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Abstract 

Investment decisions on electric power networks have developed to balance network 

functionality and cost efficiency by analyzing the main risks associated with network 

operation. Ageing infrastructures, like large power transformers in particular, aggravate 

the stress of management, because the failure of a power transformer could cause power 

supply interruption, network reliability reduction, large economic losses and also 

environment impacts. Transformer asset management is therefore aimed to develop a 

cost-efficient replacement strategy to get the most usage of transformers. The main 

objective of this thesis is to understand how UK National Grid transformer assets failure 

trend can be used, as the engineering evidence to help make financial decisions related 

to transformer replacements.  

 

The studies in this thesis are implemented via two main approaches. First statistical 

analyses methods are undertaken. This approach is realized to be non-optimal, because 

the transformer failure mechanism at the normal operation stage is different from that 

when transformers are aged. Secondly, the transformer physical ageing model is used to 

estimate thermal lifetimes under the ageing failure mechanism. In conjunction with the 

random hazard rate obtained by statistical analyses, the actual National Grid transformer 

population failure hazard with service age is derived.  

 

Statistical analyses are carried out based on the ages of National Grid failed and in-

service transformers. Transformer lifetime data are fitted into various distribution 

models by the least square estimator (LSE) and maximum likelihood estimator (MLE). 

Statistics are however powerless to suggest the population future failure trend due to 

their intrinsic limitations. National Grid operational experience actually indicates a 

stable and low value of the random failure hazard rate during the transformer early 

operation ages. The engineering knowledge however suggests an ageing failure 

mechanism exists which corresponds to an increasing hazard in the future.  

 

Transformer lifetime under ageing failure mechanism is conservatively indicated by its 

thermal end-of-life corresponding to a specific level of insulation paper mechanical 

strength. By analyzing National Grid scrapped transformers’ lowest degree of 

polymerization (DP), these transformers are estimated to have deteriorated at different 

rates and their thermal lifetimes distribute over a wide age range. The limited number of 

scrapped transformers cannot adequately indicate the ageing status of the whole 

population. A transformer’s thermal lifetime is determined by its loading condition, 

thermal design characteristics and installation site ambient temperature. However, these 

input data are usually incomplete for an individual transformer. 

 

A simplified approach is developed to predict the National Grid in-service transformer’s 

thermal lifetime by using information from scrapped transformers. The in-service 

transformer population thermal hazard curve under ageing failure mechanism can thus 

be obtained. 

 

Due to the independent effect from transformer random failure mechanism and ageing 

failure mechanism, the National Grid transformer population actual failure hazard curve 

with age is therefore derived as the superposition of the random failure hazard and the 

thermal hazard. Transformer asset managers are concerned about the knee point age, 

since aged transformer assets threaten network reliability and the transformer 

replacement strategy needs to be implemented effectively. 
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Chapter 1 Introduction 

 

1.1 Overview 

An electric power network is designed to transmit and distribute electricity with a high 

level of reliability and deliver the supply availability and quality expected by consumers. 

The equipment investment is conventionally driven by the technology and is orientated 

to ensure the safety and reliability of the network. The new economic circumstance, 

created by the liberalization of electricity markets and the introduction of competition, 

requires the investment to focus on network economic efficiency as well as reliability. 

The design and maintenance of electric power network have developed to the stage of 

balancing its functionality and investment/replacement efficiency by analyzing the main 

risks under which the network is operating and may operate in the future.  

 

The aged assets aggravate the stress on management since they potentially lead to 

inefficient network performance, loose compliance to utilities’ legislation standards and 

have a negative environmental impact [1, 2]. Surveys undertaken by EPRI and CIGRÉ 

show the large investment in generating capacity installed after World War II from the 

1950’s until the early 1970’s, resulted in a large number of power transformers being 

commissioning particularly in North America and Europe [1-5]. Many of these 

transformers are now approaching or are beyond their designed operation life of 40 

years; approximately 50% of the transformer assets currently operating are considered 

“old” or “aged” [2, 6, 7]. Although they are highly-reliable and long-life expectancy 

equipments, as the most important and cost-intensive assets in a power system, 

particularly at the transmission level, the failure of a power transformer could cause 

power supply interruption and reduce the reliability of the remaining system. The 

intensive expenditure on purchasing new transformers and the long-term replacement 

might not be avoided when failure occurred. Moreover the influences to substation 

surrounding environment should also be a concern [8].  

 

According to a CIGRÉ survey in 2000, based on 300,000 substation assets among 13 

countries [1], 93% of utilities had historically replaced less than 10% of their assets and 

70% had replaced less than 5% [1]. The impact on system performance of few ageing-

related failures has rarely been observed up to the present. This is probably related to 

the network N-1 or N-2 criterion undertaken at the design/planning stage [1]. However 
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the low level of investment injected into the aged power system implies a proactive 

management strategy needs to be determined.  

 

For a transmission and distribution business, asset management is defined by the UK 

Publicly Available Specification BSI-PAS 55 [9, 10]: - 

 

“systematic and co-ordinated activities and practices through which an 

organization optimally manages its assets, and their associated performance, 

risks and expenditures over their lifecycle for the purpose of achieving the 

required level of service in the most cost effective manner” [6, 8]. 

 

The objective of asset management is further indicated as: - 

 

“to ensure (and be able to demonstrate) that the assets deliver the required 

function and level of performance in a sustainable manner, at an optimum 

whole-life cost without compromising health, safety, environmental performance, 

or the organization’s reputation” [1].  

 

The above statements clearly identify the technical and economic stresses that the 

utilities are currently facing in response to the ageing assets and the uncertain 

operation/organization schemes subject to the sustainable and renewable power 

generations in the future.  

 

More specifically in order to get the most usage of transformer assets CIGRÉ clarifies 

the power transformer life management as: -  

 

“using existing body of knowledge and technologies, and looking into the future, 

develop guidelines with the objective to manage the life of transformers, to 

reduce failures, and to extend the life of transformers in order to produce a 

reliable and cost effective supply of electricity” [11], 

 

As a fundamental step towards transformer life management, population failure trend 

has been evaluated by statistics since 1980’s and 1990’s in North America. Utilities are 

now benefitting from the sharing and integrating of transformer lifetime data [6, 12-17]. 

Reliability models developed from other disciplines were applied in power transformer 
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failure prediction. By estimating the population mean life and the failure risks, the age 

when the population reliability begins to reduce and thus a preventive replacement 

action needs to be implemented is determined [4]. Transformer age however is further 

realized as a deficient predictor of population failure as it is not the only determinant 

factor of failure [2]. Besides statistical prediction of population failure trend does not 

consider the transformer real operation condition and is consequently powerless to 

identify the specific transformers that need to be replaced. 

 

Hence the monitoring of transformer defects and the tracking of operating condition are 

more and more concerned to identify the possible paths of defect evolutions and to help 

estimate the individual residual life since 1990’s [4, 11, 17]. Transformer oil testing and 

the off-line power factor testing at reduced voltages are the most widely used methods 

of monitoring. The usage of other on-line and off-line testing methods are also gradually 

increasing in practice owing to the development of data interpretation tools, reliability 

and compatibility studies, and the need for cost reduction [3]. 

 

A proper maintenance strategy and replacement programme based on the condition 

monitoring data are now being adapted to optimize the assets life cycle, subject to the 

risks associated with long-term operation [11]. However the proactive replacement 

breaks down the actual population failure trends and statistical analysis is having to be 

suspended owing to a lack of failure data. However power transformer statistical 

analysis is still of great interest as it microscopically provides a general picture of 

population ageing and suggests for a utility its long-term capital investment strategy. 

 

1.2 Statement of Problem 

General statistical analysis on transformer lifetime data has clearly demonstrated that in 

North America and Europe there is little detectable increase in the transformer 

population failure risk with age. This is because the failure data are fairly limited and 

most transformer failures up to the present are caused by randomly occurring power 

system transient fault events [2, 4, 6].  

 

The rise of failure risk and accordingly the increase of replacement cost caused by the 

transformer ageing failure mechanism however must eventually be seen according to 

the knowledge of insulation degradation [2, 4]. The decision on transformer 

replacement is important, however technically difficult to determine as the monitoring 
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data, operational experience and deterioration knowledge are not straightforward to 

interpret and convert into valid information [4, 6].  

 

Nevertheless if a transformer’s remanent insulation strength could be assessed, it would 

be possible to evaluate the transformer’s remaining lifetime [11]. Evidence from 

scrapping and replacing transformers can be used to suggest the design specifications, 

operational stresses, ageing status and even the lifetimes of those in-service 

transformers [4].  

 

It is furthermore the asset manager’s task to evaluate the impact of the increasing failure 

risk and to manage the ageing assets to ensure the power can be delivered reliably 

without excessive cost [4, 18]. Ideally, with an accurate ageing model, the number of 

failure can be predicted to allow the network to be operated at a sustainable stage, at 

which the number of transformer failures and the replacement costs remain constant so 

that an efficient, reliable and secure power supply is achieved [2]. 

 

1.3 Aims and Objectives of This Research 

As the assets owner of the electricity transmission network in England and Wales and 

the transmission network operator across Great Britain, the National Grid Company has 

the obligation to predict outages, evaluate the impacts of outages and accordingly to 

develop a cost-efficient replacement strategy to safeguard the reliability of electricity 

transmission [4]. By studying the historical failures of National Grid power transformers 

and their replacement policy, this thesis will evaluate the National Grid in-service 

transformer population ageing status and to predict future National Grid transformer 

population failure risk using the engineering-based evidence to support the asset 

manager’s financial decision. 

 

Three main assumptions are made prior to the main contents in order to simplify the 

complex practical problems. These assumptions are: 

 

 Failure risk generally includes both the likelihood of failure and the consequence 

of failure. In this thesis transformer failure risk is represented by the failure 

likelihood, or alternatively failure hazard only, since the influence of failure is 

difficult to quantify [1]. 
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 Transformer paper insulation mechanical strength deterioration in the main 

winding is used as the indicator of transformer ageing-related failure. Other 

failures of transformer serviceabilities (i.e. transformer electromagnetic ability, 

integrity of current carrying and dielectric property) or outages of other 

subsystems (i.e. cooling system, bushing, on-load tap-changer, oil preservation 

and expansion system, protection and monitoring system) are not considered in 

this thesis [6]. 

 

 Transformer random failure and ageing-related failure are different failure 

mechanisms which independently contribute to a transformer’s actual failure 

hazard. 

 

The main objectives of this research are as follows: 

 Undertake literature reviews on product lifetime statistical analysis and 

transformer paper insulation ageing. 

 Analyze National Grid power transformers lifetime data via statistical 

approaches and summarize the advantages and drawbacks of statistics in a 

power transformer lifetime data study. 

 Assess the paper insulation deterioration status of National Grid retired 

transformers in order to understand the discrepancies of transformer design, 

loading condition and installation site ambient temperature among National Grid 

transformers. Furthermore to clearly identify that transformer thermal lifetime is 

determined by multi-variables. 

 Develop an effective approach to predict individual transformer thermal end-of-

life by using information from retired transformers and then to produce the 

ageing failure hazard curve of National Grid power transformers. 

 Generate a National Grid transformer population failure hazard curve by linking 

the statistically determined “random hazard” with the new approach developed 

“ageing failure hazard”.  

 

1.4 Methodologies of This Research 

The methods used in this research can be summarized as statistical approaches and 

paper insulation ageing models.  
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 Statistical Approaches 

Statistical analysis on product reliability has been developed since 1940’s due to the 

demands of modern technologies [19-22]. Particularly in power systems, the lifetime 

prediction of generator windings, engine fans, turbine wheels, cables and transformers 

have been analyzed via statistics since the 1980’s [23, 24].  

 

Transformer lifetime statistical analysis is carried out based on the lifetime data 

obtained from both failed and in-service units, and is used to predict the population 

future failures in terms of failure hazard against age [25]. Steps associated with 

statistical analysis normally involves lifetime data collecting, distribution model 

selection, lifetime data fitting and finally goodness-of-fit testing. The above 4 steps 

however are not completely implemented in most engineering applications and 

consequently various approaches are further developed to simplify the complex analysis. 

 

W. Nelson in 1972 proposed a systematic plotting method that involved fitting the 

lifetime data into traditional distribution models via a least square estimator (LSE) [26]. 

W. Y. Li modified Nelson’s approach in 2004 and applied the refined approach in 

Canada BC Hydro 500kV reactors lifetime data analysis [27, 28]. Li’s simplified 

approach is currently widely discussed and adopted by other researchers [29]. 

Meanwhile E. M. Gulachenski indicated the advantages of Bayesian method and used 

this method to analyze US New England Electric 115kV power transformers as early as 

1990’s [30]. Q. M. Chen furthermore employed Bayesian analysis to fit US PJM’s 

transformer lifetime data into Iowa survival curves [31, 32]. 

 

Generally in engineering practice, transformer population failure hazard is exposited as 

the instantaneous failure probability at a specific age t, by knowing a certain amount of 

transformers have survived till age t-1. It is mathematically expressed as the ratio of the 

failure number within age t (nF(t)) and the number of exposed transformers at age t 

(NE(t)), as 

 
 

 
F

E

n tnumber of failed transformers within age t
h t

number of exp osed transformers at age t N t
    (1-1) 

 

Transformer population failure hazard h(t) obtained via statistics is thereafter used to 

predict the number of failures at each age. The number of transformer failure nF(t) at 

age t is determined as 
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     F En t h t N t      (1-2) 

 

However statistics is identified as powerless to suggest National Grid transformer 

population failure hazard in the future since transformer lifetime data are limited, 

distribution models are arbitrarily assigned and historical failures have not yet indicated 

the onset of population ageing-related failure. Statistical analysis can only evaluate 

National Grid transformer random failure hazard rate based on the operational 

experience up to the present. Transformer paper insulation ageing model is therefore 

used to predict individual lifetimes under ageing failure mechanism. 

 

 Paper Ageing Models 

A transformer’s end-of-life is eventually determined by its paper insulation useful 

lifetime subject to operational stresses, since insulation paper cannot be replaced once a 

winding is built-up. Vigorous material laboratory ageing tests undertaken for more than 

60 years have revealed that paper degradation is a complex sequence of chemical 

reactions due to the effects from temperature, oxygen, water and acid contents. During 

degradation, the inter-fibre bonding is destroyed, the molecule chain is depolymerised 

and thus the paper mechanical strength is reduced. The collapse of insulation paper 

mechanical strength actually indicates the end of transformer useful life [33]. 

 

It is currently technically difficult to evaluate a transformer remaining life by using the 

monitored information from transformer winding temperature, oxygen, water and acids. 

However National Grid post-mortem analysis provides a unique access to examine its 

retired transformers paper ageing status by measuring the degree of polymerisation (DP) 

of the insulation paper. A widely used model presents 1/DP against transformer service 

age, between the DP values of 1000 and 200. Transformer thermal lifetime can 

therefore be estimated according to a linear model by presuming a threshold of paper 

mechanical property as transformer end-of-life criterion, normally at DP equals to 200. 

However the limited number of retired transformers is not an adequate sample that can 

directly indicate the ageing of the National Grid transformer population. 

 

Equivalent to the DP reduction model, individual transformer thermal deterioration and 

end-of-life are also described in transformer thermal model explained by the IEC 

transformer loading guide [34]. This requires the unit’s real-time loading, ambient 

temperature, thermal design parameters and information about cooler switching.  
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In order to predict National Grid in-service transformer thermal lifetimes a simplified 

approach is proposed in this thesis based on the IEC transformer thermal model. The 

transformer ageing rate factor, conventionally calculated in the IEC thermal model, is 

first of all adjusted to involve the effects from oxygen, water and acids as well as 

winding temperature. The idea of hot-spot temperature compensation factor ( ) is 

developed to calibrate all the uncertainties of thermal model inputs. The functional 

relationship between  and the transformer equivalent load is then established based on 

the information available from National Grid retired transformers. By extrapolating this 

relationship to National Grid in-service transformers, individual thermal lifetime is 

obtained by a Monte Carlo iteration. 

 

Statistics is finally turned to as a mathematical tool to generate the transformer 

population ageing-related failure hazard curve when transformers’ thermal lifetimes are 

determined. 

 

1.5 Project Overview 

Aims and methodologies of this research are illustrated in Figure 1-1 as the overview of 

the whole thesis. 
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Figure 1-1 Project Overview
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1.6 Outlines of This Thesis 

Chapter 1 is a general introduction of the whole thesis. 

 

Chapter 2 presents an intensive literature survey on statistics applied to product lifetime 

study. This chapter commences from a brief introduction of product failure and 

traditional failure hazard bathtub curve. Different types of lifetime data are classified; 

mathematical expressions of failure probabilities and commonly used distribution 

models are displayed. Steps of lifetime data statistical analysis and various statistical 

approaches are summarized from engineering applications. Advantages and 

disadvantages of these approaches are highlighted at the end of this chapter. 

 

Chapter 3 implements the introduced statistical approaches by using National Grid 

transformer lifetime data. First of all National Grid transformer installation number, 

replacement history and the critical ageing status used at present are presented. 

Secondly as the prior step of statistical analysis, three types of transformers: active, 

failed and manually retired transformers are clearly classified and their service ages are 

derived accordingly. The least square estimator (LSE) approaches including Nelson’s 

hazard plotting, CDF plotting method and Li’s modified method are then carried to fit 

National Grid transformer lifetime data into commonly used normal, lognormal, 

Weibull [26] and smallest extreme value distribution. The maximum likelihood 

estimator (MLE) is also carried out for comparison purpose. The advantages and 

restrictions of lifetime data statistical analysis are thereafter concluded. Finally National 

Grid transformers random failure hazard is derived.  

 

Chapter 4 summarizes the knowledge from transformer insulation paper laboratory 

ageing tests as the physical model to predict transformer ageing-related failure. The 

structure of insulation cellulose paper is firstly introduced; paper ageing process due to 

the effects from dispersed heat, water content, immersed oxygen and acids is described 

in terms of paper mechanical strength reduction. Transformer thermal ageing is 

specified to indicate transformer ageing-related failure and the thermal end-of-life 

criteria are thereafter discussed. Models to calculate transformer thermal lifetime are 

reviewed and the linear model of 1/DP against age is adopted in Chapter 5. 

 

Chapter 5 evaluates National Grid scrapped transformers’ ageing status by measuring 

their paper insulation lowest DP. The average ageing rate of scrapped transformers and 
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their average thermal lifetime are calculated. The variation of scrapped transformer 

ageing rates and thermal lifetimes are further analyzed in respect of transformer loading 

condition, thermal design characteristics and their installation site ambient temperature. 

It is finally identified that transformer thermal lifetime is determined by multi-variables 

and the limited number of scrapped transformers should not be used to directly suggest 

the ageing status of National Grid in-service population.  

 

Chapter 6 shows a simplified approach of predicting individual transformer thermal 

lifetime by using information from scrapped transformers. Transformer hot-spot 

compensation factor ( ) is firstly developed to replace the uncertain value of 

transformer winding hot-spot factor (HSF). Accordingly transformer annual equivalent 

load, national typical winter/summer daily demand profiles, IEC transformer thermal 

parameters and a unified yearly ambient temperature profile are designated as the inputs 

of transformer thermal lifetime calculation. National Grid 275/132kV in-service 

transformer thermal lifetimes are calculated and this group of transformers’ cumulative 

failure probability curve and hazard curve are obtained thereafter.  

 

Chapter 7 combines the statistically determined random failure hazard with the ageing 

model derived ageing-related failure hazard, to generate National Grid transformer 

population actual failure hazard curve against service age. The ideas of the knee point 

age tknee and the corresponding critical hazard hcritical are further proposed to clearly 

identify from the asset management point of view the onset of a dangerous period with 

too many failures which the system cannot afford. 

 

Chapter 8 draws conclusions from this research and also presents further studies that 

may be carried out in the future.  
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Chapter 2  

Literature Review on Product Lifetime Data 

Statistical Analysis 

 

2.1 Introduction 

A group of products are always designed and manufactured according to a typical 

specification. These products are hence expected to operate for a certain period of time 

which is called the product’s designed end-of-life. A single number of designed end-of-

life however does not tell a product’s real operation experience as the operation 

condition varies among products. 

 

Power transformer for instance, is designed to operate reliably for up to 40 years, 

however transformer may fail before age 40 as the real load may be heavier than 

expected or the short-circuit faults, lightning, over-voltage or other system transient 

events coming outside of the transformer may occur more frequently. Meanwhile 

transformer may well operate beyond 40 years if the load growth is slower or the system 

transient events are less frequent. Therefore transformer end-of-life should not be 

simply indicated by the designed 40 years; instead transformer lifetime is determined by 

its actual design, loading condition, experienced transient events and the maintenance 

scheme.   

 

The bathtub curve [26] is a widely used end-of-life model to generally indicate the 

conditional probability of product failure against service age. The curve is always 

produced by traditional distribution models, for example normal distribution, Weibull 

distribution, gamma distribution and etc. Product lifetime data statistical analysis can be 

generally summarized as fitting the observed data into a presumed distribution model 

via optimisation approach; the population future trend of failure is therefore predicted. 

In various engineering practices, utilities or researchers have their own attitudes towards 

the classification of lifetime data, choices of distribution models, optimisation methods, 

and judgement on the fitting goodness.  

 

Intensive reviews of statistic theories are presented in this chapter. Utilities’ practices 

and applications especially in power electric systems are summarized and compared.  
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2.2 Overview of Product Failure 

2.2.1 Transformer Failure and End-of-life Definition 

Transformer failure and the definition of transformer end-of-life are specifically 

illustrated in this section to indicate the failure of a general product. 

 

A transformer is designed to withstand the expected growing load and the system 

transient fault events. These transient fault events can be catalogued as short-circuit 

faults, lightning surge, switching surge and temporary over-voltages coming out of the 

transformers [6]. Initially a transformer does not fail as its insulation withstand strength 

is higher than the normal operating or the fault stress. As transformer ages, the 

insulation withstand strength gradually reduces due to its normal degradation and the 

cumulative effects from transient events; meanwhile transformer load increases with age. 

Once the insulation withstand strength cannot sustain the high operation stress, 

transformer fails. This process is illustrated in Figure 2-1. 

 

Age

Stress

Insulation 

Withstand

Operation

Stress

Failure
 

Figure 2-1 Transformer Failure Illustration [35] 

 

In Figure 2-1, the impulses in the actual stress curve represent the sudden increased 

stresses from transient events. Such events occur randomly during transformer operation 

and they may result in the insulation withstand strength reduction. Each step change in 

the insulation withstand curve shows a slightly reduction of insulation strength. If the 

load increases, and/or a transient event occurs, then the insulation withstand strength 

reduces. The crossover point of insulation withstand curve and operation stress curve in 

Figure 2-1 indicates the expected operation lifetime of a transformer.  

 

Transformer manufacturers and utilities have a common expectation that a power 

transformer should operate reliably for up to 40 years [6, 36, 37]. This number is 
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derived via the laboratory accelerated ageing tests, and refers to the period when the 

transformer insulation is approaching an unacceptable condition under constant 

temperature and ideally dry condition [3, 37, 38]; the derivation is summarized by the 

IEEE and IEC loading guide for transformers under a constant winding temperature of 

80 Celsius [38]. 40 years is thus considered as the transformer designed end-of-life. 

 

If the load demand in Figure 2-1 is growing faster than expected, or the transient events 

occur more frequently, or the fault stress exceeds the insulation withstand strength, the 

transformer fails before age 40. A transformer pre-mature failure before the designed 

life, due to the significant effect from a transient event, is shown in Figure 2-2.  

 

Age

Stress

Insulation 

Withstand

Operation

Stress

Failure Designed 

Life  
Figure 2-2 Transformer Failure before Designed End-of-Life [35] 

 

However, operational experience shows that transformer insulation withstand strength 

may still sustain the actual operation and fault stress after commissioning for 40 years. 

This is because the load increased slower than expected, or transient events occurred 

less frequently [37]. The insulation strength reduces less than expected and the 

transformer will fail at an unknown age beyond 40. A transformer post-mature failure 

causing by less loaded condition is illustrated in Figure 2-3 in solid curves. The dash 

curves indicate the expected operation condition and the expected reduction of 

insulation strength.  
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Figure 2-3 Transformer Failure beyond Designed End-of-Life 

 

The reality of transformer pre-mature and post-mature failure reveals that the unique 

age of 40 years as transformer designed end-of-life does not indicate transformer failure. 

In fact transformer failure would depend on individual design, loading experience, 

maintenance scheme and even the condition of the installation site.  

 

Hence in order to precisely indicate transformer lifetime, transformer failure needs to be 

well defined rather than being defined as the single age of 40 years. Transformer failure 

is indicated by CIGRÉ as any outage when the withstand strength is exceeded by 

operational stress that requires the asset to be out of service [3, 11, 14, 39, 40], or in 

other words, a transformer reaches its end-of-life when the unit does not meet the 

operation requirements anymore [41, 42].  

 

Based on the above definition, transformer failure should be distinguished from 

retirement. The latter is the manually determined replacement based on transformer 

unacceptable condition and it terminates a transformer end of useful life rather than 

reveals the transformer’s actual end-of-life. Failure and manual retirement are strictly 

separated in the context of this thesis.  

 

2.2.2 Failure Hazard Bathtub Curve 

Discarding the single age of designed end-of-life, product failure is always considered 

in the form of probability: the likelihood of failure within a certain time interval given 

that this group of products have survived at the end of the last interval [23, 26, 28, 40]. 

This is called conditional failure probability or hazard rate as a function of age. A 

bathtub-shape curve of hazard is universally applicable to describe the product 

conditional failure probability. Figure 2-4 shows a traditional bathtub curve. 
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Figure 2-4 Traditional Bathtub Curve 

 

The high infant mortality as the first stage of the bathtub curve is caused by the product 

defective workmanship, poor processing procedure or inherent material defects. Power 

transformers are subjected to vigorous manufacturing & commissioning procedure to 

weed out this stage, for example adequate specification and strict factory testing scheme 

prior to commissioning [4, 26, 43]. Besides, the shape of hazard at early ages varies 

significantly according to different transformer operation practice [11, 15-17].  

 

The normal operating stage corresponds to a random failure period in which product 

failures randomly occurred. For power transformers particularly, the random failures are 

caused by system transient events independent of transformer age. The hazard rate 

during this period is low and constant. This normal operating stage is the most 

interesting period for asset managers. 

 

As product ages, the failure hazard increases against age as indicated by the wear-out 

stage in the bathtub curve. For example transformers are more prone to fail due to their 

deteriorated insulation withstand strength. The wear-out stage indicates that the majority 

of transformers are approaching their end-of-life and a preventive replacement is 

necessary [26]. 

 

As the high infant mortality stage can not be seen among power transformers, the 

traditional 3-stage bathtub curve can be simplified into a 2-stage model including 

transformer normal operating stage and wear-out stage. This is shown in solid lines in 

Figure 2-5.  
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Figure 2-5 Transformer 2-Stage Hazard Model compared with Insulation Withstand 

Reduction 

 

Especially for power transformers it is worth noticing that the increase of failure hazard 

from the normal operating stage to the wear-out stage is consistent with the reduction of 

insulation withstand strength shown in the dash line in Figure 2-5. In other words, 

transformer failure can be rare when the insulation strength is high; while failure is 

more likely to occur when the unit ages and the insulation degrades faster. Hence the 

normal operating stage infers the random failure mechanism underlying the constant 

low hazard rate and the wear-out stage implies the ageing failure mechanism with the 

significantly increasing hazard. 

 

Except the failure mechanisms, “transformer failure” is a general concept in the above 

statement. Further concepts such as the component subject to failure (i.e. tap-changer, 

bushing, winding) and the characteristic of failure (i.e. repairable or non-repairable) are 

not classified; they will be further discussed in Chapter 3.  

 

Again the bathtub curve is a generic product end-of-life model coincident with 

engineering prior knowledge. Statistical analyses are always carried out based on the 

observed product lifetime data to generate the bathtub curve. 

 

2.3 Product Lifetime Data Mathematical Description 

2.3.1 Types of Lifetime Data 

Statistics only concerns the lifetime of individual product [14, 42] and lifetimes 

constitute the database for analysis. To undertake the statistical analyses, product 

lifetime data needs to be first of all “polished”. Generally if the failure time of each 

product is observed, the data are complete, otherwise they are incomplete [20, 26].  
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For incomplete data, when the observation period is pre-assigned, the data are 

considered time censored [20, 26]. Typically if the products’ lifetimes are known to be 

beyond the pre-assigned time, these data are further clarified as censored on the right; 

otherwise if the units’ lifetimes are known to be less than the pre-assigned time, they are 

censored on the left. If the observation is stopped when a specific number of failures are 

recorded, the data are failure censored [20, 26].  

 

Additionally if all the censored products start to operate at the same time, they are 

“singly censored” [26]; if the operation starts differently and thus the incomplete 

observations are intermixed with the failure records, the data are called “multiply 

censored” [26]. Examples are given in Figure 2-6 to depict the singly censored data and 

multiply censored data respectively among two groups of right-time censored products. 

 

  
(a) Singly Right-Time Censoring (b) Multiply Right-Time Censoring 

operation start failure

operation period unknown operation period
 

Figure 2-6 Singly Right-Time Censored Data and Multiply Right-Time Censored Data 

 

The classification of failure data is summarized in Figure 2-7. 

 
Figure 2-7 Lifetime Data Classification 
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In practice, when a utility operates multiple transformers: - some units are in operation 

and their lifetimes are only known to be beyond a certain age; new transformers are 

installed each year according to utility’s lay out plan; and some transformers are 

determined to retire due to their bad condition. These are three main reasons to result in 

the transformer multiply right-time censored lifetime data. The multiply right-time 

censored type (in brief multiply censored) is thus highlighted in Figure 2-7.  

 

The type of product lifetime data determines the proper method for analyses. Moreover, 

either the survived or the removed products are censored units. The age of a failed 

product is derived as the year of its failure minus the year of commission and is 

equivalent to the product’s lifetime. Lifetime of a censored product is not known 

because failure has not been observed. The age of a censored product is derived by the 

year of censoring minus the year of commission.  

 

2.3.2 Probability Expressions of Product Lifetime Data 

After classification, the data are formulated into probability form and proper 

distributions are chosen to describe the data. The following contents hereby present the 

commonly used probability functions of describing product lifetime data. Their 

applications specifically to complete data or incomplete data however are not classified. 

 

 Failure Probability Density Function  

The failure probability density function (PDF) f(t) defines the product probability of 

failure within a short per unit time (i.e. within (t-Δt, t), and Δt  0) [44]. It can be 

calculated as the number of failed products within age t (nF(t)) divided by the total 

number of product population (N) as 

 
   Δ FNumber of failed products within int erval t t ,t n t

f t
Total number of product population N


    (2-1) 

 

 Cumulative Distribution Function  

The cumulative distribution function (CDF) or the cumulative failure probability 

function F(t) indicates the proportion of cumulative number of failures until age t (NF(t)) 

to the total number of products (N) [44]. F(t) is mathematically expressed as 

 
 FN tTotal number of failed products up to age t

F t
Total number of product population N

    (2-2) 
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Besides F(t) can be also derived as the integration of the instantaneous failure 

probability density f(t) up to age t according to the definition, as  

   
1i

t

i

t

F t f t


      (2-3) 

where f(ti) indicates the PDF at age ti and ti should not be longer than t [44]. 

 

Moreover an alternative equation is always used to replace (2-2) or (2-3) by estimating 

CDF at each failure i, called median rank function F(i) [45-47]. F(i) is expressed as 

 
i

F i
N

      (2-4) 

where the numerator i indicates the i
th

 failure by sorting failed products’ lifetimes from 

smallest to largest and i ≤ N.  

 

According to F(i), each of individual failures is more precisely considered than F(t) 

which summarises the number of failures at the same age. The idea of F(i) is widely 

adopted in engineering practice and various calculation of F(i) are well developed. 

Cacciari [25] and Jacquelin [45] summarized the commonly used unreliability rank 

functions respectively. Table 2-1 shows these functions.  

 

Table 2-1 Estimation of Unreliability Rank Function 

Source Equation 

IEC Standard 56 [25]  
0 5

0 25

i .
F t

N .





 

Herd-Johnson [45]  
1

i
F t

N



 

Hazen [25]  
0 5i .

F t
N


  

Bernard [26]  
0 3

0 4

i .
F t

N .





 

Filliben [48]  
0 3175

0 365

i .
F t

N .





 

 

 Reliability Function  

The reliability function R(t) denotes the probability of products surviving up to age t. It 

is expressed as the number of survived units at the end of age t (NS(t)) divided by the 

total number of products (N), shown as  

 
 SN tNumber of survived products

R t
Total number of product population N

    (2-5) 
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Obviously at age t, Number of survived products + Number of failed products = Total 

number of product population: NS(t) + NF(t) = N. The reliability function at age t can 

be further derived as 

 

 

1

1

Total number of product population Total number of failed products up to age t
R t

Total number of product population

Total number of failed transformers up to age t

Total number of transformer population

F t




 

 

(2-6) 

 

As typically used in engineering practice, an actuarial method to calculate R(t) via 

recursion was described by Chiang [26]. This method is suitable when the database is 

large and particularly for censored data analyses. 

 

Similarly to the rank of unreliability F(i), Kaplan and Meier [49] provided the product-

limit estimation of reliability at each failure i as R(i). Herd [26] subsequently suggested 

a similar method and Johnson developed a more complex equation [26]. These two 

methods concern the reliability at each failure moment and consequently are suitable for 

use when the sample size is relatively small.  

 

The Kaplan-Meier method, Herd-Johnson method and the actuarial method of product 

reliability estimation will be further discussed in Chapter 3. 

 

 Hazard Function  

As mentioned in 2.2.2, a bathtub curve generally indicates the product conditional 

failure probability or hazard rate against age. The hazard function h(t) describes the 

instantaneous failure probability at a specific age t. 

 

By referring to the engineering practice such as [40, 42], if a certain amount of products 

have survived till age t-1, h(t) can be estimated as 

 
   

 

 

 

Δ

1 1

F F

S E

number of failed products within int erval t t ,t n t n t
h t

number of survived products at the end of t N t N t


  

 
 (2-7) 

 

In transformer lifetime analyses, as implemented in this thesis, the number of survived 

transformers at the end of t-1 is specifically named transformer exposed number at 

age t, denoted by NE(t). NE(t) again implies the number of transformers aged t-1 years at 

the beginning of t.  
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Hazard h(t) can be further related to PDF, CDF or reliability function. The expression is 

shown as 

 
 

 

 

 

 
1

f t f t d ln R t
h t

R t F t dt
   


   (2-8) 

 

In order to precisely concern the hazard rate at each failure, Nelson [26] introduced the 

observed instantaneous hazard h(i) for the i
th

 failure, i=1, 2, 3, …, and i ≤ N [26, 49]. 

According to Nelson h(i) is calculated as 

 
th

1
h i

reverse rank for i failure
     (2-9) 

where N products’ lifetimes are ordered from low to high and the reverse rank is 

assigned to each product, as N to the first lifetime, N-1 to the second, …, and 1 to the 

N
th

 product. Hazard is only calculated at each failure according to (2-9).  

 

By comparing the hazard calculation in (2-7) and (2-9), the former equation is a 

function of age t and the number of failed products at a particular age t is summarised, 

the latter is a function of failure rank i, in which the hazard at each failure is 

individually considered. Supposing 3 failures at age t with rank of i1, i2 and i3 

respectively, the failure hazards are calculated as h(i1), h(i2) and h(i3) according to (2-9). 

It can mathematically prove that when failure reverse ranks are high or failures are 

ranked at early ages, the sum of hazards at the same age t, as h(i1)+h(i2)+h(i3) gives 

approximately similar value of hazard h(t) for that specific age according to (2-7).  

 

Moreover, hazard is always calculated according to (2-7) for lifetime data general 

analysis while (2-9) is well utilized accompanying with the graphic plotting approaches 

developed by Nelson. Both of these equations will be further discussed when analyzing 

UK National Grid power transformer lifetime data in Chapter 3. 

 

Other estimations of hazard rate are well developed especially in vital statistics. They 

are also widely used in product lifetime studies [20]. The average crude failure rate 

(ACFR) is calculated as 

 
 

1

F

t

i

i

N t
ACFR t

n i






    (2-10) 
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where NF(t) is the total number of failures until age t, ni represents the number of 

products aged for i years and 
1

t

i

i

n i


 thus indicates the sum of length of products 

operation periods, or the amount of product years until age t [20]. The word crude is to 

represent the calculation over the whole population rather than any specific subset [20].  

 

(2-10) may yield different hazard values to those from (2-7) because product time-of-

service is included in the denominator in (2-10), by which higher weightings are 

assigned to the early installed products.  

 

A study on cable failure analysis via (2-10) was presented in EPRI EL-3501 [50], and it 

was concluded that this time-weighted ACFR can factor out the influence from different 

amount of installations from year to year and consequently the product failure hazard 

obtained from (2-10) is less fluctuant than that from (2-7). [50] also emphasized that (2-

10) is suitable for hazard comparisons by utilities whose asset installation significantly 

increases or decreases in subsequent years, for example a utility may install its 

distribution transformers intensively during some continuous years while may have less 

installations within some other periods. The concept of ACFR was adopted in IEEE 

transformer reliability survey as early as 1970’s [51], and it is also illustrated in CIGRÉ 

A2 committee report of a transformer reliability survey among Europe [39].  

 

Another measurement of product hazard rate, presented in GE transformer reliability 

study in 1989 [52], is defined as 

 
 

 
1

F

t

E

i

N tNumber of product failure up to age t
h t

Sum of exp osed number of each age up to age t
N t



 



  (2-11)  

where  
1

t

E

i

N t


 summarizes the exposed numbers of products from age 1 to age t. 

 

Compared to (2-7), (2-11) evaluates the hazard rate at each age in an average manner by 

taking into account the exposed products from previous ages. Although not many 

mathematical illustrations can be found for (2-11), this hazard calculation was also 

applied by electric engineers from US Carolina Power and Light System in 1970’s [52]. 

 

Due to the various calculation of product failure hazard, any obtained hazard rate should 

be explained consistently with its own expression. 
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 Cumulative Hazard Function  

Similarly to the definition of CDF, the cumulative hazard function H(t) sums up all the 

outcomes of hazard h(t) at each age ever before, which is expressed as 

   
1i

t

i

t

H t h t


      (2-12) 

where h(ti) 
indicates the hazard at age ti and ti should be no more than t.  

 

By integrating (2-8) into (2-12), H(t) can be further expressed as 

     1H t ln R t ln F t           (2-13) 

where R(t) is the reliability function and F(t) is the cumulative distribution function. 

Equation (2-13) yields the relationship between H(t) and F(t). In practical application, it 

is sometimes more convenient to work with H(t) than with F(t), for example in hazard 

plotting curve fitting approach which will be discussed in Chapter 3. 

 

If product failure hazard is obtained as h(i) via (2-9), the cumulative hazard function till 

NF failures is thus determined as 

   
1

FN

F

i

H N h i


     (2-14) 

in which h(i) is the observed instantaneous hazard for the i
th

 failed product and NF 

indicates the total number of failures when analyzing. 

 

The expressions of Failure Probability Density Function, Cumulative Distribution 

Function, Reliability Function, Hazard function and Cumulative Hazard Function
 
are 

summarised in Table 2-2. 

 

The Failure Probability Density Function, Cumulative Distribution Function, Reliability 

Function, Hazard function and Cumulative Hazard Function
 
are equivalent expressions 

of a set of product lifetime data. The discrete forms as (2-1), (2-2), (2-5) and (2-7) 

indicate the observed instantaneous probability at each age and they are more 

convenient than the continuous forms in analysis [21]. Probability functions concerning 

individual failures as (2-4), (2-9), (2-14) and equations shown in Table 2-1 are more 

frequently applied when graphic plotting approaches are implemented. 
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Table 2-2 Summary of Probability Functions 
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Basic 

expression 
 

 Fn t
f t

N
   

 FN t
F t

N
   

 SN t
R t

N
   

 

 
F

E

n t
h t

n t
     

1i

t

i

t

H t h t


  

Practical 

application 
 

 
0 5i .

F i
N


  

 
0 3

0 4

i .
F i

N .





 

and etc 
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method 

 

Kaplan-Meier 

method 
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1

th
h i
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 FN t

ACR t
N t

  

 
 

 
1
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t

E

i

N t
h t
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1

FN

F

i

H N h i


  

Relation 

with other 
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forms 

    
1i

t

i

t

F t f t


     1R t F t   

 
 

 

f t
h t

R t
  

 
 

 1

f t
h t

F t



 

 
 d ln R t

h t
dt

   

 

   H t ln R t   

   1H t ln F t    

 

 

nF(t): number of failed products at age t 

NF(t): number of failure products up to age t 

NS(t): number of survived products up to age t 

nE(t): number of exposed products at age t 

N: total number of products 

i: the i
th

 failed product 
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 Mean Life and Standard Deviation 

Particularly for a set of complete data, the population end-of-life can be simply 

modelled as mean life and the accompanying standard deviation.  

 

The mean life of a group of failed products ( t ) is calculated as the arithmetic average 

of lifetimes [22]. It is thus also called average life or expected life [26], derived as   

1 2 3 nt t t ... t
t

N

   
     (2-15) 

where N is the number of failed products, t1, t2, t3 and tn indicate the lifetime of unit 1, 2, 

3 and n respectively.  

 

The lifetime variance (var) is a measurement of data dispersion [22]. It is calculated as 

 
2

1

N
i

i

t t
var

N


     (2-16) 

in which t is the mean life of population derived by (2-15) and N is the number of 

products. The positive square root of variance is called standard deviation of product 

lifetime data (σ), as 

σ var     (2-17) 

 

Typically standard deviation σ is more commonly to use than variance var in describing 

the data dispersion to the mean life t , since σ has the same dimension of lifetime (i.e. in 

transformer lifetime study the unit of σ is year). 

 

 Population Median Life  

Median life tmedian, also called population typical life or anticipated life, is the age up to 

which 50% of population has failed (CDF=50%) [26]. tmedian thus can be obtained by 

reading the age corresponding to 50% failure from CDF curve.  

 

According to the definition, products median life is not affected by the odd ages much 

longer than those of other products as the arithmetic average can be [53]; the value is 

only derived by considering the first 50% failed products within the population. Median 

life is often used by engineers in products lifetime analysis.  

 

A comparison of population mean life ( t ), median life (tmedian) and the standard 

deviation (σ) is shown in Figure 2-8. The values of population mean life ( t ), median 
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life (tmedian) and the range of one standard deviation in the centre of mean life ( σt  ) are 

presented in a Weibull distribution failure probability density function curve f(t) and the 

Weibull cumulative distribution function curve F(t). 

 

  
(a) In Weibull Distribution Failure 

Probability Function Curve 

(b) In Weibull Distribution Cumulative 

Distribution Function Curve 

Figure 2-8 Comparison of Mean Life, Median Life and Standard Deviation of Weibull 

Distribution 

 

For this specific group of lifetime data that follow a Weibull distribution, the population 

mean life ( t ) is derived as 45 yrs and the standard deviation (σ) is obtained as 30.6 yrs. 

Population median life (tmedian) is calculated as 45 yrs, which corresponds to the 50% in 

the cumulative distribution function curve F(t). It is shown in Figure 2-8 that the values 

of population mean life ( t ) and median life (tmedian) are not equivalent, since they are 

different descriptions of data “average”. 

 

The commonly used distribution models (for example, Weibull distribution) are 

presented in 2.3.3. 

 

2.3.3 Commonly Used Distribution Models for Lifetime Data 

Analysis 

In order to predict the future trend of failure, the historical failures need to be compared 

with specific distribution models. Those popularized distribution models are introduced 

in this section.  

 

Exponential distribution, normal distribution, lognormal distribution, Weibull 

distribution and smallest extreme value distribution are the most commonly used 

continuous distribution models for product lifetime data analysis [19, 21]. The 
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expressions of f(t), F(t), h(t), H(t), t and σ of each distribution model are presented; the 

characteristics of each model are also discussed. 

 

 Exponential Distribution 

The failure probability density function (PDF) of the exponential distribution is 

expressed as  

 
1

θ θ

t
f t exp

 
  

 
    (2-18) 

and the cumulative distribution function (CDF) is 

  1
θ

t
F t exp

 
   

 
    (2-19) 

where age t is the variable and θ is the parameter. θ indicates the population mean life t  

and also the standard derivation σ. The reciprocal of θ is the failure hazard. 

 
1

θ
h t       (2-20) 

 

The simple expressions of exponential distribution result in its wide application. As the 

hazard remains constant as 1/θ, the exponential model infers that within a short period 

the failure probability of any unfailed products is the same as their failure probability 

within another short period [44]. The exponential model thus is used to describe the 

product population with failed units replaced and returned to service just in-time [46]. 

The model is also used to indicate the products subject to “chance failure” or “random 

failure” [23, 26], which corresponds to the normal operating stage of the bathtub curve. 

 

(2-19) can be rewritten as 

 θ 1t ln F t         (2-21) 

which shows a linear relationship between age t and ln[1-F(t)] with the slope of -θ. 

Considering the relationship between F(t) and H(t) as shown in (2-13), a linear equation 

between t and H(t) can be also derived as 

 θt H t     (2-22) 

 

Hence, by simply plotting t against ln[1-F(t)] or t against H(t), a straight line identifies 

that the data follow the exponential distribution and the slope indicates the value of θ. 

(2-21) and (2-22) thus suggest a simple graphic method for fitting the lifetime data into 

the exponential model. This method will be discussed in Section 2.4.2.3 and Chapter 3. 
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 Normal Distribution 

Normal distribution or so-called Gaussian distribution has wide applications in 

describing product lifetime data. Normal distribution PDF is expressed as 

 
 

2

2

μ1

2σ2πσ

t
f t exp

 
  

  

    (2-23) 

in which μ is the mean and σ is the standard deviation. Both of the parameters are in the 

same unit as variable t. When μ=0 and σ=1 the distribution is specified as the standard 

normal distribution. Particularly in lifetime data study μ should be at least 2 or 3 times 

as great as σ, based on the fact that 97.5% of cumulative probabilities are within the 

range of μ±2σ or 99.86% within μ±3σ [26]. 

 

The normal distribution CDF is expressed as 

 
 

 
2

20

μ1 μ
Φ Φ

σ2σ2πσ

t t t
F t exp dy Z

   
      

   
   (2-24) 

where Φ( ) is the cumulative distribution function for the standard normal distribution 

(with μ=0 and σ=1). 
μ

σ

t
Z


  is defined as the standard normal distribution transfer 

factor, which transfers a general normal distribution to the standard normal distribution. 

Normal distribution hazard function can be derived based on (2-23) and (2-24) as 

   
 

2

2

μ1 μ
1 Φ

σ2σ2πσ

t t
h t exp

     
      

    

   (2-25) 

 

The normal hazard is revealed to be a monotone increasing function against age; it thus 

corresponds to the wear-out stage in the bathtub curve. The reason that the normal 

distribution is popularized in practice is that many naturally-occurring variables 

distribute normally [22].  

 

Similarly to the exponential distribution, normal distribution CDF in (2-24) can be 

rewritten as  

 1σ Φ μt F t        (2-26) 

and then (2-26) can further derive 

  1σ Φ 1 μt exp H t          (2-27) 

where Φ
-1

( ) is the inverse of the standard normal distribution CDF. According to (2-26) 

and (2-27) age t is linear with Φ
-1

[F(t)] and Φ
-1

{1-exp[-H(t)]} respectively.  
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 Lognormal Distribution 

The lognormal distribution is an extension of the normal distribution, as the logarithm 

of lognormal distribution variable distributes normally. The PDF of the lognormal 

distribution is expressed as 

 
 

2

2

λ1

2δ2π δ

ln t
f t exp

t

     
  

  

    (2-28) 

in which λ and δ are parameters and t is variable, ln( ) is the symbol of natural logarithm 

based on e. By comparing (2-28) with (2-23), λ is the mean value of ln(t) and is called 

the “log mean” of the lognormal distribution; δ is the standard deviation of ln(t) and is 

called the “log standard deviation” of the lognormal distribution. Therefore, according 

to the definition, if the variable t follows a lognormal distribution with parameters λ and 

δ, ln(t) follows a normal distribution with mean of λ (μ=λ) and standard derivation of δ 

(σ=δ) [26]. In other words, the plot of a lognormal distribution in a log scale shows the 

shape of a normal distribution. 

 

The common logarithm based on 10, log10( ), can also be used, according to which the 

PDF of the lognormal distribution is written as 

 
 10

2

λ0 4343

2δ2π δ

'

''

log t.
f t exp

t

     
  

  

   (2-29) 

where 0.4343=1/ln(10), parameter λ
’
 is the mean of log10(t) and δ

’
 is the standard 

deviation of log10(t). Because the natural logarithm ln(t) and the common logarithm 

log10(t) can be easily converted to each other by applying the relation of  
 

 
10

10

ln t
log t

ln
  

and also the mean life and standard derivation of a certain group of lifetime data are 

deterministic values, there is not much difference between the natural or common 

logarithm being used throughout calculation [19]. The lognormal distribution based on 

the natural logarithm is to be used for the National Grid transformer lifetime analysis in 

this thesis. 

 

The lognormal CDF is expressed as 

 
  λ

Φ
δ

ln t
F t

    
  

  

     (2-30)  

where again Φ( ) shows the standard normal distribution CDF.  

 

The lognormal hazard function is derived as 
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2

2

λ λ1
1 Φ

δ2δ2π δ

ln t ln t
h t exp

t

          
     

      

   (2-31) 

 

Unlike the normal distribution, (2-31) is not monotone increasing against age. The 

shape of lognormal hazard varies depending on the value of δ: when δ is less than 0.2, 

h(t)
 
increases against age t; when δ is around 0.5, h(t)

 
is roughly constant over age; 

when δ is larger than 0.8, h(t)
 
decreases over the most age. Therefore the lognormal 

distribution can describe different stages of the bathtub curve corresponding to 

increasing, constant or decreasing hazard rate. 

 

Based on the relation between the normal distribution and lognormal distribution, the 

variable t in (2-26) and (2-27) can be substituted by ln(t) for the lognormal distribution 

as 

   1δ Φ λln t F t        (2-32) 

    1δ Φ 1 λln t exp H t          (2-33) 

according to which ln(t) is linear with Φ
-1

[F(t)] and Φ
-1

{1-exp[-H(t)]} respectively. 

 

Product mean life and standard derivation under the lognormal distribution are 

calculated respectively as [54] 

2δ
λ

2
t exp

 
  

 
     (2-34) 

   2 2σ 2δ 2λ δ 2λexp exp       (2-35) 

 

 Weibull Distribution 

The Weibull distribution was firstly popularized in metallurgical failure analysis [46] 

and then applied among a variety of product life studies. The Weibull distribution PDF 

is expressed as 

 
β 1 β

1

α α α

t t
f t exp

     
     

     
    (2-36) 

in which α is the scale parameter and β is the shape parameter. α determines the spread 

of data; it also indicates the age corresponding to 63.2% CDF and thus is called the 

products characteristic life. β implies the shape of the distribution and it is 

dimensionless. Particularly when 3≤β≤4, the shape of the Weibull distribution is similar 

to that of a normal model. 
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The CDF is derived as 

 
β

1
α

t
F t exp

  
    

   
    (2-37) 

 

By applying twice natural logarithm in both sides of (2-37), this equation is rewritten as 

    
1

1 α
β

ln t ln ln F t ln          (2-38) 

and furthermore 

   
1

α
β

ln t ln H t ln        (2-39) 

 

Again the linear relationships shown in (2-38) and (2-39) are always applied when 

fitting the lifetime data into the Weibull distribution.   

 

The Weibull hazard function is obtained as  

 
β 1

β

α α

t
h t



  
   
  

    (2-40) 

When β=1, the Weibull distribution is equivalent to an exponential model; when β>1, 

h(t) increases against age; when β<1, h(t) decreases. The variety shapes of hazard 

function by changing the value of β makes the Weibull model versatile to describe the 

lifetime data. Population mean life and the standard deviation are expressed as 

1
α Γ 1

β
t

  
   

  
    (2-41) 

22 1
σ α Γ 1 Γ 1

β β

        
          

        
   (2-42) 

where again Г( ) is the gamma function.  

 

In engineering practice the Weibull model is applicable to describe the distribution of 

minimum value of a collection of independent observations from a normally distributed 

population [21]. For example, a transformer consists of various components and the 

transformer’s lifetime is determined by the first failure among these components if the 

failure is non-repairable. Suppose components are independent and each of their lives 

distribute normally, the Weibull distribution is thus robust to describe the transformer 

lifetime consisting of those independent components [21].  
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Occasionally in practice, a third parameter ρ, named location parameter needs to be 

considered from (2-36) to (2-42). When the first failure is observed after age zero, the 

variable t should be substituted by t-ρ (typically ρ>0 for lifetime data analysis). ρ hence 

estimates the earliest failure age within the product population and the Weibull 

distribution is right-shifted if this location parameter is taken into account [47, 55]. It is 

concluded by quality/process engineers that when β is greater than 6, the location 

parameter ρ should always be considered in product lifetime analysis [47]. Particularly 

when analyzing transformer lifetime data, if the operational experience could justify that 

the onset of failure would not be less that a specific age, the location parameter ρ needs 

to be considered. 

 

 Smallest Extreme Value Distribution 

The smallest extreme value distribution is an extension of the Weibull distribution; it is 

used to describe certain extreme phenomena such as the temperature minima, material 

strength, as well as the first-failed-component determined product failure [26]. In the 

context of this thesis the name is in briefly quoted as “extreme value distribution”.  

 

The PDF of the extreme value distribution is expressed as 

 
1 λ λ

δ δ δ

t t
f t exp exp exp

      
     

    
   (2-43) 

and CDF is calculated as 

 
λ

1
δ

t
F t exp exp

   
     

  
    (2-44) 

where δ is the scale parameter and λ is the location parameter and both of them have the 

same unit as age t. λ is the age corresponding to 63.2% of CDF and it is called the 

population characteristic life [26]. When applied in product lifetime data analysis, λ is 

always suggested at least 4 times as great as δ [26]. 

 

According to (2-44), the relationship between age t and F(t) can be derived as 

  δ 1 λt ln ln F t         (2-45) 

and furthermore 

 δ λt ln H t        (2-46) 

which are used in the graphic plotting approaches of fitting lifetime data into the 

extreme value distribution.   
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The hazard function of the extreme value distribution is  

 
1 λ

δ δ

t
h t exp

 
  

 
    (2-47) 

 

From the exponentially increasing value against age t, the extreme value distribution 

hazard function represents the wear-out period in the bathtub curve. The model 

therefore is similar to the normal distribution that reveals the units at older ages are 

prone to fail due to the ageing failure mechanism.  

 

The hazard function h(t) and hazard curves of the exponential, normal, lognormal, 2-

parameter Weibull distribution and extreme value distribution are listed in Table 2-3. 

Parameters of each distribution model are indicated as well.  
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Table 2-3 Hazard Function and Hazard Curve of Commonly Used Distribution Models 

Distribution exponential normal lognormal 
Parameter θ: mean and standard derivation 

               μ: mean 

σ: standard deviation 

           λ: log mean 

δ: log standard deviation 

Hazard function  
1

θ
h t    

 
2

2

μ1

2σ2πσ

μ
1 Φ

σ

t
exp

h t
t

 
 
  


 

  
 

 

 

 

2

2

λ1

2δ2π δ

λ
1 Φ

δ

ln( t )
exp

t
h( t )

ln t

   
 
  


    

  
  

 

Hazard curve 
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Table 2-3 Hazard Function and Hazard Curve of Commonly Used Distribution Models (Continued) 

Distribution Weibull extreme value 

Parameter 
                α: scale parameter 

β: shape parameter 

                  λ: location parameter 

δ: scale parameter 

Hazard function  
β 1

β

α α

t
h t



  
   
  

  
1 λ

δ δ

t
h t exp

 
  

 
 

Hazard curve 
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2.4 Literature Summary on Product Lifetime Data 

Statistical Analysis 

The science of statistics has been dramatically developed since 1940’s due to the 

growing requirement of modern technologies [4, 50, 51, 56]. Statistics application in 

areas of human life, medical research and military machine maintenance were much 

concerned in the early periods. Since 1950’s and 1960’s biomedical studies suggested 

advanced analysis methods; these methods were further developed by engineers in 

products’ design and manufacturing [26]. Particularly in power systems, the lifetimes of 

generator windings, engine fans, turbine wheels, cables, transformers and insulation 

material strength are more and more concerned by statistics [26, 57]. 

 

The common procedure according to which the product lifetimes are analyzed 

statistically can be concluded in four steps as follows:  

Step 1: collecting data;  

Step 2: selecting the proper distribution model(s);  

Step 3: fitting the data into the distribution model(s) and determining the best-fitted 

parameter(s) by optimal approach;  

Step 4: carrying out the goodness-of-fit test to check the presumed distribution model(s).  

 

The products population future failure trend in terms of hazard curve against age can be 

further predicted according to the presumed distribution and the obtained best-fitted 

parameters. The fundamental technique is to use an optimal approach to determine the 

values of parameters. The least square estimation (LSE), and in some occasions its 

extended form, the maximum likelihood estimation (MLE) are two frequently used 

optimal approaches [58].  

 

Pioneering researchers on product lifetimes followed the above procedure; however 

differences exist in each step. Sections 2.4.1 to 2.4.4 summarize the engineering 

applications of statistics, especially in applications related to power systems. Following 

the four steps, arguments between applications are also presented.  

 

 

 

 



Chapter 2 Literature Review on Product Lifetime Data Statistical Analysis 

-56- 

2.4.1 Lifetime Data Collection 

2.4.1.1 Complete Data 

It was introduced in Section 2.3.1 that statistical analysis on product lifetimes only 

concerns the age of individual unit and in engineering practice, product lifetime data is 

often multiply right-time censored. However, in practice attention has not been paid to 

this type of data, especially in the field of power systems [59].  

 

It can be found in many applications, the lifetimes of historical failed products are only 

considered in order to constitute a complete database. For example Hartford Steam 

Boiler (HSB) evaluated the US commerce transformers’ average life based on all US 

utility transformer failure records published by US Commerce Department [24]; 

Meandering Regional Electric Company Iran implemented a reliability study on its low 

voltage transformers (62/20kV) according to the failure data only [60].  

 

As highlighted previously for a set of complete data, the analysis is to simply calculate 

the failed products mean life ( t ) and standard deviation (σ). Li pointed out the 

weakness of this method is that it only considers the information from failed products 

[27]. For power electric assets in particular, the simplified complete data may be 

workable for distribution level transformers or underground cables, it is not workable 

for large power transformers as these are fairly reliable and have not significant failure 

records.  

 

2.4.1.2 Singly Censored Data 

It can be seen from [61-63] that distribution transformers can be subdivided according 

to their installation years, such that the analyses on the multiply censored lifetime data 

can be simplified to the studies on transformers installed in the same year, which 

constitute groups of singly censored data.  

 

Within a group of transformers installed in the same year, the transformer failure hazard 

is obtained via curve fitting. The number of transformer failure at each age can be 

predicted within that specific group; the sum of failure numbers from all the groups 

indicates the number of failure of the utility’s entire transformer assets against age. 
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It can be mathematically proven that the transformer assets “number of failure against 

age” predicted among groups of singly censored data, is identical to that obtained 

among the entire multiply censored data. Although the analysis with singly censored 

data is relatively simple, it does not provide a generic failure trend for the entire 

population. Subdividing the population into groups of singly censored data is essentially 

suitable for products which are installed intensively within a short period. 

 

2.4.1.3 Multiply Censored Data 

Because specialized statistical techniques have been well developed to analyze multiply 

censored data in general reliability study, more engineering applications, particularly in 

power systems, are dealing with both the failed and survived products.  

 

GE implemented a study on its transformer reliability in 1989, in which the survived 

transformers were taken into account as well as the failed units [52]. Li clarified the 

characteristics of the multiply censored lifetimes of Canada BC Hydro 500kV reactors 

and then predicted the population future failure hazard [27, 28]. Analysis on distribution 

transformers from US Utility Department presented in [61] was extended onto the 

overall assets after studies on transformers installed in the same year. Recent 

publications [1, 21, 42, 64-69] are prone to treat the multiply censored product lifetimes 

rather than the historical failures only or the simplified single censored type.  

 

2.4.2 Distribution Model Selection 

Proper distribution models are thereafter selected after the collection of product lifetime 

data. Traditional distribution models are commonly used, especially in power systems, 

because they are simple-mathematically expressed. Models developed from vital 

statistics are also adopted in engineering application. Utilities more often propose their 

own failure models, which have been proven suitable for their assets according to 

operational experience.  

 

2.4.2.1 Traditional Distribution Models 

The distributions presented in 2.3.3, and sometimes their extension forms, are 

commonly used in engineering practice since they have been proven to describe 

lifetimes in other areas. Particularly in power systems, applications of the exponential 
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distribution [61, 70], the normal distribution [27, 28, 66] and the 2- or 3-parameter 

Weibull distribution [27, 28, 30, 60, 61, 64-70] can be found.  

 

In respect of the 2- and 3-parameter Weibull model, Jongen suggested the use of a 3-

parameter model when the first failure is observed significantly beyond age 1 [64, 68]. 

Cota-Felix compared the normal distribution and Weibull distribution by fitting the 

same lifetime data [69]; it indicates that although the traditional distributions are 

workable according to some utilities’ practice, they may not provide the best description 

for any specific products.  

 

2.4.2.2 Utility Defined Models 

Products failure models are inclined to be defined according to utilities’ operational 

experience, rather than by using the above traditional distributions.  

 

 Iowa Survivor Curves 

In an historical application of statistics, a family of empirical curves originally 

generated based on 176 groups of asset lives were named as Iowa curves after its 

production by Kurtz and Winfrey in Iowa State University [71]. These 18 basic curves 

are widely applied to model industrial products reliability in terms of survival function, 

typically after their validation and improvement in 1978 and 1992 [31]. Figure 2-9(a) 

presents a family of the Iowa survivor curves and Figure 2-9(b) shows the 

corresponding frequency curves. 

 

  
(a) Left Mode of Iowa Survivor 

Curves 

(b) Frequency Curves of Left Mode 

of Iowa Curves 

Figure 2-9 Left Mode of Iowa Survivor Curves and Corresponding Frequency Curves 

[71] 
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The label L in Figure 2-9 indicates the left-mode group of Iowa Curves, of which the 

peak frequency in the corresponding PDF locate on the left as can be seen from Figure 

2-9(b) [31]. The number 0-5 represents the relative heights of each frequency curve [71].  

 

Iowa Curves are originally given by tables as there have been no fixed mathematical 

expressions for that family of curves. Fitting product lifetimes into Iowa Curves were 

historically implemented subjectively based on the utilities’ prior judgement. According 

to [31] mathematical evidence is lacking to identify the best fit curve among the family 

of 18 curves.  

 

 Models Suggested from Vital Statistics 

Knowledge from vital statistics suggests mathematical models of mortality [72]. These 

models have been developed since the 18
th

 century based on historical death records, 

from De Moivre’s Law (1725), Gompertz Law (1825), Makeham’s 1
st
 (1860) and 2

nd
 

Law (1889) to Double Geometric Law (1867) [62, 72]. They are listed in Table 2-4.  

 

Table 2-4 Commonly Used Human Death Mortality Models 

De Moivre’s Law (1725)    ρh t k t   

Gompertz Law (1825)   th t B c  

Makecham’s 1
st
 Law (1860)   th t A B c   

Double Geometric Law (1867)   t th t A B c C d    

Makecham’s 2
nd

 Law (1889)   th t A D c B c    

Perks’ Law (1931)  
1

t

t t

A B c
h t

E c D c




 
 

where A, B, C, D, E, and k, ρ, c are parameters in each model 

 

These models, especially the Gompertz Law, Makeham’s 1
st
 Law and Perks’ Law are 

commonly adopted by finance and insurance industries to assess product reliability [32, 

62]. The exponential term of Gompertz’s Law was proposed based on the fact that 

human mortality is observed to increase exponentially [62]; it however neglected the 

accidental failure in term of constant mortality [62]. Makecham’s 1
st
 Law was thus 

developed by adding the random failures independent of age. These two models both 

imply increasing failure hazard rate at older ages. Perks further modified Makecham’s 

1
st
 Law by adding 1 tD c in the denominator to indicate the slower increase of mortality 

at older ages and tE c to model the infant mortality [31, 32, 62]. 
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Power system utilities further developed their own models based on the information 

shown in Table 2-4, and matched with their own historical equipment failure records.  

 

As an extension of Gompertz Law, Cox suggested a proportional hazard model (PHM) 

for general statistics [73], expressed as 

     0 1 1 2 2β β βq qh t;z h t exp z z ... z       (2-48) 

 

In a transformer lifetime study, h0(t) 
is the unspecified hazard rate baseline dependent 

on equipment service age when effects from any external transient events are zero, zj 

(j=1, …, q) simulate the effects from the external transient events and βj (j=1, …, q) are 

parameters to measure these effects when transformers are in operation. This model is 

widely used in electric cable and transformer lifetime analysis [70, 73]. 

 

Hartford Steam Boiler (HSB) published a risk model based on Makeham’s 1
st
 Law for 

its transformer lifetime analysis, expressed as 

   0 005h t . a exp bt      (2-49)  

where a and b are constant parameters determined from historical failures, 0.005 

represents the constant frequency of the randomly-occurred transient events and 

a∙exp(bt) indicates the increasing hazard value due to transformer ageing [62, 63]. This 

hazard model can be further realized as combined from an exponential distribution (by 

hazard of 0.005) and a slow increase Weibull distribution (by hazard a∙exp(bt)). 

Application of this model can be found from insurance companies as well as power 

systems [42]. 

 

In transformer reliability study in particular, the infant mortality in Perks’ Law should 

be neglected according to [31, 32, 72]. A simplified Perks’ Law is proposed as  

 
 

 

exp

1 exp

A c B t
h t

D B t





     (2-50)  

 

(2-50) was also adopted by [31, 32] to mathematically describe the Iowa Survivor 

Curves because the reliability function converted by (2-50) is similar to the family of 

Iowa Curves. 
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 Piecewise Linear Models 

Except the models from vital statistics, hazard formulas should also be derived based on: 

the utilities’ past operations, the understanding of product failure mechanisms and also 

in order to get rid of the comprehensive expressions.  

 

For instance a piecewise linear model was presented by EPRI for underground cable 

reliability analysis. The model is expressed as 

 
 

0c

c

h , t T
h t

h m t T , T t

 
 

  
    (2-51) [21]  

according to which the hazard rate remains hc until the onset of burnout at age T and 

increases linearly by slope m after T.  

 

According to an EPRI industrial survey on failures from substation power transformers, 

HV auto transformers and generation station transformers, generic values of hc, T and m 

are summarized in [74]. The steady state hazard rate hc is indicated to be 0.01, the 

burnout age T is assigned as 30 years, which is the mid age based on transformer 

unreliability records between 25 to 35 years. m is suggested to be 0.001 in order to 

model a doubled hazard rate 10 years after burnout T. Adjusted values of hc, T and m 

can also be found in [74] for transformers under severe operation and extreme 

environments. 

 

Similarly CIGRÉ published a table of transformer hazard change over service ages 

based on its survey on transmission/distribution transformers and generation 

transformers [18]. These typical hazards are shown in Table 2-5 and also graphically 

displayed in Figure 2-10. 

 

Table 2-5 Transmission Hazard Rate by CIGRÉ Survey [18] 

Age Range <15yr 15-24yr 25-34yr 35-50yr >50yr 

Transmission/Distribution 

Transformer 
0.5% 1.0% 1.5% 2.0% 3.0% 

Generation 

Transformer 
0.8% 1.5% 2.0% 2.5% 3.5% 
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Figure 2-10 CIGRÉ Survey Transformer Hazard Rate Change by Age 

 

It is also generally indicated in [18] that 0.5% hazard shows excellent condition, 2.0% 

infers acceptable condition and >2.0% presents unacceptable condition. When 

considering the generic transformer hazards, it must be recognized by [18] that the 

transformer hazard can vary significantly among utilities. The hazard depends on the 

units’ loading practices, protection operations and oil quality maintenance policy. 

Expert opinions are important to identify any critical level of population hazard as well 

as the hazard definition adopted by the utility and their past operational experience.  

 

2.4.2.3 UK National Grid Model  

In particular UK National Grid Company proposes for planning purpose a general 

increasing hazard model, this is in accordance with its transformer operational 

experience [75]. This model is presented separately from the above industrial models, as 

this study is essentially intended to help National Grid predict failure of its transformer 

assets more precisely. 

 

The UK National Grid transformer population failure model includes 3 typical ages of 

reaching the early onset of population significant unreliability (corresponding to 2.5% 

of CDF), the median lifetime (50% of CDF) and the late onset of population significant 

unreliability (97.5% of CDF). In addition these typical ages correspond to the hazard of 

0.3%, 7% and 16% respectively based on the mathematical algorithm used to generate 

the failure model [75, 76]. These typical ages are listed in Table 2-6 as follows. 
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Table 2-6 UK National Grid Power Transformer Assets Failure Model 

Expected CDF Expected age t Expected hazard Expected age t 

2.5% 40 0.3% 36 

50% 55 7% 55 

97.5% 80 16% 80 

 

This discrete transformer population failure model can be continuously described by 

best fitted into the lognormal distribution. Figure 2-11(a) shows the fitted CDF and 

Figure 2-11(b) indicates the fitted hazard function. 

 

  

(a) CDF Lognormal Fitting (b) Hazard Lognormal Fitting 

Figure 2-11 National Grid Power Transformer Assets Failure Model Curve Fitting 

 

This model is concluded to describe the failure data well [75]; however it does not 

consider any severe design deficiencies or operation variances throughout National Grid 

transformer population. The model needs to be reviewed when more failures are 

observed within the National Grid system. 

 

2.4.3 Fitting Methods 

The least square estimator (LSE), maximum likelihood estimator (MLE) and Bayesian 

method are three commonly used methods of fitting products lifetime data into the 

presumed distributions, especially into the traditional distribution models. They all can 

be applied on complete data, single censored data or multiply censored data; the least 

square estimator (LSE) in particular is most frequently adopted in engineering practice. 

 

2.4.3.1 Least Square Estimator (LSE) 

The principle of undertaking LSE is to minimise the sum of the squares of the residuals 

from the observed points to the fitted curve, and the minimum corresponds to the best fit 
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under a certain model [22, 77]. For those picking up complete data for instance, the 

procedure of fitting data into a presumed distribution model by LSE is relatively easy. 

Product ages are organized against CDF F(t) according to the linear relationship 

between expression of age t and F(t) shown in (2-21), (2-26), (2-31), (2-37) and (2-44) 

for exponential, normal, lognormal, 2-parameter Weibull and extreme value distribution 

respectively; LSE is then used to determine the best fitting straight line. Appendix-Ι 

explains the procedure in much detail. 

 

For those dealing with the singly censored data, for example products installed in the 

same year, the above classical fitting procedure for complete data is also applicable [61]. 

Failed products contribute to the plotting point only and it is thus criticized that using 

the classical fitting procedure for incomplete data enables more weighting to be applied 

to the failure samples while less weighting to the survived products, especially when the 

failure data is limited within the population. 

 

The above classical fitting procedure is not straightforward for multiply censored data 

curve fitting because F(t) at each age t is not obviously derived for multiply censored 

data. In order to implement LSE especially on multiply censored data, Nelson [26] 

proposed a graphic plotting method via actuarially estimating H(t) or F(t) at each age t; 

Li [27] further modified Nelson’s method into an easier engineering solution. 

 

 Nelson’s Graphic Plotting Method  

By identifying the characteristics of complete and incomplete product lifetime data, 

Nelson in 1972 presented a systematic method of fitting the complete data or the 

incomplete data in traditional distribution models [26].   

 

One approach of Nelson’s plotting method is hazard plotting. Similarly to the classical 

fitting procedure of complete data, age t or ln(t) is plotted against expression of H(t) 

according to (2-22), (2-27), (2-33), (2-39) or (2-46) under exponential distribution, 

normal distribution, lognormal distribution, 2-parameter Weibull distribution or extreme 

value distribution respectively. LSE determines the best fitting straight line and 

estimates the proper values of parameters under that specific distribution model. 

 

CDF plotting is the other approach. By using Kaplan-Meier method, Herd-Johnson 

method or the actuarial method, the reliability function R(t) is estimated, and then F(t) 



Chapter 2 Literature Review on Product Lifetime Data Statistical Analysis 

-65- 

can be derived as 1-R(t). The subsequent steps follow those used in classical fitting 

procedure for complete data.  

 

For application convenience, Nelson introduced various plotting papers for several 

distribution models, on which the linearity of plotting either by hazard plotting or CDF 

plotting can obviously be seen. 

 

The main advantages of Nelson’s method compared to the classical fitting are: firstly 

Nelson’s method is applicable for both complete data and incomplete data; secondly for 

incomplete data in particular, the survived units contribute to the curve fitting as well as 

the failed units; finally the proper model can be easily selected by checking the linearity 

of plotting. However the graphic plotting method is very subjective: different people 

using the same plotting paper, based on the same data, may conclude differently. 

Nelson’s method can not provide confidence limits for the parameters [26].   

 

 Li’s Modified Method 

Li furthermore developed Nelson’s method in his several successive publications based 

on Canada BC Hydro 500kV reactors data [27, 78]. He modified Nelson’s CDF plotting 

approach involving actuarial estimation of R(t) by artificially adding F(t) of 0.001 at the 

age before the first failure and keeping the F(t) of the last failure till the very last age. 

Although there is no clear mathematical evidence to support those modifications, Li’s 

results are reasonable, as compared to the mean life derived by failed units only. 

Besides Li’s method is more convenient to implement for engineering application, 

therefore this approach is being followed or discussed by other researchers [29, 59, 69].  

 

2.4.3.2 Maximum Likelihood Estimator (MLE) 

Compared to LSE, the maximum likelihood estimator (MLE) is more generally applied. 

MLE estimates “the best model that maximises the probability of seeing the observed 

failure” [79]. Hence the values of parameters derived by MLE are called the sample 

maximum likelihood estimate of their true values. MLE also provides the confidence 

limit(s) for the obtained distribution parameter(s). Although the estimation procedure 

may become computationally sophisticated especially when the number of parameters is 

large, MLE is fairly versatile for lifetime data analysis, particularly when the sample 

size is large. It has been proven by mathematicians that using MLE the mean value of 
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an estimated parameter is close to its true value and its variance would be no greater 

than that by any other estimators [26, 67, 80].  

 

Jongen compared MLE and LSE in [65, 67]. He applied Weibull fitting to a large epoxy 

resin bushing population in service in utilities in the Netherlands, and a small group of 

epoxy resin bushings at Nuon Energy Company (Netherlands), and concluded that MLE 

can handle heavily censored data better than LSE. However when the sample size was 

small, MLE may overestimate the parameter(s). Details of implementing MLE are 

introduced in Appendix-І. 

 

2.4.3.3  Bayesian Method 

Bayesian method is another powerful approach in product lifetime data analysis. 

Bayesian method firstly models parameter uncertainties in a prior distribution, it then 

builds the posterior probability based on the presumed distribution model and the 

parameter prior probability, and it finally estimates the values of parameters most 

satisfying the observed data. The procedure is similar to that of MLE because they both 

consider the most probable model which results in the observed data. Bayesian analysis 

however needs to incorporate parameter prior distribution [81]. Parameter prior 

distribution reflects the engineering judgement and prior knowledge for the product 

failure under study; it thus delivers more information for determining the values of 

parameters within the posterior probability [30, 81].  

 

Gulachenski explained the advantages of Bayesian analysis as a probabilistic technique 

which could provide a complete picture of parameter uncertainties; he used this method 

to analyse US New England Electric 115kV power transformers [30]. Chen also 

employed Bayesian analysis to fit US PJM’s transformer lifetime data into the Iowa 

survival curves [31, 32]. The implement of Bayesian method is also illustrated in 

Appendix-І. 

 

2.4.4 Goodness-of-Fit 

In an entire fitting process of complete or incomplete data, the goodness-of-fit test is 

performed as the last step to verify the presumed distribution and its accompanying 

parameter value(s) [66]. The classical “Goodness-of-fit” tests, such as Kolmogorov-

Smirnov test (briefly K-S test) [23], Cramér-von Mises test [82], Anderson-Darling test 
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[20], Chi-square test [23], and Hollander-Proschan test [49] concern the differences 

between the observed CDF and the fitted CDF at each failure [49]. A specific 

distribution is accepted only if the maximum difference is within a general standard 

criterion value [23]. Therefore, a distribution model and its parameters determined by 

the MLE, LSE or Bayesian method might be rejected by a goodness-of-fit test, because 

MLE for instance, estimates the most probabilistic parameters under the predetermined 

distribution model while the goodness-of-fit test questions this model to be used as a 

proper precondition.  

 

In engineering practice however, the goodness-of-fit test is not usually carried out to 

simplify the lifetime data analysing process. In some applications related to power 

systems, the K-S test is used [30, 60, 61, 66, 70].  

 

K-S test firstly orders the observations according to their ages from low to high, and 

then compares the observed CDF with the fitted CDF; if the maximum difference is no 

larger than the standard value under a certain significant level, the proposed model is 

acceptable at that significance level. The standard value is dependent on the sample size 

and the selected significant level. The standard values were tabulated by Hollander and 

Wolfe and particularly the extensive table for the multiply censored data is organized by 

Colosi [20]. The application of K-S test does not depend on the type of lifetime data or 

the specific distribution model being evaluated; however it tends to be more sensitive 

near the centre of the distribution and can only be used in continuous distributions [82].  

 

Detail of how the K-S test is performed is illustrated in Appendix-ΙΙ. The standard 

values under different population size and the significant level for both complete and 

multiply censored data are tabulated in Appendix-ΙΙ. 

 

2.4.5 Summary of Literatures on Lifetime Data Statistical 

Analysis 

The four steps of product lifetime data curve fitting process are summarised in Table 2-

7. Engineering publications related to each individual steps are listed; and their 

advantages and disadvantages highlighted.  



Chapter 2 Literature Review on Product Lifetime Data Statistical Analysis 

-68- 

 

 

Table 2-7 Lifetime Data Statistical Analysis Summary 

step content application example advantage disadvantage 

1 
data 

collection 

complete 

data 

 HSB [24] 

 Meandering Reginal Electric [60]  

 Simple for analysis 

 Failure data of transformers 

are limited 

 Information from censored 

units are not considered 

singly 

censored 

data 

 Jin [61]  

 HSB [62, 63]  

multiply 

censored 

data 

 Jongen [64-68]  

 EPRI [21]  

 CIGRE [1, 42]  

 Cota-Felix [69]  

 Failed and survived 

transformers are both 

considered in analysis 

 Need specific method for 

curve fitting 

2 
model 

collection 

traditional 

statistical 

model 

 Exponential distribution [61, 70]  

 Normal distribution [27, 28, 66]  

 2/3-parameter Weibull distribution 

[27, 28, 30, 60, 61, 64-70] 

 Theoretical distribution 

models are mathematically 

developed 

 Specific applications are 

suggested from literatures 

 Any specific distribution 

models are not suggested by 

very limited transformer 

failure data 

utility 

defined 

model 

 Iowa curves:  

            PJM [31, 32]  

 Models from vital statistics:  

            HSB [62, 63] 

            PJM [31, 32]  

            CIGRE [42] 

            Prasad and Rao [70] and Kumar [73] 

 Piecewise model: 

      EPRI [21, 74] 

            CIGRE [18] 

 Models are well developed 

in human death mortality 

study 

 Consistent with utilities’ 

operational experience and 

expert judgement 

 Results from large scale 

survey 

 Hazard values are only valid 

accompanying with hazard 

definition 

 Distribution model defined 

by one utility may not 

consist with other utilities’ 

practical data 
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UK National 

Grid model 

National Grid Technical Guidance 

[75, 76]  

 Consistent with National Grid 

operation experience up to 

present 

 Design deficiencies or 

operation variances are not 

considered in the model 

 Needs to be refined when 

more failures are observed 

3 
curve 

fitting 

LSE 

Simple linearization method for 

complete and single censored data [61] 
 Linearity can be determined by 

simple inspection 

 Workable for complete data 

and single censored data 

 Only workable for some 

traditional distribution 

models 

Graphic plotting method [26] 

 An entire systematic curve 

fitting technique 

 Suitable for both complete data 

and incomplete data 

 Easy to implement   especially 

by using plotting papers 

 Complicated to implement 

 Only workable for some 

traditional distribution 

models 

Li’s modification [27, 29, 69]  
 Relatively easy compared to 

graphic method 

 Workable when very limited 

lifetime data are available 

 Mathematical argument on 

the modification continues 

MLE Jongen [65, 67] 

 Suitable for heavily censored 

data fitting 

 Provides parameter confidence 

limits 

 Estimation procedure may 

become computationally 

sophisticated 

 May overestimate values of 

parameters when sample size 

is small 
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Bayesian 

estimator 

PJM [31, 32]  

Gulachenski and Besuner [30] 

 Delivers more information from 

engineering prior knowledge 

for determining parameter 

values 

 Provides confidence limit for 

parameters 

 Parameter prior distribution 

is not usually direct 

suggested 

 Mathematically complicated 

4 

goodness-

of-fit 

testing 

K-S test 

Gulachenski and Besuner [30] 

Jin [61] 

Jongen [66] 

Prasad and Rao [70] 

 Application does not depend on 

specific distribution model 

 Application does not require 

large sample size 

 Much sensitive at the centre 

of the model 

 General standard values for 

multiply censored data are 

under investigation 
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2.5 Summary 

Although products are assigned a certain end-of-life when they are designed and 

manufactured, this single age does not indicate the product’s failure. Transformer 

failure for instance, relies on the unit’s actual design, loading condition, the transient 

fault events it has experienced, and its installation environment. Transformer failure is 

hence realized as any outage that requires the transformer to be taken out of service 

rather than continue until its designed end-of-life (40 years).  

 

The bathtub-shape curve is a widely used end-of-life model. It describes the likelihood 

of product failure, within a short time interval given that such product has survived at 

the end of the last time interval. Particularly with power transformers, the first stage in 

the bathtub curve is the normal operating stage with a relatively low hazard rate. This 

stage corresponds to a random failure period in which transformer failures are caused by 

randomly occurring transient fault events that are independent of transformer age. As 

the transformer ages, the hazard rate gradually increases as the unit is more and more 

prone to fail. This corresponds to the wear-out stage of the bathtub curve. In order to 

generate the hazard curve against age, statistical analyses are carried out. 

 

Product lifetime is the only variable in a statistical study and the lifetime data needs to 

be polished as the first step of analysis. Transformer lifetime data in particular, are 

clarified as multiply right-time censored data, because transformers are commissioned 

in different years, some transformers do not fail when analysed, or some need to be 

taken out of service before failure. Proper distribution models are chosen to describe the 

classified lifetime data. An optimal approach is then carried out to determine the values 

of parameters under the presumed model(s). A goodness-of-fit test is sometimes 

undertaken as the last step.  

 

Intensive literature, especially those involving applications in power systems and related 

to lifetime data curve fitting, has been reviewed in this chapter. Based on the literature, 

the following conclusions can be drawn: 

 

 A variety of mathematical expressions have been developed as a measurement 

of hazard. Except for the traditional expressions developed according to 

statistical theories, utilities are prone to use their own defined hazard models 
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based on their operational experience and expert opinion. The explanation of 

obtained hazard rate should be consistent with the utility’s hazard expression. 

 Although specialized methods are well developed for multiply censored lifetime 

data analyses in general reliability application, they have not been widely 

applied in power systems. In many applications the failed units are only used to 

derive the population mean life and standard derivation. 

 The least-square estimator (LSE), maximum likelihood estimator (MLE) and 

Bayesian approach are three commonly used techniques to obtain the values of 

parameters for the presumed distribution model. In particular the key advantage 

of LSE as mathematically simple-to-implement results in its popularity among 

engineering applications. 

 The goodness-of-fit test (i.e. K-S test), as the last step in the standard curve 

fitting procedure, is not always carried out to simplify the mathematical process. 

 

Among the literature, Nelson first of all identified the characteristics of complete and 

incomplete lifetime data and developed a graphic plotting method for lifetime data 

curve fitting, this was essentially based on the LSE algorithm. Li simplified Nelson’s 

graphic plotting method and verified his own modification by utilities’ limited failure 

data. UK National Grid power transformer asset lifetime data are therefore analyzed 

statistically in Chapter 3 by Nelson’s method and Li’s modified method. The MLE 

approach is also carried out in Chapter 3 and used to compare with the LSE approach. 



Chapter 3 National Grid Transformer Lifetime Data Statistical Analysis 

-73- 

Chapter 3  

National Grid Transformer Lifetime Data 

Statistical Analysis 

 

3.1 Introduction 

National Grid owns the high-voltage electricity transmission network (400kV and 

275kV) in England and Wales and is the transmission network operator across Great 

Britain. National Grid has recorded the installation of its transformer assets including 

super-grid transformers (SGT), converters (COV), quadrature boosters (QB) etc since 

1952. The analysis in this thesis only considers National Grid super-grid transformers 

(SGT) installed up to 2008, which includes the overwhelming majority of the National 

Grid transformer population. To simplify the statement, the word “transformer” or 

“power transformer” is used rather than “super-grid transformer”. The number of 

transformers installed by year from 1952 to 2008 is shown in Figure 3-1 as follows. 

 

 
Figure 3-1 National Grid Power Transformers Installation Number against Year [43] 

 

Figure 3-1 shows that significant numbers of power transformer were installed during 

the period 1960-1970, and particularly in year 1967 a peak capacity of 23 GVA was 

installed. Since then the installed capacity dramatically decreased and did not increase 

again until the 1990’s, when higher level of electricity supplies and investment were 

required [43], and the gas generator stations started to replace the old and expensive 

coal stations.  
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Figure 3-2 shows the number of replaced transformers at each year until the end of 2008. 

The replaced transformers actually include those that have failed and those that are 

manually retired. 

 

 
Figure 3-2 National Grid Power Transformers Number of Replacement against Year 

 

According to the installation number in Figure 3-1 and the replacement number in 

Figure 3-2, the number of National Grid in-service transformers plotted against the year 

(1950-2008) can be derived, as shown in Figure 3-3. 

 

 
Figure 3-3 National Grid Power Transformers In-service Number against Year 

 

A significant number of transformers were installed between 1960 and 1970, and as can 

be seen from Figure 3-3, most of these transformers are still operating on the National 

Grid transmission network.  
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Generally an in-service transformer is used in one of the three roles: 

 an active transformer, transmitting electric power from one voltage level to the 

other, 

 a spare transformer, disconnected from the network and used as a backup for 

emergency replacement [40],  

 a redundant transformer, disconnected from the network and waiting for 

removal [40, 76]. 

 

Assuming a transformer has operated for at least 1 year after installation, the National 

Grid transformer assets installed up to 2008 are actually observed in 2009. The age 

distribution of the 751 currently in-service transformers can be drawn in a pie chart as 

shown in Figure 3-4. 

 

 
Figure 3-4 National Grid In-service Transformers Age Distribution 

 

It can be seen from Figure 3-4, 8.1% transformers are approaching 40 years (age 36-40), 

which is the designed end-of-life of transformer. 50% of in-service transformers are 

aged beyond 40 years.  Particularly there are 4.7% transformers have been in operating 

for more than 50 years.  

 

A significant number of in-service transformers are aged more than 40 years; this 

verifies that the designed 40 years end-of-life should not be used to indicate actual 

transformer failure. Those “old” transformers, which remain in service, have benefited 

from relatively light loading and a proper maintenance policy. However to maintain 

network reliability it is important to understand and predict future failure based on 

present knowledge and information. Statistical analyses will be carried out in this 

chapter, using information about the transformers installed up to 2008. The statistical 
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approaches introduced in Chapter 2 are also examined using real lifetime data from UK 

National Grid operational experience.  

 

National Grid power transformer lifetimes are firstly derived, as they make up the 

database for analysis. Studies of fitting the lifetime data into normal distribution, 

lognormal distribution, 2-parameter Weibull distribution and extreme value distribution 

are carried out via the least square estimator (LSE) and the maximum likelihood 

estimator (MLE). The advantages and restrictions of transformer lifetime data statistical 

analysis are also addressed in this chapter. 

 

3.2 National Grid Transformer Lifetime Data 

Derivation for Statistical Analysis 

As summarized in Chapter 2, lifetime data collection is the first step in statistical 

analysis. In National Grid transformer operation practice, data collection includes 

transformer classification and transformer service age derivation. They are described in 

3.2.1 and 3.2.2 respectively.  

 

3.2.1 Transformer Classification 

By tracing National Grid transformer operation history, several cases can be included 

within a transformer’s service period. A transformer could: 

 operate and fail; 

 operate and be manually retired; 

 operate and remain in service for an unknown future; 

 operate, experience a fault, be repaired and returned to service; then fail or be 

manually retired, or remain in service for an unknown future; 

 operate, experience a fault, be repaired typically having the winding rewound 

used new paper insulation, and returned to service; then fail or be manually 

retired, or remain in service for an unknown future. 

 

In the above statement, the terminology fault is introduced in order to distinguish 

between a transformer that is repairable or has a reversible defect, from one which 

involves a severe un-repairable or irreversible failure. A transformer reversible defect or 

fault is defined as a transformer outage which can be repaired either in or out of the 
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plinth, and then the transformer can be returned to service after the repair [11]. Failure 

in this context indicates a transformer that suffers a final un-repairable outage.  

 

The above operational experiences are further illustrated in Figure 3-5. ○ and ● 

represent transformer commission start and failure respectively, x indicates manually 

retirement, ׀ shows fault, ( ) indicates repair period after fault, — shows transformer 

operation period and → specifies a future that involves an unknown operation period for 

these in-service transformers. 

 

 
Figure 3-5 National Grid Transformer Operation Case 

 

As indicated in Chapter 2 transformer failure is determined by the insulation withstand 

strength [40, 75]; hence, a rewound transformer with newly assembled winding 

insulation can be considered as a new unit once it is returned to service. The fault that 

caused a transformer rewinding should be treated as failure, because it implies the end-

of-life of the old-insulated transformer. Meanwhile other repaired transformers, whose 

insulation system was not updated during repairing continue ageing after repair and 

cannot be considered as new transformers. 

 

According to the above statement, the three types of transformers based on the operation 

status obtained when collecting data, are: 

X

(repair)

(repair) X

(repair)
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(rewound) X

a. active transformer b. failed transformer c. scrapped transformer

d. repaired transformer, currently in-service e. repaired transformer, failed afterwards

f. repaired transformer, manually retired afterwards

g. rewound transformer, currently in-service h. rewound transformer, failed afterwards

i. rewound transformer, manually retired afterwards

X

( )

operation start failured manually retired

operation period unknown operation period

fault repair or rewinding
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 Transformers currently in-service, known as active, spare or redundant 

transformers. Because the active transformers are the overwhelming majority of 

the in-service population, in-service transformers are represented by active units, 

denoted by A. 

 Transformers failed after years of operation, denoted by F. 

 Transformers manually retired according to their poor condition or design 

defects (identified by defects in similarly designed transformers). These 

transformers are usually scrapped afterwards and thus specified as scrapped 

transformers denoted by X. 

 

In addition, failed transformers F and manually retired transformers X are generally 

named replaced transformers.  

 

According to the definition of these 3 types, transformers experienced like a or d in 

Figure 3-5 are active units, b or e are failed transformers, and c or f are scrapped units. 

In particular transformers like g, h or i are considered as failed units firstly and start 

new lives after rewound which are further identified as A, F or X respectively.   

 

In general therefore, each installed transformer can make a unique contribution to the 

population lifetime database except those rewound transformers. A rewound 

transformer is considered as a new unit once it is returned to service. 

 

3.2.2 Transformer Service Age Derivation 

Lifetimes of the failed transformers F, scrapped transformers X and currently in-service 

transformers A constitute the database for National Grid transformer lifetime statistical 

analysis. 

 

As explained in 3.1, National Grid transformers are assumed to have operated for at 

least 1 year, Year 2009 is hereby used as the reference year in transformer age 

derivation. Transformer service ages till 2009 of the above 3 types of transformers are 

deduced as 

 for an in-service transformer A: age = 2009 - year of installation 

 for a failed transformer F: age = year of failure - year of installation  

 for a scrapped transformer X: age = year of retirement - year of installation.  
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In addition it needs to be mentioned here that the period when a transformer is out of 

service for repair should be eliminated from its service age since transformer service 

age indicates the length of service period within the network. 

 

The ages of National Grid transformers constitute a group of multiply right-time 

censored data, in which the age of a failed transformer F implies the lifetime of that 

particular unit; however either the active A or the scrapped transformers’ (X) lifetimes 

have not been observed when collecting data. The reasons can be summarized as: 

 installation of new transformers every year, 

 retiring transformers before their actual failure, and  

 collection of lifetime data while transformers are in service. 

 

Up to the reference year 2009, UK National Grid has recorded 52 failed transformers 

and 62 manually retired units; 751 transformers are currently in service in the 

transmission network. Ages of these 865 transformers make up the database for 

statistical study. Lifetime analyses using the least-square estimator (LSE) are shown in 

3.3 and using the maximum likelihood estimator (MLE) are shown in 3.4.  

 

3.3 National Grid Transformer Lifetime Data 

Statistical Analysis by Least Square Estimator (LSE) 

In this section, Nelson’s graphic plotting approaches (including the hazarding plotting 

approach and CDF plotting approach) and Li’s modified approach are conducted to fit 

National Grid transformer lifetime data. Again these approaches are all essentially based 

on the least-square estimation method (LSE). The normal distribution, lognormal 

distribution, 2-parameter Weibull distribution and smallest extreme value distribution 

are selected to model the lifetime data, because these commonly used distribution 

models can adequately describe the wear-out stage of the bathtub curve due to the 

ageing failure mechanism when transformers are operating at their older ages. 

Exponential distribution is not used because it describes the normal operating stage only 

and thus does not suggest transformer future failures due to ageing.  

 

The hazard plotting approach, CDF plotting approach and Li’s modified approach are 

presented in 3.3.1, 3.3.2 and 3.3.3 respectively. In each section, the contents are 

organized by: 
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 introducing the procedure of fitting according to a certain approach and showing 

the linear plot under the selected distribution models, 

 displaying the estimates of parameters, the population mean life and the standard 

deviation under each distribution, and identifying the goodness-of-fit of each 

distribution, 

 plotting the cumulative probability function under each distribution together 

with the observed data and comparing the estimated ages of reaching three 

typical cumulative probabilities under different distributions, and 

 plotting the hazard function under each distribution together with the observed 

data. 

 

3.3.1 By Hazard Plotting Approach 

 Curve Fitting Procedure 

The steps of implementing hazard plotting using the National Grid transformer lifetime 

data are listed as follows. Again, there are 865 lifetime data altogether, within which 52 

are failed units and 813 are censored data. 

 

Step 1: Order the ages of 865 transformers from smallest to largest in Column 1.  

 

Step 2: Indicate failed transformers by “1” and censored transformers by “0” in Column 

2. If failures and censorings both exist at the same age, it is generally assumed that 

transformer fails in the middle of that age.  

 

Step 3: Assign the reverse rank (krr) to each transformer. For example the reverse rank 

for the 1
st
 transformer is 865, for the 2

nd
 transformer is 864, …, and for the 865

th
 is 1. 

 

Step 4: For each failure i (i=1, 2, 3, …, 52), calculate the observed instantaneous hazard 

h(i) as h(i)=1/krr(i), in which krr(i) is the reversed rank for the i
th

 failure and 1 considers 

the failures one by one even when they occurred at the same age. The calculation is 

discussed in detail in Chapter 2. In particular hazard is not calculated for censored 

transformers which are marked as “0” in Column 2. 

 

Step 5: Calculate the cumulative hazard function H(i) at each failure i. It is deduced as 

the sum of all the preceding observed instantaneous hazards and the hazard at the i
th

 

failure.  
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Step 1 to Step 5 are summarized in Table 3-1, which only shows a snapshot of the 

cumulative hazard function derivation on the “865” transformer lifetime data. An entire 

table is given in Table III-1 Appendix-III. 

 

Table 3-1 Illustration of Hazard Plotting Approach Using National Grid Transformer 

Lifetime Data 

age 

t 

 

 

Censored/ 

Failed 

Reversed 

Rank 

krr 

Hazard 

h(i) 

Cumulative 

hazard 

H(i) 

1  0 865   

1  0 864   

1  0 863   

1  0 862    

1  1 861  0.001161 0.001161 

1  1 860  0.001163 0.002324 

1  0 859    

1  0 858    

1  0 857    

1  0 856    

2  0 855    

2  0 854    

2  0 853    

2  0 852    

2  0 851    

2  0 850    

2  0 849    

2  1 848  0.001179 0.003503 

2  0 847    

…  … …  … … 

48  0 77    

48  0 76    

48  1 75  0.013333 0.096664 

48  0 74    

…  … …  … … 

55  0 3    

55  0 2    

57  0 1    

 

Step 6: Plot failure age t (in year) against the expression of cumulative hazard function 

H(i) according to the linear equation under the specific distribution model. These linear 

equations are 

Normal distribution:   1σ Φ 1 μt exp H t        (3-1) 

Lognormal distribution:     1δ Φ 1 λln t exp H t        (3-2) 

2-parameter Weibull distribution:    
1

α
β

ln t ln H t ln      (3-3) 
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Extreme value distribution:  δ λt ln H t       (3-4) 

 

It can be noticed that several H(i)s may be plotted against an identical age t as more 

than 1 transformer fails at that particular age.  As discussed in Chapter 2, the calculation 

of hazard function h(i) and then the cumulative hazard function H(i) precisely consider 

the contributions from individual failed transformers.  

 

Step 7: Under a certain distribution model, use LSE to draw a straight line to best fit the 

plotted points in Step 6. The parameters of this distribution can be graphically estimated 

from the plotted straight line.  

 

Details of implementing LSE are introduced in Appendix-I. The linear plotting under 

the 4 distribution models are shown in Figure 3-6, from (a) to (d). 

 

  
(a) Normal Distribution (b) Lognormal Distribution 

  
(c) 2-Parameter Weibull Distribution (d) Extreme Value Distribution 

Figure 3-6 Hazard Plotting under Traditional Distribution Models Using National Grid 

Transformer Lifetime Data 
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In each graph of Figure 3-6, the dots indicate 52 observed failures, and the red straight 

line is the best-fit curve according to LSE. The values of parameters under each 

distribution model are further obtained. 

 

 K-S Goodness of Fit Test 

As the last step of traditional curve fitting, Kolmogorov-Smirnov test (K-S test) is 

carried out to verify the fitting goodness of the presumed distribution models. The 

goodness-of-fit K-S test is not distribution-specific and it can reject any improper 

hypothesized distributions. The steps are summarized as follows by using the normal 

distribution as an example.  

 

Step 1: Order the ages of 865 transformers from low to high. This is the same as the 

first step of hazard plotting.  

 

Step 2: Designate “0” for each of the censored transformers and “1” for failed 

transformers, which is also the same as Step 2 in hazard plotting.  

 

Step 3: List the reverse rank (krr) for each transformer from 865 to 1. According to 

National Grid’s record, two transformers failed within their first year of service (age 

t=1); they are assigned the reverse rank krr=861 and 860 respectively. 

 

Step 4: Calculate the reliability function R(i) for the i
th

 failure, as  

 
 

 
 

1
1

rr

rr

k i
R i R i

k i


       (3-5) 

in which i indicates the i
th

 failure, krr(i) is the reversed rank for the i
th

 failure, R(i-1) is 

the reliability at the last failure i-1. Typically R(0) is assigned to be 1 before the 1
st
 

failure. For example, for the 1
st
 failure, the reliability function R(1) is calculated as 

 
 

 
 

1 1 861 1
1 0 1 0 998839

1 861

rr

rr

k
R R .

k

 
      (3-6) 

 

The process of reliability function recursive calculation at each failure is listed in Table 

3-3 from Column 4 to Column 6.  

 

This approach to the recursive calculation of reliability was developed by Kaplan and 

Meier in 1958. The process is also called the product-limit estimation of reliability and 
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it was further adopted by Nelson in his CDF plotting approach. This recursive 

calculation will be further illustrated when implementing CDF plotting on National Grid 

transformer lifetime data in 3.3.2.  

 

Step 5: Derive the cumulative probability function CDF F(i) at failure i as 

   1F i R i       (3-7) 

 

For the 1
st
 failure, for example, F(1) = 1-0.998839 = 0.001161. The value of F(i) for 

each failure is shown in Column 7. Particularly in K-S test, these CDF are specified as 

observed CDF for the i
th

 failure and denoted as F
0
(i). 

 

Step 6: At each failure i (i=1, 2, 3, …, 52) calculate CDF according to the presumed 

distribution and the obtained parameters. These are the theoretical CDF and denoted as 

F0(i)for the i
th

 failure. Under the normal distribution for example, F0(i) 
is derived as 

 
 

0

μ
Φ

σ

t i
F i

 
  

 
    (3-8) 

where t(i) is the age of the i
th

 failure, values of μ and σ are determined by previous 

hazard plotting. For example for the 1
st
 failure,

 
 

 
0

1 73 07
1 Φ 0 004821

27 84

t .
F .

.

 
  

 
, where 

μ=73.07 and σ=27.84 are hazard plotting determined parameters under the normal 

distribution model. The hazard plotting results will be presented in the following section. 

 

Step 7: Compare observed F
0
(i) with theoretical F0(i) at each failure. For the 1

st
 failure, 

for example, the absolute difference between F
0
(1) and F0(1) is calculated as

   0

01 1 0 001161 0 004821 0 003660F F . . .    . The maximum absolute difference between 

F
0
(i) and F0(i) among M failures (M=52 in this specific case), denoted as DM(r), is 

recorded as 

     0

0 1 2 3MD r max F i F i , i , , ,...,M     (3-9) 

in which 
M

r
N

  and N is the total number of transformers. 
52

0 060
865

r .  for National 

Grid transformer population, which indicates the portion of failures out of the whole 

population. 

 

Step 8: According to the failure portion factor r and the prior assigned significance level 

γ, a critical value y1-γ(r) can be found from Table II-3 in Appendix-II. In engineering 
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practice γ is always set 0.05, y1-γ(r) is thus found to be 0.5569 corresponding to r = 

0.060 for National Grid transformer population. A tolerance factor denoted as DM
γ
(r) is 

further derived as 

 
 1 γγ 0 5569

0 077228
52

M

y r .
D r .

M


      (3-10) 

 

According to (3-10) the value of DM
γ
(r) remains for a certain group of data (r and M 

unchanged) under a specific significance level γ. Hence DM
γ
(r) = 0.077228 is valid to 

test the fitting of National Grid transformer lifetime data into various distribution 

models. 

 

Step 9: If DM(r) ≤ DM
γ
(r) = 0.077228, the distribution model is accepted as a suitable fit, 

unless it is rejected. 

 

Step 1 to Step 9 are summarized in Table 3-2. For illustration purpose information 

related to failed transformers is only shown in Table 3-2. 

 

As highlighted in Table 3-2, the maximum absolute differences between the observed 

F
0
(i) and the normal distribution derived F0(i) is 0.091667. This value is larger than the 

critical value of 0.077228. Normal distribution with hazard plotting derived parameters 

is considered an inadequate model for the lifetime data. 

 

The curve fitting results using the hazard plotting approach and the judgement on 

goodness-of-fit under other presumed distribution models will be discussed in the 

following section. 
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Table 3-2 Illustration of K-S Test involving Kaplan-Meier Method of Reliability 

Calculation Using National Grid Transformer Lifetime Data 

Age 

t 

 

 

Reversed 

Rank 

krr(i) 

Reliability 

 
 

 
 

1
1

rr

rr

k i
R i R i

k i


   Observed 

CDF 

 

F0(i) 

Normal 

distribution 

CDF 

F0(i) 

Absolute 

difference 

   0

0F i F i

 

 

 

1rr

rr

k i

k i



 

 1R i    R i  

1 1 861 0.998839 1 0.998839 0.001161 0.004821 0.003660 

1 1 860 0.998837 0.998839 0.997677 0.002323 0.004821 0.002498 

2 1 848 0.998821 0.997677 0.996501 0.003499 0.005348 0.001849 

3 1 838 0.998807 0.996501 0.995311 0.004689 0.005925 0.001237 

4 1 826 0.998789 0.995311 0.994106 0.005894 0.006557 0.000664 

4 1 825 0.998788 0.994106 0.992902 0.007098 0.006557 0.000541 

6 1 787 0.998729 0.992902 0.991640 0.008360 0.008002 0.000358 

6 1 786 0.998728 0.991640 0.990378 0.009622 0.008002 0.001620 

7 1 774 0.998708 0.990378 0.989099 0.010901 0.008825 0.002077 

8 1 765 0.998693 0.989099 0.987806 0.012194 0.009720 0.002474 

8 1 764 0.998691 0.987806 0.986513 0.013487 0.009720 0.003767 

9 1 758 0.998681 0.986513 0.985211 0.014789 0.010694 0.004095 

10 1 745 0.998658 0.985211 0.983889 0.016111 0.011752 0.004360 

10 1 744 0.998656 0.983889 0.982566 0.017434 0.011752 0.005682 

10 1 743 0.998654 0.982566 0.981244 0.018756 0.011752 0.007004 

13 1 703 0.998578 0.981244 0.979848 0.020152 0.015487 0.004665 

14 1 695 0.998561 0.979848 0.978438 0.021562 0.016940 0.004622 

14 1 694 0.998559 0.978438 0.977029 0.022971 0.016940 0.006031 

15 1 680 0.998529 0.977029 0.975592 0.024408 0.018508 0.005900 

15 1 679 0.998527 0.975592 0.974155 0.025845 0.018508 0.007337 

16 1 662 0.998489 0.974155 0.972683 0.027317 0.020198 0.007118 

19 1 614 0.998371 0.972683 0.971099 0.028901 0.026073 0.002828 

19 1 613 0.998369 0.971099 0.969515 0.030485 0.026073 0.004412 

20 1 602 0.998339 0.969515 0.967905 0.032095 0.028324 0.003771 

21 1 597 0.998325 0.967905 0.966283 0.033717 0.030735 0.002982 

22 1 593 0.998314 0.966283 0.964654 0.035346 0.033313 0.002033 

22 1 592 0.998311 0.964654 0.963024 0.036976 0.033313 0.003662 

22 1 591 0.998308 0.963024 0.961395 0.038605 0.033313 0.005292 

23 1 584 0.998288 0.961395 0.959749 0.040251 0.036067 0.004184 

24 1 576 0.998264 0.959749 0.958082 0.041918 0.039005 0.002913 

24 1 575 0.998261 0.958082 0.956416 0.043584 0.039005 0.004579 

25 1 571 0.998249 0.956416 0.954741 0.045259 0.042134 0.003125 

26 1 567 0.998236 0.954741 0.953057 0.046943 0.045464 0.001479 

26 1 566 0.998233 0.953057 0.951373 0.048627 0.045464 0.003163 

27 1 562 0.998221 0.951373 0.949681 0.050319 0.049002 0.001318 

27 1 561 0.998217 0.949681 0.947988 0.052012 0.049002 0.003011 

27 1 560 0.998214 0.947988 0.946295 0.053705 0.049002 0.004703 

28 1 557 0.998205 0.946295 0.944596 0.055404 0.052756 0.002648 

28 1 556 0.998201 0.944596 0.942897 0.057103 0.052756 0.004347 

29 1 552 0.998188 0.942897 0.941189 0.058811 0.056736 0.002075 

29 1 551 0.998185 0.941189 0.939481 0.060519 0.056736 0.003784 

30 1 543 0.998158 0.939481 0.937751 0.062249 0.060948 0.001302 

31 1 533 0.998124 0.937751 0.935991 0.064009 0.065400 0.001391 

34 1 492 0.997967 0.935991 0.934089 0.065911 0.080277 0.014366 

34 1 491 0.997963 0.934089 0.932186 0.067814 0.080277 0.012463 

35 1 482 0.997925 0.932186 0.930252 0.069748 0.085766 0.016019 

35 1 481 0.997921 0.930252 0.928318 0.071682 0.085766 0.014085 

37 1 461 0.997831 0.928318 0.926305 0.073695 0.097579 0.023884 

37 1 460 0.997826 0.926305 0.924291 0.075709 0.097579 0.021871 

39 1 429 0.997669 0.924291 0.922137 0.077863 0.110544 0.032681 

39 1 428 0.997664 0.922137 0.919982 0.080018 0.110544 0.030526 

48 1 75 0.986667 0.919982 0.907716 0.092284 0.183951 0.091667 

Max  0.091667 

Critical 

value 
 0.077228 

Conclusion  Rejected 
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 Curve Fitting Result 

The obtained values of parameters under the normal, lognormal, Weibull and smallest 

extreme value distribution are shown in Table 3-3. National Grid transformer population 

mean life ( t ) and the accompanying standard deviation (σ) under each distribution 

model are thus derived. The failed transformers’ arithmetic mean ( t ) and standard 

deviation (σ) are also calculated according to (2-15) to (2-17); they are presented in 

Table 3-3 to compare with the mean life ( t ) and standard deviation (σ) deduced from 

curve fitting. 

 

According to the implementation procedures introduced in the last section, K-S test is 

carried out for the normal distribution, lognormal distribution, Weibull distribution and 

extreme value distribution. The results are shown in Table 3-3. “A” represents the 

distribution is acceptable, while “R” means the distribution is rejected.  

 

Besides, typically for curve fitting by the LSE, the coefficient of determination (COD) 

is calculated to indicate the goodness of the fitted straight line. Unlike the K-S test, 

COD evaluates the fitting goodness of the obtained parameters by presuming the 

selected distribution is proper. Generally a value of COD close to 1 indicates a good fit, 

i.e. a fit with COD=0.9 is generally considered to describe the data better than the other 

fit with COD=0.8. However, there is not a specific critical value of COD below which a 

fit can be rejected. The calculation of COD can be found in Part A of Appendix-I. The 

value of COD under each distribution is shown in Table 3-3.  

 

Table 3-3 Hazard Plotting Results under Traditional Distribution Models Using 

National Grid Transformer Lifetime Data 

 
Normal 

distribution 

Lognormal 

distribution 

Weibull 

distribution 

Extreme 

value 

distribution 

From 

failures 

only 

parameters 
μ=73.07 

σ=27.84 

λ=6.97 

δ=2.24 

α=401.70 

β=1.10 

λ=59.55 

δ=10.93 
 

mean t  

(year) 
73 12932 387 53 20 

std σ 

(year) 
27.8 157030 353.1 14.0 11.5 

K-S R A A R  

COD 0.903 0.973 0.987 0.854  

 

It shows in Table 3-3 that the population mean life ( t ) is derived to be 73 yrs under the 

normal distribution and the standard deviation (σ) is 27.8 yrs; population mean life ( t ) 
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is determined to be 12932 yrs with the standard deviation of 157030 yrs under the 

lognormal distribution; t is 387 yrs and σ is 353.1 yrs under the 2-parameter Weibull 

distribution; and t equals 53 yrs and σ is 14.0 yrs under the extreme value distribution. 

Any of these mean lives is much longer than the mean life ( t =20 yrs) derived from 52 

failed transformers and also the corresponding standard deviations are longer than the 

standard deviation (σ=11.6 yrs) obtained from the failed transformers. The prolonged 

transformer population mean life and the standard deviation, obtained from hazard 

plotting, are actually caused by the censored transformers. The reversed ranks of those 

censored transformers affect the denominator of the hazards that are calculated at 

individual failures; although 52 failures are only plotted, information from active units 

and scrapped transformers are also taken into account in curve fitting.  

 

It needs to be noted from Table 3-3 that under the lognormal distribution, both the 

population mean life ( t =12932 yrs) and the standard deviation (σ=157030 yrs) are very 

large, and typically the standard deviation σ is even larger than the population mean life

t . Although these values may not be engineering-significant, the value which is purely 

derived from a mathematical process actually indicates the high dispersion of the 

lifetime data, especially when the service ages of censored units are considered. 

 

According to the COD value of fitting for each distribution model shown in Table 3-3, 

the lognormal and Weibull distribution better fit the transformer lifetime data than the 

other 2 models. It is also indicated in Table 3-3 that the lognormal distribution and 

Weibull distribution are verified to be good fitting models via the K-S test; while the 

normal distribution and extreme value distribution are both rejected by the K-S test, 

although their CODs are high (i.e. COD>0.9).  

 

To clearly indicate the goodness-of-fit of each distribution model according to the K-S 

test, the theoretical cumulative probability function F
0
(t)s are graphically compared 

with the observed F0(t)s in Figure 3-7. The theoretical CDF under each distribution 

model can be derived according to 

Normal distribution:     
μ

Φ
σ

t
F t

 
  

 
  (3-11) 

Lognormal distribution:   
  λ

Φ
δ

ln t
F t

    
  

  

   (3-12) 
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Weibull distribution:     
β

1
α

t
F t exp

  
    

     

            (3-13) 

Extreme value distribution:  
λ

1
δ

t
F t exp exp

   
     

    
  (3-14) 

 

 
Figure 3-7 National Grid Transformer Lifetime Data Observed CDF vs. Hazard Plotting 

Derived CDF under Different Distribution Models 

 

Figure 3-7 clearly indicates that the lognormal distribution and extreme value 

distribution are better to fit the observed lifetime data as compared to the other two 

distributions. However, as indicated in Table 3-2 and also shown in Figure 3-7, the 

absolute differences between F
0
(i) and F0(i) (    0

0F i F i ) when fitting the data into the 

normal distribution or the extreme value distribution, are less than the tolerance factor 

(DM 
γ
(r)) of 0.077228 except the last failure at age 48. It can be imagined that the 

normal and extreme value distribution can also describe the National Grid transformer 

lifetime data well if the last failure is neglected, or a larger critical value y1-γ(r) and then 

a higher tolerance factor DM 
γ
(r) is used.  

 

Besides, according to Figure 3-7 the age of reaching the early onset of population 

significant unreliability (corresponding to 2.5% of CDF), the age of reaching the median 

lifetime (50% of CDF) and the ageing of reaching the late onset of population 

significant unreliability (97.5% of CDF) derived under different distribution models can 

be obtained. It hereby compares in Table 3-4 the ages of reaching three typical CDFs 

under different distribution models.  
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Table 3-4 Hazard Plotting Derived Typical Ages in National Grid Transformer Lifetime 

Data Analysis 

 Age t 

CDF 

F(t) 

By 

normal 

By 

lognormal 

By 

Weibull 

By 

extreme 

2.5% 19 13 14 19 

50% 73 >500 292 56 

97.5% 128  >500 74 

 

It can generally be seen from Table 3-4, from an asset manager’s point of view, that the 

normal distribution and extreme value distribution might be proper to describe National 

Grid transformer assets lifetime data as the median life predicted under these two 

models are reasonable values and the estimated failure trend is more coincident with 

engineering prior knowledge.  

 

Similarly the theoretical hazard function h(t) under the normal, lognormal, Weibull and 

extreme value distribution can be calculated based on the obtained parameters. These 

hazard functions are rewritten here again as  

Normal distribution:   

 
2

2

μ1

2σ2πσ

μ
Φ

σ

t
exp

h t
t

 
 
  


 

 
 

  (3-15) 

Lognormal distribution:  

 

 

2

2

λ1

2δ2π δ

λ
Φ

δ

ln( t )
exp

t
h t

ln( t )

   
 
  


  
 
  

 (3-16) 

Weibull distribution:   
β 1

β

α α

t
h t



  
   
  

   (3-17) 

Extreme value distribution:  
1 λ

δ δ

t
h t exp

   
    
   

  (3-18) 

 

Figure 3-8 compares the theoretical hazards with the observed hazard h(i). 
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Figure 3-8 National Grid Transformer Lifetime Data Observed Hazard h(i) vs. Hazard 

Plotting Derived Hazard h(t) under Different Distribution Models 

 

It would be also straightforward to compare the fittings by different models in Figure 3-

8. It can be seen from Figure 3-8 that the normal distribution and extreme value 

distribution more consider the later observation, especially the last failure at age 48; the 

lognormal and Weibull distribution, on the other hand, fit the earlier failures well. The 

hazard function under lognormal distribution is derived to decrease and the Weibull 

model generates a roughly constant hazard. Although these two distributions are 

statistically accepted according to the K-S test as discussed previously, they are contrary 

to the engineers’ prior knowledge that transformers will approach the wear-out stage 

with increasing hazard.  

 

From a mathematical point of view, one can conclude that either the lognormal 

distribution or the 2-parameter Weibull distribution can effectively describe National 

Grid transformer lifetime data; mathematics however has little power to further identify 

the “best” distribution between the lognormal and Weibull model, because both of their 

CODs are comparably large (COD=0.973 under the lognormal distribution and 

COD=0.987 under the Weibull distribution), and according to the K-S test they are 

adequate models [83]. Asset managers, on the other hand, can easily overthrow these 

two models since the predicted population mean life ( t ) of 12932 yrs under the 

lognormal distribution or 387 yrs under the Weibull distribution is extremely 

unconvincing according to the engineering judgement. In fact, engineering prior 

knowledge on future increasing failure hazard has to be suspended when statistically 

analyzing the product lifetime data. 
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The significantly large value of failure hazard derived from a single failure at age 48 

(h=
1

0 01333
75

. , as shown in Figure 3-8) is due to the limited number of transformers 

that have the operational experience until that age. This failure was caused by the 

improper tap-changer maintenance under the random failure mechanism. Hence, the 

high value of failure hazard at age 48 does not indicate the onset of National Grid 

transformer increasing hazard, although the normal distribution or the extreme value 

distribution closely fits this last failure (as shown in Figure 3-8).  

 

In fact, National Grid power transformer operational experience up to the present has 

not shown an adequate number of failures, especially failures at older ages (only one 

failure was recorded during age 40 and 50). The limited number of failures prevents any 

meaningful statistical analysis to be conducted [84]. Statistical curve fitting results 

would be distorted by the lifetime data of poor quality. To demonstrate this, the 

National Grid transformer lifetime data are now modified to arbitrarily add 10 more 

failures since age 48 until age 57, by which there is a bigger population of failure (62 

failures) than actually recorded in National Grid’s database (52 failures). The 

intentionally assumed 10 more failures is based on the technique referred to in Li’s 

experimental test in [27]. The hazard plotting based on the Weibull distribution example 

is now implemented again. The re-produced linear plot based on the 62 failures is 

compared with the previous plot based on 52 failures in Figure 3-9. 

 

 
Figure 3-9 Hazard Plotting on 62 Arbitrary Failure Data under Weibull Distribution 
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It indicates in Figure 3-9 that if more failures were observed at later ages the population 

mean life ( t ) and the standard deviation (σ) would reduce significantly. In fact 

National Grid power transformer operational experience up to the present has not shown 

adequate number of failures, especially failures at older ages. Moreover further studies 

reveal that historical failures are almost always caused by randomly-occurred transient 

events [40, 43, 75]. The normal distribution and the extreme value distribution models 

are not consistent with the fact that National Grid has not experienced a significant 

increase in the failure trend with age. Hence, curve fittings on the random failures 

cannot suggest future failures due to the ageing failure mechanism, and a decreasing 

hazard or constant hazard curve may be derived if the lognormal distribution or the 

Weibull distribution is used.  

 

3.3.2 By CDF Plotting Approach 

The CDF plotting approach is similar to hazard plotting, which also involves LSE for 

lifetime data curve fitting. CDF plotting calculates the reliability function R(i) and then 

derives the cumulative probability function F(i) at each failure i. F(i) is written into the 

linear equation against the expression of age t under the presumed distribution model. 

LSE is then implemented to determine the parameters that best describe the linear 

relationship. Lifetime data curve fitting by the CDF plotting approach is undertaken in 

this section using National Grid operational data. 

 

3.3.2.1 CDF Derivation 

In order to calculate the reliability function R(i) and then the CDF F(i) at the i
th

 failure, 

Nelson introduced three methods in the CDF plotting approach. These are Kaplan-

Meier method, Herd-Johnson method and the actuarial method. 

 

 Kaplan-Meier Method 

The Kaplan-Meier method or named product-limit method has been introduced when 

implementing the K-S goodness-of-fit test in the hazard plotting approach. The detailed 

derivation of R(i) by Kaplan-Meier method can be found in Table 3-2 and an entire 

table for National Grid transformers is shown in Table III-2 Appendix-III. Again for the 

i
th

 failure, the reliability function R(i) is calculated recursively by (3-5):  

 
 

 
 

1
1

rr

rr

k i
R i R i

k i


       (3-5) 
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where i indicates the i
th

 failure, krr(i) is the reversed rank for failure i, R(i-1) is the 

reliability at the last failure before i. R(0)=1 before the 1
st
 failure. For a complete 

database including N failures, (3-5) can be simplified as the reliability at the i
th

 failure:  

  1
N i i

R i
N N


       (3-19) 

and thus the CDF for the i
th

 failure is: 

   1
i

F i R i
N

       (3-20) 

 

(3-20) is equivalent to (2-4) as the usual nonparametric estimation of CDF for a group 

of complete data. Hence the Kaplan-Meier method of estimating the reliability at each 

failure using the censored data, as shown in (3-5), is actually an extension of (3-19) 

using the complete data [26]. This method is widely used in engineering applications. 

 

 Herd-Johnson Method 

The Herd-Johnson method of reliability calculation for censored data was first 

suggested by Herd in 1960 and further developed by Johnson in 1964 [26]. The method 

is similar to the Kaplan-Meier method, which recursively calculates the reliability 

function R(i) at the i
th

 failure as:  

 
 

 
 1

1

rr

rr

k i
R i R i

k i
 


    (3-21) 

where i indicates the i
th

 failure, krr(i) is the reversed rank for failure i, R(i-1) is the 

reliability at the last failure before i and R(0) is assigned to be 1 before the 1
st
 failure. 

For a group of complete data with N failures, (3-21) can be simplified to: 

 
1

1
1 1

N i i
R i

N N

 
  

 
   (3-22) 

And then F(i) for the i
th

 failure is calculated as 

 
1

i
F i

N



    (3-23) 

 

(3-23) is the Herd-Johnson estimation of the rank of unreliability at the i
th

 failure which 

has been shown in Table 2-1. The Herd-Johnson method of reliability calculation for 

censored data in (3-21) is consequently an extended form of reliability estimation for 

complete data.  
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 Actuarial Method 

The procedure for using an actuarial method to derive the reliability function is 

summarized in the following steps using the lifetime data of National Grid transformers. 

 

Step 1: List the ages of 865 transformers from low to high. In comparison with from the 

1
st
 step in hazard plotting, the same ages are marked only once. 

 

Step 2: List the number of exposed transformers at each age, denoted as NE(t). Note: as 

in Chapter 2 the exposed transformers were defined as the units exposure to failure at a 

certain age, which includes the transformers failed or manually retired at that particular 

age.  

 

Step 3: List the number of failures corresponding to the ages shown in Step 1, denoted 

as nF(t). 

 

Step 4: Lists the number of censored transformers at the ages listed in Step 1, 

designated as nC(t). These censored transformers include the manually retired units at 

that particular age and also the in-service transformers which have not operated beyond 

that age. 

 

Step 5: Calculate the number of survived transformers NS(t), still operational at age t, as 

NS(t) = NE(t) - nF(t) - nC(t). Obviously the number of transformers that survived at the 

end of a certain age is equivalent to the number of exposed transformers of the next age, 

i.e. NS(t) = NE(t+1). Column 5 shows the value of NS(t) at each age t. 

 

Step 6: Calculate the reliability function R(t) at failure age t recursively as 

     1 1R t R t R t t       (3-24) 

in which R(t-1) is the reliability at the last age t-1,  1R t t  is the conditional reliability 

at age t by the given transformers that have survived at the end of age t-1. Similarly to 

the Kaplan-Meier method and the Herd-Johnson method, R(0)=1 before the 1
st
 failure. 

A simple derivation of the conditional reliability  1R t t  is suggested by the actuarial 

method as 

 
 

   
1 1

0 5

F

E C

n t
R t t

N t . n t
  


    (3-25) 
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where nF(t) is the number of failures at age t, NE(t) is the exposed number of 

transformers at age t and nC(t) is the censored number at age t. 0.5nC(t) is the adjustment 

for censored number by supposing those censored transformers have been operating till 

the middle of age t. If there is no failure at age t, the conditional reliability  1R t t  =1 at 

this specific age.  

 

The process of deriving reliability R(t) at age t is shown from Column 6 to Column 8.  

 

Step 7: The cumulative failure probability F(t) at age t is thereafter calculated as 1-R(t). 

 

The above steps are summarized in Table 3-5. This table is a snapshot of the entire table 

of illustrating National Grid transformer lifetime data CDF; derived by the actuarial 

method. The entire table is shown in Table III-3 Appendix-III.   

 

Table 3-5 Illustration of CDF Plotting Involving Actuarial Method Using National Grid 

Transformer Lifetime Data 
Column 

1 

Column 

2 

Column 

3 

Column 

4 

Column 

5 

Column 

6 

Column 

7 

Column 

8 

Column 

9 

Failure 

Age t 

Number 

of 

Exposure 

NE(t) 

Number 

of 

Failure 

nF(t) 

Number 

of 

Censoring 

nC(t) 

Number 

of 

Surviving 

NS(t) 

 1R t   
 

   
1

0 5

F

E C

n t

N t . n t



  R t   F t  

1 865 2 8 855 1 0.997677 0.997677 0.002323 

2 855 1 13 841 0.997677 0.998821 0.996501 0.003499 

3 841 1 5 835 0.996501 0.998807 0.995313 0.004687 

4 835 2 17 816 0.995313 0.99758 0.992904 0.007096 

5 816 0 23 793 0.992904 1 0.992904 0.007096 

6 793 2 11 780 0.992904 0.99746 0.990383 0.009617 

7 780 1 11 768 0.990383 0.998709 0.989104 0.010896 

8 768 2 5 761 0.989104 0.997387 0.986520 0.013480 

… … … … … … … … … 

… … … … … … … … … 

45 167 0 38 129 0.920022 1 0.920022 0.079978 

46 129 0 19 110 0.920022 1 0.920022 0.079978 

47 110 0 24 86 0.920022 1 0.920022 0.079978 

48 86 1 22 63 0.920022 0.986667 0.907755 0.092245 

49 63 0 16 47 0.907755 1 0.907755 0.092245 

… … … … … … … … … 

… … … … … … … … … 

56 1 0 0 1 0.907755 1 0.907755 0.092245 

57 1 0 1 0 0.907755 1 0.907755 0.092245 

 

The cumulative failure probability function at each failure i, F(i), derived by the 

Kaplan-Meier method and the Herd-Johnson method, and the cumulative probability as 

a function of age t, F(t), derived by the actuarial method are compared in Figure 3-10 as 

follows. 
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Figure 3-10 Comparisons between Kaplan-Meier Estimated F(i), Herd-Johnson 

Estimated F(i) and Actuarial Method Estimated F(t) based on National Grid 

Transformer Lifetime Data 

 

It can be seen from Figure 3-10 that the number of plotting points from the actuarial 

method is less than that from the other 2 methods. This is because transformers that 

failed at the same age are considered together in the actuarial method. However n 

failures at age t will result in n plotting points at that particular age according to the 

Kaplan-Meier method or the Herd-Johnson method. Hence CDF plotting involving 

either the Kaplan-Meier method or the Herd-Johnson method is easier to implement 

when the database is small. However, when the database is large, the actuarial method is 

better.  

 

Generally, the cumulative probabilities at a certain age t as derived by the three methods 

are very similar, especially F(i)s from the Kaplan-Meier and Herd-Johnson method. In 

the following implementation of CDF plotting, the Kaplan-Meier method is used to 

calculate the cumulative probability F(i) at the i
th

 failure. Values of F(i) are shown in 

Table 3-2 as the observed CDF F
0
(i). 

 

3.2.2.2 CDF Plotting via Kaplan-Meier Method 

 Curve Fitting Procedure 

Similarly to the hazard plotting, the CDF plotting approach plots the age of failure t or 

ln(t) against the expressions of F(i) according to a linear equation under a specific 

distribution model. These equations are written here as  
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 Normal distribution:  1σ Φ μt F t      (3-26) 

Lognormal distribution:    1δ Φ λln t F t     (3-27) 

2-parameter Weibull distribution:     
1

1 α
β

ln t ln ln F t ln        (3-28) 

Extreme value distribution:   δ 1 λt ln ln F t        (3-29) 

 

LSE is then carried out to draw a straight line to best fit the plotted data. The parameters 

of each distribution can be graphically estimated. The plotted points and the best-fitting 

linear curves under these distribution models are shown in Figure 3-11, from (a) to (d). 

 

  

(a) Normal Distribution (b) Lognormal Distribution 

  
(c) 2-Parameter Weibull Distribution (d) Extreme Value Distribution 

Figure 3-11 CDF Plotting under Traditional Distribution Models Using National Grid 

Transformer Lifetime Data 

 

 Curve Fitting Result 

Values of parameters of the normal distribution, lognormal distribution, Weibull 

distribution and extreme value distribution are determined as shown in Table 3-6. 

National Grid transformer population mean life ( t ) and the standard deviation (σ) are 

further calculated and presented in Table 3-6. The failed transformers’ arithmetic mean 
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( t ) and standard deviation (σ) are also shown. The K-S goodness-of-fit test results and 

the curve fitting determination coefficients (COD) are indicated in the table.  

 

Table 3-6 CDF Plotting Results involving Kaplan-Meier Method in National Grid 

Transformer Lifetime Data Analysis  

 
Normal 

distribution 

Lognormal 

distribution 

Weibull 

distribution 

Extreme 

value 

distribution 

From 

failures 

only 

parameters 
μ=73.05 

σ=27.84 

λ=6.97 

δ=2.24 

α=401.30 

β=1.10 

λ=59.54 

δ=10.93 
 

Mean t  

(year) 
73 12897 387 53 20 

Std σ 

(year) 
27.8 156420 352.7 14.0 11.5 

K-S R A A R  

COD 0.903 0.973 0.987 0.854  

 

The comparison of Table 3-6 with Table 3-3 shows that by using CDF plotting under 

the normal distribution, the values of the derived population mean life ( t ) and the 

standard deviation (σ) are similar to the values obtained by the hazard plotting approach 

under the normal distribution ( t =73 yrs and σ=27.8 yrs). Under the Weibull and 

extreme value distribution, the population mean life ( t ) and the standard deviation (σ) 

are also similar to the corresponding values from the hazard plotting. Under the 

lognormal distribution, the values of population mean life ( t ) and the standard 

deviation (σ) are less when using CDF plotting rather than hazard plotting. The similar 

results shown in Table 3-3 and Table 3-6 reveal that the hazard plotting approach and 

the CDF plotting approach involving the Kaplan-Meier method are essentially the same, 

because they both rely on LSE. 

 

It is further verified that the plotting points used in these two approaches are similar. As 

introduced in Chapter 2, F(i) used in CDF plotting can be converted into the cumulative 

hazard function H(i) for failure i according to  

   1H i ln F i         (3-30) 

 

In order to generate similar plotting points, the H(i)s derived by the CDF plotting F(i)s 

are plotted against age t. The values are then compared with the cumulative hazards H(i) 

used in the hazard plotting approach. Figure 3-12 shows the comparison. 
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Figure 3-12 CDF Plotting Approach vs. Hazard Plotting Approach Using National Grid 

Transformer Lifetime Data 

 

As can be seen from Figure 3-12, the value of cumulative hazard H(i), converted by the 

observed F(i) in the Kaplan-Meier CDF plotting approach, is almost the same as H(i) in 

the hazard plotting approach. In order to implement LSE, the hazard plotting approach 

organizes the failure data in the linear form between age t and H(i), while the CDF 

plotting uses the linear equation involving age t and F(i). These two plotting approaches 

are essentially the same. 

 

 CDF Plotting via Actuarial Method 

In comparison, the plotting points in the actuarial method are different to the plotting 

points derived by either of the other two methods. The difference is illustrated in Figure 

3-10. CDF plotting on National Grid transformer lifetime data involving the actuarial 

method is hereby carried out for comparison purpose. The results are shown in Table 3-

7. 
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Table 3-7 CDF Plotting Results involving Actuarial Method in National Grid 

Transformer Lifetime Data Analysis 

 
Normal 

distribution 

Lognormal 

distribution 

Weibull 

distribution 

Extreme 

value 

distribution 

From 

failures 

only 

parameters 
μ=75.27 

σ =29.11 

λ=7.07 

δ=2.30 

α=448.05 

β=1.06 

λ=61.91 

δ=11.65 
 

Mean t  
(year) 

75 16725 438 55 20 

Std σ 

(year) 
29.1 236540 415.6 14.9 11.5 

K-S R A A R  

COD 0.914 0.970 0.987 0.873  

 

The comparison of Table 3-3 with Table 3-6 and Table 3-7, shows that by using the 

actuarial method, the population mean life ( t ) and the standard deviation (σ) under a 

specific distribution are slightly larger than the values obtained by using the hazard 

plotting or the CDF plotting involving the Kaplan-Meier method. For example, under 

the normal distribution, the population mean life is shown to be 75 yrs and the standard 

deviation is 29.1 yrs according to Table 3-7 by using the actuarial method ( t =75 yrs 

and σ=29.1 yrs), as compared to t =73 yrs and σ=27.8 yrs presented in Table 3-6 when 

using the Kaplan-Meier method. This is because in either the Kaplan-Meier or the Herd-

Johnson method failures even at the same age are individually considered; i.e. ages with 

more than one failure are assigned higher weightings as compared to ages with just one 

failure. These highly weighted ages essentially pull the population mean life backward 

to early ages. The differences are not significant and the K-S test draws the same 

conclusion to each distribution model when involving the Kaplan-Meier method and the 

actuarial method. 

 

Section 3.3.1 and 3.3.2 indicate that a large amount of effort is required to organize the 

lifetime data in either the hazard plotting or the CDF plotting approach. The data 

collection may become complicated especially when the database is large and heavily 

censored. Li therefore modified these classical approaches in order to simplify lifetime 

data statistical analysis for an engineering application. However restrictions need to be 

borne in mind when using Li’s approach. Li’s approach is introduced in the following 

section and the restrictions are emphasised at the end of the section. 
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3.3.3 By Li’s Approach 

3.3.3.1 Introduction of Li’s Approach 

 Curve Fitting Procedure 

As a modified approach to the hazard plotting and CDF plotting approach, Li’s 

approach is also based on LSE. The procedure of implementing Li’s modified approach 

is summarized as follows, and applied to the analysis of the National Grid transformer 

lifetime data. 

 

Step 1: List ages of transformers from lowest to highest in Column 1. Similarly to the 

actuarial method, the same ages are marked only once. 

 

Step 2: Calculate the number of failures nF(t) at age t in Column 2. 

 

Step 3: Calculate the number of exposed transformers NE(t) at age t in Column 3.  

 

The above three steps are the same as the first three steps in the actuarial reliability 

calculation in the CDF plotting. 

 

Step 4: Calculate the ratio of the failure number nF(t) to the exposed number NE(t) at 

age t, i.e. 
 

 
F

E

n t

N t
. As discussed in Chapter 2, 

 

 
F

E

n t

N t
actually calculates the hazard value at 

age t. Li however designates this expression as failure probability f(t) at age t and 

further calculates the cumulative failure probability F(t) in the next step. 

 

Step 5: Calculate the cumulative failure probability F(t) at age t as the sum of the 

failure probability  f t  at each age up to age t. 

 

The above 5 steps are summarized in Table 3-8.  
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Table 3-8 Li’s Modified Approach Illustration  

Age 

t 

Number of 

failure 

Number of exposed 

transformer 
Failure probability 

f(t) 

Cumulative failure 

probability 

F(t) 

1 2 865 0.002312 0.002312 

2 1 855 0.001170 0.003482 

3 1 841 0.001189 0.004671 

4 2 835 0.002395 0.007066 

5 0 816 0 0.007066 

6 2 793 0.002522 0.009588 

7 1 780 0.001282 0.010870 

8 2 768 0.002604 0.013474 

9 1 761 0.001314 0.014788 

10 3 754 0.003979 0.018767 

11 0 733 0 0.018767 

12 0 717 0 0.018767 

13 1 707 0.001414 0.020182 

14 2 699 0.002861 0.023043 

15 2 689 0.002903 0.025946 

16 1 669 0.001495 0.027440 

17 0 654 0 0.027440 

18 0 633 0 0.027440 

19 2 622 0.003215 0.030656 

20 1 605 0.001653 0.032309 

21 1 599 0.001669 0.033978 

22 3 595 0.005042 0.039020 

23 1 589 0.001698 0.040718 

24 2 579 0.003454 0.044172 

25 1 572 0.001748 0.045920 

26 2 569 0.003515 0.049435 

27 3 564 0.005319 0.054754 

28 2 558 0.003584 0.058339 

29 2 555 0.003604 0.061942 

30 1 547 0.001828 0.063770 

31 1 538 0.001859 0.065629 

32 0 527 0 0.065629 

33 0 510 0 0.065629 

34 2 497 0.004024 0.069653 

35 2 486 0.004115 0.073769 

36 0 476 0 0.073769 

37 2 467 0.004283 0.078051 

38 0 453 0 0.078051 

39 2 434 0.004608 0.082660 

40 0 423 0 0.082660 

41 0 398 0 0.082660 

42 0 340 0 0.082660 

43 0 276 0 0.082660 

44 0 220 0 0.082660 

45 0 167 0 0.082660 

46 0 129 0 0.082660 

47 0 110 0 0.082660 

48 1 86 0.011628 0.094287 

49 0 63 0 0.094287 

50 0 47 0 0.094287 

51 0 35 0 0.094287 

52 0 26 0 0.094287 

53 0 19 0 0.094287 

54 0 13 0 0.094287 

55 0 8 0 0.094287 

56 0 1 0 0.094287 

57 0 1 0 0.094287 
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Step 6: According to Li, a cumulative failure probability F(t) as small as 0.001 or 

0.0001 is inserted at the age before the 1
st
 failure. This is aimed to point out that the 

CDF before the 1
st
 failure is negligible. In this specific case of National Grid 

transformer lifetime data analysis, however, this does not need to be concerned, as two 

transformers failed at age 1. 

 

Step 7: Because there are no failures between t=49 and until the last age t=57 in 

National Grid’s database, the cumulative failure probability F(t) at age 57 is the same 

as the value derived at age 48 (F(57)=F(48)=0.094287). According to Li, the last age 57 

and the corresponding cumulative failure probability F(57) are also considered in 

analysis. 

 

Step 8: In Li’s work the failure age t, including the age before the 1
st
 failure and the last 

age without failure, is plotted against  1Φ F t
    under the normal distribution; whilst 

ln(t) is plotted against   1ln ln F t     under the Weibull distribution. LSE is used to fit 

the plotted data and then the values of the parameters are estimated.  

 

When using Li’s approach for National Grid transformer lifetime data curve fitting, the 

lognormal distribution and the extreme value distribution are used according to the 

linear equations (3-26) and (3-28). The linear plots under the normal, lognormal, 

Weibull and extreme value distribution are illustrated in Figure 3-13 as follows.  

 

 

 

 

 

 

 

 



Chapter 3 National Grid Transformer Lifetime Data Statistical Analysis 

-105- 

  
(a) Normal Distribution (b) Lognormal Distribution 

  
(c) 2-Parameter Weibull Distribution (d) Extreme Value Distribution 

Figure 3-13 Li’s Modified Approach under Traditional Distribution Models Using 

National Grid Transformer Lifetime Data 

 

 Curve Fitting Result 

The estimates of the parameters under each model, derived population mean life ( t ) 

and the standard deviation (σ) are shown in Table 3-9. The K-S test results and curve 

fitting COD are also indicated in Table 3-9. 

 

Table 3-9 Results of Li’s Approach in National Grid Transformer Lifetime Data 

Analysis 

 
Normal 

distribution 

Lognormal 

distribution 

Weibull 

distribution 

Extreme 

value 

distribution 

From 

failures 

only 

parameters 
μ=79.09 

σ =30.90 

λ=6.98 

δ=2.26 

α=437.25 

β=1.06 

λ=65.18 

δ=12.42 
 

Mean t  

(year) 
79 13942 427 58 20 

Std σ 

(year) 
30.9 179830 402.610 15.9 11.5 

K-S R A A R  

COD 0.870 0.969 0.986 0.825  
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Li’s approach also reveals that the lognormal distribution and the Weibull distribution 

are both a better fit to the National Grid transformer lifetime data, when assessed 

according to the K-S goodness-of-fit test results and the higher COD values. The 

estimates of parameters, the population mean life ( t ) and the standard deviation (σ) 

under a certain distribution are more or less similar to the values derived by CDF 

plotting involving the actuarial method. The reasons can be further clarified as:  

 

- Firstly Li’s and CDF plotting approach, involving the actuarial method, have 

approximately the same number of plotting points, except that Li considers 

the last age up to the present without failure. 

- Secondly the cumulative failure probability F(t) at age t in Li’s approach is 

similarly developed as the CDF at the same age t by the actuarial method.  

 

The above two reasons can be illustrated by comparing the cumulative failure 

probability F(t) in Li’s approach with the CDF from the actuarial method. Figure 3-14 

shows the comparison plot. 

 

 
Figure 3-14 Comparison of F(t) in Li’s Approach and F(t) in Actuarial Probability 

Approach Using National Grid Transformer Lifetime Data 

 

According to Figure 3-14, the cumulative failure probability F(t) at age t developed by 

Li is slightly higher than the F(t) derived using the CDF plotting approach by the 

actuarial method, especially after age 25. These slightly higher values and the 
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artificially added point at the last age actually result in the difference in the population 

mean life between Li’s approach and the actuarial CDF plotting approach. 

 

3.3.3.2 Limitations of Li’s Approach 

The lifetime data curve fitting approach developed by Li and based on LSE is easier to 

implement, especially for a large group of censored data, as compared to classical 

plotting approaches. Li’s approach has been verified by applying it to BC Hydro 500kV 

reactors with limited failure [27, 28]; however several restrictions need to be kept in 

mind when using Li’s approach. 

 

 Firstly, the cumulative failure probability F(t) is misleading-defined by Li. 

The failure probability function f(t) and the cumulative failure probability F(t) 

developed in Li’s approach are actually the observed failure hazard h(t) at age t and the 

cumulative hazard H(t) up to age t, according to their definitions as explained in 

Chapter 2.  

 

According to Taylor Series
i
, 

   
     

2 3

1
2 3

F t F t F t
ln F t F t ...



         
   (3-31)  

 

Once F(t) is small, the sum of the 2
nd

, 3
rd

, … components of the right-hand side of (3-31) 

are significantly small as compared to the 1
st
 component F(t). (3-31) can thus be 

simplified as -ln[1-F(t)]=F(t). Additionally H(t)=-ln[1-F(t)], H(t)=F(t) is only satisfied 

when F(t) is close to zero. In this specific study of National Grid transformer lifetimes, 

the F(t) derived by the actuarial method is as small as 0.092245 at the last age, while the 

cumulative hazard H(t) calculated by Li’s approach is 0.094287. F(t) and H(t) are close 

to each other, and the estimates of the parameters under a certain distribution are similar 

using these two approaches. However, a small F(t) cannot always be satisfied especially 

when failures occur at older ages. 

 

For example suppose an extra transformer fails at age 57, the cumulative failure 

probability F(t) according to the actuarial method is derived to be 1 at age 57; while the 

                                                 

i
 According to Taylor Series  

1

1
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n

x
ln x
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   , for -1≤x≤1. 



Chapter 3 National Grid Transformer Lifetime Data Statistical Analysis 

-108- 

cumulative failure probability F(t) (actually the cumulative hazard H(t)) according to 

Li’s approach is deduced as 1.1292. F(t)  H(t) in this hypothesized case. Additionally 

the value 1.1292 for F(t) according to Li is outside the definition 0 ≤ F(t) ≤1.  

 

 Secondly, a small value of 0.001 or 0.0001 is arbitrarily inserted for F(t) at 

the age before the 1
st
 failure, although this is not considered in National Grid 

transformer lifetime data analysis since two transformers failed at age 1. Even though 

this small number can be mathematically proven to have negligible effect on the curve 

fitting result as the age corresponding to either 0.001 or 0.0001 is outside the range of 

μ3ii
. Note: - it is illogical to assume that CDF jumps from a negligible value at age t-

1 to a certain value at age t. According to the theory of a continuous distribution, the 

best estimation for CDF at age t-1 should not be very different to the value of CDF at 

age t. 

 

 Thirdly, the inserted F(t) at the last age provides extra information for 

curve fitting. Li proposed this step as it emphasises the fact that up to the last age there 

are no more failures observed and thus the cumulative failure probability has no 

increase since the last failure occurred at an early age. Essentially however, since the 

lifetime data are multiply right-time censored, transformer assets in particular have too 

little operational experience of failure, rather than they will not fail. If the failure 

number is significantly small and the data are heavily censored since early ages, adding 

F(t) at the last age can have large influence on the fitting results.  

 

As introduced in Chapter 2, the application of LSE is straightforward, but this 

optimization method is mathematically robust only when the sample size is small and 

the data are complete or at least not heavily censored [67]. For the heavily censored data, 

for example National Grid transformer assets lifetime data, the maximum likelihood 

estimator (MLE) will be a more suitable method for curve fitting. MLE is therefore 

carried out in the following section. 

 

                                                 
ii
 For example, for a standard normal distribution, the CDF of 0.001 corresponds to the age t=-3.09023. 

This value falls outside the region of 3=3. Because the region of 3 covers 99.86% cumulative 

probabilities, the ages (t) out of this region have insignificant effect in lifetime data analysis. 
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3.4 National Grid Transformer Lifetime Data 

Statistical Analysis by Maximum Likelihood Estimator 

(MLE) 

 Curve Fitting Procedure 

The application of MLE on National Grid transformer lifetime data is carried out in 

MALAB using the built-in function MLE. Information of 865 transformers including 52 

failed units, 62 manually retired units and 751 in-service transformers are organized into 

2 columns:  

- 1
st
 column categorises the ages of 865 transformers from low to high,  

- 2
nd

 column indicates the status of each transformer: “0” represents a 

manually retired or in-service transformer and “1” indicates a failed unit.  

 

These two columns are the inputs of MLE, and they are the same as the first two 

columns of Table 3-1. Again an entire table is shown in Table III-1 Appendix-III. 

 

The normal distribution, lognormal distribution, 2-parameter Weibull distribution and 

extreme value distribution are selected to fit the lifetime data. Based on a presumed 

distribution model, MLE is used to estimate the most likely values of parameters which 

can maximize the likelihood of the observed data. Associated with MLE, the initial 

values of the distribution parameters are provided by the estimation engine “garchfit” 

[85], which is also a built-in function in MATLAB; however the discussion about this 

estimation engine is beyond the scope of the thesis.  The detailed algorithm of MLE can 

be found in Appendix-I. The most advanced property of MLE is that except for the 

estimates of the parameters under a presumed distribution, it also provides the 

confidence limits for parameters and the confidence limit for the age corresponding to a 

certain value of CDF.  

 

Figure 3-15 (a) to (d) shows National Grid transformer lifetime data probability plots 

under the normal, lognormal, Weibull and extreme distribution determined by MLE. 
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(a) Normal Distribution (b) Lognormal Distribution 

  
(c) 2-Parameter Weibull Distribution (d) Extreme Value Distribution 

Figure 3-15 Probability Plots of MLE Fitting under Traditional Distribution Models 

Using National Grid Transformer Lifetime Data 

 

In each graph of Figure 3-15, the black circles of observed cumulative failure 

probabilities CDF are derived by the Kaplan-Meier method introduced in 3.3.2, the red 

line shows the linear curve best fit to the plotted points by MLE under each presumed 

distribution, and the green lines are the upper and lower 95% confidence limits 

accompanying the red curve.  

 

 Curve Fitting Result 

The best estimates of parameters, population mean life ( t ), standard deviation (σ) and 

K-S goodness-of-fit test results are displayed in Table 3-10. For the MLE algorithm the 

coefficient of determination (COD) is not a measurement of fitting goodness as for the 

LSE algorithm and consequently it is not listed in Table 3-10.  
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Table 3-10 MLE Results in National Grid Transformer Lifetime Data Analysis 

 
Normal 

distribution 

Lognormal 

distribution 

Weibull 

distribution 

Extreme 

value 

distribution 

From 

failures 

only 

parameters 
μ=100.24 

σ =41.23 

λ=6.64 

δ=2.04 

α=384.94 

β=1.13 

λ=92.55 

δ=19.94 
 

Mean t  

(year) 
100 6152 368 81 20 

Std σ 

(year) 
41.2 49088 325.7 25.6 11.5 

K-S A A A A  

 

According to Table 3-10, transformer population mean life ( t ) and the standard 

deviation (σ) under the normal distribution or extreme value distribution by MLE are 

derived longer than the values given by LSE; while the mean life ( t ) and standard 

deviation (σ) by MLE when fitting into the lognormal and Weibull distribution are less 

than the values determined by LSE. The transformer population mean life of 6152 yrs 

under the lognormal distribution model is too large to be convinced and the mean life of 

368 yrs under the Weibull distribution is also lack of engineering evidence to be relied 

on.  

 

By comparing the corresponding graphs in Figure 3-11 and Figure 3-15, and the results 

shown in Table 3-6 and Table 3-10 based on the same lifetime data, the differences 

between MLE and LSE can be concluded as: 

- the MLE determined the best-fit curve (shown in red lines in Figure 3-15), under 

a certain distribution model, that fits the later failures better than the earlier 

failures, while LSE treats the plotted data equally and thus the best-fit curve 

locates in the middle of the plotted data. 

- Using MLE, all of the presumed distribution models are suitable for the National 

Grid transformer lifetime data, as identified by the K-S test results with the same 

tolerance factor DM
γ
(r) = 0.077228. Hence, in engineering applications, K-S test 

is not usually carried out when using MLE for product lifetime data curve fitting. 

 

The theoretical CDFs under the above distributions are derived according to the 

obtained parameters and are compared with the observed hazard CDFs in Figure 3-16. 
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Figure 3-16 National Grid Transformer Lifetime Data Observed CDF vs. MLE Derived 

CDF under Different Distribution Models 

 

Figure 3-16 shows that all the selected distribution models can fit National Grid 

transformer lifetime data properly, which is consistent with the K-S test judgement. The 

CDF curves under the normal distribution and extreme value distribution however 

increases significantly at later ages. Furthermore according to Figure 3-16 the ages of 

reaching three typical cumulative failure probabilities under different distribution 

models can be obtained and are compared in Table 3-11 as follows. 

 

Table 3-11 MLE Derived Typical Ages in National Grid Transformer Lifetime Data 

Analysis 

 Age t 

CDF 

F(t) 

By 

normal 

By 

lognormal 

By 

Weibull 

By 

extreme 

2.5% 20 14 15 19 

50% 101 >500 279 85 

97.5% 181  >500 119 

 

It can be seen from Table 3-11 that the typical ages derived under the normal 

distribution and the extreme value distribution are more reasonable values than under 

the other two distribution models.  

 

Moreover the theoretical hazards under the above four distributions are also compared 

with the observed hazards as plotted in Figure 3-17. 

 

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

c
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o

n
 f

u
n

c
ti

o
n

age t

 observed CDF

 normal distribution CDF

 lognormal distribution CDF

 weibull distribution CDF

 extreme value distribution CDF



Chapter 3 National Grid Transformer Lifetime Data Statistical Analysis 

-113- 

 
Figure 3-17 National Grid Transformer Lifetime Data Observed Hazard h(i) vs. MLE 

Derived Hazard h(t) under Different Distribution Models 

 

Similarly to the results from LSE hazard plotting, the hazard curve under the Weibull 

model shows a roughly constant value. The normal hazard and the extreme value hazard 

are both increasing against age and the hazard values under these two models are similar 

before age 40. The lognormal distribution shows a decreasing hazard and the values 

before age 30 are similar to those derived under the Weibull model; these two models 

both fit the early failures well. Moreover it can be generally found by comparing Figure 

3-17 with Figure 3-8 that the hazard curves derived by MLE under the lognormal and 

Weibull distribution are fairly similar to the hazard curves estimated by LSE under 

these two models.  

 

The estimated failure trend under the normal distribution and the extreme value 

distribution, as shown in Figure 3-17, is coincident with the engineering prior 

knowledge that transformers failure hazard will develop to the wear-out stage in 

accordance with an increasing hazard against age. Consequently the normal distribution 

and extreme value distribution are better fits for National Grid transformer lifetime data 

from an asset manager’s point of view. However, as explained when using the hazard 

plotting approach, the high value of failure hazard at the last failure at age 48 (again h=

1
0 01333

75
. , as shown in Figure 3-17) is obtained based on the small number of 

transformers that have been operated at that age, and this high value of hazard at age 48 

does not indicate the onset of National Grid transformer ageing-related failures with an 

increasing hazard. The validity of curve fitting under the normal distribution or the 
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extreme value distribution, which presents an increasing hazard curve with age, is 

debatable. 

 

In other words, as discussed in hazard plotting, National Grid transformer operational 

experience has not yet revealed a significant increasing failure hazard with age. In order 

to verify the influence of data quality on the curve fitting results, MLE analysis is 

carried out on 62 transformer failure data with 10 more failures arbitrarily added since 

age 48 until age 57. The re-produced probability plot under Weibull distribution based 

on 62 failures is compared with the previous fitting in Figure 3-18. 

 

 
Figure 3-18 MLE Fitting on 62 Arbitrary Failure Data under Weibull Distribution 

 

According to the hypothesised case with 10 more failures at later ages, as indicated in 

Figure 3-18, National Grid transformer population mean life ( t ) and the corresponding 

standard deviation (σ) would be significantly reduced. Since the ageing-related failures 

have not been observed up to the present, distribution models with increasing hazard, 

for example the Weibull distribution, have little power to predict the increasing hazard 

based on constant random hazards. 

 

Generally lifetime data curve fitting by LSE, MLE or the Bayesian approach, not 

implemented in this thesis, is a purely mathematical description of product lifetime data. 

The engineering prior knowledge is difficult to be included in the statistical process. A 

good fitting from a mathematical point of view is therefore very likely to be overthrown 

or suspended by engineering judgement. In particular, for National Grid transformer 

lifetime data analysis, limited failure data and an underlying random failure mechanism 
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should not be used to generate ageing-related failures in the future. The advantages and 

restrictions of statistical analysis are further summarized in the following section. 

 

3.5 Advantages and Restrictions of Statistical Analysis 

on Lifetime Data 

3.5.1 Advantages 

As can be seen from 3.3 and 3.4, product lifetimes, for instance power transformer 

lifetime data, can be easily analyzed statistically using LSE or MLE once the failure 

record is available.  

 

Statistics concerning the age of individual products, for example transformers, because 

they only involve one variable, are simple to analyse. Traditional distributions provide 

empirical models which the observed lifetime data are expected to fit. The population 

mean life can thereafter be derived. The LSE, MLE and Bayesian approach are well 

developed in general statistics and they are also verified in engineering application. 

Analysis softwares have been well produced and released for commercial use in order to 

simplify the sophisticated calculation especially when the sample size is large or the 

data are heavily censored [26]. 

 

However, mathematical analysis may mislead the conclusion in an engineering 

application, since it is based on several false suppositions, as discussed in 3.5.2. 

 

3.5.2 Restrictions 

The restrictions of implementing statistical analysis on product lifetime data based on 

the use of National Grid transformer lifetime data analysis are listed as follows.  

 

 Although the service age of each individual transformer is deduced as the only 

variable, it is not the only determinant factor to transformer failure. According to 

National Grid operational experience, transformer design, loading condition, 

maintenance strategy and even the installation site environment can affect the 

transformer’s lifetime more than its service age.  
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 The distribution models are arbitrarily chosen, although some distributions are 

verified as proper models according to experience with other items of high 

voltage plant. This is the reason utilities prefer to define their own asset failure 

models, based on operational experience or engineering prior knowledge, 

instead of using a traditional distribution. However for power transformers in 

particular, there is little operational experience that can be used to suggest any 

appropriate models. Hence, a mathematical good fit, can sometimes be rejected 

by asset managers. 

 

 The quality of lifetime data and the underlying failure mechanism would 

essentially affect the fitting results. According to National Grid transformer 

operational experience, limited failures are recorded and typically they occur at 

early ages. In addition these failures almost always occur randomly. National 

Grid transformers are thus in the normal operating stage of the bathtub curve up 

to the present and the prediction of future failures due to the ageing failure 

mechanism cannot be relied on, even though curve fitting is statistically 

approved.  

 

National Grid transformer random failures are more clearly indicated when discussing 

operational experience in 3.6. 

 

3.6 National Grid Transformer Historical Failure 

Analysis and Evidence of Random Failure Mechanism 

National Grid transformer failure hazard function is first of all derived and the 

underlying random failure mechanism further identified. The drawback of undertaking 

statistical analysis on random failure samples to predict future ageing-related failure is 

again emphasized.  

 

As indicated in 3.2.2, 52 transformers are failed units recorded in the National Grid 

system. The number of failures against age is shown in Figure 3-19. 
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Figure 3-19 National Grid Transformers Number of Failure against Age 

 

The exposed number of National Grid transformers against service age can also be 

derived. Again as defined in Chapter 2, the product exposed number is the number of 

products exposure to failure at a certain age; product exposed number indicates the total 

number of products which have had service experience until a particular age [84]. The 

exposed number of National Grid transformers at each age is obtained based on 

information about installation and replacement, i.e.: 

1 1

1 1

t t

i i

transformer exposed number @ age t total installation number failed number scrapped number
 

 

   

 (3-32) 

 

The upper limit t-1 in the sum notation 
1

1

t

i





 for either the failed transformers or the 

scrapped transformers, indicates that the transformers that failed or were scrapped at age 

t are actually exposed to failure before their replacement. Hence, both the failed 

transformers and the scrapped transformers at age t are taken into account in the 

exposed number at that specific age. The National Grid transformers exposed number 

against age is shown in Figure 3-20. 
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Figure 3-20 National Grid Transformers Exposed Number 

 

Moreover as explained in Chapter 2 for general analysis, National Grid transformers 

failure hazard can be deduced according to (2-7). This equation is rewritten here as 

 
   

 

Δ F

E

number of failed transformers within int erval t t ,t n t
h t

number of exp osed transformers at the beginning of t N t


    (3-33) 

according to which National Grid transformers hazard function can be obtained as the 

quotient of failure number nF(t) at age t (shown in Figure 3-19) divided by the exposed 

number NE(t) (shown in Figure 3-20). Figure 3-21 shows the National Grid transformers 

hazard curve.  

 

 
Figure 3-21 National Grid Transformers Failure Hazard against Age 

 

It can be found by comparing the hazard curve shown in Figure 3-21 with the traditional 

bathtub curve in Figure 2-4, that the high infant mortality in the traditional bathtub 
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curve cannot be seen from National Grid transformers failure hazard curve. This reality 

verifies that the adequate factory testing was performed before the commissioning of 

each transformer.  

 

The red line drawn in Figure 3-21 shows the arithmetic average hazard rate up to age 36. 

“Age 36” is selected because National Grid proposes in its technical guidance [75, 76], 

that a hazard of 0.30% until age 36 corresponds to the early onset of transformer 

population significant unreliability, see Chapter 2. The arithmetic average hazard rate 

up to age 36 is evaluated as 0.20% according to the study in this thesis, and the value is 

even less than National Grid generally predicted hazard rate of 0.30% up to this specific 

age. The figure of 0.20% is sufficiently low and stable and tends to indicate the normal 

operating stage for National Grid transformers up to age 36. Generally, the proper 

operation schemes that National Grid executes on its transformers and the mild weather 

in most part of England and Wales result in the random occurrence of transformer 

failures.  

 

Additionally at older ages, a single failure yields a high value of hazard, which can be 

seen from the distinct hazard rate of 1.2% at age 48 in Figure 3-21. Note: - 1.2% is 

derived as one failure divided by the exposed number of 86 at age 48, as
1

100 1 2
86

% . % . 

A study was undertaken in [86] to further analyze this high value of failure hazard by 

using a Bayesian method. The results indicate a large uncertainty of observing the 

hazard rate of 1.2% at age 48, by given one failure at that particular age [86]. A 

binomial distribution was also used in [86] to describe the probability of observing one 

failure out of 86 exposed transformers at age 48. The probability is determined to be a 

low value as compared to the values derived in previous ages [86]. Therefore this 

significantly higher hazard rate is due to the limited number of exposed transformers at 

the old age of 48.  

 

Because new transformers are installed in the National Grid transmission system every 

year and an increasing number of installations have occurred during recent years, large 

numbers of transformers are operating at their early ages. Meanwhile transformers with 

poor condition are removed from service before their actual failure, this is necessary to 

maintain transmission network security and reliability. Hence UK National Grid has 

little experience of operating transformers at old ages. 
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Moreover, National Grid failure records show that the failed transformer, with 48 years’ 

operation, was installed in 1956 and failed in 2004 due to improper tap-changer 

maintenance. The post-mortem investigation further indicates the moderate ageing 

status of this transformer’s main insulation [87]. Either the failure reason or the post-

mortem analysis suggests a random failure for this specific transformer. It must be noted, 

that except for one transformer that failed in 2007, after 37 years’ operation, when the 

failure was caused by severe solid insulation ageing, most other failures resulted from 

the effects of power system transient events or problems of transformer design [40, 75, 

88]. Observed random failures should not be used to predict ageing-related failures in 

the future. 

 

It is concluded here that statistical analysis on lifetime data, does not work properly for 

National Grid transformers because a limited number of failures have occurred and the 

historical failure records indicate most can be considered random failures.  

 

In addition since the high value of hazard at age 48 does not provide sufficient evidence 

to indicate the onset of transformer population ageing-related failure, the normal 

operating stage or the random failure period could extend much longer than the 

observed age 36. Further questions thereafter concern:  

 how long will this random failure period or transformer normal operating stage 

last,  

 is the average hazard of 0.20% adequately stable to describe the hazard rate 

within the random failure period, and 

 when will the transformer population ageing-related failure period start. 

 

To answer the first two questions involves intensive mathematical analysis and this is 

not considered in the thesis. It is consequently assumed that: 

 the random failure mechanism works constantly during the entire period of the 

transformer operation by assuming National Grid network is well-maintained, 

 National Grid transformers fail randomly with a constant hazard rate of 0.20%. 

 

In order to predict future transformer population ageing-related failure in terms of 

increasing hazard. Transformer lifetime under the ageing failure mechanism must be 

predicted via a physical ageing model. Scrapped transformers can be examined by 
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measuring their paper insulation mechanical strength and this is used to suggest the 

ageing status of other in-service transformers. 

 

3.7 Summary 

Due to significant installation of power transformers during 1960-1970 and after 1990’s, 

751 transformers were operating in the National Grid transmission network at the end of 

2008. Within those in-service transformers, 8.1% are approaching the designed end-of-

life of 40 years and more than 40% are beyond this critical age. Although National Grid 

transformer operational experience have benefited from a proper commissioning 

scheme and maintenance strategy, it is of great importance to predict transformer 

population future failures based on present knowledge and information. Statistical 

approaches are therefore carried out in this chapter on National Grid transformer 

lifetime data.  

 

Transformers are firstly classified according to their operational experience: - active 

transformers (A), failed transformers (F) and scrapped transformers (X). The service 

ages of these three types of transformers are thereafter derived and constitute the 

database for statistical analysis. National Grid transformer lifetime data are heavily 

censored as only 52 transformers failed.  

 

The normal distribution, lognormal distribution, 2-parameter Weibull distribution and 

extreme value distribution are selected to model transformer lifetime data, as they are 

commonly used to describe the lifetimes of other high voltage equipment. 

 

The least square estimator (LSE) including the hazard plotting approach and the CDF 

plotting approach is first of all implemented using National Grid transformer lifetime 

data. The result of fitting lifetime data under a specific distribution model, using hazard 

plotting is similar to that using CDF plotting. Transformer population mean life is 

deduced to be much longer than that calculated only from failure samples. In particular 

the lognormal distribution and the 2-parameter Weibull distribution fit the National Grid 

transformer lifetime data well from a mathematical point of view. However the normal 

distribution and extreme value distribution are revealed as more reliable than the other 

two models since the derived population mean life is reasonable and the obtained hazard 

curve is more consistent with engineering prior knowledge, i.e. transformer failure will 
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develop to the wear-out stage with increasing hazard. However, these two models are 

statistically identified improper according to K-S test of curve fitting goodness.  

 

Li’s simplified approach based on LSE is also implemented on National Grid 

transformer lifetime data.  The result is revealed more or less similar to that by the CDF 

plotting. Although Li’s approach has been applied to BC Hydro 500kV reactors, this 

simplified approach would be improper when dealing with limited failure data due to 

assumptions that are not valid.  

 

The maximum likelihood estimator (MLE) used to analyse the National Grid 

transformer lifetime data and is also compared with LSE. Results indicate that MLE can 

fit the later failures better than the earlier failures, while LSE treats the observed data 

equally. Similarly to LSE, the normal distribution and extreme value distribution are 

determined as better models to describe National Grid transformer lifetime data because 

they are in accordance with engineering prior knowledge.  

 

By using the analysis of National Grid transformer lifetime data as an example, it 

concludes that although the statistical analysis on product lifetime data can be easily 

implemented, in engineering practice they may not provide reliable prediction for future 

failure. The only variable considered in the analysis, for instance  transformer service 

age, is not the determinant factor for individual failure, the operational experience or 

engineering prior knowledge does not suggest any proper distribution models to best 

describe the data and especially for National Grid transformer lifetime analysis, limited 

failures are observed and they do not indicate future failures properly. The historical 

failures of National Grid transformers indicate a random failure mode, which derives an 

average random hazard rate of 0.20% up to age 36. The value could be assumed to last 

much longer. Future failures due to the ageing-related mechanism thereby should not be 

predicted by the observed random failures.  

 

In order to predict National Grid transformer future failures under the ageing failure 

mechanism, a physical ageing model based on transformer insulation paper 

deterioration will be used. National Grid scrapped transformers’ paper mechanical 

strength can be examined and these transformers constitute a unique sample to suggest 

the ageing status of other in-service transformers.  
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Chapter 4 introduces the ageing process of transformer paper insulation and also 

describes commonly used models for estimating transformer lifetimes based on paper 

ageing.  
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Chapter 4  

Literature Summary on Transformer Paper 

Insulation Ageing 

 

4.1 Introduction 

Cellulose paper in combination with mineral oil has been used as the main insulation in 

a transformer since the late 1920’s and the early 1930’s. Cellulose paper-mineral oil 

combined insulation has provided sufficient mechanical and dielectric strength and 

therefore continues to be the main insulation for power transformers up to 1500MVA, 

and for voltage levels up to 1000kV [89, 90].  

 

Circulating oil inside the transformer provides a cooling medium that dissipates the heat 

produced from the windings and core structure. It also insulates the metallic parts at 

different electrical potentials [36]. Cellulose paper located around the copper conductors 

prevents voltage breakdown and corona discharge between windings or different parts 

of the same winding [91]. A pressboard barrier, made from cellulose material, is used to 

subdivide the oil gap and raise the breakdown strength of the gap [91]. 

 

Mineral oil can become acidic after many years of operation due to the effects of 

atmospheric oxygen and water absorbed during operation or left in the mineral oil or 

winding structure during the manufacturing process [40, 91]. Additionally oil can form 

a sludge when it deteriorates, which gradually reduces its cooling ability. Mineral oil, 

which is in a poor condition tends to be reclaimed or changed based on routine oil 

analysis, and followed by adding the oil inhibitor [92]. Experience shows the oil 

condition can improve markedly when the oil is changed, however good performance 

after an oil change has not been reported within the National Grid system, which is 

probably due to the contamination introduced during oil change, or the poor quality of 

the reclaimed oil [40, 92]. 

 

On the other hand, although it shows in National Grid’s records that several 400/275kV 

and 400/132kV transformers were rewound and returned to service [40], the pressboard 

and especially the winding insulation paper cannot be replaced once a winding is built-

up. Hence, the lifetime of transformer paper insulation indicates the transformers useful 
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life. In other words a transformer’s end-of-life is eventually determined by its paper 

insulation; the useful lifetime is subject to its operating condition. 

 

The effect on transformer cellulose paper ageing of high temperatures, water, oxygen 

and acids is first of all presented in this chapter. The definition of transformer thermal 

end-of-life is thereafter proposed. The criteria of transformer thermal end-of-life based 

on the reduction of the degree of polymerisation (DP) and tensile strength (TS) of 

cellulose paper are presented. Models describing paper degradation against transformer 

operation age are summarized and the DP reduction model used in this thesis is 

highlighted. 

 

4.2 Ageing of Cellulose Paper 

Cellulose ageing is a complex sequence of chemical reactions. During degradation, the 

inter-fibre bonding is destroyed, the chain is depolymerised and the cellulose 

mechanical strength is reduced [33]. The reduction of cellulose dielectric property is 

impossible to measure, unless the insulation is mechanically destroyed [78, 93]. In 

addition according to National Grid post-mortem investigations on its failed 

transformers, the dielectric property of conductor insulation does not change 

significantly even when the transformer is going through ageing [93]. In fact the 

reduction of cellulose paper mechanical strength may result in a transformer winding 

turn-to-turn short circuit and produce the paper fragments or fibres existing in the oil 

duct. Finally this might rupture the paper dielectric property [33, 90]. Transformer 

ageing should be identified through the reduction of the insulation paper’s mechanical 

strength instead of the dielectric property. 

 

4.2.1 Cellulose Paper Structure  

Transformer insulation paper and pressboard are mostly made from unbleached 

softwood pulp cellulose material. A cellulose molecule consists of a long chain of 

glucose rings [78].  The average number of the glucose rings in a cellulose molecule is 

denoted as the degree of polymerisation (DP). The value of DP indicates the length and 

the mechanical strength of the cellulose fibre, and thus DP is a valid indicator of paper 

ageing [78, 94].  
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Tensile strength (TS) describes the cellulose mechanical properties, and is an indicator 

of the paper fibre strength and the inter-fibre bonds strength. As TS is recognized to be 

more sensitive than other mechanical properties such as stretching, bursting, folding and 

tearing strengths [93, 95], it is thereby widely adopted to indicate paper ageing.  

 

DP and TS, as the indicators of cellulose paper mechanical strength, will reduce while 

the transformer goes through ageing. Figure 4-1 (a) and (b) show the DP and TS 

reduction obtained during a cellulose paper accelerated ageing test under 3% water 

content
iii

 and at a constant 110°C temperature [94]. Typically in Figure 4-1(b), TS is 

expressed by the tensile index (TI) which is the breaking load per unit width. 

 

 
(a) DP Reduction against Time 

 
(b) TS Reduction against Time 

Figure 4-1 Development of DP and TS Reduction with Paper Ageing [94] 

 

The reductions of DP and TS are generally related to each other. This can be seen from 

Figure 4-2 according to [92]. 

 

 
Figure 4-2 Cellulose Paper Tensile Strength (TS) against Degree of Polymerisation (DP) 

[92] 

                                                 
iii

 The percentage value is the mass ratio between the water and the dry non-oily paper. 
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In the following discussion about cellulose paper ageing under various agents, DP is 

adopted to indicate the paper mechanical strength reduction.  

 

4.2.2 Cellulose Paper Ageing Agents 

4.2.2.1 Primary Ageing Agent 

It was identified by Montsinger that cellulose mechanical strength deteriorates in 

accordance with a thermal effect, in which heat or temperature is the degradation agent 

[93, 95]. Figure 4-3 shows the DP reduction against time (in hours) when conducting 

the paper accelerated ageing test under different temperatures whilst keeping the 

environment unchanged [94].  

 

 
Figure 4-3 DP Reduction against Time with 3% Moisture at Different Constant 

Temperatures [94] 

 

The effect of temperature on cellulose ageing can be seen from Figure 4-3. 

Deteriorating from 1300, the DP value of cellulose paper remains almost around the 

initial value after 9000 hrs under the constant temperature of 70°C or 90°C; while if the 

temperature increases to 130°C, DP reduces to less than half of the initial value after 

5000 hrs.  

 

According to Montsinger’s experimental data, reported in the 1920’s [95]: - each 5-

10°C increase in temperature doubles the rate of cellulose ageing. In 1944, Montsinger 

specified this simple rule of thumb that in the vicinity 100°C to 110°C, a 6°C increase 

in temperature can result in doubling the ageing rate [36, 78, 96]. This simple rule of 

6°C is adopted in IEC transformer loading guide [34, 97], in which the transformer 
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relative ageing rate V is obtained via comparing the hottest winding temperature with 

the reference temperature, as 

98

62

h

V

  
 
       (4-1) 

where V is the relative ageing rate, θh is the winding hottest temperature or hot-spot 

temperature in Celsius and 98 is the reference temperature in Celsius. (4-1) is adopted in 

IEC loading guide for transformer loss of life calculation. 

 

4.2.2.2 Secondary Ageing Agents 

It was further indicated by Dakin according to his observation during cellulose paper 

accelerated ageing that the cellulose degradation is a complex sequence of chemical 

reactions which involves the chain scission (also called depolymerisation) and the 

release of hydrogen, short chain hydrocarbons, carbon monoxide and carbon dioxide 

[33, 98, 99]. The commonly accepted ageing processes are oxidation, hydrolysis and 

pyrolysis and accordingly the action agents are water, oxygen and acids except for 

temperature [100]. Experiments have revealed that the higher the content of water, 

oxygen and acids in the cellulose molecule, the more significant the level of degradation 

that can be observed [33, 94, 99, 101-103]. In order to distinguish temperature as the 

primary agent of cellulose ageing; water, oxygen and acids are classified as the 

secondary ageing agents or in some occasion the accelerating agents [104].  

 

  Effect of Water 

The presence of water in paper insulation comes from 3 sources: - residual moisture that 

remained in the structural components, ingress from the surrounding air and 

decomposition of the cellulose and oil [11]. Excessive water may shorten and weaken 

the fibre molecules and lead to decreased dielectric strength [105]. Additionally the 

effect of water is also strongly related to the acids dissolved in it. It is generally 

concluded that within the early stage of cellulose ageing, the water content in paper is 

proportional to its degradation rate; while during the later stage, the water content is 

proportional to the logarithm of degradation rate [33]. [33] demonstrates the degradation 

at the later stages as: -  

   α βln k ln H     (4-2) [33]  

where k is the paper ageing rate factor, related to the number of broken bonds, α and β 

are constants and H represents the paper moisture percentage content. 
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Moreover Shroff and Stannett reported their measurement of DP reduction against time 

of ageing under different moisture levels in [102]. The data was reassessed by Emsley 

in [33] by plotting the reciprocal of DP against time as shown in Figure 4-4. 

 

 
Figure 4-4 Cellulose Paper Degradation as a Function of Time under Different Water 

Content [33] 

 

Again the percentage figure (%) in Figure 4-4 shows the water content as the mass ratio 

between the water and the dry non-oily paper. In engineering practice, the water content 

in transformer paper insulation would always be controlled to be less than 0.5% by the 

factory drying process [33, 36]. Transformers in the U.S. and many European countries 

are delivered to their installation site with a sealing system involving either a nitrogen 

cushion or a rubber membrane in the expansion tank in order to prevent the ingress of 

water from air [92].  

 

When in operation, transformers are also protected from absorbing the moisture from 

surrounding atmosphere. Most transformers in Europe and South America are equipped 

with the silica gel water absorbers at the inlet of the expansion tank, since transformers 

in these countries are free breathing type with an open conservator for oil preservation 

[78, 92]. However as compared to the oxygen free transformers in the U.S. and Japan, 

based on a hermetically sealed container or other means to prevent water ingress, the 

moisture level in free breathing transformers are significantly higher according to the 

data published in [78]. 

 

In addition water is one of the by-products from paper degradation, thus the moisture 

level within transformer insulation gradually increases with paper ageing. CIGRÉ Task 

Force D1.01.10 reports the moisture level of 3-4% within the free breathing 

transformers according to the operational experiences among European countries [92]. 

Higher moisture level of 4-8% was also reported in some extreme cases as shown by 
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Fallou [33]. Typically at 4% moisture in the paper, the cellulose deterioration rate is 

observed as 20 times greater than at a moisture level of 0.5% [33]. According to 

Lundgaard [94], at the moisture level of 4%, the cellulose operation life would reduce to 

2.5% at normal service temperatures. The experiments by Lundgaard [94] shows that 

for example, a 40 yrs lifetime of cellulose paper at 0.5% moisture would reduce to 1 yr 

if the moisture level increases to 4% and the temperature remains.  

 

 Effect of Oxygen 

Oxygen can always dissolve in transformer oil and is another key factor that accelerates 

cellulose paper degradation. Oxygen can attack the carbon atoms in the cellulose 

molecule, products such as carbon monoxide, carbon dioxide, aldehydes, acids and 

water are released from the destroyed fibre bonds. Cellulose paper mechanical strength 

is therefore weakened due to oxidation.  

 

As generally indicated by Fabre and Pichon, and also re-tested by Emsley and 

Lundgaard respectively, the higher the level of oxygen contained in the oil, the more 

significant the degradation of the paper insulation [33, 94, 105, 106]. Experimental 

study reveals that due to the presence of oxygen, the rate of cellulose degradation might 

increase by 2-3 times, as compared with the vacuum circumstance [92]. Figure 4-5 [106] 

shows the effect of oxygen on the aggravation of ageing via plotting paper DP reduction 

against time under different oxygen contents. The varying oxygen contents are 

measured by different oxygen pressure in mBar; the abbreviation of Cu and Naph 

represents the copper granules and copper naphthenate (Cu
2+

/ Cu
+
) respectively which 

are two catalysts used in the test. Adding these two catalysts does not have a 

significantly different effect on DP reduction [106].  

 

 
Figure 4-5 Cellulose Paper Degradation as a Function of Time under Different Oxygen 

Pressure [106] 
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Laboratory data shows the oxygen level can reach up to approximately 30,000ppm
iv

 in 

fully saturated oil, however operational experiences from the free breathing 

transformers indicate the level would be around 20,000ppm due to the oxygen 

dissolution effect of free-breathing [92, 105, 106]. Experiment implies if the dissolved 

oxygen could be maintained below 2,000ppm, the degradation rate would be 1/5 of that 

derived from a free breathing transformer (with 20,000ppm oxygen dissolved in oil) 

[92]; if it could further decrease to below 300ppm, the rate would be 1/16 of that in a 

saturated oil condition (with 30,000ppm oxygen dissolved in oil) [33].  

 

Additionally the water released during oxidation would again promote the rate of 

cellulose ageing. Clark indicated that the effect of oxidation could be accelerated by the 

presence of water content [101], later experiments by Emsley however implied an 

antagonistic interaction involving oxygen and water when the temperature is below 

120°C, especially when the contents of water and oxygen are low [105]. According to 

Emsley, cellulose paper ageing rate reduces at a low water level and low oxygen 

concentration [105]. Except for the produced water, the acids generated by oxidation 

would also accelerate the cellulose degradation.  

 

 Effect of Acid 

The acidity involved in the insulation is another important factor for cellulose ageing 

because acids would initiate the cellulose hydrolysis together with water. Hydrolysis is 

the dominant degradation process at the transformer normal operating temperature or 

overload temperature (i.e. the hot-spot temperature <140°C
v
) [92, 100] and the rate of 

hydrolysis is determined by the content of acids. Additionally cellulose hydrolysis 

produces water and acids, by which the reaction is self-catalyzed. 

 

According to the experimental studies the low molecular weight acids (LMA), such as 

formic, acetic and levulinic, tend to accelerate hydrolysis process more effectively, 

because they are easily dissolved in water. On the other hand, the large oil-like 

carboxylic acids, for instance stearic and naphthenic acids have minimal effects on 

cellulose ageing. The effects of these acids are displayed in Figure 4-6. 

                                                 
iv
 ppm: parts per million, concentration of oxygen in oil. 

v
 140

o
C is given by IEC Loading Guide for Oil-Immersed Power Transformers, as the critical temperature 

that the hot-spot temperature should not be exceeded under short-time emergency loading to avoid bubble 

existence. 
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Figure 4-6 Cellulose Paper Degradation as a Function of Time under Different Acids 

[100] 

 

Particularly low and large molecular weight acids can both be generated from mineral 

oil oxidation, from which the produced LMA would also participate in the paper 

hydrolysis [100]. Except for the produced LMA, the oxidation of mineral oil would 

gradually cumulate sludge, in terms of suspended impurities or semi-conductive 

sediment, either of which could significantly reduce the oil dielectric strength and 

accelerate the ageing of oil and paper insulation. In fact the synergistic ageing involving 

oil and paper insulation has been revealed by the laboratory accelerated ageing test. 

 

4.2.2.3 Kraft Paper and Thermal Upgrade Paper 

Transformer insulation paper and pressboard as indicated previously are made from 

unbleached cellulose material by the kraft chemical process. This type of kraft paper 

and kraft pressboard has been used as transformer solid insulation since the 1960’s [36, 

89]. Up to the present, most power transformers in the UK and European continent 

countries are designed to use kraft paper as solid insulation since kraft paper is cheap 

while can meet the specific physical, chemical and electrical requirements [36, 89]. 

 

However, in the U.S., insulation paper has been thermally upgraded and especially used 

in the high-rated transformers since the mid of 1960’s in order to enhance the 

transformer insulation life [89]. The process of thermally upgrading is to neutralize the 

acids and increase the thermal resistance, due to which paper hydrolysis would be less 

catalyzed by LMA. The insulation ageing rate is thereby reduced by the factor of 1.5-3 

[38, 92].  
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Thermal upgrade paper has also been proven to be more reliable, in terms of higher 

tensile strength and bursting strength, under elevated temperatures than the non-upgrade 

kraft paper. The hottest winding temperature that can be tolerated is 110°C for the 

thermal upgrade paper while it is 98°C for the kraft paper [89].   

 

4.2.3 Calculation of Transformer Ageing Rate 

Transformer ageing rate factor k can be expressed by a first-order Arrhenius equation 

[33] by considering the effects from temperature, water, oxygen and acids, which is 

 R θ 273h

E
k A exp

 
  

  
    (4-3) 

where A is the pre-exponential factor or the contamination factor in hour
-1

, depending 

on the paper chemical environment including the water, acidity, and oxygen content, E 

is the activation energy in J/mole, R is the gas constant of 8.314J/mole/K and θh is the 

hot-spot temperature in Celsius.  

 

By considering dry kraft paper in oil (<0.5% water), an ideal constant operating 

condition of 98°C and no oxygen accessed, the reference ageing rate factor k0 can be 

obtained as: 

 
0

0 0

0R θ 273h

E
k A exp

 
  

  
    (4-4) 

in which again A0 and E0 are the pre-exponential factor and activation energy 

respectively under the reference condition and θh0 indicates the reference temperature 

98°C. Transformer relative ageing rate factor kr can be further developed as the ratio of 

a certain ageing rate k to the reference ageing rate factor k0 as 
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  (4-5) 

 

If the insulation paper chemical environment changes are neglected during the 

transformer operation, A and E in (4-5) are equivalent to the referenced A0 and E0 

respectively. (4-5) hence is simplified to be: 

   
0 0

0R θ 273 R θ 273
r

h h

E E
k exp

 
  

   
    (4-6) 
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in which the winding hot-spot temperature (θh) remains as the only variable to 

transformer ageing. By using the mean value of activation energy E0 of 111×10
3
J/mole 

according to Emsley [33], the transformer relative ageing rate factor kr, as a function of 

the transformer hot-spot temperature θh, is derived as 

13351 13351

98 273 θ 273
r

h

k exp
 

  
  

    (4-7) 

 

By taking logarithm base 2 on both sides of (4-1) and (4-7) respectively, values of 

log2(kr) and log2(V) from the hot-spot temperature θh=20°C to θh=110°C are compared 

in Figure 4-7. 

 

 
Figure 4-7 Comparison between Arrhenius’ Form of Relative Ageing Rate Factor kr and 

Montsinger’s 6°C Rule Ageing Rate Factor V 

 

It can be seen from Figure 4-7 that within the transformer normal operation 

temperatures, the relative ageing rate factor derived according to Montsinger’s 6°C rule, 

V by (4-1) is similar to kr according to the Arrhenius’ formula shown in (4-7), It is 

hereby determined that the Arrhenius’ form of relative ageing rate factor kr expressed in 

(4-7) is used to replace Montsinger’s 6°C equation (4-1) in the following calculation of 

transformer ageing.  

 

Moreover according to the laboratory tests, oxygen, water and acidity content immersed 

in the paper insulation are changing with the transformer operating condition. The 

change of transformer paper insulation chemical environment and the relative ageing 
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rate kr, are reflected by the change of the pre-exponential factor A and activation energy 

E corresponding to different deterioration processes. 

 

Emsley summarized a generic value of activation energy E independent of deterioration 

processes as 111×10
3
J/mole with the 95% confidence bounds from 105×10

3
J/mole to 

117×10
3
J/mole [33, 92, 107]. Other researchers however found that kraft paper 

oxidation has the activation energy E ranges from 80 - 90×10
3
J/mole in early 

experiment and 50 - 65×10
3
J/mole later, the normal hydrolysis has the activation energy 

E in the range of 115 - 130×10
3
J/mole and E increases over 250×10

3
J/mole above 

140°C when the insulation deteriorates under pyrolysis [92, 100]. Lundgaard also 

verified the different activation energies under different ageing processes, in which 

96×10
3
J/mole is the typical value for oxidation and 125×10

3
J/mole for hydrolysis [92].  

 

The pre-exponential factor A also affects the value of relative ageing rate. A increases 

with the aggressively increased acids and also the water content that dissociates the 

acids [92]. A significantly higher pre-exponential factor A is assigned in cellulose 

hydrolysis process.  

 

It is further reported that kraft paper oxidation is dominant when the temperature is no 

more than 60°C [100]. Oxidation is attenuated with time as it produces low molecular 

weight acids (LMA) which can effectively promote the process of hydrolysis. 

Hydrolysis is revealed to be most significant in the temperatures of 70 - 130°C [100]. 

Once the temperature increases to over 150°C, heat directly destroys the cellulose 

molecule rings and thus pyrolysis is dominant at high temperatures [100].  

 

The equation for the transformer relative ageing rate factor kr (4-5), can be further 

expressed as a piecewise function corresponding to the three deterioration processes 

within different temperature ranges. The piecewise function is written as 
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 (4-8) 

where Aox, Ahy and Apy are the pre-exponential factor of oxidation, hydrolysis and 

pyrolysis respectively, Eox, Ehy and Epy indicate the activation energy under these three 
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deterioration processes, and again A0 and E0 represent the pre-exponential factor and 

activation energy for the referenced dry and no oxygen accessed kraft paper.  

 

However, recent experimental evidence is lacking to support the exact values of A’s and 

E’s under various chemical conditions. According to unconfirmed data given in [100], 

typical values of the pre-exponential factor A and the activation energy E under the 

oxidation and hydrolysis deterioration process are summarized in Table 4-1. 

 

Table 4-1 Pre-Exponential Factor (A) and Activation Energy (E) for Cellulose 

Oxidation and Hydrolysis Based on Experiment Results [100] 

 

Dry Kraft 

no oxygen 

(reference) 

Dry oxygen accessed 

(oxidation) 

1.5% Moisture 

(hydrolysis) 
Pyrolysis 

Temperature 

(°C) 
98 θh≤60 60<θh<150 θh>150 

E 

(×10
3
J/mole) 

128 89×(1+1.5%)=90.335 128×(1-1.5%)=126.08  

A (hr
-1

) 4.1×10
10

 4.6×10
5
 1.5×10

11
  

 

It needs to be mentioned here that the values of A and E under 1.5% moisture are chosen 

as typical values for cellulose hydrolysis, since transformers with 1.5% moisture in the 

paper are commonly considered wet by National Grid [87]. The +/-1.5% incremental 

bar is considered in the activation energies and used to generate a continuous function 

of kr from oxidation to hydrolysis. Note: +/-1.5% is considered reasonable by Emsley 

[33]. Values of E and A for pyrolysis are not given in Table 4-1, and kr under pyrolysis 

is not considered, because the transformer hot-spot temperature should not exceed 

140°C in normal operation unless the short-time emergency loading condition rarely 

occurs [34]. 

 

Based on the values of the parameters given by Table 4-1, the transformer relative 

ageing rate kr in (4-8) can be obtained. It compares kr with Montsinger’s relative ageing 

rate V in Figure 4-8 by plotting kr and V against winding hot-spot temperature. 

 

It can be seen from Figure 4-8 that a transformer deteriorates much faster when the 

effects of secondary ageing agents are taken into account, especially when the hot-spot 

temperature is high. In fact the higher relative ageing rate is closer to transformer 

operation practice and therefore the modified piecewise relative ageing rate kr, 

calculated by (4-8), is used to determine transformer ageing in the rest of this thesis. 
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Figure 4-8 Comparison between Modified Piecewise Relative Ageing Rate Factor kr 

and Montsinger’s 6°C Ageing Rate Factor V 

 

4.3 Transformer Thermal End-of-Life Criterion 

4.3.1 Transformer Thermal End-of-Life Definition 

The process that leads to the degradation of the mechanical properties of transformer 

paper insulation was referred to as transformer thermal ageing before oxygen, water and 

acids were recognized as other degradation agents [95, 103]. The concept of transformer 

“thermal ageing” is now used to describe insulation mechanical property degradation 

under primary and secondary agents. Transformer “thermal end-of-life” is thus used to 

indicate the end of paper insulation useful life, i.e. when the paper insulation is 

prejudiced since its mechanical strength reduces to an unacceptable value. Accordingly, 

the transformer “thermal lifetime” represents the transformer operational period, i.e. the 

transformer has reached a physical condition (DP=200) below which the transformer is 

considered not suitable for operation [78]. The well adopted physical threshold is called 

transformer “thermal end-of-life criterion”. 

 

It is also recognized that transformer paper insulation mechanical strength can also be 

influenced by short-circuit faults, lightning, over-voltages or other system related 

transient events [78, 108-111]. McNutt concluded the progressive steps of transformer 

ageing-related failure since the start of degradation: firstly after years of service, the 

mechanical strength of paper insulation reduces due to the thermal ageing effects, and 

the paper becomes brittle and weak; secondly continuous transient events, i.e. short-

circuit faults further weaken the paper insulation; finally, the dielectric strength is 
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ultimately destroyed due to the mechanical motion during a transient event [51, 112]. 

Hence the thermal ageing effects and the external transient forces work synthetically for 

the insulation degradation that leads to transformer ageing-related failure.  

 

According to McNutt, by considering the effect of system transient events, a 

transformer actually approaches its functional end-of-life rather than its thermal end-of-

life [112]. It is also inferred that a transformer may not actually fail when its useful 

mechanical property has deteriorated to an unacceptable value; however, the 

transformer is vulnerable to failure. Alternatively a transformer could stay in service 

with its brittle insulation as no external transient forces triggered its failure. National 

Grid post-mortem analysis on its retired transformers finds certain transformers have 

operated well beyond their thermal lifetimes when replaced. Therefore transformer 

thermal end-of-life criterion is established only based on the insulation paper physical 

condition rather than the transformer actual breakdown when its functional life is 

finished.  

 

However a quantitative model for directly predicting a transformer’s functional lifetime 

or ageing-related failure is still under investigation. Transformer ageing-related failure 

is considered as transformer paper insulation thermal ageing in this thesis [1, 3]. Hence, 

transformer thermal lifetime, expressed as the operational period that results in a loss of 

the insulation paper mechanical strength, under a particular operation conditions, is used 

as the basis of transformer end-of-life. Furthermore transformer thermal hazard is thus 

the baseline of the transformer ageing-related failure hazard. The transformer thermal 

failure mechanism essentially indicates the ageing failure mechanism in the context of 

this thesis. 

 

4.3.2 Transformer Thermal End-of-Life Criterion 

In order to assign the critical condition of transformer paper insulation mechanical 

strength as thermal end-of-life criterion, the cellulose tensile strength (TS) or the degree 

of polymerisation (DP) can both be used as they are measurable properties [78]. The 

length of time, for reaching a specific criterion measured under a well-dried, oxygen-

free and 110°C-constant-temperature condition is called the normal insulation life 

corresponding to the assigned criterion [78]. 
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4.3.2.1 Based on Percentage of Remaining TS 

Transformer insulation TS is measured according to IEEE “Standard Test Procedure for 

Sealed Tube Ageing of Liquid-Immersed Transformer Insulation” under low oxygen 

and moisture conditions [90, 96]. The percentage of remaining TS is used to indicate 

transformer thermal ageing.  

 

As early as the 1930’s, Montsinger [95] published his observation on cellulose TS 

reduction during the paper accelerated ageing test and used the 50% remaining TS as 

the transformer thermal end-of-life criterion. This criterion was further adopted by 

Shroff [102] in the 1980’s and McNutt in the 1990’s [78]. In fact, 50% remaining TS, 

which corresponds to 65,000hr normal insulation life, was commonly adopted as the 

transformer thermal end-of-life criterion in early ages (1930’s – 1980’s). However, this 

percentage value is controversial, as it is not considered reliable for insulation that was 

brittle during commissioning (i.e. low TS) [78]. More importantly according to tests, 

respectively undertaken by General Electric and Westinghouse U.S. during 1978-1982, 

the transformer insulation mechanical strength was in a satisfactory condition when 50% 

TS is retained [78]. Hence, 50% remaining TS is a rather conservative transformer 

thermal end-of-life criterion. 

 

As a response to the 50% remaining TS, Malmlöw, Dakin, Sumner and Lawson 

suggested using 20% or even 10% retained TS as the transformer thermal end-of-life 

criterion [103, 113]. Note: 50% retained TS was adopted in the 1981 IEEE loading 

guide for power transformers (C57.92-1981), this was upgraded to 25% remaining TS in 

the 1995 loading guide, version C57.91-1995 [38, 96]. However, the above transformer 

thermal end-of-life criteria, based on percentage of remaining TS, are not used in this 

thesis. 

 

4.3.2.2 Based on Absolute DP Value 

The insulation paper DP value is also used to indicate transformer thermal end-of-life. 

According to EPRI research on transformer loading, undertaken in the 1980’s [96, 114], 

the absolute DP value is a better indicator of the mechanical characteristics of paper 

than the percentage remaining TS, since the measurement of DP is simple and the 

results are less dispersed.  
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It is found in kraft paper that DP is more than 2,000 in its natural state and is between 

1,000 and 1,400 after a transformer has been manufactured; the actual value depends on 

the manufacturing techniques [33, 102, 114]. DP might further reduce to around 950 

after drying and some typical factoring drying regimes result in a value around 750-850 

[102]. Kraft paper DP value starts to decrease exponentially after the commissioning of 

the transformer.  

 

As briefly revealed by paper accelerated ageing tests, at the range of DP 950-600 or 500, 

paper mechanical strength does not change significantly; while from DP 500 to 200 the 

strength reduces, proportional to DP reduction [33, 92, 102]. Transformer thermal end-

of-life criterion defined by an absolute DP value however has continued to be debated 

since the 1960’s [78]. Independent investigations suggested using various DP values 

between 250 and 100 to indicate transformer thermal end-of-life. It is further 

summarized by McNutt in [78] that, Bozzini [115] suggested a value of 100-150, 

Lampe [116] selected 200, Fabre and Pichon [117] preferred 100-200 and Shroff [102] 

used 250 when conducting their individual accelerated ageing tests.  

 

4.3.2.3 Contend of DP and TS as Thermal End-of-Life 

Criterion 

In fact the remaining 50% initial TS is equivalent to a DP value around 350 [100]. It is 

also indicated by Shroff, Fabre and Pichon, that paper insulation may retain 40%-20% 

TS when the DP is approaching 150-200 [102, 118]. Typically below a particular DP, 

150-200, when the paper is measured, it has no mechanical strength.  

 

Transformer thermal end-of-life criterion, based either on the percentage remaining TS 

or on the absolute DP value, has never been uniformly applied; hence the 50% and 25% 

remaining TS and a DP of 200 are all referred to as the power transformer thermal end-

of-life criteria in both the IEEE and IEC transformer loading guide [34, 96]. These 

transformer thermal end-of-life criteria are shown in Table 4-2. 
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Table 4-2 Power Transformer Thermal End-of-Life Criteria and Normal Insulation Life 

at 110°C [34, 96] 

Basis 
Normal Insulation Life 

Hours Years 

50% retained tensile strength (TS) of insulation 65,000 7.42 

25% retained tensile strength (TS) of insulation 135,000 15.41 

200 retained degree of polymerization (DP) in 

insulation 
150,000 17.12 

 

The transformer normal insulation life, corresponding to each of these criteria, is also 

presented in Table 4-2. The normal insulation life for reaching a specific thermal end-

of-life criterion, is measured in a paper accelerated ageing test under a well-dried, 

oxygen-free and 110°C-constant-temperature condition [78]. Moreover recent 

laboratory studies on insulation ageing, tends to use a DP of 200 as the thermal end-of-

life criterion [33, 92, 94, 119, 120] because it yields a reasonable longer insulation 

normal life of 150,000hrs compared to the 65,000hrs based on the 50% remained TS. In 

addition, a transformer thermal degradation model based on DP reduction is well 

established. In addition, in recent engineering applications, for example transformer 

lifetime prediction, a DP of 1000 is used to represent new paper, and a DP of 200 to 

indicate exhausted insulation [43, 84, 121-124]. In particular, insulation paper with a DP 

of 200 and the corresponding 150,000hrs are adopted in this thesis as the transformer 

thermal end-of-life criterion and corresponds to the normal insulation life. 

 

4.4 Models of Transformer Thermal Lifetime 

Calculation via DP Reduction 

DP values can be obtained from paper samples taken from a transformer that was retired 

and scrapped. Experiences from the U.S. and U.K. have proved that the measurement of 

scrapped transformers’ DP values provides a useful tool to suggest the in-service 

population end-of-life [78]. The lowest DP value obtained from the transformer main 

winding insulation is always used to indicate the transformer thermal degradation 

because the lowest DP represents the weakest part of the insulation paper due to thermal 

ageing and it eventually determines the transformer’s thermal lifetime.  

 

4.4.1 DP Reduction Model Development 

As early as 1940’s, the reduction of DP was formulated as  
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   0 1
t

lowestDP t DP r


     (4-9) [114]  

where DPlowest(t) is the DP value after the transformer operation period t, and is always 

the lowest DP, DP0 is the initial DP when the insulation is new, always set at 1000, r is 

a negative constant parameter and t represents the service age. The equation 

“
 

0 1
lowest

DP

DP t
   ” is called the number of cellulose chain scissions which directly 

describes paper ageing

 

[114]. (4-9) can be furthermore expressed as 

 1 1
t

η r       (4-10) 

according to which the number of cellulose chain scissions, increases exponentially with 

the transformer service age t. 

 

The DP reduction against transformer service age was further described as a simplified 

first-order chemical kinetic process [120]. By Kuhn in 1930, Ekamstam in 1936, then 

Sharples in 1957 and further verified by Zou and Emsley in 1990’s. The model is 

expressed as: 

  0

1 1

lowest

k t
DP t DP

     (4-11) [120]  

where DPlowest(t) is the lowest insulation DP after the transformer service age t, DP0 is 

the initial DP, k is the ageing rate factor and t is the elapsed time of transformer service.  

 

As indicated previously k is dependent on the transformer operation condition and can 

be described by a first-order Arrhenius equation as shown in (4-3). Between DP 1000 

and 200 however, k can be roughly considered as a constant value since the degradation 

process involving this range of DPs is related to the cellulose amorphous regions or the 

inhomogeneous composition according to Emsley and Lundgaard [33, 94, 107]. 

Cellulose amorphous regions are firstly attacked and degrade faster than the crystalline 

regions due to their large permeability [33, 94, 107]. Figure 4-9 hereby shows a red line 

to indicate the linear increase of 1/DP against t up to DP approaching 200. This line 

hence corresponds to a constant ageing rate factor k. 
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Figure 4-9 1/DP Increase against Time (hr) [94] 

 

However according to Zou, the constant ageing rate factor k is roughly considered 

which leads to an over-simplified model as shown in (4-11) [119]. Emsley subsequently 

modified (4-11) by changing k to ensure it exponentially decreased with transformer 

service, since the paper inhomogeneous composition is progressively destroyed [125, 

126]. The refined model is expressed as 

 
 210

0 2

1 1
1

k t

lowest

k
e

DP t DP k


      (4-12) [125]  

where k10 and k2 are constant figures. The exponentially decreasing ageing rate in (4-12) 

is closer to the practical degradation of paper, than a constant ageing rate k [125]. 

Typically when k2 is small, (4-12) is identical to (4-11) with k10 = k [125]. Moreover (4-

12) can describe the insulation ageing process within the full range of measurable DP 

values, for example until DP=100. Whilst the linear increase of 1/DP shown in (4-11) is 

only valid within a range of DP=1000 to 200 [126]. The DP decrease model shown in 

(4-12) is suitable especially when DP 150 or 100 is used as transformer thermal end-of-

life criterion. 

 

With the exception of the above models derived from paper accelerated ageing tests, 

utilities develop the empirical models of DP reduction based on their operational 

experiences. Engineers in Weidmann [126] responded to Emsley’s refined model by 

comparing (4-12) with their own model which describes paper ageing as a 2-stage 

process of DP reduction as 

   0 22lowest DPDP t DP exp C t     (4-13) [126]  

in which DPlowest(t) is the measured lowest DP after age t, DP20 is the DP value after an 

initial rapid ageing process (this is also the start DP of the 2
nd

-stage long-term ageing 

process), CDP2 is the 2
nd

-stage ageing rate factor, and t is the transformer in-service 

period. [126] also discusses the drawbacks of (4-13), i.e. this empirical model does not 
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consider the elapsed time of the 1
st
-stage of rapid ageing and it is necessary to 

empirically assign the value of DP20. Whereas in transformer operation practice, the 

early stage of paper insulation ageing can be critical to a transformer end-of-life. 

 

Additionally engineers in Hitachi, Japan proposed a model that described the change of 

the paper insulation mean DP value against transformer service age, according to their 

operation data. This is expressed as 

    01 0 014avDP t . t DP    (4-14) [127]  

where DPav(t) is the average DP of the transformer paper insulation after age t, instead 

of the lowest DP considered in the above models. Since the empirical models are built 

up according to utilities’ operation data, they may not be applicable to describe DP 

reduction in other utilities. 

 

4.4.2 DP Reduction Model Used in This Thesis  

As the most general and widely used model in transformer thermal lifetime estimation, 

the model of DP reduction against transformer service age, expressed in (4-11), is used 

in Chapter 5 for the estimation of the National Grid scrapped transformers’ ageing rates 

and their thermal lifetimes. However, it is important to assume: 

 DP equals 1000 when a transformer starts to operate and DP equals 200  when 

the transformer reaches its thermal end-of-life, 

 between a DP of 1000 and 200, the transformer paper insulation degrades with a 

constant rate k, and 

 the change of transformer chemical environment, including the oxygen, 

moisture and acids contents, is not taken into account. 

 

Furthermore (4-11) can be rewritten as 

0

1 1

lowest

op

DP DP
k

t



     (4-15) 

where, DPlowest indicates the lowest insulation DP after the transformer service age top at 

scrapping. According to (4-15), an individual transformer ageing rate factor k is derived. 

By simply assuming transformer ageing at the same rate k, the unit’s remaining life tre is 

estimated as  

1 1

EoL lowest

re

DP DP
t

k



     (4-16) 
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where, DPEoL is the transformer thermal end-of-life criterion and is 200 in this study. A 

scrapped transformer average ageing rate k during service and its thermal lifetime EoL = 

top + tre can be calculated according to (4-15) and (4-16) based on the information of its 

lowest DP when scrapping and its service age top until scrapping.  

 

It can be derived from (4-16) that, for a scraped transformer whose lowest DP was less 

than 200 (DPlowest<200), its remaining life would be negative. It suggests for this case 

that the thermal lifetime of this particular transformer has ended before scrapping and 

its thermal life (EoL) should have been reached when DP equals 200. Details of the 

calculation will be given in Chapter 5. 

 

4.5 Summary 

The insulation of medium and large power transformers is provided by the cellulose 

paper-mineral oil combined system. Due to the irreplaceability of paper insulation, a 

transformer’s end-of-life is eventually determined by the useful lifetime of its insulation 

paper subject to the unit’s operation condition. 

 

Transformer insulation paper is made from cellulose material, with a molecular 

structure composed of long chains of glucose rings. The molecular degree of 

polymerisation (DP) and tensile strength (TS), decreases with cellulose degradation. 

Hence, both are valid indicators of cellulose ageing. 

 

The ageing of cellulose paper is represented by the deterioration of the papers 

mechanical properties due to the effects of heat, water, oxygen and low molecular 

weight acids. A simple 6°C rule is widely accepted to express the effect of heat, as the 

transformer ageing rate doubles when the winding hottest temperature increases by 6°C. 

The presence of water in paper can shorten and weaken the fibre molecules and the 

effect is strongly related to the acids dissolved. Oxygen can attack the carbon atoms in 

the cellulose molecule and the released acids and water will initiate and then catalyze 

the cellulose hydrolysis process. The oxygen, water and acids immersed in the paper 

insulation are changing with the transformer operating conditions. The change of the 

chemical environment associated with the paper insulation significantly influences the 

transformer ageing rate. 
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As a concept, transformer thermal ageing describes the paper insulation mechanical 

property degradation due to the effects of heat, water, oxygen and acids. Consequently 

transformer thermal lifetime suggests that the transformer operation period, is the time 

required to reach a presumed physical condition below which the transformer is not 

suitable to operate. Transformer thermal end-of-life is used as the basis of transformer 

actual failure; transformer ageing failure mechanism discussed in this thesis is 

essentially the failure mechanism related to thermal ageing. 

 

Either absolute DP, or the percentage remaining TS of insulation paper, can be used to 

indicate the critical level of the insulation mechanical property. Transformer normal 

insulation life thus varies corresponding to different DPs or percentage TSs used as the 

thermal end-of-life criterion. This thesis assumes the transformer paper insulation DP of 

200 implies the end of thermal life and a DP of 1000 indicates new insulation.  

 

The development of DP reduction models is introduced in this Chapter. A widely used 

model presents 1/DP, the linear increase against transformer service age between DP 

1000 and 200, by a first-order kinetic equation. This model is used to estimate the 

thermal lifetimes and ageing rate factors of National Grid scrapped transformers in 

Chapter 5. 
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Chapter 5  

National Grid Scrapped Transformer Thermal 

End-of-Life Analysis 

 

5.1 Introduction 

UK National Grid has been carrying out post-mortem analysis on its retired 

transformers since about 1993 [40]. Those transformers were taken out-of-service due to 

failure, substation upgrading, convinced design problems, or the suggested advanced 

ageing status according to previously scrapped transformers. The condition of insulation 

paper can be assessed through transformer scrapping; paper samples are sent to the 

laboratory to measure the DP value [40].  

 

DP values of paper insulation are usually measured at more than one location on the 

transformer winding and often several measurements are taken at one location. The DP 

values of a transformer normally scatter from the bottom to the top of the winding and 

also from the outer layer and the inner layer of one disc. The dispersion of DP 

represents the nonuniform distribution of temperature, oxygen, water and acids within 

the transformer main tank. The lowest DP from the transformer main winding insulation 

is used to indicate the transformer thermal ageing because it is usually from the hottest 

spot of the transformer winding and indicates the weakest part of the insulation which is 

the most vulnerable to breakdown. 

 

In this chapter the ageing rates of National Grid scrapped transformers and their thermal 

lifetimes are estimated according to the widely used model involving transformer lowest 

DP and service age. It is intended to use the thermal failure trend derived from the 

scrapped transformers to represent the future failure of the National Grid in-service 

population. Scrapped transformers’ representativeness is furthermore discussed in terms 

of loading conditions, thermal design parameters and installation ambient conditions 

since these are the determinant factors of transformer thermal lifetime.  
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5.2 National Grid Scrapped Transformer Thermal 

Ageing Analysis 

Until 2009, 77 power transformers owned by UK National Grid have been scrapped and 

their paper insulation lowest DP values obtained. These 77 scrapped transformers make 

up a unique sample to suggest the ageing status of National Grid in-service transformer 

population. The DP values of these scrapped transformers can be analyzed by either of 

the following two ways. 

 

5.2.1 Analysis 1: Calculate Scrapped Transformers Average 

Ageing Rate 

As presented in Chapter 4, transformer ageing rate factor k can be roughly considered as 

a constant between DP 1000 and 200. k is estimated as  

0

1 1

lowest

op

DP DP
k

t



     (5-1) 

where DPlowest is the transformer lowest DP value when scrapping, DP0 shows the initial 

DP of 1000 and top indicates the transformer service age. It hereby calculates the ageing 

rate factor of each of the scrapped transformers according to (5-1). Figure 5-1 further 

shows the reciprocal of lowest DP (1/DPlowest) of each scrapped transformer against the 

individual service age top until scrapping. The reciprocal of DP is considered and 

compared with the 1/DP linear model shown in (5-1). 

  

In Figure 5-1, each scrapped transformer is represented by one red square. The red line 

shows the linear fitting of 77 1/DPlowest dots; the interception of 0.001 was fixed at t=0 

since the initial DP equals to 1000 and 1/DP0=0.001. The slope of this line actually 

indicates the average ageing rate kav of these 77 scrapped transformers. The 

corresponding average thermal lifetime of the 77 scrapped transformers was determined 

as 67 yrs ( 0

1 1

1000
67EoL

av

DP DP

k




 , where DPEoL=200, as the thermal end-of-life criterion). 
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Figure 5-1 National Grid Scrapped Transformers 1/DPlowest against Service Age top until 

Scrapping 

 

It also shows in Figure 5-1 that the scrapped transformers’ ageing rates vary 

significantly. It is highlighted in Figure 5-1 that 5 transformers all scrapped after 31 

years’ service represent low, moderate and advanced ageing by the large dispersed DP 

values, from less than 200 to more than 600 [87]. The transformer at the bottom is 

revealed to have DP as high as 688, which indicates minimal ageing of this failed 

transformer. Further study shows that the transformer was less frequently used, and its 

failure was caused by the mechanical damage due to overheating of the LV winding 

when supplying a steelworks with arc furnaces [87]. The DP of two transformers of 

moderate ageing were 349 and 303 respectively. One transformer failed due to a 

suspected bushing or tap-changer problem which caused dielectric rupture according to 

[87] while the other was replaced by a higher rating transformer as the substation was 

upgraded [87]. One advanced-aged transformer with the DP of 180 was retired due to 

substation upgrading when no obvious problem was observed during the monitoring of 

its main tank [87]. The oldest transformer among these 5 units is revealed to have the 

DP of 117. It was out-of-service due to core and frame circulating current and over-

heated shield rings, this was recognized as a common problem among identically 

designed transformers [87].  

 

It is suggested, based on DP values from these two advanced-aged transformers, that 

transformer thermal lifetime according to the criterion of DP=200 does not indicate a 

transformer actual failure. However, a DP of 200 substantially defines a critical physical 



Chapter 5 National Grid Scrapped Transformer Thermal End-of-Life Analysis 

-150- 

condition below which a transformer would be at an unacceptable high risk of failure. 

These two transformers have consumed their useful thermal lifetimes; however neither 

of them did fail, since no system transient triggered their failure.  

 

It can further be concluded, according to those 5 transformers that since transformers 

may have operated and/or been designed differently, they deteriorate at different rates 

which results in significantly different DP values, even when they were scrapped after 

the same period of operation. 

 

5.2.2 Analysis 2: Calculate Scrapped Transformers Average 

Thermal lifetime 

As introduced in Chapter 4, scrapped transformer’s lowest DP can be used to predict the 

transformer’s thermal lifetime EoL by assuming the transformer would deteriorate at the 

same ageing rate k if it stayed in service. The calculation steps for each scrapped 

transformer are again summarized as follows. 

 

Step 1: Estimate the ageing rate factor (k) of a scrapped transformer based on its lowest 

DP (DPlowest) when scrapping and the service age (top), as 

0

1 1

lowest

op

DP DP
k

t



     (5-2) 

where DP0=1000 shows new transformer insulation. 

 

Step 2: Assuming this transformer would continue ageing at this estimated ageing rate k, 

calculate the residual year to reach the critical DP of 200, as the end of its thermal 

lifetime. The residual years of operation, also called the transformer remaining life (tre), 

is calculated as 

1 1

EoL lowest

re

DP DP
t

k



     (5-3) 

where, DPEoL=200 is the thermal end-of-life criterion. 

 

Step 3: A transformer’s thermal lifetime (EoL) is then the sum of its operation life (top) 

and remaining life (tre), expressed as 

op reEoL t t      (5-4) 



Chapter 5 National Grid Scrapped Transformer Thermal End-of-Life Analysis 

-151- 

As mentioned in Chapter 4, for a certain transformer whose lowest DP was less than 

200 when scrapped, its predicted remaining life (tre) according to (5-3) would be 

negative, which suggests the useful thermal lifetime of this particular transformer has 

finished before replacement. The thermal lifetime (EoL) of this particular transformer 

therefore needs to be calculated backward to the moment when DP equals 200 and the 

value obtained would be less than its actual operation history (top). 

 

Repeat Step 1 to 3 for each scrapped transformer. The distribution of the National Grid 

77 scrapped transformers predicted thermal lifetimes are displayed in Figure 5-2. 

 

 
Figure 5-2 Distribution of National Grid 77 Scrapped Transformers Predicted Thermal 

Lifetimes 

 

Figure 5-2 shows that the mean value of 77 scrapped transformers’ thermal lifetimes is 

120yrs; however, the data are widely distributed from 16yrs to 373yrs. This large 

variation of transformer thermal lifetimes once again infers different designs and the 

various loading conditions that the scrapped transformers have experienced.  

 

77 scrapped transformers’ predicted thermal lifetimes can be further expressed into a 

cumulative distribution curve as shown in Figure 5-3. Among this small group of 

transformers, the ages of reaching three typical cumulative failure probabilities; the 

early onset of population significant unreliability (corresponding to 2.5% of CDF), the 
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median lifetime (50% of CDF) and the late onset of population significant unreliability 

(97.5% of CDF), are calculated and indicated in Table 5-1. 

 

 
Figure 5-3 CDF of National Grid 77 Scrapped Transformers Predicted Thermal 

Lifetimes 

 

Table 5-1 Ages of Reaching Typical CDFs Estimated from 77 Scrapped Transformers 

Predicted Thermal Lifetimes 

 

CDF 

F(t) 

Age t 

From 77 scrapped transformers 

thermal lifetime prediction 

early onset of population 

significant unreliability 
2.5% 21 

median lifetime 50% 95 

late onset of population 

significant unreliability 
97.5% 342 

 

According to Table 5-1, National Grid scrapped transformers’ median thermal life is 

almost 100yrs and the late onset of the scrapped population unreliability is more than 

300yrs. This is because a certain number of scrapped transformers were in good 

condition when scrapped. This is particularly true for transformers with low loading; 

these are estimated to have long thermal lifetimes, for instance more than 300yrs, if they 

continue to deteriorate at the previous extremely low ageing rate. 

 

Meanwhile, the 77 scrapped transformers’ thermal lifetimes can generate the scrapped 

population thermal hazard. In order to be consistent with the random hazard definition 
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used in Chapter 3, scrapped transformer thermal hazard at age t is also derived as the 

ratio of the number of transformers whose thermal lifetimes end at age t and the number 

of transformers whose thermal lifetimes are greater or equal than age t. This is 

mathematically expressed as 

 
number of transformers with thermal lifetimes age t

h t
number of transformers with thermal lifetimes age t





  (5-5) 

 

According to (5-5), 77 National Grid scrapped transformers’ thermal hazard is shown in 

Figure 5-4.  

 

 

Figure 5-4 Thermal Hazard Curve of National Grid 77 Scrapped Transformers 

 

By applying curve fitting on the 77 scrapped transformers’ thermal hazard via the least 

square estimator (LSE), the best description is: 

   0 0123 0 0091h t . exp . t     (5-6) 

and the coefficient of determination (COD) is 0.868.  

 

(5-6) indicates an exponentially increasing thermal hazard as shown in red in Figure 5-4. 

As discussed in Chapter 2, the exponential term of increasing hazard is the Gompertz 

Law [72] previously used to model the mortality of human beings, which is expressed 

as  a exp bt  .  a exp bt  is also used to imply the increasing failure hazard at older ages in 
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Makecham’s 1
st
 Law [72], which is adopted by Hartford Steam Boiler (HSB) [62] to 

analyze its transformer lifetime data. 

 

It can be noticed that the 1
st
 unit, among the 77 scrapped transformers, approaches its 

thermal end-of-life at 16yrs, the scrapped population thermal hazard corresponding to 

the first failure at age 16 is derived as 
1

1 3
77

. % according to (5-5), which exceeds 0.20% 

as the National Grid power transformer random failure rate. This high value of thermal 

hazard validates the reality that a certain number of poor-conditioned transformers were 

scrapped, and their estimated short thermal lifetimes result in a high thermal hazard at 

the early ages. It further suggests that 77 scrapped transformers may not be a sufficient 

sample to indicate the whole population thermal hazard.  

 

5.2.3 Conclusion on the Above Analyses 

It can be concluded based on the above calculations, that the scrapped transformers’ 

ageing rates varies significantly and their thermal lifetimes distribute over a wide range. 

Some National Grid scrapped transformers were in a bad condition and thus deteriorated 

fast. However, some redundant units had long remaining thermal lifetimes, and others 

randomly failed with moderate ageing.  

 

It is inferred that the 77 scrapped transformers may have experienced significantly 

different operation conditions or/and they were designed and manufactured differently. 

These scrapped samples may suggest possible design and operation discrepancies 

amongst the National Grid transformer population; however it is difficult at this stage to 

identify whether this group of scrapped transformers is a representative sample for the 

whole population. The cumulative failure probability derived from the 77 scrapped 

transformers, and clearly shown in Figure 5-3, indicates that up to age 40 more than 20% 

of the transformers would have reached their thermal end-of-life or would be at a high 

risk of ageing-related failure. This is obviously unrealistic, when compared with 

observed National Grid transformer failures.  

 

The use of DP values from 77 scrapped transformers, to suggest population trends in 

ageing-related failure as applied to National Grid in-service transformers will be 

discussed in Section 5.3.  
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5.3 Analysis of Scrapped Transformers’ 

Representativeness to National Grid In-Service 

Transformer Population 

As concluded in 5.2, the thermal lifetimes of 77 scrapped transformers vary 

significantly and may not be an adequate sample, to represent the thermal ageing of the 

entire National Grid fleet of power transformers from which they are drawn. The 

characteristics of these scrapped transformers, in terms of their design specifications, 

operation conditions and installation sites, only constitutes a snapshot of the whole 

population operating on the National Grid network. 

 

5.3.1 Transformer Thermal Lifetime Determinant Factors 

Transformer thermal lifetime is actually determined using multiple variables, including 

transformer instantaneous load, ambient condition, transformer oil/winding design and 

cooling control. The estimation process of transformer thermal lifetime from these 

variables can be generally presented in Figure 5-5. This model is adopted by IEEE and 

IEC loading guide for oil-immersed power transformers.  

 

 
Figure 5-5 Transformer Thermal Lifetime Estimation via Transformer Thermal Model 

 

Transformer thermal model is described using simple differential equations based on the 

fundamental loss of generation and the heat transfer principles [128, 129]. The oil 

viscosity change as a consequence of heat generated due to core and winding resistance 

loss and heat transfer is sometimes taken into account [128, 129]. Moreover, 

transformer losses are determined by transformer loading condition and ambient 

temperatures. Whilst, transformer heat transfer capability is affected by thermal design 

and cooling facilities.  

 

The hottest temperature of a transformer winding, referred to as the transformer hot-spot 

temperature, is the output of the transformer thermal model. Transformer hot spot 
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essentially determines the unit’s loading capability, thermal ageing and the bubble 

generation risk under severe condition [130]. Transformer hot-spot temperature is 

generally derived as the sum of the transformer ambient temperature, top oil 

temperature rise over ambient and the hot-spot temperature rise over top oil temperature. 

Typically under a constant load (K) and unchanged ambient condition (θa), the steady-

state hot-spot temperature (θh) can be obtained as 

21
θ Δθ θ

1

x

y

h or r a

K R
K G HSF

R

 
   

 
   (5-7) [97]  

in which K is the load factor in p.u. based on transformer rating,  

θa is the ambient temperature, 

x is the oil exponent, which determines the effect of total losses to the top oil 

temperature rise,  

y is the winding exponent, which determines the effect of transformer loading 

on the winding temperature rise, 

R, Δθtor, Gr are thermal parameters, determined by a transformer temperature-

rise test at rated load, and  

HSF is the abbreviation for transformer hot-spot factor, which considers the 

temperature difference between the hot-spot and the top winding. 

 

Details of the above parameters and their values, corresponding to the selected cooling 

mode, will be presented when the scrapped transformer thermal design characteristics 

are further discussed. Also it can be seen from (5-7) that the transformer loading 

condition, ambient temperature, thermal design and cooling control are the determinant 

factors for the transformer hot-spot temperature and thus the unit’s loss-of-life and  

thermal end-of-life. The discrepancies of scrapped transformers’ thermal lifetimes and 

their representativeness to the National Grid in-service population are also discussed.  

 

5.3.2 Scrapped Transformer Representativeness Analysis 

National Grid traditionally adopted 75/50°C or 95/70°C cooling control for transformers. 

There is however a lack of information to indicate the exact temperatures used in 

individual cooling control. It is assumed in this thesis that power transformers’ cooler 

switching is controlled by the temperature of 75/50°C and thus the effect from different 

cooler settings will not be considered in this thesis.  
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The reasons for the discrepancies in the scrapped transformer conditions is explained in 

this section, with reference to the large dispersion of the 77 scrapped transformers’ 

thermal lifetimes, and why there is little indication to suggest National Grid transformer 

population ageing. 

 

5.3.2.1 Variation of Transformer Loading 

Transformer loading can be evaluated using: the level of loading and the profile of 

loading. Transformer load level concerns the equivalent burden when the transformer 

operates and the load profile indicates the transient load fluctuation upwards or 

downwards from a certain level. 

 

 Load Level 

According to the IEEE transformer loading guide, the transformer load level can be 

proposed as an equivalent constant load which converts the actual fluctuating load into a 

constant, within the same period of time, and with an equivalent loss generated during 

the transformer operation. The equivalent load is calculated as 

2 2 2 2

1 1 2 2 3 3

1 2 3

N N

eq

N

L t L t L t ... L t
L

t t t ... t

   


   
   (5-8) [97] 

in which L1, L2, L3, …, LN are the various loads in MVA corresponding to the time 

interval t1, t2, t3, …, tN respectively, and N is the total number of time intervals.  

 

Since National Grid power transformer loading in 2009 was effectively recorded, the 

scrapped transformers’ loading condition can be briefly evaluated according to the 

loading records of the currently in-service transformers at the same site of those 

scrapped transformers. Due to the limited load record, 47 out of the 77 scrapped 

transformers’ loading records, back to the years of scrapping, can be obtained. The 

calculation process is described in the following 3 steps.  

Step 1: 2009 annual equivalent load Leq of each of the 47 in-service transformers 

are calculated according to equation (5-8).  

Step 2: each of the 2009 equivalent load Leq is calculated backward to the year 

of transformer scrapping based on 1.1% annual growth of national demand given by 

National Grid [131]. This is formulated as 

 
 2009

1 1 1 X

eq

eq Y

L
L'

. %





    (5-9) 
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where L’eq is the equivalent load at the year of transformer scrapping and YX indicates 

the scrapping year of a particular transformer. The general assumption of individual 

transformer 1.1% annual load increase may not be realistic, because load on some 

transformers may be significantly different in 2009 to previous years. However, 

transformer loading in 2009 is the only information available that can be used for 

analysis.  

 Step 3: the transformer equivalent load at the year of scrapping L’eq is expressed 

in per unit (p.u.) using the base of each transformer’s rating, designated as the 

transformer load factor (K). The calculation is expressed as 

 

 
eqL' MVA

K
Rating MVA

     (5-10) 

 

The histogram of those 47 scrapped transformers’ annual equivalent load factor (K) 

back to their scrapping year is shown in Figure 5-6. 

 

 
Figure 5-6 Histogram of 47 Scrapped Transformers’ Equivalent Load Factor K 

backward to Transformer Scrapping Year 

 

It can be concluded from Figure 5-6 that more than 90% of those 47 scrapped 

transmission transformers were on average loaded less than half of their power ratings. 

Besides transformer loads were centralized between 0.1p.u.-0.5p.u. and the average 
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loading is about 0.25p.u
vi

. This is consistent with the N-1 planning and operation 

regulation conducted in the UK transmission network, according to which transmission 

network plant should not be loaded more than half of their ratings under the normal 

operation stress in concern of network stability when experiencing a through fault. 

 

At present there are two hundred and seventy 275/132kV power transformers operating 

in National Grid’s network. Two hundred and thirty three out of these two hundred and 

seventy transformers’ 2009 real-time load are effectively recorded according to the data 

provided by National Grid [132]. The 2009 annual equivalent load factors of these 233 

transformers are compared with the 47 scrapped transformers shown in Figure 5-7. 

 

  
(a) Equivalent Load Frequency 

Comparison 

(b) Equivalent Load Cumulative 

Frequency Comparison 

Figure 5-7 National Grid In-Service 275/132kV Transformers 2009 Equivalent Loads vs. 

Scrapped Transformers Equivalent Loads @ Year of Scrapping 

 

Figure 5-7(a) presents the frequencies of the annual equivalent load factor intervals 

among the in-service 275/132kV transformers and the scrapped transformers. Figure 5-

7(b) simply plots the cumulative frequencies against the load factor intervals. It infers 

from Figure 5-7(a) that the equivalent load distribution of National Grid 275/132kV in-

service transformers is similar to that of the scrapped transformers, except that on bands 

0.5-0.7p.u., scrapped transformers have high frequency. The equivalent loads of 

                                                 
vi
 Great Britain national demand varies between about 18GW and 70GW with the average demand of 

40GW. If assuming N-1 planning and operation regulation and some spare capacities, the total capacity of 

transmission transformers needs to be at least 140GW. The generic “average equivalent load factor” of a 

transformer is 40/140=0.29p.u., which is between 0.2p.u. and 0.3p.u.. 
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275/132kV in-service transformers are also centralized between 0.1p.u. and 0.5p.u. 

According to Figure 5-7(b), more than 98% 275/132kV transformers are equivalently 

loaded no more than 0.5p.u. This is again consistent with the N-1 operation regulation 

conducted in the UK transmission network as indicated by 47 scrapped transformers. 

Besides it further reveals in Figure 5-7(b) that 50% of the 275/132kV population and 

also 50% of the scrapped transformers are on average lightly loaded, i.e. at no more than 

0.3p.u. 

 

According to the comparisons in Figure 5-7(a) and (b) the scrapped transformers’ 

equivalent load factors reflect the real load level of the National Grid 275/132kV in-

service transformer population. If the annual equivalent load factor K is the most 

dominant factor in the transformer thermal lifetime, 47 scrapped transformers would be 

a sufficient sample to directly indicate the National Grid in-service population thermal 

ageing. Hence the equivalent load of the scrapped transformers at the year of scrapping 

are displayed together with their predicted thermal lifetimes as shown in Figure 5-8. 

 

 
Figure 5-8 47 Scrapped Transformer Predicted Thermal Lifetimes against Annual 

Equivalent Load Factor 

 

The correlation between the annual equivalent load (shown in x axis in Figure 5-8) and 

the predicted thermal lifetime (shown in y axis in Figure 5-8) of these 47 scrapped 
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transformers is 24%
vii

, which indicates a weak relationship between the transformer 

load level and thermal lifetime. It can be seen from Figure 5-8 that the transformer 

predicted thermal lifetimes vary significantly even though they are similarly loaded. In 

particular, as highlighted in Figure 5-8, two transformers, both loaded high i.e. 0.69 p.u., 

are estimated to reach their thermal end-of-life at 148yrs and 204yrs respectively. While 

two other transformers, both lightly loaded at 0.23p.u. are predicted to have thermal 

lifetimes less than 50yrs.  

 

It is suggested from Figure 5-8 that a transformer’s thermal lifetime is determined, not 

only by its load level, but also by its thermal design and the installation ambient 

temperature. However it should be borne in mind that 2009 transformer load records 

have included errors, when used to estimate the historical loading of scrapped 

transformers. These errors can be clearly stated as: 

i) Loading of an in-service transformer does not represent the scrapped 

transformer’s previous loading, typically when the substation was upgraded or 

changed in its layout.  

 

ii) Current in-service transformer’s loading (2009) may not accurately reflect the 

loading of the replaced unit. The 1.1% annual national demand growth predicted 

by National Grid in 2009 may be different from reality; for example unpredicted 

cold winter in 2009 and the figure varies per annum, for instance it was given as 

1.3% in 2005 [133].  

 

iii) One year loading record of a transformer does not adequately represent the 

whole loading history during its previous operation years, especially when the 

transformer was moved or used as a spare unit. 

 

 Load Profile 

In addition to the load level indicated by the transformer annual equivalent load factor K, 

the transformer load profile or the pattern of load is the other aspect of the transformer 

loading condition. Operation practice indicates that the transformer load varies 

                                                 
vii

 The correlation coefficient (correl) of array x and array y is calculated as

 
   

   
2 2

x x y y
correl x, y

x x y y

 


 



 
, where x and y are the arithmetic mean values of array x and y 

respectively. 
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cyclically with a duration of 24hrs [34, 96, 134]. Real-time variations in the transformer 

loading would affect the hot-spot temperature and thus the transformer ageing rate; even 

if the transformer’s equivalent load remains constant. 

 

According to the UK National Grid 7-year-statement (2008/2009), the Great Britain 

transmission system cyclic demand within 24hrs is represented by a national daily 

demand profile of one typical winter day (04/12/2008, the 1
st
 Thursday of December, 

2008) and one typical summer day (19/06/2008, the 3
rd

 Thursday of June, 2008). These 

two daily demand curves are shown in Figure 5-9. 

 

 
Figure 5-9 Great Britain National Demand Profile on Typical Winter Day and Typical 

Summer Day [131] 

 

It can be seen from Figure 5-9 that the national demand varies within a typical day of 

winter and summer. In particular, significantly more electricity needs to be consumed 

during winter days due to significant heating demands and the early onset of evening 

lighting loads.  

 

In general, a scrapped transformer’s load profile can be represented by the records on 

the typical winter and summer day. In order to be consistent with the typical dates 

shown in Figure 5-9, the load records on the 1
st
 Thursday of December and the 3

rd
 

Thursday of June of five different voltage level scrapped transformers are displayed in 
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Figure 5-10. Transformer real-time load is recorded every 30min and is expressed in p.u. 

based on the transformer’s MVA rating. 

 

 
(a) 275/132kV 

 
(b) 400/132kV 

 
(c) 400/275kV 

 
(d) 275/66kV 

 
(e) 275/33kV 

 

Figure 5-10 Daily Load Profiles of Transformers of Different Voltage Level on Typical 

Winter Day and Typical Summer Day [132] 
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It can generally be concluded from Figure 5-10 that transformer real-time load varies 

differently among transformers of different voltages. In particularly, the daily load 

profiles of 275/132kV and 400/132kV transformers are generally similar to the national 

daily demand profile; this is because these two groups of transformers deliver electricity 

from transmission level (400kV or 275kV) to distribution networks, which are below 

132kV, whilst the customers receive energy from distribution network operators (DNOs) 

and national daily demand is obtained from the meter-readings at 132kV busbars. The 

load profiles of 275/66kV and 275/33kV transformers have their own patterns, which 

depend on the demand they supply; this is because these transformers connect to 

specific distribution networks that are often industrially focused. 400/275kV 

transformer is relatively even-loaded during the typical days and the load factor appears 

much less than 0.5p.u. This is because the operation of 400/275kV power transformers 

is to balance the power flow within transmission network in order to achieve high 

reliability transmission. 

 

Moreover, one should not forget that the typical winter/summer daily load profile of a 

transformer may not represent its real loading condition during a specific year, or one 

single transformer of a certain voltage level may not indicate the loading condition of 

other transformers of the same voltage. However the loading profiles of the above five, 

different voltage level, specific transformers reflects the transformer loading 

characteristics at different voltages. In other words, transformer loading condition is 

essentially related to its voltage level and depending on what the transformer supplies. 

 

Amongst the 77 National Grid scrapped transformers, 275/132kV, 400/275kV and 

400/132kV are the three majority groups; there are few 275/33kV and 275/66kV 

transformers. The distribution of different voltage groups within 77 scrapped 

transformers is shown in a pie chart in Figure 5-11 and is compared with the voltage 

group distribution of National Grid in-service transformers in 2009. 
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(c) among 77 Scrapped Transformers (d) among National Grid In-Service 

Transformers 

Figure 5-11 Voltage Distribution of Scrapped Transformers and National Grid In-

Service Transformers 

 

By comparing Figure 5-11(a) and Figure 5-11(b), it can be seen that a small number of 

400/66kV, 400/33kV, 400/145kV, 400/26.25kV, 275/11kV, 275/26kV and 275/20.5kV 

transformers are currently operating on the National Grid transmission network, and no 

scrapped samples are available. The relative number of 400/275kV, 275/132kV, 

400/132kV, 275/66kV and 275/33kV transformers within the scrapped samples and 

among the overall in-service transformers is of interest. In particular, because the 275kV 

network is older than 400kV network in the G.B., the number of 275/132kV 

transformers scrapped is high, and 275/132kV transformers are more than 50% of the 

scrapped transformers. However, within the in-service population 275/132kV 

transformers and 400/132kV transformers both take approximately 30% of the whole 

in-service transformers. Scrapped transformers should not be used to represent the 

overall in-service transformers from this point of view. 

 

 Conclusions on Scrapped Transformers’ Loading Condition 

According to information about National Grid transformer 2009 real-time load and by 

analyzing scrapped transformers load level and load profile, it can be concluded that the 

loading conditions of 77 scrapped samples do not sufficiently indicate the loading 

conditions of other in-service transformers. Transformer load profile in particular, varies 

significantly between transformers of different voltage levels. The effect of transient 

load variations on transformer hot-spot temperature and transformer thermal lifetime is 

still under investigation. It is difficult to use the general loading of a few scrapped 

transformers to represent the loads of other transformers, even when they operate at the 

same voltage levels. 
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Moreover transformer loading is not the only determinant factor in evaluating the 

transformer thermal lifetime; transformer thermal design is also important. 

 

5.3.2.2 Variation of Transformer Thermal Design  

Transformer thermal design also determines the maximum temperature rises within the 

transformer and consequently is an important factor in evaluating the transformer 

thermal lifetime [36]. To obtain the exact temperature rises under continuous full load 

and to confirm that these temperatures are within acceptable limits, a temperature-rise 

test is usually undertaken within each individual transformer or each equivalently 

designed transformers. 

 

The transformer temperature-rise test is performed at rated load. During the test, the 

transformer no-load losses (NLL), load losses (LL), oil temperature rises over ambient at 

the bottom and at the top of winding (Δθbor and Δθtor) and the average winding 

temperature rise over ambient temperature (Δθavwr) are all measured. Transformer 

thermal parameters R, Δθor and Gr at rated load are then obtained using the measured 

data. The parameter: 

 R is the ratio of load losses (LL) to no-load losses (NLL):  

LL
R

NLL
      (5-11) 

 Δθtor is the top oil temperature rise over ambient temperature in steady-state 

 Gr is the gradient between the average winding temperature rise (Δθavwr) and the 

average oil temperature rise (Δθavor): 

Δθ Δθr avwr avorG       (5-12) 

where the average oil temperature rise (Δθavor) is calculated as the mean of the 

top oil temperature rise and the bottom oil temperature rise, i.e.: 

 
1

Δθ Δθ Δθ
2

avor tor bor      (5-13) 

 

These are the thermal parameters, used in (5-7) to calculate the transformer hot-spot 

temperature (θh) in the steady-state. Other parameters, x and y in (5-7), are related to 

transformer heat transfer, however they are normally empirically suggested, instead of 

being measured via the temperature-rise test. These parameters are not discussed in 

this thesis. 
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Values of the thermal parameters are also related to transformer cooling mode. Power 

transformers owned by National Grid are usually operating under dual cooling mode, 

referred to as ONAN/OFAF. The switching between ONAN and OFAF is controlled by 

the measurements recorded by the winding temperature indicators (WTIs) [43]. Under 

the ONAN mode, the transformer is cooled by naturally circulating the oil inside the 

main tank and by natural convection of the air surrounding the radiator. While under the 

OFAF cooling mode oil and air are forced to flow quickly over the tank and radiator by 

switching on extra pumps and fans. Thus the transformer is cooled more efficiently [130, 

135]. 

 

The switching between these two cooling modes is controlled by an approximation of 

the winding hot-spot temperature, provided by data from the WTIs. National Grid 

ensures that for their power transformers,  ONAN cooling remains if the estimated hot-

spot temperature is no more than 75°C; extra fans and pumps will be switched on to 

kick start the OFAF cooling once the hot-spot temperature is estimated to exceed 75°C 

and OFAF will remain in operation until the hot-spot temperature has been reduced 

below 50°C. The above WTIs control process is denoted as 75/50°C control.  

 

As indicated in [136], the temperature-rise test should be performed on transformers 

with multiple cooling schemes under all available cooling modes corresponding to the 

different MVA ratings. Therefore for National Grid power transformers equipped with 

ONAN/OFAF dual cooling mode, the base power rating for OFAF with fans and pumps 

switched on is the nominated rating as indicated in the transformer nameplate, which the 

base rating should be the half of the nominated power when natural cooling is used 

[136]. 

 

The IEC transformer loading guide provides typical values of thermal parameters R, 

Δθor and Gr under the rated load for both ONAN and OFAF cooling [97]. The values 

are listed in Table 5-2 as follows. 
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Table 5-2 Typical Values of Thermal Parameters Given by IEC Transformer Loading 

Guide [97] 

 Cooling Mode 

Thermal parameter ONAN OFAF 

Loss ratio R 6 6 

Top oil temperature rise 

Δθtor (K) 
52 56 

Average winding-to-oil 

temperature gradient Gr 

(K) 

20 17 

 

Moreover the oil/winding temperatures measured via transformer temperature-rise test 

and the obtained values of thermal parameters can be shown in a thermal diagram. IEC 

defines typical values of transformer thermal parameters under ONAN and OFAF 

cooling mode; these are tabulated in Table 5-2 and displayed in Figure 5-12; assuming a 

constant ambient temperature of 20°C. 

 

 
Figure 5-12 Transformer Thermal Diagram of IEC Typical Thermal Design under 

ONAN and OFAF Cooling Mode 

 

As shown in Figure 5-12, the transformer thermal diagram is based on the assumptions 

that no matter what cooling mode is applied, the oil temperature within transformer 

main tank increases linearly from the bottom to the top of the tank, and the winding 

temperature rise is in parallel with the oil temperature rise, i.e. with a constant 

temperature difference [34]. The measured oil/winding temperatures are indicated by 

dots in Figure 5-12 under either ONAN or OFAF cooling mode. Lines in blue show the 
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temperature rises under ONAN cooling and red lines represent the temperature rises 

under OFAF cooling. 

 

It can be noticed from Figure 5-12 that the slope of each line indicates temperature 

difference between top oil and bottom oil or the temperature difference between top 

winding and bottom winding. The slope further infers the oil flow velocity from bottom 

to top, and the dissipation of the generated losses subject to the specific oil duct design. 

Additionally the temperature difference between the oil and winding under a certain 

cooling mode indicates the cooling efficiency, associated with transferring heat from 

conductors to the surrounding oil.  

 

The measured oil/winding temperatures reveal the global temperature rise within the 

transformer main tank. However, the localized hottest temperature or the transformer 

hot-spot temperature cannot be easily measured. The transformer hot-spot is usually 

near the top of the winding due to the maximum leakage flux and the high surrounding 

oil temperature. The value is higher than the temperature at the top of winding owing to 

the additional losses and imperfections in the oil flow [34, 136]. The hot-spot extra 

temperature rise over top winding temperature can be considered by a dimensionless 

factor, denoted as the hot-spot factor (HSF). The hot-spot temperature from WTIs is 

given by measuring the top oil temperature and using HSF of 1.3 for either ONAN or 

OFAF cooling mode. Moreover based on HSF of 1.3 the IEC typical designed 

transformer hot-spot temperature at rated load (Δθhr) reaches 98°C and 96°C under 

ONAN and OFAF cooling mode respectively, of which 98°C is the maximum 

conductor temperature allowance for transformers with kraft paper insulation. 

 

When analyzing the characteristics of the scrapped transformer, the transformer thermal 

parameters of loss ratio (R), top oil temperature rise (Δθtor), average winding 

temperature rise and average oil temperature rise gradient (Gr) are discussed. Together 

they indicate the global heat transfer within the transformer main tank. Transformer hot-

spot factor (HSF) is also discussed because it indicates the transformer localized hottest 

temperature. Moreover thermal design is revealed to be strongly related to the particular 

manufacturer of the transformer and the year of manufacturing. This information will 

also be presented.  
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 Transformer Thermal Parameters 

Amongst the 77 National Grid scrapped transformers, there are only thermal parameters 

for 16 transformers under both ONAN and OFAF cooling modes. These 16 are 

completely recorded, either in their factory testing reports or the reports of other 

equivalently designed sister transformers. In general, under each cooling mode the 

measurement of loss ratio (R), top and bottom oil temperature rise (Δθtor and Δθbor), 

mean winding temperature rise (Δθavwr) and the temperature rise gradient (Gr) are 

dispersedly distributed; the values are different to the IEC typical values shown in 

Figure 5-12. The large variation of each thermal parameter and its discrepancy to IEC 

typical designs are represented by thermal diagrams of three scrapped transformers at 

275/132kV, 400/132kV and 400/275kV respectively. Each transformer’s thermal 

diagrams under ONAN and OFAF cooling are drawn separately and they are displayed 

together with the IEC typical ONAN cooling design or the IEC typical OFAF cooling. 

These diagrams are shown in Figure 5-13 to Figure 5-15. 

 

As indicated in Figure 5-13(a), under the ONAN cooling mode, the bottom oil 

temperature rise (Δθbor), top oil temperature rise (Δθtor), average oil temperature rise 

(Δθavor) and the mean winding temperature rise (Δθavwr) measured on this specific 

275/132kV transformer are much less than the values suggested by IEC. The 

temperature difference between the top and bottom oil or between the top and bottom 

winding is also larger than suggested by IEC. However when ONAN is performed 

under the rated load, the generated loss is less than half that suggested from an IEC 

typical design, which infers a significantly slower oil flow within the transformer oil 

ducts. It is however difficult to compare oil and air natural convection efficiency 

between this specific transformer with ONAN cooling and the IEC typical ONAN 

design, because the loss ratio (R) and the winding-to-oil gradient (Gr) of this 275/132kV 

transformer are both significantly less than the IEC typical designed transformer.  

 

When the OFAF cooling is performed as indicated in Figure 5-13(b), the generated loss 

appears a little higher, which is according to the loss ratio R=7.79, as compared to R=6 

in an IEC typical design. The temperature gradient (Gr) is closer to the IEC typical 

OFAF design. This indicates that enhanced cooling is obtained within this transformer 

as compared to the IEC typical OFAF model; however the top-to-bottom temperature 

difference (Δθtor - Δθbor) is still larger. 
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(a) SGTA ONAN Cooling vs. IEC ONAN Cooling 

 

 
(b) SGTA OFAF Cooling vs. IEC OFAF Cooling 

Figure 5-13 275/132kV SGTA ONAN/OFAF Dual Cooling vs. IEC Typical 

ONAN/OFAF Dual Cooling 

 

This 275/132kV transformer was built around 1961-1963 and replaced in 1994 by a 

higher rated transformer. According to the investigation performed during scrapping, 

the specific design associated with this transformer showed signs of arcing and sparking 

in the main tank, and this resulted in the potential loose clamping problem [87]. The 

problem was further observed in other scrapped transformers designed and 

manufactured by the same company. However the above problems were identified as 

not directly related to transformer thermal design deficiencies. In fact transformers 
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belonging to this specific design family are generally recognized as performing well, in 

terms of dielectric, thermal and mechanical behaviour. 

 

 
(a) SGTB ONAN Cooling vs. IEC ONAN Cooling 

 

 
(b) SGTB OFAF Cooling vs. IEC OFAF Cooling 

Figure 5-14 400/132kV SGTB ONAN/OFAF Dual Cooling vs. IEC Typical 

ONAN/OFAF Dual Cooling 

 

Again as shown in Figure 5-14, when operating under ONAN cooling, this 400/132kV 

transformer has relatively lower temperature rises (Δθbor, Δθtor, Δθavor and Δθavwr) and 

lower temperature gradient (Gr) as compared to an IEC typical design. The oil flow rate 

within the transformer main tank is less than with the IEC typical design because the 

generated loss is much less (R=3.26), whilst the temperature difference between the top 
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oil and bottom oil or between the top winding and bottom winding is comparable to the 

values associated with the IEC design. Similar to the above, the cooling efficiency of 

SGT B when operating under ONAN cooling is different to that observed with the IEC 

typically designed ONAN cooled transformer. 

 

When OFAF cooling is switched on, the forced oil flows much faster than IEC typical 

designed OFAF cooling, which results in less temperature difference between the top oil 

and bottom oil or between the top winding and bottom winding even higher loss is 

generated (R=8.96). The cooling efficiency seems generally close to that of the typical 

IEC design. 

 

400/132kV transformers of this specific design were tested and studied by National Grid 

as they were considered defective in insulation mechanical strength during short circuit 

[87]. Meanwhile a large core and frame circulating current had also been observed when 

performing the temperature-rise test, which might lead to localized overheating and 

insulation thermal breakdown. 

 

Figure 5-15(a) and Figure 5-15(b) show the thermal diagrams of a 400/275kV scrapped 

transformer. The oil flow rate within the transformer main tank is slower when ONAN 

cooling is performed and the ONAN cooling is less efficient than the IEC typically 

designed ONAN cooling. Although the oil flows much faster when the OFAF cooling is 

switched on, the ancillary fans and pumps do not work as efficiently as the IEC OFAF 

model designed to dissipate the heat from the winding to the oil.  

 

Power transformers designed and built similarly to this 400/275kV transformer have 

been revealed by National Grid to suffer from inadequate mechanical strength during 

short circuits due to the wooden clamping beam over the windings rather than the 

conventional steel frame and the clamping screws arrangement [87]. However, no 

problems directly related to transformer thermal design have been observed. 
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(a) SGTC ONAN Cooling vs. IEC ONAN Cooling 

 

 
(b) SGTC OFAF Cooling vs. IEC OFAF Cooling 

Figure 5-15 400/275kV SGTC ONAN/OFAF Dual Cooling vs. IEC Typical 

ONAN/OFAF Dual Cooling 

 

It can be concluded according to the sampled transformer thermal diagrams as shown in 

Figure 5-13, Figure 5-14 and Figure 5-15 that individual transformer thermal design, 

including loss ratio, temperature rises and temperature gradient, are different to an IEC 

typical design and besides the thermal design of one transformer could be significantly 

different to others. By reviewing the 16 scrapped transformers’ temperature-rise test 

results, the following parameters were derived: arithmetic mean value, standard 

deviation and the range of transformer loss ratio (R), top oil temperature rise (Δθtor) and 

the winding-to-oil temperature gradient (Gr). They are then presented in Table 5-3. 
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Table 5-3 Distribution of Scrapped Transformer Thermal Parameters 

16 Scrapped 

Data 

 
ONAN 

R Δθtor Gr 

Mean 3.10 39.89 13.71 

Standard 

deviation 
0.93 6.56 6.51 

[min, max] [1.76, 6.17] [27.40, 57.50] [4.10, 27.50] 

 
OFAF 

R Δθtor Gr 

Mean 8.74 36.09 26.63 

Standard 

deviation 
3.80 7.35 6.66 

[min, max] [4.06, 21.91] [25.70, 52.00] [14.90, 38.90] 

 

According to Table 5-3, and noting that the information of transformer thermal design is 

fairly limited, the 16 transformers’ temperature-rise test results roughly show that the 

value of individual thermal parameter R, Δθtor and Gr distribute over a wide range. This 

might be one of the reasons that causes the dispersed thermal lifetimes among the 

scrapped transformers. The variation of thermal parameters is actually determined by 

the transformer thermal design technique, the manufacturing process and the exact 

values of transformer thermal parameters. These can only be obtained via the 

temperature-rise test. 

 

Except for the variations of transformer global temperature rises, the discrepancies of 

localized hot-spot temperature or the transformer hot-spot factor (HSF) needs to be 

further discussed. This is important, since the hot-spot is another critical factor in 

determining transformer thermal end-of-life. 

 

 Hot-spot Factor (HSF) 

The HSF is critical in determining the transformers thermal lifetime, since the 

ONAN/OFAF dual-cooling transformer thermal lifetime simulation model indicates that 

transformer thermal loss-of-life (LoL) increases exponentially with a linear increase in 

HSF. However, the value of HSF or the hot-spot temperature is not directly suggested 

from transformer temperature-rise test.  

 



Chapter 5 National Grid Scrapped Transformer Thermal End-of-Life Analysis 

-176- 

It is summarized in [137] that transformer HSF varies between windings and depends 

on the design, size and the short-circuit impedance of the specific transformer winding. 

The exact value of HSF may vary between 1.0 to 2.1 and needs to be investigated via 

direct measurement or calculation on the prototype transformer or windings [34]. IEC 

transformer loading guide suggests a value of HSF=1.3 is used for medium and large 

power transformers under either ONAN or OFAF cooling mode [34]. Further study, 

published by a CIGRÉ working group, shows that the variation of HSF distribute from 

0.51 to 2.06 with a mean value of 1.29 based on measurement [138]. A HSF<1 is not 

realistic and this might be caused by the errors/mistakes during measurement; however, 

no clear explanation is given in [138]. Significant variations firstly indicates the 

uncertainties of HSF, although the mean HSF value of 1.29, validates the general 

assumption of HSF=1.3 adopted in IEC loading guide.  

 

By knowing a scrapped transformer’s lowest DP and its thermal parameters, and by 

simply using the new-installed transformer 2009 real-time load and a general ambient 

temperature record (i.e. Heathrow London 2007 real-time ambient temperature), the 

unit’s HSF can be deduced according to the process described in Figure 5-16. 

 

 
Figure 5-16 Process of Deriving Individual Scrapped Transformer HSF 

 

Based on the information provided by 12 scrapped transformers’, the following HSFs 

can be deduced and are presented in the inverted cumulative probability curve shown in 

Figure 5-17. 
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Figure 5-17 12 Scrapped Transformers Derived HSF Inverted Cumulative Probability 

 

It can be seen from Figure 5-17 that the derived HSFs distribute in a wide range from 

1.4 to 10.7, and except for three distinctly large HSFs the values distribute almost 

linearly between 1.4 and 2.7. However, this derived range of HSFs may not include all 

the possible HSFs for National Grid transformers, because the scrapped transformers do 

not constitute a sufficient sample and in many cases are badly designed units.  

 

However according to the HSF distribution shown in Figure 5-17, the general 

assumption of HSF=1.3 is not realistic for the whole population, and especially for the 

National Grid scrapped transformers. In addition, using HSF=1.3 on the WTIs, may 

lead to false switching between the cooling modes, since the actual hot-spot temperature 

could have reached beyond 75°C, while the value is estimated to be much less by the 

WTIs and a presumed HSF of 1.3.   

 

As indicated previously the variation of the transformers’ thermal parameters and the 

HSFs are determined by the transformers’ different design techniques and 

manufacturing processes. The manufacturers and the design groups of the scrapped 

transformers and the National Grid in-service population are therefore discussed in the 

following section. 
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 Transformer Manufacturer 

The manufacturers involved in the 77 scrapped transformers and the National Grid in-

service transformers are separately displayed in Figure 5-18(a) and (b). A transformer 

manufacturer is represented by a three letter abbreviation, and the full name of each 

manufacturer is given in Table 5-4. It should be noticed that some manufacturers might 

change their names. For example, the GEC Power Transformer (GEC) had merger 

English Electric Power Transformer (EEC) in 1970’s and some of the EEC designs 

were changed to the Hackbridge and Hewittic designs (HHE) [87]. Figure 5-18 shows 

the companies’ names when the transformers were manufactured. 

 

 
(a) among 77 Scrapped 

Transformers 

 
(b) among National Grid In-Service 

Transformers 

Figure 5-18 Distribution of Manufacturers among Scrapped Transformers and among 

National Grid In-Service Transformers 

 

Table 5-4 List of Transformer Manufacturers 

Abbreviation Company 

AEI Associated Electrical Industries Ltd – Transformer Division 

BTH British Thomson – Houston Co. Ltd 

CAP C. A. Parsons & Co. Ltd 

CP Crompton Parkinson Ltd (The B. E. T. Co. Ltd) 

EEC English Electric Power Transformer Ltd 

FER Ferranti Ltd 

FUL Fuller Electric Ltd 

GEC GEC Power Transformer Ltd 

HHE Hackbridge & Hewittic Elect. Co. Ltd 

HST Hawker Siddeley Power Transformers Ltd 

MVE Metropolitan – Vickers Electrical Company Ltd 

PPT Initially Bruce Peebles Ltd and later Parsons Peebles Ltd 

 

It can be concluded by comparing the distribution of the manufacturers within the 77 

scrapped transformers and within the in-service transformers that the scrapped 

transformers are not a sufficiently representative sample for the whole population. The 
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reasons are: 16.2% in-service transformers are not sampled within the scrapped group, 

and good designed transformers (generally good condition in core, winding, oil and 

other auxiliary components) tend to be less scrapped and thus their manufacturers are 

less involved in the scrapped group; these transformers however may take a big portion 

in the in-service population.  

 

Furthermore even transformers built by the same manufacturer may be designed and 

produced according to different schedules and in addition, designs change with time. 

Transformers are thus subdivided into different design groups or design families. A 

transformer manufacturer distinguishes its transformers’ design families by assigning 

different codes according to transformer’s voltage level, rating, impedance, core 

structure, winding type, tap-changer or occasionally manufacturing period. Examples 

are given for three typical transformer design families, produced by one transformer 

manufacturer, as shown in Table 5-5 [87]. 

 

Table 5-5 Examples of Different Design Families from One Transformer Manufacturer 

[87] 

 G01 G06a G06b 

Rating 

(MVA) 
750 240 240 

Voltage 

(kV) 
400/275/13 400/132/13 400/132/13 

Built-up 

Period 
1977 2000 2002 

Impedance 

(p.u.) 
0.2 0.2 0.2 

Tap-

changer 
none Neutral-end MR MI 802 ATL AN 315 

Core 

Structure 
five limb core three limb core three limb core 

Winding 

Structure 

interleaved series/ 

common windings 

interleaved disc series 

winding, 

intershielded disc 

common winding 

interleaved disc 

series winding, 

intershielded disc 

common winding 

Known 

Problems 

or 

Comments 

excessive hot-spot 

temperature 

possible thermal design 

problem 

unusual tank design 

without bushing pockets, 

giving a large oil volume 

conventional tank 

design with 

bushing pockets 

 

According to the National Grid transformer database, more than 190 different design 

families can be classified within the current stock of in-service transformers, some of 

which are not sampled within the scrapped transformers. Besides, there is a lack of a 

mathematical model to clearly relate a transformer’s thermal parameters or HSF with its 
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design family; even when a specific design has been identified with a thermal problem 

(i.e. design family G01 as shown in Table 5-5). In fact most of the verified design 

problems are related to transformer random failures, instead of thermal degradation or 

the ageing-related failure.  

 

 Conclusions on Scrapped Transformers’ Thermal Design 

According to the above analyses, applied to the scrapped transformers’ thermal designs, 

it can be concluded that the discrepancy of the scrapped transformer thermal design is 

another factor in the variations in the thermal lifetime. Moreover the group of scrapped 

transformers is not an adequate sample to indicate the thermal performance of the 

National Grid in-service population because 

i) individual thermal parameters distribute in a dispersed manner and the exact 

values can be only obtained via a transformer temperature-rise test, 

ii) scrapped transformer derived HSFs also distribute in a wide range and they may 

not identify the HSFs of the entire in-service population, 

iii) a number of in-service transformers are not sampled within the scrapped group. 

 

Besides the transformer installation site or the ambient environment would be another 

important factor in determining the unit’s thermal lifetime. 

 

5.3.2.3 Variation of Transformer Ambient Condition 

As indicated in equation (5-7) the air temperature of the transformer surrounding 

strongly influences the transformer temperature rise and loading capability [139]. 

According to the IEEE transformer loading guide, the ambient temperature accounts for 

the air temperature around the radiators or heat exchangers [96]. According to the IEC 

loading guide the natural condition of wind blow, sunshine and rainfall close to the 

transformer should be also taken into account, when considering the ambient condition 

[34]. However due to limited information, measured air temperature close to the 

transformer installation site is used as the transformer ambient temperature θa. 

 

Areas of England and Wales, within which the installed National Grid power 

transformers are located, are customarily divided into four districts when recording the 

installation site of each transformer: Southwest England and Wales (SW), Southeast 

England (SE), Northwest England (NW) and Northeast England (NE). Figure 5-19(a) – 

Figure 5-19(d) plot the variation of hourly air temperatures measured at 4 weather 
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stations from SW, SE, NW and NE respectively on a 2009 typical winter day (the 1
st
 

Thursday of December) and a typical summer day (the 3
rd

 Thursday of June) according 

to the information from British Atmospheric Data Centre (BADC) [140]. These 4 

weather stations are selected as they are close to the transformer installation sites and 

thus the recorded temperature indicates the air temperature of four specific transformers 

installed at Exeter, central London, Rochdale and Coventry respectively.  

 

 
(a) Exeter Airport - SW 

 
(b) London St. James’s Park - SE 

 
(c) Rochdale - NW 

 
(d) Coventry Coundon - NE 

Figure 5-19 Hourly Ambient Temperature Recorded at Different Weather Stations on 

2009 Typical Winter and Summer Day [140] 

 

It can be seen from Figure 5-19(a) - Figure 5-19(d) that the ambient air temperature 

varies differently in the four English regions. In fact the air temperatures are different, 

when using two weather stations in the same area. The discrepancies in scrapped 

transformer ambient temperature could be one of factors to determine the dispersed 

thermal lifetimes; however the effects of the real-time ambient temperature variation to 

the transformer thermal lifetime cannot be quantified since the mathematical model is 
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unclear. Besides due to the small geographic coverage of England and Wales, the 

effects from ambient temperature variation is neglected in this thesis. 

 

Hence in order to reveal the representativeness of the scrapped transformers to the 

whole population, the distribution of transformer installation sites among the scrapped 

transformers and among the in-service population are compared. They are displayed 

separately in Figure 5-20(a) and (b). 

 

  
(a) among 77 Scrapped 

Transformers 

(b) among National Grid In-Service 

Transformers 

Figure 5-20 Distribution of Transformer Installation Sites among Scrapped 

Transformers and among National Grid In-Service Transformers 

 

As indicated in Figure 5-20(a) and (b), scrapped transformers previously installed in 

Southwest England (SW) or Northwest England (NW) are 5% more than those currently 

in service in these two areas, while the scrapped transformers located in Northeast 

England (NE) are 8% less than the transformers currently operating in NE. In particular 

transformers in Southeast England (SE) are more than 30% in both of the scrapped 

group and the in-service population. This is because many transformers are installed in 

this area, especially in London and along Thames River, in order to satisfy the large 

demand requirement.  

 

According to the comparable pie charts of Figure 5-20(a) and (b), the in-service 

transformers in different meteorological areas are generally equally sampled by the 

scrapped group according to their similar portions of transformers. Hence, the 77 

scrapped transformers represent the whole population from the view point of the general 

classification of England and Wales. 
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26.76%

25.03%

32.49%

15.71%

 SW

 SE

 NW

 NE



Chapter 5 National Grid Scrapped Transformer Thermal End-of-Life Analysis 

-183- 

5.4 Summary 

National Grid retired transformers are always scrapped and their DP values are 

measured along the main winding insulation. The lowest DP indicates the weakest part 

of the insulation paper and thus the lowest DP determines the transformer thermal end-

of-life. National Grid scrapped transformers constitute a unique sample to indicate the 

ageing status of the in-service population. 

 

The ageing status of 77 scrapped transformers are examined by calculating their average 

ageing rate and the average thermal lifetime according to the “1/DP increase against 

transformer service age” model. It concludes based on the above analyses that the 

scrapped transformers’ ageing rates varies significantly and their thermal lifetimes also 

distribute over a wide range. It is therefore implied that the scrapped transformers may 

have operated and/or been designed differently. Next, it discusses the reasons for the 

scrapped transformers’ thermal lifetimes and their representativeness with respect to 

existing National Grid in-service transformers. This is considered in terms of the ageing 

status and the effect of transformer loading, thermal design and installation ambient 

temperature. 

 

The average equivalent loads of scrapped transformers are indicated between 0.1p.u. 

and 0.5p.u. and the distribution is similar to that of the 275/132kV in-service 

transformers. However transformer load level is not the only determinant factor to the 

unit’s thermal lifetime. Transformer load profiles of these 77 scrapped units, differ 

significantly and consequently it is difficult to predict the loadings of other in-service 

transformers, especially transformers operating at other voltage levels.  

 

Transformer thermal parameters also distribute in a dispersed manner and the exact 

values can only be obtained via the temperature-rise test implemented on the actual 

transformer or other similarly designed transformers. The hot-spot factors (HSFs) of the 

scrapped transformer are derived to distribute over a wide range. This section concludes 

the general assumption of HSF=1.3 may not be realistic for scrapped transformers or the 

in-service population. Scrapped transformers indicate only a small number of 

transformers which might have been defectively designed and may not constitute an 

adequate sample to suggest the thermal design of the whole population, especially when 

considering more recent well designed transformers. 
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By analyzing transformer ambient condition it further identifies that the National Grid 

in-service transformers in different meteorological areas are generally equally sampled 

by the scrapped units. Besides owing to the limited record of transformer ambient 

temperature and little knowledge of how real-time ambient variation affects the 

transformer thermal lifetime, a unified annual temperature is adopted in the following 

chapter for transformer thermal lifetime prediction.  

 

It further concludes from the analysis undertaken in this chapter that transformer 

thermal lifetime is determined by multi-variables, such as instantaneous loading, 

thermal design parameters, winding HSF and ambient temperature. Information of these 

variables is usually incomplete in transformer operation practice. In order to predict an 

in-service transformer thermal lifetime, a simplified approach will be proposed in 

Chapter 6, using information available from scrapped transformers. 
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Chapter 6  

National Grid In-Service Transformer Thermal 

Lifetime Estimation 

 

6.1 Introduction 

It is concluded in Chapter 5 that National Grid scrapped transformers had deteriorated at 

different rates and thus their thermal lifetimes vary over a wide range. This small group 

of scrapped transformers do not effectively represent the thermal ageing of the whole 

in-service population in respect of their loading conditions, thermal design 

characteristics, or installation ambient conditions. On the other hand however the 

scrapped transformers make up a unique sample to indicate National Grid in-service 

transformers ageing-related failure. Since an individual transformer thermal lifetime is 

determined by multi-variables, such as real-time loading, temperature-rise test results, 

winding HSF and ambient temperature, which are usually incomplete, a simplified 

approach is developed in order to predict the in-service thermal lifetime of National 

Grid transformers.    

 

This chapter thus presents this simplified approach. Transformer winding hot-spot 

temperature compensation factor ( ) is first proposed, using the information available 

from scrapped transformers. Individual in-service transformer thermal lifetime is further 

predicted by MATLAB programming according to transformer thermal model described 

in the IEC Loading Guide 60076-7 [34]. The in-service transformer population thermal 

ageing trend, expressed in terms of a cumulative probability curve and a thermal hazard 

can be thereafter derived.  

 

6.2 Simplified Approach of Transformer Thermal 

Lifetime Prediction via Transformer Winding Hot-

Spot Temperature Compensation Factor 

6.2.1 Introduction 

Owing to incomplete thermal parameters, unpredictable HSF, limited real-time loading 

and inaccurate ambient temperatures, a simplified approach for individual transformer 
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thermal lifetime calculations based on IEC transformer thermal model will be developed 

in this chapter. According to this approach an individual transformer thermal lifetime 

can be easily predicted by reforming its annual equivalent load to the national typical 

daily demand profiles, using the IEC typical thermal parameters and a universal ambient 

temperature record. The calculation process is illustrated in Figure 6-1 which is similar 

to that shown in Figure 5-5. 

 

 
Figure 6-1 Illustration of Simplified Approach for Individual Thermal Lifetime 

Prediction 

 

It is indicated in Figure 6-1, that a simplified approach to determine the transformer 

load profile is used to follow the national typical winter and summer daily demand 

curves by assuming its remaining equivalent load is identical to the real value. In 

addition, the transformer thermal parameters and ambient temperature are both unified. 

Particularly a dimensionless parameter, denominated as the compensation factor (CF) is 

proposed to compensate the discrepancies between the transformer real load and the 

national typical daily demand profile. The parameter also considers the differences 

between the real ambient condition and the universal ambient temperature, and the 

differences between a specific thermal design and the IEC typical design. The role of 

CF is highlighted in Figure 6-1. 

 

CF is assigned to the position of the winding hot-spot factor (HSF). Hence the 

transformer steady-state hot-spot temperature (θh), under a constant load (K) and 

constant ambient temperature θa, according to the simplified approach is adjusted to be:  

21
θ Δθ θ

1

x*
*

* y* *

h or r a*

K R
K G CF

R

 
   

 
  (6-1) 

where    K is the load factor in p.u. based on transformer rating,  

θa is the constant ambient temperature, 

Transformer 

Thermal Model
Hot-spot 

Temperature

Transformer 

Loss-of-Life

Transformer 

Thermal 

Lifetime

Thermal End-of-

Life Criterion

Unified Ambient 
Temperature

IEC Typical thermal 
Design

INPUT

Transformer
instantaneous load

Annual Equivalent Load

National Typical Daily 
Demand Profiles

75/50oC Cooling Control

Compensation Factor 
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x
*
 and y

*
 are the oil and winding exponents suggested by IEC

viii
 

R
*
, Δθtor

*
, Gr

*
 are IEC typical thermal design parameters, and  

CF is the compensation factor. 

 

CF can be explained as the substitution of the transformer HSF. It moreover includes all 

the uncertainties from the transformer loading record, thermal design and installation 

site ambient temperature. The value of CF is significantly different to HSF and any 

positive values are meaningful. 

 

National Grid scrapped transformers with their thermal lifetime estimated using their 

lowest DP can be used to derive their compensation factors (CF) and the results are 

further used to predict the in-service transformers’ thermal lifetimes according to the 

simplified approach. The inputs of this approach and the calculation process of the 

transformer hot-spot temperature (θh) and thermal lifetime (EoL) according to the IEC 

thermal model are discussed in 6.2.2 and 6.2.3 respectively. The derivation of the 

compensation factors (CFs) of the scrapped transformers are presented in 6.3.  

 

6.2.2 Input Data of Simplified Approach 

As indicated in Figure 6.1, except for the fixed 75/50°C cooling control and the 

assigned CF, the transformer instantaneous load reformed from its annual equivalent 

load and the national typical daily demand profiles, IEC typical thermal design 

parameters and a universal ambient temperature record are the inputs to the transformer 

thermal model.  

 

6.2.2.1 Transformer Instantaneous Load 

In-service transformer hot-spot temperature (θh) and loss-of-life (LoL) calculations are 

undertaken using data from one year, which is subject to limited load information. The 

transformer is assumed to consume the equivalent amount of its useful thermal lifetime 

after one year operation until reaching its thermal end-of-life. A transformer would 

simply experience half winter days during the year, from January to March and from 

October to December and half summer days, from April to September. The 

instantaneous daily load is reformed to cyclically follow the national typical 

winter/summer daily demand profile, by assuming the annual equivalent load is 

                                                 
viii

 * is to distinguish IEC typical values from the real values of a specific transformer in the context. 
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identical to the real value. Moreover, transformer load, recorded in each hour and 

conformed to national typical daily demand profiles are converted into 1 minute 

sampling data using linear extrapolation. The above procedure to generate a 

transformer’s per minute load is summarized in the following six steps. 

 

Step 1: Calculate the transformer 2009 annual equivalent load as 

2 2 2 2

1 1 2 2 3 3

1 2 3

N N

eq

N

L t L t L t ... L t
L

t t t ... t

   


   
   (6-2) [96]  

where L1, L2, L3, …, LN are the real-time loads in MVA recorded at t1, t2, t3, …, tN 

respectively, and N is the total number of recorded data in 2009. 

 

Step 2: For a scrapped transformer in particular, convert the 2009 equivalent load Leq to 

the equivalent value L’eq at the year of scrapping based on 1.1% national demand annual 

growth factor [131].  L’eq is expressed as 

 
 2009

1 1 1 X

eq

eq Y

L
L'

. %





    (6-3) 

in which YX indicates the scrapping year of a particular transformer. 

 

Step 3: Convert the equivalent load at the year of scrapping L’eq into per unit (p.u.) 

based on transformer rating as 

 

 
eqL' MVA

K
Rating MVA

     (6-4) 

where K is designated as transformer load factor in p.u.  

 

The above 3 steps have been introduced in Chapter 5. Further steps generate 

transformer’s load data per minute following national typical daily demand profiles and 

using the annual equivalent load factor K.  

 

Step 4: Similarly to (6-2) calculate the national annual equivalent demand in GW based 

on the typical winter and summer national demand data, which can be further expressed 

as  

   
   

2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3 1 2 3

w w w w w w wN wN s s s s s s sN sN

w w w wN s s s sN

D t D t D t ... D t D t D t D t ... D t
D

t t t ... t t t t ... t

        


        
 (6-5) 

where D represents the national annual equivalent demand, Dw1, Dw2, Dw3, …, DwN are 

the national demand in GW in winter at tw1, tw2, tw3, …, twN respectively, Ds1, Ds2, 
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Ds3, …, DsN are the national demand in summer at ts1, ts2, ts3, …, tsN respectively and N 

is the number of recorded data samples obtained in winter or in summer. 

 

Step 5: Scale the transformer’s annual equivalent load factor K to the national annual 

equivalent demand D by factor α as: 

   

   

   

   

2 2 2 2 2 2 2 2

1 2 3 1 2 3

2 2 2 2 2 2 2 2

1 2 3 1 2 3

2 2 2 2 2 2 2 2 2 2

1 2 3 1 2 3

2 2 2 2 2 2 2 2

1 2 3 1 2 3

α α

α

w w w wN s s s sN

w w w wN s s s sN

w w w wN s s s sN

w w w wN s s s sN

K K K ... K K K K ... KK

D D D D ... D D D D ... D

D D D ... D D D D ... D

D D D ... D D D D ... D

        


        

        


        



1 2 1 2

1 2 1 2

w w wN s s sN

w w wN s s sN

K K K K K K
... ...

D D D D D D
       

  (6-6) 

where Kw1, Kw2, Kw3, …, KwN are the transformer load factor in winter at tw1, tw2, tw3, …, 

twN respectively and Ks1, Ks2, Ks3, …, KsN are the p.u. load factor corresponding to 

summer time ts1, ts2, ts3, …, tsN respectively.  

 

Deduce the transformer’s instantaneous load factor, KwN at winter time twN as 

α wN

wN wN

K D
K D

D
       (6-7) 

and similarly KsN in summer time tsN as 

α sN

sN sN

K D
K D

D
       (6-8) 

 

Particularly Kw1, Kw2, Kw3, …, KwN and Ks1, Ks2, Ks3, …, KsN are all obtained in intervals 

of 1 hour as national demand is given each hour.  

 

Step 6: Convert the individual transformer load factor per hour into per minute using 

the linear extrapolation. For example the i
th

 minute’s load between winter load KwN-1 and 

KwN, denoted as 
1i N

K
w N

  
  
  

,
 
can be calculated as 

 1

1

1
1

60

wN wN

wN

i N K K
K i K

w N





   
     

  
   (6-9) 

 

Figure 6-2 gives an example of deriving a transformer typical winter and summer daily 

load in p.u. per minute according to the above six steps. The obtained load profiles are 

compared with national typical winter and summer daily demand curves in Figure 6-2. 
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(a) Transformer Typical Winter and 

Summer Daily Load Profile in p.u. 

 
(b) Great Britain Typical Winter and 

Summer Daily Demand Profile 

Figure 6-2 Example of Deriving Transformer Typical Winter and Summer Daily Load 

Profile Following National Typical Daily Demand Profile 

 

It can be seen from Figure 6-2 (a) and (b) that the reformed transformer load pattern is 

identical to the national typical daily demand profile and the transformer’s annual 

equivalent load. Again during the winter time, for one operation year, the typical winter 

load profile is assumed to be cyclically experienced, and during summer days, the 

typical summer load profile is cyclically experienced. The reformed load profile is the 

input to the transformer thermal model. 

 

6.2.2.2 Unified Ambient Temperature 

Since the exact ambient temperature seen by a transformer are seldom recorded, the 

real-time ambient temperature in the London Heathrow area in 2007 is used as the 

unified ambient input data to deduce each scrapped transformer’s compensation factor 

(CF) and to predict the in-service transformer’s thermal lifetime. Figure 6-3 shows the 

ambient temperature profile of London Heathrow in 2007 [141]. 

 

Similarly to the national demand data given by National Grid, Heathrow ambient 

temperature is also recorded in per hour interval. Hence the linear extrapolation is 

adopted to convert the hourly ambient temperatures into minute based ambient data for 

input to the transformer thermal model. 
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Figure 6-3 2007 London Heathrow Ambient Temperature Record [141] 

 

6.2.2.3 IEC Transformer Typical Thermal Parameters  

To avoid the reviewing of individual transformer’s temperature-rise test results and to 

avoid the errors of temperature measurement, IEC typical thermal design parameters are 

assumed to be applicable to all the National Grid transformers. The typical values of 

transformer thermal parameters at rated load under ONAN and OFAF cooling modes 

are summarized in Table 6-1 as follows. Values of other empirical parameters, such as 

the oil exponent x, the winding exponent y, the oil response constant k11, the winding-to-

oil response constant k21 and k22, the oil time constant τo and the winding time constant 

τw are also listed in Table 6-1. 

 

Besides it is emphasized in Chapter 5 that when OFAF cooling is switched on, the base 

rating for the transformer load factor calculation is the nominated rating indicated on the 

transformer nameplate, whilst when ONAN is performing, the base rating changes to 

half the nominated MVA rating. Hence the instantaneous load factor, Kw1, Kw2, Kw3, …, 

KwN, calculated according to (6-7) for instance, should be modified as 2Kw1, 2Kw2, 

2Kw3, …, 2KwN under the ONAN cooling mode. 
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Table 6-1 Typical Values of Transformer Thermal Parameters Given by IEC Loading 

Guide 354:1991 and 60076-7 [34, 97] 

 Cooling Mode 

Thermal parameter ONAN OFAF 

Loss ratio R
*
 6 6 

Top-oil temperature rise Δθtor
*
 

(K) 
52 56 

Average winding-to-oil 

temperature gradient Gr
*
 (K) 

20 17 

Oil exponent x
*
 0.8 1.0 

Winding exponent y
*
 1.3 1.3 

Oil response constant k11
*
 0.5 1.0 

Winding-to-oil response constant 

k21
*
 

2.0 1.3 

Winding-to-oil response constant 

k22
*
 

2.0 1.0 

Oil time constant τo
*
 (min) 210 90 

Winding time constant τw
*
 (min) 10 7 

 

Moreover the switching between the ONAN and OFAF cooling modes is controlled by 

an approximation of the winding hot-spot temperature provided by the winding 

temperature indicators (WITs) using HSF of 1.3 for both cooling modes. The 75/50°C 

control scheme is applied by National Grid, if the estimated hot-spot temperature (θh) is 

no more than 75°C, the ONAN cooling is used. Once θh is evaluated to have exceeded 

75°C, extra fans and pumps will be switched on to kick start the OFAF cooling and 

OFAF remains unless the hot-spot temperature has been reduced to less than 50°C. 

Furthermore, although the mechanical response of fans and pumps is reported to be 

delayed in practice, which may essentially result in the overheating of transformer 

winding, they are assumed to switch ON/OFF immediately after OFAF cooling is 

activated.  
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6.2.3 IEC Process of Predicting Transformer Thermal 

Lifetime 

The deduced 1 minute load factor, the unified ambient temperature, the IEC typical 

thermal parameters, the fixed 75/50°C cooler control scheme and the winding 

compensation factor (CF) are the inputs to the IEC thermal model as described in Figure 

6-1. The transformer hot-spot temperature (θh) is obtained in the interval of 1 minute.  

 

The transformer thermal model is described by a series heat transfer differential 

equations. These equations are used to calculate the transformer hot-spot temperature 

(θh), the transformer loss-of-life (LoL) and thermal end-of-life (EoL) under arbitrarily 

time-varying load and ambient condition [34]. The calculation procedure is summarized 

as follows. The abbreviations are referred to in the list of symbols and abbreviations at 

the start of this thesis, and * indicates the values of the transformer thermal parameters 

according to IEC typical design. 

 

Step 1: Calculate the initial steady-state temperatures at the beginning of 

calculation. 

The initial top oil temperature θtoi under the load factor Ki and ambient temperature θai 

at the beginning of calculation is formulated as 

21
θ Δθ θ

1

*x
*

*i

toi tor ai*

K R

R

 
  

 
   (6-10) 

where Ki and θai are the 1
st
 recorded load factor and the ambient temperature 

respectively and are used to obtain the steady-state top oil temperature at the beginning 

of the calculation. 

 

The initial hot-spot temperature rise over the top oil temperature Δθhi is calculated as the 

sum of two differential equations as 

1 2Δθ Δθ Δθhi hi hi      (6-11) 

in which  

 1 21Δθ
** y *

hi rk K G CF    (6-12) 

and        2 21Δθ 1
** y *

hi rk K G CF       (6-13) 

where, *

rG CF gives the value of transformer hot-spot to top oil gradient at the rated load, 

denoted as Δθ *

hr
. 
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Hence, the initial hot-spot temperature θhi corresponding to the load factor Ki and the 

ambient temperature θai is determined as 

θ θ Δθhi toi hi       (6-14) 

 

ONAN cooling is always set as the initial status and thus the values of R
*
, Δθtor

*
, Gr

*
, x

*
, 

y
*
 and k21

*
 are those expressed under ONAN cooling. Compare the initial hot-spot 

temperature θhi to 75°C, if θhi ≥ 75°C, OFAF cooling is switched on and all the 

parameters consequently change to the values corresponding to OFAF cooling; 

otherwise ONAN cooling continues and accordingly the parameters remain. 

Transformer loss-of-life (LoLi) is initially set 0. 

 

Step 2: Calculate the top oil temperature rise over ambient Δθto(t) and the top oil 

temperature θto(t) at time interval t under the instantaneous load K(t) and ambient 

temperature θa(t) recorded at t.  

 
 

   
2

11 0

11
Δθ Δθ θ 1 θ

τ 1

*x
*

*

to tor to a* *

K t R
t t t

k R

   
           

  (6-15) 

and         θ Δθ θto to at t      (6-16) 

 

Step 3: Calculate the hot-spot temperature rise over top oil Δθh(t) and then the hot-

spot temperature θh(t) at time interval t.  

Δθh(t) is again derived as the sum of two differential equations as 

     1 2Δθ Δθ Δθh h ht t t     (6-17) 

where           1 21 1

22

1
Δθ Δθ 1

τ

*y* *

h r h* *

w

t k G CF K t t
k

   
  

   (6-18) 

and    
 

       2 21 2

22

1
Δθ 1 Δθ 1

1 τ

*y* *

h r h* *

o

t k G CF K t t
/ k

    
  

   (6-19) 

 

Thereafter the hot-spot temperature θh(t) is deduced as 

     θ Δθ θh h tot t t      (6-20) 

 

Step 4: Compare the estimated hot-spot temperature θh(t) at time t with WTIs 

75/50°C threshold temperatures to determine the cooling model and the 

corresponding thermal parameters for the calculation in the next time interval.  

The algorithm can be described as: - 
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If ONAN cooling is performed at t-1 and θh(t) ≥ 75°C, OFAF will be switched on; 

otherwise if  θh(t) < 75°C, ONAN cooling will remain. 

 

If OFAF cooling is conducted at t-1 and θh(t) ≥ 50°C, OFAF cooling will continue to 

perform; whilst if θh(t) < 50°C, OFAF will be switched off and ONAN will be activated. 

 

Step 5: Calculate the relative ageing rate factor kr(t) and the loss-of-life LoL(t) 

within time interval t. 

Transformer relative ageing rate factor kr(t) based on the estimated hot-spot temperature 

θh(t) is obtained according to the piecewise function discussed in Chapter 4. These 

equations are written here again as 

  

   
 

   
 

   
 

00

0 0

0 00

0 0

00

0 0

θ 60
R θ 273 R θ 273

60 θ 150
R θ 273 R θ 273

150 θ
R θ 273 R θ 273

ox ox

h

h h

hy hy

r h

h h

py py

h

h h

A E E
exp , when t C

A t

A EE
k t exp , when C t C

A t

A EE
exp , when C t

A t

  
   

      


 
    

      


 
         

 (6-21) 

where the value of the relative ageing rate factors at time t is determined according to 

the deterioration process conducted within different ranges of the hot-spot temperatures: 

- when the hot-spot temperature is no more than 60°C, oxidation is the dominant 

degradation process; when the hot-spot temperature is between 60°C and 150°C, 

hydrolysis is significant; when the hot-spot temperature exceeds 150°C, pyrolysis is 

predominant. Aox, Ahy and Apy are the pre-exponential factor of oxidation, hydrolysis and 

pyrolysis respectively, Eox, Ehy and Epy indicate the activation energy under these three 

deterioration processes, and A0 and E0 represent the pre-exponential factor and 

activation energy for the referenced condition. Values of these parameters are displayed 

in Table 4-1. 

 

Furthermore transformer thermal loss-of-life after operating within time t, denoted as 

LoL(t), is derived as 

   rLoL t k t t      (6-22) 

where kr(t) is the relative ageing rate factor at time interval t.  

 

Step 6: Obtain the total loss-of-life LoLtotal consumed during the whole year 

operation.  
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Repeat Step 2 to Step 5 at each time interval of 1 minute until the end of the operation 

year, the total loss-of-life LoLtotal is the sum of the LoLs obtained at each time interval, 

as 

 totalLoL LoL t t     (6-23) 

 

Step 7: Predict transformer’s thermal lifetime EoL. 

A transformer is assumed to have experienced the identical loss-of-life during each 

year’s operation until the end of its thermal lifetime. By using the normal insulation life 

of 150,000hrs based on the thermal end-of-life criterion of DP=200, the transformer’s 

thermal lifetime in year is predicted as 

 
 

150 000 1

total

, hr yr
EoL yr

LoL hr


    (6-24) 

 

6.3 National Grid Scrapped Transformers’ Hot-Spot 

Compensation Factors (CFs) Derivation 

Since a scrapped transformer’s thermal lifetime can also be predicted by the lowest DP, 

its compensation factor (CF) can thus be inversely derived. It presents in this section the 

derivation of National Grid scrapped transformers’ compensation factors and then the 

information is applied to the in-service population. 

 

6.3.1 Scrapped Transformers’ Compensation Factors 

Generation Procedure 

A scrapped transformer compensation factor (CF) can be deduced by estimating its 

thermal lifetime according to the simplified approach equivalent to the value from its 

lowest DP. The calculation procedure is illustrated in Figure 6-4.  

 

 

Figure 6-4 Process of Deriving Individual Scrapped Transformer CF 
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The derivation process can be further illustrated by the flowchart shown in Figure 6-5. 
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Figure 6-5 Scrapped Transformer Compensation Factor (CF) Derivation Flow Chart 
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According to Figure 6-5 CF is initially set as 0 and increases with the interval of 0.1; 

transformer hot-spot temperature (θh), loss-of-life (LoL) and thus thermal lifetime (EoL) 

corresponding to the load and ambient and under a certain CF are calculated using the 

IEC transformer thermal model and the optimal CF is the value under which the 

estimated transformer thermal lifetime is closest to that predicted by the lowest DP. 

 

6.3.2 Scrapped Transformers’ Compensation Factors (CF) 

against Transformer Annual Equivalent Load Factor (K)  

Based on the provided load information, 44 out of 77 scrapped transformers’ hot-spot 

temperature compensation factors (CFs) are derived. Scrapped transformer CF is 

revealed to be strongly correlated with the scrapped transformer annual equivalent load 

factor K backward to the year of scrapping. Figure 6-6 displays CF against transformer 

annual equivalent load factor K.  

 

 
Figure 6-6 44 Scrapped Transformers Derived Compensation Factors (CF) vs. Annual 

Equivalent Load Factor K @ Year of Scrapping 

 

Figure 6-6 indicates that the best fitting of 44 scrapped transformers’ CFs is determined 

by a power function of the transformer annual equivalent load factor K at the year of 

transformer scrapping which is described as 

bCF a K     (6-25) 

where parameter a is derived to be 0.24 and b equals -1.6968, with the coefficient of 

determination (COD) as high as 0.9138.  
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It is thus suggested based on the above plot that transformer hot-spot compensation 

factor CF is strongly related to the annual equivalent load factor K and furthermore for 

an in-service transformer, CF can be obtained according to the unit’s one year annual 

equivalent load and thus its thermal lifetime can be predicted via previously presented 

approach. 

 

6.3.3 Curve Fitting Error Analysis 

In order to extrapolate (6-25) to National Grid in-service transformers, the error of 

fitting CF into load factor K by (6-25) is analyzed in this section. (6-25) derived CFs of 

44 scrapped transformers are used to calculate their thermal lifetimes according to the 

simplified approach. The calculation procedure is presented in Figure 6-7.  

 

Transformer’s re-calculated thermal lifetime is recorded as EoL and its lowest DP 

derived thermal lifetime is denoted as EoL0. The error between EoL and EoL0, denoted 

as ErEoL, is calculated as 

0

0

EoL

EoL EoL
Er

EoL


     (6-26) 

 

Similarly the original estimated compensation factor in accord with transformer lowest 

DP determined thermal lifetime is denoted as CF0 in order to distinguish the CF 

deduced by (6-25). The error between CF and CF0, nominated as ErCF is defined as 

0

0

CF

CF CF
Er

CF


     (6-27) 

 

 



Chapter 6 National Grid In-Service Transformer Thermal Lifetime Estimation 

-201- 

 
 

 

 

 

 

 

 

Start

Input

Annual equivalent 

load (Leq) and

National Grid typical 

daily demand profiles

Input

Ambient records;

IEC typical thermal 

parameters;

Transformer 75/50oC 

cooler setting

Calculate transformer load factor 

(K)

CF = 0.24K-1.6968

Set the number of intervals N for 1 year 

calculation

Calculate initial status:

Flag = 0 (ONAN is on),

initial top-oil temperature (θtoi),

initial hot-spot temperature (θhi) and

initial transformer loss-of-life (LoLi) = 0

If Flag = 0

If θh ≥ 75oC If θh≤ 50oC

Flag = 1 (OFAF is on);

R=RON; Gr=GrON;

Δθtor=ΔθtorON;

x=xON; y=yON;

k11=k11ON; k21=k21ON; 

k22=k22ON;

τo=τoON; τw=τwON

Flag = 0 (ONAN is on);

R=ROF; Gr=GrOF;

Δθtor=ΔθtorOF;

x=xOF; y=yOF;

k11=k11OF; k21=k21OF; 

k22=k22OF;

τo=τoOF; τw=τwOF

YES NO

YES

NO

YES

NO

t = 1 (counter setting)



Chapter 6 National Grid In-Service Transformer Thermal Lifetime Estimation 

-202- 

 

 

 

 

 

 
Figure 6-7 Individual Scrapped Transformer Thermal Lifetime Prediction Based on (6-

25) Generated Compensation Factor 
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ErEoL and ErCF of 44 scrapped transformers are plotted together for comparison purpose 

in Figure 6-8. 

 

 
Figure 6-8 Error of transformer thermal EoL derived by (6-26) against Error of CF 

calculated by (6-27) 

 

It is understandable that an underestimated hot-spot compensation factor would predict 

a longer thermal lifetime; while the overestimated CF would predict a shorter 

transformer thermal life. Therefore it is shown in Figure 6-8 that the plots of ErEoL 

against ErCF distribute in the quadrant-II and IV only. According to Figure 6-8, the 

ErCFs derived from the above 44 scrapped transformers concentrate in the range of 

±30%, while in an extreme case the value exceeds 100%. ErEoLs of the 44 transformers 

distribute in a wide range; especially when the CF is deduced less than the original 

value CF0. In an extreme case transformer re-calculated thermal lifetime EoL could be 

3.7 times longer than the paper insulation lowest DP derived thermal lifetime EoL0.  

 

Moreover 44 transformers are sorted according to their annual equivalent load factor K 

from smallest to largest; their lowest DP derived EoL0s, CF0s, re-estimated CFs 
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Table 6-2 44 Scrapped Transformers Compensation Factor (CF0) Corresponding to 

Lowest DP Predicted Thermal Lifetime (EoL0), Re-Generated Compensation Factor 

(CF) by Fitted Equation, Re-Calculated Thermal Lifetime (EoL) and Their Errors 

(ErCFs and ErEoLs)  

SGT 

Annual 

equivalent 

load factor 

(p.u.) 

Based on lowest DP Based on (6-30) Error% 

CF0 EoL0 (yr) CF EoL (yr) ErCF% ErEoL% 

1 0.102 10.50 190 11.56 123 10.1 -35.3 
2 0.105 14.61 27 11.07 127 -24.2 370.4 
3 0.116 9.70 118 9.33 142 -3.8 20.3 
4 0.123 6.53 373 8.41 148 28.8 -60.3 
5 0.131 6.03 345 7.52 154 24.8 -55.4 
6 0.135 6.04 295 7.14 157 18.1 -46.8 
7 0.154 5.69 166 5.72 162 0.5 -2.4 
8 0.173 4.23 231 4.70 159 11.0 -31.2 
9 0.175 4.20 222 4.62 158 9.9 -28.8 

10 0.178 5.06 95 4.48 157 -11.4 65.3 
11 0.198 3.60 168 3.76 144 4.4 -14.3 
12 0.200 3.70 139 3.68 142 -0.5 2.2 
13 0.214 3.79 76 3.30 132 -13.0 73.7 
14 0.219 2.74 201 3.16 126 15.4 -37.3 
15 0.227 3.72 48 2.96 119 -20.3 147.9 
16 0.236 2.27 209 2.79 111 22.9 -46.9 
17 0.237 2.67 124 2.77 110 3.7 -11.3 
18 0.240 3.45 41 2.71 107 -21.6 161.0 
19 0.240 1.73 342 2.71 107 56.1 -68.7 
20 0.255 1.94 184 2.45 93 26.1 -49.5 
21 0.274 2.52 44 2.16 76 -14.1 72.7 
22 0.278 2.43 44 2.10 73 -13.4 65.9 
23 0.280 2.87 21 2.08 71 -27.5 238.1 
24 0.293 1.69 96 1.93 65 14.3 -32.3 
25 0.296 2.42 27 1.89 63 -21.8 133.3 
26 0.306 1.73 68 1.80 60 3.8 -11.8 
27 0.306 1.86 54 1.79 60 -3.7 11.1 
28 0.307 2.34 24 1.79 60 -23.7 150.0 
29 0.308 2.31 24 1.77 60 -23.5 150.0 
30 0.317 1.86 43 1.68 59 -9.4 37.2 
31 0.319 2.43 16 1.67 58 -31.2 262.5 
32 0.335 1.00 150 1.53 59 53.5 -60.7 
33 0.340 1.34 79 1.49 60 11.5 -24.1 
34 0.357 1.36 66 1.38 64 1.5 -3.0 
35 0.357 0.90 144 1.38 64 53.0 -55.6 
36 0.386 1.92 23 1.21 74 -37.1 221.7 
37 0.398 1.23 67 1.14 77 -7.0 14.9 
38 0.413 1.33 55 1.08 80 -18.9 45.5 
39 0.417 0.97 93 1.06 81 9.0 -12.9 
40 0.466 0.77 99 0.88 85 13.9 -14.1 
41 0.475 1.42 38 0.85 85 -40.2 123.7 
42 0.519 1.37 37 0.73 88 -46.6 137.8 
43 0.538 1.29 40 0.69 89 -46.7 122.5 
44 0.694 0.22 148 0.45 104 102.6 -29.7 
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It is highlighted in Table 6-2 a pair of transformers with the identical load factor of 

0.240p.u. at their individual scrapping year. SGT18 and SGT19 are predicted via their 

lowest DP to have thermal lifetimes of 41yrs and 342yrs respectively, which determine 

their true CFs of 3.45 and 1.73. Their equivalent load factor however derives the same 

CF of 2.71 according to (6-25) and further generates the thermal lifetime of 107yrs. The 

re-calculated 107yrs thermal lifetime is actually 1.61 times longer (
107 41

1 61
41

EoLEr .


  ) 

than SGT18 lowest DP derived thermal lifetime and is 0.69 shorter 

(
107 342

0 69
342

EoLEr .


   ) than that of SGT19.  

 

Also by comparing SGT34 and SGT35 as highlighted in Table 6-2, their identical load 

factor derived CF of 1.38 is fairly close to the original CF0 of SGT34, which 

consequently generates a similar thermal lifetime as that determined by its lowest DP. 

However, the CF of 1.38 is 0.53 times higher (
1 38 0 90

0 53
0 90

CF

. .
Er .

.


  ) than the original 

CF0 of SGT35 (CF0=0.90) which results in the thermal lifetime 0.56 times shorter 

(
64 144

0 56
144

EoLEr .


   ) than that predicted by SGT35 lowest DP value.  

 

It can be deduced either according to Figure 6-8 or Table 6-2 that the error of 

transformer re-calculated thermal lifetime (EoL) compared to the DP estimated thermal 

lifetime (EoL0) is sensitive to the assigned compensation factor (CF), especially when 

the CF given by (6-25) is less than the CF0 in accordance with the transformer lowest 

DP predicted thermal lifetime.  

 

Since the error of re-calculated thermal lifetime (EoL) is considerably large, the 

uncertainties of CFs derived from a certain load factor K need to be taken into account 

when (6-25) is extrapolated to in-service transformer population.   

  

6.3.4 Estimation of In-Service Transformer Compensation 

Factors ( ) by Using Scrapped Transformers Fitted Curve 

In order to involve the error between (6-25) derived CF and the transformer real CF0 in 

National Grid in-service transformers’ thermal lifetime prediction, ErCFs calculated 

according to (6-27) are plotted against CFs from (6-25) for analysis. Since ErCF may be 

positive or negative according to the figures shown in Table 6-2, the absolute value of 
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ErCF as │ErCF│ is used to reduce the complexity in plotting. The dots in Figure 6-9 

show │ErCF│ against CF.  

 

 
Figure 6-9 Absolute Error of CF │ErCF│against CF Derived by (6-25) 

 

It indicates in a rough way in Figure 6-9 that│ErCF│is significant when the 

corresponding CF is small according to (6-25). In particular, the four outermost cases of 

│ErCF│ determine a boundary line, assigned as “upper border line” of │ErCF│. It is 

highlighted in Figure 6-9 by red that the best-fit curve can be expressed by a logarithms 

function, as 

 0 247 0 8204U

CFEr . ln CF .       (6-28) 

in which ErCF
U
 indicates the upper border line of errors and CF is the transformer 

winding compensation factor estimated from the transformer annual equivalent load 

factor K according to (6-25).  

 

Owing to the little knowledge to identify the exact error additionally to a specific CF, 

three assumptions are drawn prior to assign CF to an in-service transformer, which are: 

 The errors of CF determined from 44 scrapped transformers indicate all the 

possible errors of the in-service transformers’ compensation factors. 

 The range of errors is imposed to be within an envelope defined by an upper and 
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 Error of a certain CF distributes normally with the mean value (μ) of 0 and 3 

times of its standard derivation (σ) locates within the area defined by the “upper 

border line (ErCF
U
)” and the “lower border line (ErCF

L
)”

ix
. 

 

The lower border line ErCF
L
 is symmetrical to the upper line. It is thus formulated as 

 0 247 0 8204L U

CF CFEr Er . ln CF .       (6-29) 

 

The generation of the error bar ErCF additionally to a specific CF based on the above 3 

assumptions can be further graphically illustrated as shown in Figure 6-10. 

 

 

Figure 6-10 Illustration of CF Error ErCF Generation 

 

In particular, one should notice that according to (6-28), ErCF
U
 would be derived to be 

negative when CF exceeded the critical value of 27.701 and the transformer was 

equivalently loaded less than 0.06p.u. The negative value of ErCF
U
 essentially violates 

the definition of error “upper border line” which is positive by default. It is therefore 

stated here that National Grid in-service transformers with the equivalent load less than 

0.06p.u. are out of consideration in the following thermal lifetime prediction. In fact, the 

transformer equivalent load of 0.06p.u. is a negligible load condition, under which the 

transformer has significantly little useful thermal life consumed during the year.   
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ErCF, furthermore, is randomly generated within the area identified by ErCF
U
 and ErCF

L
 

according to a normal distribution, of which the mean value (μ) is zero and 3 times 

standard deviation (σ) equals to ErCF
U
- ErCF

L
. The generation process for transformer j, 

for instance, can be represented as 

   μ σCFEr j normrnd , j   
   (6-30) 

where normrad indicates the random generation process based on a normal distribution, 

μ is the mean value of the normal distribution, μ=0, and 

σ(j) is the standard derivation of the normal distribution accordingly, which for 

transformer j, is deduced as 

 
   

σ
3

U L

CF CFEr j Er j
j


    (6-31) 

 

Therefore by considering the possible error bar, the winding temperature compensation 

factor for this in-service transformer j with its annual equivalent load factor K(j) is 

estimated as 

      

 
   1 6968

1

0 24 1 0
3

CF

U L
. CF CF

j CF j Er j

Er j Er j
. K j normrnd ,



 

  
    

  

  (6-32) 

where in particular, represents the integrated compensation factor in order to 

distinguish from others like CF derived by (6-25) or CF0; ErCF
U
 and ErCF

L 
are 

determined according to (6-28) and (6-29) respectively. Specifically a produced 

negative value of would be invalid and should be generated again, as a negative 

compensation factor is conceptually against its definition. 

 

(6-32) is thereafter adopted to calculate the winding compensation factors of National 

Grid in-service transformers. 

 

6.4 National Grid In-Service Transformer Thermal 

Lifetime Prediction 

Individual National Grid in-service transformer’s thermal lifetime can be predicted by 

the following the steps of 

Step 1: Calculate the transformer 2009 annual equivalent load K according to (6-2). 

Step 2: Generate the transformer hot-spot compensation factor according to (6-32). 
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Step 3: Predict its thermal lifetime via the simplified approach according to the flow 

chart shown in Figure 6-7. 

 

As the earliest transmission network established in the U.K., the 275/132kV electric 

infrastructures are most critically suffering the ageing-related failure. National Grid 

275/132kV power transformers’ thermal lifetimes are therefore analyzed in this section. 

The derived ageing trend can generally indicate the thermal ageing of National Grid in-

service transformer population. 

 

6.4.1 Calculation Procedure 

Among National Grid 270 275/132kV in-service transformers, 231 units’ 2009 load are 

well recorded and thus their thermal lifetimes can be estimated according to the 

proposed approach. Each of the 231 in-service transformers’ compensation factors is 

estimated from (6-28) to (6-32). In order to adequately consider the possible 

uncertainties of each compensation factor , equation (6-30) of generating CF error is 

run 30 times for each transformer and thus the transformer thermal lifetimes are 

calculated 30 times corresponding to each generated compensation factor . 

 

It needs to be figured out here that, the above calculation procedure for a certain 

transformer is in fact a one-dimension Monte Carlo simulation, in which the transformer 

thermal lifetime essentially relies on the repeated random sampling of compensation 

factor . A specific transformer’s thermal lifetime can thus be simply expressed as 

 EoL f      (6-33) 

 

Supposing the tests of one transformer thermal lifetime EoL are independently 

undertaken N times, within which the transformer’s real thermal lifetime is observed n 

times with the probability of pt, according to Bernoulli’s law of large numbers, for any 

positive number ε,  

ε 1P pt
n

n
lim

N

 
   

 
    (6-34) [142]  

which indicates that in a repetitive experiment (Bernoulli experiment [142]), the larger 

the number of trials undertaken, the higher the probability that the transformer’s real 

thermal lifetime can be observed [142]. 
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Furthermore according to Chebyshev’s inequality and typically for a constant ε close to 

zero, (6-34) can be deduced to an inequality as 

2

2

σ
ε 1

ε
P pt

n

N N

 
    

 
  (6-35) [142]  

where σ is the standard deviation of observation
n

N
. 

 

It can be seen from (6-35) that the value of P, or the probability of pt

n

N
 < ε, increases 

when the number of tests (N) increases. If εP pt

n

N

 
  

 
is desired to reach a specific 

value P0, the number of tests is thus required to 

 
2

02

σ
1

ε
P

N
       (6-36) 

and thus     
 

2

2

0

σ

ε 1 P
N 


      (6-37) 

 

It hence indicates by (6-37) that the higher precision (reflected by larger P0) is desired, 

the more tests are needed to run; and particularly if the probability of observing the real 

thermal lifetime during tests is low (inferred by larger σ), the large iterations are 

required. For instance, suppose σ equals 3, ε is as small as 0.1, in order to achieve the 

accuracy of P0 = 0.90, the number of tests is requested no less than 9000, which is much 

more than 30 times of simulations carried out here for individual transformer thermal 

lifetime calculation.  

 

In particular in the individual transformer thermal lifetime Monte Carlo simulation 

according to the simplified approach, the benchmark as the TRUE value of the 

probability of observing the unit’s real thermal lifetime (pt) is difficult to know, which 

results in an uncertain value of σ and thus a large number of tests are tended to be run. 

In fact in engineering practice, 1000 iterations are usually sufficient undertaken; for 

problems of rare events, more iterations are required [19, 49]. However as introduced 

previously, in the transformer thermal lifetime simulation carried out in this chapter, the 

execution of 30 runs considers the uncertainties of the compensation factor (CF) and 

also reduces the computational complexity.  
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As two examples, the obtained 30 thermal lifetimes of two 275/132kV in-service 

transformers are presented in Figure 6-11 and Figure 6-12 respectively. 

 

  

(a) SGT1 30 Runs of Thermal Lifetimes 

Histogram 

(b) SGT1 30 Runs of Thermal Lifetimes 

Cumulative Distribution Curve 

Figure 6-11 National Grid 275/132kV In-Service SGT1 Estimated Thermal Lifetime 

Distribution 

 

 
 

(a) SGT2 30 Runs of Thermal Lifetimes 

Histogram 

(b) SGT2 30 Runs of Thermal Lifetimes 

Cumulative Distribution Curve 

Figure 6-12 National Grid 275/132kV In-Service SGT2 Estimated Thermal Lifetime 

Distribution 

 

SGT1 is equivalently loaded at 0.331p.u. in 2009, which derives its normal distributed 

compensation factor N(μ=1.571, σ=0.4725) according to (6-32); while SGT2’s 2009 

equivalent load is as small as 0.095p.u. and this generates N(μ=13.114, σ=0.1231) . 

Due to the large σ assigned to SGT1, its 30 runs’ thermal lifetimes are revealed to 
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widely distribute from 10yrs to 230yrs. On the other hand, the 30 thermal lifetimes of 

SGT2 concentrate between 100yrs and 130yrs due to its small σ considered.  

 

It can be generally summarized according to the above two samples of calculation that 

for an in-service transformer thermal lifetime prediction, the Monte Carlo simulation is 

run for 30 times, 

 the estimated 30 thermal lifetimes may distribute in a fairly wide range, 

especially for those equivalently loaded moderately or heavily, and 

 the transformer’s REAL thermal lifetime is difficult to determine by the limited 

30 times of iteration. 

 

Therefore the median value of the 30 thermal lifetimes is used to represent a 

transformer’s thermal lifetime. The median figures out the average value among the 30 

figures by simply separating the 15 lower lifetimes and other 15 higher lifetimes. 

Besides, the median value is not affected by the outliers (i.e. in Figure 6-11 (a) 2 

simulation results of SGT1 ≥ 200yrs, which is far from the concentrated lifetimes ≤ 

70yrs) as the arithmetic average can be [53]. The median lifetime can be easily 

determined as it corresponds to the 50% cumulative frequencies of the 30 results, and 

particularly for transformer lifetime prediction, the median is further rounded up or 

down to the nearest integer. It is thus indicated in Figure 6-11 (b) that the median value 

of 30 iterations as 53yrs is used as SGT1’s thermal lifetime and in Figure 6-12 (b) the 

median life of 113yrs is SGT2’s thermal lifetime.  

 

Hence, for each of National Grid 275/132kV in-service transformers, Monte Carlo 

simulation is conducted 30 times according to 30 randomly generated compensation 

factors , and the median value of 30 lifetimes is calculated and rounded to simply 

represent the transformer’s thermal lifetime EoL. Moreover National Grid 275/132kV 

in-service transformers’ cumulative failure probability and thermal hazard curve can be 

derived. 

 

6.4.2 National Grid 275/132kV Transformers’ Thermal 

Lifetimes 

The distribution of National Grid 275/132kV in-service transformers’ predicted thermal 

lifetimes is displayed in Figure 6-13(a) as follows. The distribution of scrapped 
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transformers’ thermal lifetimes is also presented in the same scale in Figure 6-13(b) for 

comparison purpose. 

 

 
(a) National Grid 275/132kV In-Service 

Transformer Thermal Lifetimes’ 

Distribution 

 
(b) National Grid Scrapped Transformer 

Predicted Thermal Lifetimes’ 

Distribution 

Figure 6-13 National Grid 275/132kV In-Service Transformer Thermal Lifetimes’ 

Distribution vs. Scrapped Transformer Predicted Thermal lifetimes’ Distribution 

 

It can be seen from Figure 6-13(a) that the in-service transformers’ thermal lifetimes 

intensively locate at 60-80yrs and 140-160yrs and the data vary from 39yrs to 173yrs. 

The range of in-service transformers’ thermal lifetimes is much shorter than that 

between 16yrs and 373yrs derived from 77 scrapped transformers through their lowest 

DP values. The mean value of 275/132kV transformers’ thermal lifetimes is predicted to 

be 96yrs with the standard deviation of 36yrs which are also less than the mean thermal 

lifetime 120yrs and standard deviation 91yrs derived from scrapped samples.  

 

The less variation of National Grid in-service transformers’ thermal lifetimes may be 

caused by firstly the arbitrarily normal distributed uncertainties assigned to a 

transformer’s compensation factor ( ) and secondly the use of 30 runs’ median value 

as the transformer’s thermal lifetime, which effectively screens off the prolonged 

lifetimes that could be estimated within the 30 iterations.  

 

The dual-peak-shape failure frequency of 275/132kV in-service population thermal 

lifetimes as shown in Figure 6-13 (a) suggests that a combined distribution model could 

be a better fit than a traditional distribution model. Curve fitting using a traditional 

distribution model is thereby not implemented.    
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National Grid 275/132kV in-service transformers’ thermal lifetime cumulative 

probability curve is thereafter developed as shown in Figure 6-14. It is also compared 

with National Grid scrapped transformers’ thermal lifetime cumulative probability. 

 

 
Figure 6-14 National Grid 275/132kV In-Service Transformers’ Thermal Lifetimes 

CDF vs. Scrapped Transformers’ Thermal Lifetimes CDF 

 

The ages when reaching three typical cumulative probabilities; the early onset of 

population significant unreliability (corresponding to 2.5% of CDF), the median lifetime 

(50% of CDF) and the late onset of population significant unreliability (97.5% of CDF), 

determined from 275/132kV in-service population; are also compared with the ages 

estimated from the scrapped samples, see Table 6-3. 

 

Table 6-3 Ages of Reaching Critical Thermal Life CDFs Estimated from National Grid 

275/132kV In-service Population and from Scrapped Transformers 

 Age t 

CDF 

F(t) 

275/132kV In-Service 

Population 

Scrapped 

Transformers 

2.5% 46 21 

50% 85 95 

97.5% 161 342 

 

Figure 6-14 and Table 6-3 show that the range of thermal lifetimes derived from 

275/132kV in-service population is shorter than that for scrapped transformers. 

Particularly the population anticipated thermal lifetime when 50% approach their 

thermal end-of-life and the age of late onset of population unreliability are both smaller 

than those derived from scrapped samples.  
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The National Grid 275/132kV in-service population thermal hazard curve can also be 

generated based on the predicted thermal lifetimes. In order to be consistent with the 

National Grid power transformers’ random failure hazard derived in Chapter 3 and the 

scrapped transformers’ thermal hazard presented in Chapter 5, National Grid 

275/132kV in-service population thermal hazard h(t) as a function of age t is also 

deduced as the instantaneous observed thermal failure probability at a typical age, 

which is expressed as 

 
number of transformers with thermal lifetimes age t

h t
number of transformers with thermal lifetimes age t





  (6-38) 

 

Figure 6-15 displays National Grid 275/132kV in-service population thermal hazard 

against age t together with the thermal hazard derived from scrapped transformers. 

 

 
Figure 6-15 National Grid 275/132kV In-Service Transformers’ Thermal Hazard vs. 

Scrapped Transformers’ Thermal Hazard 

 

It reveals in Figure 6-15 that National Grid 275/132kV in-service population’s thermal 

hazard increases with transformer service age; in particular the hazard increases much 

faster when approaching older ages. Again the range of in-service transformers’ thermal 

lifetimes is much shorter than for scrapped transformers. 275/132kV in-service 

population thermal hazard curve is further zoomed in between hazard of 0 and 0.2 as 

shown in Figure 6-16. 
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Figure 6-16 National Grid 275/132kV In-Service Transformers’ Thermal Hazard Curve 

(hazard ≤ 20%) 

 

It can be seen from Figure 6-16 that the in-service population thermal hazard will 

fluctuate during successive years, due to the different number of transformers predicted 

to approach their thermal end-of-life. However, 275/132kV in-service transformers’ 

thermal hazard can be closely fitted into the exponential form  a exp bt ; i.e. the ageing-

related failure hazard model proposed by Hartford Steam Boiler (HSB) [24, 62]. The 

exponentially fitted hazard curve against age is shown in Figure 6-17 together with the 

originally derived thermal hazard. 

 

 
Figure 6-17 Exponential Fitting on National Grid 275/132kV In-Service Transformers’ 

Thermal Hazard 

 

As indicated in Figure 6-17 the best fit is determined as 
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   2 0949E 9 0 1155h t . exp . t      (6-39) 

with the coefficient of determination (COD) equal to 0.951.  

 

This derived exponential term of the 275/132kV in-service transformer hazard curve 

generally indicates the thermal ageing trend which the National Grid transformer 

population is experiencing. However uncertainties need to be considered, and these are 

discussed in the following section. 

 

6.4.3 National Grid In-Service Transformer Population 

Thermal Ageing Trend 

As explained in 6.4.1, errors are unavoidably generated when calculating the individual 

thermal lifetime according to the simplified approach. A transformer’s thermal lifetime 

may not be confidently predicted by assigning an arbitrarily distributed error to the load 

deduced compensation factor ; this is achieved by running a Monte Carlo simulation 

30 times, or by using the median value of the 30 runs as the transformer thermal lifetime. 

Error bars need to be considered when predicting an individual transformer’s thermal 

lifetime, see Section 6.3.4.  

 

Moreover, 275/132kV in-service transformers thermal hazard curve may not accurately 

represent the thermal ageing trend of the whole in-service population, since 

transformers from other voltage levels, i.e. 400/275kV, 400/132kV, 275/66kV, 

275/33kV and smaller transformers, are approximately 2/3 of the 2009 National Grid in-

service population. As discussed in Chapter 5, loadings of these transformers are 

different from that of 275/132kV transformers. In addition, because the relationship 

between the transformer equivalent load and the compensation factor  is deduced 

from 44 scrapped samples, mostly 275/132kV and a few 400/132kV transformers, (6-32) 

may not be applicable to transformers of other voltage groups. Hence, the National Grid 

transformer population may have been experiencing an increasing thermal ageing trend 

as indicated by 275/132kV transformers’ thermal hazard curve; however significant 

uncertainties exist.  

 

6.5 Summary 

In this Chapter, a simplified approach for transformer thermal lifetime prediction based 

on the IEC transformer thermal model is proposed to overcome the deficient input data 
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in the classical calculation approach. The idea of a transformer hot-spot compensation 

factor ( ) is established, based on the transformer 2009 annual equivalent load and 

other universal inputs such as national typical winter/summer daily demand profiles, 

IEC thermal design parameters and UK Heathrow area 2007 ambient temperature 

records. 

 

A transformer’s hot-spot compensation factor ( ) is revealed to strongly relate to its 

annual equivalent load factor according to a study on 44 scrapped transformers. By 

extrapolating the relation and by reasonably considering the errors, the in-service 

transformers’ compensation factors can be effectively evaluated according to their 

loading conditions. 

 

The simplified approach is used to predict National Grid 275/132kV in-service 

transformers’ thermal lifetimes via a one-dimension Monte Carlo simulation. The 

results generally suggest a shorter range of thermal lifetimes than derived from 77 

scrapped transformers through their lowest DP values. Also the mean value of 

275/132kV transformers’ thermal lifetimes and the standard deviation are less than 

suggested from the scrapped samples. Uncertainties of individual thermal lifetime 

however need to be borne in mind owing to the errors from assigning the compensation 

factor and inadequate number of Monte Carlo simulation. 

 

The thermal ageing trend of the National Grid in-service population can be generally 

matched to the 275/132kV in-service transformers’ thermal hazard h(t) against age t. 

However, error bars should be taken into account, especially because the ageing 

characteristics of transformers operating at other voltages are not represented by 

275/132kV transformers. 
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Chapter 7  

National Grid Transformer Population Actual 

Failure Hazard Derivation 

 

7.1 Introduction 

Analysis on National Grid historical failed and in-service transformers (2009), 

summarizes that UK National Grid transformers have experienced the normal operating 

stage. The normal operating stage, inferred by a low and stable hazard rate, corresponds 

to a random failure mechanism. Under the random failure mechanism, a transformer 

fails due to randomly occurring short-circuit faults, lightning, over-voltage or other 

system transients. Random failure is the predominant failure mechanism during the 

early operation ages of a transformer.  

 

As a transformer ages, the unit is more prone to fail since the insulation withstand 

strength degrades. A transformer fails due to the ageing failure mechanism, according to 

which the hazard rate increases with age as indicated in the wear-out stage of the 

bathtub curve. Transformer thermal hazard is used as the baseline for the transformer 

population ageing-related failure hazard.  

 

In order to develop the National Grid transformer population actual failure hazard curve, 

the hazard rate under random failure mechanism and thermal hazard due to an ageing 

failure mechanism need to be combined. This chapter presents a mathematical model 

for linking the transformer random failure hazard with the thermal hazard. 

 

7.2 Derivation of National Grid Transformer 

Population Actual Failure Hazard  

7.2.1 National Grid Transformers’ Random Failure Hazard 

The National Grid power transformers’ random failure hazard rate, for the normal 

operating stage, denoted as h0, is determined to be:  

0 0 20h . %      (7-1)  
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up to the age of 36 according to the study on historical failures and in-service 

transformers, see 3.6. h0 is shown in the common logarithm scale (log10) against age t in 

Figure 7-1 as follows. 

 

 
Figure 7-1 Illustration of National Grid Transformer Population Random Failure Hazard 

 

When the insulation strength is sufficiently high, a transformer fails randomly, this is 

mainly due to exceptional system transients. The random failure hazard consequently 

represents the frequency of transients in the network within a year.  In a well-

maintained transmission network in a country with mild climate condition, the 

occurrences of exceptional events are well controlled under a certain level and the 

natural events, such as lightning, are rare. The random failure hazard does not rise over 

time [2]. For National Grid transformer population h0 = 0.20% is thereby assumed to 

continue. The dash line in Figure 7-1 indicates the constant random failure hazard 

beyond 36yrs.  

 

7.2.2 National Grid Transformers’ Thermal Hazard 

National Grid 275/132kV in-service transformers’ thermal hazard is derived according 

to a simplified approach presented in Chapter 6. Accordingly the thermal hazard of the 

National Grid transformer population can be presented by adding reasonable error bars 

to the 275/132kV transformers’ thermal hazard curve.  

 

However, to get rid of the uncertainties of the whole population thermal hazard curve, 

the exponential fit on 275/132kV transformers’ thermal hazard curve is adopted to 
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indicate the population thermal hazard against age. As presented in Chapter 6, the best 

exponential fit of 275/132kV transformers’ thermal hazard ht(t) is obtained as 

   2 0949E 9 0 1155th t . exp . t      (7-2) 

 

ht(t) is shown in Figure 7-2(a), for clarity ht(t) is also shown in the common logarithm 

scale (log10) against age t in Figure 7-2(b). 

 

  
(a)  Population Thermal Hazard Curve (b) Population Thermal Hazard Curve 

in log10 Scale 

Figure 7-2 Illustration of National Grid Transformer Population Thermal Hazard 

 

Transformers’ thermal hazard curve, refers to the ageing-related failure risk of the 

whole population. 

 

7.2.3 Linking Population Thermal Hazard with Random 

Failure Hazard 

The principle of transformer random failure mechanism is different from that of the 

ageing failure mechanism: the former depends on the frequency of transmission system 

transients that are seen by the transformer and the latter is coincident with the 

transformer insulation ageing process. Hence they are independently affecting a 

transformer’s actual failure hazard; the random failure mechanism is predominant 

during early operation ages, whilst the ageing failure mechanism dominates when the 

units approaching old ages.  

 

Therefore the transformer population actual failure hazard hactual can be obtained by 

linking the random failure hazard with the thermal hazard along the time scale, which is 

mathematically expressed as 
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0

0 20 2 0949E 9 0 1155

actual th h h t

. % . exp . t

 

  
    (7-3) 

According to (7-3) the combination of random failure hazard h0 and thermal hazard ht(t) 

can be graphically illustrated as the superposition of Figure 7-1 and Figure 7-2, the 

derivation process is shown in Figure 7-3(a) and the deduced National Grid transformer 

population actual hazard hactual(t) against age t is indicated in Figure 7-3(b), in the 

common logarithm scale (log10) against age t.  

 

  
(a) Derivation of Transformer 

Population Actual Failure Hazard 

(b) Transformer Population Actual 

Failure Hazard 

Figure 7-3 Derivation of Transformer Population Actual Failure Hazard 

 

It needs to be noticed that a hazard model that independently considers the random 

failure period and the wear out period was illustrated by CIGRÉ in [6] for SF6 circuit 

breakers’ failure analysis. Moreover the combined hazard, as the sum of a constant 

value and an exponentially increase hazard  0h a exp b t , is equivalent to the 

transformer failure risk model developed by Hartford Steam Boiler (HSB) based on 

Makeham’s 1
st
 Law [62, 63]. The mathematical principles beneath the combined hazard 

expression were illustrated in Chapter 2.  

 

7.3 Transformer Population Critical Hazard Rate and 

Knee Point Age of Failure 

In addition from an asset manager’s perspective, a critical hazard hcritical corresponding 

to a critical age is of special concern, because hcritical essentially suggests a dramatic 

increase of population actual hazards as transformers reach “old” age. A utility cannot 

be tolerant of large numbers of transformer failures because of the detrimental impact 
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on operational security and network reliability. Hence by quoting [143], a critical age t, 

designated as the knee point age tknee, is figured out in the population actual failure 

hazard curve where the increase of age can result in an increase of the population actual 

failure hazard. The parameter tknee in the population actual failure hazard curve implies 

the start of a dangerous period with too many failures, which the system operator cannot 

accept. Figure 7-4 generally presents a hypothesized hcritical in the common logarithm 

scale (log10), and the corresponding knee point age tknee at transformer population actual 

failure hazard curve for illustration purpose. 

 

 
Figure 7-4 Illustration of Transformer Population critical hazard hcritical and knee point 

age tknee 

 

The critical hazard value hcritical and the knee point age tknee are essentially determined 

by the transformer ageing status and the network reliability requirement. In the 

hypothesized case as shown in Figure 7-4 for example, if the critical hazard hcritical is 

determined as 0.40% by asset managers, the age of 120 yrs would suggest the onset of a 

dangerous period with a remarkable increasing number of transformer failures, since 

when the proactive actions need to be carried out. tknee may shift to older ages, if more 

newly installed transformers are operating in the network. Thus higher transmission 

reliability and security are ensured. Besides the critical hazard hcritical and the knee point 

age tknee, the replacement decision for transformer may be different among utilities. This 

is influenced by the number of transformer failures that can be tolerated on a specific 

network. 

  

0 20 40 60 80 100 120 140 160 180
1E-4

1E-3

0.01

0.1

1

t
knee

=120 yrs

hypothesized h
critical

 =0.40%

 

h
a
z
a
rd

age t (year)

 transformer population actual failure hazard h
actual

(t)



Chapter 7 National Grid Transformer Population Actual Failure Hazard Derivation 

-224- 

7.4 Summary 

The random failure mechanism is predominant before the onset of transformer ageing-

related failure and the effect of random failures works constantly within a well-

maintained network. However, it is always difficult to design and maintain a reliable 

network in mountainous countries or under the severe climatic condition. Ageing failure 

mechanism, especially thermal ageing, dominates at older ages and consequently the 

transformer population thermal hazard is derived as an exponential term. The actual 

failure hazard curve is proposed as the superposition of the random failure hazard and 

the thermal hazard with respect to the service age. 

 

Based on the deduced actual failure hazard curve, asset managers refer to a knee point 

age tknee when the actual hazard reaches a critical value. This identifies when a large 

number of transformers owned by the utility would have approached their end-of-life 

and accordingly the actual failure hazard would increase dramatically. Preventative 

replacement therefore needs to be implemented effectively in order to maintain network 

security.  
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Chapter 8 Conclusions and Further Work 

 

8.1 Conclusions 

8.1.1 General  

An electric power system requires a cost-efficient strategy for ageing infrastructure 

replacement to satisfy the increasing requirement for system reliability. UK National 

Grid in particular, owns a significant number of power transformers which were 

installed during the 1960’s and 1970’s. These transformers are approaching or have 

exceeded their 40 years designed end-of-life. It is thus of great importance to predict the 

transformer population failure trend based on present knowledge and information. 

 

Intensive studies on UK National Grid power transformers’ lifetimes were carried out in 

this thesis using:  

 statistical analyses applied to National Grid transformer lifetime data, and  

 a physical ageing model, based on using the reduction in insulation paper 

mechanical strength to estimate the transformer thermal lifetime.  

 

The objective of the above studies was to predict the National Grid transformer 

population failure hazard curve and use it to help asset managers make proper 

replacement decisions. The main conclusions are summarized in the following section. 

 

8.1.2 Summary of Main Findings 

Manufacturer predicted product design end-of-life does not tell a product’s real lifetime 

as the operation condition varies among different units. Product failure can be expressed 

in a hazard curve, which implies the conditional failure probability at a specific age. 

This is achieved by knowing a certain number of products have survived till the end of 

the previous annual age period. Literature from engineering applications, revealed that 

statistical approaches have been widely used since the 1940’s in generating population 

failure hazard curve. The commonly used method was to calculate the average lifetime 

( t ) and the standard deviation (σ) of failed products. This method was recognized to be 

not suitable for a population with relatively long operation life and with very limited 

number of failures, i.e. power transformers. 
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By considering the information from failed products and also the surviving units, the 

procedure of lifetime data statistical analysis was systematically developed as, firstly 

collecting lifetime data, secondly selecting proper distribution model(s), thirdly fitting 

lifetime data into the presumed distribution model(s) and determining the best fitted 

parameters, and finally implementing a “Goodness-of-Fit” test on the presumed 

model(s). If a hypothesised model is identified adequate according to the “Goodness-of-

Fit” test, the population future failure can be expressed as the hazard curve related to 

age, based on the presumed models and determined parameter(s).  

 

The transformer lifetimes were classified as a group of “multiply right-time censored” 

data, because transformers were commissioned in different years, some transformers 

were manually taken out of service before failure for system security reason, or some 

are still in service. Traditional distributions, for example the normal distribution, 

Weibull distribution and etc, are widely used to fit the population lifetime data. Besides, 

hazard models from vital statistics are often used, and utilities always define empirical 

models developed according to their operational experience and expert opinions. It 

therefore emphasized in engineering applications, that the curve-fitting obtained hazard 

rate should be consistent with the utility’s hazard model expression. The least-square 

estimator (LSE), maximum likelihood estimator (MLE) and Bayesian approach were 

concluded as 3 commonly used techniques to derive the values of parameters under the 

presumed distribution model(s). In particular, the key advantage of LSE as 

mathematically simple-to-implement results in its popularity in practice. Based on the 

LSE algorithm, Nelson developed a graphic plotting method, including the hazard 

plotting approach and the CDF plotting approach. Li further modified Nelson’s method 

and applied his simplified method to analyze Canada BC Hydro 500kV reactors’ 

lifetime data. The “Goodness-of-Fit” test is usually not carried out in engineering 

practice, especially when utilities’ empirical hazard model is used. Approaches 

suggested from literatures were then implemented using the lifetime data from National 

Grid transformers. 

 

National Grid has recorded the installation of its transformer assets since 1952. Until the 

end of 2008, 52 transformers failed, 62 were manually retired and 751 transformers are 

still in service. The service ages of these 865 (52+62+751) transformers constitute the 

data base for statistical analysis. National Grid transformer lifetime data are heavily 

censored as only 52 transformers failed. The normal distribution, lognormal distribution, 
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2-parameter Weibull distribution and extreme value distributions were the selected 

models used to describe the lifetime data, because they are commonly used models in 

the field of engineering. The least-square estimator (LSE), including Nelson’s hazard 

plotting approach and CDF plotting approach, and Li’s simplified approach, were used 

to fit the data into the presumed models. The maximum-likelihood estimator (MLE) was 

also used and the results were compared with those from LSE. The Kolmogorov-

Smirnov test (K-S test) is implemented to examine the “goodness-of-fit” of the above 

distribution models.  

 

By using Nelson’s hazard plotting approach, the National Grid transformer population 

mean life ( t ) was derived to be 73 yrs under the normal distribution and the standard 

deviation (σ) was 27.8 yrs; t was 12932 yrs with σ of 157030 yrs under the lognormal 

distribution; t was 387 yrs and σ was 353.1 yrs under the 2-parameter Weibull 

distribution; and t was 53 yrs and σ was 14.0 yrs under the extreme value distribution. 

By curve fitting, the values of mean lives and standard deviations were much longer 

than the mean life and the standard deviation obtained from the failed transformers ( t

=20 yrs and σ=11.6 yrs). It is verified that the population mean life can be estimated to 

be reasonably longer than from the failure samples, by considering the information from 

the surviving transformers. In particular, under the lognormal distribution, both the 

population mean life ( t =12932 yrs) and the standard deviation (σ=157030 yrs) were 

very large, and typically σ was larger than t . The large values were purely derived from 

a mathematical process and the large standard deviation indicates the high dispersion of 

the lifetime data.  

 

According to the K-S test, the normal distribution and extreme value distribution were 

rejected; while the lognormal distribution and Weibull distribution were identified as 

adequate models to describe the data. However, the lognormal distribution and Weibull 

distribution with constant hazard are inconsistent with the engineers’ prior knowledge 

that transformers will approach the wear-out stage with increasing hazard. Moreover, 

the predicted population mean life, t =12932 yrs, under the lognormal distribution or t

=387 yrs under the Weibull distribution is unconvincing to asset managers. It was 

concluded that, when statistically analyzing the product lifetime data, information about 

engineering prior knowledge has to be suspended.  
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In fact, National Grid power transformers’ operational experience has not shown an 

adequate number of failures, especially failures at older ages (only one failure was 

recorded during age 40 and 50). The limited number of failures prevents any meaningful 

statistical analysis to be conducted. Statistical curve fitting results would be distorted by 

the lifetime data of poor quality. Particularly, the last failure at age 48 was caused by a 

random failure mechanism; generally historical transformer failures indicate a random 

failure mode. The high value of hazard at age 48 does not indicate the onset of an 

increasing hazard. 

 

In the CDF plotting approach, the Kaplan-Meier method, Herd-Johnson method and the 

actuarial method were used to calculate the reliability function and the cumulative 

distribution function. The values of the reliability function R(i) and the cumulative 

distribution function F(i) of failure i are similarly derived by these three methods. The 

population mean life ( t ), standard deviation (σ) and the hazard curve obtained by using 

the CDF plotting approach, are similar to those derived by hazard plotting. 

 

Li’s modified method was also implemented to compare with Nelson’s graphic plotting 

method. It was concluded that Li’s method is simple to implement and restriction need 

to be born in mind especially when dealing with heavily censored lifetime data.  

 

It was indicated by using MLE to fit the National Grid transformer lifetime data, that 

MLE can fit the later failures better than the earlier failures; it is also advantageous in 

dealing with heavily censored data. 

 

Statistical analysis on product lifetime data, for example on transformer lifetime data, is 

straightforward; however the deduced failure trend might be biased against the prior 

knowledge due to the limitations of 

 using transformer service age as the only variable considered in the analysis, as 

it  is not the dominant factor in determining a transformer failure,  

 operational experience has not yet suggested any appropriate distribution models 

to best describe transformer lifetime data, and 

 the number of failures is limited up to the present and these failures were mainly 

caused by random system transient events; i.e. this data should not be used to 

indicate future ageing-related failures. 



Chapter 8 Conclusions and Further Work 

-229- 

 

According to the study described in this thesis, National Grid transformer historical 

failures until age 36 had an average hazard rate of 0.20%. A significantly high hazard 

rate was obtained at age 48, due to the limited number of exposed transformers at that 

old age and further investigation implied a random failure mechanism for this failed 

transformer. It was further emphasized that, UK National Grid has little experience of 

operating transformers at old ages, and except for one transformer that failed in 2007, 

caused by severe solid insulation ageing, most other failures resulted from the random 

failure mechanism. Observed random failures up to the present should not be used to 

predict ageing-related failures in the future. Consequently 0.20% was concluded as the 

random failure hazard rate of the National Grid transformers. This low and stable value 

of hazard indicates that the normal operating stage is at least age 36, which benefited 

from a proper commissioning scheme, maintenance strategy and the mild weather in 

most part of England and Wales. 

 

Due to the intrinsic restrictions of statistics, a physical model of transformer ageing is 

used to predict National Grid transformer future failures under the ageing failure 

mechanism. A transformer’s end-of-life is eventually determined by the useful lifetime 

of its insulation paper subject to the unit’s operation condition, due to the 

irreplaceability of the paper insulation. Literatures in regard to transformer insulation 

paper ageing were reviewed. According to literature, cellulose ageing is implied by the 

paper mechanical property deterioration, caused by the effects from heat, water, oxygen 

and low molecular weight acids (LMA). A simple 6°C rule is widely used to express the 

effect of heat or temperature, as the cellulose paper ageing rate doubles when the 

temperature increases by 6°C. The presence of water in paper can shorten and weaken 

the fibre molecules and the effect is strongly related to the acids dissolved. Oxygen 

dissolved in transformer oil can attack the carbon atoms in the cellulose molecule and 

the released acids and water will initiate and then catalyze the cellulose hydrolysis 

process. The content of the low molecular weight acids (LMA) determines the rate of 

cellulose hydrolysis, which is the dominant degradation process at normal operating 

temperatures.  

 

Transformer “thermal ageing” was used to describe the transformer paper insulation 

mechanical property degradation under the effects from heat, water, oxygen and acids. 

Transformer ageing failure mechanism discussed in this study was the failure 

mechanism related to thermal ageing. Based on the definition, transformer “thermal 
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end-of-life” was used to indicate the end of paper insulation useful life, i.e. when the 

mechanical strength reduces to an unacceptable level and the transformer is not fit for 

operation. “Thermal lifetime” was to represent the transformer operational period, i.e. 

when the paper insulation reaches a critical physical condition. The cellulose tensile 

strength (TS) and the paper degree of polymerisation (DP) are both measurable 

properties and they are used to assign the critical physical condition, as the “thermal 

end-of-life criterion”. The absolute DP value was concluded as a better indicator of 

thermal ageing, and a DP=200, is a widely adopted value used as the thermal end-of-life 

criterion.  

 

The development of models describing transformer insulation paper DP reduction was 

reviewed. A commonly used model that assumes 1/DP linearly increases with 

transformer service age was used for individual thermal lifetime estimation. 

Accordingly in this model, DP of 1000 was identified to represent the new insulation 

and DP of 200 indicated the end of thermal life.  

 

UK National Grid has been carrying out post-mortem analysis on its retired 

transformers since about 1993. The group of retired transformers constitutes a unique 

sample to indicate the ageing status of the in-service transformer population. The DP 

values of a scrapped transformer’s winding insulation paper are usually measured; the 

lowest value of DP indicates the weakest part of paper insulation, and this determines 

the transformer’s thermal end-of-life. The model of 1/DP linearly increasing with 

transformer service age was applied to the National Grid scrapped transformers. 

According to the model, scrapped transformers were examined by calculating individual 

ageing rate and thermal end-of-life. The results yielded a large variation of National 

Grid scrapped transformers’ ageing rates and also their thermal lifetimes. It suggested 

that these transformers might have been loaded differently, designed/manufactured 

differently, or/and experienced different ambient conditions and this small group of 

scrapped transformers did not effectively represent the thermal ageing of the National 

Grid in-service transformer population. 

 

The scrapped transformers were further assessed in respect of their loading, thermal 

design and installation site ambient temperature. This was used to explain the reasons 

for the large variations in their thermal lifetime and also to identify their inability to 

represent the in-service population.  
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The level and profile of transformer loading were analyzed to evaluate the loading 

condition of scrapped transformers. It was concluded that the average equivalent loads 

of scrapped transformers are between 0.1p.u. and 0.5p.u.. Although the distribution is 

similar to that of the 275/132kV in-service transformers, the level of transformer 

loading is not the only determinant factor in a unit’s thermal lifetime. Transformer load 

profiles of scrapped units differ significantly and they are powerless to suggest the load 

of other in-service transformers, especially transformers at different voltage levels.  

 

The information from transformer design includes the transformer thermal parameters, 

i.e. the ratio of load losses to no-load losses R, the top oil temperature rise over the 

ambient temperature Δθtor, the gradient between the average winding temperature rise 

and the average oil temperature rise Gr, and the transformer winding hot-spot factor 

(HSF). HSF describes the hot-spot temperature rise over the top winding temperature. 

Transformer thermal parameters are assumed to distribute in a dispersed manner and the 

exact values are eventually determined by the transformer design technique and the 

manufacturing process. The values of transformer thermal parameters can only be 

obtained via the temperature-rise test implemented on the actual transformer or other 

similarly designed transformers. The scrapped transformer hot-spot factors (HSFs) were 

also derived, they distribute over a wide range, and the values were not consistent with 

the general assumption of HSF=1.3. HSFs of the in-service transformers would not be 

precisely known. Moreover, by comparing the manufacturers involved in the scrapped 

transformers and the in-service transformers, the scrapped transformers only indicate 

that a small number of transformers might have been defectively designed. This small 

number of scrapped transformers does not constitute an adequate sample to suggest the 

thermal design of the in-service population, especially when considering more recent 

well designed transformers. 

 

By customarily dividing England and Wales into the Southwest England and Wales 

(SW), Southeast England (SE), Northwest England (NW) and Northeast England (NE), 

the National Grid in-service transformers in different meteorological areas are generally 

equally sampled by the scrapped units. However, because limited information of 

transformer ambient temperatures were provided and little knowledge of how real-time 

ambient variation affects the transformer thermal lifetime is understood, a typical annual 

temperature profile would be a reasonable approximation to be used for individual in-

service transformer thermal lifetime estimation. The National Grid scrapped 
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transformers provided an inadequate number of samples to indicate the ageing status of 

the National Grid in-service population. 

 

Transformer thermal lifetime is determined by multi-variables, such as instantaneous 

loading, thermal design parameters, winding HSF and ambient temperature. Information 

of these variables is usually incomplete in transformer operation practice. A simplified 

approach was therefore proposed to predict individual transformer thermal lifetime 

based on an IEC thermal model. The idea of transformer hot-spot compensation factor 

( ) was established to replace the uncertain transformer winding hot-spot factor (HSF). 

Accordingly the inputs of the traditional IEC thermal model were simplified to the 

transformer 2009 annual equivalent load, national typical daily demand profiles, IEC 

typical thermal design parameters, UK Heathrow area 2007 yearly ambient temperature 

and the assigned transformer compensation factor ( ). A study was undertaken to 

estimate the compensation factors ( ) of National Grid scrapped transformers. A 

scrapped transformer’s compensation factor  was revealed to strongly relate to its 

annual equivalent load and this relationship was extrapolated to other in-service 

transformers. Hence an in-service transformer’s compensation factor  was designated 

firstly from its equivalent load and secondly by considering the normal-distributed 

errors.  

 

This proposed approach was used to predict National Grid 275/132kV in-service 

transformers’ thermal lifetimes. A one-dimension Monte Carlo simulation was used in 

each transformer’s calculation to adequately consider the possible uncertainties of each 

transformer’s compensation factor ( ). The median value of 30 simulated thermal 

lifetimes was adopted to represent a transformer’s thermal lifetime. The National Grid 

275/132kV in-service transformers’ deduced lifetimes were further illustrated by the 

population cumulative failure curve and the hazard curve. The curves generally 

suggested a shorter lifetime range for the 275/132kV transformer population and in 

particular, the population median life (50% of CDF) was extended to 85 yrs compared 

to the 55 yrs, previously expected by National Grid, and the late onset of the population 

significant unreliability (97.5% of CDF) was also prolonged to 161 yrs compared to the 

85 yrs used by National Grid. Moreover, the hazard curve of 275/132kV transformers 

could be closely fitted by an exponential formula    2 0949 9 0 1155h t . E exp . t  , that is a 

function of age t. The thermal ageing trend of the National Grid in-service population 



Chapter 8 Conclusions and Further Work 

-233- 

 

can be generally matched to the 275/132kV in-service transformers’ thermal hazard h(t). 

However, error bars should be taken into account, since the ageing characteristics of 

transformers operating at other voltages are not represented by 275/132kV transformers. 

 

Transformer random failure mechanism and ageing failure mechanism were realized in 

this study as two different mechanisms, because they affect actual transformer failures 

independently. It was concluded that, UK National Grid transformers have experienced 

the normal operating stage with the random failure hazard rate of 0.20%, and the 

population ageing failure rate can be represented by the transformers thermal hazard

   2 0949E 9 0 1155h t . exp . t  . Random failure mechanism dominates transformer failure 

at the early ages, and the random failures continue when transformers are used within a 

well-maintained network. When operating at older ages, the ageing failure mechanism 

is dominant. Transformer population actual hazard curve was thereafter proposed as a 

superposition of the random failure hazard and the thermal hazard with respect to the 

service age.  

 

The derived transformer population actual failure hazard curve could be used by asset 

managers to identify the critical hazard rate and the corresponding knee point age, 

which suggests the onset of a dangerous period where a significant number of 

transformers would have approached their actual end-of-life. Preventive replacement 

needs to be effectively implemented in order to maintain secure and reliable operation 

of the network.  

 

Based on the study described in this thesis, it should be pointed out that, if the critical 

hazard of transformer failure is determined as 0.40% by National Grid, the age of 120 

yrs would suggest the knee point age, at which a remarkable number of transformer 

failures would start to occur. This is when proactive actions need to be carried out. 

However, the value of critical hazard, the knee point age and the replacement decision 

for transformers may be different amongst utilities. This is essentially influenced by the 

number of transformer failures that can be tolerated on a specific network. 

 

8.2 Further Work 

The thesis described the analysis of UK National Grid transformer failures and 

presented the general modelling of transformer population end-of-life. According to the 
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model, the random failure hazard is determined by statistics, the thermal hazard is 

obtained via the insulation paper ageing model, and the population actual hazard is 

produced as the superposition of the above two hazards. The restrictions of statistical 

approaches and the complexities of individual thermal lifetime simulation however lead 

to the errors when finally developing the actual failure hazard of the transformer 

population. Further work needs to be carried out to ultimately determine the National 

Grid transformer population failure trend. 

 

This generic model of transformer population end-of-life could be improved by: - firstly 

reassessing the transformer failure statistically when more lifetime data are available, 

secondly verifying the random hazard rate at early ages, thirdly more accurately 

estimating the thermal lifetimes of individual transformers, and finally by considering 

the effects from other ageing failure mechanisms, other than thermal ageing.  

 

 Reassessment of Transformer Lifetime Data via Statistical Approaches 

In order to improve the transformer end-of-life model, electric utilities, i.e. UK National 

Grid, would be expected to allow more transformers to fail and risk operating 

transformers at an older age. Once more failures are provided, especially when a “knee 

point” is observed, indicating the onset of the increasing-hazard period, the statistical 

analyses on lifetime data as presented in Chapter 3, could be conducted again. The 

results would be more meaningful compared to those based on inadequate lifetime data.  

 

However, it could be argued by asset managers that an increased number of transformer 

failures and the potentially higher risk of operating old transformers would threaten the 

network reliability, which in fact departs from the objective of this study. The dilemma 

caused for the statistical analysis should be discussed, related to the utility’s operation 

policy.  

 

Moreover, in terms of mathematical definition on “adequate lifetime data”, a method 

related to the binomial distribution could be used. For example, in order to examine the 

86 exposed transformers as an inadequate number at age 48, the binomial distribution 

could be used to calculate the probability of observing one failure out of 86 exposed 

transformers at that age. A low value of the probability would suggest the limited 

number of exposed transformers at that age. 
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 Verification of Population Random Hazard Rate 

If more failure data could be provided, the transformer population random failure 

hazard would be derived again based on the larger samples.  

 

However, when dealing with the National Grid transformers’ limited lifetime data, it 

had been conservatively assumed that the average hazard rate of 0.20% up to age 36 

indicates the transformer population random failure hazard and this constant hazard 

would predominate until the onset of population ageing failure. The age 36 was selected 

as it is the age corresponding to the “early onset of transformer population significant 

unreliability” in National Grid technical guidance. Intensive mathematical discussions 

need to be undertaken to examine the accuracy of this specific age 36 and the random 

failure hazard rate 0.20%:- 

i. how long will the random failure period or transformer normal operating stage 

last, and 

ii. to what extent, this 0.20% would be regarded as sufficiently low and stable, and 

can be used as the random hazard rate of National Grid power transformers. 

 

A Bayesian analysis could be implemented to examine the reliability of the average 

hazard 0.20%. The conditional probability of observing the hazard rate of 0.20%, by 

given the number of failures at each age, could be calculated. A large value of the 

conditional probability at a certain age would indicate a high reliability of the hazard 

rate 0.20% at that particular age.  

 

In a previous study, the frequency of electric system transient events was assigned 

constant by assuming the system could be well maintained. Further studies on the 

increase of transient event frequency caused by the network layout change and the 

effects from the increased frequency of the transient events, would help in deriving a 

more accurate random hazard rate. Besides, transformer random failures related to the 

impact of global/regional climate change are expected to be of greater concern. For 

example, transformer random hazard rate might increase due to more frequent lightning 

or/and stronger wind etc. 

 

Furthermore, failures of transformer subsystems, i.e. cooling system, bushing, on-load 

tap-changer (OLTC), oil preservation and expansion system, protection and monitoring 

system are related to the randomly-occurred system transient events. These subsystems 
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should also be taken into account in order to build up an integrated model of 

transformer random failure.  

 

 Reduction of Uncertainties on Individual Thermal lifetime and Population 

Thermal Hazard Curve 

The major incentive for the simplified approach to transformer thermal lifetime 

prediction was to avoid the problem caused by incomplete information about the input 

variables. For example, the temperature-rise test results might not have been fully 

recorded in the test report, the instantaneous loading data might not be provided, the 

transformer winding temperature hot-spot factor (HSF) was only empirically suggested, 

and/or the ambient temperature was difficult to obtain. The individual transformer 

thermal lifetime could be more accurately predicted if the transformer’s loading history, 

ambient temperature records and the temperature-rise test results were all available. 

Meanwhile, the studies on the effects of transient load variation and the real-time 

ambient temperature variation to the transformer thermal lifetime, the correlation 

between transformer load variation and real-time temperature, and the transformer 

winding temperature-rise modelling would also cope with the problem of incomplete 

input data. 

 

In particular, for a better understanding of transformer temperature-rise and especially 

for obtaining the exact value of transformer hot-spot factor (HSF), more transformers 

would be scrapped and their operation histories need to be provided, because the small 

size of scrapped transformers up to the present does not imply effective information 

related to transformer ageing and they are not adequate samples to suggest the ageing 

trend of the in-service population. Although the large scale of replacement would cause 

intensive capital expenditure, more information from failed/replaced transformers 

however, would be essential to reduce the uncertainties in dealing with individual 

transformer lifetime estimation. 

 

Furthermore, the mechanical response of fans and pumps is reported to be severely 

delayed in practice in the ONAN and OFAF cooling mode switching, which may 

essentially result in the overheating of transformer winding. Transformer thermal 

lifetime would be more accurately predicted if the delayed time was considered in the 

thermal model.  
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As mentioned in Chapter 1, the long-term monitoring of transformer defects and the 

tracking of operation condition would also contribute a better understanding of 

transformer ageing and thus is another solution to cope with the problem of limited 

input data in transformer lifetime simulation. A mathematical model on transformer 

condition propagation and a combination of monitoring data and thermal lifetime are 

worth developing.  The study on transformer condition long-term monitoring would 

also improve the mathematical modelling of the transformer ageing rate factor, which 

essentially varies related to the development of the oxygen, water and acidity content 

dissolved in the insulation paper.  

 

 Consideration of other Ageing Failure Mechanisms 

It was clearly stated in this thesis that transformer ageing-related failure is indicated by 

transformer main winding insulation paper mechanical strength deterioration or briefly 

transformer paper thermal ageing, because the mathematical model of describing 

mechanical strength reduction is only well understood. It is therefore worthy in the 

future to consider other failure modes related to ageing failure mechanism, for example 

transformer electromagnetic ability degradation, current carrying ability degradation 

and dielectric property deterioration.  

 

Hence, furthermore, the ideal of “transformer functional life” would be developed, 

determined by the effects from all the failure modes related to transformer ageing 

failure mechanism. 

 

Ultimately the successful outcome of the research will identify at any specific ages the 

National Grid transformer failure hazard with a clearly defined error bar, on which the 

asset manager’s transformer replacement decision relies. 
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Appendix-I  

Commonly Used Curve Fitting Techniques 

To estimate the values of parameters under a presumed distribution model, the least 

square estimator (LSE), the maximum likelihood estimator (MLE) and the Bayesian 

method are commonly used. In this appendix these techniques are explained by fitting 

product lifetime data into a 2-parameter Weibull distribution. 

 

A. Least Square Estimator (LSE) 

A least square estimator (LSE) is used to determine the parameters of a presumed 

distribution model that best fits the lifetime data. The principle is to minimise the sum 

of squares of the vertical distances from the observed points to the fitted regression line; 

the values of parameters corresponding to that minimum verify the most suitable model 

of fitting.  

 

LSE is always associated with the graphic plotting approaches of lifetime data curve 

fitting, in which the cumulative distribution function (CDF) F(t) or the cumulative 

hazard function H(t) is linearly related to the expression of age t as  

  
1

1 α
β

lnt ln ln F t ln          (I-1) 

or                
1

α
β

ln t ln H t ln         (I-2) 

under the 2-parameter Weibull distribution for instance, where typically α and β are 

parameters. According to (I-1) or (I-2), the analysis is simplified as to mathematically 

determine a straight line best fit to the data points.  

 

Supposing there are M failed products with the age of failure of t1, t2, t3, …, tM 

respectively, the fitting process of LSE is illustrated by fitting this group of complete 

data under the presumed 2-parameter Weibull distribution. 

 

As indicated in (I-1), ln t is linear related t   1ln ln F t    . Let Y ln t ,

  1X ln ln F t     , 
1

β
A  and αB l n , (I-1) can be substituted as 

Y AX B       (I-3) 
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in which again Y is linear related to X.  

 

Calculate Yi and Xi at each observed failure ti (i=1, 2, 3, …, M) and plot the 

corresponding (X1, Y1), (X2, Y2), …, (XM, YM) in linear scale as shown in the red dots in 

Figure I-1. The blue straight lineY AX B  indicates the best fit. 

 

 
Figure I-1 Least Square Estimator Illustration 

 

In order to determine the proper values of A and B, the distance between each point and 

the straight line, also called residual of each point is calculated as 

     

 

 

 

1 1 1

2 2 2

M M M

d Y AX B

d Y AX B

...

d Y AX B

  

  

  

    (I-4)
 

 

and the sum of squares of the residuals S is further obtained as 

 
2

1

M

i

i

S d


     (I-5) 

 

S is then minimized by letting 0
S

A





and 0

S

B





. The corresponding A and B denoted as 

Â and B̂ respectively, indicate the best fitting. Therefore parameter α and β of the best fit, 

denoted as α̂ and β̂ , are obtained as 

 α ˆˆ exp B      (I-6) 

and      
1

β̂
Â

       (I-7) 

 

Y

X

Y= AX+B

(X1, Y1)
(X2, Y2)

(X3, Y3)

(XM, YM)

(X4, Y4)
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In order to evaluate the goodness of LSE fitting, the coefficient of determination (COD) 

is always calculated as the ratio of the “regression sum of squares” SSreg and the “total 

sum of squares” TSS, as 

 

 

2

1

2

1

ˆ

COD
ˆ

M

i
reg i

M

i i

i

Y Y
SS

TSS
Y Y







 






    (I-8) 

where , 1,2,3,...,iY i M is the plotted point, Y is the mean value of plotted points and

ˆ , 1,2,3,...,iY i M is the fitted point. In particular,  
2

1

ˆ
M

i

i

Y Y


 calculates the portion that is 

explained by the fitted model and  
2

1

ˆ
M

i i

i

Y Y


 considers the total variation between data 

points and their fitted values. COD thereby presents the ratio of dispersion that is 

illustrated by the fitted model; value closer to 1 indicates a better fit. 

 

The hazard function under this 2-parameter Weibull model is further determined as 

 
β 1

β

α α

ˆ
ˆ t

h t
ˆ ˆ


  

      

    (I-9) 

 

According to the above processes, it can be seen that LSE is straightforward to apply; 

however it is mathematically improper when the failure samples are large or the data is 

heavily censored.  

 

B. Maximum Likelihood Estimator (MLE) 

The fundamental idea behind maximum likelihood estimator (MLE) is based on the 

presumed distribution model and observed data, to estimate the most likely values of 

parameters by maximizing the likelihood function.  

 

The likelihood function is structured according to the principle that for the independent 

observed complete failure data, the likelihood of obtaining such failures is proportional 

to the probability density function (PDF) of each failure; and for the multiply censored 

data, the likelihood is proportional to the PDF of each failed unit and the reliability 

function of each survival.  
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 Complete Data 

Taking 2-parameter Weibull distribution for example, to analyze M products fail at t1, t2, 

t3, … , tM by MLE, the likelihood function for this complete data is calculated as 

 
1

M

i

i

L f t


      (I-10) 

where f(ti) (i=1, 2, 3, …, M) is the probability density function (PDF) at each failure 

under Weibull distribution assumption. Particularly a specific f(ti) can be rewritten as 

 
β 1 β

1

α α α

i i

i

t t
f t exp

     
     

     

    (I-11) 

 

Logarithm of the likelihood function is always applied instead of (I-10) in practice since 

the logarithm of (I-10) simplifies the product into superposition. The natural logarithm 

of (I-10) is expressed as 

 
1

M

i

i

ln L ln f t


        (I-12) 

 

 For Incomplete Data 

If the sample size is M+C in which M products are failed units and C are survival 

products. The likelihood function should be modified by considering the reliability of 

those survivals, as 

   
1 1

M C

i i

i i

L f t R t'
 

       (I-13) 

where R(t’i) (i=1, 2, 3, …, C) are the reliability function of those censored data and t’i 

indicates the service life of the i
th

 censored product. Again under Weibull distribution 

R(t’i) is expressed as 

 
β

α

i

i

t '
R t' exp

  
   

   

    (I-14) 

 

The natural logarithm of likelihood function (I-13) is written as 

   
1 1

M C

i i

i i

ln L ln f t ln R t'
 

            (I-15) 

 

One can obtain the values of α and β (denoted by α̂ and β̂ ) by optimizing the likelihood 

function (I-13) or the log likelihood function (I-15) via letting 0
α

L



and 0

β

L



, or 
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0

α

ln L



and

 
0

β

ln L



. For large sample size the parameters are iteratively solved by 

numerical techniques. 

 

α̂ and β̂ are designated as the maximum likelihood estimates of Weibull parameters. 

Particularly for time censored data with large failures involved, the asymptotic 

distribution of ( α̂ , β̂ ) is proved close to a normal distribution, with the mean value 

equivalent to the true value (
0α ,

0β ) under the presumed Weibull distribution. One of the 

attractive properties of MLE is that it not only provides the most probable parameter 

values under the presumed distribution model but also estimates the asymptotic 

confidence limits of parameters and the confidence limit for the corresponding 

reliability function. 

 

In order to obtain the asymptotic confidence limits of Weibull parameters α and β, the 

Fisher Information Matrix is defined as the negative second partial derivatives of (I-

10) for complete data or (I-13) for incomplete data, as 

2 2

2

2 2

2

α βα

β α β

L L

L L

  
  

  
  
  
   

F     (I-16) 

 

Substituting α and β by α̂ and β̂ , (I-16) is called the Local Fisher Information Matrix, 

denoted by F̂ . The maximum likelihood asymptotic covariance matrix  α β̂ˆ ,var is then 

developed as 

 
   

   
1

α α β
α β

α β β

ˆˆ ˆvar cov ,
ˆ ˆˆ ,

ˆ ˆˆcov , var



 
  
 
 

var F     (I-17) 

where  α̂var and  β̂var  respectively indicate the maximum likelihood estimated 

variance of determined parameter α̂ and β̂ , and  α β̂ˆcov , estimates the covariance of α̂

and β̂ . The square root of (I-17) provides the asymptotic standard deviation of the 

maximum likelihood estimate of Weibull parameters.  
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Based on the general assumption that ( α̂ , β̂ ) is normal distributed, the two-sided 

approximation of parameters ( α̂ , β̂ ) with p% confidence limit are given as 

 

 

 

 

αα
α α α

αα

α

ββ
β β β

ββ

β

p

p

p

p

ˆK varˆ
ˆ, exp

ˆˆK var
exp

ˆ

ˆK varˆ
ˆ, exp

ˆˆK var
exp

ˆ

  
   

      
 
  

 
 

   
   
   
 
 
 

   (I-18) 

in which α , β are the lower limit of α̂ and β̂ , and α ,β are their upper limits, Kp is the 

standard normal distribution percentile that indicates the age by which 
100

2

p
%


 of the 

population has failed and p is the significance level.  

 

When the sample size is sufficiently large, parameters obtained by MLE are much close 

to their true values and moreover (I-18) estimates the confidence limits of parameter 

true values based on the normal distribution assumption. This idea is also presented by 

the asymptotic theory which identifies MLE is asymptotically efficient and typically for 

large sample size, MLE provides the most precise estimates for parameters. When 

dealing with incomplete data in addition, especially when the data are heavily censored, 

MLE produces better fit than LSE. However if the sample size is small, the results from 

MLE could be badly biased.  

 

C. Bayesian Parameter Estimation 

In the Bayesian estimation variable matrix, t indicates the observed lifetime data and Θ 

is the matrix of distribution parameters. Bayesian estimation concerns that by observing 

the historical failure censored data t, can more information be drawn to derive 

parameter Θ? 

 

It is stated in Bayesian theory that the conditional probability  f Θ t of random variable 

Θ by given the condition of T=t can be calculated as dividing the joint probability 

 f ,t Θ by the probability function  f t , as 

 
 

 

f ,
f

f


t Θ
Θ t

t
    (I-19) 
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in which t and Θ are both matrixes of random variables.  

 

Besides the joint probability function  f ,t Θ can be expressed as 

     f , f ft Θ t Θ Θ     (I-20) 

where again  f t Θ is the conditional probability of variable t by given the value of 

parameters Θ,  f Θ is the prior distribution which contains all the possible values of Θ. 

 f Θ models the uncertainties of Θ before observing outcomes of lifetime t.  By 

integrating (I-20) into (I-19),  f Θ t is further expressed as 

 
   

 

f f
f

f


t Θ Θ
Θ t

t
    (I-21) 

where similarly  f t  is called prior predictive distribution.  f Θ t is thereafter called 

posterior distribution function.  

 

In application practice the non-informative distribution is always assigned to the prior 

distribution  f Θ , such as   1f Θ . The information included in  f Θ is thus very 

limited due to little prior knowledge provided.  

 

The prior predictive distribution  f t can be derived as 

     f f f d 
Θ

t t Θ Θ Θ    (I-22) 

 

 f t hereby contains the information of variable matrix t within all the possible values 

of Θ. (I-22) is often used for statistical models comparison purpose, and it is always 

assigned to be a constant in engineering practice. Hence the posterior distribution  f Θ t

can be deduced as proportional to the joint probability  f ,t Θ as 

     f f fΘ t t Θ Θ     (I-23) 

 

By considering the constant value of  f Θ , (I-23) is further simplified as 

   f fΘ t t Θ     (I-24) 
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According to (I-24) the posterior distribution  f Θ t is essentially transferred to a 

likelihood function with unknown parameter matrix Θ. The further steps of solving the 

likelihood function are consequently the same as those presented in MLE analysis.  

 

For example, in fitting product lifetime data under 2-paramter Weibull distribution via 

the Bayesian estimator, the posterior distribution function  f Θ t for M failed products 

and C survival units is expressed as 

         1 2 3 1 2 3 1 2 3 1 2 3
α β α βi ii i , , ,...,M i , , ,...,C i i , , ,...,M i , , ,...,C

f , t ,t ' f t ,t ' ,
   

    (I-25) 

in which α and β are Weibull parameters to be estimated, ti(i=1,2,…,M) indicates the 

lifetimes of those failed units and t
’
i(i=1,2,…,C) are the censoring time of those survived 

products.  

 

Furthermore the right hand side of (I-25) can be extended to the product of PDF of 

failed units and the reliability function of the survivals, as shown in (I-13) in the 

likelihood function of MLE analysis, 

             1 2 3 1 2 3 1 2 3 1 2 3
1 1

α β α β
M C

i i i ii i , , ,...,M i , , ,...,C i i , , ,...,M i , , ,...,C
i i

f , t ,t ' f t ,t ' , f t R t'
   

 

     (I-26) 

in which again f(ti) (i=1, 2, 3, …, M) is the probability density function (PDF) at each 

failure and R(t’i) (i=1, 2, 3, …, C) are the reliability function of those censored data. 

  

As elaborated in MLE, by computing the maximal value of the likelihood function

    1 2 3 1 2 3
α βii i , , ,...,M i , , ,...,C

f t ,t' ,
 

given the lifetime data ti and t
’
i, values of parameters α and β 

(denoted by α̂ and β̂ ) are determined. This similar process reveals that Bayesian 

analysis and MLE are closely related. However it should be kept in mind that the simple 

proportional relation shown in (I-25) is derived based on the very general prior 

information included in the analysis. Product lifetime data analysis via Bayesian 

approach incorporates the observed data with the use’s prior knowledge. Once the prior 

judgement is updated, a more precise prior distribution  f Θ should be considered 

instead of using the previous non-informative prior distribution   1f Θ .  

 

Bayesian analysis can further provide the credit bound for single-parameter models and 

the credit region for multiple-parameter models. Unlike the parameter confidence limits 

obtained in MLE, which concern the confidence intervals for a constant value of 
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determined parameters, the parameter credit bound/region in Bayesian analysis explains 

the likelihood with which the posterior distribution  f Θ t  locates within a pre-assigned 

interval. Alternatively it tells the credibility of the determined parameters within a 

certain bound. In consequence the credibility that parameter Θ would be within the 

interval of (R1, R2) is derived as 

      2

1
1 2 1 2 3 1 2 3ii i , , ,...,M i , , ,...,C

p f t ,t ' d
 

   
R

R
R Θ R Θ Θ   (I-27) 

 

Meanwhile, for a certain significant level γ (  γ 0 1, ), the credit bound (R1, R2) within 

which 100(1- γ)% probability that Θ can be obtained is calculated as 

    2

1
1 2 3 1 2 3

1 γii i , , ,...,M i , , ,...,C
f t ,t ' d

 
 

R

R
Θ Θ    (I-28) 

 

Moreover according to the equal tail interval assumption, credibility outside the bound 

(R1, R2), as (0, R1) or (R2, 1) is equal to
γ

2
. This is mathematically expressed as 

         1

2

1

1 2 3 1 2 3 1 2 3 1 2 30

γ

2
i ii i , , ,...,M i , , ,...,C i i , , ,...,M i , , ,...,C

f t ,t ' d f t ,t' d
   

  
R

R
Θ Θ Θ Θ  (I-29) 

 

According to (I-28) and (I-29), once the value of significant level γ is assigned the credit 

bounds of the posterior distribution  f Θ t can be determined.  

 

According to the above calculation process, the Bayesian analysis yields the values of 

parameters equivalent to those derived by MLE; however they should be interpreted 

differently. The confidence limits of parameters used in MLE essentially tell the 

repeatability of the observation: if the user would like to resample data from the 

population, 95% of the confidence limits, for instance, would contain the true values of 

the parameters. This in fact verifies the large sample size required in the test as 

explained for MLE. By contraries in Bayesian analysis, the credible bound/region 

indicates the probability of 100(1- γ)% that the bound/region contains the true value(s) 

of parameter(s). The advantage in the Bayesian analysis is that the prior judgement of 

parameter Θ is involved in the prior distribution  f Θ , such that the large size of 

samples is unnecessary.  
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Appendix-II  

Kolmogorov-Smirnov (K-S) Test 

Because the distribution models are subjectively selected when fitting product lifetime 

data, a statistical test is always carried out to verify the goodness of fit. The 

Kolmogorov-Smirnov test or briefly K-S test is one of the most commonly used tests. 

The procedures of applying K-S test on complete data and right-time censored data are 

described separately in this appendix. 

 

 Complete Data: M failed products, with failure ages from low to high: t1, t2, 

t3, …, tM. 

 

Step 1: Order the observed CDF (denoted by  0 1 2 3iF t ,i , , ,...,M ) according to failure 

ages from low to high t1, t2, t3, …, tM. 

 

Step 2: Based on the hypothesized distribution model and curve fitting obtained 

parameters, calculate the theoretical CDF (denoted by  0 1 2 3iF t ,i , , ,...,M ) corresponding 

to each of observe failure ages t1, t2, t3, …, tM. 

 

Step 3: Compare the observed CDF  0

iF t with the theoretical CDF  0 iF t at each failure 

age t1, t2, t3, …, tM. The maximum absolute difference between  0

iF t and  0 iF t among 

M complete data, denoted as DM, is expressed as 

0

0 1 2 3M i iD max F ( t ) F ( t ) , i , , ,...,M      (II-1) 

DM is used to evaluate the goodness of the fitting under the hypothesized distribution 

model with the obtained parameters.  

 

Step 4: Compare DM with the critical value DM
γ
. If

γ

M MD D , the hypothesized 

distribution is acceptable and thus the data are properly fitted; otherwise the 

hypothesized model should be rejected.  

 

The criterion relies on the theory that under a proper distribution model, the observed 

failure CDF (  0 1 2 3iF t ,i , , ,...,M ) at age ti is asymptotically normally distributed with 

the mean value of the hypothesized model theoretical CDF (  0 1 2 3iF t ,i , , ,...,M ) at age ti. 
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According to this theory a limiting equation needs to be satisfied in order to accept a 

hypothesized distribution, which is 

  1 γM
M
lim P M D y


      (II-2) 

in which  MP M D y indicates the probability of the cumulative absolute differences 

( MM D ) no more than a critical value y, γ is the significance level and also presents the 

probability that the hypothesized model would be rejected by the test.  

 

Let y1-γ denote the value of a specific y under which (II-2) is satisfied corresponding to a 

certain significant level γ and the critical DM
γ
 is defined as 

1 γγ

M

y
D

M


     (II-3) 

for a certain amount of failure data (M in this specific case). 

 

Values of y1-γ are listed in Table II-1.  

 

Table II-1 Values of y1-γ under Various Significant Level γ 

γ 0.20 0.10 0.05 0.01 

y1-γ 1.07 1.22 1.36 1.63 

 

Particularly for M ≤ 50, the values of DM
γ
 are directly given as listed in Table II-2.  

 

Table II-2 Values of DM
γ
 under Significant Level γ and Sample Size M 

γ 

M 
0.20 0.10 0.05 0.01 

5 0.45 0.51 0.56 0.67 

10 0.32 0.37 0.41 0.49 

15 0.27 0.30 0.34 0.40 

20 0.23 0.26 0.29 0.36 

25 0.21 0.24 0.27 0.32 

30 0.19 0.22 0.24 0.29 

35 0.18 0.20 0.23 0.27 

40 0.17 0.19 0.21 0.25 

45 0.16 0.18 0.20 0.24 

50 0.15 0.17 0.19 0.23 
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 Right-Time Censored Data: M failed products, with failure ages from low to 

high: t1, t2, t3, …, tM; C censored products, with censoring ages from low to high: t
’
1, t

’
2, 

t
’
3, …, t

’
C. Let

M
r

M C



, which hereby indicates the portion of failures out of the total 

number of products under analysis. 

 

Step 1: Order the observed CDF (denoted by  0 1 2 3iF t ,i , , ,...,M ) at each age of failure 

according to failure ages from low to high t1, t2, t3, …, tM. The mathematical expression 

of  0

iF t can be referred to Kaplan-Meier method, Herd-Johnson method or actuarial 

method as discussed in Chapter 3. 

 

Step 2: The same as Step 2 for complete data. Based on the hypothesized distribution 

model and curve fitting obtained parameters, calculate the theoretical CDF (denoted by

 0 1 2 3iF t ,i , , ,...,M ) at each of observe failure ages t1, t2, t3, …, tM. 

 

Step 3: Compare the observed CDF  0

iF t with the theoretical CDF  0 iF t . The maximum 

absolute difference between  0

iF t and  0 iF t among M failures, denoted as DM(r), is 

calculated as 

  0

0 1 2 3M i iD r max F ( t ) F ( t ) , i , , ,...,M failure     (II-4) 

in which, similarly to DM for the complete data, DM(r) is the measurement of goodness 

of fit for the right-time censored data with failure portion r. 

 

Step 4: Compare DM(r) with the critical value DM
γ
(r). (II-2) in the complete data is 

modified by substituting DM by DM(r) and DM
γ
 by DM

γ
(r) respectively, as 

    1 γM
M
lim P M D r y r


   
 

    (II-5) 

 

Use y1-γ(r) to represent the value of y(r) when (II-5) is satisfied under a certain 

significant level γ, the critical DM
γ
(r) is defined as 

 
 1 γγ

M

y r
D r

M


     (II-6) 

clearly according to which the value of y1-γ(r) varies depending on the variation of r and 

γ, and therefore cannot be suggested from Table II-1. Anna Colosi from University of 
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North Carolina at Chapel Hill, U.S. developed the table of critical values y1-γ(r) for 

censored data. Table II-3 shows a part of her results. 

 

Table II-3 Values of y1-γ(r) under Significant Level γ and  

Failure Portion r for Censored Data 
     r 

γ 
0.01 0.02  0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

0.100 0.1953 0.2753 0.3360 0.3867 0.4308 0.4703 0.5062 0.5392 0.5699 0.5985 

0.050 0.2233 0.3147 0.3839 0.4417 0.4920 0.5569 0.5577 0.6152 0.6500 0.6825 

0.025 0.2488 0.3505 0.4276 0.4918 0.5477 0.5975 0.6428 0.6844 0.7230 0.7589 

0.010 0.2796 0.3938 0.4803 0.5523 0.6149 0.6707 0.7214 0.7679 0.8110 0.8512 

0.005 0.3011 0.4240 0.5171 0.5946 0.6619 0.7219 0.7764 0.8264 0.8726 0.9157 

0.001 0.3466 0.4880 0.5950 0.6840 0.7613 0.8303 0.8927 0.9500 1.0029 1.0523 

    r 

γ 
0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00  

0.100 0.8155 0.9597 1.0616 1.1334 1.1813 1.2094 1.2216 1.2238 1.2238  

0.050 0.9268 1.0868 1.1975 1.2731 1.3211 1.3471 1.3568 1.3581 1.3581  

0.025 1.0285 1.2024 1.3209 1.3997 1.4476 1.4717 1.4794 1.4802 1.4802  

0.010 1.1505 1.3419 1.4696 1.5520 1.5996 1.6214 1.6272 1.6276 1.6276  

0.005 1.2361 1.4394 1.5735 1.6582 1.7056 1.7258 1.7306 1.7308 1.7308  

0.001 1.4171 1.6456 1.7931 1.8828 1.9292 1.9464 1.9494 1.9495 1.9495  

 

The critical value of DM
γ
(r) is thereafter calculated according to (II-6). Only if

   γ

N ND r D r is satisfied, the hypothesized distribution is accepted as a proper model.  

 

The beauty of K-S goodness-of-fit test is that it is a non-parametric test and it is 

distribution free: the test does not rely on the underlying cumulative distribution 

function being tested. The test is easily to implement which is another attractive feature 

for its widely application in engineering practice.  
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Appendix-III  

Tables for UK National Grid Power Transformer 

Lifetime Data Statistical Analysis 

 

Table III-1 National Grid Transformer Lifetime Data Analysis Using Hazard 

Plotting Approach 
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Table III-2 National Grid Transformer Lifetime Data Analysis Using Probability 

Plotting involving Kaplan-Meier Method 
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Table III-3 National Grid Transformer Lifetime Data Analysis Using  

Probability Plotting involving Actuarial Method  
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