
ADAPTIVE WING

STRUCTURES FOR

AEROELASTIC DRAG

REDUCTION AND LOADS

ALLEVIATION

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy in the Faculty of

Engineering and Physical Sciences

September 2010

By

Simon J. Miller

School of Mechanical, Aerospace and Civil Engineering



Contents

Abstract 25

Declaration 26

Copyright 27

Acknowledgements 29

1 Introduction 30

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . 30

1.2 Aircraft morphing - past and present . . . . . . . . . . . . . . . . 33

1.2.1 Planform morphing . . . . . . . . . . . . . . . . . . . . . . 33

1.2.2 Performance morphing . . . . . . . . . . . . . . . . . . . . 46

1.3 Evolution of aircraft wing structures . . . . . . . . . . . . . . . . 54

1.3.1 Unstressed wing construction . . . . . . . . . . . . . . . . 54

1.3.2 Semi-monocoque wing construction . . . . . . . . . . . . . 55

1.4 Adaptive internal structures . . . . . . . . . . . . . . . . . . . . . 56

1.5 Aeroelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.6 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.7 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.8 Summary by chapter . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.9 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



2 Overview of the rotating spars concept 64

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2 Wing with a single rotating spar . . . . . . . . . . . . . . . . . . . 65

2.3 Wing with multiple rotating spars . . . . . . . . . . . . . . . . . . 66

2.4 Range of applicability . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Research to date on the concept . . . . . . . . . . . . . . . . . . . 68

2.6 Areas identified for development . . . . . . . . . . . . . . . . . . . 69

3 Development of an aeroelastic model for a rotating spars wing 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.3 Model description . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Structural model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Principle of Virtual Displacements . . . . . . . . . . . . . 74

3.2.2 Rayleigh-Ritz method . . . . . . . . . . . . . . . . . . . . 90

3.2.3 Note on spar efficiency and lateral buckling . . . . . . . . . 95

3.3 Aerodynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.1 Fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . 96

3.3.2 Obtaining the aerodynamic forces . . . . . . . . . . . . . . 99

3.3.3 The horseshoe vortex . . . . . . . . . . . . . . . . . . . . . 103

3.3.4 Vortex-lattice aerodynamics . . . . . . . . . . . . . . . . . 112

3.4 Aeroelastic coupling . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4.1 Discretising the virtual work for use with the aerodynamic

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.4.2 Angle of incidence for a swept elastic wing as a function of

the unknown amplitudes . . . . . . . . . . . . . . . . . . . 121

3.4.3 The complete equilibrium equations . . . . . . . . . . . . . 124

3.4.4 Solving the equilibrium equations . . . . . . . . . . . . . . 125

3.5 Validation and verification . . . . . . . . . . . . . . . . . . . . . . 127

3



3.5.1 Structural comparison . . . . . . . . . . . . . . . . . . . . 127

3.5.2 Aerodynamic comparison . . . . . . . . . . . . . . . . . . . 130

3.5.3 Aeroelastic comparison . . . . . . . . . . . . . . . . . . . . 134

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 An analytical study using the rotating spars aeroelastic model 140

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2 Parameter study . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.1 Structural behaviour . . . . . . . . . . . . . . . . . . . . . 142

4.2.2 Aeroelastic behaviour . . . . . . . . . . . . . . . . . . . . . 149

4.3 Establishing design guidelines . . . . . . . . . . . . . . . . . . . . 160

4.3.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.3.2 Suitability for planform . . . . . . . . . . . . . . . . . . . . 163

4.3.3 Rotating spar placement and sizing . . . . . . . . . . . . . 167

4.4 Design of a rotating spars wing using a genetic algorithm . . . . . 172

4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4.2 Optimisation overview . . . . . . . . . . . . . . . . . . . . 172

4.4.3 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . 176

4.4.4 Optimisation of the rotating spars wing to maximise effec-

tiveness parameters . . . . . . . . . . . . . . . . . . . . . . 185

4.5 Trim study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.5.2 Trimming the wing . . . . . . . . . . . . . . . . . . . . . . 193

4.5.3 Effect of rotating spars on the trim state . . . . . . . . . . 194

4.5.4 Minimisation of induced drag at the trim state via a steep-

est descent optimisation algorithm . . . . . . . . . . . . . 198

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5 Wind tunnel tests of a rotating spars wing 207

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

4



5.2 Design of the model using an analytical approach . . . . . . . . . 209

5.2.1 Basic structural layout . . . . . . . . . . . . . . . . . . . . 209

5.2.2 Establishing a baseline wing . . . . . . . . . . . . . . . . . 210

5.2.3 Effect of rotating spars on flutter behaviour . . . . . . . . 217

5.2.4 Analytical refinement of the model . . . . . . . . . . . . . 218

5.2.5 Buckling check . . . . . . . . . . . . . . . . . . . . . . . . 224

5.3 Construction phase . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.3.1 Overview of the model . . . . . . . . . . . . . . . . . . . . 227

5.3.2 Description of the wing . . . . . . . . . . . . . . . . . . . . 228

5.3.3 Description of the actuator housing . . . . . . . . . . . . . 229

5.3.4 Description of the wing mount . . . . . . . . . . . . . . . . 230

5.3.5 The complete assembly . . . . . . . . . . . . . . . . . . . . 231

5.4 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.4.1 Wind tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.4.2 Load-balance . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.4.3 Laser displacement system . . . . . . . . . . . . . . . . . . 234

5.4.4 Servos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5.4.5 Data acquisition hardware . . . . . . . . . . . . . . . . . . 236

5.4.6 Data acquisition software . . . . . . . . . . . . . . . . . . . 237

5.4.7 Other equipment . . . . . . . . . . . . . . . . . . . . . . . 237

5.5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

5.5.1 Determination of airspeed range and integrity of measure-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

5.5.2 Effect of non-aerodynamic surfaces on the loads . . . . . . 242

5.5.3 Structural parameter tests . . . . . . . . . . . . . . . . . . 243

5.5.4 Aeroelastic parameter tests . . . . . . . . . . . . . . . . . 247

5.5.5 Control of the loads via a regression model . . . . . . . . . 250

5.5.6 Control of the deflections via a regression model . . . . . . 255

5.5.7 Control of the loads via an optimisation approach . . . . . 256

5



5.5.8 Control of the deflections via an optimisation approach . . 261

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6 Adaptive wing tip devices for loads alleviation 269

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

6.1.1 Next generation surveillance aircraft . . . . . . . . . . . . 270

6.2 Loads alleviation systems . . . . . . . . . . . . . . . . . . . . . . . 272

6.2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . 272

6.2.2 Proposed loads alleviation concept . . . . . . . . . . . . . 273

6.3 Development of a dynamic aeroelastic model for a wing incorpo-

rating a wing tip device . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 275

6.3.2 Structural model . . . . . . . . . . . . . . . . . . . . . . . 276

6.3.3 Aerodynamic model . . . . . . . . . . . . . . . . . . . . . 283

6.3.4 Solving the aeroelastic equations of motion . . . . . . . . . 289

6.4 Parameter study using the aeroelastic model . . . . . . . . . . . . 293

6.4.1 Analyses of the baseline system . . . . . . . . . . . . . . . 293

6.4.2 Analyses of the modified system . . . . . . . . . . . . . . . 296

6.5 Case study for stress reduction . . . . . . . . . . . . . . . . . . . . 301

6.5.1 Description of the baseline platform . . . . . . . . . . . . . 301

6.5.2 Aeroelastic analyses of the baseline system . . . . . . . . . 301

6.5.3 Aeroelastic analyses of the modified system . . . . . . . . 304

6.6 Case study for mass reduction . . . . . . . . . . . . . . . . . . . . 311

6.6.1 Uniform mass reduction . . . . . . . . . . . . . . . . . . . 311

6.6.2 Mass reduction via optimisation . . . . . . . . . . . . . . . 312

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

7 Conclusions and future work 319

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.2 Suggestions for further work . . . . . . . . . . . . . . . . . . . . . 323

6



References 326

Additional sources of information 342

Final word count: 63,310

7



List of Tables

3.1 Comparison of rigid lift coefficient between the VLM and DLM. . 132

3.2 Comparison of rigid lift coefficient between the VLM and Tornado

code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.3 Comparison of rigid induced drag coefficient between the VLM

and Tornado code. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4 Comparison of aeroelastic lift coefficient between the RR\VLM

model and FE\DLM model. . . . . . . . . . . . . . . . . . . . . . 135

3.5 Comparison of divergence dynamic pressure between the RR\VLM

model and FE\DLM model. . . . . . . . . . . . . . . . . . . . . . 136

4.1 Variable range and increments. . . . . . . . . . . . . . . . . . . . 178

4.2 Transformed variable range and increments. . . . . . . . . . . . . 179

4.3 Representation of possible solutions with binary strings and con-

version back to transformed and actual variable decimal values. . 180

4.4 Fitness of each gene. . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.5 Crossover of genes. . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.6 Inversion of genes. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.7 Translation of genes. . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.8 Introduction of new blood. . . . . . . . . . . . . . . . . . . . . . . 184

4.9 Carry-over of elite gene from previous generation. . . . . . . . . . 184

4.10 Parameter ranges and number of increments. . . . . . . . . . . . . 186

4.11 Basic fixed parameter values. . . . . . . . . . . . . . . . . . . . . 187

4.12 Optimisation constraints for the design of the rotating spars wing. 188

8



4.13 GA optimisation results. . . . . . . . . . . . . . . . . . . . . . . . 190

5.1 Performance of the baseline wing design. . . . . . . . . . . . . . . 222

5.2 Parameter ranges for the refinement of the wing design. . . . . . . 223

5.3 Parameter values for the refined wing design. . . . . . . . . . . . . 223

5.4 Performance of the refined wing design. . . . . . . . . . . . . . . . 223

5.5 Force requirement for lateral buckling of the spars. . . . . . . . . 226

5.6 Failure mode of spars. . . . . . . . . . . . . . . . . . . . . . . . . 226

5.7 Data acquisition hardware connections. . . . . . . . . . . . . . . . 237

5.8 Typical variation in signal voltage as a percentage of transducer

range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5.9 Results demonstrating the repeatability of the optimisation rou-

tine to achieve a reference αetip
by varying φr. . . . . . . . . . . . 262

6.1 Undamped natural frequencies of the baseline system. . . . . . . . 294

6.2 Undamped natural frequencies when the loads alleviation device

is employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

6.3 Parameter ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.4 Rib parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

6.5 Spar parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

6.6 Other component parameters. . . . . . . . . . . . . . . . . . . . . 316

9



List of Figures

1.1 Examples of variable sweep aircraft. . . . . . . . . . . . . . . . . . 34

1.2 NextGen Aeronautics Morphing Aircraft Structures concept. . . . 35

1.3 The small wing area and aspect ratio of the Lockheed F-104. . . . 37

1.4 Diagram of the Fowler flap operation. . . . . . . . . . . . . . . . . 37

1.5 Telescoping wing sections of the LIG-7 by Bakshaev for chordwise

area increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 Telescoping wing sections of the MAK-123 by Makhonine for span-

wise area increase. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7 A recent spanwise telescoping wing concept. . . . . . . . . . . . . 39

1.8 Lockheed Martin folding wing concept. . . . . . . . . . . . . . . . 40

1.9 Variable anhedral wing tips of the North American XB-70. . . . . 40

1.10 Biplane-to-monoplane morphing examples. . . . . . . . . . . . . . 42

1.11 Inflatable wing examples. . . . . . . . . . . . . . . . . . . . . . . . 43

1.12 Retractable undercarriage of a Boeing 787. . . . . . . . . . . . . . 44
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Nomenclature

The following is a non-exhaustive list of letters and symbols appearing through-

out the thesis. Upper and lower case normal letters and symbols indicate a scalar,

bold lower case letters and symbols indicate a vector, and bold upper case letters

and symbols indicate a matrix.

A = structural inertia matrix

A = cross-sectional area of spar, cross-sectional area of wing

Ar = aerodynamic disturbance matrix

ar = aerodynamic disturbance vector

aW = lift curve slope

AICR = matrix of Aerodynamic Influence Coefficients

AIC∗

R = reduced matrix of Aerodynamic Influence Coefficients

AIC = Aerodynamic Influence Coefficient

B = aerodynamic damping matrix

b = semi-span of the wing

bs = spar thickness

b̂ = spanwise width of an aerodynamic panel

C = aerodynamic stiffness matrix, calibration matrix

C = cost/objection function

CD = wing drag coefficient

CDi
= wing induced drag coefficient

CL = wing lift coefficient
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c = vector of circulation strengths of the aerodynamic panels

c = wing chord

cl = sectional lift coefficient

D = structural damping matrix

ds = spar height

DT = elastic stress-strain operator matrix

Di = induced drag, bearing inner-diameter

D̄ = drag per unit span

D̄i = induced drag per unit span

E = structural stiffness matrix

E = Young’s modulus

e = distance of elastic axis aft of the aerodynamic centre as a fraction

of c

eO = Oswald efficiency factor

F = matrix of shape functions

Fi = shape function

f̄ = force per unit length of circulation

f = distance of forward spar aft of leading-edge as a fraction of c,

natural frequency

fF = flutter frequency

fB = body forces field

fS = surface forces field

G = shear modulus

h = bending displacement

I = identity matrix

I = second moment of area about a chordwise axis

Ixx = polar second moment of area

Iyy = second moment of area about y-axis

Izz = second moment of area about z-axis
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i = unit vector in the x-direction

J = St. Venant torsion constant

j = unit vector in the y-direction

k = tip device attachment torsional stiffness

Kh = flexural rigidity of the wing

kβ = torsional stiffness of a rib

Kθ = torsional rigidity of the wing

L = lift, gene length

l = spar length, length of wing

L̄ = lift per unit span

l̄ = vector of lift per unit span of the aerodynamic panels

Lg = gust length

M = moment exerted on a rib by a spar, pitching moment

M̄ = pitching moment per unit span about the aerodynamic centre

MD = aerodynamic efficiency effectiveness parameter

ML = lift effectiveness parameter

Mθ̇ = unsteady pitching moment aerodynamic derivative

m̄W = mass per unit length of wing

¯̄mW = mass per unit area of wing

Ni = number of increments

Niter = number of iterations

Nrib = number of ribs

n = unit normal vector

P = penalty function, load

p = load vector

p = aeroelastic eigenvalue

pc = probability of crossover

pm = probability of mutation

q = vector of generalised coordinates
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Qi = generalised forces

q = dynamic pressure

qc = distance of aerodynamic centre aft of leading-edge as a fraction

of c

qd = divergence dynamic pressure

qi = generalised coordinate

r = vector from the midpoint of the vortex segment to point in space

r = distance of rear spar aft of leading-edge as a fraction of c, length

of vector r

S = wing area

s = semi-span of the wing

ds = vector describing an infinitesimally small segment of a closed

curve of fluid velocity

ds = length of vector ds

T = transformation matrix

T = kinetic energy, period

t = time, aerofoil thickness as a percentage of c

U = air velocity, strain energy, potential energy

Ud = divergence speed

UF = flutter speed

U∞ = free-stream velocity

δU = virtual strain energy

u = displacement field, velocity field

u = displacement

δu = virtual displacement field

V = wing volume, spar volume, voltage

v = vector of voltages

δ∗W = virtual work
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w = induced velocity field, vector of downwashes of the aerodynamic

panels

w = downwash velocity

wg = gust velocity

x = Cartesian coordinate

Ȳ = side force per unit span

y = Cartesian coordinate

z = Cartesian coordinate

α = vector of angles of incidence of the aerodynamic panels

α = angle of incidence

αe = elastic angle of incidence

αi = induced angle of incidence

αr = vector of rigid/wind-off angles of incidence

αr = rigid/wind-off angle of incidence

β = vector of rear spar bending generalised coordinates, vector of

wing torsion generalised coordinates

βb = rear spar bending generalised coordinate, wing torsion gener-

alised coordinate

∆β = torsional deformation of a rib between two spars

Γ = circulation/vortex strength

γ = circulation field

γ = rotation/pitch of wing tip device

δε = virtual strain field

ζ = vector of forward spar bending generalised coordinates, vector of

wing bending generalised coordinates

ζ = negative damping

ζa = forward spar bending generalised coordinate, wing bending gen-

eralised coordinate

η = vector of generalised coordinates
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δη = vector of virtual generalised coordinates

θ = torsional displacement

Λ = wing sweep angle

λ = eigenvalue

ν = Poisson’s ratio

ξ = wing geometric dimensionless grouping

ρ = air density

ρW = wing density

σ = stress field

σ = stress

τ = pulse-width

Υ = matrix of modified shape functions

υ = vector of modified shape functions

φ = vector of rear spar bending shape functions, vector of wing tor-

sion shape functions

Φ∗ = matrix of modified rear spar bending shape functions

φ∗ = vector of modified rear spar bending shape functions

φb = rear spar bending shape function, wing torsion shape function

φf = angle between chordline and the principal axis z′ of the forward

spar

φr = angle between chordline and the principal axis z′ of the rear spar

Ψ = matrix of influence coefficients

ψ = vector of forward spar bending shape functions, vector of wing

bending shape functions

Ψ = influence coefficient

Ψ∗ = matrix of modified forward spar bending shape functions

ψ∗ = vector of modified forward spar bending shape functions

ψa = forward spar bending shape function, wing bending shape func-

tion
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Ω = matrix of modified shape functions

ω = vorticity field

ω = natural frequency

AR = aspect ratio of the wing

∇ = curl

Subscripts

ac = property defined at/about the aerodynamic centre

conv = converged value

D = property associated with the tip device

e = property associated with the elastic axis

h = property associated with bending displacement

initial = initial value

j = integer to distinguish between spars

k = integer to distinguish between spanwise sections of a spar

LE = property defined at the leading-edge

max = maximum

min = minimum

p = integer to distinguish between aerodynamic panels

panel = property associated with an aerodynamic panel

ref = reference/target value

s = spar property

TE = property defined at the trailing-edge

tip = property defined at the wing tip

W = property associated with the main wing

β = property associated with torsional displacement of a rib

γ = property associated with the tip device attachment

θ = property associated with torsional displacement about a span-

wise axis
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Adaptive wing structures for aeroelastic drag reduction and loads
alleviation
A thesis submitted to the University of Manchester for the degree of Doctor of
Philosophy
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Simon J. Miller

Abstract

An investigation into two distinct novel adaptive structures concepts is performed
with a view to improving the aerodynamic efficiency of aircraft wings.

The main focus of the work is on the development of a rotating spars concept
that enables the adaptive aeroelastic shape control of aircraft wings in order to
reduce drag. By altering the orientation of the internal wing structure, it becomes
possible to control the flexural and torsional stiffnesses of the wing, as well as
the position of the elastic axis. It follows then that control of the aeroelastic
deformation is also possible. Consequently, the aerodynamic performance can be
tailored, and more specifically the lift-to-drag ratio can be maximised through
continuous adjustment of the structure.

To gain a thorough understanding of the effect of the concept on a wing, an
assumed modes static aeroelastic model is developed, and studies are performed
using this. These studies establish guidelines with regards to the effective design
of a wing incorporating the rotating spars concept. The findings of these studies
are then used to establish a baseline design for a wind tunnel model. A finite
element model of this is constructed and aeroelastic analyses are used to improve
the model and arrive at the final experimental wing design. The wind tunnel tests
confirm analytical trends and the robustness of an approach to automatically
adapt the structure to maintain an aerodynamic performance objective.

The remainder of the work investigates the application of an all-moving wing
tip device with an adaptive torsional stiffness attachment as a passive loads alle-
viation system. Through consideration of the attachment stiffness and position,
it is possible to tune the device throughout flight in order to minimise the loads
that are introduced into the aircraft structure in response to a gust or manoeuvre.

A dynamic aeroelastic wing model incorporating the device is developed and
used to perform parameter studies; this gives an insight into the sizing and place-
ment of the device. Next, a finite element representation of a conceptual High
Altitude Long Endurance (HALE) aircraft is used as a baseline platform for the
device. Aeroelastic analyses are performed for the baseline and modified models
to investigate the effect of the attachment stiffness and position on the gust re-
sponse and aeroelastic stability of the system. The reduced loading within the
structure of the modified aircraft then enables the model to be optimised in order
to reduce the mass of the aircraft.
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Chapter 1

Introduction

1.1 Background and motivation

Since the early days of flight, the ability of aircraft to adapt to different conditions

has been an integral part of the design process. Improving the performance, ex-

panding the flight envelope, increasing capabilities and reducing operating costs

require this philosophy. This adaptive technology is evident on almost all ex-

amples of aircraft throughout history; the Wright brothers overcame the lack

of lateral stability in their Wright Flyer by adapting the twist of the wings to

achieve lateral control [15]. This function is performed in most modern aircraft

via ailerons, hinged devices that alter the camber of the wing. Similarly, most

aircraft employ trailing-edge flaps which are capable of altering the wing camber

and area to enable low speed operation, whilst degrading high speed flight per-

formance very little [138]. The increase in activity in the past two decades in the

research and development of unconventional aircraft adaptability has led to the

term ‘morphing’ being used to describe this technology [21, 88].

Within the aeronautics community, there is no agreement on the exact defi-

nition of morphing [88], with some arguing that it involves large seamless shape

changes, and others saying that it must use smart materials and structures tech-

nology. Perhaps the less specific definition proposed by Wlezien et al. [139] under
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NASA’s Morphing project is more useful:

Morphing is efficient, multi-point adaptability and includes macro, micro, struc-

tural and/or fluidic approaches.

Further to that, the NATO Research and Technology Organization, Applied Ve-

hicle Technology technical team on morphing vehicles (AVT-168) [88] proposed

a similar definition which also addresses the end objective:

Morphing is real-time adaptation to enable multi-point optimized performance.

Despite the lack of a clear definition, most researchers agree on the objective

of morphing, and this is mentioned in the latter definition provided above; the

primary aim of morphing technologies is to enable aircraft to perform at close

to optimum conditions at more than a single point within the flight envelope,

even (and especially) if these conditions impose contradictory requirements on

the performance [138].

Most aircraft are designed to have optimum aerodynamic characteristics at a

single point and fuel condition in the flight envelope. However, the fuel loading

and distribution changes throughout flight [21, 95], and aircraft frequently have

to fly at sub-optimal conditions for a variety of reasons including take-off and

landing configurations and air traffic control restrictions [121]. Additionally, the

conventional aircraft configuration that is commonplace today not only performs

poorly at off-design points in its flight envelope, but also is typically incapable of

operating at all in roles far removed from this design point due to the conflicting

performance requirements.

However, in the last couple of decades there has been an effort to tackle these

limitations in order to make aircraft more efficient and to expand the flight en-

velope. This has occurred for a variety of reasons; there is pressure on the civil
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aerospace industry to produce greener aircraft. For instance, the ACARE (Ad-

visory Council for Aeronautics Research in Europe) 2020 Vision set goals for the

European civil aerospace industry to reduce the 2001 carbon dioxide emission

levels by 50% by 2020, nitrogen oxides by 80% and noise by 50% [100]. Addition-

ally, in modern warfare in particular there is a growing requirement for highly

capable multi-role aircraft, and the increasing application of unmanned aerial ve-

hicles (UAVs), which are not constrained to physiological limitations, allows for

the use of highly unconventional technology [82, 122]. The rapid growth in the

last few decades in the research of enabling technologies has also fueled interest

in morphing aircraft; this includes advances in the fields of smart materials and

structures, biologically-inspired technology and nanotechnology [88].

As already mentioned, morphing aircraft have existed since the dawn of avi-

ation. Examples include trailing-edge flaps, leading-edge slotted slats, variable

sweep wings (all to enable low speed flight without compromising high speed

performance), retractable landing gear (to reduce drag) and variable pitch pro-

pellers (for efficient thrust generation over a wide range of airspeeds). From

these examples it is clear that morphing technologies need not weigh less or be

less complicated than the systems they replace; use of the technology can be

justified provided it offers a net benefit to the aircraft on a system level [88].

The drivers of expanding the flight envelope to allow for different missions

and the capability of multi-point optimum performance has resulted in morphing

occurring at two distinct scales [138], giving rise to the following categories:

• Planform morphing : extreme mission capability adaptability typically re-

quires large changes to the aircraft’s planform to achieve efficient multi-

role objectives. This includes variation of the wing sweep, area and span

[95, 138].

• Performance morphing : the ability to tweak the aerodynamic performance

throughout the flight envelope to move it closer to the optimum gener-

ally does not require large planform changes. Instead, the camber, twist



1.2. AIRCRAFT MORPHING - PAST AND PRESENT 33

and thickness properties of the wing can be manipulated, or flow control

mechanisms can be applied [95, 138].

1.2 Aircraft morphing - past and present

In this section, a selection of aircraft morphing technologies is presented. This

includes examples from the past that were implemented and flown, as well as

state-of-the-art technology that is not sufficiently mature for implementation into

aircraft.

1.2.1 Planform morphing

Variable sweep

One of the most successful wing morphing technologies is that of variable sweep

wings. The motivation for this resulted mainly from the aerodynamically con-

tradictory mission requirements that first surfaced in the 1950s as a consequence

of transonic and supersonic capabilities enabled by turbojets [137]. Typical mis-

sion requirements were long range/endurance subsonic cruise coupled with high

supersonic interception and low altitude transonic strike coupled with the ability

to operate from short runways or aircraft carriers.

In order to increase the Mach number at which transonic drag rise occurs,

wings are swept which reduces the effective Mach number of the flow over the

wing. However, other consequences of swept wings include a higher effective angle

of incidence, a lower aspect ratio for a given area and a root-to-tip (rearward

swept) spanwise component of flow [160]. These all impact negatively on the

low speed performance of the wing, resulting in increased stall speeds, increased

subsonic drag as well as a degradation in handling. In this speed range, unswept

wings are favourable.

Although the Bell X-5, first flown in 1951, was the first aircraft that used

variable sweep wings to provide good performance at both low and high speeds,
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the concept had been explored previously [137]. In 1931 the Westland Pterodactyl

IV (see figure 1.1a) demonstrated the ability to sweep its wings through 4.75◦;

however, unlike high speed designs, the Pterodactyl used this feature to trim the

aircraft [162]. With a first flight in 1964, the General Dynamics F-111 became

the first production aircraft to incorporate variable sweep technology [52]. The

following two decades saw the production and successful application of a variety

of variable sweep wing aircraft (see figures 1.1b and 1.1c). The Grumman F-14

wing sweep was automatically adjusted to maintain an optimum lift-to-drag ratio

at varying Mach numbers [74].

(a) Westland Pterodactyl IV
[162].

(b) Mikoyan-Gurevich MiG-23
[144].

(c) Dassault Mirage G8 [169].

Figure 1.1: Examples of variable sweep aircraft.

The most recent production aircraft to employ variable sweep wings, the

Tupolev Tu-160, first flew in 1981, three decades ago. The disadvantages associ-

ated with variable sweep wings include the heavy gearbox and pivot mechanism

[155], which must transmit very large loads, as well as the system complexi-

ties such as the necessity to house the leading- and trailing-edges of the wing

inside the fuselage [137]. The increased fuel consumption and maintenance re-

quirements associated with variable sweep aircraft has resulted in the technology

being phased out from subsequent aircraft [155].

However, the renewed interest in aircraft morphing has resulted in research

that attempts to capture the benefits of large sweep change capability with less of

the disadvantages of the traditional variable sweep mechanisms. In 2003, the De-

fense Advanced Research Projects Agency (DARPA) initiated the Morphing Air-

craft Structures (MAS) programme that requested proposals for reconfigurable
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aircraft wings that are capable of radical shape changes [82]. One of the chosen

contractors, NextGen Aeronautics, developed a concept that used a rigid leading-

and trailing-edge, as well as wing tip, with a kinematic mid-section attached to

a macro-composite flexible skin. This skin was capable of in-plane strain in ex-

cess of 100%, whilst withstanding air loads of at least 2.5 g [21]. The internal

wing structure, shown in figure 1.2a, was configured into parallelograms, which

enabled large area changes with relatively small hydraulic actuators, while pro-

viding high out-of-plane rigidity to carry substantial air loads [88]. The concept

was successfully tested in a wind tunnel at a range of airspeeds from low subsonic

to transonic, as well as on a low subsonic flight demonstrator (figure 1.2b). In

addition to substantial aspect ratio, span and area changes, the novel wing design

enabled the sweep to be varied between 15◦ and 45◦ [21].

(a) Wing structure [142]. (b) Wind tunnel model [21] and
flight demonstrator [88].

Figure 1.2: NextGen Aeronautics Morphing Aircraft Structures concept.
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Variable area

For a wing to generate the required lift, L, the following condition [65, 85] must

be satisfied:

L = qSCL (1.1)

where q is the dynamic pressure, S is the wing area and CL is the lift coefficient

of the wing and is a function of the angle of incidence. This implies that as the

airspeed decreases the wing area or lift coefficient must be increased to maintain

the required lift. The traditional approach is to increase the lift coefficient by

pitching the aircraft to increase the angle of incidence. The use of incidence as a

means of trimming the wing is not without its drawbacks however; the induced

drag increases with the square of the incidence [108]. As a result, wings that are

designed for high speed flight perform poorly during low speed operation.

For fighter aircraft, this poor low speed performance is often degraded further

by the requirement of low aspect ratio wings for favourable manoeuvrability. For

a fixed wing area, as the aspect ratio decreases, the induced drag increases [108].

The contribution of the induced drag to the total drag decreases with increasing

airspeeds (due to the need for higher incidences), and therefore does not affect

the high speed performance greatly. However, at low speeds the induced drag

contribution is significant.

The Lockheed F-104 (figure 1.3) had a very small area, low aspect ratio wing

that was designed for optimal high speed performance with little compromise for

its low speed handling. As a consequence, the F-104 possessed poor low speed

performance including excessively high take-off and landing speeds as well as

unstable flight dynamics at high incidences [157].

Several morphing concepts that enabled wing area changes have been devel-

oped over the years, but none have been as universally applied as the Fowler

flap. This is a trailing-edge device that was invented in 1924, and used on several

Glenn L. Martin Company and Lockheed aircraft during the 1930s [55]. The
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Figure 1.3: The small wing area and
aspect ratio of the Lockheed F-104
[170].

Figure 1.4: Diagram of the Fowler flap
operation (reproduced from [85]).

hydraulically-actuated device consists of a hinged tab that can also be extended

rearwards (see figure 1.4), therefore not only increasing the camber of the aero-

foil, but also the area. The Gouge and Zap flaps were alternative 1930s designs

that could similarly increase both camber and area [65]. However, the Fowler

flap quickly emerged as the most effective design. Fowler flaps are mechanically

complicated and as a result are more expensive and heavier than other high-lift

devices; for this reason they are not often used on small aircraft. On the other

hand, the low-speed performance benefits they offer to larger aircraft has seen

their application to the majority of such aircraft [83].

Another concept that allowed chordwise area increases was found on the LIG-7

by Bakshaev. This technology demonstrator was first flown in 1937 and featured

a fixed high aspect ratio wing for high speed flight, as well as manually operated

telescoping sections that extended from the fuselage (see figure 1.5) to increase

the area at low speeds for improved take-off/landing performance [137]. The

success of the concept was evident in that it reduced the take-off distance from

250 m to 135 m and reduced the landing distance from 210 m to 110 m [168].

The main drawback of chordwise area increases is the lowering of the aspect

ratio of the wing, and therefore decrease in the lift-to-drag ratio. This effect

is greater at lower speeds i.e. the speed regime where wing area increases are

most required. The opposite is true of spanwise area increases i.e. for a fixed
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Figure 1.5: Telescoping wing sections
of the LIG-7 by Bakshaev for chordwise
area increase [137].

Figure 1.6: Telescoping wing sections
of the MAK-123 by Makhonine for
spanwise area increase [147].

chord, if the span is increased the lift-to-drag ratio will increase due to the higher

aspect ratio. The aerodynamic performance benefits of spanwise area increases

over chordwise area increases have been explored since the early days of flight;

the MAK-10, designed by Makhonine and first flown in 1931 [147], incorporated

a spanwise pneumatic telescoping outer wing section in each wing to allow the

aircraft to fly at higher speeds whilst still capable of practical take-off and landing

speeds. Improved designs included the MAK-101 (1935) and the MAK-123 (1947)

(shown in figure 1.6) [137].

Since these early designs there have been several spanwise telescoping wing

aircraft including the Akaflieg Stuttgart FS-29 sailplane, first flown in 1975 [137],

which used a large span wing for take-offs and landings as well as climb, and

used the retracted smaller span configuration for performance soaring, where the

aircraft had to cover a certain distance in the shortest time possible; the higher

speed capabilities of the small span arrangement was therefore preferable for this

flight condition. More recently (1997), patents were issued to Gevers Aircraft for

an aircraft which uses a telescoping wing to almost double the span [49, 118].

In 2007 Samuel and Pines [118] developed a pneumatic telescoping wing. Their

design featured two series of pneumatic actuators that doubled as the spars and

enabled three different configurations, as shown in figure 1.7, with up to a 230%

change in area. Under the SMorph project of which this work is part of, Vale et

al. [133] are currently developing a telescoping wing that uses an electric motor
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(a) Spars/pneumatic actuators [118]. (b) Configurations [118].

Figure 1.7: A recent spanwise telescoping wing concept [118].

actuated rack and pinion mechanism for deployment. Analytical results show

an increase in maximum CL and lift-to-drag ratio as the span is increased, as

expected.

Although telescoping wings do offer good low speed performance and the pos-

sibility of roll control, there are several challenges that limit their use. Firstly,

typical rack and pinion and cable and pulley actuators are heavy [118], and the

need to retract outer wing sections into inner sections makes inner sections heavy

due to the increased structural rigidity required [137]. You [142] has proposed

the use of variable geometry trusses and deployable box beams, which do not

suffer from these problems, as an alternative method to enable spanwise area

increases. Additionally these structures can deflect laterally, offering the possi-

bility of variable dihedral wings or winglets. The NextGen Aeronautics concept

for DARPA’s Morphing Aircraft Structures (MAS) programme was discussed

earlier for its variable sweep capabilities. The internal structure in this design

(see figure 1.2a) altered its shape in a manner more akin to You’s proposed mor-

phing structures. In addition to a 30◦ variation in sweep [21], the hydraulically

actuated NextGen wing could alter its area by up to 40%, the span by up to 73%

and the aspect ratio by up to 177% [88].
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Folding wings

It has already been demonstrated that an aircraft that is capable of substan-

tial wing area changes will have an increased flight envelope. One less-explored

method of enabling this is via the use of a folding wing. Under DARPA’s MAS

programme, Lockheed Martin developed and wind tunnel tested a UAV which

could fold its inboard wing section from the horizontal through 130◦ to lie flush

with the fuselage to reduce the wing area for high speed operation [88, 124].

This operation is demonstrated in figure 1.8. Flexible skins were used at the two

Figure 1.8: Lockheed Martin folding wing concept
[124].

Figure 1.9: Variable
anhedral wing tips of
the North American
XB-70 [82].

fold lines (the root and 30% span) to maintain the aerodynamic shape at these

locations and the leading-edge shape was adaptable to enable it to conform with

the fuselage. The concept provided the wing with the ability to change its area

by up to 200% [124].

Several examples of folding wings can be found throughout aviation history.

The earliest and most widespread use of them is for compact storage on carrier

vessels. Although the added weight of the mechanism is detrimental to the flight

performance of a single aircraft, the benefits of being able to considerably increase

the number of aircraft that a carrier can accommodate are significant [137]. This
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can be viewed as morphing that enables overall system benefits. The first aircraft

to employ folding wings for compact storage was the experimental Short S.41

(1912). Since then, many ship-borne aircraft, and several land-based aircraft

have incorporated this space-saving feature.

The prototype North American XB-70 which first flew in 1964 used variable

anhedral wing tips to control the aerodynamic performance [82]. Below 300 kts

the wings remained horizontal. Between 300 kts and Mach 1.4 the wing tip was

folded to 25◦ below the horizontal, and above Mach 1.4 this angle was increased

to 65◦ below the horizontal [124]. The increased vertical area permitted the use

of smaller vertical stabilisers, offset the rearward shift of the aerodynamic centre

with increasing airspeed with less need for drag-producing trim corrections and

helped to control the compression lift effect during supersonic operation [124].

The XB-70 is shown in its three configurations in figure 1.9.

Research is ongoing at the University of Bristol into morphing winglets. An-

alytical and experimental studies show how variable dihedral wing tips/winglets

may be used as an alternative to conventional control surfaces for aircraft control

[19, 20]. In particular, roll control can be achieved with increasing effectiveness at

decreasing airspeeds which would enable enhanced low speed manoeuvrability. In

another concept, bistable composite wing tips are shown to offer aerodynamic ad-

vantages; at low airspeeds the wing tip is aligned with the inboard wing in a stable

state, augmenting the lift. At a certain dynamic pressure, the aerodynamically-

loaded wing tip passively snaps through to the second stable state, in which it

resembles a winglet [46]. This configuration is better suited to higher speeds by

decreasing the horizontal area and therefore the drag. One major challenge with

this concept is to suppress the substantial excitation of the aircraft modes caused

by snap-through [46].

One of the most ambitious folding wing efforts can be found on the proto-

type IS-1 fighter by Shevchenko, which first flew in 1940. This aircraft used an
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unequal-span biplane arrangement for take-off/landing and increased manoeu-

vrability during combat. However, for high speed flight the lower inboard wings

folded into fuselage recesses (similar to the Lockheed Martin MAS concept in

figure 1.8), and the lower outboard wings folded into recesses on the underside

of the upper wing [137, 161]. The IS-1 is shown in figure 1.10a.

(a) IS-1 by Shevchenko [161]. (b) X-wing by Traub et al. [132].

Figure 1.10: Biplane-to-monoplane morphing examples.

A more recent biplane-to-monoplane morphing method was demonstrated by

Traub et al. (2010) [132]. They presented both analytical and experimental

results of an X-wing configuration with variable dihedral/anhedral wings; by

rotating the lower and upper wings of a biplane towards each other, the two wings

can merge (provided they occupy a common root) to form a single monoplane

with decreased area, better suited for higher speed flight. The wind tunnel model

of the concept is shown in figure 1.10b.

Inflatable wings

Inflatable wings have seen limited application for more than half a century [66].

The Goodyear Inflatoplane, first flown in 1956, was a manned aircraft featuring

inflatable wings to enable compact stowage for air-drop behind enemy lines to

rescue downed pilots [22, 66]. Around the same time, the M.L. Aviation Com-

pany developed a tailless inflatable wing aircraft, the M.L. Utility [22]. In the
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1970s, the Apteron flying-wing by ILC Dover became the first UAV to incor-

porate inflatable wing technology [66], and more recently NASA developed and

flight-tested the I2000 inflatable wing UAV technology demonstrator [66]. The

deployment sequence for the I2000 is shown in figure 1.11a. The main application

of inflatable wing technology is for lightweight portable UAVs. Another proposed

use of inflatable wings is to extend fixed surfaces for variable area morphing (see

figure 1.11b). The major challenge with this application is the ability to deploy

and restow the wings repeatedly during flight; although deployment is straight-

forward, re-stowage requires mechanisms that will add weight to the aircraft [66].

(a) Deployment sequence for NASA’s I2000
[66].

(b) Inflatable outboard wing sections for
spanwise area increase [66].

Figure 1.11: Inflatable wing examples.

Other planform morphing concepts

Along with trailing-edge flaps, retractable undercarriages (see figure 1.12) are

undoubtedly the most common and successful morphing technology found on

aircraft. Although they substantially add weight and complexity to the aircraft,

above a certain airspeed the drag penalty incurred by fixed landing gear is sig-

nificant and requires more powerful and therefore heavier engines to compensate
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[88]. A retractable undercarriage was first used by Wiencziers in 1911, although

the crude mechanism made it impractical [90]. As airspeeds increased there was

a greater need for reducing the drag in novel ways and the racing aircraft of the

1920s used retractable undercarriage successfully. Towards the end of the 1920s

and early 1930s, commercial aviation and military transport aircraft had em-

braced this new technology. Despite this, it took until the late 1930s for fighter

aircraft designers to be persuaded that the benefits of retractable undercarriages

outweighed the penalties they brought with them [90].

Figure 1.12: Retractable undercarriage
of a Boeing 787 [145].

Figure 1.13: Variable droop nose on
the Aérospatiale-BAC Concorde [149].

Another successfully applied but much less common morphing technology is

the variable incidence/droop nose for enhanced pilot visibility, best known for

its use on Aérospatiale-BAC Concorde aircraft (see figure 1.13). The origins of

this feature can be traced back to the Fairey Delta 2 supersonic research aircraft

(1954). One of these was later modified for aerodynamic research under the

Concorde programme, and the droop nose subsequently featured on Concorde,

which first flew in 1969. The Tupolev Tu-144, the Soviet competitor to Concorde,

also incorporated the droop nose feature [72]. All of these aircraft used delta

wings which typically impose a very high incidence requirement during landing.

This, together with the unusually long noses of these aircraft created limited

visibility under certain flight conditions.
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A different solution to the high incidence visibility problem was implemented

on the Vought F-8 Crusader (1955). This aircraft featured variable incidence

wings which allowed the root angle of incidence to be increased by up to 7◦ to

achieve high angles of incidence during take-off and landing whilst maintaining

the fuselage at a relatively low incidence [129].

Variable incidence horizontal stabilisers are commonly used on supersonic

aircraft, but for a different reason; shockwaves generated during supersonic flight

can render conventional trailing-edge elevators ineffective. Instead, stabilators

can be employed for pitch control. In this configuration the incidence of the

entire horizontal stabiliser can be altered [108].

Vertical and/or Short Take-Off and Landing (V/STOL) enabling technologies

are an example of morphing technologies that have struggled to find application

in production aircraft, despite offering V/STOL capabilities coupled with higher

forward speeds than helicopters. Tiltrotors are aircraft that are capable of alter-

ing the orientation of a propeller to enable forward flight (horizontally-aligned) or

vertical flight (vertically-aligned). The Transcendental Aircraft Corporation and

Bell Aircraft Corporation produced several tiltrotor designs in the early 1950s

[75]. Despite various tiltrotor designs since then, only the military Bell-Boeing

V-22 (see figure 1.14a), which first flew in 1989, has made it to production. How-

ever, the Bell/Agusta BA609 is a civil tiltrotor in the latter stages of development

[99].

(a) Bell-Boeing V-22 tiltrotor
[148].

(b) Canadair CL-84 tilt wing
[154].

(c) Hawker Siddeley Harrier
GR7 vectored thrust [153].

Figure 1.14: Examples of V/STOL aircraft.

Around the same period that tiltrotor aircraft first appeared, an alternative
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design surfaced too in which the entire wing (with propeller fixed relative to the

wing) of the aircraft rotated about a spanwise axis. This tilt wing feature has also

appeared on various aircraft (see figure 1.14b) since the 1950s, but has failed to

ever be incorporated into production aircraft [81]. As with tiltrotors, the inherent

mechanical complexity, added weight and aeroelastic problems associated with

tilt wing aircraft has hindered its use [81].

The most successful V/STOL aircraft is the Harrier family (see figure 1.14c),

first developed by Hawker Siddeley in the 1960s. Instead of a variable orientation

propeller, the Harrier used a vectored thrust turbofan to generate and control the

direction of thrust. The less publicised Yakovlev Yak-38 (first flight in 1971) was

also a jet powered thrust-vectoring V/STOL aircraft which entered production,

and the Lockheed Martin F-35 is currently in the pre-production stage [42].

1.2.2 Performance morphing

Variable camber

In section 1.2.1 it was demonstrated that as the airspeed decreases, a wing must

compensate for the decreased dynamic pressure by increasing the area or the lift

coefficient. Area-increasing technologies were presented in section 1.2.1. How-

ever, the traditional method used for large lift adjustments is to alter the lift

coefficient. This is generally achieved by pitching the entire aircraft to a dif-

ferent flight attitude and therefore altering the angle of incidence of the wing.

At low airspeeds the angle of incidence becomes critical, however, and a further

increase in angle of incidence will stall the wing. To delay the onset of stall (i.e.

lowering the stall speed) moderately cambered aerofoils may be used. Relative

to the equivalent uncambered aerofoil section, camber increases the maximum

achievable lift coefficient, as shown in figure 1.15. Ailerons take advantage of this

effect differentially to create a rolling moment.

However, at higher speeds it is desirable to have zero or little camber. The

idea for a variable camber wing can be traced back to the invention of the aileron
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Figure 1.15: Effect of camber on an ar-
bitrary lift curve.
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Figure 1.16: Some common flap types
(reproduced from [65, 85]).

by Farman in 1908 [55] and led to several World War I aircraft incorporating

plain flaps. Despite this, flaps did not see widespread application until the 1930s

as a result of the low airspeeds of aircraft of that period, meaning that the devices

were redundant. The roots of the differing flap designs in use today were laid

down between around 1920 and 1940, with refinements in the devices occurring

since [55]. Figure 1.16 shows a variety of common types of modern flaps.

While the conventional flaps described above offer an increase in aerodynamic

performance at various points in the flight envelope, they are relatively complex

and heavy, and discontinuous surfaces and exposed mechanisms result in large

drag penalties. Consequently there has been much research into the development

of variable camber wing devices that are more efficient than conventional flaps,

and patents for continuous conformal variable camber surfaces exist as early as

1916 (see figure 1.17) [100].

Marques et al. (2009) [84] describe a device which is based on the Fowler flap,

producing camber and area increases. However, the key feature of their design is

that over the entire deflection range, the flap maintains upper surface continuity;

inspection of figure 1.16 reveals that the deflection of conventional flaps results in
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Figure 1.17: Some patented designs
for continuous variable camber wings
[100].

Figure 1.18: Geometry of a traditional
jointed mechanism that maintains up-
per surface continuity [84].

surface discontinuities. These promote flow separation, resulting in higher drag

and the earlier onset of stall [48]. Marques et al. optimised the flap geometry to

minimise the drag of a low speed UAV. As a result of the continuous upper surface

and optimisation procedure, an average drag reduction of 2.7% was achieved, the

lift coefficient increase was almost double that achieved by a plain flap, and the

actuator energy was only 40% of that of the plain flap. The geometry of the flap

is shown in figure 1.18.

The concept by Marques et al. relied on a traditional jointed mechanism.

In contrast, NASA’s Mission Adaptive Wing (MAW) programme used a concept

which can be viewed as compliant in nature. The MAW programme resulted in

a wing incorporating leading- and trailing-edge variable camber surfaces which

could be deflected in flight to provide close to the optimal camber shape for

all flight conditions [112]. The programme commenced in 1971 with analytical

studies of smooth variable camber aerofoils, and culminated with six years of

flight testing of the technology between 1979 and 1985 [18]. A General Dynamics

F-111 platform was used for the flight testing, with the original wings replaced

by the MAW. The MAW consisted of internal hydraulically-actuated rods and

linkages that were used to elastically deform the leading- and trailing-edges, as

shown in figure 1.19, resulting in continuous upper and lower surface deforma-

tions, and decreased drag relative to exposed actuators. The results of the MAW
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programme showed that a continuous variable camber wing can be used to min-

imise drag over a range of subsonic, transonic and supersonic flight conditions.

Used together with variable sweep, variable camber can minimise penalties for

off-design operation [112].

Figure 1.19: The internal structure
and actuators of the compliant Mission
Adaptive Wing for enabling variable
camber with surface continuity [137].

Figure 1.20: Smart Wing ultra-
sonic piezoelectric motors for high-rate
smoothly contoured trailing-edge cam-
ber variation [78].

While the MAW programme highlighted the potential aerodynamic benefits of

a continuous variable camber wing, on a system level the benefits were marginal

due to the heavy and complicated internal mechanical design which used con-

ventional hydraulic actuators [77]. In the mid 1990s, NASA’s Morphing project

was initiated with the objective of using smart materials and sensors (e.g. Shape

Memory Alloys (SMAs), piezoelectrics) to enable aircraft adaptability [86, 87].

As part of this project, the DARPA/AFRL/NASA Smart Wing programme set

out to develop a smart materials based concept that would address large deflec-

tion, high rate control effectors for aircraft manouevre control [78, 119]. One

of the concepts consisted of several smoothly contoured trailing-edge surfaces

(similar to the MAW) actuated by SMA wires, forming the flaps and aileron

surfaces. When used together, these conformal flaps and ailerons provided up to

a 17.3% increase in roll-rate relative to conventional hinged surfaces. However,

the increased nose-down pitching moment generated by conformal surfaces leads

to a significantly decreased aileron reversal dynamic pressure. To alleviate this,

the programme also developed a smoothly contoured variable camber leading-

edge, also actuated by SMA wires. Another concept replaced the trailing-edge



50 CHAPTER 1. INTRODUCTION

SMA wires with ultrasonic piezoelectric motors (see figure 1.20), enabling typical

deflection rates required by fighter aircraft [14, 120].

In 2006 FlexSys Inc flight tested the Mission Adaptive Compliant Wing

(MACW) which was developed under a Small Business Innovation Research

(SBIR) programme with the US Air Force Research Laboratory (AFRL). The

wing included an adaptive structures trailing-edge flap that enabled variable ge-

ometry reshaping of the upper and lower flap surfaces with no seams or discon-

tinuities (see figure 1.21). As with NASA’s MAW, the primary advantage of this

was to reduce or eliminate the flow separation associated with conventional flap

hinge lines. Relative to these conventional devices, the MACW was able to pro-

vide up to a 40% increase in control authority per degree of deflection, and with

25% reduced drag [77].

Figure 1.21: Mission Adaptive Compli-
ant Wing trailing-edge demonstrating
±10◦ deflections [77].

Figure 1.22: A DLR-developed flexible
rib to enable conformal trailing-edge
camber control [100].

The goal of developing a compliant trailing-edge device for variable camber

undoubtedly receives the most attention in present day morphing research. In

addition to the concepts already detailed, the German Aerospace Centre (DLR)

is active in this area, with one of their concepts shown in figure 1.22. This

concept uses an articulated rib composed of plate elements to create a flexible

rib on which the skin can glide whilst still being able to transmit the aerodynamic
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loads [100].

Variable twist

Variable twist wings for adaptive performance is perhaps the oldest form of mor-

phing. As mentioned previously, the Wright brothers used this method to achieve

roll control of their Wright Flyer in 1903 [15]. However, as aircraft became

ever faster, the greater dynamic pressures resulted in stiffer wing construction

to avoid detrimental aeroelastic effects and consequently conventional aircraft

control their aerodynamic performance via alternative methods.

The Active Flexible Wing (AFW) programme was a collaboration between

NASA and the USAF which started in the 1980s, before evolving into the Active

Aeroelastic Wing (AAW) programme which ended in 2003 [88]. The programme

objective was to use conventional leading- and trailing-edge surfaces in a con-

trolled manner at high dynamic pressures to induce substantial twisting of the

wing. By performing this differentially on a pair of wings the opposing aeroe-

lastic torsional deflections created a rolling moment therefore improving high

speed roll manoeuvrability, which typically suffers as aileron effectiveness de-

creases with dynamic pressure. The main attraction with this approach is that

the energy required to twist the wing is supplied by the airflow. The programme

included flight testing of a modified McDonnell Douglas F/A-18A (see figure

1.23), demonstrating the advantages of aeroelastic wing twist for roll control

[82, 106].

The European Active Aeroelastic Aircraft Structures (3AS) programme (2002-

2005) was similar in its approach to morphing technologies in that it used aeroe-

lastic phenomena to benefit the performance, with the key theme being the use

of the aerodynamic loads to deform the structure in a controlled manner [121].

A concept developed by Eller and Heinze [39] within the 3AS framework ex-

plored the use of redundant leading- and trailing-edge control surfaces to affect

the aeroelastic twist. However, unlike the AAW research, the intention was to
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Figure 1.23: Active Aeroelastic Wing
subject to torsion tests [146].

Figure 1.24: Use of an embedded
torque rod for active twist roll control
of a Micro Air Vehicle [126].

use this to minimise the drag over a range of flight conditions, rather than to

augment roll control. Other concepts within 3AS included adaptive internal wing

structures to control the elastic axis position, and flexural and torsional rigidi-

ties of the wing [3, 4, 6, 7, 29]. Adaptive internal structures therefore provide

a mechanism for controlling the aeroelastic shape deformation to influence the

aerodynamic performance. It is one of these concepts (rotating spars) that is

developed further in the current work.

In addition to the development of conformal variable camber devices described

previously, the DARPA/AFRL/NASA Smart Wing programme also explored the

use of SMA torque tubes to actively twist the wing. Although not as effective

as hoped due to the use of a low aspect ratio wing, the torque tubes were still

capable of twisting the wings to increase the lift by 10% [119].

Stanford et al. (2007) [126] developed a system to twist the wings of a Micro

Air Vehicle (MAV) differentially for roll control, although this concept is unlikely

to be scalable. It consisted of a single torque rod (see figure 1.24) embedded

within each of the membrane wings of the MAV and actuated by a single servo.

Results show that for MAVs differential wing twisting is a good and practical

alternative to ailerons for roll control.

Paluch and Toussaint (2009) [105] developed and tested an active wing box

concept. Their design replaced conventional spars and ribs with vertical rods and
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hydraulic actuators to affect the twist. Analytical and structural tests proved

the feasibility of the concept on a large scale. Vos et al. (2010) [135] tackled the

problem of enabling large wing twist deformation whilst maintaining a high load-

carrying capability. They achieved this through controlled warping of a torque

box structure i.e. cutting the torque box to open it and reattaching it with

a sliding mechanism that enabled load-carrying warping (and hence inducing

torsional deformation).

Other performance morphing concepts

Flow control is one of more traditional forms of aircraft morphing that enable

aircraft the ability to adapt their performance. Lachmann and Handley Page

independently invented the wing slot around 1920 to delay flow separation and

therefore stall. Lachmann used a long fixed slot near the leading-edge, whereas

Handley Page’s design was adaptive to alleviate the substantial drag created

by slots at high speed; in his concept, a deployable leading-edge section known

as a slat created a slot in the wing at low speeds and was retracted at higher

speeds to close the slot and lie flush with the leading-edge [55]. The Fowler flap,

discussed previously and invented in 1924, was the first trailing-edge device to

create a slot. By the late 1930s, double-slotted flaps had been patented, and in

1963 triple-slotted flaps were flown for the first time on a Boeing 727 [55]. Slots

delay flow separation of the downstream aerofoil by assisting in turning the flow

to provide boundary layer control [80]. For leading-edge slats, this means the

main wing can achieve greater angles of incidence, and for trailing-edge flaps this

allows the flap to be deflected through a larger angle, therefore increasing the

camber.

An externally blown flap, as used on the Boeing C-17, is similar in operation

to a conventional slotted flap except airflow through the slot is augmented by

the engine exhaust [65]. An improvement on this is upper surface blowing where

the exhaust flows over the upper wing and flaps [65]. However, the most effective
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high lift device is the internally blown flap; this device bleeds air from the engine

compressor which is then blown at supersonic speeds over the trailing-edge flaps.

This has been used on fighter aircraft with very small wings (e.g. Lockheed F-

104) [65]. Since the late 1960s, research has also been performed into the use of

root-to-tip spanwise blowing to delay flow separation [140].

Another concept which applied boundary layer control was explored by Natara-

jan et al. (2004) [102]. This research involved analytical studies of adaptive

bumps on a wing surface in order to promote flow separation in the region of

the bump. The work showed that the increased drag due to the separated flow

can be used differentially between the wings to generate a substantial yawing

moment. Similar work by Barbarino et al. [13] and the German Aerospace Cen-

tre (DLR) [100] is ongoing to develop adaptive bumps but for the purpose of

reducing transonic drag.

1.3 Evolution of aircraft wing structures

1.3.1 Unstressed wing construction

Early aircraft wings were constructed using an internal framework of spars and

ribs covered with a thin flexible skin. The unstressed skin and the ribs act

to transmit the aerodynamic loads to the spars, but contribute very little to

the structural strength of the wing. The primary structural components in this

design are the spar caps/flanges (see figure 1.25a), which resist the concentration

of both flexural and torsional loads on the wing [103].

This construction technique is attractive since it is simple and the wing is

straightforward to repair and maintain. However, a flexible skin possesses negligi-

ble bending load-carrying capability and therefore buckles at a very low dynamic

pressure. The stress concentrations which arise from this buckling also make the

skin susceptible to low flight cycle fatigue failure. Additionally, a flexible skin can

deform into a wave state with relatively large amplitudes and therefore increase
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drag forces. As airspeed requirements increased, these problems with unstressed

skins became more apparent, and the demand for increasingly lightweight aircraft

structures also exposed the relative inefficiency of the unstressed skin design; as

the skin can carry only a negligible bending load, a portion of material is not

being used and is effectively a dead weight [103].

(a) Typical three spar unstressed wing [103]. (b) Typical semi-monocoque wing [103].

Figure 1.25: Wing structures.

1.3.2 Semi-monocoque wing construction

As a consequence of the limitations of unstressed wing construction, semi-

monocoque wing construction emerged and has been prevalent since the 1930s.

Again, an internal framework of spars and ribs are covered with a skin. However,

a stressed skin is used and contributes the majority of the structural strength of

the wing, with the spars only acting to reinforce this. Unlike the load concentra-

tions (spar caps) that exist on an unstressed wing, for the semi-monocoque wing

(see figure 1.25b) the bending load is distributed around the periphery of the

aerofoil profile (skin and spar caps) and the torsional load is distributed through-

out the wing box (i.e. the upper and lower skin between the two main spars as

well as the spar webs carry shear flow) [103].

Although this type of wing construction requires a heavier skin (50 - 70 % of

the structural weight of the wing [103]), the wing is significantly lighter than an

equivalent unstressed wing as the material is more efficiently distributed. The

weight of the wing is typically reduced further by using a relatively thin stressed

skin that employs stringers as spanwise panel stiffeners to prevent buckling [103].



56 CHAPTER 1. INTRODUCTION

In summary, stressed skin wings are torsionally stiffer, more lightweight and can

withstand much higher aerodynamic loads than unstressed skin wings.

The rotating spars concept, which forms the main focus of this work, has

been designed for a wing employing unstressed wing construction and therefore

significant challenges exist when addressing the scaling-up of the concept. These

structural scaling difficulties, as well as other difficulties, will be discussed in

more detail in chapter 2.

1.4 Adaptive internal structures

In section 1.2.2 the European 3AS programme was mentioned and, more specif-

ically, efforts to control the wing shape via adaptive internal structures were

discussed. The work presented by the author within the SMorph programme are

adaptive internal structures concepts and aim at developing these further.

The adaptive internal structures approach employs controlled structural vari-

ations to reshape the wing into the configuration that best suits the desired per-

formance. Typical structural parameters that are varied include the wing flexural

and torsional rigidities, as well as the position of the elastic axis. This results

in a change in the static aeroelastic deformation (bending, h, and torsional, θ,

deflections), as shown in figure 1.26, allowing the aerodynamic performance to be

tailored. Applications include drag reduction, roll control and loads alleviation.

The key idea exploited by the approach is that all the energy required to alter

the wing shape and maintain it in position is provided by the airflow.

As with the AFW and AAW programmes discussed in section 1.2.2, the

adaptive internal structures approach represents a significant shift in the design

methodology; aeroelastic effects are traditionally considered to be detrimental

and can be catastrophic, which has led to the acceptance that lifting surfaces

should be stiff, and therefore heavy [95]. Adaptive internal structures uses aeroe-

lasticity in a beneficial manner by taking advantage of its deformation effects on
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less stiff aerostructures whilst avoiding the classical aeroelastic instabilities such

as flutter and divergence.
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Figure 1.26: Aeroelastic effect on a
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Figure 1.27: Collar’s aeroelastic trian-
gle (reproduced from [141]).

1.5 Aeroelasticity

Aeroelasticity is the branch of aircraft design concerning the interactions between

the aerodynamic, elastic and inertial forces [15, 37, 45, 61]. Collar [27] presented

these three forces as an aeroelastic triangle (see figure 1.27), and this visualisation

shows how related interactions are identified by using combinations of any two of

these disciplines [37] e.g. the presence of elastic and inertial forces will give rise

to vibration of the structure.

Aeroelasticity is traditionally classed as being dynamic or static [141]. Dy-

namic aeroelasticity concerns the oscillatory effects of the aeroelastic interactions

[141]. The most critical effect is the instability known as flutter. Flutter is a col-

lection of aeroelastic phenomena that can be described as unstable self-excited

vibration in which the structure extracts energy from the airflow, and is often

catastrophic [37, 61]. It is also of interest to predict the transient response of

flexible aircraft in unsteady flow conditions, such as gusts, turbulence and ma-

noeuvres [61]. These conditions can introduce large stresses into the structure
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and therefore prediction of them is vital to ensure structural integrity. Buffeting,

a wake-induced vibration, is another dynamic aeroelastic phenomenon that can

cause fatigue damage [61].

Static aeroelasticity concerns the nonoscillatory effects of the aerodynamic

forces acting on a flexible aircraft structure [141]. The most important static

aeroelastic phenomenon is the instability known as divergence. This involves

the moments due to the aerodynamic forces overcoming the elastic restoring mo-

ments, resulting in infinite deflections of the wing [61, 141]; in reality, structural

failure occurs as the deflections become excessive. Another important static

aeroelastic concern is the prediction of the aileron effectiveness at a given air-

speed and the associated phenomenon of aileron reversal [61]; typically, as the

airspeed increases, ailerons will become less effective and at a certain airspeed will

be ineffective. Beyond this, negative effectiveness will occur (aileron reversal).

This is caused by the nose-down twist of the wing due to a downwards aileron

deflection and vice versa. The remaining focus of static aeroelasticity deals with

the static response of the system [61] e.g. an aeroelastic lift prediction is more

accurate and may differ significantly from a rigid structure prediction, since the

lifting surface may have deflected substantially, redistributing the loads.

The advent of computer-flown aircraft via flight control systems (FCS) has

expanded the field to include the additional interaction of the control forces

(aeroservoelasticity), and in high temperature environments the heat-induced

stresses become significant in the interactions (aerothermoelasticity) [37]. Aeroe-

lastic effects are not limited to aeronautical applications, and occur in other ap-

plications too, including civil (e.g. vortex shedding on chimneys) and mechanical

(e.g. stall flutter of blades in turbomachinery) [37, 141].

The classic form of the aeroelastic equations of motion can be written as [141]

Aη̈ + (ρUB + D) η̇ +
(
ρU2C + E

)
η = 0 (1.2)
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where A, B, C, D and E are the structural inertia, aerodynamic damping, aero-

dynamic stiffness, structural damping and structural stiffness matrices respec-

tively, ρ is the air density, U is the airspeed and η are generalised coordinates.

1.6 Aims and objectives

The aim of this work was to advance existing adaptive stiffness wing technologies

for the improved aerodynamic performance of morphing aircraft. This aim was

realised through the following objectives:

• Analytical exploration of the application of the multiple rotating spars con-

cept and establishment of some design criteria, in particular, confirmation

of the suitability of their application to swept wings.

• Implementation of the multiple rotating spars concept on an experimental

swept wing model, and comparison of experimental trends with those from

the analytical study.

• Development of an approach to automatically alter the spar orientations to

achieve and maintain an aerodynamic performance objective.

• Analytical investigation of the application of an adaptive torsional stiffness

all-moving wing tip as a loads alleviation device.

• Optimisation of a SensorCraft structure incorporating the loads alleviation

device to achieve mass reductions.

1.7 Contribution

The contributions to knowledge presented in this thesis with regards to the mul-

tiple rotating spars concept are as follows:
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• Implementation of the concept on a sweptback wind tunnel wing; a previous

experimental study (unswept) [62] identified the lack of torsional flexibility

(in order to satisfy aeroelastic stability requirements) as a limiting factor,

and consequently aerodynamic forces could only be varied by less than

10%. This was overcome in the current study with the use of a sweptback

wing which promoted aeroelastic stability whilst simultaneously taking ad-

vantage of the bending-torsion coupling. This enabled aerodynamic force

variations of up to 25% at only 40% of the dynamic pressure of the previous

study.

• Integration of actuators into the experimental wing to enable practical con-

trol of the orientation of the spars; the previous experimental study used

manual adjustment of the spars which required the wind tunnel airspeed to

be reduced to zero and the test-section to be opened in order to adjust the

spars. Another previous experimental study [3, 7, 29] did use actuators,

but only structural tests and proof-of-concept wind tunnel demonstrations

were performed with the wing.

• Implementation of a closed-loop system to control the experimental wing;

with no user input, the system successfully achieved and maintained sev-

eral pre-defined aeroelastic objectives, despite deliberate variations in the

simulated flight conditions.

• Establishment of design guidelines for an arbitrary wing incorporating two

rotating spars.

• Advancement of past trends by performing experimental and analytical

parameter studies at a significantly higher resolution; past analytical and

experimental aeroelastic studies [3, 7, 29, 62] each considered 9 different

spar orientation combinations. The current study used 961 (analytical)

and 169 (experimental) combinations to gain an improved insight into the

trends.
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The contributions to knowledge presented in this thesis with regards to the

adaptive wing tip device are as follows:

• Analytical application of the device to reduce gust-induced stresses on a

SensorCraft structure.

• Analytical application of the device to reduce the mass of a SensorCraft

structure.

• Effect of the device on the aeroelastic stability behaviour of a lifting surface.

• Establishment of design guidelines for an arbitrary wing incorporating the

adaptive wing tip device.

1.8 Summary by chapter

The remaining content of the thesis can be summarised:

Chapter 2 : The multiple rotating spars concept and the resulting aeroelastic

effects are described. The applicability of the concept is discussed, in particular

with regards to modern full-size aircraft. Research to date on the concept is

summarised to establish the state-of-the-art and gaps in the knowledge.

Chapter 3 : Development of a static aeroelastic model for a wing with two

rotating spars; this model was developed and coded into MATLAB® to serve as

a utility to study the rotating spars concept. The obtained equations of equilib-

rium are simplified using an assumed modes approach, and the aerodynamics are

modelled using the vortex-lattice method.

Chapter 4 : Application of the developed static aeroelastic model to perform

an analytical study of the rotating spars concept; the model is used to perform

a parameter study, establish design guidelines and minimise drag over a range of

airspeeds.

Chapter 5 : Experimental aeroelastic study of a swept wing incorporating

the rotating spars concept; the established guidelines are used to design a wind
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tunnel model which is then tested over a range of airspeeds to establish trends.

The results of attempts to control the wing in a closed-loop fashion are also

presented.

Chapter 6 : Analytical study and development of an adaptive wing tip device

for loads alleviation; a parameter study is performed using a MATLAB® aeroe-

lastic model of a wing incorporating the device. A case study is then performed

on a finite element model to reduce stress and minimise mass.

Chapter 7 : Conclusions of the work are presented, which helps to establish

suggestions for future directions.
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Chapter 2

Overview of the rotating spars

concept

2.1 Introduction

The rotating spars concept is an adaptive internal structures (see section 1.2.2)

approach to wing morphing that relies on variations in the orientation of spars

to alter the structural parameters of the wing. More specifically, for non-circular

cross-sectional spars, as the spar orientation is varied, the second moment of area

and therefore the flexural rigidity of the spar in any given direction will vary.

This is illustrated in figure 2.1; in this example the spars have a high aspect ratio

rectangular cross-section, and can rotate about an axis parallel to the x-axis.

In the red position, the second moment of area of each of the spars about their

neutral axis in the Oxz-plane, Iyy, is at a maximum, while in the green position

it is at a minimum. This corresponds to the maximum and minimum flexural

rigidities of the spars in the same direction.

64
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Figure 2.1: Rotating spars concept.

The variation of the flexural rigidity of the spar allows the wing flexural

rigidity, torsional rigidity, and elastic axis position to be varied. This enables

aeroelastic shape control of the wing, and therefore the ability to alter the aero-

dynamic performance (lift and drag) in flight. As is demonstrated in chapters 3

- 5, there exists a sinusoidal relationship between the spar orientation and the

aeroelastic parameters (structural, wing loads and deflections).

2.2 Wing with a single rotating spar

Consider a wing with a single rotating spar. Typical variations of the aerody-

namic performance with spar orientation φ are shown in figure 2.2a. It can be

seen that it is possible to alter the lift, drag and lift-to-drag ratio of the wing

by rotating the spar. This offers the potential to trim the wing to a desired lift

value, roll control (through differential variation of the spar orientation of each

wing), and loads alleviation. Application of a single rotating spar for roll control

was explored in the Variable Stiffness Spar (VSS) concept [24, 41], part of the

Active Aeroelastic Wing (AAW) programme mentioned in section 1.2.2. Instead

of using a non-circular cross-sectional spar to achieve the stiffness variation, the

VSS approach used a segmented circular cross-sectional spar with articulated

joints at the connections with the ribs.
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(b) Multiple rotating spars.

Figure 2.2: Typical variation of the aerodynamic performance for wings with
single and multiple rotating spars.

2.3 Wing with multiple rotating spars

One limitation of using only a single rotating spar is that the aerodynamic pa-

rameters cannot be varied independently e.g. it is not possible to alter the drag

without affecting the lift or the lift-to-drag ratio. This can be seen by examin-

ing figure 2.2a. However, by employing multiple rotating spars, this becomes a

possibility, and enables drag reduction at a fixed lift value (trim). This can be

seen in figure 2.2b which shows a typical variation in the aerodynamic behaviour

for a wing with two rotating spars. By altering the orientation of both spars,

the wing shape can be moved to a new position that maintains the original lift

value, but with a reduced drag value, and therefore an increased lift-to-drag ratio.

This of course means that a wing with multiple rotating spars can be optimised

throughout flight to improve performance and reduce fuel consumption.

2.4 Range of applicability

Since the rotating spars concept works by exploiting changes in the second mo-

ment of area of the spars to affect wing structural parameters, it is suited to use

in unstressed wings; as discussed in section 1.3, the spars in unstressed wings
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account for almost all of the overall wing rigidity.

However, the application of the concept to semi-monocoque wings is not likely

to be successful. Again referencing section 1.3, the spars in semi-monocoque

wings account for only a small portion of the overall rigidity of the wing, with

the stressed skin accounting for the majority of it, and therefore a change in the

stiffness of the spars would have only a small effect on the overall rigidity of the

wing. Furthermore, the degree of freedom introduced to enable the spars to rotate

interrupts the shear flow through the traditional wing torsion box (see figure

1.25b), which has two main effects; firstly, the shear flow is redistributed around

the periphery of the aerofoil profile and therefore the skin in the leading- and

trailing-edge sections require stiffening, adding weight to the structure. The spar

will still carry a portion of the shear flow; however, there are discrete points of

entry for this corresponding to the spar bearings, which will therefore experience

stress concentrations. Secondly, as the spar webs are carrying very little shear,

the concept will have only a negligible effect on the torsional rigidity of the wing.

As all modern aircraft employ a semi-monocoque wing structure, the rotating

spars concept is not scalable. The concept also introduces other scaling prob-

lems not directly related to the structural issues discussed; to minimise weight

and maximise volume, spars also typically double as walls of fuel tanks and the

rotating spars would not be capable of this function, creating the need for re-

placement standalone bulkheads. Furthermore, the clearance required within the

wing for rotation of the spars would reduce the volume of usable space; this

would undoubtedly reduce fuel capacity and introduce complications for stowage

of retractable undercarriage and other flight systems such as actuators for flaps,

ailerons and spoilers [103].

Although the rotating spars concept can be used on an wing with unstressed

skin to achieve significant changes in the flexural rigidity of the wing, the tor-

sional rigidity and position of the elastic axis is affected much less. Since most

aeroelastic phenomena are torsional in nature, the implication of this is that the
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concept will be relatively ineffective at tailoring the aerodynamic performance;

therefore the flexural behaviour must be used to affect the torsional deflections.

This can be achieved by using a wing with rearward sweep, which introduces a

beneficial stable bending-torsion coupling. The rotating spars concept is unlikely

to be effective on an unswept wing and although a bending-torsion coupling ex-

ists on wings with forward sweep, this coupling is unstable leading to a very low

divergence dynamic pressure.

In chapter 3, the aeroelastic model that is developed permits inclusion of arbi-

trary wing sweep for this reason and in chapter 4 the restriction of the concept to

sweptback wings will be demonstrated. Chapter 5 goes on to perform wind tunnel

tests on a sweptback wing employing the rotating spars concept. Additionally,

the wing used in the wind tunnel tests, and the analytical model developed and

used in chapters 3 and 4 respectively are representative of an unstressed wing

structure.

2.5 Research to date on the concept

Mention has already been made of the Variable Stiffness Spar concept [24, 41],

which investigated the use of a single rotating spar for roll control. The primary

aim of a multiple rotating spars approach is to achieve drag reduction whilst

still maintaining control of the lift. Such a concept has been under development

at the University of Manchester for several years. Finite element analyses of

unswept wings incorporating two rotating spars suggested that the flexural and

torsional rigidities, as well as the elastic axis position of the wing could be varied

by adjusting the orientations of the spars [3]. Typical variations of wind-off

natural frequencies with the orientations of the spars were also examined and the

importance of optimising the wing structure to make best use of the concept was

identified [6].
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Experimentally, an unswept wing incorporating two rotating spars was con-

structed and used several stepper motors attached to the ribs to actuate rotation

of the spars [3, 7, 29]. Testing was primarily structural, with only a limited insight

into the aeroelastic behaviour. The structural benchtests showed clear variations

in the flexural and torsional rigidities of the wing as the spar orientations were

altered, although concluded that the flexural rigidity could be altered to a much

greater extent than the torsional rigidity. Hammer tests were performed to find

the natural frequencies of the first six modes, and these agreed well with analyt-

ical predictions [4]. Wind tunnel testing did confirm that the aeroelastic twist of

the wing could be altered by rotating the spars (a maximum tip twist variation

of 0.7◦ at 15 m·s-1 and 1.3◦ at 30 m·s-1) [3], therefore suggesting the capability

of altering the aerodynamic loads.

Later work [62] on the concept included further analytical and experimental

studies. The main advances involved optimisation of multiple spar orientations

on a finite element model (unswept and sweptback) in order to minimise the drag

[63] and wind tunnel testing of an unswept wing, including measurement of the

lift and drag forces at several spar orientations.

2.6 Areas identified for development

This initial work on the concept helped to direct the current research to fill

gaps in the knowledge and develop the concept further. To summarise the areas

identified:

• Perform parameter studies to establish trends that will help in the design

of a successful rotating spars concept for drag minimisation.

• Confirm or contradict via analytical studies the finding that the flexural

rigidity can be varied substantially more than the torsional rigidity.
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• Investigate the application of the concept to swept wings. This will take

advantage of the bending-torsion coupling that exists in swept wings by

using the variation of both the flexural and torsional rigidities to enable

aeroelastic wing shape control.

• Perform optimisation of the wing structure to make best use of the concept.

• Use the findings of these analytical investigations to help design an effective

wind tunnel wing model incorporating multiple rotating spars.

• Test the wing in the wind tunnel over a range of airspeeds to collect aeroe-

lastic (loads and deflections) data on the concept.

• Incorporate and demonstrate a form of online control or optimisation to

automate the change of spar orientation to meet a desired criteria e.g. drag

minimisation at a fixed lift value over a range of airspeeds.



Chapter 3

Development of an aeroelastic

model for a rotating spars wing

3.1 Introduction

3.1.1 Motivation

To provide an insight into the rotating spars concept, an analytical study was

performed. While finite element (FE) modelling allows an appropriate model

to be constructed very quickly, the resulting representation limits its use as an

investigative tool; in order to acquire a large amount of data, and to allow op-

timisation studies to be performed, a requirement of the analytical model was

that it should be computationally inexpensive. Aeroelastic finite element anal-

yses are relatively time consuming when multiple analyses are to be performed,

especially when the input file requires modification and the output file is to be

read between each analysis. Furthermore, the FEA (finite element analysis) soft-

ware (NASTRAN™) that was considered gives no indication of drag forces [116].

While CFD approaches can calculate drag forces with good accuracy, they are

significantly more computationally intensive than FE modelling. Instead, an in-

house static aeroelastic wing model was derived from first principles and solved
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ROTATING SPARS WING

using MATLAB®; this offered greater flexibility and insight into the aerody-

namic forces than is capable with FEA, without the computational expense of

CFD.

3.1.2 Chapter overview

The remainder of this chapter derives the governing equations (using the Principle

of Virtual Displacements) used for this code, and then manipulates them to

make them easily solvable (using the Rayleigh-Ritz method). Next, a steady

aerodynamic model is developed (vortex-lattice method (VLM)), and this is then

coupled to the structural model. Finally, a comparison is made between solutions

obtained using the in-house assumed-modes VLM model code and a finite element

doublet-lattice model (NASTRAN™).

3.1.3 Model description

Figure 3.1 illustrates the wing aerodynamics and structure. The wing structure

comprises of exactly two spars, but a variable number of ribs. Furthermore, for

the theory used to be accurate, the ribs must lie perpendicular to the spars (i.e.

the spars are parallel to each other), therefore wing taper is not permitted; the

reason for this is that it becomes a great deal more difficult to formulate the

structural stiffness matrix when ribs do not meet the spars perpendicularly [127].

The spars are capable of bending and twisting, while the rigid wing cross-section

assumption is employed, implying that the ribs are only capable of torsional de-

formation; this is a reasonable assumption [15, 45]. The entire structure is limited

to sharing a single isotropic material (although its properties are variables). A

half-wing structure is modelled, although a full-span aerodynamic model is used

(by way of reflection about the centreline). Inviscid flow is assumed, which means

that only the induced drag component of the total drag can be modelled [65, 70].

The model variables include wingspan, chord, chordwise positions of the spars,

spanwise positions of the ribs, number of ribs, second moment of areas of the
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Root

Tip

Figure 3.1: The structural model (red) on top of the aerodynamic lifting surface
model (green).

spars, torsional constants of the spars and ribs, wing sweep angle, as well as

dynamic pressure.

Although the wing is limited to a taper ratio of unity, the other variables will

suffice to gain a good insight into this adaptive structures concept. Additionally,

it should be remembered that the main objective of this study is to explore the

ability of a rotating-spars concept to improve the efficiency of the wing by means

of structural optimisation, as well as offering the possibility of roll control without

traditional hinged devices (e.g. ailerons). It was therefore decided that a steady

aeroelastic analytical model would achieve this goal, without the complexity of a

full unsteady model. As stated previously, the induced drag is the only contribu-

tion to drag forces that the VLM is capable of computing, and even this becomes

less accurate for swept (and tapered) wings [65, 101]. Although these limitations

prevent accurate drag modelling and unsteady flow phenomenon such as flutter

from being present in the analysis, and therefore result in an incomplete model,

it is nevertheless a useful tool to perform steady aeroelastic analyses with.
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3.2 Structural model

To construct an analytic aeroelastic wing model, the first step is to obtain the

governing equations of equilibrium. For the steady aerodynamic case these will

contain structural stiffness terms and aerodynamic stiffness terms.

There are various common methods that can be used to obtain the equations

of motion for an aeroelastic system. However, in aircraft structures there are

constraints which limit the motion of the structure e.g. motion of the wing root

relative to the fuselage is constrained. Such constraints can introduce difficulties

into the equations of motion; for instance, the constraint forces may appear as

an additional set of unknowns that make solving the equations more challenging

[114, 128]. The Principle of Virtual Displacements is a method that allows the

equations of motion to be formulated in such a way as to eliminate these problems

(there are other approaches too e.g. Lagrange’s equations of motion, as applied

in section 6.3.2) [110, 114].

3.2.1 Principle of Virtual Displacements

The Principle of Virtual Displacements (PVD) is a method that can be used to

obtain the equations of motion of linear elastic structures [33, 128], and in doing

so avoid dealing with unknown constraint forces. Let us introduce a virtual

displacement δu which vanishes on Su (the restraint surface i.e. the wing root)

in order to satisfy the boundary condition, but is otherwise arbitrary. This virtual

displacement must have a virtual work associated with it (in order for the elastic

surface to have been displaced). The virtual displacement δu must satisfy [33, 64]

δε = DT δu (3.1)
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where δε is the virtual strain and DT is the elastic stress-strain operator matrix.

For a wing the PVD is defined as [33, 128]

virtual strain energy + virtual inertial energy = virtual work (3.2)

and these three energies can be found from

virtual strain energy =

∫

V

σT δε dV (3.3)

virtual inertial energy =

∫

V

ρW δuT ∂
2u

∂t2
dV (3.4)

virtual work =

∫

S

δuT fS dS +

∫

V

δuT fB dV (3.5)

In the equations above, V is the volume of the wing, S is the area of the wing,

σ is the stress, ρW is the density of the wing, fS are surface forces acting on the

wing (e.g. aerodynamic pressures), and fB are body forces acting on the wing

(e.g. gravity). So using Eqs. 3.2 - 3.5

∫

V

σT δε dV =

∫

S

δuT fS dS +

∫

V

δuT fB dV −
∫

V

ρW δuT ∂
2u

∂t2
dV (3.6)

PVD applied to a framework wing

For a plate wing the displacement field u will contain both bending and torsional

contributions, with the displacements being measured about the wing’s elastic

axis. However, the wing modelled herein is not solid and instead is a framework

of ribs and spars. This can be modelled using a local displacement field for each

spar.

Displacement field

A Cartesian coordinate system is defined for the spar swept back at an angle Λ

from the flow normal, as shown in figure 3.2. The subscript j has been introduced
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to denote a parameter in axes placed on the jth spar. Note that the xj-axis

coincides with the neutral axis of the spar, but that the yj- and zj-axes are

not fixed relative to the spar as it rotates, and instead are fixed relative to the

wing. Firstly, assumptions about the displacement field uj must be made; it is

Neutral Axis

Normal to surface of wing

Inboard

Outboard
xj

yj

zj

Λ

Figure 3.2: Cartesian coordinate system for jth rotating spar.

assumed that any given spar has a high aspect ratio (with reference to figure

3.2, this implies its dimension in the xj-direction >> dimensions in the Oyjzj-

plane), allowing it to be treated as a beam, thus the kinematic assumptions of

Euler-Bernoulli beam theory [143] may be applied:

1. Beam (spar) cross-section is non-deformable.

2. Transverse/bending displacement limited to Oxjzj-plane, where the zj-axis

is a normal to the wing’s surface.

3. Axial displacements result from rotation of cross-section only i.e. shear

deformation is neglected.

Using the above assumptions allows the displacement field for the spar to be

defined as follows.
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Spar bending contribution

Deformed point

Upper spar surface (deformed)

Exaggerated deformed neutral axis

Lower spar surface (deformed)

Upper spar surface (undeformed)

Undeformed point

Lower spar surface (undeformed)

Undeformed neutral axis

xj

zj

hj

A

A′

B

B′

β

(xj, yj, zj)

(xjA
, yjA

, zjA
)

Figure 3.3: Spar bending in Oxjzj-plane.

Consider the spar bending in the Oxjzj-plane, as shown in figure 3.3. Point

A is offset in the zj-direction from a point B on the neutral axis (xj-axis) of the

undeformed spar. After bending, point A moves to point A′ in the Cartesian

coordinate system, and B moves to B′. hj(xj, t) is the bending displacement of

the neutral axis at the deformed xj coordinate. Using the figure, an approximate

expression for the displacement field due to pure bending can be derived. Firstly,

the exact expression for the displacement field can be written as

uj(xj, yj, zj, t) = [(xj − xjA
), (yj − yjA

), (zj − zjA
)]T (3.7)

At this point Lagrange’s notation shall be introduced for convenience i.e.

∂( )

∂x
= ( )′

∂2( )

∂x2
= ( )′′

∂3( )

∂x3
= ( )′′′

∂4( )

∂x4
= ( )′′′′ etc.



78
CHAPTER 3. DEVELOPMENT OF AN AEROELASTIC MODEL FOR A

ROTATING SPARS WING

The slope of the deformed neutral axis at any spanwise location is (applying the

small angle/slope assumption)

arctan
∂hj

∂xj

≈ ∂hj

∂xj

= h′j (3.8)

By approximating the xj coordinate of A′ as the same as B′, the slope of line

A′-B is the same as that of the deformed neutral axis at B′ (i.e. h′j). Hence

β = h′j. So

xj − xjA
=
(
xjA

− zj tanh′j
)
− xjA

≈ −zjh
′

j (3.9)

From the second assumption stated previously

yj − yjA
= 0 (3.10)

Finally

zj − zjA
=
(
hj + zjA

cosh′j
)
− zjA

≈ hj + zjA
− zjA

= hj (3.11)

Hence the displacement field due to pure bending of the spar is given approxi-

mately by

uj =
[

−zjh
′

j 0 hj

]T

(3.12)

Spar torsion contribution

Consider the cross-section of the spar deformed through a nose-up pitch angle

of θj in the Oyjzj-plane, at some arbitrary spanwise location on the xj-axis, as
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shown in figure 3.4. After twisting, point A moves to point A′. Using this figure,

Deformed point

Undeformed point

Spar cross-section (undeformed)

Spar cross-section (deformed)

Shear centre

yj

zj

y′j

z′j

AA′

(xj, yj, zj)

θj

(xjA
, yjA

, zjA
)

Figure 3.4: Spar twisting in Oyjzj-plane.

an approximate expression for the displacement field due to pure torsion can be

derived.

Point A′ defined in coordinate system Ox′jy
′

jz
′

j will have the same coordinate

values as point A defined in coordinate system Oxjyjzj. So with A and A′ written

in Oxjyjzj coordinates

A = TA′ (3.13)

where T is the transformation matrix from coordinate system Ox′jy
′

jz
′

j to coor-

dinate system Oxjyjzj, defined as

T =








1 0 0

0 cos θj sin θj

0 − sin θj cos θj








(3.14)

And the displacement field is defined in coordinate system Oxjyjzj as

uj(xj, yj, zj, t) = [(xj − xjA
), (yj − yjA

), (zj − zjA
)]T (3.15)
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So

xj − xjA
= 0 (3.16)

and

yj − yjA
= yj cos θj + zj sin θj − yj (3.17)

which becomes (upon application of the small angle approximation)

yj − yjA
≈ zjθj (3.18)

and finally

zj − zjA
= −yj sin θj + zj cos θj − zj

≈ −yjθj

(3.19)

Hence the approximate displacement field due to pure torsion of the spar is

uj =
[

0 zjθj −yjθj

]T

(3.20)

Spar bending and torsion together

The general displacement field for the jthspar bending and twisting simulta-

neously is simply the sum of the bending and torsion contributions (i.e. the sum

of Eqs. 3.12 and 3.20):

uj =
[

−zjh
′

j zjθj (hj − yjθj)
]T

(3.21)
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Virtual strain energy in spars

The elastic stress-strain operator matrix for the spar coordinate system is given

by [23]

Dj =

















∂

∂xj

0 0
∂

∂yj

0
∂

∂zj

0
∂

∂yj

0
∂

∂xj

∂

∂zj

0

0 0
∂

∂zj

0
∂

∂yj

∂

∂xj

















(3.22)

So substituting Eq. 3.21 (modified for a virtual displacement) and Eq. 3.22 into

Eq. 3.1 gives the virtual strain of the spar as

δεj =
[

−zj δh
′′

j 0 0 zj δθ
′

j 0 −yj δθ
′

j

]T

(3.23)

Now, stress is the product of linear strains (δε(1 : 3)) and Young’s modulus E,

plus the product of shearing strains (δε(4 : 6)) and shear modulus G [23, 58] i.e.

σj =
[

−zjEh
′′

j 0 0 zjGθ
′

j 0 −yjGθ
′

j

]T

(3.24)

So the virtual strain energy (from Eq. 3.3) for the jth spar is

∫

V

σT
j δεj dV =

∫

V

[

−zjEh
′′

j 0 0 zjGθ
′

j 0 −yjGθ
′

j

]

















−zj δh
′′

j

0

0

zj δθ
′

j

0

−yj δθ
′

j

















dV

=

∫

V

(
z2

jEh
′′

j δh
′′

j + z2
jGθ

′

j δθ
′

j + y2
jGθ

′

j δθ
′

j

)
dV
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=

∫

V

z2
jEh

′′

j δh
′′

j dV +

∫

V

(
z2

j + y2
j

)
Gθ′j δθ

′

j dV

=

∫

A

z2
j dA

∫ l

0

Eh′′j δh
′′

j dxj +

∫

A

(
z2

j + y2
j

)
dA

∫ l

0

Gθ′j δθ
′

j dxj

=

∫ l

0

(
EIyjyj

h′′j δh
′′

j +GIxjxj
θ′j δθ

′

j

)
dxj (3.25)

In Eq. 3.25 V , A and l are the volume, cross-sectional area and length of the

spar respectively. Iyjyj
is the second moment of area of the spar about its neutral

axis in the Oxjzj-plane, and is defined as [57, 130]

Iyjyj
=

∫

A

z2
j dA (3.26)

The yy subscript will be dropped and replaced with s to indicate a spar pa-

rameter. Ixjxj
is the polar second moment of area of the spar, defined as [130]

Ixjxj
=

∫

A

(
z2

j + y2
j

)
dA (3.27)

In general, torsion of a beam will be accompanied by warping (with a few excep-

tions that do not apply here e.g. circular cross-section, axial restraint at free-end

to ensure sections remain plane); this warping distorts the torsional rigidity of

the spar, and the polar second moment of area has to be replaced by the St.

Venant torsion constant Jsj
for Eq. 3.25 to be accurate [59, 76, 136].

Second moment of area about an inclined axis

Note that in general, for a rotating spars wing, none of the spars’ principal

axes will coincide with the wing-orientated yj-axes (about which Isj
is defined).

Referring to figure 3.5, Isj
is given by [58, 130]

Isj
= Iyjyj

= Iy′

jy′

j
cos2 φj − Iz′jy′

j
sin 2φj + Iz′jz′j

sin2 φj (3.28)
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yj

zj

y′j

z′j

φj

Figure 3.5: Second moment of area about inclined axes.

where Iz′jz′j
is the second moment of area of the spar about its neutral axis in the

Ox′jy
′

j-plane, Iy′

jy′

j
is the second moment of area of the spar about its neutral axis

in the Ox′jz
′

j-plane, and Iy′

jz′j
is the product moment of area of the spar about

its neutral axis, and since y′j and z′j are the principal axes of the cross-section,

Iy′

jz′j
= 0.

It is assumed Young’s modulus E, and shear modulus G are uniform through-

out the spar. Additionally, the second moment of area Isj
and St. Venant’s

torsion constant Jsj
are limited to being constant at all locations along spar j,

although, in general, these parameters will be different for any given spar j. Sep-

arating Eq. 3.25 into the virtual strain energy from the bending of the spar δUhj
,

and the virtual strain energy from the torsion of the spar δUθj
gives

δUhj
= EIsj

∫ l

0

h′′j δh
′′

j dxj (3.29)

δUθj
= GJsj

∫ l

0

θ′j δθ
′

j dxj (3.30)

As discussed in section 3.2.2, the displacement field will be approximated using

suitable interpolation functions. As the wing comprises of two spars, the wing
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deflections can be approximated by using two matrices of interpolation func-

tions (one per spar, modelling the bending deflections of the spars, h1(x1, t) and

h2(x2, t)); this is sufficient and manipulation of the spars’ bending deflections

allows spar torsion and rib torsion to be accurately described also.

Therefore, Eqs. 3.29 and 3.30 must firstly be expressed in terms of h1(x1, t)

and h2(x2, t). These can be easily substituted into Eq. 3.29, to obtain expressions

for the bending virtual strain energy of spar 1 and spar 2

δUh1
= EIs1

∫ l

0

h′′1 δh
′′

1 dx1 (3.31)

δUh2
= EIs2

∫ l

0

h′′2 δh
′′

2 dx2 (3.32)

which gives the total virtual strain energy due to the bending deformation of the

spars as

δUh = EIs1

∫ l

0

h′′1 δh
′′

1 dx1 + EIs2

∫ l

0

h′′2 δh
′′

2 dx2 (3.33)

However, obtaining an expression for the torsional virtual strain energy is more

involved.

Using figure 3.6, Eq. 3.30 can be written in terms of h1 and h2. The spar

axis from which h1 is defined (forward spar) is positioned at a distance fc aft of

the leading-edge and that from which h2 is defined (rear spar) at a distance rc

aft of the leading-edge, where c is the wing chord.

Assuming that the wing will twist through a small angle θ and that the wing

has a rigid cross-section

θ (x1, x2) ≈
(

1

c (r − f)

)(

h1 (x1) − h2 (x2)

)

(3.34)

Noting that the spars are twisted by bending moments at junctions with the ribs

(i.e. discrete point loads corresponding to the spanwise positions of the ribs),

the torsional displacement θj of the spar will follow a linear relationship between
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Undeformed chordline

Deformed chordline

spar 1spar 2

h1
h2

y

θ

y

c
= 0

y

c
= fy

c
= ry

c
= r

y

c
= 1

Figure 3.6: Spars’ bending deflection h1 and h2.

adjacent ribs i.e.

θj = Axj + C (3.35)

In Eq. 3.35, A and C are constants which will be different between different pairs

of ribs. Consider a section of spar between two ribs (a and b). At rib a

θj (xja
) = Axja

+ C (3.36)

Note that for values of xj corresponding to a rib location, the expression for θ

given in Eq. 3.34 holds also for θj. Substituting this into Eq. 3.36 gives

Axja
+ C =

h1 (xja
) − h2 (xja

)

c (r − f)
(3.37)

Similarly at rib b

Axjb
+ C =

h1 (xjb
) − h2 (xjb

)

c (r − f)
(3.38)

Subtracting Eq. 3.37 from Eq. 3.38 yields

A (xjb
− xja

) =
h1 (xjb

) − h1 (xja
) + h2 (xja

) − h2 (xjb
)

c (r − f)
(3.39)

So

A =
h1 (xjb

) − h1 (xja
) + h2 (xja

) − h2 (xjb
)

c (r − f) (xjb
− xja

)
(3.40)



86
CHAPTER 3. DEVELOPMENT OF AN AEROELASTIC MODEL FOR A

ROTATING SPARS WING

Now, substituting Eq. 3.40 into Eq. 3.37 gives

C =
h1 (xja

) − h2 (xja
)

c (r − f)
− Axja

(3.41)

So for the jth spar, which can be separated into a number of sections, where each

section has a rib (or the wing root) at either end, for the kth section

θjk
(xj) = Akxj + Ck (3.42)

where

Ak =
h1

(
xjk+1

)
− h1 (xjk

) + h2 (xjk
) − h2

(
xjk+1

)

c (r − f)
(
xjk+1

− xjk

) (3.43)

and

Ck =
h1 (xjk

) − h2 (xjk
)

c (r − f)
− Axjk

(3.44)

Finally, differentiating Eq. 3.42 once with respect to xj gives

θ′jk
= Ak (3.45)

Substituting Eq. 3.45 into Eq. 3.30, and noting that the expression has been

modified slightly to account for the step changes in Ak along the spar which has

m ribs (i.e. m spar sections),

δUθj
= GJsj

m∑

k=1

Ak δAk

∫ xjk+1

xjk

dxj (3.46)

Substituting Eq. 3.43 into Eq. 3.46, and evaluating the integral gives

δUθj
=

GJsj

c2 (r − f)2

m∑

k=1

1
(
xjk+1

− xjk

)2

(
h1k+1

δh1k+1
− h1k+1

δh1k
+ h1k+1

δh2k

−h1k+1
δh2k+1

− h1k
δh1k+1

+ h1k
δh1k

− h1k
δh2k

+ h1k
δh2k+1

+h2k
δh1k+1

− h2k
δh1k

+ h2k
δh2k

− h2k
δh2k+1

− h2k+1
δh1k+1

+h2k+1
δh1k

− h2k+1
δh2k

+ h2k+1
δh2k+1

) (
xjk+1

− xjk

)
(3.47)
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The k and k + 1 subscripts attached to hj and δhj indicate the position where

hj and δhj are to be evaluated e.g. h2k
implies that h2 is to be evaluated at x2k

.

Additionally, notice that
m∑

k=1

(
xjk+1

− xjk

)
= l (3.48)

where l is the length of the spar. Following the geometric constraints stated in

the introduction to this chapter, both spars have the same length. The torsional

virtual strain energy of both spars is then

δUθ =
G (Js1

+ Js2
)

c2 (r − f)2 l

m∑

k=1

(
h1k+1

δh1k+1
− h1k+1

δh1k
+ h1k+1

δh2k

−h1k+1
δh2k+1

− h1k
δh1k+1

+ h1k
δh1k

− h1k
δh2k

+ h1k
δh2k+1

+h2k
δh1k+1

− h2k
δh1k

+ h2k
δh2k

− h2k
δh2k+1

− h2k+1
δh1k+1

+h2k+1
δh1k

− h2k+1
δh2k

+ h2k+1
δh2k+1

)
(3.49)

Virtual strain energy in ribs

Modelling the ribs as torsional springs, the strain energy for rib k is [59, 76]

Uβk
=

1

2
Mk∆βk (3.50)

In Eq. 3.50 Mk is the moment exerted on rib k by the spars at either end, and

∆βk is the torsional deformation of the rib between the spars. For rib k meeting

spar 1 at position x1k
and spar 2 at x2k

∆βk (x1k
, x2k

) = h′1 (x1k
) − h′2 (x2k

) (3.51)

Rearranging Eq. 3.34 gives

h1 (x1) − h2 (x2) ≈ c (r − f) θ (x1, x2) (3.52)
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Hence

h′1 (x1) − h′2 (x2) ≈ c (r − f) θ′ (x1, x2) (3.53)

So substituting Eq. 3.53 into Eq. 3.51 gives

∆βk ≈ c (r − f) θ′ (3.54)

Now, the moment Mk exerted on the kth rib by the spars is equivalent to the

product of the rib’s torsional stiffness kβk
(assumed constant along the length of

the rib) and the torsional deformation of the rib i.e.

Mk = kβk
∆βk = kβk

c (r − f) θ′ (3.55)

Substituting Eqs. 3.54 and 3.55 into Eq. 3.50 gives

Uβk
=

1

2
kβk

c2 (r − f)2 θ′2 (3.56)

To express the above as the virtual strain energy associated with the virtual

displacement δθ it is manipulated as follows [33, 128]:

δUβk
=

d

dθ′
Uβk

δθ′

=
d

dθ′

(
1

2
kβk

c2 (r − f)2 θ′2
)

δθ′

= kβk
c2 (r − f)2 θ′ δθ′ (3.57)

The rib’s torsional stiffness is simply [59, 76]

kβk
=

GJrk

c (r − f)
(3.58)

where Jrk
is the St. Venant torsion constant of the kth rib. Substituting Eq. 3.58

into Eq. 3.57 gives

δUβk
= GJrk

c (r − f) θ′ δθ′ (3.59)
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Using Eq. 3.34 allows Eq. 3.59 to be expressed in terms of h1 and h2 as

δUβk
=

GJrk

c (r − f)

(

h′1 (x1k
) − h′2 (x2k

)

)(

δh′1 (x1k
) − δh′2 (x2k

)

)

(3.60)

So for the wing (all m ribs), the total virtual strain energy associated with twist-

ing deformations of the ribs is given by

δUβ =
G

c (r − f)

m∑

k=1

Jrk

(

h′1 (x1k
) − h′2 (x2k

)

)(

δh′1 (x1k
) − δh′2 (x2k

)

)

(3.61)

The total virtual strain energy is the sum of the individual contributions:

δU = δUh + δUθ + δUβ (3.62)

Virtual inertial energy

The wing is being considered under static aerodynamic conditions therefore (vir-

tual) inertial energy is zero.

Virtual work

Assuming the wing’s undisplaced position accounts for gravity acting on the

mass of the wing, the only virtual work contributions are from the surface forces

(fB = 0) i.e. lift per unit span L̄ and pitching moment per unit span about

the aerodynamic centre M̄ac (both acting along/about the aerodynamic centre).

Drag is unimportant since it acts in the Oxjyj-plane, in which zero structural de-

formation is assumed. An alternative definition of the virtual work to that given

by Eq. 3.5 is the product of forces and the resulting virtual bending deforma-

tion, plus the product of moments and the resulting virtual torsional deformation

[158]. For a wing with a spanwise variation in lift and pitching moment, this can

be expressed as

δ∗W =

∫ l

0

L̄ cos Λ δhac dxac +

∫ l

0

M̄ac cos Λ δθ dxac (3.63)
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The cosine terms are required in Eq. 3.63 since the aerodynamic centre xac along

which the integrals are evaluated lies at an angle of Λ (wing sweep angle) to the

spanwise direction along which L̄ and M̄ac are defined. The simplification is made

that the aerofoil being modelled is symmetric about its chordline i.e. M̄ac = 0.

So

δ∗W =

∫ l

0

L̄ cos Λ δhac dxac (3.64)

The next step is to express Eq. 3.64 in terms of h1 and h2. Let qcc be the distance

that the wing aerodynamic centre lies aft of the leading-edge. Then using Eq.

3.34

hac = h1 (x1) + c (f − qc) sin θ

≈ h1 (x1) + c (f − qc) θ

= h1 (x1) +
f − qc
r − f

(

h1 (x1) − h2 (x2)

)

(3.65)

Let

ξ =
f − qc
r − f

(3.66)

Substituting Eq. 3.66 into Eq. 3.65 and then that in terms of virtual displace-

ments in turn into Eq. 3.64 gives

δ∗W = (1 + ξ)

∫ l

0

L̄ cos Λ δh1 (x1) dx1 − ξ

∫ l

0

L̄ cos Λ δh2 (x2) dx2 (3.67)

3.2.2 Rayleigh-Ritz method

The governing PVD equation can be written as

δUh + δUθ + δUβ = δ∗W (3.68)
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into which Eqs. 3.33, 3.49, 3.61 and 3.67 must be substituted. Inspection of

these expressions reveals that the governing PVD equation will be a partial dif-

ferential equation, which is difficult to solve. The Rayleigh-Ritz method allows

partial differential equations to be easily solved as an approximate finite solu-

tion (alternative methods include Galerkin and Lagrange characteristic) [114], in

this case by separating the displacement field of the spars into a spatial and a

time-dependent part i.e.

uj(x, y, z, t) ≈ FT (x, y, z)q(t)

=
n∑

i=1

Fi(x, y, z)qi(t) (3.69)

F is a nx3 matrix containing appropriate shape/interpolation functions Fi (as-

sumed modes), which satisfy the wing geometric boundary conditions, and q is

a vector of length n containing unknown functions of time qi. Therefore q is the

set of generalised coordinates for the model. Generalised coordinates are a set

of independent parameters which are sufficient to describe the system’s motion

[158] and for an assumed modes approach they define the amount of each as-

sumed mode present in the motion [141]. The products of each shape function

and generalised coordinate are summed to provide an approximation to the true

mode. The approximation will become more accurate as the number of included

functions n is increased. Also, as the shape functions become closer to the exact

modes of the system, the number of functions required to obtain a given degree

of accuracy will decrease [114].

Expressing the equations of equilibrium in terms of shape functions

To apply the Rayleigh-Ritz method to the displacement field herein, it is noted

that instead of describing the displacement field with a single variable in terms of

its x, y and z coordinates, it is being describing using two variables (h1 and h2)

representing bending along two different spanwise wing axes, both of which are
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only dependent on either x1 or x2. Hence it becomes necessary to introduce two

arbitrary and distinct matrices of interpolation functions as well as two unknown

vectors of generalised coordinates (since this is a steady model, these are not

functions of time):

h1(x1, t) ≈ ψT (x1)ζ

=
A∑

a=1

ψa(x1)ζa
(3.70)

h2(x2, t) ≈ φT (x2)β

=
B∑

b=1

φb(x2)βb

(3.71)

In this case ψ and φ are Ax1 and Bx1 matrices (i.e. vectors) containing appro-

priate shape/ interpolation functions ψa and φb respectively, and ζ and β are

vectors of length A and B containing unknown generalised coordinates ζa and βb

respectively. Substituting Eqs. 3.70 and 3.71 firstly into Eq. 3.33 gives

δUh = δηT




EIs1

∫ l

0
ψ′′ψ′′T dx1 0A,B

0B,A EIs2

∫ l

0
φ′′φ′′T dx2



η (3.72)

where

ηT =
[

ζT βT

]

(3.73)
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and next into Eq. 3.49:

δUθ =
G (Js1

+ Js2
)

c2 (r − f)2 l
δηT . . .

. . .
m∑

k=1

















ψk+1ψ

T
k+1 −ψk+1ψ

T
k

−ψkψ
T
k+1 +ψkψ

T
k








ψk+1φ

T
k −ψk+1φ

T
k+1

−ψkφ
T
k +ψkφ

T
k+1





symmetric




φk+1φ

T
k+1 − φk+1φ

T
k

−φkφ
T
k+1 + φkφ

T
k


















η

(3.74)

The ellipsis indicate that the two terms should be read together i.e. the first

term multiplied by the second term. Next, Eqs. 3.70 and 3.71 are substituted

into Eq. 3.61 giving

δUβ =
G

c (r − f)
δηT

m∑

k=1

Jrk




φ′

kφ
′T
k −φ′

kψ
′T
k

symmetric ψ′

kψ
′T
k



η (3.75)

In Eqs. 3.74 and 3.75 the k and k + 1 subscripts attached to ψ and φ indicate

the positions where ψ and φ are to be evaluated e.g. φk implies that φ is to be

evaluated at x2k
. Finally, Eqs. 3.70 and 3.71 are substituted into Eq. 3.67

δ∗W = cos Λ δηT




(1 + ξ)

∫ l

0
ψL̄ dx1

−ξ
∫ l

0
φL̄ dx2



 (3.76)

Substituting Eqs. 3.72 - 3.76 into Eq. 3.68 yields

δηT








EIs1

∫ l

0
ψ′′ψ′′T dx1 0A,B

0B,A EIs2

∫ l

0
φ′′φ′′T dx2
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+
G (Js1

+ Js2
)

c2 (r − f)2 l

m∑

k=1

















ψk+1ψ

T
k+1 −ψk+1ψ

T
k

−ψkψ
T
k+1 +ψkψ

T
k








ψk+1φ

T
k −ψk+1φ

T
k+1

−ψkφ
T
k +ψkφ

T
k+1





symmetric




φk+1φ

T
k+1 − φk+1φ

T
k

−φkφ
T
k+1 + φkφ

T
k


















+
G

c (r − f)

m∑

k=1

Jrk




φ′

kφ
′T
k −φ′

kψ
′T
k

symmetric ψ′

kψ
′T
k







η

= δηT cos Λ




(1 + ξ)

∫ l

0
ψL̄ dx1

−ξ
∫ l

0
φL̄ dx2



 (3.77)

Choice of interpolation functions

Since the shape functions are modelling the bending deflections of the spars, any

set of functions capable of jointly representing the boundary conditions and bend-

ing modes of a beam are acceptable [114]. In general, the closer the functions

are to the exact modes, the lower the number of terms are required for con-

vergence. An investigation was performed to compare the convergence of using

polynomial shape functions against exact expressions for beam bending modes.

For the model studied herein, no obvious advantage was observed by using the

exact modes, whereas the assumed polynomial modes representation is consider-

ably easier to code and significantly less computationally expensive. Therefore,

it was decided to use a set of polynomial functions as the assumed modes:

ψa =
(x1

l

)a+1

(3.78)

φb =
(x2

l

)b+1

(3.79)
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To solve the system described in Eq. 3.77, the first step is to develop an expression

for the lift per unit span L̄. Strip theory was considered too inaccurate here as

it neglects tip effects, and instead assumes 2D flow [15]. Alternatively, a vortex-

lattice aerodynamic model provides an accurate representation of steady 3D flow

[85, 141]; section 3.3 explains and describes this method.

3.2.3 Note on spar efficiency and lateral buckling

Typically the main spars in aircraft wings are I-beams or C-channel beams; these

structures perform well at resisting bending loads. The flange sections of the

beam contain most of the material and are designed to resist axial compression

and tension loads, whilst the thin web is designed to carry shear loads. Con-

sequently, by using I- or C-shaped cross-sections, spars can offer the required

flexural rigidity whilst having a relatively low weight [103].

The analytical model that has been developed in this section is applicable to

a spar of any cross-sectional shape (for simplicity, the figures used depicted spars

of rectangular cross-section) provided the spanwise dimension is large relative to

the cross-sectional dimensions, therefore allowing Euler-Bernoulli beam theory

to be applied.

Despite this, both the analytical study presented in chapter 4 and the exper-

imental wing model in chapter 5 use spars of rectangular cross-section; this is

convenient as a proof-of-concept since it is a simple shape, offers a high ratio of

spar second moments of area Iy′y′/Iz′z′ , which improves the effectiveness of the

concept (see section 4.3.3), and for the experimental stage is easier to integrate

with bearings.

However, beams of rectangular cross-section are not only inefficient at resist-

ing bending loads, they are also much more susceptible to lateral buckling; for

any beam, at a critical bending load value, the beam will become unstable and

buckle laterally. Typically, this failure mode need not be examined as the yield

point is reached first. However, for beams where the flexural rigidity in the plane
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of bending is large in comparison with the lateral flexural rigidity (i.e. large

Iy′y′/Iz′z′), and for beams where the length of the beam is much greater than the

cross-sectional dimensions, lateral buckling instability is a possibility [131].

While beyond the scope of the current work, future studies should concentrate

on spar cross-sectional shape design in order to improve the efficiency of them (by

making them more lightweight) whilst maintaining a large ratio Iy′y′/Iz′z′ , and

also on the inclusion of a lateral buckling stability check in the analytical model to

ensure that buckling is not possible. In section 5.2.5, the spars of the experimental

wing model are predicted to be safe from lateral buckling throughout the range

of test speeds.

3.3 Aerodynamic model

One advantage of a vortex-lattice method aerodynamic model over strip theory

is its ability to compute the downwash velocity at a point in the flowfield (which

is induced by the flow at all other points in space) and model the wake; this

leads to a more accurate representation of the aerodynamics. However, to do

this, some fundamental concepts of fluid dynamics must be revised.

3.3.1 Fluid dynamics

Circulation

Definition

The circulation (or vortex strength) Γ is the line integral around a closed

curve C of fluid velocity [70] as shown in figure 3.7. It is defined as

Γ = −
∮

C

u · ds (3.80)

ds is a vector describing an infinitesimally small segment of C, and u is the ve-

locity vector.
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n

dS

S

C

u

ds

ω

Figure 3.7: Circulation.

Vorticity related to circulation

Vorticity is the circulation per unit area, taken around an infinitesimal loop.

Circulation can be related to vorticity by Stokes’ theorem, which integrates the

vorticity over a surface S [70]

−Γ =

∫ ∫

S

(∇× u) · n dS =

∫ ∫

S

ω · n dS (3.81)

In Eq. 3.81 n is a unit vector normal to dS, and vorticity is defined as the curl

of the velocity [70]

ω = ∇× u (3.82)

Biot-Savart law

For aerodynamic applications, the Biot-Savart law allows the velocity induced at

a point in space due to a vortex filament to be found [70, 141] (see figure 3.8). For

Vortex filament

Γ
r

ds

P

Figure 3.8: The influence of a vortex
filament segment at a point P in space.

Γ

θ

β
r

ds

P

Figure 3.9: Definition of the angles θ
and β.
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an infinitesimally small segment of the vortex filament ds, the induced velocity

at point P is

dwP =
Γ

4π

ds × r

‖r‖3
(3.83)

where Γ is the vortex strength (circulation) and r is a vector from the midpoint

of the vortex segment to point P in space. dwP will lie perpendicular to both ds

and r. This can also be written as

ds × r = ‖ds‖‖r‖ sin θ
wP

‖wP‖
(3.84)

where θ is the smaller angle between ds and r (i.e. 0 ≤ θ ≤ π) and is shown in

figure 3.9. Substituting Eq. 3.84 into Eq. 3.83 gives

dwP =
Γ

4π

‖ds‖‖r‖ sin θ

‖r‖3

wP

‖wP‖
(3.85)

So

dwP =
Γ

4π

wP

‖wP‖
sin θ

r2
ds (3.86)

where

r = ‖r‖ (3.87)

and

ds = ‖ds‖ (3.88)

Now

sin θ = sin
(π

2
− β

)

= cos β (3.89)

β is the angle (defined positive counter-clockwise) from a line perpendicular to

ds (lying in a plane containing both ds and r) to r defined as in figure 3.9, and

it follows that −π/2 ≤ β ≤ π/2. Hence Eq. 3.86 can be written as

dwP =
Γ

4π

wP

‖wP‖
cos β

r2
ds (3.90)
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3.3.2 Obtaining the aerodynamic forces

Kutta-Joukowski theorem

The Kutta-Joukowski theorem [79, 141] relates the circulation vector γ to the

resultant force per unit length f̄ of the circulation and is given by

f̄ = ρu × γ (3.91)

where ρ is the fluid density. The circulation vector describes the direction of the

circulation strength along the vortex filament i.e.

γ = Γ
ds

‖ds‖ (3.92)

and f̄ acts normal to u and γ.

Two-dimensional wing

With reference to figure 3.10a, for the case of circulation around a 2D/infinite

span wing of sweepback angle Λ inclined at an angle of incidence α to the airflow,

and where vectors are defined in the aerodynamic coordinate system Oxyz, which

has its origin at the centreline

u, U∞

α

Γ

f̄ , z

x

(a) 2D wing.

u

U∞

wi

α

αi

αi

Γ

Γ

f̄

x

z

(b) 3D wing.

Figure 3.10: Resultant force vectors.



100
CHAPTER 3. DEVELOPMENT OF AN AEROELASTIC MODEL FOR A

ROTATING SPARS WING

u =
[

U∞ 0 0
]

(3.93)

And for circulation corresponding to spanwise locations y < 0 i.e. left wing

γLHS =
[

−Γ sin Λ Γ cos Λ 0
]

(3.94)

while for circulation corresponding to spanwise locations y > 0 i.e. right wing

γRHS =
[

Γ sin Λ Γ cos Λ 0
]

(3.95)

therefore, using Eqs. 3.93 - 3.95 with Eq. 3.91 gives, for all spanwise locations

f̄ =
[

0 0 ρU∞Γ cos Λ
]

(3.96)

where U∞ is the free-stream velocity. This is the force per unit length of circu-

lation (i.e. df/ds). To express it as a force per unit span (i.e. df/dy) Eq. 3.96

must be divided by cos Λ. Now, lift per unit span L̄ and drag per unit span D̄ are

the components of the force per unit span in the z- and x-directions respectively,

so

L̄ = ρU∞Γ (3.97)

and

D̄ = 0 (3.98)

Finite wing

Unlike the 2D wing, for 3D/finite wings the trailing vortex sheet induces a down-

wash wi on the wing, which gives u a downwards (−z) component and conse-

quently f̄ a rearward (+x) component [65]. wi is perpendicular to the mean chord

surface and is defined as positive in the −z-direction (see figure 3.10b)

u =
[

(U∞ − wi sinα) 0 −wi cosα
]

(3.99)
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and as before

γLHS =
[

−Γ sin Λ Γ cos Λ 0
]

(3.94)

and:

γRHS =
[

Γ sin Λ Γ cos Λ 0
]

(3.95)

Hence, for y < 0 the resultant force per unit length of circulation is

f̄LHS = ρ
[

wiΓ cosα cos Λ wiΓ cosα sin Λ (U∞ − wi sinα) Γ cos Λ
]

(3.100)

And for y > 0 the resultant force per unit length of circulation is

f̄RHS = ρ
[

wiΓ cosα cos Λ −wiΓ cosα sin Λ (U∞ − wi sinα) Γ cos Λ
]

(3.101)

Therefore, for a finite wing in inviscid flow, the lift and drag forces per unit span

are given respectively by

L̄ = ρ (U∞ − wi sinα) Γ (3.102)

and

D̄ = D̄i = ρwiΓ cosα (3.103)

D̄i is the induced drag per unit span. The Oxz-plane component of the angle

by which the velocity and force vectors are altered is called the induced angle of

incidence αi [79, 85] (see figure 3.10b) and using Eqs. 3.102 and 3.103 can be

expressed as

tanαi =
D̄

L̄

=
wi cosα

U∞ − wi sinα
(3.104)
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From Eqs. 3.100 and 3.101 another 3D aerodynamic effect is apparent; for swept

wings a side force exists (inwards towards the centreline for sweptback wings,

and outwards away from the centreline for sweptforward wings). For y < 0, this

side force per unit span is given by

ȲLHS = ρwiΓ cosα (3.105)

and for y > 0

ȲRHS = −ρwiΓ cosα (3.106)

For a full-span wing these side forces are equal and opposite and so their con-

tribution can be ignored. Additionally, from the previously-stated assumption

of Euler-Bernoulli beam theory [143], structural deformation in the Oxjyj (spar

structural coordinate system), in which Ȳ acts, is assumed to be zero and there-

fore the side forces have no bearing on the aeroelastic deformation of the wing.

Linearising the aerodynamic forces for the aeroelastic model

For a analysis of the finite wing with the assumption of a rigid structure (i.e.

known angle of incidence α) the steady aerodynamic forces and induced angle of

incidence are given by Eqs. 3.102 - 3.106. However, for the equivalent analysis

of an elastic structure the angle of incidence is unknown and is obtained by

solving the static aeroelastic equations of equilibrium for the unknown deflections.

This becomes very difficult to perform if the aeroelastic forces are nonlinear

in nature, as in Eqs. 3.102 - 3.106. However, for most practical applications

these expressions can be linearised; firstly, the small angle approximation can

be applied to the angle of incidence α and, secondly, it can be assumed that

wi � U∞ [79]. Therefore, from Eqs. 3.102 and 3.103 respectively the lift and

drag forces per unit span simplify to

L̄ = ρU∞Γ (3.107)
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and

D̄ = D̄i = ρwiΓ (3.108)

Similarly, for y < 0 locations, the side force per unit span (from Eq. 3.105)

becomes

ȲLHS = ρwiΓ (3.109)

and for y > 0 (from Eq. 3.106)

ȲRHS = −ρwiΓ (3.110)

Finally, the induced angle of incidence given by Eq. 3.104 reduces to

αi =
wi

U∞

(3.111)

3.3.3 The horseshoe vortex

The flow field around a wing can be represented by any solution that satisfies all

flow constraints. The vortex filament is one such solution to model the steady

aerodynamics of a wing. The vortex filament system has a constant circulation

Γ in accordance with Helmholtz’ first theorem [79]:

The strength of a vortex filament is constant along its length.

Additionally, the vortex filament contains a finite bound segment that repre-

sents the circulatory flow around the wing, and two semi-infinite filaments that

extend from the ends of the bound segment to infinity behind the wing, thereby

modelling the wake. The trailing segments must extend to infinity to satisfy

Helmholtz’ second theorem [79]:

A vortex filament cannot end in a fluid; it must extend to the boundaries of
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the fluid or form a closed path.

Due to the arrangement of these vortex filament segments, the vortex filament is

traditionally known as a horseshoe vortex [79]. In this section, the Biot-Savart

law given by Eq. 3.90 will be applied to develop expressions for the induced

velocity at a point due to these vortex filament segments, and then applied to a

wing represented with a horseshoe vortex. The unknown circulation and hence

aerodynamic forces will then be found by application and solution of the bound-

ary conditions. To aid development of these expressions, firstly the expression

for the induced velocity at a point due to an infinitely long vortex line will be

developed.

Infinite vortex line

Consider a vortex line of infinite length as shown in figure 3.11. As previously, β

is defined positive counter-clockwise in figures 3.11 - 3.14. From the diagram it

Γ

β

r

s

wP

P h

+∞

−∞

Figure 3.11: Infinite vortex line.

Γ

β

r

s

wP

P h

sR

R

−∞

Figure 3.12: Semi-infinite vortex line.

can be seen that

‖r‖ = r =
h

cos β
(3.112)
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h is the perpendicular distance between the vortex line and P , and is always

positive.

s = h tan β (3.113)

Eq. 3.90 is

wP =
Γ

4π

wP

‖wP‖

∫
∞

−∞

cos β

r2
ds (3.90)

which, upon substitution of Eq. 3.112 becomes

wP =
Γ

4π

wP

‖wP‖

∫
∞

−∞

cos3 β

h2
ds (3.114)

Now, Eq. 3.113 gives
ds

dβ
=

h

cos2 β
(3.115)

So

ds =
h dβ

cos2 β
(3.116)

Substituting Eq. 3.116 into Eq. 3.115 gives

wP =
Γ

4πh

wP

‖wP‖

∫ π
2

−
π
2

cos β dβ (3.117)

So

wP =
Γ

2πh
(3.118)

The direction of wP is given from s × r, with r being a vector describing a line

from any point on the straight vortex filament to the point of interest P .

Semi-infinite vortex line

Comparison of figure 3.12 with figure 3.11 allows Eq. 3.117 to be used for the

semi-infinite vortex line, but with different limits of integration

wP =
Γ

4πh

wP

‖wP‖

∫ βR

−
π
2

cos β dβ (3.119)
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In Eq. 3.119 βR is the angle β taken from point R on the vortex line. This gives

wP =
Γ

4πh

wP

‖wP‖
(sin β + 1) (3.120)

And it can be seen that

sin β =
sR

‖r‖ (3.121)

where sR is the distance parallel to the vortex line between P and R (positive in

direction of arrow). Hence

wP =
Γ

4πh

wP

‖wP‖

(
sR

‖r‖ + 1

)

(3.122)

which, from the Pythagorean theorem, can be written as

wP =
Γ

4πh

wP

‖wP‖

(
sR√

h2 + sR
2

+ 1

)

(3.123)

Alternatively

wP =
Γ

4πh

(
sR√

h2 + sR
2

+ 1

)

(3.124)

And the direction of wP , as before, is given from s× r. For a semi-infinite vortex

line from +∞ rather than −∞, the resulting expression is identical to Eq. 3.124.

Finite vortex line

Comparison of figure 3.13 with figure 3.11 allows Eq. 3.117 to be used for the

finite vortex line, but with different limits of integration

wP =
Γ

4πh

wP

‖wP‖

∫ βR

βS

cos β dβ (3.125)

where βR and βS are the angles β taken from points R and S on the vortex line

respectively, as shown in figure 3.14. This gives

wP =
Γ

4πh

wP

‖wP‖
(sin βR − sin βS) (3.126)
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Γ

β

r

s

wP

P h

R

S

Figure 3.13: Finite vortex line.

βRβS

θR
θS

P

RS

Figure 3.14: Finite vortex line angles.

From figure 3.14

sin βR = sin
(π

2
− θR

)

= cos θR (3.127)

and

sin βS = sin
(

−π
2

+ θS

)

= − cos θS (3.128)

So

wP =
Γ

4πh
(cos θR + cos θS) (3.129)

And the direction of wP , as before, is given from s × r.

Applied to a wing as a single horseshoe

The finite and semi-infinite vortex segments can now be placed on a wing as a

crude representation of the aerodynamics. As shown later, to solve the resulting

equations, it is necessary to define boundary conditions. For each horseshoe

vortex (corresponding to a single aerodynamic panel), the boundary condition

is specified at a single point known as the control point (or collocation point)

[85, 141]. Here, an expression shall be formulated for the downwash at the control

point of a wing with a single vortex filament placed on it. A horseshoe vortex is
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Figure 3.15: Wing with single horseshoe vortex.

placed on the wing (chord c, span 2b) with the finite segment running along the

quarter-chord (corresponding to the aerodynamic centre of subsonic thin-aerofoil

theory [15, 70]) and the two semi-infinite segments extending behind the tips to

represent the trailing vortices. For the solution to agree exactly with subsonic

thin-aerofoil theory, the control point P is placed 0.5c (semi-chord) behind the

finite segment at the mid-span [70] (see figure 3.15). Point M is located on the

mid-span of the bound vortex segment and is used for induced drag calculations.

The induced downwash velocity at the control point P is simply the sum-

mation of the individual contributions from each of the three segments at the

control point

wP = wPi
+ wPii

+ wPiii
(3.130)

From Eq. 3.124

wPi
= wPiii

=
Γ

4πb









(
c

2

)

√

b2 +

(
c

2

)2
+ 1









(3.131)
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and from Eq. 3.129

wPii
=

Γ

4π

(
c

2

)(cos θR + cos θS) (3.132)

Examining the geometry of the finite segment (figure 3.16)

Γ

bb
P

1
2
c

θRθS

Figure 3.16: Geometry of finite segment of horseshoe vortex.

cos θR =
b

√

b2 +

(
c

2

)2
(3.133)

and

cos θS =
b

√

b2 +

(
c

2

)2
(3.134)

So wPii
becomes

wPii
=

Γ

4π

(
c

2

)









2b
√

b2 +

(
c

2

)2









(3.135)
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Substituting Eqs. 3.131 and 3.135 into Eq. 3.130 gives

wP =
2Γ

4πb









(
c

2

)

√

b2 +

(
c

2

)2
+ 1









+
Γ

4π

(
c

2

)









2b
√

b2 +

(
c

2

)2









(3.136)

So

wP =
Γ

2πb









c

2

√

b2 +

(
c

2

)2
+ 1









+
Γ

πc









b
√

b2 +

(
c

2

)2









(3.137)

or

wP = ΨP Γ (3.138)

In Eq. 3.138 ΨP is the influence coefficient for P (scalar for a single vortex). To

solve this equation, a boundary condition must be introduced at the control point

P . A suitable boundary condition is that the sum of the resulting downwash due

to the horseshoe vortex and the velocity contribution from the airflow must be

zero (i.e. no penetration condition at the wall) [70, 141]; this will be examined

in greater depth in the next section.

Satisfying control point boundary conditions

To be able to use the expressions for the aerodynamic forces (Eqs. 3.107 and

3.108) requires the unknown vortex strength Γ to be found. As mentioned pre-

viously, there is a no penetration condition at the wall. Since the vortex-lattice

method represents the lifting surface as an infinitesimally thin sheet coinciding

with a plane that passes through the mid-chord of the true aerofoil, it should

be noted that this is not the physical surface of the aerofoil, but rather a mean

surface; this is distinct from other panel methods, which apply the boundary

conditions to the actual physical surface [70]. The no penetration condition im-

plies that at the control point the sum of downwashes due to all vortices and the
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freestream must equal zero; firstly, using figure 3.17a the freestream contribution

will be considered:

U∞

wU α

(a) Downwash due to the freestream.

Γ

Γ

wP

(b) Downwash due to the vortices.

Figure 3.17: Downwash contributions.

wU = U∞ sinα (3.139)

Assuming small angles of incidence

wU = U∞α (3.140)

and now, the downwash due to the vortices (at the control point), as shown in

figure 3.17b is given by Eq. 3.138 as

wP = ΨP Γ (3.138)

So to satisfy the boundary condition of flow-tangency at the mean chord

U∞α+ ΨP Γ = 0 (3.141)

Eq. 3.141 is then used to find the vortex strength Γ for a given airspeed, incidence,

and wing geometry (the geometry determines the influence coefficient Ψ). Then,

using Eqs. 3.107 and 3.108 integrated over the span, 2b, of the wing, the total

wing lift is

L =

∫ b

−b

ρU∞Γ dy (3.142)
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and the total wing induced drag is

Di =

∫ b

−b

ρwiΓ dy (3.143)

where y is the spanwise axis in the aerodynamic coordinate system. wi can be

found from

wi = ΨMΓ (3.144)

in which ΨM is derived in an identical manner to ΨP in Eq. 3.138, but at point

M on the mid-point of the bound vortex segment instead of point P [10, 79]

(see figure 3.15). Note that carrying out this derivation will result in an infinite

downwash contribution from the bound vortex segment at M ; this problem is

overcome by setting this contribution to zero [40].

3.3.4 Vortex-lattice aerodynamics

The simple single-horseshoe approximation of the aerodynamics of a wing can

be taken a step further to obtain a more accurate representation; here, the wing

is divided into several quadrilateral aerodynamic panels and a horseshoe vortex

is placed on each to form a discrete lattice lifting-surface representation. As the

number of panels is increased, so too is the accuracy of the aerodynamic model.

To illustrate this method, a wing which has been divided into four aerodynamic

panels will be considered.

Example: Wing with four aerodynamic panels

Consider figure 3.18 which illustrates the discrete approximation of a wing aero-

dynamic model using four horseshoe vortices.

All finite vortex lines are placed at the quarter chord of each aerodynamic

panel. The control point Pi for the ith panel is located at the three-quarter chord
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Panel 1 Panel 2

Panel 3 Panel 4

Centreline

Leading-edge

Trailing-edge

P1 P2

P3 P4

M1 M2

M3 M4

Γ1 Γ2

Γ3 Γ4

Figure 3.18: Wing with four aerodynamic panels.

and semi-span of the panel. For the ith control point Eq. 3.138 becomes

wPi
= Ψi1Γ1 + Ψi2Γ2 + Ψi3Γ3 + Ψi4Γ4 (3.145)

in which the P subscript for the Ψ values has been dropped for brevity. So for

all four aerodynamic panels Eq. 3.138 is

wP =











wP1

wP2

wP3

wP4











=











Ψ11 Ψ12 Ψ13 Ψ14

Ψ21 Ψ22 Ψ23 Ψ24

Ψ31 Ψ32 Ψ33 Ψ34

Ψ41 Ψ42 Ψ43 Ψ44





















Γ1

Γ2

Γ3

Γ4











= ΨPc (3.146)

So, for instance, Ψ23Γ3 is the downwash at P2 due to the horseshoe vortex placed

on aerodynamic panel 3. In Eq. 3.146 c is the vector of circulation strengths. As

before, the zero normal flow boundary condition at all the control points must

be satisfied

ΨPc + U∞α = 0 (3.147)
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where α is the vector of angles of incidence of the aerodynamic panels. Eq. 3.147

can be solved to find the unknown vortex strengths c, allowing the aerodynamic

forces to be calculated as before. Alternatively it can be manipulated as follows

[141]:

ΨPc = −U∞α (3.148)

so

c = −Ψ−1
P U∞α (3.149)

Multiplying through by ρU∞/2

ρU∞c

2
= −ρU

2
∞

2
Ψ−1

P α (3.150)

Using Eq. 3.107 allows the vector of panel lift per unit span for a finite wing to

be expressed as

l̄ = ρU∞c (3.151)

So using Eq. 3.150 with Eq. 3.151 gives

l̄ = −ρU
2
∞

2
2Ψ−1

P α (3.152)

or

l̄ =
ρU2

∞

2
AICRα (3.153)

where AICR = −2Ψ−1
P is the matrix of Aerodynamic Influence Coefficients.

AICR is real for steady aerodynamics hence the R subscript, but complex for

unsteady aerodynamics.

Comparison with strip theory

For the four-panel wing, strip theory [15] gives the lift Lpanel on each panel,

area Spanel as

Lpanel =
ρU2

∞

2
aWαpanelSpanel (3.154)
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where aW is the lift curve slope (assumed to be uniform for the wing). In terms

of chord c and span 2s, Eq. 3.154 is

Lpanel =
ρU2

∞

2
aWαpanel

1

4
2sc

=
ρU2

∞

2
aWαpanel

1

2
sc (3.155)

Hence the lift per unit span for each panel is simply given by

L̄panel =
ρU2

∞

2
aWαpanel

c

2
(3.156)

and so for the whole wing the lift per unit span is

l̄ =











L̄panel 1

L̄panel 2

L̄panel 3

L̄panel 4











=
ρU2

∞

2

caW

2











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





















αpanel 1

αpanel 2

αpanel 3

αpanel 4











(3.157)

Bearing in mind that AICR = −2Ψ−1
P , comparison of Eq. 3.157 with Eq. 3.153

shows that strip theory is over simplified in that there exists no cross-coupling

between aerodynamic panels (see Eq. 3.146 for the expanded ΨP matrix in which

this cross-coupling exists), as it assumes the flow at any given location in space

is independent from the flow at another distinct location.

Downwash singularities

The Biot-Savart law contains a singularity that can cause problems if unac-

counted for; from Eq. 3.83 it can be seen that if the point at which the downwash

is being calculated coincides with ds, the infinitesimally small segment of the vor-

tex filament, then ‖r‖ = 0 and the theory breaks down by predicting an infinite

induced velocity at the point. In reality a vortex does not induce any velocity on
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itself [40]. This problem can occur frequently for a vortex-lattice surface; calcu-

lation of the downwash at the mid-bound vortex points M (for the induced drag

calculation) due to the contribution of all bound vortex segments that can be

projected through M cause this singularity to occur. Additionally, for a swept

wing it is possible that the projection of some of the bound vortices will pass

through control points P also resulting in singularities. The solution is to set

these contributions to zero.

3.4 Aeroelastic coupling

To couple the aerodynamic model to the structural model an expression for the

vector of lift per unit span of each panel l̄ needs to be substituted into the

equilibrium equations given by Eq. 3.77; the appropriate expression is given by

Eq. 3.153. It is at this point however, for two reasons, that difficulties arise if

Eq. 3.153 is used directly in Eq. 3.77 without any manipulation:

Root

Tip

Leading-edge

Trailing-edge

Spar axes

x1

x2

h1 = f (x1, x2)

h2 = f (x1, x2)

Figure 3.19: The continuous structural model lies on top of the discretised aero-
dynamic lifting surface model (green).

1. The structural model is a continuous system whereas the aerodynamic

model is discretised, as demonstrated in figure 3.19. The solution is to

evaluate the integrals of virtual work (right-hand side of Eq. 3.77) between

spanwise locations coinciding with the aerodynamic panel edges, between

which the lift per unit span L̄ is constant, and then sum. In this way L̄
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becomes a discretised step function of x1 and x2, the axial coordinates of

the two spars in the structural coordinate system.

2. For an elastic wing, the vector of angles of incidence for each panel α is

unknown and so must be expressed in terms of the vector of generalised

coordinates η.

3.4.1 Discretising the virtual work for use with the aero-

dynamic model

The aerodynamic loads and deflections corresponding to a symmetric half-wing

model are being represented, but to construct the AICR matrix, consideration

of the full-span aerodynamic model is necessary (see figure 3.20). From this

illustration, it can be seen that the total number of aerodynamic panels for the

full-span model is 28. So, Eq. 3.153 can be expanded to

Root

TipTip

Leading-edge

Trailing-edge

1
23

4
5

678
910

11
121314

15
16

17
18

19202122
23

24
25

2627
28

Figure 3.20: Aerodynamic panel numbering convention for AICR matrix.











L̄panel 1

L̄panel 2

...

L̄panel 28











=
ρU2

∞

2











AIC1 1 AIC1 2 · · · AIC1 28

AIC2 1 AIC2 2 · · · AIC2 28

...
...

. . .
...

AIC28 1 AIC28 2 · · · AIC28 28





















αpanel 1

αpanel 2

...

αpanel 28











(3.158)

Symmetry can now be exploited to reduce the size of the vectors and matrix in

Eq. 3.158 [70]; firstly, only the loads from the half-span model are of interest
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(although the influence of the entire model is required):























L̄panel 1

L̄panel 2

...

L̄panel 7

L̄panel 15

L̄panel 16

...

L̄panel 21























=
ρU2

∞

2























AIC1 1 AIC1 2 · · · AIC1 28

AIC2 1 AIC2 2 · · · AIC2 28

...
...

. . .
...

AIC7 1 AIC7 2 · · · AIC7 28

AIC15 1 AIC15 2 · · · AIC15 28

AIC16 1 AIC16 2 · · · AIC16 28

...
...

. . .
...

AIC21 1 AIC21 2 · · · AIC21 28

































αpanel 1

αpanel 2

...

αpanel 28











(3.159)

Next, the symmetry in α is noted i.e. αpanel 1 = αpanel 14, αpanel 2 = αpanel 13 etc,

so 





















L̄panel 1

L̄panel 2

...

L̄panel 7

L̄panel 15

L̄panel 16

...

L̄panel 21























=
ρU2

∞

2

[

AICa AICb

]























αpanel 1

αpanel 2

...

αpanel 7

αpanel 15

αpanel 16

...

αpanel 21























(3.160)

In Eq. 3.160, the modified AICR matrix has been expressed in terms of two

matrices AICa and AICb simply for presentation purposes (due to the size of
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the full matrix), where

AICa =



















(AIC1 1 + AIC1 14) (AIC1 2 + AIC1 13) · · · (AIC1 7 + AIC1 8)

(AIC2 1 + AIC2 14) (AIC2 2 + AIC2 13) · · · (AIC2 7 + AIC2 8)
...

...
. . .

...

(AIC7 1 + AIC7 14) (AIC7 2 + AIC7 13) · · · (AIC7 7 + AIC7 8)

(AIC15 1 + AIC15 14) (AIC15 2 + AIC15 13) · · · (AIC15 7 + AIC15 8)

(AIC16 1 + AIC16 14) (AIC16 2 + AIC16 13) · · · (AIC16 7 + AIC16 8)
...

...
. . .

...

(AIC21 1 + AIC21 14) (AIC21 2 + AIC21 13) · · · (AIC21 7 + AIC21 8)



















(3.161)

and

AICb =



















(AIC1 15 + AIC1 28) (AIC1 16 + AIC1 27) · · · (AIC1 21 + AIC1 22)

(AIC2 15 + AIC2 28) (AIC2 16 + AIC2 27) · · · (AIC2 21 + AIC2 22)
...

...
. . .

...

(AIC7 15 + AIC7 28) (AIC7 16 + AIC7 27) · · · (AIC7 21 + AIC7 22)

(AIC15 15 + AIC15 28) (AIC15 16 + AIC15 27) · · · (AIC15 21 + AIC15 22)

(AIC16 15 + AIC16 28) (AIC16 16 + AIC16 27) · · · (AIC16 21 + AIC16 22)
...

...
. . .

...

(AIC21 15 + AIC21 28) (AIC21 16 + AIC21 27) · · · (AIC21 21 + AIC21 22)



















(3.162)

Defining the reduced AICR matrix as

AIC∗

R =
[

AICa AICb

]

(3.163)

Eqns. 3.160 and 3.163 give

l̄ = qAIC∗

Rα (3.164)

where q = ρU2
∞
/2 is the dynamic pressure. From the right-hand side of Eq. 3.77,

the virtual work is given by

δ∗W = δηT cos Λ




(1 + ξ)

∫ l

0
ψL̄ dx1

−ξ
∫ l

0
φL̄ dx2



 (3.165)
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Figure 3.21: Aerodynamic panel numbering convention referenced by panel p.

where η is the vector of generalised coordinates, ψ and φ are the vectors

of assumed modes and ξ is the wing geometric dimensionless grouping defined

in Eq. 3.66. As explained earlier, the expression for lift per unit force in Eq.

3.164 cannot be directly substituted into Eq. 3.165 since Eq. 3.164 does not

express L̄ in terms of x1 and x2 and rather gives a discretised expression for L̄

at each aerodynamic panel. Instead, the integrals of virtual work (right-hand

side of Eq. 3.77) will be evaluated between spanwise locations coinciding with

the aerodynamic panel edges, between which the lift per unit span L̄ is constant,

and then this expression shall be summed across all the half-span aerodynamic

panels. So for a half-span (reduced to half-span via symmetry) aerodynamic

model represented by g×h panels (g spanwise by h chordwise, see figure 3.21 for

panel numbering where g = 7 and h = 2)

δ∗W = δηT q cos Λ

g×h
∑

p=1




(1 + ξp)

∫

p
ψ dx1

−ξp
∫

p
φ dx2



AIC∗

Rp
α (3.166)

where AIC∗

Rp
is the pth row of the matrix AIC∗

R, and the integration limits are

the x1 or x2 values of the bound vortex ends of the pth panel. ξ has also been

modified from its definition in Eq. 3.66, and is given by

ξp =
f − qcp

r − f
(3.167)
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where, qcp
is the distance that the aerodynamic centre of the pth panel (i.e. bound

vortex) lies aft of the leading-edge of the wing, and f and r are the chordwise

positions of the spars, as defined in figure 3.6. Next, an expression is required for

α, the vector of angles of incidence for each panel. As this is an elastic model, α

for any given panel depends on the loads and therefore it must be expressed in

terms of w1 and w2, or more correctly, ψ and φ, and η.

3.4.2 Angle of incidence for a swept elastic wing [37, 61]

as a function of the unknown amplitudes

The angle of incidence is composed of a rigid contribution and an elastic contri-

bution i.e.

α = αr + αe (3.168)

For the general case of a wing with non-zero sweep angle Λ, the elastic angle of

incidence comprises of a torsional component, plus a bending component that

is due to the sweep. With reference to figure 3.22, the angle of incidence is a

Root

Tip

x

y

xj
yj

U∞

i

j
i′

j′
Λ

Figure 3.22: Angle of incidence for a swept wing.

rotation of the wing about the y-axis, perpendicular to the flow. So in order

to get αe aeroelastic rotations must be transformed from structural (Oxjyj) to

aerodynamic (Oxy) axes. Let i′, j′, i and j be the unit vectors in the xj-, yj-,
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x- and y-directions respectively. Then the angle of incidence is a rotation in the

j-direction, given by

j = −i′ cos Λ + j′ sin Λ (3.169)

Twisting of the wing due to torsion is about the xj-axis (-i′-direction) and is −θj.

Rotation of the wing due to bending is about the yj-axis (−j’-direction) and is

− δhj

δxj
= −h′j, where hj is the bending displacement of the jth axis. So, applied to

panel p

αp = αrp
+ θp cos Λ − h′p sin Λ (3.170)

Using a similar expansion to Eq. 3.65 allows Eq. 3.170 to be expressed in terms

of h1 and h2, the bending displacements of the two spars

αp = αrp
+

(

h1

(
x1p

)
− h2

(
x2p

)

c (r − f) cos Λ

)

cos Λ

−
(

h′1
(
x1p

)
+ ξp

(

h′1
(
x1p

)
− h′2

(
x2p

) )
)

sin Λ

(3.171)

Cancelling the two cosine terms and substituting in the shape functions from

Eqs. 3.70, 3.71 and 3.73, and switching notation from x1p
and x2p

to p gives

αp = αrp
+

1

c (r − f)

[

ψT
p −φT

p

]

η

−
[

(1 + ξp)ψ
′T
p −ξpφ′T

p

]

sin Λη

(3.172)

which can be written

αp = αrp
+
[
ψ∗T

p − φ∗T
p

]
η (3.173)

where

ψ∗

p =
1

c (r − f)
ψp − (1 + ξp) sin Λψ′

p (3.174)

and

φ∗

p =
1

c (r − f)
φp − ξp sin Λφ′

p (3.175)
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So, for all panels

α = αr +
[
Ψ∗T − Φ∗T

]
η (3.176)

where

αr =
[

αr1
αr2

· · · αrgh

]T

(3.177)

Ψ∗ =
[

ψ∗

1 ψ∗

2 · · · ψ∗

gh

]

(3.178)

Φ∗ =
[

φ∗

1 φ∗

2 · · · φ∗

gh

]

(3.179)

Substituting Eq. 3.176 into 3.166 gives

δ∗W = δηT q cos Λ

g×h
∑

p=1




(1 + ξp)

∫

p
ψ dx1

−ξp
∫

p
φ dx2



AIC∗

Rp

(

αr +
[
Ψ∗T − Φ∗T

]
η

)

(3.180)

Let

υp =




(1 + ξp)

∫

p
ψ dx1

−ξp
∫

p
φ dx2



 (3.181)

and let

Ω =
[
Ψ∗T − Φ∗T

]
(3.182)

Then

δ∗W = δηT q cos Λ

g×h
∑

p=1

υpAIC∗

Rp
αr + δηT q cos Λ

g×h
∑

p=1

υpAIC∗

Rp
Ωη (3.183)

Alternatively, the summation can be omitted by using the full AIC∗

R matrix

δ∗W = δηT q cos ΛΥ AIC∗

Rαr + δηT q cos ΛΥ AIC∗

RΩη (3.184)

where

Υ =
[

υ1 υ2 · · · υgh

]T

(3.185)
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3.4.3 The complete equilibrium equations

Substituting Eq. 3.184 into the PVD equilibrium equations Eq. 3.77 gives

δηT








EIs1

∫ l

0
ψ′′ψ′′T dx1 0A,B

0B,A EIs2
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φ′′φ′′T dx2
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η

= δηT q cos ΛΥ AIC∗

Rαr + δηT q cos ΛΥ AIC∗

RΩη (3.186)

i.e.

δηTEη = δηTρU2Arαr − δηTρU2Cη (3.187)

where

E =
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0
ψ′′ψ′′T dx1 0A,B

0B,A EIs2
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+
G

c (r − f)

m∑

k=1

Jrk




φ′

kφ
′T
k −φ′

kψ
′T
k

symmetric ψ′

kψ
′T
k



 (3.188)

is the structural stiffness matrix,

Ar =
cos Λ

2
Υ AIC∗

R (3.189)

is a matrix of aerodynamic disturbances (which result from a wind-off non-zero

angle of incidence i.e. the rigid contribution), and

C = −cos Λ

2
Υ AIC∗

RΩ (3.190)

is the aerodynamic stiffness matrix. Since δηT is arbitrary, Eq. 3.187 simplifies

to
(
ρU2C + E

)
η = ρU2Arαr (3.191)

which is the classic form of the static aeroelastic equations of equilibrium (com-

pare with Eq. 1.2), altered to include a vector of aerodynamic disturbance forces.

3.4.4 Solving the equilibrium equations

The first step is to use Eq. 3.191 to find the vector of generalised coordinates η.

For a dynamic aeroelastic analysis these are functions of time, but constant for

the static analysis

η =
[
ρU2C + E

]
−1
ρU2Arαr (3.192)

To obtain the total lift for the half-wing, Eq. 3.182 is substituted into Eq. 3.176

and then this expression is used for α in Eq. 3.164. This then must be multiplied

by b̂ (spanwise width of each aerodynamic panel) to obtain the lift force rather

than the lift per unit span for each panel. Finally, the lift for each panel is
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summed to find the total lift,

L = qb̂

g×h
∑

p=1

AIC∗

Rp
(αr + Ωη) (3.193)

The 3D/global lift coefficient is given by [65, 85]

CL =
L

qS
(3.194)

where S is the half-wing area. Substituting the same expression for α into Eq.

3.149 allows the vector of unknown vortex strengths to be found from

c = −Ψ−1
P U∞ (αr + Ωη) (3.195)

This can then be substituted into Eq. 3.144 (expressed in vector format for

multiple vortices) to find the vector of induced downwashes at point M on all

bound vortices

wi = −ΨMΨ−1
P U∞ (αr + Ωη) (3.196)

To find the induced drag, the pth entry of vectors c and wi (i.e. Γp and wip) are

substituted into Eq. 3.108 and multiplied by b̂ to obtain the drag force rather

than the drag per unit span for each panel. Finally, the drag for each panel is

summed to find the total (induced) drag,

Di = ρb̂

g×h
∑

p=1

Γpwi (3.197)

The 3D/global induced drag coefficient is given by [65, 85]

CDi
=
Di

qS
(3.198)
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The divergence dynamic pressure qd can be found from the lowest real and positive

solution to the matrix eigenvalue problem [15] (from Eq. 3.192)

|E − qd (−2C)| = 0 (3.199)

The bending of the forward spar h1 (x1) and rear spar h2 (x2) can be found by

substituting the known values of ζ and β (from η) back into Eqs. 3.70 and 3.71.

3.5 Validation and verification

To evaluate the accuracy of the developed model, a comparison with a represen-

tative finite element model using NASTRAN™ was performed. Three distinct

comparisons were done; structural (i.e. deformation under point loads) to inves-

tigate the accuracy of the stiffness matrix, aerodynamic (i.e. rigid structure), and

full aeroelastic. Additionally, a further aerodynamic comparison with Tornado

(a vortex-lattice method code developed by the Royal Institute of Technology in

Sweden and the University of Bristol in the UK [165]) was performed, mainly to

validate the induced drag calculation which NASTRAN™ has no capability of

analysing [116].

From this point forward the angle of orientation of each spar in the 2-spar

rotating spars wing will be described by [φf φr], the angle in degrees between

the wing chordline and the principal axis z′ of the spar for the forward and rear

spar respectively, where Iz′z′ ≤ Iy′y′ e.g. [90 90] is the spar combination required

for maximum wing bending stiffness, and [0 0] is required for the minimum wing

bending stiffness.

3.5.1 Structural comparison

A finite element (FE) model was made using NASTRAN™ with the same pa-

rameters as the model herein. A force and moment were applied at the tip of
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the forward spar and deflections at thirty evenly-spaced spanwise locations for

each spar were obtained using a linear static solution sequence (SOL 101). This

was done for a variety of spar orientations ([90 0], [0 90], [25 75]). An identical

analysis was performed using the Rayleigh-Ritz (RR) assumed modes structural

model, with 11 trial functions used for each spar (i.e. up to 12th order polynomial

terms), which was more than sufficient for convergence of the solution (a conver-

gence plot is shown in section 3.5.3). Figures 3.23 and 3.24 show the percentage

difference between the two approaches for bending and twisting deflections, and

figures 3.25 and 3.26 show their respective true deformations. Both plots show a
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Figure 3.23: Difference in bending de-
flection δh of spars under point loads.
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Figure 3.24: Difference in twisting de-
flection δθ of wing under point loads.

good comparison, generally with errors less than 1% from the FE model for most

of the span. The large error spike that does occur (the rear spar during case [90

0]) in the bending comparison plot (figure 3.23) at around 70% span is due to the

bending deflection passing through zero as shown in figure 3.25, and therefore,

when calculating the percentage error, a zero exists on the denominator resulting

in an infinite percentage error. Note that this spike is not present in the plot

of actual bending deflection (figure 3.25). The other significant error occurs at

the root of the wing, in both bending and twisting. As can be seen from figures

3.23 and 3.24, this does not occur in the [0 90] or [90 0] cases, only in the [25 75]

case. The source of this error is due to a non-zero value for Iyjzj
(i.e. product
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moment of area about wing axes, not Iy′

jz′j
which is about the spars’ principal

axes and for this investigation was always zero) for cases when the spars are not

oriented a 0◦ or 90◦; for non-principal directions, the coupling of Iyjzj
gives the

spar deflection a component in the plane of the wing. There is work associated

with this translation and so less work is available to move the spar in the vertical

direction, therefore less displacement is observed in this direction than predicted

by the RR assumed modes model which assumes zero movement in the plane of

the wing. To confirm this as the cause of the error, the comparison was repeated

with all the nodes in the FE model constrained in motion in the plane of the

wing. Figures 3.27 and 3.28 show that the large root errors for the non-principal

orientations of the spars have been eliminated, therefore reinforcing that this is

the only significant source of error in the structural model. In section 3.5.3 it

will be seen that this model discrepancy has an insignificant effect on both the

aeroelastic loads and deflections, and is only noticeable when a linear static anal-

ysis is performed. From this comparison it can be concluded that the derived

stiffness matrix is sufficiently accurate, and that the interpolation functions used

(polynomial) represent the modes well.
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3.5.2 Aerodynamic comparison

Required number of aerodynamic panels for convergence

As with any discrete method, the vortex-lattice method becomes more accurate

as the number of panels used increases. However, as the numbers of panels used

increases, so too does the computational time. As a consequence, a compromise

is usually found which offers relatively accurate solutions without being overly

computationally expensive.
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To investigate the convergence of the lift and induced drag solutions, the
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number of semi-spanwise m and chordwise n aerodynamic panels were varied,

with the results shown in figures 3.29 and 3.30. This was done for an arbitrary

swept planform with a rigid structure. The plots clearly show that as the number

of chordwise panels increases, the aerodynamic forces converge quickly, relative to

the rate of convergence for the number of spanwise panels. Figure 3.31 illustrates

the corresponding variation in computation time. From this plot the need for a

compromise in the number of panels used becomes clear; for one-off analyses, it

is acceptable to use many panels (m ≥ 30, n ≥ 30), with associated computation

times in excess of 20 s, but with high accuracy. For parameter studies and

optimisation runs where many analyses are necessary, a lower number of panels

(chordwise in particular) are recommended (e.g. m = 25, n = 10) resulting in

fairly accurate solutions and fast computation times of less than 1.5 s.
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Figure 3.31: Variation of computation
time with number of panels.
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Figure 3.32: Effect of sweep on conver-
gence of CDi

in chordwise direction.

One disadvantage of the vortex-lattice method is the inaccuracy of the induced-

drag prediction for swept planforms; as the sweep angle moves further away from

zero, the rate of convergence of the number of chordwise panels decreases (see

figure 3.32). This is caused by the kink in the bound vortices at mid-span which

causes an induced downwash that tends to infinity near the kink. Such velocity

gradients are not found in nature and a more realistic vortex sheet for swept plan-

forms would have smooth curved bound vortices at inboard locations [65, 101];
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this is beyond the scope of this model. However, from figure 3.32) it can be

seen that it is possible to use less aerodynamic panels (e.g. m = 25, n = 5) for

unswept planforms than was previously stated without affecting the accuracy.

Comparison of lift and induced drag

To gain an insight into the accuracy of the vortex-lattice method (VLM) aero-

dynamic model used, three FE models were made and aerodynamics were added

using the doublet-lattice method (DLM) provided by NASTRAN™ [116]; an

unswept wing, a wing with sweepback (Λ = 20◦), and a wing with forward sweep

(Λ = −20◦). Using a static aeroelastic analysis (solution sequence SOL 144), a

rigid trim analysis was requested for each of the planforms with the (rigid) angle

of incidence αr set to 5◦. Similar models were made in the VLM aerodynamic

model and the lift coefficient results were compared. Identical analyses were also

performed using Tornado (a vortex-lattice method code developed as a collabo-

ration between the Royal Institute of Technology in Sweden and the University

of Bristol in the UK [165]); this provided another independent source to compare

lift coefficients to. However, more significantly, the Tornado code also offered

induced drag coefficients for comparison which NASTRAN™ does not do [116].

For all three approaches, an aerodynamic grid of 25 spanwise and 10 chordwise

aerodynamic panels was used.

Table 3.1: Comparison of rigid lift coefficient between the VLM and DLM.

Λ [deg] CLDLM
[1] CLVLM

[1] ∆CL [%]

0 0.38458 0.38500 +0.10921
20 0.35610 0.35667 +0.16007
-20 0.35530 0.35606 +0.2139

Table 3.1 summarises the comparison of the 3D lift coefficient CL for the

various models. For all three planforms it can be seen that the VLM prediction

is in excellent agreement with the finite element method, with less than 0.25%

error.
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Table 3.2: Comparison of rigid lift coefficient between the VLM and Tornado
code.

Λ [deg] CLTornado
[1] CLVLM

[1] ∆CL [%]

0 0.38403 0.38500 +0.25258
20 0.36898 0.35667 -3.3362
-20 0.36834 0.35606 -3.3339

Table 3.2 shows the same comparison of the 3D lift coefficient CL, but against

the Tornado values instead of the NASTRAN™ values. Once again, agreement

between the two is generally good, although the difference is more notable on

swept planforms, indicating that the Tornado code deals with swept wing aero-

dynamics slightly differently to both NASTRAN™ and the vortex-lattice model

developed by the author.
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Figure 3.33: Lift distribution for a rigid wing.

Figure 3.33 shows the lift distribution across the span for the three cases (for

DLM and VLM only) and again the results agree well with the DLM aerodynamic

model.

Table 3.3 shows the comparison of the 3D induced drag coefficient CDi
be-

tween the developed vortex-lattice model and the Tornado code. Agreement

between the two is good for the unswept case (< 0.75% error). However, for the

swept cases the error is more substantial (5 - 6%); this error is not unexpected

given the results of the lift comparison (tables 3.1 and 3.2) which suggest that the
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Tornado code deals with swept wing aerodynamics differently to the other two

approaches considered. Nevertheless, the values of induced drag are relatively

accurate within the scope of the theory (see the part of this section on required

number of aerodynamic panels for convergence for details of the limitation of

induced drag modelling via vortex-lattice based approaches).

Table 3.3: Comparison of rigid induced drag coefficient between the VLM and
Tornado code.

Λ [deg] CDiTornado
[1] CDiVLM

[1] ∆CDi
[%]

0 0.0070299 0.0070814 +0.73259
20 0.0066157 0.0069563 +5.1484
-20 0.0065245 0.0068994 +5.7460

The good results of the aerodynamic comparison are as expected, since the

doublet-lattice method supplied by NASTRAN™ has zero reduced frequency for

the steady case and therefore becomes equivalent to the vortex-lattice method

[116], and Tornado uses the vortex-lattice method also [165], although clearly

there is some discrepancy in the aerodynamic calculations of swept wings between

Tornado and the other two methods.

3.5.3 Aeroelastic comparison

To check the accuracy of the coupling/splining of the aerodynamic model to the

structural model, a full aeroelastic comparison was performed also. The same

three FE models as in section 3.5.2 were used (i.e. an unswept wing, a wing with

sweepback (Λ = 20◦), and a wing with forward sweep (Λ = −20◦)). However,

this time an elastic trim analysis was requested with the rotating spars set to [25

75], but with the same rigid angle of incidence αr of 5◦. All three FE models were

also analysed with the constraint mentioned in section 3.5.1 in place i.e. all nodes

constrained in movement in the plane of the wing; this was done to investigate

the validity of this assumption/simplification in the assumed modes model. No

comparison of aeroelastic induced drag was performed as NASTRAN™ is not
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capable of calculating drag, and Tornado is only an aerodynamic model i.e. no

ability to couple to a structure.

Table 3.4: Comparison of aeroelastic lift coefficient between the RR\VLM model
and FE\DLM model.

Λ [deg] CLDLM
[1] CLDLMc

[1] CLVLM
[1] ∆CL [%] ∆CLc

[%]

0 0.55314 0.54869 0.54826 -0.88159 -0.078454
20 0.44711 0.44575 0.45275 +1.2613 +1.5706
-20 0.51980 0.51634 0.50969 -1.9443 -1.2886

In table 3.4, the c subscript indicates an FE analysis with the constraint de-

scribed above in place. For the unconstrained comparison, the results show very

good agreement in the values of CL for the cases considered, with less than 2%

error. In general, there is a small increase in the error from the rigid aerodynamic

comparison presented in table 3.1, and this is due mainly to slight differences be-

tween the VLM/RR and the DLM/FE models in the way that the aerodynamic

model is splined to the structural model. There is also a small source of error

from the zero deflection in the plane of the wing assumption; it can be seen that,

in general, the results improve slightly with this constraint in place in the FE

analysis too.

Table 3.5 shows that the divergence behaviour compares well too. At worst,

the difference is less than 1.75%. This is an acceptable error, especially as this

translates as less than 1.5% error in the divergence speed. As with CL, the

accuracy of the divergence analysis improves if the FE model is constrained as

above. Importantly though, it is clear from both these tables that the effect of

this assumption on the accuracy of the aeroelastic model is almost insignificant

compared to the effect it has on the accuracy of a non-aerodynamic loading as

presented in section 3.5.1.

Figure 3.34 shows the lift distribution for all three wing planforms. Com-

parison with figure 3.33 allows the impact of an elastic structure on the lift

distribution to be clearly seen. At a glance, it is apparent from these two figures
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Table 3.5: Comparison of divergence dynamic pressure between the RR\VLM
model and FE\DLM model.

Λ [deg] qdDLM
[Pa] qdDLMc

[Pa] qdVLM
[Pa] ∆qd [%] ∆qdc

[%]

0 1543.3 1566.0 1568.4 +1.6242 +0.15227
20 2428.5 2457.1 2470.6 +1.7325 +0.54848
-20 1429.5 1445.1 1450.8 +1.4950 +0.40004

that the aeroelastic lift model is less accurate than the rigid lift model, reinforc-

ing the results in table 3.4, and it can be seen here that this inaccuracy occurs

almost uniformly over the span.
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Figure 3.34: Lift distribution for an elastic wing.

Figures 3.35a - 3.35d illustrate the accuracy of the resulting structural de-

formations due to the aeroelastic loads. The first three of these plots show that

there is good agreement in the bending deformations of the spars (and therefore

the wing) for all planforms considered. There is a small but noticeable (at the

tip) error that occurs, most likely due to the splining differences mentioned previ-

ously. Figure 3.35d shows the wing twist (calculated from the bending deflections

of the two spars) deformation for the three cases, and it is clear from this that the

small errors in the bending deflection combine to form more substantial errors in

the twisting deformations, although they are still acceptable at less than 3%.



3.5. VALIDATION AND VERIFICATION 137

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Dimensionless spanwise location [1]

h
[m

m
]

 

 

Fwd spar (VLM)

Rear spar (VLM)

Fwd spar (DLM)

Rear spar (DLM)

(a) Bending deflection of spars for an
unswept wing.
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(b) Bending deflection of spars for a swept-
back wing.
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(c) Bending deflection of spars for a swept-
forward wing.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Dimensionless spanwise location [1]

θ
[d

eg
]

 

 

Unswept (VLM)
Unswept (DLM)
Sweptback (VLM)
Sweptback (DLM)
Sweptforward (VLM)
Sweptforward (DLM)

(d) Twisting deflection of wing (all cases).

Figure 3.35: Comparison of aeroelastic deflections.

Required number of shape functions for convergence

The number of shape functions required for each spar to achieve convergence of

the solution is of course dependent on the structure itself. For instance, for wing

torsion, as the ribs are given higher torsional stiffness values, the polynomial

shape functions will be very different to the modes of the system, and therefore

more shape functions will be required for convergence. However, for realistic

ranges of spar and rib stiffnesses, the number of shape functions required for

convergence will not vary much. Figures 3.36a - 3.36c illustrate the convergence

of the lift coefficient, induced drag coefficient and divergence dynamic pressure

respectively for a wing with realistic values of these stiffness terms.
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Figure 3.36: Convergence of solution with number of Rayleigh-Ritz shape func-
tions per spar.

It can be seen that the lift coefficient converges to a solution with 4 or 5

shape functions per spar, while the induced drag coefficient requires perhaps an

additional higher order term for satisfactory convergence (5 or 6 shape functions

per spar). The divergence dynamic pressure converges the quickest, after only 3

shape functions. With this in mind it is the recommendation of the author that

at least 7 shape functions be used, thereby introducing an error margin. However,

the full aeroelastic analysis, when tested, took an average of 1.61 s to run with

7 shape functions (with 25 spanwise and 10 chordwise aerodynamic panels), and

1.63 s to run with the maximum number of shape functions (limited to 11 due to

rounding errors becoming significant in matrix inversion in MATLAB®) therefore
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11 shape functions were used for all subsequent analyses.

3.6 Conclusions

In this chapter, an assumed modes vortex-lattice method static aeroelastic model

has been developed from first principles. The equations of equilibrium were

obtained using the Principle of Virtual Displacements, and then it was shown

how the task of solving these could be made less challenging by approximating

the system modes with assumed modes (Rayleigh-Ritz method). Next, a static

aeroelastic model was derived using the vortex-lattice method, and this model

and the structural model were then manipulated in order for the aerodynamics to

spline correctly to the structure. Finally, a comparison with an equivalent finite

element model showed that the theory behind the developed aeroelastic model is

correct, and that the assumptions made were valid.



Chapter 4

An analytical study using the

rotating spars aeroelastic model

4.1 Introduction

The static aeroelastic model developed in chapter 3 was used to perform a com-

prehensive analytical investigation to gain further insight into the rotating spars

concept and to establish trends that will aid in the design of a wing incorporating

this technology.

Firstly, a parameter study was carried out; the main aim of this was to inves-

tigate the effect that the rotating spars’ orientations have on various aeroelastic

parameters.

Next, an investigation was performed to establish how various wing and spar

design parameters impact the effectiveness of the concept. This study was made

more realistic by defining constraints in the analysis.

The results of these studies were carried through into further work on the

concept to enable an efficient and successful design (see chapter 5).

As the results of the parameter study and effectiveness study will show, the

design of a rotating spars wing is not straightforward due to the many conflict-

ing design variables that impact the effectiveness of the concept, as well as the

140
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constraints already mentioned that further complicate the design. Optimisation

is a tool well suited to overcoming such a problem, and therefore an optimisa-

tion procedure (a genetic algorithm) was employed in conjunction with the static

aeroelastic assumed modes model in order to arrive at an analytical wing design

that was capable of effectively minimising induced drag and altering its lift.

This wing design was then used as the platform to perform a trim optimisa-

tion exercise (via the method of steepest descent/ascent); the goal of this study

was to trim the wing to a fixed CL value whilst using the rotating spars to min-

imise the induced drag.

The model was described in section 3.1, but to briefly re-cap, the wing plan-

form used was full-span and limited to zero taper, and the structure consisted of

exactly two spars but a variable number of ribs (which had to lie perpendicular to

the spars). The structure was limited to sharing a single isotropic material. The

aerodynamics used were implemented via a vortex-lattice lifting-surface approach

and therefore steady inviscid flow was assumed, along with a zero wing thickness

simplification. Assumptions that apply to the model were detailed throughout

chapter 3, but the main constraints that were implemented are:

1. Spars were assumed to be of high aspect ratio such that the spanwise di-

mension of a spar is much greater than dimensions in other directions.

2. Ribs were assumed to be rigid in bending.

3. Reasonable angles of incidence were assumed since the aerodynamics have

been linearised.

4. Inviscid flow was assumed, therefore the only contribution to the drag was

the induced drag.
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4.2 Parameter study

4.2.1 Structural behaviour

Since the rotating spars concept is an adaptive structures approach to morphing,

it is intuitive that as the spars’ orientations are altered, trends are most likely to

be distinguishable in the structural behaviour. Naturally, trends will also appear

in the aeroelastic behaviour of the wing, but these will be more difficult to ex-

plain with any certainty since the aeroelastic model contains many more variables

than the basic structural model. Therefore, it was of interest to investigate the

response of the structural model as the variables (forward and rear spar orienta-

tions) were altered, and the results of this may allow for a better explanation of

the trends in the aeroelastic behaviour.

To perform a structural investigation, the aerodynamics were removed from

the full model developed in chapter 3 and a static load vector replaced it such

that Eq. 3.191, given by

(
ρU2C + E

)
η = ρU2Arαr (3.191)

became

Eη = p (4.1)

where p is the vector of loads. For simplicity, only the unswept structure was

considered, except for the study of the elastic axis position.

Chordwise position of the shear centre

The effect of the adaptive structures concept on the chordwise position of the

shear centre of a wing section was of course of interest; in short, this is a major

factor in determining the amount the wing will twist due to the aerodynamic

loads i.e. the greater the distance between the aerodynamic and shear centres,

the greater the moment arm.
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To find the position of the shear centre of any given section, the wing was

loaded (vertical force) near the leading-edge of the section to produce a non-zero

twist, and then it was loaded near the trailing-edge of the section to produce a

non-zero twist in the opposite direction. Plotting twist angle against chordwise

loading point and assuming a rigid cross-section allowed the shear centre of the

section to be found as the point where the projected twist is zero (see figure 4.1).

This loading procedure was performed at the tip section for an arbitrary wing
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Figure 4.1: Locating the shear centre
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Figure 4.2: Variation a wing section
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setup for various forward φf and rear φr spar orientations (3◦ increments between

0◦ and 90◦ for both spars) and the results plotted in figure 4.2. The forward spar

was given larger stiffness values than the rear spar, since this is more realistic

(aerodynamic loading higher towards leading-edge and aerofoil thicker towards

leading-edge).

As mentioned in section 3.5, the angle of orientation of each spar in the 2-

spar rotating spars wing is described by [φf φr], the angle in degrees between the

wing chordline and the principal axis z′ of the spar for the forward and rear spar

respectively, where Iz′z′ ≤ Iy′y′ e.g. the wing’s bending stiffness is maximum at

the [90 90] configuration, and is minimum at the [0 0] configuration.

The results are fairly intuitive; the shear centre (etip is the fractional chordwise

distance aft of the aerodynamic centre) is closest to the leading-edge at the [90
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0] configuration, since this corresponds to a maximum forward spar bending

stiffness and a minimum rear spar bending stiffness. In this region, the negative

etip values imply that the shear centre lies ahead of the aerodynamic centre; the

aeroelastic implication of this is that classical torsional divergence is impossible.

As the forward spar is rotated towards 0◦, and/or the rear spar is rotated towards

90◦, the shear centre moves aft, being closest to the trailing-edge at the [0 90]

configuration i.e. minimum forward spar bending stiffness and maximum rear

spar bending stiffness.

For this example, a large variation in the chordwise position of the shear

centre is possible (approximately a semi-chord variation). The main factors in-

fluencing the achievable range of the shear centre are the ratio of local bending

stiffnesses for each of the spars i.e. Iy′y′/Iz′z′ , the chordwise location of each of

the spars (throughout chapter 5 this was described by the variables f and r for

the forward and rear spars respectively), and the extent to which the rotating

spars contribute towards the torsional rigidity of the wing; in the model consid-

ered in this investigation, this is close to 100% since the ribs are assumed to have

a comparatively low contribution, and there are no other spars in the model. For

realistic designs (such as the experimental model described in chapter 5) there

will also be additional non-rotating spars, and the bending and torsional stiff-

nesses of these will contribute significantly towards the overall torsional rigidity

of the wing, leading to a smaller variation in the chordwise position of the shear

centre (see figure 5.21 in section 5.5.3).

Chordwise position of the elastic axis

The locus of shear centres at various spanwise locations is known as the elastic

axis. For an unswept wing with uniform structural properties along its span, there

will be no spanwise variation in the shear centre (i.e. figure 4.2 is valid along

the entire length of the wing) and the elastic axis is a straight line. However,

for a swept wing this is not true. To gain an insight into this behaviour, the
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shear centres were found for a highly swept (Λ = 40◦) wing at various spanwise

locations, and various spar configurations. The results are shown in figure 4.3.

The green shading represents the wing planform, and the solid blue lines represent

the two spars. For ease of inspection, the plot is not to scale and the true aspect

ratio of the wing was 6.67.

Figure 4.3: Variation of wing elastic axis position with spars’ orientations for a
swept wing.

The chordwise variation with the spar orientations follows the same relation-

ship as presented in figure 4.2. However, it can be seen that for any given spar

configuration, the shear centres deviate away from the unswept straight elastic

axis prediction in the root and tip regions. More specifically, in the root region

they curve towards the rear spar, meeting it at the wing root, before following a

path along the root towards the leading-edge. In the tip region the shear centres

curve towards the rear spar. The deviation of the elastic axes from a straight line

is larger for larger sweep angles and smaller aspect ratios. The trend reverses for

sweptforward wings i.e. the elastic axes curve towards the forward spar in the

root and tip regions.
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Flexural rigidity

The variation of the wing’s flexural rigidity as the spars’ orientations are altered

is also of interest; for swept wings the bending deflection contributes towards the

angle of incidence of the wing (see section 3.4.2) and therefore a coupling exists

between the bending and torsional behaviour of the wing.

Using the results of the elastic axis investigation, for any given [φf φr] the

wing was again loaded with a vertical force on a point at the tip passing through

the elastic axis. In this way, the resulting deflection was pure bending and zero

torsion. Since the wing has uniform properties along its span, the wing flexural

rigidity is given by [47]

Kh =
Pl3

3htip

(4.2)

where P is the point force, l is the length of the wing in structural axes i.e. along

a spar, and htip is the resulting bending deflection of the elastic axis at the tip.

This was done for the same arbitrary wing setup as the elastic axis investigation,

for 3◦ increments between 0◦ and 90◦ for both spars. The results are shown in

figure 4.4.

Once again, the results are intuitive; the wing’s flexural rigidity is at its

greatest at the [90 90] configuration, since both spars have greatest bending

stiffness in this setup. Similarly, the lowest value of flexural rigidity is attained

at the [0 0] configuration. The reason that the [90 0] configuration gives the wing

a greater flexural rigidity than the [0 90] configuration is that the forward spar

has larger cross-sectional dimensions than the rear spar, as already mentioned.

The flexural rigidity of the wing can be altered by up to 900%, which is very

substantial. This agrees with the following argument: the flexural rigidity of the

wing can also be written as

Kh = EIyy (4.3)

where E is Young’s modulus, and Iyy is the second moment of area of the

wing in the bending plane. Variation of the spars’ orientations does not affect E,
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but does influence Iyy. Therefore Kh ∝ Iyy, and so examination of the behaviour

of Iyy will give an indication of the behaviour of Kh. The analysis assumed

rectangular spars, and for the jth spar the dimensions were given by bsj
and dsj

,

where dsj
≥ bsj

. Therefore, for spar j, the maximum value for the second moment

of area [89] in the wing bending plane is

Iyjyj

∣
∣
max

=
bsj
d3

sj

12
(4.4)

and the minimum value is

Iyjyj

∣
∣
min

=
dsj
b3sj

12
(4.5)

For the wing containing two spars (j = 1, 2), it can then be shown that the

maximum variation in Iyy is

Iyjyj

∣
∣
max

Iyjyj

∣
∣
min

=
bs1d

3
s1

+ bs2d
3
s2

ds1b
3
s1

+ ds2b
3
s2

× 100% (4.6)
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rigidity with spars’ orientations.

The analysis used a forward spar 5×15 mm and a rear spar 4×12 mm. This

predicts that the flexural rigidity can be varied by 900%, which agrees with the
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results of the analysis. As before, for a realistic wing the presence of non-rotating

spars will decrease this value significantly.

Torsional rigidity

The variation of the wing’s torsional rigidity as the spars’ orientations are altered

is the final structural aspect that is of interest; for all planforms, the torsional

deflection contributes towards the angle of incidence of the wing (see section

3.4.2) and so its associated rigidity is important in determining the aerodynamic

loads.

For a given [φf φr] the wing was loaded with a pitching moment on a point

at the tip. In this way, the resulting deflection was purely torsional and zero

bending. Since the wing has uniform properties along its span, the wing torsional

rigidity is given by [47]

Kθ =
Ml

θtip

(4.7)

where M is the pitching moment, l is the length of the wing as before, and θtip

is the resulting torsional deflection of the wing at the tip. This was done for

the same arbitrary wing setup as the elastic axis investigation, for 3◦ increments

between 0◦ and 90◦ for both spars. The results are shown in figure 4.5.

The results are slightly less intuitive this time. Understanding the contri-

butions to the wing’s torsional rigidity does help; as the wing twists, the dis-

placement of the structure can be separated into three contributions: differential

bending of the spars (one up, one down), torsion of the spars, and torsion of

the ribs. Of these, it is only the bending of the spars which the adaptive struc-

tures concept can exploit; the bending displacement of spar j results in a vertical

restoring force which is proportional to Isj
(the second moment of area for spar

j about a chordwise axis). This causes an equal and opposite moment about

the wing’s elastic axis for the two spars. The position of the elastic axis e varies

with the spars’ orientations also, therefore Is1
, Is2

and e all influence Kθ. For

this reason it is difficult to explain the trends observed in figure 4.5, although a
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maximum stiffness does occur at the [90 90] configuration, and the lowest value

of wing torsional stiffness occurs at the [0 0] configuration. The torsional stiffness

of the wing can be altered by up to around 20%. The reason that this is sub-

stantially lower than for the bending stiffness is that the rotating spars concept

does not alter the torsional stiffnesses of the spars and ribs, which are significant

portions of the wing’s overall torsional stiffness. As before, for a realistic wing

the presence of non-rotating spars will further decrease this value.

4.2.2 Aeroelastic behaviour

The main aims of the rotating spars concept are to, firstly, minimise drag for any

given flight condition, and secondly, to achieve roll-control with a conformable

(and therefore lower-drag) device. Consequently, the effect that the concept has

on several related aeroelastic parameters are of interest.

In this section, three arbitrary wing planforms were used (unswept Λ = 0◦,

sweptback Λ = 20◦, sweptforward Λ = −20◦) at three different airspeeds (20

m·s-1, 25 m·s-1, and 15 m·s-1 respectively) and the forward and rear spar angles,

φf and φr, were varied at 3◦ increments between 0◦ and 90◦. The semi-span was

set to b = 0.9 m and the chord was c = 0.27 m. The full static aeroelastic model

developed in chapter 3 was used to obtain a range of outputs, with the results

shown in figures 4.6a - 4.24.

The reason different airspeeds were used for each of the three planforms is

because it is trends and not values that are of interest here and as the sweep angle

is altered, the airspeed needs to be adjusted also to cause similar aeroelastic loads

and deflections e.g. for a given sweptforward wing at 5 m·s-1, aeroelastic loads

and deflections are large enough to observe trends. However, for the same wing

with rearward sweep, trends are difficult to establish at 5 m·s-1. This becomes

obvious if a sweptforward wing is operating near its divergence speed, resulting

in very large deflections and loads, while at the same airspeed the equivalent

sweptback wing has much more moderate loads and deflections.



150
CHAPTER 4. AN ANALYTICAL STUDY USING THE ROTATING SPARS

AEROELASTIC MODEL

The results shown here are separated into three categories: deflec-

tions/instabilities (divergence dynamic pressure qd, wing tip twist θ, and forward

and rear spar tip bending displacement h1 and h2), loads (CL and CDi
), and

aerodynamic efficiencies (inviscid lift-to-drag ratio CL/CDi
and Oswald efficiency

factor eO).

Deflections/instabilities

The variation of forward and rear spar tip bending displacement (h1tip
and h2tip

respectively) with the spars’ orientations for the three cases is shown in figures

4.6a - 4.6f.
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Figure 4.6: Variation of bending deflections (unswept).

It is clear at a glance that for each of the three planforms the spar (and hence

wing) bending trends are very similar; as anticipated, the trends are the opposite

of those identified in figure 4.4, the variation of the wing’s flexural rigidity as the

spars’ orientations are varied i.e. maximum bending deflection occurs at the [0 0]

configuration (minimum flexural rigidity), and minimum bending occurs at the

[90 90] configuration (maximum flexural rigidity).

There are two contributing factors why the [0 90] configuration produces

larger aeroelastic bending deflections than the [90 0] configuration; firstly, for

this particular wing, the [90 0] configuration is stiffer in bending than the [0
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Figure 4.6: Variation of bending deflections (sweptback).
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Figure 4.6: Variation of bending deflections (sweptforward).

90] configuration (see section 4.2.1 for explanation). Secondly, the elastic axis is

positioned further aft for the [0 90] configuration than for the [90 0] configuration

(see figure 4.2) and so a greater lift force will be acting on the wing (greater

moment arm, so greater twist, therefore greater angle of incidence).

From figures 4.6a - 4.6f it can be seen that as the wing is swept back the sen-

sitivity of the bending deflections to changes in the spars’ orientations becomes

less, whereas sweeping the wing forward destabilises the bending behaviour (wing

close to diverging in figures 4.6e and 4.6f) at the [0 0] configuration. This is be-

cause for swept wings, there is a contribution to the angle of incidence from the
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bending deflection (see Eq. 3.170) and for sweptforward wings this is positive

(destabilising), whereas for sweptback wings this is negative (stabilising).

The variation of wing tip torsional displacement, θtip, with the spars’ orienta-

tions for the three cases is shown in figures 4.7, 4.9, and 4.11.

There are several factors that influence the aeroelastic torsional deflection

including position of the elastic axis, wing torsional stiffness and sweep angle.

However, from the plots it is clear that the main driver is the position of the

elastic axis; for all three planforms the maximum torsional deflection occurs at

the [0 90] configuration (corresponding to furthest aft elastic axis (see figure

4.2) and so largest pitching moment that acts to twist the wing). Similarly

the minimum torsional deflection corresponds to when the elastic axis is at its

furthest forward location i.e. the [90 0] configuration.

For the [90 90] and [0 0] configurations the elastic axis position is approxi-

mately the same; however, inspection of the other influencing factors allows the

torsional deflection behaviour to be explained. From figure 4.5 it can be seen

that the wing torsional stiffness is greater for the [90 90] configuration than for

the [0 0] configuration. Therefore a greater torsional deflection can be expected

for the [0 0] configuration for the unswept wing (see figure 4.7).

For swept wings there is also a bending contribution to the angle of incidence

(from figures 4.6c - 4.6f, larger at [0 0] than [90 90] configuration); for the forward

swept wing this is a positive contribution and causes a significant increase in lift

force on the wing at the [0 0] configuration. This results in a positive contribution

to the torsional deflection therefore augmenting the torsional stiffness contribu-

tion mentioned above and so the [0 0] configuration will clearly twist more than

the [90 90] configuration (see figure 4.11). However, for the sweptback wing the

bending contribution is negative and acts to oppose the torsional stiffness contri-

bution, and for this particular wing figure 4.9 shows that the aeroelastic twist is

actually slightly less at the [0 0] configuration than for the [90 90] configuration
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for the rearward swept wing.
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Figure 4.7: Variation of tip twist with
spars’ orientations (unswept).
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Figure 4.8: Variation of qd with spars’
orientations (unswept).
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Figure 4.9: Variation of tip twist with
spars’ orientations (sweptback).
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Figure 4.10: Variation of qd with spars’
orientations (sweptback).

Next, the divergence dynamic pressure qd trends are discussed. In figure 4.8

the divergence plot abruptly plateaus off at 5000 Pa; this indicates a divergence

dynamic pressure greater than or equal to 5000 Pa. In figure 4.10 there is an

area of no data; this is because no real solutions were found for the corresponding

spar configurations i.e. divergence is impossible.
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Figure 4.11: Variation of tip twist with
spars’ orientations (sweptforward).
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Figure 4.12: Variation of qd with spars’
orientations (sweptforward).

Unsurprisingly, the trends of divergence dynamic pressure (figures 4.8, 4.10,

and 4.12) closely follow the inverse of the torsional deflection trends, indicating

that the elastic axis position is the main driver; the explanation follows the same

argument as for the torsional deflection trends. The only exception is for the

sweptforward wing where the minimum divergence dynamic pressure occurs at

the [0 0] configuration instead of the [0 90] configuration; as mentioned above,

for forward swept wings the bending deflection has a destabilising effect and for

the [0 0] configuration the bending deflections are at a maximum.

As expected, the most statically stable wing is the sweptback wing where

for the majority of spar configurations aeroelastic divergence is impossible, and

even at its most unstable arrangement the divergence dynamic pressure is ap-

proximately 1000 Pa (see figure 4.10). The unswept wing is less stable with a

minimum divergence dynamic pressure of around 500 Pa, and divergence is a the-

oretical possibility for all configurations (although well above typical test speeds

for many spar configurations) (see figure 4.8). As already mentioned, the forward

swept wing is the most statically unstable of the planforms with a minimum di-

vergence dynamic pressure of less than 250 Pa and a maximum of less than 3000

Pa.
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Loads

The variation of CL with the spars’ orientations for the three cases is shown in

figures 4.13, 4.15 and 4.17, and the corresponding variation of CDi
is shown in

figures 4.14, 4.16 and 4.18.
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Figure 4.13: Variation of CL with
spars’ orientations (unswept).
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Figure 4.14: Variation of CDi
with

spars’ orientations (unswept).

0
20

40
60

80

0
20

40
60

80

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

φf [deg]φr [deg]

C
L

[1
]

Figure 4.15: Variation of CL with
spars’ orientations (sweptback).
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Figure 4.16: Variation of CDi
with

spars’ orientations (sweptback).

It is clear at a glance that for each of the planforms the lift and induced drag

trends are very similar. This is as expected since for a wing in inviscid flow [108]

CDi
= CD =

C2
L

πAReO
(4.8)



156
CHAPTER 4. AN ANALYTICAL STUDY USING THE ROTATING SPARS

AEROELASTIC MODEL

0
20

40
60

80

0
20

40
60

80

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

φr [deg]φf [deg]

C
L

[1
]

Figure 4.17: Variation of CL with
spars’ orientations (sweptforward).
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with
spars’ orientations (sweptforward).

where AR is the aspect ratio of the wing, and since the Oswald efficiency factor

eO is almost constant (some elastic variation [117], see figure 4.20) for a given

planform, then clearly the induced drag is proportional to the square of the lift.

Besides the rigid angle of incidence, the main contributions to the angle of

incidence and therefore aerodynamic forces are the wing’s torsional deflection,

and for a swept wing the wing’s bending deflection. Therefore, for the unswept

wing (see figures 4.13 and 4.14) the reason that CL and CDi
are maximum for

the [0 90] configuration is because this coincides with the maximum wing twist

(caused by furthest aft elastic axis). Similarly the minimum aerodynamic forces

coincide with minimum twist (and furthest forward elastic axis) i.e. the [90 0]

configuration.

For the sweptback wing the negative contribution to the aeroelastic forces

from the bending deflection must be considered; this becomes significant for large

bending deflections (e.g. close to the [0 0] configuration) and so does not affect

the location of the maximum CL and CDi
values ([0 90]) where bending deflection

is low. However, for the [0 0] configuration the lift and drag are decreased by this

contribution to such an extent that it becomes lower than the lift value at the

[90 0] configuration (where the bending deflection is low), and so the minimum

aerodynamic loads for the sweptback wing occur at the [0 0] configuration (see
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figures 4.15 and 4.16).

Conversely, for the sweptforward wing the bending deflection provides a pos-

itive contribution to the aeroelastic forces; once again, this effect is minimal for

small bending deflections (e.g. [0 90], [90 0]) and so the minimum CL and CDi
val-

ues still occur at the [90 0] configuration. However, the large bending deflections

that occur for low wing bending stiffnesses (e.g. [0 0]) provide a large increase

in loads and at the [0 0] configuration the increase is large enough to surpass

the loads at the [0 90] configuration, such that the maximum aerodynamic loads

for the sweptforward wing occur at the [0 0] configuration (see figures 4.17 and

4.18).

Aerodynamic efficiencies

The effect the rotating spars concept has on the aerodynamic efficiency of the

wing will be investigated in this section. This is of course an important aspect

of the parameter study since the main goal of the concept is to maximise the

efficiency. Here, two different efficiencies will be considered; the lift-to-drag ratio

(aerodynamic efficiency), defined as CL/CDi
for a wing in inviscid flow, and the

Oswald efficiency factor which indicates how close the lift distribution is to the

optimum (elliptical) [108] and for the inviscid case is given by

eO =
C2

L

πARCDi

(4.9)

Substituting the expression for CDi
given by Eq. 4.8 into the expression for the

inviscid lift-to-drag ratio, CL/CDi
gives

CL

CDi

=
πAReO
CL

(4.10)

Given that eO will vary very little relative to CL as the spars are rotated

allows the prediction to be made that the lift-to-drag ratio will approximately
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follow the trends of the corresponding CL values, inverted i.e.

CL

CDi

∝ 1

CL

(4.11)

Comparison of figures 4.19, 4.21 and 4.23 with figures 4.13, 4.15 and 4.17 re-

spectively reveals that this is indeed the case; for all cases the spar configuration

required for maximum lift-to-drag ratio coincides with the minimum lift config-

uration, and similarly the spar configuration required for minimum lift-to-drag

ratio coincides with the maximum lift configuration. In general however, this will

not be true for the same wing in viscous flow where the induced drag is only part

of the overall drag. Additionally, for viscous flow, the lift-to-drag ratios will be

considerably lower.
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Figure 4.19: Variation of lift-to-
drag ratio with spars’ orientations
(unswept).
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ciency factor with spars’ orientations
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Figure 4.21: Variation of lift-to-drag
ratio with spars’ orientations (swept-
back).
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Figure 4.22: Variation of Oswald effi-
ciency factor with spars’ orientations
(sweptback).
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Figure 4.23: Variation of lift-to-drag
ratio with spars’ orientations (swept-
forward).
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Figure 4.24: Variation of Oswald effi-
ciency factor with spars’ orientations
(sweptforward).

The plots of Oswald efficiency factor eO as a function of the spars’ orientations

(figure 4.20, 4.22, and 4.24) follow the trends of the lift-to-drag ratio plots closely,

although there is one major discrepancy; figure 4.22 shows that for the sweptback

case the trend deviates from the equivalent lift-to-drag ratio trend (figure 4.21)

close to the [0 0] configuration. The large influence that the bending deflections

have on the aerodynamics for the sweptback [0 0] configuration is most likely

having an effect, and the implications of this become apparent in section 4.5.
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4.3 Establishing design guidelines

4.3.1 Procedure

The parameter study carried out in section 4.2 is useful to identify trends and the

expected behaviour of a wing incorporating the rotating spars adaptive internal

structures concept. However, it provides only a limited insight into the feasibility

of the concept for an arbitrary wing and no rules of thumb for positioning and

sizing the rotating spars.

Basic design guidelines are outlined in this section, and to do this a measure

of the effectiveness of the concept will now be defined; as stated previously, there

are two primary objectives for developing the rotating spars concept; firstly, to

minimise drag throughout the flight envelope i.e. for a given CL value at various

atmospheric conditions, the spars’ orientations are varied to minimise CD, and

secondly to use the rotating spars to achieve roll control without the use of

conventional hinged surfaces i.e. differential variation of CL. For these two aims,

two corresponding effectiveness parameters are defined respectively as

MD =

CL

CD

∣
∣
∣
max

CL

CD

∣
∣
∣
min

(4.12)

and

ML = CL|max − CL|min (4.13)

where the effectiveness parameters are calculated at a fixed flight condition and

for a wing with fixed parameters; the only variables that are used to establish the

above parameters are the forward and rear spar angles of orientation. The CD

values used above will of course be induced drag coefficients due to the inviscid

flow limitation. As an additional indication of the effectiveness of the concept,

maximum airspeeds will be monitored.

In terms of suitability to a wing, the major planform parameters that will
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have a large impact on the success of the concept will be investigated (wing

sweep and aspect ratio). The drivers for these parameters will be the role of the

aircraft and not the rotating spars i.e. the aim is to determine the type of aircraft

that could benefit from the concept, not to redesign all wing types so that the

concept works well with them, as this would degrade the ability of certain aircraft

to successfully perform their role.

The results of this will then be used to establish guidelines for designing the

spars i.e. a suitable planform will be chosen and the major spar design variables

will be investigated (chordwise position of the two spars, and ratio of spar second

moments of area).

It is also important to employ analysis constraints at this point to make the

investigation more realistic. Admittedly, a major constraint in the full model

will be the dynamic instability of flutter, but this is beyond the scope of the

current model. The two constraints identified for the linear static model that

will prevent the model achieving the theoretical behaviour involve large deflec-

tions; firstly, sufficiently large twist angles will cause the wing to stall and also

invalidate the small angles assumption used by the model theory, and secondly,

large bending deflections will also contribute to flow stall for sweptforward wings,

but more significantly cause large static friction (stiction) forces to be present

between the rotating spars and their mountings; large bending deformations re-

sult in large restoring forces which are transmitted from the spars to the ribs

via their mountings perpendicular to the plane of rotation of the spars. For any

surface where friction is present, these perpendicular forces will give rise to the

requirement for a threshold of force parallel to the surface to be applied in order

to overcome the static friction [68]. These are the forces that actuators have

to overcome to re-orient the spars. For actuators with given maximum torque

values there will exist points in the flight envelope at which they are incapable

of overcoming the stiction forces.
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To deal with these two problems, two constraints are defined; twisting de-

flections at the wing tip are limited to being equal to or less than a certain

pre-defined value θtip|max, and the slope of the bending deflections of both spars

are limited to being equal to or less than a certain pre-defined value h′tip
∣
∣
max

. All

other solutions are discarded i.e. solutions are limited to the ranges given by

θtip ≤ θtip|max (4.14)

and

h′1tip
, h′2tip

≤ h′tip
∣
∣
max

(4.15)

Both of these constraints also deal with the onset of static instability (diver-

gence). It was established in section 4.2 that the maxima and minima defined in

Eqs. 4.12 and 4.13 will occur at any of the four spar configurations of [0 0], [90

90], [90 0] and [0 90]. With this in mind the effectiveness study analysis routine

can be summarised with the following steps (using the example of aspect ratio

AR as the parameter of interest):

1. Choose an initial value of aspect ratio AR1 and an initial airspeed U1.

2. For AR1 and U1, run the static aeroelastic analysis for the spar configura-

tions [0 0], [90 90], [90 0], [0 90].

3. At each of these four configurations check whether any of the θtip values

exceed the constraint θtip|max, and whether any of the h′1tip
, h′2tip

values

exceed the constraint h′tip
∣
∣
max

.

4. If none of the constraints are violated for the set of spar configurations,

increase the airspeed to U2.

5. Repeat steps 2 - 4 until a constraint is violated.

6. Converge on the maximum possible airspeed that does not violate a con-

straint, Umax, by alternating an increase and decrease in the airspeed, and
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by using smaller increments. At Umax calculate the effectiveness parame-

ters MD and ML from Eqs. 4.12 and 4.13 respectively. Since these are

calculated at the maximum speed Umax, these can be written MD (Umax)

and ML (Umax).

7. Increment the aspect ratio to a new arbitrary value, AR2. Set the new initial

airspeed to equal Umax corresponding to AR1.

8. Repeat steps 2 - 7 for all aspect ratio values of interest..

9. Plot MD (Umax), ML (Umax), and Umax against AR.

The above steps were performed for all parameters (sweep Λ, aspect ratio AR,

chordwise position of forward spar f , chordwise position of rear spar r, and the

ratio of spar second moments of area i.e. Iy′y′/Iz′z′). For f and r the procedure

was combined to obtain results for various combinations of f and r, and then

MD (Umax), ML (Umax), and Umax were plotted against f and r i.e. 3D plots.

Firstly though, values were chosen for θtip|max and h′tip
∣
∣
max

, the constraints; ex-

act values were not too important provided they were consistent as this allowed

a valid comparison between different wings to be made. However, attempts were

made to set them to realistic values and so 15◦ was chosen for both as this pre-

serves the assumptions of linearity within the model, allows fairly large torsional

deflections without stall occurring, and allows for realistic bending deflections

(the bending constraint of course depends on the output torque of the actuator).

The results are discussed in sections 4.3.2 and 4.3.3.

4.3.2 Suitability for planform

As mentioned in section 4.3.1, to determine what category of wings the rotating

spars concept is most suitable for, the wing aspect ratio and sweep was varied

and a measure of the effectiveness of the concept calculated and plotted. All

other wing parameters were fixed.
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To establish the effectiveness of the concept, the iterative procedure described

at the end of section 4.3.1 was used with the sweep Λ and then the aspect ratio

AR as the parameter p.

Effect of wing sweep

Figure 4.25 shows the influence of wing sweep on the effectiveness of the rotating

spars concept. With reference to this figure, to clarify the meaning of the three

output parameters, for Λ = 30◦ the rotating spars concept allows the lift coeffi-

cient to be changed by up to around 0.37 (ML (Umax)), the (inviscid) lift-to-drag

ratio, CL/CDi
, can be changed by up to approximately 360% (MD (Umax) ≈ 3.6),

and these changes occur at at speed of around 27 m·s-1 (Umax). At lower speeds

for the same wing, the variation in lift and lift-to-drag ratio will be lower (since

at a lower dynamic pressure). For the same sweep angle, it is possible to achieve

speeds beyond 27 m·s-1 but an increasing number of spar configurations will trig-

ger a constraint. To deal with this problem in order to safely increase the flight

envelope would require an intelligent feedback loop. Essentially 27 m·s-1 is the

maximum speed for this sweep angle that all the possible spar configurations are

safely accessible.

From the plots it is clear to see that the rotating spars concept is most suitable

to wings that are sweptback; as the sweep angle increases the maximum speed

that the wing can use the concept in all configurations increases. This is not a

surprising result since it is well known that sweeping a wing rearwards provides

static stability, whereas sweeping it forwards has the opposite effect [15]. As

a result of this it can be expected that the effectiveness parameters ML and

MD will be higher for larger sweep angles; this is in part true, but clearly at

around Λ = 22◦ a maximum is reached for both ML (Umax) and MD (Umax) and

beyond this the effectiveness decreases again. It can also be seen that a minimum

is reached at around Λ = −6◦ and for lower values of sweep the effectiveness

increases again. These two anomalies are most likely due to the influence of the
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Figure 4.25: Variation of morphing effectiveness parameters at maximum air-
speed with wing sweep.

coupling effect that bending deflections have with the aerodynamics for swept

wings. Note that in general the optimum sweep angle will not be 22◦ and this

will be dependent on many other model variables.

Although dynamic effects are not included in the current model, it is well

known that rearward sweep provides dynamic aeroelastic stability in addition to

the static stability already mentioned, and therefore it can be expected that if

flutter were included as an additional constraint, the results would still indicate

that the concept is most suitable to sweptback planforms [15].
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Effect of wing aspect ratio

Figure 4.26 shows the influence of the wing aspect ratio AR on the effectiveness

of the rotating spars concept. To clarify

AR =
2b

c
=

4b2

S
(4.16)

where b is the wing semi-span, c is the chord, and S is the full-span wing area.

Although the previous section established that the rotating spars concept is most

suitable for sweptback wings, the results for the unswept and sweptforward anal-

yses are also shown (Λ = 0◦, 20◦,−20◦).
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Figure 4.26: Variation of morphing effectiveness parameters at maximum air-
speed with wing aspect ratio.

Figure 4.26 reinforces the findings of the sweep investigation that the concept

is by far more suitable to sweptback wings; for sweptback wings, as the aspect
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ratio increases, Umax decreases, effectively decreasing the size of the flight enve-

lope. It can also be seen that at very low aspect ratios the effectiveness of the

concept is poor. This increases quickly as the aspect ratio is increased towards

around AR = 9, and then decreases again very gradually as the aspect ratio is

further increased, but with no significant loss in effectiveness for the range of

aspect ratios considered. As before, this optimum value for the aspect ratio is in

general specific to the wing setup and varies as all the other parameters vary.

4.3.3 Rotating spar placement and sizing

Using the results of section 4.3.2, a wing planform was used that lends itself well

to the rotating spars concept. This model was used to carry out an investigation

into how the local stiffness ratio of the spars, as well as the chordwise placement

of them affects the effectiveness of the concept.

Effect of ratio of spar second moments of area

At a fundamental level, the rotating spars alter the structure and therefore aeroe-

lastic behaviour by varying Is1
and Is2

, the second moment of area of the two

spars about a chordwise axis. For spar j this relies on a variable orientation

φj as well as non-equal values of Iy′

jy′

j
and Iz′jz′j

, the second moments of area of

spar j about its principal axes (see Eq. 3.28 in section 3.2.1). It is this second

parameter, the ratio of spar second moments of area, that will be discussed in

this section.

Using a model based on results from section 4.3.2 i.e. sweep of 20◦ and aspect

ratio of 8, the iteration procedure described in section 4.3.1 was used to investi-

gate how the ratio of spar second moments of area influences the effectiveness of

the concept. The ratio of spar second moments of area for both spars was varied

simultaneously and for spar j is given by Iy′

jy′

j
/Iz′jz′j

, where Iy′

jy′

j
≥ Iz′jz′j

. Iy′

jy′

j
is

a fixed value (sized to fit inside a typical wing thickness), and variation of the

ratio of spar second moments of area is achieved by varying Iz′jz′j
. The results for
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the unswept and sweptforward wing are also shown in figure 4.27 alongside the

sweptback wing for comparison.
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Figure 4.27: Variation of morphing effectiveness parameters at maximum speed
with rotating spars’ ratio of second moments of area.

As before, it is clear that the rotating spars concept is far more suitable for

use on sweptback wings than unswept and sweptforward wings. Intuitively, it

could be expected that as the ratio of spar second moments of area increases, the

effectiveness of the concept will increase, since this implies a greater variation in

the elastic axis position and wing stiffnesses; however, this is not the case with the

effectiveness peaking for a ratio of approximately 10, before gradually decreasing

again. This is due to the inclusion of the constraints outlined by Eqs. 4.14

and 4.15; as the ratio of spar second moments of area increases, Iz′jz′j
decreases,

while Iy′

jy′

j
remains fixed. Consequently, the spar second moment of area about a
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chordwise axis Isj
will decrease resulting in a lower wing bending and torsional

stiffness. This will of course cause the wing to bend and twist to larger values,

therefore eventually violating one or both of the mentioned constraints.

In other words, at a given speed, a high ratio of spar second moments of area

will offer higher effectiveness parameters ML and MD than a low stiffness ratio,

but will also result in higher deflections and therefore be more likely to violate

the constraints, and so a compromise must be found. For this wing, figure 4.27

identifies this as the wing with a ratio of spar second moments of area of 10.

The plots also show that if ratios below this optimum value are used, the

effectiveness sharply decreases. The conflicting argument, however, is that as the

ratio increases from 1, the highest speed that all possible spar configurations can

be realistically used (i.e. Umax) decreases rapidly, although this is augmented by

using rearward sweep.

Effect of spars’ chordwise placement

It has already been shown in section 4.2 that a large variation in the elastic

axis position of the wing is integral to the success of the rotating spars adaptive

structures concept. The degree to which this can be achieved largely depends on

the ratio of spar second moments of area, as discussed in the previous section, as

well as how far apart in a chordwise direction that the two spars are placed. In

this section the latter is investigated for a model based on results from section

4.3.2 i.e. sweep of 20◦ and aspect ratio of 8.

The iteration procedure described in section 4.3.1 was used with a slight

adjustment to investigate how the chordwise placement of the spars affects the

effectiveness of the concept. The modified procedure included an extra loop

in order to obtain values Umax and the corresponding maximum effectiveness

parameters i.e. ML (Umax) and MD (Umax) for a range of combinations of f and

r, the dimensionless chordwise position of the forward and rear spars respectively.

ML (Umax), MD (Umax) and Umax were then plotted against f and r (see figures
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4.28 - 4.30). For a wing of chord c, fc is the chordwise distance that the forward
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Figure 4.28: Variation of morphing ef-
fectiveness parameter ML (Umax) with
chordwise placement of rotating spars.
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Figure 4.29: Variation of morphing ef-
fectiveness parameter MD (Umax) with
chordwise placement of rotating spars.
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Figure 4.30: Variation of Umax with chordwise placement of rotating spars.

spar lies behind the leading-edge, and similarly rc is the chordwise distance that

the rear spar lies behind the leading-edge.

Unsurprisingly, the wing with the spars located furthest apart i.e. f = 0,

r = 1, in general, has the potential to have the most effective rotating spars,

and as the spars are positioned closer to one another the effectiveness drops.

There are a few exceptions to this trend however; when the spars are closest

together i.e. f = 0.4, r = 0.6 the effectiveness parameters corresponding to

maximum speed ML (Umax) and MD (Umax) are larger than when the spars are
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further apart for f = 0 and r = 0.6. This is because the effectiveness of the

concept is more precisely related to the distance that the elastic axis can vary by

relative to the aerodynamic centre (at the quarter chord), rather than simply just

the total distance that the elastic axis can vary by. It can be assumed therefore

that for the arrangement f = 0 and r = 0.6, the elastic axis does vary by a

larger distance than for the f = 0.4, r = 0.6 arrangement, but it is passing

through the aerodynamic centre with a smaller change in aeroelastic moment

arm. Additionally, the torsional stiffness of the wing will be less when the spars

are closer together and therefore aeroelastic deflections will be greater.

Despite this theoretical result that suggests the forward spar should be placed

at the leading-edge of the wing, and the rear spar on the trailing-edge, a realistic

wing will have problems achieving this for a number of reasons, the main one

being that a spar on the trailing-edge will have to have very small dimensions to fit

inside the aerofoil section, and therefore its stiffness values and hence contribution

to the adaptive structures concept will be minimal. A more realistic design will

have the forward spar around the 0.1 chord position, and the rear spar perhaps

at the 0.7 to 0.8 chord position.

Inspection of the Umax plot (figure 4.30) reveals that it loosely follows the

inverse of the trends observed in figures 4.28 and 4.29, the effectiveness plots,

and that as f and r are altered to improve the effectiveness, the maximum speed

at which the wing can achieve all possible spar orientation combinations will de-

crease.

Although trends have been established in sections 4.2 and 4.3, it has also been

shown that several of the parameter values that produce optimum behaviour are

model-dependent. With a model with multiple variables such as this one, the so-

lution is to perform an optimisation routine to arrive at the most suitable design.

This will be the focus of the next section.
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4.4 Design of a rotating spars wing using a ge-

netic algorithm

4.4.1 Introduction

As demonstrated in the previous section, the performance of the rotating spars

concept is dependent on multiple variables. Several of these, such as the chordwise

position of the spars, will be altered to achieve optimum performance, while

others will be pre-determined for a given wing depending on its role (e.g. sweep

angle, aspect ratio).

This section deals with finding optimum values for these variables, and as-

sumes that the wing is completely designed around the rotating spars; making

this assumption allowed those variables such as sweep and aspect ratio that are

usually pre-determined to be altered to help achieve an effective adaptive struc-

tures design. Although this is perhaps an unrealistic approach to designing a

wing, for the purpose of a technology demonstrator it is ideal.

The objective was to vary the wing design in order to maximise the effective-

ness of the concept, measured using the parameters MD and ML (given respec-

tively by Eqs. 4.12 and 4.13). The analysis was subject to constraints. Due to

the large number of variables, and the possibility of several valid solutions, an

optimisation routine was the obvious approach to solving this problem. To begin

with, an introduction to optimisation will be presented.

4.4.2 Optimisation overview

Optimisation is the process of obtaining the most suitable solution to a problem.

For some problems, there exists only a single solution, but it may be difficult or

even impossible to solve this explicitly. For other problems, there are multiple

solutions. Regardless, optimisation is the process of attempting to find the ‘best’

solution. By ‘best’, it is implied that the solution is, in general, not exact, but is
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sufficiently close to the exact solution [104].

For all approaches to optimisation, the problem is rearranged such that a

maximum or minimum corresponds to the desired solution [104] e.g. consider

the equation

z = f (x, y) (4.17)

and the problem is to find appropriate values of x and y such that z = zT . For

optimisation approaches the problem can then be set-up as

C (x, y) = |zT − f (x, y)| (4.18)

where C is known as the objective or cost function [104]. The aim then is to

minimise C.

Exhaustive search [56]

The exhaustive search approach to optimisation is the simplest but least effi-

cient method. In this approach, no intelligent observations are made to speed

up the search. Instead, a sufficiently high resolution of samples are taken of the

cost function (e.g. for the example given by Eq. 4.18, many different x and y

combinations) to construct a ‘map’ of the cost function, and then by comparing

the cost functions for each sample, a minimum/maximum is found. The idea is

that enough samples are taken to have confidence that this is the global mini-

mum/maximum, and not a local minimum/maximum. This requirement for the

cost function to be evaluated a large number of times makes the exhaustive search

trial-and-error process extremely computationally expensive and therefore slow.

A refinement is to start with a low resolution to produce a coarse ‘map’ of the

cost function, and then narrow in on areas of interest. This will speed up the rou-

tine to some extent, but the likelihood of missing the global minimum/maximum

inevitably increases.
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Gradient methods [104]

The so-called gradient methods work by calculating gradients of the cost function

and using this information to direct the search towards minima/maxima. This

makes gradient methods superior to exhaustive search approaches. There are a

variety of different gradient based approaches that work differently from each

other:

• Method of steepest descent/ascent. This is a simple and robust routine,

but is slow to converge [26]. This approach is used in section 4.5.4.

• Newton’s method. Speeds up convergence, but at the expense of robustness.

It is unreliable unless the starting point is in the vicinity of the global

minimum/maximum. Furthermore, Newton’s method requires that second

order derivatives also be calculated [53, 104].

• Conjugate gradient methods e.g. Fletcher-Reeves algorithm [111].

• Variable metric (quasi-Newton) methods e.g. Davidon-Fletcher-Powell (DFP)

algorithm, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [113].

The last two methods are similar to Newton’s method, but avoid calculating

second-order derivatives explicitly and instead use approximations. This makes

them more efficient and robust, but they are difficult to implement [28].

One major drawback to gradient methods is that they converge on the min-

imum/maximum closest to the starting point, which may not be the global ex-

treme. Additionally, gradient methods cannot deal with cost functions that are

not differentiable at all points and have discontinuities, since gradients are unde-

fined for these features, and they also struggle to succeed for a large number of

input variables [56].
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Metaheuristics [51, ?]

The gradient methods improve on the exhaustive search technique by using an

intelligent search pattern; they look for clues that point them in the most likely

direction of a minimum/maximum value. However, these approaches do not

improve the chances of finding the global minimum/maximum instead of a local

one.

Methods of optimisation known as metaheuristics have surfaced in recent

years that offer fast and robust methods of finding the solution in a manner that

increases the likelihood of that solution being the global minimum/maximum.

These methods create new points to search by applying statistical operators to

previous points. Unlike gradient methods, derivatives of the cost function are not

necessary and so metaheuristics can deal with discrete variables and noncontin-

uous cost functions. However, as with other methods there is no guarantee that

the optimal solution will be found. Methods include:

• Simulated annealing (SA) [73].

• Particle swarm optimisation (PSO) [38, 71].

• Ant colony optimisation (ACO) [35, 36].

• Evolutionary algorithms (EA) including genetic algorithms (GA) [34, 56].

• Neural network metamodel based optimisation [51, 54, 113].

• Kriging metamodel based optimisation [25, 134].

A genetic algorithm will be used as the tool to search the design variables in

the rotating spars wing for an optimum solution, since it copes well with a large

set of variables, has a reputation for locating ‘good’ solutions in relatively few

iterations (even for difficult objective functions), and is a well developed and

understood method [28, 56, 98].
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4.4.3 Genetic algorithms

A genetic algorithm (GA) is an optimisation and search technique that is based

on the Darwinian theory of natural selection, a primary element in evolution [69].

Natural selection is the process that makes certain traits of an organism (e.g.

human, animal, insect, plant etc.) more common in the population over multiple

generations. These traits that are passed down through generations are those

that are well suited to the organisms’ environment, and therefore reflect the

survivability of that organism, hence the phrase “survival of the fittest” [123].

The basic steps in the GA routine are [28, 56, 98]:

1. Random generation of individuals to form an initial population.

2. Evaluation of the fitness/survivability of each individual in the population.

3. Selection: Randomly select pairs of individuals, biased towards fitter indi-

viduals. An individual can be present in more than one pair. This pro-

cedure is often referred to as roulette wheel selection, with the size of the

slots in the wheel proportional to the fitness of the individuals i.e. fittest

individuals are most likely to be selected, but there is no guarantee that

this will occur or that the least fit individuals will not be selected. This is

in contrast to the rarely used truncation selection method where all indi-

viduals fitter than a certain threshold are selected, and all others are not

[123].

4. Reproduction: In a high probability procedure known as crossover, the

pairs breed. If no crossover occurs for a given pair then exact copies of the

parents are made. The offspring are then subject to the low probability

procedure of mutation. The original generation become parents.

5. Formation of the second generation: The bulk of the offspring then replace

their parents in the population. However, a small portion of the most
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fit parents (elite) remain in order to preserve individuals that have the

potential to be the fittest over successive generations.

6. Steps 2 - 5 are repeated over multiple generations and the overall fitness of

a generation will increase over successive generations until it has reached a

maximum (convergence).

7. New blood : This optional procedure can be thought of as the introduction

of an individual from an environment completely different to the one that

the successive individuals exist in. If this procedure is used then every so

often (e.g. every tenth generation), the offspring of the least fit pairs of par-

ents from the previous generation are replaced by new randomly-produced

individuals. The idea is to introduce an unbiased solution into the popu-

lation that has not inherited any of the previous generations’ traits; this

tends to enhance the genetic diversity of the population, and can result

in the exploration of search space not previously covered. Sometimes this

can nudge the solution away from convergence occurring in a local mini-

mum/maximum and therefore aids the search for the global solution [12].

The mechanisms of new blood and mutation are used to prevent the pop-

ulation from stagnating [67].

Implementation

Applying the process to input variables rather than organisms is done using ab-

stract representations of the potential solutions; traditionally, but not exclusively,

a set of binary strings are used [123]. The reason for this approach is to create

a representation of the potential solution that is more alike to genetic models

found in nature. At this point some terminology will be defined:

• Gene: a binary string that represents a potential solution.
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• Cell : a single element in the binary string, which therefore will have the

value 0 or 1.

• Pool : a collection of binary strings that together are equivalent to a single

generation of organisms in nature. All genes (binary strings) in the gener-

ation and in fact in all generations must contain the same number of cells

for the algorithm to function.

The implementation will be explained using a simplified example: consider the

problem of designing a two-spar wing with the objective of minimising the max-

imum bending deflection hmax of the wing at a specific flight condition, where

hmax = g (Λ, f, r) i.e. the design variables are the wing sweep Λ, and chordwise

position of the two spars f and r, and g is a function that relates the variables to

the maximum bending deflection. The first step is to decide the range of possible

values and resolution to use for each variable, shown in table 4.1.

Table 4.1: Variable range and increments.

Range Ni Increment

−35◦ ≤ Λ ≤ 35◦ 24 4.667◦

0.10 ≤ f ≤ 0.40 22 0.1

0.50 ≤ r ≤ 0.85 22 0.11667

Since the optimisation routine trials discrete values, careful consideration of

the search space resolution should be made. This is indicated in table 4.1 via the

number of increments, Ni, which must be a power of 2. If the resolution is too

large, the routine can miss minima, whereas if it is too small convergence may

take a long time.

As the routine represents the search space with binary strings, the variable

ranges must be modelled by positive integer values e.g. r currently runs between

0.50 and 0.85 with 22 increments of 0.11667; this must be adjusted so that it
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begins at 0 with increments of 1. A simple transformation can easily be derived

to do this, given by

x̂ = (x− xmin) ×
Ni − 1

xmax − xmin

(4.19)

where x is an any one of the variables, and x̂ is the transformed variable. The

transformed variable ranges are given in table 4.2.

Table 4.2: Transformed variable range and increments.

Range Ni Increment

0 ≤ Λ̂ ≤ 15 24 1

0 ≤ f̂ ≤ 3 22 1

0 ≤ r̂ ≤ 3 22 1

With Ni shown as a power of 2, the exponent indicates the length of the

binary string (or gene) that will represent that particular variable i.e. Λ̂ will be

represented by a gene with 4 cells, and f̂ and r̂ by genes with 2 cells each.

For problems with more than one variable (as in this example), the genes are

combined (in any order) e.g. 1011
︸︷︷︸

Λ̂

11
︸︷︷︸

f̂

10
︸︷︷︸

r̂

. This eight cell gene is then treated

as a single binary string for the reproduction processes that follow. Extraction of

Λ̂, f̂ and r̂ for evaluation of cost functions is done simply by dividing the gene up

into its constituent components i.e. r̂ is represented by cells one and two (where

the first cell is the right-most cell), f̂ is represented by cells three and four, and

Λ̂ is represented by cells five through to eight.

With this information an initial pool (generation) can be created; the popula-

tion depends on the problem, but for this example a population of six will be used.

Six genes are then generated randomly, each representing different combinations

of Λ̂, f̂ , and r̂ (see table 4.3). Also shown in the table are the variable values

that they represent. Eq. 4.19 was used to convert back from the transformed

variables to the actual variables.
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Table 4.3: Representation of possible solutions with binary strings and conversion
back to transformed and actual variable decimal values.

ID Gene Λ̂ [1] f̂ [1] r̂ [1] Λ [deg] f [1] r [1]

A 10110010 11 0 2 16.333 0.1 0.7333

B 00110111 3 1 3 -21 0.2 0.85

C 00000011 0 0 3 -35 0.1 0.85

D 01111001 7 2 1 -2.333 0.3 0.6167

E 01100000 6 0 0 -7 0.1 0.5

F 11100110 14 1 2 30.333 0.2 0.7333

Next the fitness of each gene in the pool is evaluated using the cost (fitness)

function hmax = g (Λ, f, r). This is presented in table 4.4.

Table 4.4: Fitness of each gene.

ID Gene Fitness hmax [mm]

A 10110010 67

B 00110111 34

C 00000011 131

D 01111001 12

E 01100000 46

F 11100110 58

Selection [123]

The genes are then paired in preparation for ‘mating’. A gene can be present

in multiple pairs, and the likelihood of a gene being present in a pair depends

on its fitness; genes that are fittest (in this case lowest values of hmax) are most

likely to be present in a pair. In the example, gene D is most likely to be present

in one or both of the pairs, and gene C is least likely to appear. Assume that

the biased random pairing of genes pairs genes D and B together, genes D and
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A together, and genes E and F together Mating then occurs between the genes

in each pair through the mechanisms of crossover, mutation and translation.

Crossover [123]

The pairs that have been created then mate to produce two offspring each.

The main mechanism at work here is a procedure known as crossover. For any

given pair in a generation, there is a high user-defined probability pc (usually

around 0.9 [60], although sometimes 1/L is used, where L is the length of a gene

[123]) that crossover will occur. Various crossover techniques are available, but

the traditional one point crossover [123] will be demonstrated here; a random

coinciding point in the two genes is chosen and the cell values beyond this point

swap over between genes. For example, assume crossover does occur for the pair

of genes D and B, with a crossover point between the fifth and sixth cells, and

for the pair of genes D and A, with a crossover point between the second and

the third cells. Assume the pair of genes E and F are not selected for crossover.

Table 4.5 summarises the crossover procedure; notice that the offspring of genes

E and F are copies of their parents.

Table 4.5: Crossover of genes.

ID Original gene Post-crossover

D 011 11001 011 10111

B 001 10111 001 11001

D 011110 01 011110 10

A 101100 10 101100 01

E 01100000 01100000

F 11100110 11100110
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Mutation [123]

Next, the offspring from the crossover procedure are exposed to the possibility

of mutation. There are a variety of mutation techniques that can be employed;

here the inversion and translation techniques will be demonstrated. There is

a low user-defined probability pm (e.g. 0.01 [60]) of either of these mutation

procedures occurring to a given offspring gene.

If inversion [123] does occur within a gene, a random cell within the gene

changes value (i.e. 0 become 1, or 1 becomes 0). For demonstration purposes,

assume that inversion occurs in the second and third of the post-crossover genes,

and that this occurs at the fourth and eighth cells respectively (see table 4.6).

Table 4.6: Inversion of genes.

Post-crossover Post-inversion

01110111 01110111

0011 1 001 0011 0 001

0 1111010 1 1111010

10110001 10110001

01100000 01100000

11100110 11100110

If translation [28] occurs, a random point in the gene is chosen and all cells

after this point are moved before this point and vice versa. For demonstration

purposes, assume that translation occurs in the first and second of the post-

inversion genes, and that this occurs between the third and the fourth cells, and

the fourth and the fifth cells respectively (see table 4.7).
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Table 4.7: Translation of genes.

Post-inversion Post-translation

01110 111 111 01110

0011 0001 0001 0011

11111010 11111010

10110001 10110001

01100000 01100000

11100110 11100110

New blood [12]

In an optional procedure known as introducing new blood, infrequently a

completely random set of genes is introduced into the gene pool. The idea of

this is to introduce genes into the gene pool that do not have any of the previous

generations’ traits. This procedure can sometimes move a solution away from

incorrect convergence at a local minimum/maximum and therefore aids conver-

gence at a global minimum/maximum. Usually many generations evolve between

the introduction of this new blood (e.g. every 15 loops), and only a small portion

of the genepool will be replaced by these randomly generated genes. Table 4.8

shows the introduction of new blood for the current example, with only one of

the post-translation genes being replaced by new blood.
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Table 4.8: Introduction of new blood.

Post-translation Post- new blood

11101110 00100010

00010011 00010011

11111010 11111010

10110001 10110001

01100000 01100000

11100110 11100110

Preserving the elite genes [123]

To prevent losing possible ‘best’ solutions (i.e. those with the lowest/highest

fitness) between successive generations, a small portion (e.g. 20%) of the most

fit genes in each generation are carried over to the next generation.

For the current example, it is assumed that only a single gene is carried over.

From table 4.4 the gene with the best fitness for the current objective (minimise

hmax) is gene D, represented by the binary string 01111001; this replaces one of

the offspring genes (see table 4.9).

Table 4.9: Carry-over of elite gene from previous generation.

Post-new-blood Post-carry-over

00100010 00100010

00010011 00010011

11111010 11111010

10110001 10110001

01100000 01100000

11100110 01111001
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The column on the right in table 4.9 i.e. post-carry-over represents the final

gene pool of the offspring. This mating process is then repeated for the offspring

until satisfactory convergence of the cost function occurs.

4.4.4 Optimisation of the rotating spars wing to maximise

effectiveness parameters

The genetic algorithm optimisation routine described in section 4.4.3 was used

to find parameter values for the rotating spars adaptive structures wing concept

in order to maximise the effectiveness parameters defined in section 4.3.1 (these

parameters give an indication of the effectiveness of the rotating spars concept).

This was performed using the MATLAB® static aeroelastic model (developed

in chapter 3) in conjunction with a genetic algorithm routine, also written in

MATLAB®. The objective was to establish an effective model that was then

used for further analytical work in section 4.5.

Cost function

The primary aim of the design optimisation was to arrive at a wing design that

would effectively minimise drag for a given lift value throughout the flight en-

velope i.e. maximise MD (as explained in section 4.3.1, MD gives an indication

of the range of lift-to-drag ratios that are possible at a given flight condition by

varying only the spars’ orientations). As an additional benefit, a rotating spars

wing that achieves a large value of MD will also be able to vary the lift substan-

tially and so roll control is a possibility; this variation in lift is measured by ML

(ML gives an indication of the range of lift that is achievable at a given flight

condition by varying only the spars’ orientation).

Since maximising MD was the primary objective, and an increase in MD

will in general increase ML, the cost function for the optimisation task was to

maximise MD. Out of interest a separate optimisation was performed where the

cost function was to maximise ML; as this is not the main aim of the concept
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the results of this were not taken any further.

Design variables

There were a large number of wing/structural parameters that could be varied

in order to alter the effectiveness of the concept; it is for this reason that an

optimisation approach was used to find a ‘good’ design. These parameters are

shown in table 4.10; the range in which they were allowed to vary, as well as the

number of increments Ni considered is also shown.

Table 4.10: Parameter ranges and number of increments.

Parameter Min. value Max. value Ni

Wing aspect ratio AR [1] 3 20 24

Wing sweep Λ [deg] -45 45 26

Fwd spar position f [1] 0.05 0.40 25

Rear spar position r [1] 0.60 0.95 25

Ratio of spar second moments of area for

each of the two spars
Iy′

j
y′
j

Iz′
j
z′
j

[1]

1 35 25

Rib torsional constant for each of the 10

ribs Jrk
[m4 × 10−10]

1.0 2.0 23

Design constants

A number of basic model parameters had to be assigned values before the opti-

misation routine could be performed. These values are presented in table 4.11.
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Table 4.11: Basic fixed parameter values.

Parameter Value

Wing area (full-span) S [m2] 0.5

Aerofoil thickness t [%] 12

Number of ribs Nrib [1] 10

Young’s modulus E [GPa] 69

Poisson’s ratio ν [1] 0.33

Airspeed U [m·s-1] 30

Air density ρ [kg·m−3] 1.225

Rigid angle of incidence αr [deg] 5

The thickness of the wing t does not affect the aerodynamics since thin-

aerofoil theory assumptions are being used for the aerodynamic model. Instead

it is used to size the height of the spars ds (a rectangular cross-section is used for

the spars). A NACA four-series aerofoil is assumed so that, using the thickness

given in table 4.11 along with the governing equation for the NACA four-series

aerofoil, the wing thickness at any chordwise location can be assessed. So the

height of the forward spar (located at the chordwise location f) is defined as the

thickness of the aerofoil at f , and similarly for the rear spar. The thickness of

the spar bsj
for spar j is then calculated using the ratio of spar second moments

of area Iy′

jy′

j
/Iz′jz′j

.

Constraints

To make the design process more realistic, several constraints were enforced.

As described in section 4.3.1, large wing twist angles cause the wing to stall in

reality and invalidate the small angles assumption used during the development

of the analytical model in chapter 3, and large bending deflections also contribute

towards stall for sweptforward wings. The aerodynamic model is linear and does

not account for stall.
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Additionally, in reality, large bending deflections cause large stiction forces to

be present between the rotating spars and their mountings, and for an actuator

with a given maximum torque value there will exist a bending deflection at which

it is incapable of overcoming the stiction force.

Furthermore, large twist and bending deflections indicate the onset of a di-

vergence instability. The analytical model was restricted from operating in these

conditions by specifying a maximum wing tip twist angle θtip|max and a maximum

slope for the bending deflections of each spar at the wing tip h′tip
∣
∣
max

.

The final constraint that was introduced was to specify a minimum thickness

bs|min for the spars; this prevented convergence of a solution where the spar was

so thin that it could not be easily manufactured. The actual values used for

these three constraints is not too significant assuming they are consistent for the

complete analysis. Care was taken to use realistic values however, and table 4.12

displays these.

Table 4.12: Optimisation constraints for the design of the rotating spars wing.

Constraint Value

θtip|max [deg] 15

h′tip
∣
∣
max

[deg] 15

bs|min [mm] 2

The constraints were enforced in the GA optimisation routine with the use of

a penalty function P ; this is a discrete function that significantly alters the cost

function C to ensure that the solution cannot converge whenever a constraint

is violated e.g. for the routine where the objective was to maximise MD, the

unconstrained routine was to maximise C = MD. The constrained optimisation

was then set up such that the objective was to maximise C = MD/P , with P

either several orders of magnitude greater than the expected order of magnitude
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of MD, or equal to 1:

P = 1, constraints not violated (4.20)

P = 10, 000, constraint(s) violated (4.21)

Results

For both design objectives (i.e. maximiseMD and maximiseML) the optimisation

was carried out three times (runs D1 to D3, and L1 to L3 respectively) in order

to assess whether convergence occurred each time at a global maximum, and if

it did not, to decide whether the local maximum solution was acceptable.

For the genetic algorithm, an initial gene pool of 25 genes was created, and the

optimisation was allowed to run through 50 generations/iterations. The results

for all three cases are shown in table 4.13. The units of Jrk
, not displayed in the

table for brevity, are m4 × 10−10.
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Table 4.13: GA optimisation results.

Variable Cost function

Maximise MD Maximise ML

Run D1 Run D2 Run D3 Run L1 Run L2 Run L3

MDconv
[1] 4.9982 3.5129 4.5747 2.9929 2.7074 2.7694

MLconv
[1] 0.60162 0.40208 0.52504 0.38161 0.34440 0.39387

AR [1] 7.5 14.3 10.9 15.5 16.6 16.6

Λ [deg] 16.4 29.3 15.0 23.6 22.1 29.3

f [1] 0.073 0.400 0.163 0.400 0.366 0.400

r [1] 0.634 0.679 0.657 0.736 0.645 0.690
Iy′

1
y′
1

Iz′
1

z′
1

[1] 29.5 32.8 27.3 18.5 15.3 22.9

Iy′
2

y′
2

Iz′
2

z′
2

[1] 32.8 13.1 25.1 10.9 27.3 17.5

Jr1
1.3 1.6 1.6 1.1 1.7 1.9

Jr2
1.1 1.0 1.0 1.0 1.6 1.1

Jr3
1.0 1.0 1.1 1.1 1.6 1.6

Jr4
1.4 1.0 1.3 1.6 1.1 1.1

Jr5
1.1 1.1 1.0 1.3 1.4 1.7

Jr6
1.1 1.1 1.6 1.1 1.6 1.6

Jr7
1.3 1.3 1.3 1.1 1.3 1.1

Jr8
1.9 1.6 1.3 1.4 1.9 1.1

Jr9
1.1 1.0 1.3 1.4 1.9 1.6

Jr10
1.1 1.6 1.4 1.0 1.7 1.3

From the results of all the cases it is unclear as to whether any of the six

solutions represents the global maximum, as no two solutions share near-identical

parameter sets. Figure 4.31 shows a typical iteration history (run D1) for the

five best genes/solutions,

Despite the cost function in runs L1 to L3 being set up to maximise ML,
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Figure 4.31: Convergence of morphing effectiveness parameter MD for the five
best genes/solutions.

it can be seen that the converged values of both MD and ML are consistently

higher for runs D1 to D2 where the cost function is set up to maximise MD. One

possible explanation is that the cost function for maximising ML has more local

maxima than the equivalent cost function for maximising MD, and the routine

may benefit from an increased number of iterations.

Although the converged design variables are not identical, trends can be ob-

served that reinforce the results of section 4.3; a medium-to-high aspect ratio

wing with a sweepback angle between 15◦ and 30◦ seems to work well. A high

aspect ratio increases the lift, as well as the lift-to-drag ratio and so increases

the range that these can be varied by (i.e. ML and MD), but as the aspect

ratio is further increased the deflections become substantial and violate the con-

straints. Additionally, rearward sweep delays divergence and therefore excessive

deflections and so ML and MD will be higher as the sweep angle is increased. At

sufficiently large sweep angles the stabilising bending-torsion coupling that exists

will begin to reduce ML and MD.

It has been recommended (see section 4.3) that the rotating spars be placed

either as far apart in a chordwise sense as possible, or close together. It was also

mentioned that, in reality, the thickness of the aerofoil towards the trailing-edge

will prevent the rear spar being located there, and a more realistic position for
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it will be at 0.7 or 0.8 chord. From the table it can be seen that all solutions

placed the rear spar close to 0.7 chord, and two of the solutions (runs D1 and D3)

placed the forward spar towards the leading-edge, while the other four solutions

placed it approximately as far aft as possible (0.4 chord).

The results also confirm that relatively large ratios of spar second moments of

area make the concept more effective. All of the converged values are greater than

10, and the majority of them are close to 30. This is equivalent to spar heights

ds in excess of five times the spar thicknesses bs. These large ratios enable the

wing to substantially alter the position of the elastic axis.

Most of the torsional stiffnesses of the ribs have converged to low values (closer

to 1×10−10 m4 than 2×10−10 m4). This is not surprising given that a contribution

of the wing’s torsional stiffness comes from the torsional stiffnesses of the ribs,

and therefore by reducing the torsional stiffnesses of the ribs the wing’s torsional

stiffness will also reduce, allowing greater control over the aeroelastic deflections.

Run D1 is clearly the best solution in terms of maximising both MD and ML.

The wing described by the solution parameters of run D1 will be used in the next

section to carry out a trim study.

4.5 Trim study

4.5.1 Introduction

Since the main aim of the rotating spars adaptive structures concept is to min-

imise drag throughout the flight envelope, a study was performed to gain an

insight into how the spar orientations affect the drag for a constant CL, since this

is a required condition for straight and level flight which aircraft operate at for

the majority of flight. The wing model described by the optimisation results of

case D1 in section 4.4.4 was used as the platform for the study since this design

has been optimised to make best use of the rotating spars concept.

To simulate the flight envelope, the airspeed was varied, and a trim analysis
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was performed; more specifically, a target CL value was defined, and at each

airspeed the rigid angle of incidence as well as the spars’ orientations were varied

in order to match the target CL. This allowed plots of the spars’ orientations

against drag at the trim state to be constructed for each airspeed. These plots

highlight the requirement for different combinations of spar orientations in order

to achieve minimum drag at the trim state.

To conclude this study, a steepest descent optimisation algorithm was imple-

mented in order to determine the required spar orientations for minimum induced

drag at each airspeed.

4.5.2 Trimming the wing

With the assumption that the rigid angle of incidence αr is the only variable,

and noting that the analytical aeroelastic model is linear, and therefore has a

linear lift-curve slope (approximately correct for small angles of incidence) which

passes through the origin (symmetric aerofoil so zero lift for zero incidence), the

following procedure can be followed to trim the wing:

1. Define a target CL value, CLref
. This is the value of CL that the wing will

be trimmed to.

2. At an arbitrary trial rigid angle of incidence αrtrial
calculate the lift coeffi-

cient CLtrial
for the current airspeed.

3. The required rigid angle of incidence αrtrim
to trim the wing to CLref

at the

current airspeed is simply given by

αrtrim
= αrtrial

CLref

CLtrial

(4.22)

4. The above procedure is repeated for all required airspeeds.
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4.5.3 Effect of rotating spars on the trim state

The trim procedure described was performed for various combinations of the

spars’ orientations (3◦ increments between 0◦ and 90◦ for both spars) and air-

speeds (20, 40 and 60 m·s-1). The reference CL was 0.0777 (corresponding to

U = 10 m·s-1, αr = 1◦, and spar configuration [60 60]). The results are shown in

figures 4.32 - 4.37.

0
20

40
60

80

0
20

40
60

80

270

275

280

285

290

295

300

φr [deg]
φf [deg]

C
L
/C

D
i

[1
]

Figure 4.32: Variation of CL/CDi
at

20 m·s-1 with spars’ orientations (trim
state).
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Figure 4.33: Variation of rigid angle of
incidence at 20 m·s-1 with spars’ ori-
entations (trim state).

0
20

40
60

80

0
20

40
60

80

180

200

220

240

260

280

300

φr [deg]φf [deg]

C
L
/C

D
i

[1
]

Figure 4.34: Variation of CL/CDi
at

40 m·s-1 with spars’ orientations (trim
state).
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Figure 4.35: Variation of rigid angle of
incidence at 40 m·s-1 with spars’ ori-
entations (trim state).
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Figure 4.36: Variation of CL/CDi
at

60 m·s-1 with spars’ orientations (trim
state).
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Figure 4.37: Variation of rigid angle of
incidence at 60 m·s-1 with spars’ ori-
entations (trim state).

The inviscid lift-to-drag ratio CL/CDi
was related to the Oswald efficiency

factor eO and the lift coefficient CL in Eq. 4.10 i.e.

CL

CDi

=
πAReO
CL

(4.10)

In section 4.2.2 the assumption was made that eO varies very little relative

to CL; this is in general true. However, for a trim analysis CL is fixed and so

CL

CDi

∝ eO (4.23)

Comparison of figures 4.32, 4.34, and 4.36 with figure 4.22 (the plot of the

spars’ orientations against the Oswald efficiency factor for a sweptback wing)

confirms the relationship given by Eq. 4.23. The physical reasoning behind this

trend can be understood by examining the expression for the angle of incidence

for a swept wing, given by

α = αr (x1, x2) + θ (x1, x2) cos Λ − h′ (x1, x2) sin Λ (4.24)

where θ is the torsional displacement of the wing, h′ is the slope of the bending

displacement of the wing, Λ is the rearward sweep angle, and x1 and x2 are the
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spanwise coordinates along each of the two spars. Note that bending deflections

will be larger towards the tip than torsional deflections will since these deflections

will be similar to the mode shapes of a cantilever beam which, in general, follow

this trend.

In the [0 90] configuration, the elastic axis is far aft and the bending and

torsional stiffnesses are moderate resulting in large torsional displacements θ,

but low to moderate bending deflections (therefore bending gradients h′). In

the [90 90] configuration, θ is slightly less, but h′ is noticeably less. In the [90

0] configuration, the forward placed elastic axis and fairly high stiffnesses will

result in low values of θ, and low to moderate values of h′, while in the [0 0]

configuration, the lower stiffness values will result in moderate values of θ and

high values of h′.

Using Eq. 4.24 in a qualitative manner with these predictions suggests that

relative to the inboard angles of incidence, the [0 90] configuration is likely to have

the highest outboard angles of incidence (highest induced drag and lowest effi-

ciencies), and the [0 0] or [90 0] configuration is likely to have the lowest outboard

angles of incidence (lowest induced drag and highest efficiencies). Therefore it is

probable that for a rearward-swept elastic wing

eO|[0 90] < eO|[90 90] < eO|[90 0] < eO|[0 0]

or eO|[0 90] < eO|[90 90] < eO|[0 0] < eO|[90 0]

(4.25)

and

CL

CDi

∣
∣
∣
∣
[0 90]

<
CL

CDi

∣
∣
∣
∣
[90 90]

<
CL

CDi

∣
∣
∣
∣
[90 0]

<
CL

CDi

∣
∣
∣
∣
[0 0]

or
CL

CDi

∣
∣
∣
∣
[0 90]

<
CL

CDi

∣
∣
∣
∣
[90 90]

<
CL

CDi

∣
∣
∣
∣
[0 0]

<
CL

CDi

∣
∣
∣
∣
[90 0]

(4.26)

These statements agree with the plots of eO (figures 4.20, 4.22 and 4.24) and

CL/CDi
(figures 4.19, 4.21 and 4.23). The pattern of these statements is also
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likely to hold true for the total elastic angle of incidence given by

αe (x1, x2) = θ (x1, x2) cos Λ − h′ (x1, x2) sin Λ (4.27)

although the pattern will be reversed i.e.

αe|[0 90] > αe|[90 90] > αe|[90 0] > αe|[0 0]

or αe|[0 90] > αe|[90 90] > αe|[0 0] > αe|[90 0]

(4.28)

and therefore in order to trim the wing to a fixed CL, the rigid angle of

incidence αr must be adjusted to compensate and so it can be expected that

αr|[0 90] < αr|[90 90] < αr|[90 0] < αr|[0 0]

or αr|[0 90] < αr|[90 90] < αr|[0 0] < αr|[90 0]

(4.29)

and inspection of figures 4.33, 4.35, and 4.37 reveals this to be the case,

although there is a clear peak at [0 0] which is consistent at all airspeeds, unlike

the peaks in the CL/CDi
trends.

As the airspeed increases, a larger range of lift-to-drag ratios are available,

and the range that the rigid angle of incidence needs to be varied by to trim the

wing also increases. This is due to a larger range of aeroelastic deflections caused

by the higher dynamic pressures.

Notice that as the airspeed changes, the shape/trend of the CL/CDi
plot

changes; in particular, the peak (global maximum) which represents the optimal

spar configuration for minimising induced drag appears to shift. This manifests

itself as a ridge which moves in the positive φr-direction as the speed increases.

Figure 4.36 clearly shows the bulge of the graph which runs approximately be-

tween the [0 15] configuration and the [90 25] configuration. This is a feature of

swept wings only and is a result of the conflicting contributions to the angle of

incidence distribution from the bending and twisting displacements. The peak of



198
CHAPTER 4. AN ANALYTICAL STUDY USING THE ROTATING SPARS

AEROELASTIC MODEL

the graph indicates that at that particular airspeed and trim CL, the correspond-

ing spar configuration produces a lift distribution that minimises drag. This leads

to a minimum induced drag ‘corridor’ or ‘valley’ that shifts with airspeed. The

objective then is to exploit this feature by varying the spar orientations through-

out flight to maintain a minimum drag state.

4.5.4 Minimisation of induced drag at the trim state via

a steepest descent optimisation algorithm

Introduction

To find the spar configuration that minimises induced drag at the trim state, a

steepest descent optimisation algorithm was written and the trim procedure was

included in it with induced drag as the cost function. As mentioned in section

4.4.2, this method is simple to implement and fairly robust. Disadvantages of

this method include slow convergence, particularly in the region near the min-

imum/maximum, and susceptibility to zig-zagging down/up valleys which, of

course, is inefficient. Routines with many variables can also be problematic, and

complicated cost functions can present difficulties [109, 113].

However, the cost function in this study (the trend is the inverse of the CL/CDi

plots at the trim condition - see figures 4.32, 4.34, and 4.36) is fairly straightfor-

ward, with a single minimum (although the boundaries may be treated as such),

and is a function of only two variables, and therefore convergence difficulties are

not expected. For these reasons, and given the ease of coding, it was decided

that the method of steepest descent was the most suitable choice of optimisation

method, rather than use other more complicated methods that may not neces-

sarily offer faster convergence. As is clear from the plots, the cost function does

contain a valley and so some zig-zagging can be expected; this was not anticipated

to be a major problem. Had it been then the conjugate gradient or quasi-Newton

approaches mentioned in section 4.4.2 would have been more appropriate.
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Implementation of a steepest descent algorithm

A steepest descent algorithm was written in MATLAB®, and was coupled with

the trim routine that controls the static aeroelastic wing model develop in chap-

ter 3, and also written in MATLAB®. The following procedure describes the

optimisation routine that was implemented:

1. Define a target lift coefficient value, CLref
. This is the value of CL that the

wing will be trimmed to.

2. At an arbitrary initial spar configuration [φf1
φr1

], at an arbitrary trial rigid

angle of incidence αrtrial
, calculate the lift coefficient CLtrial

.

3. The required rigid angle of incidence αrtrim
to trim the wing to CLref

at the

current airspeed was given in Eq. 4.22 as

αrtrim
= αrtrial

CLref

CLtrial

(4.22)

and the corresponding coefficient of induced drag is CDi
.

4. Increment φf1
by a small amount ∂φf and repeat steps 2 - 3 for

[(φf1
+ ∂φf ) φr1

], with the incremented coefficient of induced drag at the

trim condition being CDi
(∂φf ). The gradient of the induced drag in the

φf -direction is then approximated by

∂CDi

∂φf

≈ CDi
(∂φf ) − CDi

∂φf

(4.30)

5. Step 4 is then repeated for a small increment ∂φr i.e. [φf1
(φr1

+ ∂φr)], with

the incremented coefficient of induced drag at the trim condition being

CDi
(∂φr). The gradient of the induced drag in the φr-direction is then

approximated by
∂CDi

∂φr

≈ CDi
(∂φr) − CDi

∂φr

(4.31)
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6. The next spars’ orientations are then calculated from

φf2
= φf1

−
∂CDi

∂φf

{(
∂CDi

∂φf

)2

+
(

∂CDi

∂φr

)2
}0.5∂φf (4.32)

and

φr2
= φr1

−
∂CDi

∂φr
{(

∂CDi

∂φf

)2

+
(

∂CDi

∂φr

)2
}0.5∂φr (4.33)

which can be written for convenience as

φf2
= φf1

− ∆φf (4.34)

and

φr2
= φr1

− ∆φr (4.35)

This ensures that a path of steepest descent is chosen.

7. Steps 2 - 6 are then repeated until satisfactory convergence of CDi

Handling the solution boundaries

At certain points in the domain, the optimisation procedure described pre-

viously would have attempted to move the solution over the boundaries of the

input e.g. a trial solution at [2 87] would calculate the gradients of CDi
in both

directions and may have attempted to move it by −5◦ in the φf -direction, and

5◦ in the φr-direction; this would have resulted in the solution moving to [-3 92],

which is of course outside the range of φf and φr since 0 ≤ φf ≤ 90 and similarly

0 ≤ φr ≤ 90. As a result, the following was enforced:

φfi+1
= φfi

− ∆φf , 0 ≤
(
φfi+1

− ∆φf

)
≤ 90

φfi+1
= 0,

(
φfi+1

− ∆φf

)
< 0 (4.36)

φfi+1
= 90,

(
φfi+1

− ∆φf

)
> 90
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and similarly in the φr-direction.

Improving the convergence speed for cost functions containing ‘valleys’

The cost function in this study (the trend is the inverse of the CL/CDi
plots

at the trim condition - see figures 4.32, 4.34, and 4.36) contains a well-defined

‘valley’ at higher airspeeds, which runs almost parallel to the φf -direction. The

gradient in the φf -direction is very small relative to the ‘sides’ of the valley. Such

a feature in the cost function causes convergence to be slow because the solution

follows a tight zig-zag path down the valley, with much of the movement almost

perpendicular to the direction of the optimum solution. This behaviour is caused

by the algorithm attempting to follow the path of steepest descent, which in the

case of such a valley, is not the most efficient.

To alleviate this problem, information from a number of consecutive gradients

was used to detect valleys, which resulted in the algorithm no longer following

the path of steepest descent; instead, movement was divided equally between the

φf - and φr-directions. This was effective in speeding up the movement of the

solution down a valley. If the path exited the valley, the algorithm returned to a

steepest descent approach.

Improving the accuracy of the converged solution

To improve the accuracy of the solution, information about successive gra-

dients was stored and used to detect troughs (i.e. potential optimum solutions)

and this resulted in ∂φf and/or ∂φr decreasing in order to home in on a more

accurate solution. If this turned out to be a false trough, the original increment

size was reinstated.

Tackling problematic iteration patterns

An awkward terrain can occasionally cause the method to move the solution to

a worse position than before. Generally, over the course of successive iterations,
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this is not a problem. However, sometimes this can cause the algorithm to

get stuck in a repeated path from which it does not escape or converge. This

usually occurs in the region of the optimum solution and the path loops around

the minima, but never gets close enough to consider it as convergence. To get

around this problem, a small random perturbation was added to both φf and φr

in step 2 of the procedure described previously.

Optimisation results

The optimisation procedure was used to find the optimum spar configuration

at the trim state for a range of airspeeds (1 m·s-1 increments between 5 m·s-1

and 60 m·s-1). The reference CL was 0.0777 (corresponding to U = 10 m·s-1,

αr = 1◦, and spar configuration [60 60]). The initial spar configuration for each

optimisation procedure was [45 45] and the spar orientation increments used

were 5◦ for both spars. Figure 4.38 summarises the converged parameters over

the range of airspeeds, and figures 4.39a and 4.39b show a typical convergence

history for a single airspeed (U = 60 m·s-1).

The most significant feature to note is that the optimum spar configuration

alters with airspeed, quantitatively confirming the results of section 4.5.3. This

behaviour corresponds to the minimum induced drag ‘corridor’ mentioned in that

section, which moves as the airspeed changes. These results highlight the benefit

of the rotating spars concept.

As the airspeed increases, a general increase in the rigid angle of incidence

required to trim the wing is also evident. This is fairly intuitive, since the in-

creasing bending deflections couple in the sweptback wing to decrease the angle

of incidence as the dynamic pressure increases. The rigid angle of incidence

therefore must increase to return the wing to the trim state.

An increase in the maximum CL/CDi
achievable is noted as the airspeed

increases. This is due to the increasing bending deflections creating a more

efficient lift distribution over the wing.
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Figure 4.38: Variation of the converged parameters at the trim state.

Figure 4.39a shows a typical convergence history of the spars’ orientations. It

is clear that the algorithm takes the solution into a near optimum solution (cor-

responding to the valley feature of the cost function) relatively quickly, but then

slows down as it travels down the valley. Zig-zag behaviour is fairly limited due

to the inclusion of the tool to counter this behaviour (mentioned previously), and

it can be seen that the valley runs almost parallel to the φf -direction, confirming

the observations in section 4.5.3.

Figure 4.39b shows the corresponding convergence history of the cost func-

tion, CDi
. Convergence to a near minimum value of CDi

is rapid (approximately

ten iterations), and at this point the solution enters the valley feature in the

cost function. The remaining 45 iterations are used to improve the accuracy of
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Figure 4.39: Convergence of spar orientations and cost.

the optimum configuration of [φf φr], despite there being only a relatively small

improvement in the cost function.

Ability to handle noise in the data

A random time-varying perturbation was added to the cost function to gain an

insight into the ability of the optimisation routine to converge successfully in less

simulated environments. The results suggest that when this noise exceeds around

10% of the range of the cost function, the algorithm will struggle to converge.

This is shown experimentally in chapter 5 where the algorithm does not converge

when the load readings (low signal-to-noise ratios) are used as the cost function,

but does converge when the deflections (higher signal-to-noise ratios) are used

instead.

4.6 Conclusions

This chapter has demonstrated that the position of the wing’s elastic axis and the

its bending stiffness are the main structural parameters that are affected by the

rotating spars adaptive internal structures concept. The wing’s torsional stiffness
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is much less sensitive to changes in the spars’ orientations. A conclusion that

occurs throughout this study is that the rotating spars concept is better suited

to sweptback wings, and the fundamental reason for this is that the concept

allows much more control over the wing’s bending stiffness (which contributes to

aeroelastic loads for swept wings) than its torsional stiffness.

Additionally it has been established that all aeroelastic parameters have ex-

tremes, unsurprisingly, when the two spars are at a configuration of 0◦ or 90◦ i.e.

[0 0], [90 90], [0 90], or [90 0]. These trends are likely to remain if the study is

repeated in viscous flow.

This chapter has also established the following basic guidelines for assessing

the suitability of the rotating spars concept for use on an arbitrary wing:

• In terms of effectiveness, the concept is unlikely to offer much benefit to

wings that are unswept or sweptforward; on the other hand, wings swept-

back to between 15◦ and 30◦ lend well to the mechanisms involved.

• The concept will work best with wings of medium-to-high aspect ratio

(7 ≤ AR ≤ 15), and will be largely ineffective if applied to very low aspect

ratio wings, such as those found on supersonic fighter aircraft.

Additionally, the following basic design guidelines with respect to the spars

have been established:

• The ratio of spar second moments of area should be relatively large (≥ 10),

although above a certain ratio (≈ 30) the effectiveness of the concept will

decrease again.

• In general, the two rotating spars should be positioned as far apart as

possible in the chordwise direction.

These guidelines are all likely to hold true if the analysis is made more realistic

by considering the viscous drag contributions and using a dynamic aeroelastic
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model, although the resultant introduction of flutter as a constraint could have

a large impact on these trends.

An overview of genetic algorithm optimisation was also presented and the

results of a process to optimise a rotating spars wing (using a genetic algorithm)

to maximise the effectiveness of the procedure was shown. This resulted in a wing

design well suited to the concept, that was then used as the platform for carrying

out a trim study. It was shown (qualitatively) that the spar configuration required

to minimise the induced drag at the trim state for this wing changes as the

airspeed changes, and then the results of an steepest descent optimisation routine

to locate this configuration were presented, therefore quantifying the previous

conclusion, and demonstrating how the online control of a rotating spars wing

might, in practice, be implemented. With the exception of additional constraints,

the procedures employed for optimising the design and trim state are unlikely to

change if a complete dynamic aeroelastic model were used in viscous flow. The

optimum solutions, on the other hand, would most likely be different.



Chapter 5

Wind tunnel tests of a rotating

spars wing

5.1 Introduction

The results of chapter 4 dictated several design guidelines that were then used as

the basis for the design of a wind tunnel model that could be used to perform sim-

ilar tests to those performed in chapter 4, but on an experimental level. This was

an important stage in the development of the concept as it allowed the viability

of it to be explored to some degree and identified several design challenges that

would have to be overcome that were not immediately clear from the analytical

study.

Firstly, the basic model design was identified and will be described in this

chapter. From this, the baseline model was produced; essentially this involved

identifying all the constraints in the design, build and test phases and apply-

ing them early on in order to narrow-down the design. Finally, to fine-tune the

baseline design to the final design, a finite element representation of the baseline

design was made and several aeroelastic analyses were performed using it; this

focussed on maximising the effectiveness of the concept with regards to maximis-

ing the range of lift achievable, whilst simultaneously ensuring that the critical

207
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flutter and divergence dynamic pressures of the wing were significantly higher

than the test range dynamic pressures.

Next, the chapter will describe the construction phase; this involved all com-

ponents of the wing model that had to be designed and built and specific features

of these components will be discussed.

Before the tests are discussed and the results presented, a section of this

chapter is devoted to describing the equipment that was used to perform these

tests.

Finally, the tests and results will be presented. This begins with examining

the integrity of the channels to explain why noise was a problem throughout

much of the testing, and what was done to alleviate it as much as possible. The

assembly that supported the wing protruded into the test-section and therefore

its effect on the aerodynamic loads had to be removed; the results of this calibra-

tion are shown. Next the parameter study is presented; this involved a structural

investigation, and also an aeroelastic investigation. The results of these stud-

ies agreed, in general, with analytical predictions and the trends established in

chapter 4.

Attempts to use the rotating spar concept to accurately control the aerody-

namic loads involved polynomial curve fitting as well as feedback approaches via

optimisation. Both of these approaches failed, primarily due to the aforemen-

tioned noise problems. The curve fit approach was also found to lack robustness.

Conversely, the robustness of the optimisation approach was proven using deflec-

tions in place of loads as the inputs, and therefore the conclusion was reached

that the rotating spars could accurately control the aerodynamic loads via the

optimisation approach provided that the loads could be measured with a suffi-

ciently high signal-to-noise ratio. Although the optimisation approach takes a

relatively long time to reach desired values, the application of this concept would

be for low-frequency applications and therefore it is a suitable control method.
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5.2 Design of the model using an analytical ap-

proach

5.2.1 Basic structural layout

It was important to produce a design that was reasonably simple in order to aid

the ease of fabrication, performance, repair and robustness. Figure 5.1 shows a

CAD model of the proposed structure.

Figure 5.1: CAD model of the wing design.

The key points to emphasise are:

• Two fixed spars at the leading- and trailing-edges to maintain the planform

shape.

• Two rotating spars between the fixed spars.

• Thin ribs, spaced equidistant from one another with a relatively small gap

between adjacent ribs in order to maintain the aerofoil shape along the

span.

• Roller-bearings used to provide low-friction rotation for the spars. The
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bearings were substantially thicker than the ribs into which they were in-

serted in order to provide good contact with the spars with minimal free-

play.

• The rotating spars had a rectangular cross-section except at locations where

they contact the bearings where they were cylindrical. This removed the

requirement for an inner-race in the bearings since the spar itself became

the inner-race, therefore allowing the spars to have larger cross-sectional

dimensions. Fabricating the rotating spars was identified as the most chal-

lenging part of the manufacturing process and for this reason it was decided

to make them identical to each other.

• Shrink-wrap skin supported by low stiffness rib-caps (not shown in figure

5.1).

• Ribs perpendicular to the spars and a rectangular planform, regardless of

the sweep angle. This made fabrication substantially simpler and less time-

consuming, and did not affect the demonstration of the concept.

• Half-span model only (not clear from figure 5.1).

5.2.2 Establishing a baseline wing

Introduction

Naturally there are many variables that need to be considered during the design

of any wind tunnel wing model; for instance, the wingspan, operating airspeed

and construction materials will all affect the performance of the wing.

However, the decision-making process can be simplified by recognising con-

straints that will exist either during the manufacturing process or in the test

environment and using these to reduce the number of possibilities.
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Design guidelines

The guidelines established in section 4.3 were used as the basis of a wing design

with two rotating spars:

1. Medium-to-high wing sweepback angle (15◦ ≤ Λ ≤ 30◦).

2. Medium-to-high wing aspect ratio (7 ≤ AR ≤ 15).

3. High bending stiffness ratios for the rotating spars (10 ≤ Iy′

jy′

j
/Iz′jz′j

≤ 30)

i.e. the second moment of area of a rotating spar was much larger in one

direction that in the perpendicular direction.

4. The two rotating spars were to be placed as far apart as possible in the

chordwise direction.

Choice of airspeed

Several factors influenced the airspeed range for the tests:

• the maximum wind tunnel airspeed was approximately 50 m·s-1.

• airflow patterns due to the less-than-ideal placement of the wind tunnel

caused resonance of the entire tunnel structure limiting the operating ranges

to 0 m·s-1< U < 28 m·s-1, 32 m·s-1< U < 34 m·s-1, and 37 m·s-1< U < 50

m·s-1. The second of these ranges was far too small and therefore only the

lower and upper speed ranges were considered.

• higher airspeeds result in a larger range of aerodynamic loads and so the

signal-to-noise ratio of trends would be better at higher speeds.

• as the airspeed increases, actuators for the rotating spars would require a

greater torque to overcome the increasing stiction forces.

The use of the upper speed range would involve passing through tunnel res-

onance twice whilst accelerating the airflow, and therefore test airspeeds within
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the lower range were favoured for an initial design (maximum of 25 m·s-1), with

the option of redesigning for the upper speed range should the original design be

evaluated as ineffective at an early stage.

Choice of planform parameters

Several factors of the test environment dictated certain aspects of the wing plan-

form as follows:

1. The wing geometry was dictated by the wind tunnel test-section geometry.

A diagram of the test-section is depicted in figure 5.2a. For a medium-to-

high aspect ratio wing the largest dimension will be the wingspan, therefore,

from figure 5.2b, which shows the cross-sectional dimensions of the test-

section, the span of a horizontally aligned half-wing model had to be less

than 1095 mm, and the span of a vertically-aligned half-wing model had to

be less than 870 mm. Additionally, it was recognised that if the model was

too small it might be challenging to manufacture and sourcing off-the-shelf

components may also be difficult. For this reason, a horizontally-aligned

wing was chosen. It was decided that a wing of span 730 mm (perpendicular

to the flow direction) located centrally within the test-section would provide

sufficient root clearance for housing the actuators whilst being large enough

not to present problems during manufacture.

2. The wing had to be designed such that the loads produced were not in

excess of the load balance range, not only to accurately measure the loads

but also to prevent damage to the load balance. The six-component balance

was limited to the following maximum loads in the channels of interest; lift:

220 N, drag: 67 N.

3. To allow elastic aerodynamic effects to occur free from stall, a low-to-

moderate wind-off angle of incidence of 5◦ was used, which also represented

a realistic value. A chord of 250 mm was chosen, which offered adequate
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(a) With side panel windows and roof disc
removed.

(b) Cross-sectional dimensions. All dimen-
sions in centimetres.

Figure 5.2: Diagrams of the wind tunnel test-section.

space inside the wing for mechanisms etc., while still providing an aspect

ratio of 5.84, which is in keeping with the earlier recommendation of a

medium-to-high aspect ratio. With a lift-curve slope of 2π, the model pa-

rameters stated so far predicted the rigid lift would not exceed 40 N, and the

lift-to-drag ratio was expected to be approximately 5, suggesting maximum

drag values of 8 N, both of these liberal estimates falling well below the

maximum range of the load balance. Again, in keeping with the planform

recommendations, the wing was sweptback to an angle of 15◦.

Choice of structural parameters

The fabrication process dictated certain aspects of the wing structure as follows:

1. Aluminium was selected as the wing structural material for its low-cost,

availability, high strength-to-weight ratio, isotropic properties (making an-

alytical predictions more straightforward), and ease of machining. This

provided the following structural parameters: Young’s modulus E = 69

GPa, shear modulus G = 26 GPa.

2. A NACA 0012 aerofoil section was chosen for the wing as it is widely used

and is symmetric making analytical predictions simpler and more accurate.
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The thickness of this aerofoil provided the upper limits for the spar heights.

For a chord of 250 mm the maximum wing thickness is 30 mm. However, to

achieve a large range of possible chordwise spar placement locations, wing

thicknesses as small as 25 mm had to be considered. With this in mind

it was decided that the outer-diameter of the bearing should not exceed

16 mm in order to fit comfortably inside a rib. A review of off-the-shelf

bearings then identified that the inner-diameter (i.e. spar diameter) could

not exceed 12 mm.

3. The minimum spar thickness was identified as an important constraint; the

most robust method to fabricate a small-scale spar is to machine it from a

single block of material, as this removes the need for awkward application

of adhesives etc. and prevents free-play occurring at attachment points.

For fixed spars, this is not a problem as they can easily be cut from sheets

of material. For rotating spars that most likely have cylindrical sections

at mounting locations along their length (see figure 5.3a), the machining

process would be performed using a lathe; for long lengths of material

whipping (vibration of the piece) occurs if the cross-sectional dimensions

are too small; this had to be avoided. For the type of spar considered (high

aspect ratio, aluminium, height approximately 12 mm) a minimum spar

thickness of 3 mm was chosen to avoid whipping.

To be able to assemble and disassemble the wing the entire length of the spar

had to be able to slide through the bearings. This meant that the cross-section

at all points along the spar had to fit inside the bearing inner-diameter (see figure

5.3b) i.e. the spar cross-sectional dimensions had to satisfy

d2
s + b2s ≤ D2

i (5.1)

where ds is the spar height, bs is the spar thickness, and Di is the bearing

inner-diameter. In section 4.3, it was established that the effectiveness of the



5.2. DESIGN OF THE MODEL USING AN ANALYTICAL APPROACH 215

(a) Rotating spar fabricated from single
piece of material.

ds

bs

Di

(b) Rotating spar cross-section.

Figure 5.3: Diagrams of the rotating spar.

concept, in general, improves as the ratio of ds to bs increases. Therefore, to

maximise this ratio, Di was maximised (12 mm), and bs was minimised (3 mm),

resulting in ds = 11.6 mm.

At this early stage it was intended to use a light-weight, low-stiffness material

to shape the leading-edge. This aerofoil leading-edge shape was intended to

occupy approximately 10% of the chord and one of the reasons for having a thin

leading-edge spar was to support this leading-edge shape, as shown in figure

5.4a. Taking this and the bearing diameter and clearance into account, it was

estimated that the centre of the rotating spars should lie between x
c

= 0.167 and

x
c

= 0.585. Using the recommendation from section 4.3 that the rotating spars

should be located as far apart as possible in the chordwise direction positioned

the forward rotating spar at x
c

= 0.167 and the rear rotating spar at x
c

= 0.585.

Similarly, the wing also required a spanwise component to support the trailing-

edge; however, in this case a simple flat-plate type spar could be used since the

upper and lower skin surfaces meet here close to parallel to each other. To give

the skin adequate support it was intended to use a trailing-edge spar that also

occupied 10% of the chord. Figure 5.4b provides details of the design. For the
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Aluminium leading-edge spar

Low-stiffness leading-edge

Shrink-wrap skin

(a) Leading-edge.

Rib Aluminium trailing-edge spar

Rib trailing-edge removed
to aid fabrication 

Shrink-wrap skin

(b) Trailing-edge.

Figure 5.4: Leading- and trailing-edge design.

baseline design, both the leading- and trailing-edge spars were intended to be

relatively flexible, since a high stiffness for these spars would reduce the effec-

tiveness of the concept; therefore, 2 mm was chosen for the spar height, since 2

mm aluminium plates are readily available off-the-shelf.

Summary of the baseline wing

To summarise, the baseline wing planform used was a half-wing of span 730 mm,

chord of 250 mm (AR = 5.84), and sweptback to an angle of 15◦. The aluminium

structure consisted of two fixed spars (height 2 mm, thickness 25 mm) lying

flush with the leading- and trailing-edges (x
c

= 0.05 and x
c

= 0.95), two rotating

spars (height 11.6 mm, thickness 3 mm) located at x
c

= 0.167 and x
c

= 0.585

and multiple ribs (NACA 0012 profile). The rotating spars were mounted in

roller bearings of inner-diameter 12 mm and outer-diameter 16 mm. 9 ribs were

considered adequate to provide and maintain a good aerodynamic profile over the

span. The maximum design speed was 25 m·s-1 and the design wind-off angle of

incidence was 5◦.
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5.2.3 Effect of rotating spars on flutter behaviour

In the subsequent section, it will be shown using a finite element model that the

wind tunnel wing model will be free from flutter throughout the tests; however,

this provides little insight into the effect of the rotating spars on the flutter be-

haviour, and the analytical model developed in chapter 3 is limited to predicting

static aeroelastic behaviour and therefore also provides no means of examining

the flutter behaviour. It is possible, however, to understand the variation of the

flutter speed with spar orientation by examining the structural behaviour and

relating this to well known flutter trends.

For most practical wings, the frequency ratio ωh/ωθ < 1, where ωh is the

first bending frequency and ωθ is the first torsional frequency. Since the [90 90]

case provides the wing with the highest flexural rigidity (see figure 4.4 for a more

detailed flexural rigidity trend), and since the flexural rigidity is affected to a

much greater extent than the torsional rigidity by the rotating spars concept, it

can be stated that the effect of the rotating spars is to decrease the frequency

ratio ωh/ωθ and therefore increase the separation of the two frequencies. Since

classical bending-torsion flutter is caused by the coalescence of these two modal

frequencies, this decrease in the frequency ratio has an aeroelastically stabilising

effect, therefore delaying flutter. A typical variation of flutter speed with fre-

quency ratio is shown in figure 5.5a [15]; there is a well-defined dip in the flutter

speed corresponding to a frequency ratio of around unity.

The other major influence on the flutter behaviour for the rotating spars wing

is caused by the shift of the elastic axis relative to the aerodynamic centre; the

[0 90] case positions the elastic axis furthest aft and the [90 0] case positions it

furthest forward (see figures 4.2 and 4.3 for more detailed elastic axis trends). A

rearward shift in the position of the elastic axis (therefore increasing the elastic

coupling) typically has an aeroelastically destabilising effect, resulting in a de-

creased divergence and flutter speed. A typical variation of flutter speed with

position of the elastic axis is shown in figure 5.5b [15].
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(b) Effect of elastic axis position.

Figure 5.5: Typical variation of sectional dimensionless flutter speed (for classical
binary bending-torsion flutter) with structural parameters.

The effect of rotating the spars away from the [90 90] position is to therefore

decrease the frequency ratio (stabilising), and to either increase (destabilising) or

decrease (stabilising) the elastic coupling; these conflicting contributions imply

that a qualitative assessment of the flutter behaviour is difficult to make, and an

analytical flutter model is required.

5.2.4 Analytical refinement of the model

Introduction

There are two major reasons why the analytical model developed and used in

chapters 3 and 4 respectively was not used to predict the performance of the

wind tunnel wing; first and foremost, the assumed modes vortex lattice model

developed in chapter 3 is a static aeroelastic model and therefore has no capability

of predicting the flutter speed of a wing. Without this prediction, the use of

a wind tunnel model that, for some spar configurations, has reduced stiffness

values is a somewhat reckless task, as the wing may easily be destroyed with

little warning before any data is collected.

Additionally, the assumed modes model is of a wing with two spars (both

rotating) and a variable number of ribs (ribs of constant torsional stiffness along
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their length); in reality, non-rotating leading- and trailing-edge spars were also

required as already mentioned in order to provide the aerodynamic shape and

to maintain the wing planform shape. Extending the assumed modes model to

a four-spar wing is extremely challenging, and the assumption of uniform rib

properties along their lengths would also no longer be applicable, as the ribs in

the wind tunnel model follow the profile of a NACA 0012 aerofoil.

Instead, a finite element model was made using NASTRAN™ , which provided

a closer approximation of the structure of a four-spar wing with aerofoil-shaped

ribs than the assumed modes model could offer, and also provided an indication

of the flutter speeds. The disadvantages to using this approach were that no

indication of drag forces were provided, and optimisation of the design was not

considered due to the relatively expensive computational requirements relative

to the assumed modes model.

The decision not to optimise the design, however, was not seen as a major

obstacle; with reference to the previous section, the various recommendations

and constraints employed resulted in the definition of a baseline wing. This wing

required only a small amount of fine-tuning via a trial-and-error process to ensure

that aeroelastic instabilities would not be a problem during the testing and also

to improve the effectiveness of the rotating spars concept. The variables used to

refine the model were the height of the fixed spars, and the height and thickness

of the rotating spars.

Finite element approximation of the model

The NASTRAN™ finite element representation of the wing structure is shown

in figure 5.6. The four spars were modelled using beam elements (CBEAM)

and the ribs were modelled via plate elements (CTRIA3) [11]. The spars were

restrained in all six degrees of freedom at the root. The two centre spars (the

rotating spars) were connected to the ribs in five degrees of freedom, with the

unrestrained degree of freedom being rotation about the spars’ longitudinal axis;
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this ensured that twisting moments of the wing about a spanwise axis could not

be transmitted from the ribs to the rotating spars, therefore making the model

more realistic.
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Figure 5.6: Finite element representation of the structural model.

The FE model did not contain a rib at the root since this was a rigid bound-

ary; in the real wing, the inclusion of this rib was for non-structural reasons (to

provide the aerodynamic shape at the root). The rib caps, low-stiffness mate-

rial that was used to provide the aerodynamic shape at the leading-edge, and

shrink-wrap skin were not included in the structural model; it was intended to

manufacture the rib caps from a low-stiffness material (e.g. thin cardboard, since

it is easy to work with) and the assumption was therefore made that the stiffness

of this was insignificant in comparison to the ribs. Similarly, the assumption

was made that the membrane skin had little effect on the overall stiffness of the

wing; this was a convenient simplification, as the effect such a skin has on the

structure of the wing depends upon many variable factors including the heat of

application of the shrink-wrap, and therefore is difficult to accurately estimate.

Similarly, the exclusion of the leading-edge low-stiffness material was predicted

not to noticeably alter the wing stiffness and also made construction of the FE
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model more straightforward.

The NASTRAN™ finite element representation of the wing aerodynamic

model is shown in figure 5.7. 310 CAERO1 aerodynamic panels were used to

provide the lifting-surface approximation of the wing, and these panels were

placed at the mid-plane of the aerofoil. SPLINE2 algorithms provided the lin-

ear beam spline for transmitting the aerodynamic loads and motion between the

aerodynamic and the structural model [116].
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Figure 5.7: Finite element representation of the aerodynamic model.

As mentioned in section 3.5 and again in section 4.2.1, the angle of orientation

of each rotating spar is described throughout by [φf φr], the angle in degrees

between the wing chordline and the principal axis z′ of the spar for the forward

and rear spar respectively, where Iz′z′ ≤ Iy′y′ e.g. the wing’s bending stiffness is

maximum at the [90 90] configuration, and is minimum at the [0 0] configuration.

Refinement of the baseline wing to the final design

Several aeroelastic analyses were performed using the baseline model, namely

trim (at 25 m·s-1), divergence (both SOL 144) and flutter (SOL 145 using the p-k

method) [116]. This was done for spar configurations [0 0], [0 90], [90 90] and [90

0] since extremes can occur at any of these configurations.
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The maximum and minimum CL values from the trim analyses were then

used to give an indication of the effectiveness of the concept using ML, defined

in section 4.3 as

ML = CL|max − CL|min (4.13)

and the divergence and flutter speeds, Ud and UF respectively, were noted.

The results are shown in table 5.1.

Table 5.1: Performance of the baseline wing design.

Parameter [0 0] [0 90] [90 90] [90 0]

CL [1] 0.26702 0.39321 0.32565 0.28203

Ud [m·s-1] ∞ 50.545 100.351 ∞
UF [m·s-1] 36.986 40.844 40.691 37.960

It can be seen from these results that the design is very effective (ML =

0.12619 i.e. lift can be altered by up to 47%). However, it can also be seen that

the lowest critical airspeed is 36.986 m·s-1 (flutter for the [0 0] configuration),

which was deemed to be too close to potential operating speeds, should there be

major discrepencies between the finite element and actual model.

The design variables were then altered within the ranges displayed in table

5.2 in a trial-and-error type approach to maximise ML subject to sufficiently high

values of Ud and UF . It should be re-iterated at this point that the rotating spar

cross-sectional dimensions had to conform to the inequality statement given by

Eq. 5.1. Additionally, the off-the-shelf aluminium plates that were considered for

the leading- and trailing-edge spars had thicknesses 1.2 mm, 2 mm, 3 mm, 3.175

mm, and 6 mm, which therefore corresponds to the possible spar thicknesses.
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Table 5.2: Parameter ranges for the refinement of the wing design.

Variable Min. value Max. value

Leading-edge spar thickness [mm] 1.2 6

Trailing-edge spar thickness [mm] 1.2 6

Rotating spar height ds [mm] 3 11.6

Rotating spar thickness bs [mm] 3 11.6

Table 5.3 shows the chosen values for these parameters for use with the final

wing design, and table 5.4 shows the results of the aeroelastic analyses using this

wing.

Table 5.3: Parameter values for the refined wing design.

Variable Final design value

Leading-edge spar thickness [mm] 3

Trailing-edge spar thickness [mm] 1.2

Rotating spar height ds [mm] 11.3

Rotating spar thickness bs [mm] 4

Table 5.4: Performance of the refined wing design.

Parameter [0 0] [0 90] [90 90] [90 0]

CL [1] 0.26070 0.34982 0.31900 0.28106

Ud [m·s-1] ∞ 67.549 132.046 ∞
UF [m·s-1] 49.048 55.162 52.455 46.345

From these results it can be seen that the aeroelastic stability of the wing has

been improved without too much loss of effectiveness; the divergence speeds have

been considerably increased, while the onset of flutter, most importantly, has also

been delayed (by around 10 m·s-1). Typical frequency and damping trends for the
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refined wing design are shown in figure 5.8. With p an eigenvalue of the aeroelastic
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Figure 5.8: Frequency and damping trends for the first five modes of the refined
wing design ([0 90] configuration).

system, each damping value used in the plot is given by ζ = Re {p} /Im {p} [159].

The plots show damping becomes negative for a mode at around 55 m·s-1 and for

another mode at around 67 m·s-1, and inspection of the frequency plot confirms

the latter of these as a divergence mode, since the frequency reduces to zero.

5.2.5 Buckling check

It was noted in section 3.2.3 that rectangular beams of slender cross-section

under a bending load are susceptible to lateral buckling failure. The analytical

model developed in chapter 3 ignored this as it was intended as a simple tool

for providing an insight into how the rotating spars concept could be used to

improve the aerodynamic performance of a wing. However, for the experimental
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wing where structural integrity is important, the following demonstrates that the

spars will remain stable throughout the tests.

The critical stress at which a cantilever beam of narrow rectangular cross-

section becomes unstable as a force is applied at the free end is given by [131]

σcr = 2.006
h

lIy′y′

√

EIz′z′GJ (5.2)

For an aluminium beam with Poisson’s ratio of 0.33, this can be expressed ap-

proximately as

σcr = 2.460
b2

hl
E (5.3)

In Eqs. 5.2 and 5.3, b and h are the cross-sectional dimensions, where h > b, and

l is the length of the spar. Spar dimensions are given in table 5.3 and the leading-

and trailing-edge h dimension is 25 mm, and all spars have a length of 755.75

mm. This gives a critical stress of 318 MPa for the two rotating spars, 81 MPa

for the leading-edge spar and 13 MPa for the trailing-edge spar. The aluminium

alloy that was used yields around 110 MPa, therefore the rotating spars will yield

before buckling is possible, whereas the leading- and trailing-edge spars will not.

Next, it must be established whether it is possible for the critical buckling

loads on each spar to be reached during the tests; this critical end force is given

by [131]

Pcr =
4.013

l2

√

EIz′z′GJ (5.4)

Again assuming a Poisson’s ratio of 0.33, this can be expressed approximately as

Pcr = 0.4101
hb3

l2
E (5.5)

This gives a critical end force of 36 N for the two rotating spars, 33 N for the

leading-edge spar and 2.1 N for the trailing-edge spar. The maximum theoretical

lift and drag forces predicted are 40 N and 8 N respectively (see section 5.2.2).

The rotating spars will therefore be closest to buckling when in the 90◦ position,
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and it is conservatively assumed that 50% (20 N) of the lift force is carried by this

spar. As a consequence of the alignment of the leading- and trailing-edge spars

(see figure 5.4), buckling of these members may only occur as a result of drag

loading; conservatively, it is assumed that the drag force is distributed evenly

amongst the four spars and therefore the leading- and trailing-edge spars will

be subject to a force of no greater than 2 N. These force and stress results are

summarised in tables 5.5 and 5.6 respectively.

Table 5.5: Force requirement for lateral buckling of the spars.

Component Pmax [N] Pcr [N] Are forces

large enough

for buckling?

Rotating spars 20 36 No

Leading-edge spar 2.0 33 No

Trailing-edge spar 2.0 2.1 No

Table 5.6: Failure mode of spars.

Component σY [MPa] σcr [MPa] Failure mode

Rotating spars 110 318 Yield

Leading-edge spar 110 81 Lateral buckling

Trailing-edge spar 110 13 Lateral buckling

The trailing-edge spar is the only component that may be close to buckling

during the tests according to these results; for this spar, lateral buckling is pre-

dicted to occur before the material yields, and the critical buckling load is only

5% higher than the maximum load expected during the tests. However, a great

deal of conservatism has been employed throughout this prediction; firstly the

aerodynamic loads used are theoretical maximums and not attainable. Secondly,
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these loads were conservatively distributed amongst the spars; in reality the ro-

tating spar will carry less than 50% of the lift, and the leading- and trailing edge

spars will carry less than 25% of the drag forces. Furthermore, the ribs act to

stiffen the lateral flexural rigidity of the spars; this effect has been conservatively

ignored. Finally Eqs. 5.2 - 5.5 are correct for a force acting at the free end of

the cantilever; the aerodynamic loads are distributed over the span in reality.

For a uniform distribution this increases the critical force/stress to 300% of the

end load prediction [131]; although aerodynamic loads are not distributed evenly

across the span, this trend suggests that the critical forces/stresses will increase

considerably.

5.3 Construction phase

5.3.1 Overview of the model

The wind tunnel wing model comprised of three major components:

1. The wing; this was the component of interest in the study i.e. the aeroe-

lastic lifting-surface. The major components in the wing were two fixed

spars, two rotating spars, nine ribs containing roller-bearings for mounting

the rotating-spars in, cardboard rib caps for supporting the skin, and the

shrink-wrap skin itself.

2. The actuator housing; this was a high-stiffness framework located inboard

of the wing root that contained the two servos required to actuate the

rotating spars.

3. The wing mount; this was a high-stiffness arrangement of steel plates lo-

cated inboard of the actuator housing. Its purpose was to transmit loads

between the wing and the load-balance.
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These three components were designed such that the actuator housing and

the wing mount could be considered to be rigid relative to the elastic motions of

the wing structure.

5.3.2 Description of the wing

The internal structural components of the wing were all manufactured from alu-

minium. The nine ribs were cut from 3 mm thick sheets, and two 15.9 mm holes

were then cut into each of these to provide interference fits for the 16 mm outer-

diameter roller bearings. This fit was further secured with a low viscosity bearing

retaining adhesive. Notches were also cut at the leading- and trailing-edges of

the ribs for positioning the fixed spars. Figures 5.9a and 5.9b show these rib

details. Also shown in figure 5.9a is the 3 mm thick leading-edge spar which was

held in place with adhesive.

(a) Leading-edge. (b) Trailing-edge.

Figure 5.9: Rib details.

The rotating spars were each fabricated in a lathe from a single aluminium

rod to create alternating cylindrical and rectangular sections, with the outside

of the 12 mm diameter cylindrical sections forming the inner-race for the roller

bearings. The distinction between these different sections is apparent in both

figures 5.9a and 5.9b. Thin aluminium discs were also manufactured to allow the

rotating spars to attach easily to the servo arms.
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The complete assembled wing structure (excluding the rib caps) is shown in

figure 5.10. In this figure, the 1.2 mm thick trailing-edge spar is also visible.

This spar was positioned using the trailing-edge rib notches and secured with

adhesive.

Figure 5.10: The complete internal
structure excluding rib caps.

Figure 5.11: Leading-edge profile and
rib caps.

High-density foam was used to maintain the leading-edge profile of the aerofoil

between adjacent ribs. The foam sections were cut to a template using a hot-wire

foam cutter. This was then glued to the leading-edge spar and aluminium tape

was wrapped around it to strengthen the attachment further. This leading-edge

profile is visible in figure 5.11.

Strips of cardboard were cut and attached to the upper and lower surfaces of

the ribs to form rib caps. These rib caps are also visible on the wing in figure

5.11. Finally, the wing was covered with a shrink-wrap skin (SOLARFILM).

5.3.3 Description of the actuator housing

The primary purpose of the actuator housing was to support the two servos and

to ensure that they were correctly placed and aligned to rotate the spars. The

housing also transmitted the aerodynamic loads from the wing assembly to the

wing mount, and was designed to be effectively rigid in comparison with the wing

structure. For this reason, steel was chosen to construct the various components
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of the housing that included three 10 mm thick bars and three 3 mm thick

plates. A thick aerofoil-shaped piece of aluminium that was otherwise going to

waste was also used. This component was bolted onto the wing mount parallel

to the airflow, and the arrangement of the steel bars ensured that the wing was

sweptback at an angle of 15◦ to the airflow. This becomes clear upon inspection

of figures 5.12a and 5.12b.

(a) CAD model. (b) Part of the housing with the servos at-
tached.

Figure 5.12: Actuator housing.

The bars were held together by screws, and the plate assembly was then

welded to the bars. The servos were secured to the plates using screws.

5.3.4 Description of the wing mount

The wing mount consisted of a framework of five 10 mm thick steel plates and

was used to transmit the aerodynamic loads from the wing and actuator housing

assembly to the load-balance above the wind tunnel test-section. The mount

was designed to carry these loads with minimal deflection and therefore was

considered to be a rigid structure relative to the wing. It is clear to see the various

components of the wing mount from figure 5.13. Briefly, the assembly consists of

a swept vertical plate with holes at the base (for attaching the actuator housing

and therefore the wing), a horizontal plate to create the necessary horizontal

offset between the balance and the wing root, an angle plate to connect and
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support the horizontal and vertical plates, and two tapered vertical plates to

connect the horizontal plate to the load-balance. The horizontal plate and the

two tapered plates had material removed from the interior to reduce the weight

of the assembly, as it was near the limit of the load-balance. The plates were

attached to one-another using screws.

Figure 5.13: CAD model and photo of the wing mount.

5.3.5 The complete assembly

The wing was attached to the actuator housing and this was in turn attached

to the wing mount. Figure 5.14 shows a CAD model of the complete assembly

(excluding leading-edge profile, rib caps, and skin), as well as a photo of the

complete assembly in the wind tunnel.

5.4 Equipment

In sections 5.2 and 5.3, the design and construction of the wind tunnel wing

model was described. In this section, a brief overview of the other equipment
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Figure 5.14: Complete wing model.

required to perform the tests shall be presented.

5.4.1 Wind tunnel

The static aeroelastic tests were performed in a low-speed wind tunnel (test-

section shown in figure 5.15). The maximum speed of the tunnel was approxi-

mately 50 m·s-1, although, as described in section 5.2.2, the operating speeds were

limited to 0 m·s-1< U < 28 m·s-1, 32 m·s-1< U < 34 m·s-1, and 37 m·s-1< U <

50 m·s-1 as a consequence of instabilities caused by aerodynamic resonances.

The test-section had an octagonal cross-section (see figure 5.2b for dimen-

sions) and was 1.65 m long.

5.4.2 Load-balance

An Elven Precision Ltd six-component load-balance (visible above the wind tun-

nel test-section in figure 5.15) was used to measure the aerodynamic loads on the

wing. The mechanical range of the six channels were; drag: ±67 N, sideforce:

±135 N, lift: ±220 N, rolling moment: ±3.5 N·m, pitching moment: ±11 N·m
and yawing moment: ±3.5 N·m. All six channels used transducers with a range

of ±5 V.
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Figure 5.15: Wind tunnel test-section
and load balance.

Figure 5.16: Calibration apparatus for
the load-balance.

Calibration of the load-balance

To determine the relationship between the voltage output of the transducers and

the load input applied to them, and also to establish whether cross-coupling

between the six channels was significant or not, calibration of the load balance

was performed (CAD model of calibration equipment shown in figure 5.16).

The input loads can be related to the voltage from the transducers using

[

Px Py Pz Pp Pq Pr

]T

= C
[

Vx Vy Vz Vp Vq Vr

]T

(5.6)

which can be written as

p = Cv (5.7)

where Vi is the output voltage from the transducer associated with direction i, Pi

is the input load in direction i, and the six aerodynamic directions are x (drag),

y (sideforce), z (lift), p (rolling moment), q (pitching moment), and r (yawing

moment). C is a 6×6 calibration matrix, and for a correctly aligned load-balance,
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will be diagonal. This was found, approximately, to be the case with

C =

















17.295 0 0 0 0 0

0 −36.190 0 0 0 0

0 0 −54.713 0 0 0

0 0 0 −1.5098 0 0

0 0 0 0 −3.0602 0

0 0 0 0 0 −1.2945

















(5.8)

5.4.3 Laser displacement system

A KEYENCE laser displacement system was used to provide high accuracy mea-

surements of the wing deflections. The system consisted of two sensor heads

(LK-501 using a 690 nm class 3B laser), each with a controller (LK-2501) and a

24 V DC power supply. The system was capable of sampling at 977 Hz (sampling

period of 1024 µm) and was set to operate in its long-range mode (250 - 750 mm).

The output signal was ±5 V providing a sensitivity of 50 mm·V−1.

5.4.4 Servos

Servos were chosen to actuate the rotating spars because they can provide accu-

rate rotational positioning, offer large torque ranges for a relatively small size,

and are easily available off-the-shelf to meet a variety of specifications. Since the

aim of these tests was purely a demonstration of the adaptive internal structures

concept and its ability to optimise the aerodynamic performance, no considera-

tion was given to minimising weight etc., and therefore servos were chosen that

provided the maximum output torque possible whilst being able to fit within the

wing chord. To meet these specifications, two Hitec HS-805BB servos were used

and can be seen in figure 5.12b.
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Control of the servos

The servos each had three input wires: power (4.8 - 6.0 V DC), signal (3 - 5 V

peak-to-peak square wave), and a 0 V common return. It was the signal that

required careful consideration to achieve accurate control of the servos.

The pulse-width of the control signals controlled the position of the servos,

with a neutral (central) position quoted as 1500 µs. Figure 5.17 describes pulse

wave control. For the majority of the period of the signal T , the system was

inactive. The servos required a signal every T seconds to control them. This

signal was a short duration square wave pulse of pulse-width τ . The position of

the servos varied linearly with τ .

For these particular servos, the period of the signal was 20 ms (i.e. the pulse

refreshed at 50 Hz), and it was found that to increment the servos by 1◦ required

an increment in the pulse-width of 9.222 µs.

Time

V
ol

ta
ge

τ ττ

TT

Figure 5.17: Pulse wave signal.
Figure 5.18: Data acquisition hard-
ware.

Performance of the servos

The servos accepted a large range of pulse-widths, enabling the required 90◦ rota-

tion to be easily achieved. A moderately high actuation frequency was required if

roll-control was to be realised using this concept, and the servos did provide this

by being capable of rotating through 90◦ in 0.21 s under zero-load conditions, and
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although not measured precisely, under the maximum aerodynamic loads during

test conditions this range of motion was achieved in well under a second. The

maximum torque provided by each of the servos was 2.354 N·m.

5.4.5 Data acquisition hardware

The input and control signals were interfaced to a computer via National Instru-

ments™ data acquisition hardware. This consisted of a cDAQ-9172 8-slot chassis,

a NI 9263 4-channel analogue output module, and three NI 9215 4-channel simul-

taneous sampling differential analogue input modules. All modules used 16-bit

resolution and could sample at up to 100 kS·s−1 per channel. The four modules

are clearly visible occupying four of the chassis slots in figure 5.18.

The various input and output signals to the data acquisition hardware are

detailed in table 5.7. Although lift and drag were the only aerodynamic loads of

interest in the tests, all six components were recorded.
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Table 5.7: Data acquisition hardware connections.

Slot 1 (Analogue output) Slot 2 (Analogue input)

Channel Signal Channel Signal

1 Forward servo 1 Pressure transducer

2 Rear servo 2 Forward laser

3 Unused 3 Rear laser

4 Unused 4 Drag

Slot 3 (Analogue input) Slot 4 (Analogue input)

Channel Signal Channel Signal

1 Sideforce 1 Yawing moment

2 Lift 2 Unused

3 Rolling moment 3 Unused

4 Pitching moment 4 Unused

5.4.6 Data acquisition software

All the tests were controlled and monitored using a computer. MATLAB® and

LabVIEW™ were used together to write and operate the control program for the

tests. This was interfaced to the data acquisition hardware via the appropriate

drivers.

5.4.7 Other equipment

An amplified pressure transducer with a range of 1500 Pa was used to convert

the wind tunnel pitot pressure into an electrical signal in order to monitor the

dynamic pressure and therefore the airspeed of the tunnel. Calibration of the
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pressure transducer revealed that

U = 17.638
√
V (5.9)

where U is the test-section airspeed in m·s-1 and V is the amplitude of the

output signal in volts.

A dual power supply was used to provide the two servos (6 V) and the pressure

transducer (12 V) with power.

As can be seen in figure 5.2a, the test-section had removable sections; two

side panels, a large circular roof section, and the entire floor section (not shown

in figure 5.2a). The floor and side panels were removable in order to gain access

to the interior of the tunnel, and the side panels were also interchangeable with

window panels for observing tests. The circular hole in the roof was necessary

to enable the load-balance to be yawed i.e. as the balance yawed, so too did the

wing mount and wing. However, to seal the section, a disc was placed in the hole

and this disc was attached to the balance frame and therefore rotated with the

balance as it yawed. As a consequence, the disc design was dependent upon the

wing mount design, and so a disc had to be made.

In the photo in figure 5.13, the outline of the disc can be seen, and the wing

mount passes through two slots in it to connect to the balance. The laser sensor

heads were attached to the disc, and slots were also cut in the disc to allow the

laser to transmit through onto the wing surface.

5.5 Tests

5.5.1 Determination of airspeed range and integrity of

measurements

Before commencing any of the planned tests, the operational envelope of the

wing had to be established; the wing was intended to operate over the range
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0 m·s-1≤ U ≤ 25 m·s-1 (see section 5.2.2) but it was expected that below a

certain speed, the variations in the aeroelastic loads and deflections with the

spar orientations would be too small to establish trends due to low signal-to-

noise ratios. Also, above a certain airspeed there was the possibility that the

servos may not be able to overcome the stiction forces on the spars caused by

large bending deflections.

Therefore, over a range of airspeeds with the spars at the [0 0], [0 90], [90 0]

and [90 90] configurations (i.e. the extremes) data was collected and the wing

was observed. It was found that below about 17 m·s-1 trends were difficult to

observe due to very small ranges in loads and deflections, and above 23 m·s-1 the

servos struggled to position the spars at the intended orientation due to the large

stiction forces. To ensure that neither of these limitations would cause problems

during testing, the airspeed range for testing was set at 18 m·s-1≤ U ≤ 22 m·s-1,

which represented a 49% change in the dynamic pressure during testing.

The wing’s design angle of incidence was 5◦; after setting up the test rig an

inclinometer measured the actual angle of incidence as 5.3◦ which was considered

to be close enough to the design value not to cause problems.

To gain an insight into the expected relative signal-to-noise ratios of the in-

put channels, at the maximum airspeed of 22 m·s-1 the forward and rear spar

orientations, φf and φr respectively, were varied between 0◦ and 90◦ using 7.5◦

increments in order to establish the maximum and minimum measurements from

each channel, and these were used to calculate the range of data for each channel.

These ranges are shown in table 5.8 as percentages of the maximum range of the

transducer for the respective channels e.g. at 22 m·s-1 the voltage output from

the transducer associated with the lift channel varied by up to 0.0881 V as the

spars were rotated; this was 0.881% of the 10 V range of the transducer.
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Table 5.8: Typical variation in signal
voltage as a percentage of transducer
range at 22 m·s-1.

Channel ∆V [%]

Fwd laser 7.10

Rear laser 7.98

Drag 0.430

Side 0.393

Lift 0.881

Roll 0.211

Pitch 0.017

Yaw 0.916
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Figure 5.19: Variation of standard de-
viation of channels with buffer size at
22 m·s-1.

This table highlights two things; firstly, that in general the signal-to-noise

ratio of the trends was anticipated to be relatively poor, since all channels vary

by less than 8% of their transducer’s range. The other significant conclusion to

draw from the table is that all the load channels varied by less than 1% of their

transducer’s range and therefore it was expected that the trends of these mea-

surements would be considerably more noisy than the trends of the deflections

measured by the laser displacement system. Ideally, the measurement range from

all channels should have been around 90% of the transducer ranges, but unfor-

tunately the tests had to be performed with the equipment available.

In order to improve the signal-to-noise ratio of the trends, averaging of the data

had to be performed. To minimise the time required collecting data during the

tests, an investigation was performed to establish how long the data had to be

averaged for to reduce the noise to a level where the trends became recognisable.

The channels of interest in the test were the lift and drag force measurements,
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the pressure transducer (for the airspeed) and the two laser displacement mea-

surements. One laser sensor head was used to measure the leading-edge bending

deflection near the tip of the wing, whilst the other sensor head measured the

trailing-edge bending displacement at the same span location. Therefore, it was

possible also to measure the change in angle of incidence of the wing at this

spanwise location. To perform the investigation:

1. At an airspeed of 22 m·s-1, with a buffer size of 100 samples, and at a

resolution of 100 Hz the mean of each parameter of interest was found.

2. Step 1 was repeated 20 times to find the standard deviation for each channel

as a percentage of the maximum range of the channel at that airspeed

(except U , the range was 0 m·s-1≤ U ≤ 22 m·s-1).

3. The buffer size was increased and steps 1 and 2 were repeated.

4. Step 3 was repeated for all buffer sizes considered.

Figure 5.19 shows the results. Confirming the predictions, the drag and lift

data contained the most noise, with the other channels having an acceptable

signal-to-noise ratio for all buffer sizes considered. Clearly, the driver for achiev-

ing acceptable results was reducing the noise component in the drag signal. How-

ever, it can be seen that the standard deviation of the drag appears to converge

at around 13% and requires averaging over 25 - 30 s to achieve this. There was a

strong argument to average over a much shorter time, and by doing so only wors-

ening the data slightly. For this reason, a buffer size of 500 was chosen (standard

deviation in drag of around 20%, but only 5 s of averaging required). A third-

order lowpass Butterworth filter was also used to improve the signal-to-noise

ratio.
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5.5.2 Effect of non-aerodynamic surfaces on the loads

Before any aerodynamic data relating to the wing could be recorded, the effect on

the loads of the wing mount, actuator housing, and servos had to be taken into

account. To do this, the wing mount, actuator housing and servos (see figure

5.20a) were placed in the test-section and the airspeed was incremented from

zero to just above the maximum test speed. At each airspeed the voltage output

from the load-balance was noted. This procedure was performed three times to

average out the data. The results are shown in figure 5.20b.

(a) CAD model of the wing mount with ac-

tuator housing and servos attached.
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(b) Load-balance voltages produced by the

wing mount only over a range of airspeeds.

Figure 5.20: Calibration of the wing mount, actuator housing and servos.

The results demonstrate that the wing mount, actuator housing and servos

most noticeably generated a drag force and yawing moment. The yawing moment

was caused by the drag force, since the assembly was not at the centre of the

test-section. These results were as expected, given the poor aerodynamic shape

of the actuator housing and servos in particular, which gave rise to a large profile

drag. A spline interpolation was then used based on this data to determine the

required offset for all channels at any given airspeed.
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5.5.3 Structural parameter tests

Prior to performing aeroelastic tests on the wing, some structural tests were

performed to gain an insight into the extent to which the rotating spars impact

various structural parameters. Due to the time-consuming nature of this task,

the tests were only performed at combinations of spar orientations 0◦, 30◦, 60◦

and 90◦, and were repeated three times to average out the data. The results

of these were also compared with results of analyses performed using the finite

element model described in section 5.2.4.

Chordwise position of the elastic axis

Details of a method to establish the chordwise position of the elastic axis were

given in section 4.2.1 and involves loading the wing at the leading- and trailing-

edge and measuring the torsional deflection. This was performed for the test

wing by hanging weights from it, and for the FE model by using a linear static

solution sequence (SOL 101) [11].
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(b) FEA prediction.

Figure 5.21: Variation of wing elastic axis position with spars’ orientations.

The results of the test were inconclusive and are shown in figure 5.21a. Some

values agree with the predicted values (figure 5.21b). However, for some spar

configurations (in particular when φf = 0◦), the values differ from that of the

FEA (finite element analysis) prediction. The analytical prediction suggests the

ability to alter e (the dimensionless chordwise position of the elastic axis aft of the



244 CHAPTER 5. WIND TUNNEL TESTS OF A ROTATING SPARS WING

aerodynamic centre) over the range 0 ≤ e ≤ 0.35. In reality, the tests suggested

a smaller range of −0.05 ≤ e ≤ 0.2. The trend established in the FEA prediction

agrees well with the trend shown in section 4.2.1 (the study with the assumed

modes model).

Flexural rigidity

Details of a method to establish the wing’s flexural rigidity were given in section

4.2.1 and involves loading the wing tip at the elastic axis with a vertical force

P in order to produce a pure bending deflection and measuring the resulting tip

bending deflection, htip. This was performed for the test wing by hanging weights

from it, and for the FE model by using a linear static solution sequence (SOL

101) [11]. Eq. 4.2 was then used to calculate the flexural rigidity i.e.

Kh =
Pl3

3htip

(4.2)

where l is the length of the wing from root to tip.
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(b) FEA prediction.

Figure 5.22: Variation of wing flexural rigidity with spars’ orientations.

Figure 5.22 shows the results of both the analytical prediction and the tests.

The test results agree well with the predicted results. The only noticeable dif-

ference is that the test results are offset by approximately +10 N·m2 relative to

the analytical results. This additional flexural rigidity is most likely due to the



5.5. TESTS 245

shrink-wrap skin on the test wing, and to a lesser extent, from the leading-edge

foam, neither of which were represented in the finite element model. The trends

in both these graphs agree well with with the trend shown in section 4.2.1 and

can be explained using a similar argument. Figure 5.22a shows that the rotat-

ing spars adaptive internal structure concept enables a change in the bending

stiffness of this wing of in excess of 200%.

Torsional rigidity

Details of a method to establish the wing’s torsional rigidity were given in section

4.2.1 and involves loading the wing tip with a moment, M , in order to produce

a pure torsional deflection and measuring the resulting tip torsional deflection,

θtip. This was performed for the test wing by hanging weights from it, and for

the FE model by using a linear static solution sequence (SOL 101) [11]. Eq. 4.2

was then used to calculate the torsional rigidity i.e.

Kθ =
Ml

θtip

(4.7)

where l is, as before, the length of the wing.
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(b) FEA prediction.

Figure 5.23: Variation of wing torsional rigidity with spars’ orientations.

The results of the test were inconclusive and are shown in figure 5.23a.

Clearly, the test results lack a trend, unlike the FEA prediction (figure 5.23b).
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This can be most easily explained by considering that the torsional rigidity of

the wing does not alter much relative to the flexural rigidity; therefore, noise

becomes much more apparent in the data. The trend established in the FEA

prediction agrees well with the trend shown in section 4.2.1 (the study with the

assumed modes model).

First bending frequency

To investigate the effect of the rotating spars on the first bending frequency

of the wing, dynamic tests were performed. This was performed for the test

wing by performing ‘twang’ tests (i.e. pulling on string attached to the wing for

as short a time as possible in order to achieve as close to an impulse response

as possible) and recording the resulting displacement response, and for the FE

model by using a normal modes solution sequence (SOL 103) [11]. A fast Fourier

transform (FFT) analysis of the time history then allowed the frequency content

of the response to be probed. Unfortunately, the responses were too noisy to

establish obvious trends in all modes other than the first (bending).

0
20

40
60

80

0
20

40
60

80

20

25

30

35

40

45

φr [deg]φf [deg]

ω
h

[r
ad

·s−
1
]

(a) Tests.

0
20

40
60

80

0
20

40
60

80

20

25

30

35

40

45

φr [deg]φf [deg]

ω
h

[r
ad

·s−
1
]

(b) FEA prediction.

Figure 5.24: Variation of first bending frequency with spars’ orientations.

Figure 5.24 shows that the test results agree well with the analytically pre-

dicted results. There is a slight amplitude discrepancy between the two that is

more noticeable at higher frequencies. This difference indicates that the predicted
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first bending frequency is slightly too high.

5.5.4 Aeroelastic parameter tests

To carry out the aeroelastic parameter study on the wing, data was collected for

all channels at all spar configurations (φf and φr were varied between 0◦ and 90◦

using 7.5◦ increments) over a range of airspeeds (18, 19, 20, 21, and 22 m·s-1).

This was repeated ten times at each airspeed to offer improved averaging; this

was considered necessary due to the low signal-to-noise ratio of the drag channel

in particular. Similar analyses were performed using the finite element model

described in section 5.2.4 with a static aeroelastic solution sequence (SOL 144)

[116]. The results are categorised as deflection parameters and loads parameters,

and for brevity only the plots of U = 22 m·s-1 are presented; at all other test

airspeeds the trends were similar, although over a smaller range.

Deflections

Figures 5.25 and 5.26 show the leading- and trailing-edge tip bending deflections

for the wing at 22 m·s-1. Figure 5.27 shows the elastic angle of incidence at the

tip for these tests.
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(b) FEA prediction.

Figure 5.25: Variation of wing leading-edge tip bending deflection with spars’
orientations at 22 m·s-1.
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(b) FEA prediction.

Figure 5.26: Variation of wing trailing-edge tip bending deflection with spars’
orientations at 22 m·s-1.
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(b) FEA prediction.

Figure 5.27: Variation of tip elastic angle of incidence with spars’ orientations at
22 m·s-1.

Qualitatively, the tests agree well with the analytical predictions, as well as

with the analytical parameter study that was performed in section 4.2.2.

Quantitatively however, the test results differed slightly from the FEA pre-

dictions. This was primarily due to the effect of gravity during the tests and the

differences between the methods used to zero the deflections; for the tests, the

displacements were referenced to the wing in the [90 90] configuration at zero

airspeed which represented a slightly negative bending deflection due to grav-

ity. Furthermore, gravity acted to twist the wing slightly nose-down, therefore

reducing the angle of incidence by an increasing amount along the span. These
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effects were considered to be relatively insignificant in terms of the aerodynamic

behaviour and therefore no attempt was made to capture them in the analytical

model, which ignored initial deflections due to gravity. It does, however, explain

why the predictions of the bending deflections were too low and why the predic-

tions of the elastic angle of incidence were too high. Importantly though, the

data is approximately offset by a fixed amount over all spar configurations, and

therefore it can be seen that the wing tip bending deflections could be varied

by up to around 40 - 50 mm at 22 m·s-1, and that the wing tip angle of inci-

dence could be varied by up to approximately 1.5◦ which is significant in terms

of aerodynamic performance.

Loads

Figure 5.28 shows the variation of the lift coefficient at 22 m·s-1 for all spar con-

figurations. Once again, the test trend agrees well with the analytically predicted

trend as well as with the trend established in section 4.2.2. Quantitatively, the

lift coefficients from the tests also agree well with the predicted results, ranging

from approximately 0.266 to 0.338, which represents a substantial 26.7% change

in lift.
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(b) FEA prediction.

Figure 5.28: Variation of CL with spars’ orientations at 22 m·s-1.

The relatively poor signal-to-noise ratio in the drag measurements is apparent

in figure 5.29, reinforcing the findings presented in figure 5.19. No drag modelling
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is offered by NASTRAN™ therefore a quantitative comparison between the FE

model results and the test results could not be performed for the drag. The trend,

however, agrees well with the trend of induced drag identified in the parameter

study in section 4.2.2 (study using the assumed modes model). At 22 m·s-1 it

was possible to alter the drag coefficient of the wing by about 17.1%.
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Figure 5.29: Variation of CD with
spars’ orientations at 22 m·s-1 (tests
only).
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Figure 5.30: Variation of CL/CD with
spars’ orientations at 22 m·s-1 (tests
only).

This was also the case for the lift-to-drag ratio; no FEA prediction could

be made due to the lack of drag information, but the test trend (see figure 5.30)

follows the trend of the inviscid lift-to-drag ratio established in section 4.2.2. The

high level of noise in the signal is even more apparent in this plot, and makes it

difficult to estimate actual values. However, the results suggest that the adaptive

internal structures concept provides the ability to alter the lift-to-drag ratio of

this wing by 10 - 15%, which represents a significant range.

5.5.5 Control of the loads via a regression model

To achieve drag reduction using the concept required a control algorithm that

used the reference trim lift coefficient value CLref
as an input and output the

required spar orientations that would achieve this value whilst simultaneously

minimising drag.
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Initial efforts to realise this objective concentrated on using the existing data

from the parameter study to curve fit for the entire data range, rather than

a feedback approach, since it is a relatively time effective method, requiring

only an initial population of a data set, and therefore real-time control could be

achieved almost instantaneously. Due to the random noisy content of the data,

it was decided that smoothing would be more appropriate than interpolating.

Therefore, a polynomial regression model was fitted in a least squares sense to

both the lift and drag coefficient data presented in section 5.5.4. It was found

that a fourth-order polynomial was adequate, with the forward and rear spar

orientations as well as the airspeed as the three independent variables, and CL

and CD as the dependent variable in each of the models i.e.

CL = f (φf , φr, U) (5.10)

and

CD = g (φf , φr, U) (5.11)

where f and g are the lift and drag regression functions respectively. Figure

5.31 illustrates this for the data recorded at 22 m·s-1, with the actual measured

data superimposed on top of the regression surface.
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Figure 5.31: Polynomial regression model and actual data for the lift and drag
at 22 m·s-1.
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Trimming the wing

The first task was to attempt to trim the wing i.e. regardless of drag, alter either

φf or φr to achieve a desired reference lift coefficient value CLref
. For simplicity,

only one of the spar orientations was altered at a time initially. For a fixed

forward spar orientation, the routine can be described as follows:

1. The current airspeed U and chosen fixed forward spar orientation φf were

input into the regression model such that Eq. 5.10 became

CL = f (φr) (5.12)

2. This was then rearranged and the desired reference trim lift coefficient value

was input to give

CLref
− f (φr) = 0 (5.13)

3. The rear spar orientation was then adjusted to correspond with the root of

Eq. 5.13. If multiple roots were found within the range 0◦ ≤ φr ≤ 90◦, any

could be used as they all produced valid solutions.

4. Steps 1 - 3 were repeated continually in order to attempt to maintain CLref
.

For a fixed rear spar orientation, the procedure was similar. This was per-

formed for both of these approaches using a variety of CLref
values and a variety

of fixed φf or φr values.

The results are shown in figure 5.32. The vertical red lines indicate the

boundaries of the regression model. The error is presented here as a percentage

of the possible range of CL at 22 m·s-1. From these results it is clear to see that

this approach was unsuccessful; despite the regression model fitting the original

data quite well, it appears to be offset significantly from the new data, with errors

of 10 - 40% within the airspeed range. These large errors were most likely the

result of the significant noise in the data that affected both the regression model

and the live data.
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Figure 5.32: Difference between actual and reference lift using regression model
to trim the wing over a range of airspeeds.

Minimising the drag at the trim state

With the failure of the regression approach to trimming the wing, success was

not expected in achieving the additional step of minimising drag whilst simul-

taneously trimming the wing, also using the regression approach. However, this

was attempted in order to rule it out as a possibility. The procedure used can be

summarised as follows:

1. For a large resolution of φf and φr within the ranges 0◦ ≤ φf , φr ≤ 90◦ and

a large resolution of U within the range 18 m·s-1≤ U ≤ 22 m·s-1, Eqs. 5.10

and 5.11 were used to calculate all the corresponding values of CL and CD

respectively.

2. The current airspeed U was then used to eliminate all of those solutions

that fell outside the range of data U±δU , where δU was a sufficiently small

tolerance of the airspeed.

3. The reference lift coefficient CLref
was then used to eliminate all of those

remaining solutions that fell outside the range of data CLref
± δCL, where

δCL was a sufficiently small tolerance of the reference lift coefficient.

4. The remaining solutions were inspected to find the one corresponding to a
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minimum CD. The associated φf and φr values were then used to control

the servos.

5. Steps 2 - 5 were repeated continually in order to attempt to maintain CLref

subject to minimising CD.

This was performed for two different reference lift coefficient values. The

results are shown in figure 5.33. Once again, the vertical red lines indicate the

boundaries of the regression model, and the error in CL is presented as a per-

centage of the possible range of CL at 22 m·s-1.
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Figure 5.33: Difference between actual and reference lift-to-drag ratio and lift
coefficient using regression models to minimise the drag at the trim state over a
range of airspeeds.

As expected, the test has proven the method to be unsuccessful, with errors

of up to 20% in the lift-to-drag ratio. Given the poor results of the previous task,



5.5. TESTS 255

the error between the actual and reference lift coefficient values is surprisingly

low (within ±10%). Despite this, there is a clear lack in the robustness associ-

ated with this approach. This was further demonstrated in the next task which

replaced the load measurements with data from the laser displacement system.

5.5.6 Control of the deflections via a regression model

The results of section 5.5.5 showed that the regression model approach to accu-

rately controlling the wing loads failed. However, the presence of poor signal-to-

noise ratios in the measurements of the loads meant that it was not clear whether

the failure was the result of this or the combined result of this as well as a lack

of robustness in the approach.

To investigate this, the noisy input signals to the algorithm were eliminated by

replacing them with data from the laser displacement system; more specifically,

a polynomial regression function, h, was fitted in a least squares sense to the tip

elastic angle of incidence data and is defined as

αetip
= h (φf , φr, U) (5.14)

and a procedure similar to the trim procedure outlined in section 5.5.5 was

used to adjust φr in order to attain αetipref
, the reference tip elastic angle of inci-

dence. Large errors between the actual measured value of αetip
and the reference

(target) value would indicate failure of the method. Since the input data (de-

flections) was relatively free from noise, this failure could be attributed to the

robustness of the regression model itself.

Maintaining a reference angle of incidence

At a fixed airspeed and with a fixed forward spar orientation, the regression

model was used to find the required φr to obtain a reference αetip
. The actual

value of αetip
measured by the lasers was also recorded. This was repeated over
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a range of αetipref
for three different airspeeds.

As a separate task the above was performed with a single reference αetip
over

a large range of airspeeds. The results of both of these tasks is shown in figure

5.34.
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Figure 5.34: Variation of error in αetip
with reference αetip

and airspeed using a
regression model approach.

Figure 5.34 is significant as it shows that the method failed, since the errors

were generally between 35% and 55% for the variation of αetipref
, and increasing

up to 30% with airspeed, which is unacceptable. Since the deflection input data

to the regression model had a relatively high signal-to-noise ratio, the conclusion

was made that the regression approach lacked robustness and therefore was not

appropriate for controlling the wing loads.

5.5.7 Control of the loads via an optimisation approach

In section 5.5.6 it was demonstrated that a regression approach could not be

used for controlling the wing loads, even if high signal-to-noise ratios in the load

measurements were available. The next attempt to control the loads used the

simple steepest descent optimisation routine described in section 4.5.4. However,

unlike the analytical model, the test rig did not provide the capability of real-

time control of the rigid angle of incidence to trim the wing, and therefore this
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was achieved by varying φf and φr, a problem that was also intended to be

solved using the optimisation algorithm. In summary, this approach to controlling

the wing loads used an optimisation routine (trim) inside another optimisation

routine (maximisation of lift-to-drag ratio).

The first part of this section presents results of the inner optimisation loop

only i.e. trim, while the second part presents results of the outer optimisation

loop only i.e. maximisation of the lift-to-drag ratio, CL/CD, with no reference

lift value. Due to the failure of both of these tasks, and the time-consuming

nature of optimisation approaches, no attempt was made to investigate the full

drag reduction at the trim state.

Trimming the wing

φf and φr were varied in a steepest-descent optimisation algorithm with min-

imising |CL − CLref
| as the objective function (the steepest descent algorithm

was explained in detail in section 4.5.4), where CL was the live lift coefficient

measured by the load balance. Initially, the input was varied in one direction

at a time only (i.e. either φf or φr). In order to test the robustness of the

approach, the airspeed was varied and the response of CL and the spar orienta-

tions were monitored, and then CLref
was varied and the response of CL and the

spar orientations were monitored. For brevity, the results of varying φr only are

shown.
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Figure 5.35: Tracking of ∆CL and φr as the airspeed is varied.

Figure 5.35 shows the results of a test where the airspeed was initially 22 m·s-1

and then after a while was decreased to 18 m·s-1 before being increased to 20

m·s-1 where it remained for the remainder of the test. Throughout this CLref
was

constant. Responses in the plots of ∆CL and φr that show changes corresponding

to the changes in the airspeed plot would indicate that the optimisation routine

was successful. However, there is no evidence of any correlation between the

response of these parameters and the airspeed, and so it is clear that this attempt

to trim the wing was unsuccessful.
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Figure 5.36: Tracking of ∆CL and φr as CLref
is varied.

Figure 5.36 shows the results of a test performed at a fixed airspeed where

CLref
was initially 0.30 and then after a while was decreased to 0.28 before being

increased to 0.32 where it remained for the remainder of the test. Once again

there is no evidence of any correlation between the response of these parameters

and the reference lift value.

Maximising lift-to-drag ratio

In this task, φf and φr were varied in a steepest-ascent optimisation algorithm

with maximising CL/CD as the objective function. This was not performed at

the trim state i.e. there was no constraint in place to maintain a constant CL.

In order to test the robustness of the approach, the airspeed was varied and the

response of CL/CD and the spar orientations were monitored.
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Figure 5.37: Tracking of lift-to-drag ratio, φf and φr as the airspeed is varied.

The results are shown in figure 5.37. Again, there is no correlation between

the response of CL/CD, φf or φr as the airspeed varies indicating that the opti-

misation approach to controlling the wing loads was unsuccessful.

The primary reason for the failure of these optimisation approaches was iden-

tified as being related to the poor signal-to-noise ratio of the load-balance mea-

surements and not the optimisation algorithm itself. This was confirmed by

replacing the loads measurements with data from the laser displacement system,

which had a much better signal-to-noise ratio; this is the focus of the next section.
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5.5.8 Control of the deflections via an optimisation ap-

proach

The results of section 5.5.7 revealed that it was not possible to control the wing

loads via an optimisation approach. Importantly though, the reason for this

failure was assigned to the poor integrity of the CL and CD data that the optimi-

sation algorithm used as inputs i.e. the noise in these signals added a significant

time-varying component to the measurements that essentially implied the opti-

mal solution was time-varying. As explored in section 5.5.1, the reason for this

noise was due to the fact that the range of the load-balance channels was very

large relative to the range of data that was measured.

To test the robustness of the optimisation algorithm, data from the laser

displacement system was used to replace the load inputs to the algorithm. More

specifically, the objective of minimising the drag whilst maintaining a reference

lift value was replaced with the objective of maximising the bending deflection

of the wing whilst maintaining a reference elastic angle of incidence.

Again, rather than possibly wasting test time on this task, initially the simpler

challenge of maintaining a reference elastic angle of incidence with no regard for

the bending deflection was performed. Since this was a sub-routine within the

overall task, failure of this would imply failure of the more challenging task

without the need to perform the time-consuming test.

Maintaining a reference angle of incidence

For simplicity φf was held constant and φr was varied in a steepest descent

optimisation manner to achieve a reference tip elastic angle of incidence of −1.2◦

(within error bounds) i.e. the objective function used was to minimise |αetip
−

αetipref
|. This was firstly performed using an initial φr of 20◦ and repeated four

times. This was then repeated with an initial φr of 70◦ in order to demonstrate

the robustness of the approach. Table 5.9 summarises the results.
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Table 5.9: Results demonstrating the repeatability of the optimisation routine to
achieve a reference αetip

by varying φr.

Run φrinitial
[deg] φrconv

[deg] Niter [1] αetipconv
[deg] ∆αetip

[%]

1 20 31.6 7 -1.258 -4.087

2 20 39.0 12 -1.167 2.325

3 20 42.5 13 -1.123 5.426

4 20 31.1 19 -1.284 -5.919

5 20 35.7 10 -1.198 0.141

6 70 36.0 10 -1.221 -1.480

7 70 36.3 38 -1.180 1.409

8 70 33.5 7 -1.277 -1.903

9 70 38.4 8 -1.230 -2.114

10 70 43.6 12 -1.135 4.580

The table shows that the results were repeatable, with all ten runs resulting

in a solution (αetipconv
) with less than a 6% error (∆αetip

) from the reference

tip elastic angle of incidence. Additionally, the results show convergence of φr

within the range 31.1◦ ≤ φrconv
≤ 43.6◦, which is an acceptably small range given

that noise is present in the input data. Significantly, the results indicate that

the algorithm will converge on an acceptable solution regardless of the starting

point of the iterations i.e. φrinitial
. In general, convergence was achieved with a

relatively low number of iterations, Niter, although run 7 clearly struggles more

than the others.

As an additional investigation, for a range of αetipref
(0.2◦ increments between

−2.0◦ and −0.6◦), the optimisation routine was performed. This was carried

out for a range of airspeeds (18 m·s-1, 20 m·s-1, 22 m·s-1). The objective was to

establish a clear trend between αetipref
and the converged φr. The existence of a

trend would suggest that the algorithm is reliable and can be used given input

data with a sufficiently high signal-to-noise ratio. The results are shown in figure
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Figure 5.38: Variation of converged φr with αetipref
.

From this plot, it is apparent that the optimisation routine has identified

the near-linear relationship between the required φr and the reference angle of

incidence. While this actual trend is not of interest in this study, the fact that

this optimisation method has uncovered it implies that such a method could be

used for controlling the wing loads.

Finally, to demonstrate the ability of the routine to respond to changes in the

reference tip elastic angle of incidence, the optimisation routine was allowed to

run with the removal of the convergence criteria. Every so often, the reference

angle of incidence was altered. The results are presented in figure 5.39.
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Figure 5.39: Tracking of ∆αetip
and φr as the reference αetip

is varied.

From the plots it is clear that, with a delay of several iterations, as the ref-

erence elastic angle of incidence is varied, the rear spar orientation φr responds

which results in a change in the actual elastic angle of incidence. Most impor-

tantly, the error between the reference and actual values returns to a low value

after each step change in reference value.

Maximising leading-edge tip bending deflection, whilst maintaining a

reference tip elastic angle of incidence

The aim of this task was to demonstrate that the leading-edge bending deflection

could be maximised whilst maintaining a reference tip elastic angle of incidence.

Successful demonstration of this would imply that the optimisation routine could

be used for the more relevant task of minimising drag at the trim state. The
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optimisation routine was as follows:

1. At an initial spar orientation configuration, αetip
was measured and then

used to calculate |αetip
− αetipref

|.

2. φr was incremented by a small angle dφr and αetip
was measured again and

used to calculate |αetip
− αetipref

|.

3. The results from steps 1 and 2 were used to calculate the gradient of |αetip
−

αetipref
| at the current location of φr. This gave an indication of how to alter

φr in order to minimise the function.

4. Steps 1 - 3 were repeated using the new value of φr until αetip
was sufficiently

close to αetipref
. At this point the leading-edge tip bending deflection, hLEtip

,

was measured.

5. φf was incremented by a small angle dφf and steps 1 - 4 were repeated. The

two values of hLEtip
at the reference αetip

value were then used to calculate

the gradient of hLEtip
at the current location of φf . This gave an indication

of how to alter φf in order to maximise hLEtip
.

6. Step 5 was repeated using the new value of φf until hLEtip
could not be

increased further.

The above procedure was very time-consuming due to having one loop oper-

ating inside another, and with 5 seconds of data collected at each data point in

order to reduce noise via averaging. For this reason this task was performed once

only. The results are shown in figure 5.40. Note that in this figure the conver-

gence of the inner loop is represented by a single iteration i.e. the iteration axes

correspond to the iterations of the outer loop.
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Figure 5.40: Convergence history.

The plots show that, in general, the tip bending deflection works its way

towards a maximum of 75 - 80 mm from an initial deflection of approximately

60 mm. Also, it can be seen that the error between the actual tip elastic angle

of incidence and the reference value has been kept below ±10% throughout. The

lower two plots show that to achieve these objectives the optimisation routine

has decreased φf towards 0◦ and positioned φr at around 40◦.

These results show that the optimisation routine used here was successful and

could be used with similar success to minimise drag at the trim state provided

that the measurement of lift and drag can be be performed with a good signal-

to-noise ratio.
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5.6 Conclusions

This chapter has described the realisation of a wind tunnel model of a wing

incorporating the rotating spars adaptive internal structures concept. The design

guidelines outlined by analytical studies performed in chapter 4 were used as the

basis of the model, and then this was fine-tuned using analytical aeroelastic

analyses of the wing.

The construction phase of the wind tunnel model was described; this section

dealt with conveying how the idealistic models used in the analytical studies were

realised in order to arrive at a practical and successful test model. An overview of

the support equipment used to perform the wind tunnel tests was also provided.

The bulk of the chapter described tests that were performed on the wing and

presented the results. To summarise the main findings of these tests:

• Measurements of the aerodynamic loads could only be achieved with sub-

stantially lower signal-to-noise ratios than measurements of the deflections.

This had significant implications for collecting data (averaging of many

samples required) and for actively controlling the wing loads.

• The structural and aeroelastic parameter studies revealed that the results

agreed well, in general, with the analytical predictions. Furthermore, the

test and analytical trends agreed well with the analytical trends of the

simplified 2-spar wing model established in chapter 4.

• Polynomial regression models failed to accurately control the wing loads via

adaption of the wing structure, despite the regression models representing

the original data very well. The primary cause for this in the tests was the

poor signal-to-noise ratio of the load measurements. However, further tests

using the deflections in place of the loads showed that even if the signal-

to-noise ratio of the loads were improved, the regression model approach is

likely to fail.
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• Simple gradient optimisation approaches to controlling the wing loads were

shown to have the potential to succeed. Although these failed in controlling

the loads, this was attributed to the low signal-to-noise ratio of the load

measurements; this was proven by successfully controlling the (less noisy)

wing deflections with the same algorithm.

The tests highlighted that the sizing of the rotating spar actuators is a critical

part of the design; it was the maximum torque of the servos that limited the

wing to 22 m·s-1. Unfortunately, the tests had to be performed using the load

balance and wind tunnel combination available; the wind tunnel geometry placed

an upper limit on the size of the wing, and this upper limit led to a maximum

variation in the aerodynamic loads of less than 1% of the range of the load

balance which resulted in the low signal-to-noise ratios that were encountered

during testing. Every effort should be made in future tests to ensure that the

size of the wing is better matched to the load balance range. This would allow

tests to be performed in much less time and would enable accurate control of the

loads to be realised.



Chapter 6

Adaptive wing tip devices for

loads alleviation

6.1 Introduction

All aircraft are subject to atmospheric turbulence of varying degrees of sever-

ity. The effect of atmospheric gusts and turbulence as well as aircraft-induced

loads caused by manoeuvring on flexible aircraft structures is the excitation of

flexible and rigid body aircraft modes [93]. This can lead to a number of prob-

lems; structurally, large bending moments can be generated leading to high in-

ternal stresses. If sufficient, these stresses will result in failure of the structure.

Additionally, large deformations can occur which may result in nonlinear be-

haviour; this has significant implications at the analytical design stage of such

aircraft, since computationally expensive nonlinear aeroelastic analyses must be

performed [92]. Passenger effects range from a mild discomfort that is little more

than an annoyance to the far more severe and dangerous situation of being forced

violently against seat-belts, and unsecured items and/or passengers being tossed

around.

269
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6.1.1 Next generation surveillance aircraft

For some recent High Altitude Long Endurance (HALE) unmanned aerial ve-

hicle (UAV) designs gust loads are particularly problematic as they not only

result in high bending stresses, but also a possible degradation in their mission

performance.

HALE aircraft are UAVs that perform surveillance type roles; recent military

operations (e.g. Iraq and Afghanistan) highlight the trend and demand for an

increasing use of UAVs. It is perhaps intelligence gathering missions that UAVs

are most suited to; these roles often demand, amongst other capabilities, unin-

terrupted surveillance/reconnaissance for extended time periods, and it is this

high endurance demand that UAVs handle very well. Some of these missions

also require 360◦ coverage as well as a low frequency sensing capability [122].

Figure 6.1 shows the Northrop Grumman Global Hawk which has been used

in Iraq and Afghanistan; this particular HALE UAV has a similar configuration

to the manned Lockheed U-2 aircraft, particularly with the high aspect ratio

wings [151]. However, as with almost all conventional aircraft, the Global Hawk

is the result of a design that incorporates the payload (sensors) into the available

airframe space after vehicle design, and as a consequence the sensing capabilities

are limited by the aircraft configuration.

Figure 6.1: Northrop Grumman
Global Hawk [150].

Figure 6.2: A joined-wing HALE UAV
concept [152].
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In order to overcome these performance limitations and achieve an optimum

sensing capability, a completely different design methodology is being employed

to design the next generation of HALE UAVs; the air vehicle is being designed

around the required sensor systems. This has resulted in some unusual and

novel UAV designs. High endurance is still crucial in these designs and so high

aspect ratio wings are still present. Wing spans are being increased further

however to accommodate larger sensor arrays that allow sensor operation at lower

frequencies. The most radical change in configuration is the use of joined-wing

designs, as this assists convenient integration of sensor equipment that provides

360◦ coverage, and also offers a stiffer wing structure without the use of lower

aspect ratio and therefore less efficient wings [115]. The USAF classifies this

future concept as SensorCraft [152]. Figure 6.2 shows a conceptual joined-wing

SensorCraft design.

However, the large flexible high aspect ratio structures present in these designs

are very susceptible to gust loads; large bending stresses are generated close to the

wing root as a result, and for joined-wing planforms one of the critical design cases

is the buckling of the rear wing structure due to gust loading [115]. Additionally,

shape integrity is important for these aircraft in order to achieve optimum sensor

performance, and large deformations as a result of gust loads could violate this

requirement [92, 97]. This makes the use of a gust load alleviation system very

desirable to a joined-wing SensorCraft design, as this will lead to a reduction in

structure and therefore weight.

In this chapter a novel loads alleviation wing tip device is described and the

effectiveness of it is demonstrated via a parameter study using an approximate

aeroelastic wing model, and also in a case study using a finite element model of a

joined-wing SensorCraft concept. Other aeroelastic analyses are also performed

to show how the flutter and divergence behaviour is affected by the device, and

to demonstrate the additional trim capability of it. The results of these analyses

show that an adaptive capability would be useful. Next, the case study shows



272
CHAPTER 6. ADAPTIVE WING TIP DEVICES FOR LOADS

ALLEVIATION

how the alleviation of loads and therefore internal stresses is used to reduce the

aircraft mass by up to 30%.

6.2 Loads alleviation systems

6.2.1 State of the art

Many current aircraft are fitted with gust load alleviation (GLA) or manoeuvre

load alleviation (MLA) systems. For instance, the Lockheed L-1011-500 TriStar,

which was introduced in the late ’70s, used the Active Control System (ACS) to

reduce loads due to turbulence and manoeuvres; accelerometers located at the

wing tips and in the fuselage detected these motions and deflected the outboard

ailerons accordingly [163].

Much of the latter Airbus family use the Loads Alleviation Function (LAF) of

the flight computer to deflect the ailerons upwards and to deploy the spoilers upon

detection of excessive motions, again by accelerometers. For lighter aircraft, such

as the A320, the critical wing bending strength is defined by discrete gust cases,

and therefore the LAF on the A320 is designed to deflect the surfaces to minimise

the gust loads. For heavier aircraft, such as the A330 and A340, the critical

wing bending strength is defined by manoeuvre loads, and so the LAF on these

Airbus models are designed to deflect the surfaces to minimise the manoeuvre

loads [43, 44]. The A380 is able to detect whether it is experiencing turbulence

or manoeuvring, and controls the surface deflection response to minimise the

corresponding loading, making it the first aircraft to optimise for both of these

requirements [156].

The effectiveness of a loads alleviation system can be greatly enhanced by

predicting the motion before it happens and there have been some attempts to

enable this with regards to gust load alleviation using LIDAR, such as the NASA

Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) pro-

gramme [125].
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6.2.2 Proposed loads alleviation concept

The proposed loads alleviation concept is straightforward in nature; the device

forms the outboard portion of the wing and is attached to the conventional in-

board section with five degrees of freedom fixed, and the remaining pitch degree

of freedom restrained by a torsional spring. This spring element can be as simple

as a rod with an associated and appropriate torsional stiffness value. Figure 6.3

shows a rectangular wing with the device attached.

Root

Tip

Leading-edge

Trailing-edge

Attachment degree
of freedom

Figure 6.3: Wing tip loads alleviation concept.

Crucially, the chordwise attachment location must lie ahead of the aerody-

namic centre for the concept to be effective; consider the wing encountering a

sudden up-gust in the airflow. The inboard section of the wing, with its aero-

dynamic centre lying (typically) ahead of the elastic axis of the wing will twist

nose-upwards, increasing its angle of incidence and associated aerodynamic loads.

However, the outboard section, with its aerodynamic centre lying aft of the elastic

axis (the attachment element) will rotate nose-downwards, decreasing its angle

of incidence and associated aerodynamic loads. The intended effect of this is a

smaller increase in net aerodynamic loads when compared with an unmodified

wing encountering an identical gust. This means that critical gust and manoeuvre

bending stresses as well as large deflections can be decreased, therefore leading

to weight reductions and an improved shape integrity of the structure.

The precise chordwise and spanwise attachment location and the torsional

stiffness have a major effect on the performance of the concept, and how well it is
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suited to a particular gust, manoeuvre, or flight condition; these relationships are

demonstrated throughout the chapter. Therefore some form of adaptive control

would be very useful as it would allow the device to maintain optimal performance

throughout the flight envelope. By adaptive, it is implied that its parameters can

be altered with a low frequency, but is essentially still passive in nature. This is

in contrast to an active device which is considered to respond with a far greater

frequency, such as those discussed in section 6.2.1.

The concept originates from the 1970s with EADS who, in response to the

oil crisis of 1973, researched it for use on the Airbus A300 to improve the aero-

dynamic efficiency [121]. Here it is also relevant to mention previous studies

[5, 8, 9, 30, 32] performed within the Active Aeroelastic Aircraft Structures (3AS)

programme which have examined the application of all-moving vertical tails to

improve the aeroelastic effectiveness of tail fins; this has been shown to offer

mass, drag and load reductions. However, this also identified that to provide

optimum effectiveness throughout flight whilst avoiding aeroelastic instabilities

required the tail attachment torsional stiffness and/or position to be adaptive.

A passive approach to the loads alleviation problem has several advantages

over an active approach; firstly, there is no requirement for a complex active

sensing and response system and therefore the concept is less likely to fail and

will undoubtedly not suffer from the same weight penalty as an active system.

Since the system is less likely to fail, the need for system redundancy is also

removed; again, this will benefit the passive device in the form of weight savings

relative to an active device.

An adaptive capability also offers the possibility of roll control for aircraft that

have no requirement for fast manoeuvring, and a secondary consideration is that

an adaptive capability could be exploited to minimise the wing drag at different

flight conditions. Adjustment of the torsional stiffness of the attachment is the

most likely approach to achieve an adaptive mechanism, as it is more practical

than altering the chordwise or spanwise attachment position during flight.
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6.3 Development of a dynamic aeroelastic model

for a wing incorporating a wing tip device

6.3.1 Introduction

To gain an insight into the typical behaviour of a wing with the tip device, a pa-

rameter study was performed. The decision was taken to use a simplified model

for a number of reasons; first of all, it was trends that were of interest in the study

and therefore numerical accuracy was not viewed as critical. Further to this, the

computational expense associated with calculating unsteady aerodynamic influ-

ence coefficients would reduce the effectiveness of the model as a tool to establish

trends. For this reason, a simple in-house dynamic aeroelastic model was writ-

ten using MATLAB®. This section presents the derivation of the equations of

motion using a Lagrangian approach and also the development of a quasi-steady

strip theory aerodynamic model.

Model description

The model is shown in figure 6.4 in the structural coordinate system Oxyz,

where z is in the upwards direction. The wing is assumed to be rectangular

in planform, unswept and uncambered, and of semi-span l and chord c. The tip

device is located between x = xP and x = l and is free to rotate about a spanwise

axis located eγc aft of the aerodynamic centre (quarter chord) and yγ aft of the

leading-edge. This rotation is restrained by a torsional spring of stiffness k. The

main wing has an elastic axis located ec aft of the aerodynamic centre and ye aft

of the leading-edge. The main wing and device both have a flexural rigidity EI

while only the main wing has a torsional rigidity given by GJ ; the assumption is

made that the device is rigid in torsion. It is further assumed that the density of

the wing and device are constant and equal, ρW , with a uniform mass distribution;

therefore the inertial axis is located at y = c/2, the semi-chord. The wing is also

assumed to deflect in torsion through small angles and similarly the device is
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assumed to rotate through small angles.

Root
TipLeading-edge

Trailing-edge

Tip deviceMain wing
Inertial axis

Aerodynamic
centre

Main wing elastic axis

with torsional
Attachment

stiffness

xP

x

y

ye ec

l

eγc yγ

c

k

Figure 6.4: Wing with tip device in the structural coordinate system.

6.3.2 Structural model

In section 3.2.1 the Principle of Virtual Displacements was used to obtain the

equations of motion for an aeroelastic system. Lagrange’s energy equations is an

alternative method to this and will be demonstrated in this section. In general,

for the ith generalised coordinate qi, Lagrange’s equation for an undamped system

is given by [141, 158]
d

dt

[
∂T

∂q̇i

]

− ∂T

∂qi
+
∂U

∂qi
= Qi (6.1)

where T is the system kinetic energy, U is the system potential energy and Qi

are the generalised forces. The generalised coordinates are a set of independent

parameters which are sufficient to describe the system’s motion [158].
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Displacement field

The displacement field for the wing in bending and torsion is given by the same

earlier derived expression in section 3.2.1 for that of a spar (with the offset coor-

dinate system from the elastic axis at ye taken into account):

uW (x, y, z, t) =

[

−zh′ (x, t) zθ (x, t)

(

h (x, t) − (y − ye) θ (x, t)

)]T

0 ≤ x ≤ xP (3.21)

where h (x, t) is the bending displacement of the wing’s elastic axis in the upwards

direction, and θ (x, t) is the nose-up torsional deformation of the wing about the

elastic axis. This expression assumes that the wing is of high aspect ratio. The

simplification is made that displacement is limited to the z-axis and therefore

Eq. 3.21 becomes

uW (x, t) = h (x, t) + (ye − y) θ (x, t) 0 ≤ x ≤ xP (6.2)

h and θ can be represented by a finite summation of assumed mode shapes and

associated amplitudes (see the Rayleigh-Ritz method in section 3.2.2) allowing

the resulting equations of motion to be readily solved:

h(x, t) ≈ ψT (x)ζ(t)

=
A∑

a=1

ψa(x)ζa(t)
(6.3)

θ(x, t) ≈ φT (x)β(t)

=
B∑

b=1

φb(x)βb(t)
(6.4)

ψ and φ are Ax1 and Bx1 matrices (i.e. vectors) containing appropriate shape

functions ψa and φb respectively, and ζ and β are vectors of length A and B
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containing unknown time-varying amplitudes ζa and βb respectively; for the as-

sumed modes approach, ζ and β are the generalised coordinates and define the

amount of each assumed mode present in the motion [141]. Therefore Eq. 6.2

becomes

uW =
A∑

a=1

ψaζa + (ye − y)
B∑

b=1

φbβb 0 ≤ x ≤ xP (6.5)

For the wing tip device, the displacement field has an additional component

associated with the nose-up rotation γ of it relative to the main wing, and the

torsional component is analysed at the attachment point xP , as indicated by φbP
:

uD =
A∑

a=1

ψaζa + (ye − y)
B∑

b=1

φbP
βb + (yγ − y) γ xP ≤ x ≤ l (6.6)

Kinetic energy

The kinetic energy for the main wing is given by [50]

T =
1

2

∫

V

ρW (u̇2
W + u̇2

D)dV (6.7)

where ρW is the density of the wing and V is the volume of the wing. Assuming

a uniform mass distribution, Eq. 6.7 can be written as

T =
¯̄mW

2

∫

A

(u̇2
W + u̇2

D)dA (6.8)

where ¯̄mW is the mass of the wing per unit area and A is the cross-sectional area

of the wing. Substituting Eq. 6.5 into this gives

T =
¯̄mW

2

∫ xP

0

∫ c

0

(
A∑

a=1

ψaζ̇a + (ye − y)
B∑

b=1

φbβ̇b

)2

dy dx

+
¯̄mW

2

∫ l

xP

∫ c

0

(
A∑

a=1

ψaζ̇a + (ye − y)
B∑

b=1

φbP
β̇b + (yγ − y) γ̇

)2

dy dx (6.9)
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Therefore

d

dt

[
∂T

∂ζ̇a

]

= ¯̄mW

∫ xP

0

∫ c

0

ψa

(
A∑

a=1

ψaζ̈a + (ye − y)
B∑

b=1

φbβ̈b

)

dy dx

+ ¯̄mW

∫ l

xP

∫ c

0

ψa

(
A∑

a=1

ψaζ̈a

+ (ye − y)
B∑

b=1

φbP
β̈b + (yγ − y) γ̈

)

dy dx

= ¯̄mW

∫ xP

0

ψa

(

c

A∑

a=1

ψaζ̈a +

(

cye −
c2

2

) B∑

b=1

φbβ̈b

)

dx

+ ¯̄mW

∫ l

xP

ψa

(

c

A∑

a=1

ψaζ̈a +

(

cye −
c2

2

) B∑

b=1

φbP
β̈b

+

(

cyγ −
c2

2

)

γ̈

)

dx (6.10)

Similarly

d

dt

[
∂T

∂β̇b

]

= ¯̄mW

∫ xP

0

φb

((

cye −
c2

2

) A∑

a=1

ψaζ̈a

+

(

cy2
e − c2ye +

c3

3

) B∑

b=1

φbβ̈b

)

dx

+ ¯̄mW

∫ l

xP

φbP

((

cye −
c2

2

) A∑

a=1

ψaζ̈a

+

(

cy2
e − c2ye +

c3

3

) B∑

b=1

φbP
β̈b

+

(

cyeyγ −
(ye + yγ) c

2

2
+
c3

3

)

γ̈

)

dx (6.11)

and

d

dt

[
∂T

∂γ̇

]

= ¯̄mW

∫ l

xP

((

cyγ −
c2

2

) A∑

a=1

ψaζ̈a

+

(

cyeyγ −
(ye + yγ) c

2

2
+
c3

3

) B∑

b=1

φbP
β̈b
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+ cy2
γ − yγc

2 +
c3

3

)

dx (6.12)

Potential energy

The potential energy for the wing due to bending and torsional deformations is

given by [37]

UW =
EI

2

∫ l

0

(
∂2h

∂x2

)2

dx+
GJ

2

∫ xP

0

(
∂θ

∂x

)2

dx (6.13)

where E is Young’s modulus, G is the shear modulus, I is the second moment of

area of the wing about the elastic axis in the Oxz-plane and J is the St. Venant

torsion constant. Section 3.2 provides the full derivation of the latter two terms

and of the above equation (in terms of virtual strain energy). The torsional rigid-

ity of the attachment spring provides an additional source of potential energy;

this is given by [59, 76]

Uγ =
1

2
kγ2 (6.14)

Therefore, expressed in Lagrange’s notation and upon substitution of the assumed

modes and generalised coordinates, the total potential energy in the wing is

U =
EI

2

∫ l

0

(
A∑

a=1

ψ′′

aζa

)2

dx+
GJ

2

∫ xP

0

(
B∑

b=1

φ′

bβb

)2

dx+
1

2
kγ2 (6.15)

Therefore
∂U

∂ζa
= EI

∫ l

0

ψ′′

a

A∑

a=1

ψ′′

aζa dx (6.16)

and
∂U

∂βb

= GJ

∫ xP

0

φ′

b

B∑

b=1

φ′

bβb dx (6.17)

and
∂U

∂γ
= kγ (6.18)
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Lagrange’s equations, given by Eq. 6.1, for multiple generalised coordinates may

now be expressed as

Aη̈ + Eη = Q (6.19)

where A is the structural inertia matrix given by Eq. 6.21, E is the structural

stiffness matrix given by Eq. 6.22, Q is the vector of generalised forces and η is

a vector of generalised coordinates, given by

ηT =
[

ζT βT γ
]

(6.20)

Notice also that in A and E the summations have been replaced with the product

of vectors (see Eqs. 6.3 and 6.4), and the mass per unit area ¯̄mW has been replaced

with the mass per unit length m̄W .
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A = m̄W

























(
∫ l

0
ψψT dx

)







(

ye −
c

2

)(∫ xP

0
ψφT dx

+
∫ l

xP
ψ dxφT

P

)







((

yγ −
c

2

) ∫ l

xP
ψ dx

)







(

ye −
c

2

)(∫ xP

0
φψT dx

+φT
P

∫ l

xP
ψT dx

)













(

y2
e − yec+

c2

3

)(
∫ xP

0
φφT dx

+φPφ
T
P

∫ l

xP
dx

)







((

yeyγ −
(ye + yγ)c

2
+
c2

3

)

φP

∫ l

xP
dx

)

((

yγ −
c

2

) ∫ l

xP
ψT dx

) ((

yeyγ −
(ye + yγ)c

2
+
c2

3

)
∫ l

xP
dxφT

P

) ((

y2
γ − yγc+

c2

3

)
∫ l

xP
dx

)

























(6.21)

E =














EI
∫ l

0
ψ′′ψ′′T dx 0A,B 0A,1

0B,A GJ
∫ xP

0
φ′φ′T dx 0B,1

01,A 01,B k














(6.22)
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6.3.3 Aerodynamic model

For the aerodynamics, a simplified quasi-steady strip theory approximation will

be used. The errors that result from such an approximation are not important

since it is trends that are of interest. Conversely, while a full unsteady aero-

dynamic model is quantitatively more accurate, the major disadvantage of such

an approach is the computational expense required to calculate the unsteady

aerodynamic influence coefficients.

Virtual work

For the ith generalised coordinate, the generalised forces are [141]

Qi =
∂ (δ∗W )

∂ (δqi)
(6.23)

where δ∗W is the virtual work of the system. From Eq. 3.63, the virtual work

for the current wing (modified for the inclusion of the wing tip device and zero

sweep) can be written as

δ∗W =

∫ xP

0

L̄W δhacW
dx+

∫ l

xP

L̄D δhacD
dx

+

∫ xP

0

M̄acW
δθ dx+

∫ l

xP

M̄acD
dx (δθP + δγ) (6.24)

where L̄W and L̄D are the lift per unit span on the wing and device respectively,

M̄acW
and M̄acD

are the pitching moment (about the aerodynamic centre) per

unit span on the wing and device respectively and δhacW
and δhacD

are the

virtual bending displacements at the aerodynamic centre of the wing and device

respectively.

Aerodynamic loads

To obtain expressions for the lift per unit span, firstly consider the upwash on

the wing and device; for the wing, the upwash at the aerodynamic centre as a
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result of simultaneous flexural and torsional motions, as well as a gust velocity

wg and uniform wind-off incidence αr is given by [141]

wW (x, t) = wg (t) + U

(

αr + θ (x, t)

)

− ḣ (x, t) 0 ≤ x ≤ xP (6.25)

where U is the airspeed and the small angle approximation has been applied to

linearise the expression. Therefore, for a wing with a lift curve slope of aW , the

lift per unit span can be written as [15]

L̄W =
ρU

2
caW

(

wg + U (αr + θ) − ḣ

)

0 ≤ x ≤ xP (6.26)

where ρ is the air density. Substituting the shape functions and generalised

coordinates (Eqs. 6.3 and 6.4) into this gives

L̄W =
ρU

2
caW

(

wg + U
(

αr +
B∑

b=1

φbβb

)

−
A∑

a=1

ψaζ̇a

)

0 ≤ x ≤ xP (6.27)

The equivalent expression for the wing tip device requires the effective angle of

incidence expression to be modified to account for the pitch angle of the device

and rigid torsion assumption i.e.

L̄D =
ρU

2
caW

(

wg + U
(

αr +
B∑

b=1

φbP
βb + γ

)

−
A∑

a=1

ψaζ̇a

)

xP ≤ x ≤ l (6.28)

where it is assumed that the lift curve slope of the device is identical to that

of the main wing. For steady aerodynamics, the uncambered wing assumption

will produce zero pitching moment about the aerodynamic centre. However,

to avoid serious aeroelastic modelling errors, a quasi-steady aerodynamic model

should retain an approximation of the pitch damping term that results from a

full unsteady model [141], and this term gives rise to a non-zero pitching moment

about the aerodynamic centre; for the main wing this can be expressed per unit
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span as

M̄acW
=
ρU

8
c3Mθ̇θ̇ 0 ≤ x ≤ xP (6.29)

where Mθ̇ is the unsteady pitching moment aerodynamic derivative. In terms of

the shape functions and generalised coordinates, Eq. 6.29 is

M̄acW
=
ρU

8
c3Mθ̇

B∑

b=1

φbβ̇b 0 ≤ x ≤ xP (6.30)

The equivalent expression for the wing tip device again requires to be modified

to account for the pitch angle of the device and rigid torsion assumption i.e.

M̄acD
=
ρU

8
c3Mθ̇

(
B∑

b=1

φbP
β̇b + γ̇

)

xP ≤ x ≤ l (6.31)

Virtual displacements

Next, the virtual bending displacement about the aerodynamic centre needs to

be expressed in terms of the generalised coordinates. Again noting the small

angle assumption that has been made, the virtual bending displacement at the

aerodynamic centre of the wing is

δhacW
= δh+ ec δθ 0 ≤ x ≤ xP (6.32)

where ec is the distance that the elastic axis lies aft of the aerodynamic centre.

For the wing tip device, the rigid torsion assumption and additional offset created

by the angle γ modifies Eq. 6.32 to

δhacD
= δh+ ec δθP + eγc δγ xP ≤ x ≤ l (6.33)

where eγc is the distance that the attachment spring lies aft of the aerodynamic

centre.
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Generalised forces

Upon substitution of Eqs. 6.32 and 6.33 into Eq. 6.24, and replacing the virtual

terms with the shape functions and generalised coordinates, the virtual work

becomes

δ∗W =

∫ xP

0

L̄W

( A∑

a=1

ψa δζa + ec

B∑

b=1

φb δβb

)

dx

+

∫ l

xP

L̄D

( A∑

a=1

ψa δζa + ec

B∑

b=1

φbP
δ βb + eγc δγ

)

dx

+

∫ xP

0

M̄acW

B∑

b=1

φb δβb dx+

∫ l

xP

M̄acD
dx

( B∑

b=1

φbP
δβbeγc δγ

)

(6.34)

Performing the partial differentiation of the virtual work with respect to each of

the generalised coordinates (Eq. 6.23), and substituting in the full expressions

for L̄W , L̄D, M̄acW
and M̄acD

(Eqs. 6.27, 6.28, 6.30 and 6.31) gives

∂ (δ∗W )

∂ (δζa)
=
ρU

2
caW

∫ xP

0

ψa

(

wg + U
(

αr +
B∑

b=1

φbβb

)

−
A∑

a=1

ψaζ̇a

)

dx

+
ρU

2
caW

∫ l

xP

ψa

(

wg + U
(

αr +
B∑

b=1

φbP
βb + γ

)

−
A∑

a=1

ψaζ̇a

)

dx

(6.35)

Similarly

∂ (δ∗W )

∂ (δβa)
=
ρU

2
c2aW e

∫ xP

0

φb

(

wg + U
(

αr +
B∑

b=1

φbβb

)

−
A∑

a=1

ψaζ̇a

)

dx

+
ρU

2
c2aW e

∫ l

xP

φbP

(

wg + U
(

αr +
B∑

b=1

φbP
βb + γ

)

−
A∑

a=1

ψaζ̇a

)

dx



6.3. DEVELOPMENT OF A DYNAMIC AEROELASTIC MODEL FOR A

WING INCORPORATING A WING TIP DEVICE 287

+
ρU

8
c3Mθ̇

∫ xP

0

φb

B∑

b=1

φbβ̇b dx

+
ρU

8
c3Mθ̇

∫ l

xP

dxφbP

(
B∑

b=1

φbP
β̇b + γ̇

)

(6.36)

and

∂ (δ∗W )

∂ (δγ)
=
ρU

2
c2aW eγ

∫ l

xP

(

wg + U
(

αr +
B∑

b=1

φbP
βb + γ

)

−
A∑

a=1

ψaζ̇a

)

dx

+
ρU

8
c3Mθ̇

∫ l

xP

dx

(
B∑

b=1

φbP
β̇b + γ̇

)

(6.37)

Using Eqs. 6.35 - 6.37 with Eq. 6.23 and substituting these generalised forces

for multiple generalised coordinates into the expression given by Eq. 6.19 allows

the equations of motion to be expanded to

Aη̈ + ρUBη̇ +
(
ρU2C + E

)
η =

(
ρU2αr + ρUwg

)
ar (6.38)

where A is the structural inertia matrix (see Eq. 6.21), B is the aerodynamic

damping matrix given by Eq. 6.40, C is the aerodynamic stiffness matrix given

by Eq. 6.41, E is the structural stiffness matrix (see Eq. 6.22) and ar is a vector

of aerodynamic disturbances given by Eq. 6.39. Eq. 6.38 is the classic form of

the dynamic aeroelastic equations of motion (compare with Eq. 1.2), modified

to include a vector of aerodynamic disturbances and zero structural damping.

ar =
















caW

2

(
∫ xP

0
ψ dx+

∫ l

xP
ψ dx

)

c2aW e

2

(
∫ xP

0
φ dx+ φP

∫ l

xP
dx

)

c2aW eγ

2

∫ l

xP
dx
















(6.39)
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B =




















(caW

2

∫ l

0
ψψT dx

)

0A,B 0A,1







c2aW e

2

(
∫ xP

0
φψT dx

+φT
P

∫ l

xP
ψT dx

)













−c3Mθ̇

8

(
∫ xP

0
φφT dx

+φPφ
T
P

∫ l

xP
dx

)







(

−c3Mθ̇

8
φP

∫ l

xP
dx

)

(

c2aW eγ

2

∫ l

xP
ψT dx

) (

−c3Mθ̇

8

∫ l

xP
dxφT

P

) (

−c3Mθ̇

8

∫ l

xP
dx

)




















(6.40)

C = −

























0A,A







caW

2

(
∫ xP

0
ψφT dx

+
∫ l

xP
ψ dxφT

P

)







(caW

2

∫ l

xP
ψ dx

)

0B,A







c2aW e

2

(
∫ xP

0
φφT dx

+φPφ
T
P

∫ l

xP
dx

)







(

c2aW e

2
φP

∫ l

xP
dx

)

01,A

(

c2aW e

2

∫ l

xP
dxφT

P

) (

c2aW eγ

2

∫ l

xP
dx

)

























(6.41)
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6.3.4 Solving the aeroelastic equations of motion

Modal analysis of the unforced system

For free vibration, Eq. 6.38 reduces to

Aη̈ + Eη = 0 (6.42)

With the assumption that the system oscillates harmonically with an undamped

natural frequency ω, then the solution takes the form [141]

η (t) = xσ exp (jωt) (6.43)

where x is the shape/mode of vibration and σ is an amplitude. Substituting Eq.

6.43 into Eq. 6.42 gives

−ω2Ax + Ex = 0 (6.44)

Setting λ = ω2 gives

(E − λA)x = 0 (6.45)

This is an eigenvalue problem that results in A+B+1 (the number of degrees of

freedom) solutions for λ, the eigenvalues. The corresponding vectors xi, i = 1, 2,

· · · A+B+1 are the eigenvectors (mode shapes) of the system. For the ith natural

frequency, the corresponding mode shape describes the relative displacement of

the physical coordinates.

Static aeroelastic response

For the static aeroelastic response, Eq. 6.38 reduces to

(
ρU2C + E

)
η = ρU2αrar (6.46)
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Rearranging for the unknown generalised coordinates gives

η =
[
ρU2C + E

]
−1
ρU2αrar (6.47)

and the generalised coordinates associated with bending, torsion and device pitch-

ing can then be extracted from η according to

ηT =
[

ζT βT γ
]

(6.20)

where γ is the pitching of the device. ζ and β can then be used with the shape

functions given by Eqs. 6.3 and 6.4 to find h (x) and θ (x), the bending and

torsional displacements at spanwise coordinate x. γ, h (x) and θ (x) are sufficient

to completely describe the deformation of the wing under static aerodynamic

loading. The coefficient of lift is given by

CL = aW

(

αr +
1

l

∫ l

0

αe (x) dx

)

(6.48)

where αe is the elastic contribution to the angle of incidence i.e.

CL = aW

(

αr +
1

l

∫ xP

0

θ dx+
1

l
(θP + γ)

∫ l

xP

dx

)

(6.49)

Substituting the shape functions and generalised coordinates (Eqs. 6.3 and 6.4)

into this gives

CL = aW

(

αr +
1

l

∫ xP

0

B∑

b=1

φbβ dx+
1

l

(
B∑

b=1

φbP
β + γ

)
∫ l

xP

dx

)

(6.50)

Static aeroelastic stability analysis

For the static stability analysis, Eq. 6.38 reduces to

(
ρU2C + E

)
η = 0 (6.51)
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which can be expressed as

(

E − q (−2C)

)

η = 0 (6.52)

where q is the dynamic pressure. The lowest real and positive solution to this

eigenvalue problem represents the divergence pressure qd of the system [15].

Dynamic aeroelastic stability analysis [141]

For the dynamic stability analysis Eq. 6.38 reduces to

Aη̈ + ρUBη̇ +
(
ρU2C + E

)
η = 0 (6.53)

Introducing the trivial expression

Iη̇ − Iη̇ = 0 (6.54)

where I is the identity matrix of size (A+B + 1) × (A+B + 1) and combining

it with Eq. 6.53 gives




I 0

0 A








η̇

η̈



−




0 I

− (ρU2C + E) −ρUB








η

η̇



 =




0

0



 (6.55)

Rearranging gives Eq. 6.55 in first order form:




I 0

0 I








η̇

η̈



−




0 I

−A−1 (ρU2C + E) −A−1ρUB








η

η̇
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 (6.56)

i.e.

Iż − Qz = 0 (6.57)
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where the identity matrix I is now of size 2 (A+B + 1) × 2 (A+B + 1) and

Q =




0 I

−A−1 (ρU2C + E) −A−1ρUB



 (6.58)

and

z =
[

ηT η̇T

]T

(6.59)

Again, a harmonic oscillation is assumed and the solution takes the form

z = yτ exp (λt) (6.60)

where y is the shape of vibration and τ is an amplitude. Substituting Eq. 6.60

into Eq. 6.57 results in

(Q − λI)y = 0 (6.61)

This is an eigenvalue problem that for an oscillatory system results in A+B + 1

complex conjugate pairs of eigenvalues. For the ith mode, the eigenvalues are

given by

λi = −ζiωi ± jω
√

1 − ζ2
i (6.62)

where ωi and and ζi are the undamped natural frequency and damping ratio

respectively. For positive real parts of the eigenvalues the system is unstable.

Furthermore, if the eigenvalues are real, the roots are non-oscillatory. Therefore

Eqs. 6.58, 6.61 and 6.62 can be used to evaluate the stability of a mode at an

airspeed of interest and to determine whether it is oscillatory or not.

Transient response to a discrete gust

For the transient response to a discrete gust, Eq. 6.38 reduces to

Aη̈ + ρUBη̇ +
(
ρU2C + E

)
η = ρUwgar (6.63)
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Using a similar method to that demonstrated in Eqs. 6.53 - 6.56 allows Eq. 6.63

to be written in first order form as




I 0

0 I








η̇

η̈



−




0 I

−A−1 (ρU2C + E) −A−1ρUB








η

η̇



 =




0

ρUwgar





(6.64)

In this form the aeroelastic equations of motion are easily solved by numerical

time integration [37]. For the current model, the ode45 solver (Dormand-Prince

Runge-Kutta method [164]) provided by MATLAB® was used. Once η is found

at a given time, it is straightforward to obtain the physical deformation of the

wing (as described for the static aeroelastic response) and therefore the transient

response can be obtained when this procedure is performed over the time history.

A ‘1-cosine’ gust was used for the analyses; the function that describes this is

given by [141]

wg (t) =
wg0

2

(

1 − cos
2πU

Lg

t

)

(6.65)

where wg0
is the maximum gust velocity and Lg is the length of the gust.

6.4 Parameter study using the aeroelastic model

The analyses described in section 6.3.4 were performed for the baseline wing

(i.e. the wing without the device) and for the wing with the device. The model

parameters used were l = 1 m, c = 0.25 m, m̄W = 0.9375 kg·m−3, e = 0.1,

EI = 34.5 N·m2, GJ = 65 N·m2, aW = 2π, ρ = 1.225 kg·m−3 and Mθ̇ = −1.2.

6.4.1 Analyses of the baseline system

To create the baseline system, xP is set to l, and the matrices and vectors in 6.38

are reduced to remove the degree of freedom associated with the rotation of the

device. The first five modes are described in table 6.1. The inertial coupling that

exists in the structure gives rise to coupled mode shapes.
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Table 6.1: Undamped natural frequencies of the baseline system.

Mode Frequency [Hz]

(a) First bending 3.389

(b) Second bending and first torsion 20.889

(c) Second torsion 29.161

(d) Third bending and third torsion 58.717

(e) Fourth torsion 88.421

For the static aeroelastic response analysis, performed at Ub = 10 m·s-1 (base-

line airspeed), with a wind-off incidence of 5◦, the global lift coefficient was found

to be CL = 0.55520. The divergence speed was found to be 8.1869Ub, with mode

(c) being the critical mode (see table 6.1).
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Figure 6.5: Frequency and damping trends for the first five modes of the baseline
system.
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The structure was found to flutter at 3.5628Ub, with the coalescing frequen-

cies of mode (b) and mode (c) providing the flutter mechanism. The frequency

and damping plots for the first 5 modes are shown in figure 6.5. The damping

plots show the onset of instability at around 3.5Ub, and the frequency trends

corresponding to this airspeed exhibit the coalescing frequency behaviour associ-

ated with classical binary flutter. The plots show another instability occurring at

around 9 - 10Ub; from the frequency plot this can be identified as the previously

mentioned divergence mode (zero frequency).
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Figure 6.6: Gust response for the baseline system.

The gust analysis was performed at the baseline airspeed Ub. A ‘1-cosine’

gust was used for the analysis. Using FAA regulations [1], the maximum gust

wg0
that the scaled aircraft should be designed for is 0.0986Ub. The specified gust

gradient distance (the distance required for the gust to build to a peak) is 12.5
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mean chord lengths of the aircraft, with this chord measurement being 0.25 m.

The response of the wing (figure 6.6) was measured at point P , a point on the

elastic axis at 60% span; this point was used as all future modifications would

be made at points outboard of this, and therefore it would allow for a direct

comparison. At this point, the maximum (absolute) plunge hPmax
of of the wing

was found to be 18.021 mm.

6.4.2 Analyses of the modified system

The first five modes for the modified system are described in table 6.2 for xP/l =

0.7, yP/c = 0 and k = 10 N·m·rad−1. Comparison with the modes of the baseline

system given in table 6.1 reveals that the first four modes of the baseline system

are present in the modified system (each with a device pitching motion included),

and with the exception of second torsion, have near identical undamped natural

frequencies. The first two modes of the baseline system have also been separated

in the modified system by the additional mode of the device pitching.

Table 6.2: Undamped natural frequencies when the loads alleviation device is
employed (xP/l = 0.7, yP/c = 0, k = 10 N·m·rad−1).

Mode Frequency [Hz]

(a) First bending and device pitching 3.136

(b) Device pitching 10.373

(c) Second bending, first torsion and device pitching 22.088

(d) Second torsion and device pitching 40.827

(e) Third bending, third torsion and device pitching 59.677

Figure 6.7a illustrates the variation of the divergence speed with attachment

stiffness k for several different chordwise and spanwise positions of attachment.

It can be seen that the device improves the divergence behaviour of the wing; this

is due the fact that the attachment points lie ahead of the aerodynamic centre of
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Figure 6.7: Aeroelastic stability behaviour when the loads alleviation device is
employed.

the device and so a nose-down moment results, decreasing the angle of incidence

of the device as the stiffness decreases. The result is reduced aerodynamic loads

on the wing. Furthermore, the plot shows that in terms of divergence behaviour,

the closer to the leading-edge of the wing the attachment point is, the better;

this reflects the greater length of the moment arm between the aerodynamic

centre and the axis of rotation. Finally, the closer the attachment point is to the

wing root, the higher the divergence speed; as the main/inboard wing becomes

shorter, its torsional stiffness increases, therefore increasing the divergence speed.

The divergence speed at high stiffnesses agrees well with the baseline model

(8.1869Ub), as expected.

Figure 6.7b illustrates the modified wing’s flutter speed variation with at-

tachment stiffness for different chordwise and spanwise positions of attachment.

It is clear that the gust alleviation device has a detrimental effect on the flutter

behaviour of the aircraft; as the stiffness of the device decreases, so too does the

flutter speed. The significant range of stiffnesses that have a major impact on

the flutter speed is approximately 1 - 100 N·m·rad−1. The high stiffness flutter

speeds agree well with the baseline model’s prediction (3.5628Ub), as expected.

It is also clear from figure 6.7b that the closer the attachment point is to the

leading-edge and to the wing tip, the better, with regards to flutter behaviour.



298
CHAPTER 6. ADAPTIVE WING TIP DEVICES FOR LOADS

ALLEVIATION

The frequency and damping plots for the first 5 modes of the modified system

(with xP/l = 0.7, yP/c = 0 and k = 10 N·m·rad−1) are shown in figure 6.8.

Comparison with figure 6.5 (equivalent plots for the baseline system) shows that

the flutter speed has reduced significantly (UF = 1.8292Ub, in agreement with

figure 6.7b) as a result of the coupling of modes (a) and (b) (identified in table

6.2). A second incidence of flutter can be seen at around 5.2Ub due to the coupling

of modes (c) and (d). Finally, the zero frequency instability (divergence) is not

visible in the range of airspeeds considered, as expected.
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Figure 6.8: Frequency and damping trends for the first five modes when the loads
alleviation device is employed (xP/l = 0.7, yP/c = 0, k = 10 N·m·rad−1).

Figure 6.9a shows the variation of maximum plunge of the wing (at the at-

tachment point P ) with attachment stiffness, for several different chordwise and

spanwise positions of attachment, during the response to the gust; these trends

are significant as they provide an indication of the trends of the maximum stress

in the structure. The minimum stiffness that was considered is approximately 3
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N·m·rad−1; below this the wing is fluttering, as shown in figure 6.7b.
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Figure 6.9: Gust behaviour when the loads alleviation device is employed.
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Figure 6.10: Gust response at Ub when the loads alleviation device is employed
(xP/l = 0.7, yP/c = 0, k = 5 N·m·rad−1).
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The loads alleviation device allows the maximum bending deflection at P

to be reduced from 18.021 mm to 13.070 mm (27.474% reduction). It can be

seen that the further forward towards the leading-edge, and the further inboard

towards the wing root the attachment point is, the more effective the device is

at alleviating the deflections. Figure 6.9b shows that as the airspeed is varied,

the attachment stiffness must also be varied in order to minimise the deflection

of the structure that results from the gust, which demonstrates the advantage of

an adaptive stiffness capability.

Figure 6.10 shows the response of the wing due to the gust when the device

is employed. Comparison of this plot with figure 6.6 (the equivalent plots for

the baseline system) shows a reduction in the bending deflection of the wing

for the modified system, and to achieve this the device has rotated through 2◦.

The reduced damping in the system is also apparent from the wing’s torsional

response in particular.
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Figure 6.11: Static aeroelastic response when the loads alleviation device is em-
ployed.

From the static aeroelastic response analyses (see figure 6.11a), it was found

that the device enables the lift coefficient to be reduced from 0.55520 to 0.51000

(8.141% reduction) at Ub; this demonstrates the trim capability of the device.

This was further explored by establishing the range of k necessary to trim the
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wing to the baseline CL over a range of airspeeds (see figure 6.11b), which rein-

forces the benefits of an adaptive stiffness capability. At higher dynamic pressures

the variation in CL will be more significant and therefore a low frequency roll

capability is also a possibility.

6.5 Case study for stress reduction

6.5.1 Description of the baseline platform

The platform chosen for the study was the Boeing 410E SensorCraft concept.

From past collaborations with the US AFRL, much was known about this con-

cept and therefore it represented a convenient choice of platform [16, 17, 107].

Furthermore, from previous work a scaled finite element representation of this

baseline UAV was available [2, 97]. The aircraft has a joined-wing blended wing-

body configuration with the forward wings swept back by 55◦ and with a dihedral

of 7◦, and the rear wings swept forward by 56◦ and with a anhedral of 9◦. The

full-scale model has a semi-span of approximately 23 m. The FE model used for

the study was scaled to provide a basis for future wind tunnel tests and consists

of an aluminium sub-structure and a shrink-wrap skin.

6.5.2 Aeroelastic analyses of the baseline system

The FE representation of the Boeing 410E SensorCraft concept was a 1:15 ge-

ometrically scaled right-hand half-model. The NASTRAN™ structural model

(shown in figure 6.12) represents the fuselage, tailplane and skin with plate el-

ements (CQUAD4), the spars (2 per wing) and tail boom with beam elements

(CBEAM), and the ribs (12 in the forward wing, 10 in the rear) with plate

elements (CTRIA3) [11].

The NASTRAN™ aerodynamic model (shown in figure 6.13) represents the

lifting-surfaces (the two wings, the fuselage, and tailplane) with 600 CAERO1
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Figure 6.12: Finite element representation of the baseline structural model in the
aerodynamic coordinate system.

aerodynamic panels. SPLINE1 algorithms provided the linear beam spline for

transmitting the aerodynamic loads and motion between the aerodynamic and

the structural model [116].

To establish the baseline system behaviour, the first step in the study was to

perform the divergence (SOL 144), flutter (SOL 145 using the p-k method) and

gust (SOL 146) analyses [116] of the unmodified wing model. Since it was in-

tended to use the results of this study in future experimental studies, the analyses

was performed using sea-level atmospheric conditions and an airspeed of 30 m·s-1

i.e. typical low-speed wind tunnel conditions. The divergence speed was found to

be 80.846 m·s-1, with bending of the forward wing being the critical mode. The

structure was found to flutter at 66.373 m·s-1, with the coalescing frequencies

associated with mode 1 (rear wing bending and torsion) and mode 2 (first wing

bending of both forward and rear wings). The dynamic aeroelastic analysis failed
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Figure 6.13: Finite element representation of the baseline aerodynamic model in
the aerodynamic coordinate system.

to identify the divergence mode that occurred at 80.846 m·s-1; instead it found

another flutter mode here. The author was advised by MSC.Software technical

support to accept the static analysis divergence solution in the case of such an

inconsistency. The frequency and damping plots for the first 5 modes are shown

in figures 6.14. With p an eigenvalue of the aeroelastic system, each damping

value used in the plot is given by ζ = Re {p} /Im {p} [159].

The gust analysis was performed with a freestream velocity of 30 m·s-1. A

‘1-cosine’ gust was used for the analysis. As before, FAA regulations [1] dictated

the maximum gust wg0
that the scaled aircraft should be designed for as 2.957

m·s-1.

The maximum (absolute) stress (which occurs in the rear spar of the forward

wing at the root), σroot, encountered during the response (see figure 6.15) to
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Figure 6.14: Frequency and damping trends for the first five modes of the baseline
system.

the gust was found to be 146.361 MPa. A peak (absolute) twist of the wing

at the tip was found to be 1.6805◦. The response was also measured at the

point P on the span (86%) where the wing would be modified; at this point

the maximum (absolute) twist θPmax
encountered was 1.4825◦ and the maximum

(absolute) bending hPmax
of the wing was 50.316 mm.

6.5.3 Aeroelastic analyses of the modified system

The wing was altered to include a loads alleviation device. This device replaced

part of the outboard section of the forward wing (86 - 100% span) and was at-

tached to the main wing via a torsional spring close to the leading-edge at point

P , allowing it to pitch relative to the main wing with an associated stiffness (see

figure 6.16 where the device has been aligned off-centre for demonstration pur-

poses). The attachment spring was represented with a spring element (CELAS2),
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Figure 6.15: Gust response for the baseline system.

and an additional rib was placed at the attachment chordline. As the main wing

pitches up in response to a gust (and by doing so increasing aerodynamic loads

and resultant stresses), the device rotates about the spring (as the aerodynamic

centre lies aft of this axis), decreasing its incidence and therefore decreasing aero-

dynamic loads.

Of interest in this study was the aeroelastic behaviour of the wing as both the

stiffness of the attachment, as well as the chordwise position of the attachment

point P were varied. Three attachment points that coincided with existing nodes

in the model were considered; these are given in the aerodynamic coordinate

system (unlike in sections 6.3 and 6.4) as xP/c = 0.0, xP/c = 0.08307 and

xP/c = 0.1666, with c the local chord length and xP the chordwise distance

from the leading-edge. Note that xP = 0 corresponds to the leading-edge of
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Figure 6.16: Finite element representation of the modified structural model in
the aerodynamic coordinate system.

an arbitrary section and therefore the corresponding y-axis is parallel but not

coincident to the aerodynamic y-axis shown in figures 6.12, 6.13 and 6.16.

Figure 6.17 illustrates the variation of the divergence speed with attachment

stiffness k for several different chordwise positions of attachment. The critical

divergence mode was found to be bending of the forward wing for stiffnesses

approximately greater than 50 N·m·rad−1 and pitching of the device as well as

rear wing bending for stiffnesses below this value.

Although the divergence speed barely alters over the range of stiffnesses con-

sidered, the device improves the divergence behaviour of the wing slightly, con-

firming the findings of section 6.4.2. With regards to the placement of the at-

tachment, figure 6.17 also confirms the trends established in that section. The

difference in the divergence speed at high stiffnesses from the original model

(80.846 m·s-1) is most likely due to structural modifications to include the de-

vice. However, the critical modes are identical.
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Figure 6.17: Divergence behaviour when the loads alleviation device is employed.

10
−1

10
0

10
1

10
2

10
3

25

30

35

40

45

50

55

60

65

70

Attachment stiffness k [N·m·rad−1]

U
F

[m
·s−

1
]

 

 

xP /c = 0.0

xP /c = 0.08307

xP /c = 0.1666

(a) Flutter speed.
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(b) Flutter frequency.

Figure 6.18: Flutter behaviour when the loads alleviation device is employed.

Figure 6.18a illustrates the modified wing’s flutter speed variation with at-

tachment stiffness for various chordwise attachment points. The plots reinforce

the results of the parameter study in section 6.4.2 in which it was established

that the gust alleviation device has a detrimental effect on the flutter behaviour.

The significant range of stiffnesses that have a major impact on the flutter

speed is approximately 5 - 40 N·m·rad−1. At the upper end of this range a sharp

levelling-off of the flutter speed is observed. This is caused by a change of modes

causing the flutter, as can be more dramatically seen in figure 6.18b (variation of

flutter frequency). The high stiffness flutter speeds agree well with the baseline

model’s prediction, as expected. Again, it is evident from figure 6.18a that the



308
CHAPTER 6. ADAPTIVE WING TIP DEVICES FOR LOADS

ALLEVIATION

closer the attachment point is to the leading-edge, the better, with regards to

flutter behaviour.

Figure 6.19a shows the maximum stress in the wing during the response to

the gust. For attachment points at xP/c = 0.08307 and xP/c = 0.1666 the plot

ends abruptly because below the corresponding value of torsional stiffness the

wing is fluttering. At 30 m·s-1 with the attachment point at the leading-edge
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(a) Maximum stress in structure.
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(b) Maximum twist of wing at attachment
point.
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(c) Maximum pitch of device.
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point.

Figure 6.19: Gust behaviour when the loads alleviation device is employed.

(xP/c = 0.0), the wing is free from flutter over the entire range of stiffnesses

considered (see figure 6.18a). Figures 6.19b - 6.19d (displacement plots) show

this behaviour too.

The loads alleviation device allows the maximum stress to be reduced from
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146.361 MPa to 118.477 MPa (19.052% reduction). As expected, above a certain

stiffness value, a decrease in the stiffness alleviates the stress in the structure.

However, below this point the stress begins to increase again. This is due to the

decrease of damping in the system. It can also be seen that the further forward

the attachment point is, the more effective the device is at alleviating the stress.

Figures 6.19b - 6.19d also show that a forward-placed attachment point is best

at minimising displacements of the main wing.
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Figure 6.20: Gust history and response of wing with k = 10 N·m·rad−1 (xP/c =
0.0).

Figures 6.20 and 6.21 show the behaviour of the wing due to the gust for

two different values of stiffness (k = 10 N·m·rad−1 and k = 30 N·m·rad−1), both

at 30 m·s-1 and with an attachment point of xP/c = 0.0. The most obvious

difference is, as expected, the device pitches to much higher incidences with

an associated lower stiffness. Also of interest, a non-exponential decay of the
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response amplitude is seen for the lower stiffness, due to the lower damping in

the system allowing an additional mode to become significant.

The high stiffness values of maximum stress (once again found in the rear

spar of the forward wing at the root) are slightly below the original wing’s value

of 146.361 MPa; this can be attributed to structural modifications in the model.

However, the corresponding values of wing twist, tip twist and bending (analysed

at the attachment point to eliminate angular contributions from the device) are

in good agreement with the original wing (1.4825◦, 1.6805◦, 50.316 mm respec-

tively).
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Figure 6.21: Gust history and response of wing with k = 30 N·m·rad−1 (xP/c =
0.0).
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6.6 Case study for mass reduction

In short, the motivation for incorporating a loads alleviation device onto an

aircraft is to save mass, since the alternative method of improving the response

would be to use a stiffer and therefore heavier aircraft structure. To demonstrate

this, the model used in section 6.5 was used for a mass reduction exercise; from

section 6.5 the maximum stress encountered in the baseline wing in response to a

gust was 146.361 MPa and for the modified wing it was 118.477 MPa; using the

maximum stress of the baseline model as the reference maximum allowable stress,

the task then was to remove material from the modified structure to increase the

maximum stress from 118.477 MPa to the reference value.

Two approaches to this problem were considered: uniform removal of material

from all of the aircraft structure excluding the wing tip device, and an optimisa-

tion of the aircraft structure excluding the wing tip device with minimum mass

and the reference stress value as the objective functions.

6.6.1 Uniform mass reduction

In this approach, all structural components (as shown in figure 6.12) in the

model except those contained within the wing tip device region had identical

percentages of certain dimensions reduced. For example, a 15% reduction in

element dimension reduced the following dimensions by 15%: spar heights and

thicknesses, rib thicknesses, skin thickness, fuselage thickness, tailplane thickness,

tail boom height and thickness. This was done for approximately 50 different

element reduction increments and for each of these models the maximum stress

in response to the gust was recorded.

The results are shown in figure 6.22. The reference stress value is represented

in figure 6.22a by the solid red line. It can be seen that, as the component

dimensions are reduced, the maximum stress in the structure during the gust

response increases, as expected. The stress returns to the reference value between
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Figure 6.22: Reduction in component sizes to return stress to reference value and
reduce aircraft mass.

27% and 29% reduction in the component dimensions. In figure 6.22b the solid

red line represents the original mass of the aircraft (48.133 kg). The mass reduces

approximately linearly as the component dimensions decrease. At the reference

stress value (corresponding to a 27 - 29% reduction in the component dimensions)

the mass of the aircraft is 34.498 - 35.488 kg. This is equivalent to a 26.270 -

28.327% reduction in the aircraft mass.

6.6.2 Mass reduction via optimisation

The second approach to reducing the aircraft mass was to use a genetic algorithm

optimisation (see section 4.4.3) routine to vary the component dimensions with a

minimum aircraft mass and the reference stress value as the objective functions.

Table 6.3 shows the range of the variables used in the optimisation, and the

number of increments (Ni) considered.
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Table 6.3: Parameter ranges.

Parameter Min. Max. Ni

All rib thicknesses [mm] 1.1 20 24

Fuselage and tailplane thickness [mm] 10 30 23

Tail boom height and thickness [mm] 10 30 23

All spar thicknesses [mm] 1.1 20 24

Fwd. wing fwd. spar height [mm] 1.1 12.2 24

Fwd. wing rear spar height [mm] 1.1 6.5 24

Rear wing fwd. spar height [mm] 1.1 8.4 24

Rear wing rear spar height [mm] 1.1 4.4 24

The optimisation routine resulted in a maximum stress in the structure in

response to a gust of 146.398 MPa (0.0253% difference from the reference stress)

and the aircraft mass being reduced to 35.452 kg which is a reduction of 26.345%.

The convergence iteration history, presented in figure 6.23, shows that the routine

converges after approximately 20 iterations.
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Figure 6.23: Convergence of cost function for the seven best genes/solutions.
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Comparison of mass reduction results

The two approaches to the mass reduction problem arrived at very similar results,

with the uniform mass reduction method reducing the aircraft mass by approx-

imately 26 - 28%, and the optimisation approach reducing it by 26%. This is

a significant mass saving which highlights the potential of the proposed loads

alleviation device.

The component dimensions for the two methods as well as for the baseline

wing are presented in tables 6.4 - 6.6. From these results it is clear to see the ex-

tent of the reductions, although some of the component dimensions have increased

from the baseline model in the optimisation approach. One significant problem

with the uniform reduction method is highlighted in these results; some of the

solution values are not practical because they are so small that the components

would be extremely difficult, if not impossible to manufacture. For instance, the

forward spar in the forward wing has cross-sectional dimensions of 2.2 mm and

0.8 mm; clearly this could not be manufactured, given that the spar is over 1 m

long and fabricated from aluminium. In contrast, the optimisation routine used

realistic dimension ranges.
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Table 6.4: Rib parameters.

Parameter Baseline Uniform mass

reduction

Optimisation

approach

Fwd. wing rib

thicknesses (root to

tip) [mm]

13.7 9.9 6.1

11.2 8.1 6.1

4.9 3.5 16.2

12.4 8.9 6.1

7.4 5.3 16.2

3.6 2.6 3.6

13.7 9.9 13.7

1.1 0.8 3.6

15.0 10.8 4.9

17.5 12.6 13.7

Rear wing rib

thicknesses (root to

tip) [mm]

12.4 8.9 6.1

16.2 11.7 13.7

16.2 11.7 13.7

12.4 8.9 20.0

17.5 12.6 12.4

20.0 14.4 17.5

18.7 13.5 8.7

6.1 4.4 20.0

3.6 2.6 2.4

18.7 13.5 4.9
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Table 6.5: Spar parameters.

Wing Spar Parameter Baseline Uniform mass

reduction

Optimisation

approach

Fwd.

Fwd.
Height [mm] 2.0 1.4 7.8

Thickness

[mm]

4.8 3.5 3.6

Rear
Height [mm] 3.0 2.2 1.1

Thickness

[mm]

1.1 0.8 1.1

Rear

Fwd.
Height [mm] 2.0 1.4 4.0

Thickness

[mm]

3.0 2.2 18.7

Rear
Height [mm] 4.8 3.5 1.1

Thickness

[mm]

1.1 0.8 18.7

Table 6.6: Other component parameters.

Parameter Baseline Uniform mass

reduction

Optimisation

approach

Fuselage thickness [mm] 18.6 13.4 12.9

Tailplane thickness [mm] 30.0 21.6 18.6

Tail boom height [mm] 10.0 7.2 15.7

Tail boom thickness [mm] 10.0 7.2 27.1
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6.7 Conclusions

The work presented in this chapter has helped to describe and develop an effective

method for passive loads alleviation. An approximate aeroelastic model was

developed and used as a tool to perform a parameter study into the concept,

resulting in a 27% reduction in flexural deformation. Next, a case study was

performed using a finite element representation of a SensorCraft platform; this

included applications of the device to reduce the gust-induced stress by 19%, as

well as to reduce the mass of the aircraft by 28%.

The studies with the approximate model and the finite element model both

exhibited similar aeroelastic trends and identified the adaptive attachment stiff-

ness requirement. In terms of the divergence behaviour, it is apparent that the

loads alleviation device is beneficial to the wing; as the stiffness of the attachment

decreases, the divergence dynamic pressure increases. However, this is not the

case with flutter; in general, a decrease in attachment stiffness lowers the flutter

dynamic pressure. However, above a certain stiffness, a further change in the

stiffness has little effect on the flutter behaviour, as neither of the two modes

involved in flutter at these stiffness values is associated with the device.

With regards to the gust response behaviour, in general the lower the stiffness

of the device attachment, the more effective the device is at reducing gust-induced

stress peaks; however, below a certain stiffness value the stress and deflections of

the response increase again with decreasing stiffness, which reflects the fact that

damping in the system is decreasing.

It was also shown that by varying the stiffness and location of the attachment,

the lift could be altered; this has applications for roll control and also for trimming

the aircraft.

It is the recommendation of the author that an attachment point as close to

the wing’s leading-edge as possible be used; this raises both the divergence and

flutter dynamic pressures, and decreases gust-induced stresses and deflections,
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as well as increasing the effectiveness of the device as a control surface. How-

ever, a compromise must be found with regards to the spanwise location of the

attachment; as this point moves further away from the tip the divergence speed

increases, the gust-induced stresses and deflections decrease and the effectiveness

of the device as a control surface increases. However, there is a simultaneous

reduction in the flutter speed, and this reinforces the adaptive stiffness require-

ment.



Chapter 7

Conclusions and future work

7.1 Conclusions

Two novel adaptive wing structures concepts have been explored. The develop-

ment of a static aeroelastic model incorporating the rotating spars concept was

presented, and analytical as well as experimental studies into the concept have

been performed. Both of these approaches incorporated methods for automat-

ing control of the structure with varying degrees of success. The development

of a dynamic aeroelastic model incorporating the loads alleviation device was

demonstrated, and analytical studies using this and finite element models were

performed.

The parameter studies and optimisation routines performed using the ana-

lytical model of the rotating spars wing led to the following conclusions:

• The structural parameter that is most affected by the concept is the wing’s

flexural rigidity, which is of significance for swept wings. The chordwise po-

sition of the elastic axis is also noticeably affected, whereas it is challenging

to alter the torsional rigidity by any significant amount.

• Since most aeroelastic phenomena are torsional in nature, the inability of

319
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the concept to enable significant changes in the torsional rigidity of the wing

suggests that, for an arbitrary planform, the concept will not be effective.

• However, by carefully designing the wing, the large changes in flexural

rigidity can be employed to benefit the performance; this can be realised

through the use of a wing with sweep. The sweep introduces a bending-

torsion coupling, therefore using the variations in the flexural rigidity to

tailor the aerodynamic performance. In reality, this effect is reduced for

forward swept wings since they are less aeroelastically stable than swept-

back wings and therefore undergo large deformations at lower speeds than

sweptback wings.

• Wings that have a medium-to-high aspect ratio (AR ≥ 6) are best suited to

take advantage of the bending coupling that exists on swept planforms.

• The ratio of second moments of area of a rotating spar should be large

(I11/I22 ≥ 10) to maximise the effectiveness of the concept. Care must be

taken, however, to ensure that the spar will not be susceptible to lateral

buckling.

• For a wing with two rotating spars, they should be positioned as far apart

as possible to maximise the effectiveness of the concept. More precisely,

the effectiveness of the concept improves as the distance that the elastic

axis can vary by relative to the aerodynamic centre increases.

• The spar orientations required to minimise drag at the trim state change

as the airspeed changes therefore demonstrating the requirement for an

adaptive capability.

• An optimisation routine to minimise the drag at the trim state was per-

formed successfully, providing the basis for control of the spars on the

experimental wing.
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The wind tunnel tests demonstrated the successful implementation of the

rotating spars concept on an experimental swept wing. However, the tests also

identified some challenges that were not obvious from the analytical studies. To

summarise the findings of these tests:

• The results of the structural and aeroelastic parameter studies agreed well

with the finite element predictions and showed that the lift-to-drag ratio of

the wing could be altered by up to 15%.

• Measurements of the aerodynamic loads from the load balance were sub-

ject to high levels of noise, which presented problems when attempting to

automate drag reduction of the trimmed wing. This was due to equipment

limitations meaning that the range of the load balance was several orders

of magnitude greater than the range of the loads generated by the wing.

• As a result of these high noise values, a regression approach to trim the

wing and achieve minimum drag at the trim state failed.

• The optimisation routine used in the analytical study to minimise drag at

the trim state also failed as a result of the noise.

• Using signals with lower noise levels (from the laser displacement system)

allowed the regression and optimisation approaches to be tested for robust-

ness. Once again, the regression approach failed. However, the optimi-

sation approach resulted in the desired behaviour, and therefore it is the

recommendation of the author that this type of approach be used rather

than a regression model in future attempts to automate the trim or drag

reduction procedures. The disadvantage of this approach is that it is a

time-consuming method of control, which is in contrast to the near instan-

taneous regression approach; however, the frequency demands to maintain

the optimum wing shape throughout the flight envelope are very low.
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In addition to the points above, the following conclusions regarding the scaling-

up of the rotating spars concept to full-size aircraft were noted:

• Most modern aircraft employ a semi-monocoque wing structure; in this

design, a stressed skin is used and carries the majority of the load. The

skin and spar caps provide the flexural rigidity, and the torsional load is

resisted by the wing box, which comprises of the spar webs and upper and

lower skins between the two main spars.

• The rotating spars concept works by altering the flexural rigidity of the

spars; a large variation in the flexural rigidity of the spars will have only a

small effect on the overall rigidity of a semi-monocoque wing, and therefore

gains in aerodynamic performance will be unsubstantial.

• The degree of freedom required to permit rotation of the spars would in-

terrupt the flow of shear in the semi-monocoque wing box structure, redis-

tributing it around the periphery of the aerofoil structure; the leading- and

trailing-edge skins would require stiffening, therefore increasing the weight

of the wing.

• The concept has been applied throughout this work to an unstressed wing

structure. This type of structure is well set-up for the concept as the ma-

jority of the structural strength is provided by the spars. However, it is not

indicative of modern aircraft wing structures which use semi-monocoque

wing structures.

• Practicality issues unrelated to structural problems would also arise if the

rotating spars concept was used in modern aircraft. Spars typically double

as fuel tank walls; rotating spars could not serve this purpose, creating the

need for additional standalone bulkheads. The clearance required within

the wing for rotation of the spars would also reduce the volume of usable

space.
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The parameter studies using the developed dynamic aeroelastic model of the

wing incorporating the loads alleviation device, and the finite element case study

with this device led to the following conclusions:

• In general, lower attachment torsional stiffness values and attachment po-

sitions closer to the leading-edge and further from the tip are most effective

at reducing the stresses and deflections present in the structure in response

to a gust. However, below a certain stiffness value the stresses and deflec-

tions increase again with decreasing stiffness, which reflects the decreasing

damping in the system as the pitching mode of the device becomes less

stable.

• In general, the loads alleviation device lowers the flutter dynamic pressure

of the wing, and as the stiffness of the attachment decreases, so too does the

flutter dynamic pressure. Consequently, care must be taken to avoid flutter

within the flight envelope. Conversely, the device promotes static stability

within the system, with the divergence dynamic pressure increasing as the

attachment stiffness decreases.

• For the case study, a 19% reduction in the maximum stress in the structure

in response to a gust was achieved. A separate exercise was performed

to maintain original stress levels whilst using the loads alleviation device

to reduce the aircraft mass; two independent approaches to this exercise

showed that the device enabled the mass to be reduced by around 30%.

7.2 Suggestions for further work

Continuing work needs to be performed to realise the potential of both the adap-

tive structures concepts. For advancement in the research of the rotating spars

concept the following areas were identified as critical to progress the work:
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• Extend the assumed modes static aeroelastic model to provide the capabil-

ity of a dynamic analysis; this would allow important constraints such as

flutter to be included in the parameter studies and optimisation routines.

• The concept is most effective for rotating spars where the flexural rigidity

in the plane of bending is large in comparison with the lateral flexural

rigidity; however, such beams are susceptible to lateral buckling. It would

therefore be useful to include a lateral buckling stability analysis as part of

the rotating spars assumed modes structural model; this would make the

analysis more realistic as it currently ignores this failure mechanism.

• Additionally, the inclusion of viscous flow would allow improved drag pre-

dictions to be made, therefore making the analytical study more realistic.

This would require a completely fresh approach to the model (aeroelastic

CFD), but given that drag reduction is the primary aim of the concept, the

effort would be justified.

• I-beams and C-channel beams are predominantly used for constructing effi-

cient wing spars, providing the required structural strength with the mini-

mum weight. For proof-of-concept, it was convenient to use spars of rectan-

gular cross-section in the current study. However, progress needs to made

regarding the development of spar cross-sectional shapes that can be ef-

fectively incorporated into the rotating spars concept while simultaneously

offering an efficient distribution of material. Further to that, the spars

should also be resistant to lateral buckling.

• Future wind tunnel tests of the concept should ideally use a load balance

with a measurement range better suited to the range of data expected

from the model. This will reduce the time required to collect data since

less averaging is required, and more significantly will enable the goal of

automatic drag reduction to be achieved.
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• It would also be of interest to explore and compare different actuators.

The tests described in this work used servos as actuators since they are

available off-the-shelf, but they are not necessarily the best option. The

next step after this would be to perform a feasibility study; this would

consider whether the likely mass and energy requirements of a rotating spars

wing can be justified by the drag reductions it offers over a conventional

wing. A comparison with other morphing concepts would also be useful.

Future work that would further research into the adaptive loads alleviation

wing tip device was also identified:

• Extension of the in-house dynamic aeroelastic model to encompass more

generic wing planforms; this would enable studies to be performed into

how planform parameters such as sweep and taper affect the performance

of the wing tip device.

• Research to establish the most suitable actuators and mechanisms to realise

the adaptive capacity of the device; factors to consider include the energy

requirements of an actuator and the practicality of embedding actuators

and mechanisms in a typical modern aircraft wing.

• Incorporation of the loads alleviation device with adaptive capabilities into

a wind tunnel model would be the logical progress to make. Parameter

studies and attempts to automate the adaptive nature of the device would

help to reinforce the analytical results.

• A detailed comparison of the wing tip device with alternative well-established

loads alleviation technologies would be interesting and helpful. Key details

to compare include performance, system weight and volume, reliability, en-

ergy requirements, fatigue life and anticipated maintenance requirements.
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Symposium, Évora, Portugal, 2009.

[89] T.H.G. Megson. Structural and stress analysis. Elsevier Butterworth-

Heinemann, London, UK, second edition, 2005.

[90] P.S. Meilinger. Airwar: theory and practice. Frank Cass Publishers, Abing-

don, England, 2003.

[91] S. Miller and J.E. Cooper. Wing design incorporating a passive loads alle-

viation device. In RAeS Aircraft Structural Design Conference, Liverpool,

UK, 2008.

[92] S. Miller and J.E. Cooper. Development of an adaptive wing tip device.

In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, Palm Springs, California, 2009.



336 REFERENCES

[93] S. Miller, J.E. Cooper, and G.A. Vio. Adaptive wing tip devices for gust al-

leviation, trim and roll control. In AVT-168 Morphing Aircraft Symposium,
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