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Piecewise smooth maps appear as models of various physical, economical and
other systems. In such maps bifurcations can occur when a fixed point or periodic
orbit crosses or collides with the border between two regions of smooth behaviour
as a system parameter is varied. These bifurcations have little analogue in standard
bifurcation theory for smooth maps and are often more complex. They are now
known as ”border collision bifurcations”.

The classification of border collision bifurcations is only available for one-dimensional
maps. For two and higher dimensional piecewise smooth maps the study of border
collision bifurcations is far from complete. In this thesis we investigate some of the
bifurcation phenomena in two-dimensional continuous piecewise smooth discrete-time
systems.

There are a lot of studies and observations already done for piecewise smooth
maps where the determinant of the Jacobian of the system has modulus less than 1,
but relatively few consider models which allow area expansions. We show that the
dynamics of systems with determinant greater than 1 is not necessarily trivial.

Although instability of the systems often gives less useful numerical results, we
show that snap-back repellers can exist in such unstable systems for appropriate
parameter values, which makes it possible to predict the existence of chaotic solutions.
This chaos is unstable because of the area expansion near the repeller, but it is in
fact possible that this chaos can be part of a strange attractor. We use the idea of
Markov partitions and a generalization of the affine locally eventually onto property
to show that chaotic attractors can exist and are fully two-dimensional regions, rather
than the usual fractal attractors with dimension less than two. We also study some
of the local and global bifurcations of these attracting sets and attractors. Some
observations are made, and we show that these sets are destroyed in boundary crises
and some conditions are given. Finally we give an application to a coupled map
system.
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Chapter 1

Introduction

Many systems in physics, economics and various other areas involve discontinuity or

sudden change, such as impact mechanical systems and switching electrical circuits.

As smooth maps may not describe the non-smoothness in the systems accurately,

piecewise smooth maps are often used to model such situations. By piecewise smooth

systems we mean systems that are smooth everywhere except along borders separating

regions of smooth behaviour. These borders divide the phase space into countably

many regions.

There has been a lot of research on the theory of bifurcation in smooth dynamical

systems since the 1970s and the subject is quite well understood nowadays. However,

a lot of the theories do not apply to piecewise smooth systems. In smooth maps,

a local bifurcation occurs when a real eigenvalue or a complex conjugate pair of

eigenvalues of a fixed point crosses the unit circle. On the other hand, in a piecewise

smooth map, a bifurcation may also occur when a fixed point (or a periodic orbit)

crosses or collides with the border between the two regions of smooth behaviour. This

involves a discontinuous change in the eigenvalues of the Jacobian matrix evaluated at

the fixed point (or at a periodic point), which can lead to a new class of bifurcations

different from the standard bifurcations in smooth systems. This is known as border

collision bifurcation. This term was first used by Nusse and Yorke [71], though it had

been studied in the Russian literature under the name C-bifurcation [26, 27] in the

15



CHAPTER 1. INTRODUCTION 16

1970s.

In fact, there have been a lot of studies on piecewise smooth systems over the

years. Lozi introduced in the late 1970s a family of two-dimensional piecewise affine

map (now known as the Lozi map), similar to the Hénon map, which was soon later

proved to have strange attractors for some set of parameters [69, 62, 13, 10, 12]. There

are also a large number of French publications in the 1970s and 80s by Gumowski

and Mira. Since the 1990s, Gardini et.al. have been working on two-dimensional

endomorphisms and piecewise smooth maps.

However, comparing with the study of smooth systems, there is relatively little

research in the piecewise smooth case and border collision bifurcations, and the results

obtained so far are rather preliminary. Most of this research assumes that the map is

continuous across the borders, the study of discontinuous piecewise smooth maps is

relatively sparse [76, 53, 6, 51, 75]. The goal of this thesis is to enrich the bifurcation

theory for continuous piecewise smooth discrete-time systems.

To investigate the local behaviour near a border collision bifurcation, one needs to

study the piecewise linear approximation of the map in the neighbourhood of a fixed

point on the border. For one-dimensional discrete-time systems the classification of

border collision bifurcations is complete [72, 5]. To study multi-dimensional systems,

the non-differentiability of piecewise smooth maps does not allow the use of dimension

reduction techniques such as the centre manifold theorem for smooth systems. That

is why there are some differences between the bifurcations in one and two-dimensional

systems, and very little is known about bifurcations in systems of arbitrary dimension.

For two-dimensional maps, Nusse and Yorke [71] gave a general criterion for the

occurrence of border collision bifurcations based on index theory. Moreover, a normal

form for border collision bifurcations in two-dimensional piecewise smooth maps was

derived [4, 7]. Since then a lot of studies of border collision bifurcations have been

done using the normal form. Banerjee et. al. [4, 7] proposed a classification of border

collision bifurcations for two-dimensional maps that are globally contractive. There

are some bifurcations analogous to the standard ones such as saddle-node or periodic
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doubling in smooth systems. Some other interesting dynamics can also occur in two-

dimensional piecewise smooth maps. It has been shown that for some parameter

values multiple attractors can coexist [71, 23, 7]. Chaotic dynamics is also possible,

in particular, it can be robustly chaotic [9], so that for its parameter values, there

exists a neighbourhood in the parameter space with no periodic attractor and the

chaotic attractor is unique in that neighbourhood.

Some recent textbooks in piecewise smooth systems include [8, 87, 54, 17].

The theory of border collision bifurcations developed so far usually assumes area

contractions on both sides of the border, so stable dynamics are likely to be observed

numerically. When the determinant of the Jacobian matrix has modulus greater than

one, the instability of the fixed point often complicates the dynamics of the system.

Recently some work has been done on cases where local area expansions are allowed.

When a pair of complex conjugate eigenvalues jump discretely from the inside to the

outside of the unit circle as the fixed point moves across the border, the resulting

dynamics is sometimes similar to the Neimark-Sacker bifurcation of a smooth map

in which an attracting periodic or quasiperiodic orbit is created as the fixed point

loses stability. However, the bifurcation is often much more complex, with multiple

(chaotic) attractors, saddles, and repellers created or destroyed [89, 88, 79, 80, 81].

[74, 82, 83] analyze the bifurcations when a fixed point of one of the linear maps loses

stability through the standard fold, flip and Neimark-Sacker bifurcations which occur

in smooth maps. In the presence of the switching surface in phase space and non-

smoothness of the map, these bifurcations again lead to more complicated dynamics.

In this thesis we investigate some of the bifurcation phenomena in two-dimensional

systems that are area expanding and the thesis proceeds as follows.

In Chapter 2, some of the background material for border collision bifurcations

is given. We introduce the border collision normal form for one and two-dimensional

piecewise smooth maps, and summarize the key results of previous researchers.

In Chapter 3, we investigate the two-dimensional border collision normal form

map, where there is area expansion in the phase space. We show that there can
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be chaotic behaviour in the system, in particular, we use the concept of snap-back

repeller and show that for appropriate parameter values there is a snap-back repeller

immediately after the border collision bifurcation, and hence that the bifurcation

creates chaos. Also, the idea of heteroclinic repellers, an extension of snap-back

repeller, is briefly discussed at the end of the chapter.

In Chapter 4, some numerical examples are given to show that, in the area ex-

panding case in the border collision normal form map, it is possible to have globally

stable dynamics. Strange attractors can exist for such models. Although examples

had already been shown in [82, 83], by using the results from Markov partition theory

for two-dimensional systems and a generalization of the affine locally eventually onto

(ALEO) property developed in [40], we prove that there are some parameter values

for which the strange attractor can be a fully two-dimensional object, a polygonal

region in fact, rather than the usual fractal attractors.

In Chapter 5, we discuss various bifurcation phenomena of the stable dynamics

of the border collision normal form described in Chapter 4. A polygonal absorbing

region can be constructed. When an eigenvalue of the Jacobian matrix of a piecewise

smooth map crosses the unit circle, the presence of the switching surface can make the

resulting motion more complicated than the standard saddle-node or period-doubling

bifurcations. This is known as degenerate bifurcation. This bifurcation affects the

basin of attraction of the attracting set. We also use an example to illustrate snap-

back repeller bifurcation in the system, which occurs when a snap-back repeller is

created or destroyed. We discuss how snap-back repeller bifurcation changes the

geometry of the attracting set. We also analyze the ways these sets lose stability and

give conditions for some particular cases.

In Chapter 6, a system coupled by a piecewise affine map is considered. We

study its synchronization and the stability of the synchronized state using the theory

of border collision bifurcations, and attempt to explain a bifurcation phenomenon

described in [40]. We show that degenerate bifurcations and border collision bifurca-

tions occur in this coupled system, which are responsible for the creation of the new
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periodic orbits and the more complicated dynamics.

Finally conclusions are presented in Chapter 7.



Chapter 2

Preliminaries

2.1 Introduction

Consider F : Rm → Rm. A system of differential equations, ẋ = F (x), or a map,

xn+1 = F (xn), is said to be piecewise smooth if the phase space can be partitioned

into a finite number J of disjoint non-empty open regions Ri, i = 1, . . . , J , and a

boundary Σ, which is made up of a union of continuously differentiable surfaces

which separate these regions, so that Rm = (∪J
1Ri) ∪ Σ, and F is smooth in each

Ri. Non-smoothness occurs on Σ, which is called switching surface or switching

manifold. This is also known as hybrid system. Note that we do not need to impose

any continuity conditions for F across the switching surface, if F is continuous across

Σ then the system is piecewise smooth continuous. To introduce a parameter µ, we

consider a continuous family of maps F (x;µ), F : Rm × R → Rm, such that F (x;µ)

is piecewise smooth for each µ, also the maps and their Jacobians with respect to x

vary continuously in the parameter µ on each of the sets Ri.

In piecewise smooth systems the interaction of invariant sets with switching man-

ifolds often produces bifurcations not observed in smooth systems. These are known

as discontinuity-induced bifurcations. When a fixed point (or periodic point) meets

the switching manifold and a bifurcation occurs, the bifurcation is called a border

collision bifurcation [71, 70].

20
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In this thesis, we study the bifurcation theory for continuous piecewise smooth

discrete-time systems.

There are two main kinds of border collision bifurcation, namely, border collision

pair bifurcation and border crossing bifurcation. Border collision pair bifurcation

occurs when two fixed points of the system collide on the switching surface and dis-

appear at the bifurcation. This can be regarded as an analogue of the standard

saddle-node bifurcation in smooth systems. The second type is border crossing bifur-

cation. A fixed point is a border crossing fixed point if it crosses the border between

two regions in which the map is smooth. Bifurcation occurs when the nature of the

fixed point is changed as it crosses the switching surface. Various examples of both

bifurcations can be found in [71, 7].

Nusse and Yorke [71, 70] gave a general criterion for the occurrence of border

crossing bifurcations based on index theory. Before we state their border collision

bifurcation theorem, we have some necessary definitions.

Consider a system Xn+1 = F (Xn) where F : Rm → Rm is piecewise smooth

continuous in two regions U and V separated by a smooth surface Σ, and

F (X) =

 FU(X) X ∈ U

FV (X) X ∈ V

and FU(X) = FV (X) for X ∈ Σ. Suppose that F depends smoothly on a parameter

µ. Let Xµ be a fixed point of F and suppose that at µ = µ∗, Xµ∗ is on the border

separating U and V . We can assume µ∗ = 0 without loss of generality. Suppose that

Xµ exists for −ϵ < µ < ϵ, the fixed point Xµ is called a border crossing fixed point if

it crosses Σ as µ varied through 0. Similarly for periodic orbits. An orbit of period

p is called typical if none of the points of the orbit are on the border, so that the

Jacobian matrix exists (i.e. the Jacobian matrix of the p-th iterate of the map at a

point of the orbit) and neither +1 nor −1 is an eigenvalue of this Jacobian matrix.

The orbit index is a number associated with a periodic orbit.
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Definition 2.1.1. Suppose a typical periodic orbit PO of a map F has minimum

period p. Let Ap be the Jacobian matrix of the p-th iterate of F at one of the points

in PO. Let m be the number of real eigenvalues of Ap smaller than −1, and let n be

the number of real eigenvalues of Ap greater than +1 (counting multiplicities). The

orbit index is defined by

IPO =


0 if m is odd

−1 if m is even and n is odd

+1 if both m and n are even

The orbit index is a bifurcation invariant in the sense that if one examines the

periodic orbits that collapse to the fixed pointXµ as µ → 0, and adds the orbit indices

of the periodic orbits that exist just before a bifurcation, then that sum equals the

corresponding sum just after that bifurcation. A periodic orbit PO is called an

isolated border crossing orbit if PO includes a point that is a border crossing fixed

point under some iterate of the map; and the orbit PO is isolated in phase space

when µ = 0, that is, there exists a neighborhood U of the orbit PO such that PO is

the only periodic orbit in U when µ = 0.

Theorem 2.1.2 (Border Collision Bifurcation, [71]). For each two-dimensional piece-

wise smooth map that depends smoothly on a parameter µ, if the index of an isolated

border crossing orbit changes as µ crosses 0, then at µ = 0 a bifurcation occurs at

this point, a bifurcation involving at least one additional periodic orbit.

This result says that additional fixed points or periodic orbits must bifurcate from

Xµ at µ = 0 if the orbit index changes. As an example consider the supercritical

period-doubling border collision bifurcation.
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Example. Consider a two-dimensional system

xn+1

yn+1

 =



 1.20 1

−0.30 0


xn

yn

+

1

0

µ xn ≤ 0

−0.75 1

0.30 0


xn

yn

+

1

0

µ xn ≥ 0

The border of this system is the line x = 0. At µ = 0 there is a fixed point on the

border at (0, 0). For µ < 0 there is a fixed point in x < 0, which has eigenvalues 0.355

and 0.845 and so it is an attractor with orbit index +1. For µ > 0 the fixed point

has eigenvalues 0.289 and −1.039 and so it becomes a flip saddle with orbit index 0.

Thus Theorem 2.1.2 implies that there is a bifurcation at µ = 0. Indeed, for µ > 0,

there is a period 2 orbit that collapses to (0, 0) as µ → 0. This orbit has eigenvalues

0.091 and −0.991 and so is an attractor. The orbit index is +1, note that the two

points of this period 2 orbit are collectively assigned +1. Hence, both the sum of the

orbit indices before the bifurcation and the sum after are +1.

Note that Theorem 2.1.2 gives a sufficient condition for the occurrence of border

collision bifurcation, and this condition is not necessary. Also, this theorem considers

only the case where the fixed point (or periodic orbit) crosses the switching surface

as µ crosses 0, which is border crossing bifurcation.

2.2 Border collision bifurcations in one-dimensional

piecewise smooth maps

Suppose that the map F is one-dimensional, and suppose for simplicity that the map

involves only two regions of smooth behaviour, then the border is a point xb. So,

F (x;µ) =

 F1(x;µ) x ≤ xb

F2(x;µ) x ≥ xb

(2.1)
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Since the local structure of border collision bifurcations depends only on the local

properties of the map in the neighborhood of the border, we study such bifurcations

with the help of a normal form: the piecewise affine approximation of F in the

neighborhood of the border [5]. The normal form is derived as follows. We change

the coordinate by letting x̄ = x − xb, then the border is transformed to x̄ = 0, and

the phase space is divided into L = (−∞, 0] and R = [0,∞). For simplicity we drop

the bar on x̄. Suppose that a fixed point is on the border when µ = 0 (if the fixed

point is on the border at µ = µ∗, then we can transform the parameter by letting

µ′ = µ− µ∗), then we expand F (x;µ) to first order about x = µ = 0 and obtain

FL(x;µ) = ax+ µvL + o(x;µ) x ≤ 0

FR(x;µ) = bx+ µvR + o(x;µ) x ≥ 0
(2.2)

where

a = limx→0−
∂
∂x
F (x; 0)

b = limx→0+
∂
∂x
F (x; 0)

vL = limx→0−
∂
∂µ
F (x; 0)

vR = limx→0+
∂
∂µ
F (x; 0).

The continuity of the map F (x;µ) for all µ requires that vL = vR = v, which we

assume is nonzero. We can then eliminate v by rescaling the parameter µ. Therefore

we obtain the one-dimensional normal form of F

xn+1 =

 axn + µ x ≤ 0

bxn + µ x ≥ 0
(2.3)

As µ is varied, the local bifurcation of the original map F is the same as that of the

normal form (2.3).

The map for x ≤ 0 has a fixed point xL = µ/(1−a), which exists if µ/(1−a) ≤ 0,

which is satisfied if and only if either µ ≤ 0 and a < 1 or µ ≥ 0 and a > 1; and the

map for x ≥ 0 has a fixed point xR = µ/(1− b) which exists if µ/(1− b) ≥ 0, which
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Fig. 2. The partitioning of the parameter space into regions with the same

Fig. 3. The shape of the bifurcation diagram for a standard period doubling
bifurcation of a smooth map is different from that of a border collision period
doubling bifurcation of a piecewise smooth map. In the former case, the Period-2
points diverge perpendicularly from the
in the latter case, they may diverge at an angle that is less than 90
axis. The solid lines indicate attracting orbits while the dashed lines indicate
unstable orbits.

for
Figure 2.1: (sourced from [5]) Partitioning of the parameter space into regions with
the same qualitative phenomena. The labeling of regions refers to various bifurcation
scenarios. 1) persistence of stable fixed points, 2) persistence of unstable fixed points,
3) no fixed point to stable and unstable fixed points, 4) no fixed point to two unstable
fixed points and chaotic attractor, 5) no fixed point to two unstable fixed points, 6)
supercritical border collision period doubling, 7) subcritical border collision period
doubling, 8) a stable fixed point to periodic or chaotic attractor. The regions shown
in primed numbers have the same bifurcation behaviour as the unprimed ones when
µ is varied in the opposite direction.
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is satisfied if and only if either µ ≥ 0 and b < 1 or µ ≤ 0 and b > 1.

Note that this normal form map is invariant under the transformation x →

−x, µ → −µ, a 
 b. In other words, the bifurcation behaviour when we have pa-

rameter (b, a) is the same as the case with (a, b) when µ is varied in the opposite

direction. Thus it suffices to consider only the case a > b.

It has been shown [72, 5, 49] that various combinations of the parameters a and

b lead to different kinds of bifurcation behaviour as µ is varied.

1. If −1 < b ≤ a < 1, then there is no bifurcation and a stable fixed point for

µ < 0 persists and remains stable for µ > 0;

2. If 1 < b ≤ a or b ≤ a < −1, then there is no bifurcation and an unstable fixed

point for µ < 0 persists and remains unstable for µ > 0;

3. If −1 < b < 1 < a, then there is a bifurcation from no fixed point for µ < 0 to

two fixed points xL (unstable) and xR (stable) for µ > 0;

4. If a > 1 and − a
a−1

< b < −1, then there is a bifurcation from no fixed point

to two unstable fixed points plus a chaotic attractor as µ is increased through

zero;

5. If a > 1 and b < − a
a−1

, then there is a bifurcation from no fixed point to two

unstable fixed points as µ is increased through zero, and there is an unstable

chaotic orbit for µ > 0;

6. If b < −1 < a < 0 and −1 < ab < 1, then there is a bifurcation from a stable

fixed point xL to an unstable fixed point xR plus a stable period-2 orbit as µ is

increased through zero;

7. If b < −1 < a < 0 and ab > 1, then there is a bifurcation from a stable fixed

point xL plus an unstable period-2 orbit to an unstable fixed point xR as µ is

increased though zero;
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and the final

(8)

, the system remains on for the whole clock period. In

(9)

, the clock period includes one on interval and one off
In this interval,

(10)

for a duration

(11)
Fig. 4. Schematic drawing of the parameter region0 < a < 1, b < �1 (Case

Figure 2.2: (sourced from [72]) The parameter region 0 < a < 1 and b < −1, showing
the type of attractor for µ > 0. Regions Pn correspond the existence of stable period
n orbit, inside the shaded region there exists chaotic attractors.

8. If 0 < a < 1, b < −1 and ab < −1, then there is a bifurcation from a stable

fixed point xL to an unstable fixed point xR plus a period-n attractor, n ≥ 2

or a chaotic attractor as µ is increased through zero.

Note that in cases 3, 4 and 5, there is a border collision pair bifurcation at µ = 0;

in cases 6, 7 and 8, there is a border crossing bifurcation at µ = 0. The possible

bifurcation scenarios are summarized in Figure 2.1 [5]. In the last scenario, whether

a stable period-n orbit or a chaotic attractor is created, depends on the pair of

parameters (a, b) as shown in Figure 2.2 [72].

2.3 Two-dimensional border collision normal form

The results outlined above give a complete description of the bifurcations of the

one-dimensional normal form as µ is varied. In more than one dimension, piecewise

smooth systems may exhibit extremely complicated dynamics.
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It has been shown [71, 4, 7] that, for two-dimensional piecewise smooth maps, a

normal form for border collision bifurcation can again be written.

Consider a general two-dimensional piecewise smooth map g(x̂, ŷ; ρ), which de-

pends on a single parameter ρ. Let x̂ = h(ŷ; ρ) denote a smooth curve that divides

the phase plane into two regions R1 and R2. The map is given by

g(x̂, ŷ; ρ) =

 g1(x̂, ŷ; ρ) (x̂, ŷ) ∈ R1

g2(x̂, ŷ; ρ) (x̂, ŷ) ∈ R2

(2.4)

where g1 and g2 are both by assumption continuous and have continuous derivatives

in their corresponding regions.

Define

x̃ = x̂− h(ŷ; ρ), ỹ = ŷ.

This change of variables moves the border to the ỹ-axis. Then the map g(x̂, ŷ; ρ) can

be written

g(x̃+ h(ŷ; ρ), ỹ; ρ) = f(x̃, ỹ; ρ),

and the border is x̃ = 0. Suppose that when ρ = ρ∗ the map f(x̃, ỹ; ρ) has a fixed

point P∗ = (0, ỹ∗(ρ∗)) on the border.

Let e1 be a tangent vector in the ỹ direction and suppose that the vector e1 maps

to a vector e2. We assume e2 is not parallel to e1. Define new coordinates again.

Choose the point P∗ as the new origin for e1 in the ȳ direction and e2 in the x̄

direction. In these x̄− ȳ coordinates, the fixed point P∗ is now (0, 0) and the border

is given by x̄ = 0. We define the new parameter µ̄ = ρ − ρ∗, so µ̄∗ = 0. Rescale x̄

and ȳ again such that at µ̄ = 0 a unit vector along the ȳ-axis maps to a unit vector

along the x̄-axis. The phase space is now divided into two halves L and R (for left

and right). Now the map can be written F (x̄, ȳ; µ̄) = Fα(x̄, ȳ; µ̄) for x̄ ∈ α = L,R

where

FL(x̄, ȳ; µ̄) =

F1(x̄, ȳ; µ̄)

F2(x̄, ȳ; µ̄)

 , FL(0, 0; 0) =

0

0
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and similarly for FR. Linearizing FL(x̄, ȳ; µ̄) in the neighbourhood of (0, 0, 0), we

have

FL(x̄, ȳ; µ̄) =

J11 J12

J21 J22


x̄

ȳ

+ µ̄

vLx

vLy

+ o(x̄, ȳ; µ̄) (2.5)

where

J11 = lim
x̄→0−,ȳ→0

∂

∂x̄
F1(x̄, ȳ; 0),

J12 = lim
x̄→0−,ȳ→0

∂

∂ȳ
F1(x̄, ȳ; 0),

J21 = lim
x̄→0−,ȳ→0

∂

∂x̄
F2(x̄, ȳ; 0),

J22 = lim
x̄→0−,ȳ→0

∂

∂ȳ
F2(x̄, ȳ; 0),

vLx = lim
x̄→0−,ȳ→0

∂

∂µ̄
F1(x̄, ȳ; 0),

vLy = lim
x̄→0−,ȳ→0

∂

∂µ̄
F2(x̄, ȳ; 0).

Since a unit vector along the ȳ axis maps to a unit vector along the x̄ axis at µ̄ = 0,

this choice of coordinates makes J12 = 1 and J22 = 0. Further, we note that J11 is

the trace (denoted TL) and J21 is the negative of the determinant (denoted DL) of

the Jacobian matrix. Thus (2.5) becomes

FL(x̄, ȳ; µ̄) =

 TL 1

−DL 0


x̄

ȳ

+ µ̄

vLx

vLy

+ o(x̄, ȳ; µ̄), x̄ ≤ 0 (2.6)

and similarly for x̄ = (x̄, ȳ) ∈ R

FR(x̄, ȳ; µ̄) =

 TR 1

−DR 0


x̄

ȳ

+ µ̄

vRx

vRy

+ o(x̄, ȳ; µ̄), x̄ ≥ 0 (2.7)

where the corresponding quantities in R are defined in a similar way to these in L.
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Continuity of the map implies

vLx

vLy

 =

vRx

vRy

 =

vx

vy

 .

Finally we make another change of variables so that the choice of axes is independent

of the parameter. Let x = x̄, y = ȳ−µ̄vy, and µ = µ̄(vx+vy) (assuming (vx+vy) ̸= 0),

then we have the normal form

xn+1 = F (xn) =

 ALxn +m x ≤ 0

ARxn +m x ≥ 0
(2.8)

where the matrices AL and AR, and the vector m are defined as

Aα =

 Tα 1

−Dα 0

 , m =

µ

0

 (2.9)

for α = L,R, the left and right half-plane.

The normal form map is again the piecewise affine approximation of the original

map in the neighbourhood of the border, and the switching surface is transformed to

be the y-axis.

The fixed points of the system on both sides of the border are given by

xα
∗ =

( µ

1− Tα +Dα

,
−Dαµ

1− Tα +Dα

)
. (2.10)

for α = L,R. Then if µ
1−TL+DL

< 0, the fixed point xL
∗ exists, or ”admissible”. If

µ
1−TL+DL

> 0, xL
∗ is in R and does not exist, but iterations of points in L are influenced

by this ”virtual” fixed point. Similarly, if the x-component of xR
∗ is positive, the fixed

point is admissible, otherwise it is a virtual fixed point. At µ = 0 the two fixed points

meet at the origin, and this is clearly on the border x = 0.

The stability of the fixed points is determined by the eigenvalues of the map,
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Figure 2.3: Bifurcation diagram for a two-dimensional border collision normal form.
A stable fixed point bifurcates to a stable fixed point and a stable period 7 orbit.
TL = 1.6, DL = 0.8, TR = −1.4, DR = 0.6.

which are the solutions of the quadratic equation s2 − Tαs+Dα = 0. The dynamics

of the system is governed by five parameters, TL, DL, TR, DR, µ.

Some research has been done for dissipative systems, where |DL| < 1 and |DR| <

1, so areas are decreased by iterations. In [18, 4, 7], some classification has been

shown for such systems, and similar partitionings as for the one-dimensional case

shown in Figure 2.1 are given. However, two-dimensional systems can exhibit more

complicated dynamics than one-dimensional systems. References [71, 23, 7, 25] show

that multiple attractors can coexist in a system. Figure 2.3 shows an example where

a stable fixed point bifurcates to another stable fixed point and a stable period 7

orbit in a border crossing bifurcation as µ is increased through 0.

As in the one-dimensional case, chaotic dynamics is possible in the two-dimensional

normal form [71, 9, 23, 7, 24, 25]. In particular, it can be robustly chaotic [9], so

that for its parameter values, there exists a neighbourhood in the parameter space

with no periodic attractor and the chaotic attractor is unique in that neighbourhood.

Chaotic attractors can also exist when the map is globally contractive. When the

eigenvalues of the Jacobian matrix at every point in the phase space are within the

unit circle, the map is called globally contractive. In a piecewise smooth map, this
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Figure 2.4: Bifurcation diagram for a two-dimensional border collision normal form.
A stable fixed point bifurcates to a stable fixed point, a stable period 4 orbit and a
chaotic attractor. TL = 0.9, DL = 0.7, TR = −1.59, DR = 0.7.

implies that the fixed points are stable on both sides of the border. In such a map,

one usually does not expect the occurrence of chaos for which a stretching behaviour

is necessary. Figure 2.4 is an example of such a system. A stable fixed point bifur-

cates to a coexistence of a stable fixed point, a stable period 4 orbit and a chaotic

attractor in a border crossing bifurcation.

It was believed that when a stable fixed point occurs on both sides of a border

collision there will be no observable change in the system behaviour. However, it

has been later shown that border collision bifurcations can also lead to a peculiar

situation where the system collapses at the point of bifurcation, so all orbits starting

from all points other than the fixed point diverge to infinity, even though the fixed

point remains stable on both sides of the bifurcation point.

For example, consider the normal form (2.8) and (2.9) with parameters [49]

TL = −0.3, DL = 0.9, TR = −1.6, DR = 0.9.

The eigenvalues of AL are −0.15 ± 0.9367i and the eigenvalues of AR are −0.80 ±

0.5099i. For µ < 0 there is a fixed point in L and it is locally stable; for µ > 0 there
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Figure 2.5: Time series for xk for the example of dangerous border collision bifur-
cation. TL = −0.3, DL = 0.9, TR = −1.6, DR = 0.9 and µ = 0, with initial point
(−0.03, 0.01).

is a fixed point in R and it is also locally stable. However the basin of attraction of

the fixed point shrinks to the single point (0, 0) as the parameter is varied toward the

bifurcation value µ = 0, and at the bifurcation point the basin of attraction has zero

size. Therefore, at µ = 0, the trajectory of the map diverges for any nonzero initial

condition. A sample trajectory of xk at µ = 0 is shown in Figure 2.5.

This phenomenon leads to a new class of bifurcations, which is now called dan-

gerous border collision bifurcations [49, 50, 32, 20, 19, 21].

Recently some researchers have shown [89, 88, 79, 80, 81, 74, 82, 83] that many

interesting dynamics can occur when on one side of the border the determinant of

the Jacobian matrix is greater than one.

Suppose that |DL| < 1, DR > 1,−(1 + DL) < TL < (1 + DL) and −2
√
DR <

TR < 2
√
DR, then the fixed point is attracting for µ < 0 and is an unstable spiral

for µ > 0. As µ is increased through 0, the fixed point moves from L to R in a

border crossing bifurcation. When µ > 0, if we start from any point in R, the orbit

spirals outward and crosses the switching surface to L after some iterations, where

the motion is governed by the virtual attracting fixed point xL
∗ in R. Since the virtual

fixed point attracts orbits from the left, the outward motion eventually returns to
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the right and so the system shows some kind of rotating motion. For some initial

conditions, the outward motion dominates and the orbit diverges; for some other

initial conditions the orbit is trapped in this rotating motion. Therefore, between

these two set of initial conditions one may expect there is an invariant closed curve

which is stable. But the orbit occurring on the closed invariant curve could be a

mode-locked periodic orbit or a quasiperiodic orbit, depending on the parameters.

It has been shown [89, 88, 80, 81] that these transitions between the mode-locked

dynamics and quasiperiodicity is extremely complex.

In smooth systems, when a stable fixed point (or periodic orbit) loses its hy-

perbolicity and becomes unstable, i.e. when an eigenvalue of the Jacobian matrix

moves out of the unit circle, it undergoes one of the standard bifurcations such as

saddle-node, period-doubling and Neimark-Sacker bifurcation which are now very

well-known. However, in piecewise smooth systems, because of the switching sur-

face and the non-smoothness of the map, these bifurcations can be different from

the smooth case and they are often more complicated. References [74, 82, 83] an-

alyze these bifurcations for piecewise smooth systems, which are named degenerate

bifurcation, degenerate flip bifurcation and centre bifurcation respectively.

We here give an example of a centre bifurcation from [82].

Consider the normal form with parameters

TL = 0.7, DL = 0.9, TR = −0.2, DR = 1.057.

When µ < 0, there is a stable fixed point in L; when µ > 0, there is a fixed point in

R which is unstable. Numerical solutions show that for µ > 0, there is a coexistence

of a stable period 4 orbit and a stable period 25 orbit. In particular, this period

4 orbit LLRR (which represents a periodic orbit where there are two points in L

followed by two points in R under iteration) has eigenvalues 0.821± 0.480i, and the

orbit becomes an unstable spiral when the determinant of A2
RA

2
L becomes 1, that

is, DR = 1/DL = 1.1111 . . . . It was shown [82] that at this value of DR, when the



CHAPTER 2. PRELIMINARIES 35

complex-conjugate eigenvalues of the attracting 4-cycle reach the unit circle, the 4-

cycle undergoes a center bifurcation, where in the phase space there are four cyclic

repelling invariant regions filled with the invariant ellipses. After the bifurcation the

4-cycle becomes unstable and nothing is born.

Therefore, in terms of the border collision bifurcation of the fixed point of the map

as µ varies through 0, there is a bifurcation from a stable fixed point to a cyclic re-

pelling closed invariant curve coexisting with one or several attractors. This example

may be considered as a piecewise-linear analogue of the NeimarkSacker bifurcation

for smooth maps, and is still to be studied in detail.

We will return to these bifurcations in Chapter 5.

In the remaining chapters, we investigate two-dimensional border collision bifur-

cations where the determinant of at least one of the Jacobian matrices is greater than

one.



Chapter 3

Snap-back Repellers in Border

Collision Normal Form

3.1 Border collision bifurcations, snap-back repellers

and chaos

In 1975, Li and Yorke [56] first introduced the term chaos, and proved the well-

known theorem ”period three implies chaos”, a simple criterion for a one-dimensional

discrete dynamical system xn+1 = f(xn), n = 0, 1, . . . to be chaotic. Over the years

there have been a lot of studies on chaos on a wide range of systems. Nowadays,

one of the methods available to prove that a map has chaotic behaviour is to show

the existence of a homoclinic orbit, i.e. a fixed point (or a periodic orbit, viewed as

fixed points of a higher iterate) which another orbit approaches in both forwards and

backwards time. If the fixed point is a saddle, this means that there are intersections

of the stable and unstable manifolds of the fixed point. In parameterized families of

maps, homoclinic orbits are typically created at some critical parameter value when

the stable and unstable manifolds of a fixed point intersect tangentially, and on one

side of this critical value there are no intersections, and hence no homoclinic orbit to

the fixed point, and on the other side of this critical value there are two transversal

36
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intersections.

If the fixed point is repelling, so all the eigenvalues of the Jacobian matrix lie

outside the unit circle, then there is no local stable manifold. Thus, for invertible

maps, homoclinic orbits cannot exist. However, for non-invertible maps, the fixed

point can have more than one preimage and so it is possible that there exists a point

(other than the fixed point) which maps to the fixed point, and from this point

there is a sequence of preimages which tends to the fixed point in backwards time.

Therefore there can be a homoclinic orbit to the fixed point even though it has no

local stable manifold. Marotto [65] was the first to prove that such a homoclinic orbit

can imply the existence of an unstable chaotic set, and the term ”snap-back repeller”

was given to the fixed point associated with this homoclinic orbit, even though there

has been some controversy later about the definition of a snap-back repeller and

the original proof of the theorem. Several papers [15, 60, 55, 14] provided a few

alterations of the theorem and Marotto himself also gave a corrected version in 2005

[66]. Nonetheless, this theorem has been successfully used to predict and analyze

chaos in multi-dimensional discrete systems.

In the border collision normal form map (2.8), when |DL| and |DR| are not both

less than 1, the fixed points of the map can be repellers instead of attractors. Since

the determinant of the Jacobian matrix of a map shows how areas are increased

or decreased by iteration, in the case where the modulus of the determinant is less

than one, we may expect to observe stable dynamics. On the other hand, one might

imagine that if a fixed point is a repeller instead, the dynamics would be either

uninteresting or could be obtained from the modulus less than one case by reversing

time. However, neither of these is necessarily the case: if the map is not invertible we

cannot simply reverse time, and the dynamics described below is certainly interesting

and relevant to some examples. We here show how a snap-back repeller works in the

area-expanding border collision normal form, then we give our result in [42] that in

appropriate parameter regions there is a snap-back repeller immediately after the

border collision bifurcation, and hence that the bifurcation creates chaos.
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Definition 3.1.1. Let F : Rn → Rn be differentiable. Suppose z is a fixed point of

F and all the eigenvalues of the Jacobian matrix DF (z) have modulus greater than

1. Suppose that there exists a point y0 ̸= z in a repelling neighbourhood of z, such

that yM = z for some M and det(DF (yk)) ̸= 0 for 1 ≤ k ≤ M , where yk = F k(y0).

Then z is called a regular snap-back repeller of F .

For piecewise smooth systems, suppose that Rn is partitioned into disjoint open

regions Ri, i = 1, . . . , J where F is smooth and Σ is the switching surface, then the

definition of a regular snap-back repeller requires that z and each yk do not intersect

Σ so that the Jacobian matrices are defined.

Theorem 3.1.2 ([65]). If F has a snap-back repeller then F is chaotic, in the sense

of Li-Yorke. That is, there exists

(i) a positive integer N such that for each integer p ≥ N , F has a point of period

p;

(ii) an uncountable set S containing no periodic points of F such that:

(a) F (S) ⊂ S,

(b) for every x,y ∈ S with x ̸= y,

lim sup
k→∞

∥F k(x)− F k(y)∥ > 0,

(c) for every x ∈ S and any periodic point y of F ,

lim sup
k→∞

∥F k(x)− F k(y)∥ > 0,

(iii) a subset S0 of S such that for every x,y ∈ S0,

lim inf
k→∞

∥F k(x)− F k(y)∥ = 0.
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Li-Yorke chaos means that given any two orbits in S0, they are at times (infinitely

often) more than some specified distance apart, yet at different times (infinitely of-

ten) arbitrarily close to each other. This is a popular definition of chaos as well

as Devaney’s, which requires sensitive dependence on initial conditions, topological

transitivity etc.. In [58, 77], it was proved that a system admitting a snap-back re-

peller is conjugate to a shift or a sub-shift of the finite type on some symbolic space,

which leads to the conclusion that a snap-back repeller induces chaos in the sense of

Devaney as well.

In [42], we consider the border collision normal form. Following the definition

above, we say that the map has a simple snap-back repeller if there exists a fixed

point xR
∗ in x > 0 and

(i) the eigenvalues of AR have modulus strictly greater than one and DL ̸= 0;

(ii) there is a point xL
0 in x < 0 such that FL(x

L
0 ) = xR

∗ ;

(iii) there exists a sequence xR
i in x > 0 which tends to xR

∗ as i → ∞ such that

FR(x
R
i+1) = xR

i , i = 1, 2, 3, . . . and FR(x
R
1 ) = xL

0 .

Of course, more complicated connections are possible, with several passages across

the switching surface Σ, or more than one path can exist, we here use the simplest

one to show how the theory works.

We then need to define a set of neighbourhoods of these points in the orbit on

which the chaotic dynamics can be defined. Note that since the system is not dif-

ferentiable across x = 0, each of these neighbourhoods has to be chosen so that

it does not contain any point on the y-axis. We start by choosing a closed ball

of radius r centred on xR
1 , B(1, r), and take r small enough so that B(1, r) ⊂ R,

FR(B(1, r)) = B(0, r) ⊂ L, FL(B(0, r)) = N(r) ⊂ R and none of the other points

xR
i , i = 2, 3, . . . , are contained in B(1, r). See Figure 3.1.

Now define B(2, r) to be those points in R which map to B(1, r) under one

iteration of FR. We might need to reduce the size of r so that B(2, r) ⊂ R is
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Figure 3.1: The geometry of a simple snap-back repeller.

closed and does not contain any point in Σ. Define B(n, r) ⊂ R inductively so that

FR(B(n, r)) = B(n− 1, r) and B(n, r) does not intersect Σ. Note that, by definition,

xR
n ∈ B(n, r) for each n ≥ 1, xL

0 ∈ B(0, r), xR
∗ ∈ N(r), and since the eigenvalues

of AR have modulus strictly greater than 1, the sets B(n, r) converge to xR
∗ while

their maximum widths tend to zero, in particular, there exists K > 0 such that

B(k, r) ⊂ N(r) for all k > K. So after a finite number of steps the sets B(n, r) will be

sufficiently close to xR
∗ and sufficiently small so that no reduction of r will be necessary.

Moreover, by construction, FL ◦F k
R(B(k, r)) = N(r) and FL ◦F k

R restricted to B(k, r)

is a homeomorphism (in fact, affine) and hence there exists a fixed point of FL ◦F k
R in

B(k, r) for each k > K. Also, for every k0, k1 > K there exists a closed connected set

B(k0, k1, r) ⊂ B(k0, r) such that FL ◦F k0
R (B(k0, k1, r)) = B(k1, r). Similarly, for k2 >

K there exists another closed connected set B(k0, k1, k2, r) ⊂ B(k0, k1, r) ⊂ B(k0, r)

such that FL ◦ F k0
R (B(k0, k1, k2, r)) = B(k1, k2, r) ⊂ B(k1, r). Inductively, using the

same argument, for any M > 0 and any sequence k0, k1, k2, . . . with K < ki < K+M

there exists a non-empty set B(k0, k1, k2, . . . , r) ⊂ · · · ⊂ B(k0, r) such that

FL ◦ F k0
R (B(k0, k1, k2, . . . , r)) = B(k1, k2, k3, . . . , r) (3.1)

and hence that there is an unstable chaotic invariant set containing infinitely many



CHAPTER 3. SNAP-BACK REPELLERS 41

periodic points and uncountably many aperiodic points close to the simple snap-back

repeller.

Note that this system does not formally satisfy all the conditions imposed as F is

not everywhere differentiable. A formalism which is applicable directly to the normal

form can be found in [61].

Now return to the normal form. Recall from the previous chapter, for given Tα

and Dα, α = L,R, the fixed points of the maps are given by (2.10)

xα
∗ =

µ

1− Tα +Dα

, yα∗ = −Dαx
α
∗ , α = L,R

and xR
∗ exists provided xR

∗ > 0, with a similar inequality for the existence of xL
∗ .

Given Tα and Dα these inequalities define the sign of µ for which these fixed points

exist. The fixed points in R and L coincide at the origin (on Σ) if µ = 0. Also, since

yn+1 = −Dαxn, the images of L and R overlap if DR and DL have opposite signs (one

positive and one negative), and do not overlap if they have the same signs. Clearly

for a snap-back repeller to exist DR and DL must have opposite signs.

To fix ideas we will consider the case

DR > 1, DL < 0 (3.2)

and aim to show the existence of a snap-back repeller to xR
∗ . For geometric simplicity

we will make the further assumption that x∗
R is an unstable node, so the eigenvalues

of AR are real and distinct and greater than one. This corresponds to the additional

condition

TR > 2, T 2
R > 4DR, 1− TR +DR > 0 (3.3)

which implies that the fixed point xR
∗ ∈ R exists if µ > 0. Since (3.2) implies that R

and L are mapped to the lower half plane, there is a preimage of xR
∗ in L if yR∗ < 0,

which is automatically satisfied from (2.10) as DR > 0.
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Using the notation from above, this preimage xL
0 = (x0, y0) is given by

x0 =
DR

DL

xR
∗ , y0 =

1

DL

(TRDL − TLDR −DLDR)x
R
∗ . (3.4)

By definition the point xR
1 is a preimage of xL

0 in x > 0, and for this preimage to

exist we must have y0 < 0. Since DL < 0 and xR
∗ > 0 this implies that the condition

TRDL − TLDR −DLDR > 0 (3.5)

must hold. In this case xR
1 = (x1, y1) exists and by definition FR(x

R
1 ) = xL

0 so

x0 = TRx1 + y1 + µ

y0 = −DRx1

(3.6)

and hence, using (2.8) and (3.4),

x1 = − 1
DLDR

(TRDL − TLDR −DLDR)x
R
∗

y1 = 1
DLDR

(DR(DR −DL −DLDR)

+TR(TRDL − TLDR))x
R
∗

(3.7)

Note that (3.5) ensures that this point does exist in R.

Looking back to the definition of a snap-back repeller it remains to show that xR
1

lies in the two dimensional unstable manifold of xR
∗ , i.e. if x

R
1 is iterated in backwards

time using the map in x > 0 then this orbit remains in x > 0 and converges to xR
∗ .

By (3.3) the eigenvalues and eigenvectors of the linear part of the map in x > 0

are

s± =
1

2
(TR ±

√
T 2
R − 4DR), e± =

 s±

−DR

 (3.8)

with 1 < s− < s+ and hence the eigenvectors both have negative slopes. Except for

solutions on e+, orbits of the linear map therefore converge in backwards time to xR
∗
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Figure 3.2: The geometry of the linear flow in R. Solutions lie on curves which
(with the exception of e+) are linear transformations of generalized parabolas y =
xln s+/ ln s− .

on generalized parabolas which are tangential to e− (the eigenvector whose eigenvalue

has smaller modulus) at the fixed point, and this is the eigenvector with the steeper

slope. Thus solutions in backwards time lie on curves as sketched in Figure 3.2, and

clearly all solutions in y < 0 which start to the left of e+ and e− tend to the fixed

point along solution curves which lie in x > 0 and y < 0 for all time and so there will

be a simple snap-back repeller.

In [42] we give a sufficient but not necessary condition for this simple snap-back

repeller to exist, that is xR
1 lies to the left of e+, but actually we can do better.

From (3.6), we see that xR
1 ∈ R, if it exists, lies on the line y = −TRx−µ+x0, x >

0. Since x0 < 0,xR
1 is below the line

y = −TRx− µ. (3.9)

This is in fact the preimage of the negative y-axis in x > 0. Geometrically, one can

see that, since the fixed point is a regular unstable node, the two y-intercepts of the

lines of the eigenvectors e± have preimages in R to the left of the fixed point, hence

the line (3.9) intersects both of the eigenvectors at points to the left of xR
∗ as shown
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in Figure 3.2. We can also see that, in backwards time of FR, x
R
1 converges to xR

∗

without leaving x > 0 and y < 0 whether xR
1 is to the left of e− or inside the triangle

bounded by (3.9), e− and y = 0. Therefore, the conditions (3.2), (3.3) and (3.5)

ensure that xR
∗ is a simple snap-back repeller in R; or, we can say, if xR

∗ ∈ R is a

regular unstable node and DL < 0, it is a simple snap-back repeller if and only if we

have (3.5).

Let’s give some examples where the parameters satisfy all these conditions simul-

taneously. We start by setting

DR = 10, TR = 7 (3.10)

in which case (3.3) is satisfied and since 1 − TR + DR = 4 the fixed point exists if

µ > 0. For DL < 0, the last constraint (3.5) becomes

−3DL − 10TL > 0 (3.11)

so we have a lot of freedom to choose DL and TL. We consider briefly several possi-

bilities which satisfy these constraints.

First suppose that TL = 0 and −1 < DL < 0. Clearly both conditions are satisfied

so the snap-back repeller exists if µ > 0. The fixed point in L is stable and since

1 − TL + DL > 0 it exists if µ < 0. Hence, as µ increases through zero a stable

fixed point is destroyed and an unstable fixed point with a strange invariant set from

the snap-back repeller is created in a border crossing bifurcation. If TL = −1 and

−2 < DL < 0 there is a similar bifurcation but in this case the stable fixed point in

µ < 0 is replaced by a saddle.

In the cases where xR
∗ is a flip node or a spiral, similar arguments for the existence

of snap-back repeller can still be made. Assuming (3.2) again, we need TR < −2, T 2
R >

4DR, 1+ TR +DR > 0 for a flip node, T 2
R < 4DR for a spiral, and (3.5) needs to hold

for both cases. However, because the local structure of the map in x > 0 is more
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Figure 3.3: In the case where xR
∗ is a flip node, xR

1 lies below the line y = −TRx− µ.

complicated, the preimages of xR
1 may not tend to the fixed point without leaving

R like the regular node case discussed above. (One should note that again, even if

this is the case, there may be other possible routes, with several passages across the

boundary, for xL
0 to tend to the fixed point, which still imply the existence of the

snap-back repeller) For example, if xR
∗ is a flip node, then s− < s+ < −1. xR

1 , if it

exists, is below the line (3.9). As shown in Figure 3.3, although we can again write

down a sufficient condition for the existence of a simple snap-back repeller that xR
1

lies to the left of e−, this is less helpful because there is a large unbounded region to

the right of e− where xR
1 can exist.

Of course, given any example it is straightforward to determine whether (x1, y1)

given by (3.7) exists and lies in the two dimensional unstable manifold of xR
∗ in R by

backwards iteration of one branch of the map. Since yn+1 = −DRxn in x > 0, so only

if a point has y > 0 it has a preimage in x < 0. We thus can write down conditions

for yi < 0 for i = 1, 2, . . . and note that it takes only a finite number of steps and

then a preimage of xR
1 will be sufficiently close to the fixed point.
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Figure 3.4: The geometry of γ (≥ 2) heteroclinic repellers.

3.2 Heteroclinic repellers

Continue the example above, another interesting transformation occurs if TL = −1

and DL < −2. This again satisfies (3.11) so the snap-back repeller exists in µ > 0.

But 1 − TL + DL < 0 and so the fixed point in L also exists if µ > 0. So in this

case we know of no recurrent dynamics if µ < 0, but two fixed points and the strange

invariant set exist if µ > 0. Moreover, since the fixed point xL
∗ ∈ L is a repeller itself,

simple calculations show that xL
∗ is also a snap-back repeller, but more importantly

xL
∗ together with xR

∗ possess the so-called ”heteroclinic repellers” proposed by [59].

This is an extension of a snap-back repeller, and since the concept and the proof of the

theorem are so similar to the snap-back repeller we only state here the definition of

heteroclinic repellers and the theorem along with a diagram illustrating its geometry

in the system. The details of the theorem can be found in [59, 57].

Definition 3.2.1 ([59]). In a system yn+1 = F (yn), n = 1, 2, . . . where F : Rn → Rn,

the γ (≥ 2) fixed points y∗
1,y

∗
2, . . . ,y

∗
γ are called heteroclinic repellers (see Figure 3.4)

if the following three conditions hold:

(i) for all i, y∗
i is expanding;
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(ii) there exist γ points zi in each local unstable manifold of y∗
i and γ natural num-

bers Mi, i = 1, . . . , γ, such that

FMj(zj) = y∗
j+1, j = 1, . . . , γ − 1,

FMγ (zγ) = y∗
1;

(iii) for all i, zi satisfies the non-degenerate property, that is, DFMi(zi) exists and

det(DFMi(zi)) ̸= 0.

Let’s suppose, for simplicity, that γ = 2.

Theorem 3.2.2 ([59]). If F has one pair of heteroclinic repellers then F is chaotic.

That is, there exists

(i) a positive integer N such that for each integer p ≥ N , F has a point of period

p;

(ii) two uncountable sets S1, S2, S1 ∩ S2 = ∅ which contain no periodic points of F

such that for i = 1, 2:

(a) F (Si) ⊂ Si,

(b) for every x,y ∈ Si with x ̸= y,

lim sup
k→∞

∥F k(x)− F k(y)∥ > 0,

(c) for every x ∈ Si and any periodic point y of F ,

lim sup
k→∞

∥F k(x)− F k(y)∥ > 0,

(iii) a subset S0
i of Si such that for every x,y ∈ S0

i ,

lim inf
k→∞

∥F k(x)− F k(y)∥ = 0.
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Figure 3.5: When TL = −1, DL = −6, TR = 7, DR = 10, µ = 1, the fixed points xL
∗

and xR
∗ are heteroclinic repellers.

We can return to the example above. Let

TL = −1, DL = −6, TR = 7, DR = 10, µ = 1. (3.12)

Then xR
∗ = (0.25,−2.5) and xL

∗ = (−0.25,−1.5) and xR
∗ is a snap-back repeller. The

eigenvalues of FL and FR are sL+ = 2, sL− = −3 and sR+ = 5, sR− = 2 respectively,

so xL
∗ is a flip node while xR

∗ is a regular node. By direct calculations, one can

check that the lines of the eigenvectors eL− and eR+ coincide. Thus, as shown in

Figure 3.5, the preimage of xR
∗ in x < 0 is on the eigenvector of xL

∗ and converges to

xL
∗ in backwards time. Similarly, the preimage of xL

∗ in x > 0 is on the eigenvector

of xR
∗ and converges to xR

∗ in backwards time. Hence the fixed points xL
∗ and xR

∗ are

a pair of heteroclinic repellers.

3.3 Snap-back repeller bifurcations

So far we know that snap-back repellers can exist in piecewise smooth systems, and

this implies chaotic dynamics. The next question is how snap-back repellers are

created. Suppose that a system has a expanding fixed point, and a parameter, say
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λ∗, such that when a parameter value λ is less than λ∗ (respectively λ > λ∗) the fixed

point is expanding but not a snap-back repeller; for λ ≥ λ∗ (respectively λ ≤ λ∗)

the fixed point is a snap-back repeller. Then we say there is a snap-back repeller

bifurcation at λ = λ∗. It has been shown [34, 41] that a regular snap-back repeller of

a map is persistent (or structurally stable) as a function of a parameter. This is,

Theorem 3.3.1. If Fλ is a continuous family of piecewise smooth maps and has a

regular snap-back repeller when λ equals to, say 0, then there is an open neighbourhood

M of λ = 0 such that Fλ has a regular snap-back repeller for all λ ∈ M.

Therefore, a snap-back repeller bifurcation occurs when a homoclinic orbit, as-

sociated with an expanding fixed point, of the map is degenerate, i.e. there is a

point yk in the homoclinic orbit where DF (yk) is not defined or det(DF (yk)) = 0.

For piecewise smooth systems, this can happen when some point in the orbit is on

the switching surface. Some research [61, 78, 35, 41] shows that with various extra

assumptions, an expanding fixed point with a degenerate homoclinic orbit can still

exhibit chaotic dynamics.

Recall our example above for the border collision normal form, where we assume

(3.2) and (3.3), a snap-back repeller xR
∗ ∈ R exists for µ > 0 if we have (3.5).

We want to know what happens if µ > 0 (by rescaling µ = 1 may be assumed)

and TRDL − TLDR − DLDR changes sign. We use this expression as a bifurcation

parameter.

If

TRDL − TLDR −DLDR = 0 (3.13)

then (3.4) becomes xL
0 = (DR

DL
xR
∗ , 0) and (3.7) becomes

x1 = 0, y1 =
1

DL

(DR −DL −DRDL + TRDL)x
R
∗ (3.14)

which is on the switching surface x = 0. The approach of the solution to the fixed

point in reverse time is determined by the position of xR
1 relative to the intersections
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of the lines of eigenvectors through the fixed point xR
∗ with the y-axis. Recall (3.8),

then the eigenvectors through xR
∗ are the lines

y = −DR

s±
(x− xR

∗ )− yR∗ (3.15)

which intersect the y-axis at (0, y±) where

y± = −DR

(
1− 1

s±

)
xR
∗ . (3.16)

If y+ > y1 then backward iterates tend to the fixed point in x > 0 tangential to

the branch of the eigenvector of s− above and to the left of the fixed point, whilst if

y1 < y+ then the accumulation is to the right and below the fixed point.

Consider a family of disjoint closed (with non-empty interior) neighbourhoods of

the preimages of xR
1 in x > 0, chosen so that they map onto each other. The image

of these sets maps to a region around xR
1 part of which lies in R and part in L. Both

of these sets will be mapped (in fact ”folded over”) to y < 0 close to xL
0 with xL

0 on

the boundary of the image. In the standard argument for the existence of chaos in

a snap-back repeller neighbourhoods can be chosen to map over the original sets in

a small neighbourhood of the fixed point allowing a symbolic description of orbits

using established techniques. If the preimage is on the boundary of the set, however,

there is a chance that the image of this set does not contain a countable number of

the preimages which converge on the fixed point, making it impossible to argue for

chaotic solutions.

Consider a half-disc of radius ϵ and with boundary

x0 − ϵ ≤ x ≤ x0 + ϵ, y = 0 (3.17)

and

(x0 + ϵ cos θ, y0 − ϵ sin θ), 0 ≤ θ ≤ π (3.18)
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(a) (b)

Figure 3.6: Schematic diagram of phase space at the snap-back repeller bifurcation
point. The half-disc with xL

0 on its boundary maps to the half-disc with xR
∗ on its

boundary, which (a) is on the same side of the fixed point as the preimages of xR
1 (b)

is on the opposite side of the fixed point from the preimages of xR
1 .

for some small ϵ as shown in Figure 3.6. xL
0 is on the boundary of this set. One can

check that the image of the semi-circle is to the left of the image of the line, which is

y − yR∗ = −DL

TL

(x− xR
∗ ). (3.19)

Hence if the gradient of the line, −DL

TL
, is positive or more negative than the gradient

of the eigenvector e− the region will contain preimages accumulating on the fixed

point in x > 0 tangential to the branch of e− above and to the left of the fixed point,

and if −DL

TL
is negative but greater than (i.e. more positive than) the gradient of e−

then it will contain the accumulation to the right and below the fixed point.

Four different cases arise depending on whether preimages of xL
0 accumulate on

the fixed point from above or below, and depending on whether the image of a half-

disc containing xL
0 contains this accumulation or not. If the preimages converge to

the fixed point on the same side of the fixed point as is covered by the image of a

neighbourhood of xL
0 in y < 0, the standard arguments for the existence of chaos

can be made (Figure 3.6 (a)). On the other hand, if the preimages converge on the

opposite side of the fixed point as is covered by the neighbourhood of xL
0 then we
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cannot use standard arguments to create infinitely many recurrent points (Figure 3.6

(b)).

Moreover, Gardini [34] and Glendinning [41] both proved that in the process

of the creation of a regular snap-back repeller, there is an infinite cascade of more

complicated snap-back repellers involving higher periods. That is, there is a sequence

of snap-back bifurcations which accumulate on the parameter at which the first snap-

back repeller is created. This cascade is in many ways analogous to the cascade of

saddle-node bifurcations near a homoclinic tangency [36].

In this chapter we have shown that snap-back repellers exist in the normal form for

unstable border collision bifurcations, which makes it possible to predict the existence

of chaotic solutions. This chaos is unstable because of the area expansion near the

repeller, but we will see in the next chapter, this chaos can actually be part of a

strange attractor. Specifically, we show that for appropriate parameter values there

is an attracting two-dimensional region in phase space in which periodic orbits are

dense and there is a dense orbit.



Chapter 4

Two-dimensional Attractors in

Border Collision Normal Form

4.1 Introduction

As we have described in Chapter 2, in the stable case of border collision bifurcations,

a number of possible bifurcations can occur depending on the values of the param-

eters, and strange attractors are known to exist over some regions in the parameter

space. For the two-dimensional normal form this is known as ”robust chaos” [9].

These robust chaotic sets created in the normal form are associated with the unsta-

ble manifold of a saddle fixed point or periodic orbit, and there is only one positive

Lyapunov exponent. The attractor is the closure of the one-dimensional unstable

manifold with a fractal structure which has dimension less than one in the orthog-

onal direction. Since the determinant of the Jacobian matrix of a map shows how

areas are increased or decreased by iteration, attractors are easily observed in the

area contracting (determinant less than one) case, and for this reason these results

have found a number of applications.

Intuitively, locally unstable systems may still exhibit globally stable dynamics.

Suppose that DR > 1 and −2
√
DR < TR < 2

√
DR, then there is an unstable spiral

in R for µ > 0. As we have discussed at the end of Chapter 2, if |DL| < 1 and

53
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Figure 4.1: A schematic diagram showing how the unstable motions from both sides
of the switching surface can create stable dynamics.

−(1+DL) < TL < (1+DL), then the left fixed point is a virtual attractor in R when

µ > 0. Any orbit in R spirals outward initially, and as it crosses the switching surface

and comes into L, it is attracted to R again eventually. It is possible that there is

some set of points in R for which the orbits are trapped in this rotating motion.

Now suppose that DL < −1. If (1 +DL) < TL < −(1 +DL), then the left fixed

point xL
∗ is admissible in L for µ > 0. This is a flip node which has eigenvalues s+ > 1

and s− < −1. The corresponding eigenvectors e+ and e− have slopes −DL/s+ > 0

and −DL/s− < 0 respectively. As shown in Figure 4.1, points in L to the right of

e− are pushed towards R. Thus, similar to the case above, it is possible to have

recurring dynamics if the orbits are trapped between the fixed points. Similarly for

TL > −(1 +DL), where the left fixed point is a flip saddle, admissible in L.

In this chapter we show that attractors can exist for models which allow area

expansion, and prove that there are some parameter values for which the strange

attractor can be a fully two-dimensional object, a polygonal region in fact, rather

than the usual fractal attractors.

Two-dimensional attractors in the border collision normal form have been ob-

served numerically, and the existence of invariant regions has been proved in a variety

of cases [11, 33, 67, 68]. Figure 4.2 shows an example given in [33], rewritten in the

normal form. Different attractors exist as the parameters change. The bifurcations
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involved are discussed in the next chapter. For some parameter values, multiple at-

tractors can coexist. An example is shown in Figure 4.3, a period 3 window coexists

with a period 6, each attracts a different set of points.

A series of papers has investigated these two-dimensional chaotic regions which

can arise if at least one of the determinants has modulus greater than one. However,

there are very few proofs of the existence of two-dimensional attractors for these

cases, i.e. two-dimensional regions with infinitely many unstable periodic orbits and

dense orbits. We know of two exceptions to this statement, the Cournot map cases

(TL = TR = 0) covered in [11] and the special case considered by Dobryiskiy [22].

The former case can be treated by analyzing an appropriate one-dimensional map

using the standard theory of one-dimensional maps, and the latter is based on a

proof that the unstable manifold of a saddle is dense and the attractor is the closure

of this one-dimensional unstable manifold. We aim to develop techniques which do

not rely on one-dimensional techniques, and hence have a broader application. We

[43] extend the range of examples for which two-dimensional attractors can be proved

to exist using two-dimensional Markov partitions. In the case of Dobryiskiy [22], the

attractor is constructed with the unstable manifold of a saddle, so the fixed point is

on the boundary of the set. On the other hand, in our examples below the attractors

contain a repeller.

If TL = TR = 0 then the normal form becomes

xn+1 = yn + µ

yn+1 =


−DLxn if xn ≤ 0

−DRxn if xn ≥ 0.

(4.1)

This is a Cournot map [11], i.e. a map of the form xn+1 = g(yn), yn+1 = h(xn),

which implies that xn+2 = g ◦h(xn) and yn+2 = h ◦ g(yn). These maps for the second

iterate are one-dimensional maps, and so they can be analyzed using the standard
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Figure 4.2: Attractors in border collision normal form for various parameter values.
TR = 1.93, DR = 1.2204, µ = 38.36.
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Figure 4.3: Coexistence of multiple attractors in border collision normal form. TL =
0.01, DL = −0.69, TR = −0.021, DR = 2.5, µ = 0.5. (a) initial point (0,−1.22) leads
to a period three window; (b) initial point (0,−0.5025) leads to a period six window.

one-dimensional techniques, which can then be re-interpreted for the original two-

dimensional maps. In our case (4.1) gives

xn+2 =


µ−DLxn if xn ≤ 0

µ−DRxn if xn ≥ 0.

(4.2)

If DRDL < 0 then this map can have chaotic dynamics with motion dense on an

interval, and this translates to two-dimensional regions in the full two-dimensional

map.

The existence of polygonal invariant regions and some of the changes which can

occur as parameters vary has been studied for many years (see [67] and references

therein), where the polygonal construction is used to prove the existence of two-

dimensional invariant regions in a variety of cases. We are not aware of a rigorous

proof of the existence of a two-dimensional transitive attractor except in the Cournot

case we have outlined above.

In our normal form, according to [33], an invariant region can be constructed

by considering the images of the switching surface. Recall that yn+1 = −Dαxn, the

images of L and R overlap if DR and DL have opposite signs, and do not overlap if

they have the same signs. Note that, if |DR| or |DL| is greater than one, there can

be, on average, area expansion along orbits. The contraction required to keep orbits
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bounded and hence create invariant regions or attractors is provided by this folding

action across the switching surface. So let’s assume that DR and DL have opposite

signs. The boundary x = 0 is mapped to y = 0, and the image of the origin O is

P1 = F (O) = (µ, 0)T . Then since the map is piecewise affine, the line segment OP1

is mapped to another line segment P1P2. Let Pn = F (Pn−1) = F n(O). Let N > 0 be

the first integer such that the segment PNPN+1 intersects the boundary. We assume

that such a finite N exists and suppose that PNPN+1 intersects the boundary at Q0.

Then the image of Q0, Q1, is on the x-axis, and the polygon D = P1P2 . . . PN+1Q1

is an (N + 2)-sided polygon with the sides being made up of segments of the images

of the switching surface (see Figure 4.4). If there exists an integer M ≥ 0 such that

FM(D) = FM+1(D) then FM(D) is an invariant set by construction. In particular,

if PN+1 and Q1 are mapped inside D then D is invariant.

Figure 4.4: Each side of the polygon D is made up of a segment of some image of the
y-axis. (e.g. N = 3)

In the remainder of this chapter, we give our results in [43] that for some parameter

values, this invariant set D can be constructed. Moreover, we use the results from

standard Markov partition theory of dynamical systems and a generalization of the

affine locally eventually onto (ALEO) property developed in [40] to show that this

set is a chaotic attractor.
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4.2 Markov partitions, expansion and the ALEO

property

In this section we develop some general theory for piecewise affine maps. We begin

with a definition.

Definition 4.2.1. ([52]) Given D ⊆ R2 and F : D → D, an affine subdivision is a

finite collection M = M1, . . . ,MN of pairwise disjoint open sets in D whose boundary

∪∂Mi is a finite union of closed line segments (possibly infinite or semi-infinite) such

that ∪Mi is dense in D and F |Mi
is an affine map, i = 1, . . . , N .

If such a subdivision exists we say F is a piecewise affine map, the subdivision is

minimal if the domains Mi are the largest domains on which F |Mi
is affine. It is worth

noting that, even though the border collision normal form itself is continuous on the

boundary, this definition does not assume continuity, this means that piecewise affine

maps may be multi-valued.

Next we use the affine locally eventually onto property introduced by Gucken-

heimer and Williams [47] in the context of expanding maps of the interval. This was

used in [40] to prove strong expansion properties of a piecewise affine map originally

introduced by Pikovsky and Grassberger [73]. The definition below is slightly weaker

than the version introduced in [40], but we show that it is enough to imply standard

chaotic properties.

Definition 4.2.2. A piecewise affine map F : D → D has the ALEO (affine locally

eventually onto) property on the subdivision (Mi)
N
i=1 of D if for every open set U ⊆ D

and i ∈ {1, . . . , N} there exists V ⊆ U and n > 0 such that F n(V ) = Mi and F n|V

is affine.

In our examples below we prove this property by showing the existence of finite

Markov partitions, but we believe that the ALEO property holds in many examples

which do not have Markov partitions (cf. [40]). Let cl(U) denotes the closure of U

and int(U) denotes the interior of U . The definitions below follow [1, 84, 85].
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Definition 4.2.3. Let F be a piecewise affine map. A finite Markov partition of an

F -invariant set D is a finite subdivision

M = {M1,M2, . . . ,Mn}

such that F (Mi) is a union of elements of M, i = 1, . . . , N . If every set in M is

convex then we say M is a convex Markov partition.

The existence of a Markov partition makes it possible to use symbolic dynamics

to describe the behaviour of orbits under F in terms of passages through the different

elements of M. This labelling may not be unique (points may have non-trivial sta-

ble manifolds, and points on the boundary lie in two sets). This will cause us some

technical difficulties below when proving the existence of chaotic properties for the

maps. These difficulties will be resolved in one of two ways - either by proving an

expansion result which ensures that there is a unique correspondence between trajec-

tories and allowed symbol sequences, or by making an additional (weak) assumption

on the Markov partition.

Definition 4.2.4. Let F be a piecewise affine map and let M be a finite Markov

partition with N elements. Then the associated graph G is the directed graph with

vertices labelled {1, . . . , N} and edges from i to j if and only if Mj ⊆ F (Mi). The

transition matrix for this graph is HG = (hij) where hij = 1 if there is an edge from

i to j and hij = 0 otherwise. The graph is strongly connected if there is a path from

each vertex to every other vertex, so for each i and j there exists n (depending on i

and j) such that (Hn)ij > 0; such a transition matrix is called irreducible.

The graph of a Markov partition defines a symbolic dynamics in the following

standard way. Let Σ(n) denote the set of all words ω = ω0 . . . ωn ∈ {1, . . . , N}n+1

such that

hωiωi+1
= 1, i = 0, . . . , n− 1,

i.e. each ωi labels a vertex of the associated graph or, equivalently, an element of the
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Markov partition. Then for each ω ∈ Σ(n) the set

Rω = {x ∈ D|x ∈ Mω0 , F (x) ∈ Mω1 , . . . , F
n(x) ∈ Mωn}

= Mω0 ∩ F−1(Mω1) ∩ · · · ∩ F−n(Mωn)

is closed and non-empty, where the inverse maps are chosen such that if Mωk+1
⊆

F (Mωk
) then F−1(Mωk+1

) is defined using the inverse of the map Fα, proceeding

inductively along the word. Taking the limit as n → ∞ we obtain a one-sided

infinite sequences of symbols and as a countable intersection of closed nested sets is

non-empty, if ω ∈ Σ(∞) then

Rω =
∞∩
k=0

F−k(Mωk
)

(with the convention on the definition of the inverse described above) is non-empty

and if x ∈ Rω then F (x) ∈ Rσ(ω) where σ is the shift map (just delete the first term

in the sequence and relabel the resulting sequence).

Most of the following lemma is again standard for continuous maps and also

applies to piecewise affine maps [1]. The final statement about convexity follows as

the image or preimage of a convex set under a non-singular affine map is convex, and

a non-empty intersection of convex sets is convex.

Lemma 4.2.5. Let F : D → D be a piecewise affine map with a finite Markov

partition M. Then for 2 ≤ n ≤ ∞

(i) if ω ∈ Σ(n) then Rω is closed and non-empty;

(ii)
∪

ω∈Σ(n) Rω = D;

(iii) if ω ∈ Σ(n), n < ∞ then F n restricted to Rω is affine;

(iv) if n = ∞ then F j restricted to Rω is affine for all j ∈ N;

(v) F (Rω) = Rσ(ω).
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In addition, if M is convex then for all ω ∈ Σ(n), Rω is convex.

Ideally, for each ω ∈ Σ(∞), the set Rω is a point, for then the map Σ(∞) to D

is surjective, so that there is a symbol sequence corresponding to each orbit. This is

usually proved using some expansive property (or conversely, a contraction property

on the inverse), but as we will see below, the border collision normal form is not

expanding. It may well be that a better theory from the one developed below is

possible, but the results here do allow us to prove the ALEO property in the examples

considered here.

Definition 4.2.6. A Markov partition (or its transition graph H) is said to be con-

tracting if Rω is a point for all ω ∈ Σ(∞).

For a contracting Markov partition, points with nearby symbol sequences are close

in D.

Proposition 4.2.7. Let F : D → D be piecewise affine and suppose that F has a

finite Markov partition M = {M1, . . . ,MN} with irreducible transition matrix H. If

for all open sets U ⊂ D there exists i ∈ {1, . . . , N}, k ≥ 0 and V ⊆ U such that

F k(V ) = Mi and F k|V is affine, then F is ALEO on M.

Proof. H is irreducible, so for every Mi and Mj there exists n > 0 such that in the

partition M there exists Vij ⊂ Mi such that F n(Vij) = Mj and F n|Vij
is affine (H is

irreducible so there is an allowed path from i to j and by taking preimages backwards

along this path we obtain Vij).

By assumption, for all open U there is V ⊆ U and i and k such that F k(V ) = Mi

and F k|V is affine, so for any Mj let V̂ ⊆ V be such that F k(V̂ ) = Vij and note that

F k+n(V̂ ) = F n(Vij) = Mj and the map is affine by construction. Hence F is ALEO

on M.

Finally, we need to show that a piecewise affine map F which is ALEO and has

a finite Markov partition is chaotic. Recall that a map F is chaotic on some set D if
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(i) F is topologically transitive on D, i.e. for all open sets U, V ∈ D there exists n

such that F n(U) ∩ V ̸= ∅;

(ii) F has sensitive dependence on initial conditions on D, i.e. there exists δ > 0

such that for all x ∈ D and ϵ > 0 there exists n ≥ 0 and y ∈ D with |x−y| < ϵ

such that |F n(x)− F n(y)| > δ;

(iii) the periodic points of F are dense in D.

But if a continuous map on a metric space has an uncountable invariant set on which

it is topologically transitive and for which periodic orbits are dense, then it also has

sensitive dependence on initial conditions [37].

Proposition 4.2.8. Let F : D → D be piecewise affine and suppose that F has a

finite Markov partition M = {M1, . . . ,MN} with irreducible transition matrix H. If

F is ALEO on M then periodic points are dense in D and F is topologically transitive

on D. Thus F also has sensitive dependence on initial conditions in D.

Proof. We start with dense periodic orbits. Let U be an open neighbourhood of any

point x ∈ D, and as U is open U ∩Mi ̸= ∅ for some i; denote one of these non-empty

intersections as W . Then the ALEO property implies that there exists V ⊆ W and

n ≥ 1 such that V ⊆ W ⊆ Mi = F n(V ). Hence V contains a periodic point.

For topological transitivity: for any open V again V ∩ Mr ̸= ∅ for some r, and

any open U contains a subset V1 such that F k(V1) = Mr for some k by the ALEO

property.

We can see that, if there is a contracting Markov partition with positive topological

entropy (i.e. there is an irreducible transition matrix), then for any open set there is

a point which is mapped inside some Mi after some iterations. Hence for a piecewise

affine map there is some neighbourhood of this point which is mapped to Mi. This

implies the ALEO property.

However, in many cases this is not enough as neither AR nor AL can be expanding.

Note that A is expanding if |xTATAx| > k|xTx| for some k > 1, in other words the
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eigenvalues of the symmetric matrix ATA is greater than 1. For our normal form

map,

AT
αAα =

T 2
α +D2

α Tα

Tα 1


with trace T 2

α +D2
α + 1 and determinant D2

α (α = L,R). Since AT
αAα is symmetric

a necessary condition for Aα being expanding is Tr(AT
αAα) ≥ 2 and det(AT

αAα) −

Tr(AT
αAα) + 1 ≥ 0. Since the last inequality is T 2

α ≤ 0 the only possible expanding

matrices of the normal form have trace zero, which brings us back to the Cournot

cases (4.1).

We have developed two different techniques to get around this problem. In the

next section we show that although F itself is not expanding, there are some situations

for which an appropriate iterate of F is expanding, and that this is enough to prove

that the Markov partition is contracting. This is the approach used in the next

section. In the following section we use a different strategy, showing that any open

interval eventually maps over an element of the Markov partition and thus proving

the ALEO property directly.

Before we move on to the next section, we need some notions of invariance and

attracting behaviour.

Definition 4.2.9. Given a continuous map F : R2 → R2, a compact closed set D

is an invariant region if int(D) is connected, D is the closure of its interior and

F (D) ⊆ D. An invariant region is an attracting invariant region if it is contained in

an open set U such that for all x ∈ U , F n(x) ∈ D as n → ∞. Finally, an attracting

invariant region D is a chaotic attractor if periodic points are dense in D and F is

topologically transitive on D.
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4.3 Example 1 - a finite Markov partition with

local expansion

Suppose that the parameters of the border collision bifurcation can be chosen as

shown in Figure 4.5, where P1 = F (O) and P2 = F (P1) are in x > 0 and P3 = F (P2)

has x = 0. Moreover, P4 = F (P3) is in x < 0, F (P4) = P2 and the line P2P4 intersects

the y-axis at W , which is the preimage of O. Suppose that P2P4 intersects P1P3 at V

and P1P3 intersects OP2 at U . Then by definition (points of intersection of lines map

to the points of intersection of the images of the lines) F (U) = V and F (V ) = W .

Consider the Markov partition involving the sets

M1 = OUVW, M2 = OP1U, M3 = P1P2U, M4 = P2UV

M5 = P2P3V, M6 = P3VW, M7 = P3P4W, M8 = P4OW
(4.3)

Then

F (M1) = M1 ∪M2, F (M2) = M3 ∪M4,

F (M3) = M5, F (M4) = M6

F (M5) = M7, F (M6) = M8,

F (M7) = M1 ∪M4 ∪M8, F (M8) = M2 ∪M3

(4.4)

which shows that D = P1P2P3P4 is an invariant region.

Theorem 4.3.1. Suppose µ > 0 in the border collision normal form. If TR = t where

t is the solution of

t3 + t2 + t− 1 = 0 (4.5)

in [0, 1], and

DR = t2 + t+ 1 =
1

t
(4.6)

and

TL = −t2, DL = −1, (4.7)

then the quadrilateral D = P1P2P3P4 is formed as described above, and M1 to M8
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Figure 4.5: Attracting region for parameter values (4.8) with F (O) = P1, F (Pk) =
Pk+1, k = 1, 2, 3, F (P4) = P2, F (W ) = O, F (V ) = W and F (U) = V ; the Markov
partition used to prove the region is transitive and has dense periodic orbits is labelled
Mi.

form a Markov partition with covering (4.4) and F is ALEO on D.

The equations above give approximate values

TR ≈ 0.543689, DR ≈ 1.839287, TL ≈ −0.295598, DL = −1. (4.8)

Proof. Without loss of generality choose µ = 1. Direct calculation shows that P1 =

(1, 0)T , P2 = (TR + 1,−DR)
T and

P3 =

T 2
R + TR + 1−DR

−DR(TR + 1)

 , (4.9)

so the x-component of P3 is zero if

DR = T 2
R + TR + 1 (4.10)

in which case P4 = (−DR(TR + 1) + 1, 0)T . The preimage of O is W = (0,−1)T , so



CHAPTER 4. TWO-DIMENSIONAL ATTRACTORS 67

the line P2P4 intersects the y-axis at W if

1

DR(TR + 1)− 1
=

DR

TR + 1 +DR(TR + 1)− 1
(4.11)

using similar triangles. Rewriting this as (DR + 1)(TR + 1)− 1 = D2
R(TR + 1)−DR,

and using (4.10) gives

T 5
R + 3T 4

R + 4T 3
R + 2T 2

R − TR − 1 = (T 3
R + T 2

R + TR − 1)(T 2
R + 2TR + 1) = 0

and hence (4.5) holds. By direct evaluation this has a solution TR ∈ [0, 1] and then

DR given by (4.6) is greater than one, and P2 is in x > 0 as required.

The conditions (4.7) on DL and TL ensure that F (P4) = P2.

To prove the ALEO property we want to show that every allowed symbol sequence

corresponds to a unique orbit. We do this by supposing, for contradiction, that there

are two points always in the same element of the Markov partition, and show that

their distance eventually expands under iteration, and hence they cannot be in the

same element infinitely long. Finally it is easy to see from (4.4) that there are paths

from each element of the partition to every other element, so the associated transition

matrix is irreducible.

If the orbit of x lies entirely in x > 0 then the point is the fixed point of the affine

map in R and is unique - it corresponds to the allowed path M1M1M1 . . . .

Suppose that x < 0. If x ∈ M8 then the allowed path starts in one of these ways

M8M2M4M6M8 . . . , M8M2M3M5M7 . . . , or M8M3M5M7 . . . .

In each case there is one iterate in L followed by either two or three iterates in R

before returning to L. Similarly if x ∈ M7 the allowed path starts

M7M
p
1M2M4M6M8 . . . , M7M

p
1M2M3M5M7 . . . , or M7M4M6M8 . . .
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operator B δ = det(BTB) τ = Trace(BTB) τ − 2 δ − τ + 1
A2

RA
2
L 11.44 7.06 5.06 5.38

A3
RA

2
L 38.71 14.21 12.21 25.51

A2
RAL 11.44 6.77 4.77 5.68

A3
RAL 38.71 15.83 13.82 23.89
A2

R 11.44 7.06 5.06 5.38

Table 4.1: Expansion properties for higher iterates of the map.

with p ≥ 1 (including p = ∞), or M7 is followed by M8 and we have one of the cases

for M8 with an extra iteration in L at the beginning. From these cases we can see

that the orbit of a point is made up of only a few particular routes. The sequence of

visits to the left and right can be obtained by joining the following

LLRR, LLRRR, LRR, LRRR, and RR.

For example,

M7M
4
1M2M4M6M8M3M5M7M8M3M5M7 . . .

corresponds to (LRRR)(RR)2(LRR)(LLRR)L . . . . Hence if each of the five combi-

nations of Ls and Rs corresponds to an effective expansion by a factor greater than

one, then the distance between two point in the same element expands until they are

mapped to different elements of the partition, so an infinite allowed path corresponds

to a unique point.

As shown earlier, a 2 × 2 matrix B is expanding if the trace τ and determinant

δ of the symmetric matrix BTB satisfy τ ≥ 2 and δ − τ + 1 ≥ 0. We have checked

numerically that each of the five combinations for B

A2
RA

2
L, A3

RA
2
L, A2

RAL, A3
RAL, and A2

R

(note that the order of the operators is reversed here from the order of the symbol

sequences) do indeed correspond to expanding matrices. See Table 4.1 for numerical

results.
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Figure 4.6: Basin of attraction for the quadrilateral attractor P1P2P3P4.

Thus since the transition graph has positive topological entropy, the map is ALEO.

It remains to be shown that this invariant set is an attractor.

Corollary 4.3.2. For parameters defined in Theorem 4.3.1 the quadrilateral P1P2P3P4

is an attractor.

Proof. By Theorem 4.3.1 and Proposition 4.2.8, periodic orbits are dense and the

map is topologically transitive in the quadrilateral P1P2P3P4, which is an invariant

region. It therefore remains to prove that the region is attracting.

We construct a polygon Q′
3Q1Q

′
4Q2Q5Q3Q6Q4 containing P1P2P3P4 and such that

iterates of all points in the polygon tend to the quadrilateral. See Figure 4.6.

Let Q3 = P3+ ϵ(0,−1)T , Q4, Q5, Q6, Q7 be images of Q3, i.e. Q3+k = F k(Q3), k =

1, 2, 3, 4, and Q1 and Q2 be the preimages of Q3 in R, so that F (Q1) = Q2 and

F (Q2) = Q3. A simple calculation gives

Q1 = P1 + ϵ(t3, t2(1 + t))T , Q2 = P2 + ϵ(t,−t2)T ,

Q4 = P4 + ϵ(−1, 0)T , Q5 = P2 + ϵ(t2,−1)T ,

Q6 = P3 + ϵ(−t(1 + t),−t)T , Q7 = P4 + ϵ(−t2,−t(1 + t))T .

(4.12)
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Note that Q5 is on the extension of P1P2 in x > 0, and Q6 and Q7 in x < 0 (Q6 is on

the extension of P2P3).

Now let Q′
4 be the preimage of Q5 in x > 0 and Q′

3 be the preimage of Q′
4. Since

Q5 is on the extension of P1P2, Q
′
4 is on the x-axis the extension of OP1, similarly

Q′
3 is on the positive y-axis. Calculations give

Q′
3 = ϵ(0, t)T , Q′

4 = P1 + ϵ(t, 0)T .

Let N0 = OQ4Q
′
3, N1 = OQ′

3Q1P1, N2 = Q1P1P2Q2Q
′
4, N3 = Q2P2P3Q3Q5 and N4 =

Q3P3P4Q4Q6 and note that the polygon Q′
3Q1Q

′
4Q2Q5Q3Q6Q4 is the union of the sets

Ni, i = 0, 1, 2, 3, 4 and the quadrilateral P1P2P3P4. Also, F (N0) ⊂ N2 ∪N3, F (N1) ⊂

N2, F (N2) = N3 and F (N3) = N4.

Calculation shows that Q7 lies in x < 0 to the right of Q6Q4 and to the left of

P3P4, and recall that F (P4) = P2. Hence the image of N4 is the polygon Q4P4P2Q5Q7

which, at least for sufficiently small ϵ, intersects N4 on a set A near P4, has a strip

across P1P2P3P4 and intersects N3 on a set B near P2. By choosing ϵ > 0 small

enough the image of A which does not map to the quadrilateral is mapped into B;

and F (B) = C, a subset of N4 in x ≤ 0 near P3. F (C) lies in the image of N4 but

does not stretch as far as B. Thus any recurrent dynamics in the large polygon which

does not map to the invariant quadrilateral is confined to B in x > 0 and two disjoint

regions (for ϵ sufficiently small) A and C in x ≤ 0; the third iterate of F restricted to

these regions is an affine map with determinant 1/t. As |t| ̸= 1 the only non-trivial

dynamics can be the fixed point of the third iterate (as the motion is bounded by the

polygon) and hence any solution either maps into the attractor P1P2P3P4 or tends to

the period three cycle P2P3P4, which is also in the closed quadrilateral. Hence the

closed quadrilateral is an attractor.

Figure 4.7 illustrates this strange attractor.

The argument above is simple but a little long and tedious in the case of this

section, but considerably easier for the cases described in the next section.
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Figure 4.7: Strange attractor with parameters (4.8). 20000 points on an orbit are
shown.

4.4 Example 2 - a countable set of examples

The example of the previous section demonstrates that the Markov partition tech-

nique can be applied effectively to study attractors of the border collision normal

form, here we give an example which shows how to generate a countable set of pa-

rameters for which a Markov partition exists. An example is illustrated in Figure 4.8.

Suppose µ > 0, so again we take µ = 1 without loss of generality. The fixed point

P ∗ in R is

P ∗ =
1

1− TR +DR

 1

−DR


and AR has complex conjugate eigenvalues re±iθ, if

TR = 2r cos θ, DR = r2 (r > 0, 0 < θ < π). (4.13)

Note that the fixed point P ∗ is then a spiral. We will choose r and θ so that there

exists n > 1 such that Pn = F n(O) is on x = 0, with Pk = F k(O) in x > 0 for

k = 1, . . . , n− 1. Then Pn+1 = F (Pn) lies on the x-axis. Let’s assume that Pn+1 is in

x < 0. Suppose also that the line Pn+1P
∗ intersects the y-axis at W = (0,−1)T which

is the preimage of the origin O. These two conditions fix TR and DR. For TL and DL

we choose them so that F (Pn+1) = P ∗. This yields the geometry shown in Figure 4.8,
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Figure 4.8: Attracting region showing the construction of the Markov partition used
to prove the region is transitive and has dense periodic orbits. The case n = 6 is
illustrated with TR ≈ 1.55842898, DR ≈ 1.21435044 with TL and DL given by (4.21),
i.e. TL ≈ −0.2929366 and DL ≈ −1.0338562. F (O) = P1; F (Pi) = Pi+1, i = 1, . . . , 6;
F (P ∗) = F (P7) = P ∗; and F (W ) = O.

creating an n + 1-sided polygon D = P1P2 . . . Pn+1 and regions M0, . . . ,Mn+3 which

form a Markov partition of D. We begin by proving that parameters at which these

conditions hold do exist for each n > 2.

By definition

F k(O) = (Ak−1
R + · · ·+ AR + I)

1

0

 = (AR − I)−1(Ak
R − I))

1

0


provided AR− I is non-singular. Using (4.13) and recall that 0 < θ < π, so sin θ ̸= 0,
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calculation shows that

Pn = F n(O)

=
rn

(1− TR +DR) sin θ

 r sin(nθ)− sin(n+ 1)θ

DR sin(n+ 1)θ − (TR − 1)r sin(nθ)


+

1

1− TR +DR

 1

−DR

 (4.14)

The condition that Pn has x = 0 is therefore

rn+1 sin(nθ)− rn sin(n+ 1)θ + sin θ = 0. (4.15)

This simplifies Pn to Pn = (0, qn)
T where

qn =
rn+1 sin(nθ)

sin θ
= −1 +

rn sin(n+ 1)θ

sin θ
(4.16)

and so Pn+1 = (1+qn, 0)
T . We will need to check that qn < −1. The second condition

that W is on the line Pn+1P
∗ is equivalent to the statement that the slope of the line

Pn+1W equals the slope of WP ∗. After some manipulation, we get

rn+1 sin(nθ) + sin θ

sin θ
=

1

1− TR

(4.17)

or

2rn+1 cos θ sin(nθ)− rn sin(nθ) + 2 sin θ cos θ = 0. (4.18)

Multiply (4.15) by 2 cos θ then subtract from (4.18) gives

2 cos θ sin(n+ 1)θ − sin(nθ) = 0,

and by using trigonometric formulae we have sin(n + 2)θ = 0, therefore we choose
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the solution with

θn =
2π

n+ 2
. (4.19)

Substituting this into (4.15) and simplifying we find that (4.15) is satisfied if and

only if

gn(r) = 2rn+1 cos θn − rn − 1 = 0. (4.20)

For large r, gn(r) > 0, and if r = 1,

gn(1) = −2(1− cos θn) < 0.

Hence, by the intermediate value theorem gn has a zero at some rn > 1. Moreover,

since sin(n+ 1)θn = sin 2π(n+ 1)/(n+ 2) = − sin θn, qn = −1− rnn < −1 hence Pn+1

indeed lies in L as assumed.

Now we know that, for any given n > 1, Pn = (0, qn)
T and Pn+1 = (1 + qn, 0)

T

with qn given by (4.16) for parameters (rn, θn). The condition F (Pn+1) = P ∗ is thus

TL(1 + qn) + 1 =
1

1− TR +DR

, DL(1 + qn) =
DR

1− TR +DR

(4.21)

which determines TL and DL.

Theorem 4.4.1. Suppose µ > 0 in the border collision normal form. For each n > 0

sufficiently large let (TR, DR, TL, DL) be determined from (4.13), (rn, θn) and (4.21)

above. Then the border collision normal form is ALEO on a two dimension region

D = P1 . . . Pn+1.

Numerical calculations suggest that ”sufficiently large” means n ≥ 6.

As illustrated in Figure 4.8, the Markov partition will be constructed using the

sets M0, . . . ,Mn+3 defined by M0 = WOP ∗,M1 = OP1P
∗ and Mk = Pk−1PkP

∗, k =
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2, . . . , n, Mn+1 = WPnP
∗,Mn+2 = WPnPn+1 and Mn+3 = WPn+1O. Then by con-

struction,

F (Mk−1) = Mk, k = 1, . . . , n,

F (Mn) = Mn+1 ∪Mn+2, F (Mn+1) = F (Mn+2) = Mn+3 ∪M0,

F (Mn+3) = M1.

(4.22)

The union of these regions, the polygonD = P1 . . . Pn+1, is invariant andM0, . . . ,Mn+3

form an irreducible Markov partition.

To prove Theorem 4.4.1, we first need to define a skew-tent map.

Let a < b < c. Then a skew-tent map S : [a, c] → [a, c] is a continuous map such

that S([a, b]) = S([b, c]) = [a, c], and such that S is affine on both [a, b] and [b, c].

The point b is called the turning point of the map. (Figure 4.9)

Figure 4.9: A skew-tent map.

Proposition 4.4.2. Let S : [a, c] → [a, c] be a skew-tent map with turning point b,

then for any interval I ⊆ [a, c] there exists J ⊆ I and n > 0 such that Sn|J is affine

and Sn(J) = [a, c].

Proof. Suppose that I = [α, γ] ⊆ [a, c] and contains b. Consider [α, b] ⊆ [a, b]. Since

S|[a,b] is affine, S([α, b]) = [S(α), c]. If S(α) ≤ b < c then we are done, since we

can choose β ∈ [α, b] such that S(β) = b and J = [β, b] ⊂ I, so S(J) = [b, c] and

S2(J) = [a, c] and S2|J is affine.

If b < S(α), then S2([α, b]) = [a, S2(α)]. If S2(α) ≥ b then again we are done.
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Suppose not, then since the gradients of the map S|[a,b] and S|[b,c] are greater than 1 in

modulus, the interval is expanded under each iteration, until eventually Sn−1([α, b]) =

[a, Sn−1(α)] for some n − 1 such that Sn−1(α) ≥ b. Then again we can choose

J = [β, b] ⊆ [α, b], so that S|J is affine and Sn(J) = [a, c].

For any interval I ⊆ [a, c] not containing b, i.e. I is contained in either [a, b] or

[b, c], we again note that interval is then expanded under each iteration until some

image contains the turning point b, then above argument applies.

Now return to our example, we have two useful lemmas.

Lemma 4.4.3. Consider the normal form for parameters defined in Theorem 4.4.1.

Then F n+2 restricted to the line segment Pn+1P
∗ is a skew tent map with turning

point at W .

Proof. This follows easily from the observation that F (Pn+1W ) = F (WP ∗) = OP ∗

and F n+1(OP ∗) = Pn+1P
∗ and F n+1|OP ∗ is affine, so F n+2(Pn+1W ) = F n+2(WP ∗) =

Pn+1P
∗.

Lemma 4.4.4. Consider the normal form for parameters defined in Theorem 4.4.1.

Let Q be any region in Mk, k = 0, . . . , n+ 1, which contains an entire neighbourhood

of P ∗ within Mk. Then there exists Q1 ⊆ Q and m such that Fm(Q1) = M0 and

Fm|Q1 is affine.

Proof. Consider the preimages of M0 = WOP ∗ under the map in R. The preimage of

the point W , W−1 lies on the line segment PnP
∗, so the preimage of M0 in R is the set

W−1WP ∗ ⊂ Mn+1. Similarly its preimage is W−2W−1P
∗ ⊂ Mn where W−2 is on the

segment Pn−1P
∗. Continuing in this way we see that F−(n+2)(M0) ⊂ M0 and contains

the angle ∠Pn+1P
∗O, and more generally the sets F−m(n+2)(M0) ⊂ M0,m > 0 form

a nested sequence of such regions tending to P ∗. Also with k = 1, . . . , n + 1 fixed,

F−m(n+2)+k(M0) is in Mk containing the angle at P ∗ and tends to P ∗ as m → ∞.

Note that this shows that preimages of M0 exist in any region filling the angle at

P ∗ in Mk, k = 0, . . . , n+ 1.
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Now we start proving Theorem 4.4.1.

Proof. First, from (4.22) one can see that the transition matrix associated with the

Markov partition is irreducible, hence to apply Proposition 4.2.7 we only need to

check that for all open sets U in the invariant region D = ∪Mk there exists i, n and

V ⊆ U such that F n(V ) = Mi and F n|V is affine. We show this for i = 0.

First note that rn > 1 and so DR = r2n > 1. Simplifying the expression for DL in

(4.21) using qn = −1− rnn gives

DL = −r−(n−2)
n (1− 2rn cos θn + r2n)

−1.

Since, from (4.19) and (4.20), θn → 0 and rn → 1 as n → ∞, DL → −∞ as n → ∞

and in particular |DL| > 1 for sufficiently large n. Therefore for large n both |DR| and

|DL| are greater than one and hence areas are increased under iteration. Numerical

simulations show that |DL| > 1 provided n ≥ 6.

Let U be an open set in D and fix n large enough so that |DR| and |DL| are

greater than one. Let m1 ≥ 0 be the smallest integer such that Fm1(U) intersects the

y-axis (m1 exists because otherwise F
m|U would be affine for each m and the area of

Fm(U) would increase unboundedly, but Fm(U) is in the finite invariant region D).

Suppose that Fm1(U) intersects WPn and let U1 ∈ Mn+1 be the component of

Fm1(U) in R, so that Fm1(U) ∩ WPn is on its boundary. Let U2 ⊆ U such that

Fm1(U2) = U1 and Fm1 |U2 is affine.

Since F (Mn+1) = Mn+3 ∪M0 and WPn maps to OPn+1, F (U1) ∩Mn+3 ̸= ∅ and

by choosing U1 and U2 smaller if necessary we may assume that F (U1) is contained in

Mn+3, so F
n+2|U1 is affine and F n+2(U1) ⊆ Mn+1∪Mn+2 has a segment I ⊆ Pn+1P

∗ on

its boundary. By Lemma 4.4.3 and Proposition 4.4.2 there exists J ⊆ I and m2 such

that Fm2(n+2)|J is affine and Fm2(n+2)(J) = Pn+1P
∗, so there exists U3 ⊆ F n+2(U1)

with J on the boundary such that Fm2(n+2)|U3 is affine and Pn+1P
∗, in particularW , is

on the boundary of Fm2(n+2)(U3). By (4.22), Fm2(n+2)(U3) ⊆ Mn+1∪Mn+2, and since

it contains W on its boundary it contains the intersection of an open neighbourhood
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of W with Mn+1, i.e. it fills the angle ∠PnWP ∗. Let U4 ⊆ Fm2(n+2)(U3) be the

component of Fm2(n+2)(U3) in R so that F (U4) is contained in M0 and fills the angle

∠WOP ∗, then F n+3(U4) ⊆ M0 and fills the angle WP ∗O. Thus Lemma 4.4.4 ensures

that there exists U5 ⊆ F n+3(U4) andm3 such that Fm3(U5) = M0 and Fm3 |U5 is affine.

Therefore, given an open set U , there exists V (⊆ U2) ⊆ U and N = m1 + (n + 2) +

m2(n+ 2) + (n+ 3) +m3 such that FN |V is affine and FN(V ) = M0, and hence F is

ALEO on the polygon D = P1P2 . . . Pn+1 by Proposition 4.2.7.

If Fm1(U) intersectsWO, let U1 be the component of Fm1(U) inR, then F n+2(U1) ⊆

Mn+3 ∪M0 and has a segment P ∗Pn+1 on the boundary and the above argument ap-

plies.

Corollary 4.4.5. For parameters such that Theorem 4.4.1 holds, the closed polygon

D = P1P2 . . . Pn+1 is an attractor.

The proof is similar but simpler than the one in the previous section, so we shall

be brief.

Proof. Again, by Theorem 4.4.1 and Proposition 4.2.8, periodic orbits are dense and

the map is topologically transitive in the invariant regionD = P1P2 . . . Pn+1. We need

to show that there is an open region containing D such that iterates of all points tend

to D.

Let Qn = Pn + ϵ(0,−1)T for sufficiently small ϵ > 0, its image Qn+1 is on the

x-axis in L, then take preimages in x > 0 back to Q1. Note that, since Qn is close

to but below Pn−1Pn, Q1 is above the x-axis near P1, hence the line segment Q1Q2

intersects the x-axis at some point S1, which has a preimage on the positive y-axis

at S0.

Consider the set S0Q1Q2 . . . Qn+1. Let N0 = S0OQn+1, N1 = S0Q1P1O and Nk =

Qk−1QkPkPk−1, k = 2, . . . , n + 1, and note that the polygon S0Q1Q2 . . . Qn+1 is the

union of N0, . . . , Nn+1 and the invariant region D. By construction, F (N1) ⊂ N2 and

F (Nk) = Nk+1, k = 2, . . . , n. For sufficiently small ϵ, S0 is near O and Qn+1 is near

Pn+1 which is mapped inside D, hence F (N0) = S1P1Qn+2 ⊂ D∪N2 and F (Nn+1) =
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Qn+1Qn+2P
∗Pn+1 ⊂ D ∪ Nn+1. But the image of Nn+1 which is not contained in D

is a small set near Pn+1, so its image, for sufficiently small ϵ, is contained in D near

P ∗, i.e. F 2(Nn+1) ⊂ D. Therefore iterates of points in S0Q1Q2 . . . Qn+1 tend to the

invariant polygon D = P1P2 . . . Pn+1 and so D is an attractor.

We have here shown that using the ALEO property two-dimensional attractors

with finite Markov partitions exist for the border collision normal form at some

carefully chosen parameters. We believe that such attractors exist over much larger

regions of parameter space (more numerical examples can be found in [33, 67]), that

the ALEO property holds even if finite Markov partitions do not exist, though we

have not yet developed the techniques to prove this. But our hope is that the use of

the ALEO property will eventually allow us to provide a mathematical proof of the

existence of these attractors.



Chapter 5

Bifurcations of Attractors in

Border Collision Normal Form

5.1 Introduction

So far we have shown that invariant regions and attractors can exist for the border

collision normal form with local area expansion, in this chapter we discuss some of

the bifurcations these sets exhibit as the parameters change values.

As in the previous chapters we assume that DRDL < 0, so that the map F is

non-invertible, and at least one of the determinants has modulus greater than one,

so we let DR > 1 and DL < 0 throughout. Note that, by a change of scale only the

sign of µ matters if µ ̸= 0.

Recall again from Chapter 2 that the fixed points xα
∗ of the normal form map are

given by

xα
∗ =

µ

1− Tα +Dα

, yα∗ = −Dαx
α
∗ , α = L,R

and a fixed point is admissible if xα
∗ ∈ α and virtual otherwise. We assume that

xR
∗ ∈ R when µ > 0 (without loss of generality choose µ = 1), so 1 − TR +DR > 0.

Also, the eigenvalues of the map for each side of the switching surface are the solutions

of the quadratic s2 − Tαs+Dα = 0, so xR
∗ ∈ R is

80
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(a) (b)

Figure 5.1: Parameter spaces (DL, TL) and (DR, TR) of the normal form map for each
side of the switching surface.

• an unstable spiral if −2
√
DR < TR < 2

√
DR;

• an unstable node if −(1 +DR) < TR < −2
√
DR or 2

√
DR < TR < 1 +DR; and

• a saddle if TR < −(1 +DR) or TR > 1 +DR.

We can summarize these in a diagram in the (DR, TR) parameter space. Similarly,

the same can be done for the fixed point xL
∗ . See Figure 5.1. The dotted lines in

the figures represent the line Tα = 1 + Dα, on which the corresponding fixed point

approaches infinity and ceases to exist. Hence there is a singularity for the fixed point

on this line.

In this chapter we consider mainly the case where xR
∗ is an unstable spiral and

investigate some of the bifurcations of the attracting sets as the parameters change

values. Note that in this case every point in R except the fixed point itself eventually

maps to L. The other fixed point xL
∗ , since DL < 0 and hence the eigenvalues are

real and with opposite signs, is either a flip node or a flip saddle. The slopes of its

eigenvectors are given by −DL/s±, so there is an eigenvector with positive slope,

corresponding to the positive eigenvalue. Therefore, if xL
∗ is an unstable node in L,

there is an unstable manifold of the fixed point that ”pushes” points in L towards

R; if xL
∗ is a virtual stable node in R, a stable manifold ”pulls” orbits from L to R

again, the same happens when the fixed point is a saddle or a virtual saddle. So it is

likely that there exist some globally recurrent dynamics.
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Figure 5.2: An attracting set and its basin of attraction when xL
∗ is an admissible

saddle.

An example is illustrated in Figure 5.2.

Let

TL = 0.3, DL = −0.8, TR = 1, DR = 1.8.

The polygon V = P1P2P3P4Q1 is constructed as described in the previous chapter. xL
∗

is an admissible saddle, S3S4 is the stable manifold of the fixed point, S2S3 and SS2

are the preimages of S3S4 in R (below the x-axis). Since F (S3) = S4 and S4 is mapped

on the segment xL
∗S3, F (OS3S4) ⊂ SS2S3S4 and hence SS2S3S4 is an invariant set.

Note that the polygon P1P2P3P4Q1 depends on TR and DR only (the images of the

points P4 and Q1 depend on TL and DL though), so there always exists TL and DL

such that xL
∗ is sufficiently far to the left of the polygon and the set bounded by its

stable manifold contains V and hence its images, thus the set ∪kF
k(V ) is bounded

and invariant. With the parameters above, one can check that P4 and Q1 are mapped

inside V , so F (V ) ⊂ V . Moreover, orbits in SS2S3S4 are pushed towards V by the

unstable manifold of xL
∗ , so V is in fact an attracting set, with a polygonal basin of

attraction SS2S3S4. When the fixed point xL
∗ is an admissible saddle, by considering

the stable manifold and its preimages in R, we can obtain a basin of attraction for an

attracting set in this way, provided the constructed attracting set does not intersect

the stable manifold of the fixed point xL
∗ , otherwise points from the set eventually
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map over the other side of the stable manifold and diverge. This bifurcation where

the boundary of an attracting set meets the boundary of its basin of attraction and

causes a destruction of the attracting set is an example of boundary crisis or contact

bifurcation [44, 45, 46].

We shall next investigate what happens if (DL, TL) crosses the line TL = −(1 +

DL), where one of the eigenvalues of FL is equal to −1, and xL
∗ becomes an admissible

unstable node.

5.2 Degenerate bifurcations

For one-dimensional systems xn+1 = F (xn), F : R → R, a period-doubling bifurcation

(also known as flip bifurcation) occurs when a stable fixed point (or periodic orbit)

p loses its hyperbolicity such that F ′(p) = −1 at some parameter value, after which

its nature changes and becomes unstable.

Theorem 5.2.1 ([83]). Let Fµ : R → R be a family of C3-maps depending smoothly

on the parameter µ. Let pµ be a fixed point of Fµ and F ′
µ0
(pµ0) = −1. If, at µ = µ0

and x = pµ0,

(i) (d3/dx3)F 2
µ0
(pµ0) ̸= 0, and

(ii) (d/dµ)F ′
µ0
(pµ0) ̸= 0,

then there is a period-doubling bifurcation, that is, a period two orbit is created while

a fixed point changes its stability.

For maps on the real line, this local bifurcation is one of the most common bifur-

cations, a lot of examples can be found in most text books, e.g. [16, 2]. One of them

is the logistic map. Let Fµ(x) = µx(1 − x), x ∈ [0, 1] with µ > 1. Fµ has two fixed

points one at 0 and the other at pµ = (µ − 1)/µ. F ′
µ(0) = µ and F ′

µ(pµ) = 2 − µ,

hence 0 is a repelling fixed point for µ > 1 and pµ is attracting for 1 < µ < 3. When

µ = 3, F ′
µ(pµ) = −1. Figure 5.3 shows the graphs of F 2

µ for µ near 3. Note that
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two new fixed points for F 2
µ appear as µ increases through 3. These are periodic

points of period two, created in the bifurcation. Moreover, as µ increases further,

there is a period-doubling cascade as the period 2 orbit bifurcates into period 4 by

period-doubling, followed by a further period-doubling into period 8, and so on.

(a) (b) (c)

Figure 5.3: The graphs of F 2
µ(x) where Fµ(x) = µx(1 − x) for (a) µ < 3, (b) µ = 3,

and (c) µ > 3.

It is obvious that, if F is an affine map, (i) of Theorem 5.2.1 is not satisfied, not

only at a fixed point, but in the whole region of definition. Thus the bifurcation as

the derivative F ′ equal to −1 for linear maps does not lead to the creation of an

orbit of double period. For example, let F (x) = αx + ϵ, then at α = −1 any point

x ∈ R, except for the fixed point p = ϵ/(1 − α), is periodic of period 2, while for

α < −1 the trajectory of any point x ̸= p tend to infinity. So, for affine maps in

bifurcation with eigenvalue equal to −1, there are infinitely many period 2 orbits

at the bifurcation value, and it gives rather trivial results after the bifurcation. If

we have a piecewise affine map (or piecewise smooth map, with components not

necessarily all affine), however, the same bifurcation may occur, at fixed points or

periodic orbits, when the eigenvalue equals −1. In this case what occurs after the

bifurcation is not necessarily trivial. Depending on other components of the map, it

can give rise to rather complicated dynamics. Sushko and Gardini [83] defined the

following:

Definition 5.2.2. Let Fµ : R → R be a family of piecewise C3-smooth maps depend-

ing smoothly on the parameter µ. Let pµ be a fixed point of Fµ, δ > 0 be such that

for µ ∈ (µ0 − δ, µ0 + δ) the fixed point does not coincide with a switching point of Fµ
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and F ′
µ0
(pµ0) = −1. At µ = µ0 a degenerate flip bifurcation occurs if

(i) SFµ0(x) = 0 for all x in a neighbourhood of pµ0, where SF = (F ′′′/F ′) −

(3/2)(F ′′/F ′)2 is the Schwarzian derivative of F ; and

(ii) (d/dµ)F ′
µ0
(pµ0) ̸= 0.

In other words, a fixed point (or a periodic orbit) of a piecewise smooth map

undergoes a degenerate flip bifurcation when the fixed point does not coincide with

any switching point of Fµ, the eigenvalue crosses −1 as µ crosses µ0 and at the

bifurcation value the map Fµ (or F k
µ for periodic orbit of period k) is locally affine (in

some neighbourhood of the fixed point). This means that at the bifurcation value the

map has locally (in some neighbourhood of the fixed point) infinitely many period 2

orbits.

From the example above, suppose we now have

F (x) =


αx+ ϵ, x ≤ 0,

βx+ ϵ, x ≥ 0,

where α and β have opposite signs, so F is a skew-tent map. Suppose that ϵ < 0, then

at α = −1 every point in the interval [ϵ, 0] except the fixed point p = ϵ/(1− α) < 0

is period 2 orbit, points in x < ϵ are mapped to x > 0 and do not have period 2.

The difference between this and the trivial example above is that at the bifurcation

value, one of the period 2 orbits created coincides with the switching point x = 0, so

there is a border collision at this degenerate flip bifurcation. It has been shown in

[64] that the degenerate flip bifurcation of an attracting period k orbit, k ≥ 3, of the

skew-tent map leads to 2k cyclical chaotic intervals. The degenerate flip bifurcation

of a period 2 orbit leads to 2i cyclical chaotic intervals, where i ≥ 2 can be any integer

depending on parameters. A fixed point that undergoes a degenerate period doubling

bifurcation can have a period doubling, or it can lead to 2i periodic chaotic intervals,

i ≥ 1.
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Figure 5.4: Degenerate flip bifurcations. Regions γi for i = 2, 4, 8 in the (DL, TL)
space where period i orbit exists at TR = 2 and DR = 2 are shown.

The idea of degenerate bifurcation can be extended to higher dimensional systems.

It has been shown in [63, 83] that in the two-dimensional border collision normal form

a degenerate flip bifurcation of a stable fixed point xR
∗ (while xL

∗ is also stable but

virtual) can lead to similar results: a period-doubling to a stable period 2 orbit, or to

a 2i cyclic chaotic attractor for any i ≥ 1; while the degenerate flip bifurcation of an

attracting period 2 orbit can lead to a 2i cyclical chaotic attractor for i ≥ 2. However,

in the parameter region that we are interested in, where the fixed point xR
∗ is an

unstable spiral in R and xL
∗ is admissible in L, xL

∗ is unstable. The fixed point changes

from a saddle to an unstable node as (DL, TL) crosses the line TL = −(1+DL), where

one of the eigenvalues of the fixed point, s−, equals to −1. When TL = −(1 +DL),

the line of the eigenvector through xL
∗ is y = DL(x − xL

∗ ) + yL∗ , which intersects the

axes at S and S ′. Every point on this segment SS ′ except the fixed point has period

2. This bifurcation creates a period 2 orbit which has eigenvalues

s2± =
1

2
(TLTR −DL −DR ±

√
(TLTR −DL −DR)2 − 4DLDR).

So, depending on the parameter values, this orbit can undergo further degenerate flip

bifurcation as one of the eigenvalues is equal to −1. Calculations show that s2+ = −1
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(and s2− > 1) when TLTR = −(1−DL)(1−DR). This bifurcation creates a period 4

orbit, where one of the points is in R and the rest in L. The period-doubling cascade

can go on depending on the four parameters. We shall not go into detail here, but

we give an example in Figure 5.4.

Thus, the bifurcation of the fixed point xL
∗ is similar to the stable case described

in [83], but the instability makes it impossible to observe the results numerically. By

continuity, this degenerate flip bifurcation of the saddle xL
∗ does not affect the stability

of the attracting set contained inside (if it exists), but it changes the shape of the basin

of attraction. As described at the beginning of the chapter, if xL
∗ is an admissible

saddle, by considering the stable manifold and its preimages, we get a polygonal basin

of attraction for the attracting set if it exists. After the degenerate flip bifurcation,

the fixed point becomes a repeller and new unstable orbits are created, hence the

dynamics around these orbits complicates the geometry of the basin boundary. See

Figure 5.5.

Apart from degenerate flip bifurcations, Sushko and Gardini [83] also defined

degenerate fold bifurcations and centre bifurcations as analogies with the fold bifur-

cations and Neimark-Sacker bifurcations for the smooth maps. These also occur in

the border collision normal form map at various parameter values [82, 83].

5.3 Example revisited

Recall the example of a border collision normal form that we presented in the previous

chapter from [33] again (see Figure 5.6). As the parameters change from Figure 5.6

(a) to (f), a number of local and global bifurcations take place.

Figure 5.6 (a) shows that there is a stable period 13 orbit. The numerics show

that the orbit is of the form R9L4, in other words the induced map F 4
LF

9
R has a

stable fixed point with the parameters given. By direct calculations, the eigenvalues

of A4
LA

9
R at the fixed point are a pair of complex conjugates with modulus less than

1, while the fixed point xR
∗ is an unstable spiral. As the eigenvalues of this period 13
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Figure 5.6: Attractors in border collision normal form for various parameter values.
TR = 1.93, DR = 1.2204, µ = 38.36.
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orbit cross the unit circle, the orbit loses its stability and a new attractor is formed in

a centre bifurcation mentioned above - a piecewise smooth analogy to the Neimark-

Sacker bifurcation. As shown in Figure 5.6 (b) the attractor is a cyclic annular chaotic

area, the hole in each part of the attractor contains the periodic point which becomes

unstable after the bifurcation.

The bifurcation from Figure 5.6 (b) to (c) is effectively the same as the one from

Figure 5.6 (e) to (f), which is a bifurcation from an annular chaotic region to a simply

connected attractor. Note that in Figure 5.6 (e) and (f), the outside boundary of

the attractor is the polygon formed in the way described before, using the images of

the switching surface, and in Figure 5.6 (e) the attractor has a hole which contains

the fixed point xR
∗ . The fixed point has a preimage xL

0 in L above the x-axis, and

since both L and R are mapped to the bottom half plane, xL
0 has no preimage, and

hence xR
∗ is not a snap-back repeller (see Chapter 3). On the other hand, when

TL ≈ −0.97 and DL ≈ −1.6796, xL
0 is on the x-axis in L, on the external boundary

of the attractor, therefore xR
∗ is contained in the attractor, i.e. the hole disappears,

and the attractor becomes a simply connected region.

Lemma 5.3.1. Let V be a polygonal set constructed as described in Chapter 4 and

let V be an attractor. Suppose that V intersects the switching surface, so that V ∩ L

and V ∩R are non-empty. Let Q be a fixed point and suppose that Q has a preimage

Q−1 ̸= Q. Then Q ∈ V if and only if Q−1 ∈ V .

The proof is almost immediate. Indeed, if Q−1 ∈ V , then clearly Q ∈ V since

V maps to itself. Conversely if Q ∈ V , then note that by the construction of V ,

F (V ∩ R) = V , thus if Q ∈ V ∩ L ⊂ V , then Q−1 ∈ V ∩ R. Note also that since V

is the attractor, V = ∪iF
i(V ∩ L). If Q ∈ V ∩ R, then there exist some k ≥ 1 such

that Q ∈ F k(V ∩ L), hence there exists some P ∈ V ∩ L such that F k(P ) = Q (and

so F k−1(P ) = Q−1). Then F (P ), . . . , F k−2(P ), Q−1 are contained in V . Moreover,

since F |R is affine, and Q is already a preimage of Q in R, Q−1 ∈ V ∩ L.

For the same reasons, V contains a sequence of preimages of Q−1. If Q is repelling
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and the sequence of preimages exists and tends toward Q, then the fixed point is

a snap-back repeller. When Q−1 meets the boundary of the attractor ∂V , a hole

containing Q is created inside V and V becomes an annular region. This bifurcation

destroys the snap-back repeller and is a snap-back repeller bifurcation [33, 34, 67] (see

also Chapter 3). The bifurcation from Figure 5.6 (e) to (f) is a snap-back repeller

bifurcation. The bifurcation from Figure 5.6 (b) to (c) is also a snap-back repeller

bifurcation but relative to the 13th iterate of the map instead of F itself.

Finally, from Figure 5.6 (c) to (d), the attractor changes from a cyclic chaotic area

to a connected chaotic area. This is a boundary crisis we mentioned above that some

boundary of the attractor meets the basin boundary, so that after the bifurcation

points originally from the cyclic parts eventually map out of the area in a transient,

and thus destroy the cyclic chaotic area.

5.4 Some bifurcations of the invariant polygons

So far we have been using the invariant polygons constructed by images of the switch-

ing surface, and we show that these polygons often attract orbits. In the example

from the previous section, the attractors are either subsets of the polygon (Figure 5.6

(a) to (e)) or the polygon itself (Figure 5.6 (f)). In this section we look at these

polygons in more detail.

Recall from the previous chapter, we use the origin and its image P1 = F (O), and

consider successive images of the line segment OP1, P1P2, P2P3 and so on. We assume

that there exist a finite N such that PkPk+1 ∈ R for k = 1, . . . , N − 1 and PNPN+1

intersects the switching surface, at Q0. Then the polygon V = P1P2 . . . PN+1Q1 is an

(N+2)-sided polygon such that F (VR) = V where VR = V ∩R. Note that the polygon

V is determined by TR and DR only, and the invariant set depends on the images of

VL = V ∩ L. If there exists M ≥ 0 such that FM(V ) = FM+1(V ) then FM(V ) is

invariant, in particular if PN+1 and Q1 are mapped inside V , so that F (VL) ⊆ V then

V is invariant in F . The number of sides of V is N + 2 if Pk ∈ R for k = 1, . . . , N



CHAPTER 5. BIFURCATIONS OF ATTRACTORS 92

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

4

5

D
R

T
R

x
P
2

=0

x
P
3

=0

x
P
4

=0

x
P
5

=0

x
P
6

=0
T
R

2=4D
R

T
R
=1+D

R

Figure 5.7: For each n ≥ 2 Pn is on the y-axis when (DR, TR) is on the curve xPn = 0.

and PN+1 ∈ L, so this number changes when PN meets the switching surface for each

N . We can write down conditions for these changes, xPk
> 0 for k = 1, . . . , n − 1

and xPn = 0 where xPk
is the x-coordinate of Pk. These conditions depend on TR

and DR only and they define a family of curves in the (DR, TR) parameter space.

We have given the conditions in Example 2 from the previous chapter. Suppose

that the fixed point xR
∗ is an admissible spiral with complex conjugate eigenvalues

re±iθ, r > 0, 0 < θ < π, where TR = 2r cos θ and DR = r2, then Pn has x = 0 if

rn+1 sin(nθ)− rn sin(n+ 1)θ + sin θ = 0, sin θ ̸= 0. (5.1)

These curves, in terms of TR and DR, are illustrated in Figure 5.7.

Remark 1: At DR = 1, i.e. r = 1, the equation (5.1) for each n ≥ 3 has two

obvious roots, θ = 2π/(n+ 1) and θ = 2π/n. (When n = 2, one of the roots θ = π is

not allowed.) Hence adjacent curves in the figure intersect at DR = 1. This means

that for each n, at the intersection point both Pn and Pn+1 are on the y-axis, and

this is only possible if Pn+1 is the origin and Pn is the preimage of the origin (0,−1)T .

Thus the orbit O,P1, . . . , Pn is periodic with period n + 1, and V ⊂ R. Note that

when DR = 1, xR
∗ is a centre.
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Remark 2: At θ = 2π/(n+1), since sinnθ = − sin θ, rn+1 sinnθ− rn sin(n+1)θ+

sin θ < 0 for all r > 1; and at θ = π/n, rn+1 sinnθ − rn sin(n + 1)θ + sin θ > 0 for

all r > 1. So for any r > 1, the root of (5.1) has π/n < θ < 2π/(n + 1) for each n.

Therefore for any r > 1, as n → ∞, θ → 0 and thus the curves xPn = 0 in DR > 1

converge to T 2
R = 4DR, where the fixed point xR

∗ becomes a node with two real and

equal eigenvalues. Also, θ = 2π/(n+ 1) when r = 1 for each xPn = 0, so θ converges

to 0 with the rate 1/n and the curves converge with 1/n2.

Along each curve xPn = 0, the position of Pn is (0, qn)
T , where

qn =
rn+1 sin(nθ)

sin θ
= −1 +

rn sin(n+ 1)θ

sin θ
(5.2)

and Pn+1 = (1 + qn, 0)
T . Since for any r > 1, π

n
< θ < 2π

n+1
, sin(n + 1)θ is negative,

hence qn < −1 and Pn+1 ∈ L. In this case, to show that V is invariant, we only need

to check whether Pn+2 = F (Pn+1) is inside the polygon V . Pn+2 = (TL(1 + qn) +

1,−DL(1 + qn))
T , and note that, even though the position of Pn+2 depends on qn

which is dependent of TR and DR, Pn+2 lies on the straight line

y = −DL

TL

(x− 1). (5.3)

When DR = r2 = 1, θ = 2π
n+1

, Pn+1 = O and so Pn+2 = P1 = (1, 0)T which is on (5.3).

Given DL and TL, as we increase r along xak = 0, ak+2 moves along (5.3), possibly

monotonically (See Figure 5.8).

We want to show how the set V loses stability. Clearly, in the area expansion case

that we have, invariant regions and attractors do not always exist.

Lemma 5.4.1. If an invariant region exists, then

1 ≤ 1

|DL|
+

1

|DR|

.
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Figure 5.8: The path of Pn+2 as DR is increased along xPn = 0.

Proof. Suppose that an invariant region V exists, and VL and VR are the areas of the

components of V in L and R respectively. Then the areas of their images are |DL|VL

and |DR|VR and they satisfy

|DL|VL ≤ VL + VR,

|DR|VR ≤ VL + VR.

Multiply the first inequality by |DR| and the second by |DL| and add together gives

|DL||DR|(VL + VR) ≤ (|DL|+ |DR|)(VL + VR)

⇒ 1 ≤ 1

|DL|
+

1

|DR|
.

This is a very rough condition for Dα, nonetheless it shows that given any DL the

set loses stability if DR is too large.

Lemma 5.4.2. Suppose that xL
∗ is an admissible saddle, then for each n, V =

P1 . . . Pn+1 loses stability if Pn+2 crosses the side PnPn+1.

Proof. Suppose that the fixed point xL
∗ exists in L and is a saddle, which requires

TL > 1 + DL and TL > −(1 + DL), then it has eigenvalues −1 < s− < 0 < 1 < s+
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and the local stable manifold of xL
∗ is the line

y = −s+x+
s+ −DL

1− TL +DL

(5.4)

which has a negative slope.

If Pn+2 is on (5.4) (note that now (5.3) has a positive slope since TL > 0, DL < 0),

Pn and Pn+1 also have to be on (5.4), so the line segment PnPn+1 coincides with

(5.4). Also, Pn+2 then lies between Pn and Pn+1 and the images stay on this stable

manifold converging to xL
∗ . On the other hand, if xL

∗ is on the line PnPn+1, then

the image Pn+1Pn+2 has to contain xL
∗Pn+1 and so Pn+1Pn+2 is contained in PnPn+1

which coincide with (5.4). If qn decreases further, Pn+2 crosses the stable manifold of

xL
∗ , then the images diverge to infinity. Therefore, given DL and TL, as we increase r

along xPn = 0 (and hence changes qn), if Pn+2 leaves the polygon V = P1P2 . . . Pn+1

through the side PnPn+1, then V loses stability.

Next we want to show that there exist values of TR and DR for this to occur.

Lemma 5.4.3. For each n ≥ 3, there exists at least one (DR, TR) on the curve

xPn = 0 where V loses stability. Moreover, these parameter values converge to DR = 1

and TR = 2 as n → ∞.

Proof. When Pn+2 is on (5.4), Pn is the y-intercept of (5.4), i.e.

qn =
rn+1 sinnθ

sin θ
=

s+ −DL

1− TL +DL

. (5.5)

Recall that TL = s+ + s− and s− < 0 < s+, so
s+−DL

1−TL+DL
= − s−−TL+DL

1−TL+DL
< −1. When

r = 1, qn = −1. If we rewrite (5.1) as rn(r sinnθ − sin(n + 1)θ) + sin θ = 0, we

can see for any given n ≥ 3, as r → ∞ along xPn = 0, r sinnθ − sin(n + 1)θ → 0

at the same time sinnθ → 0, this means that θ → π
n
. But sin(n + 1)π

n
̸= 0, so for

r sinnθ − sin(n + 1)θ to tend to 0, sinnθ = O(r−1) as r → ∞ so that r sinnθ does

not tend to 0. Recall again that sinnθ < 0 and sin θ ̸= 0 since π
n
< θ < 2π

n+1
, then

rn+1 sinnθ
sin θ

→ −∞ as r → ∞ along xPn = 0. Therefore given any TL and DL and n ≥ 3



CHAPTER 5. BIFURCATIONS OF ATTRACTORS 96

there must exist at least one pair of parameters DR and TR on xPn = 0 where (5.5)

holds and the polygon V loses stability.

For the second part of the lemma, we claim that for any r > 1, as n → ∞,

qn → −∞. Suppose not, then as n → ∞, sinnθ must tend to 0 much quicker than

sin θ tending to 0 and rn+1 tending to infinity, which means θ ∼ π
n
as n → ∞. But

then sin(n+1)θ ∼ − sin π
n
∼ π

n
and so r sinnθ−sin(n+1)θ tends to 0 much slower than

r−n that we need in (5.1). Therefore as n → ∞, qn → −∞, hence the parameters

DR and TR on each xPn = 0 where (5.5) holds for given DL and TL converge to r = 1

and θ = 0, i.e. DR = 1, TL = 2, eventually.

Finally, we can show that Lemma 5.4.2 describes the only way the polygon V

loses stability.

Proposition 5.4.4. Suppose that xL
∗ is an admissible saddle and TL ≥ −DL, then

along xPn = 0 for each n ≥ 3, V is invariant and loses stability if and only if Pn+2

crosses the boundary PnPn+1, when DR and TR satisfy (5.5).

Proof. If TL ≥ −DL, then the y-intercept of (5.3) DL

TL
is greater than or equal to −1.

Since qn ≤ −1 along xPn = 0 for r > 1, Pn = (0, qn)
T is below y = −1 on the y-axis.

Hence the path of Pn+2 is always above the line P1Pn, and so Pn+2 is contained in

the polygon V until it meets the boundary PnPn+1. (See Figure 5.8) Therefore, given

DL and TL as described, the (n + 1)-sided polygon V is an invariant region, and it

loses stability if an only if Pn+2 is on the boundary PnPn+1, when DR and TR satisfy

(5.5).

So far we have only considered the invariant set V along the curves (5.1), how

does this set change as (DR, TR) moves across the curves?

Given some parameters DL, TL, DR, TR and n, so that P1, . . . , Pn−1 ∈ R, Pn is

on the critical line, Pn+1 ∈ L and Pn+2 is contained in the polygon V so that it is

an invariant region. If we move DR and TR across xPn = 0 in the parameter space,

Pn moves across the switching surface from one side to another. Suppose that we
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(a) (b)

Figure 5.9: The perturbed invariant set V ′.

perturb DR and TR slightly above the curve xPn = 0 so that the perturbed P ′
n is in

R, then the line segment joining P ′
n and P ′

n+1 intersects the critical line at some point

Q0, which maps to the x-axis at Q1. Since the map is smooth in the parameters

and continuous in the variables, for small changes in the parameters, P ′
n and Q0 are

close to the unperturbed position Pn, and the images P ′
n+1 and Q1 are also close to

Pn+1, so Q1 ∈ L. Let V ′ be the perturbed, (n + 2)-sided polygon P ′
1P

′
2 . . . P

′
n+1Q1.

(Figure 5.9(a)) Since Pn+2 ∈ int(V ), for small perturbations, Pn+2 ∈ int(V ′), hence

by continuity again P ′
n+1 and Q1 map to the interior of V ′ close to Pn+2. Therefore

V ′ maps to itself again and the absorbing region is stable.

On the other hand, if the parameters are perturbed so that P ′
n ∈ L, then Q0 is

the intersection of the line segment joining P ′
n−1 and P ′

n at the critical line. This

time, we let V ′
R = OP ′

1 . . . P
′
n−1Q0 ⊂ R, then F (V ′

R) is the polygon P ′
1P

′
2 . . . P

′
nQ1.

By continuity as before, P ′
n+1 and Q1 map to the interior of F (V ′

R), but note that

P ′
n+1 and hence the line segments P ′

n+1P
′
n and P ′

n+1Q1 are not necessarily contained

in F (V ′
R). In which case, F (V ′

R) maps to F 2(V ′
R) = P ′

1 . . . P
′
n+1Q1 which has n + 2

sides. (Figure 5.9(b)) V ′ = F 2(V ′
R) then maps to itself and is an invariant region

again. If P ′
n+1 ∈ F (V ′

R), then the (n+ 1)-sided polygon F (V ′
R) is invariant.

Therefore when P1, . . . , Pn−1 ∈ R, Pn is on the critical line, and Pn+2 is contained

inside the invariant polygon V , then it persists under small perturbations in param-

eters, along and across the curve xPn = 0. As Pn moves across the critical line from
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left to right, the number of sides of the polygon either changes (continuously) from

n + 1 to n + 2, or from n + 2 to n + 1 to n + 2, depending on the position of Pn+1

when Pn ∈ L.



Chapter 6

An Example: Coupled Systems

and Synchronization

In previous chapters we discussed some bifurcation phenomena that occur in piecewise

smooth systems, in this chapter we study a particular example which the system is

coupled by a piecewise smooth map, and use the theory of border collision bifurcations

to explain some of the phenomena first addressed in [73].

6.1 Introduction

Synchronization in coupled dynamical systems and stability of synchronized states

have been studied for some time. Many of the examples considered are two-dimensional

and involve coupling identical nonlinear systems.

Pikovsky and Grassberger [73] introduced the system

xn+1 = (1− ϵ)fa(xn) + ϵfa(yn)

yn+1 = ϵfa(xn) + (1− ϵ)fa(yn)
(6.1)

99
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where ϵ ∈ [0, 1
2
] and fa : R → R is the skew-tent map

fa(z) =


az if z ≤ a−1

a
a−1

(1− z) if z > a−1

a > 1. (6.2)

This system then has two switching surfaces x = a−1 and y = a−1.

First note that the unit square S = [0, 1]2 is invariant under (6.1) and (6.2), and

henceforth all remarks will be confined to the map restricted to S. The system has

a synchronized state in which xn = yn for all n ∈ N, and if (xn, yn)
T = (zn, zn)

T

then (xn+1, yn+1)
T = (fa(zn), fa(zn))

T , which geometrically corresponds to motion

on the diagonal in R2, and is governed by the one-dimensional skew-tent map fa.

When ϵ = 1
2
, then given any starting position (x0, y0)

T , x1 = y1 = 1
2
(fa(x0) +

fa(y0)), so every orbit is mapped to the synchronized state. If a is regarded as

fixed, then as ϵ decreases, some orbits in the synchronized state lose stability in

the transverse direction although, typical, synchronized orbits remain transversely

stable. In other words, the synchronized state loses asymptotic stability and becomes

a Milnor attractor (see below) which attracts almost all orbits. As ϵ decreases further

the typical orbits in the synchronized state lose stability in the transverse direction

through a blowout bifurcation, and finally all synchronized orbits become transversely

unstable [73, 3, 48]. In this system it is possible to explicitly determine the bifurcation

values and the transverse stability of any periodic orbit in the synchronized state. It

is therefore a good example to use in exploring synchronization in coupled systems.

Glendinning [40] showed that, for appropriate choices of a, between the parameters

of ϵ which the first synchronized orbit loses transverse stability and the blowout

bifurcation, where the synchronized state is a Milnor attractor, there is a larger

invariant set, containing the synchronized state, which is transitive and where periodic

orbits are dense. Moreover, this set becomes the attractor of almost all orbits after

the blowout bifurcation.
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Recall that a set A is a Milnor attractor if its basin of attraction B(A) has non-

zero Lebesgue measure and there is no compact proper subset A′ of A whose basin

coincides with B(A) up to a set of zero measure. So, even though B(A) may contain

no neighbourhood of A, an initial condition taken in a small neighbourhood of A still

has a positive probability of being attracted to A.

In this example, there are two switching surfaces and they intersect each other.

One would expect the dynamics to be more complicated than when there is only one

switching surface. We observe that, as ϵ varies, fixed points or periodic orbits in the

system (6.1) and (6.2) may cross or collide the switching surfaces x = a−1 or y = a−1,

and various bifurcations occur. Our aim here is to study the change in the geometry

of the topological attractors as the synchronized state loses asymptotic stability, in

particular the creation of non-synchronized periodic orbits.

6.2 Blowout bifurcations

Suppose that we have a dynamical system Xn+1 = F (Xn), F : Rm → Rm with

parameter ν ∈ R, such that a linear subspace N ⊂ Rm is invariant under the map for

all ν ∈ R. Suppose that A is an attractor contained in N for ν < 0. If A loses stability

in the direction transverse to N for ν > 0 and ceases to be an attractor, we say it

undergoes a blowout bifurcation at ν = 0. If there are no nearby attractors after the

blowout the bifurcation is subcritical, and supercritical if there are attractors that

branch from A for ν > 0. Such a bifurcation occurs when the average Lyapunov

exponent changes sign. In the system (6.1) and (6.2), it is possible to compute

the Lyapunov exponents explicitly and hence all the bifurcation values. As pointed

out earlier, the dynamics of a synchronized orbit xn = yn may be described by the

dynamics of points under the one-dimensional map zn+1 = fa(zn). The form of the

coupling between the maps means that the stability of a synchronized state in the

system can be determined from the stability of the corresponding one-dimensional

map [28, 86, 29, 30, 31, 38].
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Let z ∈ [0, 1], then the Lyapunov exponent of z under iteration of fa is the limit

λ(z) = lim
n→∞

1

n

n−1∑
k=0

log |f ′
a(f

k
a (z))| (6.3)

provided the limit exists. From Birkhoff’s ergodic theorem, if A is a uniquely ergodic

invariant set with invariant measure m, then the Lyapunov exponent of A is

λ(A) =
1

m(A)

∫
A
log |f ′

a(x)|dm. (6.4)

That means, for almost all initial conditions in A, the Lyapunov exponent defined by

(6.3) exists and has the value of λ(A). From [40], the unit interval I = [0, 1] is indeed

uniquely ergodic and the invariant measure is a Lebesgue measure, furthermore,

λ(I) = log a− (1− a−1) log(a− 1). (6.5)

In the full two-dimensional system (6.1) and (6.2), the Jacobian matrix has eigen-

vectors (1, 1)T and (1,−1)T , which correspond to the synchronized direction and the

transverse direction respectively, and the eigenvalues are of the form µ and (1−2ϵ)µ.

Therefore a synchronized orbit has two Lyapunov exponents: one, in the synchro-

nized direction, is the Lyapunov exponent under the one-dimensional map fa. The

second one is in the transverse direction,

λ⊥(z) = log |1− 2ϵ|+ λ(z) (6.6)

provided λ(z) exists. From (6.5) and (6.6) we also obtain λ⊥(I) = log |1−2ϵ|+λ(I).

For a > 1, λ(I) > 0, thus there are values of ϵ at which λ⊥(I) is positive, which means

that the synchronized state is unstable in the transverse direction. We therefore
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obtain the blowout bifurcation value where λ⊥ changes sign. Let

ϵb =
1

2
(1− e−λ(I))

=
1

2
(1− (a− 1)

a−1
a

a
), (6.7)

then the blowout bifurcation occurs as ϵ is reduced through ϵb. Note that (6.5) holds

only for almost all points. For infinitely many other orbits, in particular for any

periodic orbit, the limit in (6.3) also exists, but their values are different from (6.5).

For example, consider the fixed points z = 0 and z = a
2a−1

, we have λ(z) = log a and

λ(z) = log a
a−1

respectively. Also, from (6.3) and (6.6), it is easy to see the bifurcation

value at which a synchronized periodic orbit of the full two-dimensional system loses

transverse stability. The two fixed points (0, 0) and ( a
2a−1

, a
2a−1

) become transversely

unstable as ϵ is decreased through a−1
2a

and 1
2a

respectively. Since |f ′
a| takes either the

value a or a
a−1

, for a > 1, λ(z) = log a and λ(z) = log a
a−1

are in fact the minimum

and the maximum values of the Lyapunov exponent (if 1 < a < 2 then λ(z) = log a
a−1

is maximum, minimum if a > 2). Therefore ϵ = a−1
2a

and ϵ = 1
2a

are the values of ϵ

where the first and the last synchronized orbits lose their transverse stability. The

following lemma then comes from [39, 48].

Lemma 6.2.1. Let (α1, α2) = (a−1
2a

, 1
2a
) if a ∈ (1, 2) and (α1, α2) = ( 1

2a
, a−1

2a
) if a > 2.

If a > 1 and a ̸= 2 then

(a) if ϵ ∈ (α2,
1
2
) then the synchronized state is asymptotically stable;

(b) if ϵ ∈ (ϵb, α2) then at least some of the synchronized orbits are transversely un-

stable, but the synchronized state is transversely stable;

(c) if ϵ ∈ (α1, ϵb) then at least some of the synchronized orbits are transversely stable,

but the synchronized state is transversely unstable;

(d) if ϵ ∈ (0, α1) then all synchronized orbits are transversely unstable.

Recall that the unit square S = [0, 1]2 is invariant under (6.1) and (6.2), the

critical lines x = a−1 and y = a−1 divide the square into four regions in which the
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map is affine, and so given two points in the same region, the line between them is

mapped to the line connecting their images. For convenience we shall give these four

regions names (Figure 6.1):

S1 = {(x, y) ∈ S | x ≤ a−1, y ≤ a−1}

S2 = {(x, y) ∈ S | x ≤ a−1, y ≥ a−1}

S3 = {(x, y) ∈ S | x ≥ a−1, y ≤ a−1}

S4 = {(x, y) ∈ S | x ≥ a−1, y ≥ a−1}.

Figure 6.1: The unit square S is divided into four regions by the critical lines.

Lemma 6.2.2. Let a < 2 and 1
2a

< ϵ < 1
2
, (Lemma 6.2.1 (a) with a < 2) all orbits

are attracted to the diagonal.

Proof. Given a starting point (x0, y0) ∈ S, by considering the limit of |xn − yn|, we

want to show that this tends to 0 as n → ∞ and hence the result.

Since

xn+1 = (1− ϵ)fa(xn) + ϵfa(yn)

yn+1 = ϵfa(xn) + (1− ϵ)fa(yn),

given (x0, y0), we have

|x1 − y1| = (1− 2ϵ)|fa(x0)− fa(y0)| ≤ (1− 2ϵ).
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Hence all points in S after one iteration are bounded between the line ABCD and

its reflection A′B′C ′D′ in the diagonal, as shown in Figure 6.2, where A = (0, 1−2ϵ),

B = (a−1 − (1− 2ϵ), a−1), C = (a−1, a−1 + (1− 2ϵ)) and D = (1− (1− 2ϵ), 1). Since

the map is affine in each region, a line segment in a region is mapped to another line

segment. Therefore the image of any point P between ABCD and A′B′C ′D′ is closer

to the diagonal than the image of any point on one of the line segments AB, BC

and CD which is in the same region as P . Hence we can get the maximum value of

|x2 − y2| by considering the images of A, B, C and D.

Figure 6.2: The image of any point in S is bounded between the line ABCD and its
reflection in the diagonal.

• A = (0, 1− 2ϵ), B = (a−1 − (1− 2ϵ), a−1)

|x2 − y2| = (1− 2ϵ)|fa(x1)− fa(y1)|

= (1− 2ϵ)2a

≤ (1− 2ϵ)2
a

a− 1
since a < 2.

A and B have the same value of |x2 − y2|, and so is every point on AB.

• C = (a−1, a−1 + (1− 2ϵ)), D = (1− (1− 2ϵ), 1)

|x2 − y2| = (1− 2ϵ)|fa(x1)− fa(y1)|

= (1− 2ϵ)2
a

a− 1
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Again, every point on CD has the same value of |x2 − y2|.

For points on BC, the value of |x2−y2| is bounded between (1−2ϵ)2a and (1−2ϵ)2 a
a−1

.

Therefore |x2 − y2| ≤ (1 − 2ϵ)2 a
a−1

. By repeating the same argument inductively,

|xn+1−yn+1| ≤ (1−2ϵ)((1−2ϵ) a
a−1

)n. For ϵ > 1
2a
, (1−2ϵ) a

a−1
< 1. Hence |xn−yn| → 0

as n → ∞. Thus every orbit synchronizes.

Corollary 6.2.3. Let a < 2, and ϵ > 1
2a
. If (x, y) is a periodic point then x = y. i.e.

periodic orbits only exist on the diagonal.

From now on we will focus on periodic orbits, each of which has its own bifurcation

value. The main question comes from the following theorem [40].

Theorem 6.2.4 ([40]). Let a ∈ (1
2
(1 +

√
5), 2) and let O = (0, 0), I = (1, 1), R =

(2ϵ, 1−2ϵ+2ϵ2

1−ϵ
) and R′ = (1−2ϵ+2ϵ2

1−ϵ
, 2ϵ). (See Figure 6.3) If D is the filled in quadrilateral

ORIR′ and if ϵ ∈ (ϵb,
1
2a
) then

(i) F is transitive on D (i.e. there is a dense orbit in D); and

(ii) periodic points are dense in D.

Figure 6.3: For ϵ < 1
2a
, there is a two-dimensional region where a dense orbit exists.

We have shown that for ϵ > 1
2a
, periodic orbits only exist on the diagonal, but

as soon as ϵ decrease through 1
2a
, off-diagonal periodic orbits are created and there

is a two-dimensional region in which these periodic points are dense. By direct

calculation, the area of the quadrilateral D is (1− 2ϵ)2. As ϵ tends to 1
2a

from below,
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Figure 6.4: At ϵ = 1
2a
, there is a discontinuous change in the area of the topological

attractors. (a = 1.8)

this area tends to a non-zero value (1 − a−1)2. As shown in Figure 6.4 there is a

discontinuous change in the area of the topological attractors as the synchronized

state loses asymptotic stability. In the following section we try to explain this sudden

change using what we have done on border collision bifurcations. In particular, we

show that new off-diagonal periodic orbits (infinitely many in fact) are created in

degenerate bifurcations and border collision bifurcations, and it is these orbits and

their preimages that fill the two-dimensional region.

6.3 Border collision bifurcations

For our example (6.1) and (6.2), let’s take a ∈ (1
2
(1 +

√
5), 2). Recall that we can

label the four regions in S separated by the critical lines x = a−1 and y = a−1 as

Si, i = 1, 2, 3, 4. Then we can rewrite the system as Xn+1 = F (Xn) where F (X) =
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AiX + bi and

F (X) =



a

1− ϵ ϵ

ϵ 1− ϵ

X X ∈ S1

a

1− ϵ − ϵ
a−1

ϵ − 1−ϵ
a−1

X + a
a−1

 ϵ

1− ϵ

 X ∈ S2

a

− 1−ϵ
a−1

ϵ

− ϵ
a−1

1− ϵ

X + a
a−1

1− ϵ

ϵ

 X ∈ S3

− a
a−1

1− ϵ ϵ

ϵ 1− ϵ

X + a
a−1

1

1

 X ∈ S4

(6.8)

The dynamics of the system can also be described using symbolic representation, as

for one-dimensional maps. We define the itinerary of each X as k(X) = c0c1 . . .

where c0 = j if X ∈ Sj and ci = j if F i(X) ∈ Sj, j = 1, 2, 3, 4. So we have an infinite

sequence of 1, 2, 3 and 4 corresponding to each orbit of X. Clearly if we have a

periodic orbit, the corresponding itinerary is also periodic. On the other hand, given

a periodic code of period n, say, the corresponding periodic orbit Xn, if it exists,

is obtained by solving the linear equation X = F n(X) = AX + b for some A and

b. Hence, if A has no eigenvalues equal to 1 or −1, then there exists at most one

periodic orbit with that code. For example, if the corresponding Jacobian matrix has

no eigenvalues equal to 1 or −1, a periodic orbit that involves only S1 and S4 must

be the one in the synchronized state, which is the diagonal. If not, suppose that X

is a point in the orbit, then by the symmetry of the map for x and y, its reflection in

the diagonal X ′ is also a periodic point with the same period and the same code as

X. Moreover, since the map is affine in each region, every point in the line segment

XX ′ is periodic with the same period and the same code. This violates the fact that

there is at most one periodic orbit with the same code, unless X = X ′, which means

that X is on the diagonal.

For convenience, we shall refer to periodic orbits in the form of {4} (a fixed point
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in S4), {24} (a period 2 orbit from S2 to S4), {2324} and {242442} etc..

From Corollary 6.2.3 and Theorem 6.2.4, we know that the first off-diagonal pe-

riodic orbit is created at ϵ = 1
2a

when the first synchronized periodic orbit loses

transverse stability. That is the fixed point in S4, P = ( a
2a−1

, a
2a−1

). P has eigenvalue

λsyn = − a
a−1

with eigenvector in the synchronized direction, and λtrans = − a
a−1

(1−2ϵ)

in the transverse direction. For 1
2a

< ϵ < 1
2
, λsyn < −1, −1 < λtrans < 0, therefore

P is a saddle. For ϵ < 1
2a
, λtrans < −1 and P becomes a repeller. Thus there is a

degenerate flip bifurcation at P at ϵ = 1
2a

where λtrans = −1.

For other synchronized orbits, if a periodic orbit involves S1 m times and S4 n

times, then the Jacobian matrix of Fm+n is

DFm+n = (−1)n
am+n

(a− 1)n

1− ϵ ϵ

ϵ 1− ϵ


m+n

. (6.9)

By direct calculation, one can show that the orbit loses transverse stability at

ϵ =
1

2

(
1− (a− 1)

n
m+n

a

)
. (6.10)

Furthermore, if n is odd then λtrans = −1 at the bifurcation value, so there is a

degenerate flip bifurcation; if n is even then λtrans = 1 at the bifurcation value and

there is a degenerate pitchfork bifurcation.

Remark: From (6.10), we can see that synchronized periodic orbits with the same

value of n
m+n

bifurcate at the same value of ϵ. For example, {14}, {1144}, {111444}

and {114144} etc. bifurcate at ϵ = 1
2

(
1− (a−1)

1
2

a

)
. Similarly for higher period orbits.

Also, for 1 < a < 2, as ϵ decreases from 1
2
, orbits with larger n

m+n
bifurcate first, that

is, orbits with larger proportion of 4s.

At ϵ = 1
2a
, since λtrans = −1, the line of the corresponding eigenvector through

P intersects the two critical lines at Q = ( 1
a
, 2a

2−2a+1
a(2a−1)

) and Q′ = (2a
2−2a+1

a(2a−1)
, 1
a
). Every

point X on the segment QQ′ except the fixed point P is a period 2 point, with
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F (X) = X ′ which is the reflection of X in the diagonal.

As for degenerate flip bifurcations for the border collision normal form described

in the previous chapter, one expects that new periodic orbits are created as ϵ decreases

further from 1
2a
. At this bifurcation value, instead of having one periodic point on

the switching surface, Q and Q′ are both on the critical lines. This period-doubled

orbit {44} can also be labelled as {24}, {43}, {23} and higher-period combinations

of them. When ϵ decreases from 1
2a
, this becomes new periodic orbits, as shown in

Figure 6.5. As ϵ increases from 0 to 1
2a
, periodic orbits with these combinations exist

and eventually merge on the critical lines at Q and Q′ at ϵ = 1
2a
. Similar diagrams for

higher periods are omitted. Note that, these orbits have reflections in the diagonal,

so {34}, {3444}, {3244} and {3234} also exist, but are again omitted in the diagram

for clearness.

This degenerate bifurcation explains the creation of the set D in Theorem 6.2.4.

At ϵ = 1
2a
, since the dynamics of the diagonal is governed by the one-dimensional

skew-tent map, the preimages of the fixed point P is dense on the diagonal, hence

there are infinitely many preimages of P and the line segment QQ′ in S1 and S4, and

each point on them are eventually periodic and not converging to the synchronized

state. When ϵ is perturbed below the bifurcation value, the eigenvalue of the fixed

point in the transverse direction becomes less than −1. Also, the following lemma

has been proved in [40].

Lemma 6.3.1. Let a ∈ (1
2
(1 +

√
5), 2) and ϵ ∈ (0, 1

2a
). Let U be an open convex

polygon in D. Then there exists k > 0 and V ⊆ U such that F k|V is affine and

F k(V ) intersects the diagonal.

Therefore, for any open convex polygon U ∈ D, there exists p ≥ 0 and V1 ⊆ V

such that F k+p|V1 is affine and F k+p(V1) contains the fixed point P . This set then

expands along the transverse direction and contains the new off-diagonal periodic

orbits after some iterations. Suppose that U is in the unstable set of one of these

periodic orbit, then U contains a homoclinic point to this orbit. Therefore, infinitely
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Figure 6.5: As ϵ increases, periodic orbits merge at ϵ = 1
2a
. (a = 1.8)
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many periodic orbits, as required in Theorem 6.2.4, are created in the degenerate

bifurcation at ϵ = 1
2a
.

As ϵ decreases from 1
2a
, more off-diagonal periodic orbits are created via degen-

erate bifurcations when other synchronized periodic orbits lose transverse stability.

Nonetheless, a lot of other periodic orbits exist and are not created in this way. Note

that, at ϵ = 0, the system becomes xn+1 = fa(xn) and yn+1 = fa(yn), and since the

one-dimensional map fa is chaotic and the periodic orbits are dense, we have the

following lemma.

Lemma 6.3.2. When ϵ = 0, there exists a periodic orbit for each periodic kneading

sequence.

Therefore, instead of decreasing ϵ from 1
2a
, it is easier to start with some periodic

orbit at ϵ = 0, then gradually increase ϵ and see when the orbit is destroyed.

There are 20 distinct period 3 orbits, and they behave in various different ways.

{114} and {144} are in the synchronized state which we have discussed the way they

bifurcate above. As the orbit {144} loses stability, {124} and {134} are created in a

degenerate fold bifurcation. By calculating the orbits explicitly, one can check that

{112} and {122} (and so {113} and {133}) exist on the y-axis at ϵ = 0 only. For

ϵ > 0 these orbits do not exist in S. That leaves 6 pair of orbits, {231} and {431},

{232} and {432}, {442} and {242}, and their reflections in the diagonal. These

orbits exhibit border collisions in the same way. We here show the bifurcation of

{442} and {242} in Figure 6.6. There is a border collision pair bifurcation, as the

period 3 orbits {242} and {442} meet on the critical line x = a−1 at ϵ ∼ 0.184, after

which both orbits become virtual and disappear. Higher-period combinations such

as {(242)(442)} also bifurcate at this value.

In this chapter, we have shown that degenerate bifurcations and border collision

bifurcations occur in this coupled piecewise affine system. They are responsible for

the creation of the new periodic orbits and the more complicated motion as described

in Theorem 6.2.4 [73, 40]. This explains the sudden change in the geometry of the
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Figure 6.6: At ϵ ∼ 0.184, various orbits of the form {442} and {242} merge on the
critical line x = a−1
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topological attractor as the first synchronized periodic orbit loses transverse stability.

(Figure 6.4) We have not yet shown that, when a general synchronized periodic orbit

loses stability, which point in the orbit crosses the critical line and enters the other

region. This determines the orbits created. But we believe that this point is the one

closest to the intersection of the critical lines (a−1, a−1), as the line segment of the

transverse eigenvector through the point between the critical lines is shortest. For

example, the synchronized {14} orbit P1 = ( a
a2+a−1

, a
a2+a−1

), P2 = ( a2

a2+a−1
, a2

a2+a−1
)

bifurcates into period 4 orbit {2434} as it loses transverse stability, instead of the

orbit {1213}.



Chapter 7

Conclusions

In this thesis, border collision bifurcations in piecewise smooth discrete-time systems

are studied. Piecewise smooth maps have been used as models in various areas.

Bifurcations in such maps have little analogue in standard bifurcations in smooth

maps, and they are often more complex. We have investigated some of the bifurcation

phenomena in two-dimensional continuous piecewise smooth discrete-time systems.

The available results on border collision bifurcations in one and two-dimensional

piecewise smooth maps are summarized. For two-dimensional piecewise smooth sys-

tems, although some research have been done on their dynamics, usually the maps

are assumed to be globally contractive. For maps with area expansions, one might

expect divergent motions. We have shown that, by showing the existence of snap-

back repellers, such systems can exhibit chaotic dynamics. We have derived sufficient

conditions for the existence of simple snap-back repellers. Thus, the dynamics of

area expanding systems are not necessarily trivial. Indeed, in Chapter 4 we have

shown with some numerical examples that there can exist stable motions in piece-

wise smooth maps that is area expanding. In particular, there can be stable chaotic

motion in a map where both determinants of the Jacobian matrices (one from each

side of the border) are greater than one in modulus. We have shown that for appropri-

ate parameter values a polygonal invariant set in the phase space can be constructed.

Moreover, we use the results from standard Markov partition theory of dynamical
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systems and a generalization of the affine locally eventually onto (ALEO) property

to show that this set can be a chaotic attractor so that periodic orbits are dense and

there is a dense orbit. We believe that such attractors exist over much larger regions

of parameter space, we hope that further research can be done and that the use of the

ALEO property will eventually allow us to prove the existence of these attractors.

Various bifurcation phenomena of the stable dynamics of the border collision nor-

mal form are then discussed. When an external fixed point changes from a saddle to

an unstable node in a degenerate flip bifurcation, new unstable periodic orbits are

created on the switching surface. This is different to the standard periodic-doubling

bifurcations for smooth systems. If an absorbing region as described exists, the

dynamics around these new periodic orbits complicates the geometry of the basin

boundary. We have given conditions on the number of sides of the polygon con-

structed in the way described in Chapter 4. When the basin boundary meets the

sides of the polygon, the system loses stability in a boundary crisis.

However, we wish we had had time to study more about these sets. Although for

appropriate parameter values we can construct a polygon such that it (or some finite

image of it) is invariant, this set is not necessarily the final attracting set. This can

involve boundary crises and snap-back repeller bifurcations as described in [33]. (See

Figure 5.6) We would also like to connect this to the work of [89, 88, 80, 81].

Finally we have studied a particular example: a two-dimensional system coupled

by a piecewise affine map. We have studied its synchronization and the stability of the

synchronized state using the theory of border collision bifurcations. We have shown

that when a synchronized periodic orbit loses its transverse stability, it undergoes a

degenerate bifurcation. Then the presence of the two switching surfaces creates new

off-diagonal periodic orbits after the bifurcation. We believe that this bifurcation is

responsible for the creation of the quadrilateral where periodic orbits are dense when

the first synchronized periodic orbit loses transverse stability, which helps to explain

the question originally introduced in [73].

The dynamical behaviour of piecewise smooth systems is incredibly complex and
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rich. Even though there have been a lot of research on these systems and their bifurca-

tion phenomena, many aspects of the dynamics of such maps still remain unexplored

and to be understood. A detail classification of border collision bifurcations can be

a further research direction.

The study on three or higher dimensional piecewise smooth systems is in very

preliminary stage and very little is known. So there is a promising research opportu-

nity to study the dynamics of such maps. Also, it would be very useful for analysis

to obtain order reduction principles for border collision bifurcations so that the study

of the dynamics of multi-dimensional systems can be reduced to the study systems

of lower dimension.
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