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Figure 4.69 Dielectric constant E’ and Dielectric loss factor E” as a 
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temperatures 
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LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy 
ratio of 1.0 on the left, and microwave heating on the right 

Figure 4.103 Comparison between time dependence of experimental 
reaction rate curves and the curves predicted by means of 
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system with amine / epoxy ratio of 1.1 under conventional 

curing. 

 
Figure 4.112 Rate constants of curing reaction against temperature for 

isothermal cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 under microwave 

curing. 
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4’ DDS an amine / epoxy ratio of 0.8. 
Figure 5.13 Epoxide absorbance normalised against the absorbance for 

phenyl fo Araldite LY 5052 /4 4’DDS an amine / epoxy ratio 
of 0.85 at different times at 180 oC during conventional and 
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Figure 6.5 Dependence of storage modulus (G’), Loss modulus (G”) 281 
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and tan δ with temperature for a fully cured sample of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 0.85 prepared using microwave heating at 

180oC for 240 mins 
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180 oC for 240 mins. 
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epoxy ratio of 0.8 prepared using conventional heating at 

180 oC for 240 mins. 
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Figure 6.11 Dependence of storage modulus (G’), Loss modulus (G”)and 

tan δ with temperature for a fully cured sample of Araldite 

DLS 772 / 4 4’ DDS epoxy system an amine / epoxy ratio of 

1.1 prepared using microwave heating at 180 oC for 240 

mins. 
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Figure 6.20 Plot of Bar chart of cross-link density values of conventional 
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DDS epoxy system with an amine / epoxy ratio of 1.0. 
Figure 6.31 Bar chat of Average flexural strength values of conventional 
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DDS with an amine / epoxy ratio of 0.8 
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ABSTRACT 
Comparative studies were carried out on the curing kinetics, physical and mechanical 
properties of conventionally and microwave cured epoxy resins. Epoxy resins Araldite 
LY 5052 and DLS 772 were used for this study. 4 4’ Diaminodiphenyl sulfone was used 
as a hardener in the preparation of both systems. Nuclear magnetic resonance and gel 
permeation chromatography were used to identify the chemical structure of the resins.  
Differential scanning calorimetry was used to monitor the curing kinetics of 
conventionally cured epoxy samples while a microwave heating calorimeter was used to 
monitor the curing kinetics of microwave cured epoxy samples “in situ” .  These studies 
were carried out under non-isothermal and isothermal conditions. For both conditions, 
there was a significant increase in the fractional conversion of the microwave cured 
samples compared to the conventionally cured samples. The curing reactions for 
samples cured using microwave heating took place over a smaller temperature range. 
Higher reaction rates were observed in the samples cured using microwave heating. 
There were some differences in the kinetic parameters of the non-isothermal curing 
reactions of samples cured using microwave and conventional heating. For the Araldite 
LY 5052 / 4 4’ DDS epoxy system, the microwave cured samples had higher activation 
energy than conventionally cured samples, while for the Araldite DLS 772 / 4 4’ DDS 
epoxy system, the microwave cured samples had lower activation energy. The 
activation energies of the microwave isothermal curing of both Araldite LY 5052 / 4 4’ 
DDS and Araldite DLS 772 / 4 4’DDS epoxy systems were lower than the activation 
energies of the conventionally cured samples. 
Infrared spectroscopy showed that the curing reaction followed the same path during 
conventional and microwave heating. It also revealed that the reaction rate of the 
microwave cured samples was higher than the conventionally cured samples. 
For both epoxy systems, the microwave cured samples had a higher glass transition 
temperature (Tg) , higher cross-link density (ν) and lower molecular weight between 
cross-links. These showed that the microwave cured samples had a more compact 
network structure than the conventionally cured samples, which is an indication of 
better mechanical properties. 
A microwave reaction system was used to successfully dissolve conventional and 
microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy system. The chemical 
structure of the decomposed product was determined. 
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CHAPTER ONE 

 

 1.0  INTRODUCTION 
 
An epoxy is a thermosetting resin which usually starts out as a liquid and is converted 

into a solid by a chemical reaction only. When cured, epoxies become irreversibly rigid. 

An epoxy based polymer is mechanically strong, and in its solid form, it is chemically 

resistant to degradation. They are also highly adhesive during conversion from liquid to 

solid. These properties when put together, make epoxy materials very versatile [1]. 

 

Epoxy systems are made up of two essential components, a resin and a hardener. 

Sometimes there is a third component which is an accelerator. The resin component is 

the epoxy while the hardener is what the epoxy reacts with chemically and it is often a 

type of amine. When the epoxy and amine are added together and mixed in a specific 

way and then heated, they will react chemically and link together irreversibly. When the 

full reaction is complete, the resulting product is a rigid plastic polymer material [1] 

 

Due to increasing applications of epoxy materials as high performance structural 

adhesive systems in the aerospace and the microelectronic industries, the demand for 

epoxies is on the rise. This rise has lead to the exploration of faster and more efficient 

methods of manufacturing epoxy materials [2] 

 

Although thermal curing increases the rate at which the material cures and lowers the 

time taken for it to cure, it is limited by the fact that for any given system, the maximum 

rate of reaction has an optimum temperature. If a resin or a material is heated to a 

temperature higher than its optimum temperature, there would not be an increase in its 

reaction rate, but instead the material would start to degrade thermally [2]. 

 

Alternatives to thermal curing which can accelerate the rate of reaction, reduce the cure 

time or provide a more energy efficient method for curing epoxy resins have been 

looked into. These alternatives were the use of ultraviolent light, electron beams, 

gamma rays and microwave energy [2, 3] 
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Ultraviolet light has a poor ability to penetrate into the material. It also has a restricted 

close rate. Due to this, application of ultraviolet light in curing materials is only possible 

in very limited circumstances [2. 3] 

 

Gamma rays are usually delivered from naturally radiating sources such as cobalt-60, 

but there are several health and environmental concerns which are associated with the 

radiation hazards from gamma rays. Due to  these concerns, they are hardly used[2]. 

Curing with electron beams has proven to be an efficient and a quick method of curing, 

however, its disadvantage is that high costs are involved with the operation using this 

method [2, 3]. 

 

Microwaves have been found to be a good alternative method for curing thermoset 

polymers. Compared to conventional heating techniques which are based on conduction 

of heat through a material, microwave heating is a direct form of heating. Microwaves 

generate heat within the materials. Microwave radiation enables sample temperatures to 

be potentially changed or controlled more readily [4]. Any increase or decrease in the 

microwave input power leads to a corresponding increase or decrease in the temperature 

of the material undergoing cure. Unlike conventional heating which heats the material 

being processed, along with the walls of the oven and the air surrounding the process 

material, microwave heating affects only the material being processed. This makes 

microwave heating a more energy efficient method of heating materials being processed, 

and this translates into lower production costs for microwave heating [3]. Microwaves 

do not have any intrinsic difficulties associated with their use, as a result of this, 

microwave cured products are applied to many diverse industries [4]. 

 

Plastics and polymers are very beneficial to our society. They have played significant 

roles in the advancements of satellites aircrafts and missiles. As beneficial as these 

plastics and polymers are, they also cause a lot of environmental problems [5, 6]. They 

are non organic substances and hence, various microorganisms that decay matter can 

not act upon the plastics. As a result of this, they very slowly decay in nature. As they 

slowly decay, they release hydrocarbons which are added to the carbon cycle. They also 

have long half-lives in landfills. Burning them will also create pollution which releases 

toxic gases. 
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Chemical recycling of plastics and polymers is being explored as an interesting route for 

converting plastic wastes back into its original constituents, or into other usable 

substances [7, 8]. Chemical recycling is a very effective and promising method for 

plastics. It has advantages for the industry especially in the recycling of thermosetting 

resins. 

 

Amine cured epoxy resins have been successfully dissolved in nitric acid solution. This 

is because they have a low resistance to nitric acid solution. This successful dissolution 

has increased the possibility of recycling thermosetting resins [5, 6]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 40 

CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1     Epoxy Resins 
 

Epoxy resins were first synthesized in the 1930’s by  Castan in Switzerland and 

Greenlee in the United States[9]. Epoxy resins are thermosetting materials. 

Thermosetting materials are resins that become hard and infusible systems when 

converted by a curing agent. Some phenolics however can self crosslink. They cure on 

heating and then become infusible. Examples of thermosetting materials are phenolic, 

unsaturated polyester and epoxy resins [9]. 

 

Thermoplastic resins on the other hand are composed of long, linear chains which lie 

together in three dimensions, but are not chemically interconnected with each other. 

Practically, as heat or pressure is applied to the materials, thermoplastic materials will 

soften progressively while thermoset materials will retain their dimensional stability 

throughout their temperature range. This classification is based on their structure; and 

should not be considered as criterion of performance. This is because some 

thermosetting resins are designed for use at a very limited range and they will distort 

more readily than high-heat-resistant thermoplastic compounds [9]. 

 

2.1.2 Properties of Epoxy Resins 
 

Thermoset epoxy resins have a number of peculiar and valuable properties. These 

properties are immediately amenable to use in the formulation of sealing liquids, 

castings, laminates and coatings. Some of these valuable properties are  

 

(1) Versitility:- There are a lot of curing agents available for epoxies. These 

epoxies are compatible with a wide range of modifiers. As a result, the 

properties of a cured epoxy-resin system can be engineered to widely diverse 

specifications [9, 10]. 
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(2)  Good Handling Characteristics:- Many epoxy systems can be worked at 

room temperature, and those which can not be worked require just little heat 

during mixing. Without the curing agent, epoxy resins have an indefinite shelf 

life; as long as they are made properly and they do not contain any caustic 

compound [9, 11]. 

 

(3) High Adhesive Properties:- As a result of the polarity of the aliphatic hydroxyl 

and ether (C-O-C) groups present in the initial resin chain and the cured system, 

epoxy resins have high adhesive strengths. The polarity of these epoxy groups 

serve to create electromagnetic bonding forces between the epoxy molecule and 

adjacent surface. Likewise, the epoxy groups will react to provide chemical 

bonds with surfaces such as metals where active hydrogens may be formed. The 

chemical bonds established are usually preserved. This is because the resin 

passes relatively undisturbed (with low shrinkage) [9]. 

 

(4) Toughness:- Cured epoxy resins are about seven times tougher than cured 

phenolic resins. This relative toughness has been attributed to the presence of 

integral aliphatic chains, and the distance between crosslinking points [9, 10].  

 

(5) Low Shrinkage:- Unlike many thermosetting resins, epoxy resins do not give 

off any by-products during cure; and in the state, they are highly associated. 

Shrinkage is on the order of <2 percent for an unmodified system. This indicates 

that minor internal rearrangement of the molecules is necessary. On the other 

hand, the condensation and crosslinking of phenolic and polyester resins yield 

considerately higher shrinkage values [9]. 

 

(6) Inertness:- In a cured epoxy resin, the ether groups, the benzene rings and the 

aliphatic hydroxyl (where present) are almost invulnerable to attack by caustic 

substances and extremely resistant to acids. This makes cured epoxy resins very 

inert chemically. The dense, closely packed structure of the resinous mass in the 

cured epoxy system is extremely resistant to solvent action, and this enhances 

the chemical inertness of the cured epoxy resin [9]. 
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2.2 Structure of a basic epoxy molecule 
 

The epoxy resin is characterised by the reactive epoxy or ethoxyline groups [9, 10, 12]. 

 

                                        

 

Figure 2.1 Structure of basic epoxy – resin moiety 

 

These groups serve as terminal linear polymerization points. An extremely adhesive and 

highly inert solid is formed when crosslinking is accomplished through these groups. 

In its simplest form, the epoxy molecule is represented by the diglycidyl ether of 

bisphenol A. 

 

 

 

Figure 2.2 Diglycidyl ether of Bisphenol A 

 

The most widely used liquid epoxy resins are predominantly of the above structure. 

Commercial resins are not molecularly distilled, and because of this, they contain some 

percentages of higher weight homologs, branched chain molecules, isomers and 

occasionally monoglycidyl ethers in combination with the basic structure. The high-

viscosity and the solid commercial resins are predominantly comprised of more highly 

polymerized products which are considered as homologs of diglycidyl ether of 

bisphenol A [9]. 

 

 

 

 



 43 

2.3 Synthesis of a basic epoxy-resin molecule  

 

The raw materials for the synthesis of the diglycidyl ether of bisphenol A are 

epichlorohydrin and bisphenol A. These are obtained from natural gas, or by coking by-

products. 

2.3.1 Epichlorohydrin 
 

Epichlorohydrin is a mobile liquid which is colourless and has irritating chloroform like 

odour. Epichlorohydrin is represented by the formula below [12, 13]. 

                     

                         

 

Figure 2.3 Chemical structure of epichlorohydrin 

 

Epichlorohydrin is extremely reactive and it usually combines through the epoxy group 

with a substance which contains an active hydrogen atom. Epichlorohydrin is 

commercially available at 98 percent purity. 

 

Epichlorohydrin is commonly produced by the chlorination of propylene. This results in 

allyl chloride being formed, and this is reacted with hypochlorous acid to produce 

dichlorohydrin, which is exposed to sodium hydroxide at elevated temperatures to strip 

off one hydrogen and one chlorine atom [9]. 

 

These steps are similar to those involved in the preparation of glycerol. 

The complete reaction of the formation of epichlorohydrin from propylene is expressed 

in the equation below. 

 

 

 
Propylene Chlorine 

Allyl 
chloride 

Hydrochloric 
Acid 



 44 

 

 

ii) 

 

 

 

 

 

iii)  

 

 

 

 

 

Figure 2.4 Complete reaction from propylene to epichlorohydrin 

2.3.2 Bisphenol A 
 

Bisphenol A or bis (4-hydroxyphenyl) dimethylmetane requires two fundamental 

intermediates for synthesis; phenol and acetone. 

Bisphenol A is based on the very stable benzene ring. It is the most easily prepared of 

the dihydric phenols. It is available commercially as a flaked solid in relatively pure 

form with a melting point of 153 oC [9, 11-13]. 

 

                           

 

Figure 2.5 Chemical Structure of Bisphenol A   

          

Allyl 
chloride 

Water/chlorine 
Dichlorohydrin 

Dichlorohydrin Sodium 
hydroxide 

Epichlorohydrin 
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A commercial process of manufacturing bisphenol A would involve benzene, which is 

obtained from coal gas or water gas, as a starting point. First, benzene is treated with 

hydrochloric acid and oxygen to produce chlorobenzene. Sodium hydroxide then added 

to yield sodium phenolate, and phenol is released by the addition of carbon dioxide [9]. 

 

i)  

 

 

 

 

 

ii)   

     

 

 

 

iii)   

     

 

 

 

Benzene 
Hydrochloric 
Acid 

Oxygen Chlorobenzene Water 

Chlorobenzene Sodium 
hydroxide 

Sodium 
phenolate 

Sodium 
phenolate 

Carbon dioxide 
/ water 

Phenol 
Sodium 
Carbonate 
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Figure 2.6 Formation of Phenol 

 

Acetone is formed by treating propylene with sulphuric acid to produce isopropyl 

alcohol. This is then oxidized under mild conditions to acetone. A combination of 

acetone and phenol gives bisphenol A [9, 12, 13]. 

 

i)    

    

 

 

 

ii) 

     

 

 

 

Figure 2.7 Formation of Acetone 

 

 

 

 

 

 

Figure 2.8 Reaction between phenol and acetone to form Bisphenol A  

 

Bisphenol A has been the chief dihydric phenol used in epoxy-resin manufacture. This 

is because acetone and phenol are easily available, and they are easily manufactured. 

 

Propylene 
Sulfuric acid 
/ water Isopropyl 

alcohol 

Acetone Isopropyl 
alcohol 

Oxygen 

Acetone Phenol Bisphenol A 
Water 
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2.3.2 Diglycidyl ether of bisphenol A 
 

Diglycidyl Ether of bisphenol A is formed by the reaction of epichlorohydrin and 

bisphenol A in the presence of sodium hydroxide [9, 10, 13]. 

 

i)   

    

 

 

ii)  

     

    

 

Figure  2.9 Formation of diglycidyl ether of bisphenol A 

 

There have been suggestions that some of the caustic forms phenolate and water as an 

intermediate step in the reaction. The caustic also serves to neutralize the hydrochloric 

acid formed as a by-product [9]. 

 

Theoretically, in order to obtain diglycidyl ether of bisphenol A, 2 mols of 

epichlorohydrin are required for each mole of bisphenol A. 
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Figure 2.10 Formation of diglycidyl ether of bisphenol A 

 

However, when the stoichiometric ratio of 2:1 is employed, the mononeric yield is less 

than 10 per cent, with the remaining material being higher-molecular-weight 

condensation and polymerization products. Excess epichlorohydrin is employed in order 

to obtain high yields of the monomeric product, and the stoichiometric amount is 

doubled or tripled. This gives yields of 70 percent or more. There is an additional 

advantage in the use of excess epichlorohydrin. The epichlorohydrin serves as a reaction 

medium, making it unnecessary to employ a foreign solvent in the synthesis. The 

reaction is conducted in an inert atmosphere, and the alkalinity of the solution is 

carefully controlled by stepwise addition of caustic as necessary [9, 11]. 

 

There have also been suggestions of an alternate procedure in the manufacture of epoxy 

resins, and this involves a two-step process. First, bisphenol A and epichlorohydrin are 

reacted in the presence of 0.1 to 0.2 percent of a Friedel-Crafts type catalyst. 
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Figure 2.11 First step of the reaction of bisphenol A and epichlorohydrin in the 

presence of 0.1 and 0.2 percent of a Friedel-Crafts type catalyst. 

 

A dehydrohalogenating compound, such as the aluminates, silicates, and zincates is 

used to treat the monomeric material in a substantially or completely nonaqueous 

medium [9]. 

 

 

 

Figure 2.12 Second step of the reaction of bisphenol A and epichlorohydrin in the 

presence of 0.1 and 0.2 percent of a Friedel-Crafts type catalyst. 

2.4 Epoxy resin characterization  
 

There are some characteristics of epoxy resins which may be used as guides to their 

structure and their usefulness. They are 

 

1. Epoxide Equivalent:- The epoxide equivalent can be defined as the weight of 

resin in grams which contains one gram chemical equivalent of epoxy. Low-
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molecular-weight resins have an epoxide equivalent in the range of 175 – 200 

g/eq; while higher-weight resins have correspondingly higher values, since in 

each molecule there are long chains between the epoxy groups [9]. If the resin 

chains are assumed to be linear with no side branching, and if it also assumed 

that an epoxy group terminates each end, then the epoxide equivalent (weight) is 

one half of the average molecular weight of the resin. Epoxy value can be 

defined as the fractional number of epoxy groups contained in 100 grams of 

resin. Dividing the epoxy value into 100 gives the epoxide equivalent. Epoxy 

equivalents are determined by reacting a known quantity of resin with a known 

quantity of hydrochloric acid and back-titrating the remaining acid to determine 

its consumption [9]. 

 

2. Hydroxyl Equivalent :- Hydroxyl equivalent is the weight of the resin 

containing one equivalent weight of hydroxyl group. It can also be expressed as 

equivalents per 100 grams[11]. There are several methods of determining 

hydroxyl equivalents. The methods are (i) esterification with acids, which 

involves esterifying the resin with about twice the theoretical amount of linseed 

oil acids necessary to react with all the hydroxyl groups and epoxy groups at a 

temperature of 225 oC, until a constant acid value is obtained, and then back-

titrating the unreacted linseed acids and calculating the hydroxyl groups 

including epoxy content, one epoxy group being taken as equivalent to two 

hydroxyl groups.  (ii) reaction with acetyl chloride (iii) reaction with lithium 

aluminium hydride (iv) infrared spectroscopy [11].  

 

3. Good Handling Characteristics:- Many epoxy systems can be worked at room 

temperature and those which cannot be worked require moderate heat during 

mixing .Before the curing agent is incorporated, the resins have an indefinite 

shell life, provided they are not properly made. Cure can be accomplished in 

almost any specified time period by regulating the cure cycles and properly 

selecting the curing agent[9]. 

 

4. Toughness:- Cured epoxy resins are approximately seven times tougher than 

cured phenolic resins. This toughness has been attributed to the distance 

between crosslinking points and the presence of integral aliphatic chains [9]. 
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2.5 Amines 
 

Amines are important curing agents for epoxy resins. Amine compounds are classified 

into primary, secondary, and tertiary amines, depending on whether one, two or three 

hydrogen molecules of ammonia (NH3) have been substituted for hydrocarbon, 

respectively[14]. 

 

Depending on their number in one molecule, amines are called monoamine, diamaine, 

triamine, or polyamine. Amines are also classified into aliphatic, alicyclic and aromatic 

amines according to the types of hydrocarbons involved. These are all important curing 

agents for the epoxy resins [14]. 

 

Aliphatic amines can be used for room temperature cure. The heat resistance of the 

cured resin is generally about 1000C, and it has excellent bonding properties. Resins 

cured with aromatic amines have been used to attain greater heat and chemical 

resistance than those cured using aliphatic amines[14]. 

 

The curing of epoxy resin by amine curing agents is expressed by the formula shown in 

figure below. The epoxy moieties of the DGEBA can react with either the primary or 

secondary amine to form an OH in the main chain as in (i) and (ii)  which, later on, can 

react with another epoxide ring to further crosslink the resin. The relative rates of those 

three reactions are important for the final structure and properties of the cured resin[14]. 
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Figure 2.13 Amine curing reaction of epoxy resins 

 

Referring to figure 2.13, in order for the cured resin to become a cross-linked polymer, 

the curing agent must have more than three active hydrogen atoms and two amino 

groups in a molecule above. When the number of moles in epoxy groups is equal to that 

of the active hydrogen, the loading of the curing agent in epoxy resin becomes optimal 

[14].  

 

The curing speed of individual amines depends on the type and loading of amine. It also 

depends on the type of epoxy resin. The most commonly used glycidyl-ether type resins 

easily cure at room temperature, but inner epoxy types such as cyclohexene oxide and 

epoxidized polybutadiene hardly cure. Glycidyl-ester type cures quite faster than the 

glycidyl-ether type. 

 

Diglycidyl ether of bisphenol A (DGEBA), which is a condensation product of 

bisphenol A and epichlorohydrin, is primarily cured by aliphatic amines at room 

temperature, but with aromatic amines, DGEBA is slowly cured and this requires 

thermal curing [14]. 
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2.5.1 Aliphatic Amines 
 

Aliphatic amines are room temperature curing agents. They rapidly react with epoxy 

resins. A large quantity of heat is generated, and they have a short pot life (usable time). 

If curing of tertiary amines is performed at high temperature, the properties of curing 

agents that cure at the room temperature are improved. The heat deformation 

temperature of cured object of DGEBA is 120 oC at the highest [14]. 

 

Resins cured with aliphatic amines are strong. They also have excellent bonding 

properties. In addition, they have resistance to alkalis and some inorganic acids, and 

they have good resistance to water and solvents, but they are not really good to many 

organic solvents[14]. 

 

Aliphatic amines irritate the skin. Aliphatic amines having high molecular weight and 

low vapour pressure are less toxic, but they still need to be handled with care[14]. 

2.5.2 Aromatic Amines 
 
In comparison to aliphatic amines, aromatic amines are weaker bases, and they slowly 

cure at room temperature. This is as a result of steric hindrance caused by the aromatic 

ring. The curing virtually stops in the B-stage of a linear polymer solid due to the large 

differences in the reaction of primary and secondary amines [14]. 

 

There are usually two steps involved in the curing of aromatic amines. The first step is 

heating to a temperature of about 80 oC in order to lessen the heat being generated. This 

helps to slow cure in order to reduce the exotherm remaining. The second heating is 

carried out at a high temperature of about 150 to 170 oC [14]. 

 

Aromatic amines provide excellent heat resistance, they yield heat distortion 

temperatures of 150 to 160 oC, with good mechanical properties and the cured resins are 

strong. In addition, aromatic amines have good electrical properties and excellent 

chemical resistance, particularly against alkalis, and because of this, it is a curing agent 

that is highly resistant to solvents [14]. 
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 2.5.3 Tertiary and secondary amines 
 

Tertiary amines, the active hydrogen in which has been completely replaced with 

carbon hydroxide, do not cause an additional reaction with epoxy resin, but work as a 

polymerisation catalyst [14].  

 

The curing temperature significantly influences the curing speed, the heat generation, 

and the properties of the cured resin. Thus, this amine is rarely used alone, particularly 

in large castings, because the properties at the centre and the outer region are different 

due to the large quantity of heat generated. They are often used in the field of paints and 

adhesives where the material used is thin [14]. 

 

Although tertiary amines are less useful as a curing agent, they are very important 

compounds as accelerators for acid anhydrides, and they are useful as accelerators or 

co-curing agents for polyamine and polyamide curing agents[14].  

  2.5.4 Amine Hardening Systems 
 

Polyfunctional primary RNH2 and secondary R2NH amines are widely used as curing 

agent for epoxy resins. Theoretically, each primary amine group is capable of reacting 

with two epoxy groups. Hence a polyamine such as ethylene diamine H2N-CH2-CH2-

NH2 is capable of reacting with four epoxy groups because of the four active hydrogen 

atoms attached to the nitrogen atom [14]. 

2.5 Organic Acids Hardening Systems 
 
The anhydrides of organic acids are widely used as cross-linkers for liquid epoxy resins. 

It should also be noted that some organic acids are used to esterify high molecular 

weight resins for use in surface-coating formulations. 

 

Figure 2.14 describes the reactions of epoxy resins in the presence of organic acids [15]. 

 

(i) Esterification via epoxy/acid reaction 
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(ii) Esterification via hydroxyls present in the resin or via the nascent hydroxyls 

produced in previous reaction 
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(iii) Reaction of epoxy with aliphatic hydroxyl groups 
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(iv) Hydration of epoxy groups 

CH2 CH
O

OH C
H2

CH

OH
H2O +

 

 

Figure 2.14 Reactions of epoxy resins in the presence of organic acids. 

 

Acid anhydrides react in a manner similar to organic acids, but this reaction is more 

complex because of the absence of water in the molecule and the necessity for 

activating the anhydride ring by an alcoholic hydroxyl (or salt or a trace of water). First 

a hydroxyl group of the epoxy resin open the anhydride, as shown in figure 2.15  
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Figure 2.15 Opening of the Anhydride ring. 

 

This opening of the anhydride ring leads to the formation of the carboxylic acid group. 

This newly formed carboxylic acid can react with the epoxy resin, thus enabling the 

reaction to go further [15]. 
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Figure 2.16 Reaction of carboxylic acid with epoxy resin 

 

The etherification of the epoxy groups with hydroxyl groups can occur at this point. 

This is shown in figure 2.17 

CH OH
O

CH2 CH CH O C
H2

CH

OH

+

 

 

Figure 2.17 Etherification of epoxy groups with hydroxyl groups 

 

Then, reaction of the monoester with the hydroxyls takes place, as shown in figure 2.18 
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Figure 2.18 Reaction of the monoester with hydroxyl 

 

The water released from the reaction of the monoester with the hydroxyl group can 

hydrolyse the anhydride to give a diacid as indicated in figure 2.19 below 
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Figure 2.19 Hydrolysis of the anhydride to give a diacid. 

 

Finally the monoester formed during reaction described in figure 2.19 above is again 

hydrolysed by water to give an acid and an alcohol as shown in figure 2.20 [15]. 
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Figure 2.20 Hydrolysis of anhydride to give an acid and an alcohol 
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2.7 Araldite LY 5052 epoxy resin 
 

Araldite LY 5052 consists of two chemical components. An epoxy phenol novalok resin 

(38 – 42% composition), and 1, 4 buthanediol diglycidyl ether (55 – 68%) composition.  

The epoxy phenol novalak resin has a functionality of 4, and a molecular weight of 345 

g mol-1. 1, 4 butanediol diglycidyl ether has a functionality of 2, and a molecular weight 

of 202.3 g/mol. The chemical structures of epoxy phenol novalak and 1 4 butanediol 

doglycidyl ether are shown in the figures 2.21 and 2.22 

 

 

 

Figure 2.21 Chemical Structure of Epoxy Phenol Novalak Resin 

 

 

 

Figure 2.22 Chemical structure of 1 4, butanedioldiglycidyl ether 

 



 59 

2.8  4 4 Diphenyl diaminosulfone 
 

4 4 Diphenyl diaminosulfone is an aromatic amine powdered curing agent, light pink in 

colour. It has to be melted before being used in order to enable cure reaction to proceed 

with the epoxy resin [16]. 

 

 

S

O

NH2NH2

O  

 

Figure 2.23   4, 4’ diphenyldiaminosulfone [4] 

 

The table below shows the properties of diphenyl diaminosulfone [16]. The weight of 

active hydrogen (g mol-1) is determined by calculating the molecular weight and 

dividing by the number of active hydrogen. 

 

Table 2.1 Properties of diphenyl diaminosulfone [16] 

 

Melting Point Peak (oC)                              175 

Weight of active hydrogen (g mol-1)                               57 

Molecular weight (g mol-1)                               248 

 

2.9 Microwaves 
 
Microwaves are electromagnetic waves which arise as radiation from electrical 

disturbances at high frequency [17]. The radiation aspects of electromagnetic power 

distribution are negligible at low frequencies, and it is necessary to consider electric 

charges, stored or flowing as currents, and potential difference. Increasing the frequency 

of the operation makes the radiation more important. The relative importance of 

radiation depends on the size of the circuit or system under consideration [17]. Any 

system of electric charges gives rise to electric and magnetic fields in the surrounding 
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space. The effects of this fields are generally ignored at low frequencies. However, at 

higher frequencies, the effect of these fields becomes more pronounced [17]. This is 

seen by the introduction of “stray” capacitance into circuit theory. At high frequencies, 

even a short length of wire acts as a radiation element, dissipating its electrical signals 

into surrounding space. The electromagnetic fields become the dominant factor in the 

study of electrical theory at high frequencies [17-19]. 

The characteristic wavelength of radiation is related to the frequency of the electrical 

signals by λ= c /ƒ where ƒ is the frequency and c is the speed of light [17-19]. 

 

Microwave techniques are considered to cover those applications of electrical 

technology where the characteristic wavelength is smaller than the dimensions of the 

system or circuit and yet where it is not so small that only ray optical need to be 

considered. Microwaves are normally prominent in the range of frequencies between 

109 to 1012 Hz, or a characteristic wavelength of 30cm to 0.3 mm. The components of 

conventional electronic circuits at this wavelength tend to behave like individual 

antenna, and dissipate their electrical signals as radiation [17]. 

2.9.2 Applications of Microwaves 
 

Microwaves are becoming more and more widely used. Microwaves possess certain 

useful characteristics, among the most vital of these characteristics is the fact that 

microwave wavelengths are the same size as any structure which is used to enclose or 

guide them. Microwave pulses can be very short so they can be used for time or 

distance measurements. This makes them compatible with high speed computers. 

Microwaves can be used for heating and drying [17]. This is because microwave power 

is absorbed by water or any material containing water. Many molecular and atomic 

resonances occur at microwave frequencies and as a result, they are a necessary part of 

some scientific measurements. Some other applications of microwaves are given below 

[17]. 

 

1) Broadcasting. Television and radio originally used frequencies below the 

microwave range. However, reception has been made difficult for some listeners 

because of increasing congestion of the radio spectrum. There are no frequencies 

available for any large increase in broadcasting at radio frequencies. 
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Consequently, any further increase must occur at higher frequencies, which will 

be in the microwave region. Currently, 12 GHz is being used either for local 

television stations or for satellite television broadcasting. The domestic 

consumer has a microwave receiver on the roof as part of a small aerial and a 

radio frequency signal is transmitted along the aerial cable to the television set 

[17]. 

 

2) Microwave Heating. In most materials, the rate of microwave power absorption 

is proportional to its water content. This property can be used to provide 

microwave heating. Microwave power provides a most efficient means of 

applying heat uniformly throughout a body. This is because microwave signal 

penetrates most non-conductors. Microwave heating also reduces the time 

needed for heating a body to uniform temperature. This is because heat does not 

have to conducted through the body but is generated through the body [17]. The 

rate of heating usually depends on the water content, thus microwave heating is 

a most efficient method of drying. Microwave heating is used in many process 

industries for heating, drying, sterilizing and curing. Microwave ovens are in use 

in many homes and catering establishments [17, 20, 21].  

 

3) Moisture measurement. Microwave absorption by water means that moisture 

content measurement by microwaves is possible. The attenuation of a 

microwave signal in passing through the specimen is measured [17]. 

 

4) Radar. Radar is derived from the initial letters Radio Detection and Ranging. 

Radar is the traditional use of Microwaves. It started at the beginning of the 

Second World War.  Microwave radiation penetrates fogs and clouds, travels in 

straight lines and gives distinct shadows and reflections. This enables it to be 

used for direction and distance measurements and in radar systems [17, 19, 22]. 

The simplest form of radar is the pulse radar giving a plan position indication 

(ppi) ; it measures the time for an echo to return. It operates by echo sounding 

with a narrow beam like a searchlight, and it is used for navigation. The Doppler 

radar or Carrier Wave (CW) gives a velocity indication; it is used in military 

operations because it is more difficult for an enemy to jam. The Carrier Wave 

also has many industry and consumer uses; it is used in industrial controls for 
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flow or velocity measurement. It can also be used for motion detection [17]. 

Microwave radiometry uses microwave radiation in the same way that 

photography uses light, and can give useful information about the object being 

observed such as the moisture content of soils and vegetation [17]. 

 

5) Communication. Microwave frequencies have to be used for satellite 

communications and for communications with satellites. This is because the 

microwave frequencies can pass through the ionosphere which is opaque to 

lower frequencies. The microwave communication channel has a very large 

bandwidth and it can accommodate thousands of telephone conversations or 

dozens of television channels at once [17, 22, 23]. 

 

6) Microwave Power Transmission. Since microwaves can be used directly for 

heating and exciting fluorescent lights, They have been advocated for electrical 

power distribution. This possibility is being actively investigated by using 

microwave transmission to generate satellite power to the earth. The satellite is 

powered with solar cells, and the microwave power generating valves operate in 

high vacuum without any glass envelope. The microwave power is then beamed 

to the earth where it is collected and rectified [20]. 

 

2.9.3 Electromagnetic fields 

 

Any system of charges gives rise to its corresponding potential differences and to 

electric and magnetic fields. The precise mathematical relationships between the 

different electromagnetic field components and the electric charges and currents enable 

us to derive expressions for every precisely defined situation [17, 19]. Since the fields, 

currents and charges exist in the body of a medium, they are all defined in terms of 

some space distribution. The electromagnetic field components, together with their 

notation and their units of measurement are: 

 

 

Electric field                                           E                   volt/metre 

Electric Flux density                              D                  coulomb/metre2 

Magnetic Field                                       H                  ampere/metre 
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Magnetic Flux Density                          B                   tesla = weber/metre2 

Charge Density                                      ƥ                    coulomb/metre3 

Current Density                                     J                     ampere/metre2 

2.9.4 Material Properties 
 
Some of the field components are related by the properties of the medium in which they 

exist [17, 18]: 

 

                                         B = µH                                    2.1  

                                         D = ƐƐE                                    2.2 

                                         J = σE                                    2.3 

 

Equation 2.1 is the relationship between the applied magnetic field and the resultant 

magnetic flux density. The constant µ is usually called the permeability of the medium 

[17]. In the S.I system of units, this is a dimensional constant. Its dimensions are given 

by the relationship 

  

                             µ=
H

B
=

2metre

weber
x

ampere

metre
                        2.4 

 

                              µ=
))((

))(sec(

metreampere

ondvolt
= henry / metre        2.5 

 

The permeability is a measure of both the relative effect of having a particular material 

in the field and also a dimensional constant, so that it can be divided into two parts [5]: 

                

                                   µ = µoµr                                                      2.6 

 

µo is the permeability constant  and this is dimensional. It is defined to be of the value 

4π x 10-7 henry / metre. It is also sometimes called the permeability of free space.   

µr  is the relative permeability. This is dimensionless and it makes allowance for the 

effect of the material relative to vacuum for free space.  
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A similar relationship between the applied electric field and the electric flux density D 

is shown in equation 2.2. Ɛ is the permittivity of the medium [17-19]. It is also a 

dimensionless constant, and its dimensions are given by  

 

               ε= 
E

D
= 

2metre

coulomb
x

volt

metre
                                        2.7                               

 

 

                       =
))((

))(sec(

metrevolt

ondampere
=farad / metre                    2.8 

 

 

The permittivity can be divided into two parts:  

 

                                       Ɛ =  ƐoƐr                                               2.9 

 

Ɛo is the permittivity constant. It is also known as the permittivity of free space. Its 

definition is from the relationship for the speed of light and from the value of the 

permeability constant, which is approximately (36π x 109) -1. Ɛr is the relative 

permittivity which is dimensionless. It takes account of the effect of the medium on the 

electric fields. This is the same as the dielectric constant of the medium [17]. 

 

In the solutions of the equations for the electromagnetic fields, the permeability constant 

and the permittivity constant are usually combined to provide a further two dimensional 

constants. They are  

 

The velocity of light c = 
)(

1

ooεµ
 ≈ 3 x 108 m s-1                             2.10  

 

The impedance of free space ƞ =√(
0

0

ε
µ

) ≈ 120π = 377Ω            2.11 

 

The expression for the velocity of light is used in the definition for the permittivity 

constant given above. 
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Equation 2.3 is the conductivity relationship for the material. σ is the conductivity of the 

material. When the conductivity is a constant, it is an expression of Ohm’s law. It is the 

reciprocal of the resistivity. With reference to equation 2.3, its dimensions are given by 

the relationship [23]. 

 

                 σ = 
E

J
 = 

2metre

ampere
x

volt

metre
 = Siemens / metre             2.12 

2.9.5 Maxwell’s Equations 
 

The relationships between the components of any electromagnetic field are given by 

Maxwell’s Equations 2.13 to 2.16, and by the equations which represent the properties 

of the medium in which the electromagnetic field exists.  

 

                          v.D = p                                           2.13 

                          v.B = 0                                           2.14 

                          v x E = -jωµH                                2.15 

                          v x H = jωεE                                  2.16 

 

Equation 2.13 is based on the fact that any stored electric charge gives rise to an electric 

field or conversely, any discontinuous electric field gives rise to electric charge. This is 

a mathematical statement of Gauss’s law which states that the integration of the 

perpendicular component of the flux density over any closed surface is equal to the total 

charge enclosed by that surface [17, 18, 21]. 

 

Equation 2.14 is the magnetic form of gauss’s law in which there are no isolated 

magnetic charges. It states that magnetic field must exist in closed loops. There are no 

magnetic charges or single magnetic poles in nature. Most of the fundamental particles 

appear to be magnetic dipoles, but the total magnetic flux integrated over a surface 

enclosing a dipole is zero; hence equation 2.14 is valid. 

 

Faradays law of electromagnetic induction, which states that the electromagnetic 

frequency induced in a closed circuit (the curl of the electric field) is proportional to the 
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rate of change of the magnetic flux threading the circuit [17].This law is represented in 

equation 2.15. 

 

Equation 2.16 is partly a statement of Biot – Savart law; which is also known as 

Ampere’s law. A current gives rise to a closed loop of magnetic field. It has also been 

found that a magnetic field exists around the air gap between the plates of a parallel 

plate capacitor which has a time – varying current flowing in its leads. Hence, the 

conduction current is not the only source of magnetic field. Maxwell solved this 

difficulty by postulating that the circuit which contains the capacitor must have a 

continuous series of current flowing around it [17, 19]. 

2.9.5 Plane Wave 
 

A plane wave is the electromagnetic wave that propagates in unbounded free space. It 

starts from infinity, it goes to infinity, and it extends to infinity all round. A plane wave 

can not exist when any boundary conditions have to be considered.  Practically, a plane 

wave is obtained when the source is a long distance away, and when any boundaries to 

the space are a long distance away [17]. Usually, light may be considered to be a plane 

wave in most practical situations, but at microwave frequencies, a true plane wave 

would only exist for signals which originate from a satellite or from another planet. 

2.9.5.1 Characteristics of a Plane wave 
 

A plane wave has the following characteristics [17, 21] 

 

i)  It has no fields acting in the direction of the propagation 

ii) There is no variation of field in the plane perpendicular to the direction of 

propagation. 

iii) It has an electric field normal to the magnetic field. 

iv) Both fields act in a direction along the plane of the wave that is in a direction 

perpendicular to the direction of propagation; 

 

Also, the electric and magnetic fields are in phase with one another and are directly 

related by the intrinsic impedance. 
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2.9.5.2 Wavelength of a propagating wave . 

 

For any periodic waveform, the distance in which it repeats itself is the wavelength of 

the waveform. The field strength of a propagating wave is a function of both time and 

distance. It is therefore necessary to establish that the distance is measured at any instant 

of time [17]. The period of a wave can be defined as the time taken for the waveform to 

repeat itself at any one position in space. 

Wavelength is the distance (measured in the direction of the propagation) between two 

points which are in the same phase in consecutive cycles of a wave. Wavelength is 

denoted by λ. 

2.9.6 Basic Concepts of Microwaves 
 

Microwaves are a form of electromagnetic radiation. The electromagnetic radiation 

spectrum covers a very wide range of frequencies in the region of 300 to 300,000 MHz. 

Two frequencies are commonly used for microwave heating. The frequencies are 

reserved by The Federal Communications Commision (FCC) for Industrial, Scientific, 

and Medical Purposes. The frequencies used for microwave heating are 0.915 and 2.45 

GHz and they do not interfere with the frequencies used for telecommunications 

purposes.  
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Figure 2.24 An electromagnetic spectrum [15] 

 

Microwave heating uses the ability of some liquids and solids to convert 

electromagnetic energy into heat. It is based on the principle that a material can be 

heated by applying energy to it in the form of high frequency electromagnetic waves. 

An electromagnetic radiation consists of an electric field whose plane is perpendicular 

to the plane of a magnetic field. The microwave heating effect originates from the 

interaction of the electric field component of the microwaves with charged particles in 

the materials. A current will be induced through the material if the charged particles are 

able to move through the electric field. If the particles can not move because they are 

bonded to the material, they will simply rearrange themselves in phase with the electric 

field. This mechanism is called dielectric polarisation [21].  

 

 

Figure 2.25 An electromagnetic wave [15]. 

 

Microwave ovens are used in a general frequency of 2.45GHz (12.3 cm wavelength) so 

they do not interfere with any other usual radiation [21, 24]. 

Microwaves are used for melting, drying, polymerisation, sintering, pasteurising. They 

are the main carriers of high-speed telegraphic data transmissions between stations on 

the earth and also between ground-based stations and satellites and space probes. 
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2.9.7 Microwave Heating Mechanism 
 

There are two mechanisms through which materials respond to microwave processing. 

Depending on the material, the response mechanism can either be through Dipole 

rotation or Ionic conduction or a combination of both mechanisms.  

 

-Dipole Rotation works on electrically neutral polar molecules with spatially separated 

positive and negative electric charges. The amplitude of the microwave field increases 

from zero in one direction, reaches a maximum, decreases to zero and then increases 

and reaches a maximum in the opposite direction. The molecules in the field respond by 

rotating their respective polar ends in the direction of the increasing amplitude. The 

resulting molecular friction generates heat, instantaneously and uniformly throughout 

the compound [15, 21]. 

 

In 2.45GHz microwaves, the oscillation of the electric field of the radiation occurs 4.9 x 

109 times per second. The time scale in which the field changes is about the same as the 

response time (relaxation time) of permanent dipoles present in most organic and 

inorganic molecules. This fact represents a basic characteristic for an efficient 

interaction between electromagnetic field of microwaves and a chemical system [15]. 

 

-Ionic Conduction is the second mechanism for microwave heating. It generates heat 

through an induction phenomenon. The microwaves electrical field attracts the free ions 

of the compound. Collisions with non-ionised molecules occur, which gives up kinetic 

energy in the form of heat. The phenomenon is not dependent to any great degree on the 

temperature or microwave frequency [15, 21].  

 

Materials differ in their reaction to the microwave field. Metals tend to reflect 

microwaves, a quality that enables them to be used as conduits or waveguides and as 

containers to hold, direct and apply microwave energy. Some non-polar compounds are 

transparent to microwaves and will not heat with, nor reflect microwave energy. These 

materials are often used as processing containers, particularly for liquids and as control 

windows [21, 25]. 
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Materials that respond to and can be processed by microwave energy are composed of 

polar, ionised or conductive compounds. The key to the effectiveness of microwave 

heating is that the process is one of direct energy conversion. Treated material converts 

the microwave energy to heat within itself, eliminating the need to heat an oven as 

required in conventional processing.  

 

Unlike thermal heating which involves heat conduction and thermal lag associated with 

it, microwave heating generates heat directly within the sample and because of this can 

offer possible advantages of higher efficiency, a faster production rate, lower capital 

cost, more uniform cure, and improved physical/mechanical properties over thermal 

heating [8]. 

 

The heating provided by microwave processing is more selective, more volumetric, 

faster and it is more controllable than thermal heating [26]. This higher process 

controllability removes the exothermic temperature excursion that occurs during the 

curing of thermosets. 

 

Epoxy resins have been most widely looked into mainly because of their industrial 

importance, and also because their dielectric properties predispose them to effective 

microwave induced curing [27]. Amazingly, investigations have shown that the rate of 

curing depends more in the way microwave pulses are applied than in the total power 

applied. There have been results from experiments which indicate that the curing rate is 

not directly related to the sample temperature either [2, 28].  

2.10 Advantages and Disadvantages of Microwave heat ing over 
Thermal heating 
 
Microwave processing is able to quickly and controllably absorb energy for either 

cooking, dehydration or curing. The advantages microwave heating has over other 

heating methods are as follows [29]. 

 

1) Microwave offers fast heating rates, especially at temperatures higher than its 

glass transition temperature. 
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2) Microwave energy is directed at the material, and not through the containing 

vessels. As a result, microwave has minimal thermal lag effects[29]. 

 

3) Microwave heating minimizes thermal gradients. This results in more 

homogeneous cure, smaller thermal stresses, and minimal material degradation. 

 

4) The microwave equipment takes up less floor space than conventional thermal 

equipment [29]. 

 

There are some limitations to the use of microwaves in the processing of polymers. 

These limitations are  

 

1) Some materials are not transparent to microwaves. Materials that are susceptible 

to microwaves contain dipoles that are active in the applied frequency 

[29].There are some materials such as polyolefins which are not active in the 

microwave field. This can be remedied by adding microwave susceptors to the 

material. 

 

2) There must be further developments in the equipment design and manufacture of 

microwave equipment, especially for use in large scale production [29]. 

 

3) There are safety and lack of training issues in the use of microwave energy for 

materials processing. 

2.13 Cure Kinetics 
 
Chemical kinetics is the study of how quickly reactants are consumed and how products 

are formed [30]. It also looks into how rates of reaction respond to the presence of a 

catalyst, or to changes in the reaction conditions. This study of reaction rates enables us 

to understand the mechanism of the reaction [30]. Kinetics can also be defined as the 

modelling of the effects of temperature and time on the degree of cure of a 

thermosetting resin [31].The scientist or the process engineer obtains important 

information from the cure kinetics of a resin. This information can be used to predict the 
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shelf lifetime of a thermosetting resin or composite. It can also be used to optimize 

processing conditions [31]. 

2.13.1 Isothermal vs Dynamic cure Kinetics 
 

 Using the differential scanning calorimeter, there are three different ways of 

determining the cure kinetics of a thermoset resins [31]. They are  

 

1) Single Dynamic Heating experiment 

2) Multiple Dynamic Heating experiments. This usually involves three or more 

heating rates. 

3) Isothermal Heating experiments. This also usually involves three or more 

different temperatures [31]. 

 

Dynamic DSC measurements are in general, less time consuming and as a result they 

are more attractive than isothermal measurements, which have the disadvantage of 

being time consuming however, the highest degree of accuracy of can be obtained using 

the isothermal approach [31]. This is because isothermal conditions remove probable 

problems such as the occurrence of temperature gradients. Furthermore, the isothermal 

approach is acceptable for both standard (nth order) and autocatalyzed resins. Also, 

isothermal heating have a tendency to best simulate and copy the real processing 

conditions which are used to produce the final thermoset product [31]. Highly erroneous 

results can be obtained if the dynamic DSC approach is used to study the cure kinetics 

for autocatalyzed resins [31].  

2.13.2 Standard (n-th order) and Autocatalyzed Kine tics Reaction 
 

n-th order kinetics means that the material shows its maximum rate of cure at the start 

of the experiment (time=0) [31]. A reaction which follows nth order kinetics obeys the 

general rate equation: 

 

                                 
dt

dα
 = k(T) [1-α]n                                              2.17 
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where    
dt

dα
   =  reaction rate (sec -1) 

              α         = fractional conversion 

              k(T)    =  specific rate constant at temperature T 

              n         = reaction order.  (K) 

 

Autocatalyzed systems are distinguished by the formation of some intermediate species 

which markedly accelerates the reaction. An autocatalyzed material will have its 

maximum heat of evolution at 30-40% of the reaction [32]. Epoxy systems used in the 

industry are an example of autocatalyzed systems. 

An autocatalyzed reaction will follow the relationship below [32]. 

 

                             
dt

dα
 =  k αm (1-α)n                                             2.18 

 

                             k       =  Z e-Ea/RT                                                          2.19 
 

Where                  
dt

dα
 = reaction rate (sec -1) 

                             K      = rate constant (sec-1) 

                             α       = fractional conversion   

                             m, n =  reaction orders  (K)  

2.13.3 Modelling of cure kinetics 
 
A crucial step in the study of cure kinetics by DSC is fitting of the reaction rate profile 

obtained from either isothermal or dynamic experiments, to a kinetic model.   There are 

essentially two forms of kinetic models used to describe thermoset curing reactions; 

empirical and mechanistic models [33]. Due to the complexity of the mechanistic 

models, the empirical kinetic method is more preferable for practical and comparison 

purposes. In empirical models, the whole reaction is considered as a single kinetic 

process, regardless of the different reactive processes or the different stages evolving 

within the system [34]. 
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Empirical models are based on the assumption that the over all reaction rate, 
dt

dα
can be 

expressed as [34]: 

( )αα
kf

dt

d =                    2.20   

        

where α is fractional conversion, f(α) is a function of fractional conversion, and k is the 

rate constant which obeys the Arrhenius relationship: 

 

 








 −=
RT

E
Ak aexp         2.21  

        

where A is pre-exponential rate constant (i.e. also known as the collision frequency 

factor), Ea is the activation energy, R is the gas constant, and T is the absolute 

temperature. 

 

The simplest empirical model corresponds to an nth-order equation: 

( )nk
dt

d αα −= 1                     2.22  

         

where n is the reaction order. This model is applied to a curing system showing no 

autocatalytic phenomena and no complexity in the reaction mechanism [35].  

 

In the case where the curing system exhibits autocatalytic effect, i.e. a maximum of the 

reaction rate is observed at some point other than the beginning of the reaction in an 

isothermal cure, the kinetic model given by equation 5.8 cannot be applied and 

consequently, the so-called autocatalytic model must be used.  For an autocatalytic 

reaction in which the initial reaction rate is zero, the following equation is applied [36].  
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( )nmk
dt

d ααα −= 1          2.23  

        

If the initial reaction rate is not zero, the autocatalytic model is given by [134]: 

( ) ( )nmkk
dt

d ααα −+= 121      2.24  

      

where m and n are the reaction orders.    

 

K1 is the rate constant associated with the non-catalytic reaction, while K2 is the rate 

constant associated with the autocatalytic reactions. K1 and K2 usually obey the 

Arrhenius relation.  K1 and K2 are functions of temperature. m and n represent the 

reaction orders. m indicates how much of the curing reaction follows the autocatalytic 

path, while n indicates how much of the curing reactions follow the non-catalytic path.  

The introduction of these four parameters enable us to obtain a good fit to the 

experiment data. The values of m and n are found to vary from experiment to 

experiment. It is quite usual to assign a value of m + n = 2 when using the autocatalytic 

model.  Some researchers have used this value [37] whereas others allowed it to float 

and the reaction orders were adjusted until the best optimisation of the kinetic 

parameters were obtained and the value of m + n were reported to vary, for instance, 

from 1.0 [38] to 7.2 [39].   The autocatalytic model has been widely used by many 

researchers to study the reaction kinetics of various thermoset polymers including epoxy 

resins [35, 40], and urethane acrylate resins [41].      

 

Although the empirical models are based on the isothermal experiments, several authors 

[34, 35] have demonstrated that these models are also valid in dynamic experiments 

with a simple modification of the rate equation (Equation 5.6) and that; 

dT

d

dt

d αα
Φ=           2.25   

      

where Φ is the linear heating rate.                           
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2.13.4 Temperature Dependence of Reaction Rates 
  

The rates of most chemical reactions increase as the temperature increases [30]. 

2.13.5 The Arrhenius parameters 
 

The arrhenius equation is named after the Swedish chemist Svante Arrhenius. In the 19th 

century, when data on reaction rates were accumulated, he noticed that there was a 

similar dependence temperature for almost all of the data [30]. He observed that a graph 

of  ln k against 1/T, where k is the rate constant for the reaction and T is the absolute 

temperature at which k is measured, gives a straight line with a slope which is typical of 

the reaction [30]. It was concluded that the rate constant varies with temperature. This 

conclusion can be represented mathematically as  

 

                         ln k = intercept + slope x 
T

1
 [30]                 2.26 

 

This expression is normally written as the Arrhenius equation 

 

                      ln k = ln A – 
RT

Ea  [30]                                  2.27 

 

 

Intercept = ln A 

Slope = -Ea/R 

1 / Temperature, 1/T O 

ln K 
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Figure 2.26 General form of Arrhenius plot        

The figure above is the general form of an Arrhenius plot of ln k against 
T

1
. The slope 

of the plot is equal to –Ea/RT, while ln A is the intercept at 
T

1
 = 0 [30]. 

 

Alternatively, the Arrhenius equation can be rewritten as  

                 

                     K=Ae-Ea/RT                                                    2.28 

 

Arrhenius defended the equation above by arguing that the temperature dependence of 

rate constants may be similar to the temperature dependence of rate constants [42]. 

Ea is known as the activation energy of the reaction , while A is the pre-exponential 

factor [30]. The activation energy of a reaction is the minimum amount of energy 

required for a chemical reaction to take place. It is a molar energy, and it has the units of 

kilojoules per mole. Practically, a reaction rate that is very sensitive to temperature will 

have a high activation energy, while a reaction rate with a low activation energy will 

only vary slightly with temperature [30]. Reactions with zero activation energy have a 

rate that hardly depends on temperature [30]. 

 

 

            Figure 2.27 Arrhenuis plots with different activation energies 

Low 
Activation 
Energy 

High 
Activation 
Energy 

1 / Temperature, 1/T 

ln K
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The figure above shows two Arrhenius plots which have different activation energies. 

The plot with  higher activation energy is steeper, and this is an indication that the rate 

of reaction is more sensitive to temperature [30]. 

 

It can also be noted that a low activation energy signifies a fast reaction, while a high 

activation energy is indicative of a slow reaction. As T increases, there is a rapid 

increase in k. This is mainly because there is an increase in the number of collisions 

whose energy exceeds the activation energy [12]. 

 

The pre-exponential factor A is defined as the constant of proportionality between the 

concentrations of the reactants and the rate at which the reactant molecules collide [12]. 

2.13.6 Degree of Conversion α and Reaction Rate 
dt

dα  

 

Epoxy resin curing is an exothermic reaction. For an exothermic reaction, if we assume 

that [34] 

 

1) During curing the exothermic heat generated is proportional to the number of 

double bonds which have reacted in the system. 

2) that maximum conversion is attained when all the bonds that can react have 

reacted 

3) the rate of reaction during cure is directly proportional to the rate of heat 

generation, 

 

At time t, is becomes possible to determine the degree of conversion α, and the reaction 

rate 
dt

dα
 at time t [15]. This can be determined by the following expressions. 

 

                                           α=
R

t

H

H

∆
∆

                          2.29 
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dt

dα
= 

R

t

H

dtdH

∆
)/(

               2.30 

 

Where (
dt

dH
)t  is the rate of heat generation and is directly related to the calorimetric 

signal at time t, and ∆HR  is the total reaction heat associated with the complete 

conversion of all the reactive groups , and ∆Ht  is the heat released until time t. This can 

be obtained directly by integrating the calorimetric signal 
dt

dH
 until the time t [15]. 

 

In order to calculate the reaction rate and the degree of conversion, it is important for us 

to understand how the calorimetric signal changes according to temperature or time. 

This depends on whether the experiment is dynamic or isothermal. It is also essential to 

quantify the reaction heat perfectly [15].  

2.13.7 Methods of evaluating degrees of conversion and reaction 
rate 
 

From a reaction’s experimental heat of isothermal experiments, there are four different 

ways of ascertaining the degrees of conversion and reaction rates [34]. In the methods, α 

and 
dt

dα
 are defined according to equations 2.23 and 2.24. Also, α and 

dt

dα
 are obtained 

for the entire duration of the reaction. This allows us to use differential forms for the 

rate equation [34]. 

2.13.7.1 Method A 
 
By integrating the calorimetric signal, the total reaction heat can be measured directly 

from the isothermal experiments. This is done at temperatures greater than those of 

complete curing, as long as all the heat generated during the reactive process can be 

detected by the calorimeter [15]. In this situation, α and 
dt

dα
 are expressed from 

equations 2.23 and 2.24 as  

    

                                       α= 
iso

t

H

H

∆
∆

                                            2.31 
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dt

dα
= 

iso

t

H

dtdH

∆
)/(

                                  2.32 

 

∆Hiso is equivalent to the heat generated in an isothermal experiment. This can be 

evaluated by integrating the calorimetric signal until the process recovers the base line 

[15]. 

This method is not applicable if the material does not cure thoroughly at the cure 

temperature. If this is the case for the material after isothermal cure, a temperature scan 

detects a residual heat [15]. 

2.13.7.2 Method B 
 

If a dynamic postcure up to high temperatures is carried out on a sample already cured 

isothermally, and a residual heat ∆Hres is obtained, this means that the isothermal 

reaction heat ∆Hiso is not the total reaction heat [15]. The total heat becomes the sum of 

the isothermal heat and the residual heat ∆Hiso + ∆Hres.  Hence α and 
dt

dα
 will be 

recalculated with the following expressions [15]. 

 

                                       α=
resiso

t

HH

H

∆+∆
∆

                                    2.33 

 

 

                                   
dt

dα
=

resiso

t

HH

dTdH

∆+∆
)/(

                                   2.34    

2.13.7.3 Method C 
 

If the sum of the isothermal and residual heat is less than the heat detected for the same 

reaction in a dynamic cure process, then method B can not be applied [34]. Since we 

can not know the total reaction heat by other procedures, then the dynamic heat ∆Hdyn 

can be taken as the total reaction heat, since experimentally, this is the maximum heat 

that can be detected [15]. Hence the degree of conversion and the reaction rate are 

defined as  
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                                           α=
dyn

t

H

H

∆
∆

                                                    2.35 

 

 

                                         
dt

dα
=

dyn

t

H

dtdH

∆
)/(

                                           2.36 

2.13.7.4 Method D 
 

If the sum of the isothermal reaction heat and the residual heat is lower than the 

dynamic heat, this means that either the isothermal heat or the residual heat detected is 

not correct, since their sum should be equal to the dynamic heat. This can be ascribed to 

that part of the heat that not be registered isothermally by the calorimeter at the 

beginning and the end of the reaction because it falls below the sensitivity of the 

apparatus, or because part of the heat is lost during the stabilization of the calorimeter 

[15] If the ∆Hiso calculated by the integration of the calorimetric signal is not correct, 

∆Ht and (
dt

dα
)t will not be correct either. In this case, the dynamic heat will be taken as 

the total reaction heat, and ∆Ht and (
dt

dα
)t will be corrected, considering the part of the 

heat that has not been registered isothermally [15].Taking into account these 

considerations, α and 
dt

dα
 are defined as 

 

                                  

                                         α = 
dyniso

resdynt

HH

HHH

∆∆
∆−∆∆ )(

                           2.37 

 

 

                                      
dt

dα
= 

dyniso

resdynt

HH

HHdTdH

∆∆
∆−∆ )()/(

               2.38 
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When this method is applied to the calculation of the last degree of conversion reached 

isothermally, that is to say when ∆Ht is equal to ∆Hiso, the degree of conversion has the 

value [34]: 

 

 

                                                        α= 1-
dyn

res

H

H

∆
∆

                             2.39 

2.13.8 Dynamic Curing 
 

For dynamic curing, α and 
dt

dα
 can be directly calculated from equations 2.21 and 2.22. 

The dynamic heat ∆Hdyn is used as the total reaction heat [34]. As curing is made at a 

constant linear heating rate, the heating rate relates the curing time and temperature [34]. 

2.13.8.1 Isothermal Kinetic Analysis 
 

                                                        
dt

dα
= kf(α)                                         2.40 

 

Equation is the isothermal with which the kinetic study begins. α is the degree of 

conversion, the rate constant that depends on the temperature is k . f(α) is a function of 

the degree of conversion [34]. The dependence of the rate constant on the temperature is 

taken to follow the arrhenius law. 

 

                                                        k=koexp[-
RT

E
]                                   2.41 

 

where ko arrhenius frequency factor, E is the activation energy, R is the universal gas 

constant, and T is the curing temperature. 

2.13.8.2 Autocatalytic Model 
 

The autocatalytic model follows the assumption that the whole reactive process can be 

integrated into a single reaction. This reaction has a single activation energy which is 
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maintained constantly throughout the curing process, and f(α)=(1-α)nαm [15]. 

Substituting f(α) in equation 2.40,  

 

                                                 
dt

dα
=k(1-α)n

α
m                                          2.42 

 

Taking logarithms, 

 

                              ln[
dt

dα
] = ln k + n ln(1-α) + m ln α                               2.43 

 

In order to use an autocatalytic model to establish the cure kinetics, Isothermal cure is 

carried out at several temperatures using the DSC machine.  

In order to use the autocatalytic model to establish the cure kinetics, isothermal DSC is 

carried out at several temperatures. The conversion and reaction rates are determined for 

the complete course of the reaction. The experimental results are finally adjusted with 

the kinetic equation. For each temperature, the rate constant and the reaction orders are 

obtained [15]. The activation energy and the frequency factor are obtained from the 

Arrhenius equation for the dependence of the rate constant on the temperature [15]. 

2.13.8.3 Isoconversional Adjustment 

ln t = A + E/RT (α=ct) 
 

If we substitute the Arrhenius equation am into the rate equation al, and the equation is 

reordered and integrated between a curing time t = 0 where α = 0 and time is t, with a 

degree of conversion α. If we take logarithms, we obtain 

 

                                  ln t = A + 
RT

E
                                      2.44       

 

Where A is a constant for each degree of conversion and it takes the following value 
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                                 A = ln [
)(0 α

α
f

dd∫ ] – ln ko                       2.45              

 

According to equation 2.44, the slope and intercept of the linear relationship ln t against 

T-1 gives us the activation energy and the constant A. 

2.13.8.4 Isoconversional Adjustment 

ln (
dt

dα ) = ln [k of(α)] – 
RT

E (α=ct) 

 

If we substitute the arrhenius equation 2.28 into equation and take the logarithms, we 

obtain the relationship below for a given degree of conversion. 

 

                                    ln [
dt

dα
] = ln [kof(α)]-

RT

E
             2.46 

 

 

According to the equation 2.46, we can obtain the activation energy E, and the constant 

ln [kof(α)] from the slope and the intercept of the linear relationship ln (
dt

dα
) against T-1 

for a constant conversion [15]. 

 

The advantages of the two isoconversional methods over the autocatalytic model are 

that  

1) For a given degree of conversion, it is possible to determine the activation 

energy without the need to know f(α), since it has been assumed that regardless 

of the curing temperature, f(α) takes the same form for a given degree of 

conversion. 

 

2) Isoconversional methods can be applied to different degrees of conversion to see 

how the reactive process evolves, and also to know if a single activation energy 

can describe the entire curing process, as is assumed in the autocatalytic model 

[15]  
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Generally, the kinetic models used with epoxy/amine resin systems were derived from a 

curing kinetics scheme which was proposed by Horie et al [43]. The scheme is shown 

below. 

 PA + E + (HX) A ---- k1--� SA + (HX) A 

PA + E + (HX)0 ----k1---� SA + (HX)0 

SA + E + (HX)A ----k2 --� TA + (HX)A 

SA + E + (HX)0 ----k2 -� TA + (HX)0 

 

Where PA, SA, and TA are primary, secondary and tertiary amines. E is epoxide, (HX)0 

represents a hydroxyl group in the system as it  is formed in the amime - epoxide 

addition reactions. At any time t, the rate of epoxide consumed is derived as; 

 

                               
dt

dx
= (k’1c0 + k’1x)(e0-x)(a1-ka2)         2.47 

 

Where x is the concentration of epoxide consumed at a given time, c0 and e0 are the 

initial concentration of (HX)0 and epoxide, a1 and a2 are the concentrations of primary 

amine and secondary amine and K= k2/k1= k’2/k’1, the relative of reaction rate of 

secondary amine and primary amine with epoxide. 

Sourour et al [44, 45] later proposed a kinetic model using Horie’s reaction scheme and 

they assumed that under homogenous reaction conditions, the primary and the 

secondary amine were of approximately equal reactivity, and the concentration of (HX) 

was constant. The equation below expresses the total rate of consumption of epoxide. 

 

                                 
dt

dx
 = k1C(1-α)(B-α)+k2α(1-α)(B-α)          2.48 

 

In the equation 2.48, α is the degree of cure of epoxide reacted at time t, B is the initial 

ratio of diamine equivalents to epoxide equivalents, C is the concentration of (HX) 

molecules while k1 and k2 are the rate constants. If (HX) is assumed to be constant 
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throughout the reaction, then the product of k1 and C is a constant, k1. Equation 2.48 can 

thus be rearranged as  

 

                          dx/dt=(k1 + k2α)(1-α)(B-α)                    2.49 

 

which can also be rearranged as  

 

                         
))(1(

/

αα
α

−− B

dtd
    = k1 + k2α                2.50 

 

Where 
dt

dα
 assumed to be 

dt

dx
  . Equation 2.48 predicts a linear relationship of the left 

side term with the degree of cure. Hence, parameters k1 and k2 can be determined by 

plotting 
))(1(

/

αα
α

−− B

dtd
 against α. A cure study of DDR 332 / m-PDA was used to 

investigate the validity of this model . The results obtained showed that the model was 

consistent with isothermal DSC and rheological experiment data at the early stages of 

cure, after that, the model was noticed to deviate from the experiment data. This 

deviation was ascribed to the effect of diffusion control which occurred in the later 

stages of the reaction. Later on, equation was modified into equation 2.49 which is now 

known as the autocatalytic model which can be used to describe the cure of both 

bifunctional and multifunctional epoxy resins. 

 

                     
dt

dα
 =(k1 + k2α

m)(1-α)n                                                   2.51 

 

k1 is the rate constant associated with the non-catalytic reaction, while k2 is the rate 

constant associated with the autocatalytic reactions.  
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2.14 Dynamic Kinetic Analysis 
 

Dynamic Kinetic analysis involves three types of procedures. In the first type, the 

degree of conversion and the rate of reaction are obtained from a single experiment, and 

they are adjusted to some kinetic model, and all the kinetic parameters are obtained [15]. 

Although this procedure has the benefit of being fast, it is not usually recommended in 

complex reactions such as curing of thermosets. This is because it normally 

overestimates the value of the kinetic parameters [15]. Malek and Criado [46, 47] 

proved that if the real value of the activation energy is not known previously, the kinetic 

analysis from a single dynamic experiment. 

The second procedure involves the determination of the variation in the temperature at a 

given conversion. In the third procedure, the peak exotherm temperature is varied 

according to the heating rate [15]. 

2.14.1 Kissinger’s Method 
 

Kissinger’s method is another method which is applied to the curing kinetic analysis. 

[48]. Kissinger’s method is based on the assumption that the exothermic peak coincides 

with the maximum reaction rate and uses an nth-order equation to describe curing 

kinetics.  Equations 2.21, 2.22, and 2.25 were used to express an nth-order equation for 

dynamic curing. The expression is described below 

 

( )na

RT

E
A

dT

d

dt

d
r ααα −







 −=Φ== 1exp        2.52  

      

 

where r is the reaction rate.  Since the maximum rate occurs when 
dt

dr
 = 0, 

differentiating Equation 2.52 with respect to time and equating the resulting expression 

with zero gives; 

( )












 −−=Φ −

p

an
P

P

a

RT

E
An

RT

E
exp1 1

2
α               2.53 

 

If we rearrange equation 2.53, and take the natural logarithms, we get; 
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      ( ) ( )
P

a
P

a

P RT

E
n

RAn

E

T
+−−−







=Φ− α1ln1ln)ln( 2         2.54   

  

The activation energy can be determined from the slope of the straight line of a plot of  

–ln(Φ/TP
2) against 

pT

1
 

2.14.2 Ozawa’s method  
 
Ozawa’s method [49] was used to carry out a kinetic analysis of the epoxy systems. 

This method is based on isoconversional procedure and it does not require knowledge of 

the reaction rate equation, f(α). Ozawa’s method is based on the assumption that 

regardless of the reaction temperature, the reactive process has the same mechanism of 

reaction for a given fractional conversion. 

 

Researchers claim that this method has lead to a better understanding of the study of 

curing [50]. The autocatalytic model method studies the whole curing reaction as a 

single kinetic process. It does not take into account the different reactive processes or 

the different stages through which the system evolves. isoconversional kinetic method, 

on the other hand determines the activation energy for a given fractional conversion, 

which shows the different stages through which the reactive process proceeds [51].  

 

For the kinetic analysis in dynamic curing experiments, the integral form of the rate 

equation  is expressed as [20]; 
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The value of the right-hand side of Equation 2.55 can be expressed by means of a 

polynomial function P(E/RT) as;  
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Doyle’s approximation for the polynomial function P(E/RT), which is valid in the range 

20 < E/RT < 60 is expressed as [52]; 

 

RT

E
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
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

                  2.57 

 

In order to determine kinetic parameters in dynamic experiments, Equations 2.56 and 

2.57 may be combined and rearranged as [53]; 

 

        ( ) RT

E
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          2.58 

 

Equation 2.58 which is also known as Ozawa’s method is, for a given degree of 

conversion, a linear relationship between the logarithm of the heating rate and the 

inverse of the curing temperature. The activation energy, Ea, and the constant 

[log(AEa/g(α)R) – 2.315] can be determined from the slope and the intercept, 

respectively, of the linear relationship log Φ against T-1 for a constant fractional 

conversion.  For the kinetic analysis of the curing process equation 2.58 can be applied 

to different fractional conversion and can also be expressed as; 

 

RT

E
A a4567.0Φlog −′=                   2.59 

 

where A′ = [log(AEa/g(α)R) – 2.315].    

 

2.15 Previous work on Microwave vs Thermal Curing  
 
 
Wei et al used microwave and thermal energy to cure diglycidyl ether of bisphenol A 

(DGEBA) / diaminodiphenyl sulfone (DDS) and a DGEBA / meta phenylene diamine 

(mPDA) [26]. They used Fourier Transform Infrared (FTIR) to measure the extent of 

cure,and thermal mechanical analysis (TMA) to determine the glass transition 

temperature (Tg). Their findings show that the reaction rate constants of the primary 

amine-epoxy reaction are equal to those of the secondary amine-epoxy reaction, and the 
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etherification reaction is negligible for both microwave and thermal cure for the 

DGEBA / mPDA system [26]. For the DGEBA / DDS system, the reaction rate 

constants of the primary amine-epoxy reaction are greater than those of the secondary 

amine- epoxy reaction; and etherification reaction is only negligible at low cure 

temperatures for both thermal and microwave cure [26]. They also found that 

particularly at higher isothermal cure temperatures, the vitrification time is shorter in 

microwave cure than in thermal cure for both the DGEBA / mPDA and DGEBA / DDS 

systems [26].  

 

Navabpour et al used dynamic and isothermal curing methods to study the cure kinetics 

of a commercial epoxy resin system RTM6 using a microwave heated calorimeter and a 

conventional differential scanning calorimeter [54]. The resins cured isothermally using 

microwave heating were found to have larger values of preexponential factor and higher 

values of activation energy then resins cured using thermal heating [15]. It was observed 

that the reaction orders were similar for both microwave and thermal heating. This 

suggested that the mechanisms of curing were similar. For the dynamic curing, the data 

revealed that microwave cured resin had higher preexponential factor and activation 

energy than thermal curing. The two heating methods gave different reaction orders [15]. 

This result implied that the curing mechanisms using microwave and thermal heating 

are different [15]. 

 

 Navabpour et al also carried out near – infrared spectra during dynamic curing of the 

resin, and they found out that there was more rapid reaction of the amine groups in 

microwave curing than in conventional curing of the epoxy resin [15]. 

 

Nesbitt et al also used dynamic and isothermal curing methods to compare the curing 

kinetics of diglycidyl ether of bisphenol-A (DGEBA) with HY917 (an acid anhydride 

hardener) and DY073 (an amine-phenol complex acting as an accelerator) using a 

conventional differential scanning calorimetry and a microwave heated power 

compensated calorimeter [55].They found that dynamic microwave curing of the resin 

produced higher reaction rates and shorter cure times than conventional heating. Also, 

microwave cured samples had higher values of preexponential factor and activation 

energy than conventional curing [16]. The orders of the reaction for microwave and 

conventional heating methods were similar. The glass transition temperatures of the 
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resin cured using conventional heating was higher than resins cured using microwave 

heating for each heating rate used in curing the resin [16]. The activation energy 

obtained during isothermal curing of the resin using microwaves was lower than the 

activation energy obtained during conventional curing [16]. They also found that the 

glass transition temperature of the conventionally cured resin was higher than that of the 

microwave-cured resin [16]. 

 

Hill et al used fiber-optic FT-NIR spectroscopy to study the thermal and microwave 

cure process for the epoxy resin diglycidyl ether of bisphenol A DGEBA with 4 4’-

diaminodiphenyl sulfone (DDS) and 4,4’-diaminodiphenyl methane (DDM) [4]. They 

found the rates of reaction of primary amine and secondary amine to be similar for 

microwave and thermal cure processes. They also concluded that there was no special 

effects of microwave radiation on the kinetic parameters of either the primary amine or 

the secondary amine reactions [17]. They also found both systems to be characterized 

by a negative substitution effect [17]. 

 

Wei et al used electromagnetic radiation and conventional heating using thin film 

sample configurations to cure stoichiometric mixtures of DGEBA / DDS and DGEBA / 

mPDA isothermally. The extent of cure was measured by Fourier transform infrared 

spectroscopy (FTIR), while the glass transition temperatures were measured directly 

from the cured thin film samples using Thermal Mechanical Analysis(TMA) [56]. 

Microwave radiation was observed to have stronger effects on the DGEBA / DDS 

system than the DGEBA / mPDA system. Compared to conventional heating, it was 

observed that there were significant increases in microwave cured DGEBA / DDS  

samples, while there were only slight increases in the microwave cured DGEBA / 

mPDA samples. After gelation, the microwave cured samples had higher glass 

transition temperatures than the thermally cured samples [18]. The magnitude of 

increase of glass transition temperature between microwave and thermally cured 

samples was much more significant in DGEBA / DDS system than in DGEBA / mPDA 

system [18]. 

 

Mijovic et al carried out an investigation into the cure kinetics of an epoxy formulation 

diglycidyl ether of bisphenol A and diaminodiphenyl sulfone (DDS) as curing agent. 

This investigation was carried out using microwave and thermal energy. They used 
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dynamic scanning calorimetry to measure and compare both the degree of cure, and the 

glass transition of samples cured in the thermal and microwave fields at the same 

temperature [28]. They found out that cure proceeded slightly faster in the thermal field 

than in the microwave field. They also observed that the glass transition temperature 

range was broader in the microwave field, initiating a probability that there is a 

difference in the cure mechanism of epoxy systems in the microwave and thermal fields 

[9]. 

 

Marand et al used in-situ measurements of microwave dielectric properties and infrared 

spectroscopy to compare reaction mechanisms of a DGEBA / DDS epoxy system 

undergoing isothermal cure at different temperatures using thermal and microwave 

heating [57]. Their findings revealed that the rate of cross-linking was much higher in 

samples cured by microwave radiation than samples cured thermally. At higher 

temperatures especially, this higher cross-linking rate appeared to lead to an entrapment 

of the unreacted epoxy and amine groups within the resin matrix, and in the microwave 

cured samples, this led to an overall lower degree of cure [19]. Marand stressed that his 

conclusions were limited to the epoxy systems he examined, and that in other molecular 

systems, acceleration of reactions by microwave energy may lead to overall faster 

reaction rates, void of the possibility of cross-linking reactions [19]. 

 

Wallace et al cured PR500 epoxy resin using a conventional oven and a commercial 

microwave oven. Modulated Differential Scanning Calorimetry MDSC, Dynamic 

Thermal Analysis, Infrared Spectroscopy, and solid-state NMR spectroscopy were used 

to compare the cured resins [58]. Their investigations showed that in microwave-cured 

samples, the epoxy-amine reaction is more dominant than the other possible curing 

reactions, including the epoxy-hydroxyl reaction. At the same degree of cure, Infrared 

spectroscopy revealed that the intensity of the hydroxyl and the amine bands was more 

in the thermally cured sample [58]. This indicated that during microwave cure, the 

amine-epoxy reaction was more dominant under these conditions. –CH2OH group is 

formed in the epoxy-hydroxyl reaction. Solid State NMR spectroscopy showed that 

there were a larger number of –CH2OH groups in the thermally cured sample, hence, the 

epoxy-hydroxyl reaction must be more dominant during the thermal curing process [20].  
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Wallace et al inferred that from the results of the IR spectroscopy, solid-state NMR and 

DMA, microwave curing of epoxy samples under these conditions lead to the increase 

of the amine-epoxy reaction compared to the epoxy-hydroxyl reaction, leading to a 

different network structure revealed by DMA. Wallace suggested that this could be 

responsible for the widening of the glass transition temperature which is commonly 

observed in microwave cured epoxy resins [20]. 
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                                  CHAPTER THREE 

 

3.0 EXPERIMENTAL 
 

3.1 Materials 
 
Two commercial epoxy resins were used for this study. Araldite LY 5052 supplied by 

Huntsman UK and DLS 772 supplied by Hexcel UK. Araldite LY5052 has an epoxide 

weight equivalent of 148.33, while DLS 772 has an epoxy equivalent of 192.33. 4 4’ 

Diaminodiphenysulfone (4 4’DDS) was used as the curing agent for both epoxy resins. 

The resin and the curing agent were mixed with a magnetic bar in a beaker using a hot 

plate, and stirred with a stirrer until the 4 4’ diaminodiphenylsulfone dissolved in the 

resin. 

The mixtures were blended at different stoichiometric ratios. Eight stoichiometric ratios 

were initially prepared. They were 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2. The epoxy 

resin systems were cured using a DSC and a microwave heated calorimeter. The 

stoichiometric ratios which produced the highest glass transition temperature were used 

for subsequent experiments. 

3.2 Resin Characterization 

3.2.1 Density Measurement 
 

Density is defined as how much mass is contained in a given unit volume. It is a 

measure of how “tightly” a material is packed together. 

 

Absolute density (ρ) is defined as; 

 

                                                     ρ=
V

W
                                                3.1 

 

Where W is the mass and V volume of the object [59]. 
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The pycnometer method is one of the most common methods used for measuring the 

absolute density of macromolecule substances. The density is measured by determining 

the weight of a volume-calibrated pycnometer which is filled with a liquid of known 

density in which a certain quantity of the polymer sample is immersed. The sample 

volume equals the pycnometer volume minus the undisplaced volume of liquid of 

known density [59]. 

 

 
 
 
 
 
 
 
  
 
 
 
Figure  3.1 Different types of volume-calibrated pycnometers [59]. 
 
Pycnometer A in figure 3.1 was used for this research. The density measurements using 

the pycnometer method were carried out as follows [60]. 

 

(i) The pycnometer was cleaned, dried and weighed to obtain dry weight (W1). 

The pycnometer was then filled with distilled water and reweighed (W2). 

The volume of the pycnometer (Vp) was calculated from the equation below. 

 

                                                Vp = (W2-W1)/ρw                                                3.2 

 

 Where ρw is the density of water. 

 

(ii)  The pycnometer was then dried again and weighed (W1). The pycnometer 

was again filled with the sample and reweighed (W3). 

 

                                              Mass of sample = W3-W1                                   3.3 

 

(iii)  The pycnometer filled with sample and water was weighed (W4) 

 

A 
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                                              Mass of water = W4-W3                                                          3.4 

 

                                              Volume of water (Vw) = (W4-W3)/ρw                           3.5 

 

                                              Volume of sample (Vs) = Vp-Vw                        3.6 

 

                                               Density of sample (ρs) = (W3-W1)/Vs                 3.7 

 

Since the density measurements were carried out at room temperature (25oC), the 

density of water (ρw) used in this study was taken as 1.0 g/cm3. Several measurements 

were conducted on each sample to ensure that reliable results were obtained. 

3.3 Curing Methods 
 

A series of samples of stoichiometric ratios of epoxy resin systems Araldite LY 5052 / 4 

4’ DDS and Araldite DLS 772 / 4 4’ DDS were cured using conventional and 

microwave heating techniques. Fully cured samples were prepared for the purpose of 

investigating the physical properties (e.g density, glass transition temperature) and also 

the mechanical properties. Also partially prepared samples were also prepared for 

Fourier Transform Infrared (FT-IR) analysis. The conventional and the microwave 

curing techniques are explained below. 

3.3.1 Microwave Curing 
 

A single mode cavity was used to carry out microwave curing of the epoxy resin system. 

Microwave curing was performed in a cylindrical brass, single mode cavity having a 

radius of 46.9 mm, and a length of 265.0mm. The cavity was at a frequency of 2.45 

GHz in the resonant TM010 mode. As shown in the figure 3.2 below, this cavity is 

designed to have its maximum electric field strength along the centre of the cavity axis. 

Figure 3.3 shows the schematic diagram of the microwave heating system. The 

microwaves are generated by a network analyser (Hewlett Packard 8714ET).  A solid 

state amplifier (Microwave Amplifier Limited) was used to amplify the generated 

microwaves. This Amplifier has a maximum output of 200W. A GPIB interface 

between the network analyser and the computer was used to adjust the source power and 

the microwave frequency. The sample temperature was monitored using an Opsens 
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Fluoroptic 
thermometer 

CAL 
controller 

Computer 

fluoroptic thermometer which was inserted through a small hole drilled at the top of the 

cavity. A small glass tube was used to protect the tip of the temperature probe. The 

thermometer was connected to a PID temperature controller manufactured by CAL 

Control Ltd., with a model number CAL 9500. This temperature controller was 

designed to give it the desired heating rate. 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 3.2 Simulated electromagnetic field patterns at 2.45GHz for TM010 mode 

microwave cavity with the presence of sample generated using Ansoft HFSS v8.5 

simulation software. The colour scale shows the relative field strength generated inside 

the cavity [61] 
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Figure 3.3 A schematic diagram of a microwave heating system using a single mode 

cavity operated in TM010 mode [61]. 

 

A sample was placed in the cavity, and a computer was used to numerically simulate the 

distribution of the electromagnetic field in the cavity (Ansoft; high frequency Structure 

Simulation, HFSS v.8.5). The simulated results showed that the sample placed in the 

cavity affected the electromagnetic field distribution. This is shown in figure 3.4  below 

[61] 

 

  

 

 

 

 

 

 

 

 

 

a) The sample was placed in the centre of the cavity as indicated by the arrow 

 

 

b) The sample was placed in the front area of the cavity as indicated by the arrow. 
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Figure 3.4 Simulated electromagnetic field patterns at 2.45GHz for TM010 mode 

microwave cavity with the presence of sample generated using an Ansoft HFSS v8.5 

simulation software. The colour scale shows the relative electric field strength generated 

inside the cavity [61]. 

 

From figure 3.4 , we can see that the electromagnetic field distribution in the cavity was 

affected by the location of the sample. The distribution was uneven. Both ends of the 

sample mould were subjected to higher E field strength. The middle region of the 

sample mould was exposed to a lower E field. At the centre of the sample mould, there 

was very little or no electric field. This would suggest that it would be impossible to 

prepare a fully cured sample. The sample would be fully cured at both ends of the 

mould, but not at the centre of the mould. 

 

In order to confirm the changes in the field distribution with the E field pattern obtained 

from the simulation software, the E field in the microwave cavity was investigated 

experimentally. The experiment was performed using a fax paper which turns black 

when it is exposed to heat. This attribute was used as an indicator to show the E field in 

the microwave cavity. The fax paper was cut into the dimensions of 46.9 x 265.0mm 

and placed in the cavity. The experiments were performed with and without the PTFE 

mould. The results are shown in the figure. The patterns shown on the fax paper after 

exposure to microwave radiation are in good agreement with the electromagnetic field 

pattern obtained from the simulation software. The E field distribution was altered by 

the presence of the PTFE mould. Figure 6(b) clearly shows that only the ends of the 

PTFE mould were exposed to significant electric field [61]. 
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a) The cavity without the PTFE mould           b) The cavity with the PTFE mould  

 

Figure 3.5 The fax paper after exposure to microwave radiation. The line indicates the 

position of the PTFE mould inside the cavity [61]. 

 

A PTFE mould with dimensions 120mm length x 30mm breath x and 5mm height was 

designed to fit into the cylindrical cavity. Samples were prepared and poured into the 

mould. The PTFE mould was then placed in the centre of the cavity. The samples were 

programmed to heat from room temperature to 180 oC at 10 K min -1. It was found that 

the sample exothermed before it attained its programmed temperature. This was 

attributed to the high heating rate used. At a much lower heating rate of 2 K min-1, the 

sample fully cured without any exotherm. 

 

3.3.2 Dynamic Scanning Calorimetry 
 

Dynamic Scanning Calorimetry is a method of thermal analysis whereby power (heat 

flow) is applied to a sample pan and a reference pan, and the difference in power is 

monitored against temperature or time while the temperature of the sample is 
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programmed in a specified atmosphere [42]. DSC is one of the easiest ways of 

determining the cure kinetics of a resin [31]. 

There are two types of DSC: 

1. Power – Compensated DSC:- In power compensated DSC, the sample and the 

reference are heated by separate heaters. The temperature difference is kept 

close to zero, while the electrical power which is required to maintain equal 

temperatures  (∆p = 
dt

qd )(∆
) is measured [42]   

 

                                      

 

 

 

 

 

 

 

 

Figure 3.6 Schematic of the arrangement of power compensated DSC [61]. 

 

2. Heat Flux DSC:- Unlike the power compensated DSC, the sample and the 

reference are heated from the same source and the difference in temperature ∆T 

is measured. A calorimetric sensitivity is used to convert the temperature 

difference into a power difference ∆p [42]. 

 

 

 

 

 

 

 

 

 

 



 102 

 

Figure 3.7 Schematic diagram of the sample chamber of a heat flux DSC [61] 

 

The power compensation DSC is more ideal for carrying out isothermal cure studies of 

thermosetting resins. This is because the low mass furnaces provide low thermal inertia 

and a fast response time [31]. This enables the uncured resin to be heated ballistically to 

the target temperature from room temperature at a heating rate of 400 – 500 K per 

minute. This quick response time enables the power compensation DSC to quickly 

“lock in” on the isothermal target temperature and equilibrate [31]. This gives the best 

possible isothermal cure peak and it minimizes the risk that the cure data will be lost, 

especially at the very crucial beginning portions of the isothermal experiments which is 

very crucial [31]. Also, the sample temeperature is maintained constant, rather than it 

being at a higher temperature than the control temperature because of the exotherm 

during cure. 

Compared to the power compensation DSC, Heat flux DSC devices have a very slow 

and apathetic responsiveness. This is due to their larger furnace, which does not allow 

the heat flux DSC to heat up and bring to equilibrium as rapidly as power compensation 

DSC. As a result of this, important data will be lost when performing isothermal cure 

studies with heat flux DSC. 

 

 

 Figure 3.8 Schematic diagram of DSC apparatus [42] 

3.3.3 DSC System 
 

The major parts of a DSC system are  
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1. The DSC sensors plus amplifier. 

2. The furnace and temperature sensor 

3. The programmer or computer 

4. The recorder, plotter or data acquisition device. 

3.3.3.1 DSC Sensors 
 

Many DSC units use thermocouples as sample and reference sensors. This is shown in 

figure 3.9 [42]. Copper-constantan or Chromel –Aluminium have been used for low 

temperatures, while Pt-Pt/13% Rh also has been employed [42]. In diagrams (a) and (b), 

single thermocouples are in contact with the sample, but in types (c) to (e), they are 

outside the sample. As shown in (d) and (e), multiple thermocouples are sometimes 

used to increase the signal. Sometimes, heat is conducted to the pans through a 

conducting metal disc. The power compensated DSC is an exception because the 

sensors are platinum resistors, and power is separately supplied to the sample and the 

reference [42]. 

 

                                  

 Figure 3.9 Series illustrating different types of DSC and DTA [42] 

Aluminium pans are commonly used for DSC measurements. Care should be taken to 

ensure that the are used below the melting point of aluminium which is about 6600C, 

and they are not attacked by the samples [42]. 

 



 104 

3.3.3.2 The Furnace and controller 

A resistance heated furnace enclosure of silver is used in many small DSC systems. 

Silver is used because it has a very high thermal conductivity, and this ensures that there 

is uniform temperature [42]. 

A range of between 0 – 500 K min-1 is used as heating rates, but 10 K min-1 is normally 

used. DSC is also used below room temperature. For this purpose, a cooling accessory 

or a refrigeration unit is fitted around the cell. The system can then be cooled directly 

with liquid nitrogen or other coolants. It is important that dry purge gas is passed 

through the cell assembly during cooling, otherwise ice may condense onto the cells 

[42].  

3.3.4 Applications of DSC 

DSC has a wide range of applications. DSC applications may be divided into physical 

changes and measurements, such as melting, crystalline phase changes, phase diagrams, 

heat capacity, thermal conductivity, glass transitions, liquid crystalline states, diffusivity 

and emissivity. Chemical reaction applications are dehydrations, polymer curing, glass 

formation, oxidative attack [42]. 

3.3.5 Calorimetric Measurement 
 

Conventional curing of the epoxy resin systems Araldite LY 5052 / 4 4’ 

Diaminodiphenylsulfone and DLS 772 / 4 4’ Diaminodiphenylsulfone were conducted 

“ in-situ” using a Perkin- Elmer Pyris 1 power compensation DSC. 

 



 105 

 

 

Figure 3.10 A Perkin- Elmer Pyris 1 power compensated DSC 

 

Dynamic heating was performed from 40 to 330 oC at heating rates of 2, 5, 8, 10 and 15 

K min-1. Samples with weights in the range 1-5 mg were sealed in aluminium sample 

pans. These pans contained a small hole in the lid. This small hole was designed to 

prevent large pressures from building up in the pan. 

 

The differential scanning calorimetry (DSC) technique is the most widely used 

approach for measuring reaction kinetics of thermoset polymers.  DSC has the 

advantages of being simple to use and it has few limitations. It can also provide 

simultaneous information regarding the kinetics, heat of reaction and thermal properties 

[62]. Generally, the reaction kinetics can be studied under both isothermal and dynamic 

conditions. In this research, both were used to investigate the two epoxy systems 

3.3.5.1 The overall conversion and reaction rate 
 

During the study of the curing kinetics of thermosetting resins with the use of DSC, the 

reaction rate 
dt

dα
 is assumed to be directly proportional to the rate of evolution of heat, 

dt

dh
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The expression below is used to determine the reaction rate [63]. 

 

                                 
dt

dα
=

TH∆
1

dt

dH
                                 3.8 

 

Where the rate of heat generation, 
dt

dH
 is the ordinate of a DSC trace and ∆HT is the 

total heat of reaction. 

At any temperature during dynamic curing, and at any time during isothermal curing, 

the fractional conversion is given by [64]  

 

                               α=
TH∆

1
∫
T

T0 dt

dH
δt                              3.9 

 

The lower bound of the integration is the lowest temperature at which the evolution of 

heat begins. If the total area enclosed under the DSC thermogram is integrated, the total 

heat of reaction released during the reaction (∆HT) will be obtained.  The total heat of 

reaction which is obtained as the area of the DSC thermogram is assumed to represent 

the total heat of polymerisation. Hence, for dynamic conversion, a 100% conversion is 

achieved in all curing reactions performed using different heating rates [64]. 

 

Before equation 3.8 can be integrated, the baseline from which the integration has to be 

performed needs to be established. The problem of sample background correction arises 

from the fact that the specific heat of the system changes continuously during the 

thermal event (i.e., melting or curing) from the level of the initial substances (reactants) 

to the level of the final product. In order to obtain the net effect due to the thermal event, 

the course of the heat capacity changes should be subtracted from the data corrected for 

the instrument baseline. An expression which includes the changes in the specific heat 

due to the degree of cure using the thermal response of the material before and after any 

thermal event was constructed by Bandera et al [65]. The expression is written below  

 

                         F(t) = α{P2(t) – P1(t)} + P1(t)                      3.10 
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From the expression above, F(t) is the sample background which is to be calculated, t is 

the time coordinate, which is proportional to temperature for constant heating rate; α is 

the current fractional conversion. It is also the partial concentration of the product. P1(t) 

is the DSC signal for the initial substance in the absence of the event which can be 

estimated through linear extrapolation of the portion of the total curve before the 

thermal event; while P2(t) is the DSC signal for the product alone which can be 

estimated through linear extrapolation of the portion of the total curve after the thermal 

event. 

 

The current fractional conversion is defined by the expression [65] 

 

                                      
( ) ( ){ }
( ) ( ){ }∫
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−

−
=

endt

t

dttFtG

dttFtG

0

0α                             3.11 

 

Where G(t) is the total signal corrected for the instrument background and tend is the 

time of the termination of the thermal event. 

 

If we substitute equation 3.11 into equation 3.10, we will get 
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3.3.6 Microwave curing 
 

For microwave curing, the calorimetric measurements were conducted in a microwave 

heated calorimeter.  Figure 3.11 shows the schematic diagram of the microwave heated 

calorimeter. The microwaves were generated by a network analyser (Hewlett Packard 

8714ET). A solid state amplifier (Microwave Amplifier Ltd) was used to amplify the 

generated microwaves. The microwave frequency and the source power were adjusted 

by a GPIB interface between the network analyser and a computer. A directional 

coupler was used to feed the output from the amplifier to a microwave cavity. The 

directional coupler also enabled the reflected signal to be monitored. A power sensor 
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(Anritsu, MA2472B) measured the transmitted and reflected powers. The transmitted 

and reflected powers were measured by a computer through a GPIB interface. The 

sample temperature was measured using a fluoroptic fibre sensor and thermometer 

(Luxtron Corp. Ltd, Model 790). The thermometer was connected to a PID temperature 

controller (CAL Control Ltd., Model CAL 9500), which was programmed to give the 

desired heating rate 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11 A schematic diagram of a microwave-heated calorimeter [61] 
 
 
A cylindrical brass, single mode microwave cavity with a radius of 58mm and height of 

77 mm was used as the heating cell of the calorimeter. The cavity was operated at a 

frequency of 2.45 GHz in the TE111 mode, which was designed to have the maximum 

electric field strength at the centre of the cavity as shown in the figure 3.12. The 

samples were placed in 10 mm diameter Pyrex test tubes and inserted in the centre of 

the cavity. This location gave the highest electrical field strength. The sample tube was 

held in place with a PTFE support on the top of the cavity. A relatively small volume 

(approx 0.3ml) of sample was used for each microwave cure. This amount was used in 

order to prevent an excessive build up of heat in the sample leading to a highly 

exothermic reaction [61]. The Opsens fibre optic temperature probe was inserted in a 

1.5mm diameter capillary tube and placed into the centre of the sample. The 
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Amplifier 
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arrangement of the sample tube and temperature probe inside the microwave cavity is 

illustrated in Figure 3.9. For calorimetric analysis, the sample was dynamically cured in 

the microwave-heated calorimeter from ambient temperature to 330oC at heating rates 

of 2, 5, 8, 10, 15 K min-1 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.12 Simulated electromagnetic field patterns at a frequency of 2.45 GHz for 

TE111 mode microwave cavity with the presence of sample generated using Ansoft 

HFSS V8.5 simulation software. The colour scale shows the relative electric field 

strength generated inside the cavity [61]. 

 

                                     

 

 

 

 

 

 

 

Figure 3.13 The vertical plane of the microwave cavity showing the arrangement of 

sample tube and temperature probe; (1) is the sample tube, (2) indicates the temperature 

probe and capillary tube while (3) is the PTFE support used to hold the sample tube in 

the cavity [61]. 
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Figure 3.14 Microwave Heated Calorimeter used for research. 

 

During the microwave curing, the variation of the amount of power required to maintain 

a particular heating rate is related to the changes in enthalpy which are associated with 

some processes such as chemical reactions. During an exothermic reaction, a lower 

amount of energy will be needed to maintain the temperature of the sample at its 

program set point. As a result of this, the power required for heating the sample will 

decrease. On the other hand, during an endothermic reaction where energy is needed to 

be absorbed in order to maintain the temperature of the sample at its program set point, 

the power required for heating the sample will increase [66]. An exothermic reaction 

will be expected for the curing of an epoxy resin because the free radical cross-linking 

reaction of an epoxy thermoset polymer involves the release of a large amount of heat. 

Figure 3.15 shows a typical data obtained from the microwave-heated calorimeter. 
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Figure 3.15 Raw data obtained from the exothermic reaction for microwave curing of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.1 at a 

heating rate of 10 K min-1 

 

The raw data shows a lot of noise, and because of this distortion, it is not possible to 

carry out kinetics analysis in on the raw data. A fast Fourier Transform filter (FFT Filter) 

developed by Navapour [54, 55, 66] was used to remove the noise in the raw data. After 

applying FFT filter, the data obtained is shown in figure 3.16. 
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Figure 3.16 Microwave curing reaction of Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 1.1 at a heating rate of 10 K min-1 after applying Fast 

Fourier Transform (FFT) Filter. 
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The filtered data obtained from the microwave-heated calorimeter which is shown in 

figure 3.16 is comparable to conventional power compensated DSC measurements. The 

effect of sample background affects the appearance of the two measurements 

(conventional and microwave). For conventional DSC measurements, during curing, a 

small difference is observed in the background before and after the exothermic peak. 

This is a result of changes in the specific heat capacity of the material during the curing 

reaction. In the microwave calorimeter data, however, a large change was observed in 

the background during curing. In addition to the changes in the specific heat capacity, 

changes in the dielectric loss and the extent of cure as the sample temperature increases 

affect the sample. As the sample cured, the dielectric loss factor decreased. This led to a 

decrease in the power dissipated within the sample, resulting in an increase in the 

microwave power required to maintain the heating rate [66]. 

 

Because some quantity of sample was used for isothermal curing (about 3 grams), a lot 

of microwave power was needed to heat the sample very quickly to the desired 

isothermal cure temperature. At the desired isothermal temperature, the power becomes 

too high and then it drops in an attempt to stabilise itself. As a result of these attempts 

by the power to stabilise itself in the initial part of the experiment, some data may be 

lost, or may become too noisy to be interpreted. Figure 3.17 shows a typical data 

obtained from the microwave-heated calorimeter. 
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Figure 3.17 Raw data obtained from the exothermic reaction for microwave curing of  

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 at a 

heating rate of 100 K min-1. 

 

We can see from the figure 3.17 above that the raw data was observed. A fast Fourier 

Transform filter (FFT Filter) developed by Navapnour [54, 55, 66] was used to remove 

the noise in the raw data. After applying FFT filter, the date obtained is shown in figure 

3.18 below. 
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Figure 3.18 Microwave Curing reaction of Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85 at a heating rate of 100 K min-1 after applying Fast 

Fourier Transform (FFT) Filter. 

 

The microwave-heated calorimeter was used to prepare microwave-cured samples for 

FT-IR analysis. The sample was heated from ambient temperature at a heating rate of 

100 K min-1 to 180 oC. Curing of samples in the microwave-heated calorimeter was 

carried out for different curing time intervals, thus providing a series of cured samples. 

For FT-IR analysis, the microwave curing of samples was carried out at 180 oC and held 

at time increments of 30 minutes. At the prescribed time, each sample tube was then 

quickly removed from the microwave cavity and quenched in liquid nitrogen to ensure 

that the reaction did not continue due to the residual heat within the sample. 
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3.4 Dielectric Properties 
 

It is possible to predict the heating efficiency of a material placed in a microwave field. 

This can be done with the knowledge of the dielectric properties of the material in 

question. The microwave consists of magnetic and electric fields. The permittivity (ε) 

and permeability (µ) are used to describe the interaction of a material with an electric 

field and magnetic field. The interaction between the material and the magnetic and 

electric fields of the microwave occurs in two ways:- storage and loss. Storage explains 

the lossless part of the exchange of energy between the field and the material. This loss 

happens when energy is absorbed by the material during its interaction with the 

microwave field. These electromagnetic parameters can be measured using several 

methods, among which is the cavity perturbation technique. This method is explained 

briefly in the section 3.4.1. 

3.4.1 Cavity Perturbation Method 
 

The cavity perturbation technique has been widely used extensively to measure the 

dielectric properties of a material at microwave frequencies. When a small quantity of 

sample is introduced into a resonant cavity, the resonant frequency (ƒ) and the quality 

factor (Q) inside the cavity are slightly perturbed. The quality factor is defined as a 

measure of how efficient the cavity is in storing electromagnetic energy. 

                                                             

                                   
cycleperissipatedEnergy

torednergyTotal
Q

  D 

S E  
2π=                      3.13 

 

The changes in the resonant frequency and the quality factor between an empty cavity a 

cavity with sample yield the dielectric constant and the dielectric loss, respectively. The 

basic assumption of the cavity perturbation technique is that the sample must be very 

small compared to the cavity itself, so that a frequency shift produced by the insertion 

of the sample is small compared to the resonant frequency [55].   

3.4.2 Dielectric properties measurement 
 

The cavity perturbation technique was used to monitor the dielectric properties of the 

samples during microwave heating. The measurements were conducted in the TE111 
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cylindrical cavity. Different heating rates of 10 K min-1 were used. The calorimetric 

measurement and the dielectric measurement were performed simultaneously. The 

experiment set-up in figure 3.11 was used to measure the dielectric measurements. In 

order to monitor the dielectric measurements, the peak frequency (ƒ) and the quality 

factor (Q) were measured periodically during heating. The equations below were used 

to calculate the dielectric constant (ε’) and the dielectric loss factor (ε”) 
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Where ƒc is the peak frequency of the empty cavity, ƒs is the peak frequency of the 

perturbed cavity. That is after the sample has been introduced into the cavity. Vc is the 

volume of the cavity while Vs is the volume of the sample. 

 

A and B are independent of the dielectric properties of the sample material. They 

depend on the cavity and sample geometries and the resonance mode. A and B can be 

determined analytically only for a few specific configuration of the cavity, sample and 

resonance mode. In other cases, the value of A and B can be determined experimentally 

by calibration using materials with known dielectric properties [28]. 

 

To obtain the parameters involved in the equations above, the transmission peak 

frequency and the Q value of the empty cavity (without the sample) were first measured. 

Other components such as the sample tube, fluoroptic temperature probe, and capillary 

tube were assumed to contribute a constant value to the measurements as the 

temperature was varied. A 1.0 ml syringe was used to fill the sample tube with 0.3 ml 

which was used to measure the transmission peak frequency and the quality factor of the 

empty cavity. The tube was then re-inserted into the cavity. The transmission peak 

frequency and the Q value of the perturbed cavity were measured as the sample was 

heated. 
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3.5 Infrared Spectroscopy 
 
Infrared spectroscopy is the study of the identification of chemical compounds 

observing how infrared radiation is absorbed by the chemical bonds within the 

compounds [67]. When applied to a molecule, infrared radiation encourages transitions 

between vibrational and rotational energy levels of the ground (lowest) electronic 

energy state [21]. Atoms in molecules are constantly vibrating with respect to one 

another. This happens as long as the temperature of the molecule is above zero [68]. 

When infrared radiation is directed on a molecule, and the frequency of a specific 

vibration  is equal to the frequency of the infra-red radiation, the molecule absorbs the 

radiation. This absorption will be represented on the infrared spectrum as a peak [22]. 

 

There are two types of vibration modes; the stretching and the bond vibration modes. 

When infrared radiation is absorbed, the energy associated with the absorption is 

converted to either of the vibration modes [22]. The only vibration that can occur in a 

simple diatomic molecule A-B is the periodic stretching along the A-B bond [21]. A 

stretching vibration resembles the to and fro movements of two bodies which are 

connected by a spring. The vibrational frequency υ (cm-1) required to stretch a bond A-

B is given by the equation 

 

                                  ν=
cπ2

1
(

µ
f

)1/2                                       3.16 

 

Where f is the force constant of the bond, µ is the reduced mass of the system, and c is 

the velocity of light. µ is defined by the equation below. 

 

                            µ=
BA

BA

mm

mm

+
                                        3.17 

 

Where mA and mB are the individual masses of A and B. 

 

Bond vibrations modes are divided into two types:- the stretching and the deformation 

(bending) vibrations. As defined earlier, the stretching vibration is the periodic 

stretching of the bond A-B along the bond axis [21]. Bending vibrations are 
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displacements which occur at right angles to the bond axis of the bond A-B. Stretching 

and deformation vibration frequencies are differentiated by spectroscopists using the 

symbols ν and δ. τ is used to symbolize twisting vibration frequencies and π for out –of-

plane deformation. 

 

Each atom has three degrees of freedom. This corresponds to motions along any of the 

three Cartesian coordinate axes (x, y, z) [22]. A molecule containing n number of atoms 

which is non-linear will have 3n degrees of freedom. These degrees of freedom are 

distributed as 3 rotational, 3 translational, and 3n-6 vibrational motions. Each motion 

has a distinctive fundamental band frequency [21]. When a molecule is exposed to 

infrared radiation, and the dipolar character of the molecule changes, it is only then that 

absorption will occur. Total symmetry about a bond will eliminate certain absorption 

bands. It has been confirmed by spectrocopists that specific absorption bands for 

particular bonds or groups occur within a molecule at or around the expected 

frequencies [21]. 
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Figure 3.19 Stretching and Bending vibration modes [21]. 

 

Wavenumbers (ν) or wavelengths (λ) are usually used to represent infra-red absorption. 

Wavenumbers define the number of waves per unit length, and they are directly 

proportional the energy of the infra-red absorption, and also the frequency [22] 

When a specimen is exposed to infrared radiation, radiant power is transmitted by the 

sample [22]. The ratio of this radiant power transmitted by the sample to the radiant 

power incident (I0) on the sample is known as the transmittance T, If the value of the 

transmittance is reciprocated, and its logarithm of base 10 is taken, we will get the 

absorbance(A) [68]. The transmittance spectrum ranges from 0 to 100% T, while the 

range of absorbance spectra is from infinity to zero. As a result, the transmittance 

spectrum provides a better contrast between the intensities of strong and weak bands 

[25]. 

3.5.1 Uses of Infra-red Spectroscopy 
 

The primary aim of infra-red spectroscopy is the determination of functional groups in 

the sample [22]. Other uses of infra-red spectroscopy are; 

 

i) Identifying all types of organic compounds. Compounds can be identified by 

matching the spectrum of the unknown compound with a reference spectrum. 

 

ii)  Identification of many inorganic compounds. 

 

iii)  It is used to determine the molecular composition of surfaces. 

 

iv) Chromatographic effluents can be identified using infra-red spectroscopy. 

 

v) The molecular orientation of polymers and solutions can be determined 

using infra-red spectroscopy [22].  

 

vi) It is used for the determination of purity, production control, and quantitative 

analysis. 
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vii)  Reaction kinetic studies. 

 

Two types of instruments are generally used for recording infrared spectra. They are the 

Fourier Transform Infrared spectrometer (FT-IR), and the classical dispersive 

spectrometer. Most modern instruments are of the Fourier Transform Infrared 

Spectrometer type. This is because the FT-IR has several advantages over the classical 

dispersive spectrometer; some of which are having the ability to record complete spectra 

in a much shorter timescale [69]. FT-IR also has better signal-to-noise ratios. The figure 

3.15 shows the basic construction of the FT-IR spectrometer 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20 Schematic Diagram of the FT-IR spectrometer [70]. 
 
The infrared radiation is generated from a source; which is usually a globar or a Nernst 

filament. This generated infrared radiation passes into the Michelson interferometer. 

The interferometer consists of two mirrors which are at 90 degrees to each other. It also 

consists of a beam splitter which is at an angle of 45 degrees to both mirrors. One 

mirror is fixed, while the other mirror is movable in a direction which is perpendicular 

to its front surface at a constant velocity.  
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The beam splitter partially transmits and partially reflects the beam. The transmitted and 

the reflected beams are incident normal to the two mirrors and after reflection, they 

recombine at the beam splitter, and there they produce interference effect. When the 

optical path difference is an integral number of wavelengths, the reflected beams are in 

phase and hence produce constructive interference. In contrast, when the optical path is 

an odd number of half wavelengths, then destructive interference will occur. This will 

result in an oscillalatory pattern or interferogram, which represents the spectral 

distribution of the absorption signal.  Fourier transformation derives the true absorption 

spectrum from the interferogram [70].   

 

A Thermo Nicolet 5700 FT-IR spectrometer with single bounce Diamond ATR crystal 

was used for this study. KBR discs were used for measuring the infrared spectra of the 

uncured Araldite DLS 772 / 4 4’DDS and Araldite LY 5052 / 4 4’ DDS epoxy systems 

in order to prevent the resin from sticking to the sampling plate. The microwave cured 

samples were broken into pieces and a few pieces were extracted and placed on the 

sampling plate for infrared measurements. Infrared spectroscopy was taken using the 

Attenuated Total Reflectance (ATR) method. DSC pans were used to conventionally 

cure the samples in an oven, and the single point diamond FT-IR was used to take the 

infrared spectra via the ATR method. 

 

3.6 Nuclear Magnetic Resonance Spectroscopy 
 
Nuclear Magnetic Resonance (NMR) spectroscopy is a very powerful technique used 

for the identification of chemicals. It can also be used to measure chemical sustituents 

or mixture components. NMR technique is very important in structure analysis because 

it is able to obtain signals from specific atoms along the backbone and the side chains of 

the polymer molecules. The magnetic environment of the NMR active nuclei and the 

local field that they experience influence the properties of the NMR signal. In this 

research, 1H and 13C-NMR were used to study the chemical structure of as-received 

resins. 1H and 13C-NMR were also used to determine the chemical structure of the 

products obtained as a result of the decomposition of cured Araldite DLS 772 / 4 4’ 

DDS epoxy system with amine / epoxy ratio of 0.8. 
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3.6.1 Principles of NMR specteroscopy 
 

Nuclear magnetic resonance spectroscopy originates from the interaction of the applied 

electromagnetic radiation with nuclear spin where the energy level in the nuclear spin 

have been split by an external magnetic field [71]. Atoms or Isotopes with nuclei having 

an odd number of proton or neutron have nuclear spin and can thus be detected by NMR. 

Nuclear spin is defined by a non-zero value of the nuclear spin quantum number (I). 

This value can either be integral or half integral. The most simple situation of interest in 

polymers involve nuclei for which I=1/2 such as 1H and 13C. These nuclei carry a 

charge and a spin on the nuclear axis, and this creates a magnetic dipole along the axis 

as shown in the figure 3.21. 

 

 

 

                                         

 

 
 
 
 
 
 
Figure 3.21 The spinning charge on the proton generates a magnetic dipole [70]. 

 

The resulting magnetic dipole, µ is oriented along the axis of the spin and is 

proportional to the angular momentum, p. Thus, 

 

                                                 µ=γp                 3.18 

 

where γ = Proportionality constant. It is also known as the magnetogyric ratio, γ and it 

has a different value for each nucleus [72]. 

 

When the magnetic nuclei are brought into an external magnetic field BO, they are 

inclined to orient themselves along the same direction as the applied field [72]. This 
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action is similar to that of a compass needle exposed to a magnetic field. The nuclei 

cannot be completely aligned parallel to the Bo [73]. However, because of the angular 

momentum and the thermal motion, the force applied to the magnetic field to the axis of 

rotation causes the plane which is perpendicular to the field direction to move. As a 

result, the axis of the rotating particle moves in a circular path around the magnetic field 

as shown in the figure 3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

Figure 3.22 Precession of a rotating particle in a magnetic field, Bo [70] 

 

According to the quantum theory, only certain orientations of magnetic moment with 

respect to the magnetic field are permitted. These permitted orientations are given by 

the values of the magnetic quantum number, m which is given by [71]; 

 

                                          m = I, I-1, I-2, …………, -I 

 

In instances of 1H and 13C where I=
2

1
, the nuclear quantum number can take only two 

values, m= 2
1  and m= - 2

1  . These may be taken to represent instances where the 
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nuclear spins are aligned either in a low energy state (parallel) or a high energy state 

(anti-parallel) to the magnetic field direction. This is shown schematically in the figure 

3.23 [26] 

 The potential energy E of a nucleus in these two orientations is given by equation 2.50 

[72] 

    

                                  E=   -
π

γ
2

mh
Bo                       3.19 

 

Where h is the Plank’s constant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 Magnetic moment and energy levels for a nucleus with a spin quantum 

number of  2
1  and  - 2

1  [72]  

 

An NMR spectrum is obtained by inducing transitions from the lower energy spin state 

to the higher energy spin state. This transition leads to absorption of energy. In order to 

achieve this, the radio frequency passing through the processing frequency, νo, of the 

nuclei at the constant magnetic field strength is varied. When the radio frequency 
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matches νo, the energy is absorbed by the nuclei and transition is induced from the 

lower state to the higher state. This condition is known as nuclear magnetic resonance. 

In another method, the applied radio frequency is fixed and the BO is swept over νo until 

the resonance condition is satisfied. The energy absorbed during this transition is 

detected, and then amplified by a receiver coil as the NMR signal, which subsequently 

is transformed into a NMR spectrum. The figure 3.24 below shows the schematic 

diagram of a NMR spectrometer [70]. 

 

               

 

Figure 3.24 Schematic diagram of NMR spectrometer. The tube is perpendicular to the 

z-axis of the magnet [70].  

 

In figure 3.24, A is the Sample tube, B is the Transmitter coil, C is the Sweep coil, D is 

the Receiver coil and E is the Magnet. 

 

The precessing frequency (νo) of all nuclei in an applied magnetic field (Bo) depends on 

their chemical environment. The field experienced by the nucleus is modified due to 

magnetic shielding by the electron orbiting the nucleus. Induced electric currents 

produce a magnetic field [70]. This magnetic field opposes the applied magnetic field. 

The higher the electron density, the greater the extent of shielding, and thus lower the νo. 

This effect changes with the chemical environment of the nuclei. The variation, gives 

rise to small differences in the absorption positions. This results in different positions of 
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the peaks in the NMR spectrum. The position of the peak is expressed relative to a 

reference peak. This is known as the chemical shift (δ) [70] 

                                            δ=
ref

refsample

ν
νν )(106 −

                 3.20 

 

The resonance frequencies of the sample and the reference are denoted as νsample and νref 

respectively.  

 

Tetramethylsilane (Si(CH3)4TMS) is the most widely accepted and widely used 

compound used as reference in NMR analysis. This is because it is chemically inert and 

it is also soluble in most organic solvents. This makes it very advantageous. 

Additionally, it gives a single, sharp peak. Also its protons are more “shielded” than 

almost all other organic protons.   Most 1H absorptions occur in the range 0-12 ppm, 

while 13C absorptions occur over the range 0-250 ppm. As a result, 13C-NMR 

spectroscopy gives a greater resolution than 1H-NMR spectroscopy [25]. 

 
1H-NMR is the most sensitive to observe and to use for quantitative application. This is 

because of the massive abundance of 1H in nature (99.98 % of hydrogen atom). The 13C 

isotope unlike the 1H has a natural abundance of 1.11 %. This makes the 13C less 

sensitive than 1H. [74, 75]. Thus, the intensities of resonance lines for 1H are more than 

5000 times greater than those for 13C. That notwithstanding, if adequate amounts are 

used, (100-500mg), a good resolution 13C can be obtained. The 13C is much more 

sensitive to the chemical environment. This makes the chemical shift range for 13C 

NMR about 20 times larger than the chemical shift for 1H NMR. Consequently, the 

peaks overlap less, and a more detailed information on the chemical structure can be 

obtained [71].  

3.7 Dynamic Mechanical Analysis 
 

The mechanical properties of a material are a useful guide to determine how suitable it 

may be for a particular application [42]. It can also show how the material has been 

treated prior to testing [69]. The most important factor in determining the mechanical 

properties of a material is its molecular nature. For instance, the chemical structure of a 
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plastic, its blending and the way it has been fabricated will greatly influence its 

behaviour [69]. 

 

In dynamic mechanical analysis, the storage modulus and the loss modulus of the 

sample are monitored against time, temperature or frequency of oscillation under 

oscillating load while the temperature of the sample in a specified atmosphere is 

programmed [42]. Usually the experiment is carried out in such a way that the dynamic 

strain constant is maintained. Sometimes, constant stress experiments are also used [42]. 

3.7.1 Mechanical Moduli 
 

If force is applied on a sample, it will behave in a number of ways. If the applied force 

is large, often times the material will break. Application of a small force will deform the 

material.  Depending on their viscosity η, liquids will flow when subjected to force. The 

deformation caused by the application of a small force may be elastic, whereby if the 

force is taken back, the material will return to its precise shape and size [42]. The 

deformation of other materials may be viscoelastic, and the material will show 

characteristics of elastic and flow deformation [69]. If a force is applied on a material 

beyond its elastic limit, the material will become permanently distorted. This 

phenomenon is known as plastic deformation. The parameters which are used for 

studying the mechanical properties are explained below. 

 

Stress is defined as the force applied per unit area. This may be 

A normal stress:                                                   σ = 
A

F
               3.21 

A tangential, shearing stress                                τ =  
A

F
               3.22 

A pressure change                                                δp = 
A

F
              3.23 

 

N/m2 or Pa are the units used for the above definitions [12]. 

 

Application of stress on a material will cause a deformation. This deformation is 

measured by the strain. It is defined as the deformation per unit dimension. Stain has no 

units. It may be expressed as  
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Tensile strain or elongation                                   ϵ = 
l

lδ
           3.24 

Shear strain                                                            γ =  
y

xδ
          3.25 

Volume or bulk strain                                            θ =  
V

vδ
          3.26 

 

Hooke’s law states that in an elastic material, the strain is proportional to stress. Its 

constant is the modulus [42].  

 

Modulus =
Strain

Stress
.    There are several types of modulus. 

 

Tensile, or Young’s Modulus                              E = 
ε
σ

                3.27 

Shear Modulus                                                    G = 
γ
τ

                 3.28 

Bulk (or compression) modulus                          K = 
)/( vv

p

∆
∆

        3.29    
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Figure 3.25 Schematic of different types of deformation [42] 

 

In the case of an ideal elastic material, the deformations are exactly reversible. Should 

there be any viscoelasticity, the moduli will become complex, and it will contain two 

parts. In the case of the tensile modulus for instance, one is the storage modulus E’, and 

the other is the loss Modulus E” [42, 69]. 

 

                          E* = E’ + iE”                                  3.30 

 

Where i = √-1 

 

The ratio of the storage and the loss modulus will give the loss tangent tan (δ) 

 

                         tan (δ) = 
'

"

E

E
                                       3.31 
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If an oscillatory sine-wave stress is applied to a perfectly elastic solid, the deformation 

and the strain will be exactly in phase with the stress [42]. When the same oscillatory 

stress is applied to a viscoelastic solid, the strain lags behind the stress and becomes 

out-of-phase by an angle δ. The complex dynamic modulus (E* in extension mode) 

must be used [12]: 

 

                         E*   = E’ + iE”                                      3.32 

3.7.2 Glass Transition Temperature 

The glass transition temperature of a polymer is the temperature at which it changes 

from a hard and brittle material into a soft and pliable one. Below the glass transition 

temperature Tg, the polymer segments do not have enough energy to rotate or to 

rearrange themselves [42]. Such a material is brittle and glassy. When heat is applied to 

the sample, there is a minor increase in its energy and its volume, the chains become 

more mobile and the polymer becomes more rubbery until at the glass transition. If the 

sample is heated further, the polymer will crystallize and melt [69]. At glass transition 

temperature, the chains will have an increased freedom of movement. This is as a result 

of an increase in the heat capacity of the sample. Thus, at glass transition, we will notice 

a step, an increase in heat capacity and also a change in expansion [42].  

3.7.3 Applications of DMTA 

3.7.3.1 Glass Transition Temperatures 
 
When a polymer passes through its glass transition Tg, the storage modulus decreases by 

two or three orders of magnitude. The decrease in modulus happens when there is a 

main chain molecular motion. The tan δ also goes through a maximum as the polymer 

passes through its glass transition. This occurs when the frequency of the forced 

vibration happens simultaneously with the frequency of the diffusional motion of the 

main chain. Compared to DSC and other thermal techniques, DMA is a much more 

sensitive method of studying the glass transition temperatures. 

Tan δ is a measure of the ratio of energy dissipated as heat to the maximum energy 

stored in the material during one cycle of oscillation. Hence, any two of the quantities 
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G’ G” and tan δ can describe the stiffness and damping properties of the material [42, 

69]. 

3.7.3.2 Beta and other transitions 
 

At much lower temperatures, there are secondary transitions occurring in most polymers. 

The glass transition temperature is referred to as the alpha transition. The beta and 

gamma transitions are found at much lower temperatures. The alpha transition is 

associated with the relaxation of the main chain backbone. The beta transition gives a 

tan δ which is usually broad. This is due to the motion of the small groups [42]. Further 

below is the gamma peak. This peak is also broad and it is as a result of the motion of 

small chain segments.  

 

 

 

Figure 3.26 DMTA of epoxy showing alpha, beta and gamma different transitions [42] 

 

3.7.1 Sample preparation and measurement procedure  

 

In this research, the dynamic mechanical analysis tests were carried out on the cured 

samples using a Pyris Diamond Dynamic Mechanical Analyzer in a temperature sweep 

mode. This test mode provides a sensitive means for measuring glass transitions. During 

the test, the glass transition is detected as a sudden and an obvious change in the storage 
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modulus and consequently a peak in the tan δ curve. The temperature at which this 

transition occurs is known as the glass transition temperature, Tg [42]. 

 

 

 

Figure 3.27 A Perkin- Elmer Pyris Diamond Dynamic Mechanical Analyser used for 

this research. 

 

Conventional and microwave cured samples were prepared using the technique 

described in the earlier section. The samples were cut into dimensions of 50mm x 

10mm x 2mm. In order to get a smooth, flat surface, the samples were polished with 

silicon carbide paper. A minimum of five rectangular specimens was prepared for each 

sample. The specimens were tightly fitted between two fixtures located in a temperature 

controlled chamber. The lower fixture was driven in oscillatory mode by an actuator at 

the frequency of 1 Hz. The upper fixture was connected to a transducer, which 

measured the stress. The specimen was heated from -120 to 300oC at a heating rate of 5 

K min-1. The temperature dependence of tan δ, G’, and G” were measured. 

 

3.8 Flexural Testing 

3.8.1 Principle of flexural testing 
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Flexural stress-strain testing measures the load required to produce a given level of 

strain in a specimen under bending conditions. Fundamentally, flexural testing involves 

the bending of a long, flat specimen of a rectangular cross section using either a three-

point or four-point conditions. Three point bending conditions was utilized for this 

research. In three-point bending, the maximum stress occurs in the specimen where the 

centre support is. figure 3.28 shows the effect of the load on the test specimen in three 

point bending. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.28 Effect of load on a test specimen in three point bending [76] 

 

Figure 3.29 illustrates the stresses which are present within a specimen during a three 

point bending test. Tensile and compressive stresses act on a specimen undergoing a 

three point bending test. Tensile stresses act on the outer surface of the specimen while 

compressive stresses usually dominate the inner surface. There is a region in the 

specimen which neither experiences tensile nor compressive stress. This region is 

known as the neutral axis [27]. 
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Figure 3.29 Stresses present in a test specimen during a three point bending test [27] 

 

Flexural strength is the maximum stress developed when a test specimen is subjected to 

a bending force which is acting perpendicular to the specimen. The load is applied at a 

specified crosshead speed. Hence the flexural stress (σf )is given by [27] 

 

                                     σf = 22

3

WT

PL
                           3.33 

 

P is the load at a given point on the load-deflection curve (N), L is the support span 

(mm), W is the width of the specimen (mm), and T is the specimen thickness (mm). 

 

The flexural strain (εf) of the specimen under testing can be obtained from the following 

expression;  

 

                                 εƒ= 2

6

L

DT
                                    3.34 

 

D is the deflection under load. 

 

 

                                  

 
 
 
 
 
 
 
 
 
 
Figure 3.30 The deflection (D) of the test specimen under load P [27] 

 

The flexural modulus (E) is a measure of bending stiffness, and it can be obtained from 

the initial slope of the load-deflection curve. 
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                                     E=
3

3

4WDT

PL
                                           3.35 

 

3.8.1 Sample preparation and measurement procedure 
 

An Instron Universal Testing machine model 4500 was used to perform the three point 

bending test. The conventional and microwave cured samples were prepared using the 

technique described in the earlier section. The samples were ground using a grinding 

machine with a 400 silicon carbide to get a smooth, flat surface and then cut into a 

dimension of approximately 60 mm x 10 mm x 2.5 mm. A minimum of five rectangular 

specimens was prepared for each sample. The flexural properties were determined at a 

crosshead speed of 2 mm min-1 with a support span of 40mm. 

 

  

 
 
Figure 3.31 A specimen undergoing three point bending test 
 

3.9 Microwave Acid Digestion 
 
An Anton – Paar microwave reaction system was used to decompose the cured epoxy 

resin in nitric acid. It consists of sixteen vessels. A diagram of the Microwave reaction 

system is shown in figure 3.32. 

Test 
specimen 
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Figure 3.32 An Anton Paar Microwave reaction system. 
 
 
 About 1 – 2 grammes of the specimen were put in each reaction vessel, and 15 ml of 

4M Nitric Acid was added into the vessels.  

3.10 High Performance Liquid Chromatography (HPLC) 
 

Reaction 
vessel 

Program 
Keyboard 

Screen 

Reaction 
Chamber 
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High Performance Liquid HPLC is a chromatography technique used to separate a 

mixture of compounds. It is used in biochemistry and in analytical chemistry to identify, 

quantify and also purify the individual components of the mixture [77]. 

 

A schematic diagram of the HPLC pump is shown in figure 3.33. 

 

 

 

Figure 3.33 Schematic diagram of HPLC pump [77].  

 

Figure 3.33 shows the schematic diagram of HPLC pump. The label a is the mobile 

phase reservoir, b is the pump which is capable of delivering pulse- free flow at 

pressures of up to 6000 psi. c is the injection valve, d is the column. e is the detector; 

the most popular of which is the UV absorbance. F is the labelled waste mobile phase 

reservoir [77]  

 

With HPLC, a pump is used to provide the pressure needed to impel the mobile phase 

and the analyte through the densely packed column. The increased density arises from 

the smaller particle sizes. This enables a better separation on columns of shorter lengths 

[77]. 

3.10.1 Mode of Operation 
 
A small volume of the sample which is to be analysed is injected to a stream of mobile 

phase. Movement of the injected sample through the column is slowed down by its 

interactions (either physical or chemical) with the stationery phase as it moves through 
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the column. The nature of the sample to be analysed and the composition of the mobile 

and stationery phase influence the speed of the sample through the column. The 

retention time is the time at which a specific analyte comes out the end of the column. 

The use of smaller particle size column packing creates higher back pressure and 

consequently increases the linear velocity. This gives the components less time to 

diffuse within the column, leading to an improved resolution in the resulting 

chromatogram [78]. 

3.10.2 Types of HPLC 
 

Partition Chromatography:- It is the first king of chromatography which was 

developed by chemists. Partition Chromatography either uses a retained solvent on the 

surface or within the grains or fibres of an “inert” solid supporting matrix; or it takes 

advantage of some additional hydrogen donor interaction with the solid support. The 

molecules balance between a liquid stationery phase and the element. This is known as 

Hydrophilic Interaction Chromatography (HILIC) in HPLC, and in this method, 

analytes are separated based on their polar differences. One of the advantages of HILIC 

is that acidic, basic and neutral solutes can be separated in a single chromatogram [78]. 

 

Normal - Phase Chromatography:- This is also known as Normal Phase HPLC or 

adsorption chromatography. In this method, the analytes are separated based on polarity 

and by adsorption to a stationery surface chemistry. NP-HPLC uses a polar stationery 

phase and a non – polar, non- aqueous mobile phase. It is very effective in separating 

analytes which are readily soluble in non-polar solvents [78]. The analyte is retained by 

the polar stationery phase. As the analtye polarity increases, the adsorption strength. 

Also , the interaction of the polar analyte and the polar stationery phase increases the 

elution time. The strength of the interaction depends on both the functional groups in 

the analyte molecule and also on the steric factors [78]. 

 

Displacement Chromatography:-  In Displacement chromatography, a molecule with a 

high affinity for the chromatography matrix will compete effectively for binding sites, 

and will thus displace all the molecules with lesser affinities. 
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Reverse – Phase Chromatography :- Reversed phase HPLC has a non-polar stationery 

phase and an aqueous , moderately polar mobile phase. Silica which has been treated 

with Rme2SiCl, where R is a straight chain alkyl group such as C18H37 or C8H17  is a 

commonly used stationery phase. For molecules which are non-polar, the retention time 

is longer when they pass through stationary phases such as silica. Polar molecules, on 

the other hand elute more readily. Addition of more water to the mobile phase makes 

the affinity of the hydrophobic analyte for the hydrophobic stationery phase stronger 

relative to the mobile phase which has become more hydrophilic. This increases the 

retention time. Adding more organic solvent to the element decreases the retention time 

[78]. 

 

Ion Exchange Chromatography:- In ion exchange chromatography, retention of the 

analyte is based on the attraction between solute ions and charged sites which are bond 

to the stationery phase. Ions of the same charge are excluded. The types of ion 

exchanges include [78] 

 

i) Polyester resins 

ii)  Cellulose ion exchanges 

iii)  Controlled – pore glass or porous silica 

 

Generally, ion exchanges favour the binding of ions higher charge and smaller radius. 

With respect to the functional groups in the resins, an increase in counter ion 

concentration reduces the retention time. An increase in PH reduces the retention time 

in cation exchange while a decrease in PH reduces the retention time in anion exchange. 

Ion exchange chromatography is widely used in water purification, higher exchange 

chromatography [78]. 

 

 

In this research, 100 mg of the decomposed resin was put in a small tube and methanol 

was used to dissolve the sample. A small syringe was then used to inject about 100 

microlitres into a Gilson pump controlled system through the rheodyne. Figure 3.34 

shows the diagram of the Gilson pump controlled system. 
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Figure 3.34 A Gilson Pump Controlled HPLC system. 
 
The Gilson pump controlled system consists of a chart recorder which indicates when 

an analyte is being eluted from the column. A pump is used to pump the solvents 

(hexane and ethyl acetate) through the column, and through the UV which is connected 

to the chart recorder. When the absorbance of the UV detector rises, it sends a signal to 

the chart recorder. The the sample is injected through the rheodyne, and it goes through 

the column, coming out through the UV. The dynamic mixer mixes the solvents A and 

B. 

3.11 Gel Permeation Chromatography 
 

Gel Permeation Chromatography is one of the most useful techniques used to establish 

both the molecular mass distributions and the average molecular masses of polymers. 

Gel Permeation Chromatography is a form of liquid chromatography which involves the 

separation of molecules according to their molecular size, or their hydrodynamic 

volume in solution. In Gel Permeation Chromatography, a dilute solution of 

polydisperse polymer is injected into a continous flow of solvents passing through a 

column which contains tightly packed microporous gel particles. In order to give 
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efficient packing, The sizes of the gel particles are in the range of 5-10µm. This is in 

order to give efficient packing, and it usually has a vareity of pore sizes from 0.5-105 nm, 

which corresponds to effective size range of polymer molecules [71].  

 

When the molecules pass through the pores, they are separated according to their sizes, 

with the smaller sized particles able to pass through more easily than the larger sizes. As 

a result, their rate of passage through the column is slower. This continous flow of 

solvents enables the molecules to be separated according to the sizes, with the larger 

molecules eluted first. The smaller molecules require longer elution times. This is 

because they penetrate more deeply into the pores, as a result of their small sizes. From 

this, it follows that the volume of elution is inversely proportional to the molecular size. 

There would be little or no separation of the molecules if the pore size is so small that 

the molecules can not penetrate it. Also, if the pore size is so large that all the molecules 

can pass through easily, there would also be little or no separation of the molecules [71].  

 

Therefore, it is important for the column packing material to have the appropriate pore 

size distribution, and different columns are usually needed for polymers which have 

widely different molecular mass distributions. There are now an availability of columns 

which has gels of mixed pore sizes. These pore sizes can operate over four decades of 

molecular mass. The size of a polymer molecule or its hydrodynamic volume in 

solution will influence its ability to enter a pore. Solvent and temperature changes can 

affect the hydrodynamic volume [71, 79]. This can consequently influence the polymer 

molecule’s ability to be retained by the column. Different molecular mass fractions are 

characterized by the elution volume, or the peak retention volume (VR). This is the 

volume of the solution eluted from the time of injection of the polydisperse sample into 

the GPC column to the peak of the chromatogram for the particular fraction. 

Empirically, there is a relationship between VR, the interstitial volume V0, and the 

volume of liquid within the pores, Vl . 

 

                                         VR = V0 + kVl 

 

Where k is the distribution coefficient. K signals the relative ease or otherwise of the 

solute molecules into the pore structure. When k is 0, there is no penetration, and when 

k is 1, there is total unrestricted penetration. 
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Figure 3.35 Schematic apparatus of a GPC set-up. 

 

The fundamental requirements for a GPC chromatograph are  

 

1) Solvent delivery system: capable of maintaining a constant linear velocity flow; 

2) Column(s) containing suitable microporous gel particles to produce the 

necessary size separation; They are typically, about 300 – 600 mm long and 7.5 

mm in diameter. They are constructed of stainless steel and threaded to permit 

ready assembly. 

3) Injection system: capable of delivering accurately small volumes of sample 

solutions without disturbing the solvent flow; 

4) Detection system to monitor output from the columns and to provide continuous 

quantitative and possibly qualitative data on the fractions being eluted; 

5) Recorder to give continuous output traces. 

 

The ability of GPC to produce molecular mass distribution curves directly and to enable 

calculation of the average molecular masses makes this an invaluable technique for 

polymer characterization. 

3.11.1 Applications of Gel Permeation Chromatograph y 
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1) GPC is applied in various areas in polymer science and technology. This is 

because GPC is able to separate and identify low molecular mass fractions such 

as monomers and oligomers. GPC is also able to separate and identify additives 

such as plasticizers, and stabilizers [71].  

 

2) GPC is also used increasingly for quality control. 

 

3) It is also employed in polymer synthesis and polymer processing. 

3.12 Mass Spectrometry 
 

In mass spectral analysis, gaseous ions are formed from an analyte (M) and the mass to 

charge ratio (m/z) of these ions are measured. The sample is either converted to 

molecular or quasimolecular ions and their fragments. This depends on the method of 

ionization used. The molecular ions are generally radical cations (M+) which are formed 

by the removal of electron from M. M- is formed when an electron is added to M, and 

this is often used for electromagnetic samples [80]. Quasimolecular ions are formed by 

adding or subtracting an ion to M. “Soft” ionization methods basically generate 

molecular or quasimolecular ions, while “hard” ionization methods give rise to 

fragment ions. The ions which are generated by ionization are separated by the mass 

spectrometer according to their mass-to-charge (m/z) ratio to give a graph of abundance 

vs m/z . Prior to mass spectrometry, the mixtures are often separated by gas or liquid 

chromatography. A mass spectrum can be obtained for each individual component and 

thereby make the characterization of the sample easier [80]. 

  

The exact value of (m/z) of the molecular or the quasimolecular ion reveals the 

elemental composition of the ion. This enables us to analyse the composition of the 

sample being studied. If the molecular ions are unstable and they decompose completely, 

the resulting fragmentation patterns can be used as a fingerprint for sample 

identification. The fragment ions also provide important information about the primary 

structure of the sample molecule. 

Mass spectrometry has an increasing use in polymer analysis because they are very 

sensitive. Minor components can be analyzed within a mixture. It is also a speedy 

process; mass spectrometry data can be acquired within seconds [80]. 
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Figure 3.36 Schematic representation of an electron ionisation source [80]. 

3.12.1 Ionization methods 
 

Gaseous ions can be prepared by three major methods. 

 

i) The ionization of volatile materials occurs when their vapours interact with 

electrons, ions or strong electric fields. 

ii)  Non- volatile materials are ionized by strong electric fields. 

iii)  Liquid solutions of the analyte may be directly converted to gas phase ions 

via spray techniques [80]. 

3.12.2 Ionization of volatile materials 
 

Electron Ionization (EI):- Here, the sample is thermally vaporised and approximately 

10-5 Torr of its vapour enter the ion source volume. Here, ionization takes place by 

collision with an electron beam of 70eV kinetic energy. In electron ionization, an 

electron is ejected from the sample molecule, leading to the production of intact 

molecular radical cations M+. This process gives a wide distribution of internal energies 

to the newly formed molecular ions, resulting in the formation of many M+ ions which 

are excited enough to yield a number of fragment ions through competitive (F1
+ , F2

+, 

F3
+) and consecutive (fa

+, fb
+, fc

+) decompositions [80]. 
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                                 M + e-             M+ + 2e- 

                                 F1
+                   Fa

+  

                                 M+                   F2
+               Fb

+   

                                  F3
+                  Fc+   

 

Chemical Ionization:-  In chemical ionization, the gaseous analyte molecules are 

ionised by ion molecule reactions with reagent ions, which are formed by electron 

ionization from the appropriate reagent gas. The chemical ionization source is similar to 

the electron source, but is operated at a higher pressure. (0.1- 0.2 Torr). A proton 

transfer reaction illustrates the chemical ionization process. This is the most common 

ionization mode. The reagent molecules are ionised by electron impact, and they react 

with other reagent molecules to form the reactant ions, RH2
+, which protonate the 

sample [80]. 

                            

                               RH+ RH               RH2+ R             (reagent ion formation) 

                               RH2
+ M                RH + MH+       (proton transfer) 

                               RH2
+ + M             [M + RH2]+     (electrophilic addition) 

 

Field Ionization (FI) : - In FI, gaseous analyte molecules (M) approach a surface of 

high curvature that is maintained at a high positive potential, giving rise to a strong 

electric field near the surface (of the order of 107 V cm-1). A M+ is created under the 

influence of the field by the quantum tunnelling of a valence electron from M to the 

anode surface. This can take place in about 10-12 s. [M+H]+ may also form with polar 

analytes by hydrogen abstraction from near the anode. FI produces molecular ions 

which have lower energies than molecular ions produced by EI due to the lower internal 

energies possessed by FI, they fragment less [80]. 

 

3.13 RESIN IDENTIFICATION AND CHARACTERISATION 

3.14 Introduction 
 

The chemical structures of the epoxy resins Araldite DLS 772 and Araldite LY 5052 

used in this research are confirmed. The molecular weights of the resins are also 
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investigated. The resins were characterized to determine thermal behaviour. 1H-NMR, 
13C-NMR and GPC were used to identify and characterise the resins. 

3.15 Chemical Structure Identification 
 

It is important to determine the chemical composition of a resin. This is because it plays 

a crucial role in the properties of the final product. The cure chemistry of the resin can 

be studied with the knowledge of its chemical structure. Also, since microwave energy 

is transferred to the material through dipolar polarisation, the interaction between the 

microwave and the material is affected by its chemical composition. The reaction can 

also be controlled in order to determine its optimum properties. 

3.16 Araldite DLS 772 

3.16.1 Molecular weight measurement  
 

Gel Permeation Chromatography was used to determine the average molecular weight 

of the Araldite DLS 772 epoxy resin. A molecular weight distribution curve for the 

resin is shown in figure 4.1 The results show that the number average molecular weight 

(Mn) of Araldite DLS 772 was 72460g mol-1. The weight average molecular weight (Mw) 

was 142100 g mol-1.The polydispersity index was 1.96. Polystyrene was used as the 

standard for this measurement. 
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Figure 3.37 Log weight fraction molar mass distributions for Araldite DLS 772 epoxy 

resin 

3.16.2 Chemical structure determination  
 
1H-NMR and 13C-NMR were used to identify the chemical structure of Araldite DLS 

772 epoxy resin. Figure 3.38 shows the 1H-NMR spectrum of Araldite DLS 772. The 

peaks at 6.8 ppm and 7.1 ppm correspond to the aromatic protons [81-83]. The presence 

of these aromatic peaks is due to the bisphenol A moiety [81]. The methyl protons give 

rise to a peak at 1.6 ppm. There are five peaks in the range of 2.5 – 3.5 ppm which are 

characteristic of the glycidyl terminal group [1-3].  

 

 

Figure 3.38 1H-NMR spectra of Araldite DLS 772 epoxy resin. 

 

The assignment of the peaks for Araldite DLS 772 is shown in the table 3.1 below. 

 

Table 3.1 The assignment of the peaks for Araldite DLS 772 epoxy resin in the 1H-

NMR spectrum 
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Peak Chemical Shift, ppm Assignment 

A 1.70 

 

B 2.38 

 

C 2.63 

 

D 3.04 

 

E 3.95 

 

F 4.20 

 

G 6.91 

 

H 7.19 
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13C-NMR analysis was used to obtain more information about the backbone structure of 

the Araldite DLS 772 epoxy resin. The 13C-NMR spectrum of the Araldite DLS 772 

epoxy resin is shown in figure 3.39 

 

 

 Figure 3.39 13C-NMR spectra of Araldite DLS 772 epoxy resin.  

 

The aromatic carbons of DGEBA gave rise to five peaks at 114, 128, 140, 144 and 

157.6 ppm [70]. The triplet peak at 69-70 ppm and 44.4 ppm are due to the methylene 

carbons (CH2) of the epoxy resin. The peaks at 30.9 and 42.4 ppm are due to the carbon 

atoms present in the methyl (CH3) and quaternary carbon in the epoxy resin. The peaks 

around 205 – 207 ppm and 29 - 32 ppm are assigned to the carbon atoms within the 

acetone, the solvent used in the NMR analysis [4]. 

The peak at 51.9 ppm was assigned to the methane (CH) carbon of the epoxy resin. 

Details of the interpretation of the 13C-NMR spectrum of Araldite DLS 772 epoxy resin 

are shown in table 3.2 below. 

Table 3.2 Assignment of the peaks for Araldite DLS 772 epoxy resin in the 1H-NMR 

spectrum 

 

Peak Chemical 

Shift 

Assignment 

C1 

C2 

44.2 

51.9 

 

1 2 3
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C3 69.4 

C4 

C5 

30.9 

47.3 

 

C6 

C7 

C8 

C9 

114.9 

156.9 

127.7 

146.3 

 

  

3.17 Araldite LY 5052 epoxy resin 

3.17.1 Molecular weight measurement 
 

Gel Permeation Chromatography was used to determine the average molecular weight 

of the Araldite LY 5052 epoxy resin. A molecular weight distribution curve for the resin 

is shown in figure 4.4 The results show that the number average molecular weight (Mn) 

of Araldite LY 5052 was   72890 g mol-1. The weight average molecular weight (Mw) 

was 140200 g mol-1.The polydispersity index was 1.92. Polystyrene was the standard 

used for this measurement. 
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Figure 3.40 Log weight fraction molar mass distributions for Araldite DLS 772 epoxy 

resin 

 

3.17.2 Chemical structure determination  

 
1H-NMR and 13C-NMR were used to identify the chemical structure of Araldite LY 

5052 epoxy resin. Figure 3.41 shows the 1H-NMR spectrum of Araldite LY 5052 epoxy 

resin.  

 

 

Figure 3.41 1H-NMR spectra of Araldite LY 5052 epoxy resin 
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Figure 3.42 Chemical structure of Araldite LY 5052 epoxy resin with lettering 

indicating the 1H-NMR peaks in figure 3.41. 

 
13C-NMR analysis was again used to obtain more information about the backbone 

structure of Araldite LY 5052 epoxy resin. The 13C-NMR spectrum of Araldite LY 

5052 epoxy resin is shown in figure 3.43 
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Figure 3.43   13C-NMR spectra of Araldite LY 5052 epoxy resin 
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Figure 3.44 Chemical structure of Araldite LY 5052 epoxy resin with lettering 

indicating the 13C-NMR peaks in figure 3.43.  

3.18 Density Measurement 
 
The pycnometer technique described in section 3.4 was used to determine the density 

values of the as-received resins. The results are tabulated in table 3.3. The values 

obtained from the density measurements are in agreement with the values quoted by the 

manufacturers [84]. 

 

Table 3.3 Comparison of manufacturer’s density values with experimental density 

values for Araldite LY 5052 and DLS 772 epoxy resins. 

 

Material Manufacturer Value 

(g/cm3) 

Density (g/cm3) 

Araldite LY 5052 epoxy 

resin 

1.17 1.19 ± 2 

Araldite DLS 772 epoxy 

resin 

1.15 – 1.20 1.17 ± 2 
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CHAPTER FOUR 

4.0 CURE REACTION STUDY 

4.1 Introduction 
 

The curing reactions of two epoxy resin systems of Araldite LY 5052, Araldite DLS 

772 and the hardener 4’ 4 Diaminodiphenylsulfone were studied “in situ” using 

microwave and conventional curing methods. This was done by the means of 

differential scanning calorimetry (DSC) and a microwave calorimeter. Isothermal and 

non-isothermal runs were performed, and the overall fractional conversion and reaction 

rate were determined from the DSC data. Different methods were used to calculate the 

kinetic parameters of the curing reactions such as the rate constants, activation energy 

Ea, reaction orders, and the pre-exponential factor (A). Fourier-transform infrared 

spectroscopy was used to investigate the fractional conversion profiles of the epoxy 

chemical groups involved in the curing reactions. During microwave curing, the 

dielectric properties of the samples were measured using perturbation theory from the 

changes in resonant frequency and quality factor of the microwave cavity. 

4.2 Determination of Appropriate stoichiometric mol ar ratio 
 

In order to choose the appropriate stoichometric amine / epoxy (A/E) ratio value to be 

used for this research, Araldite LY 5052 / 4 4’ DDS epoxy systems were prepared with 

amine / epoxy stoichiometric ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2.  DSC scans 

were carried out on these systems. The systems were heated at 10 K min-1 from 30 to 

350 oC in order to cure the sample. It was then cooled back to 0 oC, and reheated at a 

heating rate of 10 K min-1 in order to determine the glass transition temperature value. 

The epoxy amine / epoxy ratio with the highest Tg was chosen for this research. 

 

Similar samples of Araldite LY 5052 / 4 4’ DDS epoxy system with amine / epoxy 

ratios of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 were prepared for microwave curing. A 

heating rate of 10 K min-1 was used to cure the sample from 30 to 310 oC, and allowed 

to cool. Pieces of the cured samples were extracted from the microwave sample tube, 

and a DSC scan was carried out on the extracted piece from 30 to 350 oC at a heating 

rate of 10 K min-1 in order to determine its glass transition temperature. The glass 
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transition values of Araldite LY 5052 / 4 4’ DDS samples are shown in tables 4.1 and 

4.2 and figure 4.1 below.  

 

Table 4.1 Glass transition temperatures of different Amine / Epoxy ratios after a DSC 

run for Araldite LY 5052 / 4 4’ DDS epoxy system 

 

Amine / 

Epoxy 

Ratio 

Tg run 1 

(oC)  

Tg run 2 

(oC) 

Tg run 3 

(oC) 

Tg run 4 

(oC) 

Tg run 5 

(oC) 

Average 

(oC) 

Standard 

Deviation 

0.5 130.1 135.4 135.4 126.1 130.7 130.3 3.4 

0.6 169.0 146.7 156.7 148.0 150.8 152.1 9.6 

0.7 161.1 160.1 159.9 164.7 164.6 162.6 2.4 

0.8 176.9 175.5 164.5 178.0 176.4 174.3 5.5 

0.85 183.4 185.3 191.6 195.0 190.7 189.2 4.7 

0.9 174.9 177.6 173.7 179.4 175.8 176.3 2.3 

1.0 169.2 173.3 175.8 167.5 168.6 170.9 3.5 

1.1 164.5 164.1 165.4 165.3 163.2 164.5 0.9 

1.2 155.9 150.5 154.2 149.6 153.8 152.8 2.7 

  

Table 4.2 Glass transition temperatures of Araldite LY 5052 / 4 4’ DDS with different  

Amine / Epoxy ratios after curing with a microwave heated calorimeter and 

subsequently subjected to a DSC run. 

 

A/E 

Ratio 

Tg run 1 

(oC) 

Tg run 2 

(oC) 

Tg run 3 

(oC) 

Tg run 4 

(oC) 

Tg run 5 

(oC) 

Average 

(oC) 

Standard 

Deviation 

0.5 86.8 77.2 83.9 82.6 84.7 83.0 3.6 

0.6 88.8 91.9 96.5 92.4 93.5 92.6 2.8 

0.7 115.1 136.4 134.4 128.7 133.1 129.6 8.5 

0.8 139.2 125.3 127.2 130.6 136.8 131.8 6.0 

0.9 170.5 176.7 175.3 174.0 175.0 174.3 2.3 

1.0 194.7 191.2 190.7 193.2 192.9 192.4 1.6 

1.1 156.4 172.0 158.5 165.4 162.3 162.9 6.2 

1.2 145.6 154.2 147.6 151.0 148.1 149.3 3.4 
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Figure 4.1 Plot of Glass Transition against Molar ratio for different stoichiometric 

ratios for both conventional and microwave cured samples of Araldite LY 5052 / 4 4’ 

DDS epoxy system. 

 

 A similar “heat / cool / heat” DSC scan was performed on Araldite DLS 772 / 4 4’ 

DDS epoxy system with amine / epoxy stoichiometric ratios ranging from 0.5 to 1.2 for 

conventional cure, and 0.5 to 1.2 for microwave cure. The Tg values for the different 

molar ratios are shown in the tables 4.3 and 4.4 and figure 4.2 below.  

 

Table 4.3 Glass transition temperatures of Araldite DLS 772 / 4 4’ DDS with different 

Amine / Epoxy ratios after curing with DSC and subjected to a Tg run. 
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Amine / 

Epoxy 

Ratio 

Tg run 1 

(oC) 

Tg run 2 

(oC) 

Tg run 3 

(oC) 

Tg run 4 

(oC) 

Tg run 5 

(oC) 

Average 

(oC) 

Standard 

Deviation 

0.5 107.0 110.4 114.11 105.2 107.4 108.8 3.5 

0.6 128.6 132.5 128.4 127.8 130.2 129.1 2.3 

0.7 144.4 146.3 146.7 148.5 145.4 146.2 1.5 

0.8 164.6 169.9 168.5 165.9 168.3 167.5 2.1 

0.9 150.8 156.1 157.7 159.1 155.4 155.8 3.2 

1.0 151.1 147.5 152.6 148.6 149.5 149.8 2.0 

1.1 149.7 142.5 150.3 147.3 146.5 147.3 3.1 

1.2 140.2 138.4 143.8 139.1 140.6 140.4 2.1 

 

Table 4.4 Glass transition temperatures of different Amine / Epoxy ratios after curing 

using microwave calorimetry and subsequently subjected to a DSC run for Araldite 

DLS 772 / 4 4’ DDS epoxy system 

 

Amine / 

Epoxy 

Ratio 

Tg run 1 

(oC) 

Tg run 2 

(oC) 

Tg run 3 

(oC) 

Tg run 4 

(oC) 

Tg run 5 

(oC) 

Average 

(oC) 

Standard 

Deviation 

0.5 65.2 67.15 71.0 69.5 66.2 67.8 2.4 

0.6 104.9 94.7 102.9 101.4 105.8 101.9 4.4 

0.7 121.4 121.1 118.0 122.4 123.8 121.3 2.1 

0.8 133.4 144.5 138.0 139.4 138.6 138.8 4.0 

0.9 167.1 157.6 166.6 165.3 162.4 163.8 3.9 

1.0 172.2 161.59 165.8 170.4 168.8 167.5 4.2 

1.1 149.7 142.5 150.3 147.3 146.5 147.3 3.1 

1.2 140.2 138.3 143.8 139.1 140.6 140.4 2.1 
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Figure 4.2 Plot of Glass Transition against Molar ratio for different stoichiometric 

ratios for both conventional and microwave curing for Araldite DLS 772 / 4 4’ DDS 

epoxy system. 

 

Both plots show a increase in Tg values as the Amine / Epoxy ratio increases up to a 

maximum, and then the Tg starts to decrease. The highest Tg values of conventional and 

microwave heated samples occur at different stoichiometric ratios. The highest Tg value 

of the microwave cured sample occurs at a higher Amine / Epoxy Molar ratio than 

conventional heating. This is an early indication that the curing mechanisms for 

conventional and microwave curing are different. For both epoxy systems, the Amine / 

Epoxy ratio with the highest Tg for both microwave and conventionally cured samples 

were was selected and used for all subsequent experiments in this research. Table 4.5 

below show the selected Amine / Epoxy ratio from the conventionally and microwave 

cured samples which were used this research. 

 

Table 4.5 Stoichiometric ratios chosen for this research. 

Epoxy system Conventional (amine / 

epoxy ratio) 

Microwave (amine / 

epoxy ratio) 

Araldite LY 5052 / 4 4 

DDS 

0.85  1.0  

Araldite DLS 772 / 4 4 

DDS 

0.8  1.1  
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4.3.1 Rheology 
 

Figure 4.3 shows the rheology results of Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85.  

 

 

Figure 4.3 Viscosity development during cure for Araldite LY 5052 / 4 4’ DDS epoxy 

system with amine / epoxy ration of 0.85 as temperature is ramped from 70 oC ( t = 0 

min) to 180 oC ( t = 30 mins). 

 

Figure 4.3 shows the an experimental data for the viscosity of Araldite LY 5052 / 4 4’ 

DDS epoxy system with amine / epoxy ratio of 0.85 as temperature is ramped up with 

time. The viscosity decreases as the temperature increases. As the time progresses, the 

viscosity starts to increase. This increase in viscosity is as a result of the progression of 

the curing reaction. The experimental data for the viscosity of Araldite LY 5052 / 4 4’ 

DDS epoxy system with amine / epoxy ratio of 1.0 and Araldite DLS 772 / 4 4’ DDS 

with amine / epoxy ratio of 0.8 are shown in figures 4.4 and 4.5 below. The curves all 

show a similar trend. The viscosity drops as the temperature increases, and then starts to 

rise as the time increases as a result of the progression of the curing reaction. 
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Figure 4.4 Viscosity development during cure for Araldite LY 5052 / 4 4’ DDS epoxy 

system with amine / epoxy ratio of 1.0 as temperature is ramped from 70 oC ( t = 0 min) 

to 180 oC ( t = 30 mins). 

 

 

Figure 4.5 Viscosity development during cure for Araldite LY 5052 / 4 4’ DDS epoxy 

system with amine / epoxy ration of 0.8 as temperature is ramped from 70 oC ( t = 0 min) 

to 180 oC ( t = 30 mins). 
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4.4 Dynamic Conventional Curing 
 

A conventional power compensation DSC was used to study the conventional curing 

reactions of all the stoichiometric mixtures. The typical DSC thermograms for the cure 

of the Araldite LY 5052 / 4 4’DDS epoxy system with amine / epoxy ratio of 0.85 at 

different heating rates are shown in the figure 4.3. It was observed that the temperature 

at which the exothermic peak occurred depended on the heating rate. The exothermic 

peak moved to a slightly higher temperature at higher heating rates. This is because a 

thermal lag increases with heating rate, and as a result of this increase, the material 

starts to react at a higher temperature. The temperature at which the curing reactions 

were completed also depended on the heating rate. As the heating rate increased, the 

curing reactions were completed at a higher temperature. The total heat of reaction was 

calculated by integrating the area under the DSC thermogram. Table 4.6 summarises the 

exothermic peak temperature, Tp, and the total heat of reaction, ∆HT. The total heat of 

reaction is independent of the heating rates. This could be an indication that the reaction 

mechanisms remains constant over the range of heating rates used in this research. 
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Figure 4.6 Typical DSC thermograms for Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85 at different heating rates using conventional DSC. 
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Table 4.6   Exothermic peak temperature, Tp, The total heat of reaction, ∆HT, and 

fractional conversion at the exothermic peak temperature, αp for Araldite LY 5052 / 4 4’ 

DDS epoxy system with an amine / epoxy ratio 0.85 

 

Heating Rate ( K 

min-1) 

Tp (
oC) ∆HT (J g-1) αp 

2 178 -266 0.38 

5 201 -421 0.43 

8 212 -272 0.44 

10 218 -417 0.45 

15 230 -240 0.47 

 

Equations 2.30 and 2.29  in page 80 were used to obtain the values of the reaction rate 

dt

dα
, and the fractional conversion, α from the data obtained from the DSC thermogram. 

Sections 2.13.6 and 2.13.7 explain how the reaction reaction rate and degree of 

conversion were obtained. The thermograms were standardized for the purpose of 

comparison by dividing the calorimetric signal by the sample weight.  
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Figure 4.7 Reaction rates for dynamic cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 using conventional heating. 
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Figure 4.8 Fractional conversion for dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 using conventional heating. 

 

Figure 4.10 shows a plot of reaction rate against fractional conversion for all the heating 

rates. Changes can be observed to occur in the reaction rate over the whole range of 

conversion. For all the heating rates used, the reaction rate increases and reaches a 

maximum in the fractional conversion range of 0.4-0.5. Beyond this range, the reaction 

rate started to decrease. This decrease is attributed to the increase in the viscosity of the 

reaction medium as the curing material gelled [51]. There was a significant reduction in 

molecular mobility of the reactants at this stage. The reaction became diffusion 

controlled, and it eventually stopped [37]. 
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Figure 4.10 Plot of Reaction rate against Fractional Conversion for the curing reaction 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 using 

conventional heating. 

 

Typical DSC thermograms for the cure of Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 1.0 are shown in figure 4.11 below. As with the Araldite 

LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85, the exothermic 

peak temperature was found to increase with the increasing rate. 
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Figure 4.11   DSC thermograms for Araldite LY5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 obtained from conventional DSC at different heating rates. 

 

Table 4.7 Summarises the total heat of reaction, ∆HT, the exothermic peak temperature, 

TP and the fractional conversion at the exothermic peak temperature, αp. 

 

Table 4.7 The exothermic peak Tp, the total heat of reaction, ∆HT, and fractional 

conversion at the exothermic peak temperature, αp for Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine epoxy ratio of 1.0 at different heating rates. 

 

Heating Rate  ( K 

min-1) 

Tp (
oC) ∆HT (J g-1) αp 

2 174 -325 0.43 

5 194 -403 0.45 

8 210 -415 0.42 

10 214 -408 0.46 

15 225 -476 0.43 

 

The total heat of reaction seems to be independent of the heating rate. This again 

suggests that the reaction mechanism remains constant over the range of heating rates 

used in this study. The temperature dependence of the reaction rates and the temperature 

dependence on the fractional conversion at different heating rates of Araldite LY 5052 / 

4 4’ DDS with amine / epoxy ratio of 1.0 are shown in figures 4.11 and 4.12. The plot 

of reaction rate against fractional conversion for the curing reaction is shown in figure 

4.13 
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Figure 4.12 Reaction rates for dynamic cure of Araldite LY5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0 at different heating rates using conventional 

heating. 
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Figure 4.13 Fractional conversion for dynamic cure of Araldite LY 5052 / 4 4 ‘ DDS 

epoxy system with an amine / epoxy ratio of 1.0 at different heating rates using 

conventional heating. 
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Figure 4.14 Rate of reaction against fractional conversion for the curing reaction of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 at 

different heating rates using conventional heating. 

 

Figure 4.14 shows the typical changes in the rate of reaction of Araldite LY5052 / 4 4’ 

DDS epoxy system with an amine / epoxy ratio of 1.0 over the whole range of 

conversion. For all the heating rates used, the reaction rates reached their maximum 

values at conversion in the range 0.4 to 0.46. As the reaction proceeded, the viscosity of 

the reaction medium increased, allowing diffusion controlled termination process to 

take place [51]. This diffusion controlled termination process leads to a decrease in the 

reaction rate until the curing reaction eventually stopped [37]. 

  

The DSC thermograms, reaction rate plots, fractional conversion plots and plots of 

reaction rates against fractional conversion for Araldite DLS 772 / 4 4’ DDS epoxy 

systems with amine / epoxy ratios of 0.8 and 1.1 are shown in figure 5.15 to 5.22 below. 

The total heats of reaction, ∆HT, the exothermic peak temperatures, TP and the 

fractional conversions at the exothermic peak temperature, αp for Araldite DLS 772 / 4 

4’ DDS epoxy systems with amine / epoxy ratios of 0.8 and 1.1 are summarised in 

tables 4.8 and 4.9. 
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Figure 4.15   DSC thermograms for Araldite DLS 772 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 0.8 obtained from conventional DSC at different heating rates. 

 

Table 4.8 The exothermic peak Tp ,the total heat of reaction, ∆HT, and fractional 

conversion at the exothermic peak temperature, αp for Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8  at different heating rates. 

 

Heating Rate (K 

min-1) 

Tp (
oC) ∆HT (J g-1) αp 

2 174 -259 0.41 

5 194 -324 0.43 

8 210 -194 0.46 

10 214 -279 0.45 

15 225 -224 0.45 
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Figure 4.16 Reaction rates for dynamic cure for Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8 at different heating rates using conventional 

heating 
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Figure 4.17 Fractional conversion for dynamic cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8 at different heating rates using 

conventional heating 
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Figure 4.18 Rate of reaction against fractional conversion for the curing reaction of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 at 

different heating rates 

 

 For all the heating rates used, the reaction rates reached their maximum values at a  

conversion in the range of 0.4 to 0.5.  As the reaction proceeded, the viscosity of the 

medium increased. Cross-linking became controlled by diffusion and a drop in the reac- 

tion rate occurs until the curing reaction eventually stopped [85] 
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Figure 4.19   DSC thermograms for Araldite DLS 772 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 1.1 obtained from conventional DSC at different heating rates. 

 

Table 4.9 The exothermic peak Tp, the total heat of reaction, ∆HT, and fractional 

conversion at the exothermic peak temperature, αp for Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 at different heating rates. 

 

Heating Rate Tp (
oC) ∆HT (J/g) αp 

2 174 -212 0.40 

5 194 -202 0.42 

8 210 -225 0.42 

10 214 -213 0.44 

15 225 -189 0.46 
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Figure 4.20 Reaction rates for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.1 at different heating rates using conventional  

heating 
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Figure 4.21 Fractional conversion for dynamic cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 at different heating rates using 

conventional heating 
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Figure 4.22 Rate of reaction against fractional conversion for the curing reaction of 

Araldite DLS 772 / 4 4’ DDS epoxy system with amine / epoxy ratio of 1.1 at different 

heating rates using conventional heating. 

 

Figure 4.22 shows the typical changes in the rate of reaction of Araldite DLS 772 / 4 4’ 

DDS epoxy system with an amine / epoxy ratio of 1.1 over the whole range of 
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conversion. For the heating rates used, the reaction rates reached their maximum values 

at a conversion of between 0.4 and 0.5. As the reaction preceded, the viscosity of the 

reaction medium increases, allowing diffusion controlled termination process to take 

place. This diffusion controlled termination process led to a decrease in the reaction rate 

until the curing reaction eventually stopped [37]. 

4.5 Microwave Curing  
 

A microwave-heated calorimeter was used to cure the samples with microwave heating. 

The curing procedure is described in section 3.3.3. The microwave thermal analysis 

measurements were carried out by monitoring the microwave power level as a function 

of sample temperature during the controlled heating programs.  

The measurements of the reaction exotherm for  Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 cured at different heating rates is shown in 

figure 4.23.  The values of the exothermic peak temperature, and the fractional 

conversion value at the exothermic peak temperature are summarised in table 4.10 
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Figure 4.23 Microwave thermograms for Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85 obtained from microwave heating at different 

heating rates. 
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Table 4.10 The exothermic peak Tp, the total heat of reaction, ∆HT, and fractional 

conversion at the exothermic peak temperature, αp for Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 at different heating rates using 

microwave heating 

 

Heating Rate (K min-1) Tp (
oC) αp 

2 173 0.58 

5 191 0.49 

8 200 0.52 

10 203 0.52 

15 211 0.49 

 

 

 The total heat of reaction ∆HT for the microwave cured sample can not be determined 

because although it is possible to convert the microwave power to absolute values, it is 

extremely time consuming, and it was not within the scope of my study.  

Just like conventional heating, we observe that the temperature at which the exothermic 

peak temperature occurred increased with increasing heating rate. Compared to 

conventional heating, the exothermic peak temperature was slightly lower in samples 

cured with microwave heating than samples cured with conventional heating. Also, the 

onset temperatures were found to be slightly lower in samples cured in microwave 

heating than samples cured in conventional heating. These observations suggest that the 

curing reactions under the microwave influence occurred at slightly lower temperatures. 

 

Equations 5.1 and 5.2 were used to determine the reaction rate 
dt

dα
 and the fractional 

conversion, α from the data obtained from the filtered data obtained from microwave 

heating. The temperature dependence of the fractional conversion and the reaction rates 

at different heating rates are shown in figures 4.24 and 4.25. 
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Figure 4.24 Fractional conversion of dynamic microwave cure reaction of Araldite LY 

5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 at different heating 

rates using microwave heating. 
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Figure 4.25 Plot of Reaction rates against temperature for dynamic microwave cure 

reaction of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85 at different heating rates using microwave heating. 
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Figure 4.26 Plot of reaction rates against fractional conversion for the dynamic 

microwave cure reaction of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 0.85 at different heating rates. 

 

Figure 4.26 Shows the typical changes in the rates of reaction over the whole range of 

conversion of microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85. The reaction rates reached a maximum values and beyond 

the maximum points, the reaction rates began to decrease. This is because the viscosity 

of the reaction medium starts to increase, and this enables the diffusion control of the 

termination process to become the controlling factor. These factors initiate a decrease in 

the reaction rates until curing eventually stops. Also, the value of the maximum reaction 

rate was found to be at approximately 10% higher conversion, than the corresponding 

value observed in thermal curing.  
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Figure 4.27 DSC thermograms for Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 obtained from microwave heating at different heating rates 

 

Table 4.11 The exothermic peak Tp, the total heat of reaction, ∆HT, and fractional 

conversion at the exothermic peak temperature, αp for Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 at different heating rates using 

microwave heating. 

 

Heating Rate (K min-1) Tp (
oC) αp 

2 170 0.56 

5 178 0.48 

8 182 0.43 

10 200 0.44 

15 205 0.61 

 

 

Figure 4.27 shows the measurements of reaction exotherm for the curing of 1.0M 

amine/epoxy ratio for Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 1.0 at five different heating rates with the microwave-heated calorimetry. 

The values of the exothermic peak temperature, Tp and the fractional conversion, αp at 

the exothermic peak temperature are shown in table 4.11. As with the microwave curing 
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of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85, the 

exothermic peak temperature increased as the heating rate increases. At the same 

heating rate, the exothermic peak temperature was slightly lower in microwave heating 

as compared to the conventional heating. Also, the curing reaction of Araldite LY 5052 

/ 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 is observed to begin at a 

lower temperature in microwave heating. This conclusion was arrived at because the 

onset temperature was found to be lower in microwave heating than in conventional 

heating.  

 

Figures 4.28 and 4.29 show the plots of the temperature dependence of the fractional 

conversion and the reaction rates of cured microwave cured samples of Araldite LY 

5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 
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Figure 4.28 Fractional conversion for dynamic cure of  Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 at different heating rates using 

microwave heating. 
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Figure 4.29 Reaction rates for dynamic microwave cure of Araldite LY 5052 / 4 4’ 

DDS epoxy system with an amine / epoxy ratio of 1.0 at different heating rates using 

microwave heating. 
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Figure 4.30 Plot of reaction rates against fractional conversion for the dynamic 

microwave cure reaction of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 1.0 at different heating rates. 

 
At a specific temperature, the fractional conversion is higher for microwave curing at a 

lower heating rate. The fractional conversion increased with increasing heating rate. 
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The changes in the rate of reaction over the range of conversion of microwave cured 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 is shown 

in figure 4.32. The reaction rates reached a maximum at conversion range of 0.4 - 0.55 

for all the heating rates used. These values suggested that the same curing reactions 

occurred regardless of the heating rates. Also, the value of the fractional conversion at 

the maximum reaction rate was found to be slightly higher, about 10% higher than the 

corresponding value which was observed in thermal curing of Araldite LY 5052 / 4 4’ 

DDS epoxy system with an amine / epoxy ratio of 1.0. 

 

The thermograms for the dynamic microwave cure of Araldite DLS 772 / 4 4’ DDS 

with an amine / epoxy ratio of 0.8 is shown in figure 4.31.  
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Figure 4.31 Thermograms obtained for Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.8 obtained from microwave heating at different heating 

rates. 

 

Figures 4.32 and 4.33 show the plots of fractional conversion, and reaction rate against 

temperature at different heating rates under microwave curing.  
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Figure 4.32 Reaction rates for dynamic microwave cure of Araldite DLS 772  / 4 4’ 

DDS epoxy system with an amine / epoxy ratio of 0.8 at different heating rates using 

microwave  heating 
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Figure 4.33 Fractional conversion for dynamic microwave cure of Araldite DLS 772 / 4 

4’ DDS epoxy system with an amine / epoxy ratio of 0.8 at different heating rates using 

microwave heating. 
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Figure 4.34 Rate of reaction against fractional conversion for the curing reaction of  

Araldite DLS 772  / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 at 

different heating rates for microwave curing 

 

4.5.1 Comparison of the fractional conversion and r eaction rate 

obtained from DSC and Microwave calorimeter  

 

Some differences can be observed in the curing characteristics of samples undergoing 

conventional and microwave heating. Some of these differences include 

 

i) The temperature at which the reaction rate begins and the exothermic peak 

temperature are slightly lower in microwave heating method. 

ii)  The fractional conversion at the maximum reaction rate where the diffusion-

controlled reaction starts are lower for microwave cured samples. 

 

The temperature dependence of the reaction rate and fractional conversion for the curing 

of Araldite LY 5052 / 4 4’ DDS epoxy system with amine / epoxy ratio of 0.85 at 

different heating rates are shown below individually. The blue curve indicates the 

conventionally cured sample, while the red curve indicates the microwave cured sample.  
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Figure 4.35 Temperature dependence of the reaction rate (left), and fractional 

conversion (right) for the curing of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 under conventional and microwave curing at heating rates.  

 

Figure 4.35 illustrates the temperature dependence of the reaction rate and the fraction 

conversion at different heating rates using microwave and conventional curing. It shows 

the comparison of the temperature dependence of the fractional conversion and the 

reaction rates at different heating rates for both conventional and microwave cured 

Araldite LY 5052 / 4 4’ DDS epoxy system with amine / epoxy ratio of 0.85.  For all the 

heating rates, the curing of the Araldite LY 5052 / 4 4’ DDS epoxy system with amine / 

epoxy ratio of 0.85 occurred over a smaller temperature range during microwave curing. 

The microwave heated samples had a higher peak reaction rate than the conventionally 
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cured samples for all the heating rates used. We also observe that the reaction rate peak 

occurred at a lower temperature using microwave energy than in the case of 

conventional. When compared to the conventionally cured samples, there was a 

significant increase in the reaction rate of the microwave cured samples. For all the 

heating rates, a higher onset temperature, and a higher reaction rate were observed in 

microwave cured samples.  

 

These differences are all as a result of an improved efficiency in the transfer of energy 

for the microwave heating. Microwave heating involves the direct delivery of energy to 

the material as a result of an interaction of molecules with the electromagnetic field. 

This interaction causes heat to be generated internally throughout the volume of the 

material [86], whereas in conventional heating, energy is transferred from the surface of 

the material into the material via conduction or convection. Polymer molecules are 

heated in the microwave field directly as a result of the relaxation of the dipole 

polarization along the electromagnetic field. Microwaves are absorbed selectively by 

the  reactive polar molecules, and this greatly enhances the reaction, unlike conventional 

heating which requires the entire molecule to first be heated before the reaction can take 

place.[57, 87]. The higher fractional conversion for the microwave cured samples can 

be as a result of an increase in the reactant mobility after gelation. This is as a result of 

the induced polarization of the polymer and monomer molecules along the applied 

electromagnetic field [56], enabling more reactants to be consumed to form a more rigid 

network.  

 

Figure 4.36 shows the temperature dependence of the reaction rate (left), and fractional 

conversion (right) for the curing of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 under conventional and microwave curing, at different 

heating rates. The blue curve indicates conventional heating, while the pink curve 

indicates microwave heating. 
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Figure 4.36 Temperature dependence of the reaction rate (left), and fractional 

conversion (right) for the curing of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 under conventional and microwave curing, at different 

heating rates. The blue curve indicates conventional heating, while the pink curve 

indicates microwave heating. 

 

Figure 4.36 shows the comparison of the temperature dependence of the fractional 

conversion and the reaction rates at different heating rates for both conventional and 

microwave cured 1.0M amine / epoxy ratio for Araldite LY 5052 / 4 4’ DDS epoxy 

system. The observations of the plots are very similar to those of Araldite LY 5052 / 4 

4’ DDS epoxy system with amine / epoxy ratio of 0.85. The curing of Araldite DLS 772 

/ 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 occurred over a smaller 

temperature range during microwave curing for all the heating rates. A higher peak of 

reaction was observed in the microwave cured samples than the conventionally cured 
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samples. The reaction rate peak occurred at a lower temperature using microwave 

energy than in the case of conventional heating. There was a significant increase in the 

reaction rate of the microwave cured samples in comparison to the conventionally cured 

samples. A higher onset temperature, and a higher reaction rate were observed in 

microwave cured samples at all the heating rates.  

 

As explained above, microwave heating has lead to an improved efficiency in the 

transfer of energy. Microwave heating involves the direct delivery of energy to the 

material as a result of an interaction of molecules with the electromagnetic field; which 

causes heat to be generated internally throughout the volume of the material [86], 

whereas in conventional heating, energy is transferred from the surface of the material 

into the material via conduction or convection. Polymer molecules are heated in the 

microwave field directly as a result of the relaxation of the dipole polarization along the 

electromagnetic field. Microwaves are absorbed selectively by the reactive polar 

molecules, and this greatly enhances the reaction, unlike conventional heating which 

requires the entire molecule to first be heated before the reaction can take place [57, 87]. 

An increase in the reactant mobility after gelation is probably the reason why there is a 

higher fractional conversion for the microwave cured samples. This is as a result of the 

induced polarization of the polymer and monomer molecules along the applied 

electromagnetic field [56], which enables more reactants to be consumed to form a more 

rigid network.  These same observations were made for the temperature dependence on 

the reaction rate curves and the fractional conversion of the curing of Araldite DLS 772 

/ 4 4’ DDS epoxy system with amine / epoxy ratios of 0.8 and 1.1 in figures 4.37 and 

4.38 
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Figure 4.37 Temperature dependence of the reaction rate (left), and fractional 

conversion (right) for the curing of Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.8 under conventional and microwave curing, at heating 

different rates. The blue curve indicates conventional heating, while the pink curve 

indicates microwave heating. 
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Figure 4.38 Temperature dependence of the reaction rate (left), and fractional 

conversion (right) for the curing of Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.1 under conventional and microwave curing, at heating rates.  

4.6 Modelling of cure kinetics 
 

The autocatalytic model of equation 2.24 was used for this research. The experimental 

data was fitted into equation 2.24. The optimisation of the kinetic parameters (K1, K2, 

m, n) was obtained using a non-linear regression analysis by a minimization of the sum 

of squares of the weighted difference between the experimental reaction rate profile and 

the model prediction. 
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Figures 4.39 to 4.42 below compares the reaction rate profile of both conventionally 

(Left) and microwave cured (Right) Araldite LY 5052 / 4 4’ DDS epoxy system with 

amine / epoxy ratio of 0.85 obtained experimentally and the reaction rate profile 

predicted by the autocatalytic model. The green curve indicates experimental rate, while 

the black curve indicates the predicted rate. 
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Figure 4.39 Comparison between temperature dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 
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heating of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85 on the left, and microwave heating on the right. 
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Figure 4.40 Comparison between temperature dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.0 on the left, and microwave heating on the right. The green curve indicates 

experimental rate, while the black curve indicates the predicted rate 
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Figure 4.41 Comparison between temperature dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8 on the left, and microwave heating on the right. 
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Figure 4.42 Comparison between temperature dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.1 on the left, and microwave heating on the right. 

 

From the figures 4.39 and 4.42 above, we observe that the result of the mathematical 

simulations compare well with experimental results. The good agreement between the 

experimental and the model results enforces the proposition that the autocatatalytic 

model is able to predict the curing path of the epoxy system. 

The kinetic parameters obtained from fitting the predicted reaction rate with the 

experimental reaction rate are tabulated below.  
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Table 4.12 Kinetic parameters for dynamic cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 using conventional heating. 

 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.001202 0.03680 0.0327 0.499 0.745 1.244 

5 0.000545 0.03402 0.01601 0.678 0.733 1.411 

8 0.000523 0.02885 0.01812 0.648 0.641 1.289 

10 0.000782 0.03291 0.0238 0.636 0.763 1.399 

15 0.000922 0.0290 0.0318 0.616 0.643 1.259 

 

Table 4.13 Kinetic parameters for dynamic cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 using microwave  heating. 

 
 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.000738 0.0937 0.0079 0.698 0.656 1.354 

5 0.000757 0.06839 0.011 0.613 0.679 1.292 

8 0.000798 0.0601 0.0133 0.718 0.620 1.338 

10 0.000972 0.0628 0.0155 0.810 0.726 1.536 

15 0.00113 0.0444 0.025 0.777 0.591 1.368 

 

Table 4.14 Kinetic parameters for dynamic cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0 using conventional heating. 
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Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.0000608 0.0349 0.0017 0.686 0.783 1.469 

5 0.00221 0.0209 0.106 0.413 0.833 1.246 

8 0.0619 0.178 0.348 0.634 0.680 1.314 

10 0.01729 0.547 0.0316 0.685 0.760 1.445 

15 0.000267 0.0241 0.0111 0.608 0.685 1.293 

 

Table 4.15 Kinetic parameters for dynamic cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0 using microwave heating. 

 
 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.00261 0.0280 0.0932 0.300 0.310 0.61 

5 0.000313 0.0424 0.0014 0.612 0.679 1.291 

8 0.00112 0.0479 0.0234 0.561 0.701 1.262 

10 0.00238 0.0386 0.0617 0.612 0.681 1.293 

15 0.002792 0.0360 0.078 0.673 0.649 1.326 

 

Table 4.16 Kinetic parameters for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8 using conventional heating. 

 
 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.00044 0.0321 0.014 0.607 0.672 1.297 
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5 0.00074 0.0308 0.024 0.628 0.663 1.291 

8 0.00070 0.0300 0.0233 0.646 0.656 1.302 

10 0.00067 0.0284 0.0235 0.605 0.655 1.260 

15 0.00013 0.0267 0.0049 0.663 0.663 1.326 

 

 
Table 4.17 Kinetic parameters for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8 using microwave heating. 

 
 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.000073 0.0679 0.00108 0.587 0.708 1.295 

5 0.000274 0.0641 0.0043 0.718 0.612 1.330 

8 0.000942 0.0369 0.026 0.669 0.485 1.154 

10 0.000652 0.0370 0.0176 0.657 0.471 1.128 

15 0.000584 0.0463 0.0126 0.652 0.548 1.200 

 

Table 4.18 Kinetic parameters for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.1 using microwave heating. 

 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.0000965 0.0360 0.0268 0.759 0.861 1.62 

5 0.000591 0.0297 0.0199 0.622 0.654 1.276 

8 0.00039 0.0288 0.0135 0.649 0.637 1.286 

10 0.000495 0.0299 0.0165 0.663 0.632 1.295 
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15 0.00463 0.0305 0.1518 0.688 0.620 1.308 

 
 
Table 4.19 Kinetic parameters for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.1 using microwave heating. 

 
 

Heating 

Rate (K 

min-1) 

K1 K2 k=
2

1

K

K
 

m n m+n 

2 0.000073 0.06789 0.00107 0.587 0.708 1.295 

5 0.00027 0.0641 0.0042 0.718 0.612 1.330 

8 0.00094 0.0345 0.0272 0.669 0.485 1.154 

10 0.00065 0.0369 0.018 0.657 0.471 1.128 

15 0.00058 0.0462 0.0126 0.652 0.548 1.200 

  

4.7 Ozawa’s method  
 

Equation 2.59 was used to follow the reaction kinetic parameters during the curing 

reaction of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy 

systems with both conventional and microwave heating. 

 

The experimental curves of log Ф against T-1 for various fractional conversions for 

conventionally and microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system  with 

an amine / epoxy ratio of 0.85 are shown in figures 4.43 and 4.44 respectively. 
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Figure 4.43 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 using conventional heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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Figure 4.44 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 using microwave heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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For both conventionally and microwave cured samples, the activation energy was 

determined at fractional conversions of 0.1, 0.2, 0.3, 0.4, 0.5. 0.6, 0.7, 0.8, 0.9, 1.0. A 

plot showing the activation energies as the fractional conversion increases for 

conventionally and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85 is shown in figure 4.45. 
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Figure 4.45   Dependence of activation energy, Ea on the fractional conversion for both 

conventionally and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85. 

 

Figure 4.45 shows the values of activation energy at various fractional conversions of 

microwave and conventionally cured samples. The activation energies and the constants 

A’ for conventional and microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85 are summarised in table 4.20 below. In all the cases, 

the regression coefficients obtained were between 0.97< r < 1.00. 

 

Table 4.20   Kinetic Parameters at different degrees of conversion for conventionally 

and microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 0.85 determined by Ozawa’s method. 
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Fractional 

Conversion 

(α) 

Activation 

Energy (Ea) 

Conventional 

Activation 

Energy (Ea) 

Microwave 

Aʹ  

Conventional 

Aʹ  

Microwave 

0.1 47.07 93.11 4.26 7.56 

0.2 51.31 82.22 4.30 6.55 

0.3 55.51 76.40 4.40 6.01 

0.4 59.46 73.01 4.50 5.65 

0.5 63.76 70.77 4.63 5.40 

0.6 68.73 68.22 4.78 5.15 

0.7 74.49 66.19 4.94 4.94 

0.8 81.84 64.29 5.13 4.73 

0.9 93.02 63.42 5.43 4.56 

1.0 109.56 60.38 5.35 4.10 

Average 70.475 71.801 4.772 5.465 

Std. Dev 19.69 9.93 0.427 1.027 
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Figure 4.46 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 using conventional heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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Figure 4.47 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 using microwave heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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Figure 4.48 Dependence of activation energy, Ea on the fractional conversion for both 

conventionally and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0. 

 

Figure 4.48 shows the values of activation energy at various fractional conversions of 

microwave and conventionally cured samples. Table 4.21 summarizes the activation 

0.1 
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energies and the constants A’ for conventional and microwave cured Araldite LY 5052 / 

4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0. In all the cases, the 

regression coefficients obtained were between 0.97< r < 1.00 in all the cases. 

 

Table 4.21 Kinetic Parameters at different degrees of conversion for conventionally and  

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 

determined by Ozawa’s method. 

 

Fractional 

Conversion 

(α) 

Activation 

Energy (Ea) 

Conventional 

Activation 

Energy (Ea) 

Microwave 

Aʹ  

Conventional 

Aʹ  

Microwave 

0.1 39.39 84.80 3.71 7.55 

0.2 43.00 87.49 3.86 7.43 

0.3 46.64 89.49 3.94 7.35 

0.4 49.42 81.27 3.97 6.56 

0.5 52.10 71.28 4.01 5.7 

0.6 54.76 67.98 4.03 5.35 

0.7 57.69 63.98 4.05 4.96 

0.8 60.82 59.84 4.04 4.56 

0.9 63.64 56.58 3.96 4.23 

1.0 80.81 72.17 4.13 4.62 

Average 54.827 73.488 3.97 5.831 

Std. Dev 11.92 11.74 0.12 1.29 

 

 

Figures 4.49 and 4.50 below show the Ozawa plots of logarithm of heating rate against 

the inverse of temperature at constant fractional conversions for the dynamic cure of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 using 

conventional and microwave  heating. 
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Figure 4.49 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8 using conventional heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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Figure 4.50 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8 using microwave heating. Fractional 

conversions α of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.00 are shown. 
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Figure 4.51 Dependence of activation energy, Ea on the fractional conversion for both 

conventionally and microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8. 

 

Table 4.22 Kinetic Parameters at different degrees of conversion for conventionally and 

microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy 

ratio of 0.8 determined by Ozawa’s method, 

 

Fractional 

Conversion 

(α) 

Activation 

Energy (Ea) 

Conventional 

Activation 

Energy (Ea) 

Microwave 

Aʹ  

Conventional 

Aʹ  

Microwave 

0.1 46.18 54.53 4.07 4.33 

0.2 51.89 52.33 4.22 4.08 

0.3 55.83 50.69 4.31 3.89 

0.4 59.70 50.08 4.41 3.78 

0.5 63.69 49.52 4.51 3.70 

0.6 68.32 49.94 4.64 3.66 

0.7 73.30 49.94 4.77 3.60 

0.8 72.39 50.95 4.51 3.59 

0.9 77.89 52.49 4.58 3.60 

1.0 116.58 55.80 6.45 3.61 
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Average 68.58 51.63 4.65 3.78 

Std. Dev 19.64 4.64 0.67 0.25 
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Figure 4.52 Ozawa plots of logarithm of heating rate against the inverse of temperature 

at constant fractional conversions for the dynamic cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 using conventional heating.  
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Figure 4.53 Dependence of activation energy, Ea on the fractional conversion for both 

conventionally and microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.1. 

 

Table 4.23 Kinetic Parameters at different degrees of conversion for conventionally and 

microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy 

ratio of 1.1 determined by Ozawa’s method. 

 

Fractional 

Conversion 

(α) 

Activation 

Energy (Ea) 

Conventional 

Activation 

Energy (Ea) 

Microwave 

Aʹ  

Conventional 

Aʹ  

Microwave 

0.1 41.11 88.85 3.98 6.85 

0.2 47.47 76.18 4.17 5.73 

0.3 52.40 68.36 4.31 5.07 

0.4 56.93 63.56 4.45 4.65 

0.5 62.02 60.09 4.62 4.34 

0.6 68.35 58.34 4.84 4.15 

0.7 76.70 56.97 5.15 3.99 

0.8 87.84 56.67 5.56 3.89 

0.9 97.65 57.31 6.28 3.83 

1.0 99.73 58.80 9.27 3.66 

Average 69.02 64.51 5.26 4.62 

Std. Dev 20.79 10.56 1.57 1.01 

 

 

Ozawa’s method can also be used to determine the activation energy through the 

exothermic peak temperature. In this method, the exothermic peak temperature can be 

obtained directly from the dynamic DSC thermograms at different heating rates. This 

procedure gave us a single activation energy for the entire reaction process. If we plot a 

graph of the logarithm of the heating rate against the inverse of peak temperatures, we 

can obtain the activation energy and the constant A’ from the slope and the intercept 

respectively. Plots of log Ф against Tp
-1  for Araldite LY 5052 / 4 4’ DDS and DLS 772 / 

4 4’ DDS epoxy systems using both conventional DSC and  microwave calorimeter. 
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The activation energies and constants A’ for epoxy systems are shown in the tables 

above. In all cases, the regression coefficients obtained were between 0.98< r < 1.00. 
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Figure 4.54 Plot of log Ф against Tp
-1 for conventional and microwave curing of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85. 
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Figure 4.55 Plot of log Ф against Tp
-1  for  conventional and microwave curing of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0. 
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Figure 4.56 Plot of log Ф against Tp
-1 for conventional and microwave curing of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8. 
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Figure 4.57 Plot of log Ф against Tp

-1 for conventional and microwave curing of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8. 

 

Table 4.24 Values of Activation energy and pre-exponential factor for different 

stoichiometric ratios of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS 

epoxy systems using conventional and microwave heating. 
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Conventional Heating Microwave Heating Sample 

Aʹ (s-1) Ea (KJ/mol) A ʹ (s-1) Ea (KJ/mol) 

LY 5052 

0.85M 

18.76 64.3 27.97 96.9 

LY 5052 1.0 M 7.23 73.8 7.97 77.5 

DLS 772 0.8 

M 

19.42 67.6 18.85 60.9 

DLS 772 1.1 

M 

19.05 65.1 16.50 57.5 

 

 

From table 4.24, for the Araldite LY 5052 / 4 4’ DDS epoxy systems, the activation 

energies of all microwave-cured samples were higher than those of conventionally 

cured samples. While for the Araldite DLS 772 / 4 4’ DDS epoxy systems, the 

activation energies of the conventionally cured samples were higher than the activation 

energies of the microwave cured samples. This result was consistent with those obtained 

using Ozawa’s method based on the isoconversion procedure as well as the results 

obtained from the autocatalytic model method.  

4.8 Kissinger’s method 
 

Figures 4.58 to 4.61 show the example of the plots of –ln(Φ/TP
2) against TP

-1 for the 

Araldite LY 5052 / 4 4’ DDS epoxy system cured using conventional DSC and 

microwave calorimeter.  The values of the activation energy for the all resins and blends 

are summarised in Table 4.25. In all cases, the regression coefficients obtained were 

between 0.90 < r < 1.00. Again, the activation energies of all microwave-cured samples 

were also found to be higher than those of conventionally cured sample for Araldite LY 

5052 / 4 4’ DDS epoxy system, but they were lower than the activation energy for the 

conventionally cured samples of Araldite DLS 772 / 4 4’ DDS epoxy systems. For both 

epoxy systems, the activation energies increased as the stoichiometric ratio increased for 

conventionally cured samples, but it decreased as the stoichiometric ratio increased for 

microwave cured samples. Interestingly, Kissinger’s method gave a value of activation 

energy that was similar to the value obtained by Ozawa’s method when applied to the 



 215 

exothermic peak. A major difference between Ozawa and Kissinger’s method for the 

determination of activation energy is that in addition to the determination of the 

activation energy of the entire reaction process, Ozawa’s method can be used to 

determine the activation energy at any specific extent of fractional conversion, while 

Kissinger’s method can only be used to measure the activation energy for the entire 

reaction process. 
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Figure 4.58 Plot of –ln(Φ/TP
2) against TP

-1 for conventional and microwave curing of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85. 
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Figure 4.59 Plot of –ln(Φ/TP
2) against TP

-1 for conventional and microwave curing of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0. 

 



 216 

y = -7594.3x + 5.051

R2 = 0.9967

y = -7377.4x + 4.4932

R2 = 0.954

-12

-11.5

-11

-10.5

-10

-9.5

-9

0.0019 0.00195 0.002 0.00205 0.0021 0.00215 0.0022

1/Tp

-ln
 q

/T
2

Microwave

Conventinal

 

 

Figure 4.60 Plot of –ln(Φ/TP
2) against TP

-1 for conventional and microwave curing of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8. 
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Figure 4.61 Plot of –ln(Φ/TP
2) against TP

-1 for conventional and microwave curing of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.1. 

 

Table 4.25 Values of Activation energy and pre-exponential factor for different 

stoichiometric ratios of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS 

epoxy systems using conventional and microwave heating. 
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Conventional Heating Microwave Heating Sample 

Aʹ (s-1) Ea (KJ mol-1) Aʹ (s-1) Ea (KJ mol-1) 

Araladite LY 

5052 0.85M 

4.42 59.7 13.67 94.1 

AralditeLY 

5052  

1.0 M 

21.53 69.8 22.25 71.1 

DLS 772  

0.8 M 

5.50 63.1 4.49 59.3 

DLS 772  

1.1 M 

9.76 60.6 12.76 52.3 

 

The activation energies of conventionally and microwave cured samples of Araldite LY 

5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems fall within the range 

of activation energies of chemical reactions (30 to 100 Kj mol-1) [16] 

4.9 Dielectric Properties measurement 
 

The cavity perturbation technique was used to measure the dielectric properties of the 

epoxy systems as the microwave curing reactions proceeded. The experimental 

procedure is described in section 3.4 The changes in dielectric properties of samples 

undergoing microwave cure were monitored in situ with the cavity perturbation 

technique. We could not obtain any data for the dielectric properties for conventionally 

cured samples. A method for the in situ monitoring for changes in dielectric properties 

of samples undergoing thermal cure using cavity perturbation technique has been 

developed, but this technique is a specialised technique and expensive to purchase. The 

curing mechanism of the samples during microwave cure can be explained with the 

knowledge of the dielectric properties of the samples during microwave curing. It is 

important to know the dielectric properties since the rate of heating when exposed to 

microwave radiation depends on the loss factor of material being heated. 

 

The dielectric constant, ε′ and dielectric loss factor, ε″, indicate the ability of the 

molecular dipole moments in the materials to follow the oscillations of an applied 

electric field [57, 66, 85, 88]. The dielectric constant represents the component of 
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immediate alignment of the dipole moments in the direction of the electric field, while 

the dielectric loss factor shows the retardation incurred in the arrangement. Thus, the 

changes in the dielectric properties would not only represent the alternation in molecular 

dipole moments as a result of the chemical reaction taking place but also show the rapid 

decrease in molecular mobility that occurs during the formation of a cross-linked 

network. [11]. 

 

Figure 4.62 shows the dielectric constant and dielectric loss factor as a function of 

reaction temperature for microwave curing of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.85. The dielectric constant and dielectric loss 

factor exhibited similar trends as the curing proceeded. The dielectric properties 

increased as the curing temperature increased until they reached a maximum value and 

then gradually decreased with increasing temperature. The dielectric constant and 

dielectric loss factor reached the maximum values at a similar temperature. Figure 4.63 

shows a plot of the dielectric loss factor and the reaction exotherm of microwave-cured 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 against 

temperature.  
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Figure 4.62 Plot of dielectric constant and dielectric loss factor as a function of reaction 

temperature for microwave-cured Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 at a heating rate of 5 K min-1 
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Figure 4.63 A plot of dielectric loss factor and reaction exotherm as a function of 

reaction temperature for microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.85 at a heating rate of 5 K min-1 

 

From figure 4.63, the cure process can be divided into three stages. The first stage 

(Stage I) is the liquid prepolymer heating stage.  In this stage the dipoles can rotate 

freely. This leads to an increase in dielectric loss factor as the temperature increases.  As 

a result of the curing reaction and subsequent decrease in the number of both the 

functional polar groups and also in the molecular mobility, there will be a significant 

decrease in the dielectric loss factor [21]. This is shown in stage II. A highly cross-

linked structure is formed in stage III. The formation of this crosslinked structure leads 

to a further decrease in the dielectric properties. Jow et al made a similar observation 

[89]. It is also observed from figure 4.63 that the temperature at the maximum value of 

dielectric loss factor corresponded to the onset temperature of the exothermic peak.   

 

The dielectric constant, ε′ and dielectric loss factor, ε″, as a function of reaction 

temperature for microwave curing Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 is shown in figure 4.64. Again, the dielectric properties 

increased with temperature to the maximum value and decreased with increasing 

temperature. 

 

I II III 
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Figure 4.64 Plot of dielectric constant and dielectric loss factor as a function of reaction 

temperature for microwave-cured Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 at a heating rate of 5 K min-1 
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Figure 4.65 A plot of dielectric loss factor and reaction exotherm as a function of 

reaction temperature for microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 1.0 at a heating rate of 5 K min-1 

 

I II III 
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Figure 4.66 Plot of dielectric constant and dielectric loss factor as a function of reaction 

temperature for microwave-cured Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.8 at a heating rate of 5 K min-1 
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Figure 4.67 A plot of dielectric loss factor and reaction exotherm as a function of 

reaction temperature for microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 1.1 at a heating rate of 5 K min-1 

 

In accordance to the dielectric loss factor, just as in the microwave curing of Araldite 

LY 5052 / 4 4’ DDS epoxy system, the microwave curing of Araldite DLS 772 / 4 

4’DDS epoxy systems can be divided into three stages. At the temperature which curing 

of the epoxy system began, the dielectric loss factor started to deplete. As explained 

I II III 
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above, this decrease is attributed to the formation of a cross-linked network which 

occurs as a result of the decrease in the number of functional polar groups as well as a 

decrease in molecular mobility [57] 

 

The dielectric properties measurements of the epoxy systems at different heating rates 

are shown in figure 4.68 – 4.71 All the results show a similar trend whereby there was 

an increase in the dielectric properties as the temperature increased up to a maximum, 

and as the temperature kept increasing, the dielectric properties started to decrease. 
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Figure 4.68 Dielectric constant E’ and Dielectric loss factor E” as a function of reaction 

temperature for microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 at different heating rates.  
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Figure 4.69   Dielectric constant E’ and Dielectric loss factor E” as a function of 

reaction temperature for microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 1.0 at different heating rates.  

 

2K min -1

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

0 100 200 300 400
Temperature ( 0C)

E
'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
"

E'

E"

5K min -1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300
Temperature ( 0C)

 E
'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 E
"

E'

E"

 

 

8K min -1

1.4

1.6

1.8

2

2.2

2.4

2.6

0 100 200 300
Temperature ( 0C)

E
'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
"

E'

E"

15K min -1

1.4

1.6

1.8

2

2.2

2.4

2.6

0 100 200 300
Temperature ( 0C)

E
'

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

E
"

E'

E"

 

 

15K min -1

1.8
1.85
1.9

1.95

2
2.05

2.1
2.15

2.2
2.25

0 100 200 300

Temperature ( 0C)

E
'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
"

E'

E"



 225 

Figure 4.70 Dielectric constant E’ and Dielectric loss factor E” as a function of reaction 

temperature for microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.8 at different heating rates. 
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Figure 4.71 Dielectric constant E’ and dielectric loss factor E” as a function of reaction 

temperature for microwave cured Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.1 at different heating rates. 

                            

 4.10   Isothermal Curing 

4.11 Isothermal Conventional Curing 
 

The DSC machine was used to cure samples of both epoxy systems at a heating rate of 

100 K min-1 up to temperatures of 170, 180, 190 and 200 oC. The samples were held at 

these temperatures for 300, 240, 200 and 200 minutes respectively. At the end of each 

cure cycle, another DSC scan was carried out on the material at a heating rate of 10K 

min-1 to 350 oC. The results of the dynamic DSC scan showed a Tg curve and no 

exotherm. This was taken as an indication that the sample fully cured under the above 

isothermal curing conditions. 
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Figure 4.72 DSC thermograms of conventional isothermal cure (left) and subsequent 

DSC run to test for exotherm for Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85. 
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Figure 4.73 Typical DSC thermograms for Araldite LY 5052 / 4 4’ DDS epoxy system 

system with an amine / epoxy ratio of 0.85 at different heating rates using conventional 

DSC. 
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Figure 4.74 Reaction rates for isothermal cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system system with an amine / epoxy ratio of 0.85 using conventional heating. 
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Figure 4.75 Fractional conversion for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system  with an amine / epoxy ratio of 0.85 using conventional heating at 

different isothermal temperatures. 

 

Figure 4.74 shows the reaction rate increasing as the reaction temperature increases. The 

increase in the reaction temperature causes a distinct distribution of molecular speeds 

and energies followed by an increase in the average value of energy from the reactant 

molecules. As a result, a larger number of molecules have enough activation energy to 

surpass the activation barrier, and this leads to an increase in the reaction rate [16, 90, 

91]. 

 

A plot of fractional conversion against reaction rate for all the heating rates is shown in 

the figure 4.76 below. Typical changes are found to occur in the reaction rate over the 

whole range of conversion. For isothermal cure, the reaction rate increases and it 

quickly reaches a maximum at the early stages of the reaction, in the fractional 

conversion range of 0 – 0.15. Beyond this range, the reaction rate started to decrease. 

This decrease is ascribed to the increase in the viscosity of the reaction medium as the 

curing material gelled [57]. There was a significant reduction in molecular mobility of 

the reactants at this stage. The reaction became diffusion controlled, and it eventually 

stopped. It was also observed that the reaction rate increased as the curing temperature 

increased. Also, at higher temperatures, the time taken to attain full cure becomes lower. 
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Figure 4.76 Plot of Reaction rate against Fractional Conversion for the curing reaction 

of Araldite LY 5052 / 4 4’ DDS epoxy system system with an amine / epoxy ratio of 

0.85 at different isothermal temperatures. 

 

Typical DSC thermograms for the cure of Araldite LY 5052 / 4 4’ DDS epoxy system 

with amine / epoxy ratio of 1.0 are shown in figure 4.81 below.   
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Figure 4.77 DSC thermograms for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 obtained from conventional DSC at 

different heating rates. 
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Figure 4.78 Fractional conversion for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 at different heating rates using 

conventional heating. 
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Figure 4.79 Reaction rates for isothermal cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0 at different heating rates using conventional 

heating. 
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Figure 4.80   Rate of reaction against fractional conversion for the curing reaction of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0  at 

different heating rates. 

 

19

19.5

20

20.5

21

21.5

22

22.5

23

0 50 100 150 200 250 300 350

Time (Mins)

H
ea

t F
lo

w
 E

nd
o 

U
p 

(m
W

)

170˚C

180˚C

190˚C

200˚C

 

 

Figure 4.81 DSC thermograms for Araldite DLS 772 / 4 4’ DDS epoxy system system 

with an amine / epoxy ratio of 0.8 obtained from conventional DSC at a range of 

isothermal temperatures. 
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Figure 4.82 Fractional conversion for isothermal cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8 at different isothermal temperatures 

using conventional heating. 
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Figure 4.83 Reaction rates for isothermal cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8 at different isothermal temperatures using 

conventional heating. 
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Figure 4.84 Rate of reaction against fractional conversion for the isothermal curing 

reaction of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8 at different heating rates. 
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Figure 4.85 DSC thermograms for Araldite DLS 772 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.1 obtained from conventional DSC at different isothermal 

temperatures. 
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Figure 4.86 Fractional conversion for isothermal cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 at different isothermal temperatures 

using conventional heating. 
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Figure 4.87 Reaction rates for isothermal cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.1 at different isothermal temperatures using 

conventional heating. 
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Figure 4.88 Rate of reaction against fractional conversion for the isothermal curing 

reaction of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.1 at different isothermal temperatures. 

 

The results from the reaction rate plots and plots of reaction rates against fractional 

conversion for  Araldite LY 5052 / 4 4’ DDS epoxy system  system with an amine / 

epoxy ratio of 1.0 and Araldite DLS 772 / 4 4’ DDS epoxy system system with an 

amine / epoxy ratios of 0.8 and 1.1 all follow a similar path. Higher reaction rates are 

observed at higher cure temperatures. For all the curing temperatures, the reaction rates 

reached a maximum value at the start of the reaction (0-.15), after which the reaction 

rate began to decrease.  

4.11 Isothermal Microwave Curing 
 

A microwave-heated calorimeter was used to cure the samples with microwave heating 

using the same isothermal conditions as for conventional heating.  

 

After each isothermal cure, the pieces of the cured sample were extracted from the glass 

tube and a DSC run was carried on the samples in order to ensure they were fully cured. 

The figures below show the microwave thermograms on the left side, and the 

corresponding Tg run on the right side for each epoxy system.  
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Figure 4.89 Isothermal thermograms of microwave isothermal cure (left) and 

subsequent DSC run 10 K min-1 from 30 to 300 oC  (right) to test for exotherm for 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine epoxy ratio of 0.85 

 

The temperature dependence of the fractional conversion and the reaction rates at 

different heating rates are shown in figures 4.99 and 4.100 below. 
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Figure 4.90 Fractional conversion of dynamic cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 at different isothermal temperatures 

using microwave heating. 
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Figure 4.91 Plot of Reaction rates against temperature for dynamic cure of Araldite LY 

5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85  at different 

isothermal temperatures using microwave heating. 
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Figure 4.92 Plot of reaction rates against fractional conversion for the microwave cure 

reaction of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85 at different isothermal temperatures. 
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Figure 4.92 shows a plot of fractional conversion against reaction rate for all the 

isothermal temperatures. Typical changes are found to occur in the reaction rate over the 

whole range of conversion. Just as in conventional curing, the reaction rate increases 

and it quickly reaches a maximum at the early stages of the reaction within the 

fractional conversion range of 0 – 0.15 after which the reaction rate started to decrease. 

This decrease is ascribed to the increase in the viscosity of the reaction medium as the 

curing material gelled [57]. The reaction rate increased as the curing temperature 

increased.. The curing times are lower at higher temperatures. 

 

Figures 4.93 and 4.94 shows the plots of the temperature dependence of the fractional 

conversion and the reaction rates of cured microwave cured samples of Araldite LY 

5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0. 
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Figure 4.93 Fractional conversion for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 at different isothermal temperatures 

using microwave heating. 
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Figure 4.94 Reaction rates for isothermal cure of Araldite LY 5052 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 1.0 at different isothermal temperatures using 

microwave heating. 
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Figure 4.95 Plot of reaction rates against fractional conversion for the microwave cure 

reaction of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.0 at different isothermal temperatures. 
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Figure 4.96 Fractional conversion for isothermal cure of 0.8M amine / epoxy ratio for 

Araldite DLS 772 / 4 4’ DDS epoxy system at different isothermal temperatures using 

microwave heating. 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 50 100 150 200 250 300

Time (mins)

R
ea

ct
io

n 
R

at
e 

(s
-1

)

170˚C

180˚C

190˚C

200˚C

 

 

Figure 4.97 Reaction rates for dynamic cure of Araldite DLS 772 / 4 4’ DDS epoxy 

system with an amine / epoxy ratio of 0.8 at different isothermal temperatures using 

microwave heating. 
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Figure 4.98 Plot of reaction rates against fractional conversion for the microwave cure 

reaction of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8 at different isothermal temperatures. 

 

Plots of the time dependence of fractional conversion and reaction rate for the 

microwave and conventional curing of Araldite LY 5052 / 4 4 DDS epoxy system are 

shown in the figures 4.99 and 4.100 below 
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Figure 4.99 Time dependence of the fractional conversion (right) and the reaction rate 

(right) for Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85 under conventional and microwave curing, at different isothermal temperatures. 
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Figure 4.100 Time dependence of the fractional conversion (left), and reaction  rate 

(right) for the curing of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 1.0 under conventional and microwave curing, at different isothermal 

temperatures.  

 

Figures 4.99 and 4.100 show the comparison of the time dependence of the fractional 

conversion and the reaction rates at different heating rates for both conventional and 

microwave cured Araldite LY 5052 / 4 4’ DDS epoxy system. The microwave heated 

samples had a higher peak rate of reaction than the conventionally cured samples. When 

compared to the conventionally cured samples, there was a significant increase in the 

reaction rate of the microwave cured samples. For all the heating rates, higher reaction 

rates were observed in microwave cured samples.  

 

As explained earlier during the dynamic curing of both epoxy systems, These 

differences between the conventional and microwave cured systems are all as a result of 

an improved efficiency in the  transfer of energy for the microwave heating because 

microwave heating involves a direct interaction with the molecules with the 

electromagnetic field causing heat to be generated internally throughout the volume of 

the material [26], unlike conventional heating where energy is transferred from the 

surface of the material into the material via conduction or convection. Polymer 

molecules are heated in the microwave field directly as a result of the relaxation of the 

dipole polarization along the electromagnetic field. While conventional heating requires 

the entire molecule to first be heated, Microwave heating enable the reactive polar 

molecules to selectively absorb the microwave, and this enhances the reaction [26]. The 
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higher fractional conversion for the microwave cured samples can be as a result of an 

increase in the reactant mobility after gelation. This is as a result of the induced 

polarization of the polymer and monomer molecules along the applied electromagnetic 

field [13], enabling more reactants to be consumed to form a more rigid network.  

4.12 Modelling of cure kinetics 
 

The reaction rate profile obtained from both the conventional and microwave isothermal 

cured samples were fitted to a kinetic model (Equation 2.24). The figures 4.101 to 4.104 

below compares the reaction rate profile of both conventionally cured (Left) and 

microwave cured (Right) Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 0.85 obtained experimentally and the reaction rate profile predicted by 

the autocatalytic model. 
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Figure 4.101 Comparison between time dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85 on the left, and microwave heating on the right. 
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Figure 4.102 Comparison between time dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.0 on the left, and microwave heating on the right. 
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Figure 4.103 Comparison between time dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8 on the left, and microwave heating on the right.   
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Figure 4.104 Comparison between time dependence of experimental reaction rate 

curves and the curves predicted by means of autocatalytic adjustment for conventional 

heating of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.1 on the left, and microwave heating on the right. 

 

From the figures 4.101 to 4.104 above, we observe that the result of the mathematical 

simulations compare well with experimental results. There are good agreements 

between the experimental and the model results, proving that the autocatalytic model is 

able to predict the curing path of the epoxy system. 

The kinetic parameters obtained from fitting the autocatalytic model with the 

experimental reaction rate are tabulated in tables 4.26 to 4.32 below.  

 

Table 4.26 Kinetic parameters for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine epoxy ratio of 0.85 using conventional heating. 

 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.001592 0.0125 0.127 0.867 0.381 1.248 

180 0.001849 0.0147 0.125 0.723 0.413 1.136 

190 0.003665 0.03151 0.116 1.09 0.805 1.895 
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200 0.00659 0.0658 0.100 1.227 0.656 1.883 

 

Table 4.27 Kinetic parameters for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.85 using microwave heating. 

 
 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.0014 0.00607 0.096 0.575 0.933 1.508 

180 0.00367 0.0137 0.108 0.701 0.863 1.564 

190 0.00445 0.041 0.096 1.865 0.661 2.526 

200 0.00553 0.083 0.066 1.049 1.03 2.079 

 
 

Table 4.28 Kinetic parameters for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 using conventional heating. 

 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.001213 0.0160 0.1011 1.06 0.465 1.525 

180 0.00255 0.0289 0.088 1.17 0.484 1.654 

190 0.00328 0.0305 0.107 1.11 0.645 1.755 

200 0.00595 0.0578 0.103 1.00 0.814 1.814 

 
 
Table 4.29 Kinetic parameters for isothermal cure of Araldite LY 5052 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.0 using microwave heating. 

 
 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.04097 0.043 0.09527 0.775 0.895 1.67 
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180 0.445 0.061 0.0729 1.312 0.741 2.053 

190 0.0516 0.0715 0.07216 0.979 0.887 1.363 

200 0.072 0.0892 0.0876 1.121 0.955 2.076 

 
 
Table 4.30 Kinetic parameters for isothermal cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 0.8 using microwave heating. 

 
 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.023705 0.0317 0.0747 1.025 0.673 1.698 

180 0.03848 0.0526 0.073 1.294 0.589 1.883 

190 0.04185 0.0617 0.0678 1.163 0.769 1.932 

200 0.00595 0.0779 0.0763 0.924 0.995 1.919 

 
 
Table 4.31 Kinetic parameters for isothermal cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 using conventional heating 

 
 

Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.002053 0.0153 0.1341 1.036 0.677 1.713 

180 0.003548 0.0376 0.09436 0.853 0.822 1.675 

190 0.007876 0.0883 0.0891 0.678 0.759 1.437 

200 0.009325 0.09339 0.09985 1.074 0.488 1.562 

 
. 

Table 4.32 Kinetic parameters for isothermal cure of Araldite DLS 772 / 4 4’ DDS 

epoxy system with an amine / epoxy ratio of 1.1 using microwave heating. 
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Temperature 

(oC) 

K1 K2 k=
2

1

K

K
 

m n m+n 

170 0.00436 0.0441 0.0988 0.724 0.769 1.493 

180 0.005678 0.0592 0.082 0.914 0.883 1.797 

190 0.00854 0.0986 0.086 0.697 0.913 1.61 

200 0.00946 0.124 0.0763 0.973 0.828 1.801 

 

 
Tables 4.26 to 4.32 display the kinetic parameters obtained for the isothermal curing of 

both the microwave and the conventional curing of Araldite LY 5052 / 4 4’ DDS and 

Araldite DLS 772 / 4 4’DDS epoxy systems. It is observed that K1 and K2 values 

increased with increasing temperature. The absolute values of K1 and K2 are greater in 

microwave cure than the values of K1 and K2 obtained from conventional cure. For all 

the systems, the K2 values are much larger than the K1 values. The ratio of K1 / K2 was 

larger in conventional curing than in microwave curing. Miyalovic et al attributed the 

lower values of K1 / K2 in the microwave cure to the enhancement of the catalytic 

reaction of the epoxy system more than the non catalytic reaction by microwave 

radiation [28]. This phenomenon was explained by the high activity of the [OH] group 

in the microwave field. 

The reaction orders m and n are independent of temperature for both conventional and 

microwave heating. However, for all the epoxy systems, the microwave cured samples 

have a higher reaction order (m+n) than conventionally cured samples. This means that 

the microwave cured samples have a higher reaction rate [16] 

The values of k = K1 / K2 for both conventional and microwave cured samples were less 

than unity for both Araldite LY 5052 / 4 4 DDS and Araldite DLS 772 / 4 4’ DDS 

epoxy systems. This is an indication that both systems were characterized by a negative 

substitution effect. There was a higher rate of reaction of the primary amine with the 

epoxy group compared to the reaction of the secondary amine with the epoxy group [4]. 

 

Plots of rate constant (K1 and K2) against temperature for both microwave and 

conventional curing of both epoxy systems are displayed in figures 4.105 to 4.112. 

Activation energy values obtained are tabulated in table 4.33 
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Figure 4.105 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 under 

conventional curing. 
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Figure 4.106 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 under 

microwave curing. 
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Figure 4.107 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 under 

conventional curing. 
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Figure 4.108 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 under 

microwave curing. 
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Figure 4.109 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 under 

conventional curing. 
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Figure 4.110 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 under 

microwave curing. 
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Figure 4.111 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite DLS 772 / 4 4’ DDS epoxy system with amine / epoxy ratio of 1.1 under 

conventional curing. 
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Figure 4.112 Rate constants of curing reaction against temperature for isothermal cure 

of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85 under 

microwave curing. 

 

Table 4.33 K1 and K2 activation energy values obtained from figures for both 

conventional and microwave heating for both Araldite LY 5052 / 4 4’ DDS and Araldite 

DLS 772 / 4 4’ DDS epoxy systems. 
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Conventional Heating Microwave Heating Epoxy System 

K1  Ea (KJ 

mol-1) 

K2 Ea (KJ 

mol-1) 

K1  Ea (KJ 

mol-1) 

K2 Ea (KJ 

/mol-1) 

Araldite LY 

5052 / 4 4’ 

DDS with A/E 

ratio of 0.85  

85.8 99.6 60.9 91.8 

Araldite  LY 

5052 / 4 4’ 

DDS with A/E 

ratio of 1.0 

95.9 77.1 35.0 46.1 

Araldite DLS 

772 / 4 4’DDS 

with A/E ratio 

of 0.8 

71.3 101.2 49.6 69.7 

Araldite DLS 

772 / 4 4’DDS 

with A/E ratio 

of 1.1 

93.2 104.8 47.0 76.6 

 

 

4.13 Summary 

 

The results of the experiments show that for both isothermal and dynamic curing, there 

was a significant increase in the fractional conversion of the microwave cured samples 

compared to the conventionally cured samples. The curing reactions for the microwave 

cured samples took place over a smaller temperature range; and Higher reaction rates 

were observed in the samples cured using microwave heating. 

 

During the non-isothermal curing of the samples, the microwave cured samples of 

Araldite LY 5052 / 4 4’ DDS epoxy system had higher activation energy than the 

conventionally cured samples , while for Araldite DLS 772 / 4 4’ DDS epoxy system, 
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the microwave cured samples had a lower activation energy than the conventionally 

cured samples. 

 

During the isothermal curing, higher K1 and K2 kinetic parameters were observed in 

microwave cured samples. A lower K1 / K2 ratio was observed in microwave curing 

than in conventional curing. This is attributed to the enhancement of the catalytic 

reaction over the non-catalytic reaction by the microwave radiation which occurs as a 

result of the high activity of the [OH] group. 
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CHAPTER FIVE 

5.0 FOURIER TRANSFORM INFRARED 
SPECTROSCOPY 

5.1 Introduction 
 

Fourier Transform Infrared Spectroscopy has been widely used to study crosslinked 

systems. It can provide detailed information on the chemical structure of the molecules. 

Fourier Transform Infrared spectroscopy also provides a quick and accurate means of 

determining the extent of conversion. For an epoxy system, the use of Fourier 

Transform Infrared Spectroscopy has mainly been limited to the investigation of the 

disappearance of epoxy and amine groups [92-95]. The reason for this limitation is 

because of several factors such as the complexity of the reactions, the difficulties 

associated with the characterization of the products during network formation, and the 

superimposition of the characteristic bands which make peak identification very 

difficult [1-4]. 

5.2 Araldite LY 5052 / 4 4’ DDS and Araldite DLS 77 2 / 4 4 epoxy 
systems. 
 

For this research, FT-IR was used to study the changes in the epoxy peaks which occur 

when the reaction took place. The spectrum of an uncured mixture of Araldite LY 5052 

/ 4 4 ‘DDS epoxy system with an amine / epoxy ratio of 0.85 is shown in figure 5.1 

below. 
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Figure 5.1 FT-IR Spectra of uncured Araldite LY 5052 / 4 4 ‘ DDS epoxy system with 

an amine / epoxy ratio of 0.85. 
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Figure 5.2 Expanded view of FT-IR Spectra of uncured 0.85M amine / epoxy ratio for 

Araldite LY 5052 / 4 4 ‘ DDS epoxy system . 

 

The spectrum in figure 5.2 shows a noticeable oxirane ring (epoxy) peak at 916 cm-1. 

This is the asymmetric ring stretching band of the epoxy ring [70, 96-98]. The spectrum 

also shows the symmetric stretching of the epoxy ring at 1250cm-1. The bands at 

1510cm-1 and 833 cm-1 are assigned to the p-phenylene groups [70, 97]. The aliphatic 

stretching vibration of –CH2- groups is shown as a peak at 2920cm-1 [70].The stretching 

vibration of the primary amino group (-NH2) which is from the hardener (4 4’ DDS) 

shows an absorption peak at 1610cm-1 [70].The peaks at 1250cm-1 and 1150 cm-1 are 

the strong asymmetric and symmetric SO2 stretching [70]. 

 

Figures 5.3 to 5.6 show the overlaid FT-IR spectra of Araldite LY 5052 / 4 4’ DDS and 

Araldite DLS 772 / 4 4’ DDS epoxy systems after conventional and microwave heating 

at 180 oC for 240 minutes  
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Figure 5.3 Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an amine / 

epoxy ratio of 0.85 after conventional and microwave heating at 180oC for 240 minutes. 
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Figure 5.4 Expanded view of Overlaid FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS 

with an amine / epoxy ratio of 0.85 after conventional and microwave heating at 180 oC 

for 240 minutes 
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Figure 5.5 Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / 

epoxy ratio of 0.8 after conventional and microwave heating at 180 oC for 240 minutes. 
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Figure 5.6 Expanded view of Overlaid FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS 

with an amine / epoxy ratio of 0.8 after conventional and microwave heating at 180 oC 

for 240 minutes. 

 

For both epoxy systems (Araldite LY 5052 and Araldite DLS 772 / 4 4’ DDS), the 

spectra of the specimen after they had been cured at 180oC for 240 minutes was 

noticeably different from the spectra of the uncured specimen. The prominent features 
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that occur during polymerization are the decreasing and almost complete disappearance 

of the epoxy ring at 915 cm-1 and 862 cm-1[96, 98]. The N-H stretch band at 1610cm-1 

also decreases in size. The decrease in the epoxy and the amine bonds is an indication of 

the consumption of the epoxy and the amine bands during the reaction. The curing 

reaction occurs by the reaction of the end epoxy groups with the hardener. The epoxy 

rings open out and the molecules become linked in a three dimensional network. New 

absorptions were formed around 3400cm-1. This was as a result of the formation of the 

secondary amine and the hydroxyl groups during cure. The bands at 833 and 1510 cm-1 

were unaffected during cure and thus remained constant [96-98]. The almost complete 

disappearance of the epoxy and the amine peaks at the end of the spectra showed that 

most of the epoxy and the amine group reacted during the curing process. This is a 

pointer to the argument that a crosslinked network was formed. 

 

Several samples of Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio of 0.85 

and Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 were prepared and 

were cured using both a DSC and a microwave heated cavity at 180 oC. At intervals of 

30 minutes up to 240 minutes, a specimen was removed. The reaction was quickly 

stopped by dipping it into liquid nitrogen for about ten minutes. An infrared spectrum 

was then taken.  

 

The overlaid spectra for both the conventionally cured and microwave cured samples of 

both epoxy systems at different times at 180 oC are shown in figures 5.7 to 5.12 below. 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

500.00700.00900.001100.001300.001500.001700.001900.00

Wavelength (cm -1)

A
bs

or
ba

nc
e

30mins

60 mins

90 mins

120 mins

150 mins

180 mins

210mins

240 mins

 

1610 1510 916 



 267 

 

Figure 5.7 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS an 

amine / epoxy ratio of 0.85 
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Figure 5.8 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS an 

amine / epoxy ratio of 0.85 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

500.00700.00900.001100.001300.001500.001700.001900.00

Wavelength cm -1

A
bs

or
ba

nc
e

30 mins

60 mins

90 mins

120 mins

150 mins

180 mins

210 mins

240 mins

 

 

Figure 5.9 Overlaid spectra for conventionally cured Araldite LY 5052 / 4 4’ DDS an 

amine / epoxy ratio of 1.0 
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Figure 5.10 Overlaid spectra for microwave cured Araldite LY 5052 / 4 4’ DDS an 

amine / epoxy ratio of 1.0 
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Figure 5.11 Overlaid spectra for conventional cured Araldite DLS 772 / 4 4’ DDS an 

amine / epoxy ratio of 0.8. 
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Figure 5.12 Overlaid spectra for microwave cured Araldite DLS 772 / 4 4’ DDS an 

amine / epoxy ratio of 0.8. 

 

The epoxide bands can be used to estimate the degrees of polymerization. The rate of 

polymerization can be estimated by following the loss of epoxide as the isothermal cure 

time increases.  In order to estimate the changes in the epoxide concentrations during 

polymerization, the absorbance at 916 cm-1 is divided by the absorbance at 1510 cm-1 

which was used as an internal standard [92, 99, 100]. The infrared spectra data used was 

in absorbance because as stated in Beer’s Law, the absorbance is linearly proportional to 

concentration [101]. 

 

A comparison of polymerization rates is shown in figure 6.13 for conventional and 

microwave curing of Araldite LY 5052 / 4 4 DDS an amine/epoxy ratio of 0.8 at 

different times at an isothermal temperature of 180 oC. 
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Figure 5.13 Epoxide absorbance normalised against the absorbance for phenyl for 

Araldite LY 5052 /4 4’DDS an amine / epoxy ratio of 0.85 at different times at 180 oC 

during conventional and microwave heating. 

 

It can be observed that there was an increase in the consumption of epoxide as the 

reaction time proceeded. Also, the rate of consumption of the epoxide was much faster 

in the microwave curing than in conventional curing at each measured time. Overall, 

there was a higher consumption of epoxy in the microwave curing than in the 

conventional curing. This enhancement in polymerization in the microwave region is 

very much anticipated because microwave heating directly heats the polymer molecules 

as a result of the relaxation of the polarized polymer dipoles along the electric field [9]. 

This allows more epoxy to be reacted with the amine in the curing reaction. 

 

Epoxide absorbance ratios for Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio 

of 1.0 and Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 epoxy 

systems are shown 5.14 – 5.16 below. The results all show that a higher rate of epoxy 

was consumed in microwave heating than in conventional heating, and a higher rate of 

polymerization for microwave. As explained, this is because of the ability of microwave 

energy to selectively heat the localised hotspot in a molecule unlike the conventional 

heating which requires the entire material to be heated first. 
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Figure 5.14 Epoxide absorbance normalised against the absorbance for phenyl for 

Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 1.0 at different times at 180 
oC during conventional and microwave heating. 
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Figure 5.15 Epoxide absorbance normalised against the absorbance for phenyl for 

Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 0.8 at different times at 180 
oC during conventional and microwave heating. 
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Figure 5.16 Epoxide absorbance normalised against the absorbance for phenyl for 

Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 1.1 at different times at 180 
oC during conventional and microwave heating. 

 

The amine bands can be used to estimate the degrees of polymerization. The loss of the 

amine band can also be used to follow the rate of polymerization as the isothermal cure 

time increases. In order to estimate the changes in the amine concentrations during 

polymerization, the absorbance at 1610 cm-1 is divided by the internal standard, which 

is the absorbance at 1510 cm-1 [92, 99, 100].  

 

A comparison of polymerization rates using the amine band is shown in figure 5.17 for 

conventional and microwave curing of Araldite LY 5052 / 4 4 DDS an amine / epoxy 

ratio of 0.85 at different times at an isothermal temperature of 180 oC. 
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Figure 5.17 Amine absorbance normalised against the absorbance for phenyl for 

Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 0.85 at different times at 

180 oC during conventional and microwave heating. 

 

It can be observed from figure 5.17 that the rate of consumption of the amine was much 

faster in the microwave curing than in conventional curing at each measured time. A 

higher consumption of amine in the microwave curing than in the conventional curing 

was observed. As explained earlier, this enhancement in polymerization in the 

microwave region is very much anticipated because microwave heating directly heats 

the polymer molecules as a result of the relaxation of the polarized polymer dipoles 

along the electric field [26], allowing more amine to be consumed during the curing 

reaction. 

 

The amine absorbance ratios Araldite LY 5052 / 4 4’ DDS with an amine / epoxy ratio 

of 1.0 and Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8 are shown in figures 5.18 to 5.20 below. As with the figures 5.14 to 5.16, the results 

all show that a higher rate of amine was consumed in microwave heating than in 

conventional heating, and a higher rate of polymerization for microwave. This is 

because of the ability of microwave energy to selectively heat the localised hotspot in a 

molecule unlike the conventional heating which requires the entire material to be heated 

first. 
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Figure 5.18 Amine absorbance normalised against the absorbance for phenyl for 

Araldite LY 5052 / 4 4’DDS with an amine / epoxy ratio of 1.0 at different times at 180 
oC during conventional and microwave heating. 
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Figure 5.19 Amine absorbance normalised against the absorbance for phenyl for 

Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 0.8 at different times at 180 
oC during conventional and microwave heating. 
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Figure 5.20 Amine absorbance normalised against the absorbance for phenyl for 

Araldite DLS 772 / 4 4’DDS with an amine / epoxy ratio of 1.1 at different times at 180 
oC during conventional and microwave heating. 

 

5. 3 Summary 

The similarity of the infrared spectra for both microwave and conventional curing of 

both epoxy systems is an indication that the curing reactions follows the same reaction 

pathway. For both Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS 

epoxy systems, the rate of consumption of the epoxy and amine groups was higher 

during the microwave curing reactions. 
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                                                 CHAPTER SIX 

6.0 EFFECT OF CURING METHOD ON PHYSICAL AND 
MECHANICAL PROPERTIES 

6.1 Introduction 
 

During the curing of thermoset polymers, low molecular weight liquid monomers are 

transformed into a three-dimensional thermoset network by the means of chemical 

reactions. Hence, the structure of the network formed is affected by the way the resin 

reacts during polymerisation. The way the resin reacts during polymerisation also 

influences the physical and the mechanical properties of the polymer produced. The 

mechanical behaviour of the polymer materials in particular is important for the 

practical applications of these materials. The mechanical properties usually dictates 

when a given polymer material can be used for a particular purpose. Thus, the study 

these mechanical properties are vital so as to predict the performance of the polymer. 

Different network structures are anticipated for samples cured using conventional and 

microwave heating. This is because conventional and microwave samples are heated in 

different ways. 

6.2 Effect of curing on Polymer density 
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Figure 6.0 Fully cured sample of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 with microwave heating at 180 oC for 240 minutes. 

 

The density gives us an indication of how tightly or loosely packed the molecules are in 

the network structure. The difference in the network packing between the samples cured 

using conventional and microwave heating can be investigated through this method. A 

pycnometer was used to measure the density of the fully cured samples prepared as 

described in the previous section. Plots of average density as a function of the 

stoichiometric ratio content for the fully cured samples prepared using conventional and 

microwave curing for Araldite LY 5052 and DLS 772 are shown in the figures below. 
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Figure 6.1 Plot of Average Density for conventionally and microwave cured samples of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85. 
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Figure 6.2 Plot of Average Density for conventionally and microwave cured samples of 

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8 
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Figure 6.3 Plot of Average Density for conventionally and microwave cured samples of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 
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Figure 6.4 Plot of Average Density for conventionally and microwave cured samples of 

Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.1. 

 

Table 6.1 Table of abbreviations used for amine / epoxy ratios for both Araldite LY 

5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems. 

 

CA85 Conventional cured  Araldite LY 5052 /4 

4 DDS epoxy system with an amine / 

epoxy ratio of 0.85 

MA85 Microwave cured  Araldite LY 5052 /4 4 

DDS epoxy system an amine / epoxy 

ratio of 0.85  

CA 100 Conventional cured Araldite LY 5052 /4 

4 DDS epoxy system an amine / epoxy 

ratio of 1.0 

MA100 Microwave cured Araldite LY 5052 /4 4 

DDS epoxy system an amine / epoxy 

ratio of 100 

CD80 Conventional cured Araldite DLS 772 /4 

4 DDS epoxy system an amine / epoxy 

ratio of 0.8 

MD80 Microwave cured Araldite DLS 772 /4 4 
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DDS epoxy system an amine / epoxy 

ratio of 0.8 

CD110 Conventional cured Araldite DLS 772 /4 

4 DDS epoxy system an amine / epoxy 

ratio of 1.1 

MD110 Microwave cured Araldite DLS 772 /4 4 

DDS epoxy system an amine / epoxy 

ratio of 1.1 

 

 

Table 6.2 shows the density values of fully cured samples of Araldite LY 5052 / 4 4’ 

DDS and Araldite DLS 772 / 4 4’DDS epoxy systems. 

 

Table 6.2 Density values of fully cured samples of Araldite LY 5052 / 4 4’ DDS and 

Araldite DLS 772 / 4 4’DDS epoxy systems.  

 

 Density 

1 (g cm-

3) 

Density 

2  (g cm-

3) 

Density 

3  (g cm-

3) 

Density 

4  (g cm-

3) 

Density 

5  (g cm-

3) 

Average 

(g cm-3) 

St. Dev 

CA85 1.25 1.29 1.21 1.24 1.26 1.25 0.029 

MA85 1.35 1.35 1.32 1.37 1.34 1.35 0.018 

CA100 1.24 1.29 1.26 1.30 1.31 1.28 0.029 

MA100 1.37 1.42 1.43 1.38 1.43 1.41 0.028 

CD80 1.21 1.17 1.18 1.16 1.22 1.19 0.026 

MD80 1.24 1.25 1.28 1.26 1.29 1.26 0.022 

CD110 1.26 1.20 1.25 1.27 1.28 1.25 0.031 

MD110 1.39 1.35 1.37 1.36 1.38 1.36 0.018 

 

 

From figures 6.1 and 6.2 above, the density of the microwave cured samples for the 

epoxy system Araldite LY 5052 / 4 4’ DDS were slightly higher than the densities of 

the conventionally cured samples, meaning that the molecules are more tightly packed. 

This reveals that the network structure in the microwave-cured samples were more 
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compact than the conventionally cured samples. This suggests a different morphology 

in microwave compared to conventionally prepared samples. A different morphology 

was also observed in the samples of Araldite DLS 772 / 4 4’ DDS epoxy system. The 

densities of the microwave cured samples for Araldite DLS 772 / 4 4’ DDS epoxy 

system with amine / epoxy ratios of 0.8 and 1.1 were higher than the conventionally 

cured samples, indicating a more compact network structure for the microwave cured 

samples.  

6.3 Effect of curing on Dynamic Mechanical Properti es 
 

Dynamic Mechanical Thermal Analysis was used to study the morphology of the 

network structure of the polymer materials. The effect of curing method on the dynamic 

mechanical properties such as the loss tangent (tan δ) and the storage modulus (G’) of 

the microwave and conventionally cured samples was determined and compared. 

Figures 6.5 to 6.8 show the typical DMA results for conventionally and microwave-

cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite LY 5052 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 0.85 prepared using microwave heating at 180oC for 240 mins 
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Figure 6.6 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite LY 5052 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 0.85 prepared using conventional heating at 180oC for 240 

mins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite LY 5052 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 1.0 prepared using conventional heating at 180 oC for 240 

mins. 
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Figure 6.8 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite LY 5052 / 4 4’ DDS epoxy system with 

an amine / epoxy ratio of 1.0 prepared using microwave heating at 180 oC for 240 mins. 

 

From the figures 6.5 to 6.8 above, we notice that the temperature dependence of the 

dynamic mechanic thermal analysis properties for the conventional and microwave 

cured Araldite LY 5052 / 4 4’ DDS epoxy system follow the same course. The shear 

modulus (G’) decreased as the temperature increased. At the point where the storage 

modulus decreased sharply, the damping curve (tan δ) went through a maximum. The 

loss modulus also went through a maximum, but its peak was not as striking as the 

damping curve peak. The peak in the loss modulus curve occurred at a temperature 

slightly lower than the peak in the tan δ curve. 

 

Usually, the tan δ is the most sensitive indicator of the molecular motions which are 

occurring in the material. The tan δ peak is associated with the main glass-to-rubber 

transition. The temperature at the maximum of this tan δ peak is known as the glass 

transition temperature, Tg of the material.  

 

Two peaks were observed in the tan δ curve in both conventional and microwave-cured 

epoxy systems as shown in figures 6.5 to 6.8. A smaller peak was observed below 0 oC 

in all the plots. The presence of two peaks means that a secondary transition occurred in 

the samples during the thermal analysis. The secondary transition is attributed to the 

crankshaft motion of the hydroxyl-ether group [102]. The crankshaft motion is usually 
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found in amine crosslinked systems [102]. The width of the tan δ peaks for all the 

figures appeared to be similar. However, the tan δ peak temperature was found to be 

higher in the microwave cured samples. The difference in the Tg values was attributed 

by Wei et al [56] to the existence of different network structures  and cross-links within 

the conventional and microwave cured samples. The higher Tg in the microwave cured 

samples also suggested that the cross-link density was probably higher in the 

microwave cured samples than conventionally cured samples. 

 

The DMTA plots for conventionally and microwave cured Araldite DLS 772 / 4 4’ 

DDS epoxy systems are shown in the figures below. Just as with the Araldite LY 5052 / 

4 4’ DDS epoxy system, higher tan δ peak temperatures were observed for microwave 

cured samples, also indicating that there are different network structures in the 

microwave and conventionally cured samples. During the analysis, a secondary 

transition occurred in the material as evidenced by the two peaks in the tan δ curve. The 

width of the tan δ peak was also found to be similar for all the materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.8 prepared using microwave heating at 180 oC for 240 

mins. 
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Figure 6.10 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite DLS 772 / 4 4’ DDS epoxy system 

with an amine / epoxy ratio of 0.8 prepared using conventional heating at 180 oC for 

240 mins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite DLS 772 / 4 4’ DDS epoxy system an 

amine / epoxy ratio of 1.1 prepared using microwave heating at 180 oC for 240 mins. 
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Figure 6.12 Dependence of storage modulus (G’), Loss modulus (G”) and tan δ with 

temperature for a fully cured sample of Araldite DLS 772 / 4 4’ DDS epoxy system an 

amine / epoxy ratio of 1.1 prepared using conventional heating at 180 oC for 240 mins. 

 

Table 6.3 Glass transition values for fully cured samples of Araldite LY 5052 / 4 4’ 

DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems at different stoichiometric ratios. 

 

Epoxy 

System 

Tg 1 

(oC) 

Tg 2 

(oC) 

Tg 3 

(oC) 

Tg 4 

(oC) 

Tg 5 

(oC) 

Average 

Tg (oC) 

Standard 

Deviation 

CA85 153.4 148.3 154.6 155.7 154.9 153.4 2.96 

MA85 169.9 170.5 172.8 171.4 172.7 171.46 1.29 

CA100 187.7 188.0 185.4 186.3 188.8 187.24 1.37 

MA100 188.2 190.9 195.2 194.9 193.9 192.6 2.68 

CD80 146.2 143.3 144.5 146.2 143.1 144.6 1.50 

MD80 149.1 151.8 156.4 154.6 155.8 153.5 2.73 

CD110 178.6 179.2 177.5 175.6 172.8 177.7 1.57 

MD110 197.3 194.1 192.3 195.7 197.6 195.4 2.30 
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 Figure 6.13 Bar chart of Average Tg values of conventional and microwave cured 

samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.85. 
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Figure 6.14 Bar chart of Average Tg values of conventional and microwave cured 

samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.0. 
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Figure 6.15 Bar chart of Average Tg values of conventional and microwave cured 

samples of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

0.8. 
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Figure 6.16 Bar chart of Average Tg values of conventional and microwave cured 

samples of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 

1.1. 
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6.4 Cross- Link density 
 

It is necessary to determine the cross-link density of the fully cured samples. This will 

enable us to investigate the variations in the structure of the materials produced by 

microwave and conventional heating. 

 

The Cross-link density (ν) is defined as the number of moles of cross-linked chains per 

cubic centimetre of polymer [109]. The cross-link density can be determined by 

modulus measurements in the rubbery plateau. The relationship between rubbery 

plateau modulus and the crosslink density is given by [147] 

 

                               ν=
RT

G '

                                                  7.1 

 

G’ is the shear storage modulus which is obtained in the rubbery plateau. R is the gas 

constant, while T is the temperature in Kelvin which corresponds to the storage 

modulus value. The shear storage modulus is defined in the rubbery region at the 

temperature of Tg + 50 [103] 

 

Bar chart plots of the cross-link density for both conventionally and microwave cured 

samples for both epoxy systems are shown in the figures below. The overall results 

reveal that microwave cured samples have a higher cross-link density than 

conventionally cured samples. This is an indication of a more compact network 

structure within the microwave cured samples. 
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Figure 6.17 Plot of Bar chart of cross-link density values of conventional and 

microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 0.85. 
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Figure 6.18 Plot of Bar chart of cross-link density values of conventional and 

microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 1.0. 
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Figure 6.19 Plot of Bar chart of cross-link density values of conventional and 

microwave cured samples of 0.8M amine / epoxy ratio of Araldite DLS 772 / 4 4’ DDS 

epoxy system. 
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Figure 6.20 Plot of Bar chart of cross-link density values of conventional and 

microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine 

/ epoxy system of 1.1. 

 

Table 6.4 Cross-link density values for fully cured microwave and conventionally cured 

samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy 

systems. 
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 Value 1 Value 2 Value 3 Value 4 Value 5 Average St. Dev 

CA85 9.54 9.31 9.63 9.86 9.71 9.61 0.20 

MA85 10.24 10.34 10.13 11.35 10.67 10.55 0.49 

CA100 11.48 11.32 11.56 12.57 13.68 12.12 0.89 

MA100 17.44 15.67 16.68 17.98 14.98 16.55 1.23 

CD80 3.82 3.76 3.56 3.87 3.09 3.62 0.32 

MD80 4.75 4.56 4.44 5.08 4.86 4.74 0.25 

CA110 3.89 4.56 3.79 3.54 4.01 3.96 0.38 

MA110 4.27 5.31 4.21 4.63 4.50 4.58 0.44 

 

6.5 Average molecular weight between cross-links 
 

The difference in the network structure formed by conventional and microwave heating 

can be investigated from the average molecular weight between cross-links (Mc) of each 

sample. As the cross-link density represents the ‘tightness’ of the network structure, the 

average molecular weight between cross-links characterise the ‘looseness’ of the 

network. 

The average molecular weight between cross-links (Mc) is defined as the total sample 

weight that contains one mole of effective network chains.  The determination of Mc is 

based on the simple rubber elasticity theory and can be calculated from [104, 105]; 

 

G

RT
M c ′

= ρ
     7.2                    

 

where ρ is the density, R is the gas constant, T is the temperature in Kelvin and G′ is the 

shear storage modulus in the rubbery region.  The unit of Mc is the same as for 

molecular weight, g/mol.   

 

Comparison of Equations 6.1 and 6.2 shows that Mc is the proportional to cross-link 

density and can be expressed as follows. 
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ν
ρ=cM        7.3           

Nielsen, however, claimed the equations of the kinetic theory of rubber predict moduli 

far too small for extremely highly cross-linked materials [104].  He has proposed an 

empirical equation that agrees much better than equation 7.2 with the experimental 

results at very high degrees of cross-linking. 

 

     
cM

G
ρ293

0.7log +=′   7.4          

The average molecular weight between cross-links for conventionally and microwave-

cured samples were calculated using equations 7.3 and 7.4. The results both suggest that 

the Mc value of conventionally cured samples was generally higher than of microwave-

cured samples. Bar chart plots of the average molecular weight between cross-links of 

microwave and conventionally cured samples of both epoxy systems are shown in 

figures 7.21 to 7.24. These results suggest that conventionally cured samples had larger 

‘free volume’ between polymer chains. This result is consistent with the lower density 

observed in the conventionally cured samples.  
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Figure 6.21 Plot of average molecular weight between cross-links (Mc) of conventional 

and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 using Nielsen’s equation. 
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Figure 6.22 Plot of average molecular weight between cross-links (Mc) of conventional 

and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.85 using Nielsen’s equation. 
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Figure 6.23 Plot of average molecular weight between cross-links (Mc) of conventional 

and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.0 using Nielsen’s equation. 
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Figure 6.24 Plot of average molecular weight between cross-links (Mc) of conventional 

and microwave cured samples of Araldite DLS 772  / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 0.8 using Nielsen’s equation. 
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Figure 6.25 Plot of average molecular weight between cross-links (Mc) of conventional 

and microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an 

amine / epoxy ratio of 1.1 using Nielsen’s equation 
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6.6 Effect of curing on flexural properties 
 
A 3-point bending test was used to determine the flexural mechanical properties of the 

fully cured samples. The 3 point bending test is a stress-strain test whereby the 

specimen is deformed under bending conditions. For this research, fully cured samples 

of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems were 

subjected to three point bending tests. The figures below show flexural stress-strain 

curves obtained from conventional and microwave cured samples. The flexural load-

displacement plots for the conventionally and microwave cured samples show similar 

patterns. 
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Figure 6.26 Load vs Displacement plot for conventional and microwave cured samples 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.85. 
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Figure 6.27 Load vs Displacement plot for conventional and microwave cured samples 

of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9 10

Displacement (mm)

Lo
ad

  
(K

N
)

Conventional

Microwave

 

 

Figure 6.28 Load vs Displacement plot for conventional and microwave cured samples 

of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 0.8. 

 

Table 6.5 Flexural Strength values for fully cured samples of Araldite LY 5052 / 4 4’ 

DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems at different stoichiometric ratios. 
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 Flexural 

Strength 

1 

Flexural 

Strength 

2 

Flexural 

Strength 

3 

Flexural 

Strength 

4 

Flexural 

Strength 

5 

Average St.Dev 

CA85 98.5 96.3 100.8 101.9 90.4 97.6 4.55 

MA85 129.6 133.5 136.5 124.7 139.4 132.7 5.77 

CA100 114.5 121.3 110.1 115.0 107.7 113.8 5.15 

MA100 144.1 152.4 143.1 148.7 145.9 146.8 3.78 

CD80 107.3 113.6 117.9 105.3 110.6 110.9 5.01 

MD80 147.6 140.7 139.7 143.8 134.6 144.2 4.85 

CD110 121.5 117.3 129.7 127.1 115.7 122.3 6.06 

MD110 155.0 163.3 157.4 152.1 155.3 156.3 4.19 
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Figure 6.29 Bar chat of Average flexural strength values of conventional and 

microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 0.85. 
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Figure 6.30 Bar chat of Average flexural strength values of conventional and 

microwave cured samples of Araldite LY 5052 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 1.0. 
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Figure 6.31 Bar chat of Average flexural strength values of conventional and 

microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 0.8. 
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Figure 6.32 Bar chat of Average flexural strength values of conventional and 

microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 1.1. 

 

The results showed that the microwave cured samples had higher flexural strengths and 

modulus than conventionally cured samples. This suggests that microwave cured 

samples are stronger and stiffer than conventional cured samples, giving more credence 

to the argument that the molecular network structure are more packed in microwave 

cured samples. These results are in good agreement with the higher Tg and higher cross-

link density. Singer et al [106] attributed their findings to a better alignment of the 

molecules exposed to the electric field. This alignment may produce a higher molecular 

packing with lower free volume and higher density resulting in a higher modulus for 

microwave-cured samples. Bai et al [107] suggested that the differences in tensile 

properties could be attributed to a greater homogeneity of the microwave cured resin. 

Navabnour et al [54, 55] observed a fifteen percent increase in the flexural modulus and 

the flexural strength of microwave cured samples, suggesting that this enhancement was 

as a result of a reduction in the residual stresses in the microwave cured samples 

brought upon as a result of a better temperature control associated with microwave 

heating. 
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6.7 Summary 
In this chapter, we observed that for both Araldite LY 5052 / 4 4 DDS and Araldite 

DLS 772 / 4 4’ DDS epoxy systems,  

 

i) The density of the fully cured microwave samples was higher than 

the density of the conventionally cured samples. 

ii)  The glass transition temperature for the microwave cured samples 

were higher than the glass transition temperature of conventionally 

cured samples. 

iii)  The microwave cured samples had higher cross-link densities and 

lower average molecular weight between crosslinks than the 

conventionally cured samples. This indicated that the microwave 

cured samples were more compact. 

iv) The microwave cured samples had a higher flexural strength and 

modulus than conventionally cured samples. 
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CHAPTER SEVEN 

7.0 DECOMPOSITION AND CHEMICAL ANALYSIS OF 
CURED EPOXY SYSTEM USING MICROWAVE 
REACTION SYSTEM                                           

7.1 Introduction 
 

Fully cured epoxy samples of conventional and microwave cured Araldite DLS 772 / 4 

4’ DDS with an amine to epoxy ratio of 0.8M were dissolved in 4M nitric acid in a 

microwave reaction system at a temperature of 120 oC for a total of 75 minutes. The 

dissolved compound was collected and dried. High Performance Liquid 

Chromatography was used to analyse and separate the components in the compound. 

Infrared spectroscopy, nuclear magnetic resonance spectroscopy and electrospray 

ionization mass spectrometry was used to identify the dissolved product. 

7.2 Decomposition of fully cured Araldite DLS 772 /  4 4’ DDS 
with amine / epoxy ratio of 0.8 
 

Fully cured samples of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 

were cut into small rectangular pieces of between 1 – 2 grammes. They were put in 

reaction vessels described in section 3.18. 20 ml of 4M HNO3 was added to each 

reaction vessel. The vessels were then placed in the microwave reaction system. The 

samples were heated in the reaction vessels to a temperature of 120 oC and held at this 

temperature for about 25 minutes. This experiment was repeated three times. It took a 

total of 75 minutes for the sample to be completely dissolved in the nitric acid.  

 

Figures 7.1 and 7.2 show the fully cured samples of microwave cured Araldite DLS 772 

/ 4 4’ DDS with amine / epoxy ratio of 0.8 at 180 oC for 240 minutes before and after 

decomposition in the microwave reaction system. 
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Figure 7.1 Fully cured sample of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy 

ratio of 0.8 before decomposition in Microwave Reaction System 

 

 

 

Figure 7.2 Product obtained after decomposition of fully cured samples of Araldite 

DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 after decomposition at 120 oC 

for a total of 75 minutes in Microwave Reaction System. 
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The compounds which made up the decomposed epoxy system were determined. High 

Performance Liquid Chromatography HPLC was used to separate the peaks. Infrared 

spectroscopy, nuclear magnetic resonance spectrometry and mass spectrometry were 

used to identify the decomposed compound. 

 

 10 micro-litres of 10mg / mol concentration of the decomposed product was injected 

through the HPLC analytical system to test for purity and the constituents in the product. 

The analytical results for the dissolved epoxy systems are shown in the figures 7.3 and 

7.4.  
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Figure 7.3 HPLC trace results of decomposed product of fully conventionally cured 

Araldite DLS 772  / 4 4’DDS epoxy system with an amine / epoxy ratio of 0.8 passed 

through a silica column using 50 : 50 Hexane /  Ethyl acetate as solvents and detected at 

254 nm. 

 



 305 

0

10

20

30

40

50

60

70

0 5 10 15 20 25

Time (mins)

m
V

ol
ts

 

 

Figure 7.4  HPLC trace results of decomposed product of fully microwave cured 

Araldite DLS 772  / 4 4’DDS epoxy system with an amine / epoxy ratio of 0.8 passed 

through a silica column using 50 : 50 Hexane / Ethyl acetate as solvents and detected at 

254nm. 

 

The figures 7.3 and 7.4 above show a broad peak. This broad peak suggests that a range 

of similar compounds were probably eluted. The broadness of the peak also occurs 

when the compound is strongly absorbed on the silica column. This is usually the case 

when the compound is polar. Some of the end groups of the compound stuck longer to 

the silica as it was being forced through the pump. Polar compounds attach themselves 

chemically to the silica column 

 

In order to collect and analyse the major peak, a much stronger concentration of about 

100 mg / mol was prepared.  100 microlitres was injected into the pump controlled 

HPLC system. The chart recorder was used to monitor the elution of the sample to be 

collected.  

The collected sample was rerun by analytical HPLC to confirm the purity of the 

collected peak. 

 

The results of the rerun analytical HPLC test for purity for each epoxy system are 

shown in the figures 7.5 and 7.6 below. 
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Figure 7.5 Analytical HPLC trace results of collected isolated compound of 

decomposed conventional cured Araldite DLS 772 / 4 4’DDS epoxy system with an 

amine / epoxy ratio of 0.8. 
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Figure 7.6 Analytical HPLC trace results of collected isolated compound of 

decomposed conventional cured Araldite DLS 772 / 4 4’DDS epoxy system with an 

amine / epoxy ratio of 0.8. 

 

The figure above shows two peaks. The first peak is the solvent front. It usually comes 

out about two minutes after the sample is injected in the HPLC instrument machine 

using 50 : 50 hexane/ethyl acetate solvent mixture. This solvent front is probably ethyl 
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acetate. It absorbs at about the same UV at 254 nm. The second peak also shows that 

isolated compound seem to consist of a range of similar compounds in the solvent 

collected from the HPLC pump system. 

 

A rotary evaporator was used to dry the collected compound, leaving the just the residue.  

7.3 Fourier Transform Infrared Spectroscopy 
 

Infra red spectra were taken of the residue samples. The spectra of the samples are 

shown in figures 7.7 and 7.8 below. 
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Figure 7.7 Infrared spectra of dried isolated compound collected from the decomposed 

product of cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 
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Figure 7.8 Expanded view of Infrared spectra of dried isolated compound collected 

from the decomposed product of cured Araldite DLS 772 / 4 4’ DDS with an amine / 

epoxy ratio of 0.8 

 

Figure 7.8 above shows the infrared spectra for the isolated compound of the dissolved 

microwave cured Araldite DLS 772 / 4 4 DDS. The peaks at 709 cm-1 and 788 cm-1 

correspond to the monosubstituted benzene and meta-disubstituted benzene bands 

respectively. The peak at 1430 cm-1 is the aromatic C=C bond [70, 108, 109]. The 

absorption peaks at 1020 cm-1 and 1080 cm-1 correspond to the aliphatic amine band. 

The aromatic ethers C-O bond is represented by the absorption peak at 1260cm-1, while 

there is also an aromatic nitro bond N-O at 1320 cm-1 [110, 111]. A tertiary alcohol 

which is represented in the band 1160 cm-1. The absorption peak at 1730 cm-1 signifies 

an ester or a carboxylic acid C=O bond [70, 108]. The FT-IR spectrum reveals that the 

compound contains some benzene rings, aromatics, amine and an ester or carboxylic 

acid. 

7.4 Nuclear Magnetic Resonance 
 
1 H-NMR and 13C-NMR spectroscopy were used to determine the chemical structure of 

the unknown compound. The 1H-NMR and 13C-NMR spectroscopy measurements are 

described in section 3.19. The 1H nucleus is the most commonly observed nucleus in 

NMR spectroscopy. This is because hydrogen is found throughout most organic 

molecules. The proton has high intrinsic sensitivity [112, 113]. It is also almost 100% 

abundant in nature. These factors make it a favourable nucleus to observe. The proton 

spectrum contains a wealth of chemical shifts and coupling information. This is a 

starting point for most structure determinations [114].  The 1H-NMR spectra of the 

unknown compound is shown in figure 8.9 below 
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Figure 7.9 1H-NMR spectra of dried isolated compound collected from the decomposed 

product of cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio of 0.8 

 

The 1H-NMR spectrum of the unknown compound is shown in figure 7.9. The 

compound was dissolved in dueterated acetone before the NMR analysis. The 

dueterated acetone solvent gave rise to a peak at 2.09 parts per million (ppm). Two 

triplet absorbances at areas of 1.38 and 1.45 ppm were attributed to the methyl  groups 

present in the compound [70, 113, 115]. Two quartet absorbances at areas of 3.40 and 

3.85 ppm due to the presence of methylene groups in the compound which are 

separately connected with nitrogen and oxygen [70, 75]. There is a quartet as a result of 

spin-spin splitting which creates one more peak than the number of hydrogens adjacent 

to it. The quartet means that they are next to 3 hydrogens or a terminal CH3 group. One 

methylene quartet is attached to a nitrogen atom, while the other methylene quartet at 

3.85ppm is directly bonded to the strongly deshielding O2 or a carbonyl atom [116]. The 

more electronegative an atom is, the more electron time it will draw away from the 

nucleus. This will make the atom more deshielded, making the chemical shift move 

further downfield [74, 113]. There is a single sharp peak at 8.71 ppm. This peak is 

generated from the resonance of the aromatic protons. The presence of this single peak 

is an indication that the aromatic ring is symmetric. Another reason for this single peak 

is because the proton is next to no other hydrogen. Due to an absence of other 

hydrogens, the local magnetic field induced by the nucleus of other protons will not 
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cause a multiplet of peaks. Rather, there is just a single peak [70, 113]. The downfield 

shift of the aromatic peak is as a result of the nitration of the aromatic ring during the 

decomposition of the cured resin causes a downward shift in the aromatic peak. 

Nitrogen, being an electronegative atom, withdraws electron density. This consequently 

reduces the magnitude of the local magnetic field. The nitrogen atom desheilds the 

aromatic proton from the applied magnetic field. As a result of this, the aromatic proton 

experiences a slightly weaker magnetic field and resonance occurs at a higher ppm [116] 

7.5   13C-NMR and Distortion Enhancement by Polarization 
Transfer (DEPT) 
 
13C-NMR and DEPT were used to obtain more information about the backbone 

structure of the unknown compound. The 13C-NMR spectrum of the compound is 

shown in figure 7.10. The 13C-NMR spectrum is usually recorded with broadband 

decoupling of all protons. This removes multiplicity in carbon resonances. As a result, 

the doublet, triplet and quartet patterns which are indicative of CH, CH2 and CH3  

groups are not seen, and each carbon resonance appears as a singlet, increasing 

sensitivity[117, 118]. Each peak identifies a carbon atom in a different environment 

within the molecule. There are different ranges of chemical shifts for different carbon 

environments.  
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Figure 7.10 13C-NMR spectra of dried isolated compound collected from the 

decomposed product of microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / 

epoxy ratio of 0.8 

 

Each chemically distinct carbon atom gave rise to a single peak in its normal 13C NMR 

spectrum. The peaks at 47.6 and 60 ppm arose as a result of different carbons singly 

bonded to an oxygen atom. The external magnetic field experienced by the carbon 

nuclei is affected by the electronegativity of the atoms attached to them. The effect of 

this is that the chemical shift of the carbon increases if an atom like oxygen is attached 

to it [74, 119]. This is because the electronegative oxygen pulls electrons away from the 

carbon nucleus thereby leaving it more exposed to any external magnetic field. This 

means that a smaller external magnetic field will be needed to bring the nucleus into the 

resonance condition than if it was attached to less electronegative atoms [119, 120]. The 

peak at 170 ppm is a carbonyl resonance which is due to a carbon in a carbon – oxygen 

double bond in an acid or ester. The peaks at 126.3, 130.9, 139.5, and 153 ppm are 

typical for carbons in an aromatic benzene ring [70, 117, 121]. The triplet peak around 

30 and 206 ppm are as a result of the carbon atoms present in the solvent. 

 

7.6 Distortion Enhancement Polarisation Transfer 
 

There are four possible types of carbon atoms. They are  methyl (CH3), methylene 

(CH2), methane (CH) and quaternary carbon (C) [116]. The carbon type depends on the 

number of hydrogens directly attached to a particular carbon atom. The 13C NMR does 

not dive any information as to the types of carbon present in the spectrum [116]. 

 

Distortion Enhancement by Polarization Transfer (DEPT) is used to differentiate the 

carbon types. In DEPT with θ = 90o spectrum, only CH carbons appear as positive 

signals. In DEPT with θ = 135o spectrum, CH and CH3 carbons produce positive peaks 

while CH2 carbons produce negative peaks. Quaternary carbons do not appear in the 

DEPT spectra. Any extra peaks found in the normal 13C spectrum are due to quaternary 

carbons. The DEPT with θ = 90o and DEPT with θ = 135o spectrum of the unknown 

compound are shown in figures 7.11 and 7.12 below 
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Figure 7.11 DEPT with θ = 90o spectra of dried isolated compound collected from the 

decomposed product of microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / 

epoxy ratio of 0.8. 
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Figure 7.12 DEPT with θ = 135o spectra of dried isolated compound collected from the 

decomposed product of microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / 

epoxy ratio of 0.8. 

 

The DEPT with θ = 90o spectra in figure 7.11 identifies CH resonances at 170.9, 126.3, 

60.57, 20.82 and 14.5 ppm. The DEPT with θ = 135o spectra in figure 7.12 identifies the 

CH2 resonance as negative peaks at 126.3, 20.8, and 14.5 ppm. Since the DEPT with θ = 

135o  spectra shows both CH3 and CHs as positive peaks, the peaks at 47.6 and 8.19 

ppm can be quickly identified as CH3 resonances by comparing it to figure 7.11 which 

only shows CHs as positive peaks. The absence of the peaks 153 and 139 ppm in the 

DEPT spectra indicates that they are quaternary carbons. The peaks 29-31 ppm and 206 

ppm arise from the carbon atoms present in the solvent (acetone) used for the NMR 

analysis. 

7.7 Heteronuclear Multiple-Quantum Correlation  
 

In Heteronuclear Multiple-Quantum Correlation experiment, two different types of 

nuclei (1H and 13C) are correlated into a 2-dimensional experiment by the evolution and 

transfer of single quantum coherence [122, 123]. It offers a means of identifying 1-bond 

H-C activities within a molecule. One dimension represents the 1H chemical shift, while 

the other represents the 13C chemical shift. Crosspeaks indicate a one-bond 1H-13C 

connectivity. The HSQC technique relies on magnetisation transfer from the proton to 

its directly attached atom, and back on to the proton. As a result of this magnetisation 

transfer, no responses are expected for non-protonated carbons, or for protons bound to 

other heteroatoms [122-124]. 
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Figure 7.13 HSQC spectra of dried isolated compound collected from the decomposed 

product of microwave cured Araldite DLS 772 / 4 4’ DDS with an amine / epoxy ratio 

of 0.8. 

 

Figure 7.13 shows the HSQC spectra for the unknown compound. Here the 1H protons 

from the 1H-NMR spectra are related to the carbon atoms from the 13C-NMR spectra. 

From the figure above, the aromatic proton indicated at peak 8.7 ppm is directly bonded 

to the aromatic carbon atom at about 126 ppm. The signals at 3.85 ppm which are 

characteristic for the methylene protons attached to O2 is directly bonded to the carbon 

atoms of the methylene group at 60 ppm in the 13C-NMR spectra. The methylene 

quartet at 3.4 ppm is bonded to the carbon atoms of methylene at 47 ppm. The signals 

appearing at 1.38 and 1.45 ppm which indicate methyl groups are bonded to the carbon 

atoms of the methyl groups at 9.1 ppm and 11 ppm.  

 

From the above 1H-NMR, 13C-NMR, DEPT with θ = 90o, DEPT with θ = 135o and the 

infrared spectra of the isolated compound, it is observed that there are two ethyl ester 

groups and an amine bound to the benzene ring. The analysis suggests the unknown 

compound is identified as 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-hydroxybenzene. Its 

chemical structure is shown in the figure 7.14 below. 
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Figure 7.14 Structure of 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-hydroxybenzene. 

 

The assignment of the peaks of the 1H-NMR spectrum of 1, 3 – di(ethyl ester)-5-

(diethyl amino)-2-hydroxybenzene from figure 7.9 is tabulated in table 7.1 below. 

 

Table 7.1 Assignment of peaks of the 1H-NMR spectrum of 1, 3 – di(ethyl ester)-5-

(diethyl amino)-2-hydroxybenzene 

 

Peak Chemical Shift, ppm Assignment 

A 

1.38 

 

Methyl CH3 

 

B 

1.45 

 

Methyl CH3  
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C 

3.41 

 

Methylene CH2 

 

D 

 

3.85 

 

Methylene CH2 

 

E 

8.71 

 

Benzene 

 

 

 

Table 7.2 below shows the assignment of peaks in the 13C NMR spectrum of 1, 3 – 

di(ethyl ester)-5-(diethyl amino)-2-hydroxybenzene from figure 8.10. 

 

Table 7.2 Assignment of peaks of the 1H-NMR spectrum of 1, 3 – di(ethyl ester)-5-

(diethyl amino)-2-hydroxybenzene 

 

Assignment Peak Chemical shift (ppm) 

 

C1 

C2 

C3 

9.1 

59.0 

170.9 

 

C4 

C5 

C6 

C7 

11.5 

47.6 

47.6 

11.5 

 

1 2
3

7

6
54
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C8 

C9 

C10 

170.9 

47.6 

9.1 

 

C11 

C12 

C13 

C14 

C15 

C16 

126.3 

153.9 

126.3 

138.0 

139.5 

138.0 

 

7.8 Electrospray Ionization Mass Spectroscopy 
 

Electrospray Ionization was used to confirm the molecular weight of the compound 

which was identified as 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-hydroxybenzene. The 

electrospray ionization spectrum is shown in figure 7.15. A base peak of 332 is 

identified. 

 

 

Figure 7.15 Electrospray ionization spectra of 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-

hydroxybenzene. 
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The molecular formular of 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-hydroxybenzene is 

C16H23O5N. This gives a molecular mass of 309 g mol-1. There is a presence of sodium 

ion in the electrospray chamber. This sodium ion adds a unit mass of 23 to the 

molecular ion of the compound. Adding 23 to the molecular mass of 1, 3 – di(ethyl 

ester)-5-(diethyl amino)-2-hydroxybenzene gives us 332. This value corresponds to the 

molecular ion peak at m/z 332 which also corresponds to the base peak of the 

electrospray ionization spectra in figure 7.15. The electrospray ionization mass spectra 

confirms the molecular mass of 1, 3 – di(ethyl ester)-5-(diethyl amino)-2-

hydroxybenzene. 

 

7.9 Summary 

 

Conventional and Microwave cured samples of Araldite DLS 772 / 4 4’ DDS were 

successfully decomposed by a microwave reaction system. The chemical structure of 

the decomposed product was determined. 
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CHAPTER EIGHT 

8.0 CONCLUSIONS AND SUGGESTIONS FOR FUTHER 
WORK 
 

The aims of this study were to compare the curing kinetics, the reaction pathways, the 

physical and mechanical properties of two epoxy systems prepared by conventional and 

microwave heating; and also to explore the possibility of the use of microwave energy 

to decompose fully cured epoxy materials and identify the decomposed products with a 

view to then exploring potential reuses of these materials. 

8.1 Conclusions 
 

Araldite LY 5052 and DLS 772 epoxy resins (supplied by Huntsman, UK) were used 

for this research. 4 4’ Diaminodiphenyl sulfone was used as a hardener for this study. 

The curing kinetics of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS 

epoxy systems were studied “in situ” by means of differential scanning calorimetry 

(DSC) and a microwave calorimeter under non-isothermal and isothermal conditions. 

The differences in the curing characteristics of the samples undergoing microwave and 

conventional heating were observed.  

 

During the non-isothermal curing, the samples cured with conventional heating had a 

higher onset temperature and a higher exothermic peak temperature than the samples 

cured using microwave heating. Curing during microwave heating occurred over a 

smaller temperature range.  The reaction rate of microwave-cured samples was higher 

than the reaction rate of conventionally cured samples. This was indicated by a higher 

slope of the fractional conversion curve. It took a shorter time for the microwave cured 

samples to reach the maximum final conversion, suggesting that the curing reaction 

occurred at a lower temperature. These results can be ascribed to a better efficiency in 

the energy transfer for microwave heating. An increase was observed in the fractional 

conversion for microwave-cured samples. This was due to the increase in the mobility 

of the reactants after gelation. This is caused by the induced polarization of the polymer 

and monomer molecules along the applied electromagnetic field, causing the 

consumption of more reactants leading to the formation of a more rigid network.  
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Kinetic analysis was carried out on the samples cured using conventional and 

microwave energy. Ozawa’s method was used to determine the activation energy for a 

given fractional conversion, which shows the different stages through which the curing 

reaction proceeds. The activation energy of the conventionally and the microwave cured 

samples showed different patterns. For samples cured using conventional heating, the 

activation energy had a minimum value at the beginning of the reaction, and then 

increased as the reaction proceeded to a maximum, and then showed a tendency to 

decrease. The samples cured using microwave energy had a maximum value at the 

beginning of the reaction, which then decreases as the reaction proceeded until it 

reached a minimum value after which it began to show a tendency to increase. 

 

Ozawa’s method was also applied to the exothermic peak for the determination of 

activation energy. The results show that for Araldite LY 5052 / 4 4’ DDS epoxy system, 

the activation energy of the microwave-cured samples were higher than the 

conventionally cured samples, while for the Araldite LY 5052 / 4 4’ DDS epoxy system, 

the activation energy of the conventionally cured samples were higher than the 

activation energies of the microwave cured samples. 

 

Kissinger’s method was also used to study the kinetic analysis in this research. As with 

the Ozawa method, the activation energies of all the microwave-cured samples were 

found to be higher than the activation energies of conventionally cured samples for the 

Araldite LY 5052 / 4 4’ DDS epoxy system, while the activation energies for the 

microwave cured samples were lower than those of the conventionally cured samples 

for Araldite DLS 772 / 4 4’ DDS epoxy system. 

 

A cavity perturbation technique was used to follow the dielectric properties of the 

microwave cured samples “in situ”  as the curing reactions proceeded. It was found that 

the dielectric properties increased as the curing temperature increased until they reached 

a maximum value, after which it started to decrease. This pattern suggests that the 

microwave curing reactions of the epoxy systems occur in three phases. The dipoles 

rotate freely in the initial phase. This rotation leads to an increase in dielectric properties 

as the temperature increases. In the second phase, there is a decrease in the dielectric 

properties. This decrease occurs as a result of the formation of a cross-linked network. 
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This is as a consequence of the reduction in the molecular mobility and the functional 

polar group during the curing reaction. The formation of a highly cross-linked structure 

occurs in the third phase, leading to a further reduction in the dielectric properties.   

 

The curing kinetics was also studied for the conventional and microwave curing of 

Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems under 

isothermal conditions. Higher rates of reaction were observed for samples cured with 

microwave heating. The microwave cured samples also had a steeper slope of fractional 

conversion than the conventionally cured samples.  

 

The kinetic parameters of the isothermal curing reactions of Araldite LY 5052 / 4 4’ 

DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems using conventional and 

microwave heating was determined. The rate constants K1 and K2 increased with 

temperature for both conventional and microwave cured samples. The values of K1 and 

K2 were greater in the microwave cured samples. However, the ratio of K1 / K2 was 

found to be lower in microwave curing than in conventional curing. These lower values 

have been attributed to the enhancement of the catalytic reaction over the non-catalytic 

reaction by microwave radiation which occurs as a result of the high activity of the [OH] 

group in the microwave field [26].  

 

The activation energies of the rate constants were also determined. For Araldite LY 

5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy systems, it was found that the 

microwave cured samples had lower activation energy values compared to 

conventionally cured samples. 

 

The infrared spectra of microwave and conventionally cured samples were found to be 

similar. This suggested that the curing reaction for conventional and microwave heating 

follow the same reaction pathway. More epoxide and amine were consumed during the 

microwave curing than during the conventional curing. 

 

The density of fully cured microwave samples of both Araldite LY 5052 / 4 4’ DDS and 

Araldite DLS 772 / 4 4’ DDS epoxy systems were higher than the density of 

conventionally cured samples. This indicated that the network structure of microwave 
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cured samples was more packed than conventionally cured samples. This suggested 

different morphologies in the network structures. 

 

The morphologies of the network structures were also studied with dynamic mechanical 

thermal analysis. The glass transition temperature for the microwave cured samples was 

found to be higher than the glass transition temperature of the conventionally cured 

samples for both Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy 

systems. The microwave cured samples also had higher cross-link densities and lower 

molecular weight between cross-links than the conventionally cured samples. This 

meant that the network structure in the conventionally cured samples was more loosely 

packed than the network structure in microwave cured samples. 

 

The results of the flexural tests for the fully cured samples show that the microwave 

cured samples of Araldite LY 5052 / 4 4’ DDS and Araldite DLS 772 / 4 4’ DDS epoxy 

resins have a higher flexural strength and modulus than conventionally cured samples, 

suggesting a better stiffness and strength in the microwave cured samples. This 

improved stiffness is ascribed to a better molecular alignment and a greater 

homogeneity which is found in the microwave cured samples. 

 

A microwave reaction system was used to successfully dissolve conventional and 

microwave cured samples of Araldite DLS 772 / 4 4’ DDS epoxy system. The chemical 

structure of the decomposed product was determined. 

 

8.2 Suggestions for further work  

 

1. Although the TM010 microwave was designed so the maximum strength of the 

electromagnetic field was at the centre of the cavity, the presence of PTFE 

mould affected the distribution of the electromagnetic field in the TM010 

microwave cavity, reducing the strength of the electromagnetic field at the 

centre of the cavity. This had an effect on the preparation of plaques for 

mechanical and physical testing because the electromagnetic field strength in the 

centre of the cavity, leaving the centre of the sample not fully cured. However, 

this problem was overcome by the use of very low heating rates (1-2 K min-1). 
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The cavity should be redesigned or modified so that the presence of the PTFE 

mould would not affect the distribution of the electromagnetic field.  

 

2. A technique which can make dielectric measurements during conventional 

curing needs to be purchased. This will enable comparative data to be obtained.  

 

3. Studies should be carried out on the possiblilty of converting 1,3 di(ethylester)-

5-(diethylamino)-2-hydroxybenzene into an epoxy novalak resin, or a compound 

with epoxide or ethylene oxide groups for reuse in materials processing. 

 

4. Attempts should be made on incorporating 1,3 di(ethylester)-5-(diethylamino)-

2-hydroxybenzene in the formulation of new epoxy systems. Cure kinetics 

reaction study should be carried out on these epoxy systems and the kinetic 

parameters should be explored. The physical and mechanical properties of the 

epoxy systems should be studied. 
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Appendix 1 Figure DSC thermograms of conventional isothermal cure (left) and 

subsequent DSC run to test for exotherm for 0.8M amine / epoxy ratio for Araldite DLS 

772 / 4 4’ DDS epoxy system 
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 Appendix 2 DSC thermograms of conventional isothermal cure (left) and subsequent 

DSC run to test for exotherm for 1.1M amine / epoxy ratio for Araldite DLS 772 / 4 4’ 

DDS epoxy system 
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Appendix 3 Isothermal thermograms of microwave isothermal cure (left) and 

subsequent DSC run at 10 K min-1 from 30 to 300 oC (right) to test for exotherm  

Araldite LY 5052 / 4 4’ DDS epoxy system with an amine / epoxy ratio of 1.0 
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Appendix 3  DSC thermograms of conventional isothermal cure (left) and subsequent 

DSC run (right) to test for exotherm for Araldite DLS 772 / 4 4’ DDS  epoxy system 

with an amine / epoxy ratio of 0.8 
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 Appendix 4 DSC thermograms of isothermal cure (left) and subsequent DSC run (right)  

to test for exotherm for  Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 1.1 
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Appendix 5 Temperature dependence of the fractional conversion (left), and reaction  

rate (right) for the curing of  Araldite DLS 772 / 4 4’ DDS epoxy system with an amine 

/ epoxy ratio of 0.8 under conventional and microwave curing, at different isothermal 

temperatures.  
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Appendix 6 Temperature dependence of the fractional conversion (left), and reaction  

rate (right) for the curing of Araldite DLS 772 / 4 4’ DDS epoxy system with an amine / 

epoxy ratio of 1.1 under conventional and microwave curing, at different isothermal 

temperatures. 
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Appendix 7 FT-IR Spectra of Araldite LY 5052 / 4 4‘ DDS with an amine / epoxy ratio 

of 0.85M after conventional heating at 180oC for 240 minutes 
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Appendix 8 Expanded view of FT-IR Spectra of Araldite LY 5052 / 4 4‘ DDS with an 

amine / epoxy ratio of 0.85M after conventional heating at 180oC for 240 minutes. 

 

1510 

1610 

3400 916 

1610 

916 



 343 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

540.001040.001540.002040.002540.003040.003540.00

Wavelength (cm -1)

A
bs

o
rb

an
ce

 

 

Appendix 9 FT-IR Spectra of Araldite LY 5052 / 4 4 ‘ DDS with an amine / epoxy 

ratio of 0.85M after microwave  heating at 180oC for 240 minutes. 
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Appendix 10 Expanded view of FT-IR Spectra of Araldite LY 5052 / 4 4’ DDS with an 

amine / epoxy ratio of 0.85M after microwave heating at 180oC for 240 minutes. 
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Appendix 11 FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy 

ratio of 0.8 after conventional heating at 180oC for 240 mins 
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Appendix 12 Expanded view of FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an 

amine / epoxy ratio of 0.8 after conventional heating at 180oC for 240 minutes. 
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Appendix 13 FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an amine / epoxy 

ratio of 0.8 after microwave heating at 180oC for 240 minutes. 
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Appendix 14 Expanded view of FT-IR Spectra of Araldite DLS 772 / 4 4’ DDS with an 

amine / epoxy ratio of 0.8 after microwave heating at 180oC for 240 minutes. 
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