT; GOH EXT; L-

ALA EXT; L-ASN EXT; L-ASP EXT; L-

GLUT EXT; SUC EXT

1.918

4 19 BIOM EXT; ETOH EXT; GOH EXT; L-

LYS EXT

CO2 EXT; FUM EXT; L-ALA EXT; L-

GLUT EXT; SUC EXT

0.345

5 22 BIOM EXT; ETOH EXT; L-LYS EXT FUM EXT; GOH EXT; L-ALA EXT; L-

ASN EXT; L-ASP EXT; SUC EXT

2.133

Inspection of the overall stoichiometry of the EFMs partitioned into clusters clusters 1

- 5 revealed that, in addition to glucose as the main substrate, other metabolites were

consumed in most of the EFMs in the different clusters. Acetaldehyde was used as the

co-substrate by most EFMs in cluster 1, while glutamine was consumed in addtion

to glucose in the EFMs parttioned into cluster 4. A combination of co-sustrates,

glutamine and acetaldehyde, glutamine, alanine and acetaldehyde, was used in most

of the EFMs in clusters 2, 3 and 5, respectively. The overall stoichiometric equations

of EFM number 53, EFM number 49 and EFM number 284 are shown in Table 6.15 as

examples from clusters 1, cluster 2 and cluster 3, respectively. Overall stoichiometry

of the EFMs in cluster 1 reveals that 2 (EFM numbers 53 and 55) out of 404 EFM

members of this cluster produce ethanol and glycerol requiring either only glucose
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as substrate. EFM 53 and 55 requires only glucose and produces ethanol (0.52 and

0.44 molar yield respectively) and biomass (0.04 and 0.04 molar yield respectively).

Although the molar ethanol yields from these two EFMs are much lower than the

mean cluster ethanol yield of 1.50.

Table 6.15: “ORs” for EFMs 53, 49 and 284. Table depicts the overall stoichiometry and the molar yields of

ethanol for EFMs 53, 49 and 284. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls

in Appendix A)

EFM Number Overall reaction Molar yield

(and Cluster) (Ethanol)

53 (Cluster 1) 23 * GLUC ext → BIOM EXT + 4 * FUM EXT + 12 * ETOH EXT + 17 * GOH EXT

+ 8 * CO2 EXT

0.52

49 (Cluster 2) 93 * GLUC ext + 36 * L-GLN EXT + 108 * ACAL EXT → 18 * L-LYS EXT + 36 *

L-ASP EXT + 9 * BIOM EXT + 108 * ETOH EXT + 45 * GOH EXT

1.16

284 (Cluster 3) 255 * GLUC ext + 130 * L-GLN EXT + 10 * FUM EXT → 80 * L-ALA EXT + 60 *

L-LYS EXT + 5 * BIOM EXT + 80 * ETOH EXT + 235 * GOH EXT + 260 * CO2 EXT

+ 60 * L-GLUT EXT

0.31

The EFM overall stoichiometry permits the ranking of EFMs into groups that facili-

tate biological interpretation and important biotechnological decisions. It is possible

to rank the EFM overall stoichiometry according to either (a) EFMs which require

only glucose as substrate for production of ethanol, (b) EFMs which require a second

substrate in addition to glucose for production of ethanol, (c) EFMs which produce

specific by-product(s) in addition to ethanol. Hence, the ranked EFMs enables the

best decision process and prevents choosing members of clusters 1 - 5 simply because

these EFMs produce the highest molar ethanol yield. In essence, the phenotypic

solution space represented by the EFMs requiring co-substrates is not biologically

feasible without the external addition of the co-substrate as indicated in the overall

stoichiometry. The biochemical routes requiring only glucose are cheaper options

than those with a requirement for organic materials in terms of production cost. The

production of ethanol in EFM 53 and 55 appears to be particularly attractive options

considering the lower cost of the required substrate, and also they are biologically

realisable routes producing biomass and an ethanol. For the above reasons, EFMs 53

and 55 are good candidates for in silico phenotype deletion studies.
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As stated earlier, EFMs can be considered as a minimal set of enzymes necessary for

the production of specic metabolites that operate at steady state, and represent all the

capabilities of a metabolic network, that is, all the phenotypes that can be expressed

in the organism. Hence, EFM analysis permits the design of in silico phenotype gene

deletion studies. Using EFM 53 as an example, a list of potential gene knockout

targets should include all reactions not in EFM 53, but found in the other EFMs

of clusters 1 - 5. These reactions are then carried through in silico gene knockout

simulations based on the iterative steps of (1) deletions of single reaction (gene) or

multiple reactions (genes) from the reaction network followed by (2) EFM analysis

in COPASI, until the EFM results show that only EFM 53 remains as a biochemical

route. Ranking the reactions (genes) used for knockout simulations according to

their effectiveness in lowering the number of EFMs will lead to identication of the

best target gene knockouts for improving the yield of ethanol.

6.3.2 In silico gene knockout simulations

6.3.2.1 Single gene deletion for lysine

Table 6.16 shows that only 2 modes were left from 2 rounds of extractions of EFM

subsets from the 68 EFMs contained in the original EFM set (E0) of model SM2

(Table 6.1 using “Route 1” of the methodology illustrated in Figure 3.9).

Table 6.16: EFM subsets from the original EFMs for model SM2. The results of computational extrac-

tions EFM subsets from the original EFMs for model SM2. Table depicts the number of EFMs left after a two-stage

computational extraction of EFM subsets from the original EFM dataset

EFM set Number of Modes

Original set (E0) 28

After First extraction (subset 1) 24

After Second extraction (subset 2) 2
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Table 6.17: “ORs” for EFMs 11, 17 and 28. Table depicts the overall reactions and the molar yields of

lysine for modes 11, 17 and 28. Abbreviations of metabolites are explained in a file (Metabolite abbreviations.xls in

Appendix A).

Mode Overall reaction Molar yield

17 4 * NH3 ext + 78 * GLUC ext → 34 * CO2 EXT + 12 * FUM EXT + 40 * ETOH EXT

+ 59 * GOH EXT + 3 * BIOM EXT + 2 * L-LYS EXT

0.03

28 4 * NH3 ext + 95 * GLUC ext → 46 * FUM EXT + 40 * ETOH EXT + 59 * GOH EXT

+ 3 * BIOM EXT + 2 * L-LYS EXT

0.02

11 8 * NH3 ext + 37 * GLUC ext → 26 * CO2 EXT + 12 * FUM EXT + 20 * ETOH EXT

+ 28 * GOH EXT + 4 * L-LYS EXT

0.1

Further examination of the overall reactions of these two modes (numbers 17 and 28,

Table 6.17) show that they are both characterised by glucose as substrates in reactions

where two biological objectives of interest, lysine and biomass, are produced, albeit

along with by-products (ethanol, fumaric acid and glycerol). Table 6.17 also shows

that in the overall reactions of mode number 11 (not part of EFMs from subset 2, but

part of subset 1), glucose is the substrate and only one of the biological objectives

of interest, lysine, is realised in the biochemical route. Although mode 11 has higher

lysine yield (0.1) than modes 17 and 28, the lack of production of biomass indicates

no growth and hence the possibility that this mode is not feasible.

Mode 17 was chosen for further in silico work towards improving the yield of lysine

in yeast since the two biological objectives, lysine and biomass, are realisable in this

biochemical route, and also it requires slightly less amount of the main substrate,

glucose, than mode 28.

Table 6.18 shows that the best single gene knockouts are R71:ALT2, R36:KGD1,2,

R37:LSC1,2 and R113:GLT1 as a result of in silico simulation of the effects of genetic

modification based on EFM analysis after the deletion of each of the 17 candidate

single gene deletants for enhancing production of lysine in S. cerevisiae. The points of

genetic intervention and the resultant flow of flux are shown in Figure 6.5. The limited

in vivo effectiveness of these single deletants (R71:ALT2, R36:KGD1,2, R37:LSC1,2

and R113:GLT1) can be gauged from the numbers of operational EFMs left (32 - 34)

after each deletion, far from the expected result of only 1 EFM.
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Table 6.18: In silico single gene deletion analysis for lysine. Results of in silico single gene deletion

analysis based on model SM2 for improved lysine production. Table depicts the effectiveness of the deletion of a

reaction (gene) on the network of reactions as “No of reactions left”. The more effective a gene deletion, the less

the number of EFMs, which in turn indicates the degree of elimination of the competing pathways. Abbreviations of

enzymes (genes) are explained in a file (Reactions abbreviations.xls in Appendix A).

Deleted reaction (gene) No of EFMs left

(Original EFM total = 28)

R23:ZWF1 48

R24:SOL1,2,3,4 48

R25:GND1,2 48

R26:RKI1 48

R27:RPE1 48

R28:TKL,TKI 48

R29:TAL1 48

R30:TKI,TKL 48

R33:IDH1,2 48

R36: KGD1,2 34

R37:LSC1,2 34

R67:ARO8a 49

R68:ARO9a 49

R69:ARO8b 49

R70:ARO9b 49

R71:ALT1 32

R113:GLT1 34
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Figure 6.5: A network of reactions with points of intervention for flux redirection. A network of

reactions showing the points of intervention for redirecting carbon flux towards increasing the yield of lysine based

on in silico single gene knockouts. R36 is reaction number 36 representing the genes for the enzymes KGD1 and

KGD2; R37 is reaction number 37 representing the genes for the enzymes LSC1 and LSC2; R71 is reaction number 71

representing the gene for the enzymes ALT1 and R113 is reaction number 113 representing the gene for the enzyme

GLT1. Abbreviations of enzymes (genes) are explained in a file (Reactions abbreviations.xls in Appendix A). Each

of the numbers in blue represents the flux value of a reaction.

6.3.3 Double gene deletion for lysine

After 136 double-combinations of genes were simulated in silico for the effects of

double-gene deletion, the combinations of R36 X R71 (KGD1/KGD2 X ALT1), R37

X R71 (LSC1/LSC2 X ALT1) and R71 X R113(ALT1 X GLT1) were the best in

terms of the number of operational EFMs left, 18, 18 and 22, respectively. Although

it was not possible to carry out in silico simulation of the double combinations of

isoenzymes with the model, it was judged best to include the following two double
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combinations to the set obtained by simulation: KGD1 X KGD2 and LSC1 X LSC2.

Hence, in order to account for the isoenzymes of R36 and R37 for the purpose of

wet experiment validation of mutant strains, the following 5 double deletants were

chosen: KGD1 X ALT2, KGD2 X ALT1, LSC1 X ALT1, LSC2 X ALT1 and ALT1

X GLT1. Lysine yields are expected to be higher in these yeast double mutants than

in the yeast single mutants.

6.3.3.1 Triple gene deletion for lysine

Triple knockout strategy involving in silico simulations of the effects of the triple

deletions based on “crossing” one gene more with each of the best double deletants

(section 6.3.3) resulted in the best triple mutants as follows:

1. R71:ALT2 R36:KGD1,2 R23:ZWF1

2. R71:ALT2 R37:LSC1,2 R23:ZWF1

3. R71:ALT2 R113:GLT1 R23:ZWF1

Table 6.19 indicate that the in silico simulated genetic effects of these triple deletion

are the closest to the expected result as only 2 operational modes are left, and it was

anticipated that these outstanding effects will be replicated experimentally.
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Table 6.19: In silico triple gene deletion analysis. Results of in silico triple gene deletion analysis based

on model SM2 for improved lysine production. Table depicts the effectiveness of the deletion of a reaction (gene) on

the network of reactions as “No of reactions left”. The more effective a gene deletion, the less the number of EFMs,

which in turn indicates the degree of elimination of the competing pathways. Abbreviations of enzymes (genes) are

explained in a file (Reactions abbreviations.xls in Appendix A).

Deleted triple reactions (genes) No of EFMs left (Original EFM total = 28)

R71:ALT2 R36:KGD1,2 R23:ZWF1 2

R71:ALT2 R37:LSC1,2 R23:ZWF1 2

R71:ALT2 R113:GLT1 R23:ZWF1 2

R71:ALT2 R36:KGD1,2 R33:IDH1,2 4

R71:ALT2 R37:LSC1,2 R33:IDH1,2 4

R71:ALT2 R113:GLT1 R33:IDH1,2 4

However, due to the consideration for the isoenzymes of KGD and LSC, the final list

was expanded as follows:

1. R71:ALT2 R36:KGD1 R23:ZWF1

2. R71:ALT2 R36:KGD2 R23:ZWF1

3. R71:ALT2 R37:LSC1 R23:ZWF1

4. R71:ALT2 R37:LSC2 R23:ZWF1

5. R71:ALT2 R113:GLT1 R23:ZWF1

6.4 Discussion

The capabilities of S. cerevisiae to produce the target metabolites (ethanol, lysine,

glutamate, trehalose and fumaric acid) was investigated using EFM analysis. The

phenotypic solution space for the production of each target product was defined
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by fixing the target product as “external” metabolite. The alternative biochemical

routes, both biologically and non-biologically feasible, from the substrate to the target

product characterising each solution space were represented as EFMs. However,

the complex nature of the EFM data, in terms of EFM number and biochemical

composition, necessitated the development of methodologies for an easy and quick

access to biotechnologically useful information in the data.

A method for classification of EFMs based on motif finding has been reported (Peres

et al., 2011); even though this method was able classify EFMs based on motifs of

EFM reactions, it does not lend itself to classifying EFMs for metabolic engineering

purposes. Hence, the motivation for developing a novel methodology was the need to

simplify the use of EFM data for enhancing microbial strain development, especially

when large EFM datasets are involved.

The methodology based on Mclust and Wss (Figure 3.2) was fraught with a number

of shortcomings, among which was the fact that even though the k value predicted by

Mclust was better that that of Wss, the final clustering step using Kmeans method

was unstable. Kmeans clustering method provided different cluster solutions of the

same data and reclustering was necessary to get fairly reproducible cluster solutions.

The partitioning of the EFM data by Hierarchical clustering method was also poor

in this case. Hence, a better methodology permitting reliable prediction of k value

and more stable cluster solutions was necessary.

A second methodology, involving clValid validation (Figure 3.9), allowed for the EFM

data to be decomposed into manageable subsets of EFMs, allowing fast detection

of alternative biochemical routes in the metabolic network for the development of

improved yeast strains that can produce specific metabolites of interest. In the first

step of this methodology, EFM datasets were compiled using the COPASI software.

Next, the complexity of these datasets was computationally reduced (section 3.2.2.2,

Figure 3.3), whereby only the EFMs producing biomass and a metabolite of interest

were retained for further analysis. The effectiveness of this step was demonstrated

in section 6.3.1 with 60.4% reduction in the dimensionality of a medium-sized EFM
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dataset.

Detecting the true structures in the full feature space of biological data is difficult

as a result of impact of noise and the problem may be reduced by applying a drastic

reduction of variables with the highest dimension across the datasets (Handl et al.,

2005). External metabolites and biomass are variables with high dimension in the

EFM dataset, and as such can be useful in reducing the dimensionality of EFM data.

Both biomass and the metabolite of interest are variables with high dimension in the

EFM dataset. Using these two biological objectives to reduce the EFM dataset helps

meaningful partitioning by clustering analysis in the next step. The extraction step

was also useful in removing futile cycles and other EFMs that are not complete routes

from the “input” external glucose to the target external metabolites.

Out of the 7 clustering methods (UPGMA, K-means, PAM, SOM, FANNY, CLARA

and DIANA) tested, PAM was the optimal clustering method for obtaining subsets of

EFMs, yielding biological interpretation of EFM data for biotechnological purposes.

The results of analysis showed that PAM analysis, using Dunn’s index and Silhouette

width as internal validation measures, is the best clustering method for obtaining

subsets of EFMs yielding biologically useful information for gene deletion phenotype

analysis from the EFM data. As shown in Table 6.11 (section 6.2.3.4), clusters are

well separated by PAM method judging from the different core-members used for

partitioning of EFMs. The mean cluster yields for ethanol in EFM dataset S1a

represent a good guide for the ethanol yields of individual EFMs in different groups.

PAM is a more robust version of K-means based on the search for k representative

objects or medoids among the observations of the dataset (Kaufman and Rousseeuw,

1990); it minimises a sum of dissimilarities instead of a sum of squared Euclidean

distances as is the case with Kmeans. Medoids are objects in the cluster whose

average dissimilarity to all the objects in the cluster is minimal. This is perhaps why

PAM performed better than the other clustering methods, since the “metabolite”

objects found in different EFMs were partitioned based on the minimisation of the

dissimilarities between them.
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The EFM classification approach based on regular expression is a quick and flexi-

ble approach for reducing the dimensionality of EMF data for metabolic engineering

purposes as demonstrated with S2 dataset in section 6.2.4.2. This approach is advan-

tageous over clustering analysis in that the most useful classes are exposed quickly,

ranked in order of biotechnological usefulness. The location of most economically

feasible EFMs (EFM No 53 and EFM No 55) in EFM S2 dataset demonstrated the

usefulness of this methodology.

The usefulness of the inspection of the overall stoichiometric reactions for EFMs in

aiding the identification of the best EFMs was demonstrated both with a medium-

sized and small-sized EFM datasets. In the case of the small-sized dataset, in silico

phenotype gene deletion analysis was carried out based on the EFM identified through

the inspection of the overall stoichiometric reactions, and which eventually led to

wet experiment validation of single, double and triple mutants for enhanced lysine

production.

6.5 Conclusion

The results of studies presented in this chapter indicate that the general modelling and

data reduction approaches contributed in obviating the enormous problems associated

with trying to obtain the EFMs from large reaction network models and interpreting

the resulting of large number of EFMs. The biological significance of the approaches

for quick and efficient deciphering of the EFM data for information useful towards

designing a target gene knockout strategy was outlined. It was possible to find

biologically and economically feasible EFMs for high yield of products based on overall

stoichiometry of EFMs. The approach for classifying EFMs based on pre-defined

classes also added an important feature to the metabolic engineering toolbox based

of EFM analysis.



Chapter 7

Construction and validation of S.

cerevisiae mutant strains for lysine

production

This chapter covers the experimental work for model validation, which is the “synthe-

sis stage” of the metabolic engineering pipeline (Figure 1.1) employed in this study

for lysine production in yeast. The results of the construction of S. cerevisiae mutant

strains and the experimental validation of the mutants for improved lysine yield are

presented and discussed.

7.1 S. cecevisiae single mutants and lysine pro-

duction

Two types of experiments, mutant growth characterisation and metabolite measure-

ments using GC/MS, were carried out for the validation of the single gene knock-

outout mutantss (∆alt1, ∆alt2, ∆kgd1, ∆kgd2, ∆lsc1, ∆lsc2 and ∆glt) predicted

by in silico analysis for increased lysine production. The aim of the mutant growth

characterisation experiments was to determine the growth characteristics in 3XALL

169
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medium, namely the specific growth rates, doubling times, the time intervals(in hours)

covering the log and stationary phases of growth. The aim of the experiment involving

metabolite measurements using GC/MS was to grow the single mutants and collect

log and stationary phase sample for growth, exometabolome and endometabolome

measurements along time points in 3XALL medium.

7.1.1 Growth curve characteristics for single mutants

The log phase and early stationary phase were found to be from 4 to 10 hours and

10 to 18 hours of growth respectively.

In order to determine the appropriate medium pH and concentrations of amino acid

and uracil supplements to be added to SD medium for growing SC and S. cerevisiae

mutants, an experiment was designed, involving control strain (CS) and ∆glt1 , to

investigate the effects of different concentrations of amino acids at pH6 on growth

and doubling times of the S. cerevisiae single mutants (Table 7.1).

Table 7.1 indicates that the doubling times of CS and mutant GLT1 in NC medium

are 101 minutes and 113 minutes respectively. Furthermore, the smallest doubling

time for CS is in NC PH6 medium (90 minutes) is the same as the reported time for

wild type yeast in YPD medium, and the smallest doubling time for mutant GLT1

is in 2XLEU medium (79 minutes). However, the doubling time for mutant GLT1 in

NC PH6 medium is 103 minutes which is an improvement in the doubling time for

the same mutant grown in NC medium (113 minutes). 2XLEU medium reduced the

doubling time for mutant GLT1 but increased the doubling time for CS slightly by

7 minutes when compared with growth of both strains in NC. Further observation

indicates that CS had the same doubling time in both NC and 2XALL media. The

closest doubling times for CS and mutant GLT1 occurred in the 3XALL medium, 107

minutes and 110 minutes respectively. More importantly, the growth curves for CS

and mutant GLT1 in 3XALL medium showed more reliable growth characteristics

than in any other medium, and hence 3XALL medium was chosen as the growth
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medium for further growth experiments of yeast single mutants.

Table 7.1: Doubling times for single strain. Table shows doubling times for CS and single mutant strains

grown in different culture media. Doubling times were calculated from the steepest areas of the growth curves (6 - 10

hours of growth. Abbreviations of enzymes (genes) are explained in a file (Reactions abbreviations.xls in Appendix

A).

Strain Culture medium Doubling time (minutes)

CS NC 101

GLT1 NC 113

CS 2XLEU 110

GLT1 2XLEU 79

CS 3XLEU 108

GLT1 3XLEU 126

CS 2XALL 101

GLT1 2XALL 124

CS 3XALL 107

GLT1 3XALL 110

CS NC PH6 90

GLT1 NC PH6 103

7.1.2 GC-MS analysis for lysine production by single mu-

tants

The excretion of 5 metabolites into the culture medium by 7 S. cerevisiae mutant

and CS strains during the exponential growth phase in 3XALL medium is depicted

in Figure 7.1 and Table 7.2. Table 7.2 shows the mean and standard deviation values
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for intracellular and extracellular lysine in CS and double mutants. The results of

GC-MS quantified metabolites (lysine, 2-oxoglutarate, glutamate, glycerol, fumaric

acid and phenylalanine), at exponential growth phase of the S. cerevisiae single mu-

tants, indicate that out of the 6 yeast mutant strains, only ∆lsc2 and ∆glt1 excreted

significantly more lysine (P < 0.05) than CS into the culture medium. Mutant

strains ∆lsc2 and ∆glt1 excreted 35.4umol/l and 39.8 umol/l of lysine respectively,

while CS excreted 5 umol/l of lysine, representing about 5 fold higher excretion of

lysine by both ∆lsc2 and ∆glt1 than that of CS. The amounts of lysine excreted by

∆lsc1, ∆alt2, ∆kgd1 and ∆kgd2 S. cerevisiae mutant strains were found not to be

significantly higher than that of CS (P > 0.05). However, ∆LYS20 ∆LYS21, an S.

cerevisiae mutant strain known for intracellular accumulation of lysine (Feller et al.,

1999) and used as a positive control did not show any significantly higher level of

excreted lysine than CS. The results also indicate that neither the single mutants

yeast strains (Figure 7.1) nor the control mutant strain (∆LYS20 ∆LYS21 ) excreted

significantly higher amounts of 2-oxoglutarate, glutamate, glycerol and fumaric acid.

Furthermore, undetectable levels of lysine, 2-oxoglutarate, glutamate and phenylala-

nine were observed in blank media samples (not inoculated with any S. cerevisiae

strain) as expected.

Table 7.2: Mean and standard deviation values for lysine in CS and single mutant strains. Mean and

standard deviation values for extracellular secretion and intracellular accumulation of lysine by CS and single mutant

strains during mid-log phase of growth. Mean values are in micromoles/litre. SD represents standard deviation.

Extracellular Intracellular

mean (SD) mean (SD)

LSC2 35.4 (8.9) 2.4 (1.4)

GLT1 39.8 (16.5) 4.9 (0.4)

KGD1 11.1 (10) 1.2 (0.7)

LSC1 9.3 (4.4) 1.29 (1.1)

KGD2 14.1 (9.2) 2.9 (2.2)

LYS20/LYS21 10.1 (4.6) 82.0 (25.8)

CS 5 (1.4) 1.1 (0.8)
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Figure 7.1: Excretion of lysine by single mutants. Figure shows excretion of lysine (and 4 other metabolites)

by CS and 6 single mutant strains, into the culture medium during mid-log phase of growth.

Figure 7.2 shows the intracellular accumulation of 5 metabolites by 6 S. cerevisiae

single mutant strains during the exponential growth phase in 3XALL medium. In-

tracellular accumulation of lysine during the exponential growth phase of the S.

cerevisiae single mutants ∆lsc2 and ∆glt1, and also ∆LYS20 ∆LYS21, were found to

be significantly higher (P < 0.05) than in CS. The results of intracellular accumu-

lation of showed similar pattern to the results obtained for the excretion of lysine.

Only ∆glt1 accumulated significantly higher amounts of phenylalanine than CS dur-

ing this growth phase, and also none of the remaining metabolites (2-oxoglutarate,

glutamate, glycerol and fumaric acid) showed significant accumulation in any of the

single S. cerevisiae mutants, including ∆LYS20 ∆LYS21 strain.
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Figure 7.2: Intracellular accumulation of lysine by single mutants. Figure show intracellular accumulation

of lysine (and 5 other metabolites) by CS and 6 single mutant strains, during mid-log phase of growth.

GC-MS results also reveal that, at early stationary phase of growth, none of the

metabolites (lysine, 2-oxoglutarate, glutamate, glycerol, fumaric acid and phenylala-

nine) was excreted at significantly high levels by any of the single mutants yeast

strains ∆lsc1, ∆lsc2, ∆glt1, ∆kgd1, ∆kgd2 and ∆alt2, while only ∆LYS20 ∆LYS21

excreted a higher level of phenylalanine compared with CS.

7.2 Toronto double mutants

In order to reduce the amount of work involved in the experimental validation of

in silico designed strains, it was decided to obtain S. cerevisiae single and double

mutants from the Charlie Boone Lab (Toronto, Canada).



7.2. TORONTO DOUBLE MUTANTS 175

7.2.1 GC/MS results for lysine by Toronto double mutant

strains

GC-MS analysis of the endometabolome of the Torornto S. cerevisiae strains was

measured for metabolites, including lysine, and the results are shown is Figure 7.3.

These intracellular metabolome results were unexpected and confounding. The most

striking features are the lower intracellular yields of 2-oxoglutarate for all double

mutants than for YLR123C (a negative control with same genotype as the double

mutants but with double mutations not related to amino acid metabolism). The

higher intracellular levels of serine and alanine in all mutants (except kgd1xkgd2 ) than

in YLR123C are also remarkable. Intracellular concentrations of aspartate, fumaric

acid and lysine are also lower for all 7 mutants than YLR123C, while there are

no appreciable differences between the intracellular levels of glycerol, phenylalanine,

glutamate (except lower values for except alt2 x kgd2 ) and succinic acid contents

(except alt2 x kgd2 and kgd1 x kgd2 ).
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Figure 7.3: Endometabolome measurements for metabolites in Toronto strains. Results for en-

dometabolome measurements for lysine and 10 other metabolites, in Toronto S. cerevisiae strains during mid-log

phase of growth.

7.3 In-house constructed double mutants

Due to the problems encountered with interpretation of the GCMS results of the

Toronto S. cerevisiae strains (Table 4.2), it was decided to carry out in-house con-

struction of the double mutants(∆kgd1 ∆alt1, ∆kgd2 ∆alt1, ∆lsc1 ∆alt1, ∆lsc2 ∆alt1

and ∆alt1 ∆glt1 ) shown in Table 4.3. Each of the Euroscarf single mutant strains,

served as a recipient single mutant strain on which one deletion was added to pro-

duce a double mutant according to Table 4.10. The construction of triple mutants

(∆kgd2 ∆alt1 ∆zwf1, ∆lsc2 ∆alt1 ∆zwf1 and ∆alt1 ∆glt∆zwf1 ) was based on the in-

house constructed double mutants (∆kgd2 ∆alt1, ∆lsc2 ∆alt1 and ∆alt1 ∆glt, which
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were used as recipient double mutant strains (Table 4.11).

In the simple and efficient one-step approach for direct gene deletion in S. cerevisiae

(Baudin et al., 1993) used in this study, the general principle involved transforming

yeast cells with DNA fragment consisting of a “gene disruption cassette” that provides

a selectable phenotype (URA3 or LEU2 prototrophy), surrounded by 90 - 118 base

pairs of sequence flanking the sequence to be deleted. The purified PCR product was

used to transform yeast cells, and recombinants that have inherited the disruption

cassette were selected. Cells that have correctly integrated the disruption cassette

were identified by detecting PCR products generated using primers complimentary

to sequence within the cassette and primers flanking the site of integration of the

selectable marker. PCR products of expected size were obtained if the disruption

cassette was inserted into the genome by homologous recombination.

7.3.1 Construction of S. cerevisiae double mutant strains

7.3.1.1 Double gene deletion transformants

Amplification of 3 types of disruption cassettes from plasmid pBS1539 kl using for-

ward and reverse primers pairs (Figure 4.5) for the disruption of target genes (ALT1,

KGD2 and LSC2 )in order to create 5 different S. cerevisiae double mutants. Colonies

of strains obtained on URA- selection plate were checked for transformants after 7

days of transforming S. cerevisiae strains with plasmid pBS1539 kl DNC (disruption

cassette). Table 7.3 show the number of colonies obtained for each of the strains

heat-shocked for 2 minute and 15 minute during the process of transformation.
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Table 7.3: Double mutant colonies. Table shows the number of double mutant colonies from two different

heat-shocks. 22 colonies in total were picked for further incubation

Double Mutant strain colonies No of colonies for further incubation

2 minute heat-shock:

M1 1 1

M4 1 1

M5 2 2

15 minute heat-shock:

M1 1 (very big), 60 (small) 3

M2 8 - big 3

M3 11- big 3

M4 3 - big 3

M5 10 (big), 10 (small) 6

18 colonies for all 5 strains (Tables 7.3) were picked and re-plated in selective media

plates (URA-) in order to increase the chance of obtaining the correct transformants.

After 6 days of incubation of the 18 re-plated isolates, colony PCR was carried out

on some of the colonies, and success of gene disruption was verified using 5 sets of

verification primers (3 positive and 2 negative). Results indicate that the 5 double

yeast mutants have been successfully constructed by the distribution of the appropri-

ate genes in yeast single mutants. Figure 7.4 shows an example of a successful gene

deletion for the creation of S. cerevisiae double mutants from this study.
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Figure 7.4: PCR confirmation of gene deletion for double mutants. Figure shows the result of PCR

confirmation of gene deletion for double mutants. Gene deletion was successful as three bands of correct sizes (1300

bp, 1300 bp and 1653 bp) for positive controls and no band for negative controls were obtained.

Out of the 30 transformant colonies (re-plated) screened for all 5 mutant strains

(22 for 15 min heat-shock and 8 for 2 min heat-shock), there were successful gene

disruptions in the 2 minute heat shock category for strain M4 (2 transformants)

and M5 (2 transformants), and also the genes were successfully disrupted for the 15

minute heat shocked strains for M1 (2 transformants), M3 (2 transformants), M4 (4

transformants) and M5 (6 transformants). It was not clear whether double mutant

number M2 had been successful since the PCR band for A-Rcasssette was missing;

although no bands were obtained in the negative control. However, repeated PCR

analysis still did not provide a clear-cut answer as to whether or not gene deletion

was successful for strain M2. Due to the low number of transformants for strains M1

and M3, and no transformants for Strain M2 for some isolates, more colonies from

the second URA- selective plate were screened. As a result of this further screening,

4 transformants were isolated for strain M1 and 3 transformants each were obtained

for strain M2 and M3.
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7.3.2 Growth characteristics for double mutant strains

Table 7.4 summarises the doubling times and growth rates of CS and the 5 constructed

S. cerivisiae double mutant strains in NC medium.

Table 7.4: Doubling times and specific growth rates for double mutant strains. Doubling times and

specific growth rates for double mutant strains grown in 3XALL medium. Doubling times and Specific growth rates

were calculated from the steepest parts of the growth curves.

Double Mutant Doubling time (minutes) Specfic growth rate

∆KGD1∆ALT1 169 0.0041

∆KGD2∆ALT1 182 0.0038

∆LSC1∆ALT1 187 0.0037

∆LSC2∆ALT1 177 0.0039

∆ALT1∆GLT1 177 0.0039

CS 161 0.0043

The growth characteristics indicate that the yeast control strain (CS) has a higher

growth rate and hence lower doubling time (0.0043 and 161 minutes respectively)

than the yeast double mutants. The yeast double mutant, LSC1 X ALT1, showed

the lowest growth rate of 0.0037 and the longest doubling time of 187.3 minutes.

LSC2 X ALT1 and ALT1 X GLT1 grew at the same rate of 0.0039 and exhibited the

same doubling time of 177 minutes.

7.3.3 GC/MS results for lysine by double mutants

Figure 7.5 and Table 7.5 show the GC/MS intracellular measurements for lysine

in double mutants. Table 7.5 shows the mean and standard deviation values for

intracellular lysine in CS and double mutants.
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Table 7.5: Mean and standard deviation values for extracellular and intracellular lysine in CS and

double mutant strains. Mean and standard deviation values for extracellular secretion and intracellular accumula-

tion of lysine by CS and double mutant strains during mid-log phase of growth. Mean values are in micromoles/litre.

SD represents standard deviation.

Extracellular Intracellular

mean (SD) mean (SD)

KGD1 x ALT1 141.7 (6.2) 129.4 (48.5)

KGD2 X ALT1 169.2 (2.7) 107.7 (45.8)

LSC1 X ALT1 151.6 (15.1) 150.2 (123.4)

LSC2 X ALT1 140.2 (4.4) 226.8 (87.4)

ALT1 X GLT1 158.6 (23.5) 295.7 (147.9)

CS 132.4 (8.9) 46.7 (10.1)
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Figure 7.5: Excretion of lysine by CS and 5 double mutant strains. Figure shows excretion of lysine

(and two other metabolites) by CS and 5 double mutant strains, into the medium during mid-log phase of growth.

The results of endometabolome measurements of the five double mutants showed
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that two-fold increase in flux towards lysine production was demonstrated by S.

cerevisiae double mutant ∆kgd1 ∆alt1 (M1), while both S. cerevisiae double mu-

tants, ∆lsc2∆alt1 (M4) and ∆alt1 ∆glt1 (M5) showed about four-fold increase in

lysine production more than the control strain. Furthermore, the results showed

that ∆kgd1 ∆alt1 and ∆kgd2 ∆alt1 produced three times more aspartate than CS,

while all mutants except ∆kgd2 ∆alt1 produced one and a half times more glutamate

than CS. Double mutant strains ∆kgd1 ∆alt1, ∆lsc1 ∆alt1 and ∆lsc2 ∆alt1 also pro-

duced more than twice the amount of glycerol than CS, while ∆alt1 ∆glt1 produced

about one and a half times more glycerol than CS. The concentrations of a number

of metabolites (α-ketoglutarate, arginine, alanine, phenylalanine and fumaric acid)

were found to be below the limits of detection by GC/MS analyses of the samples for

double mutants and CS strains.

7.4 S. cerevisiae triple mutants

7.4.1 Construction of S. cerevisiae triple mutant

Amplification of the disruption cassettes from plasmid pREP41 EGFPC using dis-

ruption primers, ZWF1 disrupt F and ZWF1 disrupt R, for the disruption of target

genes according to Figure 4.11 (in section 4.7.1) was carried out in order to create 3

different S. cerevisiae triple mutants. Figure 7.6 shows that a band of expected size

2391 bp was obtained.

7.4.1.1 Triple gene deletion transformants

Colonies of strains obtained on LEU- selection plate were checked for transformants

after 7 days of transforming S. cerevisiae strains with plasmid pREP41 EGFPC

(disruption cassette). Tables 7.6 show the number of colonies obtained for each of

the strains heat-shocked for 2 , 15 and 20 minutes after transformation.
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Table 7.6: Triple mutant colonies. Number of colonies for triple mutants

Triple mutant Required Parent double mutant No of colonies for different heat shock times

2 minutes 15 minutes 20 minutes

∆kgd2∆alt1∆zwf1 ∆kgd2∆alt1 1 8 6

∆lsc2∆alt1∆zwf1 ∆lsc2∆alt1 3 10 13

∆alt1∆glt∆zwf1 ) ∆alt1∆glt 4 6 16

However,the results of screening for transformants indicate low effieciency of trans-

formation as only one transformant was obtained out of 70 colonies screened with

colony PCR. Figure 7.6 shows the only successful gene deletion for the creation of a

triple mutant, ∆Alt1∆lsc2∆zwf1, from this study.

DNA Marker 

Positive confirmation 

2500 bp 

Empty 2 negative  
control wells 

3 positive 
 controls 

2 negative  
controls 

1 positive 
 control 

Negative confirmation 

Figure 7.6: PCR confirmation of gene deletion for triple mutants. Figure shows the results of a positive

(triple mutant ∆lsc2∆alt1∆zwf1 ) and negative PCR confirmations of gene deletion for triple mutants. Gene deletion

was successful as three bands of correct sizes ( 2500 bp, 2500 bp and 2700 bp) for positive controls and no band

for negative controls were obtained. For the negative confirmation, 2 negative controls are positive and only 1 band

of positive control visible.

Unfortunately, the triple mutant, ∆lsc2 ∆alt1 ∆zwf1, showed very poor growth in

3XALL medium and could not be investigated further by GC-MS for metabolome
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measurements. In addition, when disruption primers were changed to allow for aux-

otrophic selection of transformants on media lacking histidine instead of leucine, no

triple mutant tranformant was isolated.

7.5 Discussion

In the genetic engineering experiments carried out for the studies reported here, dis-

ruption cassettes were generated by PCR-amplification of selectable markers. Plas-

mids that are non-replicating in yeast were used as template in order to prevent the

possibility for the plasmid PCR template for the generation of disruption cassette

being able to replicate autonomously in the transformed yeast cells, leading to a

high number of transformants inheriting the plasmid instead of the disruption cas-

sette. Long flanking sequences (greater than 60 base pairs) were used to increase the

frequency of homologous recombination and also to enhance the efficiency of gene

disruption. Rigorous PCR verification of a successful PCR-based gene deletion was

carried out with three positive and 2 negative controls.

Single mutants LSC2 and GLT1 accumulated and excreted several folds higher

amounts of lysine than CS. This finding was supported by the fact that the blank me-

dia, also analysed by GC-MS, contained an undetectable level of lysine. In addition,

most of the metabolites measured did not show any concomitant increase in appre-

ciable amounts, apart from single mutant GLT1 which accumulated higher amounts

of phenylalanine than CS. The fact that LYS20/21 accumulated lysine intracellularly

was also replicated in this experiment; it was also noted that LYS20/LYS21 excreted

a higher amount of phenylalanine compared with CS.

Importantly, LYS20/21 does not excrete more lysine than the control. All of the

increase in concentration of that metabolite is intracellular. The results of the

metabolome measurement of the single mutants probably indicated a modest general

effects of genetic perturbation, due to single deletions, in the metabolic pathways of

S. cereviasiae. Although the gene deletions successfully redirected flux appreciably
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in two out of the six single mutants, the modest effect on the general metabolism

may point to system robsustness or gene dispensability. Possibly, the effects of the

disrupted gene functions in each of the isoenzymes of LSC and KGD might have been

buffered by the other isoenzyme still functioning, or by alternative pathways.

The interpretation of the results of the Toronto double mutant strain was rather

difficult. Obviously, the effects of the multiple genetic perturbations were more pro-

nounced than the for the single gene deletions. Conspicuously, the intracellular con-

centrations of 2-oxoglutarate, aspartate, fumaric acid and lysine were low, and the

intracellular concentrations of serine and alanine were high, for all mutants. It ap-

pears logical that a decreased level of 2-oxoglutarate will be accompanied by low

lysine yield (as 2-oxoglutarate is the first metabolite in the lysine biosynthetic path-

way). Increased flux towards the production of alanine in all mutants was baffling in

that if it is assumed that the deletion of ALT2 gene led to increased ALT1, thereby

pushing up intracellular alanine concentrations in five of the six double mutants with

increased alanine concentration, the same assumption does not hold for the increased

alanine concentration in mutant ∆lsc1 ∆lsc2. Hence, there are number of pertinent

questions as follows:

1. Were the in silico double knockout predictions for lysine increase in S. cerevisiae

wrong?

2. Did lysine feedback inhibition of LYS20/21 gene (the first enzyme in the lysine

biosynthetic pathway) by increased amount of lysine in the medium occur at any

stage?

3. Was the genotype background of the Toronto or incomplete LYS2 gene restoration

the reason for these results?

4. Were the results simply due to robustness of S. cerevisiae metabolism in response

to genetic perturbation?

5. Other reasons?
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The successful in-house construction of five double mutants for lysine production

helped to answer one or two of the above questions. It is possible for multiple-

perturbations to provide a significantly richer and more biologically plausible func-

tional annotation of the genes comprising the metabolic network of the yeast (Deutscher

et al., 2006). The results from the five S. cerevisiae double mutants generated in-

house demonstrated 2.2 fold, 3.8-fold and 4-fold increased production of lysine by

∆kgd2 ∆alt1, ∆lsc2 ∆alt1 and ∆alt1 ∆glt mutants respectively. These results sup-

ported the findings from studies involving single mutant strains for lysine produc-

tion. Apart from the demonstrated flux redirection to lysine pathway in these three

mutants strains, there is also evidence for the effects of multiple-perturbations. In-

creased intracellular concentrations of glutamate in four out of the five mutant strains

may be explained by the deletion of ALT1 results in accumulation of glutamate since

glutamate can no longer be converted into alanine. This is reflected in four of the

in-house created double mutants. In these four cases, the flux redirection might have

favoured increased reaction between oxaloacetate and glutamate, leading to increased

levels of both aspartate and 2-oxoglutarate. The increased level of aspartate from

this reaction might explain the finding that ∆kgd1 ∆alt1 and ∆kgd2 ∆alt1 produced

three times more aspartate than CS. 2-oxoglutarate is the first metabolite in the ly-

sine biosynthetic pathway and hence increased glutamate is beneficial to increased

flux to lysine biosynthetic pathway (Figure 8.15). On the other hand, all Toronto

strains produced more alanine than CS, which is the opposite of what was expected.

It is unclear whether or not the genotype background or the incomplete LYS2 gene

restoration of the Toronto strains were the reasons for the unexplained increase in

alanine. Hence, it is pertinent to conclude here that the available results do not

provide sufficient evidence, either directly or indirectly, to enable the inference of a

logical conclusion for increased alanine in all the Toronto yeast double mutants.

Since flux redirection might have resulted in accumulation of oxaloacetate and some

of which might have been converted back to pyruvate and consequently increased

level of pyruvate might have inhibited the conversion of glyceraldyde-3-phosphate
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to 3-phosphoglycerate; increased glyceraldyde-3-phosphate level may then favour its

conversion into dihydroxyacetone phosphate by TPI and eventually to glycerol. LSC2

is a beta subunit of succinyl-CoA ligase, which is a mitochondrial enzyme of the

TCA cycle that catalyses the nucleotide-dependent conversion of succinyl-CoA to

succinate. The deletion of LSC2 succeeded in disrupting the TCA cycle and hence

redirected flux in the direction of lysine pathway via 2-oxoglutarate. ALT1 is involved

in alanine biosynthesis. Disruption of ALT1 gene in addition to LSC2 gene ensured

the availability of the much needed glutamate which could have been used instead

for alanine production.

Vacuolar transport of lysine in yeast has “in” direction and hence the assumption

that yeast accumulates lysine intracellularly may have been supported by the results

that most of the double mutant strains did not excrete significant amounts of lysine

into the culture medium.

The only successful triple mutant in this study failed to grow in the minimal medium

used for the other strains. The construction of triple mutants from the previously

generated double mutants required the deletion of ZWF1, which encodes the enzyme

Glucose-6-phosphate dehydrogenase (G6PD), catalysing the first step of the pentose

phosphate pathway. The deletion of ZWF1 would have ensured the redirection of flux

form the pentose phosphate pathway to glycolysis and to the remaining part of TCA

cycle uninterupted by the other two deletions. However, the failure of the only triple

mutant generated to grow appreciably in minimal medium may point to synthetic

lethality of ZWF1 on the other genes or the known toxic effects of lysine accumulation

and the intermediate metabolites (such as α-aminoadipate semialdehyde in the lysine

biosynthetic pathway.

7.6 Conclusion

The results from the studies reported in this chapter have demonstrated the useful-

ness of the application of modelling in realising the desired effects in the metabolic



7.6. CONCLUSION 188

engineering of S. cerevisiae for production of lysine. Enhanced production of lysine

in two out of six S. cerevisiae single mutants and three out of five S. cerevisiae double

mutants was successfully validated by experiments. However, metabolic regulation

imposed by the feedback inhibition of lysine and systems-wide metabolic interactions

are among the bottlenecks to be removed for further improvement of the lysine pro-

ducing strains reported in this chapter. In this regard, integration of “omics” such

as metabolic profiling, transcriptomics and proteomics with metabolic engineering

approaches will be highly useful.



Chapter 8

Characterisation of S. cerevisiae

production strains

8.1 Introduction

In a previous experiment carried out in this project (section 7.3), two-fold increase

in flux towards lysine production was demonstrated by S. cerevisiae double mutant

∆kgd1∆alt1 (M1), while both S. cerevisiae double mutants, ∆lsc2∆alt1 (M4) and

∆alt1∆glt1 (M5) showed four-fold increase in lysine production relative to the control

strain. In order to optimise these lysine producing strains further, it was decided

to carry out metabolic profiling of the three double mutant strains so as to link the

genetic effects of knockouts to the metabolome. The control strain and the remaining

two S. cerevisiae double mutants, ∆kgd2∆alt1 (M2) and ∆lsc1∆alt1 (M3) which did

not produce an appreciable amounts of lysine than the control strain were included

in the metabolic profiling experiment for comparisons.

Hence, the objectives of the work in this chapter are:

1. To investigate the metabolite profiles of the five mutant strains so as to unravel

patterns related to the different genetic perturbations in the mutants.

2. To gain understanding of how cellular fluxes in knock-out strains and control strain

189
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are different.

3. To characterise the lysine mutant strains and gain information that may help in

their lysine producing capacity.

8.2 Materials and Methods

8.2.1 Experiment design

A statistical test is unlikely to detect a true difference when the sample size is too

small in comparison with the magnitude of the difference. The probability of rejecting

a false hypothesis is power, avoiding the Type II error or a false negative decision.

False negative rate (β) decreases with increase in power, and hence power is equal to

1 - β (i.e., sensitivity). Power analysis can be used to calculate the minimum sample

size required so that a specified difference can be detected. It is generally accepted to

use β = 0.8 or 0.9. In this analysis, β = 0.9 was used. Factors influencing power are:

(1) The statistical significance criterion, (2) The magnitude of the effect of interest

in the population and (3) Sample size used to detect the effect.

The Problem statement was formulated as follows:

Power analysis for two-sample t test was considered in this experiment design to

determine the sample size (replicate samples), that with a power of 90%, using a

two-sided test at the level of 0.05%, can detect a difference in mean concentration

of metabolite (m) in a distribution with a 2 standard deviation produced by yeast

mutant and control strains. Since S. cerevisiae mutants are expected to produce

more or less of metabolites than the control strain, a two-sided test at the level of

0.05 was considered.

Null hypothesis: H0 : m = 0 (no change in mean metabolite concentration)

Alternative hypothesis: H0 : m 6= 0 (there is change in mean metabolite concentra-

tion).
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Power analysis was carried out using the R statistical package to determine the sample

size.

8.2.2 Metabolite profiling

8.2.2.1 Data pre-processing

Chemical identification of chromatographic peaks was performed by comparison of the

retention index and mass spectrum of each chromatographic peak to those present in

mass spectral libraries. A definitive identification was compassigned when the reten-

tion index (+/-10) and mass spectrum (match > 70%) of the chromatographic peak

were matched to those present in the Manchester Metabolomics Database (MMD)

electron impact mass spectral library (Brown et al., 2009). A putative identification

was assigned if the mass spectrum (match > 70%) matched that of a mass spectrum

in the Golm metabolome Database (Kopka et al., 2005) or the NIST/EPA/NIH05

EI mass spectral library. An assignment of unidentified was provided if the mass

spectrum was not matched to any mass spectrum in any of the three defined libraries

above with a match > 70%.

Figure 8.1 depicts the steps involved in the metabolic profiling of the five S. cerevisiae

double mutants.
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Experiment 
n = 6 (control), n = 6 (each mutant)  

• Filtering 
 

• Feature selection 
 

• Normalisation 
 
 

• Multivariate: Principal Component Analysis (PCA) 
• Univariate: student’s t-test, Welch’s t-test, Wilcoxon signed 

rank test  (signrank) 

GC/MS 

Scaling 

Biological interpretation using pathway analysis 

Data pre-processing  
and pre-treatment 
 

Data analysis 

Clean data 

Weak peaks removed and missing data replaced 

with ‘NAN’  

Figure 8.1: Steps involved in the metabolic profiling. Figure depicts the steps involved in the metabolic

profiling of strains. Biological experiments yield extracts which are analysed by GC/MS. Next, data from GC/MS

are pre-processed and pre-treated. Clean and scaled data were then analysed using a combination of multivariate

and univariate statistical analysis techniques. Finally, biological meanings are inferred from the analysed data using

pathway analysis.

8.2.2.2 Data pre-treatment

Data pretreatment was carried out in Excel and Matlab. The data were presented as

transposed data matrices X with i rows of experiments and j columns of metabolites,

and hence element xij is the measurement of metabolite j in experiment i. Several sets

of data matrices were prepared from the raw data and the normalised (normalised to

internal standard) data with one or all of the following treatments:

1. Zeros in data replaced with NAN - this was for univariate analysis.
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2. zeros in data replaced with very small number (0.000001).

3. Column data (metabolite) with too many weak points removed (clean data for

further pre-treatment).

4. Data matrix scaled with either centering scaling, auto scaling or pareto scaling

method.

Since some of the column data contained many missing values, fourteen columns were

removed, thereby reducing the number of metabolites from 144 to 130. Hence, the

clean data was a pre-treated (steps 1 - 3 above) and reduced dataset consisting of

5 experiments (6 replicates each) and 130 variables (metabolites). However, as the

entire dataset also included 12 replicates of quality control (QC) samples, the clean

data consisted of 42 rows of experiment and 130 columns of variables (metabolites).

Comparisons of four scaling methods (Center, Pareto, Autoscaling and Range: un-

supervised cluster analysis was continued with pareto scaling) were carried out to

find out the most suitable scaling method. To identify the source of greatest varia-

tion within the combined and individual groups of data for all samples multivariate

analysis was employed.

8.2.2.3 Data analysis

Unsupervised exploratory data analysis: PCA was employed to discover any

natural groups within the data and also used for discovering any outliers before pre-

processing. Matlab (using prcomp function) was used to analyse the preprocessed

data. PCA decomposes the variation in matrix X into scores S, loadings L. S is

a I X A matrix containing the scores and P is a J X A matrix containing the A

selected loadings. The PCs to investigate further were determined by inspecting the

scree plots of scores from the initial PCA and the scores were then plotted in two-

dimensions. Loadings plot of the dominant PC were examined to determine which

metabolites were extreme, that is far away from zero based on the cut off of 0.05.

From the loadings plot, the variable peaks on the extremes were mainly responsible
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for the separation exhibited in the scores plot whereas those close to the origin had

little or no contribution to such separation. Examination of the loading plot revealed

peaks with the highest variability. This was used to compare relative metabolite

concentrations in samples and whether peaks (metabolite IDs) from loading plots

correspond with those from univariate analysis.

Loadings were labelled with “variable ID” numbers 1 - 130, and the variable ID

number of any metabolite with relative concentrations greater than +0.05 or lesser

than -0.05 were displayed on the plot.

PCA was carried out on scaled and unscaled data matrices (described in section

8.2.2.2 according to the following steps:

1. PCA was carried out on sample data matrices.

2. Scree plot of components was inspected in order to determine the number of

PCs (eigenvalues) to investigate further.

3. Two-dimensional plots of PCs with maximum amount of variance was per-

formed.

4. Occurrence of tight clustering of QCs in the two-dimensional plots of PCs were

noted.

5. QCs were removed from sample data matrices, and the first three steps were

repeated.

6. Clustering of samples was in the two-dimensional plots of PCs that captured

maximal variance was inspected.

7. Outliers, if any, were removed and PCA was performed again. This was also

done during preprocessing steps.

8. Where good clustering occurred in the samples (in score plots e.g PC1 vs. PC2),

loadings of PCs with the most variances were plotted .
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Univariate hypothesis testing: For univariate hypothesis testing, Matlab func-

tions were used to perform student’s t-test and signed rank test on the clean data

matrices. A paired, two-sided student’s t-test under the assumption of equal popu-

lation variances at a significance level of 5% and a paired, two-sided signed rank test

at a significance level of 5% were implemented.

Boxplots: Boxplots of CS against mutants M2, M3, M4 and M5 were also created

on clean data to display the relative concentrations of the statistically significant

variables (metabolites) according to signrank test. The boxplot display was checked

to see if the statistically significant metabolites match the metabolites with major

contributions to variances as determined by PCA.

8.3 Results for metabolic profiling

8.3.1 GC-MS results

Metabolic profiling of intracellular metabolomes of four mutant samples (M2, M3,

M4 and M5) and CS carried out by GC-MS provided a raw data comprising of 144

metabolite peaks for each of the 42 experiments, out of which 130 metabolites were

kept as clean data. Figures 8.2 and 8.3 show examples of total ion current (TIC) in

for QC samples 4 - 8 and experiment samples 8 - 12.
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Figure 8.2: TIC for QC samples 4 - 8. Figure shows TIC for QC samples 4 - 8,

indicating good reproducibility.
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Figure 8.3: TIC for Samples 8-12. Figure shows a complete mass 73 chromatogram for

Samples 8-12

Tables 8.1, 8.2 and 8.3 show the all the 81 identified metabolite peaks (out of a total

of 130 identifed and unidentified metabolite peaks in the clean data) from GC-MS

and the biochemical pathways with which that they are associated.
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Table 8.1: Identified chromatographic peaks and pathways: table 1 of 3. Table shows thirty of eighty-

one metabolite peaks identified and the biochemical pathways they are associated with. A “definitive” identification

was a match of the chromatographic peak to the Manchester Metabolomics Database (MMD) electron impact mass

spectral library and a “putative” identification was a match of mass spectrum to that of a mass spectrum in the Golm

metabolome Database or the MIST/EPA/NIH05 EI mass spectral library.

Metabolite ChEBI ID Definitive/Putative Biochemical Pathway

Histidine CHEBI:27570 Definitive Amino acid biosyhnthesis

Tryptophan CHEBI:27897 Definitive

Isoleucine CHEBI:24898 Definitive

Leucine CHEBI:25017 Definitive

Leucine CHEBI:25017 Definitive

Alanine CHEBI:16449 Definitive

Isoleucine CHEBI:24898 Definitive

Proline CHEBI:26271 Definitive

Glycine CHEBI:15428 Definitive

Serine CHEBI:17822 Definitive

Proline CHEBI:26271 Definitive

Threonine CHEBI:26986 Definitive

Glycine CHEBI:15428 Definitive

Serine CHEBI:17822 Definitive

Threonine CHEBI:26986 Definitive

Homoserine CHEBI:30653 Putative

Valine CHEBI:27266 Definitive

Homoserine CHEBI:30653 Putative

Aspartic acid CHEBI:22660 Definitive

Aspartic acid CHEBI:22660 Definitive

Glutamic acid CHEBI:18237 Definitive

Methionine CHEBI:16811 Definitive

Glutamine CHEBI:28300 Definitive

Cysteine CHEBI:15356 Definitive

Methionine CHEBI:16811 Definitive

N-formylmethionine or methionine CHEBI:16552 Definitive

N-formylmethionine or methionine CHEBI:16552 Putative

Pyroglutamic acid and/or glutamic acid CHEBI:16010 Putative

Homocysteine CHEBI:17230 Definitive

Phenylalanine CHEBI:28044 Definitive
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Table 8.2: Identified chromatographic peaks and pathways: table 2 of 3. Table shows thirty-one of eighty-

one metabolite peaks identified and the biochemical pathways they are associated with. A “definitive” identification

was a match of the chromatographic peak to the Manchester Metabolomics Database (MMD) electron impact mass

spectral library and a “putative” identification was a match of mass spectrum to that of a mass spectrum in the Golm

metabolome Database or the MIST/EPA/NIH05 EI mass spectral library.

Metabolite ChEBI ID Definitive/Putative Biochemical Pathway

Asparagine CHEBI:22653 Definitive Amino acid biosyhnthesis

Valine CHEBI:27266 Definitive

Phenylalanine CHEBI:28044 Definitive

Glutamine CHEBI:28300 Definitive

Valine CHEBI:27266 Definitive

Lysine CHEBI:25094 Definitive

Sugar CHEBI:16646 Putative Carbohydrate metabolism

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Trehalose CHEBI:27082 Definitive

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Sugar CHEBI:16646 Putative

Hexadecanoic acid CHEBI:15756 Definitive Fatty Acid Metabolism

Hexadecenoic acid CHEBI:24548 Definitive

Octadecanoic acid CHEBI:28842 Definitive

Octadecenoic acid CHEBI:25634 Definitive

Octadecenoic acid CHEBI:25634 Definitive
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Table 8.3: Identified chromatographic peaks and pathways: table 3 of 3. Table shows thirty-one of eighty-

one metabolite peaks identified and the biochemical pathways they are associated with. A “definitive” identification

was a match of the chromatographic peak to the Manchester Metabolomics Database (MMD) electron impact mass

spectral library and a “putative” identification was a match of mass spectrum to that of a mass spectrum in the Golm

metabolome Database or the MIST/EPA/NIH05 EI mass spectral library.

Metabolite ChEBI ID Definitive/Putative Biochemical Pathway

Butyrolactone CHEBI:42639 Putative Fatty Acid Metabolism

Glycerol CHEBI:17754 Definitive Glycerolipid Metabolism

Glycerol CHEBI:17754 Definitive

Glycerol CHEBI:17754 Definitive

Fructose-6-phosphate CHEBI:15946 Definitive Glycolysis pathway

Fructose-6-phosphate CHEBI:15946 Definitive

Glucose-6-phosphate CHEBI:17719 Definitive

Glucose-6-phosphate CHEBI:17719 Definitive

Glycerol-3-phosphate CHEBI:15978 Definitive

Lactic acid CHEBI:28358 Definitive Fermentation pathway

AMP CHEBI:16027 Putative Metabolism of Cofactors and

Vitamins

Phosphate, monmethyl ester CHEBI:340824 Putative

Phosphate CHEBI:18367 Definitive

Phosphate CHEBI:18367 Definitive

Nicotinamide CHEBI:17154 Definitive

Cystathionine CHEBI:17755 Definitive Amino acid metabolism

Cystathionine CHEBI:17755 Definitive

Cystathionine CHEBI:17755 Definitive

4-hydroxyproline CHEBI:20392 Definitive

2-aminobutanoic acid CHEBI:35621 Putative

Glutamine CHEBI:28300 Definitive

Pipecolic acid CHEBI:17964 Putative

Fumaric acid CHEBI:18012 Definitive Tricarboxylic acid cycle

Malic acid CHEBI:6650 Definitive

Citric acid CHEBI:30769 Definitive

Citrulline CHEBI:18211 Definitive Urea cycle

Ornithine CHEBI:18257 definitive

Citrulline CHEBI:18211 Definitive

Orotic acid CHEBI:16742 Definitive Purine and pyrimidine biosyn-

thetic pathways

Uracil CHEBI:17568 Definitive

Adenine CHEBI:16708 Definitive
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8.3.2 Multivariate analysis

8.3.2.1 Pretreatment effects of scaling methods

A scree plot of clean data is presented in Figure 8.4, indicating that the first 10

PCs contain 94% of all variances, and the first three PCs (23.0%, 17.7%, 16.9%

respectively) account for 57.6% of all variances.
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Figure 8.4: Scree plot of clean data (including QCs). Figure depicts a scree plot of principal component

scores from PCA analysis of clean data (including QCs)

When the two-dimensional plot of PC1 and PC2 was carried out (Figure 8.5),ten out

of the twelve QCs clustered together while two the QCs were outliers. Five samples

of M2, M3 and M4 are close together with one outlier, while four of sample CS are

close together and two are outliers. In the case of M5, four of the samples are located

in different positions.
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Figure 8.5: PC1 against PC2: clean data with QCs. Figure depicts a two-dimensional plot of PC1 (23.0%)

against PC2 (17.7%) of clean data (including QCs)

The Pareto scaling method performed best out of the 4 scaling methods tested, and

so was used for scaling purposes in the rest of the study. Figure 8.6 is a scree plot

of scores from PCA analysis of Pareto scaled clean sample data (including QCs). As

the figure shows, the first 10 PCs contain 87% of all variances, and the first four

PCs (31.8205%, 12.8579%, 8.5743%, 8.0162% respectively)account for 61.3% of all

variances.
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Figure 8.6: Pareto scaled samples with QCs. Figure depicts a scree plot of principal component scores from

PCA analysis of Pareto scaled samples (including QCs)

The two-dimensional plot of first two PCs (PC1 and PC2) indicate fairly good clus-

tering of all QC samples and fairly good separation for all samples except for four

outliers: two samples of CS outliers, one sample of M5 and one sample of M4 (Figure

8.7).
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Figure 8.7: PC1 against PC2: Pareto scaled samples with QCs. Figure depicts a a two-dimensional plot

of PC1 against PC2 of Pareto scaled samples (including QCs)

8.3.2.2 PCA analysis of scaled sample data (without QCs)

PCA of scaled sample data (without QCs) for CS and M5 revealed that six PCs

accounted for 97% of all variances in the data and the first four PCs contained 90.9%

of all variances (70.1%, 10.1%, 5.6% and 5.0% respectively). These results prompted

further investigations of the first three dominant components, leading to plots of PC1

against PC2, PC1 against PC3, and PC2 against PC3. PC4 was not investigated

further since it contains about 5% of all variance.

The 2-dimensional plots of PC1 against PC2 and PC1 against PC3 for CS and M2

(Figures 8.8 and 8.9 respectively) indicated a good separation in PC1 between the

two samples. The plot of PC2 against PC3 for CS and M2, however, did not reveal

any separation between CS and M5 either in PC2 or PC3.
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Figure 8.8: A plot of PC1 against PC2 for CS and M2. Figure shows a two-dimensional plot of PC1

against PC2 for CS vs M2
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Figure 8.9: A plot of PC1 against PC2 for CS and M2. Figure shows a two-dimensional plot of PC1

against PC3 for CS and M2

As indicated in Figure 8.10 and Table 8.4, a plot of loadings from PC1 for CS and M2

indicated that fifty-four metabolites had major contributions to the variance. Three

of these showed very positive loadings (above +0.05) and fifty-one had very negative
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loadings (below -0.05). Furthermore, the three very positive loadings consisted of con-

tributions from one identified and two unknown metabolites, while the very negative

loadings are contributions from thirty-six identified and fifteen unknown metabolites.
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Figure 8.10: A plot of loadings from PC1 for CS and M2. Figure shows a plot of loadings from PC1 for

CS and M2. Extreme metabolite relative concentrations outside the threshholds of +/- 0.05 are numbered.

Table 8.4: A summary of loadings plots. Table shows a summary of loadings plots.

Contribution to variance

Strain comparison Major Positive Negative

CS versus M2 54 3 51

CS versus M3 49 6 43

CS versus M4 51 3 48

CS versus M5 50 14 36

For CS and M3, plots of PC1 against PC2 and PC1 against PC3 for (Figures C.4

and C.5, Appendix C) indicated a good separation in PC1 between the two samples.

No separation was found between CS and M3 either in PC2 or PC3.

The loadings plot of PC1 for CS and M3 show that forty-nine metabolites had ma-

jor contributions to the variances (Table 8.4). Six of these showed very positive
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loadings (above +0.05) and forty-three had very negative loadings (below -0.05).

The six very positive loadings consisted of contributions from four identified and

two unknown metabolites, while the very negative loadings are contributions from

twenty-nine identified and fourteen unknown metabolites (Table 8.4).

A good separation of CS and M4 was observed in PC1 the 2-dimensional plots of

PC1 against PC2 and PC1 against PC3 as shown in Figures C.6 (Appendix C) and

C.7 (Appendix C). However, no separation was found between CS and M5 either in

PC2 or PC4.

In the case of PC1 for CS and M4, loadings plot (Table 8.4) revealed that fifty-one

metabolites had major contributions to the variance. Three of which showed very

positive loadings (above +0.05) and forty-eight had very negative loadings (below

-0.05). Upon further analysis, the three very positive loadings consisted of contri-

butions from two identified and one unknown metabolites, and the very negative

loadings are contributions from thirty-two identified and sixteen unknown metabo-

lites.

When the 2-dimensional plots of PC1 against PC2 and PC1 against PC3 for CS and

M5 were carried out, a good separation along PC1 between the two samples was

demonstrated in each case(Figures C.8 and C.9, Appendix C). However, the plot of

PC2 against PC3 did not reveal any separation between CS and M5 either along PC2

or PC3.

As indicated in (Table 8.4), a plot of loadings from PC1 for CS and M5 indicated that

fifty metabolites had major contributions to the variance. Fourteen of these showed

very positive loadings (above +0.05) and thirty-six had very negative loadings (below

-0.05). Furthermore, the fourteen very positive loadings consisted of contributions

from eight identified and six unknown metabolites, and the very negative loadings

are contributions from twenty-eight identified and eight unknown metabolites.
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8.3.3 Results for hypothesis testing

Tables 8.5, 8.6 and 8.7 show the the p values of hypothesis testing of CS against

each of M2, M3, M4 and M5 using Welch’s t-test for each of the identified eighty-one

metabolite peaks. Significance testing was carried out at the level of 5%.
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Table 8.5: Results of hypothesis testing: table 1 of 3. Table shows results of hypothesis testing of CS

against each of M2, M3, M4 and M5 using Welch’s t-test for each of the identified eighty-one metabolite peaks.

Null hypothesis was rejected at p ≤ 0.05. The p-values in red colour indicate significant down regulation of specific

metabolites.

P-values from Welch’s t-test

ID Metabolite (ChEBI ID) CS and M2 CS and M3 CS and M4 CS and M5

1 Sugar (CHEBI:16646) 0.75843 0.44033 0.62491 0.42626

2 Sugar (CHEBI:16646) 0.23960 0.58736 0.45167 0.30609

3 Sugar (CHEBI:16646) 0.12741 0.58061 0.11137 0.52908

4 Sugar (CHEBI:16646) 0.03920 0.84670 0.50578 0.57939

5 Sugar (CHEBI:16646) 0.52373 0.33198 0.41051 0.51620

6 Sugar (CHEBI:16646) 0.18388 0.31575 0.61955 0.23224

7 Histidine (CHEBI:27570) 0.02802 0.05455 0.04490 0.06603

8 Glycerol (CHEBI:17754) 0.10569 0.38231 0.26860 0.51453

9 Hexadecanoic acid (CHEBI:15756) 0.51293 0.63773 0.79726 0.77953

10 Hexadecenoic acid (CHEBI:24548) 0.13374 0.12743 0.14691 0.18915

11 Adenine (CHEBI:16708) 0.01192 0.05650 0.09060 0.04812

12 Sugar (CHEBI:16646) 0.01215 0.29894 0.49966 0.99606

13 Cystathionine (CHEBI:17755) 0.01606 0.04775 0.04589 0.05386

14 Fructose-6-phosphate (CHEBI:15946) 0.31181 0.80076 0.85234 0.72509

15 Fructose-6-phosphate (CHEBI:15946) 0.00730 0.05739 0.09664 0.05452

16 Glucose-6-phosphate (CHEBI:17719) 0.00835 0.02888 0.03307 0.03511

17 Octadecanoic acid (CHEBI:28842) 0.04323 0.51162 0.23884 0.33627

18 Octadecenoic acid (CHEBI:25634) 0.13043 0.35900 0.50397 0.67855

19 Glucose-6-phosphate (CHEBI:17719) 0.00947 0.02620 0.03104 0.03060

20 Cystathionine (CHEBI:17755) 0.00679 0.02235 0.02112 0.02487

21 Cystathionine (CHEBI:17755) 0.00689 0.01975 0.02103 0.02123

22 Tryptophan (CHEBI:27897) 0.02136 0.07710 0.07686 0.11606

23 Trehalose (CHEBI:27082) 0.01700 0.41813 0.23358 0.54493

24 Sugar (CHEBI:16646) 0.07380 0.09325 0.13093 0.52442

25 Glycerol (CHEBI:17754) 0.96624 0.41431 0.34627 0.25125

26 Sugar (CHEBI:16646) 0.17737 0.27284 0.66852 0.99990

27 Sugar (CHEBI:16646) 0.02570 0.08308 0.14814 0.10888

28 Sugar (CHEBI:16646) 0.95504 0.38871 0.87068 0.23085

29 AMP (CHEBI:16027) 0.06367 0.13912 0.11066 0.08169

30 Isoleucine (CHEBI:24898) 0.07660 0.53714 0.46361 0.97981
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Table 8.6: Results of hypothesis testing: table 2 of 3. Table shows results of hypothesis testing of CS

against each of M2, M3, M4 and M5 using Welch’s t-test for each of the identified eighty-three metabolite peaks.

Null hypothesis was rejected at p ≤ 0.05. The p-values in red colour indicate significant down regulation of specific

metabolites while the p values in green represent significant up regulation of specific metabolites.

P-values from Welch’s t-test

ID Metabolite (ChEBI ID) CS and M2 CS and M3 CS and M4 CS and M5

31 Leucine (CHEBI:25017) 0.01316 0.12358 0.11335 0.31773

32 Leucine (CHEBI:25017) 0.00177 0.22341 0.48075 0.28199

33 Phosphate, monmethyl ester (CHEBI:340824) 0.02055 0.44910 0.41732 0.54983

34 Alanine (CHEBI:28044) 0.01660 0.01710 0.01682 0.01725

35 Isoleucine (CHEBI:24898) 0.00040 0.00988 0.03658 0.05855

36 Proline (CHEBI:26271) 0.00338 0.82690 0.78559 0.17695

37 Glycine (CHEBI:15428) 0.04485 0.54777 0.54688 0.13375

38 Phosphate (CHEBI:18367) 0.01436 0.41227 0.20452 0.43020

39 Serine (CHEBI:17822) 0.01494 0.90885 0.96027 0.49771

40 Phosphate (CHEBI:18367) 0.00650 0.41360 0.44891 0.64110

41 Threonine (CHEBI:26986) 0.02038 0.98645 0.95545 0.38711

42 Glycine (CHEBI:15428) 0.05613 0.26878 0.34684 0.43021

43 Serine (CHEBI:17822) 0.01492 0.15412 0.19925 0.44873

44 Threonine (CHEBI:26986) 0.01474 0.15453 0.20901 0.45364

45 Fumaric acid (CHEBI:18012) 0.50507 0.81594 0.90912 0.85000

46 Homoserine (CHEBI:30653) 0.07682 0.92771 0.82011 0.64727

47 Valine (CHEBI:27266) 0.57050 0.32687 0.29346 0.23632

48 Homoserine (CHEBI:30653) 0.01769 0.10049 0.12202 0.24472

49 Uracil (CHEBI:17568) 0.42557 0.44836 0.71323 0.32800

50 4-hydroxyproline (CHEBI:20392) 0.49892 0.39288 0.72940 0.97363

51 Malic acid (CHEBI:6650) 0.03682 0.07956 0.14195 0.12790

52 Aspartic acid (CHEBI:22660) 0.25834 0.05422 0.17275 0.02480

53 2-aminobutanoic acid (CHEBI:35621) 0.01694 0.41656 0.14236 0.75372

54 Aspartic acid (CHEBI:22660) 0.02471 0.88932 0.92945 0.52912

55 Glutamic acid (CHEBI:18237) 0.60270 0.24804 0.25519 0.07916

56 Methionine (CHEBI:16811) 0.02130 0.18375 0.10750 0.36251

57 Cysteine (CHEBI:15356) 0.01010 0.64118 0.53814 0.85908

58 Methionine (CHEBI:16811) 0.04809 0.19975 0.23895 0.41136

59 Butyrolactone (CHEBI:42639) 0.05599 0.01892 0.06873 0.08287

60 Citrulline (CHEBI:18211) 0.24203 0.40603 0.38407 0.33803
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Table 8.7: Results of hypothesis testing: table 3 of 3. Table shows results of hypothesis testing of CS

against each of M2, M3, M4 and M5 using Welch’s t-test for each of the identified eighty-three metabolite peaks.

Null hypothesis was rejected at p ≤ 0.05. The p-values in red colour indicate significant down regulation of specific

metabolites while the p values in green represent significant up regulation of specific metabolites.

P-values from Welch’s t-test

ID Metabolite (ChEBI ID) CS and M2 CS and M3 CS and M4 CS and M5

61 Glutamine (CHEBI:28300) 0.02654 0.42981 0.95861 0.78049

62 Glutamine (CHEBI:28300) 0.01221 0.78888 0.75612 0.78607

63 Pyroglutamic acid and/or glutamic acid

(CHEBI:16010)

0.30708 0.21004 0.97287 0.39827

64 Homocysteine (CHEBI:17230) 0.01181 0.03964 0.04383 0.06004

65 Phenylalanine (CHEBI:28044) 0.03067 0.24075 0.24550 0.44887

66 Nicotinamide (CHEBI:17154) 0.05031 0.15123 0.14197 0.16473

67 Sugar (CHEBI:16646) 0.76202 0.60660 0.78113 0.26007

68 Sugar (CHEBI:16646) 0.32091 0.62252 0.63772 0.75111

69 Ornithine (CHEBI:18257) 0.01040 0.11261 0.13396 0.02358

70 Glycerol-3-phosphate (CHEBI:15978) 0.29215 0.82260 0.54049 0.36542

71 Sugar (CHEBI:16646) 0.38373 0.76727 0.52562 0.31651

72 Pipecolic acid (CHEBI:17964) 0.67160 0.37422 0.26948 0.09050

73 Citric acid (CHEBI:30769) 0.38525 0.71677 0.71546 0.60617

74 Glutamine (CHEBI:28300) 0.04072 0.44177 0.73059 0.66974

75 Valine (CHEBI:27266) 0.02429 0.25878 0.26872 0.82197

76 Lysine (CHEBI:25094) 0.18507 0.56099 0.45140 0.98338

77 Citrulline (CHEBI:18211) 0.03801 0.43781 0.35775 0.84937

78 Sugar (CHEBI:16646) 0.95536 0.28025 0.59128 0.25478

79 Sugar (CHEBI:16646) 0.44553 0.28310 0.99648 0.01619

80 Sugar (CHEBI:16646) 0.03445 0.03995 0.03091 0.04813

81 Sugar (CHEBI:16646) 0.64929 0.33216 0.63729 0.32811

8.3.4 Comparing PCA with Univariate analysis

Matching the statistically significant metabolites (at 5% level using Welch’s t-test)

with the metabolites showing major contributions to variance in the PCA loadings,

there were between 69 and 80% agreements between the results of CS against M2,

CS against M3, CS against M4 and CS against M5, respectively. Using signrank p

values in place of Welch’s t-test for similar comaparisons, there were only 11 to 20%

agreements between the results of CS against M2, CS against M3, CS against M4 and
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CS against M5, respectively. Hence, p values for Welch’s t-test were used for further

investigations. Tables 8.8, 8.9, 8.10 and 8.11 show the lists of metabolites found to

have major contributions to variance in PC1 loadings of CS against M2 (see section

8.3.2) and are also statistically significant (Welch’s t-test) comparing CS against M2

(see section 8.3.3).

In the comparision of strains CS and M2, eleven metabolites out of the twenty-four

which are statistically significant at 5% level matched the eleven major metabolites

with extreme values identifed by PCA (Table 8.8). Similarly, for the comparisons

of CS against M4 and CS against M5, twenty-three out of thirty-eight significant

metabolites (Welch’s t-test) matching the twenty-three metabolites with extreme

values (PCA) and twenty-one out of forty-two significant metabolites (Welch’s t-

test) matching the twenty-one metabolites with extreme values (PCA), respectively

(Tables 8.10 and 8.11)
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Table 8.8: Welch’s t-tests against PCA results: CS and M2. Table shows list of twenty-nine identified

metabolite peaks found to have major contributions to variance in PC1 loadings of CS against M2 and are also

statistically significant at 5% level using Welch’s t-test to compare CS and M2.

ID Metabolite

10 Histidine

18 Adenine

20 Sugar

23 Cystathionine

25 Fructose-6-phosphate

29 Glucose-6-phosphate

32 Cystathionine

33 Cystathionine

35 Tryptophan

44 Sugar

49 Leucine

50 Leucine

52 Phosphate, monmethyl ester

55 Proline

60 Serine

65 Serine

66 Threonine

74 Homoserine

80 Malic acid

84 2-aminobutanoic acid

91 Methionine

92 Cysteine

93 Methionine

97 Glutamine

105 Homocysteine

107 Phenylalanine

112 Ornithine

120 Valine

126 Sugar
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Table 8.9: Welch’s t-tests against PCA results: CS and M3. Table shows list of seven identified metabolite

peaks found to have major contributions to variance in PC1 loadings of CS against M3 and are also statistically

significant at 5% level using Welch’s t-test to compare CS and M3.

ID Metabolite

23 Cystathionine

26 Glucose-6-phosphate

29 Glucose-6-phosphate

33 Cystathionine

53 Alanine

105 Homocysteine

126 Sugar

Table 8.10: Welch’s t-tests against PCA results: CS and M4. Table shows list of nine identified metabolite

peaks found to have major contributions to variance in PC1 loadings of CS against M4 and are also statistically

significant at 5% level using Welch’s t-test to compare CS and M4.

ID Metabolite

10 Histidine

23 Cystathionine

26 Glucose-6-phosphate

29 Glucose-6-phosphate

32 Cystathionine

33 Cystathionine

53 Alanine

105 Homocysteine

126 Sugar
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Table 8.11: Welch’s t-tests against PCA results: CS and M5. Table shows list of seven identified

metabolite peaks found to have major contributions to variance in PC1 loadings of CS against M5 and are also

statistically significant at 5% level using Welch’s t-test to compare CS and M5.

ID Metabolite

26 Glucose-6-phosphate

29 Glucose-6-phosphate

32 Cystathionine

33 Cystathionine

81 Aspartic acid

112 Ornithine

126 Sugar

Figures 8.11, 8.12, 8.13 and 8.14 are the box plots of CS versus the mutants strains

M2, M3, M4 and M5, respectively, displaying the relative concentrations of the match-

ing metabolites identified by both PCA and Welch’s t-test.



8.3. RESULTS FOR METABOLIC PROFILING 216

0

0.1

0.2

CS M2

ID No 10: Histidine
R

el
at

iv
e 

co
nc

en
tr

at
io

n

0.2

0.4

0.6

CS M2

ID No 18: Adenine

R
el

at
iv

e 
co

nc
en

tr
at

io
n

0

0.1

0.2

0.3

CS M2

ID No 20: Sugar

R
el

at
iv

e 
co

nc
en

tr
at

io
n

0

0.5

1

1.5

2

CS M2

ID No 23: Cystathionine

R
el

at
iv

e 
co

nc
en

tr
at

io
n

Figure 8.11: Box plot metabolites: CS against M2. Figure shows box plots of CS against M2 displaying

the relative concentrations of four of the matching metabolites: histidine, adenine, sugar and cystathionine.
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Figure 8.12: Box plot metabolites: CS against M3. Figure shows box plots of CS against M3 displaying

the relative concentrations of four of the matching metabolites: cystathionine, Glucose-6-phosphate.



8.3. RESULTS FOR METABOLIC PROFILING 218

0

0.1

0.2

CS M4

ID No 10: Histidine
R

el
at

iv
e 

co
nc

en
tr

at
io

n

0

0.5

1

1.5

2

CS M4

ID No 23: Cystathionine

R
el

at
iv

e 
co

nc
en

tr
at

io
n

0

0.1

0.2

0.3

0.4

CS M4

ID No 29: Glucose−6−phosphate

R
el

at
iv

e 
co

nc
en

tr
at

io
n

0

0.2

0.4

0.6

CS M4

ID No 126: Sugar

R
el

at
iv

e 
co

nc
en

tr
at

io
n

Figure 8.13: Box plot metabolites: CS against M4. Figure shows box plots of CS against M4 displaying the

relative concentrations of four of the matching metabolites: histidine, cystathionine, glucose-6-phosphate,and sugar.
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Figure 8.14: Box plot metabolites: CS against M5. Figure shows box plots of CS against M5 for the

relative concentrations of four of the matching metabolites: Fructose-6-phosphate, glucose-6-phosphate, malic acid

and aspartic acid.

8.4 Discussion

Further optimisation of the double mutants, especially the lysine overproducing pro-

ducing mutants (M4 and M5) required a global assessment of the effects of genetic

perturbations in the metabolic pathways of the strains using a systems biology ap-

proach. A systems biology tool, metabolomics, is most suited to the identification

of bottlenecks for metabolic engineering as the level of the metabolome is close to

that of the phenotype. Hence, metabolic profiling analysis carried out allowed for the

comparative analysis of CS against each of double mutants, M2, M3, M4 and M5, ex-

cept M1 which showed poor growth in the aerobic minimal media condition and was
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excluded from further studies. The GC-TOF-MS results of the relative quantification

of metabolites in the metabolome extracts of strains CS, MM2, M3, M4 and M5 for

selected pathways showed both identified and unidentified metabolite peaks. The

81 identified metabolite peaks were involved in eleven metabolic pathways and prod-

uct classes, namely “Amino acid biosyhnthesis”, “Carbohydrate metabolism”, “Fatty

Acid Metabolism”, “Glycerolipid Metabolism”, “Glycolysis pathway”, “Fermentation

pathway”,“Metabolism of Cofactors and Vitamins”, “Amino acid metabolism”, “Tri-

carboxylic acid cycle”, “Urea cycle”, and “Purine and pyrimidine biosynthetic path-

ways” (see Tables 8.1, 8.2 and 8.3). In GC-MS analysis, the process of derivatisation

sometimes leads to different derivatives of the same metabolite. Table 8.5, shows two

metabolite peaks (IDs 14 and 15) identified as fructose-6-phosphate (CHEBI:15946).

However, the results of the Welch’s t-test in the comparison of CS against M2

strain, indicated that the fructose-6-phosphate with ID number 15 was a significantly

changing metabolite (p = 0.00730) and which was not the case with the fructose-

6-phosphate with ID number 14 (p = 0.31181). The most probable reason for this

difference is that the concentrations detected were close to the methodological limit

of detection, resulting in variation introduced at these low signal-to-noise ratios.

8.4.1 Effects of scaling

It was expected that the effects of the gene knockouts in the mutant strains would

be reflected in the GC-MS metabolomic data sets as induced biological variation.

Possibly too, uninduced biological variation such as large fluctuations in metabolite

concentrations in the data may occur. In addition, heteroscedasticity may be re-

flected in GC-MS results due to the total uninduced variation as a result of biology,

sampling procedures and analytical measurements. Hence, extraction of relevant bi-

ological information from metabolomics data sets require appropriate pretreatment

of the data sets before data analysis. The pretreatment methods such as scaling

and transformation improve the interpretability of data by removing the noise that

hinders biological interpretation.
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The two-dimensional plot of first two PCs (PC1 and PC2) of Pareto scaled data

indicate fairly good clustering of all QC samples and fairly good separation for all

samples except for four outliers: two samples of CS outliers, one sample of M5 and

one sample of M4 (Figure 8.7). These results represented improvements over the

results of PCA on unscaled clean data (Figures 8.4 and 8.5) which did not show

clustering of all twelve QCs and and also showed more problems with closeness in the

samples for M2, M3, M4, M5 and CS. A similar plot of PC1 and PC2 for clean data

scaled by either center scaling, range scaling or autoscaling method did not show

good clustering of QC samples as the pareto scaled data. Pareto scaling reduces

the relative importance of large values, but keeps data structure partially intact

and also corrects for heteroscedasticity (van den Berg et al., 2006). In addition,

Pareto scaled data stays closer to the original measurement than autoscaling as shown

in Figure C.3 (Appendix C) where the autoscaled clean sample data resulted in a

fairly good separation for all samples except for two CS outliers and one M4, and

in addition QCs separated into two groups. Although centering method allowed a

fairly good separation for all samples, it only showed good clustering of ten out of

twelve QC samples, with two outliers (see Figure C.1 in Appendix C), possibly due

to the inability of center scaling approach to sufficiently scale the heteroscedastic

data. A fairly good separation of samples and a separation of QCs into two groups

were obtained when range scaling was applied on the clean data (see Figure C.2 in

Appendix C), which renders this method a less robust pretreatment method for the

data sets used in this study.

Pareto emerged as the method of choice for scaling the clean sample data sets used

in this study because all the twelve replicate QC samples were closer together in

the plot of PC1 against PC2 of pareto scaled data than in similar plots for data

sets scaled by Center scaling, autoscaling and Range scaling methods (Appendix C,

Figures C.1, C.3 and C.2). Since Pareto also corrects for heteroscedasticity (van den

Berg et al., 2006) transformation (using logarithm or power) of clean data sets was

not considered. Pareto scaled clean data improved over the unscaled clean data in
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the amount of variance captured in PC1 from 23% (Figure 8.4) to 31% (Figure 8.6).

8.4.2 Analysis of results

Multivariate data analysis using PCA was used as the exploratory tool in the analysis

of metabolic profiling dataset because it is an established method for reducing the

dimension of data. PCA exposes the internal structure that best explains the variance

in data. The univariate data analysis (hypothesis testing using Welch’s t-test at

5% significance level) identified more metabolites with significantly different relative

concentrations between CS and the mutant strains (M1, M2, M3 and M4) than PCA.

In order to ensure that biological interpretation was based on true biological changes

in relative concentrations of metabolites, it was decided to select the metabolites

whose relative concentrations have been found by both Welch’s t-test and PCA to

be significantly different between the control strain CS and a specific mutant strain.

The twenty-nine metabolites with significant relative changes between the CS and M2

(Table 8.8) map to 7 different pathways: Purine and pyrimidine biosynthetic path-

ways (adenine), amino acid metabolism (cystathionine and 2-aminobutanoic acid),

amino acid biosynthetic pathways (histidine, proline, leucine, serine, threonine, Ho-

moserine, glutamine, valine, methionine, cysteine and phenylalanine), metabolism of

cofactors and vitamins (phosphate, monmethyl ester), glycolysis (fructose-6-phosphate,

glucose-6-phosphate and sugar), urea cycle (ornithine) and tricarboxylic acid cycle

(malic acid). Similarly, for CS and M3, the seven significantly different metabolites

(Table 8.9) are found in glycolysis (sugar), amino acid metabolism (cystathionine) and

amino acid biosynthetic pathways (alanine and Homocysteine). The nine metabolites

with significant relative changes between the CS and M4 (Table 8.10) map to three dif-

ferent pathways: glycolysis (glucose-6-phosphate and sugar), amino acid metabolism

(cystathionine) and amino acid biosynthetic pathways (histidine,alanine and homo-

cysteine). The seven changing metabolites in the comparison of CS and M5 (Table

8.11)indicated four affected pathways as follows: glycolysis (glucose-6-phosphate and
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sugar), amino acid metabolism (cystathionine), amino acid biosynthetic pathways

(aspartic acid) and urea cycle (ornithine).

The trends depicted in the boxplots of relative concentrations of CS against each of

the other four mutants (examples in Figures 8.11, 8.12, 8.13 and 8.14) indicate that

most of the significantly different metabolites were downregulated in endometabolome

snapshot under study. Only aspartic acid and ornithine showed higher concentrations

in M5 than CS, which matched the result of PCA as upregulated metabolites.

8.4.3 Biological significance of results

Mutant strains M2, M3, M4 and M5 contain the deletions, ∆kgd2∆alt1, ∆lsc1∆alt1,

∆lsc2∆alt1 and ∆alt1∆glt1, respectively, meant for redirection of flux to lysine path-

way as shown in the metabolic and genetic flux map (Figure 8.15).
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Figure 8.15: Metabolic and genetic flux map. Figure shows the genetic points of intervention in a network

of reactions (including amino acids) for redirecting carbon flux towards increasing the yield of lysine. R36 is reaction

number 36 representing the genes for the enzymes KGD1 and KGD2; R37 is reaction number 37 representing the

genes for the enzymes LSC1 and LSC2; R71 is reaction number 71 representing the gene for the enzymes ALT1 and

R113 is reaction number 113 representing the gene for the enzyme GLT1. Each of the numbers in blue represents the

flux value of a reaction.

In a previous quantitative metabolomic experiment (section 7.3), M4 and M5 pro-

duced four times the amount of lysine produced by CS, while M2 and M3 did not

produce an appreciable amounts of lysine than the control strain. The numbers of

pathways and metabolites affected by changes in relative concentrations seems to re-

flect that genetic pertubations were more pronounced in the strain M2 than in strains

M3, M4 and M5. Although, the results of this study concerning the metabolic profil-

ing of CS against the mutants did not show lysine as one of the significant metabolites.
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Evidence of overproduction of lysine in M4 and M5 might have been swamped by

the relative concentrations of large-aboundant metabolites, and hence undetectable

either as a major contributor to variance (PCA) or to be statistically significant by

hypothesis testing. However, there are evidences of metabolic changes due to the

induced genetic perturbations in the mutant strains. The general pattern of genetic

effects in all mutants were disruption to the TCA cycle, glycolysis and branches of

amino acid biosynthetic pathways.

8.4.3.1 Downregulated metabolites in mutant M2

In the case of M2, deletions of kgd2 and alt1 genes (Figure 8.15) might have dis-

rupted the TCA cycle partially (since kgd1 gene must still have been active) and a

also a disruption to production of alanine. The partial disruption in the TCA cycle

at this point might have led to low level of malic acid and oxaloacetate which is the

main precursor for the production of aspartate family of amino acids (aspartate, as-

paragine, isoleucine, threonine and methionine). Cystathionine, a product of amino

acid metabolism was downregulated in M2. Notably too, the relative concentra-

tions of fructose-6-phosphate, glucose-6-phosphate and certain unknown Sugars were

lower than in CS. Possibly, disruption to the TCA cycle led to the reduced relative

concentrations of the glycolytic metabolites.

8.4.3.2 Downregulated metabolites in mutant M3

Deletions of lsc1 and alt1 in M3 had the lesser effect than deletions of kgd2 and alt1

genes in strain M3 regrading the significantly changing metabolites between CS and

M3 as only 7 identified metabolites from 3 different pathways were affected. However,

M3 showed some similar effects in glycolysis, while the 2 amino acids affected are

from 2 different amino acid families. As expected, deletion of alt1 gene led to low

concentration of alanine.
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8.4.3.3 Downregulated metabolites in mutant M4

Deletions in lsc2 and alt1 in M4 had the most similar effects to lsc2 and alt deletions

in M3 in terms of the number of changing metabolites. One of the differences is the

downregulated histidine level in M4. Metabolites in glycolysis and the TCA cycle are

affected as mentioned for M2.

8.4.3.4 Downregulated metabolites in mutant M5

The genetic effects of knocking out alt1 and glt1 in M5 are similar to the perturbations

in glycolysis and Cystathionine metabolism of strains M3 and M4. Although M5

shared one deletion (alt1) with M4, metabolic perturbations observed for glycolysis

were similar. However, only M5 demonstrated aspartate and ornithine as upregulated

and significantly changing amino acids. High flux of aspartate is beneficial to realising

a high flux to lysine biosynthetic pathway. This may an indication and supporting

evidence that strain M5 overproduces lysine. Higher concentration of ornithine in M5

than in CS certainly reflect the high aspartate flux, as aspartate is the link between

aspartate biosynthetic pathway and the urea cycle.

8.5 Conclusion

Metabolic profiling analysis of four S. cerevisiae mutant strains, M2, M3, M4 and

M5 revealed informative profiles of significantly changing metabolites when compared

with a control strain (CS) under aerobic growth conditions in mimimal media. Al-

though, direct evidence of flux redistribution towards overproduction of lysine was

not apparent in the results obtained in this study, evidences of supportive genetic

effects were demonstrated. The metabolites shown to be downregulated and upreg-

ulated in these strains indicate are a direct evidence of genetic perturbations in the

mutant strains. Henceforth, it is important that results presented here is supported

by metabolic flux analysis to reveal the nature of flux redistributions in the metabolic
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pathways affected. Understanding the flux redistributions will enable the understand-

ing of which enzymes to overexpress, especially in the glycolytic pathway, which will

benefit the flux in the lysine biosynthetic pathway.



Chapter 9

General Discussion

9.1 Summary of findings

This thesis describes how systems biology approaches can be applied to rational

metabolic engineering of S. cerevisiae for enhanced production of lysine and other

commercially valuable products. Wild type S. cerevisiae is naturally poor in lysine,

and lysine is one of the most sought-after essential amino acids due to its wide spec-

trum of applications, especially as food additives, components of therapeutic products

and cosmetics.

The findings reported in chapter 6 show that the general modelling approach adopted

here was successful. Computation of EFMs based on the stoichiometric models from

the network of reactions from S. cerevisiae revealed the metabolic capabilities of S.

cerevisiae for production of lysine, glutamate, ethanol, trehalose and fumaric acid.

EFM analysis based on stoichiometric models revealed metabolic capabilities of S.

cerevisiae grown on glucose under aerobic condition for production of lysine and

other products. However, as the large number of EFMs obtained did not permit easy

interpretation for metabolic engineering purposes, a novel methodology was developed

to decipher the EFM data. The first part of the methodology were computational

steps for reducing the dimensionality of the EFM data. The effectiveness of of this

228
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was reduction up to 60.4%, was demonstrated in section 6.3.1. The second part

of the methodology involved clustering analysis. The PAM clustering method, the

best out of eight tested (see section 6.2.3.4), partitioned the EFMs into homogeneous

groups that were neither too big nor too small, and had easy biological interpretation.

In essence, the new method for decomposing EFM data into manageable subsets of

EFMs, allowed for fast detection of alternative biochemical routes in the metabolic

network for the development of improved S. cerevisiae production strains.

Chapter 6 also reported the successful exploitation of the EFM solution space for in

silico design of single, double and triple mutants for improved lysine production in

S. cerevisiae.

The successful construction of 5 double mutants (M1, M2, M3, M4 and M5) and one

triple mutant, using a PCR-based gene deletion method was demonstrated in chapter

7. Quantitative GC-MS results reported in chapter 7 showed that out of the seven

single mutants tested for lysine overproduction, the strains with single deletions,

lsc2 and glt1, excreted into the medium five times the amount of lysine than the

control strain. In addition, two-fold increase in flux towards lysine production was

demonstrated by S. cerevisiae double mutant M1, while both S. cerevisiae double

mutants M4 and M5 showed four-fold increase in lysine production more than the

control strain. However, the growth of S. cerevisiae triple mutant could not be

sustained in minimal SD (3XALL). Possibly, the triple mutant was not viable due to

the synthetic lethal effect of the deletion of ZWF1 gene on top of the other two gene

deletions. The S. cerevisiae with deleted ZWF1 gene is known to be viable. The in

silico triple mutant was expected to be more effective in eliminating the competing

pathways to lysine biosynthetic pathway and was expected to produce more lysine.

Hence, another possibility for the lack of viability of the triple mutant in 3XALL

medium may be due to a toxic effect of high level of lysine and intermediates of

lysine pathway in the medium.

Chapter 5 reports FBA-based in silico strain design. Ethanol and lysine overproduc-

ing in silico strains were also developed by OptKnock and GDLS. It was interesting
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to find that some of the gene (reactions) target knockouts predicted by OptKnock

and GDLS for lysine overproduction were from the TCA cycle as it was the case with

the EFM-based in silico modelling. Furthermore, the knockout of Oxoglutarate De-

hydrogenase (catalyses a crucial step in the TCA cycle) was predicted by OptKnock,

GDLS and EFM analysis as a point of intervention for lysine overproduction in S.

cerevisiae.

Chapter 8 examines the metabolite profiles of CS versus each of the 5 double mutants

(M1, M2, M3, M4 and M5) in an attempt to optimise the demonstrated lysine over-

producing mutants (M4 and M5). The final GC results presented were only for

mutants M2, M3, M4 and M5 since mutant M1 did not grow well and was eliminated

before GC-MS analysis. Metabolite profiling results indicate that all the four double

mutants tested had lower relative metabolite concentrations than the control strain.

9.2 Future perspectives

In future it will be necessary to optimise the two lysine over-producing double mutant

strains, M4 and M5. The bottleneck in strain optimisation is usually due to metabolic

regulation. There are two possible different complementary approaches for achieving

the optimisation of strains M4 and M5 in future, discussed as follows:

Tackling the known regulations in the lysine biosynthetic pathway:

The two homocitrate synthase isoenzymes which catalyse the first step of the lysine

biosynthetic pathway are inhibited by lysine (Feller et al., 1999) and two interme-

diates in the lysine pathway. Removal of the lysine inhibition would be beneficial

to increasing the intracellular accumulation of lysine as demonstrated by Feller et al

(1999). However, it will be important to tackle the issue of lysine excretion which

will be highly beneficial from commercial point of view. Excretion of lysine into the

medium means less effort and cost for the industry in its purification. In yeast, there

is a known vacuolar transporter of lysine and presumably transporters also export
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lysine to the medium. Hence, in future, overexpression of the transporter and ex-

porter genes in addition to the removal of lysine inhibition to the two homocitrate

synthase isoenzymes would be necessary. In this way, strains M4 and M5 will be able

to produce and excrete large amounts of lysine.

Integration of transcriptomics, proteomics and metabolomics:

Another improvement would be to take into account the transcriptional, translational

and post-translational levels of regulation. Improvement of mutants M4 and M5

would indeed benefit from such a complete analysis. In this second approach, the

combined approaches of transcriptomics, proteomics, metabolomics, bioinformatics

and data analyses will be used to identify and monitor key the metabolic pathways in

mutants M4 and M5. Integration of multi-omics studies will help unravel the multiple

layers of control that superimpose the flux network, and also provide complementary

coverage of metabolism. Biological insights arising from these studies will form the

testable hypotheses for optimal design of lysine producing M4 and M5 strains.

Since the level of the metabolome is the closest to phenotype, it will be rewarding

to carry out metabolite profiling of the two double mutant strains so as to link the

genetic effects of knockouts to the metabolome. Transcriptomics and proteomics data

will provide information about the locations of the affected genes in the metabolic

pathways, and also help indicate which genes (for instance in the central metabolism)

to overexpress. Increased flux in the central metabolism will be beneficial to the lysine

biosynthetic pathway.

The above-outlined future perspectives concerns only the mutant strains developed

by EFM analysis. The in silico mutant strains developed for lysine and ethanol using

FBA methods will also require validation in the laboratory.
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9.3 Conclusion

The results presented in this thesis validate the strategy of using EFM, FBA and

the metabolomic measurements for the creation of the lysine overproducing mutants.

Two of the strains developed here, M4 and M5, are very promising, showing 4X and

5X higher levels of lysine than the original strain. These are suitable platforms for

further developments into higher S. cerevisiae lysine producers.
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Figure C.1: PC1 against PC2: Center scaled samples with QCs. Figure depicts a two-dimensional plot

of PC1 against PC2 of Center scaled samples (including QCs)
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Figure C.2: PC1 against PC2: Range scaled samples with QCs. Figure depicts a a two-dimensional plot

of PC1 against PC2 of Range scaled samples (including QCs)
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Figure C.3: PC1 against PC2: Autoscaled samples with QCs. Figure depicts a two-dimensional plot of

PC1 against PC2 of Autoscaled samples (including QCs)
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Figure C.4: A plot of PC1 against PC2 for CS and M3. Figure shows a two-dimensional plot of PC1

against PC2 for CS vs M3
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Figure C.5: A plot of PC1 against PC2 for CS and M3. Figure shows a two-dimensional plot of PC1

against PC3 for CS and M3
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Figure C.6: A plot of PC1 against PC2 for CS and M4. Figure shows a two-dimensional plot of PC1

against PC2 for CS vs M4
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Figure C.7: A plot of PC1 against PC2 for CS and M4. Figure shows a two-dimensional plot of PC1

against PC3 for CS and M4
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Figure C.8: A plot of PC1 against PC2 for CS and M5. Figure shows a two-dimensional plot of PC1

against PC2 for CS VS mutant M5
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Figure C.9: A plot of PC1 against PC2 for CS and M5. Figure shows a two-dimensional plot of PC1

against PC3 for CS and M5


