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“The aggregate of our joy and suffering”

Carl Sagan

Figure 1.1: The Earth, photographed from a distance of 43 astronomical units (6.4

billion kilometres) by the Voyager 1 spacecraft on 14th February, 1990. Carl Sagan

instigated the picture, terming it the “pale blue dot”. The quote above comes from his

reflections on the image (Sagan 1994) (figure credit: NASA/JPL).
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The University of Manchester

ABSTRACT OF THESIS submitted by Mark Benedict Purver

for the degree of Doctor of Philosophy and entitled

High-precision pulsar timing: The stability of pulse profiles

and their representation by analytic templates. September 2010.

High-precision timing is an exciting field of pulsar research that holds the promise

of direct gravitational wave detection. This goal is at the limit of current tech-

nology, and requires the near-seamless combination of data from multiple pulsars

observed with multiple telescopes. Accuracy in the recording of pulse profiles

and the measurement of their times of arrival (TOAs) is key. In order to time

a pulsar, a template is needed that is as close as possible to an ideal version of

the pulse profile. Four pulsars were timed using analytic, noise-free templates

composed of Gaussian components, and their system parameters were measured

to high accuracy. These templates were found to be usable at different telescopes

and were adaptable across more than 100 MHz in observing frequency without

loss of TOA alignment.

The same approach was used to investigate profile variation in the pulsar

PSRJ1022+1001, which is a promising member of the arrays used to search

for gravitational waves. Variation with time was found that is almost equal in

magnitude to typical measurement noise. The timing of the pulsar could not be

improved using adaptive templates which were allowed to vary with the profile

to a limited extent. If the variation is due to instrumental error, then its removal

would improve timing accuracy significantly for this pulsar. If it is intrinsic, then

it is an interesting and unusual phenomenon. PSRJ1022+1001 was compared to

two similar pulsars, one of which showed a lesser degree of variation and one of

which did not exhibit significant change.
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ABSTRACT

Timing of PSRJ1022+1001 was used to calculate upper limits on the ampli-

tude of the stochastic gravitational wave background. A reasonable limit was

estimated to be Amax = 1.7 × 10−14, which is stringent for a single pulsar timed

alone. However, there was evidence that the timing residuals were somewhat

correlated in time, which can produce an artificially low limit. Nevertheless,

PSRJ1022+1001 has the potential to make a valuable contribution to gravita-

tional wave detection. Investigation into its variation highlights the fact that the

timing of a number of pulsars may be crucially improved by the next generation

of processing instruments.
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Figure 1.2: The Crab Nebula, a supernova remnant and pulsar wind nebula, shown

as a composite image of infrared (purple), optical (red/yellow) and X-ray (blue)

light. The X-rays reveal the Crab Pulsar and its particle outflows (figure credit:

NASA/JPL–Caltech/Univ. Minn./R. Gehrz; NASA/ESA/ASU/J. Hester & A. Loll;

NASA/CXC/SAO/F. Seward).
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1

Introduction to pulsar timing

Like many phenomena in radio astronomy, pulsars came as something of a sur-

prise upon their discovery in 1967. At the Mullard Observatory in Cambridge,

UK, a chance observation by Jocelyn Bell that a bit of radio ‘scruff’ was recur-

ring in the same patch of sky each sidereal day led to the measurement of an

extrasolar source that was pulsing radio waves with implausible regularity every

1.337 seconds (Carroll & Ostlie 1996, p. 608). Until then, no-one had expected or

sought to detect such rapidly varying celestial radio emission, so pulsar signals

were either smoothed out in time integrations or dismissed as man-made inter-

ference (Lyne & Smith 2006, p. 2). Realising that the high intensity, extreme

regularity, short duration and frequency-dependent dispersion (see § 1.2.1) of the

pulses implied tremendously luminous emission from a region of concentrated

mass less than 5000 kilometres across and within our own galaxy, Bell and her

PhD supervisor, Anthony Hewish, developed with other colleagues the idea that

they originated from the vibrational oscillations of a compact stellar remnant –

either white dwarf or then-theoretical neutron star (Hewish et al. 1968). A clutch

of similar discoveries soon confirmed that these sources, christened as pulsars by

the science correspondent of the Daily Telegraph newspaper, were a new class

of objects, a serendipitous discovery far removed from the solar scintillation of
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quasars1 that Bell had originally been studying (Carroll & Ostlie 1996, p. 608).

Neutron stars had been theorised by Baade & Zwicky (1934) as the possible

dense remains of stars after observed supernova explosions, but they were not

considered likely to be directly detectable, nor even necessarily considered at all

by astronomers, before the first pulsar observation. This is illustrated by two

papers published in the Nature journal in 1967. Bell & Hewish (1967) published

evidence in March that the Crab Nebula contained a small radio source that was

too bright to be explained by the synchrotron emission characterising the rest of

the nebula, but offered no explanation of what it might be: they had detected

its pulsar as a continuum source, but had integrated the signal over too long a

sampling time to discern its periodicity. In November, Pacini (1967) produced a

theoretical description of neutron stars as strong and rapidly rotating magnets,

stating that they would be created in supernovae and that the Crab Nebula could

be a supernova remnant energised by the low-frequency magnetic dipole radia-

tion from such an object, but did not mention the paper of Bell and Hewish.

No work anticipated pulsed radio emission, and it was Gold (1968) who, after

its discovery, put forward the case that it was powered by the rotation of neu-

tron stars and independently presented a similar theoretical framework to that

of Pacini, citing a co-rotating magnetosphere of plasma surrounding the object

as the likely source of radio emission. The speed of the pulses argued against the

vibration or rotation of white dwarves, while their inhomogeneous polarisation

(Lyne & Smith 1968) favoured the explanation of a rotational sweep over that

of a bodily oscillation. The discovery in late 1968 of the Vela and Crab Pulsars

(Large et al. 1968; Staelin & Reifenstein 1968), with their short pulse periods

of 89 ms and 33 ms respectively, eliminated the possibility of white dwarves. In

1969, the observation that the position angle (PA) of linear polarisation of Vela’s

pulses rotated across its profile – where a pulsar’s profile is the average intensity

1Multi-wavelength sources of very high redshift, now considered to be extremely luminous

and distant galactic nuclei in which a supermassive black hole is rapidly consuming matter.
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of its signal as a function of pulse phase – provided simple evidence of a rotating

emission beam polarised by a radial magnetic field (Radhakrishnan et al. 1969),

while the measurement that the period of the Crab’s pulses was gradually in-

creasing (Richards & Comella 1969) refuted the idea that they came from an

oscillatory mechanism (see § 1.1). Only then did a consensus develop that pul-

sars were neutron stars with continuous radio emission that came from parts of

their surfaces or magnetospheres and swept over the Earth as they rotated (Lyne

& Smith 2006, pp. 5–6). The somewhat reluctant acceptance of this idea may

originate in the sheer implausibility of the objects discovered, which packed the

mass of the Sun into the volume of a city and spun this incredibly concentrated

bulk at a rate previously unheard of in the field of Astronomy, releasing energy

through the action of an unimaginably strong magnetic field.

Although the emission mechanism of pulsars remains incompletely understood

(see § 1.1), the extraordinary rotational regularity of these time beacons has been

explored and exploited since their discovery. Richards & Comella (1969), in mea-

suring the arrival times of pulses from the Crab Pulsar and demonstrating its

slowdown, established the basis of the techniques of pulsar timing widely em-

ployed today and used in this PhD project (see § 1.2–1.3). The remainder of

§ 1 describes more of the nature of pulsars and how they may be used as both

objects and tools of study through timing. § 2 gives results of timing conducted

by matching analytic, noise-free templates to pulse profiles, an approach used

throughout the thesis. In § 3, the assumption of profile stability is tested using

the pulsar PSRJ1022+1001 and others2, to see how instability can affect timing

accuracy. In § 4, the timing data analysed in the earlier chapters is used to calcu-

late an upper limit on the strength of the cosmic gravitational wave background

2PSR stands for ‘pulsating source of radio’ and designates a pulsar. The rest of the name

gives the pulsar’s sky position in hours and minutes of right ascension (RA) and degrees and

arcminutes of declination, using equatorial co-ordinates at the J2000 epoch. Alternative names

are sometimes given using positions, without arcminutes of declination, at the B1950 epoch.
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(GWB), based on the signature in pulse arrival times that would be expected in

the presence of a detectable background. § 5 discusses pulse profile stability and

analytic templates in the context of pulsar timing accuracy and the search for

gravitational waves, using the results of the preceding chapters.

1.1 The complexity and simplicity of pulsars

Pulsars are extremely complex objects, and contain environments not repro-

ducible on Earth. Consisting of increasingly neutron-rich atoms towards their

centres and supported mainly by neutron degeneracy pressure (Shapiro & Teukol-

sky 1983, pp. 1–2), they are so dense that the state of matter in their cores

is unknown (Lyne & Smith 2006, pp. 20–21). Their maximum permitted mass

is therefore uncertain, and may be as high as 3 M⊙ (Solar masses) (Shapiro &

Teukolsky 1983, p. 4); the few accurate measurements of neutron star masses give

a conservative observed range of 1.2–1.9 M⊙ (Janssen et al. 2008; Demorest et al.

2010). Pulsars are surrounded by complicated magnetospheres, but models do

not yet say how these can be filled by the plasma required to produce electromag-

netic radiation (Michel & Li 1999). Charged particles in the magnetosphere are

drawn along and around the magnetic field lines and produce light at frequencies

across the electromagnetic spectrum, including radio waves whose brightness can

only be explained by a coherent mechanism comprising many particles emitting

in phase (Lorimer & Kramer 2005, pp. 54–57). The visible pulses show many puz-

zling phenomena, such as occasionally switching off or nulling for several pulses

(Lorimer & Kramer 2005, pp. 15–16). The propagation of pulses is complicated

by the interstellar medium (ISM). They are spread out in time by dispersion and

scattering, while the interference patterns of scintillation cause bright and dim

patches in time and frequency as seen from Earth. Pulsars are often very weak

emitters, and measuring their pulses is an involved process.

However, many elementary deductions about pulsars have allowed them to
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1.1: THE COMPLEXITY AND SIMPLICITY OF PULSARS

become useful astronomical tools. The case for their being rotating neutron

stars – as detailed earlier in this chapter – is simple, being the only explanation

for their extreme regularity. Their magnetic fields are modelled at first order

as simple dipoles, giving rise to verifiable results such as the PA swing across

the pulse that is seen in many pulsars (Lorimer & Kramer 2005, pp. 75–76).

Their emission beams emanate from their magnetic poles and sweep the Earth at

regular intervals due to misalignment between their rotational and magnetic axes,

leading them to be described as lighthouses or as ticking clocks (Figure 1.3). In

some pulsars, weaker emission called an interpulse is seen halfway between each

main pulse, indicating that both magnetic poles are visible. Their ages and the

strengths of their magnetic fields can be broadly estimated from their rates of

spin and of slowdown, assuming that they lose rotational kinetic energy through

magnetic dipole braking (Lyne & Smith 2006, pp. 59–60); this loss of energy

accounts for their emission, except in the case of magnetars, which give out more

electromagnetic energy at high frequencies than can be explained purely by their

slowdown (Mereghetti 2008).

Pulsars have one of the best, but certainly the simplest, clock mechanisms

imaginable, with such great and concentrated rotating mass that their enormous

kinetic energy means they take a very long time to slow down. The most ac-

curate timekeepers among them are the recycled or millisecond pulsars (MSPs),

which appear to have received angular momentum when accreting material from

companion stars that got too close within their intense gravitational fields. They

spin more quickly and slow down more gradually than the majority of pulsars,

having periods of ∼ 1–100 ms and rates of period increase (slowdown or spin-

down rates3) of ∼ 10−21–10−17, which indicate that their magnetic fields are, at

∼ 104–106 tesla, weaker than those of ‘normal’ pulsars (Lorimer & Kramer 2005,

pp. 26–29). The times of arrival of pulses from MSPs can often be predicted with

3‘Spin-down rate’ is also sometimes used to refer to the rate of decrease of a pulsar’s rotational

frequency, where its frequency is the reciprocal of its period.
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Figure 1.3: A simple impression of a pulsar. The neutron star is at the centre, sur-

rounded by a dipolar magnetic field represented by a two-dimensional cross-section

(blue lines with arrows indicating field direction): the three-dimensional field is a rep-

etition of this with circular symmetry about the magnetic axis. The pulsar’s radiation

beams emerge from the magnetic poles, along the magnetic axis, and are shown sweep-

ing around the rotation axis (figure credit: NRAO/AUI/NSF/B. Saxton).
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an accuracy of . 1 µs over intervals of many years, offering the prospect of making

extraordinarily accurate measurements of any phenomenon that alters the pulse

times of arrival (TOAs).

1.2 Measurement of pulse times of arrival

The TOAs of pulses from pulsars reveal information about the processing equip-

ment and algorithms used to calculate them, the pulsars’ systems, the Solar

System and other physical phenomena affecting the propagation of the pulsar

signals. The information is found by comparing the TOAs to modelled arrival

times which attempt to take these influences into account, using timing software

such as tempo2 (Hobbs et al. 2006).

1.2.1 Recording of pulse profiles

The rapid variation of pulsar emission requires their observational data to be

processed by backends unlike those used for other astronomical applications. Ob-

servatories use hardware and, increasingly, software to manipulate the incoming

signal as a function of frequency and time so that it can be stored in a relatively

compact form suitable for timing.

Polarisation data, rather than simply total intensity, is usually recorded from

a pulsar’s signal. This allows more accurate reproduction of the profile in total

intensity, and also gives polarised profiles which can improve timing precision.

The polarisation components of a signal are generally expressed using the four

Stokes parameters: I, Q, U and V (see e.g. Burke & Smith 2002, pp. 16–20). I is

the total intensity of the signal;
√

Q2 + U2 gives its linearly polarised component;

V gives its circularly polarised component. The unpolarised component of the

signal is
√

I2 − Q2 − U2 − V 2. Each telescope receiver has two feed horns which

are sensitive to orthogonal components of the electric field of the incoming radio

waves in the plane perpendicular to the line of sight. The components in this
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receiver plane may be linear, in perpendicular directions, or circular, in opposite

senses of rotation. This allows the full signal to be measured and converted,

using mixing in hardware or fast Fourier transforms (FFTs) in software (see e.g.

Press et al. 1992, pp. 496–536), into either two products (the magnitudes of the

components) or four (the magnitudes and cross-multiplication terms). The use

of four polarisation channels doubles the demand for data output and storage

but permits the formation of all four Stokes parameters, while the use of two

yields only total intensity and one other parameter but allows a greater signal

bandwidth to be processed with the same equipment. At least two components

are required if the signal is subsequently to be calibrated in polarisation (see

§ 1.2.2).

Dedispersion of the incoming data, prior to final storage, is the most compu-

tationally intensive of the backend processes. A pulsar’s signal is delayed by the

ionised component of the ISM as it propagates to Earth, and the length of the

delay is a function of electromagnetic frequency:

∆t ≃ 4.15 × 106 DM f−2 (1.1)

where f is signal frequency in megahertz, ∆t is signal delay in ms relative to

a electromagnetic wave of infinite frequency and DM is the pulsar’s dispersion

measure (DM) in cm−3 pc, which is the integral of the free electron density along

its line of sight (Lorimer & Kramer 2005, p. 86). Thus the pulse is dispersed in

time across the observational bandwidth. Dedispersion removes the delays in the

observed data relative to the central observing frequency so that integration of the

data with respect to frequency would represent the summation of photons which

left the pulsar at the same time, allowing consistent timing using the whole band-

width. The incoming signal is first down-converted to a lower frequency so that

it can be sampled. It is usually then divided into a number of frequency channels,

each containing an integration of the signal over a section of the bandwidth, using

a hardware or software filterbank. The latter requires FFTs of the signal from
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each feed horn sampled at the Nyquist rate over short, preferably overlapping

periods of time, each at least as long as the reciprocal of the desired channel

bandwidth, which are each divided up according to frequency and transformed

back into separate time series. Longer FFTs reduce the problem of spectral

leakage, in which finite FFT length causes signal power near channel edges arti-

ficially to spread into two channels; multiplication by a tapering function, which

decreases values at the ends of the FFTs, may be used for the same purpose (van

Straten 2003). A software filterbank necessitates computation and coarsens the

time resolution to the Nyquist sampling time for the channel bandwidth, but pro-

vides greater flexibility in the number and width of the channels and also enables

the four polarisation products to be found from the FFTs without significant fur-

ther effort. Incoherent dedispersion then simply involves applying an appropriate

delay to the time series of each frequency and polarisation channel, according

to the previously calculated DM of the pulsar. This does not remove dispersion

within each frequency channel and so leaves the pulse profile slightly ‘smeared’

in time, but it is effective with channels of narrow frequency width and pulsars

of low DM. Coherent dedispersion (Lorimer & Kramer 2005, pp. 114–120) uses

all available frequency information to correct dispersion in the frequency domain

with a resolution limited only by computational power and storage space. In

this method, overlapping FFTs of the Nyquist-sampled signal in each frequency

channel are multiplied by a frequency-dependent chirp function. This alters the

complex phases of the FFT values in order to remove dispersive delays within the

channel, and simultaneously applies a tapering function to the complex ampli-

tudes of the FFTs to inhibit the aliasing of undersampled frequencies above the

top of the intended observing band that may be present in the signal. The four

dedispersed polarisation products can then be found easily from these FFTs. For

Nyquist-sampled data, each FFT must come from a time series at least twice the

length of the dispersive delay across the channel bandwidth, with longer FFTs

increasing frequency resolution but requiring more computation. Delays are ap-
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plied to the inverse FFTs of the dedispersed channels to complete the coherent

dedispersion process, and the reconstructed time series are recorded. It is pos-

sible to achieve the same result without first dividing the signal into frequency

channels, by applying a chirp function to FFTs of the full-bandwidth signal us-

ing time series that are at least twice the length of the dispersive delay across

the bandwidth, after which channels can be formed from the same FFTs. This

requires more processing power and memory than coherent dedispersion of chan-

nels produced in software due to the finer time resolution of the signal, but it

also achieves finer frequency resolution (Jenet et al. 1997). Dedispersion is more

accurate done coherently than incoherently, but requires more computing power

as DM and bandwidth increase and as observing frequency decreases. Although

the Nyquist-sampled signal may be recorded for later coherent dedispersion, most

systems save storage space by dedispersing during the observation. This is usu-

ally done with parallel computer central processing units, but graphics processing

units are now used at the Nançay observatory in France as their intrinsic par-

allel structure lends itself to the simultaneous dedispersion of multiple channels

(Cognard et al. 2009). The DM of an individual pulsar is not normally strongly

time-dependent, but is subject to small variations that can subtly alter profile

shape by introducing misalignment into the frequency-scrunching process (see

§ 3.1.2).

The magnetic field in the line of sight to a pulsar also causes the ionised

component of the ISM to rotate the signal’s PA by a frequency-dependent angle,

∆PA, which is most easily written in terms of electromagnetic wavelength, λ, in

metres:

∆PA = RM λ2 (1.2)

where RM is the pulsar’s rotation measure (RM) in radm2, which is the integral

of the free electron density multiplied by the parallel magnetic flux density along

its line of sight (Lorimer & Kramer 2005, p. 88). RM can be measured, and the

relative rotation between observing frequencies reversed, analogously with DM
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(Lorimer & Kramer 2005, pp1̇87–189). This derotation is necessary in order to

plot relative PA as a function of pulse phase (see § 1.1).

The data storage required to keep profiles for timing is significantly reduced

by a form of time integration called folding. After dedispersion, the pulsar signal

consists of a time series for each frequency and polarisation channel. Ephemerides

of the pulsar and the Solar System are used to convert the epoch of each time

sample to a pulse phase corresponding to the rotational phase of the pulsar; the

phases are then binned at a resolution typically well below Nyquist sampling, and

the intensity values within each phase bin are summed for a length of time greater

than the pulse period, typically seconds to tens of seconds. The result is a profile:

a time-integrated pulse as a function of phase over a number of rotations of the

pulsar, which can also be seen as a time series folded modulo the topocentric

pulse period or folding period. A profile is, essentially, an average pulse over

exactly one period, unique in shape to each pulsar. It may be expressed as a

function of phase or time, but the use of phase avoids ambiguity since the length

of received pulses in time changes according to the ephemerides. Different profiles

are formed at different frequencies and using different polarisation products, but,

if these quantities are fixed, the shape of profiles consisting of several thousand

pulses is generally stable in time for a given MSP (Liu et al. 2010, in prep.) Highly

accurate timing depends on this stability and also, therefore, on the ability to

fold with an accurate topocentric period.

The output of a single observation is stored digitally as a three-dimensional set

of folded pulse profiles of different epochs, observing frequencies and polarisations

which can be manipulated individually and recombined at will. This provides

important flexibility in the production of composite profiles. Dedicated software,

such as psrchive (Hotan et al. 2004), is used to view, process and time these

profiles.
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1.2.2 Processing of pulse profiles

Recorded profiles undergo further processing before they are used for timing.

Profiles severely afflicted with radio-frequency interference (‘noise’) are removed

or set to zero intensity, either through inspection or automatic recognition. Au-

tomatic processes excise ‘bad’ profiles by comparing their total flux (intensity) to

those around them in frequency and time: narrowband excision erases a profile if

its flux is much greater than the mean4 flux of profiles taken within the observ-

ing bandwidth at the same time; broadband excision deletes profiles across the

bandwidth from a particular time if their integrated flux is much greater than the

mean frequency-integrated flux of the profiles near to them in time. The remain-

ing uniform baseline of noise is normally then subtracted from profiles such that

the mean intensity in the off-pulse region is zero, although this is not strictly nec-

essary. The off-pulse region, where there is considered to be no pulsar emission,

is determined from a profile of high signal-to-noise ratio (SNR). The uncertainty

in each profile bin, δP , is taken to be the root-mean-square (RMS) of the values

of profile intensity, P , in the off-pulse region after baseline subtraction:

δP =

√

√

√

√

1

Noff − 1

Noff
∑

j=1

P 2
j (1.3)

where Noff is the number of bins in the off-pulse region and j indicates bin number

within this region from 1 to Noff.

Many pulsars emit highly polarised radio waves, so calibration of the dif-

ferently polarised profiles recorded in an observation can be important for the

accurate reproduction of the true profile shape in total intensity, as well as in

the other Stokes parameters. This amounts to calibration of the two feed horns

of a telescope receiver. At some telescopes, a short observation of a polarised

4Throughout this thesis, “mean” refers to the arithmetic mean, given by z̄ = 1
H

∑H

h=1 z
h

for any set z consisting of H members, while “error-weighted mean” is given by

z̄ =
(

∑H

h=1
zh

(δz
h
)2

)/(

∑H

h=1
1

(δz
h
)2

)

for uncertainty δz
h

in member z
h
. The words “error”

and “uncertainty” are used interchangeably.
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artificial signal is taken just before or after each pulsar observation and stored

separately from the associated profiles. This can then be used to calibrate the

profiles for differential gain and phase between the horns at their epoch if there

are four polarisation channels, or for differential gain alone if there are two. Some

observatories, such as that of the Parkes radio telescope in Australia, also cor-

rect for subtle systematic cross-contamination between polarisations arising from

slight non-orthogonality between horns and receiver ellipticity (van Straten 2004).

For linear feeds observing a pulsar of non-uniform polarisation, non-orthogonality

will alter the profile shape in Q, U and I, while ellipticity will not affect I but

will mix Q and V . This can be modelled and corrected using observations at

different epochs where, for a given source, the rotational phase of the receiver

plane about the line of sight will be different (van Straten 2004). This phase is

known as parallactic angle, and its variation alters the relative amplitudes and

phases of radiation picked up by the horns and hence the instrumental response.

Equatorially mounted telescopes, like the Westerbork Synthesis Radio Telescope,

minimise the need for calibration by maintaining a constant parallactic angle for

each source.

Since a pulsar’s DM varies by small amounts between observations, timing at

very high precision sometimes requires it to be measured regularly so that suffi-

ciently consistent TOAs can be generated at different frequencies. The variations

are often too small to be noticeable in the shape of a single frequency-scrunched

profile, but large enough to offset TOAs produced from profiles at widely spaced

frequencies. Timing using at least two frequencies allows the DM to be fitted

using the dispersion law of Equation 1.1 (Lorimer & Kramer 2005, p. 87). These

DM corrections can then be applied when the (usually larger) delays are removed

relative to infinite frequency during the final timing process. Alternatively, time

derivatives of DM can be fitted when timing a set of TOAs produced using mul-

tiple frequencies.

A TOA is usually obtained from a ‘scrunched’ profile, which is a high-SNR
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integration in time, observing frequency and polarisation of a number of observed

profiles. Time-scrunching uses ephemerides to fold the constituent profiles cor-

rectly, while frequency-scrunching employs the pulsar’s DM to do the same. The

resulting profile will normally span contiguous ranges of time and frequency cov-

ering one complete observation, although scrunching is possible over large and

interrupted ranges and is limited only by the quality of the ephemerides used

and the variation of DM with time. It may be used, for example, to produce a

particularly high-SNR profile as the basis for a template. Polarisation-scrunching

gives profiles in total intensity by adding in quadrature the two polarisation chan-

nels containing the signal magnitudes from each feed horn. Profiles are usually

timed in total intensity, although for some pulsars it can be advantageous to use

combinations of several Stokes parameters (see e.g. Britton et al. 2000).

1.2.3 Determination of pulse times of arrival by the match-

ing of integrated profiles to templates

The determination of an individual TOA from an observed profile is based on the

assumption that each profile from a single pulsar is a shifted, scaled and noisy

version of a template which does not change as a function of time and upon which

its characteristic shape allows a fiducial ‘phase of arrival’ to be defined. Matching

between template and profile uses the information from all constituent pulses to

identify the phase of arrival on the profile, with an error estimate. The TOA and

its uncertainty are then calculated for the first pulse within the profile using the

epoch at the beginning of the observation and the folding period at that epoch.

TOAs and epochs are usually recorded as a Modified Julian Date (MJD), which

is expressed in days from the reference epoch of this system.

The template is considered to be an ideal pulse, and is therefore based on

a high-SNR profile. The off-pulse region is typically set to constant intensity

(usually zero), and the pulse itself may be smoothed to reduce noise. A synthetic
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template, consisting of an analytic fit to a profile, may be preferred in order to

minimise noise. In this case, the template is a sum of either Gaussian or von

Mises functions, which are generally suitable for representing profile components

(see § 2). Such a template can be reproduced with any number of phase bins,

and the component functions can usually be adjusted in amplitude and width

to give phase-aligned templates at nearby frequencies in cases where the profile

shape changes measurably across the observational bandwidth (see § 2.2.2−2.2.3).

The phase of arrival is often defined as the tip of the highest or sharpest profile

feature.

Template-matching algorithms commonly employ the method described by

Taylor (1992). The relationship between the intensities of profile, P , and tem-

plate, T , is taken to be:

P (t) = a + b T (t − τ) + G(t) (1.4)

where G is the random noise element in the profile, which is assumed to be

Gaussian but is not known a priori. P , T and G are discretely and uniformly

sampled functions of t, where t can be expressed as either phase or time and

covers exactly one folding period. a, b and τ are constants to be calculated from

the template-matching, giving the transformations between profile and template:

a is the intensity shift; b is the intensity scaling factor; τ is the phase or time shift,

expressed in the same units as t. When applying the shift τ , it is assumed that

T is periodic in time. The initial value of t is arbitrary: if it is set to the starting

epoch of the observation, and the fiducial phase is expressed as a time t = tfid

using the folding period at that epoch, then the TOA will be equal to tfid+τ . The

values of b and τ are fitted in the frequency domain by minimising the goodness-

of-fit statistic χ2 for the discrete Fourier transforms of P (t) and bT (t − τ). The

complex value of the transform of P (t) in bin q is written in exponential form as

P ′
q exp(θq

√
−1), and that of T (t) similarly as T ′

q exp(φq

√
−1), where all values of

P ′, θ, T ′ and φ are real. This statistic can be expressed explicitly in terms of b
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and τ without quantisation of τ or interpolation of the discrete transforms. τ is

found iteratively by solving the equation:

Nbin/2
∑

q=1

q P ′
q T ′

q sin(φq − θq − qτ) = 0 (1.5)

where Nbin is the number of bins in the profile (assumed to be equal to the

number in the template) and q is transform bin number from 0 to Nbin −1. b can

be calculated directly once τ is known:

b =





Nbin/2
∑

q=1

P ′
q S ′

q cos(φq − θq − qτ)





/





Nbin/2
∑

q=1

T ′2



 (1.6)

a can then be computed directly from the zeroth bins of the transforms:

a =
P ′

0 − b T ′
0

Nbin

(1.7)

One-sigma uncertainties in b and τ are taken to be the excursions of these quan-

tities about their fitted values which increase the value of χ2(b, τ) by 1, providing

an uncertainty for the TOA based on the effect of Gaussian profile noise, δP (see

§ 1.2.2). The uncertainty in τ is:

δτ = δP

/

√

√

√

√2 b

Nbin/2
∑

q=1

q2 P ′
q T ′

q cos(φq − θq − qτ) (1.8)

The uncertainty in b is:

δb = δP

/

√

√

√

√2

Nbin/2
∑

q=1

T ′2 (1.9)

This fitting method has been found to yield higher accuracy in template-matching

than time-domain techniques, which involve interpolation of the time series T .

TOAs and their uncertainties can be modified after template-matching. Cor-

rections to individual observatory clocks, which are used to determine the epochs

of observations, are regularly applied to TOAs in order to convert them to the
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international atomic time standard Temps Atomique International (TAI)5. A con-

stant time offset, or jump, may be applied to a set of TOAs to compensate for a

uniform delay with respect to another set of TOAs. Such a delay can arise from

the use of non-phase-aligned templates, different fiducial phases on the templates

or the effects of different observing equipment. DM corrections can be fitted

across short periods of time where there are TOAs of different observational fre-

quencies. This alters the dispersive delays which will be taken into account when

timing software is used to transform each TOA from its central frequency to in-

finite frequency for comparison with a timing model. Clock corrections, jumps

and DM corrections are applied at the time of TOA-fitting in tempo2. If a

fit of TOAs shows residuals with a larger or smaller RMS value than expected,

their error bars may then be altered to reflect this. They can be multiplied by

a constant factor, Efac, if the template-matching uncertainty is found to have

been systematically underestimated or overestimated, and they can be added in

quadrature to a constant additional uncertainty value, Equad, if a source of error

independent of profile noise is found to be associated with the TOAs (see § 2.3).

1.3 Calculation of physical quantities from pul-

sar timing

In order to derive measurements from pulsar timing, a model is constructed of

when pulses are expected arrive, based on whatever factors are known or believed

to produce patterns in the TOAs. These parameters are then fitted using the real

TOAs with software such as tempo2, leaving the fundamental timing quantity,

5Observatories generally record daily corrections to their local time standards from the

Global Positioning System. This can itself be corrected to TAI daily from the tables

of Circular T, a regular publication by the Bureau International des Poids et Measures:

http://www.bipm.org/jsp/en/TimeFtp.jsp?TypePub=publication
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the residual:

Residual = TOAreal − TOAmodel (1.10)

The fit attempts to minimise the RMS of the error-weighted residuals using the

TOA uncertainties derived from Equation 1.8. The parameters of the model

are then considered to have measured values, but it is the residuals which con-

tain information about anything not in the model and give an indication of the

reliability of the parameters and their uncertainties. Many pulsars exhibit un-

modelled effects in their residuals, either due to instrumental error, intrinsic pulse

shape variability (see § 3), effects of signal propagation or intrinsic rotational in-

stability (‘timing noise’) (see § 2.3.4). These manifest themselves as correlated

(non-Gaussian) residuals, showing some pattern but not one able to be fitted to

any of those predicted by the timing model.

1.3.1 Pulsar system and Solar System parameters

This sub-section uses information from Lorimer & Kramer (2005, pp. 205–225),

Edwards et al. (2006) and Hobbs et al. (2009) throughout. A timing model

includes parameters that can be classified as spin, such as rotation period, astro-

metric, such as position, and binary, such as orbital period, should the pulsar be in

a binary system and therefore orbiting a binary barycentre (BB). The model also

makes use of Solar System parameters and signal DM to predict TOA variations.

If a set of parameter values can be found which results in the timing residuals

having an uncorrelated distribution comparable to the TOA uncertainties, then

the parameters are considered measured to the degree of accuracy permitted by

those uncertainties.

The spin parameters are fitted by a Taylor expansion of pulse number as a

function of time, using pulse number and its time derivatives at a given epoch in

the past, t = 0:

N(t) = N
0

+ ν
0
t +

ν̇
0
t2

2
+

ν̈
0
t3

6
+ ... (1.11)
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where N is pulse number, spin frequency is ν = dN
dt

, dots indicate further time

derivatives (i.e. ν̇ = d2N
dt2

, ν̈ = d3N
dt3

etc.) and subscript 0 indicates values at t = 0.

An inaccurate value of spin frequency will thus produce a linear slope in timing

residuals, an inaccurate value of slowdown rate will produce a quadratic slope

and subsequent terms will produce successively higher-order polynomials. More

accurate timing and a longer span of TOAs allows more terms to be calculated

and improves the precision of those known. For most pulsars, terms from ν̈

onwards are too small to be measured using current instruments over the time

spans so far available.

The use of Solar System and non-spin pulsar parameters can be regarded as

corrections from the non-inertial observatory frame of reference to the pulsar’s

own reference frame, which then allow determination of the spin parameters.

The required overall correction to transform TOAs measured at an observatory

to those from which spin parameters can be found may be expressed as:

∆t = ∆C − ∆D + ∆G + ∆A + ∆S + ∆E (1.12)

where ∆t is the TOA correction, ∆C is a clock correction, ∆D is a dispersion

correction, ∆G is the geometric propagation delay, ∆A is the aberration delay, ∆S

is the Shapiro delay and ∆E is the Einstein delay. These corrections are built

into the fitting procedure of tempo2, although they are not all always fitted.

∆C encompasses the corrections made to observatory time to bring it into

line with TAI (see § 1.2.3). ∆D is the correction made during dedispersion to

account for frequency-dependent signal propagation delays. ∆G describes the

classical signal travel time change due to the Earth’s orbital motion about the

Solar System barycentre (SSB) and the secular and orbital motion of the pulsar

with respect to the SSB. Using R as the Earth → pulsar position vector at the time

of observation, r as the SSB → Earth position vector at the time of observation

(t = tobs), R0 as the SSB → BB position vector at a fixed reference time in the

past (t = 0), k as the displacement of the BB between the reference time and
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the time of observation and b as the BB → pulsar position vector at the time of

observation (all objects being considered to be at their apparent positions as seen

from Earth at the TOA), the relation:

R = R0 + k + b − r (1.13)

can be used to write the geometric propagation delay, ∆G = (|R0| − |R|)/c
(where c is the speed of light), as a Taylor series:

∆G ≃ r‖ − k‖ − b‖
c

+
1

c|R0|

(

−|r⊥|2
2

− |k⊥|2
2

− |b⊥|2
2

+ r⊥.k⊥ + r⊥.b⊥ − k⊥.b⊥

)

(1.14)

where x‖ = x . R0 and x⊥ = x × R0 for any vector x. Figure 1.4 is a

diagram of the vectors in Equation 1.13. Higher-order terms are smaller, but

may be included for greater accuracy if their contributions are detectable. Terms

involving r and b can be measured by the sinusoidal patterns they produce in

timing residuals. r is normally considered known and is based on an existing

ephemeris, so
r‖
c
, the Römer delay, allows the position of the pulsar to be deter-

mined. Recently, however, Champion et al. (2010) fitted the position of the SSB

itself in order to measure planetary masses in the Solar System. tempo2 allows

b to be fitted with more than one binary model. The two most commonly used,

referred to as BT (Blandford & Teukolsky 1976) and DD (Damour & Deruelle

1986), incorporate relativistic effects. For close, regular pulsars, − |r⊥|2

2c|R0|
, the par-

allax delay, can be measured and provides a precise distance value. Because k

is not generally periodic in time, the contribution of −k‖

c
is lost in fitting to the

apparent spin period, while that of − |k⊥|2

2c|R0|
is similarly subsumed into the spin

period time derivative, making it appear higher than its intrinsic value in the case

of constant transverse velocity between the SSB and BB (the Shklovskii effect);

if there is radial acceleration of the BB relative to the SSB due to an external

gravitational field, the apparent spin period time derivative may be higher or

lower than its intrinsic value. Transverse secular motion, k⊥, may eventually be

observed through a change in the direction of R0 or through the coupling of k
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k b
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0

SSB
Earth (t = tobs)

Pulsar
(t = tobs)

BB (t = 0) BB (t = tobs)

Figure 1.4: Diagram of Earth and pulsar systems (not to scale), showing the vectors

used in Equations 1.13–1.14 to calculate the geometric propagation delay. The reference

time is t = 0 and the time of observation is t = tobs.

to other vectors in the higher-order terms of Equation 1.14; with next-generation

telescopes, contributions of still higher order will be accessible for many pulsars,

allowing the full determination of distance, secular velocity and binary motion to

high accuracy.

∆A allows for Lorentz transformation of the pulse beam’s direction and time of

emission between the pulsar and observatory reference frames, which is periodic

over time in the case of a binary pulsar. ∆S removes the effect of relativistic
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signal deflection due to passage through the gravitational fields of massive bodies

between the pulsar and the Earth, notably any pulsar companion and the larger

bodies in the Solar System, which alter the space-time path of the signal. ∆E

subtracts two effects: the first is the general relativistic time dilation caused by

the gravitational fields of the Solar System (including Earth) and of the pulsar’s

companion, which slow down time at the observatory and the pulsar respectively

relative to time outside these fields; the second is the special relativistic time

dilation caused by the orbital motions of the pulsar, if it is in a binary orbit, and

of the Earth.

The overall impact of the corrections summarised in Equation 1.12, ideally, is

to transform the observatory-measured TOAs into TOAs as measured by a perfect

observing clock in the pulsar’s frame of reference but subject to no gravitational

field, the measured signals having been emitted from within the gravitational field

of the pulsar alone and having propagated to the observer without aberration,

deflection or dispersion.

1.3.2 Gravitational wave detection using pulsar timing ar-

rays

This section uses information from Misner et al. (1973, pp. 943–954) throughout.

General relativity predicts that non-spherically symmetric accelerations of mass

– in orbiting binary systems, for example – will lose kinetic energy in the form of

quadrupolar gravitational radiation (and, to a lesser extent, in higher multipoles),

which manifests itself as sinusoidally oscillating, propagating distortions of space-

time separable from familiar non-propagating gravitational fields in regions where

the static field is weak. These gravitational waves propagate at the speed of

light and periodically ‘stretch’ and ‘squash’ space perpendicular to their direction

of motion. The maximum amplitude, or strain, of a gravitational wave, h0, is

expressed as the maximum fractional change in any length of space subject to
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the wave:

h0 =
Lmax − Lmin

L0

(1.15)

where L0 is the length of the space in the absence of the wave and Lmax and

Lmin are the maximum and minimum lengths of the space due to the wave. The

time-variable amplitude of the wave, h(t), can be written in a familiar form if

h0 ≪ 1:

h(t) = h0 sin

(

2πz

λ
− 2πft

)

(1.16)

where z is distance in the direction of propagation, t is time, λ is wavelength

and f is wave frequency. An illustration of the effects of the two orthogonal

polarisations of a quadrupolar gravitational wave on a circular ring of points in

the plane perpendicular to their direction of propagation is shown in Figure 1.5.

If this ring has an initial radius r, and the perpendicular axes of its later ellipses

have time-variable lengths a(t) and b(t), then these quantities are related by:

a(t) = r

(

1 − h0

2
sin(2πft)

)

(1.17)

and:

b(t) = r

(

1 +
h0

2
sin(2πft)

)

(1.18)

Binary systems produce gravitational radiation predominantly at a wave fre-

quency of twice their orbital frequency, while violent events such as supernovae

produce bursts of waves. Current ground-based interferometers, such as LIGO

(Laser Interferometer Gravitational-Wave Observatory) and the future spaced-

based interferometer LISA (Laser Interferometer Space Antenna), aim to de-

tect gravitational waves in the approximate frequency ranges ∼ 0.01–1 kHz and

∼ 1–100 mHz respectively. Since gravitational waves should change the path

length of pulsar signals as they propagated to Earth, pulsar timing can, in princi-

ple, be used to detect them. Detweiler (1979) first assessed the prospects of using

pulsar timing residuals to observe gravitational waves of much lower frequency,

∼ 3–30 nHz, corresponding to periods of ∼ 1–10 years. The periodic effects of
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Figure 1.5: The effect of quadrupolar gravitational waves of orthogonal polarisations

on a circular ring of points over one wave period. The polarisations differ by a rotation

of π/4 radians (45 ◦). The direction of wave propagation is perpendicular to the plane

of the ring (figure credit: LSU/S. Merkowitz).

higher- and lower-frequency waves would be largely lost in residual noise or in

the fit for effects of the Earth’s orbit on TOAs, but, by keeping timing residuals

low over years of observations, these long-period waves might be detectable using

stable MSPs.

The best prospects may come not from single, strong bursts of waves creating

clear residuals, but from a stochastic background of sources producing a ‘red’

residual noise signature, which is one containing more power at lower frequencies

(Jenet et al. 2005). A number of calculations have been made, using years of

observations from one or more pulsars, constraining the energy density of this

background from the expected major sources of coalescing massive black hole

binary systems and a cosmic GWB due to the decay of cosmic strings and the

production of ‘relic’ waves in the early Universe (Jenet et al. 2006). Propagating

spatial distortions at both a pulsar and Earth would alter the total path length of
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the pulsar’s signal and so contribute to the timing residual, but the contribution

at Earth would be correlated across all observable pulsar residuals, suggesting

that correlated timing in the form of a pulsar timing array (PTA) would be the

most sensitive pulsar gravitational wave detector (Hellings & Downs 1983).

Three timing projects now collaborate in an International Pulsar Timing Ar-

ray (IPTA) (Hobbs et al. 2010), which brings together high-quality MSP obser-

vations from all over the World: the European Pulsar Timing Array (EPTA)

(Janssen et al. 2008), the North American Nanohertz Observatory for Gravita-

tional Waves (NANOGrav) (Jenet et al. 2009) and the Parkes Pulsar Timing

Array (PPTA) (Manchester 2008). This may make a gravitational wave detec-

tion before the next generation of radio telescopes is operational, by using not

only combined observations but also, in the case of the EPTA initiative known

as the Large European Array for Pulsars (LEAP), phase-correlated observations

to increase sensitivity (Ferdman et al. 2010). Currently, PTA observations are

used to place upper limits on the background of gravitational waves permeating

the Universe. These are described as maximum values of a dimensionless ampli-

tude, A, which is the total strain due to gravitational waves, hc, at a frequency

of 1 yr−1. This value depends on the power spectrum of the waves, characterised

by a spectral index α:

hc(f) = A

(

f

yr−1

)α

(1.19)

Jenet et al. (2006) gave a range of 10−15 < A < 10−14 due to massive black holes,

as predicted by various theoretical models for which α = −2/3. The empirical

upper limit on the strength of the GWB with this spectrum was given by Jenet

et al. (2006) as Amax = 1.1 × 10−14, just above the top of this range.
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2

Pulsar timing with analytic

templates

It is increasingly clear from high-precision pulsar timing results that the combi-

nation of data from many of the World’s largest radio telescopes is a necessary

step towards targets such as gravitational wave detection with the current gener-

ation of instruments (Hobbs et al. 2010) (see § 1.3.2). Phase alignment of timing

templates across different frequencies and telescopes is important in attempt-

ing to create seamless TOA sets using all available high-quality data. Analytic

templates, described by algebraic equations, are simple, flexible and noise-free,

and can be used on different data sets and adapted to different frequencies while

maintaining good phase alignment. They also allow the subtleties of pulse profile

shapes to be quantified and studied. They are, nevertheless, an approximation

to reality, and their adaptability has limits.

For this chapter, Gaussian templates (see § 1.2.3) were assessed by employing

them to time four MSPs used in PTAs, with profiles produced at three different

telescopes at widely separated observing frequencies. The TOAs were combined

with pre-existing TOAs that had been created using conventional high-SNR tem-

plates and profiles from a further three telescopes. Gaussian templates attempt
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to replicate real pulse profile components and are analytic, having the form:

T (x) =

Ngauss
∑

g=1

age
−(x−bg)2

2c2
g

(2.1)

where x is profile phase, g is an integer indicating Gaussian component number

from 1 to Ngauss and a, b and c are the parameters of the Ngauss components.

2.1 Production of Gaussian pulse templates

2.1.1 Observations

Gaussian templates were fitted semi-automatically to coherently dedispersed pro-

files of PSRJ1022+1001 recorded at the Effelsberg, Parkes and Westerbork radio

telescopes (see § 2.1.3). The same was done for coherently dedispersed profiles of

PSRJ1713+0747, PSRJ1857+0943 and PSRJ1939+2134 observed at Effelsberg.

For the latter three pulsars, the templates were used to produce TOAs which

were combined with pre-existing TOAs obtained from the Arecibo, Lovell (Jod-

rell Bank), Nançay, Parkes and Westerbork radio telescopes. The Arecibo and

Jodrell profiles were incoherently dedispersed, the others coherently dedispersed.

All the telescopes are of 100-m class, with diameters or equivalent diameters of

305 m at Arecibo (or less, depending on the angle of the dish to the line of sight to

a source), 100 m at Effelsberg, 96 m at Westerbork, 94 m at Nançay, 76 m at Jod-

rell Bank and 64 m at Parkes. Of the profiles studied and used for timing, those

from Effelsberg came from total observational bandwidths of 45 MHz centred on

863 MHz, 56 MHz centred on 1410 MHz and 112 MHz centred on 2695 MHz; those

from Parkes came from two bands of 48 MHz each in width, centred on 1341 MHz

and 1405 MHz; those from Westerbork came from a bandwidth of 160 MHz cen-

tred on 1380 MHz (see § 3.2.1 for further details of the processing instruments

used). Profiles at around 1400 MHz formed the great majority of data examined.

Profiles were processed before being used to create Gaussian templates or
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being timed with them. Those from Effelsberg were calibrated for differential

gain using Effelsberg’s own software, while those from Parkes were calibrated

for differential gain and phase and, for one receiver, instrumental imperfections

(see § 1.2.2 and § 3.2.2) using the psrchive data reduction suite. The Effelsberg

software performs the same basic polarisation calibration functions as psrchive,

without receiver calibration but with the additional capability to calibrate profiles

containing two polarisation channels (see § 1.2.1), such as many of those recorded

at Effelsberg. The band edges of the Parkes data were excised due to low sensitiv-

ity to these frequencies, leaving the bandwidth quoted above. At Effelsberg and

Westerbork, this had already been done. Individual frequency channels which

contained noise or were instrumentally defective were identified by eye and re-

moved from individual Effelsberg observations. Some additional clock corrections

were manually added to the Effelsberg data, where mistakes had been made in

producing the standard clock corrections; this was checked among all the pulsars

to ensure consistency. Once TOAs had been produced, those which were subject

to apparent instrumental errors were removed, as were any with an uncertainty

above 15 µs. The latter condition was imposed because large uncertainties are

underestimated by their calculation procedure, as shown in Figure 2.1.

2.1.2 Advantages and disadvantages of Gaussian templates

When producing TOAs, template-matching assumes that a template is a perfect

representation of the pulse profile with which it is correlated (Taylor 1992). If a

template is a high-SNR profile, however, it will contain instrumental noise which

violates this assumption. In particular, if the constituent profiles of the template

are timed with that template, the common noise components may correlate, re-

sulting in underestimated TOA uncertainties (Liu et al. 2010, in prep). Although

the effects of template noise are small for high-SNR templates, smoothing is desir-

able to remove it. Gaussian template-fitting provides a simple and robust method
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Figure 2.1: TOA residual as a function of TOA uncertainty for PSRJ1022+1001,

shown for uncertainties up to 20µs (left) and up to 100µs (right). Below an uncertainty

of about 20µs, the distribution of residuals is consistent with the uncertainties. Above

it, the uncertainties increasingly underestimate the residuals, necessitating a maximum

error cutoff when timing. These data were produced using Gaussian templates, but the

underestimation is a general result when template-matching to low-SNR profiles.

to produce a noise-free template, which often produces better results than other

forms of smoothing such as the removal of high spatial frequencies. Because pulse

components resemble the Gaussian template components, it is usually possible

to fit fine pulse features without fitting noise. Where only a relatively low-SNR

profile is available, such as in the case of a weakly detected or recently discovered

pulsar, a noise-free fit is especially useful.

Perhaps the greatest advantage of Gaussian templates is that they are adapt-

able, because they are characterised by just a few well-defined components. As

well as being usable with profiles from different telescopes (see § 2.2.1), the pa-

rameters of the Gaussians can be used to check whether profiles have systematic
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differences between those telescopes. If the component centres are kept fixed,

they can take advantage of the smooth evolution of profiles with emission fre-

quency to model those changes by a similarly smooth variation in component

widths and relative heights, ideally resulting in phase-aligned templates at dif-

ferent observing frequencies (see § 2.2.2–2.2.3). This adaptability can reduce or

eliminate the need for the offsets, known as jumps, that as are normally required

between TOAs produced using different templates (see § 1.2.3).

Gaussian templates, while they fit the pulsars investigated here well, do not

always allow a sufficiently accurate representation of a pulse profile using a rea-

sonable number of components. The general shape of PSRJ0437−4715, for ex-

ample, and in particular its so-called notches (Figure 2.2) (Navarro et al. 1997),

are difficult to fit adequately in a high-SNR profile using even 30 Gaussian com-

ponents (Liu 2009, personal communication), although Gangadhara & Thomas

(2008) successfully used 11 components to fit a profile of lower SNR in which the

notches were not discernible. It also cannot be shown that there is a uniquely de-

fined optimum Gaussian fit to any specific profile. Each template component does

not necessarily correspond to a single physical profile component, so quite differ-

ent components may be used to produce multiple reasonable fits to a complex

profile. The initial parameters of components affect the outcome of automated

fitting, and it is up to the judgement of the user to decide which apparent profile

features should be fitted and which are instrumental or the result of noise. If

spurious features are fitted, systematic timing artefacts may be introduced. For

these reasons, it is best to fit a Gaussian template to a high-SNR profile, and to

use as few components as give a reasonable correlation between the two.

2.1.3 Fitting procedure

Gaussian templates were fitted to profiles using the interactive bfit programme,

written in fortran77 by Michael Kramer and described (in all but name) by
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Figure 2.2: A profile of PSRJ0437−4715 at 1405MHz from Parkes, showing two

notches immediately around 250 ◦ of phase. These features are among several in the

profile that are difficult to fit using Gaussian components. The integration time of the

profile is 64 minutes and the bandwidth is 48MHz.

Kramer et al. (1994). The subject profile is first loaded and can be shifted and

scaled in amplitude and shifted in phase as desired. The user then selects an

initial template component position, height and width to correspond approxi-

mately to what appear to be real pulse components. Further components may

be added, and the user can, at any point, view the summed template, individual

numbered template components and profile, overlaid in any combination. Once

enough components are considered to be roughly in place, they can be automat-

ically fitted to the profile by either a downhill simplex or Levenberg-Marquardt

algorithm (Press et al. 1992, pp. 408–412, 683–688) in order to converge on a

better template. The former is often best used first, before refinement using

the latter. The previous fitting step can be undone if the fitting algorithm is

52 HIGH-PRECISION PULSAR TIMING



2.2: TESTS OF THE VERSATILITY OF GAUSSIAN TEMPLATES

found to have become unstable and produced a divergent template solution. The

residuals between profile and fitted template can be viewed in order to decide

where further components may be needed. These are then added manually and

the fitting process is repeated. The reduced chi-squared of the template about

the profile can be viewed, and new components added and fitted until it is suffi-

ciently close to 1 to satisfy the user. For this work, a template producing a value

of between 1 and 1.05 was considered acceptable, as long as the residuals also

resembled the off-pulse profile noise and showed no significant structure. Figure

2.3 shows the 7-component Gaussian template fitted to a high-SNR Effelsberg

profile of PSRJ1713+0747 observed at 1410 MHz, which was used to time the

other Effelsberg profiles.

Any parameters of any template components can be kept fixed in a fit using

bfit. Frequency adaptation was achieved by loading a template produced at one

frequency and fitting it to a profile produced at another, keeping the Gaussian

component centres fixed (see § 2.2.2).

2.2 Tests of the versatility of Gaussian templates

Gaussian template adaptation and timing were conducted using PSRJ1022+1001,

PSRJ1713+0747, PSRJ1857+0943 and PSRJ1939+2134 in order to test the

flexibility of Gaussian templates discussed in § 2.1.2. This provided tests of their

ability to produce consistent results across telescopes and to be adaptable to

different observing frequencies.

2.2.1 Timing of pulse profiles from multiple telescopes us-

ing common templates

The quality of timing obtained using the same Gaussian templates with profiles

from Effelsberg, Parkes and Westerbork was investigated using PSRJ1022+1001.
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Figure 2.3: The Gaussian template of PSRJ1713+0747 at 1410MHz, with the num-

bered components overlaid on the black summed template (top), and the template

overlaid on the profile to which it was fitted (bottom). The top panel is a screenshot

from bfit.
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Because this pulsar is subject to strong scintillation (Hotan et al. 2004) which can

vary its SNR across the observational bandwidth, it was timed using profiles of full

bandwidth and separately using profiles in sub-bands of ∼ 8 MHz bandwidth. Its

profile also changes significantly over a small frequency range around 1400 MHz

(see § 3.4), so its template was adapted for the different full bands and sub-

bands, keeping component centres fixed, by fitting to high-SNR mean profiles

(see § 2.2.3). Where frequencies coincided closely, templates based on profiles from

Parkes were used for all telescopes. The basis template consisted of 5 components.

Assessing the profile shape of PSRJ1022+1001 is difficult as it seems to change

slightly over time (this, and systematic profile differences between telescopes,

are investigated in § 3). Nevertheless, the templates changed smoothly with fre-

quency and this was a consistent trend among profiles from all telescopes. Jumps

were still required between the sets of TOAs from different telescopes, but they

were very much smaller than one pulse period, being around 10 µs between Ef-

felsberg and Parkes and 0.1 µs between Effelsberg and Westerbork. They were,

presumably, due to instrumental offsets. The TOAs fitted together well when

jumps were included, with their residuals showing no obvious systematic effects

and only slightly greater degrees of spread than their uncertainties implied. The

resulting timing parameters agreed well with values published by Hotan et al.

(2006), taking into the account the different Solar System ephemeris used, and

the full-bandwidth and sub-band timing parameters were all consistent with one

another to within their uncertainties for each pulsar (see § 2.3.1).

2.2.2 Adaptation of Gaussian templates across a wide fre-

quency range

Gaussian templates were adapted across a frequency range of approximately

2000 MHz for PSRJ1857+0943 and PSRJ1939+2134 using Effelsberg profiles,

with mixed results. Both pulsars have interpulses and required a high number of
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components to make a good fit to their profile shapes. PSRJ1857+0943 needed

14 components, but these were successfully adapted from 1410 MHz to 863 MHz

and 2695 MHz using bfit, keeping their centres fixed. The pulse and interpulse

narrow as frequency increases, while the main pulse peaks move closer together,

but, as each peak consists of multiple components, this can all be accounted for

by adjusting the component heights and widths (Figure 2.4). Only four TOAs at

863 MHz, and two at 2695 MHz, had sufficient SNR to be used in the timing anal-

ysis, so any phase offset from those at 1410 MHz could not be determined, but

they appeared to fit in well without jumps (see § 2.3.3) and helped a calculation

of DM that agrees with published values (Kaspi et al. 1994).

PSRJ1939+2134 needed 13 components at 1410 MHz, which were able to

be adapted to 2639 MHz using bfit, without moving the component centres.

However, similar adaptation to 863 MHz was not possible without the addition

of a 14th component (Figure 2.5). The peaks of the main pulse get further apart

as frequency increases and are well merged at 863 MHz, and it was the trailing

peak of the main pulse that required the extra component. This change may

be due to adjacent physical pulse components rising and falling in amplitude

as frequency changes, but it may equally be due to broadband emission regions

of the pulsar having different positions at different frequencies, rather than just

different widths. It is clear that Gaussian template adaptation across a sufficiently

wide frequency range requires either components that are redundant at some

frequencies or component centres that change as a function of frequency, both of

which approaches make phase alignment uncertain across the range. In general,

phase alignment may be restricted to a few hundreds of MHz without absolutely

simultaneous observations. PSRJ1939+2134 also suffers from apparent timing

noise and variable propagation effects that make it difficult to reconcile TOAs

of different epochs and frequencies (see § 2.3.4). Of the Effelsberg profiles, only

those from around 1400 MHz were used for timing.
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Figure 2.4: Gaussian templates for PSRJ1857+0943, in black at 1410MHz and over-

laid on its numbered components (top), and overlaid at 863, 1410 and 2693MHz (bot-

tom). The main pulse and interpulse both narrow as frequency increases.
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Figure 2.5: Gaussian templates for PSRJ1939+2134 at 863MHz (top) and 1410MHz

(bottom) in black, overlaid on their numbered components. The main pulse peaks of

the lower-frequency template are merged together, and it needs an extra component to

be added when adapted from the higher-frequency template.
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2.2.3 Adaptation of Gaussian templates across a narrow

frequency range

As mentioned above, PSRJ1022+1001 is subject to scintillation which can give its

profile an instantaneous SNR that varies significantly with observing frequency.

Since all constituent frequencies were weighted equally when creating each pro-

file, broad-bandwidth profiles could be somewhat diluted by this. The significant

change in the profile as a function of frequency might also lead to these pro-

files differing from a template fitted to a profile with constant SNR. To preserve

timing quality, narrow-bandwidth profiles were created that would have a more

consistent SNR across their frequency range, and these were compared to the full-

bandwidth profiles originating from the same data. The sub-band profiles would

give a higher error-weighted residual RMS in a timing fit than the corresponding

full-bandwidth ones, but their greater number would compensate in the accu-

racy of the fitted parameters, as long as the TOA uncertainties were accurately

represented and used as weights in the fit.

Significant change in the profile of PSRJ1022+1001 over a small frequency

range necessitated the adaptation of its template over 160 MHz in bandwidth.

The sub-band profile bandwidth was 7 MHz for Effelsberg data and 8 MHz for

Parkes and Westerbork, and a template was created approximately every 8 MHz

across the total bandwidth of the observations (sub-bands at similar frequencies

from different telescopes used common templates). Because of the number of

profiles to be created, and the relatively small change across the bandwidth, an

automatic fitting procedure was employed. bfit was first used to fit Gaussian

templates to two high-SNR Parkes profiles of significantly different shape, each

template containing 5 components with central positions common to the two (Fig-

ure 2.6). These ‘extreme’ profiles had central observing frequencies of 1321 and

1425 MHz respectively, and each had a bandwidth of 8 MHz. The corresponding

extreme templates were scaled by setting their maximum intensity values to 1.
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A weighted sum of the two corresponding extreme templates was then fitted to a

high-SNR mean profile in each sub-band and full band, on the assumption that

the profile evolved smoothly between them as frequency changed. This method

was later used to characterise the profile shape of PSRJ1022+1001, and is further

detailed in § 3.3.1.

The resulting templates are shown over the bandwidth of Parkes observations

in Figure 2.7, overlaid on the high-SNR error-weighted mean profiles to which

they were fitted. The relative height of the two main pulse components changes

smoothly in both profiles and templates as frequency increases. Any change in

the separation of the profile peaks is almost imperceptible, and the overall shapes

of the profiles appear to be adequately represented across the total observation

band by a weighted sum of the two basis profiles. The leading profile compo-

nent, however, is less well approximated by the templates, reflecting the profile

differences seen over time and demonstrating the difficulty in capturing it using a

combination of only two modes. No jumps were required between the sub-bands,

as when fitted they made a negligible difference to the timing results. Only small

jumps between the different telescopes were needed (see § 2.2.1). The sub-bands

also produced slightly smaller parameter errors in timing than did the full bands

(see § 2.3.1). Gaussian template adaptation over a frequency range of ∼ 100 MHz

seems to produce aligned TOAs and accurate timing.

2.3 Timing solutions

TOAs were created from profiles of PSRJ1713+0747, PSRJ1857+0943 and

PSRJ1939+2134 using Effelsberg data, and for profiles of PSRJ1022+1001 using

Effelsberg, Parkes and Westerbork data. Those from Effelsberg were produced

using its own software, while the rest were produced using psrchive. These were

combined with pre-existing TOAs acquired from Arecibo, Jodrell Bank, Nançay,

Parkes and Westerbork. Each TOA had an associated uncertainty based solely on
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Figure 2.6: The two extreme Gaussian templates that were fitted in a weighted sum to

profiles of PSRJ1022+1001 (black), overlaid on their components (colour). The upper

and lower templates were produced by fits to profiles from Parkes at central observing

frequencies of 1321 and 1425MHz respectively, chosen for their significantly different

shapes.
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Figure 2.7: Overlaid Gaussian templates (black) and high-SNR error-weighted mean

profiles (red) of PSRJ1022+1001 from Parkes, as a function of frequency from 1321 to

1425MHz. The smooth change in the relative height of the two main pulse components

can be seen. Each template is a weighted sum of the two extreme templates in Figure

2.6, with the weightings determined by fits to the corresponding profiles. Frequency

increases from left to right and from top to bottom. Adjacent templates are separated

by 8MHz, except for the sixth and seventh, which are separated by 24MHz.
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2.3: TIMING SOLUTIONS

template-matching. The full set of TOAs from each pulsar was fitted, with error-

weighting, to a model of the pulsar system using the tempo2 timing package,

with jumps fitted between the different telescopes’ data (see § 1.2.3–1.3.1). No

jumps were used between different observing frequencies at the same telescope.

The 2006 DE414 Solar System ephemeris1 was used for all pulsars. The derived

system parameters are presented below, with one-sigma errors on the final decimal

places in brackets (see § 1.2.3), and are accompanied by information about each

TOA set.

Since timing residuals often have a greater spread than their uncertainties im-

ply, the uncertainties of these parameters need to be larger than is initially given

by the timing analysis in order to be accurate. For this work, it was assumed

that excess spread resulted from some source or sources of error independent of

the template-matching error. For each pulsar, a constant additional uncertainty,

Equad, was added in quadrature to all the TOA uncertainties from a single tele-

scope (see § 1.2.3). Its value was set such that the reduced chi-squared of the

residuals from that telescope became equal to 1 when its TOAs were fitted alone,

where this reduced chi-squared was defined as:

χ2
r =

1

NTOA − Npar − 1

NTOA
∑

i=1

r2
i

(δti)2 + E2
quad

(2.2)

where NTOA is the number of TOAs used in the fit, Npar is the number of model

parameters fitted using the TOAs, i is an integer indicating TOA number from

1 to NTOA and r and δt are, respectively, the post-fit residuals and the uncer-

tainties associated with the TOAs. Once the TOAs from all telescopes had been

combined, a further Equad was added in quadrature to all the TOAs uniformly, to

make χ2
r = 1 for the full TOA set. The TOA and parameter uncertainties were

then considered to be accurately represented. This relies on the assumption that

the unmodelled uncertainties are constant in time and independent of template-

1DE414 was published by the National Aeronautics and Space Administration’s Jet Propul-

sion Laboratory: ftp://naif.jpl.nasa.gov/pub/naif/generic kernels/spk/planets/a old versions
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Arecibo Effelsberg Jodrell Nançay Parkes Westerbork

PSRJ1022+1001

(full bands) - 2.53 - - 1.88 1.00

(sub-bands) - 0.60 - - 2.18 0.60

PSRJ1713+0747 - 0.85 4.04 - 0.96 0.78

PSRJ1857+0943 2.98 1.15 - - 1.19 -

PSRJ1939+2134 - 1.48 - 1.38 - 2.51

Table 2.1: Equad values, in µs, used to increase uncertainties associated with the TOAs

from each telescope and each pulsar.

matching error, which is not necessarily true. However, it is an unbiased way to

account for unmodelled errors about which nothing is a priori known. It changes

the fitted parameters, as well as their uncertainties, because it alters the relative

weightings of the TOAs in the fit. The final values of Equad for each telescope

and pulsar are shown in Table 2.1.

The RMS of the error-weighted residuals after the addition of Equad, and the

value of χ2
r for all TOAs before the addition of Equad, is listed with the timing

parameters for each pulsar. The final residuals are also shown.

2.3.1 Timing of PSR J1022+1001

Short integrations of around 10 minutes were used to form TOAs for PSRJ1022+1001

in order to prevent SNR loss due to scintillation, and all were produced with

Gaussian templates. The timing solutions with full bands and sub-bands are pre-

sented for comparison in Table 2.2, with the residuals shown in Figure 2.8. All

TOAs used came from profiles around 1400 MHz, so DM was not fitted. Proper

motion in declination was not fitted because the pulsar’s position close to the

ecliptic plane currently prevents a measurement accurate enough to be incon-

sistent with zero. The slightly smaller parameter uncertainties yielded by the

sub-bands demonstrate that narrowband timing is effective for PSRJ1022+1001.
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Parameter Full-bandwidth TOAs Sub-band TOAs

Time span of observations (yrs) 12.08 12.08

Number of TOAs 1804 7739

Error-weighted residual RMS (µs) 3.74 5.47

χ2
r without Equad 1.43 1.16

Right ascension (h : m : s) 10:22:58.0062 (13) 10:22:58.0058 (10)

Declination (◦ : ’ : ”) +10 : 01 : 52.77 (5) +10 : 01 : 52.76 (4)

Spin frequency (s−1) 60.77944798776623 (19) 60.77944798776615 (14)

Frequency derivative (s−2) −1.60096 (3) × 10−16 −1.60097 (3) × 10−16

Reference epoch (MJD) 52754 52754

DM (cm−3 pc) - - *

Proper motion (RA) (mas yr−1) −17.16 (4) −17.17 (3)

Parallax (mas) 2.10 (30) 1.95 (19)

Binary model BT BT

Binary orbital period (days) 7.80513028244 (14) 7.80513028255 (10)

Epoch of periastron (MJD) 52759.96990 (30) 52759.96964 (16)

Projected semimajor axis (lt-s) 16.76541623 (14) 16.76541620 (10)

Longitude of periastron (◦) 97.742 (11) 97.732 (8)

Orbital eccentricity 9.7241 (15) × 10−5 9.7234 (11) × 10−5

Table 2.2: Fitted system parameters of PSRJ1022+1001 when timed with Gaussian

templates at Effelsberg, Parkes and Westerbork using full bands and sub-bands.

* A fixed value of DM = 10.2521 (1) cm−3 pc was used (Hotan et al. 2006).

The sub-bands also give a smaller reduced chi-squared value than the higher-SNR

full bands, as would be expected if the excess variation were independent of profile

SNR. Smaller values of Equad were required in the sub-bands for Effelsberg and

Westerbork and a slightly larger one needed for Parkes, suggesting that the sub-

band templates may, overall, fit profiles slightly better than the full-bandwidth

ones (Table 2.1). The sub-band Equad values for Effelsberg and Westerbork were

the lowest of any of the pulsars timed.
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Figure 2.8: Timing residuals for PSRJ1022+1001 when timed with Gaussian templates

using full bands (top) and sub-bands (bottom). Effelsberg is in green, Parkes in black

and Westerbork in red.
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2.3.2 Timing of PSRJ1713+0747

Short integrations produced the best timing results for PSRJ1713+0747, result-

ing in smaller parameter uncertainties and values of χ2
r and Equad than longer

ones. The shortest available, which were between 1 and 15 minutes in length,

were used for Effelsberg data. The results with these analytically timed TOAs

are shown in comparison to those using all TOAs in Table 2.3. The residuals ap-

pear largely uncorrelated, but there is clear structure visible in the early Effelsberg

and late Jodrell TOAs (Figure 2.9), and values of χ2
r are well above 1. Some of

the parameters do not agree between the analytic and overall fits to within their

uncertainties, hinting that some underestimation of error remains. The TOAs

were from around 1400 MHz, with the exception of eleven from 840 MHz at West-

erbork, so the Westerbork TOAs were timed alone to determine the pulsar’s DM.

2.3.3 Timing of PSRJ1857+0943

Medium-length integrations, of between 15 and 45 minutes, produced the best

timing results for Effelsberg observations of PSRJ1857+0943. The results with

these analytically timed TOAs are shown in comparison to those using all TOAs in

Table 2.4. These residuals have the lowest reduced chi-squared values of any of the

pulsars timed, but structure is still apparent over a long time span (Figure 2.10).

The shorter data set from Effelsberg alone produced less obviously correlated

residuals, but gave larger uncertainties on the pulsar system parameters. These

may still be underestimated as the parameter values do not all agree between the

analytic and overall fits. This may be because the additional, unmodelled sources

of uncertainty are assumed to be uncorrelated in time, even though the residual

structure shows that they are not. The TOAs were from around 1400 MHz, apart

from four from 863 MHz and two from 2695 MHz at Effelsberg. The Effelsberg

TOAs, produced using Gaussian templates, were used by Champion et al. (2010)

in the measurement of the masses of planets in the Solar System. All the TOA
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Parameter Analytic-fit TOAs only All TOAs

Time span of observations (yrs) 10.56 12.59

Number of TOAs 575 1193

Error-weighted residual RMS (µs) 1.04 1.32

χ2
r without Equad 2.61 4.33

Right ascension (h :m : s) 17:13:49.5310560 (30) 17:13:49.5310465 (16)

Declination (◦ : ’ : ”) +07 : 47 : 37.51751 (8) +07 : 47 : 37.51757 (5)

Spin frequency (s−1) 218.81184049976116 (17) 218.81184049976039 (13)

Frequency derivative (s−2) −4.08350 (3) × 10−16 −4.08365 (3) × 10−16

Reference epoch (MJD) 52659 52659

DM (cm−3 pc) - 15.99013 (11) *

Proper motion (RA) (mas yr−1) 4.950 (10) 4.909 (8)

Proper motion (dec.) (mas yr−1) −3.890 (30) −3.899 (17)

Parallax (mas) 1.30 (20) 0.90 (14)

Binary model DD DD

Sine of inclination angle 0.71 (9) 0.84 (6)

Binary orbital period (days) 67.8251309180 (30) 67.8251309247 (14)

Epoch of periastron (MJD) 52743.677 (7) 52743.665 (4)

Projected semimajor axis (lt-s) 32.342408 (7) 32.342417 (3)

Longitude of periastron (◦) 176.310 (40) 176.246 (18)

Orbital eccentricity 7.4933 (6) × 10−5 7.4938 (4) × 10−5

Companion mass (M⊙) 2.2 (12) 0.8 (4)

Table 2.3: Fitted system parameters of PSRJ1713+0747 when timed with Gaussian

templates at Effelsberg, and with high-SNR templates at Jodrell Bank, Parkes and

Westerbork, using full bands.

* DM fitted using Westerbork TOAs alone.
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Figure 2.9: Timing residuals for PSRJ1713+0747 when timed with Gaussian and

high-SNR templates using full bands. Effelsberg is in red, Jodrell in blue, Parkes in

black and Westerbork in green.

uncertainties from PSRJ1857+0943 used in that work were ‘whitened’, based

on the correlation of their associated residuals, in an attempt to make a fairer

estimate of their values.

2.3.4 Timing of PSRJ1939+2134

Short integrations of 1 to 15 minutes were used from Effelsberg observations of

PSRJ1939+2134. Strong signals, such as are obtained from this pulsar, can

cause artificial intensity dips to be recorded on both sides of the pulse when

the signal is digitised, and this effect is minimised with short integrations as the
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Parameter Analytic-fit TOAs only All TOAs

Time span of observations (yrs) 10.29 21.30

Number of TOAs 96 406

Error-weighted residual RMS (µs) 1.85 2.71

χ2
r without Equad 1.04 1.15

Right ascension (h :m : s) 18:57:36.392930 (40) 18:57:36.392908 (6)

Declination (◦ : ’ : ”) +09 : 43 : 17.27790 (70) +09 : 43 : 17.27643 (17)

Spin frequency (s−1) 186.4940815201750 (30) 186.4940815201699 (5)

Frequency derivative (s−2) −6.20487 (16) × 10−16 −6.20462 (3) × 10−16

Reference epoch (MJD) 50326 50326

DM (cm−3 pc) 13.2939 (8) 13.2939 (8)

Proper motion (RA) (mas yr−1) −2.710 (80) −2.667 (12)

Proper motion (dec.) (mas yr−1) −5.83 (14) −5.49 (3)

Parallax (mas) - −0.6 (5) *

Binary model DD DD

Sine of inclination angle 0.9999 (6) 0.9986 (11)

Binary orbital period (days) 12.327240 (110) 12.327179 (19)

Epoch of periastron (MJD) 50328.180 (20) 50328.183 (5)

Projected semimajor axis (lt-s) 9.2307834 (12) 9.2307806 (7)

Longitude of periastron (◦) 276.90 (60) 276.94 (13)

Orbital eccentricity 2.129 (14) × 10−5 2.165 (8) × 10−5

Companion mass (M⊙) 0.10 (5) 0.25 (4)

Table 2.4: Fitted system parameters of PSRJ1857+0943 when timed with Gaussian

templates at Effelsberg, and with high-SNR templates at Arecibo and Parkes, using

full bands.

* Parallax fitted only when using all TOAs.
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Figure 2.10: Timing residuals for PSRJ1857+0943 when timed with Gaussian and

high-SNR templates using full bands. Arecibo is in red, Effelsberg in black and West-

erbork in green.

folded pulse has a lower SNR (Jenet & Anderson 1998). Shorter integrations of

PSRJ1939+2134 provided marginally better timing results, but all instrumental

errors and template inaccuracies in the TOAs of this pulsar are dominated by

timing noise and propagational effects (Verbiest et al. 2009; You et al. 2007). The

results of these analytically timed TOAs are shown in comparison to those using

all TOAs in Table 2.5. Its residuals are small, but are predominantly the result of

structure (Figure 2.11), giving rise to very large reduced chi-squared values with

either TOAs produced with analytic templates or all TOAs (Table 2.5). The

smaller value from the Effelsberg data alone is likely due its shorter time span.

A second time derivative of spin frequency made little difference to the residuals
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and so was not used, but three derivatives of DM were fitted in order to account

for Westerbork TOAs from around 840 and 2278 MHz, which were difficult to

reconcile with the other TOAs from around 1400 MHz. Rotational instability

and variable DM both appear to afflict PSRJ1939+2134. Unsurprisingly, most

of the system parameters did not concur between the analytic and overall timing

solutions to within their uncertainties, particularly spin frequency and spin-down

rate. A number of higher time derivatives of spin frequency might help, but could

also be highly degenerate with other fitted parameters. The timing quality of the

pulsar is still relatively good among MSPs due to the strength of its signal, but

it has reached a level where further refinement will require a very long, multi-

frequency data set. Nevertheless, the residuals from different telescopes, but

similar frequencies, largely followed the same patterns over time.
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Parameter Analytic-fit TOAs only All TOAs

Time span of observations (yrs) 11.22 11.22

Number of TOAs 792 1126

Error-weighted residual RMS (µs) 1.33 1.36

χ2
r without Equad 27.03 48.22

Right ascension (h : m : s) 19:39:38.561195 (3) 19:39:38.561186 (3)

Declination (◦ : ’ : ”) +21 : 34 : 59.12846 (5) +21 : 34 : 59.12842 (5)

Spin frequency (s−1) 641.9282342779965 (4) 641.9282342779220 (40)

Frequency derivative (s−2) −4.331082 (1) × 10−14 −4.331015 (6) × 10−14

Reference epoch (MJD) 52409 52409

DM (cm−3 pc) - 71.02579 (15) *

DM derivative (cm−3 pc yr−1) - −0.00170 (9) *

DM second derivative (cm−3 pcyr−2) - 0.00025 (3) *

DM third derivative (cm−3 pcyr−3) - −0.0000020 (8) *

Proper motion (RA) (mas years−1) 0.150 (10) 0.085 (9)

Proper motion (dec.) (mas years−1) −0.353 (15) −0.380 (12)

Parallax (mas) 1.00 (30) 0.81 (18)

Table 2.5: Fitted system parameters of PSRJ1939+2134 when timed with Gaussian

templates at Effelsberg, and with high-SNR templates at Nançay and Westerbork, using

full bands.

* DM and its derivatives fitted only when using all TOAs.
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Figure 2.11: Timing residuals for PSRJ1939+2134 when timed with Gaussian and

high-SNR templates using full bands. Effelsberg is in green, Nançay in red and West-

erbork in black; squares and crosses indicate TOAs from around 850 and 2280MHz

respectively, while the other TOAs are from around 1400MHz.
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3

Apparent pulse profile

instabilities in PSRJ1022+1001

The stability of integrated pulse profiles is a fundamental assumption of pulsar

timing (see § 1.2.3), according to which the measured shape of each profile from

which a TOA is obtained should be altered only by time-varying random noise

that is uncorrelated between its phase bins. If the assumption of stability is vi-

olated and the profile shape of a pulsar instead shows bin-correlated variation,

so that it is not always a scaled and shifted version of a single template (see

Equation 1.4), any TOAs obtained from matching its profiles to a fixed template

will be affected and additional scatter will be introduced into the resultant timing

residuals. Measurements made from these residuals will then have greater associ-

ated uncertainties than they would in the absence of bin-correlated variation. If

the variation is also correlated in time between profiles as well as between bins,

the residuals may contain patterns which mask or imitate red noise from other

sources. The additional residual scatter will not be attributable to the usual

instrumental and environmental noise, nor to actual rotational instability in the

pulsar.

Profile shape changes can limit the accuracy of pulsar timing. Where intrinsic
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to a pulsar, they may restrict its usefulness in high-precision timing. Where

extrinsic, they may indicate propagation effects or systematic instrumental errors

which will affect the precision of all pulsar timing to some extent. There is no

consensus in published work as to whether intrinsic change in profiles integrated

over more than 104 periods has been observed in MSPs. This chapter examines

profile stability, focusing on PSRJ1022+1001, a pulsar which has previously been

said to show variation.

3.1 The curious case of PSRJ1022+1001

3.1.1 Findings of previous work

PSRJ1022+1001 is an unusual pulsar. Its spin period of 16.5 ms places it among

the slower MSPs, but, with a slow rate of period increase and a relatively strong

radio signal at the Earth, it has been shown to yield high timing accuracy (Hotan

et al. 2004; Hotan et al. 2006; Verbiest et al. 2009), and is the longest-period pul-

sar currently used in PTAs (Yardley et al. 2010). The most striking feature of

PSRJ1022+1001 is the rapid shape evolution of its double-peaked pulse profile as

a function of observing frequency (Camilo 1995; Kramer et al. 1999; Ramachan-

dran & Kramer 2003), a property atypical of MSPs (Xilouris et al. 1998). More

unusually still, evidence has been presented that the shape of the integrated

profile, folded modulo the rotational phase over more than 104 periods, varies in-

trinsically with time (Camilo 1995; Kramer et al. 1999; Ramachandran & Kramer

2003). A separate study, however, concluded that there was no evidence of sig-

nificant variation and that any apparent changes could be explained entirely by

effects extrinsic to the pulsar, such as interstellar scintillation and dispersion and

instrumental polarisation calibration error (Hotan et al. 2004). The significance

of the latter effect comes from the high degree of polarisation of the profile (see

§ 3.1.2) (Xilouris et al. 1998; Ord et al. 2004).
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3.1.2 Possible causes of apparent profile variation as a

function of time

Any intrinsic explanation for profile instability must use variation in either the

mechanism or propagation of emission, both of which depend on the nature of the

pulsar magnetosphere. Since this is not well understood (see § 1.1), such theories

are necessarily vague. Ramachandran & Kramer (2003) suggested that it may

be related to the PA curve of PSRJ1022+1001, in which a section corresponding

to the leading part of the pulse appears to be offset from the rest (see Figure

3.1). This could be explained either by emission from two different heights in

the magnetosphere, where magnetic field sweep-back and beam aberration would

result in different angles of emission to the line of sight, or by penetration of the

beam through a sheet of return current, which is the particle flow balancing the

polar cap currents responsible for emission (Hibschman & Arons 2001). In either

case, the dynamics of the different magnetospheric regions probed could perturb

the pulse profile, but current explanations go no deeper than this.

Extrinsically, interstellar diffractive scintillation is capable of translating the

frequency dependence of the profile shape of PSRJ1022+1001 into a time de-

pendence. It is known to affect the pulsar’s signal strongly (Hotan et al. 2004),

and can, over time, change the relative brightness of the pulsar at different fre-

quencies within the band, ‘bringing out’ the subtly different pulse shapes therein.

The characteristic scintillation timescale and bandwidth of PSRJ1022+1001 at

an observing frequency of 1400 MHz should be roughly 45 minutes and 40 MHz re-

spectively, according to the NE2001 electron density model (Cordes & Lazio 2003;

Cordes & Lazio 2003)1, so, although this effect is not smoothed out over the du-

ration of a typical observation, it can largely be mitigated by examining profiles

of bandwidth . 10 MHz. Actual scintillation measurements of PSRJ1022+1001

1Values for scintillation timescale and bandwidth were calculated using a tool provided by the

United States Naval Research Laboratory: http://rsd-www.nrl.navy.mil/7213/lazio/ne model/
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at 685 MHz by You et al. (2007) give a timescale range higher than the model and

a bandwidth range mostly higher than the model, so this may also be the case

at 1400 MHz. DM changes could also alter the profile shape by causing it to be

aligned incorrectly upon frequency-scrunching (see § 1.2.1). As with scintillation,

the effect can be reduced by the use of profiles of bandwidth . 10 MHz.

Hotan et al. (2004) argued that the principal source of profile variation in

PSRJ1022+1001 is not in the radio signal at all, but is introduced by instru-

mentation during the measurement process. Imperfect polarisation calibration

of receivers with linear feeds has been identified as a significant source of error

in the total intensity of highly linearly polarised signals. The trailing compo-

nent of the profile of PSRJ1022+1001 has a high degree of linear polarisation

(Figure 3.1), and would therefore be expected to show greater spurious variation

than the rest of the profile, with its severity dependent on the receiver, recording

system and calibration scheme used. Ord et al. (2004), with the same instru-

mentation used to make most of the observations analysed in § 3.2, employed a

full calibration method, including a receiver model (see § 1.2.1), in polarimetric

observations of 27 MSPs; they estimated that systematic changes occurring after

the model was made could introduce errors of, at most, 2% in total intensity

and 4% in linear and circular polarisation. Hotan et al. (2004) used the same

equipment with simpler calibration when analysing PSRJ1022+1001, correcting

only for differential gain and phase between the feeds, but were slightly more

optimistic in anticipating resultant errors of ∼ 1–2% in total intensity at pulse

phases of high linear polarisation. Such variation should appear as a function of

parallactic angle superimposed on a random fluctuation over time (van Straten

2004). Even with the most sophisticated calibration available, pulsar data still

sometimes contain unexplained artefacts. Most of the data examined in § 3.2

were acquired with a 2-bit digitiser employing dynamic level setting to adjust its

dynamic range continuously and separately for each feed. This can result in small

changes to the differential gain of the feeds, which are not corrected because they
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3.1: THE CURIOUS CASE OF PSRJ1022+1001

Figure 3.1: PA and polarisation profiles of PSRJ1022+1001 at 1341MHz from Parkes.

The integration time is 27 minutes and the bandwidth is 48MHz. Top window: PA

as a function of profile phase. The jump in PA reported by Ramachandran & Kramer

(2003) is visible from the raised data point at fractional pulse phase 0.525, PA –20 ◦.

Bottom window: polarisation profiles. The solid line is total intensity, the dashed

line linearly polarised intensity and the dotted line circularly polarised intensity. The

trailing component has a high degree of linear polarisation, which could lead to spurious

variation in its total intensity relative to the rest of the profile as a result of imperfect

polarisation calibration.

happen between calibrator observations (see § 1.2.1). Shape variation caused by

this, and by other unmodelled instrumental effects, is thought to afflict polarised

pulse profiles (van Straten 2010, personal communication).

MARK PURVER 79



3.2 A new analysis of PSR J1022+1001

There are now many more observations of PSRJ1022+1001 than were available

when the previous papers on the pulsar were written, allowing a rigorous statisti-

cal analysis of profile variation. In this new analysis, the methods previously used

to assess variation were extended and some new techniques were used. Profiles

were studied across broad and narrow bandwidths of frequency and over short

integration times, partly to mitigate scintillation and partly because this is how

Kramer et al. (1999) observed variation. The effects of calibration were investi-

gated, as Hotan et al. (2004) considered them significant. The profiles’ shapes

were quantified, and they were timed with both fixed and adaptive templates.

Data were taken from the same telescopes and instruments as in the previous

papers.

3.2.1 Observations

The profiles analysed were the same as those used to time PSRJ1022+1001 in § 2

and were all coherently dedispersed. Data from the 100-m Effelsberg telescope

were acquired over around 12 years between 1996 and 2009 with observations of

varying duration and separation in time, 15–30 minutes every 20 days being typ-

ical. These measurements were recorded by the 4-bit Effelsberg-Berkeley Pulsar

Processor (EBPP) mainly across a bandwidth of 56 MHz centred on 1410 MHz,

with a smaller number of profiles taken over 56 MHz centred on 863 MHz and a

handful taken over 112 MHz centred on 2695 MHz. Data from the 64-m Parkes

telescope were taken over almost 5 years from 2003 to 2008, typically with a

1-hour observation every 15 days. The 2-bit Second Caltech-Parkes-Swinburne

Recorder (CPSR2) mostly provided two 48-MHz-wide bands centred on 1341 and

1405 MHz, with a smaller number of profiles taken over one 48-MHz-wide band

centred on 685 MHz. The Westerbork Synthesis Radio Telescope (WSRT), with

an equivalent diameter of 96 m, yielded observations spanning more than 1 year
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3.2: A NEW ANALYSIS OF PSRJ1022+1001

from 2008 to 2009, each lasting around 25 minutes and occurring about every 40

days. Data were stored by the 2-bit Pulsar Machine (PuMa) and its successor,

the 8-bit PuMa-II, across a bandwidth of 160 MHz, centred on 1380 MHz. Since

there were relatively few Westerbork observations, these were used only in the

timing study.

3.2.2 Data reduction

As explained in § 2.1.1, the band edges of the Parkes data were excised using

psrchive. Noisy or defective individual frequency channels in the Effelsberg

observations were found by eye and removed using Effelsberg software. The same

software was used to scrunch the Effelsberg data into total intensity profiles of

approximately 10 minutes’ duration. Each profile was bin-scrunched to 899 phase

bins, since this was a factor of the number of bins in the original profiles. The

Parkes and Westerbork data were scrunched into profiles of about 10 minutes

and exactly 512 bins using psrchive, the latter being sufficient to capture the

pulse features of PSRJ1022+1001. In the case of the Parkes data, psrchive also

allowed a scattered power correction where deemed necessary (van Straten 2003),

in which the profile is adjusted to correct for the digitisation distortions around

the profile that can be introduced by the dynamic setting of instrumental signal

recording levels that is employed at Parkes (Jenet & Anderson 1998).

All profiles were initially uncalibrated, and all had been recorded by linear

receiver feeds. The Westerbork profiles did not have associated calibrator ob-

servations. Many of the Effelsberg profiles did have such observations, of an

artificial, linearly polarised signal made just before or after the pulsar observa-

tions, so these were used to polarisation-calibrate those profiles with Effelsberg

software, correcting for the differential gain of the receiver feeds (see § 1.2.1). The

uncalibrated profiles corresponding to the polarised ones were kept for compari-

son. Many of the Parkes profiles also had associated calibrator observations, and
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so were similarly calibrated, but with correction for differential phase as well as

gain, allowing profiles to be formed from the linearly and circularly polarised com-

ponents of the pulsar signal if desired. The 1400-MHz Parkes data were acquired

using two receivers at different times, known as H-OH and multibeam. A receiver

model was created for the multibeam receiver by Kuo Liu using PSRJ0437−4715,

and this was used to further calibrate the relevant observations. This additional

calibration was implemented using psrchive, and has been described by van

Straten (2004) using the Parkes multibeam receiver as a demonstration. The

H-OH receiver was not considered to need such calibration (van Straten 2008,

personal communication). Profiles from the two receivers were generally anal-

ysed together, but could be separated as the receiver information was recorded

within the archives. Differential gain and phase calibration is hereafter referred to

as simple calibration, and calibration including receiver corrections as full calibra-

tion. Both calibrated and uncalibrated profiles were kept and analysed separately.

After calibration, the profiles were further scrunched into two groups of profiles

originating from the same observations: sub-band profiles of 7 MHz in bandwidth

for Effelsberg, 8 MHz for Parkes and 8.125 MHz for Westerbork, and profiles in full

bands of the total observational bandwidth. Data from each telescope and, within

this, profiles of different sub- and full bands, were generally analysed separately

as independent data sets.

The appropriately calibrated and scrunched profiles were output as text files

and analysed using scripts written within version R2009a of the matlab pro-

gramming environment2. More filters were applied at this stage to remove weak

and corrupted profiles: profiles were included if they had a minimum peak SNR

(ratio of maximum intensity to profile noise level) of 10, a separation between

profile peaks of 9–15 ◦ (the correct value being approximately 12 ◦) and an ob-

servational duration of between 5 and 15 minutes. The approximate peaks in

each profile were calculated initially by finding the highest intensity value in the

2matlab
R© is produced by MathWorksTM: http://www.mathworks.com/products/matlab/
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3.2: A NEW ANALYSIS OF PSRJ1022+1001

profile, excluding a sufficient phase range around it and then finding the highest

intensity value outside this range. The noise level in each profile, which was used

as the uncertainty in the intensity of each bin, was taken to be the RMS of the

off-pulse intensity values after subtracting a constant baseline to give a mean off-

pulse intensity of zero (see Equation 1.3). The off-pulse region was taken to be

everything outside a safe range around the approximate peak bins. It avoided the

areas next to the pulse where digitisation distortions can occur. The ranges used

to determine the approximate locations of the peaks and the off-pulse region were

specific to PSRJ1022+1001, but were made easily changeable within the matlab

scripts, so that other profile shapes could be accommodated with a small amount

of user intervention. After filtering, there were a total of several thousand Parkes

profiles, several hundred Effelsberg profiles and around one hundred Westerbork

profiles, calibrated in all bands, that were considered usable in the analysis of

pulse shape variation.

The locations of the profile peaks, which were critical to the shape analysis

(see § 3.3), were determined precisely by normalising all the profiles in each band

and aligning them with one another, which involved recursively normalising and

aligning them with their own error-weighted mean profile. The errors were those

derived from profile noise (see Equation 1.3). To produce a reasonable initial

error-weighted mean profile, the profiles were aligned by their approximate peaks

and normalised by their summed intensities in the on-pulse region. Since each

summed intensity had uncertainty based on that profile’s noise level, the propaga-

tion of errors produced different uncertainty values in each bin of each normalised

profile. Uncertainties in this, and subsequent, sections were propagated according

to the equation:

δ

(

u(w)

)

=

√

√

√

√

Nvar
∑

y=1

(

δwy

∣

∣

∣

∣

∂u

∂wy

∣

∣

∣

∣

)2

(3.1)

where δu is the uncertainty in u, which is any function of multiple arbitrary vari-

ables w, each of which is indicated by y from 1 to Nvar and has an uncertainty
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of δwy. Profile alignment down to the sub-bin level was accomplished using the

frequency-domain method of Taylor (1992). This was implemented using mat-

lab’s inbuilt FFT function and a simple iterative procedure to converge on the

most likely phase offset between an individual profile and the mean by match-

ing the FFTs of the two (see § 1.2.3). The method is the same as that used

to obtain timing residuals by template-matching, and so also allowed profiles to

be accurately shifted and scaled in intensity to match the mean. Although the

profiles were not flux-calibrated and therefore of arbitrary intensity relative to

one another, this alignment and normalisation permitted an assessment of where

in profile phase excess variation might be occurring (see § 3.6.3). The profiles

were shifted by non-integral numbers of phase bins using the matlab function

resample, which employs a weighted sum of surrounding bins to estimate in-

tensity values within each bin and applies an anti-aliasing finite impulse response

filter (see e.g. Press et al. 1992, pp. 538–540) to the output in order to suppress

artificial profile structure at high spatial frequencies. Interpolation accuracy is

generally improved by using more bins in the weighted sum, and can be quanti-

fied by its effect on the RMS of a set of normally distributed random numbers.

Simulations of such sets showed that the use of 30 bins resulted in an acceptable

reduction of about 1 % in RMS, so this value was used when aligning profiles.

Once a set of profiles had been aligned with its mean, the mean was recalculated

and the alignment process repeated. This was generally a convergent process,

requiring only a few iterations before the profile phase shifts at each successive

iteration became negligible. The final phase locations of the peaks were those

found in the mean aligned profile at each frequency.
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3.3: EVALUATION OF PROFILE VARIATION

3.3 Evaluation of profile variation

3.3.1 Profile shape indicators

Three separate indicators were used to quantify the shape of PSRJ1022+1001,

in order to be as sensitive as possible to shape variation. The first was the peak

ratio, R, used by Kramer et al. (1999) to define the double-peaked profile shape

simply by the intensity ratio of its leading and trailing peaks:

Ri =
Pi,F

Pi,B

(3.2)

where Pi,j is the intensity of profile i in bin j and F and B are the bin numbers

of the leading and trailing peak respectively. This quantity avoids the scaling

problems of absolute flux calibration and variable pulse intensity and provides a

consistency check between the profiles recorded by the different telescopes, but it

is highly subject to random error as it uses only two phase bins.

The second indicator was the area ratio, A, the ratio of the integrated intensity

of the leading component to that of the trailing one, using several phase bins

around each peak:

Ai =

(

F+M
∑

j=F–M

Pi,j

)/(

B+M
∑

j=B –M

Pi,j

)

≡ Si,F

Si,B
(3.3)

where M is an integer defining the width of the areas used (2M + 1 bins are

used for each component) and SF and SB are the areas of the leading and trailing

peak respectively. Areas of approximately 6.3 ◦ each in phase width were used

(i.e. M = 4 for 512-bin profiles). This indicator offered the same advantages

as the peak ratio while giving a higher SNR in the measurement of the relative

strengths of the two components.

The uncertainties assigned to peak and area ratios were calculated by prop-

agating the uncertainties in each bin of the unnormalised profiles (see Equation

3.1), which were each equal to RMS of the off-pulse intensity values. Respective

noise errors in sub-bands and full bands are typically 9 % and 4 % of peak ratios
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and 4 % and 2 % of area ratios, and were computed directly from the RMS of

off-pulse intensity and therefore independently of the ratios themselves.

The third indicator was the shape parameter, s, which used the entire pulse

to define a profile’s shape more fully than the ratio indicators. It represented

the shape as a weighted sum of two ‘extreme’ Gaussian templates (see Figure

2.6), based on high-SNR profiles selected from the available set as having very

different peak and area ratios and each scaled to a maximum intensity of 1 (see

§ 2.2.3). The shape of profile i was then represented by the weighting factor or

shape parameter, si, which was the shape parameter value. The intensity of each

observed profile, i, was described in each phase bin, j, as the linear combination

of the two templates, T1 and T2, plus a Gaussian random noise term, Gi:

Pi,j = si vi T1,j + (1 − si) vi T2,j + Gi,j (3.4)

with a scaling factor vi due to the arbitrary intensity scale of each profile. The

extreme templates were formed from 5 Gaussian components each, with centres

common to the two. For each observed profile, the parameter s was obtained by

an iterative least-squares fit of Equation 3.4 over all phase bins, allowing a shift

in phase between templates and profile.

Error estimates for the shape parameter were derived as a function of RMS off-

pulse noise and shape parameter by using numerical simulations. Fake observed

profiles were obtained by artificially adding random noise of various amplitudes

to summed-template profiles with different values of s, and then recording the

distribution of measured values of s when these fake profiles were fitted according

to Equation 3.4. For the real profiles, values of s had typical uncertainties of

10–30% in sub-bands and 5–15% in full bands, the relatively high percentage

errors reflecting the fact that a fractional change in peak or area ratio corresponds

to a greater fractional change in s. Michael Kramer designed the shape parameter

technique and wrote the programmes used to find its error distribution and to

compute its value for a given profile.
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3.3: EVALUATION OF PROFILE VARIATION

3.3.2 Advantages and disadvantages of the shape indica-

tors

In general, the simplicity of the shape indicators is both their strength and weak-

ness. The peak and area ratios, and their uncertainties, are easy to calculate

and use the strongest parts of the pulsar signal. Their usefulness, however, is

restricted to profiles with at least two peaks.

The shape parameter benefits from the accuracy afforded by using the whole

profile, and is an indicator readily transferable to other pulsars. Its assumption

that profile variation can be described by a linear combination of its two extreme

templates with fixed central components, however, prevents s-values from being

comparable outside a fairly narrow frequency range around 1400 MHz. Even

within this range, its value would become unpredictable if the real profile change

could not be described by a linear combination of the two extremes, as would

be the case, for instance, if profile component separation were to change. At

some frequencies, many values of s came out at either 0 or 1, since these were

its limits. This shows that there was profile variation outside the range of the

extreme templates. These values were removed so that they did not dominate

the rest.

All the indicators reduce profile shape from a parameter consisting of as many

dimensions as there are profile bins to a parameter consisting of one dimension,

so prior assumptions must be made and information is inevitably lost. The shape

indicators were nevertheless consistent with one another and appeared to capture

the essence of the shape changes of PSRJ1022+1001, as the following sections

demonstrate.
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3.4 Evolution of profile shape as a function of

observing frequency

3.4.1 Profile shape indicators as a function of frequency

and their consistency between sets of observations

The peak ratio, area ratio and shape parameter demonstrate the strong depen-

dence of profile shape on emission frequency observed by Kramer et al. (1999),

Ramachandran & Kramer (2003) and Hotan et al. (2004). For each parameter, it

is indicated by the error-weighted medians of the sets of values in each sub-band,

which largely average out any time variations. Error-weighted median values,

and their uncertainties, were computed according to the method of Müller (2000)

as described by Ratel (2006), assuming that the sets from which they were de-

rived were internally uncorrelated. The Parkes data, having the most profiles,

provide the clearest results. Over a large frequency range, the unusual turnover

of area ratio noted by Ramachandran & Kramer (2003) can be seen, after which

the leading component grows relative to the trailing one as frequency increases

(Figure 3.2). The slight offset between Parkes and Effelsberg data points, appar-

ent around 1400 MHz in Figure 3.2, is due to the different numbers of bins used

in calculating the peak areas of the different telescopes’ profiles: this is a result

of using an integral number of bins in each case (see § 3.2.2 and Equation 3.3).

Around 1400 MHz, all three shape indicators show a positive correlation with

frequency that is apparent over a range of . 40 MHz. They are largely consistent

between uncalibrated, simply calibrated and fully calibrated profiles, but the ef-

fect of calibration is visible, most obviously in the shallowing of the trend in the

lower sideband when full calibration is applied (Figure 3.3). Between sub-band

central frequencies of 1321 and 1425 MHz, peak ratio increases by approximately

15 %, area ratio by around 13 % and shape parameter by about 0.4.

The Effelsberg profiles are less numerous, and so give larger uncertainties,
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Figure 3.2: Evolution of area ratio for PSRJ1022+1001 over a broad range of observing

frequency, showing a turnover around 800MHz followed by an increase. These values

are error-weighted median values in sub-bands, all from simply calibrated profiles for

consistency. The blue points are from Parkes and the red points are from Effelsberg.

The slight offset between Parkes and Effelsberg points, apparent around 1400MHz, is

due to the different numbers of bins used in calculating the peak areas of the different

telescopes’ profiles.

but show the same trends. Their error-weighted median values are consistent

with those of the Parkes profiles in peak ratio, slightly higher in area ratio and

noticeably lower in shape parameter (Figure 3.4). This appears to show a small

systematic difference between Parkes and Effelsberg profiles of PSRJ1022+1001,

visible when inspecting complete profiles but less evident around their peaks, and

highlights the problem of subtle instrumental corruption of profiles.
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Figure 3.3: Evolution of all shape indicators as a function of frequency for

PSRJ1022+1001 in Parkes data around 1400MHz. The panels show fully calibrated

peak ratio (top left), simply calibrated area ratio (top right), fully calibrated area ratio

(bottom left) and fully calibrated shape parameter (bottom right).

3.4.2 Absolute amplitudes of profile components as a func-

tion of frequency

As frequency increases around 1400 MHz, the profile shape change appears to be

the result of a simultaneous strengthening of the leading component and weak-

ening of the trailing component in absolute intensity. This is shown by the mean

relative uncertainties of each component in each sub-band, quantities whose val-

ues do not depend on absolute flux calibration. As frequency increases, the

mean relative error in leading component intensity decreases consistently while

the mean relative error in trailing component intensity consistently increases, but
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Figure 3.4: Evolution of all shape indicators as a function of frequency for

PSRJ1022+1001 in Effelsberg data around 1400MHz, with Parkes data shown for

comparison. The panels show Effelsberg peak ratio (top left), Effelsberg area ratio (top

right), Effelsberg shape parameter (bottom left) and Parkes shape parameter (bottom

right).

there is no trend in mean unscaled RMS off-pulse noise. The conclusion that it

is the components, rather than the noise environment, which are changing in in-

tensity rests on the assumption that the sub-band profiles are scaled in the same

units at any given time, which is important for reliable frequency-scrunching.

If the assumption were untrue, there could be no knowledge of the relationship

between absolute pulse intensity and frequency, since trends in absolute RMS

off-pulse noise could then be masked. However, there is no evidence for incon-

sistent scaling with frequency, and the assumption does not require the units of
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intensity to remain constant over time. It is unusual for a pulse to strengthen

as frequency increases at 1400 MHz, but, in the leading profile component of

PSRJ1022+1001, it seems no less plausible than the odd spectral relationship

already clearly established between profile component amplitudes.

3.4.3 Separation of profile peaks as a function of frequency

There is evidence that the separation of the profile peaks follows the same gen-

eral trend as their amplitude ratio, decreasing marginally by about 0.1 ◦ between

700 and 850 MHz before increasing markedly by around 0.7 ◦ between 850 and

1400 MHz (Figure 3.5). The separation values shown in Figure 3.5 are the error-

weighted mean differences between crude peak positions in each sub-band con-

taining at least five profiles, where a crude position is the bin number of maximum

profile amplitude in the range where the peak is assumed to be. This sacrifices

some accuracy, but provides sub-bin resolution by making only a broad prior as-

sumption of peak locations. With full alignment, where the error-weighted mean

profile is used to determine the phase locations of the peaks for all profiles, the

separation is only determined to the nearest bin. Although formal errors have

not been assigned, the spreads of separation values below and above 1000 MHz do

not overlap, suggesting a real correlation at least between 850 and 1400 MHz. It

is not possible to discern any change in peak separation across a frequency range

of ∼ 100 MHz.

3.5 Trends in the profile of PSRJ1022+1001

over time

Examined by eye, profiles of PSRJ1022+1001 often seem to vary in shape over

short timescales. However, with noise contamination generally comparable to the

apparent variation, it is difficult to assign short-term trends or perceive long-term
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Figure 3.5: Evolution of profile peak separation for PSRJ1022+1001 over a broad

range of observing frequency, showing evidence for a turnover around 800 MHz

followed by an increase. These values are error-weighted mean values in sub-

bands, all from simply calibrated profiles for consistency. The area of each point

is proportional to the log of the number of profiles in that sub-band. The blue

points are from Parkes and the red points are from Effelsberg.

structure in the shape changes. Using numerical shape indicators, these things

can be analysed. The assigned uncertainties take into account only random noise

error, so the question is simply whether these uncertainties explain the magnitude

of variation seen in the indicators.
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3.5.1 Profile variation within an observation

One individual observation, picked from among many because it shows a trend,

may be a statistical fluke. But it is interesting to note that the highest-SNR

observation of PSRJ1022+1001 in all the data studied shows a clear downward

trend in the shape indicators across a 90-minute pointing, visible in most of

the sub-bands as well as the full bands and slightly more pronounced at higher

frequencies (Figure 3.6). It is similar in timescale to the smooth profile change

reported by Kramer et al. (1999), though smaller in magnitude. Although this

timescale is short, it is longer than that of moding, the phenomenon of switching

profile shape which has been reported over hundreds of periods in some pulsars

(Backer 1970). Fully calibrated in polarisation and averaged over all sub-bands

in this 1400 MHz Parkes observation from MJD 53995, peak ratio declines by

around 3 %, area ratio by around 4 % and s by about 0.1, which are comparable

to the maximum possible changes due to scintillation across a sub-band at that

frequency (see Figure 3.3). If they were due to a scintillative change over time

in the gradient of intensity against frequency, the changes in the full-bandwidth

profiles would be expected to be larger than in the sub-bands, but in fact they

are similar. With the pulsar 29 ◦ away from the Sun in the sky at the epoch of

observation, DM change is also very unlikely to be large enough to be responsible

(see § 3.6.4), and, if it were, would cause much larger profile shape variation in

the full-bandwidth measurements than in the sub-bands (see § 3.1.2).

The same data, when uncalibrated, shows the same shape trend marginally

less clearly than when fully calibrated. When simply calibrated, the profiles show

the downward trend significantly more clearly. It may be that simple calibration

actually introduces spurious profile change, as was suggested by (Hotan et al.

2004). However, the persistence of the trend regardless of calibration suggests

that it is, in large part, the result of either unmodelled measurement error or

profile instability intrinsic to the pulsar.
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Figure 3.6: A downward trend in area ratio for PSRJ1022+1001 on MJD 53995.

The three fully calibrated Parkes sub-bands are 1345 (blue), 1385 (red) and 1417MHz

(green).

Whilst a number of observations of PSRJ1022+1001 do show a trend in the

shape indicators, the majority do not. Hotan et al. (2004) saw no convincing

trends in 15 months of Parkes data, although this may be partly because they,

in common with other analyses, used peaks of only a single phase bin each. The

typical observational SNR is low enough to disguise a trend of the magnitude seen

on MJD 53995, but there are many pointings in which profiles vary more than

their SNRs would predict, changing apparently randomly on timescales of ∼ 10

minutes. This could be explained by a source of random variation in addition to

the measured noise (see § 3.6). Liu et al. (2010, in prep.) showed that variation

in PSRJ1022+1001 on very short timescales of ∼ 10 s–10 minutes is typically
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uncorrelated in time, which is consistent with both noise and random variation

and inconsistent with moding. In this case, it may not be possible to ascertain a

clear timescale of variation, as was found by Ramachandran & Kramer (2003).

3.5.2 Profile variation between observations

Variation within each observation obscures any long-term change in the profile

shape of PSRJ1022+1001. To avoid this, the error-weighted mean values of the

shape indicators from each observation can be used to assess variability over

timescales of days to years. The errors in the shape indicator mean values were

calculated by propagating the errors on the individual values (see Equation 3.1).

In all sub-bands and full bands of the 1400 MHz Parkes data, the sets of shape

indicator mean values per observation have χ2
X,obs

> 1 about the mean value

of each set, regardless of calibration or which indicator is used. This reduced

chi-squared statistic is given by:

χ2
X,obs

=
1

Nobs − 1

Nobs
∑

k=1

(Xobs,k − X̄obs)
2

(δXobs,k)2
(3.5)

where Nobs is the number of observations in a set of one sub-band or full band,

k is observation number from 1 to Nobs, X denotes R, A or s, Xobs,k is the error-

weighted mean value of X in one observation, δXobs,k is the uncertainty in Xobs,k

and X̄obs is the error-weighted mean of all values of Xobs,k in the set.

The mean values of χ2
X,obs

over all sub-bands and over all full bands (weighted

by the number of observations in each band) are given in Tables 3.1–3.3, and

imply significantly underestimated uncertainties on the indicator values for each

observation. The fact that χ2
X,obs

is, in most cases, larger in full bands than in

sub-bands is probably due to the smaller profile noise errors in full bands, rather

than greater excess variation in full bands. It also shows, however, that the

excess profile variation is not smoothed out across a bandwidth of 48 MHz. If

an uncertainty cutoff is imposed on Xobs,k, so that only values with errors less
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Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 3.56 1.90 1.93

Full bands 8.31 4.23 2.70

Table 3.1: Reduced chi-squared of mean peak ratio per observation (χ2
R,obs

) for profiles

of PSRJ1022+1001 around 1400MHz, indicating excess variation in Robs.

Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 11.45 5.42 7.01

Full bands 28.49 13.84 11.59

Table 3.2: Reduced chi-squared of mean area ratio per observation (χ2
A,obs

) for profiles

of PSRJ1022+1001 around 1400MHz, indicating excess variation in Aobs.

than a maximum size are used, the reduced chi-squared becomes larger as the

cutoff becomes more stringent. This demonstrates that the uncertainties have

not simply been underestimated by a common factor of χ
X,obs

, and is consistent

with the presence of an additional source of error, affecting profiles of all SNRs,

that is not included in the uncertainties.

Some of the distributions in time of error-weighted mean profile shape per

observation look, particularly at lower frequencies, as though they are correlated

on timescales of many days. This becomes more convincing when a maximum

uncertainty cutoff is used (Figure 3.7). All of the sub-bands exhibit similar pat-

terns, and the calibrated and uncalibrated data also give similar results to one

another. A test for correlation, used by Jenet et al. (2006) on sets of TOAs, was

conducted to formalise this. Shape indicator mean values per observation within

Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 43.65 18.43 10.55

Full bands 145.19 65.17 8.58

Table 3.3: Reduced chi-squared of mean shape parameter per observation (χ2
s,obs

) for

profiles of PSRJ1022+1001 around 1400MHz, indicating excess variation in sobs.
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a set were successively averaged together, and the variances of the averaged sets

were plotted as a function of the number of values combined to make each av-

erage value. In logarithmic space, this function should have a gradient of –1 for

uncorrelated (‘white’) data. With a cutoff imposed, the fully calibrated full band

centred on 1341 MHz gave a gradient shallower than –1, indicative of correlation

(Figure 3.8). This was not demonstrable in the sub-bands or the higher-frequency

full band, so the evidence for long-term profile trends is tentative. There is no ev-

idence of variation as a function of parallactic angle, which would have suggested

instrumental error. Long-term DM variation cannot be ruled out as a cause, and

intrinsic profile change is also possible.

3.6 Statistical analysis of profile variation with

time

3.6.1 Detection of excess profile variation

The statistical evaluation of profile change with time was conducted using sets of

values of weighted peak ratio, weighted area ratio and weighted shape parameter

for each profile, with each value defined as:

XW,i =
Xi − X̃

δXi
(3.6)

where X denotes R, A or s, i indicates one profile of approximately 10 minutes’

duration in a set of one sub-band or full band (see § 3.2.2), δXi is the uncertainty

in Xi and X̃ is the error-weighted median of values of X in the set. The reduced

chi-squared of X about its error-weighted median is then:

χ2
X

=
1

Nprof − 1

Nprof
∑

i=1

X2
W,i (3.7)

where Nprof is the number of profiles in the set. The error-weighted median

was chosen, in the case of the peak and area ratios, as the best estimate of
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Figure 3.7: Mean area ratio per observation for PSRJ1022+1001 as a function of time

in Parkes data. This is the fully calibrated sub-band at 1385MHz. There appears to be

some correlation in time between values. For clarity, only values with an uncertainty

of ≤ 0.08 are shown.

the ‘underlying’ ratio, i.e. the value which would represent the intrinsic ratio if

the measured intensity of each peak and area were subject to extrinsic normal

random variation only. Because two sets of normally distributed positive values

give a set of ratios with a positive skew, the mean ratio tends to overestimate

the underlying value. The median ratio is unbiased, and is more robust in the

presence of extremely outlying ratio values. Median shape parameter values were

used for consistency with ratios.

Under the assumptions that the measured intensity of each peak and area

in each profile has a well-known uncertainty and belongs notionally to a normal
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Figure 3.8: Variance of mean area ratio per observation for PSRJ1022+1001 as adja-

cent samples are added together in Parkes data. This is the fully calibrated full band

at 1341MHz. Both axes are on a log scale, with a slope of gradient –1 for comparison.

The fact that the variance gives a slope shallower than –1 implies correlation in time

between values of the mean area ratio per observation.

distribution, and that all values of R and A in a single sub-band or full band

belong to distributions with a common median, it follows that all values of R
W

and A
W

should fall on a distribution of median 0 and variance very close to 1,

resulting in χ2
R

= χ2
A

= 1. Though slightly negatively skewed, this distribution

should be close to a standard normal distribution (of mean 0 and variance 1),

if the uncertainties are similar to those quoted above. Values of s
W

should also

approximate a standard normal distribution if values of s are approximately nor-

mally distributed in each sub-band and full band, giving χ2
s = 1. A set of values
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of X
W

not approximating a standard normal distribution in shape, or a value

of χ2
X

significantly different to 1, would indicate inaccurate uncertainties on the

values of parameter X.

It was also possible to analyse profile variation in each bin directly using nor-

malised profiles (see § 3.2.2). This was quantified using the reduced chi-squared

of profile intensities about their error-weighted mean, or a template, in each bin:

χ2
P,j

=
1

Nprof − 1

Nprof
∑

i=1

(Pi,j − P̄j)
2

(δPi,j)2
(3.8)

where δPi,j is the uncertainty in the intensity of profile i in bin j and P̄j is

the error-weighted mean intensity of a set of profiles, or a template, in bin j.

Reduced chi-squared values significantly greater than 1 would indicate variation

at that phase, assuming accurate scaling and alignment. This method is similar

to that used by Hotan et al. (2004), in which the standard deviation of profiles

in each bin was plotted, but with error-weighting added to the procedure. Since

the intensity normalisation used was not absolute, but rather a parameter in a

chi-squared minimisation (see § 3.2.2), a check on its effectiveness was provided

by error-weighted covariances between the two intensities of the peak ratio and

between the two areas of the area ratio:

C
Y

=

Nprof
∑

i=1

(Yi,F − ȲF)(Yi,B − ȲB)

(δYi,F)2 + (δYi,B)2
(3.9)

where Y denotes either P or S and δYi,j is the uncertainty in Yi,j. With effective

normalisation, the error-weighted covariance between peaks or areas in a set of

profiles should be negative if their relative amplitude is changing with time. If,

instead, overall intensity differences between profiles still dominated any shape

variation in spite of normalisation, so that some profiles are uniformly higher in

intensity than others, then the covariance would be positive.
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Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 1.46 1.20 1.37

Full bands 2.55 1.60 1.63

Table 3.4: Reduced chi-squared of peak ratio (χ2
R
) for profiles of PSRJ1022+1001

around 1400MHz, indicating excess variation in R.

Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 3.03 1.97 3.73

Full bands 6.73 3.66 4.80

Table 3.5: Reduced chi-squared of area ratio (χ2
A
) for profiles of PSRJ1022+1001

around 1400MHz, indicating excess variation in A.

3.6.2 Magnitude of excess profile variation

The statistical significance of profile variation is most reliably measured using

many profiles from a wide time span. In every sub-band and both full bands

around 1400 MHz, the collated Parkes and Effelsberg profiles of PSRJ1022+1001

show a greater spread in shape than would be expected from their off-pulse noise.

It is seen with increasing clarity in the reduced chi-squared values of peak ratio,

area ratio and shape parameter when using sets of individual profiles from all

observations. Tables 3.4–3.6 show the mean values of χ2
X

in sub-bands and full

bands (weighted by the number of profiles in each band) for each receiver used,

using fully calibrated data for Parkes multibeam and simply calibrated data for

Parkes H-OH and Effelsberg. χ2
X

> 1 is apparent in all cases, revealing that the

total uncertainties in all measures of profile shape have been consistently under-

estimated by using only off-pulse noise. The fact that χ2
A

> χ2
R

for each band and

receiver means that the RMS profile noise values have not been underestimated

by a single factor, as this would make the two quantities equal.

One or more sources of additional error, independent of noise, were instead

assumed to cause the excess variation. This takes no account of the structure of
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Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 15.26 8.95 6.04

Full bands 38.93 18.95 4.65

Table 3.6: Reduced chi-squared of shape parameter (χ2
s
) for profiles of

PSRJ1022+1001 around 1400MHz, indicating excess variation in s.

changes over time, but simply assumes that they produce a normally distributed

set of shape indicator values in the manner of uncorrelated variation. The ad-

ditional errors in peak and area ratio are expressed here as relative errors, δRrel

and δArel, because these are easily expressed as relative errors in the intensities

of the two peaks:

δXrel = δY 2
F,rel + δY 2

B,rel if X ≡ R or X ≡ A (3.10)

where δYF,rel and δYB,rel are the additional relative uncertainties in the leading

and trailing peaks respectively, for either single- or multiple-bin peaks. An un-

explained variation in peak or area ratio of 7 %, for example, could be ascribed

to a 7 % variation in the leading peak, a 7 % variation in the trailing peak or

independent 5 % variations in both peaks (where the variation would be assumed

to affect the whole area of a peak by an equal percentage in the case of area

ratio). Since the origin of the error in shape parameter is non-linear, and because

the shape parameter itself is scaled from 0 to 1, its additional uncertainty, δsabs,

is expressed here as an absolute value. The magnitude of the additional error in

one set of values of any shape indicator was calculated as as a single uncertainty

which brought the reduced chi-squared of the indicator down to 1 for that set:

1

Nprof − 1

Nprof
∑

i=1

(Xi − X̃)2

(δXi)2 + (δXrel Xi)2

1

Nprof − 1

Nprof
∑

i=1

(Xi − X̃)2

(δXi)2 + (δXabs)2



































= 1



































if X ≡ R or X ≡ A

if X ≡ s

(3.11)
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Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 5.4 % 4.4 % 4.1 %

Full bands 5.8 % 4.3 % 4.1 %

Table 3.7: Additional peak ratio relative errors (δRrel) required to explain the spread

of values of R for profiles of PSRJ1022+1001 around 1400MHz.

The additional errors are, in essence, like the Equad parameters used in timing

(see § 2.3 and Equation 2.2).

Tables 3.7–3.9 give the RMS of the additional errors required to explain the

spread of shape parameter values in the sub-bands and full bands (weighted by

the number of profiles in each band) for each receiver, corresponding to Tables

3.4–3.6. A Kolmogorov–Smirnov test (Press et al. 1992, pp. 623–626) verified that

the additional errors changed the distributions of sets of weighted shape indicator

values from being highly inconsistent with standard normal distributions to being

consistent with them, allowing for skew and statistical outliers. The additional

errors in the sub-bands are larger than the maximum possible changes across

an 8-MHz sub-band due to scintillation (see Figure 3.3), while the similarity

of the additional errors required in sub-bands and full bands also suggests that

scintillation is not primarily responsible (see § 3.1.2).

A value of χ2
X

= 2 for a shape indicator in Tables 3.4–3.6 would imply that the

corresponding additional error in Tables 3.7–3.9 was comparable to the typical

noise error for that indicator, so it is clear from the actual tabular values that

the additional sources of uncertainty are significant. In fact, they are often the

largest sources of variation. Additional error values in the uncalibrated data sets

are slightly lower (by about 0.5% in area ratio), supporting the assertion of Hotan

et al. (2004) that calibration can introduce variation. However, the additional

spread is clear using any calibration or none.

These statistics benefit from the inclusion of a larger number of profiles than

were available to previous studies of PSRJ1022+1001. Ramachandran & Kramer
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Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 5.2 % 4.4 % 3.9 %

Full bands 4.6 % 3.9 % 3.9 %

Table 3.8: Additional area ratio relative errors (δArel) required to explain the spread

of values of A for profiles of PSRJ1022+1001 around 1400MHz.

Parkes multibeam Parkes H-OH Effelsberg

Sub-bands 0.21 0.21 0.19

Full bands 0.20 0.20 0.15

Table 3.9: Additional shape parameter absolute errors (δsabs) required to explain the

spread of values of s for profiles of PSRJ1022+1001 around 1400MHz.

(2003) analysed the significance of variation within a single observation, but pro-

duced reduced chi-squared values about the minimum peak ratio, whose position

within a distribution has a larger uncertainty than does a median ratio determined

from multiple values. Hotan et al. (2004) commented on a single observation in

which variation appeared consistent with noise; they also presented standard

deviation values for their entire data set, but did not compare these to the expec-

tations due to noise. Both papers used single-bin peak ratios, which are subject

to greater noise errors than multiple-bin area ratios.

The analysis conducted here shows not only that there are significant profile

shape variations throughout the observations of PSRJ1022+1001, but that they

are almost certainly correlated across at least 6.3 ◦ of phase around one or both

peaks. This is evidenced by the similarity of the additional uncertainties required

in peak and area ratios. For example, if an additional peak ratio uncertainty of

5.0 % were, hypothetically, caused by a 5.0 % variation in the intensity of one

peak, then a corresponding additional uncertainty of 4.4 % in area ratio would

likely be due to a 4.4 % variation in the integrated intensity of the 9 bins around

that same peak; if the variations in the bins around the peak were each 5.0 %

but were uncorrelated with one another, the expected change in their integrated
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intensity would be only around one third of this, or 1.7 %, unless they were each

undergoing relative variation of three times more than the peak itself, which is

implausible. By the same argument, the similarity of additional error values in

sub-bands and full bands infers a correlation of variation across ∼ 100 MHz in

observing frequency.

The additional uncertainties required in each shape indicator are similar across

different instruments, with the larger differences between reduced chi-squared

values indicating different average noise levels. The shape parameter values have,

by far, both the largest reduced chi-squared values and the largest differences

between them. This may well be the result of profile change across a larger phase

range than is probed by the area ratio. However, the shape parameter is also

the most difficult to interpret. If there is a component of profile variation that

cannot be described by a linear combination of the extreme templates (see § 3.3.1),

then the reduced chi-squared becomes less predictable. Similarly, systematic

differences between profiles recorded by different instruments (see § 3.4.1) may

result in different reduced chi-squared values. The fact that uncertainty in s is

a non-linear function of profile noise and s itself also makes the magnitudes of

its additional uncertainties less well defined, although confidence in the values is

increased by their good agreement across instruments.

3.6.3 Phase location of excess profile variation

The reduced chi-squared in each bin of normalised profiles (see Equation 3.8)

was used to try to determine the phases at which variation occurs, and as a

check on profile alignment. This confirmed the other measurements of variation,

with reduced chi-squared values in all sub-bands elevated above 1 across the

on-pulse region and particularly around the peaks (Figure 3.9). The result is

clearer than that obtained from standard deviation without error-weighting of

the profiles, as was done by Hotan et al. (2004). Variation is seen very clearly in
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full bands, although some of this is likely due to scintillation effectively mixing

profiles of different frequencies in the same set (see § 3.1.2). Negative error-

weighted covariances between peak intensities and between area intensities were

found in all sub-bands and full bands, suggesting that the profiles had been

normalised effectively.

It remains difficult, however, to localise the variation within the on-pulse re-

gion, because the scaling and alignment methods used are designed to minimise

variation across each complete profile and must therefore spread the higher re-

duced chi-squared values across the pulse. The scaling, in particular, does not

give absolute intensities and will lock more strongly to broader pulse features, so

the higher reduced chi-squared values around the trailing peak cannot be taken

as evidence that it is the source of the profile instability. Profile normalisation

by only one component transferred apparent variation to whichever component

was not used for normalisation, but comparison of reduced chi-squared values af-

ter normalisation by either component did not show one as more stable than the

other, which was a phenomenon seen by Kramer et al. (1999). Additionally, error-

weighted covariances between peak intensities and between area intensities were

a mixture of positive and negative values, calling into question the effectiveness

of single-component normalisation (see § 3.6.1).

3.6.4 Possible contributors to observed profile variation

The analysis used contained some approximations and statistical imperfections,

but these do not appear to be significant. The interpolation required for full

profile alignment, for example, cannot be perfect. However, conducting and then

reversing the sub-bin alignment, with interpolation at each stage, closely recov-

ered the variation seen in the profiles aligned to the nearest bin. Furthermore,

variation in all sub-bands and full bands was lower for fully aligned profiles than

for those aligned to the nearest bin. The difference was a relative error of around

MARK PURVER 107



80 100 120 140 160 180 200 220 240 260

0

0.5

1

1.5

2

2.5

Profile phase (o)

N
or

m
al

is
ed

 m
ea

n 
pr

of
ile

 in
te

ns
ity

 a
nd

 r
ed

uc
ed

 c
hi

−
sq

ua
re

d 
pe

r 
bi

n 
of

 n
or

m
al

is
ed

 p
ro

fil
es

Figure 3.9: Error-weighted mean of normalised profiles (solid line) and reduced

chi-squared of normalised profiles (dashed line) as a function of rotational phase in

PSRJ1022+1001, observed at Parkes across 8MHz of bandwidth centred on 1393MHz.

Profile variation is seen in the on-pulse region. This is a particularly clear example,

but the same trend is repeated in other sub-bands.

3 % in peak ratio and around 1 % in area ratio, considered independent of noise.

These values are consistent with the changes in peak ratio and area ratio found by

shifting the error-weighted mean profiles at each frequency by phases of up to half

a bin in each direction while assuming that the profile peaks had not moved. This

suggests that they represent the error introduced by neglecting sub-bin alignment

and thereby comparing regions of slightly unequal profile phase. Spurious effects

of interpolation appear to be negligible.

In the statistical analysis, the reduced chi-squared values of weighted peak

and area ratios have associated uncertainties. They are expected to be biased
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towards being slightly greater than 1, due to the fact that the uncertainties in

peak intensity values, used in weighting the peak and area ratios, have associ-

ated uncertainties of their own. Weighted shape parameter values are likely to

be similarly affected, as shape parameter uncertainties may also be imperfectly

known. Bias due to skew in ratio distributions can also increase or decrease re-

duced chi-squared values depending on the median ratio value, but it makes a

very small impact in the presence of the typical uncertainties in the data from

PSRJ1022+1001. A larger effect than both of these is the random error in the

reduced chi-squared values of weighted sets resulting from the finite number of

values (typically several hundred) from which they were calculated. Simulations

of normally distributed sets of pseudo-random numbers suggest that the reduced

chi-squared values may vary by around 5 %, which does not alter the magnitudes

of the additional uncertainties at the significance levels quoted in § 3.6.2. Al-

though the expected bias of reduced chi-squared values increases slightly with

higher ratio values, it is far too small an effect to cause the observed trend of

higher additional uncertainties being required at higher frequencies.

Interstellar scintillation, although it contributes to profile variation in full

bands, was shown in § 3.6.2 to be unable to translate the measured frequency

dependence of PSRJ1022+1001 into the time variation observed. It was found

through the simulation of additional dispersion that a change in the dispersive

delay of about 30 µs was required across a profile’s bandwidth to produce a change

in peak or area ratio of 2 %, which would be large enough to stand out against

profile noise. Around 1400 MHz, this corresponds to approximate DM changes of

0.2 cm−3 pc across a bandwidth of 50 MHz or 1.0 cm−3 pc across a bandwidth of

10 MHz, much larger than the DM variations previously measured through timing,

which were . 0.004 cm−3 pc when PSRJ1022+1001 passed close to the Sun in

the sky due to its small ecliptic longitude (You et al. 2007). Only observations

made when the pulsar appeared very near the Sun would have larger DM changes.

Dispersion variation is therefore unlikely to be a cause of noticeable change to
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the shape indicators.

The bin-correlated nature of the variation could still be explained by either an

intrinsic effect or polarisation calibration error, which would affect all the highly

polarised parts of the profile in common. If the source is instrumental, then it is

well in excess of the 1–2% expected by Hotan et al. (2004). This could be due

to dynamic level setting, which is employed to cope with fluctuating signal and

interference intensity in 2- and 4-bit systems. As the output digitisation levels

may be set for each receiver feed individually, it could change the differential gain

in between calibrator observations and produce unmodelled effects (van Straten

2010). The magnitude of this effect is not well known.

3.6.5 Comparison of PSRJ1022+1001 with

PSRJ1730−2304 and PSR J1603−7202

In light of the unmodelled errors that can be introduced into pulse profiles by

instrumentation, a comparison of two pulsars can help to identify the common

uncertainties to be expected in all sources. Two less highly linearly polarised

pulsars than PSRJ1022+1001 were studied in the same way with Parkes CPSR2

observations for this purpose: PSRJ1603−7202 and PSRJ1730−2304.

PSRJ1603−7202 has a similar period, period derivative and profile shape to

PSRJ1022+1001, but PSRJ1603−7202 has a highly circularly polarised trailing

component, where in PSRJ1022+1001 that component is highly linearly polarised

(Manchester & Han 2004). Error-weighted mean profiles of PSRJ1603−7202

appear to show (mostly very weak) emission covering about 300 ◦ of its rotational

phase, including a small, two-component ‘interpulse’ approximately 130 ◦ after

the centre of the main pulse and just before the start of the narrow off-pulse

region (Figure 3.10). Since the emission region is contiguous, PSRJ1603−7202

is likely to have closely aligned rotational and magnetic axes (which must also

be closely aligned with our line of sight to the pulsar), as opposed to being an
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Figure 3.10: A fully calibrated profile of PSRJ1603−7202 at 1405MHz from Parkes,

showing extended emission and an interpulse around 320 ◦ of phase, about 130 ◦ from the

main pulse. These things suggest that PSRJ1603−7202 probably has closely aligned

rotational and magnetic axes. The integration time of the profile is 32 minutes and the

bandwidth is 48MHz.

orthogonal rotator in which radiation beams from two magnetic poles are visible.

Observations of PSRJ1603−7202 covered approximately 6 years from 2003 to

2009, each typically occurring every 15 days and lasting 1 hour. PSRJ1603−7202

shows measurable variation in calibrated profile shape as a function of frequency,

with increases of about 5 % in the error-weighted median values of both peak and

area ratio in 8-MHz sub-bands progressing from 1321 to 1425 MHz. The frequency

evolution allows for maximum differences due to scintillation of around 0.4 % in

peak and area ratio between profiles of 8 MHz bandwidth at the same central

frequency. This could translate into apparent time variation of profile shape,

but, with a scintillation timescale and bandwidth of roughly 15 minutes and
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1.5 MHz respectively, the time variation due to scintillation would be expected

largely to be averaged out across a bandwidth of 8 MHz or more.

The profiles of PSRJ1603−7202 show, overall, a slight excess of variation in

area ratio with time, but it is much smaller than that of PSRJ1022+1001 and in

keeping with the expected level of instrumental error, being around 1.5% in fully

calibrated CPSR2 sub-bands. There is no visible evidence of variation in the re-

duced chi-squared of each bin of the normalised profiles, and the profiles appear to

be properly aligned (Figure 3.11). The covariances between peak intensities and

between area intensities were also found to be positive in all sub-bands and full

bands, showing that no variation in relative component amplitude could be dis-

cerned above the limiting uncertainty of profile normalisation. PSRJ1603−7202

demonstrates that significant profile variation above the expected noise is not

seen for all pulsars.

PSRJ1730−2304 was observed over a similar time span to PSRJ1603−7202.

It has a degree of linear polarisation which has been reported very differently in

previous studies (Xilouris et al. 1998; Ord et al. 2004), and in this analysis showed

a polarisation level in between those published before, while its PA as a function

of profile phase was consistent with past results (Figure 3.12). The total intensity

profile shows quite extended emission and a small interpulse, although the main

pulse is too broad to allow determination of whether the interpulse comes from

the same magnetic pole.

The trailing two peaks of its three-peaked profile were used for shape analy-

sis. It was identified by Kramer et al. (1999) as having an unstable profile, and

showed a moderate degree of time variation, requiring additional errors of approx-

imately 3% in area ratio in fully calibrated 8-MHz-wide sub-bands. Variation of

its profile with frequency was also measurable, but not sufficient to explain the

time variation through scintillation. Its linear polarisation does not appear to

be high enough to cause the 1–2% maximum variation quoted by Hotan et al.

(2004), although it could be that unmodelled effects related to linear polarisa-
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Figure 3.11: Error-weighted mean of normalised profiles (solid line) and reduced

chi-squared of normalised profiles (dashed line) as a function of rotational phase

in PSRJ1603−7202, observed with CPSR2 across 8MHz of bandwidth centred on

1321MHz. No profile variation is seen in this or other sub-bands.

tion are responsible. Whatever the cause of variation in PSRJ1022+1001 and

PSRJ1730−2304, it does not significantly affect PSRJ1603−7202.

3.7 Timing of PSR J1022+1001

Timing of the calibrated sub-band profiles obtained with CPSR2 was conducted

using both fixed and adaptive templates, where the adaptive templates were those

produced during the calculation of shape parameter values. The fixed-template

timing was as in § 2.3.1. TOAs with estimated uncertainties greater than 15 µs

were excluded. The timing results are shown in Table 3.10.

The two sets of templates gave very similar uncertainties for the pulsar system
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Figure 3.12: Fully calibrated PA and polarisation profiles of PSRJ1730−2304 at

1341MHz from Parkes. The integration time is 63 minutes and the bandwidth is

48MHz. Top window: PA as a function of profile phase. Bottom window: polarisation

profiles. The solid line is total intensity, the dashed line linearly polarised intensity

and the dotted line circularly polarised intensity. The degree of linear polarisation is

in between those previously published by Xilouris et al. (1998) and Ord et al. (2004).

Emission is quite extended, and there is a small interpulse around fractional pulse phase

0.75, although it is not possible to say whether this is from the same magnetic pole as

the main pulse

parameters, and most, though not all, of the parameters agree to within these

uncertainties between the two methods. Slightly higher Equad values (see § 2.3)

were required for the adaptively timed TOAs. The large improvement in timing

accuracy achieved with adaptive templates by Kramer et al. (1999) was not re-

produced. Some of the early Effelsberg TOAs had much larger residuals than all

the other data, which may explain the inaccurate timing found in the previous

study. Most of those points were removed from this timing fit as instrumentally
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Parameter Fixed templates Adaptive templates

Time span of observations (yrs) 12.08 12.08

Number of TOAs 7739 7786

Error-weighted residual RMS (µs) 5.47 5.62

χ2
f

without Equad 1.16 1.18

Right ascension (h : m : s) 10:22:58.0058 (10) 10:22:58.0052 (10)

Declination (◦ : ’ : ”) +10 : 01 : 52.76 (4) +10 : 01 : 52.73 (4)

Spin frequency (s−1) 60.77944798776615 (14) 60.77944798776571 (14)

Frequency derivative (s−2) −1.60097 (3) × 10−16 −1.60092 (3) × 10−16

Reference epoch (MJD) 52754 52754

DM (cm−3 pc) - - *

Proper motion (RA) (mas yr−1) −17.17 (3) −17.13 (3)

Parallax (mas) 1.95 (19) 1.78 (19)

Binary model BT BT

Binary orbital period (days) 7.80513028255 (10) 7.80513028253 (10)

Epoch of periastron (MJD) 52759.96964 (16) 52759.96965 (17)

Projected semimajor axis (lt-s) 16.76541620 (10) 16.76541596 (11)

Longitude of periastron (◦) 97.732 (8) 97.732 (8)

Orbital eccentricity 9.7234 (11) × 10−5 9.7227 (12) × 10−5

Table 3.10: Fitted system parameters of PSRJ1022+1001 using sub-bands, timed with

both fixed and adaptive templates at Effelsberg, Parkes and Westerbork.

* A fixed value of DM = 10.2521 (1) cm−3 pc was used (Hotan et al. 2006).

corrupted.

The lack of timing improvement with adaptive templates does not imply that

no profile variation occurs. Rather, it suggests that it is subtle and appears ran-

dom. Some of it must be accounted for in the template-matching error, but some

may manifest as a higher error-weighted residual RMS than would be produced

by noise alone. If the profile variations do not cause the profile peaks to change

separation noticeably, then they need not cause very large timing residuals.
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4

Upper limits on the strength of

the gravitational wave

background from pulsar timing

Gravitational wave detection is the most sought-after goal of contemporary high-

precision pulsar timing (see § 1.3.2). Past observations may form part of a data

set that provides an eventual positive detection, but cannot alone reveal the

presence of gravitational waves. Existing data are instead used to place upper

limits on the amplitudes of gravitational waves from individual sources and, in

particular, on the collective strength of the cosmic GWB (see e.g. Verbiest 2009).

Since this background must comprise a superposition of waves from many sources

and therefore be stochastic, placing a bound on it amounts to an estimate of the

sensitivity of pulsar timing to residuals that are correlated in time, or ‘red’. It is

therefore important that the measured residuals are as uncorrelated, or ‘white’, as

possible. In this chapter, timing of the pulsars discussed in the previous chapters,

with analytic templates, is used to produce upper limits on GWB strength, and

the reliability of the limits is examined in comparison with previously published

values.
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4.1 Method of determination of an upper limit

on gravitational wave background strength

The method used here to limit the GWB was that developed by Jenet et al.

(2006), and further examined by Hobbs et al. (2009). It is different to the tech-

nique for detection described by Jenet et al. (2005), which looks for correlations

between the residuals of different pulsars as a function of their angular separa-

tion on the sky, and is sensitive to the component of the GWB near the Earth

that is common to all the pulsars’ residuals. The limiting method, by contrast,

correlates the residuals of each pulsar with functions of time that are low-order

polynomials, in order to detect red noise, but does not correlate different pulsars

with one another. The polynomial correlation functions are summed incoherently

to produce a detection parameter. It is assumed that the actual data do not con-

tain a detectable signal, so this is used to create a threshold detection level. The

effect of an artificial GWB is then added to the pulsar residuals to see if the

threshold level is reliably exceeded, in which case that background is considered

detectable. This method should provide a conservative limit as it does not look

for signals correlated between pulsars. Its limit will be more general than one

provided by the detection method, as it assumes only the most general form for

the GWB-induced component of the residuals. Because of this, the limit will only

be reliable for residuals that are white in the absence of gravitational waves, so

it is necessary to test the real residuals for redness that may be introduced by

other unmodelled factors such as systematic measurement error or timing noise.

4.1.1 Algorithm for determination of gravitational wave

background upper limit

The practical implementation of the limit method is mostly described by Jenet

et al. (2006) and Hobbs et al. (2009), and information from those papers is used
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4.1: METHOD OF DETERMINATION OF AN UPPER LIMIT ON

GRAVITATIONAL WAVE BACKGROUND STRENGTH

throughout this sub-section. The successful detection, or otherwise, of a simulated

GWB of amplitude AS (see Equation 1.19) was determined from an ensemble

of possible backgrounds and sets of residuals, allowing a statistical assessment

of the likelihood of detection. The actual data set for each pulsar consisted

of TOAs with associated uncertainties and residuals. The real residuals from

each pulsar were first subtracted from the real TOAs to generate a set of model

TOAs, sampled at the same pulse numbers as the real ones and corresponding

to the best fit of the real TOAs. The model TOAs were obtained recursively

using tempo2 without fitting. Using matlab, the real residuals, kept with their

associated TOA uncertainties, were then randomly shuffled with the function

randperm and added back on to the unshuffled model TOAs to create multiple

artificial realisations of the timing data in the absence of gravitational waves. The

seed of the random numbers was changed regularly to avoid repeated sequences.

With the new TOAs and uncertainties determined, their associated residuals

were calculated by refitting them with tempo2. Many shufflings were used to

create multiple realisations of TOAs without gravitational waves, in order to find

the threshold of GWB detectability. Their validity depends on the uncertainties

accurately describing the magnitudes of the residuals, so that they are weighted

correctly, and on the residuals being white, so that no correlations are destroyed

by the re-ordering. To create corresponding data containing gravitational wave

signatures, multiple GWBs were simulated, and their effects added to the model

TOAs, using the GWbkgrd plugin for tempo2, whose workings are detailed by

Hobbs et al. (2009). Shuffled pairs of real residuals and uncertainties were again

added to these TOAs in matlab to produce multiple artificial realisations of the

timing data in the presence of gravitational waves. Their residuals were again

found by refitting the new data using tempo2, which was particularly important

because much of the gravitational wave signature would be absorbed into changes

to the pulsar system parameters and therefore undetectable (see § 4.2.2). Many

shufflings were again used to create multiple realisations of data with gravitational
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waves, in order to determine whether a GWB would produce residuals that would

exceed the detection threshold with specified levels of confidence.

The GWB detection parameter was calculated within matlab, using the same

process for the TOA realisations with and without gravitational waves. For each

realisation, the Np TOAs from each pulsar, p, were first converted from time

values, tp, to dimensionless normalised time values, τp:

τp,i = 2

(

tp,i − tp,1

tp,Np
− tp,1

)

− 1 (4.1)

where i indicates TOA number from 1 to Np. This scaled and shifted the TOAs

such that τp,1 = −1 and τp,Np
= 1. A set of discrete polynomial functions of

normalised time, Jp(τp), was then computed, whose sum would be used to ap-

proximate the residuals associated with a realisation of the TOAs from pulsar p

after fitting, and which would give an indication of the level of redness in those

residuals. To do this, unnormalised polynomials, Kp(τp), were first found re-

cursively by error-weighted Gram–Schmidt orthogonalisation1 (Press et al. 1992,

pp. 43–45):

Kp,l,i















































































≡ 1 if l = 0
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∑
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∑
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∑
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)/(

Np
∑
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K2
p,l –2,i

(δtp,i)2

)

if l > 1

(4.2)

where l is an integer indicating polynomial order from 0 to some reasonable max-

imum value (see § 4.1.2) and δtp,i is the uncertainty (in units of time) associated

1This procedure was adapted from that described by Wolfram MathWorld:

http://mathworld.wolfram.com/Gram-SchmidtOrthonormalization.html
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GRAVITATIONAL WAVE BACKGROUND STRENGTH

with TOA i. These were then normalised to form the final polynomial set:

Jp,l,i = Kp,l,i

/

√

√

√

√

Np
∑

i=1

K2
p,l,i

(δtp,i)2
(4.3)

Normalisation was done after the recursive calculations, to avoid numerical round-

ing errors. The final polynomials were orthonormal in a weighted sense, obeying

the conditions:
Np
∑

i=1

Jp,m,i Jp,n,i

(δtp,i)2







= 1 if m = n

= 0 if m 6= n
(4.4)

The polynomials generated for a few data sets were checked to ensure that they

satisfied these conditions. The detection parameter, Υ, for one realisation of

multiple pulsars was then defined from the correlation of the polynomials with

their associated TOA residuals, summed over all pulsars, the polynomials up to

a chosen order L and all residuals:

Υ =

E
∑

p=1

L
∑

l=0



Np

(

Np
∑

i=1

rp,i Jp,l –1,i

(δtp,i)2

)2/(

Np
∑

i=1

(rp,i − r̄p)
2

(δtp,i)2

)



 (4.5)

where the array consists of E pulsars, rp,i is the residual (in units of time) asso-

ciated with the realisation of TOA i from pulsar p and r̄p is the mean residual

for that realisation of all the TOAs from pulsar p. Red residuals would be bet-

ter represented than white ones by low-order polynomials, resulting in a higher

detection parameter value. Using many realisations, distributions of values of Υ

were obtained both with and without gravitational waves. The threshold detec-

tion parameter, Υ0, was taken to be the value in the distribution without waves

above which a fraction p
f

of the values lay. The positive detection parameter, Υd,

was taken to be the value in the distribution with waves above which a fraction p
d

of the values lay. A positive GWB detection would be revealed by Υd > Υ0, ac-

cepting a probability of p
f

that a non-existent background would be falsely found

and a probability of (1− p
d
) that a detectable background would be missed. The

upper limit of the real GWB, Amax, would be the lowest value of AS to permit a

detection within these confidence limits.
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4.1.2 Parameters of a simulated gravitational wave back-

ground

GWBs were simulated using a spectral power index of α = −2/3 (see § 1.3.2),

corresponding to a background emitted by supermassive black hole binary sys-

tems. Following Jenet et al. (2006), each background consisted of 104 gravita-

tional waves, randomly distributed on the sky and with random frequencies, f
GW

,

between 1.59 × 10−11 and 2.31 × 10−5 Hz, corresponding to periods of 12 hours

to 2000 years. The frequencies were drawn from a probability distribution uni-

form in log(f
GW

), following Hobbs et al. (2009), because higher-frequency waves

originate from shorter-period binary systems, which last for less time before co-

alescing and are therefore less numerous. The distances of the pulsars from the

Earth were set at the values given by the model from which their model TOAs

were formed. Following Jenet et al. (2006), the detection probabilities used were

p
f

= 0.001 and p
d

= 0.95, meaning that, in a real data set, there would be a

0.1 % chance of falsely detecting a GWB of amplitude & Amax where there was

a real amplitude of A ≪ Amax, and there would be a 95 % chance of detecting a

GWB of amplitude & Amax where there was a real amplitude of A ≃ Amax.

The above parameters can all be set in GWbkgrd. When testing a GWB of

amplitude AS for detectability, 100 realisations of the background were generated.

In converging on a value of Amax, distributions of 100 detection parameter values

were used to find Υ0 and Υd. In common with Jenet et al. (2006), 104 values were

used in the final analysis for statistical accuracy, i.e. each GWB realisation was

added to 100 shufflings of the residuals. Polynomials up to order 7 were summed

to produce all values of Υ (i.e. L = 7 in Equation 4.5), as they collectively

represent 95 % of the power of a GWB of α = −2/3 in timing residuals (Jenet

et al. 2006). The offset of each set of realised residuals for each pulsar was chosen
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USING PULSAR TIMING WITH ANALYTIC TEMPLATES

such that the error-weighted mean of the set was zero, i.e.:

Np
∑

i=1

rp,i

(δtp,i)2
= 0 (4.6)

This offset is arbitrary, and is normally chosen by tempo2 to give a set of resid-

uals an unweighted mean of zero. By instead satisfying the above condition, the

zeroth-order polynomial, which is constant as a function of time for any set of

residuals, made no contribution to any value of Υ. Without satisfying the con-

dition, this polynomial would correlate with the offset and, since its value was

slightly changed upon each shuffling of residuals, could dominate over the poly-

nomials that were fitting GWB signals, spoiling the detection parameter as an

indicator of gravitational waves.

4.2 Limits on gravitational wave background str-

ength using pulsar timing with analytic tem-

plates

The TOAs obtained from PSRJ1022+1001 using adaptive Gaussian templates in

§ 3 were used to produce upper limits on the strength of the GWB. The residuals

of the other pulsars proved too red to be used. Even PSRJ1022+1001, which

passed the whiteness tests, was suspected of some redness, as described below,

and the reliability of the limits produced is criticised in light of this.

4.2.1 Tests of the suitability of timing residuals

The whiteness of the timing residuals obtained in § 2 was tested using the three-

fold method described by Jenet et al. (2006). First, a Lomb-Scargle periodogram

of the residuals was inspected, as this is akin to an FFT with irregularly sam-

pled data and would show clear peaks in structural frequency (Press et al. 1992,
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pp. 575–584). Second, the variance of the residuals was measured as adjacent

time samples were successively summed and the data set shrank. Uncorrelated

residuals would give a gradient of –1 in a log-log plot of number of samples added

together against variance. Finally, the polynomial spectrum of the real data was

checked for patterns. Only PSRJ1022+1001 passed all of these tests.

4.2.2 Limits using PSRJ1022+1001

The previously successful sub-band timing of PSRJ1022+1001 was used to gen-

erate an upper limit on the GWB. Figure 4.1 shows an example of the effects of a

GWB, generated by GWbkgrd, on the real TOAs from PSRJ1022+1001, before

and after fitting with tempo2. The waves with the longest periods dominate the

pre-fit residuals, creating an apparently linear slope that is actually part of a very

long sine wave. These signals may well exist in real TOAs, but they represent

only what would be seen if the pulsar system parameters were a priori known.

As shown in the post-fit residuals, most of the gravitational wave power is lost in

fitting, with linear and quadratic patterns simply interpreted as being part of the

frequency and slowdown of the pulsar’s rotation respectively. The RMS of the

error-weighted post-fit residuals is 0.1µs higher than that of the real residuals (see

Table 3.10), but its red signature makes it detectable using the method described

in § 4.1.1. The longer a pulsar data set, the better the long-period gravitational

waves could be separated from truly linear and quadratic slopes.

With Effelsberg, Parkes and Westerbork data combined over 12 years, a limit

of Amax = 1.1× 10−14 was obtained, which is just above the top of the estimated

amplitude of 10−15 < A < 10−14 (Jenet et al. 2006). This was the same as that

found by Jenet et al. (2006) using seven pulsars, and only 10% higher than that of

Verbiest (2009) using a long data set of PSRJ1713+0747. As previously found by

Hobbs et al. (2009) with PSRJ1857+0943, the value of Υ for the real TOAs from

PSRJ1022+1001 with all telescopes combined was found to be suspiciously high
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USING PULSAR TIMING WITH ANALYTIC TEMPLATES

Figure 4.1: Timing residuals for PSRJ1022+1001 after addition of an artificial GWB

of AS = 1.1 × 10−14 to the TOAs. The top panel shows the pre-fit residuals based on

the timing model for PSRJ1022+1001 derived from its real TOAs; these residuals are

dominated by the GWB. The bottom panel shows the post-fit residuals after updating

the timing model, in which most of the GWB signal has been lost in fitting the pulsar

system parameters. The error-weighted post-fit residual RMS is 0.1 µs higher than that

of the real residuals; the effect of the GWB cannot be seen by eye, but its red signature

makes it detectable. Effelsberg is in green, Parkes in black and Westerbork in red.
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compared to the shuffled threshold values – higher than the entire distribution, in

this case – indicating likely redness in the real TOAs and a limit that was too low.

With Parkes and Westerbork only, the limit became Amax = 1.4 × 10−14, with

the value of Υ for the real TOAs still above the threshold detection parameter

distribution but not by as much. With Parkes data alone, the limit became

Amax = 1.7×10−14, and the value of Υ for the real TOAs was near the top end of

the threshold detection parameter distribution but not above it. Figure 4.2 shows

the threshold and positive detection parameter distributions, and the detection

parameter value for the real TOAs, for a successful detection of an artificial GWB

of AS = 1.1 × 10−14 using TOAs from PSRJ1022+1001 obtained at Effelsberg,

Parkes and Westerbork.

The indication is that even the most conservative GWB limit obtained here

is optimistic. However, PSRJ1022+1001 still seems to be a powerful pulsar in

terms of constraining the strength of the GWB. With more advanced whitening

techniques, such as are described by Champion et al. (2010), a stringent and

reliable limit might be obtained.
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Figure 4.2: Threshold and positive detection parameter distributions for artificial

GWB detection using TOAs from PSRJ1022+1001 obtained at Effelsberg, Parkes and

Westerbork. The positive detection parameter distribution, on the right, is almost

entirely above that of the threshold detection parameter, indicating the successful de-

tection of an artificial GWB of AS = 1.1×10−14. However, the value obtained with the

real residuals, unshuffled and containing no inserted gravitational waves, is also above

the threshold detection parameter distribution, suggesting that the real residuals are

correlated.
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5

Discussion of results and future

work

5.1 Pulsar timing with analytic templates

Analytic templates exist in order to provide noise-free and adaptable representa-

tions of pulse profiles. Gaussian templates were first used as a means to identify

individual pulse components (Krishnamohan & Downs 1983), and, although more

components were generally used in this PhD project than could be easily distin-

guished in the profiles fitted, they are a natural way to represent the integrated

stochastic emission of pulsars. Gaussian templates have been shown in this thesis

to produce consistent timing results across telescopes (§ 2.2.1), which is important

for the PTAs striving to make the first direct detection of gravitational waves.

Equally significantly, they have been shown to be adaptable as a function of

frequency (§ 2.2.2–2.2.3), which is becoming necessary as observing bandwidths

increase. Adaptation using a constant number of components with fixed centres

cannot always be accomplished across a broad frequency range, but over a narrow

frequency range it can be done. It gives an additional dimension to phase-aligned

templates, and can yield better timing results than are achieved by scrunching
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profiles and templates in frequency (§ 2.3.1).

It is clear from attempts to produce reliable limits on gravitational wave

strength that correlations within timing residuals can be very subtle and difficult

to measure, but that they can make a big difference to any limit placed on the

GWB. A polynomial spectrum is, in fact, a good way to pick up such red noise,

by comparing that of the real residuals to those of a shuffled set (§ 4.2.1–4.2.2).

Removing or managing redness will be necessary for the foreseeable future, and

perhaps in perpetuity, and its minimisation is obviously desirable. Doing this

while combining data sets across telescopes has been shown to be a challenge,

and a direct comparison of the timings of a set of profiles with analytic and high-

SNR templates would be a useful future piece of work. This would help to show

whether such templates can be a source of systematic timing error.

It will be a great advantage to PTAs if observations are stored with as much

detail as possible – as profiles with many sub-integrations, frequency channels

and counterpart calibration observations. Data storage limitations have, in the

past, sometimes resulted in only TOAs being kept. There are myriad complex

aspects to the process of turning profiles into TOAs, and if as much unprocessed

data as possible is kept, researchers will be able to compare and select different

approaches. These data should be readily accessible within any timing collabora-

tion, as should different processing pipelines. To this end, the EPTA is currently

developing a repository for its profiles as it moves towards LEAP.

5.2 The effect of apparent pulse profile variation

on timing accuracy

It is difficult to pin down the causes of measured profile variation, but work on

PSRJ1022+1001 has made it clear that such variation is as much a source of inac-

curacy as instrumental noise for some pulsars (§ 3.6.2). The similar, bin-correlated
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5.2: THE EFFECT OF APPARENT PULSE PROFILE VARIATION ON

TIMING ACCURACY

variation seen in PSRJ1730−2304, but not in PSRJ1603−7202, demonstrates

that it is not common to all pulsars, and that it could be related to linear po-

larisation (§ 3.6.5). However, PSRJ1730−2304 does not seem to be polarised

enough for the observed variation to be explained by the expected level of cali-

bration error, so the possibility remains open that small, mostly random profile

variations are intrinsic to PSRJ1022+1001 and PSRJ1730−2304. The recently

installed digital filterbank at Jodrell Bank may help to settle this question by

processing data from circular receiver feeds in the Lovell Telescope. If the appar-

ent profile changes are instrumental, the reverse of the linear-feed results would

be expected, with clear excess variation in PSRJ1603−7202 but little or none in

PSRJ1022+1001 and PSRJ1730−2304.

If instrumental error is the problem, then systems with high numbers of out-

put bits, which do not require dynamic level setting, could be the solution.

Unmodelled effects will become increasingly significant as observational SNR

increases with the next generation of radio telescopes, and these defects will

need to be understood lest they become the limiting factor in timing accuracy.

PSRJ1022+1001 would provide a good test case for such work, and the analysis

methods used here (§ 3.3.1) could be employed as they have been shown to be

sensitive to variation in this and other pulsars (§ 3.4–3.6). If intrinsic MSP profile

variation has been found, then it may be difficult to overcome as it seems to be

random and without a clear timescale (§ 3.5.1).

In spite of its timing issues, PSRJ1022+1001 has proved to have relatively

uncorrelated residuals which may make it a powerful member of PTAs (§ 4.2.1).

It has been used to set low upper limits on the strength of the GWB, although

even the most conservative of these, Amax = 1.7 × 10−14, may be optimistic as

a result of its apparent red residual noise (§ 4.2.2). Even with this taken into

account, however, it appears to be capable of producing a surprisingly stringent

limit on the GWB. With more advanced whitening techniques, a more reliable

estimate of its sensitivity to gravitational waves will be possible. If its excess
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profile variation can also be removed, then its residuals might become naturally

whiter and place it among the best pulsars for gravitational wave measurement.
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Figure 5.1: The Earth, photographed in composite from a distance of 700 kilometres

by the Terra satellite in 2001, and augmented by various other observations. It has been

named the “blue marble” after the image taken from the Apollo 17 spaceship in 1972

(figure credit: NASA/GSFC/R. Stöckli & R. Simmon; NASA/MODIS; USGS/EROS;

USGS/FFC; NOAA/DMSP).
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