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3.3 Asymptotic behaviour of the DNS variables, Reτ = 590 . . . . . . . . 60

3.4 Budget of the dissipation rate ε, Reτ = 395 following the term decom-

position of Eq. 2.21. Near-wall region (y+ ∈ [0.4, 50]) in log-scale and

outer part (y+ ∈ [50, 395]) in linear scale. Terms in the outer part are

pre-multiplied by (y+)2 . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Budget of the turbulent kinetic energy k. Top: Reτ = 395, Bottom:

Reτ = 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Budget of u2. Top: Reτ = 395, Bottom: Reτ = 2000 . . . . . . . . . 65

3.7 Budget of v2. Top: Reτ = 395, Bottom: Reτ = 2000 . . . . . . . . . 66

3.8 Budget of w2. Top: Reτ = 395, Bottom: Reτ = 2000 . . . . . . . . . 67

3.9 Budget of uv. Top: Reτ = 395, Bottom: Reτ = 2000 . . . . . . . . . 68

3.10 Budget of ε. Top: Reτ = 211, Bottom: Reτ = 395 . . . . . . . . . . 69

3.11 Top: turbulent variables from the DNS data. Bottom: σ parameter

for the different variables. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.12 Top: Normal Reynolds stresses from the DNS data. Bottom: σ pa-

rameter for the different stresses. . . . . . . . . . . . . . . . . . . . . 72

3.13 Budget of the exact epsilon equation Eq. 2.21. Data of Rodi and Man-

sour (1993), with the slow and rapid term groups and their respective

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9



3.14 A priori evaluation of Eq. 3.37 and of the standard high Reynolds

turbulent viscosity expression Cµk
2/ε, compared to the exact DNS

value −uv/(∂U/∂y) for the channel flow case at Reτ = 395. . . . . . . 84

4.1 A priori evaluation of C∗ε1 in a channel flow for Reτ ∈ {2000}. Top:

Models for which C∗ε1 depends on v2

k
. Bottom: Other models . . . . . 97

4.2 U
+

in a channel flow for Reτ ∈ {395; 2000} (Reτ = 2000 profiles are

shifted upwards for clarity) . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 y+dU
+

dy+
in a channel flow for Reτ ∈ {395; 2000} . . . . . . . . . . . . 103

4.4 k+ in a channel flow for Reτ ∈ {395; 2000} . . . . . . . . . . . . . . . 104

4.5 ε+ in a channel flow for Reτ ∈ {395; 2000} . . . . . . . . . . . . . . . 105

4.6 y+ε+ in a channel flow for Reτ ∈ {395; 2000} (Reτ = 2000 profiles are

shifted upwards for clarity) . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 ϕ in a channel flow for Reτ ∈ {395; 2000} . . . . . . . . . . . . . . . . 107

4.8
k+

y+ε+
in a channel flow for Reτ ∈ {395; 2000} . . . . . . . . . . . . . 108

4.9 Phase-plane portrait of Eq. 4.22 and Eq. 4.26 for model DUR96 (top)

and LIE01 (bottom). →: Streamlines of the vector

(
∂η

∂t
,
∂ϕ

∂t

)
as a

function of η and ϕ , — :ϕ nullcline,−−−: η nullcline . . . . . 115

5.1 Prediction of α in the channel flow given by the ϕ − α model. Top:

α = f(y+). Bottom: α = f(y). . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Predictions of the ϕ−αmodel in the channel flow forReτ ∈ {395; 2000}
for the variables U

+
, y+dU

+
/dy+, k+ and ε+. . . . . . . . . . . . . . 122

5.3 Predictions of the ϕ−αmodel in the channel flow case forReτ ∈ {395; 2000},
for the variables y+ε+, v2

+
/k+, k+/(ε+y+) and ν+

t /y
+. See Fig. 5.2

for legends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Reynolds number dependence coefficient σ(ν+
t ) in a channel flow . . . 126

5.5 A priori evaluation of ν+
t in a channel flow . . . . . . . . . . . . . . . 127

5.6 Velocity profile in a channel flow: a priori evaluation using Eq. 5.6

with uv = −Cµv2T dU
dy

, for Reτ ∈ {180; 395; 590; 950; 2000} . . . . . . 127

10



5.7 ν+
t Reynolds dependance coefficient σ(ν+

t ) in a channel flow for differ-

ent variants of the model. . . . . . . . . . . . . . . . . . . . . . . . . 129

5.8 Sensitivity to the coefficient CA1 of the variable y+ dU
+

dy+
in a channel flow132

5.9 y+
α=0.9 map as function of CL and Cη forReτ = 395 (left) andReτ = 2000 (right).

CL × Cη isoclines are plotted on top of the map. . . . . . . . . . . . . 134

5.10 Model for the ε source term using a variable Cε2 coefficient (C∗ε2 from

Eq. 5.9). A priori comparison for Reτ = 395. . . . . . . . . . . . . . 137

5.11 C∗ε2 from Eq. 5.9 for Reτ ∈ {180; 395; 590; 950; 2000} . . . . . . . . . 137

5.12 Predictions of the model in the channel flow for Reτ ∈ {395; 2000}, for

the variables U
+

, y+dU
+
/dy+, k+ and ε+ . . . . . . . . . . . . . . . 140

5.13 Predictions of the model in the channel flow for Reτ ∈ {395; 2000}, for

the variables y+ε+, ϕ, k+/(ε+y+) and ν+
t /y

+. See Fig. 5.12 for legends. 141

6.1 Geometry of the periodic hill flow configuration . . . . . . . . . . . . 145

6.2 Prediction of the mean stream-wise velocity in the periodic hill case. . 149

6.3 Mean stream-wise velocity streamlines predicted for the periodic hill

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Prediction of the turbulent shear stress in the periodic hill case. See

Fig. 6.2 for legends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Prediction of the wall-normal anisotropy in the periodic hill case. See

Fig. 6.2 for legends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Periodic hill flow case: Values of C∗ε2 as predicted by the BL-v2/k model

(C∗ε2 defined by Eq. 5.9) . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.7 Geometry of the asymmetric plane diffuser flow configuration . . . . . 154

6.8 Prediction of the skin friction coefficient along the inclined wall in the

asymmetric plane diffuser case. See Fig. 6.9 for legends. . . . . . . . 159

6.9 Prediction of the pressure coefficient along the inclined wall in the

asymmetric plane diffuser case. . . . . . . . . . . . . . . . . . . . . . 159

6.10 Prediction of the mean stream-wise velocity in the asymmetric plane

diffuser case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11



6.11 Asymmetric diffuser case: Values of C∗ε2 as predicted by the BL-v2/k

model (C∗ε2 defined by Eq. 5.9). . . . . . . . . . . . . . . . . . . . . . 161

6.12 Natural convection in a vertical slot. DNS data of Boudjemadi et al.

(1997), for Ra = 105 Left: Mean upward velocity profile and turbulent

shear stress. Right top: Budget of k. Right bottom: Budget of uv

(Production by shear and gravity only) . . . . . . . . . . . . . . . . . 165

6.13 Configuration of the case of Betts and Bokhari (2000) . . . . . . . . 167

6.14 Prediction of the vertical velocity in the Betts cavity case (Ra = 0.86× 106)169

6.15 Prediction of the temperature in the Betts cavity case (Ra = 0.86× 106)170

6.16 Prediction of the vertical velocity in the Betts cavity case (Ra = 1.43× 106)171

6.17 Prediction of the temperature in the Betts cavity case (Ra = 1.43× 106)172

6.18 DNS data of Kasagi and Nishimura (1997) (mixed convection, Gr =

9.6 × 105) and Kuroda et al. (1994) (Gr = 0), for Reτ = 150. Left:

Mean upward velocity profile and turbulent shear stress. Right: Profile

of k+ and normal Reynolds stresses. . . . . . . . . . . . . . . . . . . . 174

6.19 Schematic of the case of Kasagi and Nishimura (1997) . . . . . . . . 175

6.20 Prediction of the non-dimensional velocity (top) and non-dimensional

turbulent kinetic energy (bottom) in the vertical heated channel (ve-

locity profile on the aiding side are shifted for clarity). . . . . . . . . 176

6.21 Prediction of the wall-normal anisotropy v2/k (top) and the non-dimensional

turbulent shear stress (bottom) in the vertical heated channel. See

Fig. 6.20 for legends. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1 Convergency parameter for the Betts case (Ra = 0.86×106) (8 probes).

See Fig. 7.4 for legends . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Convergency parameter for the Betts case (Ra = 1.43×106) (8 probes).

See Fig. 7.4 for legends. . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Convergency parameter for the Kasagi case (13 probes). See Fig. 7.4

for legends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Convergency parameter for the diffuser case (16 probes) . . . . . . . . 187

12



7.5 Convergency parameter for the periodic hill case (6 probes) . . . . . . 188

A.1 Representation of a cell and a boundary face . . . . . . . . . . . . . 208

C.1 Nullclines of the system C.4 with Case A (k − ε) (left) and Case B

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

C.2 Nullclines of the system C.4 with Case C (left) and Case D (right) . 216

C.3 Nullclines of the system C.4 with Case E (v2 − f ) . . . . . . . . . . 216

13



The University of Manchester

Flavien Billard
Doctor of Philosophy
Development of a robust elliptic-blending turbulence model for near-wall,
separated and buoyant flows
February 7, 2012

The thesis introduces a new version of an elliptic-blending low-Reynolds-number
eddy-viscosity Reynolds-averaged Navier Stokes model. It is a model intended to be
implemented in an industrial solver. It will be argued that there is still room for such
a simple model, though eddy-viscosity models must rely on developments specifically
made for higher order formulations. It is the aim of the v2 − f model to integrate
elements of Reynolds-stress modelling developments into a simpler formulation, but
the former paradoxically suffers from numerical stiffness, which kept it out of reach
of industry researchers everyday simulations. The v2 − f formulation endeavours to
reproduce the near-wall asymptotic behaviour of the turbulent quantities, as sounder
alternative to empirical damping functions, and the required near-wall balance of
small terms represents a numerical challenge.

The present work first provides a comprehensive review of v2 − f developments
proposed over the past twenty years, and the different remedies for the numerical
stiffness linked to the original formulation. The review focuses on ten v2−f variants,
proposed between 1991 and 2006, whose behaviour is compared in some fundamental
flows: the channel flow for five different Reynolds numbers, the asymptotic case of
the logarithmic layer at infinite Reynolds number and the case of a flow with homo-
geneous sheared turbulence.

Based on the conclusions of the review, the thesis proposes new developments.
Firstly, the derivation of a new model, namely the ϕ− α model, is introduced. It re-
lies on the resolution of two non-dimensional variables: ϕ represents the wall-normal
anisotropy and α is a wall-proximity sensor. It is argued that only this formulation
can address the numerical problems already mentioned without altering the predic-
tions. Secondly, additional upgrades of the ϕ− α model are proposed to correct the
dissipation rate equation. The aim is to improve the model behaviour in some specific
regions of a boundary layer, by isolating some viscous terms and by improving the
representation of turbulent transport at the edge of a boundary layer. Final devel-
opments are combined in a new model, the BL-v2/k model.

The ϕ − α and BL-v2/k models are then validated for a set of two pressure
induced separated flows and two buoyant flows, and beneficial effects of the proposed
developments on the predictions are demonstrated. The numerical properties of the
convergency of the BL-v2/k model are also reported at the end of this work.
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Nomenclature

Greek letters

α Elliptic variable used in the elliptic blending method

β Thermal expansion coefficient

∆ Filter width or Laplacian operator

δ Boundary layer thickness or channel half width

δν Viscous length-scale in a boundary layer

δij Kronecker symbol

ε Knudsen number (in the context of Sec. 2.1) or dissipation rate of turbulent

kinetic energy

εij Tensor of turbulent dissipation of Reynolds Stresses, Eq. 2.20

κ Wave number (in the context of Subsec. 2.2.1) or Von Kármán constant

µ Dynamic viscosity

ν Kinematic viscosity

νt Turbulent kinematic viscosity

νSGS Sub-grid scale viscosity

Ω Computational domain

Ωij Vorticity-rate tensor

φ∗ Pressure diffusion term of the turbulent kinetic energy, Eq. 2.35
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φij Tensor of the pressure strain-rate correlation, Eq. 2.22

φ∗ij Tensor of the pressure term in the Reynolds Stresses transport equations,

Eq. 2.20

φrij Rapid part of the pressure strain-rate correlation, Eq. 2.26

φsij Slow part of the pressure strain-rate correlation, Eq. 2.26

ϕ Wall-normal turbulent anisotropy ϕ = v2/k

ϕij Modified variable (defined in Eq. 3.23) entering the definition of the elliptic

variable fij

ρ Density

σk,σε Turbulent Prandtl number associated to the model for the turbulent diffusion

of k or ε

τ Relaxation time scale (as used in the Bhatnagar-Gross-Krook approximation

(Bhatnagar et al. (1954)))

Latin letters

A2 Second invariant of the turbulence anisotropy tensor

aij Turbulence anisotropy tensor

c Velocity vector of a particle

Cf Skin-friction coefficient

Cp Pressure coefficient

Dν
ε Molecular diffusion of the dissipation rate, Eq. 2.21

DP
ε Pressure transport of the dissipation rate, Eq. 2.21

DT
ε Turbulent transport of the dissipation rate, Eq. 2.21

Dν
ij Tensor of molecular diffusion of Reynolds Stresses, Eq. 2.20

DP
ij Tensor of the pressure transport of the Reynolds Stress, Eq. 2.22
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DT
ij Tensor of turbulent transport of Reynolds Stresses, Eq. 2.20

f Distribution function (in the context of Sec. 2.1)

feq Equilibrium distribution function (as used in the Bhatnagar-Gross-Krook ap-

proximation (Bhatnagar et al. (1954)))

fij Elliptic variable used in the elliptic relaxation method

Gk Production of turbulent kinetic energy by buoyancy

Gij Tensor of production by buoyancy

K Scale of turbulent kinetic energy

kSGS Sub-grid scale energy

L Length scale

lm Mixing length

M Molar mass

n Wall-normal unitary vector

P 1 First part of the mixed production of the dissipation rate, Eq. 2.21

P 2 Second part of the mixed production of the dissipation rate, Eq. 2.21

P 3 Gradient production of the dissipation rate, Eq. 2.21

P 4 Turbulent production term of the dissipation rate, Eq. 2.21

Pk Production of turbulent kinetic energy

Pij Tensor of turbulent production of Reynolds Stresses, Eq. 2.20

R Gas constant (in the context of Sec. 2.1)

Re Reynolds number

Reτ Friction velocity based Reynolds number

Sij Strain-rate tensor

P Instantaneous pressure
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T Instantaneous temperature

t Time

uv Turbulent shear stress

U Instantaneous velocity vector

U Stream-wise component of the instantaneous velocity

U+ Non-dimensional stream-wise component of the instantaneous velocity

uτ Friction velocity

Ui ith component of the instantaneous velocity vector

Ũ LES averaged velocity vector

U RANS averaged velocity vector

u′ Fluctuating velocity vector in the LES sense

u Fluctuating velocity vector in the RANS sense

v2 Wall-normal Reynolds stress

V Velocity scale or wall-normal component of the instantaneous velocity

W Span-wise component of the instantaneous velocity

x Position vector

x Coordinate in the stream-wise direction

xi ith component of the position vector

Y Viscous destruction term of the dissipation rate, Eq. 2.21

y Wall distance or coordinate in the wall-normal direction

y+ Non dimensional wall distance

z Coordinate in the span-wise direction

Acronyms

CFD Computational fluid dynamics
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CPU Central processing unit

DNS Direct numerical simulation

EVM Eddy viscosity model

FVM Finite volume method

GGDH Generalised gradient diffusion hypothesis

LES Large eddy simulation

LRR Launder Reece and Rodi

RANS Reynolds averaged Navier Stokes

RSM Reynolds stress model

SGDH Simple gradient diffusion hypothesis

SGS Subgrid scale

SSG Speziale Sarkar and Gatski

SST Shear stress transport
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Chapter 1

Introduction

The constant improvement of the numerical methods and of computer performance

leads to Computational Fluid Dynamics (CFD) being increasingly used by companies

in the design process, at the expense of experiments, which are in general more costly.

An accurate description of the flow is needed in many domains, such as aerodynamics

or heat transfer. For instance, the correct prediction of the heat-transfer coefficient

helps to improve the design of the power-plant components, which is a key factor

in reducing the operation cost, and in guaranteeing the safety of facilities. Unfortu-

nately, in industrial applications, flows are mostly turbulent. Due to the randomness

of turbulence flows, simplifications arising both from its numerical discretisation and

from models for its physical description can easily lead to a poor prediction of the

real characteristics of the flow. Indeed turbulence is characterised by unsteadiness at

different scales and structures of different size, which strongly interact with the main

features of the flow. The nodes of a computational grid need to be close enough to

one another to correctly capture the rapid changes in the computed variables due to

turbulence. This requirement is too difficult to fulfil, as it would make the computa-

tion highly expensive both in terms of time and memory. In practice, the grid used

is coarse, and most of the effort is put into modelling the turbulence which cannot be

captured with the discretisation used, and in particular into modelling its interactions

with the simulated mean flow.
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In an industrial approach of the numerical simulation, the turbulence modelling

is a key aspect, and its correct representation is of utmost importance for the engi-

neering process, whether this helps or impairs the normal operation of a man-made

device. Therefore, turbulence modelling is a big challenge for the scientific commu-

nity. Depending on the grid resolution, the turbulence field can be partly or entirely

modelled. In the Large Eddy Simulation approach (LES) only the smallest turbulent

structures are taken into account in the model. As the turbulence at this scale has

a behaviour that is universal (i.e. only weakly dependent on the main flow and the

geometry), the modelling is simpler. In the Reynolds-averaged Navier Stokes (RANS)

modelling approach, all the turbulent content is modelled, and only the time-averaged

flow field is resolved. Therefore, its cost is affordable in many more flow cases. Many

RANS models have been derived, from the well known two-equation k − ε model

of Jones and Launder and the k − ω model of Wilcox to more complex non-linear

eddy-viscosity models and Reynolds-stress models.

The development of models was mainly driven by industrial needs, and even

though a firm stem of theoretical results emerged from the academic world, upon

which were built more and more complex models, the most widely used models in

everyday engineering practice are those which seem to retain a substantial amount of

pragmatism and simplicity. In the paper introducing one of the most popular models,

the k − ω SST model, Menter (1994) explains the “slow progress in engineering

turbulence modelling” and the “confusing picture it often presents” by an “over-

emphasis of theoretical concepts and a virtual denial of the empirical nature of the

subject”. The five occurences of the functions min or max in the k−ω SST equations

(acting as “limiters”) can lead to 25 = 32 different modes. This is a feature which

could not originate from purely theoretical derivation and is more in line with the “if ...

then ... else ...” programmer pragmatism. The k−ω SST model inherits the near-wall

robustness and accuracy of the k − ω model and the reduced free-stream sensitivity

of the k− ε model, while ensuring a proportionality link between the Reynolds shear

stress and the turbulent kinetic energy in a boundary layer. Its combined simplicity



26 CHAPTER 1. INTRODUCTION

and accuracy in predicting flows developing in an adverse pressure gradient makes

it undoubtedly one of the most popular in aerospace applications. The pragmatism

confessed by one of the most cited turbulence modellers will be the cornerstone of the

present work which will aim at incorporating into a simple formulation some elements

of higher order modelling.

1.1 Study objectives

A key aspect of turbulence modelling is the way walls affect the flow. The behaviour

of the variables in the near-wall layer and the influence of the wall on the whole flow

are very important, as they rule many of the main flow characteristics an engineer is

interested in, such as heat transfer, pressure forces, friction and separation. Due to

viscous effects, the velocity is zero at the wall, and it sharply increases in a thin layer.

Large velocity gradients near the walls produce most of the turbulence; therefore

the variables in this region need to be accurately predicted. However many models

usually do not correctly take into account near-wall-turbulence features. For instance,

turbulent structures are highly anisotropic, but most of the eddy-viscosity models

cannot capture this anisotropy. Corrections are usually needed, in addition to the

basic models, such as empirical functions used to damp the variables near walls, to

force simulations to fit the theoretical behaviour. But these corrections usually suffer

from lack of physical justifications, and some of them can hardly be used in a very

complex geometry, as they require geometric parameters to be known, such as the

distance to the nearest wall.

Another approach has recently been devised to model the effects of the wall in

a more universal manner, using the elliptic-relaxation method (Durbin, 1991). The

eddy-viscosity v2−f model uses this method to solve for the variables v2 and f repre-

senting the wall-normal diagonal component of the Reynolds Stress tensor and of the

pressure strain-rate term respectively, and enables accurate results to be produced by

keeping the computational affordability of the two-equation models. Unfortunately,

numerical problems arise when using this model in an industrial solver. Different
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strategies have been tried to enhance the robustness of the v2 − f model, thus en-

abling its implementation and use in several popular CFD software packages. Some

of the modified versions addressed the numerical problems efficiently, but the quality

of the simulation is not as good as that of the original model, whereas some others ac-

tually predicted results comparable to the one given by the original formulation, but

the numerical robustness was still below the standard of most of the eddy-viscosity

models.

This work introduces the developments of a new version of the v2−f model. The

objectives are twofold:

• First, a solution to the numerical problems previously mentioned is proposed,

by using a new approach, the elliptic blending, to reduce the extent of the

trade-off between predictive accuracy of the v2−f model and its computational

robustness. A model is sought that strengthens the coupling between the elliptic

variable and the wall-normal Reynolds stress, without impairing the numerical

stability.

• Second, beyond the mere numerical problems of the v2−f model, it is proposed

that there is still room for improvement, as far as the predictive capabilities of

the original formulation are concerned. The model, as originally introduced,

stems from a very simple near-wall adaptation of the k − ε model, and more

advanced results on this matter, some of them derived no later than in the 70′s,

were clearly overlooked. The proposed developments in this work to enrich the

model will be made, while keeping the simplicity and pragmatism in mind, as

the proposed model will be used in an industrial code.

1.2 Outline of the thesis

The presentation of the work is organised as follows. Chapter 2 introduces the basic

concepts of turbulence and its modelling. Chapter 3 first presents a description of
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the wall effects on turbulence and then focuses on the study of the plane channel

flow, an academic case often studied as part of the development of models. Results

of direct numerical simulations are analysed as a source of information for near-wall

modelling. The end of this chapter reports the classical modelling strategies to cope

with near-wall flows with an emphasis on the elliptic-relaxation approach, and in

particular, the v2 − f type of models.

Chapter 4 provides a comprehensive survey of virtually all v2−f models proposed

over the past 20 years. The different solutions developed to tackle the numerical

problems associated to the first version are described. Then, the behaviour of all

these versions is assessed in a set of simple laboratory flows: the channel flow at

various Reynolds numbers, the logarithmic region at infinite Reynolds number and

the case of homogeneous shear turbulence.

Chapter 5 describes the steps of the developments of the new model. The first

output is an intermediate model, which will be denoted as ϕ − α whose sole aim

is to feature a “code-friendly” v2 − f formulation with no effect on the predictive

capabilities. From the ϕ − α model, additional improvements are then proposed,

mainly in the dissipation-rate equation: they are incorporated into the ϕ− α model

in a final version, the BL-v2/k model.

Chapter 6 presents results of the ϕ − α and BL-v2/k models, compared to two

other versions of the v2 − f model and the k − ω SST model. The cases considered

are two pressure-induced separating flows and two buoyant flows where turbulence is

impaired due to buoyant forces.

Finally Chapter 7 reports details about the numerical execution of the simulations

whose results were presented in Chap 6, for all cases and all models considered, so as

to assess the robustness of each model.

For an updated version of this thesis, please refer to:

http://cfd.mace.manchester.ac.uk/twiki/bin/view/CfdTm/ResPub281



Chapter 2

Theoretical background

2.1 The Navier Stokes equations

The fluid or gas is described using a distribution function f(x, c, t): The quantity

f(x, c, t)dc represents for a given time t at a given location x, the total mass per

unit volume of particles whose velocity lies between c and c + dc. This description

offers a way to correctly define the density ρ and velocity U used in the Navier Stokes

equations at a mesoscopic scale:

ρ(x, t) =

∫

R3

f(x, c, t)dc (2.1)

ρU(x, t) =

∫

R3

cf(x, c, t)dc (2.2)

With no external forces applied, collisions represent the only source of momentum

transfer between particles. The function f is governed by the Boltzmann equation

(i index ∈ [1, 2, 3] for the 3 spatial components):

∂f

∂t
+ ci

∂f

∂xi
=

(
∂f

∂t

)

coll

(2.3)

where the term

(
∂f

∂t

)

coll

is the net total mass of particles whose velocity changes

to c because of collisions.

The collisions are supposed to be elastic, so neither mass nor momentum is cre-

ated. This leads to conservation laws which are presented in the following. The mass

29
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conservation can be expressed as :

∫

R3

(
∂f

∂t

)

coll

dc = 0 (2.4)

Which yields (using Eq. 2.1 and Eq. 2.2) the continuity equation:

∂ρ

∂t
+
∂ρUi
∂xi

= 0 (2.5)

The conservation of momentum can be written as:

∀i ∈ [1, 3],

∫

R3

ci

(
∂f

∂t

)

coll

dc = 0 (2.6)

which can be recast as:

∂ρUi
∂t

+
∂ (ρUiUj + Pij)

∂xj
= 0 (2.7)

where Pij =
∫
R3(ci − Ui)(cj − Uj)fdc

A classical modelling of the collision operator

(
∂f

∂t

)

coll

is proposed by the ap-

proximation of Bhatnagar-Gross-Krook (Bhatnagar et al. (1954)), it is a restoring

force pushing f back towards an equilibrium value f eq, with a relaxation time τ

corresponding to the average time between two successive collisions of a particle.

(
∂f

∂t

)

coll

= −1

τ
(f − f eq) (2.8)

The equilibrium function is the Maxwell-Bolzmann distribution which is given by

(T being the temperature and R the gas constant):

f eq = ρ

(
1

2πRT

)3/2

× exp
[
− |c− U |2

2RT

]
(2.9)

The closure of the conservation equation 2.7, leading to the pressure and viscosity

term, follows the Chapman-Enskog development (see for instance Dubois (2006)),

whose sole aim is to introduce scales of time and velocity, and shape an analogy with

physical scales of turbulence. The Knudsen number ε represents the mean length-

scale of molecular fluctuations1 non-dimensionalised by the characteristic length-scale

1also called mean free path
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of the macroscopic flow. A Taylor series expansion of f as function of ε about the

equilibrium function reads:

f = f eq + εf (1) + ε2f (2) + . . . (2.10)

The 0th order approximation in ε for f (i.e. f = f eq) yields the following 0th order

model for the momentum flux P
(0)
ij = ρ

R

M
Tδij, where M is the molar mass of the

gas, which is the expression of the pressure as given by the law of ideal gas. Pressure

thus derived can be seen as an isotropic stress due to the molecular fluctuations

autocorrelation when the mean free path tends to 0.

Using a first order development in ε for f (i.e. f = f eq + εf (1)) an expression for

the first order approximation of Pij, noted P
(1)
ij can be derived (the flow is supposed

to be incompressible, that is
∂Ui
∂xi

= 0):

P
(1)
ij = P

(0)
ij − τij with τij = 2µSij (2.11)

Where Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain-rate tensor and µ = τρT is the dynamic

viscosity. The viscous stresses appear when particles travel a non-zero average dis-

tance before colliding with another particle.

Denoting P
(0)
ij = Pδij one obtains the incompressible Navier Stokes equations:

∂Ui
∂xi

= 0 (2.12)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj
2νSij (2.13)

where ν =
µ

ρ
is the cinematic viscosity.

2.2 Turbulence

Turbulence is directly linked to the non-linearities of the second term of equation

2.13. Osborne Reynolds was one of the first to attempt to understand how turbulence

works and where it comes from, as well as how it interacts with the main flow (and

efficiently increases the mixing). To this end, he devised the famous experiment of a
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dye stream in a pipe flow. Depending on the nature of the fluid (i.e. its viscosity),

its velocity and the dimension of the pipe, the streamlines can remain parallel to

the axis of the pipe, and the dye forms a long streak whose lateral diameter remains

nearly constant, in which case, the flow is laminar. Alternatively the streamlines

can be brought together, mix and the flow becomes turbulent. The dye then starts

to spread everywhere in the tube section. Reynolds established that the nature of

the flow (whether it is turbulent or laminar) is characterised by a non-dimensional

parameter, now known as the Reynolds number, Re =
V L

ν
where V and L are the

characteristic velocity and length-scale of the flow respectively and ν is the kinematic

viscosity. There is a critical Reynolds number value for which the transition between

laminar and turbulence occurs that depends on the conditions of the experiment.

2.2.1 The scales of turbulence

An explanation to the origin and evolution of turbulence can be found in the Navier-

Stokes Eq. 2.13: the non-linear convection term representing the interactions of the

flow with itself gives rise to a complex evolution of instabilities, provided the Reynolds

number is higher than the critical value. Although turbulence may appear chaotic

and unpredictable, the study of the evolution of the physical properties, such as

velocity and pressure, along time, shows that the quantities fluctuate around a mean

value. Moreover, the analysis of a flow field shows that the velocities are correlated

in time and space, over a bounded domain and a finite time. The turbulence can

then be seen as a sum of structures of finite size and finite lifetime, which are also

referred to as eddies. These eddies are not of same size. The size of the largest eddies

are determined by the flow geometry. In a wall-bounded channel flow, the size of

the biggest structure is of order 0.2L where L is the distance between the two walls.

Certain rules were advanced almost a century ago in Richardson (1922) and later in

Kolmogorov (1941) to describe certain aspects of the scales structure and interactions.

The interactions between the turbulent scales of a given size yield smaller structures.

Looking at the whole range of scales, this results in a transfer of kinetic energy from
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the largest scales to the smallest ones (heat containing eddies). This process is known

as the Kolmogorov cascade. While the largest scales are produced by the mean flow

distortion, the smallest ones are dissipated and their energy is converted into heat.

The dissipation rate of the smallest scales is denoted by ε.

The Kolmogorov hypothesis features a description of turbulence when the Reynolds

number is sufficiently large.

• The smallest dissipative scales are only function of ε and ν and are therefore

independent on the flow domain geometry. This goes along with another part

of the Kolmogorov hypothesis, stating that these smallest scales are isotropic.

Any stretching or squeezing of large-scale turbulence by mean flow distortion

progressively disappears through the cascading process, as turbulence recovers

a universal behaviour. The quantities ε and ν form the Kolmogorov length

scale, η = (ν3/ε)1/4 representing the smallest eddies.

• A range of eddies whose size is separated to largest and smallest scales by orders

of magnitude have a universal behaviour only depending on ε. A dimensional

analysis based on the two former hypothesis was used by Kolmogorov to derive

one of fluid mechanics most verified principle: In this intermediate range, or

inertial subrange, the turbulence energy spectrum E(κ) can be expressed as

E(κ) = f(ε)κ−5/3. Where E(κ) represents the function of distribution of energy

over the different wave numbers κ (κ being defined as κ = 2π
l

where l is the size

of the scale).

2.2.2 The numerical representation of turbulence

Numerical simulation is increasingly used to study complex flows and predict its

characteristics, as it becomes more and more affordable compared to experiments.

However, due to the wide range of turbulent scales a flow may contain, the spatial

and temporal discretisation has to be fine enough in order to capture all the struc-

tures. Otherwise, the turbulent information can be ill-predicted and the mean motion

computed erroneously, as these two features strongly interact with each other. One
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can decide not to simulate each and every scale of the flow, but to model some of

them, and accurately reproduce their effects on the simulated flow. Depending on the

level of detail desired, different methods have been devised, which will be presented

now.

Direct Numerical Simulation (DNS)

This approach consists in solving all the scales contained in the flow, without any

modelling. The equations are discretised directly and solved numerically, leading

to a complete, assumption-free solution. The only difference remaining between the

computed solution and the actual flow represented lays on the errors in the numer-

ical scheme and the assumptions done in deriving the Navier Stokes equations (see

Sec. 2.1), as well as uncertainties linked to the boundary conditions prescription. The

strong need for numerical accuracy required by such methods leads to the use of higher

order schemes, or spectral methods, which are difficult to adapt in complex geome-

tries. Moreover the number of points required severely increases with the Reynolds

number2. Therefore, this method is still seldom used, but its results on simple ge-

ometries, for low Reynolds numbers, constitute an invaluable source of information

compared to those given by an experiment, and help develop new turbulence models.

Large Eddy Simulation (LES)

This approach relies on the modelling of the smallest scales, which are supposed to be

isotropic, and the modelled turbulence is assumed to be at equilibrium (turbulence

production and dissipation are in equilibrium). Hence, a simple model can be used

for its representation. This level of resolution enables the use a coarser grid compared

to the ones required by DNS. With this method, one can expect to capture turbulent

structures whose size is bigger than twice the cell size. However, as not all the

turbulence is solved, one has to find a model for the interactions of the unresolved

2The number of nodes required for the DNS of decaying isotropic turbulence was shown(Pope,

2008) to scale as Re
9/2
λ , λ being the integral length scale
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scales with the resolved ones. By noting Ũ the computed velocity field and U the

actual velocity field, one can assume there is a spatial filter G(r, x) which enables to

get Ũ from U :

Ũ(x, t) =

∫

Ω

G(r, x)U(x− r, t)dr (2.14)

With
∫

Ω
G(r, x)dr = 1 (Ω being the computational domain). The residual velocity is

then defined as : u′(x, t) = U(x, t) − Ũ(x, t). The Navier Stokes equations need to

be reformulated, when applying the filter operator, to see where the residual velocity

is going to appear, and to find a way to model it. In this formulation, shortcomings

are present, mainly on the basis of two properties of the filter, which are not correct

most of the time :

• the filter function is supposed to be homogeneous (i.e. independent of x) which

allows the filter and the spatial derivatives to commute.

• ũ′ = 0, which is true only if the filter has a sharp cutoff in wave-number space3.

The filtered Navier Stokes equations becomes:

∂Ũi
∂xi

= 0

∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

= −1

ρ

∂P̃

∂xi
+

∂

∂xj

(
2νS̃ij − ũ′iu′j

)

Using an analogy between the viscous effects and the effects of the sub-grid turbulence

on the computed field, one can introduce a sub-grid-scale viscosity (Smagorinsky,

1963) and model the auto-correlation term as:

ũ′iu
′
j = −2νSGSS̃ij +

2

3
kSGSδij (2.15)

where the sub-grid scale viscosity is given by : νSGS = (Cs∆)2

√
2S̃ij S̃ij (∆ being

the filter width, typically twice the cubic root of the cell volume), and kSGS is the

sub-grid-scale energy. The constant Cs, the Smagorinsky constant, is taken equal to

0.065 in channel flows, and its value falls between 0.14 and 0.18 in decaying isotropic

turbulence, depending on the model and the filter used (Sagaut, 2006).

3Alternatively one may use Germano’s more rigorous generalised central moments framework
(Germano, 1992), not detailed here as LES is not our main focus.
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2.3 The Reynolds-Averaged Navier Stokes models

All RANS models aim at deriving information about the statistics of the flow con-

sidered. The computed velocity and pressure fields do not represent the actual flow

at a mesoscopic scale, but rather an ensemble-average (a mean value) of this flow,

that can be interpreted in different ways. One can consider the mean value U , as the

mean of the variable over time. U can then be defined as :

U(x) = lim
T→∞

1

T

∫ T

0

U(x, t′)dt′ (2.16)

The above definition of U is not applicable to transient flows (as U does not depend on

the time anymore). If a time-dependent solution is to be expected another definition

needs to be sought for U . For instance, in the case of a periodic flow the operator

can be seen as a phase-averaging:

U(x, t) = lim
N→∞

1

N

N∑

i=0

U(x, t+ iτ) (2.17)

Where τ is a characteristic period of the physical phenomenon. This is what

yields an unsteady RANS (URANS).

The statistical mean operator · applied to the Navier Stokes equations yields the

RANS equations:

∂Ui
∂xi

= 0 (2.18)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

(
2νSij − uiuj

)
(2.19)

The variable considered in a RANS calculation is not turbulent at all. All of the

turbulence is modelled. Therefore, the RANS operator, which is a statistic average,

has nothing to do with an LES filter. As the Reynolds-stresses uiuj are supposed

to model the action of all the turbulent structures on the mean flow, this quantity

is much larger than the sub-grid scale stress. The time-averaged stresses are often

anisotropic and the turbulent state is in non-equilibrium. Simple models (eddy-

viscosity models (EVM)) use a relation similar to Eq. 2.15 to model uiuj. The eddy

viscosity (counterpart of the sub-grid scale viscosity) is denoted as νt and can be



2.3. THE REYNOLDS-AVERAGED NAVIER STOKES MODELS 37

calculated from analytical relations (mixing-length model), or as a combination of

one or more solved turbulent quantities. On the other hand, Reynolds-stress models

(RSM) stem from the derivation of exact transport equations of the Reynolds Stresses

uiuj which are then resolved. The following gives an overview of RSM and EVM

approaches.

2.3.1 Reynolds Stress models

Transport equations ruling the six independent4 Reynolds stress components can be

derived by taking the second order moments of the fluctuating velocity. They can be

written:

Duiuj
Dt

= −
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

)

︸ ︷︷ ︸
Pij

− 2ν
∂ui
∂xk

∂uj
∂xk︸ ︷︷ ︸

εij

−1

ρ
ui
∂p

∂xj
− 1

ρ
uj
∂p

∂xi︸ ︷︷ ︸
φ∗ij

−∂uiujuk
∂xk︸ ︷︷ ︸
DTij

+ ν
∂2uiuj
∂x2

k︸ ︷︷ ︸
Dνij

(2.20)

Where Pij, εij, φ
∗
ij, D

T
ij and Dν

ij, are, respectively, the production of stress, the dis-

sipation rate, the pressure term, the turbulent transport and the molecular diffusion.

The terms which are not in a closed form are εij, D
T
ij and φ∗ij.

Transport equations can be derived for the terms εij and DT
ij and involve more

complex unclosed terms and higher-order moments. A transport equation for ε =

1

2
εii, equation 2.21, was originally derived in Daly and Harlow (1970) (The terms

4due to the commutativity of the operator · × · (i.e. ∀i, j ujui = uiuj)
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notation introduced in Mansour et al. (1988) is adopted here).

Dε

Dt
= −2ν

(
∂ui
∂xl

∂uk
∂xl

+
∂ul
∂xi

∂ul
∂xk

)
∂Ui
∂xk︸ ︷︷ ︸

P 1+P 2

−2νuk
∂ui
∂xl

∂2Ui
∂xk∂xl︸ ︷︷ ︸

P 3

−2ν
∂ui
∂xk

∂ui
∂xl

∂uk
∂xl︸ ︷︷ ︸

P 4

− 2

(
ν
∂2ui
∂xk∂xl

)2

︸ ︷︷ ︸
Y

+
∂

∂xk

(
−ukε′

)

︸ ︷︷ ︸
Dtε

+
∂

∂xk

(
−2ν

ρ

∂p

∂xi

∂uk
∂xi

)

︸ ︷︷ ︸
Dpε

+
∂

∂xk

(
ν
∂ε

∂xk

)

︸ ︷︷ ︸
Dνε

(2.21)

Where the terms P1 + P2, P3, P4, Y , Dpε , DTε , Dνε are respectively named5 the

mixed production, the gradient production, the turbulent production, the viscous

destruction, the pressure transport, the turbulent transport and the molecular diffu-

sion.

The following now presents the modelling adopted for all unclosed terms of equa-

tion 2.20.

The pressure-velocity correlations:

The modelling is often based on a decomposition into two terms, one of them be-

ing trace-free. The most commonly adopted decomposition reads as follows (other

splittings exist).

φ∗ij = −1

ρ

∂

∂xk
(uipδjk + ujpδik)

︸ ︷︷ ︸
Dpij

+
1

ρ

[
p
∂ui
∂xj

+ p
∂uj
∂xi

]

︸ ︷︷ ︸
φij

(2.22)

The two different terms are often modelled separately as they are of different

nature. Dp
ij is seen as a divergence, hence it does not create turbulent energy, but

transports it between different regions. The term φij is trace free, hence it is not seen

in the evolution of the turbulent kinetic energy 1
2
uiui. It is a purely redistributive

term, among the different normal components of the Reynolds-stress tensor. In a

channel flow, this term represents the only source term of the wall normal and the

5we say “named” rather than “representing” because the separation between the different physical
processes is far from obvious
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span-wise fluctuations evolution, as there is no production. This term tends to spread

the energy evenly amongst the components of the Reynolds stress tensor. Modellers

are mainly focused on this term, which if often of the same order as the production,

when looking at the budgets. The term Dp
ij, being only significant in the near-wall

regions, is usually lumped into the turbulent transport term. In order to model

the redistributive part of the pressure term, also referred to as pressure strain-rate

correlation, the fluctuating pressure Poisson equation is invoked:

∇2p = −2ρ
∂Ui
∂xj

∂uj
∂xi
− ρ ∂2

∂xi∂xj
(uiuj − uiuj) (2.23)

The general solution for the fluctuating pressure p can be cast into an integral

form. Multiplying this solution by the gradient of the fluctuating velocity one obtains

the integral form of the pressure strain-rate correlation:

ρφij(x) = −
∫

Ω

∇2p(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
dV (x′)

4π‖x′ − x‖

−
∫

∂Ω

p(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
∂

∂n′

(
1

4π‖x′ − x‖

)
dS(x′)

+

∫

∂Ω

∂p

∂n
(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
dS(x′)

4π‖x′ − x‖ (2.24)

The surface term can be neglected far from solid walls, as ‖x′−x‖ becomes large6.

The volume term can be split into two parts, φsij and φrij, called, respectively, slow

and rapid part:

φsij =

∫

Ω

∂2(ulum − ulum)

∂xl∂xm
(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
dV (x′)

4π‖x′ − x‖ (2.25)

φrij =

∫

Ω

∂Ul
∂xm

(x′)
∂um
∂xl

(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)
dV (x′)

2π‖x′ − x‖ (2.26)

The first term is purely turbulent and represents the interactions between the

Reynolds components. It is referred to as “slow” term, as it only indirectly changes

6The first of the surface terms represents the wall-echo term which is significant at the vicinity
of walls and is taken into account in near-wall models. The second term is linked to the Stokes
pressure (Kim (1989)).
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with a mean-flow shear or strain. The second term, involving the mean-velocity gra-

dient is called rapid part, because it instantaneously reacts to a mean-flow distortion.

The slow part:

This can be modelled by considering an homogeneous field of anisotropic turbulence

which is decaying in time. It is natural to suppose that the anisotropy of the field

tends to disappear as it decays. On the basis of this notion, Rotta (1951) proposed

the simple model:

φsij = −C1
1

T

(
uiuj −

2

3
kδij

)
= −C1εaij (2.27)

Where T =
k

ε
is the characteristic time scale of the turbulence, and aij =

uiuj
k
−

2

3
δij is the turbulence anisotropy tensor. This model states that the turbulence has a

trend to return to an isotropic state with a constant rate. More complex models can

be found, where the return to isotropy depends on the invariants of the anisotropy

tensor. It has been shown that this slow term is stronger in case of high anisotropy.

Its intensity is smaller for low values of ‖aij‖. For instance, the model of Speziale

et al. (1991) uses: φsij = −C1εaij + C2ε(aikakj − 1
3
A2δij), where A2 = aijaij is the

second invariant of the anisotropy tensor. The constants are C1 = 1.7 + 0.9P/ε and

C ′1 = 1.05 in this model.

The rapid part:

The main assumption which is made in modelling this term, is the homogeneity of

the mean-velocity gradients across the space, which enables to consider the velocity

gradient at point x instead of x′ in 2.26: this is the hypothesis of quasi-homogeneity.

In this way, the mean-velocity gradient is taken out of the integral, and only two-

point correlations between fluctuating velocity gradients have to be modelled. The

most frequently used models stem from the simple IP (Isotropisation of production)

model (Naot et al., 1970), where the production tensor is driven back to an isotropic
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state.

φrij = −C2

(
Pij −

2

3
Pkδij

)
(2.28)

With the production term Pk is defined as
1

2
Pii. In general, the models used are

more complex, sometimes non-linear, and involve both the mean strain rate Sij =

1
2
(∂Ui/∂xj + ∂Uj/∂xi) and the mean vorticity Ωij = 1

2
(∂Ui/∂xj − ∂Uj/∂xi).

Models for φij:

Models for the slow and rapid parts introduce the following relation: φij = f(aij, Sij,Ωij).

A general expression can be derived, introducing terms of higher order. One of the

most popular models, which retains only the linear terms for the rapid term, is the

one of Speziale et al. (1991) (referred to as the SSG model):

φij = −C1εaij + C2ε(aikakj −
1

3
A2) + C3kSij

+C4k(aikSjk + ajkSik −
2

3
amnSmnδij)

+C5k(aikΩjk + ajkΩik) (2.29)

The constants of the model are :

C1 C2 C3 C4 C5

1.7 + 0.9Pk
ε

1.05 0.8− 0.625
√
A2 0.625 0.2

The SSG model for the rapid term is quasi-linear, as it introduces non-linearity

via the term C3 which depends on the second invariant of the anisotropy tensor. An

earlier yet still popular7 model is the LRR model of Launder et al. (1975). In this

version the slow term is linear and the coefficient C3 of the rapid term is constant.

The turbulent transport

The behaviour of the term DT
ij was investigated, for instance in Hanjalic and Launder

(1972), who derived transport equations for the 10 independent triple correlations. In

7It is still available in many CFD codes as a legacy model
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practice, the model of Daly and Harlow (1970) is used to approximate the triple cor-

relations. It is referred to as the Generalised Gradient Diffusion Hypothesis (GGDH).

DT
ij = − ∂

∂xk

(
Cs
k

ε
ukul

∂uiuj
∂xl

)
(2.30)

Although this latter model is the most widely used, more advanced approaches

were proposed. For instance, a Gallilean invariant alternative to Eq. 2.30 was pro-

posed in Hanjalic and Launder (1972) whereas the model of Craft (1998) relies on

implicit algebraic relations to obtain the triple correlations from their exact transport

equations.

The dissipation tensor εij:

Because of the complexity of the exact transport equations for εij the following alge-

braic decomposition is used:

εij =
2

3
εδij +

(
εij −

2

3
εδij

)

︸ ︷︷ ︸
εD

(2.31)

The first term is the isotropic dissipation rate, whereas εD represents the deviatoric

contribution. Reynolds-stress models usually simply rely on an additional transport

equation for the dissipation rate ε, whereas εD is generally lumped into the pressure

strain-rate term model, on the basis that both terms have the same mathematical

properties (Pope, 2008).

An empirical equation, proposed in Hanjalic and Launder (1972), is generally

adopted (yet the analysis of Eq. 2.21 has guided the derivation of some RSM).

Dε

Dt
= Cε1

Pkε

k
− Cε2

ε2

k
+

∂

∂xk

(
ν + Cε

k

ε
ukul

∂ε

∂xl

)
(2.32)

The two first terms of the right hand side are proposed as a global model for the

difference of the terms P 4−Y (see Eq. 2.21) and the last one represents the turbulent,

molecular and pressure diffusion terms, whereas other terms of the exact ε equation

(Eq. 2.21) only play a significant role in near-wall or low Reynolds number flows
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(Hanjalic and Launder (1976)). Some more complex models (e.g. Hanjalic and Laun-

der (1972), Hanjalic and Launder (1976), Jakirlic and Hanjalic (2002) and Mansour

et al. (1988) ) have attempted to follow a term-by-term modelling of Eq. 2.21.

The coefficients of this empirical equation are obtained by matching experimental

results on simple cases. In a decaying isotropic turbulent flow (grid turbulence exper-

iment of Comte-Bellot and Corrsin (1966)) the turbulent kinetic energy is observed

to decay exponentially. Eq. 2.32 simply becomes:

dε

dt
= −Cε2

ε2

k
(2.33)

Therefore, the turbulent kinetic energy k = 1/2uiui decays according to the fol-

lowing law: k(t) = k0(t− t0)−n, where x is the distance downstream of the grid with

n = 1/(Cε2 − 1). The decay rate is experimentally observed to be of order n ∼ 1.2

which yields Cε2 = 1.8. The coefficient Cε1 can be set for the model to match ex-

perimental results in the case of an ever growing turbulence generated by a constant

shear. Whereas most models use the value of order Cε1 = 1.45 recommended in Han-

jalic and Launder (1972), some more advanced models have adopted a smaller value

(e.g. Cε1 = 1.0 in Craft (1998)). In some models the coefficients of the dissipation

rate and the pressure strain-rate correlation are optimised together (e.g. Speziale

et al. (1991)).

Justifications of focussing the modelling efforts on the isotropic part of εij are only

valid in regions where the largest and the smallest dissipative scales are well separated,

that is when dissipation can be assumed to be isotropic 8. When the Reynolds number

is small or in near-wall regions alternative models for the decomposition Eq. 2.31 and

for the model of εD are used, as it will be seen in the subsequent chapter. The

modelled transport equation for ε also needs low-Reynolds and near-wall corrections.

8following Kolmogorov’s hypothesis
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2.3.2 Eddy viscosity models

The models presented in the previous section have the disadvantage of containing

usually seven transport equations, six for the components of the Reynolds-stress

tensor, and one for the dissipation rate. Apart from the added numerical cost of

solving additional equations, numerical problems may arise in the resolution of the

momentum equation (Eq. 2.19) as the term − ∂

∂xj
uiuj is explicit.

A very appealing way to simplify this problem is the use of the analogy between

the molecular random motion and the turbulence, leading to model the turbulent

effects using a turbulent viscosity, noted νt, which enables to model the Reynolds

stress tensor components with the Boussinesq formula:

uiuj = −2νtSij +
2

3
kδij (2.34)

A turbulent length-scale (noted L), velocity (V ) or kinetic energy (K) can be com-

bined to form the turbulent viscosity whose dimension is m2.s−1. Those quantities

are either resolved by respective transport equations, given by algebraic relations or

simply prescribed.

Zero-equation models The mixing-length hypothesis expresses the turbulent vis-

cosity νt as the product of a velocity scale V and a prescribed mixing length lm. In a

shear layer, Prandtl (1925) proposed the velocity scale to take the form V = lm

∣∣∣∣
dU

dy

∣∣∣∣
(where U and y are respectively the mean wall-parallel velocity component and the

wall normal coordinate) hence the turbulent time-scale entering the definition of νt is

taken equal to the inverse of the mean shear magnitude
dU

dy
. To close the model only

a turbulent length-scale is required which is a characteristic quantity depending on

the flow considered. In the outer part of a boundary layer it is simply proportional

to the boundary layer thickness, whereas closer to walls turbulent structures become

smaller, as it will be seen, and the mixing-length needs to be reduced.

One of the shortcomings of this model is that existence of turbulence is linked to

the simultaneous presence of its generator (i.e. mean velocity gradients).
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One-equation models The one-equation model of Prandtl (1945) proposes to

resolve an equation for the turbulent kinetic energy k in order to obtain the turbulent

velocity scale V =
√
k used in the mixing length model. Other more recent one-

equation models have been proposed for specific industrial applications, such as the

model of Spalart and Allmaras (1994). The latter is based on the derivation of a

transport equation for the turbulent viscosity.

Two-equation models In order to produce more accurate predictions of the quan-

tities involved in the turbulent viscosity without increasing too much the complexity

and the number of equations, two transport equations are generally used, and de-

rived models are the most widely employed in industrial CFD codes. The turbulent

viscosity can be written as the combination of a turbulent velocity scale V and a

turbulent length scale L. Similarly to the one-equation model described previously

the turbulent velocity scale is related to the resolved variable
√
k.

The transport equation for the turbulent kinetic energy, which is defined as k =

1

2
uiui can be found by taking the trace of the Eq. 2.20:

Dk

Dt
= Pk + φ∗ − ε− 1

2

∂ujuiui
∂xj

+ ν
∂2k

∂x2
k

(2.35)

where Pk = 1
2
Pii is the production of turbulent energy. It is closed using the Boussi-

nesq formula: Pk = 2νtSijSij. The sink term ε = 1
2
εii is the dissipation rate. The

term φ∗ =
1

ρ

∂ujp

∂xj
is the pressure diffusion. The pressure and diffusion terms are

modelled together using a simple gradient diffusion hypothesis (SGDH):

1

ρ

∂ujp

∂xj
− 1

2

∂ujuiui
∂xj

=
∂

∂xj

(
νt
σk

∂k

∂xj

)
(2.36)

Where σk is the Prandtl number associated to the quantity k. In nearly all models

σk = 1.

The second resolved variable is the means of determining the turbulent length

scale required in the model for νt and enables to model the dissipation-rate term

appearing in Eq. 2.35. One of the most popular two-equation models is the k − ε

model proposed by Jones and Launder (1972), and this resolves the following second
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equation for ε (which is very similar to the one proposed by Hanjalic and Launder

(1972) for a Reynolds Stress model):

Dε

Dt
= Cε1

Pkε

k
− Cε2

ε2

k
+

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
(2.37)

The two quantities are combined to form the turbulent viscosity:

νt = Cµ
k2

ε
(2.38)

The quantities σε and Cµ are tuned to return the expected behaviour in the logarith-

mic layer of a channel flow (i.e. the value of the Von K’arm’an constant κ and the

ratio uv/k), whereas the coefficient Cε1 is calibrated to predict the correct turbulence

growth rate in homogeneous shear flow. As in Hanjalic and Launder (1972), Cε2 is

adjusted to return the correct isotropic turbulence decay.

Alternatively, following the approach of Kolmogorov (1941) the k − ω model of

Wilcox (2006) solves for a second variable for the dissipation per unit turbulent kinetic

energy using an empirical equation similar to Eq. 2.37.

Dω

Dt
= α

ω

k
Pk − βω2 +

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
(2.39)

where α and β are model constants. To close the k equation, the dissipation rate

is related to ω as follows:

ε = Cµkω (2.40)

Another popular modelling strategy is the k− ω SST model of Menter (1994). It

consists in a blending between the k− ε and the k−ω approaches with an additional

modification of the turbulent viscosity to recover the proportionality link between

the turbulent shear stress uv and the turbulent kinetic energy k in a boundary layer

(Bradshaw’s hypothesis). Equations and constants of this model are given in App. B.

2.3.3 Other RANS approaches

Non-linear eddy viscosity models: These formulations propose to improve the

Boussinesq relation Eq. 2.34 by adding a non-linear dependance on the strain and
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vorticity rates Sij and Ωij. Some examples of these models are the quadratic models

of Gatski and Speziale (1993) or Abe et al. (2003) or the cubic models of Craft et al.

(1996), Apsley and Leschziner (1998) or Lien et al. (1996).

Algebraic Reynolds stress model: They are based upon simplifications of the

Reynolds-stress-transport equations yielding algebraic relations linking the different

Reynolds stresses to each other. Some of them further simplify to explicit expressions

for the different stresses as functions only of turbulent scales and mean flow quantities.

The later models, which can be cast into the form of non-linear eddy-viscosity models,

are called Explicit Algebraic Reynolds-stress models. An example of such approach

is the model of Wallin and Johansson (2000). It is noteworthy that the models of

Gatski and Speziale (1993) or Apsley and Leschziner (1998), previously mentioned,

were also derived from simplifications to Reynolds stress modelling.

Stress strain misalignement modelling: A feature that the two previous classes

of models miss, however complex they may be, is an ability to reproduce the history

effects of turbulence. To this end, the model of Revell et al. (2006) proposes to solve

for a coefficient Cas defined as:

Cas = −aijSij||S|| (2.41)

besides the turbulent kinetic energy and the scale determining variable (ε or ω). This

coefficient represents the cosine of the angle between the two matrices aij and Sij,

erroneously supposed to be aligned in a linear EVM framework. The turbulent kinetic

energy production appearing in the turbulent equations is then rewritten:

Pk = Cask||S|| (2.42)

Unsteady RANS Referred to as URANS, this method consists in using a RANS

model to predict unsteady flows. This approach proves to be promising if the mean

flow and turbulent scales are well separated, typically in the wake of a bluff body

(vortex shedding).
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2.4 RANS/LES coupling

With the usual assumptions, LES approach requires that modelled turbulence should

be isotropic, which means that the computational grid should be able to capture all

the anisotropic content. However near the wall the turbulence is anisotropic almost

down to the viscous scale. Therefore, LES should be used on very fine grids in this

region. The size of a grid suitable for LES in a wall-bounded flow scales as ≈ Re1.8

as shown in Chapman (1979). A cheaper strategy is to employ the RANS approach

at walls, coupled with LES further away. A review of such hybrid methods is given in

Fröhlich and von Terzi (2008). Some examples of this approach are the two-velocity

method of Uribe et al. (2010), the Partially Integrated Turbulence Model of Chaouat

and Schiestel (2009), the seamless approach of Fadai-Ghotbi et al. (2010) or the

Detached Eddy Simulation (see Spalart (2009)).



Chapter 3

Near-wall turbulence and its

modelling

This chapter gives a description of the characteristics of turbulent wall-bounded flows,

in the general case first, then in the academic channel flow case. For the latter case,

DNS data are analysed to highlight the different mechanisms of turbulence produc-

tion, dissipation and transport and to assess the universality of the variables be-

haviour. As it will be seen, the models introduced in the previous section, calibrated

for homogeneous flows, need substantial adaptations in order to be used near walls.

The conclusions of this analysis are used in the next chapters, where new develop-

ments are proposed.

3.1 The effects of walls on turbulence

3.1.1 Influence of walls on instantaneous field

At the wall the flow adheres to the surface and progressively recovers its free-stream

velocity further outwards. The strong inhomogeneities are the origin of a wide spec-

trum of turbulent instabilities, which can only be imperfectly described by the sta-

tistical approach of RANS modelling. The mechanisms of generation of instabilities,

followed by the production of turbulence, in a near wall flow are different from those

49
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due to the presence of mean velocity inflexion points in a simple shear layer. The tur-

bulent transition of a boundary layer (whether by a “bypass” mechanism if the outer

flow is already turbulent, or “natural” otherwise) and the sustenance of turbulence by

a continuous production and transport outwards, has been the object of many exper-

imental and numerical investigations. They provided evidences for a wide variety of

vortical structures responsible for strong inhomogeneities and exchange mechanisms.

Amongst these studies there is a consensus regarding the shape and location of the

different structures, but not on their role, nor on the mechanisms they are involved

in, although it is observed that quasi-cyclic events occur (referred to as “bursting”).

Experimental techniques include dye or hydrogen bubbles injection (e.g. Kline et al.

(1967); Kim et al. (1971)), hot-wire measurement or visualisation using colloidal size

particles (Corino and Brodkey, 1969), but it is generally very difficult to experi-

mentally monitor the near-wall flow1. Conditional sampling methods can be used

to study the outwards transport of low-speed flow (called “ejection”) and inwards

transport of high-speed flow (“sweep”): these two processes correspond to the events

{u < 0 and v > 0} and {u > 0 and v < 0} respectively, where u and v represent the

stream-wise and wall-normal fluctuating velocity, respectively. The observation and

the interpretation of these mechanisms may help to improve turbulent models and

ascertain the postulated existence of a unique and universal behaviour of near-wall

flows, but averaged data remain the main source of information for modellers.

3.1.2 Influence of walls on RANS statistical quantities

As far as RANS statistical quantities are concerned, the presence of a wall has several

implications:

• Because of the molecular viscosity of the fluid, the wall induces viscous friction

on the flow, characterised by the non slip condition at the wall (the velocity

component parallel to the wall U‖ is zero). This yields strong wall-normal

1In fact, the near-wall sublayer can be of the same size if not larger than the probe or injection
device. Indeed y+ = 5 corresponds to y = 0.125 mm for a pipe flow at Re = 50000 (Corino and
Brodkey (1969)).
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gradients of the wall-parallel mean velocity resulting in the production of high

levels of turbulence, which is transported further away from walls.

• The turbulence itself is strongly affected by walls. The dynamic effects of

viscous friction not only reduce the mean velocity but also impairs the turbulent

intensity, as evidenced in the case of a flow along a wall moving at the same

speed as the mean flow (e.g. the shear-free near-wall flow was experimentally

studied in Aronson et al. (1997)).

• The impermeability condition (the velocity component perpendicular to the wall

U⊥ is zero), propagating through incompressibility in the wall neighbourhood

(kinematic “non-local” effect, also known as wall-blocking effect), increases the

turbulence anisotropy: as will be seen, the combined no-slip and impermeability

conditions applied to turbulence results in the wall-normal fluctuations being

reduced by two orders of magnitude above that of the stream-wise and span-

wise components. Therefore, both the turbulent structure shape and size are

noticeably altered, and these modifications need to be accounted for in models

(the earliest near-wall corrections were proposed in Prandtl (1925) and van

Driest (1956) who suggested to relate the mixing length to the wall distance).

• As direct consequence of the wall-induced turbulence-intensity reduction, the in-

tegral characteristics of turbulence become progressively closer to viscous scales

as walls are approached. These low-Reynolds-number effects are characterised

by Ret =
k2

εν
→ 0. Large and small scales are no longer clearly distinct, and

the dissipation-rate tensor becomes anisotropic.

• The integral solution of the Poisson equation for the fluctuating pressure, Eq. 2.24,

contains two surface terms. If the boundary condition ∂p/∂y = 0 is applied as

first approximation 2, one can drop the last term. The surface term left can be

turned into a volume integral, and combined with the first term. The pressure

strain-rate correlation becomes :

2it will be seen that ∂p/∂y = ν∂2v/∂y2
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Figure 3.1: Illustration of the “wall-reflection” effect

ρφij(x) = −
∫

Ω

∇2p(x′)

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)(
1

4π‖x′ − x‖ +
1

4π‖x′∗ − x‖

)
dV (x′)

(3.1)

Where x′∗ is the mirror point of x′ through the wall, as represented in Fig.3.1.2.

This wall echo term, also called “wall-reflexion” term represents a contribution

similar to that from point x′ but from the mirror point x′∗ and it actually

increases the redistribution term, as pointed out in Manceau (1999).

The representation of wall turbulence damping, anisotropy enhancement and low-

Reynolds number effects constitutes a real challenge for wall-bounded flow predictions

and classical modelling often needs considerable modifications.

The following presents a description of a turbulent flow in a simple wall-bounded

geometry, from which will emerge some guidelines for near-wall RANS models devel-

opments.

3.2 The channel flow

Due to the viscous nature of the wall friction, the fluid’s molecular viscosity is a

parameter involved in a wall-bounded flow. The viscous length scale δν (ratio of the

viscosity and a turbulent velocity scale noted uτ (or friction velocity) constructed

from the wall viscous shear stress) as well as the boundary-layer thickness, δ, are
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two length-scales upon which a wall bounded flow motion depends. Some general

conclusions about boundary-layer flows can be derived by considering the asymptotic

state, for which the friction Reynolds number Reτ =
δ

δν
→ ∞. Then, asymptotic

results and their validity for a finite Reynolds number can be studied in a channel

flow or a boundary layer (using experimental or DNS data). We focus here on the

channel-flow case.

3.2.1 Presentation of the case and flow equations

The analysis done in Tennekes and Lumley (1999) and Pope (2008) in an extensively

detailed manner are summarised in what follows.

The study considers a flow between two infinite parallel surfaces separated by a

distance 2δ, driven by a constant pressure gradient which exactly balances the wall

friction, so that the flow is neither accelerated nor decelerated. The stream-wise,

wall-normal and span-wise axis are respectively x, y and z. The mean velocity along

the direction y and z is zero, and the mean quantities are constant along the z and

x axis (except for the pressure). The mean pressure P and stream-wise velocity U ,

as well as the turbulent shear stress uv and wall normal stress v2 are related to each

other by the momentum equation on the axes x and y:

0 = −1

ρ

∂P

∂x
− duv

∂y
+ ν

d2U

dy2
(3.2)

0 = −1

ρ

∂P

∂y
− dv2

dy
(3.3)

From Eq. 3.3, we deduce:
∂2P

∂y∂x
=

∂2P

∂x∂y
=
∂2ρv2

∂x∂y
= 0 since v2 is independent

on x. Therefore, the pressure gradient dP/dx is independent of y, and is then a

constant. The total stress τT = µ
dU

dy
− ρuv is then a linear function of y. At the wall

it reduces to the viscous wall stress ρν
dU

dy
. The friction velocity, uτ =

√
ν
dU

dy
(0) is

used as velocity scale. At y = δ, the flow symmetry imposes τT = 0. This finally
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leads to:

ν
dU

dy
− uv = u2

τ

(
1− y

δ

)
(3.4)

3.2.2 The different regions of a channel flow

Two non-dimensional equations can be derived:

• Using the velocity scale uτ and the inner space scale δν = ν/uτ :

dU
+

dy+
− uv+ = 1− y+

Reτ
(3.5)

where y+ = y/δν , U
+

= U/uτ and uv+ = uv/u2
τ

• Using the velocity scale uτ and the outer space scale δ

1

Reτ

dU
+

dη
− uv+ = 1− η (3.6)

where η = y/δ

The near-wall asymptotic state can be derived using the momentum equation

expressed in viscous units (it will be shown later that uv+ = O(y+3) at the wall):

U
+

= y+ − 1

2

y+2

Reτ
+O(y+4) (3.7)

The viscous sublayer is defined as the wall region where U
+ ∼ y+ (y+ < 8). The

Reynolds number is involved in the near-wall asymptotic expansion Eq. 3.5 only from

the second order term.

In order to study the behaviour of equations Eq. 3.5 and Eq. 3.6 further away from

the wall, the mixing length theory (Prandtl (1925)) is used to express the turbulent

shear stress: uv = −L2
m

∣∣∣∣
dU

dy

∣∣∣∣
dU

dy
. This introduces the mixing length scale Lm. The

two equations are respectively rewritten using Lm (where L+
m = Lm/δν):

(
1 + (L+

m)2

∣∣∣∣∣
dU

+

dy+

∣∣∣∣∣

)
dU

+

dy+
= 1− y+

Reτ
(3.8)

(
ν + (Lm)2

∣∣∣∣∣
dU

+

dy

∣∣∣∣∣

)
dU

+

dy
= 1− y

δ
(3.9)
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In the inertial subrange, when Reτ → ∞, the flow does not depend either on δν

or δ. von Karman (1931) was one of the first to derive theoretical results concerning

the mean velocity profile in the inertial layer proposing the following linear relation:

Lm = κy. In this region, Eq. 3.8 simplifies because y � δν (i.e. L+
m � 1) and y � δ.

This leads to the well known logarithmic profile:

U
+

=
1

κ
lny+ + C (3.10)

The logarithmic behaviour of the near-wall velocity is also present at finite Reynolds

numbers, as observed in experimental and computational data. They give an estimate

of the values of the constants κ = 0.41 and C = 5.2, even though those are dependent

on Reτ , especially C. This is due to interactions between very large structures and

the wall. Moreover, the region between the logarithmic and the viscous sublayer is

called the buffer layer.

In the outer part of the flow (for y > 0.2δ) the mixing length becomes constant,

Lm = 0.2κ. In this region (with again viscous shear negligible), Eq. 3.9 is used to

obtain an expression for the difference between the velocity and its maximum value

at the centre line (velocity defect, hence the name “defect” layer):

U − Umax
uτ

=
2

0.6κ

(
1− y

δ

)3/2

(3.11)

Matching Eq. 3.10 and Eq. 3.11 at point y = 0.2δ enables to recover the value Umax.

The different zones in a channel flow can be well represented by plotting the

variable y+dU
+

dy+
, whose extrema can be visually associated to the bounds of these

regions, as seen on Fig. 3.2. Similarly, they can be visually matched to the inflexion

points of the velocity profile (when a logarithmic scale is used for the y+ axis)3.

3.2.3 Asymptotic behaviour of the turbulent variables

It has been seen previously that, very close to the wall, the mean-velocity profile is

linear in the wall-normal direction, and this asymptotic behaviour holds over a large

3The plot of the function f(x) with a logarithmic scale for the x axis is the plot of a function fl
such that fl(ln(x)) = f(x). Therefore f ′′l (ln(x)) = x(xf ′(x))′.
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part of the viscous sublayer. More generally the study of Taylor-series expansions of

turbulent quantities provides insight into the relative near-wall importance of each

Reynolds stress and the source terms of their respective transport equations.

The mean velocity U , the fluctuating velocity components u, v and w as well as

the fluctuating pressure p expend as follows:





U =
∞∑

i=0

Aiyi

u =
∞∑

i=0

aiy
i

v =
∞∑

i=0

biy
i

w =
∞∑

i=0

ciy
i

p =
∞∑

i=0

piy
i

(3.12)

The Ai’s are constant but the ai’s, bi’s, ci’s and pi’s are random variables which

depend upon x, z and t. The wall impermeability leads to lim
y→0

v = 0 hence b0 = 0.

Moreover the no-slip condition imposes lim
y→0

U = lim
y→0

u = lim
y→0

w = 0, hence A0 = a0 =

c0 = 0. More relations between coefficients are derived from the continuity and Navier

Stokes equations.

• The divergence of the turbulent velocity field expends as
∂u

∂x
+
∂v

∂y
+
∂w

∂z
=

b1 +

(
∂a1

∂x
+
∂c1

∂z
+ 2b2

)
y+O(y2). The continuity equation requires the latter

relation to be 0, hence b1 = 0,
∂a1

∂x
+
∂c1

∂z
+ 2b2 = 0, ....

• At the wall, the momentum equations for the fluctuating velocity in a channel

flow reduces to
∂p

∂xi
= µ

∂2ui
∂xj∂xj

. This leads to
∂p0

∂x
= 2µa2 , p1 = 2µb2 and

∂p0

∂z
= 2µc2.



58 CHAPTER 3. NEAR-WALL

The resulting near-wall asymptotic behaviour of the mean velocity and the tur-

bulent variables is: 



U = A1y +O(y2)

u = a1y +O(y2)

v = b2y
2 +O(y3)

w = c1y +O(y2)

∂p
∂x

= 2µa2 +O(y)

∂p
∂y

= 2µb2 +O(y)

∂p
∂z

= 2µc2 +O(y)

(3.13)

One of the most important results of this analysis is that the wall-normal fluctua-

tion v2 is two orders of magnitude smaller than the stream-wise and span-wise compo-

nents u2 and w2. This two-component limit of turbulence is characterised by a strong

anisotropy which should be reproduced in second-moment closure. Fig. 3.3 presents

the Reynolds-stress components (DNS data of Moser et al. (1999) at Reτ = 590)

as well as the first-order term in their Taylor series expansion. The turbulent ki-

netic energy and its dissipation rate are also represented. As seen, the first-order

approximation seems to be a reasonable estimate for the quantities u2, −uv and k in

the major part of the viscous sublayer. For v2 and ε noticeable departure starts at

y+ = 1− 2.

These relations are also used to find the near-wall leading order term of the

source terms of the Reynolds stresses and turbulent kinetic energy transport equa-

tions (Eq. 2.20 and Eq. 2.35 respectively). They are summarised in Tab. 3.1 and 3.2

and provide useful information for the near-wall RANS modelling requirement. For

instance, in the k transport equation, the linear term Dp
k is lumped into the turbu-

lent transport model and the model for the dissipation should balance the molecular

diffusion (Eq. 3.14).

lim
y→0

ε = lim
y→0

ν
∂2k

∂y2
(3.14)
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(1, 1) (2, 2) (3, 3) (1, 2)

uiuj a2
1y

2 b2
2y

4 c2
1y

2 a1b2y
3

Pij −2A1a1b2y
3 0 0 −A1b2

2y
4

−εij −2νa2
1 − 8νa1a2y −8νb2

2y
2 −2νc2

1 − 8νc1c2y −4νa1b2y

φ∗ij −4νa1a2y −4νb2
2y

2 −4νc1c2y −2νa1b2y

φij
2
ρ
p0

∂a1
∂x
y 41

ρ
p0b2y

2
ρ
p0

∂c1
∂z
y 1

ρ
p0a1

Dp
ij −4νa1a2y − 2

ρ
p0

∂a1
∂x
y −41

ρ
p0b2y −4νc1c2y − 2

ρ
p0

∂c1
∂z
y −1

ρ
p0a1

Dt
ij −4a2

1b2y
3 −6b3

2y
5 −4b2c2

1y
3 −5a1b2

2y
4

Dν
ij 2νa2

1 + 12νa1a2y 12νb2
2y

2 2νc2
1 + 12νc1c2y 6νa1b2y

Table 3.1: Near wall asymptotic behaviour of the Reynolds Stresses and of the terms
of their transport equation

k 1
2
(a2

1 + c2
1)y2

Pk −A1a1b2y
3

ε −ν(a2
1 + c2

1)
φ∗k −2ν(a1a2 + c1c2)y
φk 0
Dp
k −2ν(a1a2 + c1c2)y

Dt
k −2b2 (a2

1 + c2
1)y3

Dν
k ν

(
a2

1 + c2
1

)

Table 3.2: Near wall asymptotic behaviour of k and of the terms of its transport
equation
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Figure 3.3: Asymptotic behaviour of the DNS variables, Reτ = 590
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3.2.4 Budget of the Reynolds stresses and the dissipation

rate

The budget of the Reynolds stress equations (Eq. 2.20) and of the dissipation rate

(Eq. 2.21) taken from DNS channel flow data at different Reynolds numbers is now

analysed using a “proportional” presentation: for a given variable m, the transport

equation is written:

Dm

Dt
=
∑

i

Ti (3.15)

The source terms Ti are decomposed as follows: Ti = min(Ti, 0)︸ ︷︷ ︸
T−i

+ max(Ti, 0)︸ ︷︷ ︸
T+
i

. Each

source term T+
i is then represented as proportion of the total source term

∑
i T

+
i .

Likewise, each sink term T−i is represented as a proportion of the total sink term
∑

i T
−
i . The absence of mean flow unsteadiness and convection imposes

∑
i T

+
i =

∑
i T
−
i . This offers a clearer picture of the balance between generation, destruction

and transport4. The aim of this analysis is to gain understanding in the role of the

different terms of the equations for the turbulence, stresses and dissipation rate, and

possibly draw some useful conclusions for the modelling.

The following presents the budget of k and uiuj in a channel flow using the data of

Hoyas and Jiménez (2008) for Reτ = 2000 and Iwamoto et al. (2002) for Reτ = 395.

Dissipation rate budgets are also presented using the data of Gilbert and Kleiser

(1991) for Reτ = 211 and Rodi and Mansour (1993) for Reτ = 395.

The budgets of k, u2, v2, w2 as well as uv are presented on Fig. 3.5, 3.6, 3.7,

3.8 and 3.9, respectively. For the graphs corresponding to Reτ = 2000 no data is

available in the white region (smallest y+ values). Black regions represent data error

(i.e. difference between sink and source terms). Figure 3.4 shows the different terms

of the exact ε equation (terms notation taken from Eq. 2.21). In the outer part of the

flow, the main ε source/sink terms are proportional to 1/(y+)2. Therefore, all source

terms in this region are premultiplied by (y+)2 for a better representation. It can be

4A traditional display of raw DNS budgets, for instance in a boundary layer or a channel flow,
often becomes unclear in regions where the terms shrinks to 0 (i.e. towards the wall or at the edge
of a boundary layer). A somehow similar “proportional” representation of the budget can be found
in Pope (2008).
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clearly seen that P4 and Y are the main terms in the core region, but their difference

is actually of the same order as the other terms. Therefore the proportional budget

representation of the ε equation source terms (shown on Fig. 3.10) is clearer when

applied directly to the groups P 1 + P 2 + P 3 and P 4 − Y . In light of these graphs

some comments can be formulated:

• Since P22 = P33 = 0 in a channel flow the production of turbulent kinetic energy

by mean velocity gradient only feeds the u2 component. As seen, in all the domain

the pressure term then removes energy from the component u2 to feed v2 and w2

(φ∗11 < 0, φ∗22 > 0 and φ∗33 > 0). However due to near-wall kinematic blockage (i.e.

splat) there is some further transfer from v2 to u2 and w2 in the near-wall region

through the term φ∗ij (φ∗22 is actually negative near the wall).

• In the logarithmic region, at Reτ = 2000 the following equilibria may roughly

be observed:





P = ε

P11 = ε11(33%) + φ∗11(66%)

φ∗22 = ε22

φ∗33 = ε33

P12 = φ∗12(95%) + ε12(5%)

P1 + P2 + P3(66%) +DT
ε (33%) = P4 − Y

(3.16)

• In the defect layer: After the log region, the velocity gradient decreases faster,

and the turbulent diffusion of k progressively becomes the dominant source term of

k. The excess of net production in the logarithmic layer is going to feed the channel

centre. Conversely, pressure transport carries some k back to the lower edge of the log

layer. At the channel centre, the pressure term φ∗ij is still present for the component

(1, 1), (3.3) and (1, 2) but vanishes for (2, 2)

• Universality of the near-wall region: These proportional plots are very similar

for the two Reynolds numbers, with one major difference however: for Reτ = 395

and for all the variables, particularly k, the turbulent flux plays a non-negligible role
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(y+ ∈ [50, 395]) in linear scale. Terms in the outer part are pre-multiplied by (y+)2

in the logarithmic layer: it is responsible for the transfer between the near wall and

the channel centre. This may be seen as a possible explanation for the dependence

of the near-wall region on outer flow parameters, at low-Reynolds number, the two

zones being in “connection” via turbulent transport. The dissipation rate ε is the

variable for which turbulent transport is comparatively the largest in the logarithmic

layer.

• Comparing budgets of k, Fig. 3.5, and ε, Fig. 3.10, justifies modelling the later as

proportional to the former, with the following difference: as seen, turbulent transport

of ε from the near-wall region to the centre is much more important than that of k

(and visible in the log region even at high Reynolds number). Also “production” of

ε reaches 100% at y+ = 4 then again for 10 < y+ < 30, i.e. it has a “W” shaped

profile which is then balanced by a complex redistribution by viscous and turbulent

transport.
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Figure 3.7: Budget of v2. Top: Reτ = 395, Bottom: Reτ = 2000
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Figure 3.8: Budget of w2. Top: Reτ = 395, Bottom: Reτ = 2000



68 CHAPTER 3. NEAR-WALL

10−1 100 101
−1.0

−0.5

0.0

0.5

1.0

70 100 200 300

y+

G
A

IN
LO

S
S

−Dν
12

−DT
12

−φ∗12

−P12

−ε12

Error

10−1 100 101
−1.0

−0.5

0.0

0.5

1.0

70 500 1000 2000

y+

G
A

IN
LO

S
S

−Dν
12

−DT
12

−φ∗12

−P12

−ε12

Error
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Figure 3.10: Budget of ε. Top: Reτ = 211, Bottom: Reτ = 395
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3.2.5 Universality of the near-wall behaviour

This section focuses on the dependance of the mean velocity and the turbulence

variables on the friction Reynolds number Reτ : although it is expected that for

infinite Reynolds-number the near-wall flow behaviour should be totally independent

of the channel half-width δ (i.e. only be a function of y+ = y/δν) it is interesting to

investigate the effects of this dependance for a finite value of Reτ and in particular for

which variables it is the most visible. This will provide rules for turbulence models

developments.

To this end, DNS data for the set Reτ ∈ {180; 395; 590; 950; 2000}. The DNS data

analysed are those of Hoyas and Jiménez (2008) for Reτ = 180, 590, 950 and 2000,

those of Iwamoto et al. (2002) for Reτ = 395 and those of Moser et al. (1999) for

Reτ = 590.

Fig. 3.11 shows the quantities y+ε+, k+,
1

y+
(−uv+/

dU
+

dy+
), y+dU

+

dy+
,

1

y+
(k+/ε+)

and
1

y+
((k+)3/2/ε+) plotted from DNS data simultaneously for all considered Reynolds

numbers. An analysis of the turbulent quantities in the logarithmic layer (see Sub-

sec. 4.2.2) shows that the dissipation rate ε+ is proportional to 1/y+, and the tur-

bulent viscosity −uv+/(dU
+
/dy+), the turbulent time scale k+/ε+ and the turbulent

length-scale (k+)3/2/ε+ are proportional to y+. Therefore, they are pre-multiplied by

y+ and 1/y+, respectively, so the differences between plots is easier to spot. These

graphs aim at representing the Reynolds-number dependence of the different vari-

ables.

The bottom plot of Fig. 3.11 shows a measure of the Reynolds number dependency:

for each variable A+, the parameter σ(A+(y+)) represents the standard deviation of

the set {A+
Reiτ

(y+)/A
+

(y+)} for all Reynolds numbers Reiτ for which data are available

for a given y+ 5. A
+

(y+) is the mean of the set {A+
Reiτ

(y+)}. σ(A+) is 0 if there is no

Reynolds-number dependence. Fig 3.12 presents the normal Reynolds stresses and

the associated σ parameter.

The parameter σ is a good indicator to show the universality of the variables in

5e.g. for y+ = 500 only Reiτ ∈ {550; 590; 900; 2000} is considered.
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the near-wall region, characterised by a lower Reτ dependency near walls when the

viscous scaling is used: this trend can clearly be observed for all variables though the

upper limit of the region with lowest values of σ varies amongst variables.

The velocity is the variable where the universality in the near-wall region is the

most obvious: very low and constant value of σ is observed in a region ranging from

y+ = 0 to y+ = 100 for the variable y+dU
+

dy+
as shown on Fig. 3.11. As a consequence

of the relation given by Eq. 3.5 in a channel flow, the same obvious trend is observed

for the rescaled turbulent viscosity −uv+/
(
∂U

+
/∂y+

)
/y+. However, there is a clear

Reτ independence only for a region up to y+ = 50 (Fig.3.11).

As for the turbulent variables, the normalised time scale
1

y+
(k+/ε+) is the only

variable where the near-wall universality is observed to a large extent. In contrast,

the dissipation rate has the lowest level of Reτ dependency in a region extending

from y+ = 10 to y+ = 20 because of the influence, closer to the wall, of the boundary

condition lim
y→0

ε = lim
y→0

ν∂jjk. Indeed, as also observed, the peak of turbulent kinetic

energy k+ in the buffer layer is strongly Reτ dependant, which yields the same trend

for lim
y→0

ε. Moreover, a strong Reτ dependency is also observed for the normalised

length-scale
1

y+
((k+)3/2/ε+) in the same region. Amongst the three normal Reynolds-

stresses, Fig 3.12, the wall-normal component v2
+

seems to be the leastReτ dependent

in the buffer layer (from y+ = 10 to y+ = 100). The inner layer seems to be limited

to the region from 0 to 10 for u2
+

however, as characterised by the lowest values of

σ taken in this region.

As a conclusion of the analysis, it is clear that a low Reτ dependence in the

inner layer up to at least y+ = 50 exists for the variables U+, y+dU
+

dy+
and ν+

t =

uv+/ (dU+/dy+). As far as the turbulent variables are concerned, a weak Reτ de-

pendence up to the buffer layer is observed for the time scale and the wall-normal

fluctuations v2. It will be argued in the subsequent chapters that these rules, when

respected in a RANS model development, can greatly help improve the predictions.
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3.3 Classical near-wall RANS modelling

The mainstream of near-wall adaptations for the models introduced in Sec. 2.3 is now

presented.

3.3.1 Damping functions

Isotropic damping: As the main characteristic feature of the simplest models is

an isotropic representation of turbulence, the main feature of near-wall corrections is

a damping of turbulence near walls to account for the severe reduction of mixing due

to wall normal turbulent-fluctuation impairment. The earliest damping function was

proposed by van Driest (1956) within the framework of the mixing length hypothesis.

l+m = κy+
(
1− exp(−y+/26)

)
(3.17)

In eddy-viscosity models, damping functions are used primarily as a multiplier in

the turbulent-viscosity to correct the poor reproduction of the turbulent shear stress

uv by the Boussinesq relation.

Most of near-wall EVM’s propose a correction for the constant C ′µ = fµCµ defined

as

fµ =
uvtarget
uvmodel

(3.18)

The parameter on which the function fµ depends is generally either y+ (e.g. Chien

(1982)), or the turbulent Reynolds number Ret =

√
ky

ν
or Ret =

k2

εν
(e.g. Launder

and Sharma (1974), Wilcox (1994)) or both (e.g. Nagano and Tagawa (1990)). A

review of near-wall corrections for EVMs is given in Patel et al. (1985).

The same type of damping functions is classically used in the Reynolds-stress-

transport equations in the representation of the pressure/strain-rate correlation φij

in the vicinity of walls. Indeed, the hypothesis of quasi homogeneity on which most

models for φij are based no longer holds near walls. Moreover, the surface part of φij

(last terms of Eq. 2.24) is not represented by classical models, which assume that the

distance to the wall is large. To this end, some models (i.e. Chen (1995) or the wall
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reflection terms of Gibson and Launder (1978)) propose low Reynolds adaptations

using damping functions.

Selective damping: As seen on Tab. 3.1, the decay of the different Reynolds

stresses and their source terms (φ∗ij and εij) is generally smaller by several orders of

magnitude for the wall normal component. To account for this selective damping,

some advanced Reynolds-stress models rely on measures to identify the wall normal

direction as an ingredient to near-wall terms (e.g. Craft (1998)).

3.3.2 Modelling of the dissipation rate

Near-wall adaptation is also required in the dissipation-rate equation, and whereas

the empirical ε equation, Eq. 2.37, is mainly tuned to return the observed behaviour

in fundamental flows, the analysis of the actual equation for the dissipation rate,

Eq. 2.21, may be useful to improve the prediction of this quantity in a boundary

layer. The study of Eq 2.21 proved worthwhile only when the first channel-flow DNS

data were published, accurate enough to give the budget of the actual equation6.

For instance, before the availability of DNS data, it was commonly assumed that

the dissipation rate reaches its maximum value in the buffer layer, just like k, then

decreases towards the wall, this intuition being proved wrong by DNS data. However,

as seen in Fig 3.10, errors introduced in the post-processing of complex terms are far

from negligible, suggesting that the analysis of the exact equation brings qualitative

rather than quantitative guidance. Some authors (e.g. Rodi and Mansour (1993),

Jakirlic and Hanjalic (2002)) proposed term-by-term models based on the analysis of

the exact ε equation. Another approach simply consists in improving the empirical

equation by analysing available data for the exact ε equation: however there are

different ways of grouping terms and linking them to the source and sink terms of

the empirical equation: one of these approaches is to link rapid terms (functions of

mean velocity gradients, that is P1 + P2 + P3) to Cε1Pε/k and slow terms (function

6However a priori assessment of the ε equation can be hazardous as budget are only available
for the lowest Reynolds number cases of the channel flow.
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Figure 3.13: Budget of the exact epsilon equation Eq. 2.21. Data of Rodi and Mansour
(1993), with the slow and rapid term groups and their respective model.

of turbulent quantities only, that is P4 − Y ) to Cε2ε
2/k.

Fig. 3.13 shows the ε equation budget (data from Rodi and Mansour (1993))

grouped as rapid (red) and slow (blue) terms.

Near wall region (Fig. 3.13, left) In the viscous sublayer (y+ < 5) the correct

modelling of the source terms is not necessary since ε is mainly ruled by its boundary

condition in that region (for instance, for the k − ε model, εw = 2νk/y2). However,

further outwards, the production term clearly under-predicts the sum P1 + P2 + P3,

and low-Reynolds-number models usually feature modifications of the ε equation, to

take into account this weakness of the model. To circumvent the problem, Jones

and Launder (1972) proposed to add the source term E = 2ννt

(
∂2U

∂y2

)2

into the

ε equation. This was first meant to improve the prediction of the turbulent kinetic
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energy peak near y+ = 20. This term was seen as model for the term P3 and using

a generalised gradient model for the unclosed term uk∂ui/∂xl, in the framework of

second-moment-closure modelling, P3 can be modelled by −2ν
k

ε
ujuk

∂2U i

∂xj∂xl

∂2U i

∂xk∂xl
7.

This term was, for instance, used in the first version of the elliptic blending Reynolds

Stress Model of Manceau and Hanjalić (2002), but it was decided, for reasons of

robustness, to replace it, using a variable Cε1 coefficient, by the term Cε1 × 0.03(1−

α2)

√
k

uiujninj
with the vector n being the wall-normal vector. The idea of using

a variable Cε1 coefficient to increase the production term was also used in most of

the v2 − f based models since the original work of Durbin (1993a). The constant is

replaced by C∗ε1 = Cε1(1 + CA1φ) with φ = P/ε , φ =

√
k

v2
, or φ as a function of the

Reynolds-stress anisotropy invariant, but there is no clear physical justifications in

the use of these corrections.

Logarithmic and defect layer (Fig. 3.13, right) The magnitude of the rapid

and slow terms is strongly over-predicted in the logarithmic layer but those errors

seem to cancel out. However, in the defect layer the rapid terms decay to zero, and so

does the model, but the slow term is still substantially over predicted in magnitude,

by a factor of 2. This was noticed by Parneix et al. (1996) who proposed a model

to reduce Cε2 in this region based on the turbulent transport to dissipation rate ratio.

Some other near-wall and low-Reynolds-number modifications have been proposed

to the ε equation, which were not directly derived from the comparison to the exact

equation. For instance, the coefficient Cε2 needs to take into account low-Reynolds-

number effects induced by the vicinity of the wall. The grid-turbulence experiment

shows that far from the grid, when turbulence weakens, the decay exponent increases.

This is pointed out in Hanjalic and Launder (1976) who suggest a correction for the

7In reality the double peak seen earlier, Fig. 3.10, is related to the P1 peak at y+ = 3 then
a separate P2 peak at y+ = 8, whereas P3 is comparatively very small. Therefore the near-wall
modelling of the dissipation rate cannot entirely rely upon the correct reproduction of the term P3.
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Cε2 coefficient based on the turbulent Reynolds number Ret =
k2

εν
:

C∗ε2 =




1− 2

9
exp

(
−
(
Ret
6

)2
)

︸ ︷︷ ︸
fε2



Cε2 (3.19)

Some Reynolds-stress models also propose a dependence on the Lumley anisotropy

invariant A (e.g Craft (1998)). It may indeed seem reasonable to introduce a depen-

dence on parameters representing the turbulence anisotropy, stronger in the near-wall

region.

It is noteworthy that some equivalent near-wall modifications are also proposed

for the ω equation when it is the scale determining variable used (e.g Wilcox (1994)).

3.4 The elliptic relaxation

An original idea, introduced in Durbin (1991), proposes another way to take into ac-

count the near-wall effects and inhomogeneities in the existing RSM. It is based on a

better understanding of the non-local wall and pressure interactions, and a considera-

tion of the near-wall asymptotic behaviour of the components of the Reynolds-stress

tensor. The general approach applied to an RSM is first presented (the model of

Durbin (1993b)), followed by a simplified version in an eddy-viscosity framework (the

v2 − f model of Durbin (1991)). Finally the elliptic-blending technique of Manceau

and Hanjalić (2002) is introduced.

3.4.1 The elliptic relaxation RSM of Durbin (1993b)

The elliptic equation: Durbin (1991) and Durbin (1993b) propose to model the

two-point correlation present in Eq. 2.24 in the generic way :

f(x)g(x′) = f(x′)g(x′)exp(−‖x− x′‖/L) (3.20)

Where L represents the turbulent length-scale. Using this model in Eq. 2.24, it can

be shown that the kernel appearing in the integral is the Green’s function in R3 of the
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operator 1/L2−∆. Hence the pressure strain-rate term is a solution of the following

equation:

φij − L2∆φij = φhij (3.21)

Where φhij is an homogeneous model for the pressure strain-rate term in the regions

where ∆2φij = 0 (remote from the wall). This elliptic equation therefore enables to

take into accounts non-local-effects due to the incompressibility at a turbulent scale,

but unlike the Poisson equation for the pressure, the elliptic operator (Eq. 3.21) limits

the propagation of information to a sphere of radius of the order of the turbulent

length scale L. The solution of this equation, φij, is directly used as source term of

the uiuj equations.

However, in order to correctly reproduce the asymptotic near-wall behaviour of

the different Reynolds stresses (as presented in Sec. 3.2.3) equation 3.21 is not solved

for the pressure strain-rate correlation itself, but for a modified term, fij, whose

nature is explained in what follows.

The elliptic variable: As the theoretical wall behaviour is O(y2) for u2 and w2, the

balance between terms whose order is less than 2 must be ensured in their transport

equation at walls, otherwise a residual source term will be predominant. As for v2,

whose behaviour is O(y4), the terms whose order is less than 4 should balance. This

means that φij, D
P
ij , D

ν
ij and εij should be modelled in order to balance each other8

(See Tab. 3.1):

Dν
ij ∼ −φij −DP

ij + εij (3.22)

Firstly, it is to be noted that the split between pressure transport DP
ij and pressure

strain-rate correlation φij is not relevant if one wants to ensure to correct asymptotic

behaviour of the resolved variables. Indeed, for the components (2, 2) and (1, 2),

the first leading-order terms of DP
ij and φij cancel out (again, as seen on Tab. 3.1),

and this property should hold for the models of the two terms if they were to be

independently represented (as already pointed out in Manceau (1999)). Therefore,

to facilitate the modelling, the pressure term is then represented as a whole: φ∗ij.

8This is also true for uv
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Consequently, the constant Cs (appearing in Eq. 2.30) in the model for the turbulent

transport is modified, as DP
ij is not lumped into this term anymore.

Secondly, the addition of the deviatoric part of the dissipation tensor εij−2/3εδij

into the pressure term, as usually done in Reynolds-stress modelling (as seen in

Sec.2.3.1) transforms this latter term into a new term which is a constant (i.e. O(1))

near the wall, and this does not help to model the asymptotic behaviour correctly.

Instead, as proposed by Durbin (see Durbin and Reif (2001), p.170), the dissipation

is written as : εij =
uiuj
k
ε +

(
εij − uiuj

k
ε
)

(using the model of Rotta (1951)). This

latter term is modelled together with φ∗ij. The composite term, entering the definition

of the elliptic variable is noted ϕij and defined as:

ϕij = φij +DP
ij −

(
εij −

uiuj
k
ε

)
(3.23)

Thirdly, the near-wall equilibrium Eq. 3.22 rewritten using the variable ϕij reads:

ϕij ∼ −Dν
ij +

εuiuj
k

(3.24)

The elliptic equation is solved for fij = ϕij/k so that the non-zero wall Dirichlet

boundary condition given to fij ensures Eq. 3.24 is respected to order O(1).

The elliptic equation for the variable fij finally reads:

fij −∇2fij =
ϕhij
k

(3.25)

Boundary conditions: Condition 3.24 is related to the simplified uiuj transport

equation at the wall:

ν
∂2uiuj
∂y2

− uiuj
k
ε = −kfij,w (3.26)

where fij,w is the wall limit of fij.

Using the fact that uiuj = 0 at the wall the solution of the differential equation

can be written (invoking ε = 2νk/y2):

uiuj = Ay2 − ε

20ν2
fij,wy

4 (3.27)
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Firstly the behaviour v2 = O(y4) is obtained for a value f22,w for which A = 0.

This is achieved for

f22,w = −20
ν2

ε2
lim
y→0

v2

y4
(3.28)

Secondly equation 3.27 shows that the quadratic behaviour for u2 and w2 is ob-

tained for any value of f11,w and f33,w, respectively. Therefore there is no unique set

of values for f11,w and f33,w. Here they are chosen as: f11,w = f33,w = −1/2f22,w.

Thirdly, the cubic behaviour of uv is impossible to achieve, as seen in equation

3.27. Therefore it is only sought to predict uv to be of order O(y4) (what is really

important is the dominance of the viscous stress over the turbulent stress in the

momentum equation) and this is achieved by imposing:

f12,w = −20
ν2

ε2
lim
y→0

uv

y4
(3.29)

A more detailed analysis of this topic can be found in Manceau (1999).

The only change needed for ϕhij/k when starting from a classical pressure strain-

rate RSM model such as in LRR or SSG is to replace the Rotta’s constant C1 by

C1 − 1. Indeed what is “lumped” into the pressure strain-rate model is no longer

2
3
δijε− εij but εuiuj/k − εij.

The length-scale: The non-local effects introduced by this model represent the re-

mote action of the incompressibility over a turbulent structure. Hence, the correlation

length-scale is linked to the integral turbulent length-scale:

L = CLmax

(
k3/2

ε
, Cη

(
ν3

ε

)1/4
)

(3.30)

The integral length-scale is bounded by the Kolmogorov scale, in order to prevent

a singularity near the wall. Further analysis of the validity of Eq. 3.30 and recom-

mendation for the values of CL and Cη based on a 2-point correlation study using a

DNS database can be found in Manceau et al. (2001).
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The model for ϕhij: The homogeneous model for the modified pressure term is the

sum of the Rotta’s return to isotropy model and isotropisation of production:

fhij =
(1− C1)

T

(
uiuj
k
− 2

3
δij

)
− C2

k

(
Pij −

2

3
Pδij

)
(3.31)

where P =
1

2
Pii and k =

1

2
uiui. T is the turbulent time scale and once again,

the integral value is bounded by its Kolmogorov expression near the wall to avoid a

singularity:

T = max

(
k

ε
, CT

√
ν

ε

)
(3.32)

Other equations and constants The dissipation rate equation reads:

Dε

Dt
=
C∗ε1P − Cε2ε

T
+

∂

∂xj

((
ν +

νt
σε

)
∂ε

∂xj

)
(3.33)

where νt = CµkT and C∗ε1 = Cε1(1+A1P/ε). As explained in Sec. 3.3.2 the modifica-

tion to the Cε1 coefficient is required to take into account the near-wall terms of the

exact dissipation rate equation. The constants of the model are given in Tab. 3.3.

C1 C2 CT CL Cη Cµ Cε1 Cε2 σε A1

1.22 0.6 6.0 0.2 80 0.23 1.44 1.9 1.65 0.1

Table 3.3: Constants of the elliptic relaxation RSM model of Durbin (1993b)

This model has the advantage of avoiding damping functions, and takes into ac-

count non-locality, as it features an elliptic equation at the turbulent scale. Moreover,

by giving specific limits to every fij (Eq. ??) one ensures that the correct asymptotic

behaviour of the Reynolds stresses is predicted. However 6 more equations have to

be solved, compared to a classical RSM. A simpler way to use the elliptic relaxation

is to combine it along with an eddy-viscosity model.

3.4.2 The v2 − f model (Durbin (1991))

This model stems from the standard k − ε system (the ε equation being similar

to that of the elliptic relaxation RSM, Eq. 3.33) and a third transport equation is

solved for a scalar v2 , which can be assimilated near solid walls to the wall-normal
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fluctuations9. The v2 equation resembles the classical transport equation of the wall-

normal Reynolds-stress component, and as in the RSM version, the difference between

φ∗22 and ε22 is modelled as a whole:

φ∗22 − ε22 = −2

ρ
v
∂p

∂y
− 2ν

∂v

∂xk

∂v

∂xk
= ϕ22 − ε

v2

k
(3.34)

and ϕ22 = kf where f is solution of the elliptic equation:

f − L2∆f = fh (3.35)

In order to ensure the correct asymptotic behaviour v2 = O(y4) the following

boundary condition should be used (similar to that of f22 (see Eq. ??) in the RSM

version):

lim
y→0

f = lim
y→0

−20ν2v2

εy4
(3.36)

Finally the model integrates v2 in the definition of the turbulent eddy viscosity:

νt = Cµv2 max

(
k

ε
, 6

√
ν

ε

)
(3.37)

Durbin (1991) showed that the use of the parameter v2 in Eq. 3.37 is the main

feature allowing a correct reduction of the turbulent mixing in the buffer and viscous

sublayer (as seen in Fig. 3.14).

Another feature of the model is an upper limiter for the turbulent time scale to

avoid excessive turbulence level at stagnation point of impinging flows. The solution

proposed in Durbin (1996) is similar to a strain rate S dependant Cµ included in

some models (e.g. Craft et al. (1996); Menter (1994); Guimet and Laurence (2002))

and consists in an upper bound for the time scale (Eq. 3.32):

T = min

[
max

(
k

ε
, CT

√
ν

ε

)
,

0.6k√
6Cµv2S

]
(3.38)

3.4.3 The elliptic blending

The boundary conditions given for the elliptic variables fij require ratios of terms of

order 4 to be evaluated at walls and this can constitute a numerical difficulty. This

9In the very general case, v2 can be seen as the normal stress in the direction aligned with the
wall-distance gradient
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Figure 3.14: A priori evaluation of Eq. 3.37 and of the standard high Reynolds tur-
bulent viscosity expression Cµk

2/ε, compared to the exact DNS value −uv/(∂U/∂y)
for the channel flow case at Reτ = 395.

numerical problem holds also for the v2− f version and this will be largely described

in the next chapter. Based on this observation, and also noticing that there is a

certain amount of redundancy in the 6 fij equations, Manceau and Hanjalić (2002)

proposed a novel approach, consisting in solving an elliptic equation for a coefficient

α taking the value 0 at walls and 1 in the remote region.

α− L2∆α = 1 (3.39)

The blending parameter α is then used to define the pressure term φ∗ij and the

dissipation εij as a blending between homogeneous and near-wall models. The near-

wall model for φ∗ij, noted φ∗ij,w is defined such that the near-wall balance, Eq. 3.22, is

respected. To this end, the following is prescribed:

φij,w = −5
ε

k

(
uiuknjnk + ujuknink −

1

2
ukulnknl(ninj − δij)

)
(3.40)

Where the vector n is used to identify the wall normal direction, and defined as:

n =
∇α
||∇α|| (3.41)



Chapter 4

Comprehensive review of the

v2 − f models

In the previous chapter, the use of an elliptic equation as a representation of the non-

local effects of turbulence damping was presented in its general form as an alternative

to the common damping-function-based near-wall RANS modelling. However, the

eddy viscosity v2 − f approach as originally presented in Durbin (1991) would have

remained in the academic world without further work on numerical aspects. In fact, it

will now be seen that a main drawback of the original formulation of the v2−f model

is the requirement for v2 and f to be solved in a strongly coupled manner. For codes

which solve the variables in a segregated way (i.e. one variable is solve at a time),

that is in most popular codes, the original v2 − f model is highly unstable. After

publication of the first version in 1991, a 20-year long period started, during which

many fixes were proposed, leading to numerous subsequent versions, some of which

were popularised by their availability in commercial codes, such as StarCD, StarCCM,

Fluent or Code Saturne . All the proposals are reviewed in the following, and their

behaviour in different fundamental flows is assessed and compared. It will be seen

that some variants, although more stable, results in inferior predictions. For some

other versions, the deterioration is minimal, but the numerical problem is not quite

solved.

Moreover during this 20-year long time span other variants of the v2 − f model

85
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were proposed, whose aim was not to address the numerical issues but to improve

the predictive capabilities of the original approach. The versions are also included in

the review, not only for the sake of completeness, but also as a potential source of

ideas for further developments.

4.1 Developments of the v2 − f model

4.1.1 Introduction

The purpose of the first version of the v2−f model (Durbin, 1991) is to show the appli-

cability of the elliptic relaxation technique, and the model proposed was only tested on

the channel flow case, for Reτ = 180 and 395. A subsequent version (Durbin, 1993a)

introduces a low-Reynolds-number modification for the dissipation-rate equation, and

the model was validated for channel-flow and zero-pressure-gradient boundary-layer

cases, without and with heat transfer. To further assess the model’s abilities, sim-

ulation on a flat-plate boundary-layer with a heat transfer was also carried out, as

well as on an adverse-pressure-gradient boundary-layer and a Couette flow. Not only

was the model reported to perform well in all cases, but the author emphasises that

the superiority of the model over virtually all low-Reynolds-number versions of the

k− ε formulation was due to the use of v2 as velocity scale in the turbulent viscosity

expression. In Durbin (1995), the modification of the ε equation previously intro-

duced is further refined to predict the correct shear-layer spreading rate both in a

wall-bounded flow and in a free shear flow. This version is used to compute separated

flows: a backward-facing-step flow and the asymmetric plane-diffuser case, as well as

the vortex-shedding behind a triangular cylinder.

Some subsequent versions include proposals to enhance the v2 − f predictions

in specific configurations (modification of the elliptic operator proposed in Wizman

et al. (1996) (for the elliptic relaxation RSM) and adapted by Durbin and Laurence

(1996) and Manceau et al. (2002b) to the v2 − f formulation to enhance predictions
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in the logarithmic layer; distinction between wall-normal and wall-parallel eddy vis-

cosity to improve the turbulent transport modelling (Davidson et al. (2003)); better

integration of low-Reynolds-number effects to predict by-pass transition (Lien and

Durbin, 1996)). However most of the work in the past 15 years focuses on simplifying

the version of Durbin (1995) to make it more robust and code-friendly, thus enhanc-

ing the popularity of this approach, with the hope that the simplifications would not

overly deteriorate the quality of predictions.

The major drawback of the v2− f model is the stiffness implied by the boundary

condition given to f , Eq. 3.36. The resolution of this problem is a prerequisite if the

model is to be implemented in a segregated solver. The first solution was proposed

by Lien and Durbin (1996) where a change of variable for f is introduced, which

results in the f boundary condition being zero. This code-friendly version is later

shown to strongly over-predict the pressure term in the logarithmic region, and other

proposals were introduced and unlike Lien and Durbin (1996), they are based on the

resolution of ϕ = v2/k instead of v2. The latter modification reduces the boundary

condition stiffness by two orders of magnitude (i.e. O(y2) instead of O(y4)) and

does not affect the prediction of the logarithmic layer. It has been simultaneously

and independently implemented in two versions: Hanjalić et al. (2004) and Laurence

et al. (2004). However, as will be seen the numerical robustness is not completely

satisfactory in neither of them. The later version, with some further modifications

(Uribe (2006)) is the model implemented in Code Saturne.

In the early versions, numerical robustness is also impaired by additional terms

in the ε equation (consisting of a modification of the Cε1 coefficient): its depen-

dence on the production Pk (as done in Durbin (1993a)) introduces non-linearities,

whereas its dependence on the wall distance y (in Durbin (1995) and Lien and Durbin

(1996)) is in contradiction to the sought-after wall-distance free property of the ellip-

tic relaxation concept. A coefficient Cε1 based on

√
k

v2
is proposed in Durbin and

Laurence (1996). This removes the ability of the model to distinguish wall-bounded

and free shear layers (because

√
k

v2
adopts roughly the same value in the two con-

figurations), but the simplification makes the model easier to implement and more
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stable. This modification is also added to the early models of Durbin (1995) (yielding

Lien and Durbin (1996)) and Parneix and Durbin (1997) (yielding Lien and Kalitzin

(2001)). The latter model is the one which is implemented in commercial codes such

as StarCD, Fluent and StarCCM1. This simplified Cε1 coefficient is also retained in

all other code-friendly models.

The issue of numerical robustness associated with the v2 − f model, being the

main driving force of developments over the past 15 years, will now be described,

along with the different solutions proposed.

4.1.2 Stability of the v2 − f model

The v2 − f model can be seen as a simplification of elliptic-relaxation-based RSM,

and yet, this formulation paradoxically suffers from a serious lack of robustness.

The use of v2 in νt is the main appealing feature of the model, and its relevance is

undoubtedly demonstrated in Fig. 3.14 which shows that v2 is the appropriate near-

wall turbulence damping parameter. For the variable v2 to correctly play its role, the

correct asymptotic behaviour must be reproduced, that is O(y4), even though this

matter is somehow nuanced in Durbin (1991)2.

The origin of the numerical problem

The equation governing v2 reads:

Dv2

Dt
= φ∗22 −

(
ε22 −

v2

k
ε

)

︸ ︷︷ ︸
ϕ22

−v
2

k
ε+ ν

∂2v2

∂x2
j

− ∂vvuk
∂xk

(4.1)

The Taylor series expansion of the different right-hand-side terms are:

1for the later code, the definition of Cε1 is slightly altered.
2In the momentum equation the turbulent viscosity is indeed defined as −uv/ (∂U/∂y) which

behaves as O(y3), whereas Durbin’s definition for νt (= Cµv2T ) behaves as O(y4). As pointed out
by the same author what really matters near the wall is the molecular diffusion and its dominance
with respect to the turbulent one. The model should then only ensure that the predicted νt is of
order at least as high as the theoretical one, to preserve the dominance of ν.
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



ϕ22 = Aϕy
2 +O(y3)

v2

k
ε = A0y

2 +O(y3)

ν ∂
2v2

∂xk
= Aνy

2 +O(y3)

∂vvuk
∂xk

= O(y5)

(4.2)

The correct reproduction of v2 << y2 requires Aϕ −A0 +Aν = 0 (from the near-

wall balance Eq. 3.24) and this is achieved with the wall limit for f given in Eq. 3.36.

In a segregated solver this ratio of two terms of order 4 is handled explicitly (because

the term v2 appearing in the numerator of Eq. 3.36 is explicit) and is in practice

evaluated at the first off-wall cell which can lead to a severe numerical stiffness.

Solutions in a segregated solver

The code-friendly solutions proposed to ensure the near-wall equilibrium of Eq. 4.1

are now presented (the notations of Taylor series expansions Eq. 4.2 are used herein).

Method 1: A near-wall equivalent for f is used in the v2 equation, if a decom-

position of the following form can be derived: ϕ22 = kf = kf − ϕ22,wv2, with the

auxiliary functions f and ψ having the following properties:





−ψv2 = Aϕy
2 +O(y3)

lim
y→0

f = 0

(4.3)

The function −ϕ22,wv2 which “carries” the boundary condition is handled implic-

itly in the v2 equation and an elliptic equation is solved for f with the homogeneous

Dirichlet boundary condition.

Method 2: A transport equation is not solved for v2 but for ϕ = v2/kp. The

transport equation for ϕ becomes:
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Dϕ

Dt
=

f

kp−1
− ϕ

k
[pPk + (p− 1)ε] +

2p

k

(
ν +

νt
σk

)
∂ϕ

∂xk

∂k

∂xk
+

p(1− p) ϕ
k2

(ν +
νt
σk

)
∂k

∂xk

∂k

∂xk
+

∂

∂xk

[(
ν +

νt
σϕ

)
∂ϕ

∂xk

]
(4.4)

The near-wall dominant terms of Eq. 4.4 are now of order O (y2−2p).

In practice, code-friendly versions are combinations of the methods 1 and 2.

The solution introduced in Lien and Durbin (1996)

The method 1 is used and leads to the following change of variable: f = f + 5ε v
2

k2
,

with the new limit lim
y→0

f = 0. The term ∆
(

5ε v
2

k2

)
is neglected in the f equation and

this leads to a strong over-prediction of v2 in the logarithmic layer, as it will be seen.

This motivated further developments of code-friendly versions.

The reduced variable ϕ = v2/k

The method 2 is used in Laurence et al. (2004), Uribe (2006) and in Hanjalić et al.

(2004) with p = 1. The transport equation is solved for ϕ =
v2

k
and the leading-order

terms of the ϕ equation, f , ν
∂2ϕ

∂x2
k

and
2ν

k

∂k

∂xk

∂ϕ

∂xk
are O(1). The ϕ transport equation

becomes:

Dϕ

Dt
= f − ϕ

k
Pk +

∂

∂xk

[(
ν +

νt
σϕ

)
∂ϕ

∂xk

]
+

2

k

(
νt
σϕ

+ ν

)
∂k

∂xk

∂ϕ

∂xk
(4.5)

By noting ϕ = Aϕy
2 +O(y3), the Taylor series expansion of the near-wall leading

order terms is:

2ν

k

∂k

∂y

∂ϕ

∂y
∼ 2ν

2Aky

Aky2
2Aϕy ∼ 8νAϕ ∼ 8ν

ϕ

y2

ν
∂2ϕ

∂y2
∼ 2νAϕ ∼ 2ν

ϕ

y2
(4.6)

Hence the balance between the three leading-order terms leads to:

fw = −10ν
ϕ

y2
(4.7)
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This is an improvement compared to Eq. 3.36 because the order of the stiffness

is reduced from 4 to 2. The model of Hanjalić et al. (2004) solves the ϕ− f system

as just described, but the cross-diffusion term in the ϕ equation is neglected for the

sake of simplicity. Due to this later simplification, the f boundary condition becomes

1/5× Eq. 4.7. Observing that this boundary condition still strongly impairs the

numerical stability3 (compared to Lien and Durbin (1996)), Laurence et al. (2004)

proposed an additional code-friendly modification4.

The model of Laurence et al. (2004) combines method 1 and method 2: an equa-

tion is solved for the reduced variable ϕ, but a change of variable is made for f to

enable a zero boundary condition for this variable. There are different possibilities

for this change of variable. The aim is to find a decomposition f = f + g such that

lim
y→0

g = lim
y→0

f = lim
y→0

(
−2ν

k

∂k

∂y

∂ϕ

∂y
− ν ∂

2ϕ

∂y2

)
(4.8)

To find such a function, the molecular cross-diffusion and the molecular diffusion

can be used in the form shown in Eq.4.6. Using a near-wall equivalent for the dissi-

pation, ε ∼ 2ν
k

y2
, an equivalent ε based function can also be used to reproduce the

near-wall behaviour of ϕ:

ε
ϕ

k
∼ 2ν

ϕ

y2
(4.9)

The most general form for the g function is then

g = −α
2

( ε
k
ϕ
)
− β

8

(
2ν

k

∂k

∂y

∂ϕ

∂y

)
− γ

2

(
ν
∂2ϕ

∂y2

)
(4.10)

The limit of g when y tends to zero reads g0 = (α + β + γ)νϕ/y2. Hence the

coefficients must satisfy α + β + γ = 10.

The ϕ− f system with the change of variable reads:

3This model was implemented into Code Saturne in the course of this work and the time step
had to be drastically reduced in order to get convergence.

4Noteworthily the model of Hanjalić et al. (2004) has very recently been improved in Popovac
(2010) to accomodate an homogeneous boundary condition for f , following the same path as Uribe
(2006), aiming at an improved numerical robustness.
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∂ϕ

∂t
+ Uj

∂ϕ

∂xj
= f − Pk

k
ϕ− ε

k
ϕ
α

2
+

2

k

[
ν

(
1− β

8

)
+
νt
σϕ

]
∂k

∂xk

∂ϕ

∂xk

+
∂

∂xk

[(
(1− γ

2
)ν +

νt
σϕ

)
∂ϕ

∂xk

]
(4.11)

L2∇2f − f =
1

T
(C1 − 1)

(
ϕ− 2

3

)
− C2

Pk
k

+ g − L2∆g (4.12)

The choice for the three coefficients is ruled by the following constraints:

• The part of g included in the cross diffusive term cannot easily be handled

implicitly (unless the convective velocity is changed), hence β = 0 should be

preferred5.

• The coefficient γ is involved in the ϕ molecular diffusion which should preferably

be positive, thus 1− γ
2
> 0.

• The term L2∆g in the f equation is likely to be neglected in some implementa-

tions, or in any case explicit, therefore the coefficients should be chosen so that

it is as small as possible.

In the final set of equations used in Laurence et al. (2004), the choice (α = 0, β =

8, γ = 2) has been made. Uribe (2006) showed that one can hardly decide whether or

not the term L2∆g appearing in the f equation is negligible, but in isotropic cases,

the term neglected vanishes unlike the one neglected in the model of Lien and Durbin

(1996). However as it is the model is still unstable, because the choice γ = 2 leads

to a zero molecular viscosity which yields instabilities. In the discretisation used in

Code Saturne , in which the model was intended, the wall boundary condition for ϕ

expresses itself solely with the molecular diffusive flux. The later choice for β does

not guarantee zero value for ϕ at walls. Therefore in the version finally implemented

in Code Saturne , the molecular diffusion is re-introduced in the ϕ equation. This

model is described in Uribe (2006). This improves the numerical stability, but the

near-wall asymptotic equilibrium is no longer ensured and in the model of Uribe

(2006), the variable ϕ is erroneously predicted as linear instead of quadratic.

5an implicit treatment is preferred in a segregated solver for near-wall leading terms.
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DUR91 Durbin (1991)
DUR93 Durbin (1993a)
DUR95 Durbin (1995)
DUR96 Durbin and Laurence (1996)
LIE96 Lien and Durbin (1996)
PAR97 Parneix and Durbin (1997)
LIE01 Lien and Kalitzin (2001)

MAN02 Manceau et al. (2002b)
HAN04 Hanjalić et al. (2004)
URI06 Uribe (2006)

Table 4.1: Acronyms used for models

4.2 Comparison of the different versions

The following presents a comparison of all the versions introduced and highlights

some limitations, which motivates the present work. Hereafter, the models will be

referred to by the acronyms given in Tab. 4.1.

The models equations and constants

The definition of all studied models (terms and constants) is given in the following.

For a simpler comparison the following generic form is adopted for the equations6.

Dk

Dt
= Pk − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]

Dε

Dt
=

C∗ε1Pk − Cε2ε
T

+
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]

Dg

Dt
= Pg +

∂

∂xj

[(
ν +

νt
σg

)
∂g

∂xj

]

−L2∆f + f = fh (4.13)

L = CLmax

[
k3/2

ε
, Cη

(
ν3

ε

)1/4
]

T = max

[
k

ε
, CT

(ν
ε

)1/2
]

(4.14)

6To prevent excessive growth of turbulence of impinging flows, the use of an upper bound for
the time and length scale (as presented in the previous chapter, Eq. 3.38) was used in models
LIE01, MAN02 and HAN04. For the sake of simplicity we do not mention it here given the present
comparison does not cover impinging flows.
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Model f fh C1 C2

DUR91 ϕ22

k
1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

1.2 0.3

DUR93 ϕ22

k
1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

1.3 0.3

DUR95 ϕ22

k
1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

1.4 0.3

DUR96 Lϕ22

k
L
[

1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

]
1.3 0.35

LIE96 ϕ22

k
+ 5ε v

2

k2

1
T

[
(C1 − 1) 2

3
− (C1 − 6) v2

k

]
+

C2
Pk
k

1.4 0.3

PAR97 ϕ22

k
1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

1.4 0.3

LIE01 ϕ22

k
+ 5ε v

2

k2

1
T

[
(C1 − 1) 2

3
− (C1 − 6) v2

k

]
+

C2
Pk
k

1.4 0.3

MAN02 ϕ22

εk
1
εT

(C1 − 1)
(

2
3
− v2

k

)
+ 2

3
C2

Pk
εk

1.8 0.4

HAN04 ϕ22

k
1
T

(
C1 − 1 + C2

Pk
ε

) (
2
3
− v2

k

)
1.4 0.65

URI06

ϕ22

k
+ 2ν

k

∂(v2/k)
∂xj

∂k
∂xj

+

ν
∂2(v2/k)
∂x2j

1
T

(C1 − 1)
(

2
3
− v2

k

)
+ C2

Pk
k

+

2 ν
εT

∂k
∂xk

∂(v2/k)
∂xk

+ ν
∂2(v2/k)
∂x2k

1.4 0.3

Table 4.2: Terms and coefficients of the f equation

L =

√
C2
L

(
k3

ε2
+ C2

η

ν3/2

ε1/2

)

T =

√
k2

ε2
+ C2

T

ν

ε
(4.15)

The f equation Tab. 4.2 gives the definition of the elliptic variable f , its homo-

geneous counterpart fh as well as the constants used. The models DUR91, DUR93,

DUR95, PAR97 and HAN04 resolve an equation for the variable ϕ22/k whereas LIE96

and LIE01 use the change of variable f = f + 5εv2/k2 as a code-friendly variation.

In URI06 a change of variable for f is also performed as described in the previous

section. DUR96 and MAN02 solve the elliptic equation for a “rescaled” variable A×f
with A = L for DUR96 and A = ε−1 for MAN02. As it will be seen later this reduces

the undesired amplification effect of the elliptic operator in the logarithmic layer. For

fh all models keep the original choice of DUR91 to use a LRR-IP model, except the

model HAN04 which uses the SSG model.
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Model g Pg
DUR91 v2 kf − v2 ε

k

DUR93 v2 kf − v2 ε
k

DUR95 v2 kf − v2 ε
k

DUR96 v2 k
L
f − v2 ε

k

LIE96 v2 kf − 6v2 ε
k

PAR97 v2 kf − v2 ε
k

LIE01 v2 kf − 6v2 ε
k

MAN02 v2 kεf − v2 ε
k

HAN04 v2

k
f − v2

k2
Pk

URI06 v2

k
f − v2

k2
Pk + 2

k
νt
σk

∂k
∂xk

∂(v2/k)
∂xk

Table 4.3: Terms and coefficients of the g equation. Note that σg = 1.2 for HAN04
and σg = σk for all other models.

Model C∗ε1 Cε2 σk σε
DUR91 1.7 2.0 1.3 1.6
DUR93 1.44

(
1 + 0.1Pk

ε

)
1.9 0.9 1.3

DUR95 1.3 + 0.25[
1+

(
CLy

2L

)8
] 1.9 1 1.3

DUR96 1.44
(

1 + 1
30

√
k

v2

)
1.85 1 1.5

LIE96 1.55 + exp
(
−0.00285R2

y

)
1.92 1 1.5

PAR97 1.4
(

1 + 0.045
√

k

v2

)
1.9 1 1.3

LIE01 1.4
(

1 + 0.05
√

k

v2

)
1.9 1 1.3

MAN02 1.44
(

1 + 0.06
√

k

v2

)
1.91 1 1.3

HAN04 1.4
(

1 + 0.012 k

v2

)
1.9 1 1.3

URI06 1.4
(

1 + 0.05
√

k

v2

)
1.85 1 1.3

Table 4.4: Terms and coefficients of the ε equation. In LIE96 Rey = y
√
k/ν

Model expression for L and T CL Cη CT Cµ
DUR91 Eq. 4.14 0.17 80 6 0.2
DUR93 Eq. 4.14 0.2 90 6 0.23
DUR95 Eq. 4.14 0.3 70 6 0.19
DUR96 Eq. 4.15 0.2 60 4 0.16
LIE96 Eq. 4.14 0.17 70 6 0.19
PAR97 Eq. 4.14 0.25 85 6 0.22
LIE01 Eq. 4.14 0.23 70 6 0.22

MAN02 Eq. 4.14 0.23 100 6 0.22
HAN04 Eq. 4.14 0.36 85 6 0.22
URI06 Eq. 4.14 0.25 110 6 0.22

Table 4.5: Lengh and time scales
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The g equation: Table 4.3 gives the definition of the variable g and its source term

Pg. For all models g = v2, except HAN04 and URI06 who solve, as noted previously,

g = v2/k to enhance the numerical stability.

The ε equation: Table 4.4 gives the expression of the Cε1 coefficient, as well as the

other constants involved in the ε equation. The main difference between models lies

in the definition of the variable coefficient C∗ε1. Only DUR93 uses a production based

coefficient, which was later shown to introduce non-linearities. DUR95 and LIE96 use

the distance to the nearest wall. The aim in DUR95 is to make a distinction between

wall-bounded and free shear flows, whereas in LIE96 the presence of Rey improves

the by-pass transition prediction. All other models use the wall-normal anisotropy for

the sake of robustness. The values taken by C∗ε1 for all models are shown in Fig. 4.1

in a channel flow for Reτ = 2000, and it can be seen that the effects and intentions

of the different models are very different from one another.

• For all models for which C∗ε1 depends on v2/k the behaviour is the same:

lim
y→0

C∗ε1 = +∞ in order to increase the near-wall production term of the ε

equation. The singularity introduced has no consequence because the prod-

uct C∗ε1Pk/T retains a finite near-wall limit. Further away from the wall, the

variation of C∗ε1 is linked to that of
√
k/v2. The later variable levels off in the

logarithmic layer then further decreases towards the channel centre7. The same

trend is noticed for C∗ε1. The plateau observed for all models is far less obvious

in HAN04. This is because k/v2 is used instead of
√
k/v2 in the latter case.

• The use of exp
(
−aRe2

y

)
by LIE96 results in a sharp boosting of the coefficient

in the near-wall region and the constant value 1.55 is recovered elsewhere.

• By using Pk/ε, the resulting C∗ε1 of DUR93 peaks in the buffer layer as does the

production, hence the purpose of increasing the near-wall dissipation is achieved

(even though the coefficient decreases again towards the wall, it may be argued

7The theoretical isotropic relation v2 = 2/3 k is not reached in a channel flow.
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Figure 4.1: A priori evaluation of C∗ε1 in a channel flow for Reτ ∈ {2000}. Top:

Models for which C∗ε1 depends on v2

k
. Bottom: Other models
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that the ε wall behaviour mainly depends on its boundary condition and no

longer on the source terms of its equation).

• In the model of DUR95 the coefficient is intended to be exactly 1.55 in a bound-

ary layer and this is achieved with the purposely designed function 0.25/
[
1 +

(
CLy
2L

)8
]

(y being the wall distance). L is taken from Eq. 4.14, and because of the lower

limiter for L, there is no increase of the C∗ε1 coefficient in the near-wall re-

gion and hence the model inherits the shortcomings involved by using the high

Reynolds k − ε equations down to the wall8.

• The coefficient C∗ε1 predicted by DUR93 and DUR95 reverts to a smaller value

in the regions remote from walls. In channel-flow, this is much more obvious

for DUR93 as seen in Fig. 4.1 where the coefficient varies from nearly 1.6 in

the logarithmic layer to 1.44 in the defect layer. For DUR95 this change is less

visible here but the C∗ε1 modification was shown to be active in the asymmetric

diffuser case (Durbin (1995)).

The turbulent scales Tab. 4.5 gives the definition of the scales used (time and

length) as well as the constants values. They are limited by a Kolmogorov scale to

represent low-Reynolds-number effects. The switch is achieved in all models with the

function max, except for DUR96 where a quadratic mean expression is used for a

smoother transition between the two scales. Tab. 4.6 and 4.7 give the a posteriori

location in wall-units of the switch for the length and time scales respectively, for all

models except DUR96. The integral time-scale is used in most of the domain, the

Kolmogorov time-scale being used only for y+ < 2 for all models. However it can be

seen that the Kolmogorov length-scale is used in a much larger extent. For Reτ = 180

it is used by all models over the whole domain, this being the case for URI06 and

MAN02 also for Reτ = 395. For larger values of Cη Kolmogorov scaling is extended

to a larger part of the domain9.

8This shows, at light of the satisfactory results of Durbin (1995), that a careful constant tuning
successfully helped limit the implications of this shortcoming.

9This is not straighforward since the values given here are a posteriori.
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Model Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 950 Reτ = 2000
DUR91 180 320 279 226 195
DUR93 180 311 329 295 247
DUR95 180 182 156 136 118
DUR96 N/A N/A N/A N/A N/A
LIE96 180 203 192 170 155
PAR97 180 292 279 241 213
LIE01 180 228 209 183 164

MAN02 180 395 389 347 288
HAN04 180 283 260 226 195
URI06 180 395 486 460 375

Table 4.6: A posteriori location y+
s,L of the switch between the Kolmogorov and the

integral length-scale in wall-unit, in a channel flow for Reτ ∈ {180; 395; 590; 950; 2000}

Model Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 950 Reτ = 2000
DUR91 2.6 2.4 2.2 2.0 2.0
DUR93 2.6 2.4 2.2 2.0 2.0
DUR95 1.9 1.9 2.2 2.0 2.0
DUR96 N/A N/A N/A N/A N/A
LIE96 2.6 2.4 2.8 2.5 2.8
PAR97 2.6 2.4 2.2 2.5 2.0
LIE01 2.6 2.4 2.2 2.0 2.0

MAN02 2.6 2.4 2.2 2.5 2.8
HAN04 2.6 2.4 2.8 2.5 2.8
URI06 2.6 2.4 2.2 2.0 2.0

Table 4.7: A posteriori location y+
s,T of the switch between the Kolmogorov and the

integral time-scale in wall-unit, in a channel flow for Reτ ∈ {180; 395; 590; 950; 2000}
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4.2.1 Behaviour in a channel flow

In the following, model predictions are compared in the channel flow case. Profiles

for different variables are shown for Reτ ∈ {395; 2000}: U+
(Fig.4.2), y+dU

+
/dy+

(Fig. 4.3), k+ (Fig. 4.4), ε+ (Fig. 4.5), y+ε+ (Fig.4.6), ϕ (Fig. 4.7) and k+/(y+ε+)

(Fig.4.8). As seen in Fig. 4.2, the mean stream-wise velocities are consistently well

predicted, this can be attributed to the fact that models are generally calibrated using

this test case. Tab. 4.8 shows the friction coefficient Cf calculated for all models for

five different Reynolds numbers. It confirms a generally good agreement consistent

for all models and regardless of the Reynolds number, with an error often lying within

the 5%. Some discrepancies can be noted, however:

• DUR93 depicts a consistent under-prediction of Cf (mirroring an over-prediction

of the velocity profile).

• LIE96, PAR97, LIE01 and HAN04 show a relatively strong under-prediction of

Cf for the lowest Reτ , LIE01 being by far the worst.

• URI06 tends to over-predict Cf for high Reτ .

However a closer look at the velocity predictions by scrutinising the variable

y+dU
+

dy+
(as introduced in Subsec. 3.2.2) shows substantial differences between models.

They do not predict equally well the near-wall peak of y+dU
+

dy+
: the models LIE96,

PAR97 and HAN04 seem to be the best ones in the near-wall region; all the other ver-

sions under-predicting the peak. In the logarithmic region, some models are unable

to predict the correct von Kármán constant (even at Reτ = 2000) (recall that in this

region, y+dU
+

dy+
=1/κ at infinite Reynolds number). For instance, the variable y+dU

+

dy+

is over-predicted for early models (DUR91, DUR93, DUR95) and under-predicted for

LIE96 and LIE01. For the two latter models, it will be seen that this under-prediction

(hence over-prediction of κ) becomes far more obvious for infinite Reynolds number.

It is also noteworthy that none of the models (except for DUR95 to some extent) is

able to represent the Reτ independance of the variables indicated by the DNS data

up to y+ = 60.
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The model for C∗ε1 (see Tab. 4.4) affects the behaviour of ε in the viscous and

buffer layer, hence the near-wall behaviour of k (due to the ε boundary condition,

Eq. 3.14). This explains the difference between models in the prediction of k and ε

near the wall, as shown in Fig. 4.4 and Fig. 4.5, respectively. Note that the absence of

near-wall modification for the ε equation in DUR95 leads to a strong over-prediction

of k for this model. In the logarithmic layer ε+ behaves as (y+)−1; hence it is easier

to spot the differences between models with the variable y+ε+, as shown in Fig. 4.6.

In this region, predictions of ε are mainly affected by the difference C∗ε1 − Cε2, since

it is expected that Pk = ε. The models performing the best are LIE96, PAR97 and

HAN04, with other models over-predicting y+ε+ in the log layer. Finally, it is clear

that all models under-predict ε+ in the defect layer, as shown in Fig. 4.6.

Fig. 4.7 shows the predictions of ϕ = v2
+
/k+. Virtually all models over-predict

ϕ in the logarithmic region, with LIE96 and LIE01 being the worst. It will be seen

that this discrepancy is due to an ill-behaviour of the elliptic operator, amplifying

the redistribution term in the log layer. For LIE96 and LIE01, a term is neglected

in the v2 equation leading to an even more drastic overshoot. Lastly, this variable is

somehow over-represented by URI06 in the near-wall region. This is due to the fact

that it is erroneously predicted as O(y) instead of O(y2), as previously stated.

More generally, the variability observed in the ϕ prediction in the log region depends

on the model for the quasi-homogeneous part of the pressure term and the constant

used, as detailed in Tab. 4.2.

Finally, Fig. 4.8 shows the prediction of k+/(ε+y+) which represents the rescaled

turbulent time scale. It naturally reflects the predictions of k and ε. The overshoot

of this variable in the defect layer is explained by the observed undershoot of ε in the

same region.
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Figure 4.2: U
+

in a channel flow for Reτ ∈ {395; 2000} (Reτ = 2000 profiles are
shifted upwards for clarity)
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Figure 4.3: y+dU
+

dy+
in a channel flow for Reτ ∈ {395; 2000}
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Figure 4.4: k+ in a channel flow for Reτ ∈ {395; 2000}
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Figure 4.5: ε+ in a channel flow for Reτ ∈ {395; 2000}
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Figure 4.6: y+ε+ in a channel flow for Reτ ∈ {395; 2000} (Reτ = 2000 profiles are
shifted upwards for clarity)
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Figure 4.7: ϕ in a channel flow for Reτ ∈ {395; 2000}
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Model Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 950 Reτ = 2000
DUR91 106 105 106 106 105
DUR93 95 96 97 97 97
DUR95 101 97 97 96 96
DUR96 101 99 100 99 98
LIE96 89 92 95 97 100
PAR97 87 91 94 96 98
LIE01 84 87 90 91 95
MAN02 99 100 101 102 102
HAN04 88 93 97 100 104
URI06 99 102 104 105 106

Table 4.8: Friction coefficient Cf compared to the DNS value for the same friction
velocity based Reynolds number Reτ (given in %)

4.2.2 Analysis of the logarithmic layer at infinite Reynolds

number

The comparison of the models in a channel flow for Reτ ≤ 2000 showed that the qual-

ity of predictions could depend on the Reynolds number and comparison now focuses

on the logarithmic layer, which reflects what one would obtain in a channel flow for an

infinite Reynolds number Reτ . This layer, as already mentioned, is characterised by

a local equilibrium Pk = ε and a constant Reynolds shear stress uv = −u2
τ . Moreover

the mean stream-wise velocity gradient takes the value
∂U

∂y
=
uτ
κy

. Hence the produc-

tion term can be calculated as Pk = −uvdU
dy

=
u3
τ

κy
. The following rationale is based

upon the assumption that the models should predict the same eddy viscosity as the

Prandtl’s mixing length model. Hence νt = Cµv2 k
ε

= L2
m

dU

dy
= κyuτ . The turbulent

kinetic energy k can then be expressed as k = u2
τ/

√
Cµ
v2

k
. The time derivative as

well as the convection are zero. Diffusion terms becomes:

d

dy

(
νt
σk

dk

dy

)
=

d

dy

(
νt
σg

dg

dy

)
= 0 (4.16)

Moreover assuming ε =
u3
τ

κy
gives:

d

dy

(
νt
σε

dε

dy

)
=

d

dy

(
κyuτ
σε

dε

dy

)
=

u4
τ

σεy2
=
ε2κ2

σεu2
τ

(4.17)

In the logarithmic layer, as φ∗22 = O(y−1) the variable f behaves as yn (with



110 CHAPTER 4. COMPREHENSIVE REVIEW OF THE V 2 − F MODELS

n = −1 for all models except the “re-scaled” ones, DUR96 and MAN02 for which10

n = 0). This leads to ∆f ∼ fn(n− 1)/y2 . The length scale reduces in the log layer

to L = CL
k3/2

ε
= CL

(
Cµ
v2

k

)−3/4

κy, which results in the further simplification:

L2∆f = κ2fn(n− 1)C2
L

(
Cµ
v2

k

)−3/2

(4.18)

The final system of equations to be solved then reads:





ε2

u2
τ

(
(Cε2 − Cε1)

√
v2

k
Cµ −

κ2

σε

)
= 0

Pg = 0

f
(

1− C2
L(Cµ

v2

k
)−3/2κ2n(n− 1)

)
= fh

(4.19)

The simplification leads to the following expression for the von Kármán constant:

κ2 = σε (Cε2 − Cε1)

√
v2

k
Cµ (4.20)

In DUR95, DUR96, PAR97, LIE01, MAN02, HAN04 and URI06 the coefficient

C∗ε1 explicitly depends on ϕ = v2/k, and for DUR95 the expression for C∗ε1 is simplified

in the logarithmic layer using L = CL

(
Cµ

v2

k

)−3/4

κy, to the following:

Cε1 = 1.3 +
0.25

1 +
(
CLy
2L

)8 = 1.3 +
0.25

1 +
(

(ϕCµ)3/4

2κ

)8 (4.21)

The simplifications performed in the f − g system yields the following relation for

ϕ:

• ϕ = A
[
(C1 − 1)

(
2
3
− ϕ

)
+ C2

]
for DUR91, DUR93, DUR95, DUR96, PAR97,

MAN02 and URI06.

• ϕ = 1
6
A
[

2
3

(C1 − 1)− ϕ (C1 − 6) + C2

]
for LIE96 and LIE01.

• ϕ = A (C1 − 1 + C2)
(

2
3
− ϕ

)
for HAN04.

10we use here the fact that ε = O(y−1) and L = O(y) in the log layer.
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The “amplification” factor is A =
(
1− 2 (CLκ)2 (Cµϕ)−3/2

)−1
for all models ex-

cept for DUR96 and MAN02 where A = 1.

For each model, the values of κ and ϕlog are computed using an iterative process

(ϕlog denotes the value of ϕ in the log layer). They are given in Tab. 4.9, as well as

the value for the turbulent to mean strain-rate time-scale ratio ηlog =

(
dU

dy

k

ε

)

log

=

(ϕlogCµ)−1/2, and the value of C∗ε1,log taken in the log layer. A is the amplification

factor for all models and is given in %. Finally the quantity ϕlog/ϕ
A=1
log (also in %)

shows the effective amplification, defined as the ratio between ϕlog predicted by the

model and ϕlog predicted by the same model but when setting A = 1.

The most obvious difference between models in the logarithmic layer is due to

the amplification effect of the original elliptic operator. This was extensively stud-

ied in Wizman et al. (1996), Manceau et al. (2001), Manceau and Hanjalić (2000)

and Manceau et al. (2002a) in the framework of the Reynolds-stress modelling, and

the problem was also raised in Durbin and Laurence (1996) (DUR96) concerning the

v2−f model. As previously derived the actual redistribution term in the logarithmic

layer is greater than the quasi-homogeneous model by a factor A which exceeds 1

in the general case11. However, as stated in Durbin and Laurence (1996) “the non

local effects should not influence the log layer [...] supposed to be in local equilib-

rium”. Different ways were introduced to cancel this effect: Wizman et al. (1996)

and Manceau et al. (2001) proposed alternative elliptic operators, whereas DUR96,

MAN02 and Manceau et al. (2002a) introduced a “re-scaling” for f as seen previ-

ously, which leads to A = 1. Both were shown to give the best prediction for ϕ in a

channel flow. For all other models, this amplification effect is not equally important.

The dependance of A on ϕ leads to a positive feedback. Hence one should not only

look at A but also at the effective amplification, which compares the prediction of ϕ

of the model to what would be predicted by the equivalent neutral formulation. As

seen, the positive feedback effect is actually dramatic for the code friendly models

11A model for which A = 1 is called neutral (using the terminology introduced in Manceau et al.
(2001)).
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of LIE96 and LIE01, with effective amplification of about 400% for the latter. This

leads to an unrealisable value of 1.6 for ϕ (as seen on Fig. 4.7). The strong adverse

effect of A in these two models is due to the neglected term in the f equation which

is a second source of over-prediction of v2. The LIE01 model is the most popular and

widely used version owing to its implementation in major commercial codes, despite

this problem. However a quick fix consisting in solving the elliptic equation for a

re-scaled variable, as done in DUR96 or MAN02, would be greatly beneficial.

It is also striking to see to which extent the prediction of models for the quantities

κ and ηlog differ from one another. The theoretical values for those two constants are

acknowledged to be κ = 0.42 and ηlog = 3.33 12.

4.2.3 Behaviour in homogeneous sheared turbulence

The models are now compared on the case of homogeneous sheared turbulence. A

uniform turbulence field is subjected to a constant and uniform mean velocity strain

S = y dU
dy

. The turbulence equations are simplified and the evolution of the variables

ϕ and η = S
k

ε
with respect to the non-dimensional time t∗ = St is studied. The

production term simplifies to P = νtS
2.

The following equation is derived for η :

Dη

DSt
= −(Cε1 − 1)Cµϕη

2 + (Cε2 − 1) (4.22)

The ϕ transport equation depends upon which model is used for the quasi-

homogeneous pressure srambling term. For HAN04 where the SSG moodel is used:

Dϕ

DSt
= −Cµηϕ2 +

1

η

(
C1 − 1 + C2Cµη

2ϕ
)(2

3
− ϕ

)
(4.23)

The converged solution (η∞,ϕ∞) corresponds to the intersections of the two null-

clines in the (η,ϕ) plane, whose equations are
Dη

DSt
= 0 and

Dϕ

DSt
= 0. The solution

is:

ϕ∞ =
2

3
×

C1 − 1 + C2
Cε2−1

Cε1−1

C1 − 1 + (C2 + 1)
Cε2−1

Cε1−1

(4.24)

12The latter value is consistent with the choice Cµ = 0.09 in a k−ε model, based on the observation
that the anisotropy

∣∣uv
k

∣∣ = 0.3 in many shear flows.
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η∞ =

√√√√√3

2
× Cε2−1

Cµ (Cε1−1)

C1 − 1 + (C2 + 1)
Cε2−1

Cε1−1

C1 − 1 + C2
Cε2−1

Cε1−1

(4.25)

For all other models, the ϕ transport equation reads:

Dϕ

DSt
= −Cµηϕ2 +

1

η
(C1 − 1)

(
2

3
− ϕ

)
+ C2Cµϕη (4.26)

And the solutions are given by:

ϕ∞ =

2
3
(C1 − 1) + C2

(
Cε2−1
Cε1−1

)

C1 − 1 +
(
Cε2−1
Cε1−1

) (4.27)

η∞ =

√√√√√ Cε2 − 1

Cµ (Cε1−1)
×

C1 − 1 +
(
Cε2−1
Cε1−1

)

2
3
(C1 − 1) + C2

(
Cε2−1
Cε1−1

) (4.28)

It is useful to recall that with the standard k − ε model, η∞ =
√

Cε2−1
Cε1−1

× 1
Cµ

. It

approximately takes the value η∞ ' 4.578 with the usual constants values Cε1 = 1.44,

Cε2 = 1.83 and Cµ = 0.09.

The values for ϕ∞ and η∞ for all the models are given in Tab. 4.9, right part. The

predicted limit η∞ is clearly of the same order as that for the standard k − ε value,

except for DUR95 and HAN04. Those values not only depend on the ε equation

constants, but also on the quasi-homogeneous model for the redistribution term, due

to the presence, for most of the models, of ϕ in the definition of C∗ε1.

The asymptotic values ϕ∞ and η∞ only partially characterise the behaviour in

homogeneous sheared turbulence. Another aspect which might be worth looking at

is the evolution towards the asymptotic values. Fig. 4.9 shows the streamlines of the

vector

(
dη

dt∗
,
dϕ

dt∗

)
for the models DUR96 and LIE01. The thick (respectively dashed

thick) line represents the null-cline of ϕ (respectively η), that is, the points where

dϕ

dt∗
= 0 (respectively

dη

dt∗
= 0). The intersection corresponds to the equilibrium.

As seen in Fig. 4.9, the convergence towards the limit η∞ seems to be somehow

delayed especially for high values of η (Rapid Distortion Theory) and limiting values

of ϕ (ϕ ' 0 or ϕ ' 2

3
). For instance starting from (η = 9;ϕ = 0.1), η increases

first, to reach the η null-cline, and only then, decreases again towards the limit. This
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Model κ ϕlog
ϕlog
ϕA=1
log

(%) A (%) η C∗ε1,log ϕ∞ η∞ C∗ε1,∞

DUR91 0.38 0.48 132 141 3.24 1.70 0.35 4.55 1.70
DUR93 0.37 0.49 128 140 2.97 1.58 0.36 4.32 1.58
DUR95 0.41 0.71 176 253 2.72 1.55 0.34 6.78 1.30
DUR96 0.36 0.42 N/A 100 3.84 1.51 0.40 5.08 1.52
LIE96 0.51 1.13 278 117 2.16 1.55 0.37 4.87 1.55
PAR97 0.45 0.63 154 198 2.69 1.48 0.37 4.70 1.50
LIE01 0.59 1.60 394 121 1.69 1.46 0.37 4.64 1.52

MAN02 0.40 0.44 N/A 100 3.20 1.53 0.39 4.43 1.53
HAN04 0.49 0.7 206 N/A 2.55 1.42 0.31 5.42 1.45
URI06 0.41 0.59 146 180 2.77 1.49 0.37 4.49 1.51

Table 4.9: Predictions of the models in the log layer (left part) and in homogeneous
sheared turbulence (right part)

illustrates the role of the temporal evolution of v2 in adding a lag in the response of

the turbulence to the mean strain-rate. The latter feature is obviously lacking in a

two-equation eddy-viscosity model, even those using algebraic relations to determine

the Reynolds stresses (a more detailed study of flow response to time evolving mean

velocity gradient and the superiority of Reynolds-stress models in that case can be

found in Hadžić et al. (2001)).
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Figure 4.9: Phase-plane portrait of Eq. 4.22 and Eq. 4.26 for model DUR96 (top)
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Chapter 5

Development of new v2 − f models

From the review of the different v2 − f models proposed in the past 20 years two

conclusions emerge.

Firstly the solutions to address the numerical problem linked to the original pro-

posal are not satisfactory. The “code-friendly” versions of LIE96, LIE01 and URI06

do significantly reduce the numerical issue, but at the expense of the quality of the

predictions. The models of LIE96 and LIE01 return a strongly excessive, occasion-

ally unphysical, value for v2 in the logarithmic layer, and more generally, in the core

region of a boundary layer, and in URI06 the damping of the variable v2 is not cor-

rect as seen previously. In HAN04 the modifications proposed do not entirely solve

the numerical problems. The first part of this chapter therefore proposes to fully

address the numerical issue of the original v2 − f approach with no deterioration of

the predictive capabilities: this is achieved by combining the model of URI06 (which

solves for the variable ϕ = v2/k) and the elliptic blending approach (which uses the

non dimensional parameter α as elliptic variable): this new model will be denoted by

ϕ− α.

Secondly, the comparison of all models equations shows a large variability of values

adopted for the constants, which yields differences amongst models for the prediction

of fundamental flows (channel flow, logarithmic layer at infinite Reynolds number

and homogeneous-shear turbulence). This is partly because solutions brought by

modellers to address various practical problems, such as the numerical stability issue

116
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or the near-wall modelling of the dissipation rate equation, also have an influence in

cases where they should not. Another reason is that the constitutive relation proposed

by Durbin (1991) (consisting in using v2 as damping parameter in the definition

of νt) yields a turbulent shear stress to mean velocity gradient ratio (modelled by

νt) which is too strongly dependent on the Reynolds number in a channel flow (as

compared to the DNS data available in such flows). Because of this flaw in the

baseline formulation at such a fundamental level, the model calibration in a channel

flow at various Reynolds numbers becomes cumbersome and often imperfect (as seen

in the channel flow results shown in the previous chapter). Based on the ϕ−α model,

successive modifications, mainly located in the k−ε system, are proposed to cope with

this shortcoming. All these modifications are integrated in a final version, referred

to as BL-v2/k which will be presented at the end of this chapter. All developments

are implemented in the unstructured finite volume code Code Saturne which will be

introduced in Chap. 7.

5.1 The ϕ− α model

Comparing the existing ways of resolving the numerical issue, one can identify two

requirements. Firstly, for numerical stability to be ensured, the near-wall balance

of leading-order terms in the v2 equation should be handled implicitly. This is the

case in a segregated solver only if the f wall boundary condition is 0. Secondly

extra terms introduced to ensure the above requirement should not deteriorate the

predictions. In the course of this work, alternative ways of ensuring the correct near-

wall behaviour of v2 were explored. Using analytical profiles v2 = v2(y+) (either

analytically derived from the v2−f equations (Kalitzin et al., 2005) or resulting from

DNS data interpolation) can be a way to prescribe the correct boundary condition,

but shortcomings are obvious (lack of universality of such a function, ill-representation

of low-Reynolds number effects, definition of the viscous velocity scale to be used in

the y+ definition in general flows (e.g. impinging flows), ...). The path eventually

followed is the adaptation of the elliptic blending of Manceau and Hanjalić (2002) to
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the v2−f model. The model proposed in the following is referred to as ϕ−α (Billard

et al. (2008)).

5.1.1 Presentation of the ϕ− α model

As seen in the previous chapter, the elliptic blending was introduced in the framework

of second-moment-closure, but the adaptation to a simpler eddy-viscosity model is

rather straightforward. The proposed new model stems from the model of URI06

(Laurence et al. (2004)) but handles the near-wall resolution using a blending coeffi-

cient α which is solved by the same modified Helmholtz equation, as done in Manceau

and Hanjalić (2002). The resulting variable takes the value α = 0 at the wall and

relaxes towards 1 further away.

Derivation of the model The same equation for ϕ = v2/k (Eq. 4.5) is used here,

the source term f , connected to pressure redistribution, is then defined as a blending

between two different forms as follows:

f = (1− αp) fw + αpfh (5.1)

The functions fw and fh are defined, respectively, as the model for f at the wall

and away from the wall. The purpose of the term fw is to balance the two other

leading order terms in the ϕ equation, namely the molecular cross-diffusion and the

molecular diffusion (whose Taylor series expansion is derived in Eq. 4.6). This leads

to the following requirement: fw ∼ −10νϕ/k2. It was already seen that using the

near-wall behaviour of ε yields εϕ/k ∼ 2νϕ/y2. This yields the choice fw = −5ϕε/k.

Moreover the viscous cross-diffusion term is decomposed as follows (using Eq. 4.6 and

Eq. 4.9 to obtain the near-wall part):

2ν

k

∂k

∂y

∂ϕ

∂y
= (1− αp)

[
4
ϕε

k

]
+ αp

[
2ν

k

∂k

∂y

∂ϕ

∂y

]
(5.2)

The equations of the model read:
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



Dk

Dt
= Pk − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]

Dε

Dt
=
C∗ε1Pk − Cε2ε

T
+

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]

lim
y→0

k = 0

lim
y→0

ε = lim
y→0

2νk

y2

(5.3)





α− L2∆α = 1

lim
y→0

α = 0

(5.4)





Dϕ

Dt
= (1− αp)

[
−ϕε

k

]
+ αpfh − Pk

ϕ

k
+

2

k

(
νt
σk

+ αpν

)
∂k

∂xj

∂ϕ

∂xj
+

∂

∂xj

[(
ν +

νt
σϕ

)
∂ϕ

∂xj

]

fh = − 1

T

(
C1 − 1 + C2

Pk
ε

)(
ϕ− 2

3

)

lim
y→0

ϕ = 0

(5.5)

C∗ε1 Cε1 CA1 Cε2 σk σε νt Cµ

Cε1

(
1 + CA1 (1− αp)

√
1
ϕ

)
1.44 0.04 1.83 1 1.22 CµϕkT 0.22

Table 5.1: Constants of the ϕ− α model. k and ε equations.

T CT L CL Cη

max
[
k
ε
, CT

√
ν
ε

]
6 CL max

[
k3/2

ε
, Cη

(
ν3

ε

)1/4
]

0.161 90

Table 5.2: Constants of the ϕ − α model. Expression for the scales and associated
constants.

C1 C2 σϕ p
1.7 1.2 1 3

Table 5.3: Constants of the ϕ− α model. ϕ equation.

Using the elliptic blending approach addresses the numerical instability problem

even if the ϕ− α system is solved sequentially. At each time step, the α equation is

first solved with the homogeneous Dirichlet boundary condition. This then enables

to resolve the ϕ equation with the terms involved in the near-wall region all being

handled implicitly: −(1− αp)ϕε
k

+ ν∆ϕ.
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It can be seen from Fig. 5.1 that the predicted α scales remarkably well with

viscous units, therefore is virtually Reτ independent.

The present choice for the exponent p differs from the one (p = 2) in the early

formulation of the elliptic blending (Manceau and Hanjalić (2002)), because p = 3

is necessary to ensure that the term αpfh is not involved in the near-wall balance,

which involves terms of order O(y2). It can be shown indeed that α = O(y) at wall.

The same conclusion was reached in Lecocq (2008).

Tab. 5.1, Tab. 5.2 and Tab. 5.3 give the chosen values for the constants, as well

as the expression for C∗ε1. It can be noted that the presence of (1− αp) in Cε1 limits

the near-wall boosting of ε to the near-wall region. The quasi-linear SSG model has

been preferred to the LRR-IP model for its better behaviour in the logarithmic layer.

Finally it is to be noted that α = 1 in the log layer, therefore there is no amplification

effect with the ϕ− α model.

5.1.2 Preliminary results

Fig. 5.2 and Fig. 5.3 show the predictions of the ϕ−α model compared to the URI06

model1, Tab. 5.4 summarises the predictions of the skin-friction coefficient for the

two models for various Reτ , and Tab. 5.5 presents the results of the two models in

the logarithmic layer at infinite Reτ and in homogeneous sheared turbulence (with

the same notation as in Tab. 4.9). The velocity profile prediction in the buffer layer

is improved, and this is reflected by a better prediction of the peak and dip of the

function y+ dU
+

dy+
in the same region. The ϕ−α model gives very good predictions for

Cf at higher Reτ , but under-predicts this quantity for Reτ = 180. It also predicts

slightly smaller values for the near-wall dissipation. Predictions of k+ and ε+ are

very similar for the two models in the logarithmic region and the predictions are also

close for the κ constant. As expected, the near-wall prediction of ϕ, and hence ν+
t , is

greatly improved by the ϕ − α model due its the compliance with near-wall budget

1The model URI06 is used as benchmark for two reasons. First it is the model already im-
plemented in the code Code Saturne which will be later used for applications and second it can
be considered as the closest to the presently proposed versions, as it solves for ϕ: therefore the
comparison is expected to provide an idea of the improvements specifically derived in this work.
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Figure 5.1: Prediction of α in the channel flow given by the ϕ − α model.
Reτ ∈ {180; 395; 590; 950; 2000}. Top: α = f(y+). Bottom: α = f(y).

balance, unlike URI06. Finally, the values of ϕ in the logarithmic region and in the

defect layer are in closer agreement with the DNS thanks to the neutrality of the

elliptic blending formulation and to the use of the SSG model. Wizman et al. (1996)

indeed showed that the SSG pressure strain-rate term needed much less “damping”

by the elliptic operator than the earlier LRR-IP model. The improved representation

of ϕ in these regions is also visible in the prediction of the turbulent viscosity ν+
t , for

which URI06 shows substantial over-prediction.
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Figure 5.2: Predictions of the ϕ−α model in the channel flow for Reτ ∈ {395; 2000}
for the variables U

+
, y+dU
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/dy+, k+ and ε+.
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Fig. 5.2 for legends.
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Model Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 950 Reτ = 2000
URI06 99 102 104 105 106
ϕ−α 94 97 100 101 102

Table 5.4: Friction coefficient Cf compared to the DNS value for the same friction
velocity based Reynolds number Reτ (given in %) for URI06 and the ϕ− α model.

Model κ ϕlog
ϕlog
ϕA=0
log

(%) A (%) η C∗ε1,log ϕ∞ η∞ C∗ε1,∞

URI06 0.41 0.59 146 180 2.77 1.49 0.37 4.49 1.51
ϕ− α 0.38 0.44 100 100 3.23 1.44 0.41 4.59 1.44

Table 5.5: Predictions in the log layer (left part) and in homogeneous sheared turbu-
lence (right part) for URI06 and the ϕ− α model.

5.2 The νt definition issue

The natural damping parameter fµ = v2/k is a sounder alternative to empirical

functions, but has a fundamental deficiency: Fig. 5.4 shows the Reynolds number de-

pendance measure (introduced in Subsec. 3.2.5) for νt, σ (νt), computed for Durbin’s

model (i.e. with νt = 0.22v2T ) and for the quantity it is supposed to model (i.e. with

νt = −uv/∂U
∂y

), both being evaluated a priori using DNS values. It can clearly be seen

that Durbin’s model leads to a turbulent viscosity that is strongly Reynolds-number

dependent in the critical buffer layer (5 < y+ < 50), twice as large as for the exact

term. In Fig. 5.5 a-priori evaluation of both quantities are plotted in the channel

flow for Reynolds number ranging from 180 to 2000, which also shows a persistent

over-prediction of the model for high Reynolds numbers. In order to assess to what

extent this discrepancy has a noticeable consequence for the predicted mean-velocity

profile, the velocity is reconstructed from the model νt, integrating the momentum

equation:

dU/uτ
dy+

− uv

u2
τ

= 1− y+

Reτ
(5.6)

with uv a priori calculated using Durbin’s model uv = −0.22v2T dU
dy

(i.e. k, v2 and

T are evaluated using DNS data). The reconstructed velocity is plotted in Fig. 5.6

against the DNS velocity. As expected this leads to a strongly over-predicted velocity

for Reτ < 395 and under-predicted for Reτ > 395. The presence of such a mismatch



5.2. THE νT DEFINITION ISSUE 125

between the model and the DNS at such a fundamental level (the entry point of the

turbulence to mean-flow feedback) greatly puts into question the relevance of a-priori

modelling of individual turbulent variables in this framework.

In fact, the dramatic differences depicted in Fig. 5.6 is not reflected in the model

predictions. As seen in the previous chapter, the velocity-profile prediction of all

v2 − f models are rather satisfactory and it could be concluded that the models are

able to cope with the previously mentioned shortcoming, by introducing compensat-

ing errors or favourable feedback in the turbulent variables prediction, to generate a

turbulent viscosity whose low-Reynolds-number dependence is recovered. This con-

clusion is over-optimistic however. Fig. 4.3 shows a strong Reynolds number depen-

dence of the variable ydU/dy in the near-wall region, hence of νt for all v2−f models,

with one exception (DUR95). Without solving this original problem, this has led the

calibration of all the v2− f models all the more tedious, and this explains why there

is such differences in the models behaviour in the fundamental flows studied in the

previous chapter. The most striking result is the variability of the predicted von

Kármán constant κ and it would not be surprising to see unexpected differences

between models arising in very high Reynolds number flows. According to Durbin

and Laurence (1996), “[the] set of constant can be varied without significantly altering

predictions, as long as the whole set is readjusted”. This acknowledged coefficients in-

terdependence renders the model calibration more difficult and may also explain why

the ϕ− α predictions at low Reynolds number (see Tab. 5.4) are not so satisfactory.

The only v2− f model which does not depict this near-wall Reynolds dependance

of νt is DUR95 (again this is most visible when looking at y dU
dy

, Fig. 4.3). There are

two possible explanations:

• It does not feature any near-wall modification for the k − ε system2, therefore

it is the standard k − ε equations which are integrated all the way to walls.

However, the same is also true for DUR91 (whereas the latter model predicts a

νt which is Reτ dependant as seen on Fig. 4.3) and therefore this fact alone is

2Because in the expression of C∗ε1 it uses (see Tab. 4.4), the length-scale being limited by its
Kolmogorov lower bound, C∗ε1 remains constant in the near-wall region.
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not a sufficient reason.

• This model uses the remarkably small Cη = 70. And yet some other models

use similar value for this coefficient, DUR95 is the model for which the switch

between the Kolmogorov and the integral length-scale is by far the earliest (i.e.

the closest to the wall), as seen on Tab. 4.6, possibly leading to a smaller Reτ

dependence for v2, hence for νt.

These latter observations will drive the present work, which will aim at finding

solutions to reduce the Reτ dependence of νt in focussing the efforts in two direc-

tions: the near-wall modelling of the dissipation-rate equation and the length-scale

determining the α coefficient.
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Figure 5.4: Reynolds number dependance coefficient σ(ν+
t ) in a channel flow:

• • •: with ν+
t = −uv+/dU

+

dy+
, —: with ν+

t = 0.22v2
+
T+.

5.3 Solution 1: Near-wall modelling of the ε equa-

tion

In the course of this research major “trial-and-error” efforts were made to improve

the ε equation in the near-wall region, and most of these will not be mentioned in

the present thesis. In the light of a term-by-term analysis, performed in Jakirlic
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Figure 5.5: A priori evaluation of ν+
t in a channel flow, for
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Figure 5.6: Velocity profile in a channel flow: a priori evaluation using Eq. 5.6 with
uv = −Cµv2T dU

dy
, for Reτ ∈ {180; 395; 590; 950; 2000}



128 CHAPTER 5. DEVELOPMENT OF NEW V 2 − F MODELS

and Hanjalic (2002), different alternatives to the commonly used C∗ε1 were tried, and

attention was also paid to the possible numerical instabilities the modifications could

cause. The most noticeable consequence of those alterations (and admittedly the most

beneficial) is their influence on the resulting νt Reτ -dependence. Three modifications

are now presented, and it will be seen that combining the three of them enables to

considerably reduce the Reynolds-number-dependence of νt.

Modification 1 (M1): As suggested in Jakirlic and Hanjalic (2002) the variable

ε′h, representing the homogeneous dissipation rate and defined as ε′h = ε − 1
2
ν∆k, is

solved for instead of ε. This leads to several changes in the ϕ− α equations:

• ε is replaced by ε′h in the k equation. The change of variable implies that the

molecular diffusion of k is halved. For consistency the dissipation term ε22 in

the v2 equation is replaced by ε′22,h (with ε22 = ε′22,h +
1

2
ν∆v2). In the derived

ϕ equation, this results in the molecular diffusion of ϕ being halved as well.

• The wall boundary condition for ε′h is also halved: ε′w,h = νk/y2. Likewise, the

near-wall term of the ϕ equation reads: (1− αp)
[
−1

2
ϕ
ε′h
k

]

• Neglecting higher order terms, it can be shown (Jovanovic et al. (1995)) that

the transport equation for ε′h is similar to the one for ε except that, again, the

molecular diffusion of ε′h is halved.

Modification 2 (M2): The C∗ε1 coefficient is taken as constant (C∗ε1 = Cε1) and the

near-wall increase of the dissipation is modelled by the Jones and Launder (1972)

E term 2ννt

(
∂2Ui
∂xj∂xk

)2

(as already introduced in Sec. 3.3.2): this consists in an addi-

tional source term Sε in the ε equation which reads Sε = CA1(1− α)32ννt

(
∂2Ui
∂xj∂xk

)2

.

The “E” term is here multiplied by a factor (1 − α)3 to restrict its influence in the

near-wall region.

Modification 3 (M3): C∗ε1 = Cε1 and the Sε term is moved from the ε equation

to the k equation. This formally corresponds to a change of variable which, when
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combined to the one performed in M1, takes the form

ε = εh + k/εhCA1(1− α)32ννt

(
∂2Ui
∂xj∂xk

)2

︸ ︷︷ ︸
ε′h

+
1

2
ν∆k (5.7)

The source term of the k equation becomes P − ε− k/εhCA1(1−α)32ννt

(
∂2Ui
∂xj∂xk

)2

−
1
2
ν∆k and this will be the only modification. The formal change of variable would

involve more terms which are deliberately neglected in the present approach, on the

basis that they would only play a role in the vicinity of walls. This might seem a

crude assumption, but we recall in light of the shortcoming in Durbin’s model for

νt that we do not seek to obtain the best representation for each turbulent variable

individually.
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Figure 5.7: ν+
t Reynolds dependance coefficient σ(ν+

t ) in a channel flow for different
variants of the model.

Fig. 5.7 shows the ν+
t Reτ -dependance measure σ(ν+

t ) for the ϕ − α model with

different modifications. It can be seen that the simple use of the modification M1

enables to substantially reduce σ(ν+
t ) compared to the original ϕ− α , essentially in

the lower edge of the buffer layer, where viscous terms are still active. This can be

explained by the reduction of the near-wall limit of εh involved by the modification
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M1. Indeed εw is linked to the near-wall behaviour of k which is linked to the

production. Since as already mentioned the production peak is strongly Reynolds-

dependent, reducing the link between k and εw helps limit the propagation of this

undesired feature. It can be seen that using the E term instead of the variable

C∗ε1 coefficient (modification M2) also strongly helps decrease σ(ν+
t ) and in a larger

part of the buffer layer compared to what was obtained with the modification M1.

Moving the E term into the k equation (modification M3) helps further reduce σ(ν+
t )

compared to modification M2. Finally the combination of modifications M1 and M3

is seen to be the one giving the lowest level of σ(ν+
t ).

The final BL-v2/k model will include modifications M1 and M3: ε will be assim-

ilated to εh (defined in Eq. 5.7) wherever it is used (therefore the notation “ε” will

be retained).

These modifications are not solely motivated by the effect they have on the repro-

duction of σ(ν+
t ), but they also improve the predictive capabilities and the robustness

of the model.

Improved prediction in the buffer-layer In the ϕ − α model, the near-wall

modification of C∗ε1 is multiplied by (1− αp) in order to reduce its influence in the

near-wall region. As seen in Fig. 5.2, this helps improve the prediction of U
+

in the

buffer layer (characterised by a bump), which is also visible for the variable y+ dU
+

dy+

where the peak in the buffer layer is much better represented by the ϕ−α model. With

the factor (1− αp) the side effects are reduced and the main effect of the coefficient

CA1 tuning (recalling CA1 is involved in the C∗ε1 definition, Tab. 5.1) concentrates in

the buffer layer whose prediction can therefore be optimised.

It will be seen now that the influence of the needed extra ε production term is even

more localised when it is modelled by the E term: Fig. 5.8 compares the behaviour of

the ϕ−α formulation with different variants for the near-wall dissipation modelling:

using C∗ε1 from its definition in Tab. 5.1 without and with the factor (1− αp) or

applying modification M2 or modification M3. Curves in Fig. 5.8 show predictions

for y+ dU
+

dy+
for CA1 varying over a range of values. The link between the coefficient
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CA1 and the near-wall peak of the predicted term y+ dU
+

dy+
is clear. Without the factor

(1− αp) (Fig. 5.8 top left), an increase of CA1 results in shifting the whole profile

upwards, whereas the use of this factor in the C∗ε1 definition (See Fig. 5.8 top right)

restricts the shifting to the near-wall region, but in both cases the influence of the

CA1 modification is still present in a large part of the log layer. With modification M2

(Fig. 5.8 bottom left), the influence in the logarithmic layer is considerably reduced

and the shape of the y+ dU
+

dy+
peak more closely represented. This is further improved

with the presence of the E term in the k equation (modification M3), as shown on

the bottom right graph.

Improved numerical stability The E term (Jones and Launder, 1972), as sounder

and less empirical alternative to the commonly used variable C∗ε1, was adopted in the

early version of the elliptic blending Reynolds Stress model of Manceau and Hanjalić

(2002). This choice was later abandoned due to the numerical problems it raised, the

main drawback of the E term being that it is handled explicitly in the ε equation.

Second derivatives of the velocity, whose evaluation can represent a computational

challenge when handled explicitly, result in error in its computation that are likely

to be of the same order as the other source terms in the near-wall region. When

“moved” to the k equation, the E term is multiplied by a time scale, chosen to be

k/ε. Its presence on the form “−k× . . . ” allows an easy implicit discretisation in the

k − ε system resolution.

5.4 Solution 2: The length-scale L definition

The elliptic operator enables the variable f to switch from its near-wall value fw to

its homogeneous value fh with an exponential like behaviour (if L were constant, one

would have f = fw + (1 − e−y/L)(fh − fw)). The choice for the coefficients CL and

Cη involved in the length-scale definition (See Tab. 5.2) determines the values of the

elliptic variable α, hence the importance of the near-wall terms in the ϕ equation, and

consequently it influences the behaviour of νt in the near-wall region. Therefore, to
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Figure 5.8: Prediction of the variable y+ dU
+

dy+
in a channel flow for Reτ = 395 with the

ϕ−α model. •••: DNS., —: ϕ−α . Top left: ϕ−α with C∗ε1 = 1.4
(

1 + CA1

√
1
ϕ

)
,

CA1 ∈ [0.02, 0.07]. Top right: ϕ− α with C∗ε1 = 1.4
(

1 + CA1 (1− α3)
√

1
ϕ

)
, CA1 ∈

[0.02, 0.07]. Bottom left: ϕ−α with term CA1× 2ννt (1− α)3
(

∂2U i
∂xj∂xk

)2

added into

the ε equation (modification M2), CA1 ∈ [1.40, 4.55]. Bottom right: ϕ − α with

term −k
ε
CA1 × 2ννt (1− α)3

(
∂2U i
∂xj∂xk

)2

added into the k equation (modification M3),

CA1 ∈ [0.80, 2.60].
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further reduce the Reτ dependance of νt, we seek coefficients CL and Cη yielding for

α the least Reτ dependence. This aim also finds justification in Lecocq (2008). While

studying the elliptic blending RSM of Manceau and Hanjalić (2002) he performed,

for different Reτ , a-priori evaluation of the DNS quantity αDNS which is modelled

by α, and defined as:

αDNS =

(
φDNS22 − εDNS22

)
− (φw22 − εw22)(

φh22 − εh22

)
− (φw22 − εw22)

(5.8)

where •h and •w respectively denote the homogeneous and the near-wall model. It is

shown that αDNS does not depend on Reτ in the near-wall region3.

The low-Reτ -dependence of the α parameter predicted by the ϕ−α model, seen in

Fig. 5.1, is a property which actually strongly depends on the choice for CL and Cη.

Even though the switch location between the Kolmogorov and the integral length-

scale only depends on Cη, the evolution of α depends on the independent choice

for both coefficient. The importance of this independence was minimised in Durbin

and Laurence (1996) which state that in the model tuning a decrease of Cη can be

balanced by an increase of CL, suggesting a redundancy in the two coefficients, with

the product CL × Cη being the ultimate adjustment parameter. This statement will

now be nuanced.

In the following we study the relation between the pair (CL, Cη) and the resulting

variable α. The latter can be characterised by a single parameter, the recovery length,

noted y+
α=0.9 which corresponds to the non-dimensional distance to the wall at which

α = 0.9. In this analysis DNS values are taken for the variables k and ε entering the

length-scale definition, and the elliptic equation α−L2∆α = 1 is solved for different

pairs (CL, Cη), using the same DNS grid, and y+
α=0.9 is calculated. Fig. 5.9 shows

the map of the function y+
α=0.9 (CL, Cη) evaluated using DNS values of two different

Reynolds numbers (Reτ = 395 and 2000). On the top of the map, the isoclines of the

function CL × Cη are displayed. Several conclusions can be drawn:

• It is clear for Reτ = 2000, that Cη does not influence much y+
α=0.9 even though

3This no longer being the case from the logarithmic region for Reτ = 2000 and according to
Lecocq (2008) it is due to the discrepancies of the SSG model used in Manceau and Hanjalić (2002).
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Figure 5.9: y+
α=0.9 map as function of CL and Cη for Reτ = 395 (left) and

Reτ = 2000 (right). CL × Cη isoclines are plotted on top of the map.

the Kolmogorov / integral length-scale switch location, y+
s,L (see Tab. 4.6) solely

depends on Cη.

• For Reτ = 395, y+
α=0.9 is very well correlated with CL × Cη, the isoclines of the

two functions being parallel. However this is no longer true for Reτ = 2000

especially for high values of CL. This proves the independence of the two

coefficients for high Reτ .

• Very low-Reynolds-number dependence of y+
α=0.9 can be achieved for low values

of CL and Cη. On the other hand, for Cη = 110 and CL = 0.35, y+
α=0.9 varies

from 200 for Reτ = 395 to 600 for Reτ = 2000.

This analysis focuses on the elliptic blending coefficient but it is believed that the

same conclusion could be drawn for the other elliptic relaxation based models. As

seen on Tab. 4.5 there is a high variability for the choice (CL, Cη) amongst the different

versions of the v2 − f models therefore leading to different levels of Reτ dependence

for v2, hence νt. In the final BL-v2/k model, the coefficients (CL = 0.164, Cη = 75)

are used, ensuring a low Reτ -dependence of α, thanks to the low value adopted

for Cη. The value of CL is taken equal to its theoretical value determined via the
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von Kármán constant in the logarithmic layer. As seen previously, in this region,

L = CL
k3/2

ε
= CL

(
Cµ

v2

k

)−3/4

κy. L = κy implies CL = 0.093/4 = 0.164 (in the

v2 − f model, the value of Cµ = 0.22 is chosen so that in the log layer Cµ
v2

k
= 0.09

(with
v2

k
= 0.41)).

5.5 Dissipation rate in the defect layer

In addition to the modifications done to reduce the νt Reynolds-number dependence,

an improvement of the dissipation rate equation is now proposed to yield better

predictions in the defect layer of a channel flow and in separated flows.

Turbulence submitted to constant and uniform shear builds up at a rate P/ε whose

asymptotic value is
Cε2 − 1

Cε1 − 1
4. More generally this parameter controls the spreading

rate of a mixing layer, which is then determined by the choice for Cε1 and Cε2 (note

that it only depends on ϕ if Cε1 does). There are several ways to calibrate Cε1 and

Cε2 (because a round jet, a plane mixing layer or a boundary layer have different

spreading rates) and therefore a trade-off is needed5. This is all the more true as

the value for the coefficient Cε2 is already determined by the homogeneous isotropic

turbulence rate of decay, so that Cε1 is the true spreading rate controlling parameter.

In most of the reviewed v2−f models C∗ε1 is influenced by the near-wall modification

of the coefficient C∗ε1 (see Tab. 4.4) which does not vanish outside the near-wall region

and this results in a value for C∗ε1 generally of order 1.5 in all the flow regions, as

seen in Fig. 4.1. Even though this is a satisfactory value for a boundary layer this

was shown to lead to an insufficient spreading rate in the case of a mixing layer,

for which a smaller value of Cε1 = 1.3 was recommended in Durbin (1995). On the

other hand in the ϕ − α model the factor (1− αp) in the C∗ε1 definition (Tab. 5.1)

leads to Cε1 = 1.44 in all the regions outside the near-wall layer. This leads to an

over-predicted spreading rate in a wall-bounded flow and this actually has adverse

4Using notations introduced in Subsec. 4.2.3 in homogeneous sheared turbulence the limiting
value of (P/ε)∞ = Cµϕ∞η2∞ = (Cε2 − 1)/(Cε1 − 1).

5For instance Craft and Launder (1996) use Cε1 = 1 and Cε2 = f(A,A2) to resolve the plane /
round jet anomaly
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effects on separated flows, as it will be seen in the results chapter (Chap. 6).

The present work proposes to revisit the idea introduced by Durbin (1995), con-

sisting in returning a different spreading rate for a boundary layer and a plane mixing

layer, in a more code friendly manner (i.e. without using the parameter y): as it was

seen in Fig. 3.5, the turbulent diffusion of k, DT
k = ∂

∂xj

(
νt

∂k
∂xj

)
, starts to be important

from the upper edge of the logarithmic layer, and the equilibrium DT
k = ε settles fur-

ther up, whereas there is no turbulent transport in homogeneous sheared turbulence.

Therefore it is proposed to introduce the parameter DT
k /ε to characterise the defect

layer of a wall-bounded flow and it is used to reduce the Cε2 coefficient. This has the

same effect as a Cε1 increase and results in the diminution of the spreading rate. The

following modification is proposed:

C∗ε2 = Cε2 + α3 (Cε4 − Cε2) tanh

(∣∣∣∣
DT
k

ε

∣∣∣∣
3/2
)

(5.9)

As it was noticed in Chap. 3 the ε source term P1 +P2 +P4−Y is unsatisfactorily

represented by the model

Cε1P − Cε2ε
T

(5.10)

with Cε1 = 1.44 and Cε2 = 1.83, and Parneix et al. (1996) suggested the coefficient

Cε2 should be halved in the defect layer. This is achieved by the present model Eq. 5.9

as seen in Fig. 5.10 which compares the two models to the exact ε source term (these

terms, whose behaviour in the logarithmic layer is O(y−2) are multiplied by y2 for

clarity). Fig. 5.11 shows the a priori evaluation of Eq. 5.9 (C∗ε2 = f(y)) for various

Reτ . This shows a Reτ independent characterisation of the outer region of the flow

by the proposed model.
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Eq. 5.9). A priori comparison for Reτ = 395.
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Figure 5.11: C∗ε2 from Eq. 5.9 for Reτ ∈ {180; 395; 590; 950; 2000}

5.6 The BL-v2/k model

5.6.1 Presentation of the model

The modifications proposed in the three previous sections were integrated into a new

model, namely the BL-v2/k model (Billard and Laurence (2011)), whose equations
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and constants are now given6.





Dk

Dt
= P − ε− 2Cε3ννt(1− α)p

k

ε

(
∂2U i

∂xk∂xj

)2

+
∂

∂xj

[(
ν

2
+
νt
σk

)
∂k

∂xj

]

Dε

Dt
=
Cε1P − C∗ε2ε

T
+

∂

∂xj

[(
ν

2
+
νt
σε

)
∂ε

∂xj

]

lim
y→0

k = 0

lim
y→0

ε = lim
y→0

νk

y2

(5.11)





Dϕ

Dt
= − (1− αp) ε

2

ϕ

k
+ αpfh − P

ϕ

k
+

2

k

νt
σk

∂k

∂xj

∂ϕ

∂xj
+

∂

∂xj

[(
ν

2
+
νt
σϕ

)
∂ϕ

∂xj

]

fh = − 1

T

(
C1 − 1 + C2

P

ε

)(
ϕ− 2

3

)

lim
y→0

ϕ = 0

(5.12)





α− L2∆α = 1

lim
y→0

α = 0

(5.13)

Cε1 C∗ε2 Cε2 Cε3 Cε4 σk σε

1.44 Cε2 + αp (Cε4 − Cε2) tanh

(∣∣∣∣
∂

∂xj

(
νt
σk

∂k

∂xj

)
/ε

∣∣∣∣
3/2
)

1.83 2.3 0.4 1 1.5

Table 5.6: Constants of the BL-v2/k model. k and ε equations

T CT L CL Cη νt Cµ√(
k

ε

)2

+ C2
T

(ν
ε

)
4 CL

√
k3

ε2
+ C2

η

(
ν3

ε

)1/2

0.164 75 CµϕkT 0.22

Table 5.7: Constants of the BL-v2/k model. Turbulent time, length and viscosity
scale, and associated constants.

6The coefficient CA1 is renamed Cε3 for consistency
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C1 C2 σϕ p
1.7 0.9 1 3

Table 5.8: Constants of the BL-v2/k model. ϕ and α equations.

5.6.2 Preliminary results

The predictions of the BL-v2/k model (Fig. 5.12 and Fig. 5.13) are improved for

all variables. The model behaviour in the buffer layer is enhanced and the near-

wall peak of y+dU
+

dy+
is well represented. The variable y+dU

+

dy+
is satisfactorily Reτ

independent. In fact with the new model the variable ε is only very weakly Reτ

dependent, as a result of the modifications performed on the k−ε system. The correct

prediction of κ (see Tab. 5.10) yields improved predictions of y+ε+ and y+dU
+

dy+
in the

logarithmic layer. Finally, the effect of the diminution of the Cε2 coefficient in the

defect layer is reflected by the correct representation of
k+

y+ε+
, hence ν+

t /y
+, in this

region, where all other v2− f based models over-predict those two variables (as seen

on Fig. 4.8). Tab. 5.9 compares the skin friction coefficient for URI06, the ϕ−α and

the BL-v2/k models. As seen the latest BL-v2/k version corrects the discrepancy

observed with the ϕ − α model for the lowest Reynolds number. Tab. 5.10 presents

the behaviour in the logarithmic layer and in homogeneous sheared turbulence. The

correct theoretical behaviour in the logarithmic layer (κ = 0.42 and η = 3.33) is

recovered.
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Model Reτ = 180 Reτ = 395 Reτ = 590 Reτ = 950 Reτ = 2000
URI06 99 102 104 105 106
ϕ− α 94 97 100 101 102

BL-v2/k 100 98 100 100 101

Table 5.9: Friction coefficient Cf compared to the DNS value for the same friction
velocity based Reynolds number Reτ (given in %) for URI06, the ϕ − α and the
BL-v2/k models

Model κ ϕlog
ϕlog
ϕA=1
log

(%) A (%) η C∗ε1,log ϕ∞ η∞ C∗ε1,∞

URI06 0.41 0.59 146 180 2.77 1.49 0.37 4.49 1.51
ϕ− α 0.38 0.44 100 100 3.23 1.44 0.41 4.59 1.44

BL-v2/k 0.42 0.41 100 100 3.33 1.44 0.37 4.79 1.44

Table 5.10: Predictions of the models in the log layer (left part) and in homogeneous
shear turbulence (right part) for URI06, the ϕ− α and the BL-v2/k models



Chapter 6

Performance of the models

The first version developed, the ϕ − α model (Billard et al., 2008), and the second

version, the BL-v2/k model (Billard and Laurence, 2011), have been validated on a set

of generic flows presenting some challenging features for turbulence modelling. They

fall into two categories: pressure induced separating flows (flow through a periodically

constricted channel flow (adapted from Almeida et al. (1993)) and in an asymmetric

plane diffuser (Obi et al., 1993; Buice and Eaton, 1997) ) and configurations featuring

heat transfer (natural convection in a tall enclosed cavity (Betts and Bokhari, 2000)

and mixed natural and forced convection in an vertical heated channel flow (Kasagi

and Nishimura, 1997). Most of the configurations tested in the present study are

popular benchmark cases for RANS models, and in particular v2− f models. As will

be seen, the early v2 − f formulations are shown to return fairly good results, and

it will be investigated whether the present proposals provide results at least of the

same level of accuracy. Moreover, the effects of the suggested improvements of the

k and ε equations developed in the BL-v2/k model will be assessed: to this end, the

model will be compared to the early ϕ− α formulation (which simply addresses the

numerical stability issue by solving for both ϕ and α), the main differences between

both models being located in the k and ε equations modelling.

The ϕ− α and BL-v2/k models are systematically compared to the code friendly

v2−f version of LIE01 (which is the one implemented in most commercial codes), the

URI06 model (Laurence et al. (2004)) and the k−ω SST model (Menter (1994)). All

143
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simulations are performed with the unstructured finite volume code Code Saturne which

is be introduced in Appendix. A.

6.1 Separating flows

This section focuses on the study of two configurations of pressure-induced separating

flows for which well-documented reference data are available.

6.1.1 Periodic hill flow

Presentation of the case

This is an adaptation of the experiment of Almeida et al. (1993) who studied the flow

over a single hill and between the last two consecutive hills of a series. The case was

the subject of highly resolved LES (Temmerman and Leschziner, 2001; Fröhlich et al.,

2005) which assume the flow is periodic in the stream-wise direction. The LES calcu-

lations were carried out using a configuration different from the experimental one: the

channel height is halved and the inter-hill distance is twice as large so as to decrease

the stream-wise coupling. Moreover span-wise homogeneous boundary conditions are

applied, so that the LES flow is statistically truly 2-D. In the LES configuration, the

hill topology is the same as in Almeida et al. (1993), and the domain is represented

in Fig. 6.1. The inter-crest distance is Lx = 9h, and the two walls are separated by a

distance of Ly = 3.036h, h being the hill height. The simplifications of this reference

simulation case makes it a popular benchmark for assessing both coarser LES and

RANS models, and it was the object of two ERCOFTAC workshops1. The flow is

fully turbulent, with a Reynolds number of 10595, based on h and the bulk velocity

above the hill crest.

The flow separates early after the hill crest, due to the strong curvature and

reattaches half way between the two hills. Downstream, the flow recovers and is

1http://www.ercoftac.org/special_interest_groups/15_turbulence_modelling/
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Figure 7: Geometry of the two pressure induced separating flows. Top: Periodic hill flow, Bottom: Diffuser flow.

Periodic hill Diffuser
Model Sep. Reatt. Sep. Reatt.
Ref. 0.22 4.72 7.34 28.9

BL-v2/k 0.33 5.14 8.21 30.3
LIE01 0.39 4.78 5.42 28.9

k − ω SST 0.24 7.58 1.57 29.1

Table 9: Location of the separation (Sep.) and reattachment (Reatt.) in the periodic hill flow and the diffuser flow. Distances
are normalised by H1 and H2 respectively.

the top boundary layer and most importantly just below the separation shear layer. The conventional values
1.44 and 1.83 for Cε1 and Cε2 would yield too high a turbulence growth rate therefore an under predicted
recirculation size. All the v2−f models, calibrated to return fair predictions in this type of two dimensional
simple flows, use a higher value for the constant Cε1 (ranging from 1.5 to 1.55). However for all versions
but DUR95 the same value is used as in homogeneous cases. On the other hand, the C∗

ε2 modification of
the present model is only activated in the presence of inhomogeneities and theoretically derived behaviours
in homogeneous configurations of table 8 are properly recovered.

This functional C∗
ε2 proposal limiting the turbulence growth can be somehow compared to the turbulent

viscosity limiter of the k−ω SST model. In the latter model, the limiter is only active when F2 = tanh(arg2
2)

is close to 1, which is for large magnitude of the argument arg2 defined as:

arg2
2 = max

(
2
√

k

0.09ωy
,
500ν

y2ω

)
(20)

With y representing the wall distance. Likewise in the present model the constant C∗
ε2 is decreased only

in regions where the magnitude of the term |Dt
k/εh|

3/2
is the largest. Figure 14 compares the fields of

|Dt
k/εh|

3/2
and arg2

2 of the respective models in the periodic hill flow. It can be seen that both terms take
their maximum values in the same regions (edge of top boundary layer and of the recirculation) indicating
that the regions where the turbulence is limited by the respective models are reasonably similar9 near the

9To visually emphasise the similarity between the two turbulence limiter mechanisms, the logarithmic of the two quantities
is plotted.
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Figure 6.1: Geometry of the periodic hill flow configuration

accelerated on the wind-ward face of the next hill. It was shown that the flow in the

separation was only little influenced by the behaviour downstream (Jang et al. (2002))

evidencing the desired stream-wise coupling reduction whose LES configuration is

the purpose. However the flow presents some challenging features for turbulence

modelling:

• The separation occurs on a highly curved surface and the re-circulation size and

the gross flow features highly depend on the separation location (Temmerman

and Leschziner (2001))

• The flow within the re-circulation also depends on its interaction with the bulk

flow, governed by the turbulent shear stress. Therefore, the main prerequisite

for a RANS model in this case is its ability to represent the correct level of

shear-stress along the boundary layer.

• The flow is strongly accelerated on the wind-ward face and features a thin

boundary layer at the top of the crest.

• The study of the LES flow field (Fröhlich et al., 2005) highlights flow mech-

anisms whose modelling is out of reach of RANS models, such as the strong

intermittent nature of the flow in the re-circulation zone, the trend towards

formation of two secondary vortices downstream of the separation and of a sec-

ond small recirculation on the windward face. This raises questions about the

relevance of RANS model results on this case, which may return the correct

prediction for the wrong reasons.
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Performance of RANS modelling

Jang et al. (2002) compared the capabilities of numerous RANS models of different

complexity: linear and non-linear eddy viscosity models as well as second moment

closure, with high and low Reynolds versions and resolving either ε and ω for the

length-scale determining parameter, amongst others the k−ω model of Wilcox (2006),

the k − ε model of Launder and Sharma (1974), the non-linear ω based model of

Wallin and Johansson (2000) and the low-Reynolds number Reynolds Stress model

of Chen et al. (2000). The performances of the k − ω SST model of Menter (1994),

the v2−f model of Durbin (1991), the code-friendly version of LIE96 and the URI06

version were studied in Uribe (2006).

The main difference between models is the shear-stress uv prediction across the

recirculation region. The k − ε model of Launder and Sharma (1974) predicts high

level of uv, leading to a recirculation region that is considerably too small, whereas

most other models, such as the ε-based non-linear eddy-viscosity models and the

Reynolds-stress model of Chen et al. (2000) strongly under-predict the shear-stress

in this region and especially its near-wall behaviour, leading to excessively large

recirculation zones.

However, a correctly-sized recirculation is predicted by the k − ω model, the

non-linear ω-based model of Wallin and Johansson (2000) and the v2 − f models.

Leaving aside elliptic-relaxation-based models, Jang et al. (2002) highlighted the

superiority of ω-based models, for which a better representation of the shear-stress

in the re-circulating flow and a better rate of recovery is observed. Jang et al. (2002)

also emphasised the importance of the quadratic terms of non-linear eddy viscosity

models, compared to cubic terms. For these reasons, the quality of predictions of the

flow pattern in the re-circulation region does not reflect the complexity of a turbulence

model. This is best expressed in the accelerating windward face, where the RSM of

Chen et al. (2000) predicts the best levels of shear-stress (compared to other models

consistently over-representing this quantity) and the correct velocity profile at the hill

crest, characterised by a thin boundary layer, whereas this model is paradoxically one
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predicting the poorest results elsewhere.

The “shear stress transport” improvement (Menter (1994)) supplemented to the

k − ω model had adverse effects: as shown in Uribe (2006), the k − ω SST model

massively under-predicts uv, resulting in a bubble 1.6 times larger than the one of the

LES. It is shown in Uribe (2006) that both standard and SST k − ω models predict

the separation at the exact same location, this being due to the two models expected

to behave identically in the near-wall region (i.e. being in k − ω mode).

Uribe (2006) reports very good predictions with the three v2 − f based models

tested. However, the recovery rate is too slow. The correct level of shear-stress

in the accelerated region, correctly picked up by RSMs (Jang et al. (2002)) is also

satisfactorily captured by the v2−f models. However the latter are not able to predict

the correct thickness of the resulting accelerated boundary layer. The difference

between v2 − f models is relatively small. In particular URI06 and the original

v2 − f models yield remarkably similar predictions, reflecting the efforts undertaken

in the URI06 model to minimise the consequences of the code-friendly modifications.

Results of the present approaches: Simulation were performed on a grid with

Nx × Ny = 172 × 120 cells (simulations on finer grids did not evidence noticeable

differences). Results of the ϕ− α and BL-v2/k models are compared to the URI06 ,

LIE01 and k − ω SST models in the following. Reference LES data of Temmerman

and Leschziner (2001) are also shown for comparison. Profiles of the mean stream-

wise velocity U , the turbulent shear stress uv and the wall-normal anisotropy v2/k

are shown on Fig. 6.2, Fig. 6.4 and Fig. 6.5, respectively. The flow pattern is rep-

resented in Fig. 6.3. The characteristics of the observed recirculation are given in

Tab. 6.1. The stream-wise velocity predictions (Fig. 6.2) show a very similar flow

pattern returned by URI06, LIE01 and BL-v2/k models, whereas the ϕ− α model

yields a dramatically under-represented re-circulation. It is worthy of note that the

intensity of the reverse flow is better captured by the BL-v2/k model, which is mostly

visible at x/h = 3, but adversely this model predicts a delayed reattachment. Most
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models also tend to over-predict the velocity along the top wall. Finally, all models

under-predict the acceleration magnitude in the wind-ward face. The good prediction

of the ϕ − α model in this latter region is simply a consequence of an erroneously

larger size of the recovery region.

As expected, the smaller re-circulation size of the ϕ−α model is linked to a larger

amount of predicted shear stress, as seen in Fig. 6.4. The shear-stress predictions of

the BL-v2/k , URI06 and LIE01 models are almost identical, whereas the strong uv

under-estimation returned by the k − ω SST model is clear.

The predictions of the near-wall anisotropy ϕ = v2/k differ noticeably amongst

models (Fig. 6.5). As seen in Chap. 4, for the v2−f model of Lien and Kalitzin (2001)

the amplification of v2 in the logarithmic region is one of the most dramatic. In this

case, this is clearly reflected by a strong over-prediction of ϕ = v2/k by this model in

the upper region. The URI06 model also returns a considerable over-representation

of ϕ near the top wall whereas both the ϕ − α and BL-v2/k models predict fairly

similar levels, closer to the reference data. Moreover a consistent earlier switch from

the near-wall to homogeneous form of ϕ can be noted for the URI06 model along the

lower wall (characterised by a sudden increase of ϕ from right above the wall).

The erroneous behaviour of the ϕ − α model (i.e. over-predicted shear stress

hence smaller re-circulation bubble) is due to its expression for C∗ε1, Tab. 5.1. The

inclusion of the factor (1− α3) makes the coefficient revert to the value 1.44 from

right above the viscous sub-layer (unlike virtually all other v2 − f models for which

the value is between 1.5 and 1.55 throughout the channel flow domain, as seen on

Fig. 4.1), hence producing an exaggerated mixing layer spreading rate and thus too

strong a momentum transfer from the bulk to the re-circulating flow. The correction

proposed by the BL-v2/k model has a beneficial effect, the decrease of C∗ε2 having

the same consequences as an increase of C∗ε1. Fig. 6.6 shows the values taken by C∗ε2

(defined by Eq. 5.9). The conventional value 1.83 is used in most of the domain, but

it is reduced at the edge of the re-circulation, and at the edge of the top boundary

layer.
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Figure 6.2: Prediction of the mean stream-wise velocity in the periodic hill case.
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Model Separation Reattachement Length % / LES
LES 0.22 4.72 4.5 100

k − ω SST 0.24 7.58 7.34 163
URI06 0.38 4.65 4.27 95
ϕ− α 0.39 3.01 2.62 58

BL-v2/k 0.33 5.14 4.81 107
LIE01 0.39 4.78 4.39 98

Table 6.1: Prediction of the periodic hill flow re-circulation size

LES k − ω SST

URI06 LIE01

ϕ− α BL-v2/k

Figure 6.3: Mean stream-wise velocity streamlines predicted for the periodic hill case
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Figure 6.4: Prediction of the turbulent shear stress in the periodic hill case. See
Fig. 6.2 for legends.
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Figure 6.5: Prediction of the wall-normal anisotropy in the periodic hill case. See
Fig. 6.2 for legends
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Figure 6.6: Periodic hill flow case: Values of C∗ε2 as predicted by the BL-v2/k model
(C∗ε2 defined by Eq. 5.9)

6.1.2 Asymmetric plane diffuser

Presentation of the case

The asymmetric plane diffuser case represents another widely used test case for as-

sessing the ability of models to predict pressure-induced separation. It consists in a

channel with one of the walls diverging, thus inducing a re-circulation along the in-

clined surface. The geometry is given in Fig. 6.7. The Reynolds number based on the

inlet height H and the bulk velocity is Re = 18000. The case was studied experimen-

tally in Obi et al. (1993) and later in Buice and Eaton (1997) and Eaton (2000). The

later experiment is the most reliable since it endeavours to eliminate three dimen-

sional effects. It was also the subject of a large eddy simulation by Kaltenbach et al.

(1999). Unlike the periodic hill case, the role of the geometry in the flow separation

is not as important as it would be for a higher angle of inclination. Therefore the

flow separation is mainly a consequence of adverse pressure gradient, thus making

it a challenging case of study for RANS modelling: Apsley and Leschziner (2000)

emphasise the importance of the correct modelling of the response of the shear stress

and the normal stresses to the deceleration in the boundary layer prior to separation.

Again, the flow analysed in the experiment and in the LES exhibits patterns which
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Figure 6.7: Geometry of the asymmetric plane diffuser flow configuration

cannot be accurately reproduced by a RANS model, and is characterised by the pres-

ence of a smaller re-circulation right at the corner of the diffuser and by a periodic

shear-layer instability leading to a flapping motion throughout the separating flow.

The strong resulting turbulent shear stress downstream the separation is generally

missed by RANS models (Apsley and Leschziner (2000)).

Moreover it is another case where more advanced models can lead to degraded results.

For instance Apsley and Leschziner (2000) highlighted the poor performances of low-

Reynolds-number second-moment-closure models compared to their high-Reynolds

number wall-function-based counterparts.

Performance of RANS modelling

Apsley and Leschziner (2000) presented the predictions of various RANS turbulence

models: amongst others the k − ε model of Launder and Sharma (1974), the k − ω
model of Wilcox (2006), the k − ω SST of Menter (1994), three ε based non-linear

eddy-viscosity models, and both high- and low-Reynolds number ε- and ω-based

Reynolds-stress models. The study performed in Apsley and Leschziner (2000) shows

that as far as Reynolds-stress models are concerned, results depend a great deal on the
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near-wall treatment employed, high-Reynolds-number versions combined with wall

functions seem to give the best results, whereas low-Reynolds-number models fail to

predict separation. The comparison of predictions of the non-linear eddy-viscosity

models highlights the important role of the eddy-viscosity coefficient as being func-

tion of the mean strain and vorticity rate, over the quadratic and cubic terms present

in the non-linear relation. This shows that good predictions in this case are more

affected by the modelling of the response to the strain present in the adverse-pressure-

gradient region rather than curvature effects and turbulence anisotropy modelling.

As far as linear eddy viscosity models are concerned, the k− ε model of Launder and

Sharma (1974) does not yield separation whereas the back flow intensity and the re-

circulation extent are only weakly represented by the k − ω model of Wilcox (2006).

The k−ω SST model of Menter (1994) is shown to give better overall performances,

this being due to the νt limiter being active in the separation region2, resulting in

the turbulent viscosity being sensitised to the strain-rate. Despite the benefits of this

feature in the case of the k − ω SST model, some adverse effects however and yields

to a far too early separation.

Results for the v2 − f models are presented in Durbin (1995) (for the version

DUR95), in Iaccarino (2000) (the model LIE01 is compared to the k − ε model of

Launder and Sharma (1974) with results provided by three commercial codes), in

Manceau et al. (2002b) (for MAN02) and in Uribe (2006) (for LIE96 and URI06).

The results are very good for all models, with predicted separation and reattachment

points very close to the experimental observation. The variants in the v2−f modelling

have the following consequences:

• The effect of the “rescaled” model of MAN02 highlights the consequences of the

neutral formulation of the elliptic operator. The resulting improved prediction

2The study of the blending functions F1 and F2 used by the model are performed in Apsley
and Leschziner (2000) and Uribe (2006) and shows that the SST model uses the k − ω equations
over most of the domain. Therefore the strong differences between standard and SST k− ω models
results is due to the turbulent viscosity limiter.
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of the central region of a channel flow is made at the expense of an over-

prediction of v2 and an under-prediction of the peak of k near the wall (Manceau

et al. (2002b)). This yields slightly over-predicted turbulent viscosity in the

diffuser near-wall flow resulting in a noticeable degradation of the results with

the re-scaled model.

• The differences between LIE96 and URI06 (Uribe (2006)) show the conse-

quences of the strong over-prediction of v2 the former model depicts. This

results in exaggerated level of turbulence shear stress and flatter stream-wise

velocity profile around its maximum value.

• Durbin (1995) shows the consequences, for the predictions of DUR95, of the use

of the variable C∗ε1 coefficient (given in Tab. 4.4 and built to return Cε1 = 1.3

in free shear turbulence and Cε1 = 1.55 in wall-bounded flows) compared to the

constant Cε1 = 1.55. The reduction of C∗ε1 in the regions farthest from walls

results in a smaller separation (this is consistant with the resulting increase of

mixing layer spreading rate hence a stronger momentum exchange between the

bulk and the re-circulating flow).

Finally, Sveningsson et al. (2005) compared linear and non-linear versions of the

v2 − f model and evidenced the adverse effect of a non-linear constitutive relation

compared to the linear model. They showed that the superiority of the linear for-

mulation was a due to an error compensation in the evaluation of the momentum

turbulent flux in the entrance zone of the diffuser.

Results of the present approaches: Results shown here are those of simulations

performed on a grid with Nx × Ny = 292 × 96 cells, which was found sufficiently

fine after a grid sensitivity study. Fig. 6.8 and Fig. 6.9 show the evolution of the

skin-friction Cf and the pressure coefficient Cp along the inclined wall. The evolution

of Cf shows a very good prediction of the separation and the reattachment location

for both URI06 and the BL-v2/k model, with the re-circulation being slightly shifted

downstream for the latter model. Both formulations also tend to under-predict the
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extent of reverse flow characterised by an over-estimation of the pressure coefficient.

Moreover the ϕ− α model predicts a very small and weak re-circulation. The mean

steam-wise velocity profiles given by the four v2 − f models and the k − ω SST are

shown in Fig. 6.10. The absence of re-circulating flow for the ϕ− α model yields an

under-predicted velocity along the straight wall, consecutively to the mass-flow-rate

conservation. The better profiles observed with this model in the final section of the

domain is simply a consequence of the ill-prediction upstream, yielding a larger zone

for recovery. The main difference between the URI06 and the BL-v2/k model lies in

the recovery region, with the former model showing a strong over-prediction of the

skin-friction coefficient. The models also predict too slow a rate of recovery.

The values taken by the coefficient C∗ε2 (defined with Eq. 5.9)for the BL-v2/k model

are shown on Fig. 6.11. The coefficient is mostly reduced in the defect layer of the

inlet channel and at the edge of the boundary layer along the straight wall, but also

noticeably decreased (around 1.6) at the edge of the re-circulation yielding the cor-

rect spreading rate of the layer mixing the re-circulating and the bulk flow, hence the

correct flow pattern.

The good performance of the v2 − f modelling seems to be in contradiction with

the conclusion of Apsley and Leschziner (2000) stating that a strain or vorticity rate

dependence of the proportionality coefficient of the linear part of the stress / strain

rate relation is crucial to secure good predictions of eddy-viscosity models in this

case. It may be argued that the time-scale limiter present in some v2 − f models to

ensure the releasability constrain (Durbin, 1996) achieves the same purpose. However,

present simulations using the ϕ−α and the BL-v2/k models have shown no activation

of the limiter in this case, and the good performance should simply be attributed to

a careful calibration and an accurate near-wall effect representation.

The robustness of the ϕ − α and the BL-v2/k models in these two cases will

be presented in Chap. 7. It is worth mentioning that inter-code comparisons were

undertaken in Jang et al. (2002) for the case of the periodic hill and in Iaccarino (2000)

for the diffuser flow. It is reported a noticeable code dependance of the Launder
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and Sharma (1974) k − ε results, this being attributed to the possible difference

in implementation of the second-order-gradient derivative present in the ε equation.

Since the BL-v2/k model uses the same “E” term as in the Launder and Sharma

(1974) model, the similar inter-code comparison should be carried out with the new

model.
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Figure 6.8: Prediction of the skin friction coefficient along the inclined wall in the
asymmetric plane diffuser case. See Fig. 6.9 for legends.
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Figure 6.9: Prediction of the pressure coefficient along the inclined wall in the asym-
metric plane diffuser case.

6.2 Buoyant flows

Heat transfer and implied density inhomogeneities play an important role in many

industrial configurations: for instance, the role of natural convection in the cooling
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Figure 6.10: Prediction of the mean stream-wise velocity in the asymmetric plane
diffuser case.

system of nuclear power plants is of utmost importance. Similar to the Reynolds num-

ber for momentum-driven flows, the Grashof number characterises buoyant flows, and

is defined as the ratio of buoyancy to viscous force. This non-dimensional parameter

is considerable in domestic-heating systems, solar panels, heat exchangers, amongst

others. Boudjemadi et al. (1997) emphasises the importance of heat removal through
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Figure 6.11: Asymmetric diffuser case: Values of C∗ε2 as predicted by the BL-v2/k
model (C∗ε2 defined by Eq. 5.9).

natural convection (instead of forced convection) in future plants for increased safety.

Heat transfer in wall-bounded flows falls into two categories: configuration with hor-

izontal walls (with Rayleigh-Bénard convection if the bottom wall is heated, or a

stable stratification if the top wall is heated) and vertical walls. In most cases a

turbulent boundary layer develops but the latter presents significant differences with

the pressure driven boundary layer.

This section first introduces the implications of the buoyancy effects on the tur-

bulence, and their representation in the framework of RANS modelling. Then ap-

plications are studied by reference to the following cases: a flow purely driven by

buoyancy (natural convection) and one featuring a combination of buoyancy and

pressure effects (mixed natural and forced convection), for which cases the behaviour

of the ϕ− α and the BL-v2/k models are assessed.

6.2.1 Effects of buoyancy on turbulent flows

Temperature and density inhomogeneities are linked through the thermal expansion

coefficient β defined as :

β = −1

ρ

∂ρ

∂T
(6.1)
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Following Archimede’s principle the buoyancy force due to density inhomogeneities

appearing in the momentum equation reads: F = (ρ− ρ0) g. The density is assumed

to vary little about its reference value ρ0 and the Boussinesq approximation is used:

the flow is assumed incompressible and density variations are only taken into account

in the buoyant force expression. For small variations of ρ about ρ0 the buoyant force

can be linearised: F = ρ0β(T0 − T )g. The Reynolds decomposition of this added

body force (Fi = Fi + f ′i) reads:





Fi = ρ0β(T0 − T )gi

f ′i = −ρ0θβgi

(6.2)

The quantity θ represents the fluctuating temperature. The presence of buoyancy

thus adds new production terms for the Reynolds stresses uiuj:

Gij = ujfi + uifj = −ρ0β
(
uiθgj + ujθgi

)
(6.3)

The corresponding term Gk = 1
2
Gkk appears in the k equation. A term also appears

in the transport equation of uiujuk and εij as well as in the pressure scrambling term.

The mean-temperature equation reads:

ρ
∂T

∂t
+ ρUj

∂T

∂xj
=

∂

∂xj

(
µ

Pr

∂T

∂xj
− ρujθ

)
(6.4)

The Prandtl number Pr is defined as the viscous to thermal viscosity ratio.

The buoyant force influences turbulence either indirectly (i.e. the temperature

field affects the mean-flow field, whose resulting distortion will produce or impair

turbulence) or directly, through Gij and Gk present in the equations of turbulence.

The relative importance of direct compared to indirect effects depends on the flow

considered, and for some flows the modelling of Gij is not crucial. In the calculations

presented herein, the Boussinesq approximation is not completely used. Indeed the

density ρ is updated at each time step using the linearisation of Eq. 6.1, and then,

spatial variations of ρ are taken into account everywhere. The only assumption which

is introduced is, therefore, the linearisation of the expansion coefficient.
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6.2.2 Modelling of the buoyancy effects on turbulence

Using the linearisation of the buoyancy force, as implied by the Boussinesq approx-

imation, the accuracy in the representation of the buoyant term Gij relies upon the

modelling of the turbulent heat flux uiθ. This can be divided into four categories of

increasing complexity:

• The simple gradient diffusion hypothesis (SGDH): In the framework of eddy

viscosity modelling, the heat flux uiθ present in the transport equation of

T as well as in G is modelled using the simple gradient-diffusion hypothesis

(SGDH)(uiθ = νt/Prt
∂T
∂xi

). The turbulent Prandtl number Prt (ratio of mo-

mentum to temperature turbulent diffusion) is generally taken equal to 0.9. The

value used in the present simulations is the default value of the Code Saturne:

Prt = 1.

• The generalised gradient diffusion hypothesis (GGDH): Second-moment-closure

models without further modelling of the heat flux use the following relation

(Daly and Harlow (1970)): uiθ = −cθ
k

ε
uiuj

∂T

xj
. The GGDH can also be em-

ployed with eddy viscosity models by using the Boussinesq relation for the

Reynolds stresses (Eq. 2.34).

• Additionnal transport equations are solved for θ2 and its dissipation term εθ to

enrich any of the two above models.

• Algebraic models, linear (e.g. Hanjalić (2002)) or non-linear, explicit or implicit,

are used. They also solve equations for θ2 and εθ. Models integrating wall effects

are also proposed, amongst others the elliptic-blending based versions of Shin

et al. (2008) and Lecocq (2008).

In all v2 − f models including the ϕ − α and the BL-v2/k models the SGDH is

used and the buoyancy production term Gk is added to the mean velocity gradient

production term Pk wherever it appears in the k, ε, v2/ϕ and f/α equations3.

3The SSG model proposes an extra term C6

(
Gij − 1

3Gkk
)

to account for buoyancy effects, which

is not included however in the ϕ− α and BL-v2/k model for the sake of simplicity.
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6.2.3 Natural convection

A purely buoyancy-driven wall flow is encountered, for example, in the case of a

heated room, characterised by a recirculating motion of the air. The configuration is

experimentally reproduced in a cavity where opposing vertical walls (separated by a

distance D) are heated at different temperatures (Th − Tc = ∆T ).

• In the momentum equation, the Grashof number is defined as the ratio between

buoyant and viscous force: Gr = gβ∆TD3/ν2

• In the temperature equation, the Rayleigh number is defined as the ratio be-

tween convection and viscous transport of temperature: Ra = PrGr

In such flows, heat tends to build up at the top and the resulting stratification

dampens turbulence. The experiment of Betts and Bokhari (2000) uses a high aspect-

ratio cavity to avoid an influence of the corners, and a fully turbulent flow is obtained

at moderate Rayleigh number, so the temperature differences are comparatively small

and the Boussinesq approximation is not violated. The ideal buoyancy-driven, fully

developed turbulence boundary layer in infinitely tall vertical channel flow was the

subject of two DNS studies: Boudjemadi et al. (1997) and Versteegh and Nieuwstadt

(1998)4 for Rayleigh numbers of 105 and 5.4× 105 for the former and values ranging

between 5.4× 105 and 5× 106 for the latter. Unlike a pressure-driven flow, the core

region of the present flow is dominated by a constant shear, similar to a Couette

flow, and it is in this case that the largest values of the Reynolds-stresses and their

production term are found, whereas the near-wall flow is viscous. The budgets of

the Reynolds stresses provided by the DNS help understand the near-wall turbulence

impairment (Boudjemadi et al. (1997)). Production terms Pij and Gij are active only

for components uu and uv5.

4The latter showed that the former DNS domain was perhaps too small.
5u (resp. v) represents the stream-wise (resp. wall-normal) component (i.e. along the x axis

(resp. the y axis)).
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Figure 6.12: Natural convection in a vertical slot. DNS data of Boudjemadi et al.
(1997), for Ra = 105 Left: Mean upward velocity profile and turbulent shear stress.
Right top: Budget of k. Right bottom: Budget of uv (Production by shear and
gravity only)

Fig. 6.12 presents the DNS data of Boudjemadi et al. (1997) for Ra = 105 across

the channel. The flow is driven upward near the hot wall (left) and downward near

the cold wall (right). Profile of the mean velocity and shear stress uv are shown as

well as the budget of the turbulent kinetic energy k and uv equations.

• A constant mean velocity gradient appears in the core region where the pro-

duction by shear (both Pk and P12) is maximum.

• In the near-wall region, the gravity production term G12 (always positive) has

a larger magnitude than that of the shear stress production P12 (which is of the
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same sign as −∂U
∂y

), hence P12 + G12 > 0: this yields uv being positive every-

where, even in the near-wall region where ∂U
∂y

is also positive. This particularity

(counter-gradient turbulent transport) yields a negative k production Pk near

walls and is not reproducible by eddy viscosity models.

• Eddy viscosity models use the SGDH model for uiθ which implies that the

buoyant production term Gk is zero for horizontal temperature gradients, which

is the case here. As pointed out in Boudjemadi et al. (1997) the correctly low

levels of turbulence predicted by some low Reynolds number eddy viscosity

models is simply due to an under representation of both negative Pk and positive

Gk (error cancellation).

The absence of modelling for gravity production when the SGDH model is used

was shown to be not so crucial in some flow configurations. For instance, its conse-

quences for the performance of the v2− f model was studied in Tieszen et al. (1998),

for the case of natural convection in a heated vertical plate and a heated rectangular

box of aspect ratio 5 : 1. Comparisons of v2 − f simulations using the SGDH and

the GGDH show no noticeable differences for the heated vertical plate flow, but the

SGDH implies a considerably delayed turbulent transition in the heated cavity flow.

Simulation of natural convection in a tall cavity

The following presents the results for the case of Betts and Bokhari (2000), which is

presented in Fig. 6.13. The height H and width W are related by the aspect ratio

H/W = 28.68. The recirculating flow is computed for the two Rayleigh numbers

Ra = 0.86 × 106 and 1.43 × 106 for the models k − ω SST, URI06, ϕ − α and BL-

v2/k as well as the LIE01 model. The simulations are performed on a 2-D grid with

100 and 200 computational points in the vertical and horizontal directions respec-

tively. Vertical velocity profiles are shown on Fig. 6.14 and Fig. 6.16 for the two

Rayleigh numbers respectively. Temperature profiles are shown on figures Fig. 6.15

and Fig. 6.17, respectively.



6.2. BUOYANT FLOWS 167

H

W

D

Cold wall Hot wall

0
y

x

−z

Figure 6.13: Configuration of the case of Betts and Bokhari (2000)

It is worth comparing the maximum of the quantity νt/ν, over the whole do-

main, predicted by the different models (not shown here). For the smaller Rayleigh

number the models BL-v2/k , URI06 and k − ω SST predicts very similar values

((νt/ν)max = 24, 26 and 25 respectively), whereas the LIE01 is much less turbulent

((νt/ν)max = 17) and the ϕ − α is sensibly more turbulent ((νt/ν)max = 33). The

same was noticed for the higher Rayleigh number. This explains why the velocity

profiles are strongly over-predicted by the LIE01 model (due to the lower turbulent

mixing) and noticeably under-predicted by the ϕ − α . Other models predict fairly

similar profiles for the velocity, particularly in the central region, close to the experi-

mental observation. For both Rayleigh numbers the velocity peaks are best predicted

by the BL-v2/k model, especially in the mid-height region, where the boundary layer

is fully developed.

The temperature prediction does not vary much amongst models, with values close

to the experimental ones, expect for the LIE01 model for which the temperature is
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over-predicted (respectively under-predicted) in the upper part (respectively in the

lower part), this being a direct consequence of the poorly predicted velocity. Note

that the same conclusion is pointed out in Uribe (2006) for the LIE96 model.

6.2.4 Mixed convection

The added effect of buoyancy on a pressure-driven fully turbulent flow was inves-

tigated in the DNS of Kasagi and Nishimura (1997): the configuration (Fig. 6.19)

consists in a flow between two vertical plates, driven upwards by a pressure gradient

(the Reynolds number based on the averaged friction velocity uτ on the two walls

and the channel half-width δ is Reτ = 150). Buoyancy effects are added by heating

walls at different temperatures. The resulting Grashof number defined with δ and

the temperature difference is Gr = 9.6× 106. Fig. 6.18 compares the mixed convec-

tion flow with the equivalent without heat transfer (i.e. G = 0), with the same Reτ

value) (DNS of Kuroda et al. (1994)). On these figures the data are normalised by

the friction velocity (for the mixed convection case, the averaged on the two walls is

considered).

The pressure gradient drives the flow upward whereas the buoyant force drives

the flow upwards near the hot wall, aiding flow, and downwards near the cold wall,

opposing flow. Owing to the buoyant force, the turbulence is decreased in the hot

side and increased in the cold side.

• With added buoyancy the mean velocity is accelerated near the hot wall and

decelerated near the cold wall.

• Turbulent variables (uv, k,u2,v2,w2) are decreased in the hot side and increased

near the cold side. The near-wall peak of v2, w2 no longer exist with added

buoyancy.

• In the hot side the indirect effects of buoyancy reduce v2 and w2 to a much

larger extent than u2. Therefore the wall normal and span-wise anisotropy are

greatly enhanced.
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Figure 6.14: Prediction of the vertical velocity in the Betts cavity case
(Ra = 0.86× 106)
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Figure 6.15: Prediction of the temperature in the Betts cavity case (Ra = 0.86× 106)
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Figure 6.16: Prediction of the vertical velocity in the Betts cavity case
(Ra = 1.43× 106)
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Figure 6.17: Prediction of the temperature in the Betts cavity case (Ra = 1.43× 106)
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Behaviour of turbulence models The predictions of the mean velocity, the tur-

bulent kinetic energy, the wall-normal anisotropy and the turbulent shear stress are

presented on Fig. 6.20 and Fig. 6.21 for the models k − ω SST , URI06 , ϕ− α and

BL-v2/k as well as the LIE01 model. The simulations are performed on a 1-D grid

with 60 cells from wall to wall. In the buoyancy aiding side, the turbulence im-

pairment observed is somehow captured by all models, whose returned level for k

are significantly decreased, whereas in the opposing side only the ϕ − α , the BL-

v2/k and URI06 return fairly correct level of turbulent kinetic energy. The k − ω

SST consistently yields under predicted levels of k on both sides.

The turbulent shear-stress is very well predicted for the BL-v2/k and the URI06 mod-

els yielding correct velocity predictions. The under-prediction of uv by the LIE01 model

on the aiding side leading to excessively large values of the velocity is unexpected

since the model captures the correct near-wall values of the stress anisotropy and level

of k similar to other models. This again highlights the presence of error cancellations

in eddy viscosity modelling. The near-wall anisotropy is somehow over-predicted by

the URI06 model. This might be due to the near-wall balance of the ϕ equation terms

not being achieved with this model, as already pointed out in Chap. 4, whereas the

ϕ− α and the BL-v2/k model successfully address this shortcoming.
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Figure 6.19: Schematic of the case of Kasagi and Nishimura (1997)
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Chapter 7

Comparative “code friendliness” in

an industrial code

All results presented in the previous section were obtained using an industrial CFD

code where the ϕ − α and the BL-v2/k models were implemented (Code Saturne ,

see Appendix A). This chapter gives details about the code execution on the cases

presented in Chap. 6 in order to assess the robustness of the newly developed models

as compared to other eddy-viscosity formulations.

7.1 Description of the comparison

The following compares the execution of four models (k−ω SST, LIE01, URI06 and

BL-v2/k ) on four cases: the Betts cavity (for Ra = 0.86× 106 and Ra = 1.46× 106),

the mixed convection case between vertical plates, the asymmetric plane diffuser and

the periodic hill flow (simply referred to as Betts, Kasagi, diffuser and periodic hill in

the following). The cases considered are run on two-dimensional grids and the steady

state algorithm is used. The following criteria are used to analyse the convergency

properties of the different variables for all models:

• For each variable V , V ∞ denotes the solution at the end of the calculation and

178
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a convergency parameter RV is defined as:

Rk
V =

1

N

N∑

i=1

∣∣∣∣
V k(xi)− V ∞(xi)

V ∞(xi)

∣∣∣∣ (7.1)

where V k and Rk
V are the variable and the convergency parameter at the kth

iteration and N is the number of probes on which the time evolution is recorded.

• The CPU time TV spent for the resolution of each variable and the total reso-

lution time T (note that the total time spent is generally greater than the sum

of the time spent on each variable)

To ease convergence, relaxation factors are used with the steady state algorithm:

0.9 is used for all variables except pressure for which αP = 0.1. Those are the default

values used in Code Saturne.

All variables (expect temperature) are initialised with a uniform field calculated

from two user-specified reference velocities U∞ and Uref , a turbulent intensity It and

a turbulent length-scale Lt). From these parameters the initial values of the variables

are determined: 



U0 = U∞

k0 = 3
2

(ItUref )
2

ε0 = Cµ(k0)3/2/Lt

ω0 =
√
k0/Lt

ϕ0 = 2
3

(7.2)

The values of U∞, Uref , It and Lt are given in Tab. 7.1.

Case U∞ Uref It Lt
Betts (Ra = 0.86× 106) 0 4 0.02 8
Betts (Ra = 1.43× 106) 0 4 0.02 8

Kasagi 14.5 14.5 0.02 Ω1/3

Diffuser 1 1 0.02 Ω1/3

Periodic hill 1 1 0.02 Ω1/3

Table 7.1: Parameters determining the initial values used for the calculations. Ω rep-
resents the volume of the calculation domain.
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For the Betts case, temperature is initialised by a field following constant gradient

between the two walls. For the Kasagi case, it is given the initial value 25◦C.

7.2 Presentation of the results

For each case and for all models the calculations are run for the same number of time

step and on the same type of processor: Intel(R) Xeon(TM) CPU 2.80GHz. Two

processors are used for all simulations except for the Kasagi case (for which only 1

processor is used).

7.2.1 Execution time

The time TV spent for the resolution of a given variable V is directly linked to the

number of sub-iterations required to resolve the linear system associated to the gov-

erning equation of the variable1. The total execution time T does not equal the sum of

variable-wise execution times. Indeed, calculation of source terms, matrix assembly,

inter-node communication and post-processing can amount to a considerable part of

the time spent as well.

Tab. 7.2, Tab. 7.3, Tab. 7.4, Tab. 7.5 and Tab. 7.6 present the variable-wise and

total execution time for all models for the Betts case for both Rayleigh numbers, the

Kasagi, diffuser and periodic hill cases, respectively.

For all present simulations, T is not so meaningful to spot differences between

models. As seen from the tables the sum of all variable-wise resolution time TV is

always at least one order of magnitude smaller than the total time T , evidencing that

the variables resolution is a negligible fraction of the total time. This may no longer

be the case in larger configurations, however, and it is believed that variable-wise

time figures can bring valuable insight on models numerical properties.

The resolution of ω by the k − ω SST is noticeably quicker than that of ε by

the v2 − f based models. This is the most marked in the Kasagi case (nearly 10

1The Jacobi method is used for all variables except when the nature of the problem is elliptic (i.e.
for the pressure and the f/f/α variable) for which the conjugate gradient method is used instead.
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times quicker). This may reflect better numerical properties of the ω equation (the

high values of ω in the near-wall region (recall lim
y→0

ω =∞) beneficially augments the

diagonal dominance of the linear system matrix, through the term proportional to

ω2).

In the Betts cavity case for both Rayleigh numbers the resolution of the turbulent

variables for the BL-v2/k model is the quickest compared to the URI06 and the

LIE01 model (by a factor of 6 for k, 7 for ε and 4 for ϕ/v2 ). This can be associated

to a better treatment of the near-wall terms in the BL-v2/k formulation (implicit E

term in the k equation, resolution of ϕ instead of v2 , zero boundary condition for α)

The resolution of the non-dimensional parameter α by the BL-v2/k is noticeably

quicker than that of the elliptic variables of the URI06 and the LIE01 approaches.

This is the most marked on the Betts case.

7.2.2 Convergence parameter

Fig. 7.1, Fig. 7.2, Fig. 7.3, Fig. 7.4 and Fig. 7.5 show the evolution of the convergence

parameter RV for each variable V for the Betts case for both Rayleigh numbers, the

Kasagi, diffuser and periodic hill cases respectively.

In the Betts case the quality of the BL-v2/k convergence is far better than that of

the two other v2 − f based models(i.e. for the newly developed model RV decreases

faster and to lower values). The same final level of residuals is reached for the BL-

v2/k and the k − ω SST model but the latter model is slightly quicker to converge.

The Kasagi case shows a similar trend for all models, with a somehow faster and

better convergency for the URI06 model.

In the diffuser case, the k − ω SST convergence is considerably slower than that

of v2−f based models. The former model also goes through a transient phase during

the 1000 first iterations. For this case the BL-v2/k is a little slower to converge than

the LIE01 and the URI06 models as far as turbulent variables are concerned, with

the exception of the elliptic variable.

In the periodic hill case, the k − ω SST is the fastest to converge. The three
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v2 − f based models globally converge at the same pace but the variable ϕ seems

to reach lower values of RV with the BL-v2/k model. For the latter model the

convergence of α is also the quickest compared to other elliptic variables.

Model
T
×104s

Tk
×103s

Tε/Tω
×102s

Tϕ/Tv2
×103s

Tf/Tα
×102s

TU
×103s

TV
×103s

TP
×103s

TT
×101s

k − ω
SST

5.18 .243 .872 1.21 1.98 4.25 9.13

URI06 6.32 1.31 25.2 1.02 7.90 .951 1.95 4.37 9.54

BL-v2/k 6.37 .219 3.65 .239 1.88 .957 2.11 4.46 9.48
LIE01 6.41 1.20 24.4 .825 8.37 1.27 1.96 4.46 9.50

Table 7.2: Simulation of the Betts case (Ra = 0.86× 106): Total CPU time spent in
total and for each variable for a 40000 iterations run.

Model
T
×104s

Tk
×103s

Tε/Tω
×102s

Tϕ/Tv2
×103s

Tf/Tα
×102s

TU
×103s

TV
×103s

TP
×103s

TT
×102s

k − ω
SST

5.31 .221 .871 1.04 1.88 4.87 .983

URI06 6.40 1.31 24.6 1.03 7.89 .991 1.92 4.94 1.00

BL-v2/k 6.38 .238 3.81 .207 1.85 .921 1.77 4.90 1.02
LIE01 6.38 1.20 23.4 .828 8.87 1.05 1.89 4.89 1.02

Table 7.3: Simulation of the Betts case (Ra = 1.43× 106): Total CPU time spent in
total and for each variable for a 40000 iterations run.

Model
T
×102s

Tk
×100s

Tε/Tω
×100s

Tϕ/Tv2
×100s

Tf/Tα
×10−1s

TU
×100s

TT
×100s

k − ω
SST

1.62 2.22 .202 2.07 2.52

URI06 2.00 1.86 1.74 1.59 5.05 1.38 2.58

BL-v2/k 2.04 2.29 2.18 1.90 4.23 1.97 2.76
LIE01 1.78 2.27 2.01 2.01 5.31 1.61 3.00

Table 7.4: Simulation of the Kasagi case: Total CPU time spent in total and for each
variable for a 10000 iterations run.
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Model
T
×103s

Tk
×102s

Tε/Tω
×101s

Tϕ/Tv2
×101s

Tf/Tα
×101s

TU
×102s

TV
×102s

TP
×103s

k − ω
SST

5.12 1.57 4.26 2.10 2.54 1.05

URI06 5.54 1.03 6.25 9.65 3.82 1.38 1.92 1.08
BL-
v2/k

6.10 1.06 7.84 8.80 2.61 1.41 1.96 1.11

LIE01 5.49 .997 6.40 7.95 3.45 1.37 1.82 1.04

Table 7.5: Simulation of the diffuser case: Total CPU time spent in total and for
each variable for a 2000 iterations run.

Model
T
×103s

Tk
×102s

Tε/Tω
×102s

Tϕ/Tv2
×102s

Tf/Tα
×102s

TU
×102s

TV
×102s

TP
×103s

k − ω
SST

7.58 3.78 .986 4.91 5.47 1.28

URI06 9.22 4.63 5.37 4.21 1.82 5.57 5.71 1.22

BL-v2/k 9.79 4.21 4.60 3.59 1.38 5.23 5.60 1.26
LIE01 9.25 4.69 5.38 3.77 1.73 5.28 5.63 1.21

Table 7.6: Simulation of the periodic hill case: Total CPU time spent in total and
for each variable for a 4000 iterations run.
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Figure 7.1: Convergency parameter for the Betts case (Ra = 0.86× 106) (8 probes).
See Fig. 7.4 for legends
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Figure 7.2: Convergency parameter for the Betts case (Ra = 1.43× 106) (8 probes).
See Fig. 7.4 for legends.
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Figure 7.3: Convergency parameter for the Kasagi case (13 probes). See Fig. 7.4 for
legends
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Figure 7.4: Convergency parameter for the diffuser case (16 probes)
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Chapter 8

Conclusions

This thesis has described the developments and the validation of a new near-wall eddy

viscosity turbulence model which combines the principles of the v2− f approach and

the elliptic blending method. The proposed model is denoted as BL-v2/k (Billard

and Laurence, 2011, See Appendix D). Numerical and predictive performances of the

model, implemented in an industrial CFD code, have then been successfully assessed

in the case of pressure induced separating flows as well as buoyancy impairing turbu-

lent flows. Applications of the model to 3-dimensional flows can be found in Billard

et al. (2011) (See Appendix E).

8.1 Summary of the work

The chapters presenting the original work of the present thesis are now summarised.

Chap. 4 gave a comprehensive review of the v2−f models, including those specif-

ically derived to address the numerical problems associated to the original version. It

was shown that the “code friendly” modifications are always detrimental to the pre-

dictive capabilities (for the versions of Lien and Durbin (1996) and Lien and Kalitzin

(2001) this results in the variable v2 being strongly over-predicted in the logarithmic

layer while the version of Uribe (2006) does not reproduce the correct v2 asymptotic
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near-wall behaviour). Another code-friendly attempt, the version of Hanjalić et al.

(2004), does not quite satisfactorily alleviate the numerical stiffness. In the review all

the versions were compared for a set of fundamental flows, including the channel flow

for various Reynolds numbers, the logarithmic layer at infinite Reynolds number and

the case of homogeneous sheared turbulence. A large variability of behaviour was

noted. This was shown to be partly due to the C∗ε1 modification proposed by most

models to reproduce dominance of dissipation against production, in the viscous and

buffer layer. For most models it was shown that this modification had an influence

far beyond the mere viscosity-affected region, thus requiring a full retuning of all the

constants, now departing from their standard values calibrated in homogeneous or

infinite Reτ cases (i.e. Cε1, Cε2 as well as the LRR-IP or the SSG model).

In Chap. 5 a simple adaptation of the elliptic blending method of Manceau and

Hanjalić (2002) was performed based on the model of Uribe (2006). The resulting

model, denoted as ϕ − α , solves for the non-dimensional near-wall anisotropy pa-

rameter ϕ = v2/k and the elliptic-blending coefficient α, which goes from 0 at walls

to 1 in the remote region. The numerical stiffness associated to the original version

was shown to be totally removed with the ϕ − α model. Moreover the needed C∗ε1

modification is multiplied by (1−αp) so that it only has an influence in the very near-

wall viscous and buffer regions. However, as it is, the ϕ− α model does not perform

well in low Reynolds number flows, and this was shown to be due to a more general

discrepancy of the v2 − f approach: indeed the constitutive relation defining νt, as

proposed in Durbin (1991) yields a shear-stress-to-mean-velocity-gradient ratio which

is too Reynolds number dependent in channel flow. This explains why the quality of

predictions of the various models is quite Reynolds dependent, and behaviour in the

logarithmic region at infinite Reynolds number, in particular the predicted value of

the Von Kármán constant κ, is very different amongst models.

To facilitate the calibration of the ϕ−α model for both low and high Reynolds num-

ber flows, a reduction of the Reynolds number dependence of the predicted νt was
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sought, firstly by performing successive modifications of the k−ε system (mainly con-

sisting in re-introducing the E extra dissipation production term originally proposed

by Jones and Launder (1972) directly into the k equation) and secondly by adopting

a smaller value for the length-scale coefficient Cη. The resulting and final model,

referred to as BL-v2/k thus performs well at both low and high Reynolds number

flows, and the value adopted by the constants are exactly equal to their theoretical

values (Cε1, Cε2, σε, CL and the constants of the SSG model). The correct behaviour

in the considered fundamental flows is fully recovered. Finally the BL-v2/k model in-

cludes a C∗ε2 coefficient correction active in the defect layer of a channel flow to avoid

excessive growth of the turbulent viscosity and the turbulence time and length-scale

in this region. This modification finds its justification in the analysis of the budget

of the exact dissipation rate equation, from which it is shown that the constant Cε2

should be decreased in the defect layer.

In Chap. 6 the two models, namely the ϕ − α and the BL-v2/k were compared

to other v2 − f versions (the models of Uribe (2006) and Lien and Kalitzin (2001),

respectively denoted URI06 and LIE01) as well as the k−ω SST model on separated

flows (the periodic hill flow and the plane asymmetric diffuser flow) and turbulent

buoyant flows (in a tall enclosed cavity (Betts) and between two differentially heated

walls). Those cases are known to be fairly well predicted by v2− f models in general

and the performances of the present BL-v2/k are at least as good. For the periodic

hill and the diffuser cases the BL-v2/k performs as well as other v2 − f models, and

considerably improves the flow predictions downstream the diffuser recirculation. The

BL-v2/k also returns the best predictions for the Betts cavity at different Rayleigh

numbers and is also the only one to correctly capture the turbulence level reduction

near the hot wall (buoyancy aiding flow) of a differentially heated channel. In particu-

lar the near-wall anisotropy enhancement near the hot wall is well predicted with the

present BL-v2/k model. The LIE01 version generally returns strongly over-predicted

values for v2, often non-physical due to the combined effects of a change of variable

performed to improve robustness and a default of the original elliptic operator used



192 CHAPTER 8. CONCLUSIONS

by the model. Paradoxically this version certainly is the most widely used as it is the

one implemented in major commercial CFD codes. As the main differences between

the ϕ − α and the BL-v2/k models are the modifications performed on the k − ε

system it is interesting to compare both on the considered applications to investigate

the consequences of these further developments on the results. They prove to be

always beneficials as the BL-v2/k is superior to the ϕ − α on all cases. The latter

model strongly under-predicts the recirculation length for the two separating flows.

The last chapter, Chap. 7, presents the code used and reports the execution time

and the evolution of residuals for each variable for all the cases and for all the models

considered in Chap. 6. First, the k − ω SST is generally the fastest to converge but

not always: the k− ω SST convergency in the diffuser is noticeably slower than that

of the other models. As far as v2− f based models are concerned, the BL-v2/k is the

fastest to converge and generally the model giving the best quality of convergence (i.e.

lowest residuals) which is particularly true for the Betts cavity case. The convergence

of the non-dimensional variable α is also quicker with the lowest residuals, compared

to the other elliptic variables.

8.2 Future work

Some further developments should be performed to increase the predictive capabilities

of the model in two configurations:

• The model inherits the general shortcoming of the v2 − f approach which is

an under representation of truly low Reynolds number effects (i.e. close to

transition). In fact those are mainly taken into account if they are a consequence

of wall effects, by the use of the Kolmogorov length and time-scale, which are

mainly introduced to avoid a singularity in the f/α and ε equations respectively.

It is shown (see Appendix C) that the model can yield a spurious laminar

solution in the case of homogeneous sheared turbulence for some low initial

values of the turbulent quantities. Even though this was not experienced in the
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cases investigated in the present work, this may also impair the convergence

of the solution and activate clippings the codes generally employ to preserve

stability. Elements accounting for low-Reynolds number effects in the more

general case (i.e. not only in near-wall flows) should then be incorporated:

these could take the form of damping terms made function of the turbulent

Reynolds number for instance.

• The predictions of the BL-v2/k model in non-equilibrium and unsteady flows

could be improved. The third variable, v2 , solved for by v2 − f models may

somehow account for turbulence history effects, feature which is not even taken

into account in non-linear eddy viscosity models or explicit algebraic Reynolds

stress models. However the v2−f approach cannot be considered as a simplified

Reynolds stress model and v2 has little meaning in homogeneous flows. An al-

ternative 3-equation model is the recent development of Revell et al. (2006), the

Cas model which accounts for stress-strain misalignment and is clearly defined

as a contraction of these two tensors. An essential ingredient present in the Cas

equation is the material derivative of the strain rate DS/Dt which improves

predictions in non-equilibrium and unsteady flows. The ϕ variable of the BL-

v2/k could be beneficially replaced by a compound quantity derived from the

equations of v2/k and Cas thus helping the third resolved variable of the model

to play a more relevant role away from walls.

• Finally it was shown in Chap. 5 that the variables of the new model, in particular

ε and νt are virtually independent of Reτ at a wall. The recent work of Osman

(2011) takes advantage of this model’s property to devise an adaptive wall-

function based BL-v2/k suitable for coarse near-wall meshes. In this approach,

analytical behaviour is prescribed to the BL-v2/k variables at walls when the

first computational grid point is not located in the viscous sub-layer. In Osman

(2011) the proposed methodology, yet still in its early stages, was successfully

applied to the channel flow case for various near-wall grid refinements and the

ribbed channel flow of Rau et al. (1998).
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Appendix A

Introduction to code saturne

The code used in this work is Code Saturne (Archambeau et al., 2004; Fournier

et al., 2011)1. It is a finite-volume unstructured code developed by EDF (Electricité

de France) to solve CFD problems. The code solves Navier-Stokes equations for two-

and three-dimensional flows, steady or transient, single phase, laminar or turbulent,

incompressible or slightly compressible, and also solves the transport equations for

the temperature, enthalpy or passive scalar and their fluctuations. The code features

many other components to handle a wide range of physical problems, such as a

Lagrangian module or a model for combustion. The turbulence models available are:

the standard k−ε, with or without linear production (variant of Guimet and Laurence

(2002)), k − ω − SST , Second moment closure (models of Launder et al. (1975) and

Speziale et al. (1991)), v2 − f (URI06 and newly added BL-v2/k version) and LES

(both standard and dynamic sub-grid scale model of Germano et al. (1991)).

With the finite-volume method (FVM), the equations are solved over control vol-

umes, and the velocity and pressure are both considered at the cells centre (collocated

arrangement). The finite-volume method consists in writing the equations in a con-

servative form and integrating them over control volumes. Gauss’ theorem is used

to transform volume integrals of convective and diffusive flux divergence into surface

integral of the fluxes over the cell faces. The conservative form of the momentum

equation reads (the equation is cast into a tensorial form to highlight later use of the

1The code is open source and available at www.code-saturne.org
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divergence operator)2:

∂u

∂t
+ div(u⊗ ρu) = div(−PρId+ µeff (grad(u) + tgrad(u))) (A.1)

where the effective dynamic viscosity µeff represents the sum of the molecular

viscosity and an eddy or sub-grid scale viscosity if a linear EVM or an LES model

is used. The time discretisation is achieved through a fractional-step scheme (Euler

implicit) that can be associated with the SIMPLEC method. At each time step n, the

momentum equation is first solved with the pressure taken explicitly. The predicted

velocity un+ 1
2 is then modified by the corrector step, in order to yield a divergence

free field.

A.1 The prediction step

In this step, the following equation is solved (an Euler implicit scheme is used here):

ρ
un+ 1

2 − un
∆t

+div(un+ 1
2⊗(ρu)n) = div(−P nId+µeff (grad(un+ 1

2 )+tgrad(un))) (A.2)

It is worth mentioning that the mass flux (ρu)n on the left hand side is taken ex-

plicitly in order to uncouple the 3 components of the velocity. In the FVM framework

the domain Ω is split into control volumes Ωi. Let Sij be defined as Sij = ∂Ωi

⋂
∂Ωj

the common face to Ωi and Ωj , and Sbik the kth boundary face of ∂Ωi

⋂
∂Ω as repre-

sented in Fig. A.1. Sij is the vector Sijn with n being the outward unitary face-normal

direction. I and J are the centres of cell i and j and I ′ and J ′ are the projections of

I and J onto the line (F,n) (F being the face center).

A.1.1 The convection term

The volume integral
∫

Ωi
div(un+ 1

2 ⊗ (ρu)n) is transformed, using the Gauss’ theorem,

into
∫
∂Ωi

(un+ 1
2 ⊗ (ρu)n).dS. The discretisation over the faces of Ωi reads:

∑

j∈Neigh(i)

[(ρunij).Sij]u
n+ 1

2
f,ij +

∑

k∈γb(i)
[(ρunbik).Sbik ]u

n+ 1
2

f,bik
(A.3)

2In this section u and P respectively denote the velocity and the pressure solved by the code.
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Figure A.1: Representation of a cell and a boundary face

The terms (ρunij).Sij and (ρunbik).Sbik stand for the mass fluxes expressed on inner

faces and boundary faces respectively. Neigh(i) is the set of neighbouring cells of

cell i and γb(i) the set of boundary faces of cell i. The unknown terms u
n+ 1

2
f,ij and

u
n+ 1

2
f,bik

are expressed at the face centre and have to be related to the values of the

variables expressed at the cell centre. Code Saturne uses three schemes to compute

these unknowns:

• The UPWIND scheme (first order) :

u
n+ 1

2
f,ij = u

n+ 1
2

I if (ρunij).Sij > 0

u
n+ 1

2
f,ij = u

n+ 1
2

J if (ρunij).Sij < 0

• The second-order centred scheme :

u
n+ 1

2
f,ij = αiju

n+ 1
2

I + (1 − αij)un+ 1
2

J + 1
2
(grad(un+ 1

2 )I + grad(un+ 1
2 )J).OF , using

αij = FJ ′

I′J ′
(see Fig. A.1)

• The Second Order Linear Upwind scheme :

u
n+ 1

2
f,ij = u

n+ 1
2

I + IF .grad(un+ 1
2 )I if (ρunij).Sij > 0

u
n+ 1

2
f,ij = u

n+ 1
2

J + JF .grad(un+ 1
2 )J if (ρunij).Sij < 0

When the mesh features non-orthogonality (I 6= I ′) the computation of gradients

uses a reconstruction technique. It is an iterative process. At the boundaries, the

value of the predicted velocity is always given by : u
n+ 1

2
f,bik

= u
n+ 1

2
I if (ρunbik).Sbik > 0

and u
n+ 1

2
f,bik

= u
n+ 1

2
bij

if (ρunbik).Sbik < 0.
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The default scheme used by the code is a blending between the second-order

scheme and the UPWIND scheme. To enhance stability, a slope test enables to

locally switch from second-order to first-order scheme without blending.

A.1.2 The diffusion term

In the FVM the discretisation of the diffusion term
∫
∂Ωi

div(µeffgrad(un+ 1
2 )) reads:

∑

j∈Neigh(i)

µeff
u
n+ 1

2

J ′ − u
n+ 1

2

I′

I ′J ′
Sij +

∑

k∈γb(i)
µeff

u
n+ 1

2
bik
− un+ 1

2

I′

I ′F ′
Sbik (A.4)

This way of discretising the diffusion term does not cause any problem on orthog-

onal meshes (if I = I ′) . Otherwise, as done for the convection term, reconstruction

techniques are used.

The value of the velocity at the boundaries u
n+ 1

2
fbik

is a function of the velocity in

the adjacent cell I and the boundary conditions given by the user.

This discretisation leads to a system to be solved for each component of the

velocity, which is not linear in general (firstly because of the non orthogonalities of

the mesh, secondly in case of slope tests for the convection term). An iterative process

is then used.

A.2 The correction step

The correction step consists in solving a Poisson equation to compute the pressure in

order to produce a corrected velocity field un+1 which is divergence free. The pressure

P n is updated by adding an increment δP n+1:

P n+1 = P n + δP n+1 (A.5)

(δP n+1 = P n+1 − P n). The following problem has to be solved (the convection and

diffusion of the velocity difference are neglected):





(ρu)n+1 − (ρu)
n+

1

2

∆t
= −gradδP n+1

div(ρu)n+1 = 0

(A.6)
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The divergence operator is applied to the first line of Eq. A.6 which yields the equation

to be solved:

div(∆tgradδP n+1) = div(ρu)n+ 1
2 (A.7)

With the usual discretisation of the Laplacien operator, odd and even nodes are

uncoupled, leading to the well known chessboard-like pressure field. In order to

alleviate this problem, the Rhie & Chow filter (Rhie and Chow, 1982) is used. Once

δP n+1 is obtained the velocity at time step n+ 1 is then updated.

A.3 The turbulence variables

For the resolution of the turbulent variables equations, the discretisation of the con-

vective and diffusive fluxes is the same as those for the velocity. In RANS mode, a

first-order Euler implicit time scheme is used for all the variables.

A.4 The steady state algorithm

In Code Saturne RANS calculations can be performed using the steady state algo-

rithm when a steady solution is expected. When this algorithm is used, the user can

define relaxation coefficient αv for each variable v. The main differences with the

unsteady algorithm are:

• The unsteady term ∂/∂t is removed for all variables.

• For the resolution of each variable v, in the discretisation of the convective

(Eq. A.3) and diffusive (Eq. A.4) fluxes, the value of vn+1
I is replaced by αvv

n+1
I +

(1− αv)vnI 3 and the diagonal of the matrix Mij of the resulting linear system

is relaxed (i.e. the terms Mii are replaced by Mii/αv)

• At the end of the correction step, the pressure update Eq. A.5 now becomes

P n+1 = P n + αP δP
n+1

3the term vn+1
J appearing in the discretisation of the convective flux (for an upwind scheme when

(ρunij)Sij < 0) and of the diffusive flux is not relaxed however.



Appendix B

The k − ω SST model

The version of the model presented here is the one which is implemented in Code Saturne and

whose results are presented in this work.

Dk

Dt
= min(P, 10Cµkω)− Cµkω +

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(B.1)

Dω

Dt
= α

P

νt
− βω2 +

∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+ 2

1− F1

σω2

1

ω

∂k

∂xj

∂ω

∂xj
(B.2)

where :

α = F1α1 + (1− F1)α2 (B.3)

β = F1β1 + (1− F1)β2 (B.4)

σk = F1σk1 + (1− F1)σk2 (B.5)

σω = F1σω1 + (1− F1)σω2 (B.6)

The blending function F1 is given by the formula:

F1 = tanh(arg4
1) (B.7)
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arg1 = min

[
max

( √
k

Cµωy
,
500ν

y2ω

)
,

4ρk

σω2CDkωy2

]
(B.8)

CDkω = max

(
2ρ

1

σω2ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(B.9)

νt =
a1k

max(a1ω, SF2)
(B.10)

F2 = tanh(arg2
2) (B.11)

arg2 = max

(
2
√
k

Cµωy
,
500ν

y2ω

)
(B.12)

S =
√

2SijSij (B.13)

α1 α2 β1 β2 σk1 σk2 σω1 σω2

β1

Cµ
− κ2

σ
ω1
√
Cµ

β2

Cµ
− κ2

σ
ω2
√
Cµ

0.075 0.0828 1.176 2 2 1.1682

a1 Cµ κ

0.31 0.09 0.41



Appendix C

The Kolmogorov time-scale lower

bound

In the v2 − f modelling framework, the time-scale is involved in the ε equation,

Eq. 4.13, as well as in the expression for the turbulent viscosity νt, Eq. 3.37, and

in the return-to-isotropy model for the slow part of the pressure-strain rate term of

v2,Tab. 4.2. Here a different notation is adopted for each use of the time-scale and

the equations read as follows:





Dε

Dt
= Cε1

P

T1

− Cε2
ε

T2

+
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]

νt = Cµv2Tµ

φs22 = −C1
1

Tv2

(
v2 − 2

3
k

)
(C.1)

To avoid a singularity at the wall the following choice is made in most v2 −
f models:

T2 = max

(
k

ε
, CT

√
ν

ε

)
(C.2)

whereas in the BL-v2/k model Eq. 4.15 is used instead. In all models this modified

time-scale is bounded by its Kolmogorov counterpart, CT

√
ν

ε
, which is used in the

near-wall region where k/ε → 0. However in all models this Kolmogorov time-scale

limiter is also used in T1, Tµ and Tv2 for the sake of consistency. As seen in a channel

flow, the time-scale equals the Kolmogorov expression only in a small region very near
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the wall (for y+ < 3 for most models, as seen in Tab. 4.7), unlike the length-scale, for

which the switch between the Kolmogorov and the integral expression may occur in

the log layer. This tends to minimise the importance of the Kolmogorov time-scale

limiter at least in the channel flow case. In order to understand the implications

of including or not the limiter in T1 and Tµ, the case of homogeneous sheared tur-

bulence is studied, with a focus on the behaviour of the model for very low values

of turbulence. In the present analysis we use the expression Eq. 4.14 for T so as

to remain in the general framework of v2 − f modelling, but it is believed that the

same conclusions will hold when the alternative expression for the scales, Eq. 4.15, is

chosen, as in the BL-v2/k model.

For simplicity, the variable v2 is taken as constant v2 = ϕ∞k with ϕ∞ = 0.41

and the simpler k − ε system is considered. Evolution equations can be derived for

the turbulent Reynolds number defined as Ret =
k2

νε
and the turbulent to mean

strain-rate time-scale ratio η = S
k

ε
. Rewriting

max

(
k

ε
, CT

√
ν

ε

)
=
k

ε
max

(
1, CTRe

−1/2
t

)
(C.3)

the evolution equations of Ret and η (with respect to t∗ = St) read:





dRet
dt∗

= 2RetηCµFµ − 2
Ret
η
− Cε1Cµ FµF1

Retη +
Cε2Ret
F2η

dη

dt∗
= CµFµη

2 − 1− Cε1Cµ
Fµ
F1

η2 +
Cε2
F2

(C.4)

The functions Fi can be either 1 or max(1, CTRe
−1/2
t ). The system evolution is

represented on Fig. C.1, Fig. C.2 and Fig. C.3 which show, for different choices for

the Fi functions, the stream-lines of the vector field (
∂η

∂t∗
,
∂Ret
∂t∗

) in the plane (η;Ret).

The Ret (resp. η) nullclines are the set of points (η;Ret) for which
∂Ret
∂t∗

= 0 (resp.

∂η

∂t∗
= 0) and are represented by thick straight (resp. dashed) line. Possible finite

equilibrium exist if the nullclines intersect and the eigenvalues of the Jacobian at the

intersection point are both negatives. 5 of the 8 possible cases are here considered:

1this value is of the same order as those taken by models in this type of flows, as given in Tab. 4.9
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• Case A: (Fµ, F1, F2) = (1; 1; 1) (configuration of the standard k − ε system)

(Fig. C.1, left)

• Case B: (Fµ, F1, F2) = (1, 1,max(1, CTRe
−1/2
t )) (Fig. C.1, right)

• Case C: (Fµ, F1, F2) = (1; max(1, CTRe
−1/2
t ); max(1, CTRe

−1/2
t )) (Fig. C.2, left)

• Case D: (Fµ, F1, F2) = (max(1, CTRe
−1/2
t ); 1; max(1, CTRe

−1/2
t ))(Fig. C.2, right)

• Case E: (Fµ, F1, F2) = (max(1, CTRe
−1/2
t ); max(1, CTRe

−1/2
t ); max(1, CTRe

−1/2
t ))

(configuration used by the v2 − f model) (Fig. C.3)

As pointed out in Pettersson-Reif et al. (2006) the situation (Ret → 0; η →∞)

characterises a proper laminar solution, whereas (Ret → 0; η → 0) corresponds to a

pseudo-laminar state, recalling that the expected solution in homogeneous sheared

turbulence is (Ret → ∞; η → Cste). It was shown by the same authors that some

modifications of the coefficients, such as the sensitivity of Cε2 to Ret, could lead to a

pseudo laminar stable solution.

At light of the plots it can be seen that with the v2− f model (Fig C.3) there is a

region of initial conditions from which there is convergence to the point (η = 0,Ret =

0) (pseudo laminar state), unlike the standard k − ε. Alternatives choices for the

Fi functions which also prevent the ε equation singularity are all configurations for

which F2 = max(1, CTRe
−1/2
t ) (Case B, C, D, E) and for all of them there is a region

of initial conditions which lead to pseudo laminar state, but respective phase planes

are rather different from each other for large values of η and low values of Ret.

Further investigation on this matter (low Reynolds number limit of the v2 −
f model) should be worthwhile, particularly if there is an interest in extending the

approach to transition modelling.
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Figure C.1: Nullclines of the system C.4 with Case A (k−ε) (left) and Case B (right)
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Figure C.2: Nullclines of the system C.4 with Case C (left) and Case D (right)
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Figure C.3: Nullclines of the system C.4 with Case E (v2 − f )
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A robust k − ε − v2/k elliptic blending turbulence model applied to
near-wall, separated and buoyant flows1
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bEDF R&D MFEE, 6 quai Watier, 78401 Chatou, France

Abstract

This paper first reconsiders evolution over 20 years of the k-epsilon-v2-f strand of eddy-viscosity models, developed

since P. Durbin’s 1991 original proposal for a near-wall eddy viscosity model based on the physics of the full Reynolds

stress transport models, but retaining only the wall-normal fluctuating velocity variance, v2, and its source, f, the

redistribution by pressure fluctuations. Added to the classical k-epsilon (turbulent kinetic energy and dissipation)

model, this resulted in three transport equations for k, epsilon and v2, and one elliptic equation for f, which accurately

reproduced the parabolic decay of v2/k down to the solid wall without introducing wall-distance or low-Reynolds

number related damping functions in the eddy viscosity and k-epsilon equations. However, most v2-f variants have

suffered from numerical stiffness making them unpractical for industrial or unsteady RANS applications, while the

one version available in major commercial codes tends to lead to degraded and sometimes unrealistic solutions. After

considering the rationale behind a dozen variants and asymptotic behaviour of the variables in a number of zones

(balance of terms in the channel flow viscous sublayer, logarithmic layer and wake region, homogenous flows and

high Reynolds number limits), a new robust version is proposed, which is applied to a number of cases involving flow

separation and heat transfer. This k-epsilon type of model with v2/k anisotropy blends high Reynolds number and

near-wall forms using two dimensionless parameters: the wall-normal anisotropy v2/k and a dimensionless parameter

alpha resulting from an elliptic equation to blend the homogeneous and near-wall limiting expressions of f. The review

of variants and asymptotic cases has also led to modifications of the epsilon equation: the second derivative of mean

velocity is reintroduced as an extra sink term to retard turbulence growth in the transition layer (i.e. embracing the

E term of the Jones and Launder (1972) k-epsilon model), the homogeneous part of epsilon is now adopted as main

transported variable (as it is less sensitive to the Reynolds number effects), and the excessive growth of the turbulent

length-scale in the absence of production is corrected (leading to a better distinction between log layer and wake

region of a channel flow). For each modification numerical stability implications are carefully considered and, after

implementation in an industrial finite-volume code, the final model proved to be significantly more robust than any

of the previous variants.

Keywords: RANS, turbulence modelling review, channel flow buffer, logarithmic and defect layer,
near-wall effects, heat transfer, unstructured finite volume method

1. Introduction

The refined modelling of wall effects in the Reynolds Averaged Navier Stokes (RANS) framework is a
topic currently revitalised as Large Eddy Simulation (LES) and related “hybrid RANS-LES” approaches
become increasingly popular and progress from low (quasi-DNS) to high Reynolds wall-bounded flows.
Indeed, because resolution of wall structures by LES would require very expensive meshes (of size ≈ Re1.8,
c.f. Chapman (1979)), in practice, wall turbulence is modelled using a RANS approach in the framework
of hybrid methodologies (review in Fröhlich and von Terzi (2008)). To this end, many types of near-wall
RANS models have been used, from one equation to full Reynolds Stress models (RSM): to name but a
few, the v2 − f model is chosen in the method of Uribe et al. (2010) whereas the PITM method of Chaouat

1For reference update please check here: http://cfd.mace.manchester.ac.uk/twiki/bin/view/CfdTm/ResPub257
∗Corresponding author. Tel: +44 (0) 161 306 3730; fax: +44 (0) 161 200 3723.
Email address: flavien.billard@manchester.ac.uk (F. Billard )
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and Schiestel (2009) relies on the RSM of Launder and Shima (1989), the Elliptic Blending RSM (EBRSM)
(Manceau and Hanjalić (2002)) is used in the seamless approach of Fadai-Ghotbi et al. (2010) and the
(D)DES (Spalart (2009)) or the Scale Adaptive Simulation of Menter and Egorov (2005) are based on the
k − ω SST model (Menter (1994)).

Certainly the high popularity of the two latter hybrid approaches is closely related to the simplicity and
robustness of the SST model, which has facilitated full scale industrial applications, e.g. complete aircrafts.
Still, the latter model carries a certain amount of empiricism, as acknowledged by the author himself (Menter
(1994)), and it features several empirical functions following the trend of many near-wall models (Patel et al.
(1985)). Over time, and as computing power persistently grows the question as to what is the best trade-off
between cost, accuracy and robustness should be revisited. The aim of the present work is to try to devise
an equivalently simple and robust approach on somehow sounder physical bases: the v2 − f model (Durbin
(1991)). Its formulation inherits the minimalism of eddy viscosity models and naturally integrates wall
turbulence “damping” by using the wall-normal fluctuations v2 as additional scale. However it also models
non-local effects of the fluctuating pressure on the turbulent fields and separately represents wall blockage
effects and low Reynolds number effects.

While the number of research groups focussing on RANS modelling has dwindled over the past 20 years,
a notable part of the work has been carried out in the framework of elliptic relaxation based models, leading
to several versions of the v2 − f model, which will be compared in the present article. In the first section,
the pros and cons of each formulation are weighted, with focus on both stability and accuracy issues. This
is followed by the presentation of the new model proposal. Lastly its performances are compared to the
k − ω SST model and the most widely used version of the v2 − f model. The cases under consideration
are two-dimensional pressure induced separating flows as well as a case of buoyancy impaired turbulence.
Some three-dimensional applications are also presented. More test cases have been successfully considered,
particularly for heat transfer as this is one of the areas where the original v2 − f model has been most
successful, but these will be reported elsewhere: the main objective of the present paper is to propose an
optimal formulation of the v2 − f type of Eddy Viscosity Model (EVM).

2. The v2 − f models

2.1. Presentation of the approach:

The model stems from the standard k− ε system (with some low Reynolds number corrections added to
the dissipation rate ε transport equation) and a third transport equation is solved for a scalar v2 , which can
be assimilated near solid walls to the wall-normal fluctuations responsible for turbulent heat and momentum
transfer from the wall to the core of the flow. The v2 equation follows the classical transport equation of
the wall-normal Reynolds stress component. To facilitate presentation of modelling concepts, y, v, ε22 and
φ∗

22 represent the wall-distance and the wall-normal component of the fluctuating velocity, the dissipation
rate and the pressure-strain2 tensors, but this does not require programming the model in a boundary fitted
coordinate system as it remains at EVM level using only scalars as turbulence characterising variables. The
difference between φ∗

22 and ε22 is modelled as a whole (ν is the kinematic molecular viscosity):

φ∗
22 − ε22 = −2

ρ
v
∂p

∂y
− 2ν

∂v

∂xk

∂v

∂xk
= ϕ22 − ε

v2

k
(1)

and ϕ22 = kf where f is solution of an elliptic equation:

f − L2∂j∂jf = fh (2)

L is a turbulent length-scale and fh is derived from “classical” second moment closure modelling in
quasi homogeneous regions. In order to ensure the correct asymptotic behaviour v2 = O(y4) the following
boundary condition should be used:

lim
y→0

f = lim
y→0

−20ν2v2

εy4
(3)

2including both pressure diffusion and redistribution.
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Figure 1: A priori evaluation of the EVM relation 4 and of the standard high Reynolds turbulent viscosity expression Cµk2/ε,
compared to the exact DNS value −uv/∂yU for the channel flow case at Reτ = 395.

Finally the model integrates v2 in the definition of the turbulent eddy viscosity:

νt = Cµv2 max

(
k

ε
, 6

√
ν

ε

)
(4)

Durbin (1991) showed that the use of the parameter v2 in equation 4 is the main feature allowing a
correct reduction of the turbulent mixing efficiency in the buffer and viscous sublayer3 (as seen in figure 1),
circumventing the need of damping functions, à la Van Driest (1956) and subsequent models (Patel et al.
(1985) review).

2.2. Generic formulation of the terms and constants

The definition of all models studied herein is given in the following. For a simpler comparison a generic
description is adopted for the third transport equation (g = v2 or g = v2/k):

Dk

Dt
= P − ε+ ∂j

[(
ν +

νt
σk

)
∂jk

]
(5a)

Dε

Dt
=

Cε1P − Cε2ε

T
+ ∂j

[(
ν +

νt
σε

)
∂jε

]
(5b)

Dg

Dt
= Sg + ∂j

[(
ν +

νt
σg

)
∂jg

]
(5c)

f − L2∂j∂jf = fh (5d)

The models are referred to by the acronyms given in table 1. The terms and constants of the f , g and
ε equations are given in tables 2, 3 and 4 respectively. The definitions of the length and time scales and
associated constants are in table 5 and use one of the expressions 6, 7 or 8.

To prevent the turbulence over-prediction at a flow stagnation point, a limiter for the turbulent time
scale is proposed in Durbin (1996). The model of LIE01 proposes to use a similar limiter in the length scale
for consistency. The version of T and L integrating this limiter are given in expression 8 (S represents the
strain rate magnitude and is defined as S =

√
SijSij with Sij = 1/2 (∂iUj + ∂jUi) ). These limiters are

effectively used in LIE01 and HAN04 models.

3It may be objected that using Expression 4 yields νt = O(y4). Therefore the predicted turbulent shear stress modelled as
uv = −νt

∂U
∂y

is O(y4) instead of the theoretical behaviour O(y3). However at walls the momentum equation budget involves

the terms ν ∂2U
∂y2 and − 1

ρ
dP
dx

which are O(1). As explained in Durbin (1991) despite this inaccuracy for the wall behaviour of

the predicted turbulent shear stress, whether uv is O(y3) or O(y4) is insignificant. Indeed in both cases the turbulent diffusion
term − ∂uv

∂y
, modelled as ∂

∂y
νt

∂U
∂y

is at least two orders of magnitude smaller than the leading order terms. Likewise similar

arguments can be developed for the turbulent kinetic energy equation.
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DUR91 Durbin (1991)
DUR93 Durbin (1993)
DUR95 Durbin (1995)
DUR96 Durbin and Laurence (1996)
LIE96 Lien and Durbin (1996)
PAR97 Parneix and Durbin (1997)
LIE01 Lien and Kalitzin (2001)
MAN02 Manceau, Carpy, and Alfano (2002b)
HAN04 Hanjalić, Popovac, and Hadžiabdić (2004)
URI06 Uribe (2006)

Table 1: Acronyms used for models.

Model f fh C1 C2

DUR91 ϕ22

k
1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k 1.2 0.3

DUR93 ϕ22

k
1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k 1.3 0.3

DUR95 ϕ22

k
1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k 1.4 0.3

DUR96 Lϕ22

k L
[

1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k

]
1.3 0.35

LIE96 ϕ22

k + 5ε v2

k2
1
T

[
(C1 − 1) 2

3 − (C1 − 6) v2

k

]
+ C2

P
k 1.4 0.3

PAR97 ϕ22

k
1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k 1.4 0.3

LIE01 ϕ22

k + 5ε v2

k2
1
T

[
(C1 − 1) 2

3 − (C1 − 6) v2

k

]
+ C2

P
k 1.4 0.3

MAN02 ϕ22

εk
1
εT (C1 − 1)

(
2
3 − v2

k

)
+ 2

3C2
P
εk 1.8 0.4

HAN04 ϕ22

k
1
T

(
C1 − 1 + C2

P
ε

) (
2
3 − v2

k

)
1.4 0.65

URI06 ϕ22

k + 2ν
k ∂j

v2

k ∂jk + ν∂j∂j
v2

k
1
T (C1 − 1)

(
2
3 − v2

k

)
+ C2

P
k + 2 ν

εT ∂jk∂j
v2

k + ν∂j∂j
v2

k 1.4 0.3

Table 2: Terms and coefficients of the f equation.




L = CL max

[
k3/2

ε , Cη

(
ν3

ε

)1/4
]

T = max
[
k
ε , CT

(
ν
ε

)1/2] (6)




L =

√
C2

L

(
k3

ε2 + C2
η
ν3/2

ε1/2

)

T =
√

k2

ε2 + C2
T

ν
ε

(7)




L = CL max

[
min

[
k3/2

ε , k3/2

√
6Cµv2S

]
, Cη

(
ν3

ε

)1/4
]

T = max
[
min

[
k
ε ,

0.6k√
6Cµv2S

]
, CT

(
ν
ε

)1/2] (8)

2.3. Evolution in the past 20 years

As seen from the tables, over the last 20 years modifications mainly focussed on the numerical formulation
(in search of a bettering robustness) and modelling of the wall effects in the dissipation rate equation.

The original version, DUR91, used an unusually high value of the production coefficient in the ε equation
(Cε1 = 1.7 instead of 1.4 as generally adopted in the RANS community). This is first corrected in DUR93,
where the coefficients of the ε equation recover more traditional values in the log-layer, where P/ε = 1,
together with a functional C∗

ε1 = f(P/ε) to trigger a surge of dissipation production in the buffer layer,
where P/ε > 1, with the rationale that this represents near-wall dissipation anisotropy. In DUR95 P/ε is
replaced by the distance to the wall y in the definition of C∗

ε1 to ensure the coefficient returns to its standard
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Model g Sg

DUR91 v2 kf − v2 ε
k

DUR93 v2 kf − v2 ε
k

DUR95 v2 kf − v2 ε
k

DUR96 v2 k
Lf − v2 ε

k

LIE96 v2 kf − 6v2 ε
k

PAR97 v2 kf − v2 ε
k

LIE01 v2 kf − 6v2 ε
k

MAN02 v2 kεf − v2 ε
k

HAN04 v2

k f − v2

k2 P

URI06 v2

k f − v2

k2P + 2
k

νt
σk

∂jk∂j
v2

k

Table 3: Terms and coefficients of the g equation. Note
that σg = 1.2 for HAN04. σg = σk for all other models.

Model Cε1 Cε2 σk σε

DUR91 1.7 2.0 1.3 1.6
DUR93 1.44

(
1 + 0.1P

ε

)
1.9 0.9 1.3

DUR95 1.3 + 0.25/

[
1 +

(
CLy
2L

)8
]

1.9 1 1.3

DUR96 1.44
(
1 + 1

30

√
k

v2

)
1.85 1 1.5

LIE96 1.55 + exp
(
−0.00285R2

y

)
1.92 1 1.5

PAR97 1.4
(
1 + 0.045

√
k

v2

)
1.9 1 1.3

LIE01 1.4
(
1 + 0.05

√
k

v2

)
1.9 1 1.3

MAN02 1.44
(
1 + 0.06

√
k

v2

)
1.91 1 1.3

HAN04 1.4
(
1 + 0.012 k

v2

)
1.9 1 1.3

URI06 1.4
(
1 + 0.05

√
k

v2

)
1.85 1 1.3

Table 4: Terms and coefficients of the ε equation. In
LIE96 Ry = y

√
k/ν.

Model expression for L and T CL Cη CT Cµ

DUR91 eq. 6 0.17 80 6 0.2
DUR93 eq. 6 0.2 90 6 0.23
DUR95 eq. 6 0.3 70 6 0.19
DUR96 eq. 7 0.2 60 4 0.16
LIE96 eq. 6 0.17 70 6 0.19
PAR97 eq. 6 0.25 85 6 0.22
LIE01 eq. 8 0.23 70 6 0.22
MAN02 eq. 8 0.23 100 6 0.22
HAN04 eq. 8 0.36 85 6 0.22
URI06 eq. 6 0.25 110 6 0.22

Table 5: Lengh and time scales.
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value in homogeneous cases (where P/ε > 1 and y → ∞). Further validations proved the early proposal for
C∗

ε1 to be numerically problematic and besides, the version of DUR95 is in contradiction with the sought-

after “wall-distance free” property of the elliptic relaxation concept. Therefore a new parameter,

√
k/v2,

is introduced in PAR97. This latter proposal, also more consistent with near-wall dissipation anisotropy
rationale, is used in all subsequent versions.

Work was also extensively performed on improving the numerical behaviour of the model. In the original
version indeed, the boundary conditions for v2 and f are coupled (equation 3) and the elliptic nature of
the f equation makes the implementation very unstable in segregated codes. For the latter, the boundary
condition, equation 3, requires a ratio of small terms (O(y4)) to be correctly computed. In practice, the
time step needed to be drastically reduced.

The model of LIE96 proposes to resolve the elliptic equation for the new variable f = f + 5εv2/k2.
Doing so enables the homogeneous Dirichlet boundary condition to be used for f and therefore yields a
significantly improved robustness. However LIE96 was an early model, which attempted to pickup by-pass
transition by a further sensitivity of C∗

ε1 to the wall distance. The version of LIE01 combines this change
of variable with the proposal of PAR97 for C∗

ε1 and LIE01 is the version chosen by major commercial codes
(StarCD, StarCCM, Fluent) for its easier convergence.

HAN04 and URI06 (originally in Laurence, Uribe, and Utyuzhnikov (2004)) have simultaneously and
independently derived models resolving ϕ = v2/k instead of v2. Both teams4 noticed a shortcoming in the

versions of LIE96 and LIE01: the change of variable f → f induces the term ∆
(
5εv2/k2

)
later neglected

in the f equation. However Laurence et al. (2004) shows it is of the same order as other f source terms in
the logarithmic region, and its omission yields a strong over prediction of v2 . By solving this new variable
ϕ, HAN04 and URI06 attempt to derive a code friendly model which, unlike LIE01, does not deteriorate
the predictions of f and v2 . The derivation of the ϕ equation (equation 9) from those for v2 and k, makes
a new term appear, the cross diffusion:

Dϕ

Dt
= f − P

ϕ

k
+X + ∂j

[(
νt
σk

+ ν

)
∂jϕ

]
(9)

X =
2

k
ν∂jϕ∂jk

︸ ︷︷ ︸
Xν

+
2

k

νt
σk

∂jϕ∂jk

︸ ︷︷ ︸
Xt

(10)

In HAN04 this X term is neglected and the f boundary condition is given as:

lim
y→0

f = lim
y→0

−2νϕ

y2
(11)

This enhances the numerical stability because the stiffness of the boundary condition is now a ratio of
O(y2) terms only. However it still proved insufficiently robust for general use in a segregated industrial
purpose code, and a modified version, the ζ − f0 model was derived in Popovac (2010) in the framework
of tests within the FLUENT package. This relies on a change of variable for f to allow a zero boundary
condition for this variable, therefore this makes the ζ − f0 model inherit the same drawbacks as the models
of LIE96 and LIE01.

In the URI06 version the cross diffusion X term is kept in the ϕ equation and the following change of
variable is proposed:

f = f −Xν − ν∂j∂jϕ (12)

Doing so allows lim
y→0

f = 0. Similarly to LIE01 a term is neglected, ∆ (Xν + ν∂j∂jϕ), but Uribe (2006)

shows it is of lesser importance. As such the formulation is numerically unstable. Indeed, in the algebraic
rearrangement of the equations consecutively to the change of variable, the molecular diffusion of ϕ is
cancelled in the ϕ equation, which reduces numerical stability in the viscous sub layer. In practice, ν∂j∂jϕ
is added to the ϕ source term, i.e. molecular diffusion of ϕ is effectively doubled. An undesired effect of
this numerical workaround is some over-prediction of ϕ near the wall, compensated by a new tuning of the
coefficients.

4HAN04 used the letter ζ and URI06 chose ϕ. The latter notation is kept throughout this work as a matter of consistency.
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Model
Reτ = 180

(Reb = 5 585)
Reτ = 395

(Reb = 13 763)
Reτ = 590

(Reb = 21 906)
Reτ = 950

(Reb = 37 035)
Reτ = 2000

(Reb = 87 180)
Error
max

DUR91 106 105 106 106 105 +6
DUR93 95 96 97 97 97 −5

DUR95 101 97 97 96 96 −4

DUR96 101 99 100 99 98 −2

LIE96 89 92 95 97 100 −11
PAR97 87 91 94 96 98 −13

LIE01 84 87 90 91 95 −16

MAN02 99 100 101 102 102 +2

HAN04 88 93 97 100 104 −12

URI06 99 102 104 105 106 +6

BL-v2/k 100 98 100 100 101 −2

Table 6: Friction coefficient Cf compared to the DNS value for the same friction velocity based Reynolds number Reτ (given
in %).

Stepping outside the scope of numerical stability issues, we now focus on changes to the elliptic operator,
equation 5d. Durbin and Laurence (1996) and Wizman et al. (1996) observe that the earlier version of the
elliptic operator correctly damps the supply of v2 in the viscous and buffer sublayers, but then erroneously
augments it in the logarithmic layer, as compared to the homogeneous case, i.e: f ≥ fh, whereas f ≤ fh
is needed in the logarithmic region5. More generally, Manceau et al. (2001) shows that if the variable f
behaves as yn in the log layer, the elliptic equation 5d becomes:

f = fh × 1

1− n(n− 1)(CLκ)2(Cµv2/k)−3/2
(13)

f defined as ϕ22

k behaves as y−1 (n = −1) in the log layer, leading to an actual amplification. The strategy

adopted by DUR96 and MAN02 is to solve equation 5d for a “rescaled” variable f̃ . f̃ = Lf and f̃ = f/ε
are adopted in DUR96 and MAN026 respectively. These formulations leave the f variable unchanged (i.e.
f = fh) in the logarithmic region and are called “neutral”.

2.4. Behaviour in fundamental flows

Using well-established DNS databases of channel flow (Kim et al. (1987), Moser et al. (1999), Alamo et al.
(2004), Jimenez and Hoyas (2008)) as reference values, the skin-friction predictions of the various versions
are shown in table 6 in terms of percentage. The results are mostly lying within the 10% as expected for a
case used for constant tuning, but there is a clear upward (sometimes downward) drift, whence the errors are
expected to increase for higher Re numbers beyond these DNS cases. In particular LIE96, PAR97, LIE01 and
HAN04 models yield a maximum error ranging from −11% to −16%. The neutral formulations of DUR96
and MAN02 are clearly less affected. The properties of the logarithmic layer at infinite Reynolds number
(P = ε and L = κy) are classically assumed to reduce the equations to algebraic expressions, following which
the Von Kármán constant κ and anisotropy v2/k = ϕ can be evaluated. The values returned by models in
this configuration ( κ and ϕlog) are provided in table 7, along with the value taken by the coefficient C∗

ε1,
noted C∗

ε1,log . Behaviours of models strongly differ from one another. The Von Kármán constants predicted
by LIE96 and LIE01 are excessively high and this is linked to an over prediction of ϕlog returned by the
latter models. Naturally, the larger friction error drifts with Re number observed in table 6 are consistent
with the larger errors on the Von Kármán constant prediction.

The asymptotic values of ϕ∞ and C∗
ε1,∞ in the case of homogeneous flow subject to a constant strain

rate dU/dy is given, table 7. Large differences amongst models can be observed.

5with strict f < fh for purely homogeneous models or f = fh for better anisotropy reproducing high Reynolds and wall
function based pressure-strain models (LRR-QI of Launder, Reece, and Rodi (1975) or SSG of Speziale, Sarkar, and Gatski
(1991)).

6MAN02 corresponds to the model presented in Manceau et al. (2002b) but this “rescaled” v2 − f version was originally
introduced in Manceau et al. (2002a) with different values for some of the constants.
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Model κ ϕlog C∗
ε1,log ϕ∞ C∗

ε1,∞
DUR91 0.38 0.48 1.7 0.35 1.70
DUR93 0.37 0.49 1.58 0.36 1.58
DUR95 0.41 0.71 1.55 0.34 1.30
DUR96 0.36 0.42 1.51 0.40 1.52
LIE96 0.51 1.13 1.55 0.37 1.55
PAR97 0.45 0.63 1.48 0.37 1.50
LIE01 0.59 1.60 1.46 0.37 1.52
MAN02 0.40 0.44 1.53 0.39 1.53
HAN04 0.49 0.7 1.42 0.31 1.45
URI06 0.41 0.59 1.49 0.37 1.51

BL-v2/k 0.42 0.41 1.44 0.37 1.44

Table 7: Predictions of the models in the logarithmic layer (left part) and in homogeneous shear turbulence (right part).

2.5. Limitations of the existing versions

Stability vs accuracy. Among the code-friendly formulations, none is able to effectively suppress the f bound-
ary condition stiffness without impairing the quality of results. In LIE96 and LIE01 the terms rearrangement
is done at the expense of an over prediction of v2 in the log layer, whereas the modification proposed in
URI06 leads to an overshoot of ϕ near walls. Our experience, after implementing different coding strategies,
careful time-stepping and running a number of test cases is that, model version HAN04 still does not reduce
the boundary condition stiffness in the f equation sufficiently.

Amplification effect in the log region. All models but DUR96 and MAN02 (thanks to the neutral formulation)
show an overshoot of ϕ in the logarithmic layer. For LIE96 and LIE01 the combination of the two sources
of over-prediction is dramatic due to a positive feedback effect: v2 is over-estimated due to the change of
variable f → f which increases the amplification factor (equation 13) which in turn increases even more
v2 , and so on. Consequently those 2 models, chosen by code vendors for robustness, return values of ϕlog

between 1.13 and 1.60 (table 7), which are not realisable (ϕ < 2/3). Similarly DUR95 and HAN04 return
excessively high v2 values.

The inter-dependance of coefficients. In the k−ε model, equations 14a and 14b (Jones and Launder (1972))
determine the model behaviour in fundamental flows, where only some of the source terms of k and ε are
involved, and constants are tuned accordingly. Table 8 summarises the different modes. Dt

k and Dt
ε are the

turbulent diffusion terms for k and ε (∂j (νt/σk∂jk) and ∂j (νt/σε∂jε) respectively).

Dk

Dt
= P − ε+Dt

k + ν∂j∂jk (14a)

Dε

Dt
=

1

T
(Cε1P − Cε2ε) +Dt

ε + ν∂j∂jε (14b)

Mode P ε Dt
k Dt

ε Constants

DIT 3 Cε2

HST 3 3 Cε1

Defect Layer 3 3 3 Cε2, σk, σε

Log. Layer 3 3 3 Cε1, Cε2, σε

Near Wall 3 3 3 3 Cε1, Cε2, σk, σε

Table 8: Active k and ε source terms and constants in the fundamental configurations: decaying isotropic turbulence (DIT),
homogeneous shear turbulence (HST), defect layer, logarithmic layer at infinite Reynolds number and near-wall transition
region.

In the versions of PAR97, LIE97, LIE01, MAN02, HAN04 and URI06, the fine-tuning of ε near walls is
achieved by optimising the proportionality coefficient linking C∗

ε1 and v2/k. However this variability subsists
in the logarithmic layer and in homogeneous flows where it is undesirable. For those models, the difference in
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the C∗
ε1 definition (table 4) leads to strong diversity of prediction of the Von Kármán constant in logarithmic

layer and turbulence growth rate P/ε in homogeneous shear turbulence (table 7). This interdependence also
leads to a tedious calibration of the other model constants. Noteworthily the defect layer modelling (where
P/ε → 0) is not specifically considered in any of the formulation proposals (besides those neutralising the
elliptic relaxation effect in the log-layer, which can also influence the defect layer).

The wall bounded/free shear flows distinction. DUR95 is the only model able to return a substantially lower
value of the coefficient Cε1 in homogeneous shear flows, hence a larger shear layer spreading rate. It is
actually the difference between Cε1 and Cε2 that is most influential, but Cε2 remains fixed within each
model. All other versions return the same Cε1 value regardless of the presence of a wall.

3. The present formulation

A new formulation is now developed to address the problems exposed in the previous section, while
simultaneously exploring more robust or “code friendly” solutions, which mostly stem from source terms
groupings and changes of variables. One such solution was found in an adaptation to the eddy viscosity
framework of the elliptic blending RSM approach of Manceau and Hanjalić (2002). It relies on the resolution
of an elliptic equation for a non-dimensional coefficient α:

α− L2∂j∂jα = 1 (15)

This coefficient is given the boundary condition α = 0 at solid walls and relaxes towards 1 away from
walls. It is used as a blending parameter in the v2 source term modelling to feature a smooth transition
between near-wall and quasi-homogeneous models: ϕ22 = (1− αp)ϕw

22 + αpϕh
22. The present choice p = 3

(instead of p = 2 as in Thielen et al. (2005)) is used throughout the model’s derivation following the
suggestion of Lecocq (2008) who showed that a value at least equal to 3 is needed for the homogeneous term
αpϕh

22 to vanish in the near-wall balance of the v2 transport equation.
The model principal variable to be solved in a transport equation is the reduced variable ϕ = v2/k and

as such it formally can be considered as a follow-up of the work of Laurence et al. (2004).
This formulation enables setting a zero wall boundary condition for the elliptic variable α, therefore

solving the numerical problems associated to the wall limit. For the definition of L and T , expression 7
is used as this provides a smoother transition between the Kolmogorov and the integral scale (Durbin and
Laurence (1996)). For the coefficient CT associated to the time scale, Equation 7, the value recommended
by the latter authors CT = 4 is adopted. Moreover, the constant CL is chosen so that the turbulent
length-scale (Equation 7) recovers its theoretical behaviour (i.e. L = κy) in the logarithmic region in the

limit Reτ → ∞. Indeed in this situation the following holds: L = CL

(
Cµv2/k

)−3/4

κy. Hence the value

CL =
(
Cµv2/k

)3/4

= 0.164 is adopted (we use the numerical value v2/k = 0.41 obtained in the logarithmic

layer as presented in Table 7). Finally, similarly to HAN04, the quasi-linear SSG model has been used (but
with the same simplifications as the ones performed in HAN04). However we keep here the same original
values for C1 and C2 as recommended in Speziale et al. (1991) 7.

The model uses the realisability constraint but only in the expression of the time scale present in the
definition of the turbulent viscosity. This choice finds its justification in the analysis done in Sveningsson
and Davidson (2004) which shows that a systematic use of the limiter wherever T is present makes it less
efficient and can even lead to numerical instabilities originating from the redistribution term. The same
authors also questioned the relevance of the length-scale limiter (as used in expression 8).

This new proposed blended k−ε−v2/k model will be denoted as BL-v2/k throughout this paper. Equa-
tions and constants of the BL-v2/k model are given in full in Appendix A, while the incremental changes
are described below:

The modifications brought to the k − ε system can be formally seen as a double change of variable:

7Note that the present C2 constant is noted C∗
1 in their paper.
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ε = εh +
k

ε
E

︸ ︷︷ ︸
ε′h

+
1

2
ν∂j∂jk (16)

Where the E term is defined in equation 17.

E = 2ννt (∂k∂jUi) (∂k∂jUi) (17)

This E term, originally proposed by Jones and Launder (1972) (JL) to account for viscous wall effects
in the ε equation, is a sounder alternative to making the production of dissipation constant C∗

ε1 dependant
on anisotropy. The E term removes some of the non-linearities and is clearly an inhomogeneity and low-
Reynolds number correction (second derivative of velocity and molecular viscosity contributions respectively)
which, in a channel flow makes it active only in the buffer-layer. A term by term modelling of the dissipation
equation is highly debatable: ε or ω are in effect substitutes for an integral length-scale (a most essential
parameter in the EVM framework, but which does not lend itself easily to modelling at one-point transport
equation level). However one may recall that the E term has much similarity with the P 3

ε term of the exact
ε equation (Rodi and Mansour (1993)). Moreover the JL E term was shown to be an essential ingredient
for the success in bypass transition modelling (Savill (1993), Savill (2002)). Adaptation of the E term in the
framework of v2 − f modelling was also successfully applied in the case of a skewed channel flow (Howard
(1999), Howard and Sandham (2000)).

However its presence introduces numerical difficulties8. Therefore, in the present model the E term is
reintroduced in the k equation using the change of variable ε′h = εh + k/εE. This allows it to be handled
implicitly and causes no numerical instability.

Moreover, the decomposition ε = ε′h + 1/2ν∂j∂jk is adopted from Jakirlić and Hanjalić (2002) with an
aim to reduce the sink term ε in the k equation when k → 0.

In the present model, a transport equation is finally solved for εh , and to satisfy near-wall balances of
the source terms in the k, εh and ϕ equations, the viscous diffusion of the three variables is halved. This also
explains the presence of a factor ×1/2 in the term fw of the ϕ equation. The following boundary condition
is used for εh :

lim
y→0

εh =
νk

y2
(18)

The variable εh is used in place of ε wherever it appears in the k, εh and ϕ equations, as well as in
the definition of L and T . The formal change of variable would involve more terms which are deliberately
neglected in the present approach, on the bases that they would only play a role in the vicinity of walls.

Besides the numerical gain of using such a decomposition (which facilitates the numerical treatment of
the E term), the latter features a decisive advantage for the model accuracy: the Kolmogorov time and
length scales are used as lower bound of T and L, equations A.6, and they depend on the near-wall value of
εh . It may be argued that these Kolmogorov scales should not be influenced by the outer flow; therefore
they should be independent of the Reynolds number Reτ . The variable εh resolved by the present model
is much less Reτ dependant compared to the DNS values, as shown figure 2. Indeed the presence of the
term −Cε3 (1− α)

3
k/εhE in the k equation strongly diminishes the predicted value of the turbulent kinetic

energy peak in the buffer layer, the latter being known to be strongly Reτ dependent.
The k sensitivity to Reτ number is mainly due to the streamwise fluctuations (and streak structures)

whereas the wall-normal component v2 is nearly independent of Reτ , therefore removing the effect of E
term, via the Reτ independent εh, on the right hand side of the ϕ equation A.4 (as well as in L and T ,
equations A.6) and introducing it directly into the k equation A.1 is justified. Moreover, this allows an
easier tuning of the model in channel flow for which case the present formulation shows the best predictions
for both low and high Reynolds number, as seen on table 6. The correct theoretical behaviour of the model
in the log layer is also recovered (table 7).

Finally the coefficient Cε1 is kept constant, equal to its conventional value 1.44. The extent of the
E term effect is limited by the blending factor (1− α)3 although the presence of the product ν × νt in E
already makes it a “buffer layer” term.

8It was adopted in the first version of the elliptic blending Reynolds Stress model in Manceau and Hanjalić (2002) but later
abandoned (e.g. Thielen et al. (2005)).
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Figure 2: Comparison of the DNS near wall dissipation rate ε (symbols) and the homogeneous dissipation rate εh returned by
the present model (symbols with solid lines) for friction velocity based Reynolds number Reτ ∈ {180; 395; 590; 950; 2000}.

Figure 3: Budget of the ε equation for a channel flow, rescaled by ×(y+)2, Reτ = 395. Symbols are DNS values and lines are
a priori model values. Data of Rodi and Mansour (1993).

We now focus on the defect layer. The local equilibrium hypothesis P = ε characterising the logarithmic
layer no longer holds further outwards. As the velocity gradient decreases turbulence is only sustained by
turbulent transport terms, increasingly towards the defect layer. At the centre of the channel in the k
equation the equilibrium P = ε is then replaced by DT

k = ε, as represented in table 8 and DNS data indicate
that σk = 1 is adequate. The standard values of the ε equation coefficients are calibrated to represent the
logarithmic layer, homogenous shear and grid turbulence decay only. An analysis of the budget of the ε
equation, as performed in Parneix et al. (1996) and also shown on figure 3 using data of Rodi and Mansour
(1993), shows that if the exact ε source terms are split between rapid (P1+P2+P3) and slow terms (P4−Y )
(involving or excluding the mean velocity gradient respectively) the standard values of Cε1 = 1.44 and
Cε2 = 1.83 seem overestimated by a factor two.

In the logarithmic layer this overestimation is inconsequential because the excess of production and
dissipation cancel each other. But even if the split between rapid and slow terms in the ε equation is highly
debatable, Cε2 needs to be halved in the channel centreline region, so that it can be balanced by the
turbulent transport term, which itself compares very well with the DNS data throughout the logarithmic
and defect layers with the standard value of σε = 1.3, as shown on figure 3.

Neither P/ε, nor anisotropy can be used as a criteria for reducing Cε2 in the defect layer while not
affecting results in grid turbulence decay, since these parameters take the same value in both flow configu-
rations, hence Parneix et al. (1996) suggested a Cε2 dependency on DT

ε , but in the RSM context and for
the recirculation bubble in a backstep flow. Following the same idea, a functional Cε2 is proposed here for
the present model:
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Figure 4: A priori evaluation of the proposed C∗
ε2 coefficient sensitive to turbulent transport (equation 19) for a channel flow

at Reτ ∈ {180; 395; 590; 950; 2000}.

Figure 5: A priori evaluation of the main source term of ε, Sε = P1 + P2 + P4 − Y in the central region of a channel flow,
Reτ = 395, influence of the use of C∗

ε2 as defined in eq. 19. Comparison with the DNS of Mansour and Rodi (1993).

C∗
ε2 = Cε2 + α3 (Cε4 − Cε2) tanh

(∣∣∣∣
Dt

k

εh

∣∣∣∣
3/2
)

(19)

This results in C∗
ε2 going from the standard value Cε2 in the logarithmic region to a decreased value of

Cε4 in the defect layer. The inclusion of the blending parameter α in relation 19 is very handy as a zonal
modelling parameter (rather than e.g. a turbulent Reynolds number) and ensures the C∗

ε2 modification is
not active near the wall, where turbulent transport is again significant.

The a priori evaluation of C∗
ε2 given by relation 19 for different Reynolds numbers in a channel flow is

shown in figure 4. This relation yields a fairly Reτ independent characterisation of the central region of the
channel. As achieved in Parneix et al. (1996), the exact source term of the ε equation is better represented
using the proposed C∗

ε2, as shown in figure 5, whereas the standard value 1.83 yields a too strongly negative
ε sink term. This discrepancy of the standard model returns insufficient level of dissipation in this region
resulting in a well-known over-estimation of the turbulent viscosity and turbulent length scale (Laurence
et al. (2004)).

The predicted velocity and turbulent viscosity given by the model with and without using the relation
19 for C∗

ε2 are shown in figure 6 for the channel flow case at Reτ = 2000. When using a constant C∗
ε2 the

returned turbulent viscosity is over predicted in the central region, and this discrepancy is common to all
v2−f models, and indeed a vast majority of RANS models, which lack information characterising the defect
layer. This is to be directly linked to the consistent ε under-prediction.
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Figure 6: Effect of C∗
ε2 as defined in eq. 19 in a channel flow, Reτ = 2000: velocity with logarithmic scale (top) close up of the

mean velocity profile with linear scale (middle) and turbulent viscosity profile (bottom).
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This νt over-prediction was shown to be especially severe for models over-predicting v2 (for those depicting
a strong “amplification” effect, such as the popular “code-friendly” version of LIE96 and LIE01, as shown
in Uribe (2006)). The present version yields an improved representation of νt in the central region, thus
leading to a improved mean velocity prediction. With this modification, the model also returns the correct
turbulence growth rate both in wall bounded and free shear flows. The turbulence growth P/ε now takes
the different values (Cε4 − 1)/(Cε1 − 1) or (Cε2 − 1)/(Cε1 − 1) at the edge of a boundary layer and in free
shear flow respectively.

4. Applications

The model is validated in two classes of flows. The first type of configuration studied is two cases of
pressure induced separating flows featuring a recirculation. A good prediction of the flow pattern is directly
linked to the correct reproduction of the shear stress evolution, itself, in an eddy viscosity framework,
dependent on the length scale determining equation. The second category of problem under consideration
is buoyancy induced turbulence generation/impairment, for which the correct near-wall turbulence damping
prediction is crucial.

For sake of clarity, the complete present BL-v2/k model equations and constants, consistently bench-
marked on a range of test cases (Billard (2011)) is recalled in appendix A. Models are implemented in
Code Saturne (Archambeau et al. (2004) and Fournier et al. (2011)) an unstructured, collocated finite vol-
umes, time-dependent yet segregated flow solver, freely available in “open-source” format.

4.1. Pressure induced separating flows

The flow through a periodically constricted channel (Almeida et al. (1993) experiment and reference
LES of Temmerman and Leschziner (2001)) and in an asymmetric plane diffuser (Obi et al. (1993), Eaton
(2000), reference data of Buice and Eaton (1997)) are two cases often used to validate RANS models. They
are named hereafter “periodic hill flow” and “diffuser flow”. The computational domains are represented
on figure 7.

The length of the periodic hill domain is L1 = 9H1 with H1 being the hill height. The Reynolds number
based on H1 and the bulk velocity U1 is 10 595. The diffuser flow domain consists of an inlet channel of
height H2 subject to a sudden expansion with an angle of 10◦. The height of the outlet channel is 4.7×H2

and the length of the computational domain is L2 = 71H2. The Reynolds number based on H2 and the
bulk velocity U2 is 18 000.

The mesh resolution is 172× 120 for the periodic hill flow and 292× 96 for the diffuser flow. In order
to ensure that the present meshes are sufficiently fine, all models were run on finer meshes (with twice as
many computational nodes in both directions) with no noticeable changes. Moreover the non-dimensionnal
wall distance (in viscous units) of the closest cells to the wall is always smaller than unity, making those
meshes suitable for use with low Reynolds number models.

The proposed BL-v2/k version is compared to the most widely used v2 −f model of LIE01 as well as the
popular k − ω SST model of Menter (1994). Figure 8 presents the flow pattern returned by all models on
the periodic hill flow and the location of the separation and reattachment on both cases are given in table 9.
Figures 9 and 11 show the skin friction prediction along the hill surface and the inclined wall of the diffuser
respectively and figures 10 and 12 show the profiles of the mean stream-wise velocity and the turbulence
shear stress in the two cases.

As it can be seen from the flow streamlines and the skin-friction plots, in both cases the flow pattern
prediction is fairly well returned by both v2 − f models whereas the k − ω SST yields excessively long
re-circulation in the periodic hill case and predicts a far too early separation point in the diffuser flow,
although here the reattachment point is correctly predicted by all models. For the latter case the recovery
rate is also noticeably under-predicted by the k−ω SST model. Some differences between both v2−f based
models can be observed on the skin-friction coefficient plots, particularly in the recirculation zone of both
cases and the recovery region of the diffuser flow. Minor differences between the two latter models can also
be observed in the velocity profiles predictions. In both cases the LIE01 model is somehow superior in the
recovery region, although in the periodic hill case this being partly due to the BL-v2/k model reattaching
slightly too late. However the reverse flow magnitude in the recirculating part of each flow is very similarly
predicted by both v2 − f based model. As far as turbulent shear stress predictions are concerned, the main
differences between models can be observed in the separation region of the periodic hill flow and the edge
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Figure 7: Geometry of the two pressure induced separating flows. Top: Periodic hill flow, Bottom: Diffuser flow.

Periodic hill Diffuser
Model Sep. Reatt. Sep. Reatt.
Ref. 0.22 4.72 7.34 28.9

BL-v2/k 0.33 5.14 8.21 30.3
LIE01 0.39 4.78 5.42 28.9

k − ω SST 0.24 7.58 1.57 29.1

Table 9: Location of the separation (Sep.) and reattachment (Reatt.) in the periodic hill flow and the diffuser flow. Distances
are normalised by H1 and H2 respectively.

of the recirculating flow of the diffuser, but all models show a consistent under-prediction of the turbulent
shear-stress especially in the periodic hill flow.

The divergence between prediction of the BL-v2/k and LIE01 models in these two configurations is
relatively small despite formulations being very different, even regarding the terms and constants of the
k−ε system on which they are based. As seen on figure 13, the C∗

ε2 coefficient returned by the present model
gradually departs from its homogeneous turbulence value of 1.83 to reach its minimum in the defect layer of
the top boundary layer and most importantly just below the separation shear layer. The conventional values
1.44 and 1.83 for Cε1 and Cε2 would yield too high a turbulence growth rate therefore an under predicted
recirculation size. All the v2 −f models, calibrated to return fair predictions in this type of two dimensional
simple flows, use a higher value for the constant Cε1 (ranging from 1.5 to 1.55). However for all versions
but DUR95 the same value is used as in homogeneous cases. On the other hand, the C∗

ε2 modification of
the present model is only activated in the presence of inhomogeneities and theoretically derived behaviours
in homogeneous configurations of table 8 are properly recovered.

This functional C∗
ε2 proposal limiting the turbulence growth can be somehow compared to the turbulent

viscosity limiter of the k−ω SST model. In the latter model, the limiter is only active when F2 = tanh(arg2
2)

is close to 1, which is for large magnitude of the argument arg2 defined as:

arg2
2 = max

(
2
√
k

0.09ωy
,
500ν

y2ω

)
(20)

With y representing the wall distance. Likewise in the present model the constant C∗
ε2 is decreased only

in regions where the magnitude of the term |Dt
k/εh|

3/2
is the largest. Figure 14 compares the fields of
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LIE01
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Figure 8: Streamlines prediction in the case of the periodic hill flow compared to the refined LES of Temmerman and Leschziner
(2001).

Figure 9: Prediction of the skin friction coefficient Cf in the periodic hill flow.
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Figure 10: Prediction of the velocity profiles (top) and the turbulence shear stress (bottom) in the periodic hill flow. See
Figure 9 for legends.

Figure 11: Prediction of the skin friction coefficient Cf in the diffuser hill flow. See Figure 9 for legends.
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Figure 12: Prediction of the velocity profiles (top) and the turbulence shear stress (bottom) in the diffuser flow. See Figure 9
for legends.

Figure 13: Function C∗
ε2 given by equation 19, returned by the BL-v2/k model in the periodic hill flow.
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Figure 14: Comparison of the tanh arguments in the BL-v2/k definition of C∗
ε2 (i.e.

∣∣Dt
k/εh

∣∣3/2) (top) and in the k − ω
SST definition of the F2 function (bottom).
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|Dt
k/εh|

3/2
and arg2

2 of the respective models in the periodic hill flow. It can be seen that both terms take
their maximum values in the same regions (edge of top boundary layer and of the recirculation) indicating
that the regions where the turbulence is limited by the respective models are reasonably similar9 near the
separation point, although further downstream the k − ω SST limiter seems more active than that of the
present model, and this could explain why the recirculation returned by the SST model is excessively large.

Noteworthily, the realisability constraint limiters present in T (for the present model) and in T and L
(for the LIE01 model) do not play meaningful role in these two configurations10.

4.2. Mixed forced and natural convection in an upward heated channel flow

The added effect of buoyancy on a pressure driven fully turbulent flow was investigated in the DNS of
Kasagi and Nishimura (1997) for a flow between two vertical plates kept at different temperatures, Tc and
Th (with Tc < Th), driven upwards by a pressure gradient (the Reynolds number based on the averaged
friction velocity on the two walls and the channel half-width δ is Reτ = 150). The resulting Grashof number
is Gr = 9.6× 106, where Gr is defined as gβ(Th − Tc)(2δ)

3/ν2 (β and ν represent the volumetric expansion
and the molecular viscosity respectively).

The pressure gradient drives the flow upwards whereas the buoyant force drives the flow upwards (near the
hot wall, aiding flow) and downwards (opposing flow). Owing to the near wall velocity profile modification
by buoyancy, the turbulence is decreased in the aiding flow and increased near the opposing flow. The heat
flux is modelled using a simple gradient diffusion hypothesis with a turbulent Prandtl number equal to 1.
As the gravity is perpendicular to the temperature gradient, the simple model for the heat flux implies the
buoyancy production is modelled as 0 in the turbulent equations.

The predictions of mean velocity, mean temperature, turbulent shear stress, turbulent kinetic energy
and wall-normal anisotropy are shown in figure 15 for the BL-v2/k , the LIE01 version and the k − ω
SST model. In the buoyancy aiding side, the turbulence impairment observed is somehow captured by all
models, with returned level for k significantly decreased, whereas in the opposing side only the present
model returns a correct level of turbulent kinetic energy, and the LIE01 model yields over prediction. The
k−ω SST consistently under predicts levels of k on both sides. The near-wall anisotropy v2/k is fairly well
predicted by both v2 − f based models.

The present model gives the best predictions for the turbulent shear stress therefore yielding the best
velocity and temperature profiles.

The relaminarisation and 50% drop of Nusselt number in the heated pipe with upward flow (buoyancy
aided), You et al. (2003), is another case that the v2 − f model including the present version successfully
reproduces, in opposition to an even more dramatic failure of the k − ω SST model. Results on this case
for a selection of RANS models including an early version of the BL-v2/k model are reported in Keshmiri
et al. (2008).

Other heat transfer cases (not shown here), including natural convection in a cavity (Betts and Bokhari
(2000)), flow in a ribbed channel (Rau et al. (1998)) and jet impinging a flat plate (Cooper et al. (1993))
were successfully run with the present model. The BL-v2/k model was also applied to three dimensional
flows: the three dimensional diffuser flow reported in Cherry et al. (2008) (the Reynolds number based on
bulk velocity and the inlet duct height is 104), the flow over a highly swept wing (Zhong and Turner (2009))
(the Reynolds number based on the free stream velocity and the wing chord length is 2.1× 105) and around
the Boeing Rudimentary Landing Gear (the Reynolds number based on the free stream velocity and the
wheel diameter is 106)(more details on this case can be found in Spalart et al. (2010)). For the three latter
cases, the simulations were run on block structured meshes of 1.2, 3.7 and 5.4 million cells respectively using
HPC facilities. Noteworthily simulations using other versions of the v2 − f model (URI06 and LIE01) failed
to converge on the landing gear and were much harder to converge on the swept wing case. Illustrative
pictures of the results obtained with the present model are presented Figure 16. Detailed results of the
present model on the 3-dimensional diffuser and the swept wing are presented in Billard et al. (2011).

9To visually emphasise the similarity between the two turbulence limiter mechanisms, a logarithmic scaling is used.
10Switching off this constraint in the BL-v2/k and LIE01 models increases the recirculation by a mere 1.5% and 1% respec-

tively for the periodic hill flow. No difference is noticed in the diffuser flow.
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Figure 15: Prediction of the mean upwards velocity U+, the mean temperature T−Tc
Th−Tc

, the turbulent shear-stress uv+ as well

as the turbulent kinetic energy k+ and the wall-normal turbulent anisotropy v2
+
/k+ in the case of a flow inside a heated

channel.

Figure 16: Applications of the BL-v2/k model to three-dimensional flows. Isosurface of zero streamwise velocity for the three
dimensional diffuser flow and isosurface of the vorticity coloured by the turbulent kinetic energy on the swept wing flow and
the case of the Boeing rudimentary landing gear.
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Conclusion

A numerically robust low Reynolds number eddy viscosity model incorporating the principles of the
v2 − f approach has been derived after a review of 10 variants starting from the model of Durbin (1991).
The new model incorporates the near-wall turbulence damping effects through an elliptic equation but
relies on the elliptic blending method originally proposed in Manceau and Hanjalić (2002) for an increased
robustness. The elliptic blending approach retains the main appealing feature of the original elliptic operator
that allows clearer distinction between near-wall kinematic blockage of wall normal fluctuations and low-
Reynolds number effects, but now uses the dimensionless variables α and ϕ = v2/k to represent wall
proximity and wall-normal velocity fluctuations respectively. This choice of variables yields an improved
robustness. Moreover an alternative form of the standard k − ε system is used and the present model
reintroduces the E term originally proposed by Jones and Launder (1972) in order to represent the increased
generation of dissipation required near walls. Consecutively to these modifications the predictions of the
turbulent variables for the present model in a boundary layer are less dependent on the Reynolds number
and this enables a better prediction of the mean flow quantities in a channel flow, at both low and high
Reynolds numbers. Noteworthily, the changes introduced in the present version are only active in the
regions they are intended for, hence reducing the inter-dependance of the coefficients, and permitting an
easier calibration. The expected behaviour in fundamental flows (logarithmic layer at infinite Reynolds
number, decaying isotropic turbulence, homogeneous shear turbulence) is now recovered.

Performances of the model, implemented in an industrial CFD code, have then been successfully assessed
in the case of pressure induced separating flows as well as buoyancy impairing turbulent flows. Some
illustrations of the results of the present model applied to more complex 3 dimensional cases are also
presented.
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Appendix A. Equations of the BL-v2/k model

Dk

Dt
= P − εh + ∂j

[(
ν

2
+

νt
σk

)
∂jk

]
(A.1)

−Cε3(1− α)3
k

εh
2ννt (∂k∂jUi) (∂k∂jUi)

Dεh
Dt

=
Cε1P − C∗

ε2εh
T

+ ∂j

[(
ν

2
+

νt
σεh

)
∂jεh

]
(A.2)

C∗
ε2 = Cε2 + α3 (Cε4 − Cε2) tanh

(∣∣∣∣
∂j (νt/σk∂jk)

εh

∣∣∣∣
3/2
)

(A.3)

Dϕ

Dt
=

(
1− α3

)
fw + α3fh − P

ϕ

k
+ (A.4)

2

k

νt
σk

∂jϕ∂jk + ∂j

[(
ν

2
+

νt
σϕ

)
∂jϕ

]

fw = −εh
2

ϕ

k
and fh = − 1

T

(
C1 − 1 + C2

P

εh

)(
ϕ− 2

3

)

α− L2∂j∂jα = 1 (A.5)





L =

√√√√C2
L

(
k3

ε2
h

+ C2
η

ν3/2

ε
1/2
h

)

T =

√
k2

ε2
h

+ C2
T

ν

εh

Tlim =
0.6√

6Cµϕ
√
SijSij

(A.6)

νt = Cµϕk min(T, Tlim) (A.7)

Cε1 Cε2 Cε3 Cε4 σk σεh

1.44 1.83 2.3 0.4 1 1.5

Cµ CT CL Cη C1 C2 σϕ

0.22 4 0.164 75 1.7 0.9 1

Table A.10: Constants of the BL-v2/k model.
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ABSTRACT
This paper considers the application of four Reynolds

Averaged Navier Stokes (RANS) models to a range of pro-
gressively complex test cases, exhibiting both 2-D and 3-D
flow separation. Two Eddy Viscosity Models (EVM) and two
Reynolds Stress Transport Models (RSM) are employed, of
which two (one in each category) are based on elliptic blend-
ing formulations. This study attempts to gain more insight
into the importance of two modelling features for these flows;
the usage of turbulence anisotropy resolving schemes and the
near-wall limiting behaviour. As expected, there is no single
best model, though some clear trend in performance is ob-
served.

INTRODUCTION
The dramatic increase in available computational power

in recent years has tended to draw turbulence research away
from advanced Reynolds-Averaged Navier Stokes (RANS)
closures, to focus instead on approaches that fully, or par-
tially, resolve the turbulent structures. Since fully resolved
approaches (Direct Numerical Simulation) remain impracti-
cal for industrially relevant cases, a series of progressively
more significant approximations are usually adopted for such
applications. While Large Eddy Simulation (LES) has been
successfully applied to complex flows for moderately high
Reynolds numbers, the formal application of this methodol-
ogy also remains computationally prohibitive for the majority
of industrial flows. In particular, the sufficient resolution of
near-wall structures with LES requires extremely fine meshes.

In response to the above limitations, a number of so
called hybrid RANS-LES schemes have been developed
across the community (see, for example Haase et al., 2009;
Fröhlich & von Terzi, 2008) in which the near-wall turbulence
is modelled using a RANS approach, and LES employed for
the outer flow regions. However, the majority of these hybrid
methods retain rather simple (often linear) eddy-viscosity-
based RANS closures. These simple modelling schemes are
known to perform poorly in flows with, amongst other fea-
tures, complex separation, reattachment, impingement, and
curvature (Haase et al., 2006). As such, it is relevant to ques-
tion the impact of the RANS model on the hybrid solution, and
the potential improvements one might gain by using a more
complex scheme within such approaches.

This paper therefore attempts to explore the performance

of a number of advanced eddy-viscosity and Reynolds stress
transport models in a range of flows involving challenging
separation and reattachment features. The focus is on the use
of such schemes within a purely RANS solution strategy, to il-
lustrate their performance, although this will also allow some
conclusions to be drawn regarding the expected performance
if they were applied within the more computationally expen-
sive hybrid approaches. A number of common 2-D flows are
first examined, before two flows with 3-D effects are com-
puted.

DESCRIPTION OF THE MODELS
Four models are compared in the present study, namely

the k-ω SST of Menter (1994), the SSG model of Speziale
et al. (1991), the blended k − ε − v2/k (BL-v2/k ) model of
Billard & Laurence (2011) and the Elliptic Blending RSM
(EBRSM) of Manceau & Hanjalić (2002). The first two of
these are fairly widely used and well validated models, thus
serving as a reference against which to judge the performance
of the more recent BL-v2/k and EBRSM schemes.

The BL-v2/k and the EBRSM are, respectively, elliptic-
blending adaptations of the v2 − f and the Ri j − fi j models of
Durbin (1991) and Durbin (1993). Both models are designed
to take at least some account of the correct near-wall asymp-
totic behaviour of the Reynolds stresses, without using tradi-
tional wall-reflection or other geometry-dependent terms, to
simplify application to complex geometries. In both models,
a non-dimensional parameter α is solved for using an elliptic
equation of the form:

L2∂kkα −α = −1 (1)

where L represents some turbulent length-scale. α varies from
zero at walls to unity in free-stream regions and is used as a
blending parameter in both closures.

The EBRSM formulation: The parameter α is here
used in the Reynolds stress transport equations to model the
pressure strain term, φ∗

i j
1, and the dissipation rate, εi j, blend-

ing between forms devised for the near-wall (subscript w) and
outer flow (subscript h) regions:

1The term φ∗
i j in fact represents the sum of the deviatoric pressure-

strain, φi j, and the pressure diffusion component.
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φ∗
i j = (1−α3)φ∗

i j,w +α3φ∗
i j,h

εi j = (1−α3)εi j,w +α3εi j,h (2)

εi j,h is simply taken as isotropic, 2/3εδi j , while the term
φ∗

i j,h is based on the SSG model. In the near-wall region,
the model of Rotta (1951) is used for the dissipation rate,
εi j,w = εuiu j/k, whilst φ∗

i j,w is constructed to balance other
leading order terms at walls (namely εi j,w and molecular dif-
fusion), and is taken as

φ∗
i j,w = −5

ε
k
(uiukn jnk +u juknink −

1
2

ukulnknl(nin j +δi j))

(3)
where n = ∇α is used to identify the direction normal to the
wall (See Manceau & Hanjalić, 2002, for details).

The BL-v2/k model: The aim of the more simple elliptic
blending eddy viscosity model is to embed in a robust formu-
lation some features of more complex approaches. It uses the
blending formulations of equation (2) in a modelled transport
equation for the variable ϕ = v2/k, in addition to a modified
k-ε system:

Dk
Dt

= P− ε −Cε3(1−α)3 k
ε

E +∂ j

(
ν
2

+
νt

σk

)
∂ jk (4)

Dε
Dt

=
Cε1P−C∗

ε2ε
T

+∂ j

(
ν
2

+
νt

σε

)
∂ jε (5)

In the k equation, the inclusion of the term E =
2ννt(∂k jUi)(∂k jUi) (introduced by Jones & Launder (1972) to
the ε equation), and the factor of two in the denominator of the
molecular diffusion, implies that the quantity ε has a different
definition to that conventionally employed in k-ε schemes (i.e.
a change of variable ε → ε +(1−α)3 k

ε E + 1
2 ν∂ j jk). The co-

efficient C∗
ε2

is taken as a function of the turbulent transport

of k to ε ratio, C∗
ε2

= Cε2 +α3(Cε4 −Cε2)tanh
(∣∣∣ Dt

k
ε

∣∣∣
)

, as pro-
posed by Parneix and Laurence (1997). Full details of the
scheme can be found in Billard & Laurence (2011) and Bil-
lard (2011).

All the models have been implemented in the open
source Code Saturne (Archambeau et al., 2004; Fournier
et al., 2011) which is used in the present study. All but the
RSM-SSG model are low Reynolds number models which
can be integrated all the way to walls. Calculations using the
RSM-SSG model use the scalable wall function method of
Grotjans & Menter (1998) to handle the near-wall region.

Figure 1 compares the normal Reynolds stresses pre-
dicted by the models in the case of plane channel flow for
two friction velocity based Reynolds numbers Reτ = 395 and
Reτ = 2000 (DNS data of Kim et al. (1987) and Jimenez &
Hoyas (2008) are also shown for comparison). The peak and
the near-wall behaviour of the Reynolds stresses are well pre-
dicted by the EBRSM model. The same conclusion holds for
the BL-v2/k model as far as the wall normal stress is con-
cerned. As expected, the mean velocity predictions of all
models are in good agreement with DNS, and are thus not
shown here.

TWO DIMENSIONAL SEPARATED FLOWS
We now consider the performances of these models in

three 2-D flows. The first case considered is the flow over

Figure 1. Profiles of the mean Reynolds stresses in a plane
channel flow for Reτ = 395 and Reτ = 2000, ◦DNS — BL-
v2/k , — SSG , — EBRSM.

periodic 2-D hills, reported by Almeida et al. (1992) (refer-
ence data taken from the LES of Temmerman and Leschziner
(2001)). This is a pressure-induced recirculating flow which
has been used quite extensively for comparing the perfor-
mance of many RANS models (Jang et al., 2002; Temmerman
et al., 2003). The geometry is shown in Figure 2 (left): the hill
height h1, domain height H1 and inter-hill distance L1 are such
that H1 = 3.036h1 and L1 = 9h1, and the Reynolds number,
based on the bulk velocity and h1, is 10590. The LES study
of Fröhlich et al. (2005) suggested that this flow features a
strong intermittency in the recirculation zone; the modelling
of which is out of the reach of RANS models on 2-D grids.
Despite this, several simple models are known to return fairly
good predictions of the recirculation length, by virtue perhaps
of the consideration of such flows during model development.

In the present results, the skin friction coefficient along
the bottom wall (Figure 3, left) indicates an over-prediction
of the recirculation length by the EBRSM and the k-ω SST
model, unlike the BL-v2/k model which appears to predict a
flow pattern closer to that observed in the LES data. This is
reflected by the mean stream-wise velocity profiles, shown in
figure 4 (top), where it is also seen that the two stress transport
models are the most capable of predicting the flow accelera-
tion and resulting near-wall peak of the velocity at the location
x/h1 = 0.

The turbulent shear-stress predicted across the recircu-
lation bubble at x/h1 = 2 (Figure 4 (bottom)) is excessively
low for all models. This results in a lower level of turbulent
mixing between bulk and recirculating flow regions, which ex-
plains the over-prediction of recirculation length by the SST
and EBRSM schemes. The BL-v2/k model performs well in
this case, with an accurate prediction of recirculation length,
though examination of skin friction coefficient indicates a
slight over-prediction of the velocity gradient.

The second case considered is the flow over a wall-
mounted hump, reported by Greenblatt et al. (2004). The
geometry is shown in Figure 2 (centre). The hump chord
length c, its height h2 and domain height H2 are related by
H2 = 0.91c and h2 = 0.128c, and the Reynolds number based
on c is 9.36×105. In this case the flow separation is induced
by the geometry. As an illustration of results, the predicted
skin friction coefficient is presented in Figure 3 (centre). All
models provide a fair representation of the acceleration over
the hump, although the SST scheme underpredicts C f here.
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Figure 2. Geometries of the periodic hill (left), the hump (centre) and the diffuser (right) with flow streamlines.

Figure 3. Skin friction coefficient for: the periodic hill (left), the hump (centre) and the 2 dimensional diffuser (right), ◦Ref. —
BL-v2/k , — k-ω SST , — SSG , — EBRSM.

Conversely, the SST appears to provide a good prediction of
the magnitude of the recirculating flow and the closest es-
timate of the reattachment location, although the recircula-
tion length is overpredicted by all models. The two elliptic-
blending based models give good results over the hump, but
then over-predict the recirculation length.

The third flow considered is the asymmetric plane dif-
fuser, reported by Buice & Eaton (1997) and Obi et al. (1993)
(reference data of Obi et al. (1993)), pictured in Figure 2
(right). The inlet height h3, outlet height H3 and length
of the expending section L3 are related by H3 = 4.7h3 and
L3 = 21h3. The slant angle is α = 10◦, and the Reynolds num-
ber based on bulk velocity and h3 is 18000. The skin friction
coefficient along the inclined wall is shown in Figure 3 (right).
In this flow, the two elliptic blending based models correctly
predict the separation location, compared to a very early sep-
aration from the SST and almost no flow reversal when using
the SSG (with scalable wall functions). The flow reattachment
is better predicted with all schemes, although the EBRSM in-
dicates a somewhat early reattachment.

The rather ambiguous picture provided by these results
will perhaps seem familiar to some readers (i.e. the more
physical RSM’s being apparently unable to consistently pro-
vide a gain in accuracy). This is quite likely to be linked to
the fact that many EVM based schemes are calibrated to 2-D
flows such as those considered here, in which a single shear
dominates the flow, while the more complex RSM’s may per-
form more consistently over a wider range of complex 2- and
3-D flows.

In view of commonly held opinion that a single “om-
nipotent” turbulence model is unlikely to emerge, it is useful
to re-iterate the importance of model selection. In the follow-
ing section, we explore the application of the same models to
two 3-D separated flows.

Figure 4. Profiles of mean velocity (top) and turbulent shear
stress (bottom) on down-side of periodic hill, ◦LES — BL-
v2/k , — k-ω SST , — SSG , — EBRSM.

THREE DIMENSIONAL FLOWS
The case provided in Cherry et al. (2008) consists of flow

through a three dimensional diffuser (a duct with two contigu-
ous diverging walls), represented in figure 5, with Reynolds
number based on bulk velocity and inlet duct height of 104.
The authors took measurements using Magnetic Resonance
Velocimetry, and reported a separation starting at the upper
right diverging corner which extended further downstream
along the top wall. Only those models capable of resolving
anisotropy are able to capture the secondary vortices present
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Figure 5. Geometry of the 3D diffuser case.
Figure 6. Pressure coefficient along a mid-span line of the
lower wall in the 3D diffuser case, ◦Exp. — BL-v2/k , —
k-ω SST , — SSG , — EBRSM.

Experiment EBRSM SSG BL-v2/k k-ω SST

Figure 7. Contours of mean streamwise velocity at three different YZ planes ( top-bottom, x = 2cm, x = 8cm and x = 15cm ).

in the inlet and outlet ducts, though at a recent turbulence
modelling workshop (Brenn et al., 2008) it was concluded that
many RSM’s (and most EVMs) predicted the flow recircula-
tion to appear erroneously on the side wall rather than on the
top wall.

The simulations were performed on grids of up to 212×
60×180 points, to obtain grid-independent results, with suit-
able near-wall refinement to ensure that the nondimensional
wall-distance of the near-wall nodes was less than unity. In-
flow conditions were taken from precursor periodic duct sim-
ulations at the same Reynolds number. Figure 6 presents the
evolution of the pressure coefficient, Cp, along the bottom
wall (at midspan), whilst Figure 7 compares the present results
with the experimental data in the form of contours of the mean
streamwise velocity at four different cross sections (distance
x is defined from the start of the expansion, and the thick line
represents the isovalue U = 0). As seen from the contours, the
EBRSM results are very similar to the experimental data, with
the correct location and extent of the recirculation bubble, as
confirmed by the Cp prediction. The SSG returns a corner re-
circulation which is larger than the experiment at x = 2cm and
which then develops further downstream along the side wall
at the end of the diverging section. Its under-prediction of Cp
also reveals a larger flow recirculation than in the experiment.
The same erroneous trend is observed for the two EVM’s, but
the development of the recirculation along the side wall starts
earlier (x ≤ 8cm). Both models also over-predict the recircu-
lation, with particularly poor behaviour returned by the k-ω
SST model.

Figure 8. Geometry of the swept wing case.

The difference between EBRSM and SSG results reveals
the importance of an accurate near-wall turbulence representa-
tion, as this is the major difference between these two models.
As linear EVM’s, both BL-v2/k and k-ω SST do not capture
the secondary flow in the inlet duct. However, this is not the
origin of the subsequent discrepancies, since simulations (not
shown here) with both models using an inlet field as predicted
by the EBRSM scheme also failed to capture the correct sep-
aration pattern.

The final case reported here is that of flow separation
from a highly swept wing. The 3-D geometry, shown in Fig-
ure 8, is a 40o swept wing, at 9o angle of incidence, rep-
resenting the onset of stall. The Reynolds number based
on freestream velocity and root chord length is 210000, and
detailed measurement data have been obtained by Zhong &
Turner (2007), highlighting a complex flow pattern over the
wing. The case was also the object of an Implicit LES re-
ported in Hahn & Drikakis (2009) and a Hybrid RANS/LES
simulation of Li & Leschziner (2007).

The computational domain represents half of the wing
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Figure 9. Visualisation of instantaneous vorticity (left) and time averaged streamlines (right) of the Implicit LES simulation of
Hahn & Drikakis (2009).

EBRSM SSG BL-v2/k k-ω SST
Figure 10. Vorticity contours at different streamwise locations (top) and streamlines (btm) over the wing.

geometry and was meshed with 256 × 134 × 112 cells (to-
tal 3.8M), using an hyperbolic tangent based refinement in
the near-wall region to ensure the presence of enough points
within the viscous sublayer; the largest non-dimensional wall-
distance of the near-wall nodes was found to be of order 0.5
near the wing tip. Symmetry conditions are prescribed for all
variables at the symmetry plane, and freestream inlet turbu-
lence is prescribed so that the associated turbulent lengthscale
k3/2/ε represents 20% of the chord length. As a consequence
of this fully turbulent approach flow, a by-pass transition oc-
curs on the wing.

Figure 10 shows the predicted vorticity on plane cuts
over the wing and the streamlines just over the wing. Figure 9
provides equivalent flow visualisations of the implicit LES as
presented in Hahn & Drikakis (2009). The leading edge vor-
tex (LEV) captured by all models is comparable to that re-
ported by the LES and experimental data, and is characterized
by strong vorticity (as seen in Figure 10) and delimited by the
re-attachment line clearly shown by the streamlines. Both the
LES and experimental data also report the presence of a sec-
ondary vortical region, represented by additional saddles on
the surface streamlines within the LEV (as seen on Figure 9,
right). This feature is only captured clearly by the EBRSM
in the present study, and is also visible in the vorticity plots,
where the EBRSM is the only model whose results exhibit a
second smaller region of high vorticity beneath the main one.
Towards the wing tip the interaction between the LEV and the

opposing outer flow is characterized by another saddle point
(see Figure 9, right). Although this is picked up qualitatively
by all models, as seen in the streamlines, it is best represented
by the two elliptic blending based models.

Hahn & Drikakis (2009) also reported a further flow
feature inboard of the main vortex, where their simulation
predicted a portion of fluid revolving around a focal point
and a separation zone near the trailing edge. In contrast,
the experimental data only showed streamlines aligned with
the freestream direction here. It is interesting to note that
the EBRSM results indicate a similar feature, whereas the
SSG and both EVM’s show trends similar to that of the ex-
periment.

Mean stream-wise velocity predictions are compared to
Laser Doppler Anemometry (LDA) experimental profiles in
Figure 11 at 50% span (as indicted on Figure 8), for 5 different
chord-wise locations. At this location the secondary vorticity
is captured by the EBRSM from the first station (10% chord)
where the profiles are marked by a wiggle visible at 10%, 30%
and 50% chord. It can also be seen in the experiment at the
same locations but with a smaller amplitude (though a change
in the profile concavity is still clearly visible). This secondary
vortical region also appears on the SSG profiles, but some-
what displaced (at 30% chord). Although this feature is to-
tally missed by the k-ω SST model (which predicts mono-
tonic profiles until the peak) the BL-v2/k model also captures
a near-wall velocity kink but at considerably greater chord lo-
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Figure 11. Velocity profiles at different chord location at 50% span over the wing.

cation (50% chord). The location of the velocity peak for all
four models is displaced away from the wall at 10% and 30%
chord locations, suggesting an excessive size of the LEV.

Approaching the wing tip (80% span), velocity profiles
(not shown here) reveal that the experimental data exhibits a
near-wall region of negative stream-wise velocity over all the
chord length, which is only partially captured by the models
(both elliptic relaxation based models only predict a negative
velocity for the two first chord locations). All models except
the k-ω SST under-predict the magnitude of the velocity peak,
but conversely the latter model under-predicts the boundary
layer thickness across the wing chord.

CONCLUSION
Differences between eddy viscosity modelling and sec-

ond moment closure, as well as the effects of the near-wall
turbulence representation, are illustrated by the variability of
results obtained in the five cases considered. While no clear
conclusions are drawn from the 2-D cases alone, some of the
flow features (such as the marked acceleration on the uphill
side of the periodic hill, or the secondary vorticity appear-
ing on the swept wing) are captured only with the most ad-
vanced model considered, the EBRSM. This is also the only
model able to predict the correct development of the recir-
culation in the 3-D diffuser flow. These observations sup-
port the principle that flows with strong 3-D effects, involving
multiple-shears as opposed to a single shear, necessitate stress
anisotropy resolution. The importance of near wall modelling
is also highlighted by observing the results of the SSG model
in high Reynolds form. These results justify the careful selec-
tion of the underlying RANS model in a hybrid RANS-LES
approach, as some of the modelling improvements considered
here (in particular in the near-wall region) would be active
where such approaches are in RANS mode.
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