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We briefly discuss the algorithm given in [4] intended for determining the distance
between two vertices in a commuting involution graph of a symmetric group.

We develop the algorithm in [8] for computing a subgroup of NG(X), the nor-
malizer of a 2-subgroup X in a finite group G, examining in particular the issue of
when to terminate the randomized procedure. The resultant algorithm is capable
of handling subgroups X of order up to 29 and is suitable, for example, for matrix
groups of large degree (an example calculation is given using 112× 112 matrices over
GF (2)).

We also determine the suborbits of conjugacy classes of involutions in several of
the sporadic simple groups—namely Janko’s group J4, the Fischer sporadic groups,
and the Thompson and Harada-Norton groups. We use our results to determine the
structure of some graphs related to this data.

We include implementations of the algorithms discussed in the computer algebra
package Magma, as well as representative elements for the involution suborbits.
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Chapter 1

Introduction

The use of computational techniques has a long history within group theory. Even

before the advent of the modern computer, group-theoretic algorithms were being

developed—for example Todd and Coxeter’s coset enumeration routine [27] for de-

termining the index of a subgroup was originally intended to be implemented by

hand (it appeared in 1936). Recently the introduction of dedicated computer algebra

packages, notably GAP [13] and Magma [9], has greatly increased the scope of the

discipline. We apply the potential of these resources to some problems in finite group

theory.

In Chapter 2 we discuss some background material and set out the notation that

will be used in the subsequent chapters.

In Chapter 3 we briefly explain an algorithm in [4] intended for determining

the distance between two vertices in the commuting involution graph C(G,X), where

G ∼= Sn, the symmetric group on n letters, and X is any conjugacy class of involutions.

We implement this in Magma and determine that it sometimes returns an incorrect

result.

In Chapter 4 we develop a randomised black-box algorithm to compute a subgroup

of the normalizer NG(X) in a finite group G of a 2-subgroup X. The work in [8], in

which maximal chains of subgroups of X are exploited to deliver normalizing elements,

10



CHAPTER 1. INTRODUCTION 11

forms the basis of the algorithm. Via careful selection of these maximal chains, we

improve the efficiency and likelihood of success of the routine. Details of a Magma

implementation of the algorithm are provided, as well as of example calculations

performed to demonstrate the capabilities of the algorithm, and the implementation

itself is also available: details of this are given in Appendix A.

In Chapter 5 we investigate computationally the suborbit structure of involution

conjugacy classes in several of the sporadic simple groups (and where appropriate

their automorphism groups): Janko’s group J4, the three Fischer groups and the

Thompson and Harada-Norton groups. Representative elements for the suborbits are

given, where possible as words in the standard generators of the group, and elsewhere

are provided electronically as explicit matrices or permutations (again see Appendix

A for details). We use this information to determine the diameter and disc structures

of graphs whose vertex sets are the involution conjugacy classes themselves. For J4

and Fi24 we investigate the commuting involution graph, defined as the graph where

two vertices are joined by an edge if and only if they commute. For Th and HN we

look at the point-line collinearity graph of a particular minimal parabolic geometry,

where two points of the geometry (here two involutions in a particular conjugacy

class) are joined by an edge if they are incident on a common line.



Chapter 2

Background and Notation

2.1 Algorithms

Algorithms are mostly presented in ‘pseudocode’ format, similarly to those found

in [16]. So normal coding constructs such as ‘if . . . then’ statements and ‘for’ loops

are employed, but individual statements are written in normal mathematical notation

rather than any one programming language. We note that the symbol x ← y means

that the variable x is assigned the value y. An example algorithm presented in this

style is given in Section 2.1.3.

In the following sections we discuss some relevant considerations to our use and

development of algorithms.

2.1.1 Computer implementations

The most widely used packages for computational group theory are Magma [9] and

GAP [13]. We mainly use the former for the computation carried out here, and in

particular the algorithm produced in Chapter 4 was implemented in Magma, but

GAP is sometimes employed, in particular due to the extensive library of character

tables from the Atlas [11] which are easily available to its users. The electronic files

12



CHAPTER 2. BACKGROUND AND NOTATION 13

(see Appendix A) are all in Magma format, though the files associated with Section

5.2 are also given in GAP format.

The example calculations described in Section 4.4.1 were carried out on a Unix

machine with 8 GB of memory and a 3.2 GHz processor, running Magma version

2.11-15. All computation described in Chapter 5 was carried out on a Unix machine

with 16 GB of memory and a 3.2 GHz processor, with Magma version 2.15-15 and

GAP version 4.4.10.

2.1.2 Randomised Algorithms

A randomised algorithm, as the name suggests, is an algorithm which at some point in

its execution is required to make a random choice: for our purposes this will generally

be selecting a random element of a group. The algorithm developed in Chapter 4

relies centrally on such random selections, while the results obtained in Chapter 5

were found only by frequently employing randomised searches through the group

elements.

Of course no truly random process is possible in a computer, but this problem is

beyond the scope of the current study and we generally assume the ability to select

a random integer from within a given (finite) range. Even so, no algorithm is known

that will generate uniformly-distributed random elements of a group. However, an ex-

cellent algorithm for producing a very close approximation to random group elements

is the product replacement algorithm designed by Leedham-Green and Soicher (see

Section 3.2.2 of [16]). Variations on this procedure are employed in both Magma and

GAP for this purpose, and we always assume the ability to select a random element

from a finite group in all our computation.
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2.1.3 Black-Box Groups

Despite the name, the appellation ‘black box’ in fact denotes not a type of group but

a class of algorithms designed to work with a particular type of group representation

(or rather, the absence of one). The concept was introduced in [1].

Definition 2.1. An algorithm is black-box on the group G if the elements of G are

represented as (not necessarily unique) strings of bounded length in a finite alphabet,

and given elements g, h ∈ G, the algorithm can perform only the following tasks

(i) Output a string representing gh;

(ii) Output a string representing g−1;

(iii) Test whether g = h.

The advantages and drawbacks of writing an algorithm of this type are obvious: a

black-box algorithm works without further adaptation on any type of group represen-

tation, but the cost of this is that no information can be gleaned from the particular

representation actually used (for example, from the action of a matrix group on its

associated module).

We loosen the definition slightly to allow our algorithms to select random group

elements as discussed in the previous section (the product-replacement algorithm is

black-box in any case), and to allow the calculation of the order of a group element,

which is impossible to do efficiently in the pure black-box setting but can be achieved

relatively easily in most group representations. This more relaxed definition is fairly

common, see for example [15].

As an example, we explain the randomised method presented in [10] for comput-

ing elements commuting with a given involution, since it forms the linchpin of the

algorithm developed in Chapter 4 and is employed frequently in Chapter 5 for its

original purpose of computing the centralizer of an involution. It is based on the

following simple result (from Section 2.2 of [10]).
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Lemma 2.2. Suppose t ∈ G is an involution and h ∈ G is an arbitrary element. Let

n be the order of [t, h]. Then if n is even, [t, h]
n
2 , [t, h−1]

n
2 ∈ CG(t) while if n is odd,

h[t, h]
n−1

2 ∈ CG(t).

From this observation we build Algorithm 1.

Algorithm 1 CentralizingElement

Input: G a black-box group;
t an involution in G.

1: h ← Random(G)
2: n ← Order([t, h])
3: if n is even then
4: c ← [t, h]

n
2 or [t, h−1]

n
2 {Choose one at random, or return both.}

5: else
6: c ← h[t, h]

n−1
2

7: end if
Output: c, an element commuting with t.

We see that the only calls to the group G made by Algorithm 1 are to select

a random element h, compute products and inverses when forming the commutator

[t, h] and the centralizing elements, and to determine the order of [t, h]. So Algorithm

1 is black-box.

Using Algorithm 1 repeatedly we can build up a set S of elements centralizing

our involution t and form the group H = 〈S〉 ≤ CG(t). However, this approach

falls short of producing a fully-fledged algorithm for computing the centralizer of an

involution because it is not clear when to terminate the algorithm: how can one test

whether 〈S〉 = CG(t)? In [10], it is proved that the centralizing elements produced

by odd-order commutators [t, h] are in some sense uniformly distributed through

CG(t) and this fact can be used to ensure the full centralizer has been generated

to within an arbitrarily high probability (creating what is known as a Monte Carlo

algorithm). However, as the following result (explained in Section 3 of [10]) demon-

strates, sometimes such odd-order commutators never arise and in those cases we will

never unearth the full centralizer.

Lemma 2.3. Suppose t ∈ G is an involution, and suppose t ∈ O2(G) but CG(t) �

O2(G). Then a set S of elements formed by Algorithm 1 will never generate CG(t).
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Proof. Let h be an arbitrary element of G. The commutator [t, h] = tth ∈ O2(G)

(since t ∈ O2(G) and O2(G) is normal in G). So it has even order—specifically

two-power order. Then Algorithm 1 returns a power of [t, h], which is in O2(G). So

all elements formed will lie in CG(t) ∩ O2(G), which is not the full centralizer by

assumption.

In Section 4.3 we briefly examine the potential repercussions of this problem for

our work.

2.2 Notation

The Atlas of Finite Group Representations [11], and its online counterpart [29], pro-

vide the vast majority of our data concerning the sporadic simple groups (see section

2.3), and as such we employ many of its notational conventions. So Sn represents

the symmetric group on n letters, and An the alternating group. Elementary abelian

groups are denoted by their order in the form pn, while p1+n (for n even) denotes an

extraspecial group of that order (that is, a group whose center is cyclic of order p

and has an elementary abelian group of order pn as its factor group) with the two

distinct types distinguished by a subscript + or − symbol. The more general case

pm+n denotes an instance of pm.pn (see below). An integer m denotes the cyclic group

of that order.

We also use the Atlas names for the sporadic simple groups. The following rules

apply for group extensions:

• A×B denotes the direct product of A and B;

• A.B denotes any group with A as a normal subgroup whose factor group is B;

• A : B denotes specifically that the group is the semidirect product of A and B;

• A·B denotes any case of A.B except a semidirect product.
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The Atlas also includes a standard for naming conjugacy classes, which we adopt.

A class of elements is given a name of the form nX, where n is the order of an

element of that class, and X is a letter from the alphabet A,B, C, . . . , distinguishing

the classes of elements of the same order, and ordering them by increasing length. So

for example, class 2A is the smallest class of involutions in its group.

2.3 Sporadic simple groups

In Chapter 5 we are concerned with determining the structure of the involutions in

various of the sporadic simple groups. We recall the famous classification of the finite

simple groups.

Theorem 2.4. Let G be a finite simple group. Then, up to isomorphism, G is either

in of the following infinite families:

• the cyclic groups Cp (p prime);

• the alternating groups An on n letters (n ≥ 5);

• the Chevalley and twisted Chevalley groups or the Tits group;

or G is one of 26 specific ‘sporadic simple groups’.

As might be expected from their exceptional status, much about the sporadic

groups remains unknown. Although the smaller sporadics such as the Mathieu groups

can easily be investigated computationally as they possess small-degree representa-

tions and have relatively modest order, some of the larger groups present more of a

challenge. However, there are some sources of information available.

2.3.1 Character tables

The character tables for many finite simple groups, including all of the 26 sporadic

groups, have been calculated and are available in the Atlas of Finite Groups [11].
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They are also available in GAP [13]. A great deal of information regarding a group

can be gleaned from considering its character table, and we make frequent use of this

data in Chapter 5

2.3.2 Standard generators

To ensure that results derived computationally are able to be verified independently,

it is desirable that the group generators used are easily available to others. To this

end, for the sporadic simple groups, Wilson [30] introduced the concept of standard

generators.

Generators a, b for each of the sporadic simple groups are chosen in such a way that

they can be easily defined by stating the classes of a, which is always an involution, of b

and ab, and the order of at most one other short word in the generators. For example,

Janko’s sporadic simple group J4 has standard generators a, b where a ∈ 2A, b ∈ 4A

and abab2 has order 10. Where a sporadic group G is not equal to its automorphism

group, standard generators for Aut(G) are chosen in the same way and are denoted

c, d.

The online Atlas of Finite Group Representations [29] contains generators in

matrix and/or permutation representations for many finite simple groups, including

all of the sporadic groups except the Monster group. The generators for the sporadic

groups are always standard generators. So where possible, in Chapter 5 we specify

elements in the sporadic simple groups in terms of words in the standard generators.

For example, while the work on the group HN in Section 5.4 was carried out in the

132-dimensional GF (4)-representation, the words provided can equally be used in the

degree 1,140,000 permutation representation (or any other representation provided

in the online Atlas).
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2.3.3 Involutions in the sporadic groups

In Chapter 5, we study in detail the involution structure of several of the 26 sporadic

simple groups. This is in part motivated by the study of commuting involution graphs

which are defined as follows.

Definition 2.5. Let G be a group and t ∈ G an involution. Set X = tG. The

commuting involution graph C(G,X) is the undirected graph with X as its vertex set

and two distinct vertices x, y ∈ X joined by an edge if and only if they commute. Let

d(−,−) be the usual graph-theoretic distance metric. Where C(G,X) is connected,

we define the diameter of C(G,X) to be the largest value of d(x, y) for any x, y ∈ X,

and the ith disc of C(G,X) around t is defined as

∆i(t) = {x ∈ X | d(t, x) = i}.

Since X is a conjugacy class, C(G,X) is a vertex-transitive graph, so whatever

our choice of t, the discs of the graph are the same sizes, and so we generally begin

study of a commuting involution graph by choosing and fixing a base vertex t ∈ X

without loss of generality.

Commuting involution graphs have been studied for a wide variety of finite groups.

The diameters of these graphs (they are almost all connected) have been determined

for G a symmetric group [4], which we discuss in Chapter 3; a general finite Coxeter

group [3]; certain symplectic groups [12] and others. In [2], the diameter and disc

sizes of C(G,X) were determined, using a mixture of computational and theoretical

techniques, for all but six pairs (G,X) where G is a sporadic simple group or an

automorphism group of such, and X is a conjugacy class of involutions in G. As a

result of the present work we will be able to deal with three of the outstanding cases.

Our direct concern, however, is determining the suborbit structure of the involu-

tion classes in the groups we consider. That is, we wish to learn about the orbits of

the conjugation action of CG(t) on X for t an arbitrary element of X. The following

easy result shows how the two are intimately related.
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Lemma 2.6. Let G be a finite group, X a class of involutions in G and t ∈ X. Then

every disc ∆i(t) of the commuting involution graph C(G,X) is a union of CG(t)-orbits

of X (as CG(t) acts by conjugation on X).

Proof. Let x ∈ ∆i(t). So d(t, x) = i, that is there exists a sequence t = x0, x1, . . . , xi =

x such that xj, xj−1 commute for all j = 1, . . . , i, and no shorter such sequence exists.

Let c ∈ CG(t). Then tc = t and so we have the sequence t = xc
0, x

c
1, . . . , x

c
i = xc with

adjacent terms commuting, and hence d(t, xc) ≤ i. But if a shorter sequence existed

joining t and xc then conjugation by c−1 would give d(t, x) < i, a contradiction. So

xc ∈ ∆i(t) as required.

For fifteen of the sporadic groups—those furnished with small-degree permuta-

tion representations—and their automorphism groups, the suborbits for all involution

classes were computed in [5]. Of the remaining eleven, Conway’s group Co1 is dealt

with in [6], and another six are determined here: J4, Fi22, Fi23, Fi ′
24 , Th and HN .



Chapter 3

Commuting distance in the

symmetric groups

In [4], results are determined regarding the commuting involution graph C(G,X)

where G ∼= Sn and X is an arbitrary conjugacy class of involutions (see Definition 2.5

for the definition of this graph). So X = aG where a = (12)(34) . . . (2m− 1 2m) with

2m ≤ n. We summarize the main results regarding the connectedness and diameter

of these graphs here. (Theorems 1.1 and 1.2 of [4].)

Theorem 3.1. The graph C(G,X) is disconnected if and only if n = 2m+1 or n = 4

and m = 1. If C(G,X) is connected then its diameter is at most 4, being exactly 4

only when 2m + 2 = n ∈ {6, 8, 10}.

A further result given in [4] is an algorithm which it is claimed determines whether

two involutions have distance at most two in C(G,X). Without loss of generality we

assume one of these involutions is t ∈ X, our base vertex in C(G,X), and call the other

x. We discuss the algorithm in the following sections, first introducing the concepts

and notation used and then sketching the argument that underlies it. In Section 3.3

we uncover circumstances where this procedure delivers an incorrect result, claiming

that d(t, x) ≥ 3 when in fact we can find an element y ∈ X ∩ CG(t) ∩ CG(x).

21



CHAPTER 3. COMMUTING DISTANCE IN THE SYMMETRIC GROUPS 22

Figure 3.1: Example x-graph

G ∼= S18; t = (12)(34)(56)(78)(9 10)(12 13)(14 15);

x = (13)(24)(56)(11 12)(13 14)(15 16)(17 18).

3.1 Determining d(t, x), t, x ∈ X

Before we begin discussion of the algorithm itself, we introduce the concept of an

x-graph.

Definition 3.2. Let x ∈ X. The x-graph Gx (relative to our fixed involution t) is the

graph with the orbits of t as its vertices, with two vertices v1, v2 joined by an edge if

and only if there exist α ∈ v1 and β ∈ v2 such that x interchanges α and β. Clearly

all the orbits of t have size 1 or 2, and we distinguish these by colouring vertices

corresponding to the former white, and to the latter black. A pair of black vertices

may be joined by two edges where their associated orbits are {α, β} and {γ, δ} and x

interchanges α and γ as well as β and δ.

An example x-graph is given in Figure 3.1. We note the following properties of

the x-graphs (Lemma 2.1 of [4]).

Proposition 3.3. Suppose t = (12)(34) . . . , (2m− 1 2m) ∈ Sn, X = tSn. Then

(i) For any x ∈ X, the x-graph Gx has exactly m black vertices (each with valency

at most 2); n − 2m white vertices with (each with valency at most 1); and m

edges.

(ii) All graphs satisfying the conditions in (i) are realised as the x-graphs of elements

x ∈ X.

(iii) Two elements x, y ∈ X are CG(t)-conjugate if and only if their x-graphs Gx and



CHAPTER 3. COMMUTING DISTANCE IN THE SYMMETRIC GROUPS 23

Gy are isomorphic (where an isomorphism here is understood to preserve vertex

colours).

An immediate consequence of 3.3(iii) and Lemma 2.6 is that elements with isomor-

phic x-graphs lie in the same disc of C(G,X), and so the algorithm for determining

whether d(t, x) ≤ 2 exploits these x-graphs. The general strategy is to use Gx to

construct the x-graph Gy for an element y ∈ X commuting with both t and x. If such

a y exists then clearly d(t, x) ≤ 2. In the following section we consider how to find

such an element.

3.2 Constructing y ∈ X ∩ CG(t) ∩ CG(x)

Given an element x ∈ X and its x-graph Gx, we are attempting to construct Gy for

an element y ∈ X commuting with both t and x, that is an element in ∆1(t)∩CG(x).

We first look at the restrictions placed on Gy by the condition that y ∈ ∆1(t), in the

following easily verified result (Lemma 2.3 of [4]).

Lemma 3.4. Suppose y ∈ X. Then y ∈ ∆1(t) ∪ {t} if and only if every connected

component of Gy is one of , , , and .

So we see that d(t, x) ≤ 2 if and only if we can construct an x-graph Gy consisting

only of the connected components above, such that y commutes with x.

Since the vertices of Gx and Gy both represent the orbits if t, we have a corre-

spondence between the vertex sets of the two graphs. In Table 3.1 we list all possible

configurations of edges in Gy so that x and y commute, next to the corresponding

sections of Gx. Clearly for any part of Gx, the corresponding part of Gy may contain

no edges, and such configurations are omitted. Two black chains of equal length can

also be paired similarly to the configuration in row 7 of Table 3.1, but this uses the

same total number of edges in Gy as resolving both chains as in rows 2 and 3, so this

is omitted also.
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Table 3.1: Arrangements of edges in Gy

Gx part Gy part
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Given an element x ∈ X, we partition the connected components of Gx (or in one

case, pairs of connected components) into various sets based on the properties of the

possible associated components of Gy in Table 3.1.

Definition 3.5. Let C be the set of connected components of Gx, x ∈ X. A component

containing of at least one edge and with no circuits is called a chain. We partition C
into the following sets:

P (x) is a maximal set of pairs of chains, each the same length and with precisely one

white vertex (as in row 7 of Table 3.1);

U(x) consists of chains with precisely one white vertex that cannot be paired up as

above;

N(x) consists of all chains with no white vertices;

F (x) consists of components having no edges (that is, of isolated vertices);

R(x) consists of all other connected components: chains with two white vertices and

circuits of black vertices.

We further set b(x) and w(x) to be the number of black and white vertices respectively

in F (x).

To ensure that the element y formed lies in X, we need to ensure Gy has the same

number of edges as Gx, namely m. So we need a method for choosing how to replace

each component of Gx in Gy so as to preserve the overall number of edges.

We see from Table 3.1 that components in R(x) can be replaced with the associ-

ated graphs when constructing Gy without affecting the number of edges. Components

in N(x) and pairs of chains in P (x) can be replaced with the associated subgraphs

of Gy at the cost of increasing the number of edges by 1. Components in U(x) do not

appear in the table as they can only be replaced in Gy by the subgraph containing no

edges (and of course this can also be done for any other component). Black vertices

and pairs of white vertices in F (x) can take edges in Gy.
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In Algorithm 2 we present the routine from [4] for determining whether d(t, x) ≤ 2.

The algorithm essentially attempts to construct the graph Gy for y ∈ X commuting

with t and x: when a step refers to ‘cancelling’ a component it is understood that it

will be replaced in Gy by the subgraph displayed in Table 3.1, while if a component

has edges cancelled from it, that component will be replaced by the subgraph with no

edges. Where one component in P (x) ∪ N(x) is left unaffected when the algorithm

terminates it too will be replaced by the subgraph with no edges, while components

in R(x) left unaffected are replaced by the subgraph in Table 3.1. The value `(x)

computed is then the number of edges that must be added to black vertices or between

pairs of white vertices in F (x) so that Gy has m edges as required. If this value is

greater than b(x)+w(x)/2 we see that not enough edges can be so added and therefore

d(t, x) > 2. For brevity, ‘component’ here refers to a connected component or double

chain in P (x)

In Proposition 3.6 of [4], it is claimed that Algorithm 2 fails to produce such a y

if and only of none exists, that is, that `(x) ≤ b(x)+w(x)/2 if and only if d(t, x) ≤ 2.

In the next section we discover that this is not the case.

3.3 Implementation and Examples

In [4] examples are given of the successful application of this algorithm. We provide

a Magma implementation (see Appendix A) which, as well as calculating `(x) and

hence claiming to determine whether d(t, x) ≤ 2, also returns an element y ∈ ∆1(t)∩
CG(x) following the construction described in the previous section. However, testing

with this implementation reveals circumstances where Algorithm 2 incorrectly reports

that d(t, x) > 2. We give two examples.

Example Let G ∼= S30 and take t = (12)(34) . . . (23 24) and X = tG. We set

x = (1 25)(3 26)(6 7)(10 11)(12 13)(14 15)(16 17)(19 27)(20 28)(21 29)(22 23)(24 30).

Then following Definition 3.5 the connected components of Gx are
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Algorithm 2 CommutingGraphDistance

Input: the connected components of Gx, partitioned into the sets P (x), N(x), R(x),
F (x), U(x) and the values b(x) and w(x) given in Definition 3.5.

1: while U(x) contains edges and P (x) ∪N(x) 6= ∅ do
2: Cancel an edge from a chain in U(x)
3: Cancel a component or double chain from P (x) ∪ N(x) with a maximal

number of edges.
4: end while
5: if P (x) ∪N(x) = ∅ then
6: Set `(x) to be the number of edges remaining in U(x).
7: else
8: while P (x) ∪ N(x) has one or fewer components left with edges and any

component in P (x)∪N(x) with edges has fewer edges than every component
in R(x) do

9: if a component C exists from which some (but not all) edges have been
cancelled then

10: Cancel a further edge from C.
11: else
12: Cancel an edge from a component in P (x) ∪ N(x) ∪ R(x) with a

minimal number of edges, choosing such a component from R(x) if
possible.

13: end if
14: Cancel a component in P (x) ∪N(x) with a maximal number of edges.
15: end while
16: if P (x) ∪N(x) = ∅ then
17: Set `(x) to be the number of edges remaining in the last component

from which edges were cancelled.
18: else
19: Set `(x) to be the number of edges remaining in the single component

in P (x) ∪N(x), unless edges have been cancelled from a component in
R(x) in which case set `(x) to be the number of edges remaining in that
component.

20: end if
21: end if
22: d(t, x) ≤ 2 if and only if `(x) ≤ b(x) + w(x)/2.
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,

with P (x) = {P1}, N(x) = {N1, N2}, R(x) = {R1, R2}, and F (x) and U(x)

empty.

We apply Algorithm 2 to this graph. Since U(x) is empty, the first while loop is

not executed. With two runs through the second while loop, we first cancel the edge

in N1 (the component in P (x)∪N(x)∪R(x) with fewest edges) against the component

N2 (the component in P (x)∪N(x) with most edges). Secondly we cancel an edge in

R1 against the component P1. We arrive at this position (cancelled components have

a strike through their label):

.

Since P (x)∪N(x) now contains no edges, the algorithm terminates with `(x) set

to the number of edges remaining in R1, the last component from which edges were

cancelled. So `(x) = 1 > 0 = b(x) + w(x)/2 and we conclude that d(t, x) ≥ 3.

But note that a different choice of component in step 12 from which to cancel

edges would give a different result. Cancelling the two edges in P1 against the two

components in N(x) would give a satisfactory resolution, as would cancelling the

three edges in R2 against the three components in P (x)∪N(x). The latter gives the

following graph for Gy:

,

and we see that with

y = (13)(24)(58)(67)(13 14)(11 16)(12 15)(9 18)(10 17)(19 20)(25 26)(27 28)

we have y ∈ CG(t) ∩ CG(x) ∩X.
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Example We note that a double chain in P (x) contains the same (even) number

of edges as black vertices, and so an element x ∈ X could have Gx consisting solely

of such components, and likewise any sequence (ei) of even numbers gives rise to a

valid Gx consisting entirely of double chains Pi in P (x) with Pi having ei edges.

In this case, Algorithm 2 simply cancels edges from double chains starting at the

one with fewest edges against components starting at the one with most edges. Note

that in this case b(x) + w(x)/2 = 0 and so d(t, x) ≤ 2 if and only if cancelled edges

can be matched exactly against cancelled components.

Suppose (ei) = (2, 4, 6, 6, 6). Then following Algorithm 2, the three components

with six edges are cancelled against the two edges in P1 and one edge in P2. Then `(x)

is set to 3 (the number of remaining edges in P2) and we conclude that d(t, x) > 2.

But note that we could simply cancel the four edges in P2 against the other four

components, so in fact d(t, x) ≤ 2.

Included in the electronic files accompanying the paper version of this thesis (see

Appendix A for details), we give a Magma implementation of an updated version

of this algorithm. This implementation simply checks all possible choices of sets

of components in P (x) ∪ N(x) to cancel, and looks for a suitable set of edges in

P (x) ∪N(x) ∪ R(x) to cancel against them. Since Table 3.1 contains every possible

arrangement of edges in Gy, a complete check of possible choices will always deliver

the correct result. However, the algorithm will exhaust the available memory when

faced with elements having large numbers of components in their x-graphs, typically

arising in large-degree groups (degree 1,000 or more).



Chapter 4

A randomised algorithm for

computing the normalizer of a

2-subgroup

In [8], Bates and Rowley give an algorithm for computing a subgroup of NG(X) where

X is a p-subgroup of G. The algorithm exploits the method for finding elements

centralizing an involution discussed as Algorithm 1 in Section 2.1.3. We begin this

chapter with an explanation of Bates and Rowley’s algorithm, with our attention

restricted to the case p = 2. It faces similar termination issues as Algorithm 1. These

are resolved in Sections 4.2 and 4.3, whose results also appear in [23]. Throughout

this chapter, G is a finite group and X a 2-subgroup of G.

Let

1 = X0 < X1 < · · · < Xn = X

be a maximal chain of subgroups of X, which we denote C. So [Xi : Xi−1] = 2 for

i = 1, . . . , n. Choose a representative element xi ∈ Xi \ Xi−1 for each i = 1, . . . , n,

so that Xi = 〈Xi−1, xi〉. We describe the inductive procedure by which we arrive at

a subgroup of NG(X).

Lemma 4.1. Let G be a finite group, X a 2-subgroup of G and C a maximal chain of

30
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subgroups of X as above. Suppose Mj ≤ NG(Xj) for some j < n (with Xj+1 ≤ Mj).

Set Mj = Mj/Xj. Then NMj
(Xj+1) is the inverse image of CMj

(xj+1).

Proof. Let h ∈ NMj
(Xj+1). Then h normalizes Xj+1 and Xj (as h ∈ Mj ≤ NG(Xj)).

Xj+1 = Xj ∪ xj+1Xj, so h must fix the coset xj+1Xj, that is, h must centralize xj.

Likewise, if h ∈ CMj
(xj+1), we see that h fixes xj+1Xj and Xj and so must normalize

Xj+1 as required.

Lemma 4.1 quickly yields the method by which we compute the normalizer. Given

a subgroup Mj ≤ NG(Xj) it allows us to find a Mj+1 ≤ NMj
(Xj+1) simply by

computing the centralizer of an involution xj+1. So beginning with M0 = G, we first

compute M1 ≤ NG(X1) (this is merely a direct application of Algorithm 1 to find

CG(x1) = NG(X1)). This becomes our M1, and repeating the procedure n times we

arrive at a subgroup Mn of NG(Xn) = NG(X). However, the subgroup that results

is heavily dependent on the choice of chain C: in fact it is contained in
⋂n

i=1 NG(Xi).

We observe that to employ this result we need to be able to use Algorithm 1 to

generate the centralizer of an involution in a factor group. However, with an easy

modification we avoid the need to explicitly construct the factor group. Where step

2 of Algorithm 1 tests the order of the commutator element formed, in the equivalent

step here we wish to find the order of [xj, h] in the factor group Xj/Xj−1, that is, the

smallest k such that [xj, h]k ∈ Xj−1. The resulting procedure is given in Algorithm 3,

which can be seen to be a black-box algorithm as long as we have the ability to test

for membership of the subgroups Xj. Later we will see that in practice Algorithm

3 is used when X is elementary abelian and of relatively small order, where we can

easily form an explicit listing of its elements, so such membership testing is simple.

To ensure we generate as much of the normalizer as possible, we might wish to

apply Algorithm 3 to every maximal chain of subgroups of X. However, as the size

of X increases the number of maximal chains soon becomes too large for this to be

practicable. For example, when X is an elementary abelian 2-subgroup (an important

case, as will be seen presently), the numbers of maximal chains are shown in Table



CHAPTER 4. NORMALIZERS OF 2-SUBGROUPS 32

Algorithm 3 ChainStabilizer

Input: G a black box group;
X a 2-subgroup of G;
xi ∈ X for i = 1, . . . , n, representative elements of a maximal chain C.

1: M0 ← G
2: for j = 1 to m do
3: S ← ∅
4: for i = 1 to m do
5: h ← Random(Mj−1)
6: k ← min{k ∈ N | [xj, h]k ∈ Xj−1}
7: if k is even then
8: S ← S ∪ {[xj, h]

k
2 , [xj, h

−1]
k
2 }

9: else
10: S ← S ∪ {h[xj, h]

k−1
2 }

11: end if
12: Mj ← 〈S〉
13: end for
14: end for
Output: Mm a subgroup of the stabilizer of the chain C.

4.1.

We consider what subgroup of NG(X) would be generated if we ran Algorithm 3

on every maximal chain of X. First we recall the following definition.

Definition 4.2. Given a group H, the unique largest normal subgroup of H whose

factor group has odd order is denoted O2′(H). Equivalently, O2′(H) is the subgroup

generated by all Sylow 2-subgroups of H.

Theorem 4.3. Applying Algorithm 3 to every maximal chain of X would generate

Table 4.1: Maximal chains of subgroups of elementary abelian 2-groups

n Max. chains, X elt. ab. of order 2n

2 3
3 21
4 315
5 9,765
6 615,195
7 78,129,765
8 19,923,090,075
9 10,180,699,028,325
10 10,414,855,105,976,475
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the subgroup K = O2′(NG(X)/CG(X))CG(X).

Proof. Note that elements of NG(X)/CG(X) acting by conjugation give automor-

phisms of X. Given a maximal chain of subgroups C = (X0 < X1 < · · · < Xn),

Algorithm 3 returns a subgroup of MC =
⋂n

i=1 NG(Xi). Let g ∈ MC. Since for any

i ∈ {1, . . . , n}, g normalizes Xi and Xi−1, and since [Xi, Xi−1] = 2, g must act trivially

on the factor group Xi/Xi−1. So g stabilizes the chain C (following the definition at

the start of [14], Section 5.3). Then Corollary 5.2.2 of [14] gives us that Mn/CG(X)

must be a 2-group. Hence it is contained in a Sylow 2-subgroup of NG(X)/CG(X),

and so as C varies across all maximal chains, we see that the group generated by

Algorithm 3 is contained inside K.

We note that it is a simple matter to determine the centralizer CG(X) by repeated

applications of Algorithm 1 (since it is just
⋂n

i=1 CG(xi)), and we generally assume

that we have the group CG(X).

The rest of this chapter is devoted to increasing the efficiency of this procedure, by

carefully selecting sets of maximal chains from which we can generate all of K despite

being only a fraction of the full set of chains. We begin as promised by explaining

how we may restrict our attention to when X is an elementary abelian 2-subgroup of

G.

4.1 Chain of Characteristic Subgroups

Definition 4.4. A subgroup H of G is called a characteristic subgroup if φ(H) = H

for any φ ∈ Aut(G). We write H ch G.

Suppose we have a chain of subgroups

1 = X(0) < X(1) < · · · < X(r) = X

such that X(i−1) is characteristic in X(i) for all i = 1, . . . , r. Let g ∈ NG(X(i)). Then g

acting by conjugation induces an automorphism of X(i). Since X(i−1) is characteristic
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in X(i), g normalizes X(i−1), that is, g ∈ NG(X(i−1)). So we have

G = NG(X(0)) ≥ NG(X(1)) ≥ · · · ≥ NG(X(r)) = NG(X).

Since Algorithm 3 is already suited to working in factor groups, we see that it is

simple to work along such a chain of characteristic subgroups. That is, we begin by

calculating a subgroup M(1) of NG(X(1)) and then use this to find M(2) ≤ NM(1)
(X(2)),

and so on. In fact, we note that Algorithm 3 works as stated if the input group X

is X(j) and the xi are representative elements for a chain of subgroups running from

X(j−1) to X(j).

4.1.1 Obtaining a chain of characteristic subgroups

To employ the strategy described above, we require a method of generating such a

chain of characteristic subgroups. One way of achieving this is using the Frattini

subgroup.

Definition 4.5. Given a group H, the Frattini subgroup Φ(H) is the intersection of

all maximal subgroups of H.

Since any automorphism of H will permute the set of maximal subgroups of H,

it is clear that Φ(H) ch H. So given our 2-group X, we can take X(r) = X and

X(j−1) = Φ(X(j)) to define our chain of characteristic subgroups. It is also clear that

Φ(H) 6= H and so the chain will terminate with 1. This choice has the advantage that

the factor groups X(j)/X(j−1) will be elementary abelian (see Theorem 5.1.3 of [14]),

which we will require in the next section.

It remains to consider how to generate Φ(Y ) given a 2-group Y , subject to our

requirement to produce a black-box algorithm. Suppose Y = 〈y1, . . . , ym〉. Then

Φ(Y ) = 〈[yi, yj], y
2
i | i, j = 1, . . . , m〉 (see, for example, the proof of Theorem 5.1.3

in [14]), so we easily obtain generators for Φ(Y ) from the generators for Y .
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4.2 X is Elementary Abelian

We now assume our chain of characteristic subgroups has the property described

in the previous section that successive factor groups are elementary abelian. So we

now consider in detail how to employ Algorithm 3 to generate as large as possible

a subgroup of NG(X) in the restricted case where X is an elementary abelian 2-

subgroup of G.

Set L = GLn(2) (where |X| = 2n) and let V be the natural n-dimensional GF (2)L-

module. We have that V ∼= X as abelian groups, and a maximal chain of subgroups of

X corresponds to a maximal flag of subspaces of V . We refer to both interchangeably

as ‘chains’. Then we have a natural homomorphism from NG(X) to L, corresponding

to its conjugation action on X (and hence V ). Henceforth, we denote NG(X) as N ,

CG(X) as C, and M where M ≤ N denotes the image of M under this homomor-

phism, so that M ≤ L. Note that C is the kernel of this homomorphism so that

C = 1. We fix this notation for the rest of the chapter.

Recall from Lemma 4.3 that we are attempting to find K = O2′(N)C without

needing to Apply Algorithm 3 to every chain. We begin our attack by determining

whether we have the trivial case where K = C, so K = 1.

We see that applying Algorithm 3 to a chain C will only find normalizing elements

that fall into the stabilizer in L of the chain. The stabilizers of maximal flags in L are

precisely the Sylow 2-subgroups of L, so we obtain a further correspondence between

maximal chains in V (or X) and Sylow 2-subgroups of L. From its definition we see

that K is trivial if and only if it contains no involutions, so we see that our problem

of selecting an initial set of chains that will suffice to determine whether K = C is

equivalent to the problem of selecting a set S of Sylow 2-subgroups of L such that

every involution in L is contained in at least one member of S. We consider this

problem in the next section.
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4.2.1 Finding S

We begin with some definitions and simple results that will be useful in uncovering

our set S.

Definition 4.6. Let L = GLn(2) and V be the natural n-dimensional vector space

over GF (2). Let x ∈ L. We define two subspaces of V : the commutator space

[V, x] = 〈v + vx | v ∈ V 〉 and the centralizer CV (x) = {v ∈ V | vx = v}.

Remarks 4.7. (i) Suppose x ∈ L is an involution. Then for any v ∈ V we see

that (v+vx)x = vx +vx2
= vx +v. So v+vx ∈ CV (x) and hence [V, x] ≤ CV (x).

Further if x is not an involution then [V, x] 6≤ CV (x).

(ii) Let x ∈ L. Consider the homomorphism ϕx : V → [V, x] defined by ϕx(v) =

v+vx. We see that ker(ϕx) = CV (x) and so dim([V, x]) = dim(V )−dim(CV (x)).

Definition 4.8. Let L, V be as above. Let m = n/2 if n is even and (n+1)/2 if n is

odd. Let Vm denote the set of m-dimensional subspaces of V . For U ∈ Vm, we define

QU = {x ∈ L | [V, x] ≤ U ≤ CV (x)}.

Let I(L) denote the set of involutions in L. From Remarks 4.7(i), we see that

every QU consists solely of involutions, while (ii) implies that dim([V, x]) ≤ m ≤
dim(CV (x)), so there exists some Ux ∈ Vm with [V, x] ≤ Ux ≤ CV (x), and so every

x ∈ I(L) is contained in at least one QU .

If x ∈ QU we see that x fixes U , and so clearly QU ⊆ StabL(U). Suppose

x, y ∈ QU . Then we see that 〈[V, x], [V, y]〉 ≤ U ≤ CV (x) ∩ CV (y). But [V, xy] ≤
〈[V, x], [V, y]〉 and CV (x) ∩ CV (y) ≤ CV (xy) so we see that xy ∈ QU . All elements of

QU are involutions and so self-inverse, and so we see that in fact QU is a subgroup

of StabL(U), and in particular it is an elementary abelian 2-group. Hence QU is

contained in a Sylow 2-subgroup of StabL(U), which will also be a Sylow 2-subgroup

of L (specifically, the stabilizer of a maximal flag containing U). This gives us the

following result.



CHAPTER 4. NORMALIZERS OF 2-SUBGROUPS 37

Table 4.2: Sizes of the sets Vm

n Maximal chains |Vm|
2 3 3
3 21 7
4 315 35
5 9,765 155
6 615,195 1,395
7 78,129,765 11,811
8 19,923,090,075 200,787
9 10,180,699,028,325 3,309,747
10 10,414,855,105,976,475 109,221,651

Lemma 4.9. Let L, V,Vm be as above. For U ∈ Vm, let TU be a Sylow 2-subgroup of

StabL(U). Then

I(L) =
⋃

U∈Vm

QU ⊆
⋃

U∈Vm

TU .

So we can now create a set S of Sylow 2-subgroups of L such that |S| = |Vm|,
by selecting one Sylow 2-subgroup of L from inside each StabL(U), U ∈ Vm (or

equivalently, for every U ∈ Vm, selecting a chain of subspaces containing U). Table

4.2 compares the sizes of these sets with the number of maximal chains as shown in

Table 4.1, demonstrating the benefits of this approach.

We now introduce a certain configuration of subspaces of V , whose properties will

allow us to further reduce these numbers.

Definition 4.10. Suppose U1, U2, U3, U4 ∈ Vm are distinct m-dimensional subspaces

of V such that

(i) U0 =
⋂

i∈I Ui has dimension m− 2; and

(ii) for each i ∈ I, Ui ∩ Uj (j ∈ I \ {i}) are the three m− 1-dimensional subspaces

of Ui containing U0

(where I = {1, 2, 3, 4}). Then the set {U1, U2, U3, U4} is called a crown.

Figure 4.2.1 gives the subspace lattice of a crown. The following is the crucial

result motivating our interest in crowns.
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Figure 4.1: The subspace lattice of a crown

Theorem 4.11. Let L, V,Vm, QU be as defined above, and let {U1, U2, U3, U4} be a

crown. For i = 2, 3, 4, choose Ti ∈ Syl2(L) such that Ti fixes the spaces U1 ∩ Ui, Ui

and 〈U1, Ui〉. Then

QU1 ⊆ T2 ∪ T3 ∪ T4.

Proof. The somewhat technical proof of the theorem is given in several parts.

(4.11.1) [QU1 : QU1 ∩ Ti] = 2 for any i ∈ {2, 3, 4}.

Let i ∈ {2, 3, 4}. Since Ti stabilizes U1 ∩ Ui, Ui and 〈U1, Ui〉, it is the stabilizer

of a maximal chain of the form

0 = V0 < · · · < Vm−2 < U1 ∩ Ui < Ui < 〈U1, Ui < Vm+2 < · · · < Vn = V,

which we denote γ. Since U1 ∩ Ui ≤ CV (QU1) we have that QU1 stabilizes all

subspaces V0, V1, . . . , Vm−1, U1 ∩ Ui. And since [V, QU1 ] ≤ U1, QU1 also stabi-

lizes 〈U1, Ui〉, Vm+2, . . . , Vn. So 〈QU1 , Ti〉 stabilizes the flag ν = γ \ {Ui}. The

stabilizer of ν is a minimal parabolic subgroup P , and we have that either

〈QU1 , Ti〉 = P or 〈QU1 , Ti〉 = Ti. Suppose 〈Ti, QU1〉 = Ti, that is, QU1 ≤ Ti. But

QUi
≤ Ti, and QUi

is weakly closed in Ti with respect to L (that is, no other

L-conjugate of QUi
is a subgroup of Ti. This forces QU1 = QUi

and so U1 = Ui,

a contradiction. Hence 〈QU1 , Ti〉 = P , and (4.11.1) follows.

(4.11.2) Ti ∩ Tj ∩QU1 = T2 ∩ T3 ∩ T4 ∩QU1 for any i, j ∈ {2, 3, 4} (i 6= j).
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Set Q = QU1 , and without loss of generality suppose i = 2, j = 3. Let U0 =
⋂4

i=1 Ui and U0 = 〈U1, U2〉. We set R = T2 ∩ T3 ∩ Q. Then it suffices to show

that R ≤ T4.

Since U1 = CV (Q) and R ≤ Q we see that R fixes U1 and all of its subspaces.

Further, R ≤ T2 ∩ T3 so that R stabilizes U2 and U3 and therefore U2 ∩ U3.

Now, there are three (m − 1)-dimensional subspaces W with U0 < W < U2,

which by the definition of a crown are U2 ∩ U1, U2 ∩ U3 and U2 ∩ U4. We have

that R fixes the first two of these and so it must fix the third. Now R must

stabilize U4 as it stabilizes U1 ∩ U4 and U2 ∩ U4, which generate U4. We know

from (4.11.1) that Q and hence R act trivially on V/U0 and on U1 ∩U4, and so

R acts trivially on the whole maximal chain of which T4 is the stabilizer. Hence

R ≤ T4 as required.

(4.11.3) Ti ∩QU1 6= Ti ∩ Tj ∩QU1 for any i, j ∈ {2, 3, 4}.

Again we suppose i = 2 and j = 3 without loss of generality, and we define

U0, U
0 as above. Now, StabL(U1) has subgroups H1

∼= GLn−m(2) and H2
∼=

GLm(2) whose natural GF (2)-modules are respectively V/U1 and U1. We see

that H1 acts trivially on U1 while H2 acts trivially on V/U1. So we can select

x ∈ I(L) such that [V, x] = U1 ∩ U2 and such that x centralizes U1 but does

not centralizer U0/U0. Note that x ∈ QU1 . Since x centralizes V/(U1 ∩U2) and

U1 ∩ U2, We have that x ∈ T2. So it suffices to show that x 6∈ T3. Suppose x

were in T3. Then x would leave U3 invariant and so we would have

[U3, x] ≤ [V, x] ∩ U3 = U1 ∩ U2 ∩ U3 = U0,

and so x would centralize U3/U0 and hence centralize 〈U1, U3〉/U0 = U0/U0,

contrary to the choice of x. Hence x 6∈ T3, thus proving (4.11.3).

We are now in a position to prove the theorem. By (4.11.1) and (4.11.2), we see

that [QU1 : QU1 ∩ Ti] = 2 for i = 2, 3, 4, while [QU1 : QU1 ∩ Ti ∩ Tj] = 4 for distinct

i, j ∈ {2, 3, 4}. By (4.11.2) we have QU1 ∩ Ti ∩ Tj = QU1 ∩ T2 ∩ T3 ∩ T4 (for i 6= j).
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We consider the group

Q′ = (QU1 ∩ T2) ∪ (QU1 ∩ T3) ∪ (QU1 ∩ T4).

By considering the sizes of the intersections of the QU1 ∩ Ti detailed above it is

apparent that we must have Q′ = Q and hence the theorem holds.

This result yields the following immediate corollary.

Corollary 4.12. Let {U1, U2, U3, U4} ⊂ Vm be a crown. Then for any i ∈ {1, 2, 3, 4}
a set S = {TU ∈ Syl2(StabL(U)) | U ∈ Vm \ {Ui}} exists which has the property that

every involution in L is contained in some T ∈ S.

Proof. For each j ∈ {1, 2, 3, 4}\{i} we select TU to be Tj as defined in Theorem 4.11,

and for each U ∈ Vm \ {U1, U2, U3, U4} we select an arbitrary TU ∈ Syl2(StabL(U)).

Now the result follows from Lemma 4.9 and Theorem 4.11.

So given a crown γ = {U1, U2, U3, U4}, we can ‘discard’ one space Ui ∈ γ when

forming our set S from the spaces in Vm, so long as the TU associated with the other

three spaces are selected in accordance with the hypotheses of Theorem 4.11. Clearly

this can be extended so that if we have a set of pairwise disjoint crowns we can discard

one space from each crown. The following theorem explains how a set of non-disjoint

crowns can be used if enough care is taken in its construction.

Theorem 4.13. Let γ1, γ2, . . . , γr be a set of crowns, and in each of these crowns fix

a subspace Ui ∈ γi. Suppose that for any U ∈ γi ∩ γj the following conditions hold:

(i) U 6= Ui and U 6= Uj; and

(ii) U ∩ Ui = U ∩ Uj and 〈U,Ui〉 = 〈U,Uj〉.

Then there exists a set S of Sylow 2-subgroups of L such that |S| = |Vm| − r and

every involution in L is contained in at least one T ∈ S.
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Proof. Let U = Vm \ {Ui | i = 1, . . . , r}. We select a set S of Sylow 2-subgroups of L

with |S| = |U| = |Vm| − r in the following way.

If a space U ∈ U occurs in a crown γi then we select a Sylow 2-subgroup Ti fixing

the spaces U ∩ Ui, U and 〈U,Ui〉. Note that the hypotheses of the theorem ensure

that Ti meets these requirements for every crown in which it occurs. Where a space

U ∈ U occurs in none of our crowns, we select an arbitrary T ∈ Syl2(L) fixing U .

Now Lemma 4.9 and Theorem 4.11 give that every involution in L is contained in

some T ∈ S.

So in order to make our set S as small as possible, we require as large as possible

a set of crowns satisfying the hypotheses of Theorem 4.13. Our sets of crowns are

obtained by the heuristic method described in Section 4.3.

This set allows us to determine whether the trivial case K = C occurs. In the

next section we consider how to determine K when this is not the case.

4.2.2 Determining K

The results in the previous section allow us to determine whether we have the trivial

case that K = C. This is done by using maximal chains sufficient to find every

involution on K, and so having done this we can generate a subgroup M ≤ K where

M = 〈x ∈ K | x2 = 1〉. It remains to determine further chains to use that will allow

us to generate the entire group K. We begin with the following result which suggests

a fast way of arriving at this group.

Lemma 4.14. Let S ∈ Syl2(M), and let {T1, . . . , Tl} be the set of all Sylow 2-

subgroups of K containing S. Then

K = 〈M,T1, . . . , Tl〉.

Proof. Since K = O2′(N) is generated by its Sylow 2-subgroups it suffices to show

that an arbitrary Sylow 2-subgroup of K is contained in 〈M,T1, . . . , Tl〉. Let T ∈
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Syl2(K). Since M is generated by the set of involutions in K it is normal in K

(indeed characteristic) and so T ∩M ∈ Syl2(M). Therefore, T ∩M is M -conjugate

to S, and hence T is M -conjugate to a Sylow 2-subgroup of K containing S, that

is, to one of the Ti. So T = Tm
i for some m ∈ M and some i ∈ {1, . . . , l}, hence

T ∈ 〈M,T1, . . . , Tl〉.

Our goal then is to find this set of all the Sylow 2-subgroups of K containing

a chosen S ∈ Syl2(M). This is achieved via an inductive procedure, starting with

A = {S} and at each stage finding a set of chains sufficient to determine all the

subgroups of K which contain a group in A as an index 2 subgroup. Working up

index 2 at a time in this way we will eventually arrive at A = {T1, . . . , Tl} as required.

The procedure by which we find such a set of maximal flags is described Section 4.3.2.

4.2.3 The algorithm in full

We conclude this section with Algorithm 4, which outlines the complete procedure.

The subroutines ‘InputChains’ and ‘Index2Chains’ will be described in the next sec-

tion.

We note that Algorithm 4 accesses information from the group G only when it

applies Algorithm 3 to compute the stabilizer of a chain, and this algorithm is black-

box as discussed earlier. Information from the subgroups X and CG(X) is used,

but the former is an elementary abelian group so a list of generators gives all the

information needed, while the latter is easily obtained by applying Algorithm 1. All

other computation is carried out in subgroups of L. So Algorithm 4 too is black-box

on G.

Recall that elements of K ≤ L are found by taking elements of K ≤ N and

examining their conjugation action on X. In order to be able to produce a generating

set for K as an output, the algorithm must ensure elements of K remain associated to

the relevant elements of K, so that a generating set for K can be built from elements

corresponding to generators for K along with generators for C.
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Algorithm 4 TwoGroupNormalizer

Input: G a black-box group;
X an elementary-abelian 2-subgroup of G

1: n ← log2 |X|
2: L ← GLn(2)
3: S ← InputChains(n)
4: H ← CG(X)
5: for C ∈ S do
6: H ← 〈H, ChainStabilizer(C)〉
7: end for
8: M ← 〈x ∈ H | x2 = 1〉
9: if M = 1 then

10: K ← CG(X); K ← 1
11: else
12: S ← Syl2(M)
13: A ← {S}
14: repeat
15: A ← A2

16: A2 ← ∅
17: for T ∈ A do
18: S ← Index2Chains(T )
19: for C ∈ S do
20: H ← 〈H, ChainStabilizer(C)〉
21: end for
22: A2 ← A2 ∪ {〈T , h〉 | h ∈ H, h2 ∈ T}
23: end for
24: until A2 = ∅
25: K ← 〈M,A〉
26: end if
Output: K;

generators for K
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4.3 Implementation of the algorithm

We discuss some of the considerations arising from the implementation of the present

algorithm.

4.3.1 Creating the initial chains

We note that the initial set of chains S used by our algorithm is not dependent on

the particular groups G and X in question. So we create these sets for each value

of n beforehand and they are stored and used as inputs by the algorithm. Before

we describe the method by which we arrive at these input sets, we remark on some

properties of crowns relevant to our strategy.

Remarks 4.15. Let {U1, U2, U3, U4} be a crown. Then

(i) Let U0 = 〈U1, U2〉. Then dim U0 = m + 1 and U0 = 〈Ui, Uj〉 for any i, j ∈
{1, 2, 3, 4} with i 6= j;

(ii) If {U1, U2, U3, U
′
4} is a crown then U ′

4 = U4, that is, two distinct crowns intersect

in at most two subspaces;

(iii) The spaces U0, Ui, Uj for any i, j ∈ {1, 2, 3, 4} with i 6= j, uniquely determine a

crown.

Proof. Let i, j ∈ {1, 2, 3, 4} with i 6= j. Then Ui = 〈U1 ∩ Ui, U2 ∩ Ui〉 and Uj =

〈U1 ∩ Uj, U2 ∩ Uj〉 and so 〈Ui, Uj〉 = 〈U1, U2〉, giving (i). For (ii), let {U1, U2, U3, U
′
4}

be a crown. Then U1∩U ′
4 is an (m− 1)-dimensional subspace of U1 containing U0, so

it must be equal to one of U1 ∩U2, U1 ∩U3, U1 ∩U4. If U1 ∩U ′
4 were equal to U1 ∩U2

or U1 ∩U3 it would force U ′
4 to equal U2 or U3, which it is not. So U1 ∩U ′

4 = U1 ∩U4

giving that U ′
4 = U4. Now for (iii), suppose without loss of generality that i = 2

and j = 3. So fixing U0, U1 and U2 determines five of the six (m − 1)-dimensional

subspaces appearing in the subspace lattice of the crown. This determines a third

space in the crown which we suppose is U3. Then the result follows from (ii).
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We recall our objective is to create a set of crowns as large as possible satisfying

the conditions of Theorem 4.13. Note that condition (i) of this theorem is equivalent

to requiring that any two crowns that intersect nontrivially have the same space U0.

Note also that condition (ii) precludes the possibility of three crowns γi, γj, γk having

a space U common to all three, as this would then require four distinct subspaces

U,Ui, Uj, Uk all of dimension m and all lying between U ∩ Ui and 〈U,Ui〉, whereas

these spaces have codimension 2 and as such only three distinct subspaces lie between

them. We outline the procedure by which our initial sets of crowns were formed.

Algorithm 5 CrownsMaker

Input: V, n,m as defined.
1: Compute the set Vm+1 consisting of all subspaces of V of dimension m + 1 (by

making one arbitrary such space and acting on it by every element of a transversal
of its stabilizer across L).

2: for U0 ∈ Vm+1 do
3: We attempt to build as many crowns as possible with 〈U1, U2〉 = U0. We

initialise our set with an arbitrary such crown. Recall we will ‘discard’ the
space U1 from each crown.

4: repeat
5: for the spaces U2, U3, U4 in each crown found so far do
6: Form another crown sharing that space. Choosing new spaces

U1, U0 allows the whole crown quickly to be determined (see Re-
marks 4.15(iii)). If the crown formed shares no other space with
any crown already in our set, adding it to the set.

7: end for
8: until A loop of this procedure yields no further suitable crowns
9: end for

Output: the set of crowns formed.

Table 4.3 shows the savings made in terms of numbers of initial chains by consid-

ering crowns.

Once a suitable set of crowns has been found, the initial set of chains is formed.

First, every m-space of V is found (again by taking a transversal across a stabilizer).

We then make chains for each space U1, U2, U3 in a crown by taking arbitrary sub-

spaces building up to the required spaces Ui ∩U4, Ui and 〈Ui, U4〉, and from there up

to V . (Where we have used a space in two crowns, its chain is built up from either

of the crowns containing it; by the previous result the chain will be suitable for the
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Table 4.3: Numbers of crowns found

n |Vm| No. crowns found |S| % reduction
3 7 1 6 14.3
4 35 7 28 20.0
5 155 41 114 26.5
6 1395 350 1,045 25.1
7 11,811 3,208 8,603 27.2
8 200,787 54,936 145,851 27.4
9 3,309,747 926,280 2,383,467 28.0

other crown as well). Arbitrary chains are built around the m-spaces not used in any

crown to complete the initial set.

After a set of chains has been created, they must be stored. Each space in a chain

is stored as a representative vector (i.e. one which together with the previous space

generates the space required). Chains are stored grouped together in sets sharing a

common ‘root’. This reduces the space needed for storage, since the root need only

be stored once, and improves the efficiency of the algorithm itself, since if several

chains all begin with X0 < X1 < . . .Xr for some r < n, when employing Algorithm

3 we clearly need only generate the group Mr once.

Chains taken from m-spaces contained in a crown are grouped together, since

they can be chosen to share a common root up to the space U0 of the crown. The

remaining chains are grouped together by a simple search procedure.

Where Algorithm 4 calls the subroutine ‘InputChains’ it is to be understood that

at this point the initial sets of chains for the relevant values of n are loaded into the

algorithm.

4.3.2 Chains for index 2 subgroups

Recall that for Lemma 4.14 we require all the Sylow 2-subgroups of K containing

the known 2-subgroup S. We aim to find these by an inductive procedure involving

finding all the subgroups of K that contain a given group as an index 2 subgroup.
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That is, at each stage of this process, we require for a given R ≤ K a set of chains

corresponding to Sylow 2-subgroups of L which between them contain every element

t for which [〈R, t〉 : R] = 2. Our strategy for finding these is given in Algorithm 6.

Algorithm 6 Index2Chains

Input: L, V as defined above;
R ≤ L a 2-subgroup.

1: A ← NL(R)
2: if A is a 2-group then
3: repeat
4: A ← NL(A)
5: until A ∈ Syl2(L)
6: S ′ ← {C, a chain corresponding to A}
7: else
8: W1 ← CV (R)
9: d1 ← dim W1

10: i ← 1
11: repeat
12: i ← i + 1
13: Wi ← CV/Wi−1

(R)
14: di ← dim Wi

15: until Wi = V ;
16: S ′ ← ∅
17: Form a new basis for V , starting with a basis for W1 followed by vectors

extending it to a basis of the inverse image of W2, then in turn the inverse
image of W3, . . . , Wi = V .

18: for all (Cj)
i
j=1 such that Cj ∈ InputChains(dj) do

19: Construct a new chain C for V , corresponding to Cj on the space Wj for
each j = 1, . . . , i.

20: S ′ ← S ′ ∪ {C}
21: end for
22: Transform the chains in S ′ to the original basis for V .
23: end if
Output: the set S ′ of chains formed.

We see that if t satisfies [〈R, t〉 : R] = 2 then t must lie in NL(R) so this group

is calculated first. If it is a 2-group then clearly a single chain corresponding to a

Sylow 2-subgroup containing NL(R) will suffice. Otherwise, a new set of multiple

chains must be formed. Any t of the desired form will act as an involution on each

of the spaces Wi formed in Algorithm 6, so in steps 16–22 for each of these we use

the set of input chains for the relevant dimension di, which were designed to find all

involutions.
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4.3.3 Limitations of the algorithm

We recall from Section 2.1.3 the following limitation to the involution centralizer

algorithm that underpins the current work. Suppose t ∈ G is an involution with

t ∈ O2(G) but CG(t) � O2(G). Then by Lemma 2.3, Algorithm 1 never produces

elements of CG(t) outside CG(t) ∩ O2(G). If this happens in an when finding the

centralizer of a factor group Xi/Xi−1 during an application of Algorithm 3, it may

mean we fail to generate the full stabilizer of the chain.

The large numbers of chains involved in the algorithm mean that in practice this

is unlikely to be an issue, but we wish to do what we can to mitigate the problem. It

is possible to diagnose when this unfortunate circumstance may have arisen, because

the value k computed at step 6 of Algorithm 3 will always be a power of 2. When

this occurs, a remedy may be available.

Recall that the construction of individual chains is mostly arbitrary: only the

spaces of dimensions m− 1, m and m + 1 are determined when the chain is involved

in a crown, and only the space of dimension m when it is not. So if this unfavourable

situation arises when calculating the centralizer of Xi/Xi−1 for i other than one of

these values, we can simply produce a different chain around the spaces which are

determined, and try again. Only if our problem presents itself at one of the fixed

spaces, or if replacement chains repeatedly suffer the same issue, do we need to face

the possibility that we have failed to generate the entire stabilizer of the chain. The

Magma implementation of the algorithm discussed in the next section includes a

routine to carry out this replacement of ‘faulty’ chains.

4.3.4 Magma implementation

This algorithm has been implemented in the Magma computer algebra package by

the author. Appendix A gives details on how the code can be obtained, along with the

best sets of initial chains found (with the sizes given in Table 4.3) as well as generators

used for the groups in the example calculations outlined in the next section. We
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note that input data is only given for values of n up to 9. For n = 10 and above,

Magma exhausts its available memory when attempting to perform the construction

of the input chains. Specifically, computing the transversal of StabL(U) for an m-

dimensional subspace U fails.

This means the algorithm can only be used for groups X with elementary abelian

factors of at most order 29. In the next section we give details of some example

calculations carried out.

4.4 Analysis of the algorithm

4.4.1 Example calculations

Given the black-box nature of our algorithm—dealing with only single group elements

at a time—we would expect it to outperform a deterministic algorithm when the group

G is large or has a large degree representation. In particular the standard algorithms

for matrix groups are significantly less efficient than for permutation groups, whereas

we only face a relatively small increase in the cost of the basic group arithmetic. So

we give example computations in these sorts of groups. Generators for all the groups

G and subgroups X used are available in the electronic files detailed in Appendix A.

1. Given G ∼= Sp12(3) (using the natural matrix representation) and selecting an

elementary abelian subgroup X of order 26, Magma calculates the normalizer

NG(X) in 158.2 seconds, while our algorithm calculates K (which in this case

is NG(X)) in 138.66 seconds, using 10 random elements for each application of

Algorithm 3. Moving to G ∼= Sp16(3) with X having order 27, the advantages of

the present approach become apparent: we calculate K having order 212 ·32 ·5 ·7
in 10014.5 seconds, while the standard Magma routine exhausts the available

memory and returns no output.

2. We take G ∼= J4 using the same representation as in Section 5.2. We note from
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that section that we have a maximal subgroup M ∼= 211.M24 and within it we

find an X elementary abelian of order 27. The algorithm, using 20 random

elements for each use of Algorithm 3, finds a group K ≤ NG(X) having order

215 in 57538 seconds. The standard Magma routine fails to determine the

normalizer.

3. We give an example where X is not an elementary abelian subgroup. Set G ∼=
S20 and X = Φ(P ) where P ∈ Syl2(G). Then X has order 212 and employing

the Frattini subgroup method described in Section 4.1 we decompose it into a

chain of characteristic subgroups with elementary abelian factors having orders

2, 25, 26. In this small representation both our algorithm and the standard

Magma function quickly compute the normalizer NG(X) to be of order 218.

However, if we now consider X as a group of permutation matrices over GF (2)

and set G ∼= GL20(2), our algorithm (using 1000 random elements) returns a

group K of order 231 ·3 in 760.4 seconds, while the standard normalizer function

fails.

4.4.2 Efficiency of the initial sets

Recall that our sets of initial chains were constructed with the intention that (viewed

as Sylow 2-subgroups of L) they cover all the involutions in L while being as small as

possible. We wish to analyse how efficiently our sets of chains accomplish this task.

To decrease redundancy it is desirable that a given involution is contained in as few

of the Sylow 2-subgroups in our set as possible. Tables 4.4 and 4.6 give, for n = 5

and n = 6, details of how many chains each involution finds itself in. The data is

also presented for each of the conjugacy classes of involutions in L. We see that most

involutions are not contained in too many chains, suggesting that the initial sets are

fairly close to being maximally efficient.

In Table 4.4 t1 is an involution with CV (t1) having dimension 4, and t2 an in-

volution with CV (t2) having dimension 3. In Table 4.6 t1, t2 and t3 are involutions



CHAPTER 4. NORMALIZERS OF 2-SUBGROUPS 51

Table 4.4: Efficiency of initial sets for n = 5

Chains/inv. All involutions tL1 tL2
1 1323 0 1323
2 2478 0 2478
3 1501 0 1501
4 800 0 800
5 284 0 284
6 88 1 87
7 37 4 33
8 30 27 3
9 46 45 1

10 48 48 0
11 65 65 0
12 90 90 0
13 67 67 0
14 52 52 0
15 34 34 0
16 16 16 0
17 9 9 0
18 1 1 0
19 2 2 0
20 2 2 0
21 2 2 0

with dim(CV (ti)) respectively 4, 5 and 3. As an example of how the tables are to be

read, we see that for n = 5, there are 37 involutions on L which find themselves in

(the Sylow 2-subgroups corresponding to) seven of the initial chains. Of these, 4 are

L-conjugate to t1 and 33 are L-conjugate to t2.
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Table 4.6: Efficiency of initial sets for n = 6

Chains/inv. All involutions tL1 tL2 tL3
1 60704 0 0 60704
2 70698 0 0 70698
3 52608 429 0 52179
4 32491 2286 0 30205
5 18826 5801 0 13025
6 15497 10531 0 4966
7 16685 14891 0 1794
8 18592 18023 0 569
9 19128 18974 0 154

10 17537 17490 0 47
11 15075 15061 0 14
12 11924 11920 0 4
13 8342 8342 0 0
14 5613 5612 0 1
15 3375 3375 0 0
16 1953 1953 0 0
17 1032 1032 0 0
18 555 555 0 0
19 252 252 0 0
20 94 94 0 0
21 58 58 0 0
22 17 17 0 0
23 8 8 0 0
24 5 5 0 0
25 1 1 0 0
26 0 0 0 0

...
...

...
...

...
44 0 0 0 0
45 1 0 1 0
46 1 0 1 0
47 0 0 0 0
48 2 0 2 0
49 10 0 10 0
50 5 0 5 0
51 13 0 13 0
52 8 0 8 0
53 15 0 15 0
54 26 0 26 0
55 23 0 23 0
56 43 0 43 0
57 39 0 39 0
58 54 0 54 0
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Chains/inv. All involutions tL1 tL2 tL3
59 51 0 51 0
60 69 0 69 0
61 85 0 85 0
62 97 0 97 0
63 89 0 89 0
64 102 0 102 0
65 107 0 107 0
66 85 0 85 0
67 104 0 104 0
68 117 0 117 0
69 95 0 95 0
70 111 0 111 0
71 84 0 84 0
72 85 0 85 0
73 64 0 64 0
74 52 0 52 0
75 43 0 43 0
76 51 0 51 0
77 46 0 46 0
78 42 0 42 0
79 29 0 29 0
80 30 0 30 0
81 18 0 18 0
82 19 0 19 0
83 9 0 9 0
84 6 0 6 0
85 6 0 6 0
86 4 0 4 0
87 6 0 6 0
88 1 0 1 0
89 0 0 0 0
90 0 0 0 0
91 0 0 0 0
92 1 0 1 0
93 0 0 0 0
94 0 0 0 0
95 0 0 0 0
96 0 0 0 0
97 1 0 1 0
98 0 0 0 0
99 0 0 0 0

100 1 0 1 0



Chapter 5

Involution suborbits in sporadic

simple groups

Our aim in this chapter is to uncover the suborbit structure of the involution conju-

gacy classes for some of the sporadic simple groups, that is, the orbits of X as CG(t)

(t ∈ X) acts on it by conjugation. Along the way we will use this data to build

graphs whose vertex sets are (or can be considered to be) the involution classes: in

Sections 5.2 and 5.3 the commuting involution graphs, and in Section 5.4 the related

point-line collinearity graphs for a certain 2-local geometry. But before we get our

hands dirty, we discuss what our approach to the problem will be, and lay out some

results that greatly simplify the study.

Throughout this chapter G is a finite group, X a conjugacy class of involutions

and t an arbitrary fixed element of X.

5.1 General considerations

In all the groups we consider, our basic strategy is to take random group elements

g ∈ G and hence form random conjugates x = tg ∈ X, hoping to arrive at a complete

set of representatives for the CG(t)-orbits on X. We wish to know the sizes of the

54
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orbits, for which we determine CCG(t)(x) for our representatives x (then the sizes of

the orbits are of course just [CG(t) : CCG(t)(x)]). We also require a way of determining

whether an element x ∈ X is in a suborbit for which we already have a representative.

We do this either by direct testing of CG(t)-conjugacy, or where this is impossible by

consideration of various suborbit invariants.

The following well-known results show how some light can be shed on these sub-

orbits before we begin our search, by utilising the character table of the group.

Proposition 5.1. The number of CG(t)-orbits on X is equal to the value ‖χ‖ where

χ is the character of the permutation action of G on X acting by conjugacy. This

number is called the permutation rank of G on X.

It is not always possible to determine the permutation rank and hence the number

of CG(t)-orbits, but where we can it is useful information to have to hand. We now

consider some further information regarding the CG(t)-orbits that is always available.

Definition 5.2. Let X be a conjugacy class of a group G, and let t ∈ X. For a

second class C of G, we define the following subset of X:

XC = {x ∈ X | tx ∈ C}.

Proposition 5.3. The size of a set XC is given by

|XC | = |G|
|CG(t)||CG(z)|

∑

χ∈Irr(G)

χ(t)2χ(z)

χ(1)
.

for any z ∈ C.

We see that the value of |XC | for a given class C is easily calculated from the char-

acter table, and indeed GAP contains a function ClassMultiplicationCoefficient

that will compute it. Our interest in this number is sparked by the following obser-

vation.

Lemma 5.4. Each set XC is a (possibly empty) union of CG(t)-orbits.
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Proof. If x ∈ X with tx ∈ C, then for h ∈ CG(t) we have txh = thxh = (tx)h ∈ C

and so xh ∈ XC .

Given an involution x ∈ X, we generally write z for the element tx. So we see

from Lemma 5.4 that consideration of the class of z is useful when attempting to find

the CG(t)-orbits on X. In particular, the class C in which z lies is an invariant of

the CG(t)-orbit, and since the sizes of the sets XC can be simply calculated, we can

know when all the suborbits sharing this invariant have been found. Of course this

depends on the ability to determine the class of a given element z, and in practice

this is not always possible. We deal with such an eventuality on a case-by-case basis.

The following observation provides another useful invariant of a CG(t)-orbit, and

can also be used to help find new suborbit representatives.

Remarks 5.5. Let x ∈ X, and set z = tx and C = zG. For any n, let y = tzn. Then

y = t(tx)n = xtx . . . tx is clearly an involution in X, and y ∈ XD where D = (zn)G.

All elements in a particular XC power in this manner to elements in XD, and if x1, x2

are CG(t)-conjugate then so are y1 = t(tx1)
n and y2 = t(tx2)

n.

Given an element x ∈ X and n dividing the order of z = tx, we henceforth use

the notation x(n) for the element tzn ∈ X formed in this manner. We observe that if

we have already catalogued the suborbits in XD then we can use information about

the suborbit containing x(n) as further invariants for x, while if we have not found all

the orbits in XD, then examining the elements x(n) for x ∈ XC may be a helpful way

to discover them.

If C, D are classes in G such that elements h ∈ C have hm ∈ D for some m, we

say that the class C ‘powers to’ D. The Atlas (in paper and online forms) gives

the ‘power maps’ for the groups it lists, so we always know which XD to consider.

We sometimes analogously talk of the CG(t)-orbits themselves powering to other

suborbits.

Our final result in this section gives a useful method of finding new orbits when
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we encounter difficulty computing the sizes of the orbits comprising some XC .

Remarks 5.6. Let z ∈ C for some class C of G with XC non-empty. We recall the

definition of the extended centralizer of z in G, C∗
G(z) = {g ∈ G | zg ∈ {z, z−1}}.

Then

(i) t, x ∈ C∗
G(z). In fact, since [C∗

G(z) : CG(z)] = 2 and t and x both invert z, we

must have C∗
G(z) = 〈CG(z), t〉 = 〈CG(z), x〉;

(ii) Suppose x ∈ XC. Then tx ∈ C and so (tx)g = z for some g ∈ G. Then

tg, xg ∈ C∗
G(z) ∩ X with tgxg = z. Similarly if we have t1, x1 ∈ C∗

G(z) ∩ X

with t1x1 = z, then th1 = t for some h ∈ G and th1x
h
1 = txh

1 = zh so xh
1 ∈ XC.

Crucially, |CCG(t)(x
h
1)| = |CCG(z)(x1)| and this can be calculated inside C∗

G(z).

Suppose we can, for some z ∈ C, compute C∗
G(z), and that this group is small

enough to calculate in directly. Then instead of looking for representatives x ∈ XC ,

we can shift our focus to C∗
G(z) and look in this group for pairs (t1, x1) with t1, x1 ∈ X

and t1x1 = z, and from these we can obtain elements in XC , the sizes of whose CG(t)-

orbits are easily determined. To do this, we need to find an h ∈ G with th1 = t. The

following trick allows us to find such a conjugating element.

Remarks 5.7. Let t1, t2 be involutions in a group G. Recall that any two involutions

generate a dihedral group and that, where their product has odd order, the dihedral

group contains a single conjugacy class of involutions. Hence Algorithm 7 will produce

an element conjugating t1 to t2.

Where we have tx = z, we can sometimes compute CG(z) using a randomised

procedure based on Algorithm 1, explained in [7].

In the following sections we describe how the CG(t)-orbits were found for various

sporadic simple groups, beginning with Janko’s group J4.
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Algorithm 7 InvolutionConjugator

Input: G a finite group;
t1,t2 conjugate involutions in G.

1: repeat
2: g ← Random(G)
3: r ← tg1
4: until |t1r| and |t2r| are odd
5: D1 ← 〈t1, r〉
6: D2 ← 〈t2, r〉
7: Find h1 ∈ D1 such that th1

1 = r.
8: Find h2 ∈ D2 such that rh2 = t2.

Output: g = h1h2, an element conjugating t1 to t2.

5.2 Janko’s group J4

Janko was responsible for the discovery of four of the 26 sporadic simple groups.

The first of these, J1, was also the first of the ‘modern’ sporadics to be found, in

1965 (the five Mathieu groups had been known for over a century at this time). The

fourth, J4, was the last of the sporadics to be unearthed and was found in 1975 [17].

Janko established the order and local structure of the group, and in 1980 Norton

proved its existence and uniqueness using machine calculations [19]. A computer-free

construction followed in 1999.

We compute the suborbits for both involution conjugacy classes in Janko’s spo-

radic simple group J4. The representatives for the class 2B are used to determine

the commuting involution graph on that class. The results in this section also appear

in [22]. We begin by describing the computational setting.

5.2.1 Computation with J4

The smallest available representation of J4 in [29] is as 112×112 matrices over GF (2).

For the rest of this section G denotes J4 in this representation. Computation with such

large matrices is difficult, and performing any calculation that requires knowledge of

the entire group (such as directly constructing centralizers or normalizers) will fail in

anything but very small order subgroups, that is H < G with |H| around 106 or less.
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We can however perform basic group arithmetic, take random elements, calculate

orders and so on. We can also look at the action of elements on the associated

112-dimensional GF (2)-module, which we henceforth denote by V .

Given an element g ∈ G we cannot in general determine which class of G contains

g. However examining the order of g and dim(CV (g)) will usually specify the class,

and if not will limit us to only a few possibilities. We deal with any ambiguities as

they arise.

When t ∈ 2A, its centralizer CG(t) has order 21,799,895,040 and when t ∈ 2B,

|CG(t)| = 1, 816, 657, 920. Magma can construct a base and strong generating set

for these subgroups, so calculation within CG(t) is possible, albeit slow. However,

computation involving elements outside of CG(t), such as finding CCG(t)(x) or testing

for CG(t)-conjugacy between two elements of X, is undesirably slow given the large

amount of such computation a randomised search requires. In the following section

we outline some of the tricks employed to get around this issue.

5.2.2 Suborbit Invariants

Our general strategy for both classes 2A and 2B will be to take random conjugates x

of t, searching for representative elements for the CG(t)-orbits, which we distinguish

by means of various suborbit invariants more readily computed than CCG(t)(x). Of

course there is no guarantee that two distinct CG(t)-orbits will be distinguishable

by any of the suborbit invariants that we consider, and indeed this is often the case

for the class 2B, so in Section 5.2.4 we introduce a technique that will in some

circumstances allow us to test CG(t)-conjugacy in a more direct fashion.

We employ all the general suborbit invariants discussed in the previous section

as well the following ones which employ knowledge of the module V or some other

specific property of the group at hand.

Lemma 5.8. Let x ∈ X and let dx = dim(CV (t) ∩ CV (x)). Then dx = dy for any

y ∈ xCG(t).
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Proof. Suppose h ∈ CG(t). Then CV (t) ∩ CV (xh) = CV (th) ∩ CV (xh) = (CV (t) ∩
CV (x))h, and so these spaces have the same dimension.

As will be seen in the following sections, for both t ∈ 2A and t ∈ 2B we can

construct a normal subgroup Q of CG(t) containing t, small enough to allow direct

computation within it. In particular for x ∈ X we may calculate CQ(x). Clearly

|CQ(x)| is a CG(t)-orbit invariant. The following results give further invariants that

can be found employing Q, and a strategy that often allows us to calculate CCG(t)(x)

for x ∈ X, and hence the length of the orbit containing x.

Remarks 5.9. For x ∈ X let q2A, q2B be the number of 2A-, respectively 2B-elements

in CQ(x). We observe that these values are further CG(t)-orbit invariants.

We note that elements in 2A and 2B are distinguished by the dimension of their

fixed spaces so these invariants are easily calculated. The group Q can however be

put to much more productive use, as the following results demonstrate.

Definition 5.10. Let QECG(t) as above. Set Ω = Q and define ϕ : CG(t) → Sym(Ω)

to be given by the conjugation action of CG(t) on Q. We define S to be the image of

CG(t) under ϕ.

Lemma 5.11. For x ∈ X, let Sx = StabS(CQ(x)). Then

(i) |Sx| is a CG(t)-orbit invariant, and

(ii) CCG(t)(x) is contained in ϕ−1(Sx).

Proof. If c ∈ CG(t) then CQ(xc) = CQ(x)c and so we see that |Sx| will be the same

for both, giving us (i). Now suppose h ∈ CCG(t)(x). Since CQ(x) ≤ CCG(t)(x) it must

be centralized by h and so ϕ(h) ∈ Sx as required.

By examining the action on Ω = Q of the generators of CG(t) we can construct

the homomorphism ϕ explicitly in Magma. Then since S is a permutation group of

relatively small degree, computation in S is easy. So finding Sx (which is generally
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small) and computing CCG(t)(x) in its inverse image gives us an invaluable method

for finding the size of the suborbit while avoiding working in the large matrix group.

We now give details of how the CG(t)-orbits in in the two involution conjugacy

classes were determined, beginning with the smaller and easier case.

5.2.3 X = 2A

We may calculate in GAP the rank of the permutation action following Proposition

5.1, and on doing so we discover that X breaks into twenty CG(t)-orbits.

For an involution t ∈ 2A, the group CG(t) has shape 21+12.3.M22 : 2 and is

maximal in G, hence generators for it can be found at [29]. From this it is easy to

construct Q = O2,3(CG(t)) ∼= 21+12.3: we simply take random h ∈ CG(t) until we find

ones with order 21 or 33, and then h7 or respectively h11 is in Q (see [18] for more

details). The unique non-identity central element of Q is then our t.

Searching among random conjugates of t, we soon discover that the twenty CG(t)

orbits of X can be distinguished using only the invariants |CQ(x)|; q2A and q2B; and

the class of z = tx (that is, which set XC contains the orbit). It only remains to

determine the sizes of these orbits.

Of the 14 non-empty XC , four contain more than one CG(t)-orbits: X2A, X2B,

X4B and X4C . We use the techniques described in Definition 5.10 and Lemma 5.11

to determine the sizes of the ten suborbits in these sets. Magma can construct the

homomorphism ϕ explicitly, allowing us to take the inverse image of subgroups of S

to get subgroups of CG(t).

Since z = tx has even order 2m in all four of these cases, and since z is inverted

by both t and x, we have that zm ∈ CCG(t)(x). We see also that CCG(t)(x) ≤ CG(z) ≤
CG(zm), and so ϕ(CCG(t)(x) ≤ CS(ϕ(zm)). Combining this with Lemma 5.11, we

compute Sx ∩ CS(ϕ(zm)) for each representative x whose orbit size we wish to find,

and take its inverse image. In all cases these subgroups are small enough that we can
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Table 5.1: The CG(t)-orbits for G ∼= J4, t ∈ 2A

C Orbit size |CQ(x)| q2A q2B

1A 1 213.3 1387 2772
2A 25.32.5.7.11 28 107 84

2.32.7.11 212 747 1364
2B 27.32.5.11 27 71 56

24.3.5.7.11 29.3 139 180
3A 214.32.5.11 1 0 0
4A 28.32.5.7.11 26 33 30
4B 212.33.5.7.11 22 1 2

211.33.5.7.11 22 3 0
210.32.5.7.11 23 3 4
210.32.5.7.11 24 9 6

4C 211.32.5.7.11 23 3 4
211.32.5.7.11 23 7 0

5A 215.32.5.7.11 1 0 0
6B 215.33.5.7.11 1 0 0
6C 214.32.5.7.11 1 0 0
8C 215.33.5.7.11 1 0 0
10A 216.33.5.7.11 1 0 0
11B 220.33.5.7 1 0 0
12B 217.32.5.7.11 1 0 0

then directly compute CCG(t)(x) and thus find the size of the orbit containing x.

These results are summarised in Table 5.1. In the table, each row corresponds to

a CG(t)-orbit, which are grouped by virtue of which sets XC they lie in. For each

suborbit we give its size and the values of the invariants used to distinguish them.

We now look at the larger class of involutions 2B.

5.2.4 X = 2B

For X = 2B, we see from the Atlas that CG(t) has shape 211.M22 : 2. This group is

contained in a maximal subgroup M of shape 211.M24, whose generators are available

from [29]. Given M it is simple to obtain generators for Q = O2(CG(t)) ∼= 211 (a

randomly chosen h ∈ M which has even order 2m ≥ 16 must have hm ∈ Q by the

orders of elements of M24). With Q found we choose and fix t ∈ Q ∩ 2B, and now
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generators for CG(t) are easily found using Algorithm 1. (Note that termination

issues do not arise here as |CG(t)| is known.)

Following Proposition 5.1 we find using GAP that the number of CG(t)-orbits

is 119, and 47 of the sets XC are non-empty, so clearly this class poses a much

more significant challenge. We begin by defining the following additional CG(t)-orbit

invariant.

Let ϕ, S be as described in Definition 5.10 and Lemma 5.11. From the above we

see that S ∼= M22 : 2. Suppose x ∈ X with z = tx having even order 2m. Then

zm ∈ CG(t). So we can ask where w = ϕ(zm) is in S. Clearly w is either trivial (if

zm ∈ Q) or is an involution in S. Examining [11]the Atlas we see that S ∼= M22 : 2

has three conjugacy classes of involutions. So w is in (using bars to distinguish classes

of S from those of G) 1A, 2A, 2B or 2C, and this is a further invariant of a CG(t)-orbit.

Sometimes we encounter CG(t)-orbits that agree on all the invariants we consider,

so in order to conclude that they are are indeed different orbits, we must find a

way of directly determining CG(t)-conjugacy between their representatives. Suppose

x1, x2 ∈ X are representatives we suspect lie in different CG(t)-orbits. We aim to

form a subset Y ⊂ CG(t) such that any element conjugating x1 to x2 must lie in Y ,

and with |Y | sufficiently small that simply testing every y ∈ Y is feasible. We employ

the following easy result.

Lemma 5.12. Let x1, x2 ∈ X. Set Hi = ϕ(CCG(t)(xi)) (for i = 1, 2). If H1, H2 are

not S-conjugate then x1, x2 are not CG(t)-conjugate. Suppose they are conjugate by an

element s ∈ S. Then for any h ∈ CG(t) with xh
1 = x2, we must have ϕ(h) ∈ NS(H1)s.

A further improvement can be made. Recall that S ⊆ Sym(Ω) with Ω = Q, and

the group action corresponding to conjugation on Q. Since any h ∈ CG(t) conjugating

x1 to x2 must conjugate CQ(x1) to CQ(x2), if these groups are non-trivial we need

only consider those elements on NS(H1)s that map CQ(x1) to CQ(x2) (considered

as subsets of Ω). Call the subset of NS(H1)s where this happens Z. Then we take

ϕ−1(Z) as our set Y . This routine constitutes Algorithm 8. We can successfully
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employ this algorithm wherever we have two representatives x1 and x2 and have

already found CCG(t)(xi) (i = 1, 2), so long as either the size of NS(H1) or the added

restriction where CQ(x1) is non-trivial result in the set Y being small enough for an

element-by-element check to be feasible.

Algorithm 8 inSameOrbit
Input: x1, x2 ∈ X;

CCG(t)(x1), CCG(t)(x2);
S,Q, ϕ as defined above.

1: H1 ← ϕ(CCG(t)(x1))
2: H2 ← ϕ(CCG(t)(x2))
3: if H1, H2 are not S-conjugate then
4: sameorbit ← false

5: else
6: Let g ∈ S be such that Hg

1 = H2

7: N ← NS(H1)
8: Z ← {h ∈ Ng | h maps CQ(x1) to CQ(x2)}
9: Y ← ϕ−1(Z)

10: sameorbit ← false

11: for y ∈ Y do
12: for q ∈ Q do
13: if xqy

1 = x2 then
14: sameorbit ← true

15: end if
16: end for
17: end for
18: end if
Output: sameorbit, having value true if and only if x1, x2 are CG(t)-conjugate.

Our strategy is to attempt to break each of the non-empty XC into its constituent

CG(t)-orbits. We begin with classes C of elements of small order and work up. This

has the advantage that when considering a class XC , we have already catalogued the

orbits in XD for each class D powered to from C, so given a representative x ∈ XC

we can use the suborbit of x(n) for n dividing the order of elements in C as a further

suborbit invariant for x. (In practice we generally consider x(2) = tz2 = tx.)

We now briefly describe how each of the non-empty sets XC can be broken down

into CG(t)-orbits. Discussion is omitted for classes C where CG(z) = 〈z〉 for z ∈ C,

where calculations are trivial.
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X2A, X2B When z = tx has order two we have x ∈ CG(t) ∩ X, and t and x generate a

Klein-four group in CG(t). A list of such groups can be found in [18], which

gives us the suborbits in X2A and X2B.

X3A Representatives x ∈ X3A can be found with |CQ(x)| = 1 and 4. When |CQ(x)| =
4 it is easy to find CCG(t)(x) by first calculating ϕ−1(Sx) (see Lemma 5.11).

Taking an x ∈ X3A with CQ(x) trivial, we can find CCG(t)(x) by first computing

CG(z) using the method explained in [7]. Since this group has order 2,661,120

(and contains CCG(t)(x)), the calculation is then trivial. We see that the two

orbit lengths now known total |X3A| and so we are done.

X4A, X4B Elements in 4A and 4B cannot be distinguished by the dimensions of their

centralizers in V so we must for the moment deal with the two sets together.

Random searching gives a list of 13 suborbit representatives with different in-

variants (including the size of the orbit which we can calculate in ϕ−1(Sx)).

However from the orbit sizes we know that this list does not include all the

CG(t)-orbits in X4A∪X4B. We deal with this problem momentarily. Since X4A

is the smaller we aim to determine which of our orbits comprise it first.

We assume for the moment that our list of 13 suborbits contains all the orbits

in X4A. From the power maps in [29] we see that for elements g ∈ G of order

4m with m ∈ {5, 10, 11}, we have gm ∈ 4A. So we search for x ∈ X with

tx having such an order. Then x(m) ∈ X4A (see Lemma 5.5). Matching the

invariants of these elements against our list of 13 suborbit representatives we

find two that we can conclude are certainly in X4A. Now, we know |X4A|, and

it is not divisible by 5, so it must contain at leat one orbit of size not divisible

by 5. Only one of our thirteen orbits has this property (and it is not one of

the two already placed in X4A) so it is a third orbit in X4A. Subtracting the

sizes of these three suborbits from |X4A| gives 26.32.5.7.11, which is the size of

the smallest orbit for which we have a representative, so we conclude that this

orbit too is in X4A.

The sizes of the CG(t)-orbits we now have lying in X4B do not total |X4B|. This
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suggests that two orbits in X4B have the same size and the same invariants and

so our search does not distinguish between them. We use the strategy outlined

in Lemma 5.12 to locate these orbits. Locating this fourteenth orbit also verifies

the assumption we made when placing suborbits in X4A.

X4C All six suborbits in X4C are easily distinguished by their invariants and sizes

(and in every case ϕ−1(Sx) for a representative element x is small enough to

allow direct computation of CCG(t)(x) in it).

X5A A representative x ∈ X5A can be found with |CQ(x)| = 23, allowing its size to

easily be determined. However the sizes of any other orbits in X5A are not so

quickly found. Set z = tx. It is clear from its order that 〈t, z, CCG(t)(x)〉 =

C∗
G(z). Now we employ the trick in Remark 5.6 to locate a second orbit of

different size, and obtain a representative element using Lemma 5.7. These two

orbits together comprise X5A.

X6A, X6B, X6C All three classes of order 6 elements can be distinguished by the dimensions

of their fixed spaces. Further, all of their suborbits are distinguished by their

invariants and sizes (which can be determined by the methods from Definition

5.10 and Lemma 5.11).

X8A, X8B, X8C Elements g from all three classes of order 8 have the same value of dim CV (g), so

we face some difficulty determining which of these sets a suborbit representative

lies in. We do know from the power maps that the square of an 8A-element

is in 4A while the squares of 8B- and 8C-elements are in 4B. So if we have

x ∈ X8A then x(2) ∈ X4A while if x ∈ X8B ∪ X8C then x(2) ∈ X4B. Since we

have determined the suborbits in X4A and X4B and can easily distinguish the

ones in X4A, this gives us a way of determining which orbits lie in X8A.

The ‘powering down’ of orbits in Remark 5.5 also gives us a way of determining

the orbits in X8B. We search for representatives y ∈ X with ty having order

24. Then y(3) ∈ X8B. Doing this we find two suborbits which together comprise

X8B.
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Any remaining suborbit is now in X8C an random searching soon yields repre-

sentatives for the four suborbits that comprise it. (We note that two of these

orbits can only be distinguished by considering which orbit of X4B the element

x(2) lies in.)

X10A We begin by taking the group C∗
G(z1) for z1 ∈ 5A found in our calculations

for X5A. Searching in this group we find a z ∈ 10A such that z2 = z1. We

then compute C∗
G(z) ≤ C∗

G(z1). As with X5A, we now find conjugates of our

CG(t)-orbits following Remark 5.6, and having determined that X10A breaks

into two suborbits, obtain the correct representatives using Lemma 5.7.

X10B Random search gives a representative x ∈ X10B with |CQ(x)| = 22 allowing us to

find CCG(t)(x) using Lemma 5.11. Now we again use the groups CG(z1), C
∗
G(z1),

z1 ∈ 5A from above. We choose t1 ∈ C∗
G(z1) ∩ X such that t1 inverts z1, and

observe that for any s ∈ X ∩CG(z1)∩CG(t1), z1s ∈ 10B. So we search for such

s with t1z1s ∈ X, so that similarly to Remark 5.6 t1z1s can be conjugated to

a representative x ∈ X10B. Doing this yields three representatives all of which

have CQ(x) trivial.

X11A Suppose x ∈ X11A. Set z = tx ∈ 11A. From [18] we know that NG(z) is a

maximal subgroup of G, and so we can obtain a G-conjugate of it from [29].

Call this group N1. Then we may find t′, x′ ∈ X ∩ N1 (by random search) so

that z′ = t′x′ ∈ 11A with 〈z′〉EN1. Computation reveals that |CCG(z′)(x
′)| = 22

and since |X11A| = |CG(t)|/22, we conclude that X11A is a single CG(t)-orbit.

X11B With N1 and t′ as above we can find an element x′′ ∈ 2B ∩N1 with z′′ = t′x′′ ∈
11B. We find CN1(z

′′) and discover by its order that it is equal to CG(z′′). We

find that CCG(z′′)(t
′) = 2 and then by the size of X11B conclude that X11B is a

single CG(t)-orbit.

X12A, X12B We cannot distinguish between 12A- and 12B-elements by the dimensions of

their fixed spaces, but we can find an x ∈ X12B by taking x = y(2) for y ∈ X24A.

Suppose we have x ∈ X12A ∪ X12B. Set z = tx. Then we can find CG(z)
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by first computing CG(z4) (z4 ∈ 3A) as before. Now C∗
G(z) = 〈CG(z), t〉 and

|C∗
G(z)| = 384, so it is easy to check every element of C∗

G(z), and so we form

the following subset:

I = {w | w ∈ 2B, wz ∈ 2B,w ∈ C∗
G(z) \ CG(z)}.

We discover that for our known 12B-element, |I| = 84 while for other z it is 72,

so we can now distinguish between 12A- and 12B-elements. Random searching

now delivers the suborbits, though we must resort to using Algorithm 8 to

distinguish some.

X12C Elements in 12C are determined by the dimension of their fixed space, and

|CCG(t)(x)| for representatives x are easily calculated by working in either CG(z4)

(found as with X3A since z4 ∈ 3A) or in ϕ−1(CS(ϕ(z6)). We find that X12C

breaks into six CG(t)-orbits, though we need to employ the method of Lemma

5.12 to tell several of these suborbits apart.

X20A, X20B We again begin with our group CG(z1) with z ∈ 5A. We find an f ∈ CG(z1)

with order 4 and take z = fz1 to be our 20A-element. (Note from the Atlas

that 20A and 20B are ‘master’ and ‘slave’ classes forming an algebraically

conjugate family of classes with 20A-elements cubing to 20B-elements, and so

it is arbitrary which class of order-20 elements we denote 20A and which 20B).

Now we find C∗
G(z) = CC∗G(z1)(z) and work here employing Remark 5.6. Doing so

we see that X20A consists of two suborbits, distinguished by their size. Clearly

X20B will have the same suborbit structure and to find representatives we take

z3 as our 20B-element and repeat the above procedure.

X40A, X40B As with 20A, 20B, classes 40A and 40B are identical so our choice of naming is

arbitrary (except that to line up with the power maps in the Atlas we might

wish a 40B-element to cube to a 20A-element). Working again in C∗
G(z1) we

quickly discover that X40A and X40B each split into two CG(t)-orbits.

In Tables 5.2 to 5.9 we collate the data on the CG(t)-orbits. Again each row

corresponds to one suborbit, and the suborbits are grouped according to the sets XC .
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Table 5.2: Suborbits in class 2B of G ∼= J4 (i)

C Orbit size Class of w |CQ(x)| q2A q2B dx

1A 1 1A 211 1771 276 56
2A 26.32.7.11 2C 26 51 12 31

24.3.5.7.11 2A 27 91 36 32
3.7.11 1A 211 1771 276 36

2B 25.32.5.7.11 2A 27 91 36 28
25.3.5.7.11 2B 27 91 36 28

22.11 1A 211 1771 276 36
3A 213.32.7.11 - 1 0 0 20

212.3.5.11 - 23 7 0 20
5A 215.32.5.7.11 - 1 0 0 12

213.3.5.11 - 23 7 0 12
11A 218.32.5.7 - 1 0 0 1
11B 218.32.5.7.11 - 1 0 0 6
23A 219.32.5.7.11 - 1 0 0 1
29A 219.32.5.7.11 - 1 0 0 0
31A 219.32.5.7.11 - 1 0 0 1
31B 219.32.5.7.11 - 1 0 0 1
31C 219.32.5.7.11 - 1 0 0 1
37A 219.32.5.7.11 - 1 0 0 2
37B 219.32.5.7.11 - 1 0 0 2
37C 219.32.5.7.11 - 1 0 0 2
43A 219.32.5.7.11 - 1 0 0 0
43B 219.32.5.7.11 - 1 0 0 0
43C 219.32.5.7.11 - 1 0 0 0

Each table gives the suborbits in certain of the XC . A column headed x(n) gives the

suborbit that the orbit powers to, with an entry of the form Ci, representing the ith

listed suborbit in XC .

5.2.5 The Commuting Involution Graph on Class 2B

Having found our representatives for the CG(t)-orbits on X = 2B, we wish to deter-

mine which disc of the commuting involution graph C(G,X) each lies in, and thus

discover the diameter and disc sizes of the graph. In Lemma 2.2 of [2] some results

are given that allow us to determine the disc locations of may of the sets XC from

the power maps in the Atlas. We summarise these here.
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Table 5.3: Suborbits in class 2B of G ∼= J4 (ii)

C Orbit size Class of w |CQ(x)| q2A q2B |Sx| dx

4A 212.32.7.11 2C 2 1 0 3840 16
210.3.5.7.11 2A 23 7 0 768 17
26.32.5.7.11 1A 27 91 36 192 20

27.32.7.11 1A 26 51 12 320 20
4B 212.32.5.7.11 2C 2 1 0 3840 16

210.32.5.7.11 2A 22 3 0 768 16
210.32.5.7.11 2A 22 3 0 128 17
210.32.5.7.11 2A 22 3 0 128 17
210.32.5.7.11 2A 22 3 0 128 16
29.32.5.7.11 2A 22 3 0 768 18
28.32.5.7.11 1A 26 51 12 32 19
28.32.5.7.11 2A 23 7 0 768 19
28.3.5.7.11 1A 27 91 36 192 18
28.3.5.7.11 2A 23 7 0 768 18

4C 212.32.5.7.11 2A 22 3 0 128 14
212.32.5.7.11 2B 22 3 0 128 14
211.32.5.7.11 2A 22 3 0 128 14
211.32.5.7.11 2B 22 3 0 768 14

29.3.5.7.11 1A 27 91 36 168 18
29.3.5.7.11 2B 23 7 0 768 18

Table 5.4: Suborbits in class 2B of G ∼= J4 (iii)

C Orbit size Class of w |CQ(x)| q2A q2B dx x(2)

8A 215.32.5.7.11 2A 2 1 0 9 4A2

215.32.5.7.11 2C 1 0 0 9 4A1

213.32.5.7.11 1A 2 1 0 10 4A4

213.32.5.7.11 1A 22 3 0 10 4A3

213.32.5.7.11 2C 1 0 0 10 4A1

213.32.5.7.11 2C 1 0 0 10 4A1

213.32.7.11 1A 2 1 0 10 4A4

213.32.7.11 2C 1 0 0 10 4A1

8B 215.32.5.7.11 2A 1 0 0 8 4B5

215.32.5.7.11 2C 1 0 0 8 4B1

8C 216.32.5.7.11 2C 1 0 0 8 4B1

214.32.5.7.11 2A 1 0 0 9 4B2

214.32.5.7.11 2A 1 0 0 9 4B6

213.32.5.7.11 2A 1 0 0 10 4B6
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Table 5.5: Suborbits in class 2B of G ∼= J4 (iv)

C Orbit size Class of w |CQ(x)| q2A q2B dx x(2)

6A 213.32.7.11 2C 1 0 0 10 3A1

6B 215.32.5.7.11 2C 1 0 0 11 3A1

213.32.5.7.11 2A 1 0 0 12 3A1

213.32.5.7.11 2A 22 3 0 12 3A2

213.32.5.7.11 2C 22 3 0 11 3A2

213.32.5.7.11 2C 1 0 0 11 3A1

6C 215.32.5.7.11 2A 1 0 0 10 3A1

213.32.5.7.11 2A 22 3 0 10 3A2

213.32.5.7.11 2A 1 0 0 10 3A1

213.32.5.7.11 2B 1 0 0 10 3A1

212.3.5.7.11 2B 23 7 0 10 3A2

Table 5.6: Suborbits in class 2B of G ∼= J4 (v)

C Orbit size Class of w |CQ(x)| q2A q2B dx x(2)

12A 216.32.5.7.11 2C 1 0 0 6 6B1

216.32.5.7.11 2C 1 0 0 6 6B1

215.32.5.7.11 2A 1 0 0 7 6B2

215.32.5.7.11 2A 1 0 0 7 6B3

12B 216.32.5.7.11 2C 1 0 0 6 6B1

216.32.5.7.11 2C 1 0 0 6 6B1

215.32.5.7.11 2A 1 0 0 7 6B3

215.32.5.7.11 2A 1 0 0 7 6B2

215.32.5.7.11 2A 1 0 0 6 6B3

12C 216.32.5.7.11 2A 1 0 0 5 6C1

216.32.5.7.11 2A 1 0 0 5 6C1

216.32.5.7.11 2A 1 0 0 5 6C1

216.32.5.7.11 2B 1 0 0 5 6C4

216.32.5.7.11 2B 1 0 0 5 6C4

216.32.5.7.11 2B 2 1 0 5 6C3
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Table 5.7: Suborbits in class 2B of G ∼= J4 (vi)

C Orbit size Class of w |CQ(x)| q2A q2B |Sx| dx x(2)

10A 216.32.5.7.11 2C 1 0 0 887040 7 5A1

215.32.5.7.11 2A 1 0 0 887040 8 5A1

10B 216.32.5.7.11 2A 1 0 0 887040 6 5A1

216.32.5.7.11 2A 1 0 0 887040 6 5A1

215.32.5.7.11 2A 1 0 0 887040 6 5A1

215.32.5.7.11 2A 4 3 0 48 6 5A2

20A 217.32.5.7.11 2C 1 0 0 887040 4 10A1

216.32.5.7.11 2A 1 0 0 887040 5 10A2

20B 217.32.5.7.11 2C 1 0 0 887040 4 10A1

216.32.5.7.11 2A 1 0 0 887040 5 10A2

40A 218.32.5.7.11 2C 1 0 0 887040 3 20B1

218.32.5.7.11 2A 1 0 0 887040 3 20B2

40B 218.32.5.7.11 2C 1 0 0 887040 3 20A1

218.32.5.7.11 2A 1 0 0 887040 3 20A2

Table 5.8: Suborbits in class 2B of G ∼= J4 (vii)

C Orbit size Class of w |CQ(x)| q2A q2B |Sx| dx x(2)

22A 218.32.5.7.11 2C 1 0 0 887040 1 11A
33A 218.32.5.7.11 - 1 0 0 887040 0 -

218.32.5.7.11 - 1 0 0 887040 0 -
33B 218.32.5.7.11 - 1 0 0 887040 0 -

218.32.5.7.11 - 1 0 0 887040 0 -
44A 218.32.5.7.11 2C 1 0 0 887040 1 22A

218.32.5.7.11 2C 1 0 0 887040 1 22A
66A 218.32.5.7.11 2C 1 0 0 887040 0 33B1

218.32.5.7.11 2C 1 0 0 887040 0 33B2

66B 218.32.5.7.11 2C 1 0 0 887040 0 33A1

218.32.5.7.11 2C 1 0 0 887040 0 33A2
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Table 5.9: Suborbits in class 2B of G ∼= J4 (viii)

C Orbit size Class of w |CQ(x)| q2A q2B |Sx| dx x(2)

15A 218.32.5.7.11 - 1 0 0 887040 4 -
218.32.5.7.11 - 1 0 0 887040 4 -

16A 217.32.5.7.11 2C 1 0 0 887040 5 8C1

217.32.5.7.11 2A 1 0 0 887040 5 8C4

24A 217.32.5.7.11 2A 1 0 0 887040 3 x2B5

217.32.5.7.11 2C 1 0 0 887040 3 12B1

24B 217.32.5.7.11 2A 1 0 0 887040 3 12B5

217.32.5.7.11 2C 1 0 0 887040 3 12B1

30A 218.32.5.7.11 2C 1 0 0 887040 2 15A1

218.32.5.7.11 2C 1 0 0 887040 2 15A2

Proposition 5.13. Let G be a group and t ∈ G an involution. Set X = tG and let

∆i(t) denote the ith disc around t in the commuting involution graph C(G,X). For

C a class of elements of G with order m such that XC is non-empty we have

(i) XC ⊆ ∆1(t) if and only if m = 2, that is if C is a class of involutions;

(ii) If m is even (m ≥ 4) and the the (m/2)th powers of elements of C are in X

then XC ⊆ ∆2(t);

(iii) If m is odd and no class D of elements of order 2m exists in G such that

elements of D have their mth powers in X, then no CG(t)-orbits in XC lie in

∆1(t) or ∆2(t).

We set G = J4, t ∈ X = 2A as in the previous section. Proposition 5.13(i)

gives us the obvious fact that ∆1(t) = X2A ∪ X2B. From (ii) we can deduce that

X4C ∪X6C ∪X10B ∪X12C ⊆ ∆2(t), while (iii) gives us that all XC with C a class of

elements of odd order greater than 10 have all their suborbits at distance 3 or greater

from t.

As also mentioned in Lemma 2.2 of [2], for any representative x ∈ X, if CCG(t)(x)∩
X 6= ∅ then d(t, x) ≤ 2. Recall we have the invariant q2B giving the size of CQ(x)∩X ⊆
CCG(t)(x) ∩ X, so we can use this to quickly place some further orbits. For the XC
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not covered above, this gives us that two orbits in X4A and two orbits in X4B are in

∆2(t).

For the remaining orbits we must check more directly. For each suborbit repre-

sentative x we compute CCG(t)(x) and check whether it contains any 2B-elements.

This gives us all the suborbits in ∆2(t). It remains to check whether the other orbits

all lie in ∆3(t) or whether the graph has diameter 4 or more.

For each representative x with d(t, x) ≥ 3, we repeatedly take random elements

y of CG(x) using Algorithm 1 until we get a 2B-element of order 3, 4, 5, 6, 8, 10, 12

or 16. From the above we know that d(t, y) = 2 and hence that d(t, x) = 3. Luckily,

this procedure is successful for every remaining orbit representative. This completes

our study of the graph. The results are summarised in the following theorem, which

concludes our study of J4.

Theorem 5.14. Let G = J4, t ∈ X = 2B and let C(G,X) be the commuting involu-

tion graph on X. The diameter of C(G,X) is 3 and its disc structure is as follows:

• ∆0(t) has size 1 and consists of X1A = {t}.

• ∆1(t) has size 173,987 and consists of X2A ∪X2B.

• ∆2(t) has size 9,988,198,176 and consists of the sets X3A, X4A, X4B, X4C, X5A,

X6A, X6B, X6C, X8A, X8B, X8C, X10A, X10B, X11B, X12A, X12B, X12C, X16A,

X24A, X24B, and of the smaller of the two orbits in X20A and in X20B.

• ∆3(t) has size 37,778,227,200 and consists of the sets X11A, X15A, X22A, X23A,

X29A, X30A, X31A, X31B, X31C, X33A, X33B, X37A, X37B, X37C, X40A, X40B,

X43A, X43B, X43C, X44A, X66A, X66B, and of the larger of the two orbits in

X20A and in X20B.



CHAPTER 5. INVOLUTIONS IN SPORADIC SIMPLE GROUPS 75

5.3 The Fischer groups

The sporadic simple groups Fi22, Fi23 and Fi ′
24 arose from Fischer’s classification of

the 3-transposition groups, which are defined as follows.

Definition 5.15. A 3-transposition group is a finite group H with a conjugacy class

Y (the 3-transpositions, often shortened to just ‘transpositions’) such that

(i) Y is a class of involutions;

(ii) H = 〈Y 〉; and

(iii) for any distinct x, y ∈ Y , either x and y commute, or the order of xy is 3.

The most obvious examples of 3-transposition groups are the symmetric groups

Sn, where the class of 3-transpositions is the normal class of transpositions (12)Sn .

Fischer classified all 3-transposition groups (subject to certain technical conditions)

and the three exceptional groups in this classification were the Fischer groups Fi22,

Fi23 and Fi24—originally called M(22), M(23) and M(24) to emphasise their relation

to the Mathieu groups. The first two of these also gave new sporadic simple groups,

and while Fi24 itself is non-simple, its derived subgroup Fi ′
24 gave a third sporadic.

These groups are 3-transposition groups with respect to their smallest involution

conjugacy classes: in Atlas notation 2A for Fi22 and Fi23, and 2C for Fi24 since

the Atlas lists the classes in the simple group Fi ′
24 first.

Elements in the remaining involution conjugacy classes of the Fischer groups can

be expressed as products of pairwise commuting elements, so that for example in

Fi22, class 2B consists of products of two commuting transpositions and is often

called the class of bi-transpositions, and similarly 2C consists of products of three

pairwise commuting transpositions, called tri-transpositions (note this is not the same

as 3-transpositions).

The Fischer 3-transposition groups were originally found by study of their com-

muting involution graphs on the class of 3-transpositions, so this class is already
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well-understood (see Section 5.7 of [28] for details) and it is easy to see that each

such class consists of three suborbits equal to the sets X1A = {t}, X2B and X3A.

However, the other classes are not so transparent. We calculate the CG(t)-orbits, and

from these the disc sizes for the two largest classes 2B, 2D in Fi24. For the other

class, 2A, and for the groups Fi22 and its automorphism group Fi22 : 2, and for Fi23

(where the disc sizes are already known), we deduce the involution suborbits and find

representative elements for them. We also look briefly at the group 3.F i24.

5.3.1 Computation in the Fischer groups

The Fischer groups can be represented as permutation groups of relatively small

degree, so many of the computational problems faced in the previous section do not

arise here: in particular, we are able to compute orbit sizes and test CG(t)-conjugacy

directly. However, these tasks are still relatively expensive computationally and so

we will aim to minimize their use when finding the suborbits.

Table 5.10 summaries the relevant information gleaned from the character tables,

as well as listing the degree of the smallest available permutation representation for

each group. A number in brackets denotes that the permutation rank could not be

deduced from the character table, but for completeness we include the correct figure

as determined by our computation.

5.3.2 Finding the suborbits

Let G be one of the Fischer sporadic simple groups or one of their automorphism

groups, and X a G-conjugacy class of involutions. Fix an element t ∈ X.

Since CG(t)-conjugacy testing is possible in the Fischer groups, we do not as in

the previous section expend a great amount of effort calculating a large number of

invariants for CG(t)-orbit representatives x, but we do consider two easily-calculated
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Table 5.10: Permutation ranks in the Fischer groups

G X Perm. Rank |{C | XC 6= ∅}| Degree
Fi22 2A 3 3 3510

2B (14) 11
2C (136) 57

Fi22 : 2 2D (4) 4
2E (56) 31
2F (74) 38

Fi23 2A 3 3 31671
2B (12) 10
2C (303) 92

Fi ′
24 2A 13 11 306936

2B 233 104
Fi24 2C (3) 3

2D (232) 84

invariants: the cycle structure of z = tx, and the lengths of the orbits (in the permu-

tation action) of 〈t, x〉.

Determining the conjugacy class of a given element may not be easy, so it is

helpful to coalesce the XC for all classes of elements of a given order. We set Xn =

(XnA ∪ XnB ∪ . . . ). So the sizes of the sets Xn follow immediately from the known

sizes of the XC .

Algorithm 9 outlines a basic procedure by which we might attempt to find the

representatives. For an element x ∈ X we take Invariants(x) to denote an ordered

pair of the two invariants mentioned above, while sizesXn denotes a sequence of

integers [|X1|, |X2|, . . . ].

However, this simple approach would prove very slow, since we often need to find a

large number of CG(t)-orbits, some of which may be very small. We use the following

tricks to speed up the search for the suborbits.
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Algorithm 9 SuborbitRepresentatives

Input: G a finite group;
t an involution in G;
sizesXn the data from the character table described above.

1: reps:={t}
2: currentsizesXn := [1, 0, 0, . . . ]
3: while currentsizesXn 6= sizesXn do
4: repeat
5: g ← Random(G)
6: x ← tg

7: k ← |x|
8: until currentsizesXn[k] <sizesXn[k]
9: newsuborbit ← true

10: for y ∈ reps with Invariants(x)=Invariants(y) do
11: if x is CG(t)-conjugate to y then
12: newsuborbit ← false

13: end if
14: end for
15: if newsuborbit then
16: reps ← reps ∪{x}
17: currentsizesXn[k] ← currentsizesXn[k] + [CG(t) : CCG(t)(x)]
18: end if
19: end while
Output: reps, the set of suborbit representatives.
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5.3.3 Powering Suborbits

Recall from Remarks 5.5 that for a representative x, and n dividing the order of

z = tx, we can form a new representative x(n) = tzn, and that for two representatives

x, y of the same CG(t)-orbit, x(n) and y(n) are also CG(t)-conjugate (and all other

CG(t)-conjugates of x(n) can be formed in this way).

In the previous chapter this was used to give us additional suborbit invariants, but

here it is better used to unearth new suborbits. When we have found a representative

x for a new suborbit, we form and check x(n) for each n dividing the order of z. This

allows us much more easily to alight on suborbits which are small and so hard to find

by random searching, but which can be powered down to from much larger orbits.

For example, when G ∼= Fi22 and X is the class 2C, there is a suborbit in X2C

of size 9, which we would be very unlikely to find in a random search, however, a

representative is easily found as x(4) for x in an orbit of size 55296 contained in X8A.

5.3.4 Inverse suborbits

Our suborbit representatives are formed by taking random elements g ∈ G and setting

x = tg. Now consider the element x′ = tg
−1

. We note the following properties:

Lemma 5.16. Let t ∈ X, g ∈ G. Set x = tg and x′ = tg
−1

. Then

(i) the CG(t)-orbits containing x and x′ are of the same size;

(ii) x and x′ lie in the same XC; and

(iii) if y = th is CG(t)-conjugate to x then y′ = th
−1

is CG(t)-conjugate to x′.

Proof. We have that CCG(t)(x) = CG(t) ∩ CG(tg) and CCG(t)(x
′) = CG(t) ∩ CG(tg

−1
),

so clearly CCG(t)(x)g−1
= CCG(t)(x

′). Then |CCG(t)(x)| = |CCG(t)(x
′)| and so their

orbits have the same size, giving (i). For (ii), we note that (tx)g−1t = tx′. Now let

c ∈ CG(t) so that xc = y. So tgc = th, that is, gch−1 ∈ CG(t). Then we see that

x′(gch−1) = tg
−1(gch−1) = tch

−1
= th

−1
= y′, giving (iii).
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So when we find a representative x of a new CG(t)-orbit, we can form the element

x′, and we need only to check it for CG(t)-conjugacy against x to see if it represents

a new suborbit (if it were in a previously discovered suborbit O then when that orbit

were found we would have uncovered the orbit xCG(t) by the same process). In some

of the classes we consider a large number of the CG(t)-orbits fall into pairs of ‘inverse’

orbits in this manner so use of this technique can save much computational time.

Algorithm 10 builds these refinements into the approach from Algorithm 9. Im-

plementing these algorithms in Magma, we find that with G ∼= Fi22 and X = 2C

Algorithm 9 takes an average of 638 seconds to locate all 136 suborbits, while the

improved version takes on average 58 seconds, locating 39 pairs of inverse orbits. If

G ∼= Fi22 : 2 and X = 2F , the basic algorithm takes on average 55 seconds to find

74 suborbits while the new version takes just 8 seconds, locating 17 inverse pairs.

5.3.5 Finding representative words

The most efficient way to store representatives is to give for each suborbit a word in

the standard generators a, b (or c, d in an automorphism group) giving an element

g ∈ G such that x = tg is a representative for that orbit. This also has the advantage

that representatives can be found using any representation of the group. We briefly

describe how we obtain these words. The two largest classes in Fi24, for which we

determine the commuting involution graphs, are too large for the search for words

to be feasible. In the electronic files (see Appendix A) we give for these cases t,

generators for CG(t) and representatives for each CG(t)-orbit on X in the form of

base images relative to a particular base and strong generating set for G (see Chapter

4 of [16] for a discussion of this concept, of vital importance to computation in

permutation groups).

From the above we have obtained a set of CG(t)-orbit representatives. For each

representative x we check x(d) for every divisor d of the order of z = tx to see what

suborbit it lies in. Hence we obtain full information on the powering of suborbits.
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Algorithm 10 SuborbitRepresentatives

Input: G a finite group;
t an involution in G;
sizesXn the data from the character table described above.

1: reps:={t}
2: currentsizesXn := [1, 0, 0, . . . ]
3: while currentsizesXn 6= sizesXn do
4: repeat
5: g ← Random(G)
6: x ← tg

7: k ← |tx|
8: until currentsizesXn[k] <sizesXn[k]
9: newsuborbit ← true

10: for y ∈ reps with Invariants(x)=Invariants(y) do
11: if x is CG(t)-conjugate to y then
12: newsuborbit ← false

13: end if
14: end for
15: if newsuborbit then
16: reps ← reps ∪{x}
17: currentsizesXn[k] ← currentsizesXn[k] + [CG(t) : CCG(t)(x)]

18: x′ ← tg
−1

19: if x′ is not CG(t)-conjugate to x then
20: reps ← reps ∪{x′}
21: currentsizesXn[k] ← currentsizesXn[k] + [CG(t) : CCG(t)(x

′)]
22: end if
23: for n dividing the order of z do
24: x(n) ← tzn

25: newsuborbit ← true

26: for y ∈ reps with Invariants(x(n))=Invariants(y) do
27: if x(n) is CG(t)-conjugate to y then
28: newsuborbit ← false

29: end if
30: end for
31: if newsuborbit then
32: reps ← reps ∪{x(n)}
33: currentsizesXn[k] ← currentsizesXn[k] + [CG(t) : CCG(t)(x

(n))]
34: if x(n)′ is not CG(t)-conjugate to x(n) then
35: reps ← reps ∪{x(n)′}
36: currentsizesXn[k] ← currentsizesXn[k]

+[CG(t) : CCG(t)(x
(n)′)]

37: end if
38: end if
39: end for
40: end if
41: end while
Output: reps, the set of suborbit representatives.
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We also know which suborbits are inverses of each other. Hence we can create a

shorter list of representatives from which we can obtain representative elements for

all suborbits by taking powers and inverses.

Now we simply form each word g in a and b up to some feasible length and evaluate

tg to see which suborbit representative it is CG(t)-conjugate to, aiming to find a word

conjugating t to each of our reduced list. If we do not find a word for a particular

suborbit, we either take random longer words hoping to find a suitable candidate, or

replace one of the generators by a short word that generates the whole group with

the other generator, and repeat the process (that is, make words in, say, a′ = a and

b′ = ab).

The following sections present the results of the computations on each of the in-

volution conjugacy classes of each of the Fischer sporadic groups and their automor-

phism groups. For (Fi ′
24 , 2B) and (Fi24, 2D) we give the sizes of the CG(t)-orbits and

their locations in the commuting involution graph, thus determining its disc structure.

The disc locations of the CG(t)-orbits were determined using the same procedure as

in Section 5.2.5. For the other cases, where the structure of the graph is already

known, we present the information on the CG(t)-orbits, and give representatives as

words in the standard generators.

5.3.6 G ∼= Fi24

Theorem 5.17. Let C(G,X) be the commuting involution graph of G ∼= Fi ′
24 on

X = 2B. Then for t ∈ X,

• ∆0(t) = {t} has size 1 and is composed of one CG(t)-orbit.

• ∆1(t) has size 3,324,762 and is composed of six CG(t)-orbits.

• ∆2(t) has size 3,755,093,739,776 and is composed of one hundred and seventy-

four CG(t)-orbits.

• ∆3(t) has size 4,064,208,224,256 and is composed of fifty-two CG(t)-orbits.
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The CG(t)-orbits comprising the graph are as detailed in Table 5.11.

Theorem 5.18. Let C(G,X) be the commuting involution graph of G ∼= Fi24 on

X = 2D. Then for t ∈ X,

• ∆0(t) = {t} has size 1 and is composed of one CG(t)-orbit.

• ∆1(t) has size 3,682,503 and is composed of six CG(t)-orbits.

• ∆2(t) has size 822,139,288,316 and is composed of one hundred and ninety-one

CG(t)-orbits.

• ∆3(t) has size 2,021,240,770,560 and is composed of thirty-six CG(t)-orbits.

The CG(t)-orbits comprising the graph are as detailed in Table 5.12.

In Tables 5.11 and 5.12 each row corresponds to one CG(t)-orbit, except that

where more than one CG(t)-orbit of the same size occurs in the same XC , we collapse

their entries into one row, so a symbol 4B1,2 means that there are two CG(t)-orbits

of the given size in X4B.

5.3.7 G ∼= 3.F i24

We briefly consider the group G ∼= 3.F i24 with X = 2D, the class corresponding to

its namesake in Fi24. This is of particular interest because it occurs as a maximal

subgroup of the Monster group M, and hence is linked with the so-called ‘Monster

graph’ (see the next section where two more associated cases are considered for more

details). The group has size 222.317.52.73.11.13.17.23.29 and the smallest-degree per-

mutation representation available is of degree 920808, so computation in this group

is difficult. Also the number of CG(t)-orbits is evidently very large.

Our methods have not uncovered all of the suborbits, but in Appendix A we give

representative elements for the 435 that have been found. Only suborbits in X6 and

X12 are missing.
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Table 5.11: CG(t)-orbits for G ∼= Fi′24, t ∈ X = 2B

CG(t)-orbit Orbit Size (factored) Disk
t 1 1 ∆0

2A1 24192 27 · 33 · 7 ∆1

2A2 45360 24 · 34 · 5 · 7 ∆1

2B1 3402 2 · 35 · 7 ∆1

2B2 816480 25 · 36 · 5 · 7 ∆1

2B3 2177280 28 · 35 · 5 · 7 ∆1

3A1 258048 212 · 32 · 7 ∆2

3B1 917504 217 · 7 ∆2

3C1 1032192 214 · 32 · 7 ∆2

3C2 10321920 215 · 32 · 5 · 7 ∆2

3D1 165150720 219 · 32 · 5 · 7 ∆2

3E1 278691840 215 · 35 · 5 · 7 ∆2

4A1 1306368 28 · 36 · 7 ∆2

4A2 4354560 29 · 35 · 5 · 7 ∆2

4A3 104509440 212 · 36 · 5 · 7 ∆2

4A4 139345920 214 · 35 · 5 · 7 ∆2

4B1,2 52254720 211 · 36 · 5 · 7 ∆2

4B3,4 209018880 213 · 36 · 5 · 7 ∆2

4C1,2 78382080 210 · 37 · 5 · 7 ∆2

4C3,4,5 313528320 212 · 37 · 5 · 7 ∆2

4C6 1254113280 214 · 37 · 5 · 7 ∆2

5A1 334430208 216 · 36 · 7 ∆2

5A2 836075520 215 · 36 · 5 · 7 ∆2

6A1 34836480 212 · 35 · 5 · 7 ∆2

6A2 55738368 215 · 35 · 7 ∆2

6A3 69672960 213 · 35 · 5 · 7 ∆2

6B1 278691840 215 · 35 · 5 · 7 ∆2

6C1 123863040 217 · 33 · 5 · 7 ∆2

6C2 371589120 217 · 34 · 5 · 7 ∆2

6D1 209018880 213 · 36 · 5 · 7 ∆2

6D2 836075520 215 · 36 · 5 · 7 ∆2

6E1 1114767360 217 · 35 · 5 · 7 ∆2

6F1 139345920 214 · 35 · 5 · 7 ∆2

6F2,3,4 278691840 215 · 35 · 5 · 7 ∆2

6F5 1114767360 217 · 35 · 5 · 7 ∆2

6G1 4459069440 219 · 35 · 5 · 7 ∆2

6H1 4459069440 219 · 35 · 5 · 7 ∆2

6I1,2,3 836075520 215 · 36 · 5 · 7 ∆2

6I4 3344302080 217 · 36 · 5 · 7 ∆2

6J1 13377208320 219 · 36 · 5 · 7 ∆2

6K1 5016453120 216 · 37 · 5 · 7 ∆2

6K2 20065812480 218 · 37 · 5 · 7 ∆2
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CG(t)-orbit Orbit Size (factored) Disk
7A1 63700992 218 · 35 ∆3

7A2 6688604160 218 · 36 · 5 · 7 ∆3

7B1,2 11466178560 220 · 37 · 5 ∆2

8A1,2 278691840 215 · 35 · 5 · 7 ∆2

8A3,4 836075520 215 · 36 · 5 · 7 ∆2

8A5,6 2508226560 215 · 37 · 5 · 7 ∆2

8A7,8 10032906240 217 · 37 · 5 · 7 ∆2

8B1 10032906240 217 · 37 · 5 · 7 ∆2

8B2 20065812480 218 · 37 · 5 · 7 ∆2

8C1,2,3,4 10032906240 217 · 37 · 5 · 7 ∆2

9A1 2972712960 220 · 34 · 5 · 7 ∆2

9B1 445906944 218 · 35 · 7 ∆3

9B2 2229534720 218 · 35 · 5 · 7 ∆3

9C1 4459069440 219 · 35 · 5 · 7 ∆2

9D1 5945425920 221 · 34 · 5 · 7 ∆3

9E1,2 8918138880 220 · 35 · 5 · 7 ∆2

9F1 26754416640 220 · 36 · 5 · 7 ∆3

10A1,2 5016453120 216 · 37 · 5 · 7 ∆2

10A3 6688604160 218 · 36 · 5 · 7 ∆2

10A4 668860416 217 · 36 · 7 ∆2

10A5 10032906240 217 · 37 · 5 · 7 ∆2

10B1,2,3 5016453120 216 · 37 · 5 · 7 ∆2

10B4,5 10032906240 217 · 37 · 5 · 7 ∆2

11A1 80263249920 220 · 37 · 5 · 7 ∆3

12A1 1672151040 216 · 36 · 5 · 7 ∆2

12A2 3344302080 217 · 36 · 5 · 7 ∆2

12B1,2 1114767360 217 · 35 · 5 · 7 ∆2

12B3,4 3344302080 217 · 36 · 5 · 7 ∆2

12C1 5016453120 216 · 37 · 5 · 7 ∆2

12C2 10032906240 217 · 37 · 5 · 7 ∆2

12D1,2,3,4 1672151040 216 · 36 · 5 · 7 ∆2

12D5,6 5016453120 216 · 37 · 5 · 7 ∆2

12E1,2 3344302080 217 · 36 · 5 · 7 ∆2

12E3,4 6688604160 218 · 36 · 5 · 7 ∆2

12F1,2 13377208320 219 · 36 · 5 · 7 ∆2

12G1,2 13377208320 219 · 36 · 5 · 7 ∆2

12H1,2 20065812480 218 · 37 · 5 · 7 ∆2

12I1 20065812480 218 · 37 · 5 · 7 ∆2

12I2 40131624960 219 · 37 · 5 · 7 ∆2

12J1 20065812480 218 · 37 · 5 · 7 ∆2

12J2 40131624960 219 · 37 · 5 · 7 ∆2

12K1,2 10032906240 217 · 37 · 5 · 7 ∆2

12K3,4 20065812480 218 · 37 · 5 · 7 ∆2

12L1,2,3,4 6688604160 218 · 36 · 5 · 7 ∆2

12L5,6 20065812480 218 · 37 · 5 · 7 ∆2

12M1,2 40131624960 219 · 37 · 5 · 7 ∆2
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CG(t)-orbit Orbit Size (factored) Disk
13A1 8918138880 220 · 35 · 5 · 7 ∆3

13A2 80263249920 220 · 37 · 5 · 7 ∆3

14A1,2 6688604160 218 · 36 · 5 · 7 ∆3

14A3 13377208320 219 · 36 · 5 · 7 ∆3

14A4 40131624960 219 · 37 · 5 · 7 ∆3

14B1,2 80263249920 220 · 37 · 5 · 7 ∆2

15A1,2 6688604160 218 · 36 · 5 · 7 ∆3

15B1 53508833280 221 · 36 · 5 · 7 ∆3

15C1,2 26754416640 220 · 36 · 5 · 7 ∆2

16A1,2,3,4 40131624960 219 · 37 · 5 · 7 ∆2

17A1 160526499840 221 · 37 · 5 · 7 ∆3

18A1 40131624960 219 · 37 · 5 · 7 ∆2

18B1,2 13377208320 219 · 36 · 5 · 7 ∆2

18C1 80263249920 220 · 37 · 5 · 7 ∆2

18D1,2 13377208320 219 · 36 · 5 · 7 ∆3

18D3,4 20065812480 218 · 37 · 5 · 7 ∆3

18E1,2 80263249920 220 · 37 · 5 · 7 ∆2

18F1 80263249920 220 · 37 · 5 · 7 ∆3

20A1,2 13377208320 219 · 36 · 5 · 7 ∆2

20A3,4 40131624960 219 · 37 · 5 · 7 ∆2

20B1,2,3,4,5,6 20065812480 218 · 37 · 5 · 7 ∆2

21A1 80263249920 220 · 37 · 5 · 7 ∆3

21B1 160526499840 221 · 37 · 5 · 7 ∆3

21C1,2 80263249920 220 · 37 · 5 · 7 ∆2

21D1,2 80263249920 220 · 37 · 5 · 7 ∆2

22A1 80263249920 220 · 37 · 5 · 7 ∆3

24A1,2 40131624960 219 · 37 · 5 · 7 ∆2

24B1,2 40131624960 219 · 37 · 5 · 7 ∆2

24C1,2 80263249920 220 · 37 · 5 · 7 ∆2

24D1,2 80263249920 220 · 37 · 5 · 7 ∆2

24E1,2,3,4 40131624960 219 · 37 · 5 · 7 ∆2

24F1,2,3,4 40131624960 219 · 37 · 5 · 7 ∆2

24G1,2,3,4 40131624960 219 · 37 · 5 · 7 ∆2

26A1,2 80263249920 220 · 37 · 5 · 7 ∆3

27A1 160526499840 221 · 37 · 5 · 7 ∆3

27B1 160526499840 221 · 37 · 5 · 7 ∆3

27B1 160526499840 221 · 37 · 5 · 7 ∆3

28A1,2 80263249920 220 · 37 · 5 · 7 ∆3

29A1 160526499840 221 · 37 · 5 · 7 ∆3

29B1 160526499840 221 · 37 · 5 · 7 ∆3

30A1,2 20065812480 218 · 37 · 5 · 7 ∆3

30A3,4 40131624960 219 · 37 · 5 · 7 ∆3

30B1,2 80263249920 220 · 37 · 5 · 7 ∆2

33A1 160526499840 221 · 37 · 5 · 7 ∆3

33B1 160526499840 221 · 37 · 5 · 7 ∆3
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CG(t)-orbit Orbit Size (factored) Disk
35A1 160526499840 221 · 37 · 5 · 7 ∆3

36A1,2 40131624960 219 · 37 · 5 · 7 ∆2

36B1,2 40131624960 219 · 37 · 5 · 7 ∆2

36C1,2 80263249920 220 · 37 · 5 · 7 ∆2

36D1,2 80263249920 220 · 37 · 5 · 7 ∆3

39A1 160526499840 221 · 37 · 5 · 7 ∆3

39B1 160526499840 221 · 37 · 5 · 7 ∆3

39C1 160526499840 221 · 37 · 5 · 7 ∆3

39D1 160526499840 221 · 37 · 5 · 7 ∆3

42A1 80263249920 220 · 37 · 5 · 7 ∆3

42B1,2 80263249920 220 · 37 · 5 · 7 ∆2

42C1,2 80263249920 220 · 37 · 5 · 7 ∆2

45A1 160526499840 221 · 37 · 5 · 7 ∆3

45B1 160526499840 221 · 37 · 5 · 7 ∆3

60A1,2 80263249920 220 · 37 · 5 · 7 ∆3

5.3.8 Words for suborbit representatives

The tables for the CG(t)-orbits for G ∼= Fi22 and Fi23 are somewhat lengthy, so are

displayed in Appendix B, where we also explain how they are intended to be read.

5.4 The Thompson and Harada-Norton groups

We determine the suborbit structure for classes of involutions in the sporadic simple

groups Th and HN . Then, as further motivation for our study into involution sub-

orbits, we use this information to determine the point-line collinearity graphs for the

minimal parabolic geometries associated with these groups. Study of these geometries

for the sporadic groups originated in [20] and much recent work on the structure of

their point-line collinearity graphs has been undertaken, for example in [25] and [26].

Study on the graph associated with the Monster group begins in [21] but much is

still unknown about the graph’s structure. The two graphs determined here occur as

full subgraphs of the ‘Monster graph’ so will be of help in its continued study. The

work in this section appears in [24]

Our study of these graphs will be from a group-theoretic rather than geometrical
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Table 5.12: CG(t)-orbits for G ∼= Fi24, t ∈ X = 2D

CG(t)-orbit Orbit Size (factored) Disk
1A1 1 1 ∆0

2A1 2079 33 · 7 · 11 ∆1

2A2 38016 27 · 33 · 11 ∆1

2A3 62370 2 · 34 · 5 · 7 · 11 ∆1

2B1 187110 2 · 35 · 5 · 7 · 11 ∆1

2B2 997920 25 · 34 · 5 · 7 · 11 ∆1

2B3 2395008 27 · 35 · 7 · 11 ∆1

3A1 8448 28 · 3 · 11 ∆2

3A2 221760 26 · 32 · 5 · 7 · 11 ∆2

3B1 1261568 214 · 7 · 11 ∆2

3C1 1892352 213 · 3 · 7 · 11 ∆2

3C2 17031168 213 · 33 · 7 · 11 ∆2

3D1 37847040 215 · 3 · 5 · 7 · 11 ∆2

3D2 113541120 215 · 32 · 5 · 7 · 11 ∆2

3E1 48660480 215 · 33 · 5 · 11 ∆2

4A1 23950080 28 · 35 · 5 · 7 · 11 ∆2

4A2 57480192 210 · 36 · 7 · 11 ∆2

4A3 71850240 28 · 36 · 5 · 7 · 11 ∆2

4A4 95800320 210 · 35 · 5 · 7 · 11 ∆2

4B1,2 4790016 28 · 35 · 7 · 11 ∆2

4B3,4 23950080 28 · 35 · 5 · 7 · 11 ∆2

4B5,6 71850240 28 · 36 · 5 · 7 · 11 ∆2

4B7,8 287400960 210 · 36 · 5 · 7 · 11 ∆2

4C1 287400960 210 · 36 · 5 · 7 · 11 ∆2

4C2 574801920 211 · 36 · 5 · 7 · 11 ∆3

4C3 1724405760 211 · 37 · 5 · 7 · 11 ∆2

5A1 43794432 214 · 35 · 11 ∆2

5A2 1532805120 214 · 35 · 5 · 7 · 11 ∆2

6A1,2 2128896 210 · 33 · 7 · 11 ∆2

6A3 9123840 211 · 34 · 5 · 11 ∆3

6A4,5 23950080 28 · 35 · 5 · 7 · 11 ∆2

6A6,7 95800320 210 · 35 · 5 · 7 · 11 ∆2

6B1,2 153280512 213 · 35 · 7 · 11 ∆2

6C1 170311680 214 · 33 · 5 · 7 · 11 ∆2

6C2 510935040 214 · 34 · 5 · 7 · 11 ∆2

6D1 23950080 28 · 35 · 5 · 7 · 11 ∆2

6D2 35925120 27 · 36 · 5 · 7 · 11 ∆2

6D3,4,5,6 95800320 210 · 35 · 5 · 7 · 11 ∆2

6D7 574801920 211 · 36 · 5 · 7 · 11 ∆2

6E1 1532805120 214 · 35 · 5 · 7 · 11 ∆2

6F1,2 85155840 213 · 33 · 5 · 7 · 11 ∆2

6F3,4,5,6 766402560 213 · 35 · 5 · 7 · 11 ∆2

6G1 2043740160 216 · 34 · 5 · 7 · 11 ∆3

6G2,3 3065610240 215 · 35 · 5 · 7 · 11 ∆2
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CG(t)-orbit Orbit Size (factored) Disk
6H1 2043740160 216 · 34 · 5 · 7 · 11 ∆3

6H2,3,4 3065610240 215 · 35 · 5 · 7 · 11 ∆2

6H5 9196830720 215 · 36 · 5 · 7 · 11 ∆2

6I1,2,3,4,5 766402560 213 · 35 · 5 · 7 · 11 ∆2

6I6 6897623040 213 · 37 · 5 · 7 · 11 ∆2

6K1 3065610240 215 · 35 · 5 · 7 · 11 ∆2

7A1 1839366144 215 · 36 · 7 · 11 ∆2

7A2 9196830720 215 · 36 · 5 · 7 · 11 ∆2

7B1 10510663680 218 · 36 · 5 · 11 ∆3

8A1,2,3,4 2299207680 213 · 36 · 5 · 7 · 11 ∆2

8A5,6,7,8 6897623040 213 · 37 · 5 · 7 · 11 ∆2

8B1 27590492160 215 · 37 · 5 · 7 · 11 ∆2

8C1,2 9196830720 215 · 36 · 5 · 7 · 11 ∆3

9A1 1362493440 217 · 33 · 5 · 7 · 11 ∆2

9B1 340623360 215 · 33 · 5 · 7 · 11 ∆2

9B2 3065610240 215 · 35 · 5 · 7 · 11 ∆2

9C1 340623360 215 · 33 · 5 · 7 · 11 ∆2

9C2 3065610240 215 · 35 · 5 · 7 · 11 ∆2

9D1 2724986880 218 · 33 · 5 · 7 · 11 ∆2

9E1 1362493440 217 · 33 · 5 · 7 · 11 ∆2

9E2 12262440960 217 · 35 · 5 · 7 · 11 ∆2

9F1 6131220480 216 · 35 · 5 · 7 · 11 ∆3

9F2 12262440960 217 · 35 · 5 · 7 · 11 ∆3

9F3 55180984320 216 · 37 · 5 · 7 · 11 ∆3

10A1 919683072 214 · 36 · 7 · 11 ∆2

10A2,3 4598415360 214 · 36 · 5 · 7 · 11 ∆2

10A4 9196830720 215 · 36 · 5 · 7 · 11 ∆2

10A5 13795246080 214 · 37 · 5 · 7 · 11 ∆2

10B1,2 4598415360 214 · 36 · 5 · 7 · 11 ∆2

10B3 27590492160 215 · 37 · 5 · 7 · 11 ∆2

11A1 110361968640 217 · 37 · 5 · 7 · 11 ∆2

12A1 191600640 211 · 35 · 5 · 7 · 11 ∆2

12A2 574801920 211 · 36 · 5 · 7 · 11 ∆2

12A3 4598415360 214 · 36 · 5 · 7 · 11 ∆2

12B1,2 1532805120 214 · 35 · 5 · 7 · 11 ∆2

12B3,4 4598415360 214 · 36 · 5 · 7 · 11 ∆2

12C1 574801920 211 · 36 · 5 · 7 · 11 ∆2

12C2 1149603840 212 · 36 · 5 · 7 · 11 ∆3

12C3,4,5 1724405760 211 · 37 · 5 · 7 · 11 ∆2

12C6 4598415360 214 · 36 · 5 · 7 · 11 ∆2

12D1,2 153280512 213 · 35 · 7 · 11 ∆2

12D3,4,5,6 2299207680 213 · 36 · 5 · 7 · 11 ∆2

12D7,8 6897623040 213 · 37 · 5 · 7 · 11 ∆2

12E1 3065610240 215 · 35 · 5 · 7 · 11 ∆2

12E2 27590492160 215 · 37 · 5 · 7 · 11 ∆2



CHAPTER 5. INVOLUTIONS IN SPORADIC SIMPLE GROUPS 90

CG(t)-orbit Orbit Size (factored) Disk
12F1,2 3065610240 215 · 35 · 5 · 7 · 11 ∆2

12F3,4 9196830720 215 · 36 · 5 · 7 · 11 ∆2

12G1,2 18393661440 216 · 36 · 5 · 7 · 11 ∆2

12H1,2 27590492160 215 · 37 · 5 · 7 · 11 ∆2

12J1,2 27590492160 215 · 37 · 5 · 7 · 11 ∆2

12K1,2 3065610240 215 · 35 · 5 · 7 · 11 ∆2

12K3,4,5,6 9196830720 215 · 36 · 5 · 7 · 11 ∆2

12K7,8 27590492160 215 · 37 · 5 · 7 · 11 ∆2

12L1,2 18393661440 216 · 36 · 5 · 7 · 11 ∆3

12L3,4,5,6 27590492160 215 · 37 · 5 · 7 · 11 ∆2

13A1,2 36787322880 217 · 36 · 5 · 7 · 11 ∆3

14A1 18393661440 216 · 36 · 5 · 7 · 11 ∆2

14A2,3 27590492160 215 · 37 · 5 · 7 · 11 ∆2

14A4 55180984320 216 · 37 · 5 · 7 · 11 ∆2

14B1 73574645760 218 · 36 · 5 · 7 · 11 ∆3

15A1 613122048 215 · 35 · 7 · 11 ∆2

15A2 27590492160 215 · 37 · 5 · 7 · 11 ∆2

15B1 73574645760 218 · 36 · 5 · 7 · 11 ∆2

15C1 12262440960 217 · 35 · 5 · 7 · 11 ∆2

15C2 110361968640 217 · 37 · 5 · 7 · 11 ∆2

17A1 220723937280 218 · 37 · 5 · 7 · 11 ∆3

18A1,2 9196830720 215 · 36 · 5 · 7 · 11 ∆2

18B1 3065610240 215 · 35 · 5 · 7 · 11 ∆2

18B2,3 9196830720 215 · 36 · 5 · 7 · 11 ∆2

18B4 27590492160 215 · 37 · 5 · 7 · 11 ∆2

18C1 36787322880 217 · 36 · 5 · 7 · 11 ∆2

18D1 6131220480 216 · 35 · 5 · 7 · 11 ∆2

18D2,3 9196830720 215 · 36 · 5 · 7 · 11 ∆2

18D4 55180984320 216 · 37 · 5 · 7 · 11 ∆2

18E1,2 36787322880 217 · 36 · 5 · 7 · 11 ∆2

18F1 36787322880 217 · 36 · 5 · 7 · 11 ∆3

18F2,3 55180984320 216 · 37 · 5 · 7 · 11 ∆3

18G1,2 36787322880 217 · 36 · 5 · 7 · 11 ∆3

18G3,4 110361968640 217 · 37 · 5 · 7 · 11 ∆3

20A1,2 18393661440 216 · 36 · 5 · 7 · 11 ∆2

20A3,4 55180984320 216 · 37 · 5 · 7 · 11 ∆2

20B1 110361968640 217 · 37 · 5 · 7 · 11 ∆3

21A1 18393661440 216 · 36 · 5 · 7 · 11 ∆3

21A2 55180984320 216 · 37 · 5 · 7 · 11 ∆3

21B1 73574645760 218 · 36 · 5 · 7 · 11 ∆2

22A1 110361968640 217 · 37 · 5 · 7 · 11 ∆2

24A1,2 9196830720 215 · 36 · 5 · 7 · 11 ∆2

24A3,4 27590492160 215 · 37 · 5 · 7 · 11 ∆2

24B1,2 9196830720 215 · 36 · 5 · 7 · 11 ∆2

24B3,4 27590492160 215 · 37 · 5 · 7 · 11 ∆2

24D1,2,3,4 55180984320 216 · 37 · 5 · 7 · 11 ∆2
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CG(t)-orbit Orbit Size (factored) Disk
26A1,2 110361968640 217 · 37 · 5 · 7 · 11 ∆3

27A1 73574645760 218 · 36 · 5 · 7 · 11 ∆3

28A1,2 110361968640 217 · 37 · 5 · 7 · 11 ∆2

30A1,2 27590492160 215 · 37 · 5 · 7 · 11 ∆2

30A3,4 55180984320 216 · 37 · 5 · 7 · 11 ∆2

30B1,2 110361968640 217 · 37 · 5 · 7 · 11 ∆2

33A1 220723937280 218 · 37 · 5 · 7 · 11 ∆2

33B1 220723937280 218 · 37 · 5 · 7 · 11 ∆2

35A1 220723937280 218 · 37 · 5 · 7 · 11 ∆3

36B1,2 36787322880 217 · 36 · 5 · 7 · 11 ∆2

36C1,2 110361968640 217 · 37 · 5 · 7 · 11 ∆2

39A1,2 73574645760 218 · 36 · 5 · 7 · 11 ∆3

42A1,2 55180984320 216 · 37 · 5 · 7 · 11 ∆3

42A3 110361968640 217 · 37 · 5 · 7 · 11 ∆3

60A1,2 110361968640 217 · 37 · 5 · 7 · 11 ∆2

viewpoint and so we define the graph we wish to investigate in these terms.

5.4.1 Point-line collinearity graphs of minimal parabolic ge-

ometries

We begin with the definition of a point-line collinearity graph for a geometry.

Definition 5.19. Let Γ be a geometry with incidence relation ∗, Γ0 the set of points

and Γ1 the set of lines. Then the point-line collinearity graph of Γ has Γ0 as its vertex

set, and x, y ∈ Γ0 adjacent if and only if there exists l ∈ Γ1 with x ∗ l and y ∗ l.

We wish to investigate this graph for the minimal parabolic geometries of the

Thompson and Harada-Norton groups. So we define the following graph which is

equivalent to the point-line collinearity graphs for our two cases.

Definition 5.20. Let G be isomorphic to the Thompson group or to the Harada-

Norton group. Let X be a conjugacy class of involutions in G, with X = 2A if

G ∼= Th and X = 2B if G ∼= HN . We define the graph G(G,X) to have X as its

vertex set and two vertices x, y ∈ X adjacent if and only if x ∈ O2(CG(y)).
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We note that this adjacency condition, while not necessarily symmetric in x and

y for a general group and conjugacy class, is symmetric in our cases, where it arises

from geometrical considerations.

The similarity of G(G,X) to the commuting involution graph on X is obvious.

Again we fix t ∈ X. Since O2(CG(t))ECG(t), we see that by the same argument as in

the proof of Lemma 2.6, discs around t are again unions of CG(t)-orbits on X, so we

once more begin by determining these suborbits. We provide representative elements

for the suborbits in the form of words in the standard generators of G conjugating t

to such representatives. These were obtained using the same techniques as described

in the previous section.

But as well as the orbit and disc sizes, we wish to compute more intricate data

regarding the connections between the CG(t)-orbits. This data will be encoded in a

collapsed adjacency matrix.

Definition 5.21. Let G(G,X) be the graph described in Definition 5.20. Denote the

CG(t)-orbits of X by O1, . . . ,On, and let xi ∈ Oi for i = 1, . . . , n. The collapsed

adjacency matrix for G(G,X) is the n × n matrix which has as its (i, j)th entry the

total number of edges in G(G,X) running from xi to vertices in Oj, that is, the value

|∆1(xi) ∩ Oj|.

Sections 5.4.2 and 5.4.3 describe how the CG(t)-orbits were identified for G ∼= Th

and G ∼= HN respectively, and Subsection 5.4.4 give details of how the collapsed

adjacency matrices were determined and displays the matrices themselves, along with

the words found for suborbit representatives.

5.4.2 Suborbits in the Thompson group

The smallest-degree representation of Th available in [29] is as 248 × 248 matrices

over GF (2), and for t ∈ 2A, |CG(t)| = 92, 897, 280, so we face similar computational

difficulties as with J4 in Section 5.2. Therefore, we employ similar techniques.
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Let a, b be the standard generators of G. So a is in class 2A, b is in class 3A,

ab has order 19, and 〈a, b〉 = G. We set t = a, X = tG = 2A, then since CG(t)

is a maximal subgroup, we use the straight line program provided in [29] to obtain

generators for CG(t).

Calculations with the character table reveal that X consists of thirty-eight CG(t)-

orbits across twenty-nine non-empty XC . So we know that at least twenty of the XC

are single suborbits and at most nine split into more than one suborbit.

The group CG(t) has shape 21+8
+ .A9. Similarly to Section 5.2, we set Q =

O2(CG(t)) ∼= 21+8
+ , so we can employ Lemma 5.11 to help determine orbit sizes.

We now describe how the orbit sizes were determined. (We note that the class of an

element is easily determined by its order and the dimension of its fixed space.)

• Seven classes C with non-empty XC have CG(h) = 〈h〉 for h ∈ C, so it is trivial

for x ∈ XC to compute CCG(t)(x) ≤ CG(z) where z = tx.

• Let x ∈ X13A. We have that |XC | = |CG(t)|/3, giving us that |CCG(t)(x)| ≥ 3.

On the other hand, CCG(t)(x) ≤ CG(z) where z = tx ∈ 13A and |CG(z)| = 39.

Since 13 does not divide |CG(t)| we know that |CCG(t)(x)| is 1 or 3. Hence we

conclude CCG(t)(x) = 3 and that X13A is a single CG(t)-orbit.

• Where C is a class of elements of even order we employ Lemma 5.11 to compute

CCG(t)(x) for x ∈ XC and so determine the orbit sizes.

• The above leaves only the sets X5A, X7A unanalysed. However, we now observe

that we have already found nine sets XC that split into two CG(t)-orbits, so we

conclude that these two sets are each single suborbits.

5.4.3 Suborbits in the Harada-Norton group

The smallest representation of HN available is as 132 × 132 matrices over GF (4).

This is a somewhat large representation but crucially CG(t) for t ∈ 2B is small,
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having order 3,686,400, and so direct calculation in CG(t) is possible. So we can find

the suborbit invariants using Algorithm 9, although using a different set of invariants,

namely the order of z and the dimension of its fixed space, and the value dx as defined

in Lemma 5.8.

We note that Magma’s command IsConjugate sometimes gives an incorrect

negative result when testing CG(t)-conjugacy in matrix groups. However since CG(t)

has shape 21+8.(A5 × A5) : 2, it is simple to isolate Q = O2(CG(t)) ∼= 21+8 and then

conjugacy testing can be verified following the process described in Lemma 5.12.

Although we have focused our attention on the class 2B due to its use in deter-

mining the point-line collinearity graph, exactly the same method described here can

be used to find CG(t)-orbit representatives for the class 2A and, in Aut(HN) the

class 2C. There are respectively 9 and 88 suborbits in these classes, and the relevant

data and representatives are provided in the accompanying electronic materials (see

Appendix A).

5.4.4 Determining the collapsed adjacency matrices

Recall that to find the collapsed adjacency matrix for G(G,X) we must determine for

each pair Oi,Oj of CG(t)-orbits, how many edges join a chosen element in Oi to any

element in Oj. Clearly it suffices to determine for each of our suborbit representatives

x what suborbits each of its neighbours lies in, that is, to find the suborbit location

of every y ∈ ∆i(x).

We begin by determining an explicit list of the elements of ∆1(t). Since by

definition ∆1(t) = (X∩O2(CG(t)))\{t} this is easily found—it is just (X∩Q)\{t}, and

Q has already been determined. We have for each representative x ∈ X a word in the

standard generators giving an element g ∈ G such that tg = x. So ∆1(x) = ∆1(t)
g.

It only remains to determine what suborbit each y ∈ ∆1(x) lies in. This is easy in

HN since CG(t)-conjugacy testing is possible (subject to the caveat mentioned in the

previous section), while in Th we rely on the suborbit invariants and occasionally
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resort to the method of Lemma 5.12.

Once the collapsed adjacency matrix is completed it is trivial to determine which

disc each CG(t)-orbit is in, and so we arrive at these results.

Theorem 5.22. Suppose that G ∼= Th and G is the point-line collinearity graph of

the characteristic 2 minimal parabolic geometry for G. We identify V (G) with the 2A

conjugacy class of G, which we denote X. Then G has diameter 5, and for t ∈ X we

have

(i) |∆1(t)| = 270 with ∆1(t) a CG(t)-orbit;

(ii) |∆2(t)| = 64800, ∆2(t) consisting of two CG(t)-orbits;

(iii) |∆3(t)| = 15060480, ∆3(t) consisting of six CG(t)-orbits;

(iv) |∆4(t)| = 858497006, ∆4(t) consisting of twenty-six CG(t)-orbits; and

(v) |∆5(t)| = 103219200, ∆5(t) consisting of two CG(t)-orbits.

The collapsed adjacency matrix for this graph is as displayed in Figure 5.1, and the

suborbit sizes and representative elements are as listed in Table 5.13.

Theorem 5.23. Suppose that G ∼= HN and G is the point-line collinearity graph of

the characteristic 2 minimal parabolic geometry for G. We identify V (G) with the 2B

conjugacy class of G, which we denote X. Then G has diameter 5 and for t ∈ X we

have

(i) |∆1(t)| = 150 with ∆1(t) a CG(t)-orbit;

(ii) |∆2(t)| = 17760, ∆2(t) consisting of three CG(t)-orbits;

(iii) |∆3(t)| = 1638400, ∆3(t) consisting of eight CG(t)-orbits;

(iv) |∆4(t)| = 68721664, ∆4(t) consisting of fifty-five CG(t)-orbits; and

(v) |∆5(t)| = 3686400, ∆5(t) consisting of three CG(t)-orbits.
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The collapsed adjacency matrix for this graph is as displayed in Figure 5.2, and the

suborbit sizes and representative elements are as listed in Table 5.14.

In the following collapsed adjacency matrices and tables, the orbits are ordered

first in increasing order of distance from t and then in increasing order of size, so

that for example ∆1
3(t) denotes the smallest CG(t)-orbit in ∆3(t). Figure 5.1 gives

the collapsed adjacency matrix for G ∼= Th broken into four columns, while Figure

5.2 presents the somewhat lager matrix for G ∼= HN in twelve pieces, scanning across

the table in two rows.

Following the collapsed adjacency matrices, we tabulate details of the CG(t)-

orbits, giving their sizes and words in the standard generators which allow represen-

tative elements to be obtained. In the columns giving these words, a symbol gi refers

to a word defined elsewhere in the table. A symbol gi → n denotes that x(n) is a

representative for that orbit where x = tgi .
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Figure 5.1: Collapsed adjacency matrix for G ∼= Th

∆1
0 ∆1

1 ∆1
2 ∆2

2 ∆1
3 ∆2

3 ∆3
3 ∆4

3 ∆5
3 ∆6

3

∆1
0 0 270 0 0 0 0 0 0 0 0

∆1
1 1 29 112 128 0 0 0 0 0 0

∆1
2 0 1 13 16 0 16 96 0 0 128

∆2
2 0 1 14 15 16 0 0 112 112 0

∆1
3 0 0 0 9 9 0 0 126 126 0

∆2
3 0 0 1 0 0 1 12 0 0 16

∆3
3 0 0 1 0 0 2 11 0 0 16

∆4
3 0 0 0 1 2 0 0 21 14 8

∆5
3 0 0 0 1 2 0 0 14 13 0

∆6
3 0 0 1 0 0 2 12 8 0 23

∆1
4 0 0 0 0 0 9 0 0 0 0

∆2
4 0 0 0 0 0 0 0 0 0 27

∆3
4 0 0 0 0 0 1 0 0 8 0

∆4
4 0 0 0 0 0 0 5 0 0 0

∆5
4 0 0 0 0 0 0 9 0 0 0

∆6
4 0 0 0 0 0 0 0 2 2 1

∆7
4 0 0 0 0 0 0 0 4 0 5

∆8
4 0 0 0 0 0 0 0 0 2 3

∆9
4 0 0 0 0 0 0 0 6 0 3

∆10
4 0 0 0 0 0 2 0 2 0 1

∆11
4 0 0 0 0 0 0 0 0 2 3

∆12
4 0 0 0 0 0 0 1 0 0 0

∆13
4 0 0 0 0 0 1 0 6 2 3

∆14
4 0 0 0 0 0 0 3 0 2 0

∆15
4 0 0 0 0 0 0 0 2 2 1

∆16
4 0 0 0 0 0 0 1 0 0 0

∆17
4 0 0 0 0 0 0 0 0 2 3

∆18
4 0 0 0 0 0 0 2 2 0 1

∆19
4 0 0 0 0 0 1 0 0 2 0

∆20
4 0 0 0 0 0 0 1 0 2 0

∆21
4 0 0 0 0 0 0 2 2 0 1

∆22
4 0 0 0 0 0 0 0 0 2 3

∆23
4 0 0 0 0 0 0 1 0 0 0

∆24
4 0 0 0 0 0 0 1 0 0 0

∆25
4 0 0 0 0 0 0 1 0 2 0

∆26
4 0 0 0 0 0 0 0 2 0 1

∆1
5 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0
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∆1
4 ∆2

4 ∆3
4 ∆4

4 ∆5
4 ∆6

4 ∆7
4 ∆8

4 ∆9
4

∆1
0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0

∆2
3 8 0 8 0 0 0 0 0 0

∆3
3 0 0 0 8 16 0 0 0 0

∆4
3 0 0 0 0 0 8 16 0 24

∆5
3 0 0 8 0 0 8 0 8 0

∆6
3 0 4 0 0 0 4 20 12 12

∆1
4 0 0 9 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 27 27 0

∆3
4 1 0 0 0 0 8 0 8 0

∆4
4 0 0 0 0 10 0 0 0 0

∆5
4 0 0 0 9 9 0 0 0 0

∆6
4 0 0 2 0 0 0 2 8 3

∆7
4 0 1 0 0 0 2 4 3 12

∆8
4 0 1 2 0 0 8 3 2 0

∆9
4 0 0 0 0 0 3 12 0 6

∆10
4 2 0 2 0 0 7 2 6 3

∆11
4 0 1 2 0 0 2 9 5 6

∆12
4 0 0 0 1 2 4 4 4 4

∆13
4 1 0 3 0 0 5 9 2 12

∆14
4 0 0 2 5 6 4 0 4 0

∆15
4 0 0 2 0 0 5 6 4 7

∆16
4 0 0 0 1 2 8 0 8 0

∆17
4 0 1 2 2 0 6 3 9 0

∆18
4 0 0 0 4 4 3 4 2 5

∆19
4 1 0 3 0 0 6 2 6 2

∆20
4 0 0 2 1 2 2 6 2 6

∆21
4 0 0 0 2 4 3 6 2 7

∆22
4 0 1 2 0 0 6 5 9 2

∆23
4 0 0 0 1 2 4 4 4 4

∆24
4 0 0 0 1 2 4 4 4 4

∆25
4 0 0 2 1 2 4 4 4 4

∆26
4 0 0 0 0 0 5 6 4 7

∆1
5 0 0 0 0 0 0 9 0 9

∆2
5 0 0 0 3 0 3 3 3 3
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∆10
4 ∆11

4 ∆12
4 ∆13

4 ∆14
4 ∆15

4 ∆16
4 ∆17

4 ∆18
4 ∆19

4

∆1
0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0

∆2
3 64 0 0 64 0 0 0 0 0 96

∆3
3 0 0 8 0 48 0 16 0 32 0

∆4
3 8 0 0 48 0 24 0 0 24 0

∆5
3 0 8 0 16 24 24 0 24 0 24

∆6
3 4 12 0 24 0 12 0 36 12 0

∆1
4 72 0 0 72 0 0 0 0 0 108

∆2
4 0 27 0 0 0 0 0 81 0 0

∆3
4 8 8 0 24 24 24 0 24 0 36

∆4
4 0 0 5 0 50 0 10 20 40 0

∆5
4 0 0 9 0 54 0 18 0 36 0

∆6
4 7 2 6 10 12 15 24 18 9 18

∆7
4 2 9 6 18 0 18 0 9 12 6

∆8
4 6 5 6 4 12 12 24 27 6 18

∆9
4 3 6 6 24 0 21 0 0 15 6

∆10
4 14 0 6 22 6 9 24 12 9 36

∆11
4 0 2 6 10 6 18 0 15 6 12

∆12
4 4 4 0 4 10 12 18 8 12 12

∆13
4 11 5 3 24 6 21 0 6 12 21

∆14
4 2 2 5 4 27 8 14 20 24 10

∆15
4 3 6 6 14 8 10 8 10 9 14

∆16
4 8 0 9 0 14 8 25 16 12 16

∆17
4 4 5 4 4 20 10 16 24 14 14

∆18
4 3 2 6 8 24 9 12 14 16 6

∆19
4 12 4 6 14 10 14 16 14 6 19

∆20
4 0 8 7 10 12 18 2 6 10 12

∆21
4 3 4 8 10 14 13 12 4 17 8

∆22
4 4 7 6 6 10 14 16 23 6 16

∆23
4 4 4 9 4 10 12 18 8 12 12

∆24
4 4 4 9 4 10 12 18 8 12 12

∆25
4 2 6 7 8 14 16 10 10 10 14

∆26
4 5 4 8 10 4 15 16 8 11 12

∆1
5 0 9 9 9 0 18 0 0 9 9

∆2
5 3 3 6 3 18 9 12 21 21 9



CHAPTER 5. INVOLUTIONS IN SPORADIC SIMPLE GROUPS 100

∆20
4 ∆21

4 ∆22
4 ∆23

4 ∆24
4 ∆25

4 ∆26
4 ∆1

5 ∆2
5

∆1
0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0

∆2
3 0 0 0 0 0 0 0 0 0

∆3
3 16 32 0 16 16 32 0 0 0

∆4
3 0 24 0 0 0 0 48 0 0

∆5
3 24 0 24 0 0 48 0 0 0

∆6
3 0 12 36 0 0 0 24 0 0

∆1
4 0 0 0 0 0 0 0 0 0

∆2
4 0 0 81 0 0 0 0 0 0

∆3
4 24 0 24 0 0 48 0 0 0

∆4
4 10 20 0 10 10 20 0 0 60

∆5
4 18 36 0 18 18 36 0 0 0

∆6
4 6 9 18 12 12 24 30 0 18

∆7
4 18 18 15 12 12 24 36 6 18

∆8
4 6 6 27 12 12 24 24 0 18

∆9
4 18 21 6 12 12 24 42 6 18

∆10
4 0 9 12 12 12 12 30 0 18

∆11
4 24 12 21 12 12 36 24 6 18

∆12
4 14 16 12 18 18 28 32 4 24

∆13
4 15 15 9 6 6 24 30 3 9

∆14
4 12 14 10 10 10 28 8 0 36

∆15
4 18 13 14 12 12 32 30 4 18

∆16
4 2 12 16 18 18 20 32 0 24

∆17
4 6 4 23 8 8 20 16 0 42

∆18
4 10 17 6 12 12 20 22 2 42

∆19
4 12 8 16 12 12 28 24 2 18

∆20
4 17 16 12 14 14 40 24 6 18

∆21
4 16 12 8 16 16 28 30 4 18

∆22
4 12 8 16 12 12 28 24 2 18

∆23
4 14 16 12 9 18 28 32 4 24

∆24
4 14 16 12 18 9 28 32 4 24

∆25
4 20 14 14 14 14 27 24 4 18

∆26
4 12 15 12 16 16 24 29 4 24

∆1
5 27 18 9 18 18 36 36 0 27

∆2
5 9 9 9 12 12 18 24 3 54
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Figure 5.2: Collapsed adjacency matrix for G ∼= HN

∆1
0 ∆1

1 ∆1
2 ∆2

2 ∆3
2 ∆1

3 ∆2
3 ∆3

3 ∆4
3 ∆5

3 ∆6
3 ∆7

3

∆1
0 0 150 0 0 0 0 0 0 0 0 0 0

∆1
1 1 5 32 48 64 0 0 0 0 0 0 0

∆1
2 0 5 5 0 20 0 0 120 0 0 0 0

∆2
2 0 1 0 5 0 0 16 32 16 16 0 0

∆3
2 0 1 2 0 11 16 0 24 0 0 48 48

∆1
3 0 0 0 0 6 6 0 9 0 0 9 0

∆2
3 0 0 0 1 0 0 1 0 2 2 0 0

∆3
3 0 0 1 2 2 2 0 9 0 0 14 0

∆4
3 0 0 0 1 0 0 2 0 1 2 0 0

∆5
3 0 0 0 1 0 0 2 0 2 1 0 0

∆6
3 0 0 0 0 2 1 0 7 0 0 18 8

∆7
3 0 0 0 0 1 0 0 0 0 0 4 9

∆8
3 0 0 0 1 0 0 0 2 0 0 0 0

∆1
4 0 0 0 0 0 0 0 0 0 0 30 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 9 0 0 0 0 0

∆4
4 0 0 0 0 0 0 6 3 0 0 0 0

∆5
4 0 0 0 0 0 0 0 0 0 0 0 0

∆6
4 0 0 0 0 0 0 0 5 0 0 0 0

∆7
4 0 0 0 0 0 0 0 5 0 0 0 0

∆8
4 0 0 0 0 0 0 0 0 0 5 0 0

∆9
4 0 0 0 0 0 0 0 0 5 0 0 0

∆10
4 0 0 0 0 0 5 0 5 0 0 5 10

∆11
4 0 0 0 0 0 0 0 0 0 0 0 0

∆12
4 0 0 0 0 0 1 0 0 0 0 3 0

∆13
4 0 0 0 0 0 0 2 1 0 0 4 0

∆14
4 0 0 0 0 0 0 0 1 2 0 0 0

∆15
4 0 0 0 0 0 2 0 1 0 0 0 2

∆16
4 0 0 0 0 0 0 0 1 0 0 2 2

∆17
4 0 0 0 0 0 0 0 0 1 0 0 0

∆18
4 0 0 0 0 0 0 0 0 0 0 0 0

∆19
4 0 0 0 0 0 0 1 0 0 0 0 0

∆20
4 0 0 0 0 0 0 0 1 0 0 2 2

∆21
4 0 0 0 0 0 0 0 0 0 0 0 0

∆22
4 0 0 0 0 0 0 0 0 0 0 0 0

∆23
4 0 0 0 0 0 0 0 1 0 2 2 0
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∆8
3 ∆1

4 ∆2
4 ∆3

4 ∆4
4 ∆5

4 ∆6
4 ∆7

4 ∆8
4 ∆9

4 ∆10
4 ∆11

4

∆1
0 0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 64 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 36 0

∆2
3 0 0 0 8 8 0 0 0 0 0 0 0

∆3
3 8 0 0 0 4 0 8 8 0 0 8 0

∆4
3 0 0 0 0 0 0 0 0 0 8 0 0

∆5
3 0 0 0 0 0 0 0 0 8 0 0 0

∆6
3 0 2 0 0 0 0 0 0 0 0 4 0

∆7
3 0 0 0 0 0 0 0 0 0 0 4 0

∆8
3 15 0 2 0 2 2 0 0 0 0 0 2

∆1
4 0 0 0 0 20 0 0 0 0 0 0 0

∆2
4 25 0 0 0 0 25 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 0 0 0 0 0

∆4
4 6 2 0 0 0 0 0 0 0 0 0 0

∆5
4 5 0 5 0 0 0 0 0 0 0 0 0

∆6
4 0 0 0 0 0 0 5 0 0 0 0 0

∆7
4 0 0 0 0 0 0 0 5 0 0 0 0

∆8
4 0 0 0 0 0 0 0 0 0 0 0 0

∆9
4 0 0 0 0 0 0 0 0 0 0 0 0

∆10
4 0 0 0 0 0 0 0 0 0 0 15 0

∆11
4 5 0 0 0 0 0 0 0 0 0 0 0

∆12
4 6 1 0 0 1 0 0 0 0 0 0 0

∆13
4 6 0 0 0 3 0 0 0 0 0 0 0

∆14
4 2 0 0 0 0 0 0 0 0 0 0 0

∆15
4 0 0 0 0 0 0 0 0 0 0 2 0

∆16
4 2 0 0 0 0 0 2 0 0 0 0 0

∆17
4 0 0 0 0 0 4 0 0 0 1 0 0

∆18
4 1 0 0 0 0 0 0 0 0 0 0 6

∆19
4 0 0 0 1 0 0 0 0 0 0 4 0

∆20
4 2 0 0 0 0 0 0 2 0 0 0 0

∆21
4 1 0 0 0 0 0 0 0 4 0 0 0

∆22
4 1 0 0 0 0 0 0 0 0 4 0 0

∆23
4 2 0 0 0 0 0 2 0 0 0 2 0
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∆12
4 ∆13

4 ∆14
4 ∆15

4 ∆16
4 ∆17

4 ∆18
4 ∆19

4 ∆20
4 ∆21

4 ∆22
4 ∆23

4

∆1
0 0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 12 0 0 72 0 0 0 0 0 0 0 0

∆2
3 0 8 0 0 0 0 0 8 0 0 0 0

∆3
3 0 4 8 8 8 0 0 0 8 0 0 8

∆4
3 0 0 16 0 0 8 0 0 0 0 0 0

∆5
3 0 0 0 0 0 0 0 0 0 0 0 16

∆6
3 4 8 0 0 8 0 0 0 8 0 0 8

∆7
3 0 0 0 4 4 0 0 0 4 0 0 0

∆8
3 4 6 4 0 4 0 2 0 4 2 2 4

∆1
4 20 0 0 0 0 0 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 9 0 0 0 0

∆4
4 2 9 0 0 0 0 0 0 0 0 0 0

∆5
4 0 0 0 0 0 20 0 0 0 0 0 0

∆6
4 0 0 0 0 10 0 0 0 0 0 0 10

∆7
4 0 0 0 0 0 0 0 0 10 0 0 0

∆8
4 0 0 0 0 0 0 0 0 0 20 0 0

∆9
4 0 0 0 0 0 5 0 0 0 0 20 0

∆10
4 0 0 0 10 0 0 0 20 0 0 0 10

∆11
4 0 0 0 0 0 0 30 0 0 0 0 0

∆12
4 11 3 0 6 0 0 0 12 0 0 0 0

∆13
4 2 6 0 4 0 0 4 0 0 4 4 0

∆14
4 0 0 3 6 4 4 0 0 0 0 4 0

∆15
4 2 2 6 11 4 0 0 8 4 0 0 0

∆16
4 0 0 4 4 5 0 4 4 6 0 0 6

∆17
4 0 0 4 0 0 4 0 0 4 0 4 0

∆18
4 0 2 0 0 4 0 4 0 0 2 1 4

∆19
4 4 0 0 8 4 0 0 12 4 0 0 4

∆20
4 0 0 0 4 6 4 0 4 5 0 0 0

∆21
4 0 2 0 0 0 0 2 0 0 4 0 4

∆22
4 0 2 4 0 0 4 1 0 0 0 4 0

∆23
4 0 0 0 0 6 0 4 4 0 4 0 17
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∆24
4 ∆25

4 ∆26
4 ∆27

4 ∆28
4 ∆29

4 ∆30
4 ∆31

4 ∆32
4 ∆33

4 ∆34
4 ∆35

4

∆1
0 0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 0 0

∆2
3 0 0 0 0 0 16 0 0 32 0 0 0

∆3
3 0 8 8 8 0 8 8 0 0 0 0 0

∆4
3 0 0 0 0 0 0 16 0 0 0 0 0

∆5
3 0 0 0 16 8 0 0 0 0 16 0 0

∆6
3 0 8 8 0 0 8 8 0 0 0 0 0

∆7
3 0 4 4 0 0 0 0 0 8 0 0 8

∆8
3 2 4 4 4 0 16 4 2 0 0 4 4

∆1
4 0 0 0 0 0 0 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 0 0 0 0 0

∆4
4 0 6 6 0 0 6 0 0 24 0 0 0

∆5
4 20 0 0 0 20 20 0 0 0 0 0 0

∆6
4 0 0 10 0 0 10 0 0 0 0 0 0

∆7
4 0 10 0 0 0 10 10 0 0 0 0 0

∆8
4 0 0 0 0 5 0 0 0 0 30 0 0

∆9
4 0 0 0 0 0 0 0 0 0 0 40 0

∆10
4 0 0 0 0 0 0 10 0 0 0 0 0

∆11
4 5 10 10 0 0 0 0 30 0 0 0 0

∆12
4 0 6 6 0 0 0 0 0 6 0 0 12

∆13
4 0 6 6 0 0 2 0 4 4 8 0 0

∆14
4 0 2 0 2 4 2 2 0 4 4 8 8

∆15
4 0 0 0 6 0 0 0 0 0 4 8 4

∆16
4 0 2 0 0 4 2 0 0 0 4 4 0

∆17
4 4 0 0 4 0 4 0 0 4 0 8 0

∆18
4 0 2 8 0 0 0 0 12 10 12 2 2

∆19
4 0 0 0 0 0 4 4 0 4 4 4 4

∆20
4 0 0 2 4 0 2 6 4 0 0 0 8

∆21
4 2 0 10 4 4 0 0 1 4 8 0 0

∆22
4 2 10 0 0 0 0 4 2 4 0 18 6

∆23
4 0 0 4 2 0 0 2 0 4 16 0 0
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∆36
4 ∆37

4 ∆38
4 ∆39

4 ∆40
4 ∆41

4 ∆42
4 ∆43

4 ∆44
4 ∆45

4 ∆46
4 ∆47

4

∆1
0 0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 0 0

∆2
3 16 0 0 0 0 0 0 0 0 0 0 16

∆3
3 0 0 0 0 0 0 0 0 0 0 0 0

∆4
3 0 16 0 32 0 0 0 0 0 0 0 0

∆5
3 0 0 0 0 0 0 0 0 32 0 0 0

∆6
3 0 0 8 0 8 8 8 0 0 0 0 0

∆7
3 0 0 8 8 0 0 8 0 8 0 8 0

∆8
3 0 0 4 4 8 4 4 4 4 4 0 0

∆1
4 0 0 0 0 0 0 0 0 0 0 0 0

∆2
4 0 0 0 0 0 0 0 50 0 50 0 0

∆3
4 18 0 0 0 36 0 0 0 0 0 36 18

∆4
4 0 24 0 0 0 0 0 0 0 0 0 0

∆5
4 0 0 0 0 0 0 0 10 0 10 0 0

∆6
4 0 20 0 0 0 0 10 0 0 0 0 20

∆7
4 20 0 10 0 0 10 0 0 0 0 0 0

∆8
4 0 0 20 0 0 0 0 0 0 0 0 0

∆9
4 0 10 0 0 0 0 20 0 0 0 0 0

∆10
4 0 0 0 0 0 0 0 0 0 0 20 0

∆11
4 0 0 20 10 0 0 20 0 10 0 0 0

∆12
4 0 0 0 0 6 0 0 0 0 0 6 0

∆13
4 8 0 0 8 12 0 0 0 8 0 4 8

∆14
4 4 4 2 4 0 6 0 8 8 8 4 8

∆15
4 4 4 0 4 8 8 0 0 4 0 8 4

∆16
4 4 0 4 4 4 12 0 0 4 0 8 4

∆17
4 0 10 0 0 4 4 0 8 4 12 4 8

∆18
4 8 4 12 4 0 0 12 0 0 4 0 0

∆19
4 2 0 4 0 8 0 4 4 0 4 12 2

∆20
4 4 8 0 4 4 4 4 0 4 0 8 4

∆21
4 12 0 4 0 4 4 0 0 8 4 2 0

∆22
4 0 4 0 8 4 4 4 4 0 0 2 12

∆23
4 4 0 16 0 4 4 0 0 8 0 0 0
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∆48
4 ∆49

4 ∆50
4 ∆51

4 ∆52
4 ∆53

4 ∆54
4 ∆55

4 ∆1
5 ∆2

5 ∆3
5

∆1
0 0 0 0 0 0 0 0 0 0 0 0

∆1
1 0 0 0 0 0 0 0 0 0 0 0

∆1
2 0 0 0 0 0 0 0 0 0 0 0

∆2
2 0 0 0 0 0 0 0 0 0 0 0

∆3
2 0 0 0 0 0 0 0 0 0 0 0

∆1
3 0 0 0 0 0 0 0 0 0 0 0

∆2
3 0 0 0 0 0 32 0 0 0 0 0

∆3
3 0 0 0 0 0 0 0 0 0 0 0

∆4
3 0 0 16 0 0 0 32 0 0 0 0

∆5
3 0 16 0 0 0 0 0 32 0 0 0

∆6
3 8 0 0 0 0 0 0 0 0 0 0

∆7
3 0 0 0 0 8 16 16 16 0 0 0

∆8
3 4 0 0 4 4 0 0 0 0 0 0

∆1
4 0 0 0 0 0 0 0 0 0 80 0

∆2
4 0 0 0 0 0 0 0 0 0 0 0

∆3
4 0 0 0 0 0 0 0 0 12 12 0

∆4
4 0 24 0 0 0 0 0 0 12 8 12

∆5
4 0 0 0 0 0 0 20 20 0 0 0

∆6
4 10 0 0 0 0 20 0 0 0 0 20

∆7
4 0 20 0 0 0 20 0 0 0 0 20

∆8
4 0 10 0 40 0 0 0 20 0 0 0

∆9
4 0 0 30 0 0 0 20 0 0 0 0

∆10
4 0 0 0 0 0 20 0 0 0 0 20

∆11
4 0 0 0 0 0 0 0 0 0 0 0

∆12
4 0 0 0 0 12 0 12 12 6 4 18

∆13
4 0 0 8 0 0 8 8 8 0 0 0

∆14
4 4 0 0 0 0 12 12 0 0 0 4

∆15
4 8 4 4 8 4 4 0 0 0 4 4

∆16
4 4 8 0 0 8 4 0 16 0 8 0

∆17
4 0 0 6 4 4 16 4 8 4 0 4

∆18
4 4 4 0 0 0 0 0 16 0 4 6

∆19
4 0 0 4 4 4 4 4 4 0 4 16

∆20
4 12 0 4 4 0 4 16 0 0 8 0

∆21
4 4 4 0 18 6 8 0 16 2 0 4

∆22
4 4 0 8 0 0 8 16 0 2 0 4

∆23
4 0 4 0 4 8 4 4 8 0 4 4
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∆1
0 ∆1

1 ∆1
2 ∆2

2 ∆3
2 ∆1

3 ∆2
3 ∆3

3 ∆4
3 ∆5

3 ∆6
3 ∆7

3

∆24
4 0 0 0 0 0 0 0 0 0 0 0 0

∆25
4 0 0 0 0 0 0 0 1 0 0 2 2

∆26
4 0 0 0 0 0 0 0 1 0 0 2 2

∆27
4 0 0 0 0 0 0 0 1 0 2 0 0

∆28
4 0 0 0 0 0 0 0 0 0 1 0 0

∆29
4 0 0 0 0 0 0 2 1 0 0 2 0

∆30
4 0 0 0 0 0 0 0 1 2 0 2 0

∆31
4 0 0 0 0 0 0 0 0 0 0 0 0

∆32
4 0 0 0 0 0 0 2 0 0 0 0 2

∆33
4 0 0 0 0 0 0 0 0 0 1 0 0

∆34
4 0 0 0 0 0 0 0 0 0 0 0 0

∆35
4 0 0 0 0 0 0 0 0 0 0 0 2

∆36
4 0 0 0 0 0 0 1 0 0 0 0 0

∆37
4 0 0 0 0 0 0 0 0 1 0 0 0

∆38
4 0 0 0 0 0 0 0 0 0 0 1 2

∆39
4 0 0 0 0 0 0 0 0 2 0 0 2

∆40
4 0 0 0 0 0 0 0 0 0 0 1 0

∆41
4 0 0 0 0 0 0 0 0 0 0 1 0

∆42
4 0 0 0 0 0 0 0 0 0 0 1 2

∆43
4 0 0 0 0 0 0 0 0 0 0 0 0

∆44
4 0 0 0 0 0 0 0 0 0 2 0 2

∆45
4 0 0 0 0 0 0 0 0 0 0 0 0

∆46
4 0 0 0 0 0 0 0 0 0 0 0 2

∆47
4 0 0 0 0 0 0 1 0 0 0 0 0

∆48
4 0 0 0 0 0 0 0 0 0 0 1 0

∆49
4 0 0 0 0 0 0 0 0 0 1 0 0

∆50
4 0 0 0 0 0 0 0 0 1 0 0 0

∆51
4 0 0 0 0 0 0 0 0 0 0 0 0

∆52
4 0 0 0 0 0 0 0 0 0 0 0 2

∆53
4 0 0 0 0 0 0 1 0 0 0 0 2

∆54
4 0 0 0 0 0 0 0 0 1 0 0 2

∆55
4 0 0 0 0 0 0 0 0 0 1 0 2

∆1
5 0 0 0 0 0 0 0 0 0 0 0 0

∆2
5 0 0 0 0 0 0 0 0 0 0 0 0

∆3
5 0 0 0 0 0 0 0 0 0 0 0 0
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∆8
3 ∆1

4 ∆2
4 ∆3

4 ∆4
4 ∆5

4 ∆6
4 ∆7

4 ∆8
4 ∆9

4 ∆10
4 ∆11

4

∆24
4 1 0 0 0 0 4 0 0 0 0 0 1

∆25
4 2 0 0 0 1 0 0 2 0 0 0 2

∆26
4 2 0 0 0 1 0 2 0 0 0 0 2

∆27
4 2 0 0 0 0 0 0 0 0 0 0 0

∆28
4 0 0 0 0 0 4 0 0 1 0 0 0

∆29
4 8 0 0 0 1 4 2 2 0 0 0 0

∆30
4 2 0 0 0 0 0 0 2 0 0 2 0

∆31
4 1 0 0 0 0 0 0 0 0 0 0 6

∆32
4 0 0 0 0 2 0 0 0 0 0 0 0

∆33
4 0 0 0 0 0 0 0 0 3 0 0 0

∆34
4 1 0 0 0 0 0 0 0 0 4 0 0

∆35
4 1 0 0 0 0 0 0 0 0 0 0 0

∆36
4 0 0 0 1 0 0 0 2 0 0 0 0

∆37
4 0 0 0 0 2 0 2 0 0 1 0 0

∆38
4 1 0 0 0 0 0 0 1 2 0 0 2

∆39
4 1 0 0 0 0 0 0 0 0 0 0 1

∆40
4 2 0 0 2 0 0 0 0 0 0 0 0

∆41
4 1 0 0 0 0 0 0 1 0 0 0 0

∆42
4 1 0 0 0 0 0 1 0 0 2 0 2

∆43
4 1 0 1 0 0 1 0 0 0 0 0 0

∆44
4 1 0 0 0 0 0 0 0 0 0 0 1

∆45
4 1 0 1 0 0 1 0 0 0 0 0 0

∆46
4 0 0 0 2 0 0 0 0 0 0 2 0

∆47
4 0 0 0 1 0 0 2 0 0 0 0 0

∆48
4 1 0 0 0 0 0 1 0 0 0 0 0

∆49
4 0 0 0 0 2 0 0 2 1 0 0 0

∆50
4 0 0 0 0 0 0 0 0 0 3 0 0

∆51
4 1 0 0 0 0 0 0 0 4 0 0 0

∆52
4 1 0 0 0 0 0 0 0 0 0 0 0

∆53
4 0 0 0 0 0 0 1 1 0 0 1 0

∆54
4 0 0 0 0 0 1 0 0 0 1 0 0

∆55
4 0 0 0 0 0 1 0 0 1 0 0 0

∆1
5 0 0 0 2 3 0 0 0 0 0 0 0

∆2
5 0 1 0 1 1 0 0 0 0 0 0 0

∆3
5 0 0 0 0 1 0 2 2 0 0 2 0
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∆12
4 ∆13

4 ∆14
4 ∆15

4 ∆16
4 ∆17

4 ∆18
4 ∆19

4 ∆20
4 ∆21

4 ∆22
4 ∆23

4

∆24
4 0 0 0 0 0 4 0 0 0 2 2 0

∆25
4 2 3 2 0 2 0 2 0 0 0 10 0

∆26
4 2 3 0 0 0 0 8 0 2 10 0 4

∆27
4 0 0 2 6 0 4 0 0 4 4 0 2

∆28
4 0 0 4 0 4 0 0 0 0 4 0 0

∆29
4 0 1 2 0 2 4 0 4 2 0 0 0

∆30
4 0 0 2 0 0 0 0 4 6 0 4 2

∆31
4 0 2 0 0 0 0 12 0 4 1 2 0

∆32
4 1 1 2 0 0 2 5 2 0 2 2 2

∆33
4 0 2 2 2 2 0 6 2 0 4 0 8

∆34
4 0 0 4 4 2 4 1 2 0 0 9 0

∆35
4 2 0 4 2 0 0 1 2 4 0 3 0

∆36
4 0 2 2 2 2 0 4 1 2 6 0 2

∆37
4 0 0 2 2 0 5 2 0 4 0 2 0

∆38
4 0 0 1 0 2 0 6 2 0 2 0 8

∆39
4 0 2 2 2 2 0 2 0 2 0 4 0

∆40
4 1 3 0 4 2 2 0 4 2 2 2 2

∆41
4 0 0 3 4 6 2 0 0 2 2 2 2

∆42
4 0 0 0 0 0 0 6 2 2 0 2 0

∆43
4 0 0 4 0 0 4 0 2 0 0 2 0

∆44
4 0 2 4 2 2 2 0 0 2 4 0 4

∆45
4 0 0 4 0 0 6 2 2 0 2 0 0

∆46
4 1 1 2 4 4 2 0 6 4 1 1 0

∆47
4 0 2 4 2 2 4 0 1 2 0 6 0

∆48
4 0 0 2 4 2 0 2 0 6 2 2 0

∆49
4 0 0 0 2 4 0 2 0 0 2 0 2

∆50
4 0 2 0 2 0 3 0 2 2 0 4 0

∆51
4 0 0 0 4 0 2 0 2 2 9 0 2

∆52
4 2 0 0 2 4 2 0 2 0 3 0 4

∆53
4 0 1 3 1 1 4 0 1 1 2 2 1

∆54
4 1 1 3 0 0 1 0 1 4 0 4 1

∆55
4 1 1 0 0 4 2 4 1 0 4 0 2

∆1
5 3 0 0 0 0 6 0 0 0 3 3 0

∆2
5 1 0 0 3 6 0 3 3 6 0 0 3

∆3
5 3 0 2 2 0 2 3 8 0 2 2 2
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∆24
4 ∆25

4 ∆26
4 ∆27

4 ∆28
4 ∆29

4 ∆30
4 ∆31

4 ∆32
4 ∆33

4 ∆34
4 ∆35

4

∆24
4 0 2 2 0 4 4 0 0 0 4 12 0

∆25
4 2 9 10 0 0 4 4 8 2 0 0 4

∆26
4 2 10 9 2 0 4 0 2 2 8 0 4

∆27
4 0 0 2 3 4 2 0 0 4 0 0 0

∆28
4 4 0 0 4 4 4 0 0 4 6 4 4

∆29
4 4 4 4 2 4 11 0 0 6 0 0 4

∆30
4 0 4 0 0 0 0 17 4 4 0 4 8

∆31
4 0 8 2 0 0 0 4 4 10 0 0 0

∆32
4 0 1 1 2 2 3 2 5 6 6 2 2

∆33
4 2 0 4 0 3 0 0 0 6 7 0 0

∆34
4 6 0 0 0 2 0 2 0 2 0 9 6

∆35
4 0 2 2 0 2 2 4 0 2 0 6 9

∆36
4 2 2 0 4 4 0 0 0 0 4 2 4

∆37
4 2 0 2 0 0 0 2 2 4 0 2 4

∆38
4 0 3 3 0 0 1 0 6 4 4 0 2

∆39
4 1 2 0 4 2 0 4 0 8 0 4 6

∆40
4 0 2 2 0 2 0 2 0 0 4 0 4

∆41
4 4 1 3 2 0 1 0 2 4 0 4 4

∆42
4 0 3 3 1 0 1 8 6 4 6 4 2

∆43
4 2 0 4 4 6 0 0 2 4 2 4 2

∆44
4 1 0 2 2 0 0 0 2 8 6 2 0

∆45
4 2 4 0 4 4 0 0 0 4 6 2 6

∆46
4 4 1 1 2 2 7 0 0 1 0 8 6

∆47
4 2 0 2 2 0 0 2 4 0 4 6 2

∆48
4 4 3 1 3 2 1 2 0 4 2 6 2

∆49
4 2 2 0 2 5 0 0 2 4 10 6 2

∆50
4 2 4 0 2 0 0 8 6 6 6 8 6

∆51
4 6 0 0 4 4 0 0 1 2 8 2 2

∆52
4 0 2 2 4 0 2 0 1 2 6 2 12

∆53
4 0 1 1 3 4 5 1 0 1 3 4 3

∆54
4 3 0 1 0 2 2 2 4 6 3 8 6

∆55
4 3 1 0 3 1 2 1 0 6 5 1 3

∆1
5 0 3 3 0 6 3 0 0 6 0 6 0

∆2
5 6 0 0 0 0 0 3 3 6 6 3 3

∆3
5 4 3 3 2 2 5 2 3 2 2 0 8
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∆36
4 ∆37

4 ∆38
4 ∆39

4 ∆40
4 ∆41

4 ∆42
4 ∆43

4 ∆44
4 ∆45

4 ∆46
4 ∆47

4

∆24
4 4 4 0 2 0 8 0 4 2 4 8 4

∆25
4 4 0 6 4 4 2 6 0 0 8 2 0

∆26
4 0 4 6 0 4 6 6 8 4 0 2 4

∆27
4 8 0 0 8 0 4 2 8 4 8 4 4

∆28
4 8 0 0 4 4 0 0 12 0 8 4 0

∆29
4 0 0 2 0 0 2 2 0 0 0 14 0

∆30
4 0 4 0 8 4 0 16 0 0 0 0 4

∆31
4 0 4 12 0 0 4 12 4 4 0 0 8

∆32
4 0 4 4 8 0 4 4 4 8 4 1 0

∆33
4 4 0 4 0 4 0 6 2 6 6 0 4

∆34
4 2 2 0 4 0 4 4 4 2 2 8 6

∆35
4 4 4 2 6 4 4 2 2 0 6 6 2

∆36
4 5 0 4 6 0 4 4 8 4 0 0 2

∆37
4 0 5 2 6 4 6 6 4 4 4 4 12

∆38
4 4 2 10 0 4 3 10 2 4 2 2 4

∆39
4 6 6 0 7 0 6 4 2 8 6 4 4

∆40
4 0 4 4 0 13 4 4 8 0 8 10 0

∆41
4 4 6 3 6 4 4 4 6 4 4 2 4

∆42
4 4 6 10 4 4 4 10 2 0 2 2 4

∆43
4 8 4 2 2 8 6 2 5 6 8 0 0

∆44
4 4 4 4 8 0 4 0 6 7 2 4 6

∆45
4 0 4 2 6 8 4 2 8 2 5 0 8

∆46
4 0 4 2 4 10 2 2 0 4 0 12 0

∆47
4 2 12 4 4 0 4 4 0 6 8 0 5

∆48
4 4 6 4 4 4 2 3 4 6 6 2 4

∆49
4 12 4 6 4 4 6 2 4 6 4 4 0

∆50
4 4 10 6 6 4 2 4 6 0 2 0 4

∆51
4 6 6 4 2 0 6 0 2 4 4 8 2

∆52
4 2 2 2 0 4 2 2 6 6 2 6 4

∆53
4 4 2 1 4 8 3 1 6 4 6 10 4

∆54
4 4 2 3 5 3 4 4 4 4 3 1 6

∆55
4 6 6 4 4 3 3 3 3 5 4 1 4

∆1
5 6 6 0 0 0 6 0 6 0 6 0 6

∆2
5 6 0 12 3 3 3 12 3 3 3 0 6

∆3
5 2 2 4 0 4 6 4 2 0 2 2 2
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∆48
4 ∆49

4 ∆50
4 ∆51

4 ∆52
4 ∆53

4 ∆54
4 ∆55

4 ∆1
5 ∆2

5 ∆3
5

∆24
4 8 4 4 12 0 0 12 12 0 8 8

∆25
4 6 4 8 0 4 4 0 4 2 0 6

∆26
4 2 0 0 0 4 4 4 0 2 0 6

∆27
4 6 4 4 8 8 12 0 12 0 0 4

∆28
4 4 10 0 8 0 16 8 4 4 0 4

∆29
4 2 0 0 0 4 20 8 8 2 0 10

∆30
4 4 0 16 0 0 4 8 4 0 4 4

∆31
4 0 4 12 2 2 0 16 0 0 4 6

∆32
4 4 4 6 2 2 2 12 12 2 4 2

∆33
4 2 10 6 8 6 6 6 10 0 4 2

∆34
4 6 6 8 2 2 8 16 2 2 2 0

∆35
4 2 2 6 2 12 6 12 6 0 2 8

∆36
4 4 12 4 6 2 8 8 12 2 4 2

∆37
4 6 4 10 6 2 4 4 12 2 0 2

∆38
4 4 6 6 4 2 2 6 8 0 8 4

∆39
4 4 4 6 2 0 8 10 8 0 2 0

∆40
4 4 4 4 0 4 16 6 6 0 2 4

∆41
4 2 6 2 6 2 6 8 6 2 2 6

∆42
4 3 2 4 0 2 2 8 6 0 8 4

∆43
4 4 4 6 2 6 12 8 6 2 2 2

∆44
4 6 6 0 4 6 8 8 10 0 2 0

∆45
4 6 4 2 4 2 12 6 8 2 2 2

∆46
4 2 4 0 8 6 20 2 2 0 0 2

∆47
4 4 0 4 2 4 8 12 8 2 4 2

∆48
4 4 6 0 4 4 6 6 8 2 2 6

∆49
4 6 5 0 2 4 4 12 4 2 0 2

∆50
4 0 0 7 0 0 6 10 6 0 4 2

∆51
4 4 2 0 9 6 8 2 16 2 2 0

∆52
4 4 4 0 6 9 6 6 12 0 2 8

∆53
4 3 2 3 4 3 10 7 7 2 0 7

∆54
4 3 6 5 1 3 7 10 9 2 2 1

∆55
4 4 2 3 8 6 7 9 10 2 2 1

∆1
5 6 6 0 6 0 12 12 12 4 6 3

∆2
5 3 0 6 3 3 0 6 6 3 5 3

∆3
5 6 2 2 0 8 14 2 2 1 2 12
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Table 5.13: Suborbits for G ∼= Th, X = 2A, t = a ∈ X

CG(t)-orbit z class Size Conjugating Word
∆1

0(t) 1A 1 -
∆1

1(t) 2A 270 tg1

∆1
2(t) 2A 30240 bab2abab2ab

∆2
2(t) 4A 34560 g1 = b2abab2ab2ababab2ab

∆1
3(t) 3A 61440 bab2ab2ab

∆2
3(t) 4A 483840 b2ab2abab2abab2abab

∆3
3(t) 4B 2903040 bab2ababab2abab2(ab)3

∆4
3(t) 6B 3870720 b2(ab)9

∆5
3(t) 8A 3870720 babab2ab

∆6
3(t) 8A 3870720 bab2abab

∆1
4(t) 3C 430080 (b2a)3babab

∆2
4(t) 3B 573440 babab2ab2abab

∆3
4(t) 6A 3870720 babab

∆4
4(t) 5A 4644864 b2ab

∆5
4(t) 9A 5160960 bab2(ab)3

∆6
4(t) 6C 15482880 bab2ababab2ab

∆7
4(t) 7A 15482880 (ba)5b

∆8
4(t) 9C 15482880 bab

∆9
4(t) 9C 15482880 b2abab2(ab)3

∆10
4 (t) 12C 15482880 g2 = (b2a)2(ba)4b

∆11
4 (t) 12C 15482880 g−1

2

∆12
4 (t) 10A 23224320 b

∆13
4 (t) 13A 30965760 bab2a(ba)3b

∆14
4 (t) 12D 46448640 (b2a)2(ba)5b

∆15
4 (t) 14A 46448640 b2abab2abab

∆16
4 (t) 18A 46448640 bab2ab2abab2ab

∆17
4 (t) 18B 46448640 g3 = b2(ab)6

∆18
4 (t) 18B 46448640 g−1

3

∆19
4 (t) 20A 46448640 g4 = (b2a)2(ba)3b2ab

∆20
4 (t) 20A 46448640 g−1

4

∆21
4 (t) 28A 46448640 g5 = bab2(ab)5

∆22
4 (t) 28A 46448640 g−1

5

∆23
4 (t) 36A 46448640 g6 = b2(ab)3ab2ab

∆24
4 (t) 36A 46448640 g−1

6

∆25
4 (t) 19A 92897280 b2abab

∆26
4 (t) 21A 92897280 b2(ab)3

∆1
5(t) 9B 10321920 ba(b2a)4babab

∆2
5(t) 27A 92897280 b2(ab)4
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Table 5.14: Suborbits for G ∼= HN , X = 2B, t = (abab2ab)10 ∈ X

CG(t)-orbit z class Size Conjugating Word
∆1

0(t) 1A 1 -
∆1

1(t) 2B 150 g1 → 4
∆1

2(t) 2A 960 g2 → 10
∆2

2(t) 2B 7200 g3 → 5
∆3

2(t) 4A 9600 g1 → 2
∆1

3(t) 3A 25600 g4 → 4
∆2

3(t) 4A 115200 g5 → 5
∆3

3(t) 4B 115200 g2 → 5
∆4

3(t) 4C 115200 g6 → 5
∆5

3(t) 4C 115200 g7 → 5
∆6

3(t) 6A 230400 g8 → 2
∆7

3(t) 8B 460800 g1 = bab2a(ba)2b2a(ba)3

∆8
3(t) 8B 460800 (ba)3b2a(ba)2b2aba

∆1
4(t) 5A 15360 g2 → 4

∆2
4(t) 5B 36864 g9 → 5

∆3
4(t) 3B 102400 g10 → 10

∆4
4(t) 6A 153600 g11 → 2

∆5
4(t) 10A 184320 (ba)4(b2a)3(ba)2b2ab2

∆6
4(t) 5E 184320 g12 → 2

∆7
4(t) 5E 184320 g13 → 2

∆8
4(t) 5CD 184320 g10 → 6

∆9
4(t) 5CD 184320 g14 → 6

∆10
4 (t) 5E 184320 g3 → 2

∆11
4 (t) 10A 184320 ((ab)2ab2)2(ab)4ab2(ab)2

∆12
4 (t) 10B 307200 g2 → 2

∆13
4 (t) 6B 460800 g4 → 2

∆14
4 (t) 10F 921600 g12 = (ba)2(b2a)2b2

∆15
4 (t) 12A 921600 g8 = (ba)3b2(ab)2

∆16
4 (t) 12B 921600 g4 = ab2(ab)4

∆17
4 (t) 10DE 921600 g10 → 3

∆18
4 (t) 20AB 921600 g5 = babab2

∆19
4 (t) 6C 921600 g10 → 5

∆20
4 (t) 12B 921600 (ab)4ab2

∆21
4 (t) 20AB 921600 bab2a(ba)4b

∆22
4 (t) 20AB 921600 (ab)2ab2(ab)4

∆23
4 (t) 10GH 921600 g3 = (ba)4(b2a)2(ba)3

∆24
4 (t) 10C 921600 g5 → 2
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CG(t)-orbit z class Size Conjugating Word
∆25

4 (t) 10GH 921600 (ab)5(ab2)2

∆26
4 (t) 10GH 921600 bab2a(ba)6b2

∆27
4 (t) 10F 921600 g13 = (ba)3b2ab2

∆28
4 (t) 10DE 921600 g14 → 3

∆29
4 (t) 12A 921600 g11 = (ba)6b

∆30
4 (t) 10GH 921600 (ab2)2(ab)5

∆31
4 (t) 20AB 921600 bab2ab2

∆32
4 (t) 30A 1843200 g17 = ba(b2a)3(ba)3b

∆33
4 (t) 12C 1843200 (ba)8b

∆34
4 (t) 30BC 1843200 g10 → 7

∆35
4 (t) 15BC 1843200 g10 → 14

∆36
4 (t) 20DE 1843200 g7 → 3

∆37
4 (t) 20DE 1843200 g7 = (ba)2b2aba

∆38
4 (t) 22A 1843200 g16 = (ab)4ab2(ab)2a

∆39
4 (t) 15BC 1843200 g14 → 2

∆40
4 (t) 20C 1843200 g2 = (ba)3b2a(ba)5b2

∆41
4 (t) 11A 1843200 g16 → 2

∆42
4 (t) 22A 1843200 g18 = (ba)2b2a(ba)3b

∆43
4 (t) 30BC 1843200 g14 = (ba)4b

∆44
4 (t) 15BC 1843200 g10 → 2

∆45
4 (t) 30BC 1843200 g10 = (ab)2(ab2)2(ab)5

∆46
4 (t) 15A 1843200 g17 → 2

∆47
4 (t) 20DE 1843200 g6 = bab2(ab)2

∆48
4 (t) 11A 1843200 g18 → 2

∆49
4 (t) 20DE 1843200 g6 → 3

∆50
4 (t) 12C 1843200 (ab)2ab2(ab)5

∆51
4 (t) 30BC 1843200 g19 = (ba)7b2(ab)2

∆52
4 (t) 15BC 1843200 g19 → 2

∆53
4 (t) 21A 3686400 g20 = bab2a(ba)4

∆54
4 (t) 25AB 3686400 g9 = bab

∆55
4 (t) 25AB 3686400 g9 → 2

∆1
5(t) 7A 614400 g20 → 3

∆2
5(t) 9A 1228800 bab2a(ba)2b2a(ba)4b

∆3
5(t) 14A 1843200 (ba)2(b2a)2bab



Appendix A

Electronic material

Included with the paper version of this thesis is a CD-ROM containing the following

electronic materials relating to the work in this thesis.

1. We include Magma implementations of the algorithms discussed in Chapter

3 for calculating distance in the commuting involution graph of a symmetric

group.

2. For the algorithm developed in Chapter 4, we provide a Magma implemen-

tation, along with the input data required by the algorithm, and generators

for the groups used in the example calculations in Section 4.4.1 so that these

may be verified if desired. A ‘readme’ file is provided with more details. This

material is also available as supplementary materials published alongside [23].

3. In Section 5.2, the suborbit structure of the two conjugacy classes in the group

J4 are computed. We provide representatives for these suborbits in the form

of 112 × 112 matrices, in both GAP and Magma formats. It is intended that

these files will also be published along with the final version of [22].

4. In Section 5.3 we determine the suborbits of the involution conjugacy classes of

the three Fischer groups (and their automorphism groups). These are mostly

given as words in the standard generators listed in the following appendix, but
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for the other cases, classes 2B and 2D in Fi24, we give representative elements

as base images relative to a given base for the group.

5. In Section 5.4 we determine the suborbits of the involution classes 2A in the

Thompson group and 2B in the Harada-Norton group, using this information

to determine the point-line collinearity graphs of a certain geometry. But the

group HN has a second class of involutions, 2A, and its automorphism group

a third, 2C. We give representatives for the suborbits in these classes.



Appendix B

Suborbit tables for the Fischer

groups

In each of the following tables, each row corresponds to a CG(t)-orbit (note that a row

may extend to more than one line if there is a long entry in the third column; each

orbit size listed in the second column marks the start of a new row). The first column

gives the class C of G for which the suborbit lies in XC . The second column gives the

size of the suborbit and the third gives information on how to obtain a representative

element for that suborbit. This is either a word in the standard generators of G

giving an element g so that tg is a representative element; or a list of symbols C ′
i or

Di for D a class of G: the former meaning that the suborbit is the inverse of the ith

listed suborbit in XC and the latter meaning the suborbit can be powered to from

the ith listed suborbit in XD.
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G ∼= Fi22, X = 2B, t = (ababab3)12.

C Orbit size Representative

1A 1 -

2B 270 4A1

360 4E1 6D1

1152 4E2 6I1

2C 4320 4D1

3A 1024 6D1

3C 40960 6I1

4A 34560 b1ab1ab3a

4D 138240 b2a

4E 69120 ab1a

69120 4E′
1

5A 442368 b1a

6D 46080 b2

6I 368640 b

G ∼= Fi22, X = 2C, t = ((ababab3)2ab3abab3)6.

C Orbit size Representative

1A 1 t

2A 48 6A1 6A2 6B1 6E1 6E2 10A1 10A2

14A1 14A2

2B 9 4A1 4C2 4E1 4E4

216 4A3 4B1 4C1 4E5 6D1 6D2

288 4B3 4E7 4E10 6D4 6I1 10B1

576 4A2 4B2 4B4 4C3 4E2 4E3 4E6 4E8

4E9 6C1 6D3 6D5 6I2 6I3 10B2

2C 432 2C ′
2 6F1

432 2C ′
1 6F2

432 b5ab4ababababababab4

432 4D1 4D2 4D3
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3456 4D4 6F3 6F4 6G1 6H1 6J1 6J2 6K1

3A 768 6A1 6D2 6D3 6D4 6F2 6F4 15A1

1536 6A2 6D1 6D5 6F1 6F3 15A2 21A1

3B 8192 6B1 6C1 6G1 9A1 9B1 9B2

3C 12288 6E2 6I3 6J2

24576 6E1 6H1 6I1 6I2 6J1

3D 98304 6K1 9C1

4A 1152 8A2 8B1

9216 8A1 8A3 8B2 8B4 12A1 12A2 12C5

13824 8A4 8B3 12C1 12C2 12C3 12C4

4B 6912 4B′
2 12D2

6912 4B′
1 12D1

13824 4B′
4 12D3 12J1 20A2

13824 4B′
3 12D4 12J2 20A1

4C 6912 ababab4ababab2

6912 4C ′
1

27648 8C1 12H1 12H2

4D 13824 8D3

13824 8D2

13824 8D5

110592 8D1 8D4 8D6 12E1 12E2 12F1 12F2

12G1 12G2 12K1 12K2

4E 1152 b2ab6abab

1152 4E′
1

6912 4E′
4

6912 b3ab2ab4ab2a

13824 4E′
6 12I2

13824 4E′
5 12I1

13824 abab6abab2

13824 4E′
7

27648 4E10′ 12I4
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27648 4E′
9 12I3

5A 147456 10A2 10B1 15A1

221184 10A1 10B2 15A2

6A 9216 6A′2 30A1

9216 6A′1 30A2

6B 24576 18C1 18C2

6C 73728 12A1 12A2 12H1 12H2 18D1

6D 13824 12C1 12C3 12D2 12I2

13824 12C2 12C4

18432 12D1 12I4

18432 12D3 12I3

55296 12C5 12D4 12I1

6E 73728 6E′
2

73728 bab6

6F 13824 b5aba

13824 6F ′
1

55296 b5ab

55296 6F ′
3

6G 221184 12E1 12E2 12F1 12F2

6H 221184 12G1 12G2

6I 73728 12J1

73728 ab2ab3a

110592 12J2

6J 221184 6J ′2

221184 ababab4a

6K 884736 12K1 12K2

7A 294912 14A1

884736 14A2 21A1

8A 55296 b2ab6

55296 8A′1

110592 8A′4 24B1
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110592 8A′3 24B2

8B 18432 ab2ab7

18432 8B′
1

110592 8B′
4 24A2

110592 8B′
3 24A1

8C 221184 ab2ab3ab2

8D 221184 8D′
5

221184 ab3ab2

221184 8D′
6

221184 8D′
2

221184 abab2a

221184 b3ab6a

9A 294912 18D1

9B 294912 18C2

884736 18C1

9C 1769472 baba

10A 442368 10A′2 30A2

442368 10A′1 30A1

10B 442368 20A2

442368 20A1

12A 73728 ab3ab2ab

73728 12A′1

12C 110592 ab5aba

110592 12C ′
1

110592 24A2

110592 24B2

221184 24A1 24B1

12D 110592 12D′
2

110592 ab3a

221184 12D′
4

221184 b2abab2a
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12E 442368 12E′
2

442368 b

12F 442368 12F ′
2

442368 ba

12G 442368 bab5

442368 12G′
1

12H 221184 ab4a

221184 bab2abab

12I 110592 12I ′2

110592 b5abab2a

221184 12I ′4

221184 b2abab4

12J 442368 12J ′2

442368 bab3ab

12K 884736 ab

884736 12K ′
1

13A 1769472 b5a

13B 1769472 ab3

14A 884736 14A′2

884736 b4a

15A 884736 30A1

884736 30A2

18C 884736 abab3a

884736 18C ′
1

18D 884736 b4

20A 884736 bab

884736 20A′1

21A 1769472 aba

24A 442368 24A′2

442368 b6

24B 442368 24B′
2
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442368 abab

30A 884736 bab2

884736 30A′1

G ∼= Fi22 : 2, X = 2D, t = d9.

C Orbit size Representative

1A 1 t

2B 1575 4A1

3C 22400 cdcdc

4A 37800 cd4c

G ∼= Fi22 : 2, X = 2E, t = (d6cdc)9.

C Orbit size Representative

1A 1 t

2B 27 4A1 4A2 4E2

540 4C1 4E4 6D2 6I3 10B3

1080 4A3 4C2 4E1 4E3 6C1 6D1 6D3 6I1

6I2 6I4 10B1 10B2

2C 3240 4D1 6H1

3A 2304 6D1 6D2 6D3 15A1

3B 5120 6C1 9A1 9B1

3C 5760 6I2

11520 6H1 6I1 6I3 6I4

4A 2160 8B2 8B4

3240 8A1

17280 8A2 8B1 8B3 12A1 12A2 12B1

4C 25920 8C1

51840 8C2 12G1

4D 103680 12F1

4E 8640 4E′
2

8640 d2cdcd5c
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51840 4E′
4 12H1

51840 4E′
3 12H2

5A 27648 10B1

414720 10B2 10B3 15A1

6C 138240 12A1 12A2 12G1 18C1

6D 34560 12H1

34560 12H2

103680 12B1

6H 103680 12F1

6I 103680 6I ′2

103680 cd

138240 cd8c

138240 cdcd

7A 552960 d2cd3

8A 103680 cd2cdcd2

103680 8A′1

8B 34560 d2cd4cdcd3

34560 8B′
1

103680 8B′
4

103680 d5cd2

8C 414720 16A2

414720 16A1

9A 552960 18C1

9B 552960 cd3c

10B 414720 10B′
2

414720 cd2cd

829440 dcdcdcd3c

11A 3317760 dcd2cd

12A 138240 d2c

138240 12A′1

12B 414720 cd3
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12F 829440 d2cd2cdc

12G 829440 d2

12H 414720 dcdcd

414720 12H ′
1

15A 1658880 d3

16A 1658880 d2cd

1658880 16A′1

18C 1658880 dcd

G ∼= Fi22 : 2, X = 2F , t = (d3c)15.

C Orbit size Representative

1A 1 t

2B 63 4E1 6I1

315 4A1 4A2 4E2 4E4 6D1 6D2 6D5

945 4A3 4C1 4E3 6C1 6D3 6D4 6D6 6I2

6I3 6I4 10B1

2C 3780 4D1 6F1 6F2 6H1 6H2 6K1

3A 56 6D1 6D4

240 6D2 6F1

2520 6D3 6D5 6D6 6F2 15A1 21A1

3B 4480 6C1 9A1 9A2 9B1

3C 2240 6H1 6I1 6I3

20160 6H2 6I2 6I4

3D 53760 6K1 9C1

4A 3780 8B2 12B1 12C1 12C2

11340 8A2 12B2 12C3 12C4

15120 8A1 8B1 12A1 12A2 12B3

4C 45360 8C1 12G1

4D 60480 12J1 12J2

4E 15120 d2cd3cd3cdcd3cd

15120 4E′
1
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45360 4E′
4 12H2 12H3

45360 4E′
3 12H1 12H4

5A 241920 10B1 15A1

6C 120960 12A1 12A2 12G1 18C1 18C2

6D 2520 12C1 12H4

15120 12B1 12C2 12C3

15120 d2cd4cdcd3cd2

15120 6D′
3

22680 12B2 12C4 12H1

90720 12B3 12H2 12H3

6F 60480 6F ′
2

60480 d2cd4cd2cd2cd

6H 60480 6H ′
2

60480 d2cd4cdcd

6I 20160 dcd2cd2cd

60480 dcd2cdcd2cdcd

60480 6I ′2

181440 d2cd6cd

6K 483840 12J1 12J2

7A 1451520 21A1

8A 181440 8A′2 24B2

181440 8A′1 24B1

8B 181440 8B′
2 24A2

181440 8B′
1 24A1

8C 362880 d2cdcd4cd

9A 80640 18C2

725760 18C1

9B 161280 dcdcdcd2cdcdcd

9C 967680 dcdcdcdcdcd

10B 725760 dcd

11A 2903040 d2cdcd2
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12A 120960 dcd5cd4cd

120960 12A′1

12B 60480 24A1

181440 24B1

362880 24A2 24B2

12C 30240 dcd7cd3cdcd

30240 12C ′
1

90720 dcdcd4cdcdcd

90720 12C ′
3

12G 725760 d2cd5cd2cd

12H 181440 d2cdcd2cd3cd

181440 12H ′
1

181440 12H ′
4

181440 dcd2cdcd

12J 483840 dcd2cd2cdcd

483840 12J ′1

15A 1451520 d2cd5cd

18C 725760 18C ′
2

725760 dcd4cd2cd

21A 2903040 dcd3cd

24A 725760 24A′2

725760 dcd3cdcd

24B 725760 24B′
2

725760 d2cdcd

G ∼= Fi23, X = 2B, t = a.

C Orbit size Representative

1A 1 t

2B 1386 4C1 6C1

12672 4C2 6K1

2C 62370 4B1
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3A 5632 6C1

3C 630784 6K1

4B 7983360 babab

4C 1596672 babab2abababab

1596672 4C ′
1

5A 14598144 b

6C 709632 b2ab2abab2ababab2abababab

6K 28385280 bab

G ∼= Fi23, X = 2C, t = ((b2a)3ba)6.

C Orbit size Representative

1A 1 -

2A 180 6A1 6A2 6A3 6B1 6E1 6E2 6E3 6E4

6J1 6J2 10A1 10A2 10A3 10A4 14A1

14A2 14A3 14A4 26A1 26A2 26B1

26B2

2B 540 4A2 4C1 4C3 4C5 4C10 6C2 6K2

10B2

3456 4A1 4A3 4C2 4C4 4C6 4C7 4C8 4C12

6C1 6C6 6D2 6K1 6K3 6K4 10B1

10B6 14B3 22A1

4320 4A4 4C9 4C11 6C3 6C4 6C5 6D1

6K5 6K6 6K7 10B3 10B4 10B5 14B1

14B2 14B4

2C 810 4B1 4B2 4B3 4D2

12960 2C ′
3 6I2 6M1 10C2

12960 2C ′
2 6I3 6M2 10C1

12960 4B4 4B5 4D1 6I1 6I4
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103680 4B6 4B7 4D3 6F1 6G1 6G2 6H1 6I5

6I6 6I7 6L1 6L2 6L3 6L4 6M3 6M4

6M5 6M6 6N1 6N2 6O1 6O2 10C3

10C4

3A 1536 6A1 6C1 6C2 6C3 6I1 6I3 6I6 15A1

23040 6A2 6A3 6C4 6C5 6C6 6I2 6I4 6I5 6I7

15A2 15A3 21A1 21A2 39A1 39B1

3B 81920 6B1 6D1 6D2 6F1 6H1 9A1 9B1 9B2

9B3 9C1 9C2 9D1 9D2

3C 73728 6E1 6K3 6K6 6L1 6M5

122880 6E4 6G2 6K1 6K2 6K5 6L2 6L3 6M2

6M4 15B1

368640 6E2 6E3 6G1 6K4 6K7 6L4 6M1

6M3 6M6 15B2

3D 983040 6J2 6N2 6O1 9E1

2949120 6J1 6N1 6O2 9E2

4A 103680 4A′2 12A3 12J1 20A1

103680 4A′1 12A4 12J3 20A2

414720 4A′4 12A1 12A5 12D1 12J4 12J5

20A4 28A2

414720 4A′3 12A2 12A6 12D2 12J2 12J6

20A3 28A1

4B 103680 8A2 8B4

103680 8A4 8B5

103680 8A6 8B2

414720 8A8 8B10 12C1 12G4

1244160 8A9 8B8 12C2 12G1 12G2 12G3

1658880 8A7 8A10 8B1 8B3 8B6 12B1 12B2

12E1 12E3 12G5 12H1 12H2 12M1

12M2
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1658880 8A1 8A3 8A5 8B7 8B9 12B3 12B4

12C3 12E2 12E4 12H3 12H4 12M3

12M4

4C 103680 (abab2)2abab(ab2)4(ab)5(ab2)2(ab)4a

103680 4C ′
1

207360 4C ′
4 12I1

207360 4C ′
3 12I2

414720 4C ′
6 12N1

414720 4C ′
5 12N2

1244160 4C10′ 12I8 12N5 20B2

1244160 4C11′ 12I5 12I6

1244160 4C12′ 12I9 12N4 20B3

1244160 4C ′
7 12I7 12N6 20B1

1244160 4C ′
8 12I3 12I4

1244160 4C ′
9 12I10 12N3 20B4

4D 1244160 4D′
2

1244160 (ba)5b2ababab2(ab)3ab2a

9953280 8C1 8C2 12F1 12F2 12K1 12K2

12K3 12K4 12L1 12L2 12L3 12L4

12O1 12O2 12O3 12O4

5A 1327104 10A1 10B2 10B3 10C1 15A1

6635520 10A4 10B4 10B6 10C3 15A2 15B1

35A1

6635520 10A2 10A3 10B1 10B5 10C2 10C4

15A3 15B2

6A 69120 6A′2 30B3

69120 6A′1 30B4

276480 30B1 30B2 42A1 42A2

6B 1474560 18A1 18A2 18B1 18B2 18B3 18B4

6C 110592 12A1 12I2 12I6

138240 12A4 12I1 12I7
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414720 6C ′
4 30A1

414720 6C ′
3 30A2

829440 12A2 12A6 12I3 12I4 12I9 30A4

1658880 12A3 12A5 12I5 12I8 12I10 30A3

6D 2211840 12D2 18E2 18E3 18E4

2211840 12D1 18E1 18F1 18F2

6E 1105920 6E′
2

1105920 ab(ab2)2(ab)3ab2(ababab2)2a

2211840 bababab2ab2ab2abababab2

2211840 6E′
3

6F 6635520 12B1 12B2 12B3 12B4 12F1 12F2

6G 3317760 6G′
2 30C1

3317760 6G′
1 30C2

6H 13271040 12E1 12E2 12E3 12E4 12K1 12K2

12K3 12K4 18C1 18C2 18D1 18G1

18G2

6I 414720 12C1 12G3

829440 6I ′3

829440 ababab2ab2(ab)4(ab2)3ab(ab2)2ababa

1244160 12C2 12G1 12G2 12G4

1658880 bab2ababab2ababababab2ababababa

1658880 6I ′5

9953280 12C3 12G5

6J 8847360 6J ′2 18H2

8847360 6J ′1 18H1

6K 1105920 12J4 12N2

2211840 12J3 12N1 12N6

3317760 12J5 12N5

3317760 12J1 12N3

3317760 6K ′
6

3317760 abababab2
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6635520 12J2 12J6 12N4

6L 3317760 6L′2

3317760 abab2ab2abababab2ababab2ab2a

6635520 12H1 12H2 12L2 12L4

19906560 12H3 12H4 12L1 12L3

6M 3317760 bab2abab2ab2ab2abababab2a

3317760 6M ′
1

6635520 6M ′
4

6635520 abab2ababababababab2

9953280 6M ′
6

9953280 ab2ab2ab2abababababababab2

6N 26542080 bababab2ababab2a

26542080 6N ′
1

6O 26542080 12M1 12M2 12O1 12O2

79626240 12M3 12M4 12O3 12O4

7A 2654208 14A2 14B2

26542080 14A1 14A3 14B4 21A1

39813120 14A4 14B1 14B3 21A2 35A1

8A 3317760 8A′4

3317760 8A′3

3317760 bababab2abababab2ababab2abab2a

3317760 babab2ab2ab2ab2abababababab2

9953280 8A′6

9953280 babab2ababababababab2a

19906560 8A′8 24C3

19906560 8A′7 24C4

19906560 8A10′ 24C2

19906560 8A′9 24C1

8B 3317760 8B′
2

3317760 abababab2ababababab2ab2ababab2

9953280 8B′
4
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9953280 bab2ab2abababababababab2

9953280 bababab2ababababab2

9953280 8B′
5

19906560 8B10′ 24A4

19906560 8B′
9 24A3

19906560 8B′
8 24A2

19906560 8B′
7 24A1

8C 39813120 8C ′
2 24B1 24B3

39813120 8C ′
1 24B2 24B4

9A 17694720 18D1 27A1

9B 4423680 18B1 18E1 18E2

13271040 18B4 18E3

26542080 18B2 18B3 18E4

9C 8847360 18A2 18C1 18F1

26542080 18A1 18C2 18F2

9D 17694720 18G2

53084160 18G1

9E 53084160 18H1

159252480 18H2

10A 13271040 10A′2 30B3

13271040 10A′1 30B4

19906560 10A′4 30B1

19906560 10A′3 30B2

10B 13271040 20A1 20B4

13271040 20A2 20B1

19906560 10B′
4 30A1

19906560 10B′
3 30A2

39813120 20A3 20B3 30A4

39813120 20A4 20B2 30A3

10C 19906560 10C ′
2

19906560 bababab2abababab2ab2a
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39813120 10C ′
4 30C2

39813120 10C ′
3 30C1

11A 159252480 22A1

12A 3317760 12A′2

3317760 abab2abababababab2ababab2a

3317760 12A′4

3317760 bab2abababab2ababab2

9953280 12A′6 60A2

9953280 12A′5 60A1

12B 6635520 12B′
2

6635520 bab2ababababababababab2

19906560 12B′
4

19906560 abab2abababababab2abab2a

12C 3317760 24A1

9953280 24A3

39813120 24A2 24A4

12D 26542080 12D′
2 36B1

26542080 12D′
1 36B2

12E 13271040 12E′
3 36A2

13271040 12E′
4

13271040 12E′
1 36A1

13271040 abababab2ab2ababab2

12F 39813120 24B2 24B3

39813120 24B1 24B4

12G 9953280 12G′
3

9953280 24C2

9953280 babab2ababab2ababab2

9953280 24C4

39813120 24C1 24C3

12H 13271040 12H ′
2

13271040 bab2ab2ababab2ab2abababab2a
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39813120 12H ′
4

39813120 bab2ab2ababababa

12I 3317760 12I ′2

3317760 abababab2abababab2ab2ababab2

9953280 abababab2abababababab2abab2

9953280 abababab2ababab2ab2ab2

9953280 12I ′3

9953280 12I ′4

19906560 12I ′8

19906560 babababababababab2

19906560 12I10′

19906560 babababababab2ab2ab2a

12J 13271040 12J ′3

13271040 12J ′4

13271040 bababab2ababababab2abab2a

13271040 ababab2ababab2ab2ababab2a

39813120 abababab2abab2

39813120 12J ′5

12K 39813120 bababab2ababab2ababab2

39813120 12K ′
3

39813120 bab2ab2ab2ab2abababababa

39813120 12K ′
1

12L 39813120 bab2ab2abababab2abab2a

39813120 bab2ab2ab2abababab2a

39813120 12L′2

39813120 12L′1

12M 26542080 abab2abababababab2a

26542080 12M ′
1

79626240 b

79626240 12M ′
3

12N 13271040 bababababababab2
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13271040 12N ′
1

39813120 bab2ab2abab2ababab2a

39813120 12N ′
3

39813120 abab2abababababab2

39813120 12N ′
5

12O 79626240 12O′
3

79626240 ababab2ababab2

79626240 bab2abababab2ab2ab2a

79626240 12O′
2

13A 53084160 26A2

159252480 26A1 39A1

13B 53084160 26B2

159252480 26B1 39B1

14A 26542080 bab2ababab2ab2ababababa

26542080 14A′1

79626240 14A′4 42A2

79626240 14A′3 42A1

14B 39813120 bababab2abababababababa

39813120 14B′
1

79626240 28A2

79626240 28A1

15A 13271040 30A1 30B3

39813120 30A2 30A3 30B2

79626240 30A4 30B1 30B4

15B 53084160 30C2

159252480 30C1

17A 318504960 bababab2ab2abab2

18A 26542080 18A′2

26542080 babab2ab2ab2abababab2

18B 26542080 bababababab2

26542080 18B′
1
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79626240 babab2ababababab2

79626240 18B′
3

18C 79626240 babababab2ab2a

79626240 18C ′
1

18D 159252480 36A1 36A2

18E 26542080 36B1

39813120 bababab2abababababa

39813120 18E′
2

79626240 36B2

18F 26542080 abababab2ab2abab2

79626240 abababababab2ab2ababab2

18G 159252480 bab2ababababa

159252480 18G′
1

18H 159252480 bab2ababab2

159252480 18H ′
1

20A 26542080 bab2abababab2ab2abababab2

26542080 20A′1

79626240 20A′4 60A1

79626240 20A′3 60A2

20B 79626240 20B′
2

79626240 bababab2ab2a

79626240 bababab2abababab2

79626240 20B′
3

21A 159252480 42A2

159252480 42A1

22A 159252480 ababab2abababab2

24A 79626240 24A′4

79626240 24A′3

79626240 babababab2a

79626240 ababababab2ab2ab2

24B 79626240 24B′
2
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79626240 bab2ababab2abababab2a

79626240 bababab2a

79626240 24B′
3

24C 79626240 24C ′
2

79626240 bab2abababababab2

79626240 babababababab2

79626240 24C ′
3

26A 159252480 bababab2

159252480 26A′1

26B 159252480 ababab2ababababab2

159252480 26B′
1

27A 318504960 bababab2ab2

28A 159252480 abab2ababababab2

159252480 28A′1

30A 39813120 30A′2

39813120 bababababab2abab2a

79626240 60A2

79626240 60A1

30B 79626240 abab2abababab2

79626240 30B′
1

79626240 babababab2ab2abab2

79626240 30B′
3

30C 159252480 30C ′
2

159252480 bab2ababab2ababab2

35A 318504960 bababababab2a

36A 159252480 36A′2

159252480 bab2ab2abababa

36B 159252480 36B′
2

159252480 abab2ababab2

39A 318504960 bab2abababab2

39B 318504960 babab2
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42A 159252480 bababababab2ab2a

159252480 42A′1

60A 159252480 babababab2

159252480 60A′1

G ∼= Fi ′
24 , X = 2A, t = a.

C Orbit size Representative

1A 1 -

2A 720 4B2, 6F1

123552 4B2, 6A1

2B 1216215 4A1, 6A1

3A 56320 6A1

3C 20500480 6F1

3E 60825600 (ba)3b2(ab)3

4A 389188800 (ba)4b

4B 88957440 (b2a)2ba(b2a)2b(ab)3

88957440 4B′
1

5A 1423319040 b2ab

6A 19768320 b2(ab)5(ab2)2ab

6F 2767564800 bab
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