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Abstract

The angular distributions of leptons from the decays of Drell-Yan dilepton pairs are
studied in 8.6 fb™' of pp collisions recorded with the DO detector at the Fermilab
Tevatron collider. Drell-Yan events are often analysed in the Collins-Soper reference
frame, which defines two angles, ¢s and fcg, in the planes transverse to and along
the beam direction respectively. The shape of the ¢ distribution is measured in
bins of the dilepton transverse momentum, using events in the ete™ and u* = decay
channels. Predictions from the Monte Carlo program PYTHIA are in good agreement
with the data.
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Chapter 1

Introduction

This analysis aims to measure the transverse angular distributions of dilepton pairs
produced by pp — Z/v* — ete X and pp — Z/v* — ptp~ X Drell-Yan events
after applying a Lorentz boost into the dilepton centre of mass frame. These trans-
verse angular distributions are analysed for Monte Carlo (MC) simulation samples
of Drell-Yan[1] events at generator and detector level, where generator level refers to
a simulation of the pure physics processes without simulation of detector effects and
detector level is created by passing the generator level simulation events through a
simulation of the DO detector. By comparing the generator and detector level distri-
butions, correction factors are calculated which are applied to the distributions from
data. These corrected data distributions with corresponding uncertainties are then

compared to the generator level Monte Carlo distributions

1.1 Theory

By measuring the transverse angular distributions of Drell-Yan dilepton pairs it is
possible to probe the polarisation of the gauge boson (Z/7*) and test the underlying

production dynamics. This specific analysis looks at the distribution of ¢.s an angle
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Figure 1.1: Feynman diagram of the signal process, Drell-Yan dilepton production
with initial state gluon emission.

in the in the Collins-Soper (CS) centre of mass frame [2]. The CS frame describes
a Lorentz boost from the laboratory frame into the dilepton system’s centre of mass
frame where the two leptons produced from the Z/v* decay are back-to-back. The
angle ¢¢g is defined as the angle in the CS frame between the plane containing the
dilepton system and the plane of the dilepton transverse momentum, p%. Mathemat-

ically tan ¢csis defined as:

(1.1)

2 o .
Ml% + (pl7l“> AT . RT
tan ¢cs = X 7

My . A
where M), is the dilepton invariant mass, AT = [ —1', where [ and I’ are the respective
four-momenta of the particle (electron, muon) and antiparticle (positron, antimuon),
h is a transverse unit vector in the direction of Pl and Ry is a transverse unit vector
in the direction ]3A X Cj where ﬁA is a vector pointing along the negative z-axis,
Py = (0,0,—1), and Cj is the four-momentum of the dilepton pair. Figure 1.1 shows

a graphical representation of the CS frame.
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Figure 1.2: Graphical representation of the Collins-Soper frame.



Chapter 2

The DO Detector

The DO experiment

The DO detector is a versatile detector which can be used in the analysis of a wide

range of particle physics areas.

As DO is a well established and long running experiment, several documents exist
giving detailed descriptions of all aspects of the experiment. Therefore, this section
provides only a brief description of those parts of the DO detector which are most
pertinent to this analysis. Detailed descriptions of the detector can be found in

references [3] and [4].

As shown in figure 2.1, which shows a schematic view of the D0 detector, the DO

detector consists of four distinct sections:
e Central tracking system.
e (Calorimeter.
e Muon toroid.

e Muon detectors.



The geometry of the detector is defined such that the positive z axis points along the
direction of travel of the incoming protons. The angle ¢ describes the azimuthal angle,
while the angle 6 describes the polar angle measured with respect to the positive
z axis. The term rapidity of a particle refers to the quantity, y, defined as y =
%lngf—zji where FE is the energy of the particle, p, is the component of the particle’s
momentum along the z axis and c is the speed of light in a vacuum (299,792,458 m
s71). The pseudorapidity, 7, is a quantity similar to y defined as n = —ln[tang]. The
term transverse momentum, pr, refers to a particle’s momentum transverse to the

beam axis defined as pr = psinfl, where p is the particle’s momentum.
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Figure 2.1: Schematic view of the DO detector. [4]



2.1 Central Tracking System

The central tracking system consists of a silicon microstrip tracker (SMT), a central

fiber tracker (CFT) and a solenoidal magnet (field strength approximately 2 T).
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Figure 2.2: Schematic view of the DO central tracking system [4]

The SMT is the innermost component of the central tracker and is used to detect
the tracks of charged particles as well as displaced vertexes from heavy flavour quark
decays. The CF'T consists of layers of scintillating fibers surrounding the SMT cov-
ering a range of |n| < 1.7 [4]. The CFT provides additional tracking information for

the central region of the detector.

The solenoidal magnet bends the paths of charged particles. The curved track of a

particle within the magnetic field gives information about it’s charge, as oppositely



charged particles curve in opposite directions relative to each other in a magnetic

field, and it’s momentum from the degree of curvature of the track.

2.2 Calorimeter

The DO calorimeter is separated into three parts (a central calorimeter (CC) with
range of |n| < 1.1 and two end calorimeters (ECs) which range over 1.5 < |n| < 4 )
with a small 7 separation over the range 1.1 < |n| < 1.5 between each part known as
the Inter-Calorimeter Region (ICR) which contains some additional detectors which
provide some measurement coverage over this region. The calorimeter system con-
sists of an Electromagnetic (EM) Calorimeter and two hadronic calorimeters. Figure

2.3 shows the layout of the DO calorimeter system.

END CALORIMETER
Outer Hadronic
(Coarse)

Middle Hadronic
(Fine & Coarse)

CENTRAL
CALORIMETER

Electromagnetic

Inner Hadronic Fine Hadronic

(Fine & Coarse) Coarse Hadronic

Electromagnetic

Figure 2.3: Isometric view of the DO calorimeter system [4]

The EM calorimeter is used in this analysis to identify electrons, muons and photons

10



and measure the energies of electrons and photons. The EM calorimeter is designed
to extend over the typical spatial range of electrons produced in the range over which

pp collisions occur within the detector.

The two hadronic calorimeters are not especially important for this analysis but
detailed information about their functions and designs can be found in references

[3] and [4].

2.3 Muon System

The muon detection system at DO has coverage up to |n| &~ 2 and consists of (in
order of radial distance from the beam axis) muon trigger detectors, a series of muon
tracking detectors, an array of toroidal magnets and a further series of muon tracking
detectors. The trigger detectors provide timing information about detected muons
relative to the measured beam crossing which can be used to discriminate against
background processes such as cosmic ray muons in this analysis, this is covered in
chapters 3 and 5. The muon toroids produce a magnetic field of strength 1.9-2 T and
are used to deflect away from the outer muon detectors long lived particles which
pass through all of the EM and hadronic calorimeter systems. The toroidal magnets
also help with muon pr measurements in a similar way to how the solenoid helps with
electron pr measurements with curvature of a muons track being measurable from
the different layers of muon tracking detectors before and after the muon toroids. The
muon tracking detectors measure the tracks made by muons through the detector as

well as measuring muon energies.

11



Chapter 3

Event Selection

To reduce contamination of the analysis samples with events from background pro-
cesses, selection requirements are made on various parameters measured by the de-

tector.

3.1 Dielectron events

For dielectron analysis samples events are subject to the following requirements:
e Two leptons of opposite charge in the final state.

e Each lepton with pr > 20 GeV /c. prs are calculated from energy measurements
recorded by the calorimeter. This cut helps to eliminate backgrounds such as

events from Z — 77 decays.

e Fach lepton’s EM cluster in the calorimeter matched to a corresponding charged

particle track in the central tracking system.

e 0.25 < }% < 4, where pia is the measured pr of the lepton’s track. This is

T

effectively a cut on % over the same range and acts to reduce lepton misidenti-

12



fication.

|naet] < 3 for each lepton, where |nget| is the pseudorapidity of the lepton as
measured from the angle between the axis connecting the location of the lepton’s
recorded EM cluster in the calorimeter and the centre of the detector, z = 0,

to the beam axis.

For leptons in the ICR (1.1 < |n4et] < 1.5) additional selection requirements

are made:
— At least one hit in the SMT.
— Isolation requirement, lepisohc4<2.5.
— ICR specific neural network discriminant requirement.

Leptons outside the ICR are required to have multivariate discriminant lepemv>-

0.9.

70 < MY, <110 GeV/c?, where M}! refers to the invariant mass of the dilepton
system as calculated by the four vector sum of the invariant masses of the
two leptons. Similarly p¥ is the transverse momentum of the dilepton system
calculated from the four vector sum of the prs of each lepton. This selection
requirement constricts M’ to the region around the invariant mass of the

Z boson, My, which removes the majority of dielectron events produced from

v* — e4e— decays, leaving a sample of pure Z boson decays.

|Az| < 3, where |Az| < is the separation along the beam axis of the primary

vertices of the two leptons.

13



3.2 Dimuon events

The dimuon analysis requires two oppositely charged leptons in the range 70 < M <110

muv

GeV/c? with each lepton having:

e a signal in the muon detector system matched to a track in the central tracking

system.

e trkcone/pr < 0.2, where trkcone is the sum of all the prs of any measured
tracks within a certain radius around the muon direction, excluding the pr of
the muon itself. This cut helps to distinguish muons from jets as jets shower in
the detector which typically means their pr distribution is much less focussed
than that for a real muon. A similar requirement is made on the sum of mea-
sured energies of EM clusters surrounding the muon’s direction in the muon

calorimeter.
e lepton pr > 15 GeV/c.
e At least one hit in the SMT.

o track x? < 4, where track x? is a measure of the x? value for the fit applied to the
measured hits from a particle in the central tracking system by the track fitting
algorithm. A large track y? value indicates that the measured track doesn’t fit
very accurately to the specific helical shape that the fitting algorithm searches
for. Large track y? values often come from background processes such as the
decays of particles with short lifetimes (for instance K — pv) within the central

tracking system.

® |nNget| < 2, this is the limit of detector’s range of measurement for muons.

€ events are required to pass

To eliminate the background from cosmic ray muons, u
a combined selection cut comprising of cuts on scintillator timing , DCA (distance of

closest approach) and collinearity of the two lepton tracks.

14



Chapter 4

Monte Carlo Simulation

For this analysis, PYTHIA generator level Monte Carlo (MC) samples (RESBOS[6] with
CTEQ 6.6 [10] parton distribution functions (PDFs), pyTHIA[5] with CTEQ 6L1
[11] PDFs, HERWIG++[7] and POWHEGI8]) and one full detector simulation Monte
Carlo sample (PYTHIA) were used. All four generator MC samples simulate final state
radiation (FSR) for each event, however in the dielectron channel, only PYTHIA and
RESBOS generator MC samples merge photons from final state bremsstrahlung back
into the measurements of electrons, this option is not chosen for the HERWIG++ and
POWHEG samples used in this analysis. Merging of final state photons at generator
level is desirable as it removes the necessity to correct for this process later in the

analysis which would increase systematic uncertainties on any measurements.

To create the PYTHIA detector MC sample, the PYTHIA generator level sample events
are passed through a GEANT[9] based simulation which models the response of the
DO detector. Additional data events from randomly triggered bunch crossings are
merged with the MC sample to mimic extra pp collisions within the same bunch
crossing. Detector MC events are treated in exactly the same way as events from the

data sample.

15



4.1 Corrections to Monte Carlo

Certain issues exist which cause the PYTHIA simulation to be inaccurate in aspects
of both physics and detector reconstruction. There are three main issues with
PYTHIA MC simulation which need to be addressed: that the shape of the Z/v*
pr distribution at propagator level is less accurately simulated by PYTHIA when
compared to RESBOS; that the efficiencies for reconstructing electrons and muons are
overestimated when compared to the measured efficiencies of the detector from exper-
imental data; and that the detector’s pr resolution for muons and energy resolution

for electrons are also overestimated by the simulation.

4.1.1 RESBOS reweighting

To improve the simulated Z/v* pr, p#, distribution the PYTHIA pZ distribution is
reweighted at generator level to match the distribution in RESBOS. To do this, two-
dimensional histograms of propagator, or “truth”, level Z boson pr, p%mw, and Z ra-
pidity, y5*¢, are made for both PYTHIA and RESBOS generator MC samples, where
propagator level refers to measurements made of Z boson properties before the Z has
decayed. In reality it is impossible to measure any properties of the Z boson at
this level however the PYTHIA and RESBOS generator level MC samples contain these

variables which can be used to the benefit of this analysis.

A histogram of the ratio of PYTHIA to RESBOS is produced by dividing the RESBOS 2D

histogram by the equivalent for PYTHIA, as shown in figures 4.1a and 4.1b. The

reweighting is applied to the PYTHIA signal MC samples at generator and detector
true

level by accessing the p%tme and y7 "¢ values for each event and multiplying the event

weight by the content of the ratio histogram bin corresponding to these values.

16
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Figure 4.1: Histograms to reweight PYTHIA events to match RESBOS p%tme and

y7ue distributions for dielectron and dimuon analysis.
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Figures 4.2a to 4.3d show the distributions for various “truth” level variables for RES-
BOS and PYTHIA generator level MC after RESBOS reweighting is applied to PYTHIA.
Plots are normalised to unit area with vertical axes measured in dN/N, where N is

the integral of each distribution.

As a result of reweighting PYTHIA to RESBOS in p%tme and y%7"¢, the propagator level
distributions for the two samples are identical for pZ™™" and yiy" as expected in
both dielectron and dimuon samples. Slight differences exist between the propagator
dilepton invariant mass, M™¢, distributions for PYTHIA and RESBOS however the
differences between the distributions of these two are small compared to the difference
between either generator and the distribution from POWHEG. This large difference in

shape is caused by POWHEG not merging final state photon emission back into lepton

reconstruction as is done for PYTHIA and RESBOS.

18
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4.1.2 Tracking Efficiency Corrections

Due to the geometry of the detector and the fact that at various times certain parts
of the detector may be broken or not functioning at 100% efficiency, the tracking
efficiency varies across the detector. When compared to the tracking efficiency mea-
sured from detector data, the detector MC simulation of tracking efficiency is seen

to be poorly modeled.

To correct for the tracking efficiency issues, a correction is applied to MC events to
compensate for the differences in track matching efficiency between data and MC. To
calculate the required corrections, histograms of tracking efficiency are made sepa-
rately for electrons and muons in both data and detector MC. For electrons, a tracking
efficiency histogram is made by performing a tag and probe analysis on a sample of
dielectron events. In a tag and probe analysis a candidate electron is required which
fired the level 3 trigger of the detector and has a measured track in the central tracker
matched to a corresponding EM cluster in the calorimeter, this is termed the “tag”
electron. To find the “probe” electron, a corresponding EM cluster is searched for
in the opposite half of the detector from the tag electron. The invariant mass of the
dielectron system is then calculated from the two EM clusters and confirmed to be
within the region of My to verify that the event is from a true dielectron decay. The
tracking efficiency with respect to a specific variable is then calculated by plotting
histograms of that variable for the probe electrons in two cases: firstly, the distribu-
tion for the entire sample; and then the distribution only for events in the sample
where the probe electron has a measured track matched to its EM cluster. Compar-
ing the two histograms allows a calculation of the electron tracking efficiency to be
made. An equivalent method is used to measure muon tracking efficiencies by using

a sample of dimuon events and requiring hits in the muon system of the detector.

In this analysis, the tracking efficiencies are measured as a function of ¢, Ngesector and
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z and combined into a three dimensional histogram. To calculate the tracking ef-
ficiency correction required for detector MC, a histogram is made of the measured
detector tracking efficiency as a result of a tag and probe analysis performed on ex-
perimental data. The values of ¢, Ngetector and z for each lepton in the detector MC
sample are fed into this tracking efficiency histogram and the lepton is given a track-
ing efficiency probability value corresponding to the content of the histogram bin for
these three values. A uniform random number is generated for each lepton and the
event is omitted if this random number is greater than the lepton’s tracking efficiency

probability.

4.1.3 Constraints to Z Mass

Following a preliminary analysis of ¢cs a further correction to the analysis was in-
troduced to improve bin purities for ¢os and p distributions for both dielectron
and dimuon analysis. This is particularly needed for dimuon analysis where nominal

¢cs and pY bin purities are too low.

The term bin purity, for a given distribution, refers to a measure of how events in
MC migrate between bins in the distribution when detector simulation is applied
to generator level MC events. A distribution with high bin purity contains a large
proportion of events where MC events fall into the same bin in the distribution at

generator level and detector level.

To measure the bin purities in ¢¢s and p¥, as shown in figures 4.4a to 4.4f, two
histograms are filled: one filled with the generator level MC distribution; the other is
also filled with the generator level distribution, but only generator level events which
fall into the same histogram bin as the corresponding events from the detector MC
sample. Dividing the second histogram by the first gives the bin purity distribution

for ¢cs and pit.
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Figures 4.4a and 4.4b show the bin purities for nominal ¢¢s and pldistributions
for detector level MC, with 10 bins in ¢¢. Figures 4.4c¢ and 4.4d show the same
distributions only now with 5 bins in ¢¢s, this shows an overall improvement in
¢cs bin purity for both the dielectron and dimuon samples. However it is still possible

to improve bin purities further, especially for the dimuon samples.

To further improve the bin purities, an attempt is made to constrain the individual
lepton prs to My at detector level for both MC and data. Constraining to M, at-
tempts to push events that at generator/physics level have M!! =~ M, but have been
smeared away from the Z pole by detector resolution effects back towards the peak

of the My distribution. To perform the constraint, an iterative process modifies the

detector level transverse momenta values of the two leptons
Pr=ph 47 X0y, i=12 (4.1)

where p% is the modified lepton pr, o

P, is the uncertainty on pr and 7; is the step

size of the variation of pr. From these new transverse momenta, a new value of

M} is calculated and a x? value is then calculated from the difference between this

reconstructed M} value and the “true” Z boson invariant mass

2
mconst o Mtrue
X2=< . r(Z) 2 ) + T AT (4.2)

where MJ"¢ is the mass of the Z boson, 91.19 GeV/c?, and T'(Z) is the width of
the Z boson, 2.5 GeV/c?. The values of 715 are varied until the measured x? value
reaches a minimum value, the modified lepton prs corresponding to these values of

71,2 are then used to calculate the M constrained p% and ¢q¢ distributions.

Figures 4.4e and 4.4f show the bin purities for ¢¢s and p with the My constraint ap-

plied and show an overall improvement in bin purities in p}. and ¢sfor both dielectron
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and dimuon samples.

Figures 4.5a to 4.5g and 4.6a to 4.6g show the correlation between generator level and
detector level MC dimuon p distributions before and after the constraint to My is
applied for the dimuon detector MC sample. Comparison between the two sets of
plots clearly shows an improvement in the correlation between generator level and

detector level pY. correlation with the M, constraint applied.

Figures 4.7a to 4.7g and 4.7a to 4.7g show the correlation between the PYTHIA gener-
ator level MC and detector level MC ¢¢g distributions with the constraint to My ap-
plied for dielectron and dimuon samples respectively. From comparing the two sets
of distributions, it is clear that the resolution for electron ¢,y measurement is much

better than for muons.
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4.2 Generator MC Comparisons

Selection cuts on dielectron generator MC require that:
o 70 < M- < 110 GeV/c2.
e lepton pr > 20 GeV/e.
e lepton |n| < 3.
While dimuon generator MC events require:
o 70 < M, < 110 GeV/c?.
e lepton pr > 15 GeV/e.
e lepton |n] < 2.

these selection requirements are made to mimic the cuts made on these variables
at detector level so that comparisons can be made between generator level MC and

detector level samples (MC and data).

Figures 4.9a to 4.12g show the distributions of positive and negative lepton pr, 7,
P, MY and ¢ for each generator MC dielectron (dimuon) sample compared to

mu

PYTHIA dielectron (dimuon) detector MC.

All four generator MC samples show a similar shape for individual lepton prand 7 in
both dielectron and dimuon samples. The p. and M}~ distributions however show
differences between PYTHIA and RESBOS samples compared to the HERWIG++ and
POWHEGdistributions. Again, this is as a result of the HERWIG++ and POWHEG sam-

ples not merging final state photons.

Figures 4.11a to 4.12g show the ¢y distributions for dielectron and dimuon generator
MC samples in bins of p.. The distributions of ¢¢s for dielectron samples show large

differences in shape between different generators at low pl(pli< 30 GeV/c) with
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POWHEG and HERWIG-++ having a similarly shaped distributions which are much
different from the shape of the PYTHIA and RESBOS distributions caused again by
differences in how the generators treat final state photon emission. Also of note is the
difference in shape between PYTHIA generator and detector level distributions at low
Pt for both the dielectron and dimuon samples. This suggests that large correction

factors will be required in these bins to compare data to MC.
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POWHEG and HERWIG++ generator MC samples compared to PYTHIA detector MC.
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Chapter 5

Backgrounds

5.1 Sources of Experimental Backgrounds

The main dielectron and dimuon backgrounds are from Z — 77, tt and WW diboson
production. These processes all contain two oppositely charged leptons in the final
state (according to the Standard Model) and can pass the selection requirements for

this analysis. Detector level MC samples are produced for each of these backgrounds.

Figures 5.1a to 5.1c show the Feynman diagram representations of the main shared

dielectron and dimuon background processes.

S]]
d\

+ b q’ wLw
(a) Z — 77 (b) tt () WHr+ W~ —=ITl~vp

Figure 5.1: Feynman diagrams for the main dilepton SM backgrounds for this anal-
ysis.
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5.1.1 7 — 77 Production

Z — 77 is the dominant background source of the three main shared backgrounds, the
7777 pair can be created in the same way as Z/v* — ete” and Z/v* — utu~ pro-
duction, as shown if figure 5.1a, with the 7 (77) then decaying to an electron/muon
(positron/antimuon) plus two neutrinos. The detector measures only two leptons in
the final state as neutrinos pass through the detector unobserved, giving the event
an identical final state signature to the signal process. However, as the 7 has an
invariant mass of 1.78 GeV/c? there is not much available phase space left from the
Z/~* decay so the prs of the 7 decay products are low and can mostly be removed

by the selection requirement on individual lepton prs.

5.1.2 tt and WW Production

Production of ¢t pairs decaying to tf — [Tl vubb final states and WW diboson
production decaying to W + W~ — [T~ v final states are legitimate backgrounds
to the dielectron and dimuon Drell-Yan process in the sense that the decays of these
systems can contain two oppositely charged leptons in the final state, however the
production cross section for these processes are much lower than for the dielectron

and dimuon signal processes.

5.1.3 Cosmic Ray Muons

An important additional background to the dimuon analysis comes from cosmic ray
muons, where a single cosmic ray muon passing through the detector can produce a

€S originates outside

detector signal analogous to dimuon signal final state. As the u
the detector it effectively passes through one half of the detector “backwards” (passing

first through the muon system then through the EM calorimeter and the central
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tracking system). It then passes through the other half of the detector in the usual
fashion for muons produced at the interaction point of the proton-antiproton beams.
As the muon (antimuon) passes backwards through the detector, the curved path of
its trajectory is similar to the track that would be made by an equivalent antimuon
(muon) moving in the opposite direction, away from the interaction point. This leads
to the detector recording the event as two back-to-back oppositely charged muons,

COs

however certain properties of the u“*system are much different to the dimuon signal

events.

As explained in chapter 3 selection cuts to remove cosmic ray muons are applied
to muon system timing information, DCA and colinearity of tracks. ©°®s have a
larger time difference between the two instances when they pass through the muon
detection system compared to signal events as the pu“has to travel across the width
of the detector inbetween passing through the muon system twice. s also rarely
pass close to the centre of the detector which the cut on DCA accounts for. Finally,
1 tracks are collinear, as it is the same e particle being measured for both tracks,
so introducing a selection cut omitting events with very collinear tracks combined

S

with the other u® cuts removes almost all u°® events while maintaining the vast

majority of signal events.

5.2 Background Plots

Plots in this section show the distributions, at detector level, of combined signal and
backgrounds MC compared to data for different variables. With the vertical axis

showing the number of events in each bin, Ng.

Figures 5.2a to 5.2d show the stacked signal plus background (Z — 77, ¢t and
WW) MC compared to data for the distributions of positive and negative lepton

prs for dielectron and dimuon samples after all selection cuts. These plots show
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good agreement between data and MC as well as a large dominance of signal MC
over combined backgrounds. From this it is possible to treat the analysis as a signal
dominated process and it is possible to neglect SM backgrounds as a major source of

uncertainty.

Figures 5.3a to 5.5d show the stacked signal plus background distributions compared
to data for p't, MY & nge and dilepton y. The plt and MY = distributions all show

good agreement between data and MC except for figure 5.3¢ which shows a slight

excess of MC over data at high p%. However, statistics over this range are quite low.

The nget and dilepton y distributions show poor agreement between data and MC in
the dimuon channel, this is due to the track y? requirement made for the dimuon
analysis which illuminates the poor n modelling of the muon detector simulation. The
dielectron channel shows a slight excess of MC over data in the nge distribution for
|Nget| > 2 due to the overestimation of the measurement efficiency in this region for
the electron detector simulation. sytematic uncertainties due to this mismodelling

are estimated in chapter 6.1.
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Figure 5.2: Stacked signal plus backgrounds MC pr distributions for individual pos-
itive and negative leptons compared to data for dielectron and dimuon analyses.
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Figure 5.3: Stacked signal plus backgrounds MC p¥. distributions compared to data
for dielectron and dimuon analyses. p plotted over the range 0 < p. < 50 GeV /c with
linear scale vertical axis, and over the range 50 < p% < 200 with a logarithmic scale
vertical axis.
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The pYTHIA detector level MC samples do not contain any simulation of cosmic ray
muons, therefore it is important that the event selection cuts are effective at removing

cosmic ray muons from the data samples.

Figures 5.6a and 5.6b show distributions of 1, 4+ 72 before and after the specific cuts
on u°s are applied. As expected, figure 5.6a shows a sharply peaked excess over
the combined MC signal and background samples in the data distribution around
m + 12 = 0 corresponding to the cosmic ray muons, which pass all other selection
cuts, existent in the dimuon data sample. Figure 5.6b shows the same distribution

S

with the cut on p®*® applied showing no visible sign of any cosmic ray muon events

and with good agreement between data and MC across the distribution.
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— Signal MC
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Figure 5.6: Stacked signal plus backgrounds MC 7, +1, distributions with and without
cosmic ray selection cuts compared to data.
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Figures 5.7a to 5.8g show the combined signal plus backgrounds ¢ distributions
compared to data. These plots show good agreement between data and MC in the

region of pf< 100 GeV /c, within statistical uncertainties.
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Figure 5.7: ¢¢g distributions for dielectron signal MC and SM backgrounds compared

to data.
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Chapter 6

Corrections to Data

6.1 Bin by Bin Correction Factors

To enable a comparison between data and generator level MC ¢4 distributions bin-
by-bin correction factors are calculated for each ¢s distribution. These correction
factors are calculated by dividing each PYTHIA generator MC ¢.¢ distribution by
the corresponding PYTHIA detector MC distribution for each pr range that ¢cg is
measured over. The ¢ distributions for the data are then multiplied by these cor-
rection factor histograms to give the final data distributions which can be compared

to generator MC samples.

Figures 6.1a to 6.1g and 6.2a to 6.2g show generator level and detector level MC
¢cs distributions with their corresponding correction factors for dielectron and dimuon

samples.
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6.2 Systematic Uncertainties

To estimate the systematic uncertainties on the ¢.¢ distributions various smearings
and reweightings are applied to MC samples and their effects on the measured cor-

rection factor are determined. The applied smearings and reweightings are as such:

e pr smearing. Gaussian smearing in range +1.5% applied to detector MC lepton
pr. This smearing is applied to test the sensitivity of the ¢.¢ distribution to

the pr resolution of the detector.
e pr scale. All detector MC events have lepton pr weighted down by 0.04%.

e 1) reweighting. Detector MC lepdeteta distribution weighted down by 20% in
the region |n|>1.1 to test¢s measurement sensitivity to events with leptons

outside the CC region.

e Resbos Z pr and rapidity reweighting change. Events for Resbos Z pr reweighted

samples reweighted at generator and detector level such that:
w=wgr+ 0.5 X |wg — w| (6.1)

where w is the final event weight, wy is the event weight without Resbos

reweighting applied and wg is the event weight after Resbos reweighting.

e ¢ reweighting. ¢.¢ distributions weighted up by a factor of 1.05 in the range
T < s < ‘%T at both generator and detector level in MC. This reweighting is
used to test how the calculated correction factor needed to apply to the data is

changed by a shift in the expected ¢cg distribution in the MC simulation.
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6.3 Smearings and Reweightings Compared to Data

The plots in this section show the effects of the systematic reweightings and smearings

on various distributions and their affects on the measured ¢ correction factor.

Figures 6.3a to 6.3d show the M} = distributions for nominal MC, py smear and

pr scale samples compared to data for dielectron and dimuon analysis along with the

corresponding plots showing data/MC for each sample.

Figures 6.4a and 6.4b show the dielectron and dimuon 74 distributions for the nomi-
nal MC and |nget| reweighting samples compared to data. This reweighting appears to
span the difference between data and nominal MC for the dielectron sample however
in the dimuon sample the shapes of the data and MC distributions are so differ-
ent that it is less clear if this reweighting covers the entire range of the systematic

uncertainty caused by the difference in shape between data and nominal MC.

Figures 6.5a to 6.5d show the p¥ distributions for nominal MC and modified RES-

BOS reweighting samples compared to data for dielectron and dimuon analysis.

Figures 6.6a to 6.7g show the ¢ distributions for nominal MC and reweighted
dcssamples compared to data for dielectron and dimuon analysis. The reweight-
ing appears to span more than the difference between data and MC at low p’ but

doesn’t span the difference at high pY where statistical uncertainties are large.
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Figure 6.6: Dielectron ¢.¢ distributions for nominal detector MC and ¢ reweighted
samples compared to data.
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Figures 6.8a to 6.8g and figures 6.9a to 6.9g show plots of A for each systematic

smearing/reweighting, where A is defined as

B |ch — cfom|

Y (6.2)

ctrom

where cf is the modified correction factor and cf,om 1s the nominal correction factor.
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To calculate the total uncertainty on the corrected data the statistical uncertainties
for each bin of the data ¢ distribution are combined with the total uncertainty on
the correction factor for that bin, where the total uncertainty on the correction factor
is calculated as the quadrature sum of the differences between the nominal correction

factor and each smeared or reweighted sample correction factor.
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Chapter 7

Data and Monte Carlo

Comparisons

Nominal correction factors are applied to the ¢g distributions for DO Run II dielec-
tron and dimuon data samples. The corrected data ¢ distributions are then plotted

with their estimated combined uncertainties

The plots in this section show the ¢ distributions for corrected data compared to

generator level PYTHIA MC with the total uncertainty on the data shown.

The corrected data shows good agreement with the PYTHIA generator MC samples
for both the dielectron and dimuon analyses within the estimated uncertainties, up

to p!t ~ 100 GeV/c where available statistics are diminished.
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Figure 7.1: Corrected dielectron data ¢.¢ distributions with estimated uncertainties

compared to Pythia generator MC. 63
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Chapter 8

Conclusions

the aim of this analysis was to measure the distribution of ¢4 for Drell-Yan events in
both dielectron and dimuon channels for 8.6 fb~* of DO Run IT data. Reweightings and
corrections were made to improve Monte Carlo simulation samples at generator and
detector level. Selection requirements were made to eliminate backgrounds to provide
a high purity signal dominated sample of events. ¢sdistributions for generator and
detector level MC were compared and bin-by-bin correction factors to be applied to
data were calculated. The systematic uncertainties for these correction factors were
estimated by applying a range of smearings and reweightings and measuring their
effects on the value of the measured correction factors. finally these correction factors
were applied to detector data and the corrected ¢ distributions were compared to

generator level MC.

The estimated uncertainties on the final distributions of ¢4 are over conservative
indicating that a simple bin-by-bin correction for the data ¢.¢ distribution is too
crude a method to accurately compare detector data to generator level simulations

for this variable.
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8.1 Future Improvements

Before it would be possible for this analysis to be published for peer review further

improvements would have to be made.

To improve the reduction of systematic uncertainties from the final ¢y distributions, a
more sophisticated method than a bin-by-bin correction factor is required to correct
the data to match the generator level MC distribution. An example of a possibly
improved method for observing the generator level ¢.¢ distribution in data is outlined

in [12].

Comparison of data to other generator level MC samples should be made but only
for MC events with the same settings, specifically that all MC generators have final

state photons merged back into electron measurement or they all do not.
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