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Fibre reinforced plastics (FRP) have been used widely in civil engineering in 
order to improve the structural response (deformation and stress). Most of the 
current codes for the strengthening of RC structures do not provide enough 
provision for the design of the column-slab connections strengthened with 
externally bonded reinforcement (EBR) due to the lack of research covering this 
area. This study is to investigate, both experimentally and analytically, the 
effectiveness of bonding pre-stressed carbon fibre plates to the tension surface 
of concrete column-slab connections in both the serviceability and ultimate limit 
state.  
 
The experimental programme comprises five full-scale specimens that are 
designed and fabricated to simulate an interior column-slab connection. The 
prestressing technique, application procedure and prestressing device are 
described in detail in this study. Different prestressing forces are applied to the 
FRP plates bonded to the concrete substrate. The structural response of the 
strengthened specimens are compared with a reference specimen in terms of 
punching shear strength, deflection profile, strain, crack opening displacement 
and failure modes.  
 
Furthermore, a finite element model using ABAQUS is built to obtain a further 
insight into the punching behaviour of the test slabs. Both experimental and 
numerical results are compared, and a parametric study on the effect of the 
FRP-concrete interface on the structural integrity is conducted. Results are also 
compared with Eurocode 2 and ACI for the prediction of the punching strength.  
 
It was found that bonding of prestressed FRP plates to the tensile face of the 
concrete slabs improved the serviceability, but was not able to enhance the 
ultimate behaviour as much as the non-prestressed FRP plates. The 
development of the critical diagonal crack (CDC) was the main reason for 
diminishing the ultimate strength of the strengthened slabs. 
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Notation 
Latin letters 
a    The depth of the neutral axis 

0b    The perimeter length of the critical section 

cb    The width of the concrete substrate beneath the FRP plate 

fb    The width of the FRP plate 

c    The column dimension 
d    The effective slab depth 
d     The depth of the compression steel reinforcement 

gd    The maximum size of the aggregate 

cE    The concrete modulus of elasticity 

sE    The steel modulus of elasticity 

xE , yE  and zE  The elastic modulus of the FRP plate in three directions 

ctF    The vertical component of the concrete tensile 

dowF    The dowel-force contribution of the flexural reinforcement 

pF    The vertical component of the forces in the tendons 

punF    The punching shear capacity 

swF    The vertical component of the shear reinforcement forces 

cf     The concrete compressive strength 

ckf    The characteristic concrete strength 

cmf    The mean compressive strength of concrete 

ctkf     The characteristic tensile strength of concrete 

spctf ,    The split tensile strength 

rf    The tensile strength of the FRP plate 

tf    The concrete tensile strength 

yf    The yield strength of steel  

fG    Fracture energy 

xyG , yzG  and xzG  The Shear modulus of the FRP plate for three planes 

h    The slab thickness 
L   The square-slab edge length 
Le   The effective bond length 
Mb    The nominal radial moment capacity of the slab 
S    The shear strength in the yx  plane of the FRP plate  
S   The support length of the slab 

0S    The slip at debonding initiation 

ft    Thickness of FRP plate 

tu    The crack opening displacement 

flexV  The vertical punching shear force corresponding to the 

ultimate flexural capacity of the slab 
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nV    The ultimate nominal punching shear capacity 

RV    The shear strength 

tX  and cX  The tensile and compressive stress limits of the FRP plate 

in the x  direction 

tY  and cY  The tensile and compressive stress limits of the FRP plate 

in the y  direction 
 
Greek letters 

w    A width factor 

1    The bond length factor 
    A factor accounts for the influence of reinforcement ratio 

0    The terminal concrete strain at zero tensile stress 

c    The concrete strain 

ck    The cracking strain of concrete 
in

c
~    The inelastic compressive strain of concrete 

cu    The ultimate compressive strain of concrete 

1cu    The compressive strain in concrete at the peak stress cmf  

f    The FRP strain 

fe    Effective strain of the FRP 

nom    The nominal strain 

r    The rapture strain of the FRP plate 

s    The steel strain 
el
s    The elastic steel strain 
pl

s
~    The true plastic strain 

    A factor accounting for the size effect law 
    The strengthening efficiency factor 

rv    The factored shear resistance 

cv    The factored shear resistance of concrete 

sv    The factored shear resistance of shear reinforcement 

    The flexural reinforcement ratio 
    The reinforcement ratio compression steel reinforcement 

c    The compressive stress of concrete 

s    The true stress of steel reinforcement  

t    The tensile stress of concrete 

nom    The nominal stress of steel reinforcement  

    The interfacial shear stress 

max    The maximum shear stress at debonding initiation   

xy , yz  and xz  The Major Poisson’s ratio for three planes of FRP plate 

s    The diameter of the corresponding bars 
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Chapter 1 

Introduction 

 

1.1. Introduction 

Flat slabs shown in Figure (1-1) have been widely used since 1900 due to their 

economic and functional advantages. However, the resulting complex state of 

stress due to the high shear and moment at the column-slab connection make it 

one of the most critical D-regions (Discontinuity regions) in concrete structures 

[1]. Inadequate construction or design of such a connection makes it more 

vulnerable to undergo brittle punching-shear failure should it be subjected to 

excessive loads or earthquakes. Also, during the structure’s life, it could suffer 

from deterioration of concrete as a result of corrosion of embedded 

reinforcement, freezing and thawing, or fire damage.  

 

 

 

   Figure  1-1: Flat slab Structure. 
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Before the early 1980s the technique of strengthening concrete structures by 

bonding steel plates with adhesives and bolts to the tensile surface was the 

dominant measure to repair or strengthen defected structures. After the mid-

1980s, fibre reinforced polymers (FRP), due to their properties such as high 

strength, light weight and resistance to environmental effects, gained approval 

to overcome some of the shortcomings associated with steel plates in 

strengthening application. Therefore, corrosion resistance systems are not 

required, and maintenance after instillation is less laborious compared to steel 

[2, 3].  

 

As a result, most previous research investigating FRP applications concentrated 

on the studies of reinforced concrete beams and columns. These experimental 

and analytical studies have demonstrated that FRP can enhance the ultimate 

strength and deformation capacity of concrete beams and columns [4-8]. In 

addition, FRP composites are not only used in the strengthening of structural 

elements in flexural and shear, but are also used in new construction instead of 

conventional steel bars in beams and slabs [9]. Results have been promising, 

and FRP has been used in many projects in North America, Japan and Europe 

[3]. A schematic diagram shown in Figure (1-1) concludes the application of 

FRP in civil engineering.  

 

  

 

Figure  1-2: Schematic diagram for application of FRP in civil engineering. 

FRP application in civil engineering 
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To date there are several codes and design guidelines around the world such 

as, Europe/UK ISE [10], CEB-FIB Bulletin 14 [11], CSA Canadian code [12], 

ACI Committee 440 [3], JSCE report [13], and Technical Report 55 [14], 

covering strengthening techniques. However, these codes do not provide 

enough information about the strengthening and design of column-slab 

connections enhanced with FRP composites due to lack of research covering 

such application. 

 

At the present time, strengthening methods to increase the ultimate shear 

capacity of the column-slab connections can be categorized into two main 

approaches; enhancing the capacity directly in shear [15] and enhancing the 

capacity in flexural [16]. The latter can be justified based on Moe’s postulate 

that there is an interaction between bending and shear capacity; the punching 

shear capacity of slab is established from its flexural strength [17]. A common 

strengthening technique is to bond FRP fabrics to the tension surface of a 

concrete slab [18, 19].  However, no work seems to have been conducted 

attempting to investigate the effectiveness of two-way prestressing to concrete 

slabs using FRP plates, especially for those slabs constructed without adequate 

shear reinforcement before the 1970s.  

 

1.2. Research objectives 

The aim of this study is to investigate the punching behaviour of column-slab 

connections strengthened with non-prestressed and prestressed Carbon Fibre 

plates (CFRP), using both modelling and experimental methods. The study has 

concentrated mainly on concrete column-slab connections without shear 

reinforcement and low reinforcement ratios in order to enhance their 

serviceability and loading capacity. So, to achieve the general aim of this 

research, the following more specific objectives are identified: 

 

(1) To investigate, through literature, the key variables and different 

approaches for enhancing the load bearing behaviour of flat slabs 

strengthened with externally bonded reinforcement (EBR) in flexural and 

in shear. Review of the analytical and numerical models analyzing and 
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identifying different modes of failure for such members is also 

presented. 

(2) To investigate, through experimental testing, attaching adhesively 

unidirectional non-prestressed/prestressed CFRP plates to the tensile 

surface of concrete slabs. The testing was intended to identify the main 

macro parameters controlling loading capacity and failure modes. The 

prestressing force applied, and the post-strengthening anchorage and 

efficiency are investigated for the design of the prestressed CFRP 

application in the tests.  

(3) To examine numerically the structural response of CFRP strengthened 

connection. Finite element modelling (FEM) has been used to predict 

the response of structures and materials to applied loads, and to 

analyse the deformation and stress state in concrete, steel and FRP 

plates. The interfacial behaviour between FRP and concrete is 

investigated selectively.  

(4) To examine and evaluate the developed models for prediction of 

punching capacity in literature and major codes of practice on RC 

structures reinforced with externally bonded FRP. Another objective is 

to investigate the failure modes and short-term deflection of the 

connections, since these are outcomes of the structural tests. 

 

1.3. Outline of the thesis 

In Chapter 2, a comprehensive background and justification for this research 

are provided in the literature review on the punching shear behaviour of slabs 

strengthened by EBR. The topics included are the punching capacity, failure 

modes, and bond characteristics of FRP plates. Initially, the current state of 

knowledge of the punching behaviour of steel RC members without shear 

reinforcement is reviewed, and the underlying assumptions, key parameters 

and various approaches are identified. This is followed by a similar revision on 

the behaviour of slabs strengthened by FRP plates. The interfacial bond 

behaviour of such members is also presented. This chapter concludes by 

justifying the objectives and focus of this research, and by identifying the main 

variables that need to be considered for experimental investigation. 
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The experimental methodology is presented in Chapter 3. The layout and 

details of the test members are presented and discussed, and the experimental 

setup and instrumentation are illustrated. The preparation methods, quality 

control and test procedure are also elaborated. The concrete and reinforcement 

material tests are presented at the end of this chapter. 

 

The results of the structural tests are presented in Chapter 4. Firstly, the modes 

of failure, crack pattern, deflection and load capacity are discussed. Then, the 

steel and FRP reinforcement and concrete strain are examined over the entire 

loading range. Subsequently, the experimental data are analysed to investigate 

other structural aspects that are related to serviceability and ultimate state. 

These involve the stiffness, energy absorption and the experimental load-

curvature response. Finally, a discussion on the approaches of BSI, ACI and 

Eurocode 2 for evaluation of ultimate load is examined. Ultimate loads predicted 

by these approaches are compared with the test results. 

 

Chapter 5 deals with numerical analysis. Finite element analysis (FEA) with 

smeared modelling of post-cracking behaviour and tension stiffening is 

presented, and its implementation in this study is elaborated. Then, 

investigation using FE analysis is conducted to predict the stress-displacement 

response of some test slabs. 

 

In Chapter 6, a comprehensive discussion is undertaken on the punching 

behaviour of the FRP strengthened slabs. The predictions of steel, FRP and 

concrete strain and deflection, predicted by the FEA, are compared to the 

corresponding experimental results. The predictions of crack pattern, interfacial 

stresses, failure mode and ultimate load are also discussed. Conclusions are 

drawn regarding the parameters that control the punching behaviour of column-

slab connections strengthened with FRP and the adequacy of the numerical 

analysis technique used.  

 

The conclusions of this study are drawn, and recommendations for future work 

are made In Chapter 7. 
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Chapter 2 

Literature review 

 

2.1. Introduction 

This chapter will first briefly describe the parameters which influence the 

behaviour and shear strength of flat slabs under concentrated loading as 

studied from experimental observations and theoretical models. It is followed by 

a review for the design of column-slab connections without shear reinforcement 

in codes of practice [20-23]. This is necessary because the current trend in 

dealing with fibre reinforced polymer (FRP) reinforced concrete member (RC) 

design is to make comparisons and impose modifications to the steel RC design 

practice. The research and current state of knowledge on punching behaviour of 

column-slab connection strengthened with FRP are then reviewed. The analysis 

trials and failure mechanisms are also presented based on experimental 

observations. Bond characteristics of FRP-concrete interfaces are investigated 

as they are important parameters governing the design of such members. 

Recently published state-of-the-art reports and codes of practice on RC 

members strengthened with EBR are also examined. Finally, justifications for 

the objectives of this research project are presented 

 

2.2. Punching shear behaviour of RC slabs 

When a reinforced concrete flat slab column structure is subjected to heavy 

gravity (vertical) load, the first crack to develop is roughly a circular flexural 

crack at the column vicinity due to the negative bending moments in the radial 

direction. From that circular crack, radial cracks then start to form due to 

negative bending moments in the circumferential direction; see Figure (2-1 a). 

After a significant increase in load, tangential cracks form around the loaded 

area at some distance out from the column in the slab. Also at about the same 
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time, punching shear cracks start to form inside the slab at the column vicinity. 

They propagate at a mean angle of 25 to 35 degrees through the slab 

thickness, starting from the mixed mode zone (flexural and shear) at the top of 

the slab towards the compression zone at the bottom of the slab. A truncated 

conical or pyramid failure surface around the column forms as shown in Figure 

(2-1 b).  

 

 

 

Figure  2-1: Typical punching shear failure; Ref. [24]. 

 

In addition to vertical loads, the slab-column connections may be subjected to 

unbalanced moments, which are caused by unequal spans on both sides of the 

column or by lateral loading such as wind or earthquakes. The critical sections 

of such load combinations are at the perimeter of the loaded area or close to it, 

where the moment-shear interaction exists. This interaction adds more 

complexity to the classification of failure modes at the connection. The 

unbalanced moment is resisted by a combination of stresses in slab flexural 

reinforcement, shear strength of concrete, and shear reinforcement in the 

vicinity of column.  

 

It was found that the characteristic of the failure mode and load-deflection 

curves of slabs are highly dependent on the reinforcement ratio as 

demonstrated by Criswell [25] in 1974, and shown in Figure (2-2). For instance, 

 

(a) 

(b) 
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slabs with high reinforcement ratios such as those represented by curves 1 to 3 

show brittle behaviour. In these slabs the flexural punching Vg is corresponding 

to higher shear strength. Therefore, slabs will reach their punching strength 

before they reach the shear strength corresponding to the ultimate flexural 

capacity. On the other hand, curves 6 to 8 clearly show flexural behaviour with 

large ductility. The slabs represented by curves 4 and 5 reached their yield line 

strengths. However, they should be regarded as having failed in punching due 

to their lack of ductility. 

 

 

 

Figure  2-2: Effect of flexural reinforcement ratio on load-deflection response; 

Criswell [25].  

 

Another feature of the punching behaviour is the deflected shape of the 

connection. As shown in Figure (2-3) the deflection profiles of the compression 

region can be virtually represented by a straight line rotating within a hinge 

adjacent to the column, while those on the tension face generally show a slight 

discontinuity across the shear crack region. It can be easily demonstrated from 

the figure that this discontinuity can be considered as a result of the rotation of 

the outer slab portion about its centre of rotation CR, while the crossing of 

flexural reinforcement through the shear crack alleviates this discontinuity [26].  

Deflection

Load 
Vflex

Vg Load at general yielding 

 = Vu / Vflex 

Vg = 1.2 Vflex 

 decreasing 

1,  = 0.80

2,  = 0.85

3,  = 0.9

4,  = 1.0
5,  = 1.10

6,  = 1.20
7,  = 1.20 

8,  = 1.20 
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Figure  2-3: Slab deflection during punching test; Test results of slab PG-3 by 

Muttoni et al. [26]. 

 
The concrete strains at the compressed surface reach their highest values 

adjacent to the column, while the strain in the radial direction decreases very 

rapidly as the distance from the column increases; see Figures (2-4 a & b). The 

tangential strain is usually higher than the radial strain as shown in Figures (2-4 

c & d), and the radial strain near the column often decreases before failure. The 

strain distribution on the faces of rectangular columns shows concentration of 

stresses at the corners, as illustrated in Figure (2-5). The concentration 

generally increases with larger square or rectangular columns but intuitively this 

concentration is absent in slabs with circular columns [17, 27]. 
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Figure  2-4: Radial and tangential strains at surface; Test results of slab PG-3 by 

Muttoni et al [26]. 

 
 

 

 

Figure  2-5: Vertical strains distribution at column faces according to Moe [17]. 
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2.2.1. Parameters influencing punching shear strength of column-

slab connections 

Models and theoretical methods for the design of slabs under punching shear 

are usually given as empirical equations based on observed failure modes or 

shear transfer mechanisms. The ability of the model to accurately express the 

failure criteria and visualize the flow of stresses depends on the number of 

parameters included. Consequently, to validate any model or theory, they have 

to be reviewed against all aspects relevant to design. Such aspects are the 

main parameters like concrete strength, reinforcement ratio, arrangement of 

reinforcement and column shape and size [1, 17, 28]. The influence of these 

parameters on the structural behaviour and load carrying capacity of the slab is 

discussed in this section. 

 

2.2.1.1. Concrete strength 

Research has been conducted to find the relation between the concrete 

compressive strength, cf  , and the shear strength. Moe [17] in 1961 was the 

first to conclude that the shear strength relates not to cf   but to cf  . Based on 

the testing results, he obtained the following equation for ultimate nominal 

punching shear capacity nV : 

 db

V

fdb

f
d

c

V

flex

c

c

n 0

044.0
1

075.0125.1










 

    Equation  2-1   

Where c is the column dimension, d  is the effective slab depth and flexV  is the 

vertical punching shear strength corresponding to flexural punching failure of 

the slab, is derived from yield line analysis according to Equation (2-15) as will 

be shown later in Section 2.6.1.1. Moe [17] explained that the shear strength is 

primarily affected by the concrete tensile splitting strength which is often 

assumed proportional to cf  . However, the ratio of nominal ultimate shear 

stress to cf   shows a significant scatter in practice due to the scatter in the 

tensile strength of concrete. 
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2.2.1.2. Flexural and compression reinforcement 

The strength of flexural reinforcement, reinforcement pattern and layout, and 

the amount of compression reinforcement has an effect on the punching shear 

capacity. These are explained as follows. 

 

2.2.1.2.1. Strength and ratio of flexural reinforcement 

Research indicates that shear strength can be related to flexural effects. 

Yitzhaki [29] in 1966 tested 14 slab-column specimens and proposed that the 

shear strength depends proportionally on the flexural reinforcement strength 

and the column size. Moe [17] in 1961 proposed a relationship between 
0V

Vn  and 

flex

n

V

V
 as follows:  

1
0


flex

nn

V

V
C

V

V
     Equation  2-2 

Where nV  is the nominal punching shear strength (vertical punching shear force 

of the column), C   is a constant between 0 and 1, and 0V  is a fictitious 

reference value of shear, cfdbAV  00 , A  is a constant, 0b  is the perimeter 

length of the critical section, d  is the effective thickness of a slab, flexV   is the 

vertical punching shear force at the calculated ultimate flexural capacity of the 

slab. The magnitude of flexV  has no physical relation to the mechanism of failure 

in itself, but it reflects several other important influences, such as distribution of 

cracking, amount of elongation of the tensile reinforcement, magnitude of 

compressive stresses in the critical section and depth of the neutral axis at 

failure. 

 

From Figure (2-6), it is found that if 1
flex

n

V

V
, 

0V

Vn  approaches a constant. This 

means that if a slab is designed to fail in flexural bending ( flexn VV  , which is 

preferred mode of failure), nV  can be calculated using, cfdbAV  00  which is 

independent of the flexural reinforcement ratio.   
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Figure  2-6: Interaction between shearing and flexural strength according to Moe 

[17].  
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dowel forces and vertical forces from membrane effects account for 35 percent 

of the punching shear capacity. Therefore, according to their conclusion, slab 
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reinforcement increases. However, Criswell [31] in 1974, quoting Moe's [17] 

results, concluded that this effect is not important. 
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crack is developed in a diffusive process during the later stages before failure, 

with an acute angle to the reinforcement. Consequently, the skewness of the 

cracked plane reduces the effectiveness of mode-I mechanism. Moreover, for a 

small concrete cover, c , less than 8 times the bar diameter as shown in Figure 

(2-7 b), the mechanism is governed by the splitting of concrete which impairs 

the effectiveness of mode-II as well.  

 

 

 

Figure  2-7: Dowel action effect of reinforcement; CEB-FIB [20]. 

 

In view of the aforementioned statement, because of the small cover in slabs, 

concrete splitting and the lack of stirrup reinforcement decreases the dowel 

force which can be developed in any given bar; see Figure (2-7 a). However, if 
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the cover is thick enough, concrete splitting is unlikely to occur. In comparison 

with the situation in a beam, the width (circumference) of concrete involved in 

the dowel action is large resulting in a large number of bars passing through the 

inclined crack. This probably results in the dowel forces carrying a greater 

proportion of the shear in slabs than in beams. In this study, the dowel action 

effect was not taken in consideration, as its effect on the behaviour is nearly 

negligible. 

 

2.2.1.2.2. Pattern of flexural reinforcement 

Tests by Kinnunen and Nylander [30] in 1960 showed that the failure loads can 

be about 20%-50% higher in circular slabs reinforced with orthogonal 

reinforcement than that in slabs with ring bars. 

 

2.2.1.2.3. Arrangement of flexural reinforcement 

Elstner and Hognestad [28] in 1956 and Moe [17] in 1961 investigated the 

punching behaviour of column-slab connections with flexural reinforcement 

concentrated over the column region and compared them to others reinforced 

with uniformly spaced bars. In the Elstner and Hognestad slabs 50% of the 

tensile reinforcement was concentrated within a distanced d (effective depth) of 

the column, as shown in Figure (2-8). While in Moe's slabs the total amount of 

steel was held constant and the spacing varied between uniform spacing and 

an arrangement in which 82% of the total steel was placed within a distance d 

of the column. Both tests indicated that the concentration of reinforcement does 

not increase the ultimate load of slab. In some slabs, concentration of the 

reinforcement even reduced the ultimate load of the slab. This is because the 

concentration of reinforcement leaves a large radial sector almost unreinforced; 

see Figure (2-8). From these tests results, it could be concluded that 

concentration of reinforcement causes a slight decrease in strength and a 

reduction of ductility. 
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     Figure  2-8: Concentration of flexural reinforcement. 

 

Alexander and Simmonds [33] in 1992 conducted a similar study on the effect of 

adding extra reinforcement over the column strip. They placed a different 

amount of steel reinforcement over the column strip of 450mm resulting in 

spacings of 50mm, 75mm and 150mm at the column region. All slabs failed in 

punching, but they found that decreasing the spacing increases the load 

capacity but decreases the ductility. Also in the slab with a spacing of 50mm, 

the bar force profiles indicate that anchorage failure occurred in the central 

bars. Based on this observation, they argued that in those slabs tested by 

Elstner and Hognestad [28] and Moe [17] failure was actually anchorage failure. 

They concluded that the above observation may explain why the concentrating 

of reinforcement through the column region does not increase punching 

capacity. 

 

However, Eurocode 2 [21] recommends 50% of flexural reinforcement needed 

for the negative moment should be placed in the column region at a distance 

equal to the sum of 0,125 times the panel width on either side of the column 

because it improves the behaviour of the slab in the service load range. 

Concentration increases the stiffness of the slab, increases the load for the first 

yielding of the flexural reinforcement, and consequently results in smaller 

maximum crack widths under the same loading condition. 

Low reinforcement 
region 
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2.2.1.2.4. Compression reinforcement 

Elstner and Hognestad [28] in 1956 reported that, for 10 
flex

n

V

V
 , or if the 

tension reinforcement is small, there is negligible effect on the shear strength 

with the variation of the compression reinforcement, where nV , flexV  are defined, 

as in Equation (2-1). However, when 1
flex

n

V

V
, or the ratio of tension 

reinforcement is large enough to make a doubly reinforced section, the shear 

strength increases if the ratio of the compression reinforcement increases. 

Compression reinforcement also increases the dowel force after punching 

failure, which can prevent progressive collapse of a structure. 

 

2.2.1.3. Shear reinforcement 

Shear reinforcement is used to enhance both the strength and ductility of the 

column-slab connection. It is, in general, bars (or any other shape) crossing the 

inclined shear cracks to prevent their propagation. It should have adequate 

tension strength, ductility and good anchorage to develop its strength during 

punching shear failure. There are many types of shear reinforcement for new or 

existing reinforced concrete slabs. They can be divided into three groups:  

1) Structural steel sections such as the -shape steel developed by Hawkins 

and Corley [34], or channels installed to the column side faces and the slab 

bottom surface that act as column heads; 

2) Bent bars, stirrups and Shearband such as those developed by Pilakoutas 

and Li [35]; 

3) Headed reinforcements including shear studs and headed bars such as 

those developed by Ghali [36] and Ghali et al. [37] .  

 

Only limited types of these reinforcements, such as shear bolts, can be used in 

post-strengthening application of existing reinforced concrete slabs, while 

others, such as steel sections and Shearbands, need to be applied at the time 

of construction.  
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There have been several methods proposed for punching shear retrofit of 

existing column-slab connections. Among the common strengthening 

techniques for the column-slab connection is the use of steel plates and steel 

bolts as vertical shear reinforcement [38]. This technique can effectively 

increase both the ultimate load and the ductility of the strengthened connection. 

Also reinforced concrete capital or a drop panel can be added to the bottom of a 

slab. 

 

Ghali et al. [39] in 1974 conducted a series of tests to develop an effective 

method of strengthening flat plates at their connection with columns. They used 

transverse reinforcement pre-stressed in a direction normal to the slab surface. 

The technique used provided a substantial increase in both strength and 

ductility. They tested 10 specimens with prestressed shear bolts in three 

groups; see Figure (2-9). 

 

 

 

Figure  2-9: Prestressed shear bolts for slab under vertical load; Ref. [39]. 

 

The twelve bolts for each specimen were 20mm diameter high tensile strength 

steel bolts with a 100x100x20mm steel plate at each end. The unbonded bolts 

were tensioned to 75.3kN before testing. One group of specimens (Group B) 

were subjected to monotonically increased moments, and another group (Group 

C) were subjected to monotonically increasing vertical load. The results showed 

that the prestressed slab had much higher deflection capacity and failure load 

 



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

37

than unreinforced slabs. In Group C, specimen No. 10 (no bolts) obtained an 

ultimate load of 413kN, but specimen No. 9 (prestressed bolts) obtained 690kN 

ultimate vertical load, an increase of 67% compared with specimens No. 10. In 

group C, specimen No. 5 (without bolts) reached 196kNm ultimate moment, and 

specimen No. 4 (with prestressed bolts) reached 241kNm moment, a 23% 

increase. 

 

El-Salakawy et al. [40]  in 2003 evaluated a new strengthening method for 

increasing the punching shear strength of edge slab–column connections. The 

method consisted of using shear bolts externally installed in holes drilled 

through the slab thickness. A full-scale edge slab–column connection was used 

and different configurations of the shear bolts around the column were tested. 

The shear bolts were post-tensioned against the surface of the slab up to about 

40% of the bolt yield stress (40% of the bolt yield strain was 700 με). It was 

concluded that the strengthening technique increased the ductility of the 

column-slab connection, provided a means for changing the failure mode from 

punching to flexural, and increased the strength capacity of the connection. 

Irrespective of the configuration of shear bolts, none of the steel bolts attained 

yield stress and the increase in the strength of the connection ranged between 

12% and 18%. 

 

Ebead and Marzouk [38] used steel plates and steel bolts for strengthening of 

two-way slabs. They studied the effectiveness of two configurations of steel 

plates and four different arrangements of steel bolts as vertical shear 

reinforcement, as shown in Figure (2-10). The strengthening steel plates were 

extended to twice the slab depth around the column and acted as a drop panel 

of an equivalent concrete depth. They tested five-square specimens of 1900 

mm side length and 150 mm thickness to represent a full-scale column slab 

connection. All slabs had a reinforcement ratio of 1.0 % to achieve a ductile 

punching failure mode. One specimen was used as a control specimen, and the 

others were strengthened specimens with different plate configurations and bolt 

distribution pattern.  
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Figure  2-10: Strengthening mechanism used by Ebead and Marzouk [38]. 

 

It was found that both the yield load and the maximum load were increased due 

to the strengthening process. The average increase of the yield load was 50% 

of the yield load of the control specimen, and the average increase of the 

ultimate load of the strengthened specimens over that of the control specimen 

was 53%. The increase of the ultimate load of the specimen with separate steel 

plates, however, was evaluated at 36%. So they recommended the use of a L-

shape steel plate instead of separate steel plates for the strengthening of two-

way slabs. Also, the strengthened specimens showed stiffer behaviour than that 

of the un-strengthened control specimen, and the average ductility of the 

strengthened specimens was approximately 29% greater than the ductility of 

the control specimen. That was clear in the energy absorption of the 
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strengthened specimens which is greatly increased due to the strengthening 

process. The average increase of energy absorption of the strengthened 

specimens over that of the control specimen was approximately 100%. 

 

2.2.1.4. In plane restraints 

Taylor and Hayes [41] in 1965 carried out a series of tests on the effect of edge 

restraint. The slabs were divided into three groups depending on the amount of 

tension reinforcement which was zero, 1.57% and 3.14%. The restraint was 

imposed by a heavy welded steel frame which surrounded the slabs, i. e. the 

edges of slab were restrained against lateral movement. All slabs without 

reinforcement were tested in the restrained condition. For pairs of slab with 

reinforcement, one of each pair was tested in the simply supported condition 

and the other in the restrained condition. 

 

The test results indicated that for a slab with a low percentage of reinforcement, 

the restraint significantly increased the ultimate load up to 60%. This group of 

slabs exhibited high ductility and were more likely to fail in a flexural mode. The 

ductile behaviour allowed compressive membrane forces, shown in Figure 

(2.11), to fully develop. The flexural capacity was thus significantly increased as 

observed by other researchers; Kuang and Morley [42] in 1992. However, for 

slabs with high reinforcement ratio, the enhancement by restraint was less 

significant and in some cases there was virtually no increase in strength. 

Punching shear failure is critical for this group of slabs and the slabs suddenly 

ruptured. It is possible that the slab fails before the membrane action has 

developed. Others; Rankin and Long [43] in1987, observed that restraint will 

enhance the punching shear strength of slab in all cases. 

 

Kuang and Morley [42] in 1992 tested a total of twelve slabs which were 

supported and restrained on all four sides by edge beams. Different degrees of 

edge restraint were provided by different sizes of edge beam. They observed 

that a restrained slab with a low percentage of steel failed in a punching shear 

mode when subjected to concentrated loading. This indicated that lateral 

restraint may also change the mode of failure because the membrane forces 
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developed enhances the shear and flexural capacity of the slab and at the same 

time reduces the ductility of the slab. 

 

 

 

Figure  2-11: Compressive membrane action. 

 

It is apparent that from the above test results that the restraint can considerably 

enhance the load carrying capacity of slab, but reduce the ductility of the slab. 

However, the degree of the enhancement in strength due to the membrane 

action is difficult to quantify since it depends on the in-plane restraint provided 

by the surrounding structure. 

 

2.2.1.5. Size and shape of loaded area 

Moe [17] in 1961 assumed a linear variation in shear strength with side 

dimension of the column based on test data when the side length of the loaded 

area was between 0.75d and 3.0d, where d is the slab thickness. Regan [44] in 

1986 tested five slabs where the loaded area is the only significant variable. 

The shapes of loaded area were: circular with diameters of 54mm, 110mm, 

150mm, 170mm and 102xl02mm square. The test results confirmed the linear 

relationship for the loaded dimension provided that it exceeds 0.75d. When the 

loaded area is very small (side dimension less than about 0.75d), the slab failed 

in local crushing and therefore the strength of slab is far below that predicted by 

the linear relationship. 

 

In view of the above, if the loaded dimension is greater than 0.75d, the length of 

the critical section becomes greater as the loaded area increases resulting in an 

Load 

Induced Thrust force Strains through the 
section 
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increase in the shear strength of slab. Therefore, it is very common in practice 

to provide drop panels or capitals to increase the punching shear resistance 

rather than increasing the column size. 

 

Most of available test data in the literature indicates that slabs loaded through a 

circular area are stronger than those loaded through square areas with the 

same perimeter. This improvement in shear strength is attributed to the 

absence of stress concentrations at the corners of rectangular column [27].  

 

Hawkins et al. [45] in 1971 carried out a series of tests on nine slabs in which 

the length of the perimeter was held constant but the aspect ratio was varied. 

He found that if the aspect ratio is increased, the shear strength of slab 

decreases because the behaviour of slab transforms form two-way bending to 

one-way bending. Therefore beam action shear tends to develop at the long 

faces of the loaded area. This also reflects the tendency for the shear force to 

be concentrated at the end of a wide column as observed in the experiment; 

see Figure (2-12). He concluded that when the aspect ratio for a rectangular 

column is greater than two, the strength can be lower than that for a square 

column. 

 

 

 

Figure  2-12: Concrete strain on column sides of aspect ratio=3; Ref. [45]. 
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2.2.1.6. Size effect (span-depth ratio and aggregate size) 

Regan [44] in 1986 tested six specimens where the main variable was the 

thickness of slab. The effective depths were 80mm, 160mm and 250mm. Test 

results show that nominal shear strength increased as the depth "d" decreased; 

see Figure (2-13). These results also agree reasonably well with the size factor 

( 4 /1 d ) used in the BS8110 [22]. The same conclusion was also obtained by 

Bazant and Cao [46] in 1987. They add that increasing the slab thickness 

results in steep decline in the post-peak behaviour of the load-deflection curve 

showing a brittle behaviour.   

  

 

 

 

 

Figure  2-13: Influence of effective depth on nominal shear strength; Ref. [44]. 

 

John and David [47] in 1990 tested a series of slabs of constant thickness 

(100mm) with varying span-depth ratios. They concluded that the punching 

shear strength was significantly increased for the span-depth ratio below six; 

see Figure (2-14). The strength enhancement may be due to the development 
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of compression struts forming an arch mechanism in the slabs and in-plane 

compressive forces resulting from friction at the support. 

 

 

 

Figure  2-14: Effect of span-depth ratio on punching shear strength; Ref. [47]. 

 

2.3. Punching shear strengthening of slabs with FRP 

As mentioned before in Chapter 1, existing concrete slabs may need to be 

strengthened due to insufficient punching shear capacity. This may be caused 

by change of the building use, new openings in a slab, design or construction 

errors. Thus, upgrading is a necessity. Several investigations have been 

conducted on strengthening the column-slab connection by different techniques 

since the middle of the 1970s. All investigations explored ways to delay or 

prevent punching shear failure. In this section, a review of the common FRP-

strengthening techniques for existing structures is presented. They are 

categorized into two main approaches; direct shear strengthening and flexural 

shear strengthening.  
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2.3.1. Direct shear strengthening 

Recently, FRP fabrics have been used as shear reinforcement. In this method 

FRP composites are threaded through the thickness of the slab. It is similar in 

principle to the application of shear studs as a transverse reinforcement to carry 

the diagonal tension forces. Holes are drilled then FRP fabrics are woven 

through these holes to form shear reinforcement around the column.  

 

Sissakis and Sheikh [48] in 2000 were the first who applied this technique. They 

conducted an experimental programme on punching shear strengthening of 

reinforced concrete slab-column connections by using CFRP strips. They 

studied the effectiveness of externally installed CFRP stirrups serving as shear 

reinforcement as a strengthening technique. They tested 32 slabs of size 

1500x1500x150mm divided into four groups based on the reinforcement ratios 

(1.49% and 2.23%) and the strengthening pattern used. Four stitching patterns 

were used to investigate different alternatives of strengthening; see Figure (2-

15).  The strengthened slabs showed a substantial increase in shear strength, 

ductility, and energy dissipation capacity. The shear strength increase was over 

80%, and an enhancement in ductility of over 700% was observed as shown in 

Figure (2-16). 

  

 

 

Figure  2-15: Strengthening patterns according to Sissakis and Sheikh [48].   
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Figure  2-16: Load deformation curves of strengthened slabs according to 

Sissakis and Sheikh [48]. 

 

Binici and Bayrak [15, 49], adopting the same idea of using the CFRP as shear 

stirrups, investigated the effectiveness of different strengthening schemes. Nine 

slabs and two control specimens were tested in this phase of the experimental 

programme. The specimen size was 2135 x 2135 x 152mm. The reinforcement 

ratio was 1.76% for all slabs. Two stitching patterns were used to investigate 

different alternatives of strengthening, as shown in Figure (2-17). It was found 

that the use of CFRP strips as closed stirrups increased the strength and 

deformation capacity (ductility) of the test specimens. The increase in ultimate 

load-carrying capacity was between 20% and 59% depending on the pattern 

and number of layers used. Another remarkable improvement was the shift of 

punching shear failure outside the shear reinforcement region. This can be 

attributed to the use of CFRP strips as closed stirrups which increased the 

strength and deformation capacity of test specimens. That is when CFRP strips 
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were anchored by overlapping at the compressive side of the slab, the shear 

reinforced region stayed relatively undamaged with no shear cracks.  

 

 

 

Figure  2-17: Strengthening pattern and details (plan view); Ref. [15]. 

 

The importance of anchorage of shear reinforcement has been confirmed 

experimentally by John and David [47] in 1990 and Broms [50] in 1990. Thus, 

the difficulty of achieving effective anchorage in thin slabs, if they are 

strengthened with shear studs, make the use of FRP fabrics as an alternative 

shear reinforcement  highly attractive in slabs with overall thickness less than 

200mm. However, this approach may have some drawbacks while it is applied 

in the field. Drilling such large number of holes with close spacing through the 

slab thickness may cut the internal steel reinforcement if there is no enough 

information about their distribution.  

 

2.3.2. Indirect (flexural) shear strengthening 

The strengthening method mentioned in Section 2.2.1.3 does provide enough 

additional strength to the slab. However, strengthening slabs with FRP laminate 

has more advantages compared to steel plate strengthening as mentioned 

before, and at the same time does not change the appearance of the slab. This 

led researchers to divert their investigations towards the benefit of FRP used as 

an externally strengthening material.  
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Erki and Heffernan [51] in 1995 were among the early researchers that 

investigated the enhancement in strength of concrete structures by applying the 

EBR on both beams and slabs [51, 52]. They loaded eight reinforced concrete 

slabs (1000×1000×50 mm3) up to failure. Six slabs were reinforced with two-

way ordinary steel, and the remaining two were reinforced with one-way steel. 

All slabs were tested under a simply supported condition; the two-way slabs 

were supported on all four edges, and the one-way slabs were only supported 

along their short direction. One one-way and two two-way slabs were tested as 

controls, and the remaining five were externally reinforced on their tension face 

with unidirectional GRP and CFRP sheets. It should be mentioned that the 

specimen configuration did not have a column stub extending from the tension 

face of the slab where the FRP strengthening was applied. So that, a patch load 

was applied on the top surface of the slabs to induce two-way shear or 

punching shear failure. The recorded data comprised the load-deflection for key 

locations on the slabs and strains in both reinforcing steel and FRP sheets. 

These failures were initiated at flexural cracks that under increasing loads 

turned into shear cracks and precipitated shear failure. The additional 

reinforcement provided by the FRP sheets increased the flexural stiffness of the 

slabs, delaying the onset of flexural cracking to higher loads, and thereby 

increasing the punching shear strength. The efficiency of the FRP strengthened 

slabs was evaluated and the ultimate loads supported by the slabs were 

compared to those predicted by Canadian code equations [12]. They also 

reported that due to the use of patch load instead of the column stub, the 

construction limitations for strengthening the slab–column connection may not 

be accurately simulated. 

 

Harajli and Soudki [53] in 2003 conducted an experimental investigation to 

evaluate the punching shear capacity of interior slab–column connections 

strengthened with flexible CFRP sheets.  They tested sixteen square slab–

column connections of 670mm side length and 100×100mm centre column stub 

to represent the interior slab-column connection, as shown in Figure (2-18). The 

slabs had two different thicknesses, 55mm and 75mm and reinforcement ratios 

of about 1 and 1.5%, respectively. Twelve specimens were strengthened with 

flexible CFRP sheets and the remaining four specimens were kept as controls.  
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Figure  2-18: Dimension and details of reinforced specimen; Ref. [53]. 

 

The results show that the use of the CFRP sheets altered the failure mode from 

flexural failure to flexural shear or pure punching shear failure, thereby reducing 

the ductility of failure. Also, applying CFRP reinforcement increased the 

cracking strength, flexural stiffness of the specimens, and resulted in 

considerable improvement in the ultimate strength capacity. This can be 

explained by CFRP reinforcement improving the shear strength of slab–column 

connections by restricting the growth of the tensile cracks or increasing the 

flexural strength of the connections. The increases in the normalized shear 

strength capacity ranged between 17% and 45%, and the increase in the 

normalised flexural strength ranged between 26% and 73%. The corresponding 

increase depended on the area of the CFRP relative to the area of internal 

ordinary reinforcement and the mode of failure of the specimens and the CFRP 

sheets, but tended to reach the plateau with any increase in the amount of the 



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

49

CFRP sheets provided. They also reported that the use of unidirectional FRP 

system for slab strengthening slightly increases the punching shear resistance, 

and the bi-directional bonded FRP system increases the punching shear 

strength according to the reinforcing index (the area of the CFRP relative to the 

area of internal ordinary reinforcement) and the mode of failure of the 

specimens and the CFRP sheets. Also, the use of CFRP sheets gave the 

highest punching shear strength for the same reinforcing index while the use of 

CFRP plates gave the least. 

 

El-Salakawy et al. [54] in 2004, using different methods, tested seven full-scale 

reinforced concrete slab-column edge connections strengthened against 

punching shear. In this study, three slabs contained openings in the vicinity of 

the column, and the other four were without openings. The dimensions of the 

slabs were 1540×1020×120mm with square columns (250×250mm). The 

openings in the specimens were square (150×150mm) with the sides parallel to 

the sides of the column. The slabs were reinforced with an average 

reinforcement ratio of 0.75% in both directions. The test specimens were 

divided into three series. Series 1 included the unstrengthened control 

specimens without openings, and one specimen with an opening. Series II 

included three specimens without openings, strengthened with either glass or 

carbon FRP sheets using L-shaped FRP sheets scheme (one or two layers of 

flexible FRP sheets glued to the tension face). Series III included two 

specimens with openings strengthened with GRP sheets, using U-shaped GRP 

sheets scheme (one or two layers of flexible FRP sheets glued to both tension 

and compression faces of the slab). Steel bolts through holes across the slab 

thickness around the column were added to one GRP strengthened specimen 

without a hole in Series II, and another GRP strengthened specimen with hole 

in Series III.  

 

Based on the test results, it was concluded that the presence of FRP 

reinforcement alone added flexural stiffness to the slabs, delayed the opening of 

flexural cracks, and, hence, increased the punching shear capacity. The 

increase in two-way shear resistance ranged between 2 and 23% depending on 

the area and configuration of FRP sheets used. Moreover, the failure of FRP 
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strengthened specimens was by punching shear mode, and the average 

distance from the punching shear crack to the face of the column was not 

affected after strengthening with FRP sheets. In contrast, the presence of the 

shear bolts increased the ductility of slab–column connections and altered the 

failure mode from brittle punching to a flexural one. Consequently, the use of a 

combination of FRP sheets and transverse steel bolts increased the ultimate 

strength which ranged between 23 and 30%. 

 

Ebead and Marzouk [18] in 2004 studied the feasibility of strengthening two-way 

slabs in flexural and punching shear. Some of slabs were designed with low 

reinforcement ratios of 0.35 and 0.5 % in order to obtain a ductile flexural 

failure; others were designed with a high reinforcement ratio of 1.0% in order to 

obtain a brittle punching shear failure. The strengthening materials used were 

CFRP strips and GRP laminates.  Among the investigated parameters were the 

effect of material configuration on the internal steel strain and the deflection 

profile of the strengthened specimens. Cross pattern was used to strengthen 

the flexural specimen, while an L-shape adopted before in Ebead and Marzouk 

[38] was used to strengthen the punching shear specimens. They concluded 

that using FRP composite significantly increased the stiffness and the flexural 

strength. However, an apparent decrease in both ductility and energy 

absorption was recorded. The average increase in the ultimate flexural capacity 

and the average energy absorption of the strengthened specimen using CFRP 

strips and GRP laminates were approximately 140%, 0.77 and 131%, 0.64 

respectively, of the un-strengthened specimens. The dominant failure mode 

was the debonding between FRP materials and concrete which was the main 

cause of failure. With respect to the punching-shear specimens, the test results 

indicated that the use of CFRP strips for strengthening application resulted in a 

small average increase, within 9% over the unstrengthened specimens. In 

addition, the strengthened specimens failed under the undesirable sudden 

punching shear failure mode. This may be attributed to the low stiffness of the 

CFRP strips individually. 

 

Chen and Li [16] in 2005 investigated the punching shear strength and failure 

behaviour of reinforced concrete slabs strengthened with GRP laminates 
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(800×800 mm square patch). Eighteen slabs were cast to study the effect of 

different parameters such as concrete compressive strength, reinforcement 

ratio, and the number of GRP reinforcement layers. The test specimens were 

1000×1000×100 mm square slabs with the stub column, 150×150×150 mm, 

monolithically cast with the slab at its centre. It was found that the use of GRP 

patches changed the mode of failure from ductile flexural punching failure to 

brittle punching shear failure for lightly reinforced slabs. The observed 

behaviour and test results showed that GRP laminates significantly increased 

the punching shear capacity of the slab-column connection, and the lower 

concrete compressive strength and reinforcement ratio the more enhancement 

of GRP laminates to the ultimate punching shear capacity. 

 

Not long after, Harajli and Soudki [55] in 2006, using slab specimens quite 

similar to the slabs used in their previous experimental work [53], conducted an 

experimental investigation to improve a new technique for strengthening interior 

slab–column connections in combined flexural and shear modes. The technique 

was an extension of the technique proposed by El-Salakawy et al. [54] in 2004. 

It comprises using a combination of shear bolts and external CFRP 

reinforcement. The bolts are inserted into holes and prestressed against the 

concrete surface for improving the punching shear capacity, while the CFRP 

reinforcement are bonded to the tension face of the slabs in two perpendicular 

directions to increase the flexural strength of the slabs, as shown in Figure (2-

19). The bolt force was transmitted to the slab surface through 40 × 40mm × 

5mm thick steel bearing plates by tightening the steel bolts, inserted inside the 

holes, against the concrete using a standard torque wrench before testing. It 

was found that the use of shear bolts altered the mode of failure from pure 

punching to flexural or to a combined shear-flexural mode, leading to the 

improvement in the ductility of failure. However, if a combination of shear bolts 

and FRP was used the slabs experience a less ductile mode of failure in 

comparison with the slabs strengthened using shear bolts alone.  
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Figure  2-19: Specimen dimension and reinforcement details; Ref. [55]. 

 

Depending on the area of the CFRP relative to the area of internal ordinary 

reinforcement and the mode of failure of the specimens and the CFRP sheets, 
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the use of FRP reinforcement alone resulted in an increase of the shear 

capacity ranging between 16% and 32%. Using shear bolts alone resulted in an 

increase of the punching shear strength up to 23%. However, when a 

combination of shear bolts and FRP sheets were used, the increase in ultimate 

shear capacity ranged between 32% and 77%. It is worth mentioning that the 

two types of bolt configurations evaluated in this study yielded similar results for 

both the load–deflection response and the increase of the shear strength of the 

specimens. 

 

Sharaf et al. [19] in 2006 conducted an experimental investigation to study the 

effect of different parameters on retrofitting interior column-slab connection 

against punching shear failure. The studied parameters were the amount and 

configuration of the FRP laminates. They tested one control and five square full-

scale slabs (2000×2000×150mm) externally strengthened with CFRP strips up 

to failure. It was found that the strengthened specimen experienced a brittle 

failure mode after gaining a remarkable increase in both stiffness and ultimate 

strength. The measured increase in the load carrying capacity varied from 6 to 

16% with corresponding deflection at the ultimate load of 83 and 70% of the 

control specimen. The amount and the configuration of CFRP laminates 

controlled the enhancement in the punching shear load. 

 

Bonding FRP fabrics to the tension surface of concrete slabs enhances their 

flexural strength, which by an indirect way enhances the shear strength of the 

slabs up to a certain limit that the flexural shear strength of the slab is less than 

its ultimate shear strength. After that limit, any increase of the amount of FRP 

reinforcement will not increase the shear strength of the slab or the stiffness too 

much, but a brittle punching is expected if there is no shear reinforcement. This 

has been confirmed by Chen and Li [16] in 2005. The same conclusion was 

achieved for steel reinforced slabs by Moe [17], Elstner and Hognestad [28] and 

Criswell [25].  
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2.3.2.1. Prestressed composites for external reinforcement 

Design of concrete structures strengthened with FRP is usually governed by 

serviceability limit states [11]. That means that only about 50% of the capacity 

of the FRP reinforcement is used, at best, due to its low stiffness. 

Consequently, using prestressed FRP reinforcement is more beneficial 

economically and structurally. A significant improvement in both bending 

stiffness and ultimate capacity can be achieved in unidirectional members 

(beams and one-way slabs) [5, 56-59]. Deflections and the number and width of 

cracks are also further reduced compared to unstressed FRP sheets. However, 

an apparent decrease in both ductility and energy absorption is observed. 

 

Despite the above mentioned advantages, prestressed FRP application is still 

limited to unidirectional members, and has not yet been extended to two-way 

slabs due to its complexity in practice. Recently, Kim et al. in 2008 [60] 

investigated the flexural behaviour of two-way RC slabs externally strengthened 

with prestressed and non-prestressed CFRP sheets. They tested four slabs 

(3000x3000x90mm); one un-strengthened slab (SL1), one strengthened slab 

with non-prestressed CFRP sheets (SL2), and two slabs with prestressed 

CFRP sheets (SL3 and SL4). The prestress level applied to the CFRP sheets 

was 600MPa. They were simply supported at a span of 2700mm and loaded at 

the centre by 800x800mm square frame as a patch load. The use of non-

prestressed CFRP sheets did not increase the first crack load of the slab. 

However, the prestressed sheets were able to give an increase of 97% in 

comparison to the control slab. That is the CFRP sheets itself has negligible 

flexural stiffness compared to the concrete slab, while the prestressed sheets 

provided an active strengthening effect. In other words, the area fraction of the 

CFRP sheets was very small to change the behaviour of the slab, but the 

application of prestressed sheets delayed the flexural cracking. At the same 

time, a noticeable decrease in the steel strain was observed that resulted in 

increasing the yield load by 10, 20 and 55% for slabs SL2, SL3 and SL4, 

respectively. As a result, the slab with prestressed sheets had smaller 

deflections and curvatures at ultimate load. The increase in the ultimate load for 

slabs SL2, SL3 and SL4 was 25, 18 and 72%, respectively, as compared to 
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slab SL1. It is noticeable that the ultimate load of slab SL3 did not increase by 

the same amount of slab SL4. This is due to the premature debonding failure of 

the CFRP sheets at the anchor plate.  

 

2.4. Failure modes of slabs strengthening with FRP 

The observed modes of failure of RC slabs strengthened with EBR can be 

classified under the Ultimate Limit State (ULS) design criteria into two main 

categories as follows:  

a) Those where full composite action of concrete and FRP is maintained 

until the concrete reaches crushing in compression or the FRP fails in 

tension. 

b) Those where composite action is lost prior to class (a) failure. 

The following sections give a brief description for such failure modes 

 

2.4.1. Full composite action failure modes 

Within this category the following failure modes could occur [61]: 

 Steel yielding followed by FRP fracture (pure flexural failure); 

 Steel yielding followed by concrete crushing (flexural punching failure); 

 Concrete compressive crushing (pure punching shear failure) 

On the above mentioned, while full composite action of concrete and FRP is 

maintained, mode one is the most desirable mode. This failure mode happens 

in a ductile manner with large deflection developing prior to failure as a result of 

a low ratio of both steel and FRP.  A small number of large flexural cracks 

develop before failure. The crack pattern might approach the full yield line 

pattern as shown in Figure (2.20 a). The failure starts with yielding of the tensile 

steel reinforcement, which usually spreads over a wide area of the slab, 

followed by tensile fracture of the FRP at final failure. 

 

Next is failure mode two which is somewhere between the pure flexural failure 

and pure punching failure. The flexural strength may be reached with yielding of 
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the tensile steel reinforcement locally around the column followed by crushing of 

the concrete in the compression zone, whereas the FRP remains intact. In this 

case the yield line pattern is not fully developed, as shown in Figure (2-20 b). 

 

For relatively high reinforcement ratios, the flexural capacity of the slab is 

substantially increased. Consequently, failure is more likely to take place by 

crushing of the concrete before the steel yields. This is attributed to the large 

biaxial compression resulting from bending effects plus the vertical applied load. 

This failure mode is characterized by a large number of fine flexural cracks 

(radial and tangential) that develop before failure. This mode is brittle and takes 

place with small deflection. Finally the slab fails in a local area around the 

column in the shape of a truncated cone, as shown in Figure (2-20b). For a slab 

with a large amount of shear reinforcement or small column size, the slab may 

fail in local compression failure, as shown in Figure (2-20 c). 

 

Thus, sections with small amounts of reinforcement fail by FRP tensile rupture, 

while larger amounts of reinforcement result in failure by crushing of the 

compressive zone concrete prior to the attainment of ultimate tensile strain in 

the outermost layer of the FRP [62]. This behaviour is quite similar to the 

behaviour of steel reinforced concrete slabs observed by Criswell [25]. 

 

 
 

Figure  2-20: Failure modes of full composite action. 

 

(a) Pure flexural failure 
mode 

(b)  Flexural punching 
failure mode

(c) Punching failure 
mode 
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2.4.2. Loss of composite action failure modes 

These failure modes are so affected by the bond mechanism and to some 

extent related to the structural element behaviour. Since most of the research 

previously conducted was on beam structures, so the names of these failure 

modes are sometimes related to them. For instance, the possible failure modes 

for beam  strengthened with EBR are categorized as follows [11]:  

 Debonding of the FRP plate; 

 Peel-off (ripping off of the concrete cover); 

 FRP plate-end shear failure. 

 

The last one is more related to beam structures. However, the other two failure 

modes could happen in slab structures; they are explained in the following 

sections. 

 

2.4.2.1. Debonding failure mode 

Generally, debonding can be localised debonding or complete loss of composite 

action (bond failure) between the concrete and the FRP reinforcement. The 

localised debonding means a local failure in the bond zone between the EBR 

and the concrete substrate. So, the reduction in the bond strength between the 

FRP and the concrete will not be affected so much. The localised debonding 

resulting from uneven concrete surface before bonding the FRP composite, or 

the loss of bond for a few millimetres near to the crack mouth of a flexural 

member are examples of this type of debonding. Accordingly, localised 

debonding is not in itself a failure mode which will definitely cause a loss of the 

load carrying capacity of a member with EBR. 

 

In many cases this localised bonding may propagate, and the composite action 

is lost in such a way that the FRP reinforcement is not able to resist loads 

anymore; this failure is called peeling-off. If no stress redistribution from the 

EBR is possible, peeling-off will be a sudden and brittle failure [11]. 
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Bond failure may take place at different interfaces between the concrete 

substrate and the EBR; Figure (2-21) shows the different interfaces for bond 

failure, and namely as follows: 

 Debonding in the adhesive (cohesion failure) 

 Debonding in the concrete near the surface or along a weakened layer; 

e.g. along the line of embedded steel reinforcement; 

 Debonding at the interface between concrete and adhesive or adhesive 

and FRP (adhesion failure);  

 Debonding inside the FRP (interlaminar shear failure). 

 

 

 

Figure  2-21: Debonding Failure modes. 

 

The second mode is the most common debonding failure. That is the tensile 

and shear strength of the adhesive material is usually higher than their 

Concrete substrate

Concrete / adhesive interface

Adhesive / FRP interface Adhesive layer 

FRP delamination
 

(a) Potential bond failure zone

(b) Debonding line along embedded reinforcement 
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counterpart of concrete. Moreover, the new development in strengthening 

systems, which consists of structural adhesives made to work in harsh 

environment and more compatible with resin used in FRP manufacturing, 

reduces the possibility of the other interfacial failure modes. Consequently, 

failure is more predicted to occur in the concrete, consisting in a few millimetres 

thick of concrete remaining on the FRP surface [63]. However, in some 

circumstances the failure may take place in the adhesive material itself as a 

result of expose to high temperature or from using a relatively high strength 

concrete. 

 

2.4.2.2. Peeling-off failure mode 

Peeling-off of FRP composites is a common failure mode in tests of reinforced 

concrete members strengthened with EBR. This failure mode takes place in the 

weakest point in the concrete substrate as a result of either low shear or tensile 

strength. The name of each mode is usually based on the starting point of the 

debonding process as follows: 

 Peeling-off in uncracked anchorage zone; the FRP may peel-off in the 

anchorage zone as result of bond shear fracture through the concrete 

substrate. Several methods for eliminating such premature failures have 

been investigated.  These include plate curtailment and the use of end 

anchorage plates. 

 Peeling-off caused by unevenness of concrete surface; due to the 

imperfections during the surface preparation process a localized 

debonding of the FRP may take place. This failure may propagate 

causing a peeling-off failure mode. 

 Flexural crack peeling-off, sometimes known as intermediate crack (IC) 

induced interfacial debonding; the FRP peeling-off may also occur at the 

tip of a flexural crack due to the horizontal propagation of such a crack. 

 Shear crack peeling-off, sometimes known as critical diagonal crack 

(CDC) induced interfacial debonding. 

 

This mode of failure occurs when the shear capacity of the section is exceeded 

prior to the load level reaching the flexural strength. Consequently, the 
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development of shear cracks in concrete beams and flat slabs is inclined and 

associated with both horizontal and vertical openings [7]. These openings are 

primarily due to the dowel action and aggregate interlock mechanisms as 

shown in Figure (2-22). For the same area fraction and spacing of shear 

reinforcement the crack opening is controlled by the area fractions of the 

longitudinal bars and the FRP sheet through the dowel mechanism. However, in 

elements with sufficient internal and external shear reinforcement the effect of 

vertical crack opening on peeling-off is negligible. 

 

 

 

Figure  2-22: Flexural shear peeling-off failure mode. 

 

2.4.2.3. Code provisions to maintain composite action 

2.4.2.3.1. ACI 

The ACI 440-2R [3] approach in preventing debonding failure is too simple. 

Further, it does not differentiate between the different debonding modes 

mentioned earlier in Section 2.4.2. It directly limits the effective strain of the 

FRP to avoid debonding failures as follows: 

fumfe k         Equation  2-3 
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Where n  is the number of FRP plies used at the location where the moment 

strength is being calculated.  

It is worth points out that the term ff tnE , indicates that laminates with greater 

stiffnesses are more prone to delamination. Thus, as the stiffness of the 

laminate increases, the strain limitation becomes more severe. 

 

2.4.2.3.2. CEB-FIB Bulletin No.14 

The FIB bulletin [11] provides three alternative approaches to avoid debonding 

failures. The first approach is similar to the ACI 440-2R [3]. However, it limits 

the FRP strain in the range of 0.0065–0.0085, which is much higher than the 

recoded strains in this study and some of the existing tests. The second 

approach limits the tensile stresses that can be transferred by bond to be within 

the resistance envelope for tensile forces calculated between cracks. This 

method is too complicated and more suitable for unidirectional elements rather 

than planer elements. The last approach combines both the first and the second 

approach into two steps. However, in the second step the check is done on the 

maximum interfacial shear stress developed due to the change in the tensile 

force of the FRP along the member to a design value of, cctkcbd ff /8.1 . 

Where ctkf  is the characteristic tensile strength of concrete. This latter method  

is deemed to be more appropriate for application in design in terms of simplicity. 

However, it also neglects important parameters such as the loading 

configuration and width ratio which make it unsuitable for planar elements. 

 

2.5. Bond behaviour of FRP-concrete interfaces 

This mechanism is very necessary to transfer forces from the concrete 

substrate to the FRP composite and vice versa. Figure (2-23) shows a 

schematic diagram of a FRP-concrete bonded joint adopted in a single shear 

pull test [64] to identify the local bond–slip behaviour as well as the bond 

strength of the joint. The dotted lines determine a typical fracture plane of 

debonding failure. The fracture plane propagates from the loaded end to the 

free end of the FRP plate as the loading increases.  
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Figure  2-23: Schematic diagram of single shear lap test. 
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Figure  2-24: Distribution of shear stress along the bond length according to 

Zilch et al., cited in [11]. 
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The bond behaviour of such joints is governed by six parameters: (a) the 

concrete strength, (b) the bond length L, (c) the FRP plate axial stiffness, (d) the 

FRP-to-concrete width ratio, (e) the adhesive stiffness, and (f) the adhesive 

strength. Unlike the pull-out tests of steel rebars, there is an effective bond 

length (Le) beyond which any extension of the bond length L cannot increase 

the ultimate load. This disadvantage is the basic reason behind not exploiting 

the full strength of the EBR.  

 

Another aspect is the distribution of the shear stress along the bond length, 

which is influenced as well by the normal stresses resulting from the bending 

effects and perpendicular to the bond area. A typical distribution of the bond 

shear stress along the bond length for different load levels is shown in Figure 

(2-24); quoted from Zilch et al. [11].  The CFRP plate was 50mm wide and 1.2 

mm thick, with a bond length of 250mm.    

 

2.5.1. Bond-slip relationship 

The behaviour of the bond between the EBR and concrete can be described by 

a shear-slip relation based on strain measurements or load–slip curves. This 

relates the shear stress locally transferred between the concrete and 

reinforcement to their relative slip at the interface. The bond-slip relation of the 

EBR compared to embedded deformed reinforcement (quoted from Zilch et al. 

[11]) is shown in Figure (2-24). It is clear that the behaviour of the EBR is very 

stiff, and the total load capacity is much lower than deformed steel bars (the 

area under the curve represents the amount of energy stored in the 

reinforcement by bond). This is attributed to the different bond characteristics of 

EBR which influences the amount of tensile force that could be transferred.  

 

Several models have been developed for design purposes of the FRP-concrete 

bonded joints. They are graded in complexity based on the number of 

parameters included in each model. Some of these models are shown in Figure 

(2-26). The latest model developed by Chen and Teng [63] is considered the 

most accurate that describes the interfacial debonding behaviour. The model 

was compared to 253 pull test results from the literature and got the best fit 
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among the models available in the literature. This model was also adopted in 

this study.  

 

       

 

Figure  2-25: Comparison of bond–slip relations for the EBR and steel rebars.   

 

This model accounts for the concrete material properties in terms of ultimate 

tensile strength and fracture energy as well as the adhesive material properties. 

The inclusion of the concrete material parameter into the model was based on 

the finding that the failure of the FRP- concrete interface usually takes place at 

a few millimetres layer of concrete beneath the adhesive layer. The bond-slip 

curve consists of nonlinear ascending and descending branches. However, 

here in this Thesis a linear ascending branch was adopted for the simplicity of 

data entry into the FE model. The model is given as follows: 
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tw f 5.1max       Equation  2-7 

Where w  is given by 
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In which fb  and cb  are the widths in mm of the FRP and concrete slab, 

respectively. The slip 0S  is also dependent on tf (MPa), and w as follows: 

)(   ),(0195.00 MPafmmfS ttw    Equation  2-9 

 

The factor   in Equation (2-6) is related to the interfacial fracture energy (the 

energy required to introduce a unit area of interfacial-bond crack), as follows: 
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)(   , 308.0 2 MPaffG ttwf     Equation  2-11  

 

The bond strength of the FRP-concrete bonded joint in terms of interfacial 

fracture energy is given by: 
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The factor of 0.99 implies that the effective bond length is the one at which 99% 

of bond strength of an infinitely long bonded joint is achieved. 

   

 

 

Figure  2-26: Comparison of bond-slip curves available in literature; quoted from 

Lu et al. [63]. 
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form solutions; such as the classical beam analogy or elastic plate theory [2]. 

The applicability of this method is limited to certain geometries and loading 

configurations. Thus, it is not applicable to non-conventional slab design in 

some cases; for example, a slab strengthened with EBR or a slab with internal 

openings. The FEA may, therefore, provide a more reliable and accurate 

method to predict the behaviour of two-way slabs strengthened with EBR in 

both Serviceability and Ultimate Limit States. Hence, it can be concluded that 

there are two-main analysis categories to analyse the strengthened sections; 

the classical analysis theories and numerical analysis which is discussed in 

detail in Chapter 5. 

 

2.6.1. Classical analysis approaches  

Classical mechanical models are basically analytical expressions of punching 

shear transfer mechanisms (internal forces equilibrating punching force) which 

include: aggregate interlock at the crack, compression and tension in the 

concrete, dowel force from flexural steel, and tension in transverse 

reinforcements if present. Several analytical models for punching shear are 

available in the literature. However, most of them are for slabs with uniformly 

distributed reinforcement. Consequently, to include the effect of adding the 

EBR, some modifications have to be included into these models. Only relevant 

models which account for the flexural reinforcement ratio are considered here. 

To adopt such models in the analysis of slabs strengthened with EBR, the 

following assumptions should be satisfied:  

 No slip between the external FRP and the concrete substrate;  

 Premature separation and shear failure of the FRP is not admissible; 

 Tensile strength of the adhesive can be ignored (i.e. bond line is thin). 

 

Based on these assumptions, it is clear that these models can be classified as 

strength ULS models which cannot account for debonding failure modes. 
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2.6.1.1. Yield line model by Rankin and Long 

When a slab with low reinforcement ratio fails in punching mode, the flexural 

reinforcement may yield before the slab reaches the ultimate load. The failure 

mode is characterized by formation of cracks along the yield lines; at the 

maximum moment locations, as shown in Figure (2-27). Finally, the slab is 

divided into several elastic plates connected by plastic hinges. The ultimate load 

that the slab can sustain is calculated by considering the equilibrium of all these 

divided plates or by equating the external work of the slab loads and the internal 

work of the divided plates.  

 

Assuming the yield line pattern shown in Figure (2-27), Rankin and Long in 

1987 developed the following equation to calculate the ultimate vertical load 

Vflex corresponding to the yield of  the flexural steel bars in the concrete slab:  

)172.0(8 



cS

L
MV bflex     Equation  2-15 

where, L is the square slab edge length, S is the support length on four sides, c 

is the dimension of the square column section, Mb is nominal radial moment 

capacity of the slab. 

. 

 

 

Figure  2-27: Yield line crack pattern according to Rankin and Long [43].  

 

c L S
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They also proposed an empirical formula to calculate the punching shear 

strength Vs of the slab when the slab is subjected to punching shear failure: 

25.0)100()(66.1 ddcfV cs     Equation  2-16 

Where d  is the effective slab thickness,   is the flexural reinforcement ratio. 

 

2.6.1.2. Modified Rankin and Long model by Ebead and Marzouk 

The approach is based on calculating the contribution of the added FRP strips 

by superposition to the flexural capacity bM  in Equation (2-15) as follows: 

21 bbb MMM         Equation  2-17 

where, 1bM is the moment capacity of the unstrengthened slab and is calculated 

according to ACI 318-05 [23] as follows: 

)(
)(

59.01)(2
1 dddff

f
fbdM yy

c
yb 











   Equation  2-18 

where, d & d  , and  &   are the depths and reinforcement ratios for the 

tension and compression steel, respectively. 

 

2bM  is the contribution of the strengthening FRP composites and is evaluated 

according to the sectional analysis recommended by ACI 440.2R [3] as follows:  

l

b
ahtEM f

fffb 
 )2/(2      Equation  2-19 

where, a  is the depth of the neutral axis and could be evaluated as 

)/(8.0 ycucud   , h  is the slab thickness and the term lb f /  is introduced to 

the equation to account for the width ratio since the FRP strips do not cover the 

whole area of the strengthened slab. Ebead recommended a value of 0.75 for 

the strengthening efficiency factor  [18]. The FRP strain f  can be calculated 

from strain compatibility of the section as follows: 

scuf d

h

d

h   )1(     Equation  2-20 

Where cu  and s  are the ultimate compressive strain of concrete and steel 

strain, correspondingly. 
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2.6.1.3. Critical shear crack model 

Muttoni [65], adopting similar principles to Kinnunen and Nylander [30] model, 

developed a failure criteria for punching shear of slabs with low reinforcement 

ratios calling it the critical shear crack theory. It is based on the assumption that 

“the shear strength of members without transverse reinforcement is governed 

by the width and by the roughness of an inclined shear crack that develops 

through the inclined compression strut carrying shear”.  He assumed that the 

width cw  of the critical shear crack is proportional to the slab rotation   times 

the effective depth d  of the member; see Figure (2-3b).  Based on these 

assumptions, he derived the following formula for the punching shear strength 

of flat slabs without stirrups: 

gg

c

R

dd

dfdb

V







0

0
.

151

4/3


    Equation  2-21 

where RV  is the shear strength, 0b  is a control perimeter at 2/d  from the edge 

of the column, d  is the effective depth of the member, cf   is the characteristic 

compressive strength of the concrete, gd is the maximum size of the aggregate 

(accounting for the roughness of the lips of the cracks), and 0gd is a reference 

aggregate size equal to 16 mm.  

 

2.6.1.4. Analytical model by Menetrey 

Menetrey [66], adopting the fracture mechanics concepts of stress transfer 

across tensile cracks, computed the punching load of the column-slab 

connection by accumulating the vertical component of tensile stresses around 

the punching crack as shown in Figure (2-28). The model accounts for the 

reinforcement crossing the punching crack by adding their contribution based 

on the principles of superposition. The vertical components and the failure 

criterion determine the ultimate load. Failure is assumed to occur when the 

concrete tie at the column vicinity reaches its ultimate strength which is 

equivalent to the punching strength. Thus the punching shear capacity can be 

calculated as follows: 
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pswdowctpun FFFFF      Equation  2-22 

where ctF  is the vertical component of the concrete tensile force, dowF  is the 

dowel-force contribution of the flexural reinforcement, swF  is the vertical 

components of the forces in the studs, stirrups or bent-up bars which are well 

anchored and pF  is the vertical components of the forces in the tendons.  

 

    

 

Figure  2-28: Representation of punching strength of reinforced slab; Ref. [66]. 

 

The vertical component of the concrete tensile force is calculated by neglecting 

of the aggregate interlocking and friction stresses as follow: 

 3/2
21 )( tct sfrrF      Equation  2-23     

 where   is a factor accounting for the influence of the reinforcement ratio   on 

the tensile stresses as follows: 



 


87.0

35.046.01.0 2 
   

%2

%20







  Equation  2-24  

  is a factor accounting for the size effect law (aggregate size) calculated at a 

constant ratio 2/ srh  and given by 2/1)/1(6.1  add  with slab depth, 

add 3  where ad  is the maximum aggregate size.   

Strut 

Tie
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  is a factor which accounts for the column size, sr , which affects the size 

effect law and is given by: 



 


625.0

25.1)/(5.0)/(1.0 2 hrhr ss   
5.2/

5.2/0




hr

hr

s

s  Equation  2-25 

 

Menetrey included the dowel action effect as suggested by Kinnunen and 

Nylander [30]. He calculated the dowel contribution, adopting the CEB-FIP [20] 

approach, by summing the contribution of all bars crossing the punching crack 

as follow: 

 
bars

ycsdow ffF  sin)1(
2

1 22    Equation  2-26  

where s  is the diameter of the corresponding bars, cf  is the concrete 

compressive strength, yf  is the steel yield strength and ys f/  . s  is the 

tensile stress in the reinforcement and is obtained by projection of the force in 

the compressive strut, as shown in Figure (2-27); sin/punF , in the horizontal 

reinforcement which gives tan/punF  and by dividing by the sum of the area of 

the reinforcing bars crossing the punching crack so that: 

s

pun
s Abars

F







tan/
 

It is noteworthy that the calculation of s  is done iteratively since the punching 

load is not known in advance.  

 

2.6.1.5. Enhancements to Menetrey's model 

Oh and Sim [67], Rochdi et al. [68] and Michel et al. [69] incorporated some 

modification to Menetrey's [66] model to include the effect of the strengthening 

material attached on the concrete surface. Oh and Sim [67] assumed that the 

FRP sheet enhancement could be accounted for by considering the contribution 

of the concrete cover, that is the strengthening material partially decreased the 

number of flexural cracks and confined the concrete cover making the 

strengthened slab resist shear stress. They divided the contribution of concrete 

to three components as follow: 
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321 ctctctct FFFF        Equation  2-27  

where, 1ctF  is the vertical component of the tensile force from the compression 

surface to the compressive reinforcement (or to a distance 0.1d), 2ctF  is the 

vertical component of the tensile force from 0.1d to d and 3ctF  is the vertical 

component of the tensile force from d to h.  

 

  

 

 

Figure  2-29: Critical perimeter of slab reinforced by composite strip. 

 

On the other hand, Rochdi et al. [68] and Michel et al. [69] included the dowel 

action contribution of the FRP composites and only the first two components of 

the concrete contribution so that the punching load is computed for the 

strengthened slabs as follows: 

dowfdowsctctpun FFFFF  21    Equation  2-28    

where, dowfF  is the dowel contribution of FRP reinforcement. 

The dowel contribution is calculated for the FRP reinforcement crossing the 

shear crack at the critical perimeter, 



tan

2
)(2 21

h
CCu   as follows: 

  lffeF ffcfdowf .sin.)1.(.. 2
)()(,    Equation  2-29 

 
1 2 

 

Ci 

Zone 1 Zone 1 

Critical perimeter 

at tan/h  
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where, )( f  is the composite work ratio and equals to 










)(

)(





f

f

f
. Where )( f  is 

the composite stress in direction  and )(ff  is the strength of the FRP in 

direction . In similar way to the steel reinforcement, the FRP stress is obtained 

by:  

    
).(2.

tan/

,




cf

ct
s le

F
   Equation  2-30 

where fe  and ,cl  are the thickness and width of the FRP plate crossing the 

shear crack, respectively.  

 

Although these models could predict numerically the shear strength of the slab, 

they are not able to accurately describe the flow of forces in the connection. For 

instance, the contribution of concrete at the compression zone by 1ctF  and the 

compression reinforcement by dowel forces could not be justified as this layer of 

concrete experiences a compression state of stress and the propagation of 

shear crack towards the compression zone occurs at a later stage, which 

reduces the probability of the dowel action contribution [32].          

 

2.7. Treatment of punching shear in codes of practice 

The provisions for evaluation of the punching shear, in different prominent 

codes of practice on RC slabs, are presented below. This is useful in identifying 

the different approaches and the key variables involved. All codes adopt an 

approach involving a critical section, which is at a certain distance from the 

column perimeter. The basic rule is that the factored shear stress on the critical 

section should be less than the nominal shear capacity. Eurocode 2 [21] and 

the CEB-FIB Model Code 90 [20] have similar provisions for punching shear. In 

both codes, the critical section is 2d from the column faces. In other codes such 

as, British Standards BS8110 [22] and the American Code (ACI 318-05) [23] the 

positions of the critical section are different. In all codes, shear capacity has a 

contribution from the concrete and the shear reinforcement. The ACI 318-05 

does not account for the effect of flexural reinforcement in the calculation of the 

shear resistance, while the European codes consider the effect.  
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2.7.1.1. Eurocode 2 and CEB-FIB model code 1990  

According to Eurocode 2 [21] and the CEB model code [20], for column-slab 

connection, the factored shear stress fv  at the critical section, which is located 

at a distance 2d from the column faces, as shown in Figure (2-30), should not 

be more than the factored shear resistance rv ; 

scrf vvvv       Equation  2-31 

where cv  is the factored shear resistance from the concrete, sv  is the factored 

shear resistance form the shear reinforcement. rv  will equal to only cv  in case 

that there is no shear reinforcement. Factored shear resistance of the critical 

section without shear reinforcement is; 

min
3/1 1.0)100()/18.0( vfkv cpckcc     Equation  2-32 

where, ckf  is the characteristic concrete strength in MPa,   is the flexural 

reinforcement ratio; 02.0)(  yz , and yz  ,  are reinforcement ratios in 

the z  and y  direction respectively. They are calculated as a mean value taking 

into account a slab width equal to the column width plus d3  each side, 

0.2)/200(1  dk  with d  in mm, where d  is the mean effective depth of 

slab , 2/12/3
min 035.0 ckfKv  , and 2/)( czcycp   , where cy , cz  are the 

normal concrete stresses in the critical section in y- and z directions ( in MPa, 

positive if compression); 

cy

yEd
cy A

N ,  and 
cz

zEd
cz A

N ,    Equation  2-33 

yEdN , , zEdN ,  are the longitudinal forces due to prestressing action across the full 

bay for internal columns and the longitudinal force across the control section for 

edge columns. cA  is the area of concrete according to the definition of EdN . 

 

The shear stress fv  at the basic control section due to factored external 

concentric load fV  and unbalanced moment fM  is; 


du

V
v f

f
1

       Equation  2-34 
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where, 
1

11
WV

uM

f

f
   for one direction moment, 
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y

b

e

b

e
  for two direction moments, Equation  2-35 

 
1

0

1

u

dleW .    Equation  2-36 

where, 1u  is the length of the basic control section length,   is the fraction 

factor of fM , (  = 0.6 for rectangular column), zy bb , are the  dimensions of the 

basic control perimeter (Figure 2-30), zy ee ,  are the eccentricities 
f

f

V

M
 along the 

y  and z  axes respectively. e is the distance of dl from the moment axis. 

 

 

 

Figure  2-30: Basic control perimeter according to Eurocode 2 [21]. 

 

As shown in Figure (2-30), for rectangular columns, the basic control section 

includes round corners. The code also requires checks on the column face and 

on the control section outside the shear reinforcement area. 

2.7.1.2. British Standard BS 8110  

Unlike Eurocode 2 [21], the British Standard BS 8110 [22] takes a critical 

squared perimeter 1.5d from the loaded area without round corners, for both 

circular and rectangular loaded areas; see Figure (2-31). The factored shear 

resistance of concrete to punching is given as; 
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ck
ck

r fd
f

v 8.0/400
25

10079.0 43     Equation  2-37 

where, ckf  is the characteristic concrete strength in MPa, 

 03.02/)(  yx   is the flexural reinforcement ratio calculated for 

 a width equal to u , where )3(4 dcu   for circular column and 

 )3(4 dbu   for square column, 

 d  is the effective depth of the slab in mm. 

 

The British code provides two methods to account for the effect of combined 

shear and unbalanced moment of interior columns; either the eccentric shear 

expression equation, or simple shear force multipliers. 













xV

M

A

V
v

f

fx

c

f
f

5.1
1     Equation  2-38 

Where, fV  and fM  are the factored shear force in kN and unbalanced 

moments in kN.m determined at the centroidal axis of the critical section, cA  is 

the concrete area of the assumed critical section in mm2, x  is the length of the 

side of the control perimeter parallel to the axis of bending in mm. 

 

Alternatively, the nominal shear force can be multiplied by 15% to account for 

unbalanced moments at an interior column. 

 

 

 

Figure  2-31: Shear perimeter according to BS 8110 [22]. 
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2.7.1.3. American code ACI 318-05 

The American code [23] employs a basic control section at a distance 0.5d from 

the faces of the column or the loaded area. Similarly, the factored shear stress 

fv  on the control section should not be more than the product of nominal shear 

strength nv  times a shear strength reduction factor   = 0.75; 

rnf vvv         Equation  2-39 

where, scn vvv  , cv  is the shear resistance from concrete, sv is the shear 

resistance from shear reinforcement.  The strength reduction factor   can be 

assigned to cv  and sv  and Equation (2-39) can be written as: 

scscf vvvvv       Equation  2-40 

 

The factored shear resistance of the critical section around columns of two way 

prestressed slabs without shear reinforcement is: 

)3.0(083.0
0db

V
ff p

pccpc    (MPa)  Equation  2-41 

where, p  is the smaller of 3.5 or )15.0(10
0


b

ds
, 0b  is the perimeter length of 

the critical section, pV  is the vertical component of all effective prestress forces 

crossing the critical section, s  =4, 3, 2 for interior, edge, and corner column, 

respectively. To apply Equation (2-41) the characteristic concrete strength ckf  

should not be more than 35MPa, and the average value of the 

precompression, pcf   for the two directions should not be less than 0.9 MPa, or 

greater than 3.5 MPa. Otherwise, the following equation is applied:  
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where, c  is the ratio of the long side over short side of the column. 
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When unbalanced moments also contribute to the factored shear stress in both 

in the x  and y  direction, the factored shear stress fv  is given by:  

y

fv

x

fvf
f J

eM
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db
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0

   Equation  2-43 

 where, fV  is the vertical shear force, fM  is the unbalanced moment in the x , 

y direction. v  is the fraction of the moment fM  transferred by shear, 

21 /3/21

1
1

bb
v


 , 1b is the width of the critical section side parallel to the 

axis of bending, 2b  being the other side length. e  is the distance from the centre 

of the critical section to the point where shear stress is calculated. J  is the 

analogous polar moment of inertia of the shear critical section around the x , y  

central axes, respectively. In calculations of fV  and fM , the factors for dead 

loads and live loads are 1.2 and 1.6 for most load combinations. 

 

2.8. Conclusion  

Strengthening and repairing of concrete column-slab connections is still an area 

with differing points of view. That is most of the available research is individual 

efforts trying to study certain cases. To date the available codes and design 

guidelines around the world such as, Europe/UK ISE [10], CSA Canadian code 

[12] and ACI Committee 440 [3] do not provide a determinate outline of how to 

design and apply FRP composites effectively for such a connection. This 

attributed to the inadequate distribution of FRP research. Most of this research 

has involved extensive studies on columns and beams. However, developing 

comprehensive design guidelines, including slab strengthening, requires an 

equal investigation of slab structures. Therefore, further research is required to 

give a full understanding of the punching behaviour of the column-slab 

connections strengthened with FRP. 

 

By reviewing the existing literature, enhancing the structural response of the 

column-slab connections, in terms of deformation and stress, can be 

categorized into two main approaches; enhancing the capacity directly in shear 
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and enhancing the capacity in flexural. The latter, in which the FRP strips are 

bonded to the tension surface of a concrete slab, is more suitable for slabs with 

small thickness and low reinforcement ratio. This method can be developed by 

using prestressed FRP strips to enable better use of the FRP material. That is 

the FRP material usually does not develop its full strength if the design of the 

strengthened member is governed by serviceability limit state.  

 

The variables that should be considered to study the punching behaviour of the 

column-slab connection strengthened with prestressed FRP plates can be 

divided into two main groups; one is related to the reinforced concrete 

connection such as the concrete strength, the reinforcement ratio and the 

geometry, while the second is related to the FRP materials such as the modulus 

of elasticity, interfacial bond characteristics and plate geometry. The parameters 

related to the reinforced concrete have been studied before by other 

researchers and their effect on the connection behaviour is well known, as 

illustrated earlier in this chapter. So, the focus of this study is to investigate the 

effect of the FRP parameters on the connection behaviour. For the FRP 

prestressed applications, carbon fibre is preferred over glass fibre because of 

its high modulus of elasticity. So, only CFRP plates are used in the current 

study which means that the effect of the FRP modulus of elasticity is 

overlooked.  

 

Considering the identified parameters, this study investigates both 

experimentally and analytically the punching shear behaviour of the column-

slab connection strengthened with prestressed FRP plates, in both serviceability 

and ultimate limit state.  
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Chapter 3 

Experimental programme 

 

3.1. Introduction 

The literature study in Chapter 2 showed different strengthening techniques for 

the column-slab connections. Some of them are able to increase the ultimate 

strength of the connection but with a considerable decrease in the ductility, 

whereas others are able to maintain some ductility with small increase in the 

ultimate load. In the current study, the experimental work comprises structural 

tests of a column-slab connection strengthened with pre-stressed CFRP plates 

externally bonded to the tension surface of the specimen. It aims to investigate 

the effect of the pre-stressing ratio on the deflection profile, crack pattern, steel 

reinforcement strain and failure mode. Moreover, material tests were carried out 

to determine the mechanical properties of the concrete, steel bars and CFRP 

plates, which were used in constructing the test specimens. This chapter 

presents the structural tests, including details of test specimens, experimental 

parameters, preparation methods, instrumentation, experimental setup, and 

testing procedure. The concrete, steel rebar and CFRP plate tests are also 

presented, together with their results. 

 

3.2. Structural tests 

The focus of the structural tests was to investigate the punching shear behavior 

of column-slab connections strengthened with pre-stressed CFRP plates 

applied to the tension surface concrete substrate in the serviceability and 

ultimate limit state. 
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All dimension in mm 

Prestress ratio 
Slab 

Force applied (KN) FRP strain ‰

Bond length 

L (mm) 

Anchorage 

Area (mm2)

RS0 ----- ----- ----- ----- 

RS-F0 ----- ----- 448 150 X 170 

RS-F15 62 0.3 448 150 X 170 

RS-F30 103 0.5 448 150 X 170 

RS-F30F 103 0.5 598 150 X 320 

 

Figure  3-1: Layout, and geometric and reinforcement details of test slabs. 
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3.2.1. Details of test specimen 

The layout of the test slabs, and their geometric and reinforcement details are 

shown in Figure (3-1). All slabs of the present investigation were 1800×1800 

mm square slabs with an overall thickness of 150mm. They were reinforced 

with eight 12mm diameter standard ribbed bars in each direction which gave the 

percentage of reinforcing ratio of 0.33%. Such reinforcement ratio may be 

deemed to represent those slabs represented by curve 4 or 5 in Figure (2-2) 

which is usually found in practice. To simulate the actual behaviour of a column-

slab connection, a column stub of 250x250x150 mm was monotonically cast 

with the slab. The column stub was reinforced with four 12mm diameter 

standard ribbed bars, and three 8mm diameter steel stirrups spaced at 100mm. 

The specimen size was chosen to represent the region of negative bending 

around an interior supporting column of a medium-sized flat plate floor slab. 

Assuming the points of contraflexure to be about 0.20 times the span length 

from the supports, the span length of the prototype represented by the 

specimens would be 4.5 m so that 150mm would be the minimum thickness one 

could use for such a span length. The dimension of the slabs and the loading 

arrangement were similar to those slabs tested by Moe in 1961 [17] . 

 

In all slabs the clear concrete cover to the flexural rebars was set as 20 mm. 

This cover was expected to be enough for applying a notch of 15mm depth to 

simulate a precracked slab due to ageing or overloading conditions. The locus 

of the notched crack was assumed to occur at the critical section for punching 

shear. Correspondingly, Eurocode 2 [21] suggests that the control perimeter of 

punching shear is normally taken at a distance of 2deff from the column face; 

where deff is the effective depth of the slab. 

 

3.2.2. Experimental parameters 

The investigation of punching shear behaviour involves three main variables; 

the concrete strength, the reinforcement ratio and column geometry [1]. 

However, in the current study, the focus was to study the effectiveness of 

applying prestressed FRP plates to the concrete tension surface as a new 

strengthening technique to enhance the punching strength. Thus, the 
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parameters included in this study were more related to the strengthening 

scheme rather than the other parameters associated with the concrete material, 

internal reinforcement and geometry. The main parameters were the 

prestressing force introduced to the FRP plate and the bond length, L, with its 

end anchorage. The bond length was measured from the preliminary crack up 

to the end of the FRP plate, as shown in Figure (3-1). All parameters were kept 

the same in the study except the applied prestressing force and bond length, L. 

 

3.2.3. Preparation method 

3.2.3.1. Mould 

The mould was made of a plywood base surrounded by a steel frame fastened 

with steel bolts. The steel frames were also utilized as a part of the prestressing 

system, and are discussed later in this chapter. The mould was cleaned and its 

inside edges were sealed with silicon. To act as a crack inducer, a steel strip of 

cross section 18 x 0.7 mm was fastened with small-size sink head screws at a 

distance of 2deff around the column to the bottom mould surface as shown in 

Figure (3-2). A wooden ply of cross section 180x3mm was glued with silicon in 

one direction to the bottom mould surface, as shown in Figure (3-2). This 

allowed lowering of the FRP plates applied in this direction from the other 

direction to ensure that the FRP plates were applied evenly to the concrete 

surface. Two lifting anchors R20mm per each side at the mid-thickness of the 

slab were designed and installed to enable safe lifting of the slab. Four waved 

anchors at each end of the FRP plate were cast within the slab to fix the end 

anchoring plates. In field applications, these anchors are introduced by drilling 

into the concrete substrate and fixing steel bolts with epoxy resin instead. To 

ease de-moulding, the inside surfaces of the mould were covered with a thin 

layer of oil. 
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      Figure  3-2: The slab mould showing crack inducer.  

 

3.2.3.2. Reinforcement 

The FRP plates and steel rebars were cut to the appropriate lengths. While 

cutting the steel rebars required using power disc cutters or steel scissors, it 

was possible to cut the FRP plates with a hydraulic guillotine. The column steel 

stirrups were also cut and bent to the appropriate dimensions. Galvanized 

coated wires were used to assemble the main steel mesh and column 

reinforcement. The steel reinforcement was instrumented with strain gauges, as 

shown later in Section 3.2.5.1, and then carefully placed in the mould. 

Appropriate size spacers of cement cubes were used to fix the reinforcement 

mesh at the correct bottom and side covers. Figure (3-3) shows a completed 

reinforcement of a column slab-connection positioned in the mould and ready 

for casting. 
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 Figure  3-3: Column-slab reinforcement paced in mould. 

 

3.2.3.3. Casting and curing 

One slab was cast each time. A hand vibrator was used to place and furnish the 

concrete into the mould, as shown in Figure (3-4). Casting and vibration were 

performed in two layers. For each slab, nine control 100 mm cubes and three 

100x200 mm cylinders were prepared from the same concrete batch. After 

casting, the top concrete surface was levelled as best as possible by using a 

hand trowel. One hour later, the cast specimen and control specimens were 

covered with nylon sheets. The next day, the cast element was labelled and 

covered with wet hessian and nylon sheets. The control specimens were de-

moulded, labelled and covered, similar to the specimen. These curing 

conditions were maintained for one week. At the end of the week, concrete 

strength development was assessed by testing three of the control cubes. 

Seven days later, three cubes were tested to monitor the concrete strength at 

14 days. At 28 days, the three cylinders were used to conduct split cylinder 

tensile strength tests. The remaining three cubes were then de-moulded and 

stored together with the specimen until the date of testing. 
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Figure  3-4: Casting and cubes’ preparation process. 

 

3.2.4. Application of prestressing technique 

As mentioned in Chapter 2, there are two main installation methods to achieve 

FRP prestressing. The prestressing technique used here can be categorized 

under the second category. In the current section a full description of the 

prestressing scheme is presented. Equally important, the prestressing frame 

and its peripheral devices are also given in detail. 

 

3.2.4.1. Description of prestressing Device 

Referring to Figure (3-10), the prestressing system consists mainly of three 

main parts; the prestress device, clamps and prestressing frame. A summary of 

the other main components and dimensions is also given in Table (3-1).  

 

The prestress device, shown in Figure (3-5), is built-up of a steel box with two 

threaded high-tensile steel rods and two clamping heads. FRP plates are 

sensitive to transverse pressure. Hence, it was suitable to use steel grips similar 
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to that of the tension machine, while the FRP plate ends were glued with 

aluminium tabs to distribute the stresses resulting from the clamping force that 

can damage the specimen, as shown in Figure (3-6). This method is not 

standardized. Therefore, the clamping head had to be designed and pre-tested. 

It was realized that intricate analysis of a complex state of stresses was 

involved. So that, simplified preliminary design was made, and then checked 

experimentally by testing it under the design forces. 

 

To clarify, the steel grips had to be thick enough to accommodate the 

transverse pressure from the clamping force N, as well as the longitudinal 

tensile stresses transferred to it from the dragging force D of the FRP plate. 

Under static equilibrium, the dragging force D equals the friction force F. This 

force, according to the Coulomb law of friction, could be calculated as: 

NF   , where   is the friction coefficient. The coefficient   was taken as 

one. That is the surface of the camping blocks, which is facing the aluminium 

tabs, should be rough enough to prevent slippage of the FRP plate. The 

clamping force N was then carried by the screw bolts as shown in Figure (3-6). 

However, it was important to check that these steel blocks do not yield under 

the applied loads to prevent any losses of the prestressing force that could 

result from its deformation. Correspondingly, an ABAQUS model was 

developed, assuming the preliminary dimensions shown in Figure (3-6), to 

check the state of the stresses under the design forces. 

 

Table  3-1: Prestress system components 

Items description Item ID Serial size/dimensions (SI) 

Prestress device A Shown in Fig. 3-5 

Anchor steel plates  B 170 / 320 x 150 x 8 mm 

C-channel frame border C 300 x 90x41 

Steel plate C* 1890 x 90 x10 mm  

Broad flange I beam D 203 x 203 x 86 

Supporting channel E 230 x 75 x 26 

Two equal angles F 90 x 90 x 8 mm 

Cover plates G 300 x 100 x 10 mm 
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   Figure  3-5: Prestress device. 

 
The plot of the Von-Mises stresses, illustrated in Figure (3-7), shows that the 

clamping head did not yield, and was able to safely transfer a prestressing force 

up to 150 kN without experiencing too much deformation. The maximum stress 

recorded was 380 MPa which is less than the yield stress of the steel material 
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used in the manufacturing of the clamping head. It is noteworthy that the 

maximum prestressing force applied in this study was 103 KN which was within 

the limits of the design force.    

 

 

 

   Figure  3-6: Clamping mechanism. 
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Figure  3-7: Mises-stress plot for the clamping mechanism. 

 

This clamping mechanism has been adopted after trying the mechanism used 

by Quantrill and Hollaway [5] in 1998. In that mechanism, aluminium tabs were 

glued to the plate ends as well. However, the plate was sandwiched between 

two steel plates and then bolted with the configuration shown in Figure (3-8). 

Three specimens were prepared to test the feasibility of using the same 

mechanism within the current project. Unfortunately, the average failure load 

was 47 kN which was 15% of the plate’s ultimate strength. The failure pattern 

comprised longitudinal cracks aligned to the bolts, as shown in Figure (3-9). 

This failure mechanism is attributed to the discontinuity introduced by the bolts 

to the longitudinal fibres which results in uneven distribution of the applied force 

across the section of the FRP plate and concentrates the stresses along the 

bolts’ line of action. Such concentration of applied force triggers the shearing 

cracks to develop longitudinally, as shown in Figure (3-9).      
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Figure  3-8: Plate end assembly according to Quantrill and Hollaway [5]. 

 

 

 

Figure  3-9: Failure pattern of FRP plate connection according to [5]. 

 

The anchorages adopted here were steel plates; designated part B, covering 

the full width of the FRP plate, as shown in Figure (3-10). The plates were fixed 
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were assumed to transfer the prestressing force from the FRP plate to the 

concrete substrate by bond. They were designed to carry a load limited by the 

creep rupture strength of the FRP plate which is 55% of its ultimate tensile 

strength; according to ACI Committee 440 [3]. In the field application, a non-
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corrosive strengthening system could be achieved by using FRP end-plates and 

bolts instead of those made of steel.  

 

The casting mould was used at the same time as a prestressing frame; 

designated as part C, as mentioned before in Section 3.2.3.1. It confines the 

slab from all four sides and was bolted to the ground with clamps, as shown in 

Figure (3-11). These clamps allow for the horizontal movement of the frame, but 

prevent the vertical movement; their job was to overcome any tendency of the 

frame to overturn while applying the prestress force. 

 

 

 

Figure  3-10: Section through anchor plate arrangement (part B). 

 

To enable the slab to react against the prestressing force, the beam ends (part 

C) were kept unconnected. Some of the other components are not needed in 

field application such as part D, E and F, as the prestress device can be directly 

mounted to the concrete surface.    

 

3.2.4.2. Surface preparation and bonding process 

Surface preparation is a principal step in the strengthening procedure. Adhesive 

will not develop full bond adhesion strength to the surface substrate unless a 

mechanically sound and clean surface is carefully prepared. To achieve that, a 

surface grinder was passed back and forth along the aligned path until uniform 

exposure of aggregate was achieved. The vacuum cleaner attached to the 

grinder enabled achieving a clean surface from dust and loose particles 
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instantaneously. The CFRP surface was prepared for bonding according to BS 

6270 [70] by carefully rubbing it using sand paper. Then, a degreasing solvent 

was used to clean its surface from any grease or dust.    

 

The adhesive was applied to both the prepared substrate and the composite 

plate with a grooved trowel to ensure there was a sufficient excess which 

enabled the spread of the adhesive from one surface to the other. Such 

application process prevents the formation of air bubbles when joining the two 

surfaces together. The glue-line thickness was achieved by adjusting the 

grinder to cut a 2-mm depth in the concrete substrate. For the unstressed 

plates, the glued plates were pushed onto the glued substrate within the open 

life of the adhesive by using a hard rubber roller to squeeze the adhesive from 

both sides of the plate edge and ensure no air voids, while in the case of the 

prestressed plates this was achieved by tying the nuts of the anchor plates 

which pushes the FRP plate onto the glued substrate. The tendency of the 

stressed plate not to deform out of its plane was enough to develop a bond 

pressure when pushed towards the concrete substrate.  Finally, the surplus 

adhesive was removed from the sides of the plate. 

 

3.2.4.3. Application of plate prestress 

The strengthening scheme has two FRP plates per each direction. The 

application of prestress to the plates was conducted in series; one after another. 

Every time, the adhesive was firstly applied for both the bonding surface of the 

FRP plate and the concrete substrate as mentioned before in Section 3.2.4.2. 

The ends of the FRP plate were then placed in the prestress device, while its 

bonding surface was facing the concrete substrate. Both the anchor plate bond 

surface and the opposite outer FRP surface were prepared in advance 

according to BS 6270 [70] and the adhesive layer was applied for both surfaces. 

Having the anchor plates fixed in their positions without fully tying its bolts, so 

that it was ready to apply the prestressing force.  
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Figure  3-11: Frame used for plate prestressing. 
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Prestress load was monitored by using a load cell connected to the prestress 

device, as shown in Figure (3-5). At the same time, strain gauges were bonded 

to the plate on its outer-surface, as shown later in Section 3.2.5.1, to compare 

the prestress level with value from the load cell. The load was applied by a 

hydraulic jack connected to the prestress device. The tensile load to be applied 

to the plate in each case was achieved when the product of multiplying the 

nominal prestress percentage by the ultimate strength of the plate is reached. 

The latter was based on the material tests conducted to get its mechanical 

properties and is given in Section 3.3.2.1.  

 

Once the designated prestress value is reached, the bolts of the anchor plates 

were tied firmly to enable curing of the adhesive under a small amount of 

pressure. The locking nuts were tied until the dial of the pump started to go 

down which meant that the load was carried by the nuts not the jack. Having the 

load carried by the nuts has the advantage of maintaining the same load over 

the adhesive setting time, as sometimes any leakage in the pump would 

exaggerate the prestress losses.  

 

Finally, after completing the prestressing stage, the prestress transfer was 

carried out by slowly unscrewing the locking nuts. Such process ensured a mild 

transfer rate that could mitigate the propensity of premature debonding failure. 

This method was easily applied for the specimen prestressed with 15%, while 

for the higher prestressing ratios the transfer process was as follows: 

1. The oil was pumped in the hydraulic jack till the dial reads the prestress 

force, 

2. The locking nuts were unscrewed a complete turn, 

3. The pressure was released slowly from the pump until the dial read a 

force less by 10% of the prestress force, 

4. Repeat the previous steps until transferring all the amount of the 

prestress force.  

Once the four FRP plates were bonded to the concrete substrate, the excess 

lengths of the FRP plates were cut up to the anchor plate and the slab was 

removed from the prestressing frame shown in Figure (3-11).  
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3.2.5. Instrumentation 

Internal and external instrumentation was used for each slab. Internally, seven 

strain gauges were used to measure the rebar strains. Externally, four strain 

gauges were used to measure the concrete compressive strain. In slabs 

strengthened with FRP plates, eighteen strain gauges were mounted on the 

plates to measure the average longitudinal strain. Different ranges of linear 

potentiometers (pots) were used to measure deflections, support settlements, 

crack widths and average surface strain. 

3.2.5.1. Strain gauges 

Three groups of strain gauges were used to monitor the strain component at the 

designated locations. The first group was the steel reinforcement gauges. They 

were well distributed over the reinforcement mesh to track the strain variation 

around the column area and over the slab, as shown in Figure (3-12). 

 

 

 
Figure  3-12: Arrangement of steel strain gauges over a specimen. 
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Figure  3-13: Arrangement of FRP strain gauges. 

 

The second group; shown in Figure (3-13), was the external FRP reinforcement 

gauges. These gauges were used to monitor the strain levels while applying the 

prestressing force and to evaluate the bond status of the FRP plate during the 

test. Eighteen strain gauges were installed in the fibre direction and divided into 

four main sub-groups, as follows: 
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distances of 200, 430, 640 and 750 mm measured from the end anchor 

plate towards the centre of the slab, respectively; 

(2)  The second FRP strip included gauges number 8, 7, 6 and 5 located at 

distances of 200, 430, 640 and 750 mm measured from the end anchor 

plate towards the centre of the slab, respectively; 

(3) The third FRP strip included gauges number 9, 10, 11, 12 and 13 located 

at distances of 200, 430, 575, 640 and 750 mm measured from the end 

anchor plate towards the centre of the slab, respectively; 
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(4) The fourth FRP strip included gauges number 18, 17, 16, 15 and 14 

located at distances of 200, 430, 575, 640 and 750 mm measured from 

the end anchor plate towards the centre of the slab, respectively. 

In the third and the fourth strip both gauge number 11 and 16 were used to 

evaluate the strain at the overlapping positions.   

 

The strain gauges used for both steel and FRP plates were foil-type, three-

wired temperature-compensating, with a resistance of 120 ohm, gauge length of 

6 mm and base material dimensions of 3.4×10 mm. They were bonded to the 

surface of both reinforcements with proper adhesive. Specialized silicon was 

used to cover the steel strain gauges to protect them during casting, and to 

prevent moisture uptake.  

 

 

 

Figure  3-14: Concrete strain gauges glued to concrete surface around column. 
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the column as shown in Figure (3-14). The concrete strain gauges used were 

wire-type, three-wired, with a resistance of 120 ohm, gauge length of 34 mm 
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and base material dimensions of 6×40 mm. they were bonded to the concrete 

surface with adhesive. Specialized silicon was used to cover the strain gauges 

to prevent moisture uptake. Figure (3-14) shows the concrete strain gauge.  

 

3.2.5.2. Linear potentiometer (pots) 

Six pots were used to measure vertical deflections at mid-span and along the 

centreline of the slab. Another five were used to measure settlements at the 

supports. These pots were held by stands, which were attached to a ground-

supported purpose-built frame around the test specimen. The needles of the 

pots were positioned on the top surface of the concrete, after smoothing it. 

 

Additionally, eight pots were used to measure the horizontal and the vertical 

crack opening displacement and the average surface strains at the induced 

preliminary crack, over a gauge length of 100 mm. These pots were mounted 

on steel brackets glued to the concrete surface. Figure (3-15) shows the 

arrangement of pots over the test specimen and around the induced crack.  

 

3.2.6. Test setup 

All slabs were tested under concentrated loading and simply supported along all 

four edges with the corners free to lift, as shown in Figure (3-16). The load was 

applied at the specimens by means of 2500-KN capacity hydraulic ram acting 

against a reaction frame. The oil pressure was furnished through an Enerpac oil 

pumping unit with a load maintainer. A stiffened steel plate was used to 

distribute the actuator load over the column stub. A gypsum paste of 100 mm 

width was placed on the top of the supporting frame; within the override 

distance of the slab over the supporting beams. This pad provided an even 

contact between the supporting beams and the test slab. Some details of the 

test setup are shown in Figure (3-16). 
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Figure  3-15: Arrangement of pots over specimen and around induced crack. 
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    Figure  3-16: Test setup 
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The applied load was measured by a load cell of 3000-KN capacity. A data 

acquisition system connected to a personal computer was used to control the 

loading through a pressure transducer. All test data: load, deflections and 

strains, were collected by the data acquisition system and downloaded to the 

computer. 

 

3.2.7. Pre-test preparation 

First of all, the slab was carefully placed on the testing frame. To facilitate 

getting accurate data from each test, the positions for measuring deflections at 

the top concrete surface were smoothed and clearly marked. These positions 

are mirrored on a wooden board supported horizontally by the steel frame. The 

pots were fixed to the board on the top face of the specimen, as shown in 

Figure (3-16). At the bottom surface of the slab, pots were glued by epoxy at the 

designated location, as shown in Figure (3-15). The pots for measuring the 

support settlements were fixed to their supporting stands, and their needles 

were accurately positioned while ensuring verticality. Finally, all the wires of the 

strain gauges and pots were connected to the data acquisition system. The 

beam or slab was then ready for testing. 

 

3.2.8. Testing procedure 

All the instrumentation (strain gauges and pots) were automatically initialized by 

the data acquisition system. The data acquisition system was setup to read 

every 10 seconds. The test was carried out manually at an approximate rate of 

10 kN/min by pumping the oil between the reading intervals. The load was 

paused at 20 KN intervals to take notes and photographs. Three load cycles 

were performed. In the first and the second cycles, the load was increased to a 

“service” load of not more than 10% and 20% of the ultimate design load of the 

reference specimen, respectively. In the third cycle, the load was increased until 

failure occurred, either by failure of the FRP or crushing of the concrete. All test 

data: force, strains and deflections were collected by the data acquisition 

system. The data were monitored graphically in real-time, and were 

downloaded digitally to the personal computer. 
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After test completion, the slab was removed carefully from the test-rig; a closer 

examination of the mode of failure was conducted. The locus of the punching 

cracks with the bottom surface of the slab and failure pattern were documented, 

and additional photographs were taken. The side crack patterns at the slab 

edges were investigated. The slab was then turned upside down. The concrete 

cover was carefully chiselled out to follow the crack path up to the reinforcement 

level. Then, it was possible to calculate the exact crack angle. This was 

necessary to study the effect of the prestressing ratio on the failure pattern. 

 

3.3. Materials 

In addition to the structural tests, isolated material tests were carried out to 

determine the mechanical properties of the concrete, rebars and the FRP plates 

that were used in constructing the slabs. These tests and their results are 

presented below. 

 

3.3.1. Concrete 

The concrete was provided by TARMAC, UK. The concrete was designed to 

have a slump of 50 mm, and a 28-day cube compressive strength of 35 MPa, 

with 10 mm maximum aggregate size, 0.48 free water-cement ratio and 410 

kg/m3 cement content. The coarse aggregate used was a crushed calcareous 

aggregate. Table (3-2) presents the mix proportions to produce 1 m3 of the 

concrete mix. 

 

Table  3-2: Concrete mix proportions. 

Cement 
(kg) 

Water 
(kg or litres) 

Fine aggregate 
(kg) 

Coarse aggregate 
(kg) 

410 196.8 704 1101 

 

As explained in Section 3.2.3.3, nine control 100 mm cubes and three 100 x 

200 mm cylinders were cast with each slab. Three cubes were tested on the 

same day of testing the slab that they represented. Another three cubes and the 

three cylinders were tested at 28-days. The cubes were used to determine the 
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compressive strength of the concrete according to BS1881-P116 [71], while the 

cylinders were used to determine the split cylinder tensile strength of the 

concrete according to ASTM C496-96 [72]. The last three cubes were tested at 

7 days for purposes of quality and curing control. These concrete tests yielded 

an average cube compressive strength of 38.5 MPa and an average split 

cylinder tensile strength of 3.1 MPa at 28 days. Figure (3-17) shows the 

concrete cube and cylinder tests. 

 

 

 

Figure  3-17: Concrete cub and cylinder tests. 

 

The modulus of elasticity and Poisson's ratio were also among the important 

material properties that had to be evaluated accurately, as this study deals with 

deflection and cracking. The quality control assured by the concrete supplier 

was sufficient to represent all test slabs by three cylinders. This is confirmed by 

the cube and cylinder tests shown in Table (3-3). Then, three concrete cylinders 

150 x 300 mm were tested to determine the concrete compressive modulus of 

elasticity, according to BS 1881-121 [73]. In these tests, the measurements of 

strains were duplicated by using both strain gauges and Pots, as shown in 

Figure (3-18). This test-determined modulus of elasticity was expected to 

provide a means to decide on which recognized modulus formula to be adopted 

for the evaluation of the modulus for all test specimens. An average 

experimental modulus of 28504 MPa was obtained for an average cylinder 

compressive strength of 31.98 MPa, as shown in Figure (3-19). The average 

Poisson's ratio was 0.208, which is within the common range; 0.18 to 0.25, for 

normal weight concrete. 
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Table  3-3: Concrete material properties 

Cube compressive strength 
(MPa) 

Split cylinder tensile strength 
(MPa) Slab 

Average 
Standard 
deviation 

Average 
Standard 
deviation 

RS0 41.38 0.48 3.41 0.22 

RS-F0 40.86 0.86 3.24 0.21 

RS-F15 40.31 0.14 3.47 0.05 

RS-F30 48.56 1.04 4.53 0.04 

RS-F30F 42.94 1.29 3.6 0.08 

 

The corresponding moduli according to ACI Code [23] and Eurocode 2 [21] 

were 26579 MPa and 32966 MPa, respectively. The Eurocode formula, to some 

extent, gives a stiffer behavior, while the ACI formula was slightly closer to the 

experimental results. Therefore, it was decided to adopt the ACI formula to 

evaluate the concrete modulus of elasticity in all cases.  

  

 

Figure  3-18: Test for concrete compressive modulus of elasticity. 
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  Figure  3-19: Stress strain curve for concrete. 

 

3.3.2. Reinforcement 

The modulus of elasticity of the reinforcement is one of the main parameters of 

this research. Hence, representative FRP plate specimens were tested in 

uniaxial tension to determine their modulus of elasticity, as well as their ultimate 

stress and strain. Representative steel rebars were also tested for their yield 

and ultimate strength in tension. 

 

3.3.2.1. FRP plate reinforcement 

The FRP plates used were provided by Weber Building Solution, UK. Their 

commercial name is Weber.tec force carbon plate. It is a high-performance, 

corrosion-resistant carbon fibre laminate. Manufactured by S&P, Switzerland, 

these laminates have a fibre volumetric content up to 70% in an epoxy resin 

matrix. They are usually used together with Weber.tec EP structural adhesive to 

form the Weber.tec force composite strengthening system for use in 

accordance with Concrete Society Technical Report 55 [14] (Design Guidance 

for Strengthening Concrete Structures).  
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The type used in this project was S&P CFK 150/2000. The first number denotes 

to the characteristic modulus of elasticity, while the second number denotes to 

the ultimate tensile strength. It has a cross sectional area of 100 x 1.2 mm. 

These plates are sensitive to transverse pressure. Hence, the steel grips of the 

tension machine can damage the specimen. Normally, such damage would not 

affect the modulus of elasticity, but would undermine the tensile capacity. To 

overcome this problem, aluminium end-tabs were used at the grips (Figure 3-

20). Low viscosity epoxy was used to adequately bond the end-tabs without 

entrapping air.  

 

 

 

Figure  3-20: Instrumentation of FRP plate in tensile test. 
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Three representative specimens were tested according to ASTM D3039 / 

D3039M [74]. The tensile tests involved load and strain measurements to get 

the stress-strain curve, modulus of elasticity and poison's ratio. All specimens 

were instrumented with two strain gauges; at 0° and 90°, to measure local strain 

at mid-length over a gauge length of 6mm. They were aligned axially along the 

center line. Typical instrumentation set-up for the three specimens is shown in 

Figure (3-20).  

 

The tensile stress-strain diagrams were linear up to failure, as typically shown in 

Figure (3-21). The tensile tests of the FRP plates gave an average value of 

172000 N/mm2 and 2970 N/mm2 for the modulus of elasticity and the ultimate 

tensile strength, respectively. An average value of 0.29 was obtained for 

Poisson's ratio. Figure (3-22) shows typical tension failure of CFRP plates. The 

results of the tensile tests for the FRP plates along with the mechanical 

properties provided by the manufacturer, at the time of the investigation, are 

presented in Table (3-4).  
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   Figure  3-21: Typical FRP stress-strain curve. 
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Figure  3-22: Failure of FRP plate in tension. 

 
Table  3-4: Tensile mechanical properties of FRP plates. 

Coefficient of 
variation % 

Manufacturer 
mechanical 
properties(1) Plate 

Longitudinal 
modulus of 
elasticity, Ex 

(MPa)  

Rapture 
strain, 
r 

Rapture 
tensile 
stress, 

fr, (MPa) E(2) fr Ef fr 
CFRP 172000 0.0168 2990 2.76 1.8 165000 2800 
(1) Manufacturer mechanical properties as provided for the batch of the CFRP plates used at the 
time of the investigation. 
(2) The longitudinal modulus was evaluated based on the local strains measured by strain 
gauges for the CFRP plates. 
 

3.3.2.2. Steel reinforcement 

The tensile mechanical properties of the steel rebars were also determined by 

testing representative samples. These tests were carried out according to 

ASTM A370-97a [75]. The yield strength, ultimate strength and elongation were 

measured, and are shown in Table (3-5). 

 

 



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

111

Table  3-5: Tensile mechanical properties of steel rebars. 

Material 

Nominal 

diameter 

(mm) 

Proportional 

limit  

(N/mm2)  

Yield 

strength 

(N/mm2) 

Yield  

strain (ε) 

Ultimate 

strength 

(N/mm2) 

8 488 576 0.0030 655 
Steel 

12 485 570 0.0034 655 

 

To get more knowledge of the stress-strain properties of the 12mm diameter 

steel rebars, a uniaxial tensile test has been conducted. Both strain gauges and 

extensometer were use to get the strain data. The stress-strain results are 

shown in Figure (3-23). 
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Figure  3-23: Stress-strain curve of 12-mm steel reinforcement. 
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Chapter 4 

Experimental results and discussion 

 

4.1. Introduction 

This chapter deals with the experimental data acquired from the slab tests 

discussed in Chapter 3. The various categories of data are presented and 

typical types of behaviour are identified instead of considering each individual 

test on its own. Any deviations from the general behaviour are explained. 

Initially, the modes of failure and load capacity are discussed. Then, the 

reinforcement and concrete strain, deflection, and crack width are examined. 

The results of the steel RC slab are always used for comparison purposes. 

Subsequently, some of the experimental data are analysed in order to 

investigate other structural aspects that are related to punching behaviour in 

both serviceability and ultimate limit states.  

 

4.2. Experimental data 

A large amount of data was collected from the structural tests. The load is 

considered the most appropriate common link between the data. Therefore, the 

experimental load-deflection, load-rotation, load-crack width, load-reinforcement 

strain and load-concrete strain relationships were prepared for all tests, and are 

shown in Appendix B. The modes of failure and load capacity were also 

examined. In the following sections, only typical experimental relationships are 

presented and investigated to identify typical types of behaviour. Expected 

discrepancies and peculiarities due to the application of the FRP reinforcement 

are pointed out and discussed. 
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4.2.1. Modes of failure and load capacity 

The mode of failure is usually identified based on structural responses from 

experimental observations such as load-deflection response, strain in flexural 

reinforcement, principal compressive stress and strain in concrete, and crack 

pattern. Accordingly, the encountered failure modes during the slab tests can be 

categorized into three modes, namely, flexural-punching, punching shear and 

premature debonding. The premature debonding failure was followed also by 

brittle punching failure. 

 

The failure of the control specimen (RS0), which was not strengthened by the 

CFRP plates, was ductile. Figure (4-1) confirms that the slab reached its yield 

strength by the full development of the yield lines on the tension face of the 

specimen with wide flexural cracks. However, the slab should be regarded as 

having failed in flexural punching due to the sudden decrease in the load at 

failure, which is confirmed by the load-deflection curve shown in Figure (4-7).  

 

 

 

Figure  4-1: Crack pattern of slab RS0 after failure 
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The non-prestressed FRP slab (RS-F0) failed in a punching shear failure mode, 

as shown in Figure (4-2). It is evident that the FRP materials contributed to the 

increase in the load capacity until the bond between the FRP plate and concrete 

failed. Localized debonding cracks appeared at a late stage of loading due to 

the development of the intermediate flexural cracks and the diagonal shear 

cracks, which resulted in a separation of the strengthening materials. These 

cracks were located along the edges of the FRP plate length. This indicates that 

end anchoring severed, to a certain extent, preventing a premature bond failure 

at the cut-off end of the FRP materials. After the formation of these cracks, the 

specimen failed due to the rapid development of the shear crack after the FRP 

debonded from the slabs without rupture of the FRP material. It is noteworthy 

that the steel reinforcement around the column area yielded and helped the 

rapid development of the cracks as well. Partially developed yield lines can be 

noticed in Figure (4-2) at the slab corners.  

 

 

 

Figure  4-2: Crack pattern of slab RS-F0 after failure. 

 

For the prestressed-FRP slabs (RS-F15), (RS-F30) and (RS-F30F), the failure 

mode was by debonding of the FRP plates. The scenario of the crack 

development was similar to the non-prestressed slab (RS-F0). However, at the 

stage of development of the debonding cracks around the critical diagonal 

cracks, their growth was very fast. That is the prestressed force in the FRP 
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plates increased the peeling effect, by which the slabs reached their ultimate 

debonding load before they reach the ultimate punching load. Another factor 

that might speed up the debonding failure is the higher flexure stiffness of the 

FRP plate compared to the FRP sheets which also increase the peeling effects. 

This phenomenon is more explained by the schematic diagram show in Figure 

(4-3). By inspecting the bond surface of the FRP plates, it was found nearly 

smooth with very little concrete debris attached. Thus, the bond failure is 

believed to initiate at the layer of concrete just beneath the adhesive layer.  

 

    

 

Figure  4-3: Comparison of the peeling effect in non-prestressed and 

prestressed slabs. 

 

With respect to the steel reinforcement, the 30% prestressed slabs (RS-F30) and 

(RS-F30F) reached the yield stress, but they did not experience extensive 

yielding. The maximum recorded strain was around 3700 microstrain. On the 

other hand, the15% prestressed slab (RS-F15) did not encounter any yielding 

during the loading history. The failure surface of these slabs extended up to the 

end anchor plates with approximate diameter of 890 to 1070 mm that 

represented a 25 to 20-degree cone angle, which is less than both the 

reference slab (RS0) and the non-prestressed slab (RS-F0). This could be 

attributed to the confinement effect of the prestressing, which did not allow for 

the tangential flexural cracks to develop in the area close to the column. The 

crack pattern of these slabs is shown in Figures (4-4) to (4-6).  
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non-prestressed slabs, or FRP 
sheets are used instead of FRP 
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CDC crack CDC crack 
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Figure  4-4: Crack pattern of slab RS-F15 after failure. 

 

 

 

Figure  4-5: Crack pattern of slab RS-F30 after failure. 

Slippage position 
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Figure  4-6: Crack pattern of slab RS-F30F after failure. 

 

It is clear from these figures that the number of the flexural cracks in the 

prestressed slabs in the column vicinity has been reduced, compared to slabs 

(RS0) and (RS-F0). In the 30-percent prestressed FRP slab (RS-F30), one of the 

FRP strips experienced debonding and slippage from the end anchor plates due 

to the high prestressing forces; see Figure (4-5). In order to overcome the 

slippage problem, the end anchorage plate was extended up to the support in 

the slab (RS-F30F) to ensure more anchorage area.  
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The modes of failure, the first crack load and load capacity results of the slabs 

are shown in Table (4-1). The reference specimen RS0 indicated the lowest first 

crack load of 57 kN, while the highest first crack load was observed for the 

specimen with a 15-percent prestressing (RS-F15). The first crack loads of 76.1 

kN, 115 kN and 131 kN were recorded for the specimens (RS-F0) (RS-F30) and 

(RS-F30F), respectively. The use of the FRP slightly increased the equivalent 

reinforcement ratio compared with the reference specimen. Consequently, the 

associated deflection to the first crack load, for the strengthened slabs, is 

decreased as the reinforcement ratio is increased. 

 

For the current strengthening scheme, the results indicate that prestressing of 

the FRP plate up to 15 percent, before applying it to the tension surface of slab, 

reduced the onset of cracking. Contrary to expectations, increasing the 

prestressing ratio was not able to increase the first crack any more, but reduced 

it. That is the high prestressing forces are more likely to trigger the debonding 

cracks at the early stages of loading. This explanation can be further supported 

by the slippage of the second FRP strip in slab (RS-F30) as mentioned earlier 

and is confirmed by the measurement of strains mounted on the FRP plate, as 

shown later in this chapter. Moreover, the concentration of the prestressing 

forces around the column area, leaving a large area of the slab corners without 

strengthening, makes that area more potential to tangential tensile cracks, 

which is quite clear from the above figures.  

 

4.2.2. Load-deflection characteristics 

Typical experimental load-deflection diagrams, measured at the centre of the 

slab, are shown in Figure (4-7). All data were recorded using the data 

acquisition system, and then corrected against the support settlement and the 

test-rig deformation. In all slabs, before any cracking occurs, the load-deflection 

relationship was nearly linear, and the deflection was almost negligible as the 

slab possesses a relatively high stiffness that is associated with the uncracked 

concrete section. After the first crack, the characteristic of the load-deflection 

was largely dependent on the reinforcement and prestressing ratio.  
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For the reference specimen (RS0), a rapid reduction in the slab stiffness 

occurred with the formation of the first circular crack around the column. A 

subsequent considerable reduction in stiffness (represented by almost a short 

horizontal plateau in the load-deflection curve) was associated with the 

formation of several other radial and tangential flexural cracks within the zone of 

negative bending moment. Thereafter, the deflection followed an almost linear 

relationship with load up to the yield load. The load-deflection curve then arched 

reaching the plateau at the ultimate load, while the existing cracks widened and 

propagate towards the compression zone.  
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Figure  4-7: Load-central deflection of the test slabs. 

 

The non-prestressed specimen (RS-F0) showed similar behaviour to the 

reference slab (RS0), except that the crack formation zone was shorter than that 

of the reference slab, and the behaviour following the crack stabilisation point 

was nearly linear up to the failure load. This linear behaviour is attributed to the 

linear material properties of the FRP reinforcement. Correspondingly, the 

deflection at the ultimate load decreased from 27.3 mm of the reference slab to 

21.4 mm.   
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The prestressed specimens (RS-F15), (RS-F30) and (RS-F30F) exhibited brittle 

behaviour. The average deflection at the ultimate load was approximately 0.57 

and 0.72 that of the reference specimen (RS0) and non-prestressed specimen 

(RS-F0), respectively. Moreover, the slope of the load-deflection curves was 

lower than that of the reference and non-prestressed specimens. Once the FRP 

began debonding from the concrete substrate, the stiffness of the slab was 

markedly reduced. After the onset of debonding, the load-deflection curves 

were linear up to failure and similar in shape to the constitutive law of a linear 

elastic material, which reflects that the prestressed slabs reached their 

debonding or punching strength before they reach the shear strength 

corresponding to the ultimate flexural capacity. In general, prestressed 

specimens experienced smaller deformation compared to the reference and 

non-prestressed specimens due to the effect of prestressing, which enhanced 

the serviceability of the slabs.  

 

For slab (RS-F30F), a small leakage problem in the pump connection was 

noticed at a load level of 130 kN. The slab was intentionally unloaded to zero 

kN to repair the connection leakage. So that, an additional cycle is shown in the 

load-deflection curve of the slab at that load level, see Figure (4-7).  

 

4.2.3. Strain measurements 

4.2.3.1. Steel reinforcement 

A typical experimental load-strain relationship for the internal steel 

reinforcement is shown in Figure (4-8).  The figure combines the steel strain 

distribution for all test specimens at the location of strain gauge 5 in Figure (3-

12), which is 100 mm from the column face. They are in general following the 

same trend of the load-deflection curves shown in Figure (4-7). A stiffer 

behaviour was noticed for the prestressed and non-prestressed specimens 

compared with the reference specimen (RS0). In addition, specimens (RS-F15) 

and (RS-F30) showed stiffer behaviour compared with the non-prestressed 

specimen (RS-F0) for the same range of loading. The prestressed specimen 

(RS-F30F) showed lower stiffness compared with the strengthened specimens. 
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The lower stiffness can be explained as result of the early debonding of the 

FRP strips. So, there was not enough confinement to enhance the behaviour of 

this specimen.  
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Figure  4-8: Load-strain relationship for the internal steel reinforcement. 

 

The recorded steel strains also indicated that for the reference specimen (RS0) 

and non-prestressed specimen (RS-F0), the steel strain at the failure load was 

approximately 4.3 times the yield strain. However, for the prestressed 

specimens (RS-F15) and (RS-F30), the steel reinforcements did not yield. Only 

the steel reinforcements in the area close to the column (SGS4, SGS5) for 

specimen (RS-F30F) reached the yield strain at failure, but they did not 

experience extensive yielding. Moreover, the radius of the yielding area 

decreased as the strain level at failure reduced due to the effect of prestressing, 

see Figure (4-9). During the prestressing process, the recorded steel strains for 

these specimens were nearly negligible and they did not exceed 75 microstrain 

in compression.  
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Figure  4-9: Profile of steel strain at failure.  

 

4.2.3.2. FRP reinforcement 

Figure (4-10) shows a typical experimental load-strain relationship for the FRP 

reinforcement. The figure combines the FRP strain distribution for the 

strengthened specimens (RS-F0), (RS-F15), (RS-F30) and (RS-F30F) at the 

location of strain gauge 7 in Figure (3-13). For clarity purposes, the strain levels 

of the prestressed specimens (RS-F15), and (RS-F30) and (RS-F30F), were 

reduced by the amount of prestressing; 2000 and 4500 microstrain, 

respectively, which are the strain levels after the immediate losses.  Before 

cracking, the strains in the plates are compatible with the strains in the concrete 

substrate, and are therefore of negligible magnitude. It is noticeable also that 

the strain levels of the FRP are comparable to the steel strains shown in Figure 

(4-8), which implies the strain compatibility in the slab cross section is 

maintained.  After the formation of the first crack, the rate of strain increase for 

the prestressed specimens (RS-F15), (RS-F30) and (RS-F30F) is higher than that 

of the none-prestressed slab (RS-F0). This higher rate is attributed to the 

sudden transfer of forces to the FRP plates at the onset of debonding. As a 
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result, some strips such as the second strip in slab (RS-F30) experienced 

slippage from the anchor plate at the later stage of loading, as mentioned before 

in Section 4.2.1, and confirmed by the strain readings shown in Figure (4-10).  
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Figure  4-10: Load-strain relationship for FRP reinforcement. 

 

Figure (4-11) shows the strain profile development of the FRP plates in slab 

(RS-F15) at different load levels. This strain behaviour indicates that the average 

bond between the plate and the concrete, in the negative moment zone, 

continues to increase when debonding cracks have formed. The magnitude of 

the increase in strain is highest at debonding cracks, and gradually reduces 

away from debonding cracks as the tension carried by the intact concrete 

increases. The negligible strains near the anchor plate indicate that the FRP 

plate is adequately anchored, with effectively no slip at its end. However, some 

times when the shear crack extends near the anchor plate resulting in peeling-

off debonding cracks, the strains increase considerably; see strain of A-direction 

at 240 kN load level shown in Figure (4-11).  Another noticeable feature is the 

strain drop of direction A at the overlap with direction B. This is attributed the 

fact that any lateral tension strain would result in compression strain in the fibre 

direction due to the Poisson’s ratio effect. 
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Figure  4-11: Strain profile of FRP plate for slab (RS-F15) at different load levels.  

 

The recorded strains also indicated that the FRP plates did not develop their full 

strength in the non-prestressed specimen (RS-F0) because the strains of the 

FRP plates corresponding to the ultimate load ranged from 2500 to 5000 

microstrain, which represent only 15 to 30% of their ultimate strengths. 

However, strain levels more than 10000 microstrain were recorded for the 

prestressed specimens, which points to the advantages of using prestressed 

FRP plates.   

 

4.2.3.3. Concrete 

Figure (4-12) shows a typical experimental load-concrete strain relationship. 

The concrete strain shown was measured in the radial direction at position 

SGV1 at the top concrete surface, as shown in Figure (3-14). Before cracking, 

the concrete strain is negligible. With the formation of the first crack, the 

concrete strain increases noticeably. A stiffer behaviour was noticed for the 

prestressed and non-prestressed specimens compared with the reference 
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specimen (RS0). In addition, specimens (RS-F15) and (RS-F30) showed stiffer 

behaviour compared with the non-prestressed specimen (RS-F0) for the same 

range of loading. The prestressed specimen (RS-F30F) showed lower stiffness 

compared with the strengthened specimens as a result of the early debonding 

of the FRP strips. 

 

Another feature was noticed for the reference slab (RS0) and non-prestressed 

slab (RS-F0) that the strain reached its ultimate strain then decreased before 

failure. This phenomenon has also been reported by other researchers [26, 30]. 

However, for the prestressed slabs, the failure occurred at low strain levels as 

these slabs reached their debonding strength, which is function of the concrete 

tensile strength, before they reached the flexural punching strength. This 

confirms that the tensile strength controls the punching load [76].  
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Figure  4-12: Load-radial strain relationship for concrete at position SGV1. 
 

Figure (4-13) shows the load-strain relationship at positions SGV1 and SGH1 in 

the radial and tangential directions, respectively, for slab (RS-F15). The figure 
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confirms the fact that the strain level in the tangential direction is usually higher 

than that of the radial direction at the same load level.  
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Figure  4-13: Load-radial and tangential strain relationships for slab (RS-F15). 

 

4.2.4. Crack width 

A typical load-crack opening displacement relationship is shown in Figure (4-

14). The crack widths shown for slab (RS0) were measured by linear 

potentiometers (pot), at the crack inducer positioned at the critical section for 

punching shear, on the tension surface of the slab. As the slab experience 

mixed mode behaviour, the crack opening has both a horizontal (CMOD) and 

vertical component (CMVD). The horizontal component was measured over a 

gauge length of 500 mm. The pot measurement has actually two components: 

the crack width and the elongation in the concrete at the surface. However, the 

elongation in the concrete is negligible. For instance, at a concrete strain of 100 

microstrain, which approximately corresponds to the concrete tensile strength, 

the elongation would be only 0.05 mm. The load-crack mouth horizontal 

displacement behaviour is somewhat similar to that of the load-steel strain 

perpendicular to the crack surface. On the other hand, the vertical component 
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showed stiffer behaviour compared to the horizontal component behaviour. This 

can be attributed to the aggregate interlocking and dowel effects caused by 

steel reinforcement, which restrain the crack sliding. 

 

For the strengthened specimens, the crack location has been shifted away 

towards the anchor plates, as mentioned earlier. This was confirmed by the pot 

readings at the crack inducer, which fluctuated around zero. So the use of 

prestressed plates reduces the onset of cracking, resulting in an enhanced 

serviceability.   
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Figure  4-14: Average horizontal and vertical crack opening displacement of slab 

(RS0). 

 

4.3. Analysis of test results 

The focus of this research is on the punching behaviour of slabs strengthened 

with EBR. Therefore, the load and deflection data are analyzed and used to 

investigate other structural aspects that are related to the punching behaviour in 

both serviceability and ultimate limit states. The load-rotation diagrams are 

constructed from the deflection profile along the centre line. Moreover, the 
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deformation capacity in terms of the stiffness and energy absorption is 

evaluated.  

 

4.3.1. Rotation capacity 

The deflection profiles of the test slabs along the centreline are shown in 

Figures (4-15) to (4-18).  For the reference slab (RS0), it is quite clear that the 

low reinforcement ratio resulted in a flaccid behaviour. The deflection values 

around the column area are nearly similar to the central deflection, which was 

translated in the high value of absorbed strain energy. However, for the 

strengthened slabs, only columns experienced high deflection values.  The 

contribution of the strengthening effect was investigated by comparing the 

deflection of each slab at an arbitrarily service load of 90 kN. The measured 

deflections of the strengthened slabs were 30%, 25% and 26% for the non-

prestressed slab (RS-F0) and the prestressed slabs (RS-F30) and (RS-F30), 

respectively, relative to the reference slab (RS0). 
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Figure  4-15: Deflection profile of slab RS0 along the centre line. 
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Figure  4-16: Deflection profile of slab RS-F0 along the centre line. 
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Figure  4-17: Deflection profile of slab RS-F15 along the centre line. 
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Figure  4-18: Deflection profile of slab RS-F30 along the centre line. 

 

The load-rotation curves can also be constructed from the deflection profiles, as 

shown in Figure (4-19), assuming a conical shape for the deflection profile 

outside the critical shear crack. The load rotation curves are shown with the 

Muttoni [65] failure criteria for slabs with low reinforcement ratio. The effect of 

FRP reinforcement is shown by increasing the punching capacity of the slab 

(RS-F0) compared to the reference slab (RS0), but simultaneously decreased 

the ratio of the punching load to the flexural load, which is translate into smaller 

rotation at failure. For the prestressed slabs (RS-F15), (RS-F30) and (RS-F30F), a 

considerable reduction in the rotation capacity was encountered by applying the 

prestressing to the FRP reinforcement, but a large bonding area is required to 

make the ultimate punching load within that range predicted by the failure 

criteria shown in the figure if full bond is assumed for the FRP reinforcement. 

This emphasizes that the design of FRP RC can be controlled by the 

serviceability limit state. 
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Figure  4-19: Load-rotation curves of the test slabs. 

 

4.3.2. Stiffness characteristics 

The slope of the load-deflection curve at a point is known as the member 

stiffness at that loading point. Here in this study, the initial stiffness K of the test 

slabs was evaluated analytically as the slope of the load-deflection curve within 

the first crack load. The results show that the use of the FRP reinforcement 

nearly doubled the initial stiffness of the strengthened specimens. No significant 

difference between the non-prestressed and prestressed specimen could be 

recognized. The initial stiffness K values of all specimens are given in Table (4-

1). 

 

4.3.3. Energy absorption characteristics 

The energy absorbed is the area under the load-deflection curve for a tested 

specimen. This area was calculated by numerical integration up to the ultimate 

load and corresponding displacement. It was clearly noticed that the non-

prestressed specimen (RS-F0) encountered a considerable decrease in the 
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energy absorbed by nearly 38.5% of the reference specimen (RS0), whereas 

the average absorbed energy of the prestressed specimens (RS-F15), (RS-F30) 

and (RS-F30F) was only 20% of the of the reference specimen (RS0). The 

reason for this massive reduction in the prestressed specimens is attributed to 

the prestressing effect and debonding, which reduced the deformation capacity 

of the slab.  Values of the absorbed energy Ψ for each slab are summarized in 

Table (4-1). 

 

4.3.4. Ultimate punching loads 

Referring to the ultimate load as the load capacity without exceptions is not 

practical from the serviceability point of view. For instance, slabs with low 

reinforcement ratios experience large deflections before they reach their 

ultimate load. So that, referring to the yield load as the load capacity could be 

more realistic. That is these members can store more strain energy after the 

yielding of the internal steel as a result of the strain hardening of the internal 

steel reinforcement, membrane action and tension stiffening, which appears as 

an increase in the load capacity. Nevertheless, this increase does not enhance 

the serviceability as mentioned earlier. Therefore, in this study the load 

capacities of the strengthened slabs were compared to both the yield and 

ultimate loads to obtain a conclusive comparison. 

 

Figure (4-20) presents the normalized increase/decrease of the punching 

capacity for the strengthened specimens compared with both the yield and 

ultimate loads of the control specimen (RS0). The diagram shows that the non-

prestressed FRP strips were able to enhance both the yield and ultimate load of 

slab (RS-F0) by 59.3% and 42.7%, respectively, over that of the control 

specimen (RS0). On the other hand, the prestressed FRP strips were only able 

to enhance the first crack load and to prevent yielding of steel reinforcement.  

The percentage increase in the yield load of slabs (RS-F15), (RS-F30) and (RS-

F30F) were 39.9%, 78.8% and 28.2%, correspondingly, over that of the control 

specimen (RS0). The reduction in the ultimate load of the prestressed slabs was 

between 15 and 22%. It is observed that the strengthening is more effective for 

the specimen with non-prestressed FRP strips, whereas the early debonding 
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was the main reason for the reduced ultimate strength of the prestressed slabs. 

This supports what Alexander and Simmonds [33] argued that the anchorage 

failure of the reinforcement was the reason for the reduced strength of the slabs 

with flexural reinforcement concentrated over the column region, and tested by 

Elstner and Hognestad [28] in 1956 and Moe [17] in 1961.      
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Figure  4-20: Load comparison of test slabs. 

 

4.3.4.1. Comparison with design codes 

Since the British standard BS 8110 [22] does not have any provision to estimate 

the punching shear capacity of prestressed concrete flat slabs, so the test 

results were only compared  with the values predicted by the punching shear 

formulae of ACI 318 [23], Eurocode 2 [21] and Ebead and Marzouk modified 

model [18] explained in Chapter 2. It can be seen from the data in Table (4-2) 

that only the reference slab (RS0) and non-prestressed slab (RS-F0) reached 

the flexural capacity flexV , while the punching shear strength of the prestressed 

slabs is overestimated as they early failed by debonding.   

 

The ACI formulae are, in general, conservative with average value of 1.164. 

This is because they only consider the effect of column geometry and slab size 
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but they do not account for the reinforcement ratio, which significantly affects 

the punching capacity. This is quite clear in specimen (RS-F0) where the 

punching shear strength is underestimated by nearly 60%. However, for the 

prestressed slabs, the ACI code was able to give predictions, to some extent, 

consistent with the test results, for the same reason. That is in this case when 

the FRP reinforcement debonds from the concrete substrate, only the concrete 

controls the slab behaviour. 

 

Table  4-2: Comparison of test results with code predictions 

predicteduV ,  kN testuV , / predicteduV ,  
Specimen 

testuV ,  

kN ACI EC2(3) 
flexV (4) 

ACI EC2 flexV  

RS0 284 248.6(1) 231.4 299 1.142 1.227 0.95 

RS-F0 405.2 248.6 359 376.1 1.63 1.129 1.077 

RS-F15 240 248.6 374 381.86 0.965 0.631 0.629 

RS-F30 307 253(2) 396.2 449.7 1.213 0.775 0.683 

RS-F30F 220 253 396.2 449.7 0.87 0.534 0.49 

Mean value 1.164 0.866 0.766 

Coefficient of variation 0.253 0.344 0.315 

(1) Values calculated according to Equation (2-34) 

(2) Values calculated according to Equation (2-35) 

(3) RV is calculated using equivalent reinforcement ratio as shown in Appendix A 

(4) flexV  is calculated using sectional analysis as shown in Appendix A. 

 

On the other hand, both the Eurocode 2 and Ebead model significantly 

overestimate the punching shear strength of the prestressed slabs, as they 

reflect the effect of prestressing and reinforcement ratio, with the full bond 

assumption. They overestimate the punching shear strength by almost 30 to 

50%, as shown in Table (4-2). This could be clarified more by the level of the 

strains predicted by the sectional analysis, with reference to Table (A-1) in the 

appendixes. It is noticeable that the level of strains for the prestressed slabs 

exceeded the limits provided by ACI 440.2R [3] for debonding failure which 

confirms the debonding failure of these slabs. However, for the reference slab 
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(RS0) and the non-prestressed slab (RS-F0), the predictions of Eurocode 2 and 

Ebead modified model are much closer to measured value than those of ACI. In 

conclusion, this comparison shows that the code formulae are suitable for cases 

in which the bond between the reinforcement and the concrete is maintained, 

but they could give misleading prediction in cases where the debonding is the 

governing failure mode.   

 

4.4. Conclusion 

Bonding non-prestressed FRP plates to the tension face of RC slabs with low 

reinforcement ratio, both strength and stiffness of the slabs can be increased. 

However, bonding prestressed FRP plates was only able to enhance the 

stiffness but did not significantly contribute to the ultimate punching load, since 

the high prestressing forces can easily trigger the debonding failure modes. The 

variation of the bond length outside the truncated cone has no effect on 

increasing the ultimate load. This is based on the fact that there is an effective 

bond length (Le) beyond which any extension of the bond length L cannot 

increase the ultimate load. This disadvantage is the basic reason behind not 

exploiting the full strength of the EBR. Therefore, the longer bond length does 

not show better strengthening effect 

 

The interfacial debonding is progressively activated with the increase of the 

external load. Once it is initiated at the critical shear crack location, it 

propagates quickly to a FRP plate end. The time between the initiation of 

debonding propagation and the attainment of the ultimate load is too short, and 

the two loads are usually very close to each other. 

 

The design of RC structures strengthened by FRP reinforcement is governed by 

the serviceability limit state. This was quite clear in the comparison study 

conducted in this chapter using classical analysis approaches. At the time these 

formulae were able to predict the ultimate strength of the cases where the full 

bond assumption was maintained, they failed to deal with cases more 

susceptible to bond failure. So that, a more advanced approach, such as FEA, 

is needed to deal with these cases which are conducted in the next chapter. 
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Chapter 5 

Numerical modelling 

 

5.1. Introduction 

In addition to the experimental work, numerical analysis was carried out to 

investigate deflections of the punching shear specimens, together with the 

associated tension stiffening, dowel action and interfacial debonding, and steel, 

FRP reinforcements and concrete strains. The objectives were to provide 

further insight into the experimental results, to evaluate the adequacy of the 

corresponding theoretical predictions, and to carry out parametric studies. As a 

numerical tool, the Finite Element Method (FEM) is considered the most 

powerful approach to deal with such cases when the simple analytical models 

cannot account for reinforcement-concrete interactions, rather than their 

adoption to linear-elastic assumptions of the constituent materials. This chapter 

presents the background to the approach used and elaborates on its 

implementation in this study. Sample analytical results are presented and briefly 

discussed, while a comprehensive comparison of the experimental and 

theoretical results is undertaken in the next chapter. 

 

5.2. Finite element analysis 

At the micro-scale level, plain concrete is considered a heterogeneous material; 

that is a composite of aggregate and cement paste. Not so, however when it is 

modelled at the macro-scale level as a homogeneous representative volume, 

several times the aggregate size, with effective or equivalent properties [77]. 

This principle could be extended to the reinforced concrete if only the 

reinforcement is uniformly distributed in that volume. So, a homogeneous 

description of reinforced concrete is rarely used. Instead, the two materials are 

usually modelled individually, and then the assumption that the sum of the two 
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constituent materials, but not simply by superposition, describes reliably the 

behaviour of the actual composite behaviour. Such representation fits very well 

with numerical simulation. 

 

Due to adopting this type of modelling, the high nonlinearity becomes a salient 

aspect in the stress-displacement analysis of reinforced concrete members, 

other than the nonlinearity in the plain concrete itself. In compression, the 

concrete behaviour is nonlinear. In tension, concrete has a very limited tensile 

strength and then it cracks. Cracking creates complex bond conditions between 

the reinforcement and the surrounding concrete, which involves invisible micro 

and secondary cracks, relative slip between the concrete and reinforcement, as 

well as splitting transverse stresses in the concrete. The problem is further 

complicated in the presence of high shear forces when other mechanisms are 

activated, such as dowel action and aggregate interlock. These phenomena are 

discussed later in this chapter. 

 

Extensive testing is a very expensive and time-consuming process. Therefore, 

more interest has been given recently to numerical simulation to complement 

testing. FE analysis is currently the most reliable numerical analysis tool 

available. One of these available commercial codes is ABAQUS version 6.8 

[78]. It is a renowned FE package that is based on state-of-the-art theoretical 

methods. Among numerous capabilities, ABAQUS can deal with a wide range 

of stress-displacement analysis problems allowing for almost any structural 

material. For reinforced concrete, ABAQUS has two measures to deal with 

concrete post-cracking behaviour; the oriented damaged elasticity concept 

(smeared cracking), and the isotropic tensile and compressive plasticity. These 

models account implicitly for the effect of the bond-slip on the average stresses 

and strains in the steel and the concrete, or to the concrete only, by modifying 

the properties of these two materials. These modifications are effected through 

appropriate incorporation of the tension stiffening effect in the constitutive 

models of steel and concrete [32]. ABAQUS also offers nonlinear analysis 

techniques designed for unstable local or global collapse situations but may be 

appropriate to deal with the sudden release of strain energy due to cracking of 

concrete. The following sections present the geometric and material models and 
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nonlinear analysis techniques in ABAQUS. Model parameters are then 

investigated, and ABAQUS is used to analyse representative punching shear 

tests. The detailed discussion of the analytical results in comparison to the 

corresponding test results is undertaken in the next chapter. 

 

5.3. Slab modelling techniques 

Two techniques exist for modelling reinforced concrete slabs [79]: layered and 

discrete modelling. In layered formulation, the concrete section is divided into a 

set of layers, while the reinforcement is smeared into a layer between the 

concrete layers. Since real reinforcement is discrete, only highly and uniformly 

distributed reinforced slabs can be appropriately modelled by this approach 

such that each element contains reinforcement. Moreover, the incorporation of 

bond slip can only be achieved artificially, and the calculated strain for concrete 

and reinforcement is the average strain.  

 

In discrete modelling, which is adopted in this study, concrete is modelled by 

three-dimensional solid elements while the reinforcements is modelled by bar, 

truss or shell elements (bar or truss element is used in case of modelling 

internal steel reinforcements, while shell element is used in case of planner 

reinforcement such as FRP). The connectivity between a concrete node and a 

reinforcement node can be achieved by two methods. In the first method, a 

bond element is inserted at the interface to connect the corresponding degrees 

of freedom for both the concrete and the reinforcement nodes; hence, the 

interaction response can be modelled. In the second method, concrete and 

reinforcement share the same node, and perfect bond is therefore assumed. 

This later method is computationally more efficient when used with smeared 

cracking. This can be justified as the smeared cracking approach and is not 

designated for predicting the localization of fracture. Alternatively, it can 

produce proper strain localization in different cases; such as mixed mode 

cracking, if the general behaviour is of interest [32]. So, discrete modelling of 

RC slabs provides a more realistic representation of steel than the layered 

approach. In the past, it was more expensive in terms of analysis time, since a 

large number of degrees of freedom are required. But now, the super fast 
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computers effectively reduced the analysis time and make this approach more 

viable.  

 

Both methods are used to model the reinforcement of the test slabs; shell 

elements are used to represent the external FRP reinforcement along with an 

interface element to connect the corresponding nodes of concrete and FRP 

reinforcement, while the truss element has been chosen to represent the 

internal steel reinforcement assuming perfect bond. The following sections 

present the approach used for modelling and analysing the test specimens. 

Topics covered include the different meshing elements and their characteristics, 

reinforcement and concrete models and solution procedure for nonlinear 

analysis. 

 

5.3.1. Meshing elements 

5.3.1.1. Solid element 

A wide range of three-dimensional (3D) continuum elements is available in 

ABAQUS. For instance, the ABAQUS/Standard solid element library includes 

first-order (linear) interpolation elements and second-order (quadratic) 

interpolation elements in one, two, or three dimensions. They can be used in 

almost any linear/nonlinear stress-displacement analysis and to model nearly 

any shape. They are more accurate, provided they are not distorted, particularly 

for hexahedral elements.  

 

Among these is the eight-node isoparametric brick element (C3D8) illustrated in 

Figure (5-1), which is adopted here to model the concrete slabs. Each node has 

three dimensional translational degrees of freedom. They can predict the same 

behaviour of the second-order element if a fairly detailed mesh is used. 

Furthermore, it is generally better to use first-order elements for those parts of a 

model that will form a slave surface (the slab surface in this case) in a contact 

problem. Second-order elements can sometimes cause problems with contact 

because of the way these elements calculate consistent nodal loads for a 

constant pressure. In this way, ABAQUS adds a mid-face node to any face of a 
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second-order brick element that defines a slave surface to consistently 

distribute the contact pressure over the slave surface, which increases the 

analysis time.   

 

 

 
  Figure  5-1: First-order brick element. 

 

Shear locking is a problem with all fully integrated, first-order, solid elements 

subjected to bending loads. It is the inability of elements to reproduce a zero 

transverse shear strain energy state in pure bending. This spurious shear stress 

arises because the edges of the element are unable to curve to maintain the 

initial angle between them, but these elements function perfectly well in direct or 

shear loads. Obviously, the behaviour of the column-slab connection is shear 

dominated, and the loading condition produces minimal bending deformations. 

Consequently, the problem of shear locking is less of concern in the current 

study. 

 

Finally, in these elements, the strain operator provides constant volumetric 

strain throughout the element. This constant strain prevents mesh locking when 

the material response is approximately incompressible.  
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5.3.1.2. Truss element 

In ABAQUS, both the truss and rebar element could model the main steel 

reinforcement and yield the same results as will be shown later in this chapter. 

The truss element was preferred to the rebar element as ABAQUS/CAE does 

not support visualization of element-based rebar or rebar results. A two-node 

linear displacement (T3D2) truss element was adopted to represent the internal 

steel reinforcements. These truss elements are embedded into “host” 

continuum elements as shown in Figure (5-2). Embedding means that the 

translational degrees of freedom at the nodes of the embedded element are 

eliminated and become constrained to the corresponding interpolated values in 

the host continuum element. The reinforcement-concrete interaction is not 

accounted for, but is indirectly considered in the concrete model by modifying 

some aspects of the plain concrete behaviour as mentioned before in Section 

5.2.2. 

 

 

 

Figure  5-2: Truss element AB embedded in solid element; node A is 

constrained to edge 1-4 and node B is constrained to face 2-6-7-3. 

 

5.3.1.3. Shell element 

If the material response is linear like FRP, the more economic approach in 

terms of computational efficiency is to use a general shell section. Therefore, a 

conventional layered shell element (S4) with five degrees of freedom; three 
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displacement components and two in-surface rotation components at each 

node, was chosen to model the FRP reinforcement; illustrated in Figure (5-3). 

This is based on the assumption that the loading configuration is most likely to 

produce in-plane stresses in FRP, so that the out of plane normal stress 

component is zero. Consequently, FRP could be modelled as an anisotropic 

homogeneous material under plane stress. The assumptions of using this 

element are as follows: 

1. The shell thickness is less than about 1/15 of the characteristic length of 

the shell surface, such as the distance between supports or the breadth 

of the plate in this study. However, the thickness may be larger than 

1/15 of the element length. 

2. Kirchhoff constraint is applicable so that the shell normal remains 

orthogonal to the shell reference surface.  

3. Only small strain is allowed, so the change in thickness with deformation 

is ignored during the analysis time. However, the element could sustain 

large rotation. 

4. The stress component perpendicular to the plane surface of the element 

is zero. 

 

 

 

Figure  5-3: 4-node doubly curved general-purpose shell element. 

 

5.3.1.4. Connector (spring) element 

As discussed in Chapter 2, and has been proved by the test results in Chapter 

4, the debonding failure in concrete structures strengthened with EBR usually 

takes place in the near-surface layer of the concrete substrate. Thus, the 

connector element used here is to represent that interface not the adhesive 

material (epoxy). The connectivity of this element could be simplified as if it 

Interpolation functions for 

translation (u) and rotation (Ø): 

ghahagbbhg

ghahagaahgu

i

i

3210

3210

),(

),(





 

2 

3

4 

1 
1 

2 

3
4 h 

r 

g   



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

144

combines three springs working orthogonally. As shown in Figure (5-4), the 

element provides a Cartesian connection between the two nodes where the 

response in three local connection directions is specified. These three local 

directions  are defined at the first node a , while the change in 

position of the second node b , along these local coordinate directions, is 

measured. 

 

 

 

Figure  5-4: Two-node connector element (CONN3D2). 

 

5.3.1.5. Rigid element 

Figure (5-5) shows the three dimensional, four-node rigid surface element 

(R3D4) with its normal (n) given according to the right-hand rule. Each node has 

three degrees of freedom. This element was chosen to model the supports as 

will be illustrated later in Section 5.5.1. All elements were connected to a 

reference point where the boundary conditions were applied. 

 

 

 

Figure  5-5: Four-node, bilinear quadrilateral rigid surface element. 
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5.4. Material models 

5.4.1. Steel reinforcement  

The steel reinforcement was defined based on the stress-strain results of the 

uniaxial tensile tests given in Chapter 3. The behaviour was defined as a bi-

linear curve (linear elastic with strain hardening). The elastic part of the 

behaviour was defined by the longitudinal elastic modulus and Poison’s ratio of 

0.3, while the plastic part was defined by true stress, s ,  and true plastic strain, 

pl
s

~ , data pairs as follow.  

 

 )1( nomnoms         Equation  5-1 

 el
ss

pl
s  ~        Equation  5-2 

Where ;)ln(1 nom s  

 ss
el
s E/  . 

And nom , nom  and sE are the nominal stress, the nominal strain and the 

modulus of elasticity, respectively 

 

A linear descending branch was then specified when the strain exceeded the 

limiting strain of the ultimate tensile strength. 

 

5.4.2. FRP reinforcement  

FRP composites are materials that consist of two constituents. The constituents 

are combined at a macroscopic level and are not soluble in each other. One 

constituent is the reinforcement fibre, which is embedded in the second 

constituent, a continuous polymer called the matrix [2]. The reinforcing fibres, 

which are typically stiffer and stronger than the matrix, take up to 70% of the 

compound volume. The FRP composites are anisotropic materials; that is, their 

properties are not the same in all directions. Figure (5-6) shows a schematic of 

FRP composites. 
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Figure  5-6: Schematic of FRP composites. 

 

As shown in Figure (5-6), the unidirectional lamina has three mutually 

orthogonal planes of material properties ( xy , xz , and yz  planes). The xyz  

coordinate axes are referred to as the principal material coordinates where the 

x  direction is in the same direction of the fibres, and the y  and z  directions are 

perpendicular to the x  direction. Therefore, it is considered as an orthotropic 

material. This orthotropic material is also transversely isotropic, where the 

properties of the FRP composites are nearly the same in any direction 

perpendicular to the fibres. Thus, the properties in the y  direction are the same 

as those in the z  direction. So, this material is so-called a specially orthotropic 

material [80]. 

 

The FRP plate reinforcement was defined in the FE model based on the 

uniaxial tensile test results given in Chapter 3. This plate typically consists of a 

big number of laminas stacked together, but practically it could be modelled at 
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the macro-scale level as a plate with equivalent material properties. The input 

data needed for the model are as follows: 

 The overall thickness of the plate. 

 Orientation of the fibre direction of the plate. 

 Elastic modulus of the FRP composite in three directions ( xE , yE  

and zE ). 

 Shear modulus of the FRP composite for three planes ( xyG , yzG  and xzG ). 

 Major Poisson’s ratio for three planes ( xy , yz  and xz ). 

Assuming the x  direction is the same as the fibre direction, while the y  and z  

directions are perpendicular to the x  direction. 

 

The properties of isotropic materials, such as elastic modulus and Poisson’s 

ratio, are identical in all directions. This is not the case with specially orthotropic 

materials. For example, yx EE   and xyyx   . xE  is the elastic modulus in the 

fibre direction, and yE  is the elastic modulus in the y  direction perpendicular to 

the fibre direction. The values of xE  and xy  were given by the manufacturer 

and checked experimentally in Chapter 3, while the Poisson's ratio yx  was 

implicitly given with the following equation [80]. 

 

 xy
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y
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




      Equation  5-3 

 

The shear moduli xzG  and yzG  were included because they might be required 

for modelling potential transverse shear deformation in the FRP plate. In this 

case the stress-strain relations for the in-plane components of the stress and 

strain are of the form; 
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The rupture of the FRP reinforcement was defined by specifying a stress based 

failure criterion; Tsai-Hill failure theory [80]. The input data required for this 

failure envelop are tensile and compressive stress limits, tX and cX , in the x  

direction; tensile and compressive stress limits, tY and cY , in the y  direction; and 

shear strength (maximum shear stress), S , in the YX  plane. The Tsai-Hill 

failure criterion requires that: 

 

1
2

2

2

2

22

2


SYXX

I xyyyyyxxxx
F


   Equation  5-5 

 

If 0xx , then tXX  ; otherwise, cXX  . If 0yy , then tYY  ; otherwise,  

cYY  . A summary of material properties used for the modelling of all four slabs 

is given in Appendix A. Figure (5-7) shows the failure envelope (i.e., 1FI ) in 

( yyxx   ) stress space. 

 

 

 

Figure  5-7: Tsai-Hill failure envelope ( 1FI ). 

 

5.4.3. Concrete  

As mentioned before in Section 5.2, the concrete material library in ABAQUS 

has two approaches for concrete modelling; smeared cracking and damaged 

plasticity [78]. A comparison between the two models was carried out to identify 

their capabilities in modelling the test slabs. The reference slab (RS0) was 

chosen to perform this comparison. Two identical models were created in 

xx  

yy  
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ABAQUS/standard adopting the same analysis procedure and material 

definition for both concrete and steel reinforcement. C3D8 solid elements and 

T3D2 truss elements were adopted to represent the concrete matrix and the 

internal steel reinforcements, respectively, as shown in Figure (5-22). The 

average characteristic length of the mesh was 48.7mm based on the 

convergence study presented later in this chapter. It was concluded that the 

smeared cracking model has two main disadvantages making the model 

inappropriate in 3D applications. 

 

Firstly, is the yield function adopted which consists of independent surfaces; an 

isotropic-hardening yield surface that is active when the stress is dominantly 

compressive, while a “crack detection surface” that determines if a point fails by 

cracking. Both surfaces are linear relationship between the equivalent pressure 

stress, p , and the Mises equivalent deviatoric stress, q , which means 

associated flow assumption is used. So, the model significantly simplifies the 

compressive behaviour as the associate flow assumption over estimates the 

volumetric plastic strain. As a result, applying such yield surface in 3D stress 

states gives an inaccurate prediction due to the omission of the 3rd stress 

invariant dependence. In addition, the model uses a fixed angle crack model 

(FACM) to detect subsequent cracks, which results in a shear stress locking 

problem. This problem is attributed to the increase of shear stress on the crack 

plane due to restricting subsequent cracking to be orthogonal to the first crack 

since stress components associated with an open crack are not included in the 

definition of the failure surface used for detecting the additional cracks [78]. 

 

Since the smeared crack approach was developed, three methods have been 

proposed as remedies for the shear stress locking phenomenon [81, 82]: (1) 

mesh refinement; (2) inclusion of an explicit shear softening law; and (3) use of 

a multi-directional or rotating crack model. The mesh refinement method could 

relieve the finite element model of the shear stress locking problem as the 

number of elements employed is so large that cracking in any orientation can be 

captured, but its disadvantage is obviously the large increase in the required 

computational effort. The second method is available in ABAQUS. However, it 
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allows for the simulation of shear softening by the inclusion of linear-descending 

shear softening law without considering the shear lag phenomenon. 

Consequently, the model is unable to accurately follow the development of 

cracks [82]. The last method is not supported by ABAQUS.  

 

Secondly, no attempt is made to include the prediction of cyclic/unloading 

response or the damage in the elastic stiffness caused by inelastic straining. 

The aforementioned simplifications for the sake of the computational cost result 

in convergence problems; early upon crack detection, makes the analysis stop 

due to numerical stability after a very small deflection. On the other hand, the 

damaged plasticity model, which is described later in this section, could predict 

the behaviour of the test slab (RS0) up to failure as illustrated in Figure (5-8).  

 

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40

Deflection (mm)

Lo
ad

 (
kN

)

RS0

Damaged plasticity

Smeared cracking

 

Figure  5-8:  Load-deflection curve for comparison of smeared cracking and 

damaged plasticity models. 

  

The concrete damaged plasticity model is intended for the analysis of plain or 

reinforced concrete subjected to monotonic or cyclic loading under low confining 

pressures. At the material point, the model allows for either tensile cracking or 

concrete crushing. Structural aspects of the rebar-concrete interaction, like 
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bond-slip and dowel action, are indirectly considered by introducing some 

"tension stiffening" into the concrete softening behaviour to simulate load 

transfer across cracks through the rebar. As the model provides a general 

capability for the analysis of concrete structures under cyclic and/or dynamic 

loading, only the relevant aspects of the concrete model under monotonic 

loading are presented in the following, while the input data for the FEM are 

given in Appendix A. 

 

5.4.3.1. Failure criteria of concrete 

Cracking and post-cracking behaviour are the most important aspects of the 

concrete model. Cracking is assumed to occur when the triaxial state of stress 

reaches a failure surface determined in terms of effective stresses by the 

following Equation [78]. 
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And, 

 :
3

1p  is the effective hydrostatic stress; 

 SSq :
2

3
  is the Mises equivalent effective stress; 

max̂   is the maximum principal effective stress; 

cobo  /  is the ratio of initial equibiaxial compressive yield stress to initial 

  uniaxial compressive yield stress (the default value is 1.16); 
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cK   is the ratio of the second stress invariant on the tensile  

  meridian, )(TMq , to that on the compressive meridian, )(CMq , 

  at initial yield for any given value of the pressure invariant  

  p such that the maximum principal stress is negative, 0ˆ max  , 

  as shown in Figure (5-9); it must satisfy the condition   

  0.15.0  cK (the default value is 2/3); 

)~( pl
cc   is the effective compressive cohesion stress; and 

)~( pl
tt   is the effective tensile cohesion stress. 

While pl
c

pl
t  ~,~  are the hardening parameters that control the evolution of the 

yield surface. 

 

 

 

Figure  5-9: Yield surface in deviatoric plane with different values of Kc.  
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The concrete cracking is treated by a smeared method, meaning that the model 

does not physically generate individual macro cracks. Cracks are indirectly 

accounted for by the way their presence not only affects the stress and material 

stiffness perpendicular to their surfaces, but the damage in the stiffness is 

experienced in all three principal axis. Therefore, the model is referred to as 

isotropic damaged plasticity model. 

  

5.4.3.1.1. Flow rule 

The damaged plasticity assumes a non-associated flow rule to determine the 

flow potential which is based on the Drucker- Prager hyperbolic function, cited 

in [78]. The flow potentialG  is defined in the qp  plane as follows: 

 

   tantan 22
0 pqG t      Equation  5-7 

 

Where, 

),( if  is the dilation angle measured in the p–q plane at high confining 

  pressure; 

),(0 it f  is the ultimate tensile strength, taken from the user-specified  

  tension stiffening data; and 

),( if  is a parameter called eccentricity that define the rate at which 

  the function approaches the asymptote (the default value is 0.1) 

 

It is noteworthy that using values of   that is significantly less than the default 

value may result in convergence problems as the flow potential tends to a 

straight line at low confining pressures, shown in Figure (5-10). 
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Figure  5-10: Flow potentials in p-q plane. 

 

5.4.3.2. Compressive behaviour of concrete 

In compression, an equivalent uniaxial compressive stress-strain relationship for 

plain concrete outside the elastic range is defined. Both hardening and strain-

softening regimes are given in terms of compressive stress, c ,  and inelastic 

strain, in
c

~ , which is given as follows:  

 

 el
cc

in
c 0

~         Equation  5-8 

Where 00 / Ec
el
c   , and 0E is the initial modulus of elasticity. 

 

Both uniaxial compressive and tensile models are used along with concepts of 

isotropic hardening and non-associated flow to determine the failure surface 

and control its evolution, as shown in Figure (5-10). The FE analyses were 

carried out based on the uniaxial compressive concrete model of Eurocode 2 

[21]; shown in Figure (5-11). 
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Figure  5-11: Uniaxial stress-strain curve for concrete. 

 

5.4.3.3. Post-cracking behaviour 

5.4.3.3.1. Uniaxial tensile behaviour 

Two approaches to describe the softening behaviour of cracked concrete are 

available in ABAQUS, as shown in Figure (5-12). The first method uses a 

strength criterion, while the other adopts a fracture energy cracking criterion. 

Stress-strain softening, based on strength criterion, may lead to mesh 

sensitivity, meaning that the analysis does not converge to a unique solution as 

the mesh is refined, because mesh refinement results in narrower crack bands 

rather than formation of additional cracks [78]. This is usually the case when the 

failure occurs only at localized regions in the structure due to the lack of 

reinforcement or such as the slabs under investigation where the cracking 

region is determined by the punching cone. The softening data are defined in a 

similar way to the compressive behaviour in terms of true stress, t , and 

cracking strain, ck
t

~ , as shown in Figure (5-12 a). 
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Figure  5-12: Postfailure tensile behaviour: (a) stress-strain approach; 

    (b) fracture energy approach. 

 

On the other hand, the fracture criterion approach, developed by Hillerborg [83], 

overcomes the shortcomings of the former approach. He described the brittle 

behaviour of concrete by a stress-displacement response rather than a stress-

strain response as shown in Figure (5-12 b). Based on the brittle fracture 

concepts, he defined the energy required to open a unit area of crack as a 

material parameter, fG , called the fracture energy. The fracture energy equals 

numerically the area under the stress-displacement curve which represents the 

work done by the tensile stress and its conjugate opening displacement. Like 

any quasi-brittle material, concrete specimen under tension cracks across some 

section due to the coalescence of micro-cracks at that section, as shown in 

Figure (5-13); point C. So its length will be determined by the opening at the 

crack. Intuitively, this opening does not depend on the specimen's length [84].  

 

Later on, Bazant [77] developed the crack band theory claiming that the area 

under the stress-strain tensile softening branch of concrete is equal to the 

fracture energy per crack band width (h). If the area under different tensile 

softening branches is the same, the post-crack behaviour of concrete should be 

similar. He assumed that the minimum value for the crack band width could be 

taken as three times the aggregate size, while the maximum value of crack 

band width is mesh dependent in analysing large structures if the ultimate 

tensile strength, ctkf , is kept constant, but does not depend on the element size. 
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Here in this Thesis, the crack band width adopted is based on the 

recommendation of CEB [32]. It is assumed that the crack band width is within 

the tributary region of an integration point (IP) at which cracking occurs. So, as 

the direction in which cracking occurs is not known in advance, this 

characteristic length is taken as the cubic root of the volume of each IP for a 

three dimensional element. 

 

 

 

Figure  5-13: Stress-displacement curve and different cracking stages. 

 

Currently, numerous models for tension softening are found in the literature. 

They are based on analytical expressions derived from curve-fitting of 

experimental test data. Their shapes are usually predetermined to be 

exponential, linear, or bilinear, with the latter including drop-constant, drop-

sloped, and sloped-constant shapes [85, 86]. The linear and bilinear models 

have been widely used in modelling of plain concrete. However, the exponential 

shape such as Hordjik's model [85] is considered the most realistic one that 

could describe the tensile behaviour of plain concrete. Figure (5-14) shows the 

different shapes of softening curves adopted in this study. Assuming the area 

under the different curves remains constant to represent constant fracture 
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energy within the crack-band width, the ultimate strains accordingly are defined 

as follows: 

1. Hordijk: hfG ctkfhult /136.5,  ; 

2. Linear: hfG ctkflult /2,  ; 

3. Bi-linear: ckbult  25,  .   

Where   

hult , , is the ultimate strain of concrete in tension according to Hordijk 

[85]; 

lult , , is the ultimate strain of concrete in tension assuming a linear 

softening curve; 

bult , , is the ultimate strain of concrete in tension according to the 

Peterson bilinear formula [32]; 

ck , is the cracking strain of concrete; 

fG , is the fracture energy of concrete; 

ctkf , is the characteristic tensile strength of concrete; 

h , is the crack band width. 

 

 

 

Figure  5-14: Common tension softening curves of concrete.  
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5.4.3.3.2. Behaviour of rough cracks under mixed-mode loading 

While crack initiation is based only on Mode I fracture (a tensile stresses acting 

normal to the plane of the crack), post-cracking behaviour in a mixed mode 

fracture includes Mode II (a shear stresses acting parallel to the plane of the 

crack and perpendicular to the crack front) as well as Mode I. However, the 

Mode II shear behaviour can only take place after some finite opening, 
n , has 

already been achieved. This delay of the shear-stress component contribution 

in force transfer across the crack surface is known as shear lag phenomenon 

[82, 87], as shown in Figure (5-15). 

 

 

 

Figure  5-15: Concept of tension-softening and shear-transfer relations in (δn, δt) 

plane:  (a) tension-softening relations; and (b) shear-transfer relations. 

 

This finding had been presented by Bazant and Gambarova [87] in 1980. They 

introduced empirical stress-displacement relations that describe the stress 
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function of, n , the crack opening displacement (COD) and, t , the crack sliding 

displacement (CSD) is given as follows: 

 

),( tnn f         Equation  5-9 

),( tnt f         Equation  5-10 

 

Based on these equations for 0n , there is full continuity in the material which 

means that there is no crack. Thus, the states where 0n  and 0t  cannot 

exist. This restriction for the load path in the ),( tn   plane is shown in Figure (5-

16), and could be expressed in the feasible domain near the origin ( 0 tn  ) 

by the following smoothing formula: 

  

a
nt c         Equation  5-11 

Where c  and a  are constants. 

 

 

 

Figure  5-16: Feasible domain for the normal and tangential stresses in (δn, δt) 

   plane according to Bazant and Gambarova [87].  

 

Equation (5-11) shows that the shear slip and the crack opening are correlated. 

It means that a shear slip on the crack surface is always accompanied by crack 

opening; known as crack dilatation [87]. So, if the crack is restrained from 

opening; by means of internal reinforcement or steel fibres, that will result in 

growth of normal stresses on the crack surface. This could be justified that the 
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crack asperities tend to reinterlock as the crack surfaces slide, resulting in 

toughening mechanism. This toughness should appear in the postpeak 

softening behaviour, as shown in Figure (5-15 a). It is worth mentioning that 

dealing with mixed-mode fracture problems as if it experiences only mode I 

fracture will yield roughly that same ultimate load, but will not track the same 

crack trajectories. This is attributed to neglecting the shear stress component 

which affects the postpeak behaviour [82]. 

 

5.4.4. Internal reinforcement-concrete interaction  

The abovementioned concrete softening models, in general, apply to cracking 

of plain concrete. As mentioned earlier, structural effects associated with 

reinforcement-concrete interaction around cracks, such as tension stiffening, 

bond-slip and dowel action, are indirectly considered in ABAQUS by modifying 

some aspects of the plain concrete behaviour to mimic them. It is stipulated that 

the concrete softening branch can be modified to account for these effects; 

depending on the reinforcement ratio, bond characteristics, aggregate size, as 

well as the mesh size. Very little guidance is provided in ABAQUS for that 

purpose, so that a detailed study is introduced later in this chapter to investigate 

the effect of tension stiffening and dowel action on the model results. The basic 

principles of these phenomena are introduced below. 

   

5.4.4.1. Tension stiffening 

After concrete cracking in reinforced concrete elements, all tensile forces are 

balanced by the steel only. However, between adjacent cracks, concrete 

contributes in transmission of tensile forces through bonding mechanisms as 

shown in Figure (5-17). This contribution of concrete to the stiffness of concrete 

member is the reason for calling the phenomena “Tension Stiffening Effect” 

[32].  
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Figure  5-17: Load transfer from steel to concrete between adjacent cracks. 

 

There are two approaches to account for the tension stiffening effect in 

modelling of reinforced concrete structures. The first approach is to modify the 

concrete softening curve into a long-tailed average concrete stress-smeared 

strain curve, whereas an average steel stress-smeared strain is used for steel. 

This method was firstly applied by Scanlon in 1971, cited in [88, 89]. Scanlon’s 

approximation for the tension stiffening curve of concrete is shown in Figure (5-

18). He assumed that the tension stiffening effect vanishes at a strain level, 

ck 0 . The selection of the factor,  , in most cases depends on the problem 

studied in terms of the reinforcement ratio, bond characteristics, dimensionality 

of such a problem and whether the ultimate load is reached before or through 
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the yielding of reinforcement. For instance, selection of a very small value of, 

0 , means that the tension stiffening is underestimated. Hence, the post-

cracking stiffness is underestimated as well. However, if the ultimate load is 

reached during the yield of reinforcement, an appropriate value for, 0 , should 

be selected, otherwise the ultimate capacity is overestimated. 

 

 

 

Figure  5-18: Concrete tension stiffening model according to Scanlon [90]. 

 

When the structural element is over reinforced, usually the ultimate capacity is 

reached before yielding of reinforcement, in such cases, the ultimate load 

capacity prediction is not affect too much by the selection of, 0 . 

Recommendation for,  , ranges from 10-25 according to Abdel-Rahman, cited 

in [88]. However, if a linear descending branch is assumed for the average 

stress strain curve, the range for,  , could be taken as high as 20 to 80 times 

the cracking strain, ck , with the higher values corresponding to high 

reinforcement ratios, according to CEB-FIP [32]. It is noteworthy that the CEB-

FIP [32] recommendations conflicts with Barzegar’s [88] findings. That is for 

high reinforcement ratios, the presence of such stabilizing elastic material would 

alleviate the effect of tension stiffening. Hence, selecting a small value for, 0 , 

would achieve the analysis without experiencing too much numerical problems.    
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On the other hand, the second approach lumps the strain energy stored in the 

system due to the tension stiffening effect at the level of reinforcement and 

orients it into its direction, which means that the stiffness of the reinforcement is 

artificially increased to account for the tension stiffening [91], as shown in Figure 

(5-19). This method was deemed inappropriate if it is applied for slabs with 

orthogonal reinforcement [88]. However, it yields the same results as the first 

method if the RC element studied is a one-dimensional element under pure 

tension [32]. Therefore, the first approach was adopted in the current study 

along with Scanlon’s approach. 

 

   

 

Figure  5-19: Idealized load-strain curve for RC tension tie according to CEB-FIP 

Model Code 1990 [20].  

 

5.4.4.2. Dowel action 

As mentioned before in Section 2.2.1.2, “Dowel action” is a well known shear-

transfer mechanism. It is similar, in principle, to the aggregate-interlocking effect 

mentioned in Section 5.5.3.3. However, dowel action is considered as a 

structural property rather than a material property, as its effectiveness depends 

strongly on the detailing of the reinforcement, to the shape of the section and 

even to the load configuration or the boundary conditions [20, 32]. 
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The dowel effect can be incorporated in a continuum model by using an 

equivalent shear stiffness and shear strength for cracked concrete, just as 

proposed previously for the aggregate-interlocking effect, but since its effect is 

not pronounced in the current study, as explained before in Section 2.2.1.2,  it 

was not considered in the FE modelling of the test slabs. One of the 

shortcomings of the damaged plasticity model is that it does not include a shear 

retention model to account for shear-transfer mechanisms. This is because the 

model adopts the isotropic damaged concepts for the post-cracking behaviour.    

 

5.4.5. FRP-concrete interface  

The common failure mode in reinforced concrete structures strengthened by 

EBR usually takes place at a few millimetres from the adhesive layer [63]. So, 

the interface material properties depend strongly on the strength of concrete 

rather than the epoxy adhesive.  

 

To model this interface, a traction-separation model was used to simulate this 

behaviour [78]. This model assumes linear elastic behaviour followed by the 

initiation and evolution of damage. The elastic behaviour is written in terms of 

an elastic constitutive matrix that relates the nominal stresses to the nominal 

strains across the interface. The nominal stresses are the force components 

divided by the original area at each integration point, while the nominal strains 

are the separations divided by the original thickness at each integration point. 

The nominal traction stress vector, t , consists of three components: nt , st , 

and tt , which represent the normal (along the local z -direction) and the two 

shear tractions (along the local x - and y -directions), respectively. The 

corresponding separations are denoted by n , s , and t . Denoting 0T  as the 

original thickness of the interface element, the nominal strains can be defined 

as; 
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Due to the lack of information about the interaction between the normal and 

shear stress at the interface, uncoupled behaviour was assumed between the 

all components of the traction vector and separation vector. In other words, no 

interaction was considered between mode  and mode  cracking. Thus, the 

elastic behaviour can be written as follows: 
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5.4.5.1. Failure Criteria 

Damage of the interface layer was assumed to initiate when the maximum 

nominal stress ratio reaches a value of one in any direction. This criterion is 

defined as follows. 
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Where 0
nt , 0

st  and 0
tt  represent the peak values of the nominal stress when the 

deformation is either purely normal to the interface or purely in the first or the 

second shear direction, respectively.  

 

5.4.5.2. Damage evolution 

Once the damage initiation criterion was met, an exponential damage evolution 

law was applied according to Chen and Teng’s [63] simplified model. Figure (5-

20) shows the traction-separation curve for the bond interface assuming 

spctt ff ,5.0  (MPa) for the concrete used in this study, where spctf ,  is the split 

tensile strength of concrete according to the CEB-FIP model code 1990 [20].  A 

detailed method for the calculation of the damage parameters corresponding to 

the stress-displacement curve is shown in Appendix A. 
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Figure  5-20: FRP-concrete interfacial stress-slip model. 

 

5.4.6. Nonlinear solution 

5.4.6.1. Analysis procedure 

Due to material nonlinearity, solving RC problems requires nonlinear analysis. 

Furthermore, when cracks develop, strain energy is suddenly released, 

meaning that kinetic effects are generated and the analysis becomes highly 

unstable. ABAQUS offers two specialized algorithms to deal with unstable 

nonlinear problems: the modified RIKS algorithm and the STABILIZE algorithm 

which is used along with general static analysis procedure. 

 

The RIKS method is designed for geometrically nonlinear collapse and global 

post-buckling analysis, but can include nonlinear materials. The load is treated 

as an unknown, and the solution is carried out for the load and displacement 

simultaneously. The progress and increment of the solution is measured by an 

arc length over the static equilibrium path [78]. The “STABILIZE” algorithm is 

suitable for cases where the instabilities are local, in which case global load 
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control becomes inappropriate. Stabilization is effected by applying damping 

(dashpots) throughout the model such that the viscous forces are sufficiently 

large to prevent instantaneous buckling or collapse, but small enough so as not 

to affect stable behaviour[78]. Both methods were compared in the FE analyses 

carried out. They nearly yield the same results, so it was decided to use the 

STABILIZE algorithm for the whole study. 

 

5.4.6.2. Steps, increments, and iterations 

The load history for this model comprised three main steps for the non-

prestressed slabs, while an additional Forth step was needed for prestressed 

slabs, as follows. 

 Establish contact: the supports were modelled as a rigid surface to 

distribute the load over the supporting area and to allow the slab corners 

to lift up. Therefore a contact definition was needed before applying the 

loads; 

 Release constraints: this step is a consequence of the previous step; 

 Prestressing step: is a step where the prestressing force is applied; 

 Loading: load increments are applied until failure in this step.  

 

Each step load (or displacement) is broken into smaller increments so that the 

nonlinear solution path can be followed. One only needs to suggest the size of 

the first increment in each step, which is usually taken as a small percent of the 

load applied through the step to make sure that the elastic limit has not been 

exceeded. In the loading step for instance, the initial increment size was 5% of 

the ultimate load applied. Thereafter, ABAQUS/Standard automatically adjusts 

the size of the increments. In each increment ABAQUS iterates attempting to 

find an equilibrium solution for the increment. By default, if the solution has not 

converged within 16 iterations or if the solution appears to diverge, ABAQUS 

abandons the increment and starts again with the increment size set to 25% of 

its previous value. An attempt is then made to find a converged solution with 

this smaller load increment. If the increment still fails to converge, ABAQUS 

reduces the increment size again. By default, ABAQUS/Standard allows a 
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maximum of five cutbacks of increment size in an increment before stopping the 

analysis [78].  

 

ABAQUS uses the Newton-Raphson equilibrium iterations for updating the 

model stiffness. These equilibrium iterations provide convergence at the end of 

each load increment within force and displacement tolerance limits. Prior to 

each solution, the Newton-Raphson approach assesses the out-of-balance load 

vector, aR , which is the difference between the restoring forces (the loads 

corresponding to the element stresses, aI ) and the applied loads, P . 

Subsequently, the program carries out a linear solution, using the out-of-

balance loads, and checks firstly for convergence within the force tolerance 

limit, which is set by default to 0.5% of the average force in the structure, 

averaged over time. If the convergence criteria are not satisfied, the out-of-

balance load vector is re-evaluated, the stiffness matrix is updated, and a new 

solution is attained. This iterative procedure continues until the problem 

converges.  

 

Before considering the current configuration is in equilibrium and continuing to 

the next time increment, ABAQUS also makes checks that the last 

displacement correction ac  (the load increment times the initial stiffness, 0K ) is 

smaller than a fraction of 1%; by default, of the total incremental displacement, 

0uuu aa  . If ac is greater than the displacement tolerance limit, ABAQUS 

performs another iteration based on the new stiffness, aK , for the structure’s 

updated configuration, au . This stiffness, together with the residual, aR , 

determines another displacement correction, bc , that brings the system closer 

to equilibrium at point b , as shown in Figure (5-21). A new force residual, bR , is 

then calculated using the internal forces from the structure's new configuration, 

bu . Again, both bR  and bc  are compared to their new tolerance limits. Both 

force and displacement convergence checks must be satisfied before a solution 

is said to have converged for that time increment. If necessary, ABAQUS 

performs further iterations till convergence criteria are met [78]. These default 

tolerance limits were found suitable to conduct the analysis of the tested slabs 
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and there was no need to modify them. Figure (5-21) shows the use of the 

Newton-Raphson approach in a single degree of freedom nonlinear analysis. 

 

 

 

Figure  5-21: Newton-Raphson iterative solution (2 load increments).  

 

5.5. Investigation of model parameters 

The second step in FE analysis, after deciding on a suitable meshing element 

and identifying the material models and analysis techniques, is to investigate 

the various modelling parameters. Firstly, the density of the mesh that would 

diminish mesh sensitivity was determined. Then, the effect of tension stiffening 

was investigated in some detail to enable proper prediction of the behaviour of 

test slabs. Furthermore, for the strengthened slabs the interfacial material 

properties, such as bond strength and interfacial fracture energy, were also 

investigated as these parameters could affect the prediction of the ultimate load 

and slab stiffness.   
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5.5.1. Description of slab model 

Due to double symmetry of the support and loading conditions, only a quarter of 

the slab was modelled. The perimeter of the slab was simply supported, without 

any horizontal restraint, and the corners are free to lift as shown in Figure (3-

16). In order to represent these boundary conditions in the slab model, the 

planes of symmetry; X-Z and Y-Z, were assumed to be horizontally restrained in 

the Y and X directions respectively, and a rigid surface supports the slab 

perimeter over a distance of 1600 mm into the slab. 

 

 

 

Figure  5-22: Slab model; FRP reinforcement has been shifted down for clarity 

purposes. 

 

To simulate the contact between the slab surface and the rigid surface, a simple 

contact algorithm is defined by specifying the interaction between the contacting 

surfaces. This interaction consists of two components: one tangential to the 

surfaces and one normal to the surfaces. The tangential component, which 

consists of the relative motion of the surfaces, was assumed frictionless, since 

this is the common assumption in simply supported members. The normal 

behaviour applies the contact constrains only when the clearance between two 

surfaces becomes zero. In such case, the accumulation of the contact pressure 

transmitted from the slab element to the rigid surface is equal to the applied 

load (reaction). The surfaces separate when the contact pressure between 

them becomes zero or negative, and the constraint is removed.  
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This method is more appropriate than the method of releasing predetermined 

nodes near the slab corners, as the latter method requires iterative process to 

identify these nodes. Moreover, these nodes are in contact with the supporting 

frame at the beginning of the analysis, and are released during the analysis. So, 

neglecting such phenomenon could affect the state of stress near that area.  

 

5.5.2. Mesh size 

As mentioned before in Section 5.5.3.3, reinforced concrete elements with 

reasonably distributed cracks may not be considered mesh sensitive if the 

element aspect ratio is close to unity. On the other hand, if the failure mode of 

the structural element is characterized by crack localization in certain areas, as 

in the slabs under investigation, mesh density is still a crucial problem. 

Therefore, mesh sensitivity was investigated. For this purpose, both reference 

slabs (RS0) and strengthened slab (RS-F0) were considered in order to cover 

the range of reinforcement ratio.  

 

At this stage, a linear tension stiffening curve for concrete was considered. The 

tensile strength was taken as the lower bound defined in Eurocode 2 [21]; 

)3/2(
min, 21.0 ckctk ff  , where ckf  is the characteristic compressive strength of 

concrete. A fracture energy cracking criterion, which is suited for lightly 

reinforced elements, was adopted since all tested slabs nearly underlie such 

category. The terminal crack opening displacement, 0tu , in the concrete 

softening model was chosen at the lowest values that would enable a numerical 

solution.  This curve is not necessarily able to predict a closer behaviour to the 

experimental tests. However, mesh sensitivity was confirmed to follow similar 

trends as those obtained herein for the realistic tension stiffening levels that 

were identified later. 

 

Different mesh sizes were considered in the sensitivity analysis so that the 

tension stiffening overshadows softening of concrete. This was achieved by 

keeping the crack band width, h , for each mesh size less than the characteristic 

length of concrete, 2/2 ctkf fEG , which prevents the snap-through behaviour 
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[32, 77]. The individual elements were kept as close to a cube, as possible, in 

every case. The nominal mesh sizes considered were 75 mm, 50 mm, 30 mm 

and 25 mm. The mesh was said to be converged when an increase in the mesh 

density had a negligible effect on the results obtained, while the load-midspan 

deflection response was the reference parameter in determining the appropriate 

mesh size. The convergence of the response parameter for slabs RS0 and RS-

F0 are shown in Figures (5-23) and (5-24), respectively. 

 

Based on the results shown in Figure (5-23) for slab RS0, the convergence 

study implies that the 50 mm mesh size converges to both the 30 mm and 25 

mm mesh sizes. On the other hand the 75 mm mesh appears to have unstable 

behaviour after cracking and to experience numerical problems. Therefore, it 

was decided to adopt the 50 mm mesh size for the rest of the analysis.  Similar 

results were obtained for slab (RS-F0), as shown in Figure (5-24). It can thus be 

seen that regardless of the external FRP reinforcement, the results start to 

converge with a model having the same mesh element size of 50 mm. 
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   Figure  5-23: Mesh sensitivity of slab RS0. 
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   Figure  5-24: Mesh sensitivity of slab RS-F0. 

 

5.5.3. Effect of concrete tensile strength 

The tensile strength of concrete has a visible effect on the first crack load as 

shown in Figure (5-25). The predicted load-deflection relationship is nearly 

similar after the first crack if the tensile strength is within the range of the lower 

bound and upper bound limit defined in Eurocode 2 [21]. Also noticeable is that 

the model underestimates the applied load of the slab at a given displacement if 

the tensile strength is lowered. The lower levels of the tensile strength are 

characterized by a continuous response without drop in the load levels after the 

first crack. This is because the low tensile strength results in earlier 

microcracking causing lower stiffness behaviour up to failure. 

 

In this study, a reduced tensile concrete strength was used in the FE analyses 

of beams and slabs; spctct ff ,5.0 , where spctf ,  is the split tensile strength of 

concrete and equals to 1.11 times the mean tensile strength of concrete; 

ctmspct ff 11.1,   [20]. This could be justified based on the size effect phenomenon 

“The nominal strength of structural element decreases as its size increases” 
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[46]. Moreover, the modulus of rupture of two-way slabs is greatly dependent 

upon the reinforcement ratio as it affects too much the drying shrinkage of the 

surrounding concrete. A low reinforcement ratio could easily allow for shrinkage 

cracks to develop between the reinforcing bars. Correspondingly, such slabs 

may experience a much lower cracking load than beam members do. 

Therefore, the Canadian standard (CSA) [92] recommends one half of the mean 

tensile splitting strength to account for the shrinkage effects in the two-way 

slabs.  
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Figure  5-25: Load-deflection curve of slab RS0 for different values of concrete 

tensile strength. 

  

5.5.4. Effect of tension stiffening curve 

For lightly reinforced members, such as floor slabs, the flexural stiffness of a 

fully cracked section is many times smaller than that of an uncracked section, 

and tension stiffening contributes greatly to the post-cracking stiffness. In other 

words, the behaviour of such members, directly after cracking, is similar to the 

behaviour of plane concrete in tension, which is characterized by a steep 

decline in the tensile strength followed by a gentle loss of the remainder 
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strength. However, in lightly reinforced members the bond interaction 

contributes to the stiffening in the post-cracking behaviour. This phenomenon is 

well described by Scanlon’s model as shown in Figure (5-18). The model lumps 

the tension stiffening effects to later stages in the post-cracking region, so it 

enhances the element stiffness after cracking up to the ultimate load. On the 

other hand, the other models consume the tension stiffening effects directly 

after cracking; as shown in zone A of Figure (5-26), so the predicted first crack 

load is effectively increased and the ultimate load is underestimated. 

Consequently, Scanlon’s model was adopted for conducting the analysis of the 

test slabs. 
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Figure  5-26: Load-deflection curve of slab RS0 with different tension stiffening 

models.  

 

Referring to Section 5.4.6.1, the STABILIZE algorithm was adopted in all the 

previous FE analyses. It was investigated at this point to find how much it 

affects the accuracy of the predicted numerical results. As shown in Figure (5-

27) for slab (RS0), the amount of the strain energy imposed, due to applying of 

Zone A 
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damping, was nearly negligible compared to the total strain energy consumed in 

the model. The amount of stabilization energy was 127330N.mm which was 

less than 5% of the strain energy consumed during the loading step. 

Consequently, it could be concluded that the applied damping was small 

enough so as not to affect the stable behaviour. Moreover, this amount of 

stabilization energy was significantly reduced for the strengthened slabs due to 

the effect of the FRP reinforcement which reduced cracking. 
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Figure  5-27: Stabilization energy consumed compared to the total strain energy 

for slab (RS0). 

 

In conclusion, the approach of tension stiffening with reduced tensile concrete 

strength was used in the FE analyses of the test slabs. Scanlon’s approach was 

used with appropriate terminal strain 0 . This terminal strain was “calibrated” 

based on the load deflection response of each test. This difference in the 

tension stiffening curves is attributed to the different failure mechanisms of the 

test slabs. For instance, the reference slab (RS0) failed in flexural punching 

mode so the effect of bond interaction between the internal steel reinforcement 
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and the surrounding concrete is quite prominent in the tension stiffening curve 

by a higher value for 0 . However, for example, for the prestressed slab (RS-

F30F) failed in a brittle mode which should be reflected in the tension stiffening 

curve by a small value of the terminal strain 0 . This implies that a theoretical 

tension stiffening model based on physical variables could be developed if such 

tension stiffening is compared between different tests. However, this is outside 

the scope of this study as the number of the test specimens is not enough to 

conduct such analysis. 

 

5.5.5. Effect of interfacial parameters 

As illustrated before in Section 2.4.2.2, the debonding propagation in structural 

members failing in a diagonal shear crack experiences mixed mode behaviour. 

In other words, the debonding behaviour is not only related to mode  

component but also the mode  component. So, in general both components 

should be taken into account in debonding analysis, otherwise a misleading 

prediction for the strengthened behaviour is obtained. Lately, Pan and Leung 

[93] developed a theoretical model for the bond interface under pulling/peeling 

effect. However, their model overestimates both the normal and shear strength 

at the interface which makes their model inapplicable from a practical point of 

view. This points out that further research is needed to study the interface under 

shear-normal interaction. 

 

Also, to study such interfacial behaviour a detailed mesh with discrete crack 

approach is needed [94, 95], which makes such a method quite expensive in 

three dimensional modelling. The smeared crack model is still able to pick up 

such mixed mode behaviour, but it lessens the effect of the normal stress 

components around the shear crack, as shown in Figure (5-28). This is because 

the smeared crack model can only pick up the area of strain localization but 

does not allow for displacement discontinuity in the element nodes around the 

crack. Such displacement discontinuity has a significant contribution in 

producing the peeling effect.  
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In the current study, a smeared cracking approach is used. This method 

smoothes the peeling angle around the shear crack as mentioned above. In 

such cases, Niu and Wu [94] argue that the overall debonding behaviour can be 

treated as a mode  fracture. This is based on the fact that the mode  shear 

behaviour can only take place after some finite opening has already been 

achieved under mode .  So, for a given shearing fracture energy introduced on 

the crack surface, the effect of mode  fracture energy is already included. This 

assumption could be accepted since the time between the initiation of 

debonding and final failure is too short. Consequently, since the shear-normal 

interaction is a point under investigation and most of the available interface 

bond models do not account for this interaction only three interfacial parameters 

can then be studied; the interfacial bond stiffness sK , bond strength s  and the 

interfacial fracture energy sG . 
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Figure  5-28: Interface normal stress condition inside and outside the truncated 

cone; results from slab (RS-F15). 
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5.5.5.1. Effect of interfacial bond stiffness sK  

Interfacial stiffness is related to properties of the layer resulting from penetration 

of adhesive into the concrete substrate [63, 93, 95]. It usually ranges between 

30 and 300 MPa/mm, depending on the type of adhesive used and the concrete 

substrate. As shown in Figure (5-29), the interfacial stiffness has negligible 

effect on the load-deflection behaviour and ultimate capacity, but it only 

influences the load transfer efficiency between the concrete substrate and the 

FRP plate. These results are consistent with those of Niu and Wu [94]. This is 

based on the fact that the ultimate capacity of a structural member is more 

affected by mode  related material properties ( fctk Gf  , ) as demonstrated earlier 

in Section 5.4.3.3.2.  
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Figure  5-29: Effect of interfacial bond stiffness on the load-deflection behaviour. 
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5.5.5.2. Effect of interfacial bond strength s  

By fixing sK  = 77 MPa/mm and sG  = 0.67 N/mm, the effect of interfacial bond 

strength s  on structural performance was investigated. As shown in Figure (5-

30), the effect of the bond strength is nearly negligible up to a value of 1.5 MPa. 

However, a value of bond strength as  low as 0.5 MPa could affect the structural 

stiffness at the early stage of loading, resulting in lower ultimate load. That is 

the low bond strength value leads to early debonding cracks, which lowers the 

level of strengthening. Consequently, the FRP strain distribution is flattened and 

markedly lowered, as shown in Figure (5-31), meaning very low efficiency of 

use of the FRP.   
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Figure  5-30: Effect of interfacial bond strength on the load-deflection behaviour. 
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Figure  5-31: Effect of interfacial bond strength on FRP strain distribution. 

   

5.5.5.3. Effect of interfacial fracture Energy sG  

The effect of the interfacial fracture energy sG on the structural response is 

expected to be similar to the effect of bond strength, as they are directly related.      

Hence, an increase in the fracture energy is supposed to increase the loading 

capacity of the strengthened member. As shown in Figure (5-32), the effect of 

changing the fracture energy, while all other parameters were kept constant, is 

apparent to some extent. The low interfacial fracture energy can ease 

debonding propagation, starting from the maximum moment region (the centre 

of the slab) towards the end of the FRP plate. This is because the low interfacial 

fracture energy is rapidly consumed in a short shear transfer length. Thus, the 

structure integrity is rapidly lost. This effect is quite clear in Figure (5-33), in 

which the FRP strain related to the low fracture energy is smaller than those of 

the high interfacial fracture energies implying inefficient use of the FRP material.   
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Figure  5-32: Effect of interfacial fracture energy on the load-deflection 

behaviour. 
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Figure  5-33: Effect of interfacial fracture energy on FRP strain distribution.    
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5.5.6. Conclusion 

The deflection of slabs strengthened with EBR could be properly evaluated by 

the FE analysis. Most importantly, such analyses require proper evaluation of 

tension stiffening, which may be better achieved by a concrete softening model 

rather than a rebar tension stiffening relationship. In cases where the structure 

under study has low reinforcement ratio and is characterized by a localised 

failure, a proper estimation for the tension stiffening should be made, as in such 

members the ultimate load is usually reached during the yield of reinforcement. 

An underestimation of the tension stiffening means that the post-cracking 

stiffness is underestimated as well. So, an appropriate value for the terminal 

strain 0  should be selected, otherwise the ultimate capacity is underestimated.  

 

Equally important is the shape of the tension stiffening curve used. Since the 

lightly reinforced structures, in their behaviour, resemble the plane concrete, so 

the tension stiffening curve should take into consideration that the energy 

required to open unite are of crack is not too much at the beginning of the 

loading history. Nevertheless, more energy may be needed later in the analysis 

to increase the crack area due to the effect of bond interaction and some 

toughening mechanisms. This phenomenon is well described by the Scanlon 

approach and some bilinear models.    

 

Another noticeable aspect for the strengthened slabs is that their behaviour is 

more governed by concrete, rather than the reinforcement or interface. This is 

attributed to the strengthening area of a two-way slab is usually less than that of 

one dimensional elements like a beam or a column. Moreover, the end anchor 

plates have a significant role in diminishing the relative displacement field in the 

interface layer. Thus, a little effect for the bond strength and fracture energy on 

the structural performance is encountered. However, they affect the distribution 

of forces between the internal steel reinforcement and the external FRP 

reinforcement; low interfacial properties underestimate the FRP strain and, at 

the same time, increase the internal steel strain.    
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Chapter 6 

Discussion on numerical results and code 

provisions 

 

6.1. Introduction 

This chapter discusses the punching behaviour of the tested slabs strengthened 

with FRP. The behaviour predicted by FE analysis is also investigated and 

compared to the experimental results. All through the discussion, the 

recognised behavioural aspects and practice of slab (RS0) are used as a 

reference. The comparison between the experiments and predicted values was 

based on the following aspects of structural behaviour:- 

 The load-deflection response; 

 Strains in the FRP and internal steel reinforcement; 

 Distribution of concrete strains and stresses within the column area; 

 FRP/concrete interfacial behaviour; 

 The ultimate load capacity of the slab; 

 Crack pattern; 

 The mode of failure. 

 

The prestressed slabs are dealt with separately, because they showed some 

unexpected behaviour that needs to be addressed on its own. So, additional FE 

analyses were undertaken in connection with the bond interface of the 

prestressed members. 

 

The discussion on punching behaviour concludes with a summary of the factors 

that affect the serviceability and ultimate state of the strengthened member, as 

well as the adequacy of the numerical analysis technique used. 
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6.2. Non-prestressed slab (RS-F0) 

6.2.1. Load-deflection response 

Based on the sensitivity analysis carried out in the previous chapter it was found 

that a mesh with 50-mm nominal size was adequate. In that analysis, the level 

of tension stiffening was calibrated to obtain the best possible fit to the 

experimental deflection. As shown in Figure (6-1), it can be seen that the model 

provided good correlation, up to the failure load predicted in the test, for the 

load-deflection relationship for the non-prestressed slab (RS-F0).  
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Figure  6-1: Comparison between experimental and model prediction for non-

prestressed slab (RS-F0).  

 

However, a stiffer behaviour was noticed for the FE model of slab (RS0) up to a 

deflection of 15mm. A probable explanation for this behaviour is that the 

deflection predicted by the FE analysis is based on a smeared cracking 

approach which usually adopts the assumption of full bond between concrete 

and steel reinforcement. Such a model underestimates the deflection predicted 

as any slip is not allowed between the concrete and steel reinforcement. Also, 

this model cannot account for the additional deflection resulting from rotation of 
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the slab about CR, as shown in Figure (6-2). That is flexural deflection is a 

result of curvature within the member. Nevertheless, for the strengthened slab 

(RS-F0) the additional FRP reinforcement alleviated the discontinuity in the 

member rotation at the critical shear crack region which in turn reduced the 

amount of deflection resulting from slab rotation. 

 

 

 

Figure  6-2: Behaviour of slabs with low reinforcement ratios; (a) deformation 

shape; (b) distribution of radial curvature along the radius of the slab. 

 

6.2.2. Reinforcement strains 

6.2.2.1. Internal steel reinforcement  

As mentioned in the previous section that FE analysis smears the effect of 

cracks and, in itself, does not differentiate between cracked and uncracked 

sections. The level of tension stiffening in FE analysis was chosen to obtain the 

best possible prediction of the experimental deflection. Therefore, FE analysis is 
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expected to predict the average rebar strain between cracks.  This strain is 

usually less than that of an individual rebar, as shown before in Figure (5-17).  

 

 

 

Figure  6-3: Steel reinforcement strain for slab (RS-F0) at different locations. 

 

Thus, from the data shown in Figure (6-3), it is apparent that the FE model 

predicts reasonably well the average rebar strain between cracks. However, in 

some cases, such as SGs4, the rebar strain predicted by the model, to some 

extent, is less than the actual average rebar strain. Only after a level of 337 kN 

does the model follow the actual behaviour measured from the test. On the 

other hand, for strain gauge SGS7 the strain predicted by the model compares 

very well with the measured strain up to a load of about 218 kN. Beyond that 

load, the model underestimates the predicted strain. A probable reason for such 

discrepancy might be the amount of tension stiffening added to the concrete 

model. As it is well known, the punching behaviour is characterised by 

localization of strains near to the loading area, in contrary to the flexural 

behaviour in which cracking is nearly distributed all over the member. So, the 

model may overestimate the strains in some regions while underestimating 

them in other regions. Also, as mentioned before in Section 5.4.3.3, the 
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damaged plasticity model adopted in this FE analysis only predicts flexural 

effects and does not account for shear modelling in the post-cracking 

behaviour. As a result the model is not able to predict the correct crack 

trajectories. Hence, the FE model shifts the position of critical shear crack 

towards the centre of the slab.  In such cases, the radius of the constant 

curvature; shown in Figure (6-2b), is reduced. This reduction results in an 

underestimation of the rebar strain outside the truncated cone; such as strain 

gauge SGs1, and overestimation of the rebar strain inside the cone; such as 

strain gauge SGs4. Another possible explanation, in the light of what has been 

mentioned in Section 5.4.4.1, is the probability of crack development near these 

strain gauges. So, the measured strains will be higher than the average rebar 

strain.  At the time the developed model is based on smeared cracking, so it 

predicts the average rebar strain between cracks as mentioned earlier; see for 

example the load-strain curve of strain gauge SGs1.  

  

Another feature characterizing the steel strain readings is that shown in the 

load-strain curve of strain gauge SG5 (Figure 6-3). The strain predicted by the 

model compares very well with the measured strain up to a load of about 350 

kN. After that, the measured strain increases at a faster rate which implies a 

dramatic transfer of forces to the steel reinforcement. This dramatic transfer of 

forces results from the debonding of the FRP reinforcement from the concrete 

substrate. So, the section to remain in balance under the applied loads, the 

steel reinforcement compensates the contribution of the FRP, resulting in such 

behaviour by reaching the yield limit. At failure, the measured strain is about two 

times the predicted strain.  

   

6.2.2.2. FRP reinforcement  

Figure (6-4) shows the FRP strains predicted by the FE model compared to the 

measured strains. It is clear from the figure that the level of the strains is slightly 

higher than the steel strains discussed in the previous section. This is due to the 

strain compatibility in the slab cross section. So, their level should be in the 

range of; sf cd

ch 



 , where h  is the overall thickness of the slab, d  is the 
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depth of the steel reinforcement, c  is the depth of the neutral axis and s  is the 

steel strain. 

 

 

 

Figure  6-4: Measurement and prediction of FRP strain for Slab (RS-F0). 

 

As shown in the previous figure, some measured load-strain curves, such as 
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develop. The position of these strain gauges is located near the zone where the 

critical shear crack is developed. Such a crack usually results in a peeling-off of 

the FRP reinforcement, as mentioned before in Section 2.4.2.2. So, this 

deviation can be then explained as a consequence of debonding initiation at the 

crack mouth, which is characterized by a change in the displacement field at the 

interface around the crack. This phenomenon is further explained in Figure (6-5) 

[93, 96]. 

 

  

 

Figure  6-5: Flexural shear crack induced debonding; (a) schematic diagram for 

crack; (b) slip field at interface element; (c) interfacial shear stress distribution at 

crack. 
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but the crack opening at the bottom is resisted by the FRP plate. A high shear 

stress level at the concrete-adhesive interface is then developed due to the 

change in the displacement field in the interface layer. As shown in Figure (6-5), 

the displacement field after cracking for the interface layer outside the truncated 

cone suddenly increases, while on the other side of the crack the displacement 

field decreases. Intuitively, this slip concentration should appear as a high shear 

stress in the interface layer which results in a crack parallel to the FRP plate at 

the interface level.  

 

With further loading, the combined opening and shearing of the major crack will 

result in both horizontal and vertical displacements between the two sides of the 

crack. So, the FRP plate is subjected to a combined pulling and peeling effect. 

In such case, the peeling force generates tensile stresses acting perpendicular 

to the interface, as shown in Figure (6-5). These stresses make it easier for 

initial debonding to occur in the area outside the truncated cone. Moreover, the 

opening displacement (in the direction normal to the interface) along the 

debonded part of the interface reduces the interlocking effect and accelerates 

debonding. Correspondingly, a strain gauge near an area such as (SGF2) will 

experience high strain levels after debonding, as shown in Figure (6-4). 

However, such displacements will increase the interlocking effect on the other 

side of the crack. So, any strain gauge located inside the truncated cone, such 

as a strain gauge (SGF5), will have a mild increase rate after debonding as 

shown in Figure (6-4).  

 

Accordingly, it is apparent from Figure (6-4) and Appendix B that the FE model 

was able to simulate such behaviour reasonably. However, it delays the 

debonding phenomenon, as shown from the curves of strain gauge SGF2 and 

strain gauge SGF7. For instance, the predicted load-strain curve for strain gauge 

SGF7 shows such debonding failure at high load level of 350 kN instead of 305 

kN. This delay could be explained as a result of using an average value for the 

bond strength in the model, but in reality this bond strength is not constant over 

the member. Another possible reason is the adoption of the smeared cracking 

approach. As mention before in Section 5.5.5, the smeared crack model 

reduces the effect of Mode  component as it does not allow for displacement 
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discontinuity in the element node around the crack. Therefore, to overcome 

such a problem, a reduced value for the bond strength and interfacial fracture 

energy should be used to compensate the contribution of Mode  parameters 

(Normal strength and fracture energy). Otherwise, the model overestimates the 

debonding load.  

 

Figure (6-4) shows also the predicted strain profile of a representative length of 

the FRP plate compared to the measured strains at discrete load levels. It is 

clear that the FE model, to some extent, overestimates the average FRP strain 

at a position of 400 mm, but at the same time, the strains within at the central 

area of the slab are underestimated at higher load levels. That is the profile 

reflects the same behaviour of the individual load-strain curves at the strain 

gauges positions.  

 

6.2.3. Concrete strains  

As shown in Figure (6-6), the concrete strains predicted by the FE model are 

close to those measured concrete strains, since the model was able to obtain a 

representative prediction for the slab deflection, as discussed before in Section 

6.2.1. That is the response of the compressive concrete zone is related to the 

deflection of the slab or in another way related to curvature of the slab which 

may be defined as the slab rotation divided by the effective depth of the slab 

[65]. 

 

 

 

Figure  6-6: Radial and tangential concrete strains for slab (RS-F0) at positions 

SGV1 and SGH1, respectively.  
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However, the decompression phenomenon in the radial stresses near failure 

could not be simulated for the same reason of adopting the smeared crack 

modelling approach. In this phenomenon a local positive curvature develops 

close to the column due to the local bending of the compression zone, as 

shown before in Figure (2-3). So, to model such behaviour a discrete modelling 

approach with very fine mesh near the column area may be needed. 

 

6.2.4. FRP-concrete interfacial behaviour   

The interfacial stress distribution and bond development between the FRP plate 

and the concrete substrate can be calculated from the strain readings of the 

FRP plate. However, the number of the strain gauges spaced over the FRP 

plate in the experimental tests was not enough to conduct such analysis. 

Therefore, the FE model was used to predict the interface behaviour.  Figure (6-

7) shows the interfacial shear stress distribution for the non-prestressed slab 

(RS-F0) at the plate centreline at different load levels. The behaviour can be 

easily simplified as a half sine-wave travelling from the slab centre towards the 

end of the FRP plate.  This can be easily identified at the early stages of loading 

before cracking (106.3 kN). The crest denotes the location of the maximum 

shear stress which begins near the slab centre where the maximum radial 

moment occurs. The change in the slope of the interfacial shear stress 

distribution at the overlapping area, as shown in the circled area on the figure, is 

a well-known phenomenon. It indicates a decrease in the slope rate due to the 

overlapping of the FRP plates which results in lower slip values. The interfacial 

shear stress values then decrease gradually towards the plate end.  

 

After cracking, the interfacial shear stress near the maximum radial moment 

area increases significantly. It is nearly eight times the value in the previous 

step as shown by the second lowest curve (149.8 kN) in Figure (6-7a). The 

drastic increase is undoubtedly caused by localized concrete cracking. At this 

stage of loading, the stress concentration starts to appear near the plate end as 

well, but with less concentration due to the presence of the anchor plates. It 

increases 0.36 MPa from 0.02 to 0.38 MPa. The shear stress distribution still 

has a gradual descending trend towards the plate end, but with some fluctuation.  
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Figure  6-7: FRP-concrete interfacial behaviour of slab (RS-F0): (a) before 

yielding; (b) after yielding. 
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This fluctuation is attributed to the unsymmetrical position of the FRP plate 

around the column, by which uneven distribution of the stresses across the 

plate width occurs. As a result, the outer edges of the FRP plate start to debond 

before the inner edges. In this case, some stress concentration appears at 

discrete adjacent locations on the centre line of the plate resulting in such 

behaviour. This can be easily identified from the crack pattern of the slab which 

is discussed in the next section.    

 

As the load is further increased (270.5 kN), the shear stress reaches a peak 

value after which the stress values descend progressively, as shown in Figure 

(6-7b). At the overlapping of the FRP plate, the interfacial shear stress 

progresses negatively, allowing the damage to occur in subsequent locations. 

At load level of 292.7 kN, the interfacial shear stress just after the overlapping 

position reaches the debonding strength, while the shear stress near the plate 

end is still at low level of 0.4 MPa.  After yielding of the tension reinforcement, 

the interfacial shear stress keeps increasing with the increase of load. The full 

debonding of the FRP plate occurs at load level of 361.3 kN at the overlapping 

position when the interfacial shear stress reaches 1.6 MPa. It may seem that 

this value of shear stress is too low. However, this value was able to give good 

prediction for the FRP and steel strains as shown before. Moreover, a value 

much lower such as 0.2 MPa has been reported in the literature [95], as the 

bond strength is highly dependent on the plate geometry and stiffness [94].       

 

It should be noted that this debonding behaviour shows that the debonding 

failure initiates near the slab centre and propagates towards the end of the FRP 

plate. Therefore, the debonding mode of failure can be classified as 

intermediate crack induced debonding (IC). However, the experimental results 

show that the position of the critical shear cracking has been shifted outside the 

area implying critical diagonal crack induced debonding (CDC).  This raised a 

question of how representative these numerical results are. As discussed 

before, the damage plasticity model does not reflect exactly the shear effect in 

its prediction. So, whatever the mesh size or shape the model will give the 

same position of the first crack directly under the load, which off course triggers 

the debonding at this position. Nonetheless, it should be remembered as well 
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that the model was able to give a prediction of strains and deflection that 

compares very well with the experimental measurements, as demonstrated 

before, at the time the slab did show some features of the flexural behaviour 

such as the formation of the yield lines and the yield of the strain reinforcement 

around the column. Therefore, the interfacial shear stress prediction is believed 

to be reasonably representative.      

 

6.2.5. Crack pattern   

The damage plasticity model adopts different criteria to show the crack 

direction. It does not show the crack direction itself. However, it assumes that 

the direction of the vector normal to the crack plane is parallel to the direction of 

the maximum principal plastic strain [78]. Consequently, Figure (6-8) shows the 

tensile equivalent plastic strain, pl
t

~ , of the bottom surface and central cross 

section of slab (RS-F0) at the predicted failure load of 372.7 kN.  

 

Firstly, the crack strains started to occur tangentially at the area of the 

maximum bending moment near the column then spread radial towards the slab 

edges as the predicted load increases. A noticeable large crack strain occurs at 

the inner and outer edges of the FRP plates, while relatively small strains occur 

at the area just beneath the plates where they are bonded to the concrete 

substrate. The changes of crack pattern during the loading history are shown in 

Appendix B. The figures also show a perfect prediction for the position of the 

yield lines extending between the slab centre and near the slab corner. They 

are comparable to those shown in Figures (2-27) and (4-2).  

 

Also by comparing the cracking patterns and their corresponding loads of the 

non-prestressed slab (RS-F0) and the reference slab (RS0), one can see that 

the non-prestressed slab (RS0) achieved a noticeable cracking resistance by 

bonding the FRP plates. This is based on the fact that the increase of the 

reinforcement ratio enhances the crack resisting capability of the structural 

member.   
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Figure  6-8: Crack pattern of slab (RS-F0) at load level 372.7 kN.  

 

6.2.6. Crack opening displacement 

Large deflections and excessive cracking significantly influence the 

serviceability of structural members. It has been demonstrated before in Section 

4.2.4 that bonding FRP plates to the tension surface of concrete slabs does not 

only reduce the crack widths, but also shifts the shear crack positions away 

from the loading region. This was confirmed by the reading of the pots 

positioned at the notched crack, which gave zero measurements. This can be 

further supported by drawing the load versus crack mouth opening 

displacement (CMOD) obtained at the strain localization area within a distance 

of 1.5d from the column face, based on FEA. In this case, the CMOD can be 
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assumed equal to the tensile equivalent plastic strain, pl
t

~ , at the tension face of 

the slab multiplied by the characteristic length of the FE mesh.  As shown in 

Figure (6-9), there exists clear evidence that the application of the FRP 

reinforcement reduced the crack opening displacement. For example, at a load 

level of 250 kN the percentage reduction in the CMOD is about 40% of the 

reference slab. That implies an enhanced serviceability of the strengthened 

member.  
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Figure  6-9: Load-CMOD obtained at distance 1.5d from the column face along 

the centreline of the slab.  

 

6.2.7. Ultimate load and failure mode 

Referring back to Section 2.4, if full composite action is maintained up to failure 

for the slabs strengthened by FRP reinforcement, the ultimate concrete 

compressive strain or the reinforcement yield strain can be taken as margins for 

the punching and flexural capacity of the slab, respectively. Correspondingly, 

the ACI Committee 440 [3] follows the steel RC practice taking 1cu  equals to 

0.003. For the concrete grade used in this study, Eurocode 2 [21] adopts a 

CMOD 
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higher value of 0.0035 for 1cu . However, such full composite action rarely 

happens. So, another parameter, which is the slip at the FRP-concrete 

interface, should be included in the limits that determine the ultimate load of 

these members.  In the current study, concrete crushing is assumed to occur 

when the maximum compressive strain exceeds 0.0035. Therefore, when either 

the principal compressive stress is greater than cf or the principal compressive 

strain reaches a value of 0.0035, the slab is said to fail in punching. Whereas, 

for the strengthened slabs, the slab is said to fail in debonding if the damage 

parameter at the interface reaches a value of 0.99 of the interface strength (see 

Appendix A), at which the interface element is removed from the overall 

stiffness of the member and the slab starts to restore the reference behaviour 

without FRP reinforcement. Denoting to the debonding load as the ultimate load 

is based on the fact that the load increase between the two instances (i.e, the 

initiation of debonding propagation and the attainment of the ultimate load) is 

usually very small [96]. However, in some cases where the FRP plate end is 

anchored to the concrete substrate, like the slabs in this study, the debonding 

may start in some areas but does not lead to failure unless there is high force in 

the FRP plate that could spread the debonding process over the whole 

member, such as the case of the prestressed slabs shown later in this chapter.   

 

Table 6-1 shows the FEM predictions compared to the test results. The failure 

load predicted by the FE model is within 11% of the actual failure load. The 

failure mode predicted is based on checking both the principal compressive 

strain and steel yielding. For the reference slab (RS0), the slab is said to have 

failed in flexure punching mode because the flexural steel yields at failure and 

the yielding of reinforcement spreads over a large area of the slab. Moreover, 

the predicted strains are more than two times the yield strain; see Appendix B 

for results of slab (RS0). However, for the strengthened slab (RS-F0) the slab is 

said to have failed in debonding since the composite action is totally lost at the 

strain localization area around the column. At this corresponding load level; 

361.3 kN, the interface elements are removed and the slab starts to restore to 

the reference behaviour, as shown in Figure (6-1).  It is noticeable that this load 

level is lower than the load corresponding to the concrete crushing; 372.7 kN. 
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This may be attributed to the use of low tensile strength for the concrete to 

match the slab deflection as mentioned before in Section 6.2.1. Such low tensile 

strength lessens the calculated strength and stiffness of the interface layer. Also 

at this load level, the predicted steel strains have just reached the yield strain 

and they are confined to a small area locally around the column. 

  

Table  6-1: Experimental and FEM predictions of ultimate load and failure mode. 

Test FEM 

Specimen Ultimate 

load (kN) 

Failure 

mode 

Ultimate 

load (kN) 

Failure 

mode 

Ultimate 

Load ratio 

FEM/Test 

RS0 284 
Flexural 

punching 
253.7 

Flexural 

punching 
0.89 

RS-F0 405.2 Punching 361.3 Debonding 0.89 

 

6.2.8. Conclusion 

The results produced above corroborate the findings of a great deal of the 

previous work in this field. Bonding FRP reinforcement to the tension face of 

concrete column-slab connections provides a good performance in both 

serviceability and ultimate limit states. In this study, the percentage increase in 

the ultimate load was more than 40% of the reference slab. The onset of 

cracking has been delayed and the crack widths diminished as well.  

 

The FE model enabled detailed investigation of the interfacial behaviour, and 

was able to capture the onset of debonding and macro-debonding which is very 

difficult to identify in the physical tests. As a result, the model gave a 

conservative prediction of the ultimate load. Also, it provided an accurate 

prediction of the crack patterns which agree to the experimental results. This is 

attributed to the approach used in modelling the support. So the slab corners 

were able to lift.  
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6.3. Prestressed slabs 

6.3.1. Load-deflection response 

In this section, the deflection behaviour of prestressed FRP slabs is examined. 

Figure (6-10) shows the load-deflection curve of slab (RS-F15) compared to the 

reference slab (RS0), along with the predictions of the FE analysis.  It is clear 

that the deflection predicted by the FE model compares very well with the 

measured deflection up to failure, but with a stiffer behaviour in the elastic 

region at the beginning. As mentioned before, the additional deflection due to 

the slip between concrete and steel reinforcement could not have been 

predicted by FE model adopting a smeared cracking approach with full bond 

assumption unless low tension stiffening is used. However, such low tension 

stiffening underestimates the ultimate load and corresponding deflection. 

Moreover, the idealization of concrete behaviour by elastic behaviour up to 

nearly 40% of the ultimate strength exaggerates that difference, particularly 

when the structural member is confined by prestressing forces.  As such 

confinement prolongs the elasticity behaviour of the member in the concrete 

model. At failure, the measured deflection is about 5% higher than predicted. 

 

The behaviour of the 30%-prestressed slab (RS-F30) resembles, to some extent, 

the behaviour of the 15%-prestressed slab (RS-F15). It can be simplified by a 

bilinear trend, as shown in Figure (6-11). Nevertheless, the FE model prediction 

for the linear part shows more stiff behaviour. It should be remembered that the 

second FRP strip experienced early debonding, as mentioned before in Chapter 

4. This made the slab to deviate from the predicted linear behaviour at an early 

load level of 115 kN. Interestingly, the FE model was able to simulate the 

debonding progression process; the circled location in Figures (6-10) and (6-

11), and the full debonding after which the slab restores the reference 

behaviour. Again, the predicted deflection at failure was safer than that obtained 

experimentally. The measured deflection is about 7% higher than predicted. 

Also noticeable is that the deflection at failure of slab (RS-F30) is lower than that 

of slab (RS-F15), implying that the more prestressing force applied the more 

reduction in slab deformability is achieved. Intuitively, such behaviour is similar 

to increasing the reinforcement ratio of the structural member. 
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Figure  6-10: Comparison between experimental and model prediction for 

prestressed slab (RS-F15). 
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Figure  6-11: Comparison between experimental and model prediction for 

prestressed slab (RS-F30). 
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Figure  6-12: Comparison between experimental and model prediction for 

prestressed slab (RS-F30F). 

 

With respect to specimen (RS-F30F), the low load level at corresponding 

displacement compared to slab (RS-F30), was the most surprising result. It is 

even lower than the load level of slab (RS-F15), as shown before in Figure (4-7). 

It looks as if the prestressing force has not been actually transferred to the 

concrete slab. This could be possible as the prestressing force was being 

transferred through the frame resting on the ground, by which the force was 

then transferred to the concrete substrate. Moreover, the use of large anchors 

extending up to the slab edges could adversely affect the transfer efficiency of 

the prestressing force as it prevents the FRP plates from deforming with the 

concrete substrate. The aforementioned reasons, together, increase the 

potential of such high loss in the prestressing force.  This problem is not faced 

in the field application, as the prestressing devices are usually mounted on the 

concrete surface directly which allows only for immediate losses due to 

concrete deformation. 

 

Another explanation that may cross someone’s mind is that the concrete patch 

of this slab (RS-F30F) had a lower tensile strength which could result in a lower 
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first crack load. However, interpretation of the results based on such an 

assumption was disregarded for the following reasons. The split tensile tests did 

show that the tensile strength of this specimen was in the normal range of such 

concrete strength, and as it is well known the tensile strength may reduce in the 

member, but no more than about 10%, depending on the concrete grade. 

Moreover, the low tensile strength would result in early debonding, as the bond 

strength is related to the tensile strength of the concrete substrate. 

Nevertheless, the FRP plates were in contact with the concrete substrate up to 

the later stages of loading. This was confirmed by the FRP strain 

measurements shown in Appendix B.  

 

Thus, the concrete tensile strength may not be responsible for the low load 

levels of slab (RS-F30F) during the load history, and the difference is attributed 

to the high loss of the prestressing force. So, to numerically validate the 

response of this slab a lower prestressing force of 7.5% was used.  

 

6.3.2. Reinforcement strains 

6.3.2.1. Internal steel reinforcement  

Figure (6-13) shows the FE prediction of the internal steel strains compared to 

the measured strains of the prestressed slabs (RS-F15) and (RS-F30). For the 

prestressed slab (RS-F15), the figure shows perfect agreement up to a load level 

of 200 kN which is about 85% of the ultimate load. After that the predicted strain 

increases with a mild rate leaving the trend of the measured strains. At the load 

level of 200 kN debonding of the FRP plates is expected to develop, and as a 

result cracks start to widen. Again, it has been mentioned before that the 

deflection resulting from crack widening could not be accounted for in a model 

adopting smeared cracking approach. So, the strain resulting from such 

deflection could not be accounted for as well. Moreover, the debonding 

propagation results in a higher proportion of stresses to be carried by the 

internal steel reinforcement, and hence the strains in these reinforcements 

would grow with a faster rate, as shown in Figure (6-13 a). 
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Figure  6-13: Steel reinforcement strain for prestressed slabs at different 

locations: (a) slab (RS-F15); (b) slab (RS-F30). 

 

Also, neglecting the shear modelling on the crack surface has some 

disadvantages in predicting the strains of both the reinforcement and concrete; 

it imbalances to some degree their relative contribution to the curvature. So, it 

may be possible that reinforcement strains are underestimated while the 

concrete strains are overestimated. This explanation will be further discussed 

later in the following sections while discussing the concrete strains.  

 

On the other hand, the predicted strains of slab (RS-F30) compare very well with 

the measured strains up to failure, as shown in Figure (6-13 b) and Appendix B. 

Only, strain gauge SGS7, which is located far outside the loading area, was 

underestimated by the FE analysis for the same abovementioned reasons. In 

general the predicted steel strains are considered to be in a good agreement 

with the measured strains.     

 

SGS2

0
50

100
150
200
250
300

0 1000 2000 3000

Microstrain

Lo
ad

 (
kN

)
Test

ABAQUS

SGS3

0

50

100

150

200

250

300

0 1000 2000 3000

Microstrain

L
o

a
d

 (
kN

)

Test

ABAQUS

SGS1

0

100

200

300

400

0 1000 2000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGS3

0

100

200

300

400

0 1000 2000

Microstrain
Lo

ad
 (

kN
)

Test

ABAQU
S

(a) 

(b) 



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

207

6.3.2.2. FRP reinforcement  

The FRP plate strains were not far from the internal steel strains. For instance, 

in slab (RS-F15) the load-strain curve of strain gauge SGF6 has a similar trend to 

the behaviour of the internal steel reinforcement, as shown in Figure (6-14). The 

position of this strain gauge is located inside the truncated cone. As mentioned 

before in Section 6.2.2.2, such strain gauge experiences a mild increase rate 

upon debonding initiation due to the effect of the aggregate interlocking. It is 

clear that the model reflects this behaviour, but with some exaggeration 

compared to the experimental measurement. 

 

Also shown in Figure (6-14) is the load-strain curve measured at strain gauge 

SGF9. This strain gauge is located near the plate end and just before the anchor 

plate, as shown in Figure (3-14). It is clear that the model was able to simulate 

the behaviour reasonably well. The model was able to identify the unloading 

phenomenon near the anchor plate. As it is well known, during the early stage 

of loading the anchors start to accommodate with the surrounding concrete. 

During this process the stress and strain levels at the portion of the prestressing 

plate, near to the anchors, increase with a mild rates, and sometimes decrease 

resulting in some losses in the prestressing force. After this stage, the strains 

start to increase, but with a faster rate compared to the previous stage. Just a 

few kNs before failure, the strain dramatically increases due to the development 

of the interfacial and shear cracks near the anchor plate. This has been 

confirmed by the failure mode discussed before in Section 4.2.1.    

 

Also shown in Figure (6-14), the predicted strain distributions along a 

representative length of the bonded FRP plate compared to the measured 

strains at different load levels. The circled zone in the figure indicates a change 

in the curve slope at the end of the overlapped FRP location. It should be 

remembered that this phenomenon has been discussed before in Section 6.2.4. 

That is the FRP-concrete interfacial behaviour is directly related to the strain of 

the FRP plate.  Intuitively, such change in the slope is a result of lower strains at 

the FRP overlapped locations. This reduction in the strain level at the 

overlapping is due to the effect of the lateral Poisson’s ratio 21 , which transfers 
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the effect of the prestressing force in the second direction into a compressive 

force in the first direction and vice versa.  By comparing the predicted strains to 

the measured strains, it can be noticed that the FE model is in good agreement 

with the measured strains over most of the loading history. Moreover, the model 

was able to simulate the overlapping phenomenon before failure. 

   

 

 

Figure  6-14: Measurement and prediction of FRP strain for Slab (RS-F15). 
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mentioned before, the shear cracks extended near the end plates resulted in a 

sudden increase in the FRP strain at failure, as shown in the figure, which can 

not be modelled using a smeared model. Also, the strain gauges mounted on 

the second FRP strip, such as SGF5 and SGF6, could not be validated as well, 

see Appendix B. That is these locations might have lower bond strength than 

the average value used in the model. Moreover, the FRP plates were modelled 

firmly connected to the end anchor plates, without allowing any slip between 

them. This was based on the experimental finding that all the FRP plates were 

in good contact to the anchor plate at failure, except the second plate of slab 

(RS-F30).  

 

 

 

Figure  6-15: Measurement and prediction of FRP strain for Slab (RS-F30). 

 

SGF1

0

100

200

300

400

0 1000 2000 3000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

53.6 kN

225.3 kN
260.4 kN

300.3 kN

Test

ABAQUS

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800

Position of strain Gauge on FRP plate (mm)

M
ic

ro
st

ra
in

 (
m

m
/m

m
)

53.6 kN

225.3 kN

260.4 kN

300.3 kN

SGF14

0

100

200

300

400

0 1000 2000 3000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

210

Figure (6-15) shows also the predicted strain distributions along the length of 

the bonded FRP plate compared to the measured strains at different load 

levels. The figure shows that the FE predictions deviate from the measured 

strains at certain locations. That is the profile reflects the same behaviour of the 

individual load-strain curves of strain gauges.  

   

6.3.3. Concrete strains  

Figure (6-16) shows the concrete strain numerical predictions of the prestressed 

slabs at the designated locations. The FE analysis predicts reasonably well the 

measured concrete strains for slab (RS-F15). However, it shows some 

discrepancy for the strain measurement of slab (RS-F30).  

 

The major contributor to the variation in concrete strains of this slab could be 

the early debonding of certain strips during the loading history which may be a 

result of low bond strength at certain sections. So, how could the bond 

interaction affect the concrete strain measurement? Again, it is known that the 

deflection is related to curvature which may be defined as the element rotation 

divided by the effective depth. This rotation can be simplified as the summation 

of average reinforcement and extreme-fibre compressive concrete strains. 

Although this definition is applicable for flexural members, the main principle 

could be applied in the discontinuity region (shear region) with low 

reinforcement ratios. Thus, if the FRP starts to debond from the concrete 

substrate, the slab stiffness decreases and, at the same time, the rotation 

increases. This increase is reflected in one or more of the constitutive 

parameters, such as the concrete strain. In the FE analysis an average value 

for the bond strength is used for the whole member, where it is not logical to 

use different values for different areas within the slab model. So, in the areas 

with low bond strength, the model will overestimate the FRP strains and 

underestimate the concrete strain.  

 

Several factors may also contribute to the discrepancy in concrete strains. In 

the forefront of these factors is the concrete homogeneity. As mentioned before 

in Section 5.2, the concrete has been judged to be homogeneous at the macro-
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scale level. However at the micro-scale level, where the concrete strains are 

measured, concrete is considered a heterogeneous material. So, the reading of 

the strain gauge positioned unintentionally on a stone is expected to be much 

lower than that positioned on the filling cement past. Moreover, the penetration 

and development of in-between cracks could also affect the strain 

measurement. In reality concrete strains are expected to be more localized 

around a crack as it deeply penetrates and widens. However, in the smeared 

modelling approach the strain is averaged over the element which is much 

larger than the aggregate size [77].   

 

 

 

Figure  6-16: Radial and tangential concrete strains for slab (RS-F15) at positions 

SGCV1 and SGCH4, respectively.  

 

 

 

Figure  6-17: Radial and tangential concrete strains for slab (RS-F30) at positions 

SGCV4 and SGCH2, respectively.  
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Although some predicted strains show some discrepancy when compared to the 

measured strains, many others were in a good agreement as shown before in 

Section 6.2.3 and Appendix B. Furthermore, the effect of bond strength on the 

response of the compressive zone may be more pronounced in the prestressed 

slabs with high prestressing force than in the low prestressed or non-

prestressed slabs. In general, the higher gradient of interfacial shear stresses 

results in early development of cracks, and hence rapid growth of concrete 

strains at the extreme compression fibres. In contrast, in non-prestressed slabs 

only after the yield of the internal steel reinforcement the cracks become wider 

and deeper. Therefore, the measured concrete strains are considered 

representative.  

 

From the above discussion, it could be seen that the response of the 

compressive concrete zone is related to bond interface which affects the 

deflection behaviour as well; see Section 6.3.1.  So, it is necessary to 

investigate the FRP-concrete interface which is discussed in the following 

section. 

 

6.3.4. FRP-concrete interfacial behaviour   

Figures (6-18) and (6-19) show the numerical predictions of the interfacial shear 

stress distribution for the prestressed slabs (RS-F15) and (RS-F30), respectively, 

at different load levels. Their behaviour, to some extent, is similar to the non-

prestressed slab (RS-F0). That is the bond starts from the slab centre towards 

the slab edges. However, at early stages of loading before cracking, the shear 

stress levels along the plate length were high compared to the non-prestressed 

slab (RS-F0), especially near the anchor plate. Accordingly, the shear stress is 

noticed to increase as it moves towards the plate end. It seems that the high 

prestressing force in the FRP plate helps more stress concentration at the plate 

end. The stress concentration near the plate end is a well-known phenomenon, 

which has been studied by many researchers before. It is caused by a sudden 

change in the strengthened section due to the termination of the FRP plate. For 

instance, for slabs (RS-F15) and (RS-F30), the shear stress levels near the 

anchor plate, corresponding to a load level of 56.4 kN and 53.2 kN, were 0.04 
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and 0.12 MPa, respectively, while the shear stress levels near the slab centre 

are close to zero, as could be shown in Figures (6-18) and (6-19).  

 

In the same vein, the interfacial shear stress near the maximum radial moment 

area increases significantly after cracking due to the localized concrete 

cracking. A change in the slope of the interfacial shear stress distribution at the 

overlapping area is developed, as shown in the circled area on the figures. The 

shear stress near the anchor plate has got a big increase as well, so the shear 

stress level at the plate end is still higher than that near the slab centre, as 

shown by the second lowest curve (171.4 kN) and (258.5 kN)  in Figures (6-18 

a) and (6-19 a), correspondingly.  

  

It is noticed that the fluctuation of the shear stress profile is less severe than the 

stress profile of slab (RS-F0). That is the high prestressing force was able to 

distribute the stresses across the plate width. As a result, the time difference 

between the debonding of the nodes across the FRP plate is considerably 

diminished. This can be easily identified from the crack pattern of the slabs, as 

shown in Appendix B.  

 

When the load is further increased, the shear stress at the slab centre reached 

the peak value 1.6 MPa then descended gradually, as shown from the figures. 

However, the interfacial shear stress at the overlapping position did not 

progress negatively, but still with lower stress levels than the surrounding 

points. This could be attributed to the high prestressing force which was able to 

reduce the rate of slip changes at the plate overlapping. At the later stages of 

loading (load level 233.9 kN and 306.9 kN for slab (RS-F15) and (RS-F30), 

respectively) the interfacial shear stress just after the overlapping position 

reaches the bonding strength, while the shear stress near the plate end is still 

lower than the bond strength (0.92 and 1.04 MPa for slab (RS-F15) and (RS-

F30), respectively). Most interestingly, the debonding progression of the 

prestressed slabs was very fast compared to the non-prestressed slab (RS-F0). 

One can easily identify that the debonding of 525 mm of the FRP plate occurred 

in the last ten kNs before failure. 
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Figure  6-18: FRP-concrete interfacial behaviour of slab (RS-F15): (a) before 

cracking; (b) later stages of loading. 
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Figure  6-19: FRP-concrete interfacial behaviour of slab (RS-F30): (a) before 

cracking; (b) later stages of loading. 
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Similar to slab (RS-F0), the above figures show that the debonding failure 

initiates near the slab centre and propagates towards the end of the FRP plate 

which implies that the debonding failure mode of the prestressed slabs can be 

classified as intermediate crack induced debonding (IC). However, the 

experimental results of these slabs showed that the position of the critical shear 

cracking has been shifted outside the area implying critical diagonal crack 

induced debonding (CDC). As discussed before, this does not malign the 

validity of the predicted results since the model was able to pick the main 

features of the interfacial behaviour such as the stiffness degradation and slip 

concentration at the FRP overlapping position. So, such difference could be 

overlooked.  

 

6.3.5. Crack pattern   

The cracking of the prestressed slabs followed a different behaviour from the 

non-prestressed slab (RS-F0) and the reference slab (RS0). At zero load level, 

the FE analysis shows that there is some development of tensile cracks near 

the plate end. These cracks are a result of the sudden termination of the FRP 

plate, which carries a high tensile force by the anchors. The model prediction is 

quite logical. However, in the experimental tests such cracks were not visible by 

the naked eye. It could be possible that the model shows such cracks due to the 

use of low tensile strength to validate the deflection behaviour.  

 

For all prestressed slabs, the development of cracking then passed nearly the 

same stages, but at different load levels for each slab. This was depending on 

the amount of the prestressing force used. Firstly, the crack strains started to 

occur tangentially at the area of the maximum bending moment near the column 

then spread radial towards the slab edges as the predicted load increases. 

Noticeable large crack strains started to occur at the outer edges of the FRP 

plates, while relatively small strains occurred at the area just beneath the plates 

where they are bonded to the concrete substrate. This was accompanied with 

more stress concentration at the plate end. Within a few kNs later, cracks 

started to appear along the inner edges of the FRP plate and extended up to 

the slab edges. As the load was further increased, another crack path parallel to 
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the inner edge of the FRP plate was noticed. This crack line was extending to 

the slab edges, to the points which determine the length of the slab edge that 

does not contact the support. This crack pattern was then kept until failure 

occurred.  It should be mentioned that there is some tiny differences between 

the crack patterns of the prestressed slabs themselves. For example, the length 

of the slab edge that does not contact the support due to the corners uplift in 

slab (RS-F15) is shorter than slab (RS-F30). This is attributed to the effect of the 

prestressing force which makes the slab stiffer as the prestressing force is 

increased. Also noticeable is that increasing the prestressing force results in 

extending the crack lines around the FRP edges beyond the anchor plate, up to 

the slab edges. This might explain the slippage problem in the second FRP strip 

in slab (RS-F30). 

 

 

 

Figure  6-20: Crack pattern of slab (RS-F15) at load level 239.9 kN.  
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Figure  6-21: Crack pattern of slab (RS-F30) at load level 305.7 kN.  

 

By comparing the loads corresponding to the stages of cracking development 

between the prestressed slabs, it could be concluded that the higher the 

prestressing force used the more crack resisting capability is obtained. Also, the 

initial cracking area and intensity is reduced as the prestressing force is 

increased. Thus, the crack resisting capability of the prestressed slabs has 

remarkably increased. Figures (6-20) and (6-21) show the crack pattern of the 

bottom surface and central cross section of slabs (RS-F15) and (RS-F30), at the 

predicted failure loads of 239.9 and 305.7 kN, respectively.  
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6.3.6. Crack opening displacement 

Figure (6-22) shows the load-(CMOD) curves of the prestressed slabs (RS-F15) 

and (RS-F30), predicted by the FE analysis. These curves were obtained at the 

same position used in slabs (RS-F0) and (RS0). Again, it is clear that the 

application of the FRP reinforcement reduced the crack opening displacement. 

Moreover, increasing the prestressing force resulted in more reduction in the 

crack opening which implies more enhancement in the serviceability of the 

strengthened member. This can be easily identified by comparing the crack 

opening at a certain load level. For example, at load level 200 kN the 

corresponding opening displacement for slabs (RS0), (RS-F15) and (RS-F30) are 

0.26, 0.18 and 0.005 mm, respectively, which clearly reflect the effect of 

changing the prestressing force. However, by comparing the opening 

displacement in the early stages of loading such as 90 kN, which is usually the 

common service load for slabs with such design, no significant difference could 

be identified for the prestressing effect in reducing the CMODs, compared to the 

non-prestressed slab (RS-F0).   
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6.3.7. Ultimate load and failure mode 

Table (6-2) summarises the measured and FEA-predicted failure loads for the 

prestressed slabs, along with their failure modes. The reference slab (RS0) and 

non-prestressed slab (RS-F0) results are reprinted here for convenience. For 

the prestressed slabs, the predicted failure mode is debonding of FRP plates, 

and the corresponding failure load predicted by FEA is within only 5% of the 

actual failure load. This indicates an excellent agreement between the 

numerical and experimental results. These slabs are said to fail in debonding as 

the damage parameter at the interface reaches a value of 0.99 of the interface 

strength, while the principal compressive strain around the column does not 

exceed the value of 0.0035. 

 

Table  6-2: Experimental and FEM predictions of ultimate load and failure mode. 

Test FEM 

Specimen Ultimate 

load (kN) 

Failure 

mode 

Ultimate 

load (kN) 

Failure 

mode 

Ultimate 

Load ratio 

FEM/Test 

RS0 284 
Flexural 

punching 
253.7 

Flexural 

punching 
0.89 

RS-F0 405.2 Punching 361.3 Debonding 0.89 

RS-F15 240 Debonding 236.5 Debonding 0.99 

RS-F30 307 Debonding 292.4 Debonding 0.95 

RS-F30F 220 Debonding 215.7(1) Debonding 0.98 

(1) The prestressing level used for prediction of the ultimate load is 7.5% 

  

For the prestressed slab (RS-F15), neither the concrete nor the steel reached 

the ultimate compressive strain or the yield strain. At the predicted debonding 

failure load, the corresponding average concrete strain around the column was 

within a value of 0.0021, while the levels of the steel strain were less than 

0.0027. Similar to slab (RS-F15), both the ultimate compressive concrete strain 

and yield strain margins were not violated for slab (RS-F30). The average 

concrete strain around the column was within a value of 0.0018, and the levels 

of steel strain were less than 0.0025.  Nonetheless, only strain gauge SGS5 was 

close to the yield strain. As discussed before, this may be attributed to the 
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slippage problem of the second FRP strip which allowed the steel reinforcement 

around the column area to carry more force to compensate the force lost by 

debonding. The prestressed slab (RS-F30F) continued showing unexpected 

results. At failure, the concrete strain exceeded the ultimate compressive strain 

near the column corner at position SGCH2. Moreover, the steel strain at position 

SGS5 exceeded the yield strain as well. This further supports that the 

prestressing force was not fully transferred to the concrete substrate in this slab. 

That is the effect of prestressing should be reflected in the results as a low 

levels of steel strain.  

 

It can be seen that slab (RS-F30F) showed some symptoms of the flexural 

behaviour. However, these indications could not spread over large area of the 

slab and vanished early due to the rapid development of the debonding failure. 

Such indications would not appear if there was enough confinement from the 

prestressing force. Thus, apart from slab (RS-F30F), the results indicate that 

increasing the prestressing force increases the ultimate load, but reduces the 

member ductility. Moreover, the bond characteristics were the main reason for 

not attaining higher ultimate load in the prestressed slabs, compared the non-

prestressed slab.             

 

6.3.8. Conclusion   

The fairly detailed discussion of the prestressed FRP slabs’ results may be 

conducive to important aspects of behaviour. Bonding prestressed FRP 

reinforcement to the tension face of concrete column-slab connections 

enhances the serviceability of the connection in terms of higher cracking loads 

and stiffness, but does not increase the ultimate load as much as the non-

prestressed FRP reinforcement. The high strain levels in the FRP plate due to 

the prestressing effect is the main reason for not attaining higher ultimate loads 

as it triggers debonding failure at early stages of loading.  

 

The serviceability is enhanced in terms of stiffer load-deflection behaviour and 

smaller crack widths, compared to the reference slab and the non-prestressed 

applications. The level of strain of the steel reinforcement is lower than that of 
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the non-prestressed application. This attributed to the confinement effect of the 

prestressing forces.  

 

The percentage increase in the ultimate load is only 8% that of the reference 

slab. Moreover, slab (RS-F30F) shows unexpected behaviour. It shows a low 

load level at corresponding displacement, compared to other slabs with the 

supposed prestressing ratio. This is believed to be as a result of improper 

transfer of the prestressing force to the concrete substrate. 
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Chapter 7 

Conclusion and recommendations 

 

7.1. Introduction 

This study has investigated the punching shear behaviour of RC column-slab 

connections strengthened with externally bonded FRP reinforcement, both 

experimentally and analytically. Experimentally, five full-scale RC slabs 

strengthened with non-prestressed or prestressed FRP plates were tested 

under concentrated loading. The main variables considered were the 

prestressing ratio and the anchorage bond length. The experimental study 

examined deflection profiles together with steel and FRP strains, compressive 

concrete strains and crack width. 

 

All the slabs tested were analysed by using FE analysis with smeared modelling 

of cracks. A rigid element was used to model the support to mimic a horizontally 

unrestrained slab with its corners free to lift, while a connector element was 

used to model the interface between the FRP plate and the concrete substrate. 

The sensitivity of each parameter in the slab model and its effect on the 

predicted slab behaviour was examined. The analytical part looked into the 

numerical analysis technique used and evaluated its prediction of deflection, 

crack width, as well as steel, FRP and concrete strains. Furthermore, the FRP-

concrete interface was investigated representatively.  

 

This study also evaluated the prediction of punching shear strength in the ACI 

and Eurocode 2 codes of practice. Modes of failure and punching shear 

strength were also addressed. The following conclusions and recommendations 

can be drawn from the present study. 
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7.2. Punching shear behaviour of FRP strengthened slabs 

7.2.1. Load-deflection response  

The deflection of slabs with low reinforcement ratios is mainly caused by 

flexural curvatures. The rigid body rotation, caused by deep penetration of 

shear cracks, also makes a small contribution to slab deflection. However, this 

contribution may be negligible for FRP strengthened slabs. 

 

The deflection profile of the strengthened slabs shows that the strengthened 

members experience low deflection values, compared to the unstrengthened 

slab, over the whole loading history. Within the service load range, the 

deflection of the FRP strengthened members is considerably lower than the 

unstrengthened slab. The measured deflections of the strengthened slabs at the 

slab centre were 30%, 25% and 26% for the non-prestressed slab (RS-F0) and 

the prestressed slabs (RS-F15) and (RS-F30), respectively, relative to the 

reference slab (RS0). This implies that the application of prestressed FRP plates 

marginally reduces the deflection level of the strengthened members, compared 

to the application of non-prestressed reinforcement. Another important 

implication is that the effect of increasing the prestressing force can be 

considered as if it is similar to the effect of increasing the reinforcement ratio; as 

the prestressing force is increased the cracking load increases. 

 

After cracking, deflection follows an almost linear relationship with load up to 

failure. The load-deflection curves of the prestressed slabs have lower slop than 

that of the non-prestressed slab which is a result of the early debonding 

initiation due to the high prestressing forces applied. At later stages of loading, 

only the loading area experiences high deflection values, while the rest of the 

slab still has low deflection values.  

 

FE analysis with smeared modelling of cracks cannot account for deflection due 

to the rigid body rotation around the critical shear crack. Therefore, though the 

level of tension stiffening in FE analysis can be chosen to match the measured 

deflection. So, FE analysis may not predict the actual state of strain in the 

member. Hence, the average reinforcement strains inside the truncated cone 
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may be overestimated, while the strains outside this cone may be 

underestimated. Such phenomenon, which also affects the response of the 

compressive concrete zone, requires further research.   

 

The deflection behaviour of the strengthened slabs is more governed by 

concrete, rather than the reinforcement or interface properties. The shape of the 

tension stiffening curve could significantly affect the solution of the global load-

deflection relationship for structures with low reinforcement ratios, in particular 

where there is a strain localisation in certain areas. They resemble the 

behaviour of plane concrete. Therefore, the energy require to open unite area of 

crack is not too much at the beginning of the analysis. However, more energy 

may be needed at later stages of loading to increase the crack area due to the 

effect of bond interaction and other toughening mechanisms. Scanlon model 

well describe such phenomenon. 

 

7.2.2. Steel strain 

The steel strains nearly follow the same trend of the load-deflection curves. A 

stiffer behaviour is noticed for the prestressed and non-prestressed specimens 

compared to the reference specimen (RS0). The prestressed slabs did not 

experience extensive yielding and their strain level is much lower than the level 

of strain in the non-prestressed slab (RS-F0) and the reference slab (RS0).  

 

The FE prediction of the steel strain can be affected by two factors; the amount 

of tension stiffening used in the model and the interface material properties. 

Lower material properties for the interface increase the steel strain and vice 

versa. 

 

7.2.3. FRP strain 

Within the range of service load the strain compatibility in the slab cross section 

is maintained and the strain levels of the FRP are comparable to the steel 

strains. After debonding initiation, the rate of strain increase for the prestressed 

specimens (RS-F15), (RS-F30) and (RS-F30F) is higher than that of the none-
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prestressed slab (RS-F0). This higher rate is attributed to the sudden transfer of 

forces to the FRP plates at the onset of debonding. The magnitude of the 

increase in strain is highest at debonding cracks near the slab centre, and 

gradually reduces away towards the plate end.  

 

The FRP strains are highly dependant on the interface material properties. 

Higher material properties for the interface increase the level of FRP strain and 

at the same time reduce the internal steel strain. 

 

7.2.4. Concrete strain 

At the service load level concrete strains are negligible. After debonding, the 

concrete strain at the extreme compressive concrete fibre increases nonlinearly 

with load up to failure. 

 

The response of the compressive concrete zone can be noticeably influenced 

by the width and penetration of shear cracks. Therefore, FE smeared analysis 

can considerably underestimate the compressive concrete strain, as such 

analyse does not account for the localised effects of cracks. The difference 

between the measured and predicted concrete strains reached about 33% for 

beams slab (RS-F30) at position SGCV2. However, the model was still able to 

show that the strain level in the tangential direction is usually higher than that of 

the radial direction at the same load level.  

 

7.2.5. Cracking 

Bonding FRP plates to the tension surface of concrete slabs reduce the crack 

widths and shifts the shear cracks positions away from the loading region. 

Within the service load range, high prestressed FRP reinforcement can delay 

cracking better than the non-prestressed FRP reinforcement.  

 

The higher the prestressing force used the more crack resisting capability is 

obtained. Also, the initial cracking area and intensity is reduced as the 

prestressing force is increased. Thus, the crack resisting capability of the 
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prestressed slabs has remarkably increased. That implies an enhanced 

serviceability of the strengthened member.  

 

The bond interface is more susceptible to shear cracks than flexural crack. The 

former has both pulling and peeling effect on the bond interface which easily 

spread the debonding, especially if the FRP plate carries high prestressing 

forces. The FE analysis with interface modelling gave the capability of capturing 

the gradual activation of the interface debonding. 

 

7.2.6. Mode of failure and ultimate capacity 

Flexural strengthening of column-slab connections using FRP plates increased 

the load capacity by nearly more than 40% over the unstrengthened slab. The 

non-prestressed slab showed a better enhancement to the ultimate load 

compared to the prestressed slabs. 

 

Again, strengthening of concrete slabs by using prestressed FRP plates is 

similar in behaviour to using high reinforcement ratio. It directs the stress state 

in the column-slab connection to experience shear failure rather than flexural 

failure. However, variation of bond length shows no clear effect on the ultimate 

strength. 

 

The application of the FRP reinforcement increases the punching capacity of 

the strengthened slabs compared to the reference slab (RS0), but 

simultaneously decreased the ratio of the punching load to the flexural load, 

which is translated into smaller rotation at failure. The application of prestressed 

FRP plates could result in a large reduction in the rotation capacity if there is not 

enough bonding area to prevent failure by premature debonding. This 

emphasizes that the design of FRP RC is usually controlled by the serviceability 

limit state rather than ultimate limit state. 

 

Punching shear failure of slabs strengthened with prestressed EBR is violent 

and considerations should be given to using more conservative strength 

reduction factors. 
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7.3. Practical significance of the study 

The current findings add substantially to our understanding of the punching 

shear behaviour of flat slabs without shear reinforcement and strengthened with 

externally bonded FRP reinforcement. The application of prestressed FRP 

reinforcement around the column-slab connection enhances the serviceability of 

the connection. However, it results in noticeable reduction in the ductility of the 

member. The main reason of such reduction in ductility is attributed to the 

development of critical diagonal cracks which result in premature debonding 

failure prior to the yielding of flexural reinforcement. On the other hand, the 

application of non-prestressed FRP reinforcement may result in flexural failure, 

but with low serviceability enhancement compared to the slabs strengthened 

with prestressed FRP reinforcement.  

 

The FE analysis enables detailed investigation of the interfacial behaviour, and 

is able to capture the onset of debonding and macro-debonding which is very 

difficult to identify in the physical tests. As a result, the FE model gives a 

conservative prediction of the ultimate load. Also, it provides an accurate 

prediction of the crack patterns which agree to the experimental results. This is 

attributed to the approach used in modelling the support, so the slab corners 

are able to lift.  

 

7.4. Recommendations and future work 

The current investigation was limited to flat slabs without shear reinforcement 

and low reinforcement ratios. Therefore, it is recommended that further 

experimental investigations be undertaken to study the effect of using different 

reinforcement ratios and arrangements on the punching behaviour of the 

strengthened connection. Other parameters, related to the strengthening 

material, can be studied as well such as; the stiffness of the FRP plate, plate 

geometry and strengthening pattern.  

 

Also, the results of this study indicate that the FRP-concrete interface has a 

direct impact on the ultimate punching strength. So, it would be interesting to 
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investigate different measures to enhance the FRP-concrete interfacial 

behaviour; such as using of FRP sheets with mechanical fasteners.    

Another limitation is related to the FE model developed. The model 

underestimates the effect of the normal stress components around the shear 

crack at the interface. Also, the model usually starts the crack at the same 

position of the maximum bending moment. Thus, future work should be 

conducted with discrete crack modeling to correctly model such phenomena.   

The adequacy of code expressions for FRP strengthened members needs to be 

evaluated against a much wider database of experimental research work, with 

different test details and FRP reinforcement. 

 

Finally, the adequacy of code expressions for FRP strengthened members 

needs to be evaluated against a much wider database of experimental research 

work, with different test details and FRP reinforcement. 
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Appendix A 

Sectional analysis of test slabs 

The shear strength corresponding to the ultimate flexural capacity is calculated 
under the following assumptions: 
(1) Failure is due to concrete crushing at ultimate strain of 0.0035 and the 
tensile strength of the concrete may be neglected; 
(2) Plane sections before bending remain plane after bending (Bernoulli’s 
principle); 
(3) Perfect bond is assumed between the concrete and both the steel and FRP 
reinforcement;  
(4) The stress-strain curves of the constitutive material (Concrete, Steel and 
FRP) are known. 
(5) The area of the FRP is smeared over a breadth equal to the column size 
plus d3  each side, which is the area where the reinforcement ratio should be 
calculated according to Eurocode 2. 
 
The neutral axis is obtained iteratively from strain compatibility and the 
equilibrium of the internal forces until the fulfilment of the following equation; 

frpsc TTC  . The ultimate flexural capacity flexV  is then calculated using 

Equation (2-14) in combination with of Equations (2-16) through (2-18). The 
final results are summarised in Table (A-1). 
 

 
 

Figure A-1: Stress and strain distribution through the slab thickness. 
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Table A-1: Summary of sectional analysis 

Slab 
c  

(mm) 
cC  

(N/mm)
frp  frpT  

(N/mm) 
rM  

(N.mm/mm) 
flexV  

(kN) 
equi  

percent

RS0 25 569.6 ----- ------- 32178.94 299 ------ 

RS-F0 34.1 776.9 0.012 491.73 40485.17 376.1 1.136 

RS-F15 36 820.2 0.013 533.3 41102.1 381.9 1.2 

RS-F30 38.9 886.3 0.014 599.2 48406.4 449.7 1.3 

RS-F30F 38.9 886.3 0.014 599.2 48406.4 449.7 1.3 

 

Punching shear strength according to EC2 

The punching shear strength is calculated according to Equation (2-28). 
However, an equivalent reinforcement ratio and depth is used instead of   and 
d , respectively as follows: 

(1) The equivalent depth is 
2

a

C

M
d

c

r
equi  , but not less than h8.0 ; 

(2) The equivalent reinforcement ratio for all strengthened slabs is the 

equivalent reinforcement ratio of slab (RS-F0); 
sequi

c
equi fbd

C
 . That is the 

prestressing effect is already taken in a separate term.  
 

FRP material properties 

Table A-2: Summary of material properties for FRP composites 

Elastic Modulus 

(MPa) 

Major 

Poisson’s 

ratio 

Shear 

modulus 

(MPa) 

Tensile/shear 

strength 

(MPa) 

Thickness of 

plate (mm) 

xE =165000 

yE =14050(1) 

zE =14050 

xy =0.29(2) 

xz =0.29 

yz =0.6(5) 

xyG =5127.5(3) 

xzG =5127.5 

yzG =4390.6(4) 

tX =2970 

tY =69(5) 

S =87(5) 

1.2 

(1) 
m

m

fx

f

y E

V

E

V

E


1
  (2) mmfxyfxy VV    

(3) 1)( 
m

m

fxy

f
xy G

V

G

V
G  (4) 

)1(2 yz

y
yz

E
G


    

(5) Other properties of the constitutive materials such as mfxyyz E   , ,  and mG  

are assumed according to typical material properties published in Kollár and 
Springer [80]. The volume fraction is provided by the manufacturer; fV  = 70%. 
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Interface material properties 

1. The element stiffness is determined as; 
l

EA
K  , where E  is the 

modulus of elasticity, A  is the characteristic area of the shell element 
and l  is the thickness of the interface layer. Similar principals can be 
applied for the two shear directions. 

2. The damage response is defined as a tabular function of the differences 
between the relative motions at ultimate failure and the relative motions 
at damage initiation; )( 0uuc  . 

3. The damage variable D  is determined as shown in the Figure (A-2) as 
follows;  

eff

ceff

F

FF
D


 . 

 

 

 
Figure A-2: Exponential damage evolution law for linear elastic connector 
behaviour. 
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Format of the input file 
*Heading 
**  Model name: RS-F-50mm-Con-plate 
*Preprint, echo=YES, model=YES, history=YES, contact=YES 
** 
** PARTS 
** 
*Part, name=FRP-X 
*Node 
    . 
    . 
*Element, type=S4 
     . 
     . 
     . 
*Elset, elset=FRP, generate 
  …,  …,   … 
*Nset, nset=BC-1 
…,  …,   … 
*Elset, elset=Bond, generate 
 1,  6,  1 
*Elset, elset=_Surf-Contact-X_SPOS, internal 
…,  …,   …, …,  …,   … 
*Surface, type=ELEMENT, name=Surf-Contact-X 
_Surf-Contact-X_SPOS, SPOS 
*Orientation, name=Ori-1 
          1.,           0.,           0.,           0.,           1.,           0. 
3, 0. 
** Section: FRP 
*Shell Section, elset=FRP, material=FRP, orientation=Ori-1 
1.2, 5 
*End Part 
**   
*Part, name=FRP-Y 
*Node 
     . 
     . 
     . 
*Element, type=S4 
     . 
     . 
     . 
*Elset, elset=FRP, generate 
…,  …,   … 
*Nset, nset=BC-2 
…,  …,   … 
*Elset, elset=Bond, generate 
…,  …,   … 
*Elset, elset=_Surf-Contact-Y_SPOS, internal 
…,  …,   …, …,  …,   … 
*Surface, type=ELEMENT, name=Surf-Contact-Y 
_Surf-Contact-Y_SPOS, SPOS 
*Orientation, name=Ori-1 
          0.,           1.,           0.,          -1.,           0.,           0. 
3, 0. 
** Section: FRP 
*Shell Section, elset=FRP, material=FRP, orientation=Ori-1 
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1.2, 5 
*End Part 
**   
*Part, name=STEEL-X 
*Node 
     . 
     . 
     . 
*Element, type=T3D2 
     . 
     . 
     . 
*Nset, nset=_PickedSet35, internal, generate 
…,  …,   … 
*Elset, elset=_PickedSet35, internal, generate 
…,  …,   … 
*Nset, nset=_PickedSet37, internal, generate 
…,  …,   … 
*Elset, elset=_PickedSet37, internal, generate 
…,  …,   … 
*Nset, nset=EMBEDED-X, generate 
…,  …,   … 
*Elset, elset=EMBEDED-X, generate 
…,  …,   … 
** Section: STEEL 
*Solid Section, elset=_PickedSet37, material=STEEL 
113., 
*End Part 
**   
*Part, name=STEEL-Y 
*Node 
. 
. 
. 
*Element, type=T3D2 
. 
. 
. 
*Nset, nset=_PickedSet32, internal, generate 
…,  …,   … 
*Elset, elset=_PickedSet32, internal, generate 
…,  …,   … 
*Nset, nset=_PickedSet34, internal, generate 
…,  …,   … 
*Elset, elset=_PickedSet34, internal, generate 
…,  …,   … 
*Nset, nset=EMBEDED-Y, generate 
…,  …,   … 
*Elset, elset=EMBEDED-Y, generate 
…,  …,   … 
** Section: STEEL 
*Solid Section, elset=_PickedSet34, material=STEEL 
113., 
*End Part 
**   
*Part, name=Slab 
*Node 
. 
. 
. 
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*Element, type=C3D8 
. 
. 
. 
*Nset, nset=Constraint 
…,  …,   …, …,  …,   … 
*Nset, nset=DEF 
…,  …,   … 
*Elset, elset=HOST 
…,  …,   … 
*Elset, elset=Slab, generate 
…,  …,   … 
*Nset, nset=Load 
…,  …,   … 
*Nset, nset=BC-2 
…,  …,   … 
*Nset, nset=BC-1 
…,  …,   … 
*Elset, elset=Bolt-house 
…,  …,   … 
*Elset, elset=Steel 
 …,  …,   … 
*Elset, elset=_Surf-Friction_S1, internal 
…,  …,   … 
*Surface, type=ELEMENT, name=Surf-Friction 
_Surf-Friction_S1, S1 
*Elset, elset=_Surf-Pressure1_S1, internal 
…,  …,   … 
*Surface, type=ELEMENT, name=Surf-Pressure1 
_Surf-Pressure1_S1, S1 
*Elset, elset=_Surf-Bond-X_S1, internal 
 …,  …,   … 
*Surface, type=ELEMENT, name=Surf-Bond-X 
_Surf-Bond-X_S1, S1 
*Elset, elset=_Surf-Bond-Y_S1, internal, generate 
 …,  …,   …,  …,   … 
*Surface, type=ELEMENT, name=Surf-Bond-Y 
_Surf-Bond-Y_S1, S1 
*Elset, elset=_Surf-Contact-X_S1, internal 
…,  …,   … 
*Surface, type=ELEMENT, name=Surf-Contact-X 
_Surf-Contact-X_S1, S1 
*Elset, elset=_Surf-Contact-Y_S1, internal 
…,  …,   … 
*Surface, type=ELEMENT, name=Surf-Contact-Y 
_Surf-Contact-Y_S1, S1 
** Section: CONCRETE 
*Solid Section, elset=Slab, material=CONCRETE 
1., 
** Section: Steel-plate 
*Solid Section, elset=Steel, material=STEEL 
 
*End Part 
**   
*Part, name=Steel-plates 
*Node 
. 
. 
. 
*Element, type=C3D8 
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. 

. 

. 
*Nset, nset=_PickedSet5, internal, generate 
…,  …,   … 
*Elset, elset=_PickedSet5, internal, generate 
…,  …,   … 
*Elset, elset=Steel-plates, generate 
…,  …,   … 
** Section: Steel-plate 
*Solid Section, elset=_PickedSet5, material=STEEL 
 
*End Part 
**   
*Part, name=Support 
*Node 
. 
. 
. 
*Element, type=R3D4 
. 
. 
. 
*Node 
    …,  …,   …, ….. 
*Nset, nset=Support-RefPt_, internal 
…,  …,   … 
*Nset, nset=Set-1, generate 
…,  …,   … 
*Elset, elset=Set-1, generate 
…,  …,   … 
*Nset, nset=Reaction 
…,  …,   … 
*Elset, elset=_Surf-Support_SNEG, internal 
…,  …,   … 
*Surface, type=ELEMENT, name=Surf-Support 
_Surf-Support_SNEG, SNEG 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=STEEL-X-1, part=STEEL-X 
          0.,           0.,          32. 
*End Instance 
**   
*Instance, name=STEEL-Y-1, part=STEEL-Y 
          0.,           0.,          32. 
*End Instance 
**   
*Instance, name=Support-1, part=Support 
*End Instance 
**   
*Instance, name=Slab-1, part=Slab 
*End Instance 
**   
*Instance, name=FRP-X-1, part=FRP-X 
          0.,           0.,          -1. 
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*End Instance 
**   
*Instance, name=FRP-Y-1, part=FRP-Y 
          0.,           0.,          -2. 
*End Instance 
**   
*Instance, name=Steel-plates-1, part=Steel-plates 
          0.,           0.,          -2. 
*End Instance 
**   
*Element, type=CONN3D2 
1, FRP-X-1.38, Slab-1.1436 
. 
. 
*Connector Section, elset=Wire-1-Set-1, behavior=ConnSect-1, controls=viscosity 
Cartesian, 
FRP-X-1-Local, 
*Nset, nset=_PickedSet100, internal, instance=Support-1 
…,  …,   … 
*Nset, nset=Wire-1-Set-1, instance=Slab-1 
…,  …,   … 
*Nset, nset=Wire-1-Set-1, instance=FRP-X-1 
…,  …,   … 
*Elset, elset=Wire-1-Set-1, generate 
…,  …,   … 
*Orientation, name=FRP-X-1-Local 
          1.,           0.,           0.,           0.,           1.,           0. 
1, 0. 
** Constraint: Con-plate 
*Embedded Element, host elset=Slab-1.Bolt-house, absolute exterior tolerance=5. 
Steel-plates-1.Steel-plates 
** Constraint: FRP Strengthening-X 
*Embedded Element, host elset=Slab-1.Bolt-house, absolute exterior tolerance=5. 
FRP-X-1.Bond 
** Constraint: FRP Strengthening-Y 
*Embedded Element, host elset=Slab-1.Bolt-house, absolute exterior tolerance=5. 
FRP-Y-1.Bond 
** Constraint: REINFORCEMENT-X 
*Embedded Element, host elset=Slab-1.HOST, absolute exterior tolerance=0.05 
STEEL-X-1.EMBEDED-X 
** Constraint: REINFORCEMENT-Y 
*Embedded Element, host elset=Slab-1.HOST, absolute exterior tolerance=0.05 
STEEL-Y-1.EMBEDED-Y 
** Constraint: Support 
*Rigid Body, ref node=_PickedSet100, elset=Support-1.Set-1 
*End Assembly 
*Connector Behavior, name=ConnSect-1 
*Connector Elasticity, component=1 
212019., 
*Connector Elasticity, component=2 
212019., 
*Connector Elasticity, component=3 
 2.75625e+06, 
*Connector Damage Initiation, component=1 
 -6641.67, 6641.67 
*Connector Damage Evolution, type=Motion,softening=Tabular,affected components 
1, 2 
       0.,         0. 
        …,  … 
*Connector Damage Initiation, component=2 
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…,  … 
*Connector Damage Evolution, type=Motion,softening=Tabular,affected components 
1, 2 
       0.,         0. 
…,  … 
*Connector Damage Initiation, component=3 
…,  … 
*Connector Damage Evolution, type=Energy,affected components 
3 
GII, 
*Section control, name=viscosity, viscosity=0.1d-3, max degradation=0.99 
**  
** MATERIALS 
**  
*Material, name=CONCRETE 
*Density 
 2.4e-06, 
*Elastic 
31165., 0.18 
*Concrete Damaged Plasticity 
20.,   0.1,  1.16, 0.667,    0. 
*Concrete Compression Hardening 
 16.2546,          0. 
 17.7465,  7.5997e-06 
 21.1373, 3.19128e-05 
  24.258, 6.48731e-05 
 27.1059, 0.000106572 
 29.6781, 0.000157101 
 31.9715, 0.000216553 
 33.9834, 0.000285025 
 35.7106, 0.000362611 
 37.1502,  0.00044941 
  38.299, 0.000545519 
 39.1541, 0.000651038 
 39.7121,  0.00076607 
 39.9699, 0.000890717 
 39.9886,  0.00093442 
 39.8526,  0.00106649 
 39.4324,  0.00120767 
 38.7251,  0.00135804 
 37.7277,   0.0015177 
  36.437,  0.00168676 
   34.85,  0.00186531 
 32.9636,  0.00205345 
 30.7746,  0.00225128 
 28.2797,  0.00245891 
 25.4756,  0.00267645 
*Concrete Tension Stiffening, type=DISPLACEMENT 
  0.8ft,  0. 
       ft, w1 
 0.15ft, w2 
   0.6ft, w3 
 0.01ft, w0  
*Material, name=FRP 
*Elastic, type=LAMINA 
165000., 14050.,   0.29, 5127.5, 5127.5, 4390.6 
*Fail Stress 
2970.,-2525.,   69., -200.,   87.,    0.,    0. 
*Material, name=STEEL 
*Elastic 
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190000., 0.3 
*Plastic 
570.,   0. 
650., 0.18 
  7.,  0.2 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=IntProp-1 
1., 
*Friction 
0., 
**  
** PREDEFINED FIELDS 
**  
** Name: Prestressing   Type: STRESS 
*Initial Conditions, type=STRESS, SECTION POINTS 
FRP-X-1.FRP, 1, f, 0., 0. 
FRP-X-1.FRP, 2, f, 0., 0. 
FRP-X-1.FRP, 3, f, 0., 0. 
FRP-X-1.FRP, 4, f, 0., 0. 
FRP-X-1.FRP, 5, f, 0., 0. 
FRP-Y-1.FRP, 1, f, 0., 0. 
FRP-Y-1.FRP, 2, f, 0., 0. 
FRP-Y-1.FRP, 3, f, 0., 0. 
FRP-Y-1.FRP, 4, f, 0., 0. 
FRP-Y-1.FRP, 5, f, 0., 0. 
**  
** INTERACTIONS 
**  
** Interaction: Int-1 
*Contact Pair, interaction=IntProp-1, small sliding 
Slab-1.Surf-Friction, Support-1.Surf-Support 
** Interaction: Int-X 
*Contact Pair, interaction=IntProp-1, small sliding 
FRP-X-1.Surf-Contact-X, Slab-1.Surf-Contact-X 
** Interaction: Int-Y 
*Contact Pair, interaction=IntProp-1, small sliding 
FRP-Y-1.Surf-Contact-Y, Slab-1.Surf-Contact-Y 
** ---------------------------------------------------------------- 
**  
** STEP: Establish contact 
**  
*Step, name="Establish contact", nlgeom=YES 
*Static 
0.1, 1., 1e-17, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Slab-1.BC-1, XSYMM 
** Name: BC-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Slab-1.BC-2, YSYMM 
** Name: BC-3 Type: Displacement/Rotation 
*Boundary 
Support-1.Reaction, 1, 1 
Support-1.Reaction, 2, 2 
Support-1.Reaction, 3, 3 
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Support-1.Reaction, 4, 4 
Support-1.Reaction, 5, 5 
Support-1.Reaction, 6, 6 
** Name: BC-6-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
FRP-X-1.BC-1, XSYMM 
** Name: BC-7-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
FRP-Y-1.BC-2, YSYMM 
** Name: Slab-cons Type: Displacement/Rotation 
*Boundary 
Slab-1.Constraint, 3, 3 
**  
** LOADS 
**  
** Name: Pressure1   Type: Pressure 
*Dsload 
Slab-1.Surf-Pressure1, P, -0.001 
**  
** INTERACTIONS 
**  
** Interaction: Int-X 
*Model Change, type=CONTACT PAIR, remove 
FRP-X-1.Surf-Contact-X, Slab-1.Surf-Contact-X 
** Interaction: Int-Y 
*Model Change, type=CONTACT PAIR, remove 
FRP-Y-1.Surf-Contact-Y, Slab-1.Surf-Contact-Y 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: General 
**  
*Output, field 
*Node Output 
RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S 
*Contact Output 
CDISP, CSTRESS 
**  
** FIELD OUTPUT: FRP-X 
**  
*Element Output, elset=FRP-X-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: FRP-Y 
**  
*Element Output, elset=FRP-Y-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: Slab 
**  
*Element Output, elset=Slab-1.Slab, directions=YES 
E, IE, PEEQT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history 
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*Energy Output 
ALLCD, ALLSD, ALLSE 
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Element Output, elset=Wire-1-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-3 
**  
*Element Output, elset=Wire-2-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-4 
**  
*Element Output, elset=Wire-3-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-5 
**  
*Element Output, elset=Wire-4-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-6 
**  
*Element Output, elset=Wire-5-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-7 
**  
*Element Output, elset=Wire-6-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Slab releasee 
**  
*Step, name="Slab releasee", nlgeom=YES 
*Static 
1., 1., 1e-05, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
Slab-1.BC-1, XSYMM 
** Name: BC-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
Slab-1.BC-2, YSYMM 
** Name: BC-3 Type: Displacement/Rotation 
*Boundary, op=NEW 
Support-1.Reaction, 1, 1 
Support-1.Reaction, 2, 2 
Support-1.Reaction, 3, 3 
Support-1.Reaction, 4, 4 
Support-1.Reaction, 5, 5 
Support-1.Reaction, 6, 6 
** Name: BC-6-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
FRP-X-1.BC-1, XSYMM 
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** Name: BC-7-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary, op=NEW 
FRP-Y-1.BC-2, YSYMM 
** Name: Slab-cons Type: Displacement/Rotation 
*Boundary, op=NEW 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: General 
**  
*Output, field 
*Node Output 
RF, U 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S 
*Contact Output 
CDISP, CSTRESS 
**  
** FIELD OUTPUT: FRP-X 
**  
*Element Output, elset=FRP-X-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: FRP-Y 
**  
*Element Output, elset=FRP-Y-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: Slab 
**  
*Element Output, elset=Slab-1.Slab, directions=YES 
E, IE, PEEQT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history 
*Energy Output 
ALLCD, ALLSD, ALLSE 
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Element Output, elset=Wire-1-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-3 
**  
*Element Output, elset=Wire-2-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-4 
**  
*Element Output, elset=Wire-3-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-5 
**  
*Element Output, elset=Wire-4-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
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**  
** HISTORY OUTPUT: H-Output-6 
**  
*Element Output, elset=Wire-5-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-7 
**  
*Element Output, elset=Wire-6-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
*End Step 
** ---------------------------------------------------------------- 
**  
** STEP: Loading 
**  
*Step, name=Loading, nlgeom=YES, inc=10000 
*Static, stabilize=0.0002, allsdtol=0.05, continue=NO 
0.0005, 1., 1e-17, 0.005 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Load Type: Displacement/Rotation 
*Boundary 
Slab-1.Load, 3, 3,  . 
**  
** LOADS 
**  
** Name: Pressure1   Type: Pressure 
*Dsload, op=NEW 
**  
** INTERACTIONS 
**  
** Interaction: Int-X 
*Model Change, type=CONTACT PAIR, add 
FRP-X-1.Surf-Contact-X, Slab-1.Surf-Contact-X 
** Interaction: Int-Y 
*Model Change, type=CONTACT PAIR, add 
FRP-Y-1.Surf-Contact-Y, Slab-1.Surf-Contact-Y 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: General 
**  
*Output, field, frequency=10 
*Node Output 
RF, U, VF 
*Element Output, directions=YES 
LE, PE, PEEQ, PEMAG, S 
*Contact Output 
CDISP, CSTRESS 
**  
** FIELD OUTPUT: FRP-X 
**  
*Element Output, elset=FRP-X-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: FRP-Y 
**  
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*Element Output, elset=FRP-Y-1.FRP, directions=YES 
CFAILURE, E, EE 
**  
** FIELD OUTPUT: Slab 
**  
*Element Output, elset=Slab-1.Slab, directions=YES 
E, IE, PEEQT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history 
*Energy Output 
ALLCD, ALLIE, ALLSD, ALLSE 
**  
** HISTORY OUTPUT: H-Output-2 
**  
*Output, history, frequency=10 
*Element Output, elset=Wire-1-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-3 
**  
*Element Output, elset=Wire-2-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-4 
**  
*Element Output, elset=Wire-3-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-5 
**  
*Element Output, elset=Wire-4-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-6 
**  
*Element Output, elset=Wire-5-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
**  
** HISTORY OUTPUT: H-Output-7 
**  
*Element Output, elset=Wire-6-Set-1 
CCU1, CCU2, CCU3, CDIF1, CDIF2, CDIF3, CTF1, CTF2, CTF3 
*End Step 
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Appendix B 

Numerical results of slab (RS0) 

 

 

Figure B-1: Predicted strains compared to measured strains of slab (RS0). 
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Numerical results of slab (RS-F0) 

 

 

Figure B-2: Predicted strains compared to measured strains of slab (RS-F0). 

 

 

 

Figure B-2: Predicted strains compared to measured strains of slab (RS-F0). 

SGF1

0

100

200

300

400

500

0 2000 4000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGF9

0

100

200

300

400

500

0 2000 4000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGF13

0

100

200

300

400

500

0 2000 4000 6000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGF17

0

100

200

300

400

500

0 2000 4000 6000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGS2

0

100

200

300

400

500

0 2000 4000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGS3

0

100

200

300

400

500

0 2000 4000 6000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGS6

0

100

200

300

400

500

0 1000 2000 3000

Microstrain

Lo
ad

 (
kN

)

Test

ABAQUS

SGF14

0

100

200

300

400

500

0 2000 4000 6000

Microstrain
Lo

ad
 (

kN
)

Test

ABAQUS



Analysis of Repaired/Strengthened R.C. Structures Using Composite Materials: Punching Shear  

 

 
 

252

Numerical results of slab (RS-F15) 

 

 

Figure B-3: Predicted strains compared to measured strains of slab (RS-F15). 
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Figure B-3: Predicted strains compared to measured strains of slab (RS-F15). 
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Figure B-3: Predicted strains compared to measured strains of slab (RS-F15). 
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Numerical results of slab (RS-F30) 

 

 

Figure B-4: Predicted strains compared to measured strains of slab (RS-F30). 
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Figure B-4: Predicted strains compared to measured strains of slab (RS-F30). 
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Figure B-4: Predicted strains compared to measured strains of slab (RS-F30). 
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Figure B-4: Predicted strains compared to measured strains of slab (RS-F30). 
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Figure B-5: Measured strains of slab (RS-F30F). 
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Figure B-5: Measured strains of slab (RS-F30F). 
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Figure B-5: Measured strains of slab (RS-F30F). 
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Figure B-5: Measured strains of slab (RS-F30F). 
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Figure B-5: Measured strains of slab (RS-F30F). 
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Crack pattern of slab (RS0) 

 

 
Figure B-6: Crack pattern of slab (RS0) at predicted cracking load 91.5 kN. 
 

 

 
Figure B-7: Crack pattern of slab (RS0) at predicted load 95.2 kN. 
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Figure B-8: Crack pattern of slab (RS0) at predicted load 138.5 kN. 
 

 

 
Figure B-9: Crack pattern of slab (RS0) at predicted load 202.1 kN. 
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Figure B-10: Crack pattern of slab (RS0) at predicted failure load 226.75 kN. 
 
 

Crack pattern of slab (RS-F0) 

 

 
Figure B-11: Crack pattern of slab (RS-F0) at cracking load 106.3 kN. 
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Figure B-12: Crack pattern of slab (RS-F0) at load 113.9 kN. 
 

 

 
Figure B-13: Crack pattern of slab (RS-F0) at load 150.1 kN. 
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Figure B-14: Crack pattern of slab (RS-F0) at load 236 kN 
 

 

 
Figure B-15: Crack pattern of slab (RS-F0) at load 329.7 kN. 
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Crack pattern of slab (RS-F15) 

 

 
Figure B-16: Crack pattern of slab (RS-F15) at zero kN. 
 

 

 
Figure B-17: Crack pattern of slab (RS-F15) at cracking load 141.7 kN. 
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Figure B-18: Crack pattern of slab (RS-F15) at load 155.6 kN. 
 

 

 
Figure B-19: Crack pattern of slab (RS-F15) at load 159.3 kN 
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Figure B-20: Crack pattern of slab (RS-F15) at load 206.8 kN. 
 

Crack pattern of slab (RS-F30) 

 

 
Figure B-21: Crack pattern of slab (RS-F30) at zero kN. 
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Figure B-22: Crack pattern of slab (RS-F30) at cracking load 225.7 kN. 
 

 

 
Figure B-23: Crack pattern of slab (RS-F30) at load 247.9 kN. 
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Figure B-24: Crack pattern of slab (RS-F30) at load 260 kN 
 

 

 
Figure B-25: Crack pattern of slab (RS-F30) at load 291.4 kN. 
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