GRAPHS ASSOCIATED WITH THE

SPORADIC SIMPLE GROUPS Fi i_{24}
 AND $B M$

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences

Contents

Abstract 5
Declaration 6
Copyright Statement 7
Acknowledgements 8
1 Introduction 9
2 The Point-Line Collinearity graph for the Maximal Local 2-Geometry of $F i_{24}$ 12
2.1 Introduction and Basic Definitions 12
2.2 Literature Review 13
$2.3 \quad F i_{24}$ 18
2.4 Calculating the Discs 27
2.5 The Computer Files 40
2.6 The Collapsed Adjacency Matrix for \mathcal{G} 44
3 A Commuting Involution Graph for the Baby Monster 76
3.1 Literature Review 76
3.1.1 The Work of Brauer and Fowler 76
3.1.2 The Work of Fischer 78
3.1.3 The Work of Segev 79
3.1.4 The Work of Bundy, Bates, Rowley and Perkins 81
3.2 Basic Definitions and Results 90
3.2.1 The Fix Space 98
3.2.2 Bray's Algorithm and Generalizations 100
3.3 The Baby Monster 103
3.3.1 The Class 17A 112
3.3.2 The Class 3A 113
3.3.3 The Class 5A 115
3.3.4 The Class 10B 116
3.3.5 The Class 15A 118
3.3.6 The Class 20D 118
3.3.7 The Class 20F 119
3.3.8 The Class 30D 119
3.3.9 The Class 40D 120
3.3.10 The Class 13A 120
3.3.11 The Class 6 C 121
3.3.12 The Class 6 H 123
3.3.13 The Class 12D 123
3.3.14 12G 124
3.3.15 The Class 12J 124
3.3.16 The Class 12L 125
3.3.17 The Class 21A 125
3.3.18 The Classes 24A and 24C 126
3.3.19 The Class 24 G 127
3.3.20 The Class 48A 127
3.3.21 Classes Which Power to 5B 128
3.3.22 Classes Which Power to 3B 133
3.3.23 Classes Which Power to $11 A$ 139
4 Appendices 142
4.1 Appendix 1 142
4.2 Appendix 2 142
4.3 Appendix 3 143
4.4 Appendix 4 150
4.5 Appendix 5 153
4.5.1 BrayLoop 153
4.5.2 RandomWord 154
4.5.3 MultiplyRandomWord 156
4.6 Appendix 6 157
Bibliography 158

The University of Manchester

Benjamin Thomas Wright

Doctor of Philosophy

Graphs associated with the sporadic simple groups $F i_{24}$ and $B M$ March 10, 2011

Our aim is to calculate some graphs associated with two of the larger sporadic simple groups, $F i_{24}$ and the Baby Monster.

Firstly we calculate the point line collinearity graph for a maximal 2-local geometry of $F i_{24}$. If Γ is such a geometry, then the point line collinearity graph \mathcal{G} will be the graph whose vertices are the points in Γ, with any two vertices joined by an edge if and only if they are incident with a common line. We found that the graph has diameter 5 and we give its collapsed adjacency matrix.

We also calculate part of the commuting involution graph, \mathcal{C}, for the class $2 C$ of the Baby Monster, whose vertex set is the conjugacy class $2 C$, with any two elements joined by an edge if and only if they commute. We have managed to place all vertices inside \mathcal{C} whose product with a fixed vertex t does not have 2 power order, with all evidence pointing towards \mathcal{C} having diameter 3 .

Declaration

No portion of the work referred to in this thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the "Copyright") and s/he has given The University of Manchester the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes.
ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the John Rylands University Library of Manchester. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made.
iii. The ownership of any patents, designs, trade marks and any and all other intellectual property rights except for the Copyright (the "Intellectual Property Rights") and any reproductions of copyright works, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions.
iv. Further information on the conditions under which disclosure, publication and exploitation of this thesis, the Copyright and any Intellectual Property Rights and/or Reproductions described in it may take place is available from the Head of the School of Mathematics.

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Peter Rowley, who has supported me with patience and knowledge not only during my PhD studies, but during my entire university career. Without his encouragement, effort and regular drinking sessions this thesis could never have been written.

The school of Mathematics at the University of Manchester has felt like home for the last 8 years. I would like to thank the school for the ability to complete my PhD studies, and EPSRC for supplying the funding.

I would also like to thank Ali Everett, Paul Taylor, two of my academic siblings and Ben Fairbairn, for the many maths brainstorming sessions, and helping me through some dark times.

Finally I would like to thank my family and friends; without their emotional (and finacial!) support none of this would have been possible.

Chapter 1

Introduction

The classification of finite simple groups was finally completed in 2004, after more than one hundred years of work, involving hundreds of mathematicians and spanning many tens of thousands of journal pages.

Theorem 1.0.1 (The Classification of Finite Simple Groups). Let G be a finite simple group. Then G belongs to one of the following families of groups:

1. Cyclic groups of prime order.
2. Alternating groups of degree at least 5 .
3. Simple groups of Lie type, including

- The classical groups of Lie type, PSL, PSp, PSU and O.
- The exceptional and twisted groups of Lie type, including the Tits group.

4. The 26 sporadic simple groups.

Even though these finite simple groups have been classified, still a lot is not known about them, especially the larger sporadic simple groups.

Finding new ways to study these large sporadic groups, for example the Monster and Baby Monster simple groups, is of upmost importance, as simply studying these groups alone is not feasible. For example Linton et al constructed computationally the Monster group, over $G F(2)$ [36], and although generators are available the group
is too large to completely load on a computer, and Wilson [42] constructed computationally the Baby Monster over $G F(2)$, and although it is possible to load the entire group, carrying out anything other than very simple elementary calculations inside it is asking for trouble.

Therefore, studying structures which these groups act on, especially when they involve involutions, which play a very important role in the structure of a simple group, could give us a practical route into studying these massive objects.

This thesis compromises of two main projects, both computational in nature, regarding graph structures associated to $F i_{24}$ and the Baby Monster, the second and third largest of the sporadic simple groups.

The second chapter is devoted to work carried out by myself in collaboration with my supervisor Prof. Peter Rowley. It is concerned with calculating the point-line collinearity graph for the maximal 2-local geometry for Fischer's largest sporadic simple group, $F i_{24}$. The geometry was first introduced by Ronan and Smith [24] in 1980, and calculating the structure of this graph has been an open problem ever since. The work is very computational in nature and although the graph is defined in the language of incidence geometry, we quickly reduced the problem to simple combinatorics to make the computations possible. As this graph is huge, a full description is not given, as this would be impossible, however we do give a 120 by 120 matrix detailing the collapsed adjacency graph. The (i, j) th entry of this matrix gives the number of points in the j th orbit of \mathcal{G} connected to a single point in the i th orbit, as the stabilizer of a point in Γ acts on \mathcal{G}.

Chapter three is concerned with the commuting involution graph for the class 2C in the Baby Monster group, the second largest of the sporadic simple groups. Classes $2 A$ and $2 B$ were completed by Bates, Bundy, Rowley and Perkins [12], and $2 C$ is one of the two remaining cases for calculating commuting involution graphs for all the sporadic simple groups - the cases not covered in [12] other than the two remaining Baby Monster cases have been completed by Rowley and P. Taylor [39]. It is the overall aim to compute these commuting involution graphs for all the finite simple groups, a large chunk of which have already been completed. Again this work
is rather computational in nature, however due to the restrictions in working inside the 4370 dimensional linear representation (over $G F(2)$) of the Baby Monster, we often had to drop down to more manageable representations for some of the maximal subgroups.

Both chapters are devoted to graph structures associated with finite groups and so have a few shared definitions. In both cases our graph is regular, that is each note x has the same number of edges connected to it. So let \mathcal{G} be a regular graph with vertex set X. Firstly, for $x, y \in X$, we define a distance function on $\mathcal{G}, d(x, y)$, in the obvious way. That is $d(x, y)$ is the length of the shortest path connecting x and y. It is clear that if we assume our graph is connected, this distance function follows all the rules expected from a metric. Now for a fixed vertex $t \in X$ we can define the discs of \mathcal{G} as

$$
\Delta_{i}(t)=\{x \in X \mid d(t, x)=i\}
$$

for an integer i. In both chapters the structure of these discs will be independent on the choice of t. Finally we define the diameter of \mathcal{G} to be the maximum distance between any two vertices of \mathcal{G}.

All the calculations detailed in this thesis were carried out using Magma v2.15, apart from a few which were carried out in GaP v4.4.10. In all cases we used several 3.2 GHz machines, each with between 8 and 16GB of RAM, located in the School of Mathematics at The University of Manchester.

One final remark, during this thesis we make great use of the Atlas of Finite Groups [18] and the World Wide Web Atlas of Group Representations [22]. As we refer to these almost every other sentence, we will simply refer to them as the Atlas and The Online Atlas respectively and reference them here.

Chapter 2

The Point-Line Collinearity graph for the Maximal Local 2-Geometry of $F i_{24}$

2.1 Introduction and Basic Definitions

Definition 2.1.1. An Incidence Geometry is a 4 -tuple (Γ, \star, Δ, d) where Γ is a set, whose elements are called varieties (that is points, lines, planes, hyper-planes, etc), d is a map from Γ to the finite set Δ which gives the type of each element in Γ, that is whether the variety is a point, line, plane, etc, and \star is a binary symmetric and reflexive relation on Γ called the incidence relation, where the above is subject to axioms 1 and 2 given below. For $i \in \Delta$ we denote $d^{-1}(i)$ by Γ_{i}, and call its elements i varieties, or simply just points, lines, planes etc. A flag F is a set of pairwise incident varieties. The type of F is the set $d(F) \subset \Delta$ and the rank of F is the size of $d(F)$. The residue $R(F)$ of a flag F is the ordered 4 -tuple ($\Gamma^{\prime}, \star^{\prime}, d^{\prime}, \Delta^{\prime}$) where Γ^{\prime} is the set of all varieties of Γ of type $i \in \Delta \backslash d(F)$ which are incident to all elements of F, \star^{\prime} and d^{\prime} are the restrictions of \star and d to Γ^{\prime} and $\Delta^{\prime}=d\left(\Gamma^{\prime}\right)$.

Axiom 1 Every maximal flag contains one and only one variety of type i for every $i \in \Delta$ and every non-maximal flag is contained in at least two maximal flags.

Axiom 2 For any distinct $i, j \in \Delta, \Gamma_{i} \cup \Gamma_{j}$ is connected under \star, that is for any two $x, y \in \Gamma_{i} \cup \Gamma_{j}$ there exists a chain of elements $x_{\alpha} \in \Gamma_{i} \cup \Gamma_{j}$ where $0 \leq \alpha \leq n$ such that $x_{\alpha} \star x_{\alpha+1}$ and $x_{0}=x, x_{n}=y$, and this property holds in every residue $R(F)$ for a flag F.

Definition 2.1.2. Let Γ be an incidence geometry, then the Point-Line Collinearity Graph, \mathcal{G}, for Γ is a graph where the vertices are the points of Γ, with any two vertices joined by an edge if and only if they are incident with a common line.

Now let G be a finite group; we can create an incidence geometry from G by letting $\mathcal{F}=\left\{G_{i}\right\}$ be a family of subgroups of G, and letting the objects of type i be the cosets of G_{i} in G, with two cosets $x G_{i}, y G_{j}$ incident if and only if $x G_{i} \cap y G_{j} \neq \emptyset$. Furthermore, if G has even order, we can let \mathcal{F} be the collection of maximal 2-local subgroups of G; then the geometry Γ created from \mathcal{F} is the maximal 2-local geometry for G. These geometries have been extensively studied in the case of groups of Lie type by Tits [41] and Buekenhout [8] and for the sporadic groups by Ronan and Smith [24]. This Chapter will be devoted to studying the point line collinearity graph for the maximal 2-local geometry for Fischer's larger sporadic group $F i_{24}$.

2.2 Literature Review

The maximal 2-local geometry for $F i_{24}$ was first described by Ronan and Smith in [24]. In this paper they gave the diagram geometries for many of the sporadic simple groups, in which the stabilizer of a vertex is a maximal 2-constrained 2-local subgroup. The combinatorial structure of these geometries have been studied by many authors, for example P. Rowley, L. Walker [31],[32],[33], J. Maginnis and S. Onofrei [21], Y. Segev [37] and A. Ivanov [17]. Central to this structure is the point-line colinearity graph \mathcal{G}.

The structure of \mathcal{G} for many of these geometries has been calculated and we will outline these results here.

In [28], [29] and [30], Rowley and Walker calculated the point line collinearity graph \mathcal{G} for the maximal 2-local geometry Γ for Janko's largest sporadic simple group
J_{4}. Throughout the paper they didn't assume that the group G in question was in fact J_{4}, they only assumed the following geometric data.

Let Γ be a residually connected string geometry, with type set $\{0,1,2\}$ and suppose for $x \in \Gamma, \Gamma_{x}=\{y \in \Gamma \mid x \star y\}$. Now let G be a subgroup of $A u t \Gamma$ which satisfies the following properties:

1. For $a \in \Gamma_{0}, \Gamma_{a}$ is the rank 2 geometry of trios and sextets (defined on the Steiner system $S(5,8,24)), G_{a} / Q(a) \cong M_{24}$ and $Q(a)$ is the 11-dimensional M_{24} Todd module.
2. For $X \in \Gamma_{2}, \Gamma_{X}$ is the rank 2 geometry of duads and hexads (defined on the Steiner system $S(3,6,22)), G_{X} / Q(X) \cong M_{22}: 2$ and $Q(X) \cong 2^{1+12} .3$ with $O_{2}\left(G_{X}\right)=O_{2}(Q(X))$ the extraspecial group of order 2^{13}.

We note that the maximal 2-local geometry for J_{4} possesses both of these properties. Now suppose \mathcal{G} is the point line collinearity graph for such a geometry, and hence \mathcal{G} is the point line collinearity graph for the maximal 2-local geometry for J_{4}; we have the following theorem.

Theorem 2.2.1 (P. Rowley and L. Walker). Let \mathcal{G} be the point line collinearity graph for the geometry Γ defined above and suppose $a \in \Gamma_{0}$. Then

1. $|\Gamma|=173,067,379$.
2. \mathcal{G} has diameter 3 .
3. \mathcal{G} consists of seven orbits as G_{a} acts on Γ_{0}, labeled $a, \Delta_{1}(a), \Delta_{2}^{1}(a), \Delta_{2}^{2}(a)$, $\Delta_{2}^{3}(a), \Delta_{3}^{1}(a)$ and $\Delta_{3}^{2}(a)$.
4. $\left|\Delta_{1}(a)\right|=2^{2}$.3.5.11.23, $\left|\Delta_{1}^{2}(a)\right|=2^{4} .7 .11 .23,\left|\Delta_{2}^{2}(a)\right|=2^{7} .3 .5 .7 .11 .23,\left|\Delta_{2}^{3}(a)\right|=$ 2^{11}.32.7.11.23, $\left|\Delta_{3}^{1}(a)\right|=2^{11} .3 .5 .7 .11 .23$ and $\left|\Delta_{3}^{2}(a)\right|=2^{18} .3^{2} .5 .7$.

In [26] and [27], Rowley and Walker calculated the point line collinearity graph for the maximal 2-local geometry for the Baby Monster $B M$. As in the J_{4} case, they didn't assume the group G was $B M$, and only assumed that Γ was a rank 4 geometry, with G a subgroup of $A u t(\Gamma)$ with the following properties:

1. Γ is a string geometry.
2. For $l \in \Gamma_{1},\left|\Gamma_{0}(l)\right|=3$ and two collinear points in Γ determine a unique line.
3. For $a \in \Gamma_{0}$ and $X \in \Gamma_{3}, \Gamma_{a}$ is isomorphic to the $C o_{2}$-minimal parabolic geometry and Γ_{X} is isomorphic to a projective 3 -space geometry (over $\mathrm{GF}(2)$).
4. G acts flag transitively on Γ.
5. For $a \in \Gamma_{0}, G_{a} \cong 2^{1+22} C o_{2}, Q(a) \cong 2^{1+22}=O_{2}\left(G_{a}\right)$ and $Z_{1}(a)=Z\left(G_{a}\right)=$ $Z(Q(a))=\mathbb{Z}_{2}$. Moreover $Q(a) / Z(Q(a))$ is isomorphic to the irreducible 22dimensional $G F(2) \mathrm{Co}_{2}$ module which occurs as a composition factor in the Leech lattice reduced mod 2 .
6. Let $l \in \Gamma_{1}$ and $X \in \Gamma_{3}$, then $G_{l} \cong 2^{2+10+20}\left(S_{3} \times M_{22} .2\right)$ has a unique minimal normal subgroup of order 2^{2} and $G_{X} \cong 2^{9+16+6+4} L_{4}(2)$ with $Q(X)=O_{2}\left(G_{X}\right) \cong$ $2^{9+16+6+4}$.

Note that all the properties above hold for $G=B M$ and Γ the maximal 2-local geometry for G. They proved the following theorem:

Theorem 2.2.2 (P. Rowley and L. Walker). Let \mathcal{G} be the point line collinearity graph for the geometry Γ described above and let $a \in \mathcal{G}$. Then

1. \mathcal{G} has diameter 4 .
2. $\Delta_{1}(a)$ consists of a single G_{a} orbit, as G_{a} acts on the vertices of \mathcal{G}.
3. $\Delta_{2}(a)$ consists of three G_{a} orbits.
4. $\Delta_{3}(a)$ consists of four G_{a} orbits.
5. $\Delta_{4}(a)$ consists of a single G_{a} orbit.

In [40], Rowley and Taylor studied the point line collinearity graphs for the minimal parabolic geometries for the sporadic simple groups $H N$ and $T h$, geometries closely related to the maximal 2-local geometries. These graphs are of interest because they appear in full as subgraphs of the point line collinearity graph for the
maximal 2-local geometry of the Monster sporadic simple group. They proved the following two theorems:

Theorem 2.2.3 (P. Rowley and P. Taylor). Let \mathcal{G} be the point line collinearity graph for the minimal parabolic geometry Γ for the Thompson sporadic simple group $T h$. Then \mathcal{G} has diameter 5 and for a fixed vertex a, the discs of \mathcal{G} break up into the following orbits, as G_{a} acts on the vertices of \mathcal{G}.

1. $\left|\Delta_{1}(a)\right|=270$ and consists of a single G_{a} orbit.
2. $\left|\Delta_{2}(a)\right|=64,800$ and consists of two G_{a} orbits.
3. $\left|\Delta_{3}(a)\right|=15,060,480$ and consists of six G_{a} orbits.
4. $\left|\Delta_{4}(a)\right|=858,497,006$ and consists of twenty G_{a} orbits.
5. $\left|\Delta_{5}(a)\right|=103,219,200$ and consists of two G_{a} orbits.

Theorem 2.2.4 (P. Rowley and P. Taylor). Let \mathcal{G} be the point line collinearity graph for the minimal parabolic geometry Γ for the Harada-Norton sporadic simple group $H N$. Then \mathcal{G} has diameter 5 and for a fixed vertex a, the discs of \mathcal{G} break up into the following orbits, as G_{a} acts on the vertices of \mathcal{G}.

1. $\left|\Delta_{1}(a)\right|=150$ and consists of a single G_{a} orbit.
2. $\left|\Delta_{2}(a)\right|=17,760$ and consists of three G_{a} orbits.
3. $\left|\Delta_{3}(a)\right|=1,638,400$ and consists of eight G_{a} orbits.
4. $\left|\Delta_{4}(a)\right|=68,721,664$ and consists of fifty G_{a} orbits.
5. $\left|\Delta_{5}(a)\right|=3,686,400$ and consists of three G_{a} orbits.

For both of these graphs they translated the geometric definition of \mathcal{G} into a group theoretic definition, then used Magma to calculate the graphs. This translation worked in the following way. If x is a point in either of the geometries in question, then it is true that $G_{x}=C_{G}\left(i_{x}\right)$ where i_{x} is an involution in G and $Z\left(G_{x}\right)=\left\langle i_{x}\right\rangle$.

Therefore we may identify Γ_{0} with the conjugacy class $X=i_{x}^{G}$. Under this translation two points $x, y \in X$ are joined by an edge if and only if $y \in O_{2}\left(C_{G}(x)\right)$, and thus this graph is closely related to the commuting involution graph. After this translation calculation of the structure of \mathcal{G} for both the groups $T h$ and $H N$ using Magma was relatively simple as the size of both of the groups in question is relatively small.

Rowley and Walker calculated the point line collinearity graph for the maximal 2-local geometry for $F i_{23}$; this was a substantial amount of work and is spread over three papers [31], [32] and [33]. They proved that the graph \mathcal{G} has diameter 4, with the following orbit decomposition with respect to a fixed vertex t.

1. $\Delta_{1}(t)$ has size 506 and consists of a single G_{t} orbit.
2. $\Delta_{2}(t)$ has size 141,680 and consists of two G_{t} orbits.
3. $\Delta_{3}(t)$ has size $29,233,920$ and consists of six G_{t} orbits.
4. $\Delta_{4}(t)$ has size $166,371,328$ and consists of six G_{t} orbits.

These calculations were obtained purely by hand, and no machine calculations were used. They quickly proved that the number of points incident with a fixed line was 3 , and any two of these 3 points uniquely determine the line. They studied the graph in a similar way that we will study the $F i_{24}$ graph, by letting $G_{t x}$ act on the set of lines incident with a vertex x, and taking representatives from each of these line orbits. They then calculated the two other points incident with these line orbit representatives, to get a full list of representatives. As there was only a small number of G_{t} orbits, this was possible to do by hand.

In [35], Rowley and Walker calculated the first three discs of the point line collinearity graph for the maximal 2-local geometry for $F i_{24}$. This was relatively straight forward, as the $F i_{23}$ graph embeds itself into the $F i_{24}$ graph, with only two new G_{t} orbits found in the $F i_{24}$ case. These calculations were carried out entirely by hand.

$2.3 \quad F i_{24}$

Let G be Fischer's largest sporadic group $F i_{24}$. We first note that $F i_{24}$ is itself not simple, however its derived group $F i_{24}^{\prime}$ is, with $F i_{24}$ its automorphism group. We will let F denote the derived group $F i_{24}^{\prime}$, and thus F is simple. The group G contains four classes of involutions, in Atlas notation denoted $2 A, 2 B 2 C$ and $2 D$. The class $2 C$ generate G, and are the so called 3-transpositions, that is the product of any two involutions in $2 C$ either is 1 if they are the same, an involution if they commute, or an element of order 3 . We will call a maximal set of mutually commuting involutions from $2 A$ a base. It is a fact that for a base $\mathcal{B},|\mathcal{B}|=24$, with any two bases \mathcal{B}_{1} and \mathcal{B}_{2} conjugate in G (see the Atlas for these details).

As defined in section 2.1, we can define the maximal 2-local geometry for G, which we will call Γ. The diagram for this geometry is given in Figure 2.1.

Figure 2.1: The maximal 2-local geometry for $F i_{24}^{\prime}$

0	1	2	3
	()		
M_{24}	$S_{3} \times L_{4}(2)$	$S p_{4}(2)^{\prime} \times L_{3}(2)$	$U_{4}(3) \cdot 2$
2^{11}	2^{8+6}	2^{3+12}	$2^{1+12} 3$

In Figure 2.1, the number given above each vertex is its type, that is point, line, plane, hyper plane, etc and the groups given below are the stabilizers of such a point, line, plane, etc in $F i_{24}^{\prime}$. Note that because this diagram gives the stabilizers inside of $F i_{24}^{\prime}$, the stabilizer of a point in G has shape $2^{12} \cdot M_{24}$.

Now the stabilizer in G of a base \mathcal{B} is isomorphic to $2^{12} \cdot M_{24}$, and since G only contains one conjugacy class of groups of this shape we may identity points of Γ with bases of G. Since G acting by conjugation on $2 C$ has permutation degree 306,936 when studying \mathcal{G} we may work inside $\operatorname{Sym}(306936)$ to make calculations possible. In preparation for this task we prepare a representation for G inside $\operatorname{Sym}(306936)$ using the following code

```
F<a,b1,c1,d1,e1,f1,b2,c2,d2,e2,b3,c3> := FreeGroup(12);
```

```
Rels:={a^2=Id(F),b1^2=Id(F),c1^2=Id(F),d1^2=Id(F),e1^2=Id(F),
    f1^2=Id(F),b2^2=Id(F),c2^2=Id(F),d2^2=Id(F),e2^2=Id(F),
    b3^2=Id(F),c3^2=Id(F),
    (a*b1)^3=Id(F),(a*c1)^2=Id(F),(a*d1)^2=Id(F),(a*e1)^2=Id(F),
    (a*b2)^3=Id}(F),(a*c2)^2=Id(F),(a*d2)^2=Id(F),(a*e2)^2=Id(F)
    (a*b3)^3=Id(F),(a*c3)^2=Id(F),(b1*c1)^3=Id(F),(b1*d1)^2=Id(F),
    (b1*e1)^2=Id(F),(b1*b2)^2=Id(F),(b1*c2)^2=Id(F),(b1*d2)^2=Id(F),
    (b1*e2)^2=Id(F),(b1*b3)^2=Id(F),(b1*c3)^2=Id(F),(c1*d1)^3=Id(F),
    (c1*e1)^2=Id(F),(c1*b2)^2=Id(F),(c1*c2)^2=Id(F),(c1*d2)^2=Id(F),
    (c1*e2)^2=Id(F),(c1*b3)^2=Id(F),(c1*c3)^2=Id(F),(d1*e1)^3=Id(F),
    (d1*b2)^2=Id}(F),(d1*c2)^2=Id(F),(d1*d2)^2=Id(F),(d1*e2)^2=Id(F)
    (d1*b3)^2=Id(F),(d1*c3)^2=Id(F),(e1*b2)^2=Id(F),(e1*c2)^2=Id(F),
    (e1*d2)^2=Id(F),(e1*e2)^2=Id(F),(e1*b3)^2=Id(F),(e1*c3)^2=Id(F),
    (b2*c2)^3=Id}(F),(b2*d2)^2=Id(F),(b2*e2)^2=Id(F),(b2*b3)^2=Id(F)
    (b2*c3)^2=Id(F),(c2*d2)^3=Id(F),(c2*e2)^2=Id(F),(c2*b3)^2=Id(F),
    (c2*c3)^2=Id}(F),(d2*e2)^3=Id(F),(d2*b3)^2=Id(F),(d2*c3)^2=Id(F)
    (e2*b3)^2=Id(F),(e2*c3)^2=Id(F),(b3*c3)^ 3 = Id (F),
    (a*b1*c1*a*b2*c2*a*b3*c3)^10=Id(F),
    (f1*e1)^3=Id(F),(f1*d1)^2=Id(F),(f1*c1)^2=Id(F),(f1*b1)^2=Id(F),
    (f1*a)^2=Id(F),(f1*b2)^2=Id(F),(f1*c2)^2=Id(F),(f1*d2)^2=Id(F),
    (f1*e2)^2=Id(F),(f1*b3)^2=Id(F),(f1*c3)^2=Id(F),
    f1=(a*b1*c1*d1*b2*c2*b3)^9,f1=(a*b1*c1*d1*b2*b3*c3)^9};
```

Y442 := quo<Fr|Rels>;
S:=\{a,b1,c1,d1,e1,f1,b2,c2,d2,b3,c3,
($\left.\mathrm{a} * \mathrm{~b} 1 * \mathrm{c} 1 * \mathrm{~d} 1 * \mathrm{e} 1 * \mathrm{f} 1 * \mathrm{a} * \mathrm{~b} 2 * \mathrm{c} 2 * \mathrm{~d} 2 * \mathrm{e} 2 * \mathrm{a} * \mathrm{~b} 3 * \mathrm{c} 3)^{\wedge} 17\right\} ;$
H:=sub<Y442|S>;
m, G := CosetAction(Y442,H);

```
g1 := m(f1);
g2 := m((f1*d1)^e1);
g3 := m((d1*b1)^c1);
g4 := m((b1*b2)^a);
g5 := m((b2*d2)^c2);
g6 := m((d2*f2) ^e2);
g7 := m((b1*b3)^a);
g8 := m((b2*b3) ^a);
g9 := m((b1*a*b2*b3*c3)^4);
```

This presentation is based on a Y-type diagram given in the AtLas, we recall that $Y_{542}=Y_{442} \cong 3 F i_{24}$. We note that $G \cong F i_{24}$ is generated by 12 permutations, which we will call $a 1, \ldots a 12$. For ease of use later on we will save these permutations in a file Fi24perms.m and let G be the subgroup of Sym(306936) generated by them. The elements $g 1, \ldots, g 9$ generate a subgroup of shape $2^{12} M_{24}$ which will play the part of G_{a} in our calculations.

Now let $x \in \Gamma_{0}$, that is x is a point of Γ, then by our previous observation, we may identify x with a base of G, which we will denote Ω_{x}. So in particular $\left|\Omega_{x}\right|=24$ and G_{x}, the stabilizer of Ω_{x} in G has shape $2^{12} . M_{24}$. More importantly G_{x} acts on Ω_{x}, with the induced action being the standard action of M_{24} on a 24 point set. Therefore when studying Γ we may use the powerful machinery of Curtis's Miracle Octad Generator (the MOG) [14]. From this point of view the lines of Γ incident with x can be identified with the octads of Ω_{x}. If we consult the AtLAS, we see that the octads of Ω_{x} are precisely the subsets of Ω_{x} of size 8 which product to 1 in G (recall that all involutions in Ω_{x} commute). As we are considering the standard action of M_{24} on a 24 point set, there are 759 such octads for each base x. Therefore we can now describe \mathcal{G} in a more accessible way. Indeed, the vertices of \mathcal{G} are the bases of
G, with two vertices Ω_{x} and Ω_{y} joined by an edge if and only if $\Omega_{x} \cap \Omega_{y}$ is an octad of either Ω_{x} or Ω_{y}. We now note that G acts transitively on the set of bases of G, therefore if $\Omega_{x} \cap \Omega_{y}$ is an octad of Ω_{x} then it is also an octad of Ω_{y} and vice versa.

We will now introduce an important tool when studying this graph, that of the transposition profile. For $a \in \Gamma_{0}$, we can let G_{a} act on the set of 3-transpositions for G. In our setup this corresponds to letting G_{a} act on the set $\Omega=\{1 \ldots 306936\}$ with the standard permutation action. Then Ω splits into 3 orbits of sizes $24,24,288$ and 282,624 (see the Atlas for these details). The first orbit corresponds to the base Ω_{a}, the second we will call the cctadic transpositions and denote \mathcal{O}_{a}, and third the duadic transpositions, denoted \mathcal{D}_{a}. So for a base Ω_{y} of G, we assign $l_{1}=\left|\Omega_{y} \cap \Omega_{a}\right|$, $l_{2}=\left|\Omega_{y} \cap \mathcal{O}_{a}\right|$ and $l_{3}=\left|\Omega_{y} \cap \mathcal{D}_{a}\right|$. Then $l_{1}\left|l_{2}\right| l_{3}$ will be referred to as the transposition profile for Ω_{y} (with respect to Ω_{a}). Clearly if two bases Ω_{x} and Ω_{y} are in the same G_{a} orbit then they will have the same transposition profile. Therefore this gives us a useful and easily calculated G_{a} orbit invariant. However the opposite is far from true, for example the orbits $\Delta_{3}^{9}(a)$ and $\Delta_{4}^{7}(a)$ both have transposition profile $1|1| 22$ with respect to Ω_{a}.

The main results from this investigation are given in the following two theorems. We first remark that as G acts on the set of bases of G, G induces graph automorphisms on \mathcal{G}. As this action is transative the disc structure of \mathcal{G} will not depend on the original choice of Ω_{a}. We also note that G_{a} acts on the vertices of \mathcal{G} and for any two vertices x and y in the same G_{a} orbit, $d(a, x)=d(a, y)$. Therefore, for a G_{a} orbit X, if $x \in X$ belongs to $\Delta_{i}(a)$ then $X \subseteq \Delta_{i}(a)$. Thus we will break down the discs of \mathcal{G} into their constituent G_{a} orbits. Details of these orbits are given in Theorem 2.3.2. By using Gap and the class structure constants for G, S. Linton [20] calculated the permutation rank, that is the number of orbits as G_{a} acts on the vertices of \mathcal{G} to be 120.

Theorem 2.3.1 (P. Rowley and B. Wright). Let \mathcal{G} be the point line collinearity graph for the maximal 2-local geometry for $F i_{24}$. Then
(i) The diameter of \mathcal{G} is 5 .
(ii) $\left|\Delta_{1}(a)\right|=1518$ and $\Delta_{1}(a)$ is a G_{a} orbit.
(iii) $\left|\Delta_{2}(a)\right|=1,560,504$ and $\Delta_{2}(a)$ consists of three G_{a} orbits.
(iv) $\left|\Delta_{3}(a)\right|=1,400,874,432$ and $\Delta_{3}(a)$ consists of ten G_{a} orbits.
(v) $\left|\Delta_{4}(a)\right|=656,569,113,600$ and $\Delta_{4}(a)$ consists of $46 G_{a}$ orbits.
(vi) $\left|\Delta_{5}(a)\right|=1,845,442,396,160$ and $\Delta_{5}(a)$ consists of $59 G_{a}$ orbits.

Note that the number of orbits in each disc add up to 119 which with the vertex a stabilized by G_{a}, make up the 120 orbits calculated by S. Linton. The next theorem gives more details about each G_{a} orbit. For a representative x of each G_{a} orbit, we present the structure of $G_{a x}$, that is the stabilizer of x in G_{a}. For these groups we mostly use notation from the Atlas, apart from using $\operatorname{Sym}(n), \operatorname{Alt}(n)$ and $\operatorname{Dih}(n)$ for the symmetric, alternating and dihedral groups. For a vertex x of \mathcal{G}, recall that G_{a} has shape $2^{12} \cdot M_{24}$, and F_{a} has shape $2^{11} \cdot M_{24}$. We use Q_{x} to denote the largest normal 2-group of F_{x}, so Q_{x} is elementary abelian of order 2^{11}. The final column of the table below lists the sizes of the sets $F_{a x} \cap Q_{x}$. Finally all transposition profiles given in the table below are with respect to a.

Theorem 2.3.2 (P. Rowley and B. Wright). For $i=1, \ldots, 5, \Delta_{i}(a)$ is the union of the F_{a}-orbits $\Delta_{i}^{j}(a)$ as detailed in the table below.

Table 2.1: T The Orbits of \mathcal{G}

$\Delta_{i}^{j}(a)$	$\left\|\Delta_{i}^{j}(a)\right\|$	Transposition Profile	Structure of $F_{a x}$	$\left\|F_{a x} \cap Q_{x}\right\|$
$\Delta_{0}^{1}(a)$	1	$24\|0\| 0$	$2^{11} . M_{24}$	2048
$\Delta_{1}^{1}(a)$	1518	$8\|16\| 0$	$2^{10} .2^{4} . A l t(8)$	1024
$\Delta_{2}^{1}(a)$	30360	$0\|24\| 0$	$2^{9} .2^{6} .\left(L_{3}(2) \times 3\right)$	512
$\Delta_{2}^{2}(a)$	170016	$4\|20\| 0$	$2^{7} .2^{6} .3 . \operatorname{Sym}(5)$	128
$\Delta_{2}^{3}(a)$	1360128	$2\|6\| 16$	$2^{5} .2^{4} . \operatorname{Sym}(6)$	32
$\Delta_{3}^{1}(a)$	282624	$2\|0\| 22$	$2 . M_{22} .2$	2
$\Delta_{3}^{2}(a)$	566720	$0\|24\| 0$	$2^{7} .2^{6} .3 .3^{2} .4$	128

$\Delta_{3}^{3}(a)$	1036288	$3\|21\| 0$	$2^{2} . L_{3}(4) . S y m(3)$	4	
$\Delta_{3}^{4}(a)$	11658240	$2\|14\| 8$	$2^{4} .2^{3} .\left(L_{3}(2) \times 2\right)$	16	
$\Delta_{3}^{5}(a)$	21762048	$2\|16\| 6$	$2.2{ }^{4} . \operatorname{Sym}(6)$	2	
$\Delta_{3}^{6}(a)$	40803840	0\|8	16	$2^{3} .2^{2} .2^{4} . \operatorname{Sym}(4)$	8
$\Delta_{3}^{7}(a)$	40803840	$0\|8\| 16$	$2^{4} .2^{2} .2^{3} . \operatorname{Sym}(4)$	16	
$\Delta_{3}^{8}(a)$	108810240	$1\|7\| 16$	$2^{2} .2^{2} .2^{2} .3 . \operatorname{Sym}(4)$	4	
$\Delta_{3}^{9}(a)$	522289152	$1\|1\| 22$	$2^{4} . \operatorname{Alt}(5)$	1	
$\Delta_{3}^{10}(a)$	652861440	$0\|2\| 22$	2.2.2 ${ }^{3} \operatorname{Sym}(4)$	2	
$\Delta_{4}^{1}(a)$	11658240	$0\|16\| 8$	$2^{4} .2^{4} . L_{3}(2)$	16	
$\Delta_{4}^{2}(a)$	11658240	$0\|16\| 8$	$2^{4} .2^{4} . L_{3}(2)$	16	
$\Delta_{4}^{3}(a)$	24870912	$1\|15\| 8$	Alt (8)	1	
$\Delta_{4}^{4}(a)$	65286144	$0\|0\| 24$	$2.2^{6} . \operatorname{Alt}(5)$	2	
$\Delta_{4}^{5}(a)$	93265920	$0\|2\| 22$	$2.2{ }^{4} . L_{3}(2)$	2	
$\Delta_{4}^{6}(a)$	93265920	$0\|2\| 22$	$2.24 . L_{3}(2)$	2	
$\Delta_{4}^{7}(a)$	198967296	$1\|1\| 22$	Alt (7)	1	
$\Delta_{4}^{8}(a)$	217620480	0\|8	16	$2^{6} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1
$\Delta_{4}^{9}(a)$	217620480	0\|8	16	$2^{6} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1
$\Delta_{4}^{10}(a)$	217620480	0\|8	16	$2^{2} \cdot 2^{4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	4
$\Delta_{4}^{11}(a)$	217620480	0\|8	16	$2^{2} \cdot 2^{4} \cdot(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	4
$\Delta_{4}^{12}(a)$	244823040	$0\|8\| 16$	$2^{3} .2^{2} .2^{3} .2^{3}$	8	
$\Delta_{4}^{13}(a)$	326430720	${ }_{0}\|0\| 24$	$2.22^{4} .2^{4} .3$	2	
$\Delta_{4}^{14}(a)$	652861440	$0\|10\| 14$	$2.2^{2} .2^{4} . \operatorname{Sym}(3)$	2	
$\Delta_{4}^{15}(a)$	652861440	$0\|10\| 14$	$2.2^{2} .2^{4} . \operatorname{Sym}(3)$	2	
$\Delta_{4}^{16}(a)$	746127360	$1\|9\| 14$	2. $L_{3}(2) .2$	2	
$\Delta_{4}^{17}(a)$	759693312	$1\|11\| 12$	$L_{2}(11)$	1	
$\Delta_{4}^{18}(a)$	870481920	$1\|3\| 20$	$2^{6} .3^{2}$	1	
$\Delta_{4}^{19}(a)$	1305722880	0\|6	18	$2.2^{5} . \operatorname{Sym}(3)$	2
$\Delta_{4}^{20}(a)$	1305722880	0\|6	18	$2.2^{5} . \operatorname{Sym}(3)$	2
$\Delta_{4}^{21}(a)$	1392771072	1\|5	18	$(3 \times \operatorname{Alt}(5)) .2$	1
$\Delta_{4}^{22}(a)$	2611445760	$0\|4\| 20$	$2^{2} \cdot 2^{3} \cdot \operatorname{Sym}(3)$	1	

$\Delta_{4}^{23}(a)$	2611445760	$0\|4\| 20$	$2^{5} . \operatorname{Sym}(3)$	1	
$\Delta_{4}^{24}(a)$	2611445760	$0\|4\| 20$	$2.2{ }^{4} . \operatorname{Sym}(3)$	2	
$\Delta_{4}^{25}(a)$	3917168640	$0\|0\| 24$	$2^{2} .2^{5}$	1	
$\Delta_{4}^{26}(a)$	3917168640	0\|6	18	$2.2^{3} .2^{3}$	2
$\Delta_{4}^{27}(a)$	5222891520	$0\|2\| 22$	$2.2^{3} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{28}(a)$	5222891520	$0\|6\| 18$	$2^{4} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{29}(a)$	5222891520	0\|6	18	$2^{4} . \operatorname{Sym}(3)$	1
$\Delta_{4}^{30}(a)$	5222891520	0\|6	18	$2.2^{3} \cdot \operatorname{Sym}(3)$	2
$\Delta_{4}^{31}(a)$	5222891520	$0\|6\| 18$	$2.2^{3} \cdot \operatorname{Sym}(3)$	2	
$\Delta_{4}^{32}(a)$	6963855360	$0\|0\| 24$	$2^{2} .(3 \times 3) .2$	1	
$\Delta_{4}^{33}(a)$	6963855360	$0\|0\| 24$	$2^{2} .(3 \times 3) .2$	1	
$\Delta_{4}^{34}(a)$	10445783040	$0\|2\| 22$	$2^{3} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{35}(a)$	10445783040	${ }_{0}\|2\| 22$	$2^{3} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{36}(a)$	10445783040	${ }_{0}\|2\| 22$	$2^{3} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{37}(a)$	10445783040	$0\|2\| 22$	$2^{3} \cdot \operatorname{Sym}(3)$	1	
$\Delta_{4}^{38}(a)$	15668674560	$0\|2\| 22$	$2^{3} .2^{2}$	1	
$\Delta_{4}^{39}(a)$	15668674560	${ }_{0}\|2\| 22$	$2^{3} .2^{2}$	1	
$\Delta_{4}^{40}(a)$	41783132160	${ }_{0}\|2\| 22$	$\operatorname{Dih}(12)$	1	
$\Delta_{4}^{41}(a)$	50139758592	${ }_{0}\|1\| 23$	$\operatorname{Dih}(10)$	1	
$\Delta_{4}^{42}(a)$	50139758592	${ }_{0}\|1\| 23$	$\operatorname{Dih}(10)$	1	
$\Delta_{4}^{43}(a)$	626746988240	${ }_{0}\|2\| 22$	2^{3}	1	
$\Delta_{4}^{44}(a)$	626746982240	${ }_{0}\|2\| 22$	2^{3}	1	
$\Delta_{4}^{45}(a)$	125349396480	${ }_{0}\|1\| 23$	2^{2}	1	
$\Delta_{4}^{46}(a)$	125349396480	$0\|1\| 23$	2^{2}	1	
$\Delta_{5}^{1}(a)$	24870912	$0\|16\| 8$	Alt (8)	1	
$\Delta_{5}^{2}(a)$	24870912	0\|16	8	Alt (8)	1
$\Delta_{5}^{3}(a)$	232128512	${ }_{0}\|6\| 18$	3.Sym(6)	1	
$\Delta_{5}^{4}(a)$	232128512	${ }_{0}\|6\| 18$	$3 . \operatorname{Sym}(6)$	1	
$\Delta_{5}^{5}(a)$	870481920	${ }_{0}\|4\| 20$	$2^{4} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1	
$\Delta_{5}^{6}(a)$	870481920	$0\|4\| 20$	$2^{4} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1	

$\Delta_{5}^{7}(a)$	2611445760	$0\|4\| 20$	$2^{5} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{8}(a)$	2611445760	$0\|4\| 20$	$2^{5} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{9}(a)$	2611445760	$0\|4\| 20$	$2^{5} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{10}(a)$	2611445760	$0\|4\| 20$	$2^{5} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{11}(a)$	2984509440	$0\|2\| 22$	$L_{3}(2)$	1	
$\Delta_{5}^{12}(a)$	2984509440	$0\|2\| 22$	$L_{3}(2)$	1	
$\Delta_{5}^{13}(a)$	3481927680	$0\|2\| 22$	$2^{2} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1	
$\Delta_{5}^{14}(a)$	3481927680	$0\|2\| 22$	$2^{2} .(\operatorname{Sym}(3) \times \operatorname{Sym}(3))$	1	
$\Delta_{5}^{15}(a)$	3917168640	0\|0	24	$2^{2} .2^{5}$	1
$\Delta_{5}^{16}(a)$	4642570240	$0\|3\| 21$	$3_{+}^{1+2} .2^{2}$	1	
$\Delta_{5}^{17}(a)$	4642570240	$0\|3\| 21$	$3_{+}^{1+2} .2^{2}$	1	
$\Delta_{5}^{18}(a)$	4642570240	0\|9	15	$3_{+}^{1+2} .2^{2}$	1
$\Delta_{5}^{19}(a)$	4642570240	0\|9	15	$3_{+}^{1+2} .2^{2}$	1
$\Delta_{5}^{20}(a)$	7958691840	$0\|3\| 21$	3.7.3	1	
$\Delta_{5}^{21}(a)$	8356626432	0\|6	18	Alt (5)	1
$\Delta_{5}^{22}(a)$	8356626432	$0\|6\| 18$	Alt (5)	1	
$\Delta_{5}^{23}(a)$	10445783040	$0\|6\| 18$	$2^{3} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{24}(a)$	10445783040	0\|6	18	$2^{3} . \operatorname{Sym}(3)$	1
$\Delta_{5}^{25}(a)$	10445783040	$0\|2\| 22$	$2^{3} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{26}(a)$	10445783040	$0\|2\| 22$	$2^{3} . \operatorname{Sym}(3)$	1	
$\Delta_{5}^{27}(a)$	13927710720	$0\|4\| 20$	$\operatorname{Sym}(3) \times \operatorname{Sym}(3)$	1	
$\Delta_{5}^{28}(a)$	13927710720	$0\|4\| 20$	$\operatorname{Sym}(3) \times \operatorname{Sym}(3)$	1	
$\Delta_{5}^{29}(a)$	13927710720	$0\|7\| 17$	$\operatorname{Sym}(3) \times \operatorname{Sym}(3)$	1	
$\Delta_{5}^{30}(a)$	15668674560	$0\|4\| 20$	2^{1+4}	1	
$\Delta_{5}^{31}(a)$	15668674560	$0\|2\| 22$	$2^{3} .2^{2}$	1	
$\Delta_{5}^{32}(a)$	15668674560	$0\|2\| 22$	$2^{3} .2^{2}$	1	
$\Delta_{5}^{33}(a)$	20891566080	$0\|2\| 22$	Sym(4)	1	
$\Delta_{5}^{34}(a)$	20891566080	$0\|2\| 22$	Sym(4)	1	
$\Delta_{5}^{35}(a)$	25069879296	$0\|0\| 24$	$\operatorname{Dih}(20)$	1	
$\Delta_{5}^{36}(a)$	41783132160	$0\|0\| 24$	$\operatorname{Dih}(12)$	1	

$\Delta_{5}^{37}(a)$	41783132160	$0\|3\| 21$	Dih(12)	1
$\Delta_{5}^{38}(a)$	41783132160	$0\|3\| 21$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{39}(a)$	41783132160	$0\|3\| 21$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{40}(a)$	41783132160	$0\|3\| 21$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{41}(a)$	41783132160	$0\|3\| 21$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{42}(a)$	41783132160	$0\|3\| 21$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{43}(a)$	41783132160	$0\|1\| 23$	Dih(12)	1
$\Delta_{5}^{44}(a)$	41783132160	$0\|1\| 23$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{45}(a)$	41783132160	$0\|1\| 23$	$\operatorname{Dih}(12)$	1
$\Delta_{5}^{46}(a)$	41783132160	$0\|1\| 23$	Dih(12)	1
$\Delta_{5}^{47}(a)$	50139758592	$0\|1\| 23$	Dih(10)	1
$\Delta_{5}^{48}(a)$	62674698240	$0\|0\| 24$	2×4	1
$\Delta_{5}^{49}(a)$	62674698240	$0\|4\| 20$	2×4	1
$\Delta_{5}^{50}(a)$	62674698240	$0\|4\| 20$	2×4	1
$\Delta_{5}^{51}(a)$	62674698240	$0\|2\| 22$	2×4	1
$\Delta_{5}^{52}(a)$	62674698240	$0\|2\| 22$	2×4	1
$\Delta_{5}^{53}(a)$	62674698240	$0\|2\| 22$	2×4	1
$\Delta_{5}^{54}(a)$	62674698240	$0\|2\| 22$	2×4	1
$\Delta_{5}^{55}(a)$	83566264320	$0\|0\| 24$	6	1
$\Delta_{5}^{56}(a)$	83566264320	$0\|1\| 23$	Sym(3)	1
$\Delta_{5}^{57}(a)$	83566264320	$0\|1\| 23$	$\operatorname{Sym}(3)$	1
$\Delta_{5}^{58}(a)$	125349396480	$0\|3\| 21$	2^{2}	1
$\Delta_{5}^{59}(a)$	250698792960	$0\|1\| 23$	2	1

The final result of this chapter is the collapsed adjacency matrix for \mathcal{G}. This is a 120 by 120 matrix with entries $a_{i j}$ detailing the number of elements in the j th orbit which are connected to a single fixed element in the i th orbit. Since this is a rather unwieldy beast it has been demoted to the end of the chapter, however a more usable electronic version will also be included.

2.4 Calculating the Discs

During these calculations we will work inside the 306,936 degree permutation representation of G, as G acts on its 3-transpositions. Obviously the set $\Omega=\{1 \ldots 306936\}$ represents the actual transpositions with the bases of G being certain subsets of Ω of size 24 . We firstly run the following code to get our hands on a copy of $2^{12} \cdot M_{24}$ inside G, which we will call G_{a}.

```
Ga := sub<Glg1,g2,g3,g4,g5,g6,g7,g8,g9>;
a := Orbit(Ga,1);
b := a^G.10;
```

As G only has one conjugacy class of subgroups of the shape $2^{12} \cdot M_{24}$, the group G_{a} must be the stabilizer of some base in G. By asking Magma for the orbits as G_{a} acts on Ω we can recover the base Ω_{a} which we will assume to be the centre of our graph, that is the point from which each disc of \mathcal{G} will be measured, as well as \mathcal{O}_{a} and \mathcal{D}_{a}, the octadic and duadic transpositions.

Within our representation we have an element called a_{10}, the 10 th generator of $F i_{24}$, which takes the base Ω_{a} to Ω_{b}, where a and b are adjacent in \mathcal{G}. Now for any vertex x of \mathcal{G} and octad X of Ω_{x} there are two vertices y_{1} and y_{2} such that the bases $\Omega_{y_{1}}$ and $\Omega_{y_{2}}$ intersect Ω_{x} in X. In fact the octad X corresponds to a line l in Γ, with the three points x, y_{1}, y_{2} incident with l, with two of x, y_{1}, y_{2} determining l uniquely. With this in mind, let a, b, b^{\prime} be the three points incident with the line determined by a and b. Let $O=\Omega_{a} \cap \Omega_{b}\left(=\Omega_{a} \cap \Omega_{b^{\prime}}=\Omega_{b} \cap \Omega_{b^{\prime}}\right)$ and l be the corresponding line in Γ then

```
twiddle := g1^(g2*g3*g4*g5);
```

is an element of G which interchanges b and b^{\prime} and stabilizes a. The following code also defines a subgroup of shape $2^{12} \cdot 2^{4} \cdot \operatorname{Alt}(8)$

```
Gal := sub<Flg1,g2,g3,g4,g6,g7,g8,g9,g1`g5,g2^g5,g3`g5,g7`g5,
g1^(g2*g5),g1^(g2*g3*g5),g1^(g3*g5),g1^(g4,g5),g1^(g2*g4*g5),
g1^(g2*g3*g4*g5),g1^(g3*g4*g5)>;
```

This subgroup, named $G_{a l}$, is the stabilizer of both the base Ω_{a} and the octad O. We have also created an array Tran which contains a transversal for $G_{a l}$ in G_{a} of size 759. At this point we remark on the way that we store elements of G. As we wish to store quite a few elements of G, we thought it best not to store them as actual permutations as this would require a lot of memory. So instead we store an element x of G as an array $\left[g_{i_{1}}, \ldots g_{i_{n}}\right]$ representing a word for x in the generators $g_{1} \ldots g_{9}$. We have created functions called MultiplyRandomWord and RandomWord used to create and convert these arrays and the use of these functions will be explained in Section 2.5. Using the array Tran and our original octad O, we can now create all the octads of Ω_{a}, which we will call Octadsa, as well as the first disc of $\mathcal{G}, \Delta_{1}(a)$. Indeed, all the octads of the base Ω_{a} are given by

$$
\text { Octadsa }=\left\{O^{t} \mid t=\operatorname{Tran}[i], 1 \leq i \leq 759\right\} .
$$

For the octad O^{t} where $t=\operatorname{Tran}[i]$, we will refer to i as the octad number for O^{t}. We also have

$$
\begin{aligned}
\Delta_{1}(a) & =\left\{\Omega_{b}^{h} \mid h=\operatorname{Tran}[i], 1 \leq i \leq 759\right\} \cup\left\{\Omega_{b}^{(\text {twiddle } * h)} \mid h=\operatorname{Tran}[i], 1 \leq i \leq 759\right\} \\
& =\left\{\Omega_{a}^{\left(a_{10} * h\right)} \mid h=\operatorname{Tran}[i], 1 \leq i \leq 759\right\} \cup\left\{\Omega_{a}^{\left(a_{10} * \text { twiddle } * h\right)} \mid h=\operatorname{Tran}[i], 1 \leq i \leq 759\right\} .
\end{aligned}
$$

Now as G acting on the vertices of \mathcal{G} acts as a graph automorphism, \mathcal{G} must be a regular graph. The calculation above shows that the valency of \mathcal{G} is 1518, a remarkably low number, which makes these calculations possible. Another useful observation is that we may swing around Octadsa and $\Delta_{1}(a)$ to get the octads and neighbours for any other vertex x. Indeed if $\Omega_{a}^{g}=\Omega_{x}$ for some $g \in G$, then if we call the octads of x, octads x we have

$$
\begin{aligned}
\text { Octadsx } & =\text { Octadsa }^{g} \text { and } \\
\Delta_{1}(x) & =\Delta_{1}(a)^{g} .
\end{aligned}
$$

As we create new G_{a} orbits we wish to store a representative Ω_{x}, so instead of storing the base Ω_{x} we felt it was more useful to store a group element g which takes us from our fixed base Ω_{a} to Ω_{x}. As commented on before, instead of actually storing the element g, as we have 120 of these to store, we will instead store a word in the generators of G for g. From work done by hand in [35], we know that $\Delta_{1}(a)$ consists of a single G_{a} orbit, thus we will store the word [a10], the group element which takes us from Ω_{a} to Ω_{b}.

In [35], the authors fully determined the first three discs of \mathcal{G} by hand, so we will proceed as follows to calculate the second and third discs. From [35] we know that $\Delta_{2}(a)$ consists of three G_{a} orbits and $\Delta_{3}(a)$ consists of ten G_{a} orbits. Now $\Delta_{1}(b)$ as calculated before, gives all 1518 neighbours of the vertex b. In [35] the transposition profiles for representatives in the three orbits of $\Delta_{2}(a)$ were calculated and known to be different from a and b, hence we can easily pluck out representatives for the three orbits of $\Delta_{2}(a)$, using the transposition profile as an orbit invariant. We then repeat this procedure on each of these representatives from $\Delta_{2}(a)$ and pluck out the ten representatives for $\Delta_{3}(a)$. However in this case we have a small problem, as two of the orbits in $\Delta_{3}(a)$ have the same transposition profile (both $\Delta_{3}^{6}(a)$ and $\Delta_{3}^{7}(a)$ have the profile $0|8| 16)$, and $\Delta_{3}^{2}(a)$ shares its transposition profile with an orbit from the second disc. The latter is easily solved as we can tell if a point is in $\Delta_{2}(a)$ by checking if it is a neighbor of $\Delta_{1}(a)$, and since $\Delta_{1}(a)$ is small this is computationally easy. To differentiate between the two orbits in $\Delta_{3}(a)$ with profile $0|8| 16$, we use the fact that for $x_{1} \in \Delta_{3}^{6}(a)$ and $x_{2} \in \Delta_{3}^{7}(a)$ there exists an $x_{3} \in \Delta_{1}(a)$ such that $\left|\Omega_{x_{1}} \cap \Omega_{x_{3}}\right|=2$ and $\left|\Omega_{x_{2}} \cap \Omega_{x_{3}}\right|=4$. We should also now note that there is some discrepancy between the orbits named here and those in [34] and [35]. It was decided from an early stage that the orbits of \mathcal{G} should be named in order of stabilizer (in G_{a}) size, starting with the smallest from each disc. This is untrue in [34] and [35], and hence the orbits are labeled slightly differently. To compensate for this we have included a listing in Appendix 6 on how to map orbits of \mathcal{G} in this thesis to orbits in [34] and [35].

Moving out from $\Delta_{3}(a)$ to $\Delta_{4}(a)$ we use the combinatorial data from [34] in the following way. For a representative Ω_{x} from one of the ten G_{a} orbits in $\Delta_{3}(a)$, we let
$G_{a x}$, the stabilizer of x in G_{a} act on Octadsx, the octads of the base Ω_{x}. If we take an octad orbit representative X, then there exists two vertices y and y^{\prime} such that

$$
\Omega_{x} \cap \Omega_{y}=\Omega_{x} \cap \Omega_{y^{\prime}}=\Omega_{y} \cap \Omega_{y^{\prime}}=X
$$

Now suppose that g is the group element that takes us from our fixed vertex a to x and suppose the octad number for X is i, that is X is the i th member of the array Octadsa ${ }^{g}$. Then

$$
\begin{aligned}
\Omega_{y} & =\Omega_{a}^{\left(a_{10} * h * g\right)} \text { and } \\
\Omega_{y}^{\prime} & =\Omega_{a}^{\left(a_{10} * t w i d d l e * h * g\right)}
\end{aligned}
$$

where $h=\operatorname{Tran}[i]$, the element of the array Tran corresponding to the octad number i. Now as we run through all G_{a} orbit representatives x for $\Delta_{3}(a)$ and all $G_{a x}$ orbit representatives as $G_{a x}$ acts on the octads of Ω_{x} we will pick up a G_{a} orbit representative for all the orbits of \mathcal{G} which are distance 1 away from some point in $\Delta_{3}(a)$. As expected some of these points will be in either $\Delta_{2}(a)$ or $\Delta_{3}(a)$. From [35], we know that up to a few easy exceptions that have already been dealt with, the transposition profiles in the first three discs of $\Delta_{3}(a)$ are unique, hence these extra representatives in $\Delta_{2}(a) \cup \Delta_{3}(a)$ can be quickly crossed off our list. Out of the remaining representatives, it is highly possible that many of these are in the same G_{a} orbit. To deal with this, we first use the transposition profiles as an initial sieve, grouping the remaining representatives into sets with the same transposition profile, then using the Magma command IsConjugate inside these subsets to settle matters. As the size of G_{a} is computationally fairly small, we find that IsConjugate takes around 7 seconds on a 3.2 GHz machine with 8 GB of memory. By removing duplicates in this way we are able to give a full list of the G_{a} orbit representatives for $\Delta_{4}(a)$, we found there were 46 of them.

We would quickly like to remark on how we gained the representatives X for the octad orbits, as $G_{a x}$ acts on the octads of a base Ω_{x}. In [34], the authors give
combinatorial data in the form of the MOG for a representative of each of the octad orbits for a representative x from the G_{a} orbits in the first discs of \mathcal{G}. We converted this data in these tables into their corresponding octad numbers by first fixing an octad of x, usually the first one, then running through all the possible octads for x, asking which intersected our fixed octad in a particular number of points, this information being given in the MOG tables. As the size of $G_{a x}$ is also reasonably small, using the Stablizer command in Magma is possible, so we could also use the stabilizer size for a possible octad orbit representative to distinguish between particular octad orbits. We will now give the octad numbers for each octad orbit for each representative x for G_{a} orbits in the first three discs. At this point we would like to stress that the names given here are those quoted in [34], and not the names in this thesis. To convert between the two you can use the table in Appendix 6.
$\Delta_{1}^{1}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
$\Lambda_{1}=\{6032,6158,6734,22973,22975,22977,38858,83012\}$.

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
α_{8}	1	1	α_{2}	448	62
α_{0}	30	248	α_{4}	280	2

$\Delta_{2}^{1}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
Λ_{1} is the partition given by
$\{\{540,573,583,586,590,1177,1192,1200\}$,
$\{306821,306823,306922,306923,306925,306927,306935,306936\}$,
$\{2,43,183,792,948,970,1080,17319\}\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{80^{2}}$	3	1	$\alpha_{42^{2}}$	672	100
$\alpha_{4^{2}}$	84	2			

$\Delta_{2}^{2}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
$\Lambda_{1}=\{22973,22977,38858,83012\}$, and Λ_{2} is the sextet given by $\{\{4,20,77,349\},\{6393,21350,49646,61991\}$,
$\{2951,3008,3320,12882\},\{948,970,1080,17319\}$,
$\{17400,21982,22598,62004\},\{22973,22977,38858,83012\}\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{4,4^{2}}$	5	1	$\alpha_{2,2^{4}}$	240	3
$\alpha_{0,4^{2}}$	10	101	$\alpha_{0,2^{4}}$	120	344
$\alpha_{1,31^{5}}$	320	59	$\alpha_{3,31^{5}}$	64	5

$\Delta_{2}^{3}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
$\Lambda_{1}=\{2,43,948,16365,17319,22977,29733,83012\}$ and
$\Lambda_{2}=\{22977,83012\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,2}$	1	1	$\alpha_{2,1}$	192	62
$\alpha_{2,2}$	16	111	$\alpha_{4,0}$	60	55
$\alpha_{4,2}$	60	2	$\alpha_{2,0}$	240	176
$\alpha_{4,1}$	160	6	$\alpha_{0,0}$	30	248

$\Delta_{3}^{1}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where

$$
\Lambda_{1}=\{22977,83012\}
$$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
α_{2}	77	5	α_{0}	330	55
α_{1}	352	6			

$\Delta_{3}^{2}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ where
Λ_{1} is the sextet whose tetrads are $\{540,573,583,590\},\{300337,301248,301594,305089\}$, $\{300364,300688,301606,305099\},\{948,970,1080,17319\},\{1749,1850,1883,1896\}$, $\{2951,3008,3320,12882\}$.
$\Lambda_{2}=\{540,573,583,590,300337,300364,300688,301248,301594,301606,305089,305099\}$
$\Lambda_{3}=\{948,970,1080,1749,1850,1883,1896,2951,3008,3320,12882,17319\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{4^{2}, 8,0}$	3	751	$\alpha_{2^{4}, 2,6}$	72	3
$\alpha_{4^{2}, 0,8}$	3	1	$\alpha_{2^{4}, 4,4}$	216	100
$\alpha_{4^{2}, 4,4}$	9	723	$\alpha_{31^{5}, 5,3}$	192	114
$\alpha_{2^{4}, 6,2}$	72	214	$\alpha_{31^{5}, 3,5}$	192	5

$\Delta_{3}^{3}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
$\Lambda_{1}=\{22973,22977,83012\}$.

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
α_{3}	21	1	α_{1}	360	6
α_{2}	168	3	α_{0}	210	101

$\Delta_{3}^{4}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}\right\}$ where
$\Lambda_{1}=\{37797,38920,60738,61698,62101,62131,62135,62140\}$
$\Lambda_{2}=\{22977,83012\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,0}$	1	759	$\alpha_{2,2}$	56	8
$\alpha_{0,2}$	7	1	$\alpha_{4,1}$	112	146
$\alpha_{0,0}$	7	26	$\alpha_{4,0}^{(2)}$	112	744
$\alpha_{4,2}$	14	136	$\alpha_{2,0}$	168	49
$\alpha_{0,1}$	16	3	$\alpha_{2,1}$	224	5
$\alpha_{4,0}^{(1)}$	42	745			

$\Delta_{3}^{5}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}\right\}$ where
$\Lambda_{1}=\{479,1125,1151,2252,1151,2252,6955,16379,22977,83012\}$ and
$\Lambda_{2}=\{22977,83012\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,2}$	1	1	$\alpha_{2,1}$	192	62
$\alpha_{2,2}$	16	100	$\alpha_{4,0}$	60	13
$\alpha_{4,2}$	60	2	$\alpha_{2,0}$	240	87
$\alpha_{4,1}$	160	3	$\alpha_{0,0}$	30	248

$\Delta_{3}^{6}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ where
$\Lambda_{1}=\{4,349,970,3320,12882,17319,49646,61991\}$
$\Lambda_{2}=\{11170,12411,12416,12422,20545,20551,20560,22613\}$
Λ_{3} is the partition of Λ_{1} given by $\{4,349\},\{970,17319\},\{3320,12882\}$,
$\{49646,61991\}$.

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,8,2^{4}}$	1	1	$\alpha_{4,0,2^{2}}$	12	400
$\alpha_{0,8,0^{4}}$	1	595	$\alpha_{4,2,1^{4}}$	32	44
$\alpha_{0,0,0^{4}}$	1	635	$\alpha_{4,2,21^{2}}$	192	2
$\alpha_{0,4,0^{4}}^{(1)}$	12	730	$\alpha_{2,2,2}$	32	261
$\alpha_{0,4,0^{4}}^{(2)}$	16	504	$\alpha_{2,4,2}$	32	510
$\alpha_{4,4,1^{4}}$	16	24	$\alpha_{2,2,1^{2}}$	192	408
$\alpha_{4,0,1^{4}}$	16	56	$\alpha_{2,4,1^{4}}$	192	406
$\alpha_{4,4,2^{2}}$	12	113			

$\Delta_{3}^{7}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ where
$\Lambda_{1}=\{43,948,17319,29733\}$
$\Lambda_{2}=\{158373,169472\}$
$\Lambda_{3}=\{182449,194482\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{1,1,0}$	128	653	$\alpha_{3,0,1}$	32	5
$\alpha_{1,0,1}$	128	657	$\alpha_{4,2,2}$	1	136
$\alpha_{1,1,2}$	32	649	$\alpha_{4,0,0}$	4	662
$\alpha_{1,2,1}$	32	292	$\alpha_{0,0,0}^{(1)}$	6	101
$\alpha_{2,2,0}$	24	77	$\alpha_{0,0,0}^{(2)}$	24	607
$\alpha_{2,0,2}$	24	14	$\alpha_{0,2,2}$	4	1
$\alpha_{2,1,1}$	96	24	$\alpha_{0,2,0}$	16	519
$\alpha_{2,0,0}$	96	3	$\alpha_{0,0,2}$	16	511
$\alpha_{3,1,0}$	32	10	$\alpha_{0,1,1}$	64	386

$\Delta_{3}^{8}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ where

$$
\begin{aligned}
& \Lambda_{1}=\{4,970,1080,12882,17319,21350,22598,83012\} \\
& \Lambda_{2}=\{970,1080,17319,83012\} \\
& \Lambda_{3}=\{83012\}
\end{aligned}
$$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,4,1}$	1	1	$\alpha_{4,2,1}$	72	2
$\alpha_{0,0,0}^{(1)}$	6	248	$\alpha_{2,0,0}$	96	491
$\alpha_{0,0,0}^{(2)}$	24	504	$\alpha_{2,1,0}$	192	195
$\alpha_{4,4,1}$	4	15	$\alpha_{2,2,0}$	48	226
$\alpha_{4,1,1}$	16	21	$\alpha_{4,0,0}$	4	102
$\alpha_{2,2,1}$	48	213	$\alpha_{4,1,0}$	48	10
$\alpha_{4,3,1}$	48	17	$\alpha_{4,2,0}$	72	6
$\alpha_{2,1,1}$	64	150	$\alpha_{4,3,0}$	16	65

$\Delta_{3}^{9}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ where
$\Lambda_{1}=\{445,452,1059,1125,16105,17319,28307,83012\}$
$\Lambda_{2}=\{17319\}$
$\Lambda_{3}=\{83012\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,1,1}$	1	1	$\alpha_{4,0,1}^{(2)}$	40	23
$\alpha_{0,0,0}^{(1)}$	10	617	$\alpha_{4,1,1}$	60	2
$\alpha_{2,1,1}$	16	111	$\alpha_{4,0,0}$	60	55
$\alpha_{0,0,0}^{(2)}$	20	248	$\alpha_{2,1,0}$	96	100
$\alpha_{4,1,0}^{(1)}$	40	11	$\alpha_{2,0,1}$	96	300
$\alpha_{4,1,0}^{(2)}$	40	81	$\alpha_{2,0,0}$	240	176
$\alpha_{4,0,1}^{(1)}$	40	13			

$\Delta_{3}^{10}(a), L=\operatorname{Stab}_{G}\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \Lambda_{4}\right\}$ where
$\Lambda_{1}=\{2,445,452,948,1059,1151,16105,16379\}$
$\Lambda_{2}=\{30887,34121,52240,57768,102195,142053,273221,297652\}$
$\Lambda_{3}=\{34642,51319,56950,79889,102237,142051,302809,302904\}$
$\Lambda_{4}=\{2,948\}$

L - Orbit	Size	Octad Number	L - Orbit	Size	Octad Number
$\alpha_{8,0,0,2}$	1	1	$\alpha_{4,4,0,0}$	6	105
$\alpha_{0,8,0,0}$	1	741	$\alpha_{4,0,4,0}$	6	81
$\alpha_{0,0,8,0}$	1	594	$\alpha_{4,2,2,0}$	48	11
$\alpha_{0,4,4,0}^{(1)}$	12	368	$\alpha_{2,2,4,2}$	8	116
$\alpha_{0,4,4,0}^{(2)}$	16	248	$\alpha_{2,4,2,2}$	8	188
$\alpha_{4,4,0,2}$	6	94	$\alpha_{2,2,4,1}$	96	62
$\alpha_{4,0,4,2}$	6	23	$\alpha_{2,4,2,1}$	96	108
$\alpha_{4,2,2,2}$	48	3	$\alpha_{2,4,2,0}^{(1)}$	24	235
$\alpha_{4,4,0,1}$	16	18	$\alpha_{2,4,2,0}^{(2)}$	96	100
$\alpha_{4,0,4,1}$	16	38	$\alpha_{2,2,4,0}^{(1)}$	24	253
$\alpha_{4,2,2,1}^{(1)}$	96	2	$\alpha_{2,2,4,0}^{(2)}$	96	150
$\alpha_{4,2,2,1}^{(2)}$	32	5			

Moving out from $\Delta_{4}(a)$ to $\Delta_{5}(a)$ is far more complicated problem. We now have many more G_{a} orbits to deal with, and for each representative x from the G_{a} orbits in $\Delta_{4}(a)$ we have many more $G_{a x}$ octad orbits, as $G_{a x}$ acts on the octads of Ω_{x}. Thus working out the octad orbit representatives by hand, as was done for the first three discs, would be impractical. Therefore we use the following routine in Magma to calculate all the octad numbers for y a representative of $\Delta_{4}^{j}(a)$, as $G_{a y}$ acts on the octads of Ω_{y}.

1. For a representative $y \in \Delta_{4}^{j}(a)$ calculate \mathcal{O}_{y} the octads of Ω_{y}.
2. Choose an octad $O \in \mathcal{O}_{y}$, note its octad number and calculate $H=\operatorname{Stab}_{G_{a y}}(O)$.
3. Calculate T, a transversal for H in $S t a b_{a y}$, then $\left\{O^{t} \mid t \in T\right\}$ will be an octad orbit as $G_{a y}$ acts on \mathcal{O}_{y}.
4. Let $\mathcal{O}_{y}=\mathcal{O}_{y} \backslash\left\{O^{t} \mid t \in T\right\}$ and go back to 2 , until $\mathcal{O}_{y}=\emptyset$.

This will give us a full list of all the octad numbers for a representative from each of the octad orbits for each representative y of the $46 G_{a}$ orbits in $\Delta_{4}(a)$. Repeating
the process as before we then calculate

$$
\begin{aligned}
& \Omega_{y}=\Omega_{a}^{\left(a_{10} * h * g\right)} \text { and } \\
& \Omega_{y}^{\prime}=\Omega_{a}^{\left(a_{10} * t w i d d l e * h * g\right)}
\end{aligned}
$$

where $h=\operatorname{Tran}[i]$ corresponding to the octad number i in question and h is the group element that takes us from a to our representative y in $\Delta_{4}(a)$. As before we now need to cross off anything in the third and fourth discs, again using the transposition profiles as an initial sieve, which will settle matters for elements in $\Delta_{3}(a)$, and then using IsConjuagte to finish things off. After carrying this out, we will have a list of vertices which are in $\Delta_{5}(a)$ and include a representative for each of the G_{a} orbits. However as in the $\Delta_{4}(a)$ case we will have many repetitions which need to be dealt with. Repeating the process as before, we can deal with these repetitions by using transposition profiles and IsConjuagte. We would like to point out that this took a considerable amount of time, in the region of a week on a 3.2 GHz machine running Magma V2.11-15. Luckily we found there were $59 G_{a}$ orbits in $\Delta_{5}(a)$, giving us a total number of G_{a} orbits found as 120 , the number calculated by S. Linton, proving \mathcal{G} has diameter 5 .

At this point we created a Magma command WhereAmI, which takes as input any base Ω_{x} of G and outputs which orbit of \mathcal{G} the base Ω_{x} belongs to. This function works in the obvious way, firstly calculating the transposition profile for Ω_{x}, and then using the IsConjugate command on all the orbit representative of \mathcal{G} with the same profile as Ω_{x} to determine exactly which orbit Ω_{x} belongs to.

We can now calculate all the neighbor data for our graph \mathcal{G}. That is, we can compute an array named NeighbourData, whose entries are themselves 1518 element arrays. Now say we calculate all 1518 neighbours for the i th orbit representative of \mathcal{G} (where we order all 120 orbits of \mathcal{G} first by which disc they are in, and then by stabilizer size), and suppose the j th neighbour was in orbit $\Delta_{m}^{n}(a)$, then the entry NeighbourData $[i][j]=[m, n]$. This array was calculated as expected, by running through all G_{a} orbit representatives x, calculating all 1518 neighbours of x and then
using WhereAmI on each of them. As expected this was a considerable amount of work, in fact it took in excess of 28 days, running on 10 different machines (each a 3.2 GHz machine running Magma V2.11-15 with 8 GB of memory), giving us a total computational time of 280 days. At this point I would like to apologize to anybody who was trying to run calculations in the Mathematics Department of Manchester University over christmas 2008.

From this neighbour data, working out the collapsed adjacency matrix is very easy, we just needed to run through each of the $120 G_{a}$ orbit representatives and count up the number of neighbours from each G_{a} orbit. As all the hard work is already done this takes a matter of seconds. We give the full collapsed adjacency matrix in Section 2.6.

2.5 The Computer Files

In this section we will give descriptions for all the files associated with the investigation of \mathcal{G}. These files will be included both online at
www.maths.manchester.ac.uk/~ ${ }^{\sim}$ bwright/Fi24.zip
and on CD. We first remark that the easiest way to load all the relevant files is to call the file Fi24load.m in Magma.

Fi24perms.m

In this file we have included the following:

- Generators a_{1}, \ldots, a_{12} of $F i_{24}$ stored as permutations in $\operatorname{Sym}(306936)$.
- Commands to define $G=F i_{24}$ and $F=F i_{24}^{\prime}$.
- Generators g_{1}, \ldots, g_{9}, again stored as permutations in $\operatorname{Sym}(306936)$ which generate G_{a}, a subgroup of shape $2^{12} \cdot M_{24}$. This is the stabilizer of some base Ω_{a} of G, which corresponds to our fixed vertex a of \mathcal{G}.
- The base Ω_{a}, calculated as the smallest of the orbits as G_{a} acts on $\{1, \ldots, 306936\}$ and stored as the set a, as well as \mathcal{O}_{a}, the octadic transpositions for a, stored as $\operatorname{OctTran}$, and the base Ω_{b}, stored as b, a neighbour of a.
- Words in the generators g_{1}, \ldots, g_{9} which generate $G_{a l}$, a subgroup of shape $2^{12} .2^{4} . \operatorname{Alt}(8)$ which is the stabilizer in G_{a} of a line l, corresponding to the octad O of a, which is the intersection of a and b.
- An array named Neighboursa giving all 1518 neighbours of our fixed vertex a in \mathcal{G}. For a base Ω_{x}, such that $\Omega_{x}=\Omega_{a}^{g}$ for some $g \in G$, then the neighbours of x in \mathcal{G} are given by Neighboursa^g.
- A word in the generators of G for the element twiddle. This is the element which takes us from x_{1} to x_{2}, where a, x_{1} and x_{2} are the three points incident with the line l corresponding to the octad $O=\Omega_{a} \cap \Omega_{b}$.

reps_for_all_discs.m

- Contains words in the generators for G for group elements which take us from a to each of the $120 G_{a}$ orbits contained in the five discs of \mathcal{G}. These words are stored as arrays named DisciOrbitj corresponding to a representative in $\Delta_{i}^{j}(a)$. Use the function MultiplyRandomWord to convert this array into a usable group element.
- Contains arrays named Disci, containing the words for all representatives in $\Delta_{i}(a)$.
- Contains the array Orbits, containing all representatives.

MultiplyRandomWord.m

Contains the function MultiplyRandomWord used to convert a word in the generators of G into a usable permutation. To use type
to convert, for example, the representative of $\Delta_{4}^{23}(a)$ into a usable group element, stored in Magma as the element z .

Tran.m

Contains an array named Tran, which contains a transversal for $G_{a l}$ in G_{a}, stored as words in the generators for G. Use the function MultiplyRandomWord to convert these into usable group elements. We remark that since we wanted these elements stored as words instead of actual permutations we couldn't simply use the Transversal command in Magma. This saved a considerable amount of memory - instead of needing 1.5GB to store the transversal, we only need 70 KB . Storing the transversal in this way also guaranteed that we got the same coset representative every time, making our results reproducible. This transversal was produced using the following procedure.

1. Recall that a base Ω_{a} of G is a certain 24 element subset of Ω, where $\Omega=$ $\{1 \ldots 306936\}$. Therefore we calculate the action of each of the generators g_{i} of G_{a} on Ω_{a}. These permutations (in $\left.\operatorname{Sym}(24)\right) \overline{g_{i}}$ will generate a subgroup $\overline{G_{a}}$ of $\operatorname{Sym}(24)$ isomorphic to M_{24}.
2. We now take the image of the generators for $G_{a l}$ under this mapping, to get elements in $\overline{G_{a}}$ which generate a subgroup $\overline{G_{a l}}$ isomorphic to 2^{4}. $\operatorname{Alt}(8)$.
3. By generating random words in $\overline{G_{a}}$, in the generators $\overline{g_{i}}$, we can produce a representative for each of the 759 cosets of $\overline{G_{a l}}$ in $\overline{G_{a}}$.
4. Finally we convert these words in the generators $\overline{g_{i}}$ to exactly the same words in the generators g_{i} (by simply removing the bar) to get a transversal for $G_{a l}$ in G_{a} as required.

Note that this procedure would have been impossible if we had stayed within the group G_{a} in the $\operatorname{Sym}(306936)$ setting, as generating enough random elements to produce representatives for each of the 759 cosets would have taken too long.

TransProfile.m

Contains a function Transprofile(x), which gives the transposition profile for the base Ω_{x}. Note that we have not stored the duadic transpositions for a, however the transposition profile for x can be calculated as $l_{1}\left|l_{2}\right|\left(24-l_{1}-l_{2}\right)$ where $l_{1}=\Omega_{x} \cap \Omega_{a}$ and $l_{2}=\Omega_{x} \cap \mathcal{O}_{a}$.

Octadsa.m

Gives all 759 octads for the base Ω_{a}, stored in the array Octadsa. To calculate the octads for the base Ω_{x} such that $\Omega_{x}=\Omega_{a}^{g}$ for $g \in G$, calculate Octadsa^g.

IsDistance3.m

Contains a function IsDistance3(g), which quickly determines whether the base $\Omega_{x}=\Omega_{a}^{g}$ is contained within the first three discs of \mathcal{G}, and if so which orbit it is in. It will output an array $[i, j]$ corresponding to the orbit $\Delta_{i}^{j}(a)$, and will output $[0,0]$ if Ω_{x} is not contained in the first three discs. This function is much faster than the WhereAmI command below, as it utilizes the fact that transposition profiles in the first three discs are (mostly) unique.

WhereAmI.m

Contains a function WhereAmI (g), that determines which orbit of \mathcal{G} the base $\Omega_{x}=\Omega_{a}^{g}$ belongs to. Outputs an ordered pair $[i, j]$ corresponding to the orbit $\Delta_{i}^{j}(a)$.

CollapsedAdjacencyMatrix.m

- Contains the collapsed adjacency matrix for \mathcal{G}, stored as an array (of arrays) called CollapsedAdjacencyMatrix. To calculate the number of points in the j th orbit connected to a single point in the i th orbit type

```
CollapsedAdjacencyMatrix[i][j]
```

- Contains two functions NumberToName and NameToNumber. The first converts an orbit number into its name (given as an array $[i, j]$ corresponding to $\Delta_{i}^{j}(a)$ and the other converts a orbit name to its number. Thus to calculate the number of elements in $\Delta_{5}^{30}(a)$ connected to a single point in $\Delta_{4}^{40}(a)$ type

CollapsedAdjacencyMatrix[NameToNumber ([4,40])][NameToNumber ([5,30])] and you should get 18 .

NeighbourData.m

Contains an array NeighbourData which gives information on the 1518 neighbours for each of the $120 G_{a}$ orbit representatives for \mathcal{G}. For the k th orbit (use NameToNumber to determine what k is for a particular orbit), NeighbourData[k] is an array of length 1518 listing the location of each neighbour, as an ordered pair $[i, j]$ corresponding to the orbit $\Delta_{i}^{j}(a)$.

Qa.m

Gives generators as words in the generators of G, for Q_{a}, the elementary abelian subgroup of G_{a} of order 2^{12}.

2.6 The Collapsed Adjacency Matrix for \mathcal{G}

In this section we will give the collapsed adjacency matrix for \mathcal{G}. As this matrix is rather large it is spread over a multiple number of pages, therefore to make it more usable we have included a map at the start to make finding a particular entry of interest easier. We have of course omitted any page completely filled with zeros, and this is indicated on the map. The entry, say d in the row indexed by Δ_{i}^{j} and column indexed by Δ_{m}^{n} gives the number of points in the orbit $\Delta_{m}^{n}(a)$ connected to a single point in $\Delta_{i}^{j}(a)$. For example the top row of our matrix tells us that the 1518 neighbours of the single point a in $\Delta_{0}^{1}(a)$ are in $\Delta_{1}^{1}(a)$ as expected and looking
elsewhere in the matrix we can see that a vertex in $\Delta_{4}^{36}(a)$ is connected to 36 vertices in $\Delta_{5}^{28}(a)$.

	Δ_{0}^{1} to Δ_{3}^{7}		Δ_{3}^{8} to Δ_{4}^{9}		Δ_{4}^{10} to Δ_{4}^{21}		Δ_{4}^{22} to Δ_{4}^{33}		Δ_{4}^{34} to Δ_{4}^{45}
$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 47	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 48	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 49	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 50	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 51
	Δ_{0}^{1} to Δ_{3}^{7}		Δ_{3}^{8} to Δ_{4}^{9}		Δ_{4}^{10} to Δ_{4}^{21}		Δ_{4}^{22} to Δ_{4}^{33}		Δ_{4}^{34} to Δ_{4}^{45}
$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 57	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 58	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 59	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 60	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 61
	Δ_{0}^{1} to Δ_{3}^{7}		Δ_{3}^{8} to Δ_{4}^{9}		Δ_{4}^{10} to Δ_{4}^{21}		Δ_{4}^{22} to Δ_{4}^{33}		Δ_{4}^{34} to Δ_{4}^{45}
$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	All Zero	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 67	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 68	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 69	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 70
	Δ_{4}^{46} to Δ_{5}^{11}		Δ_{5}^{12} to Δ_{5}^{23}		Δ_{5}^{24} to Δ_{5}^{35}		Δ_{5}^{36} to Δ_{5}^{47}		Δ_{5}^{48} to Δ_{5}^{59}
$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 52	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 53	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 54	$\begin{aligned} & \Delta_{0}^{1} \\ & \text { to } \\ & \Delta_{4}^{25} \end{aligned}$	Page 55	$\begin{gathered} \Delta_{0}^{1} \\ \text { to } \\ \Delta_{4}^{25} \end{gathered}$	Page 56
	Δ_{4}^{46} to Δ_{5}^{11}		Δ_{5}^{12} to Δ_{5}^{23}		Δ_{5}^{24} to Δ_{5}^{35}		Δ_{5}^{36} to Δ_{5}^{47}		Δ_{5}^{48} to Δ_{5}^{59}
$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 62	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 63	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 64	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 65	$\begin{gathered} \Delta_{4}^{26} \\ \text { to } \\ \Delta_{5}^{19} \end{gathered}$	Page 66
	Δ_{4}^{46} to Δ_{5}^{11}		Δ_{5}^{12} to Δ_{5}^{23}		Δ_{5}^{24} to Δ_{5}^{35}		Δ_{5}^{36} to Δ_{5}^{47}		Δ_{5}^{48} to Δ_{5}^{59}
$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 71	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \\ \hline \end{gathered}$	Page 72	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \\ \hline \end{gathered}$	Page 73	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 74	$\begin{gathered} \Delta_{5}^{20} \\ \text { to } \\ \Delta_{5}^{59} \end{gathered}$	Page 75

	Δ_{0}^{1}	Δ_{1}^{1}	Δ_{2}^{1}	Δ_{2}^{2}	Δ_{2}^{3}	Δ_{3}^{1}	Δ_{3}^{2}	Δ_{3}^{3}	Δ_{3}^{4}	Δ_{3}^{5}	Δ_{3}^{6}	Δ_{3}^{7}
Δ_{0}^{1}	0	1518	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	1	1	60	560	896	0	0	0	0	0	0	0
Δ_{2}^{1}	0	3	3	0	0	0	168	0	0	0	0	1344
Δ_{2}^{2}	0	5	0	5	0	0	20	128	480	0	240	0
Δ_{2}^{3}	0	1	0	0	1	16	0	0	120	16	60	120
Δ_{3}^{1}	0	0	0	0	77	0	0	0	0	77	0	0
Δ_{3}^{2}	0	0	9	6	0	0	15	0	0	0	0	0
Δ_{3}^{3}	0	0	0	21	0	0	0	21	0	336	0	0
Δ_{3}^{4}	0	0	0	7	14	0	0	0	21	112	0	0
Δ_{3}^{5}	0	0	0	0	1	1	0	16	60	76	0	0
Δ_{3}^{6}	0	0	0	1	2	0	0	0	0	0	3	0
Δ_{3}^{7}	0	0	1	0	4	0	0	0	0	0	0	5
Δ_{3}^{3}	0	0	0	1	4	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	1	0	0	0	0	0	0	0
Δ_{3}^{10}	0	0	0	0	1	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	0	0	0	0	7	0	8	0	42	14
Δ_{4}^{2}	0	0	0	0	0	0	7	0	8	0	42	14
Δ_{4}^{3}	0	0	0	0	0	0	0	0	15	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	15
Δ_{4}^{5}	0	0	0	0	0	1	0	0	0	0	14	7
Δ_{4}^{6}	0	0	0	0	0	1	0	0	0	0	14	7
Δ_{4}^{7}	0	0	0	0	0	1	0	0	0	0	0	0
Δ_{4}^{8}	0	0	0	0	0	0	0	1	0	0	9	0
Δ_{4}^{9}	0	0	0	0	0	0	0	1	0	0	9	0
Δ_{4}^{10}	0	0	0	0	0	0	1	0	0	0	0	12
Δ_{4}^{11}	0	0	0	0	0	0	1	0	0	0	0	12
Δ_{4}^{12}	0	0	0	0	0	0	1	0	4	0	8	18
Δ_{4}^{13}	0	0	0	0	0	0	0	0	0	0	0	3
Δ_{4}^{14}	0	0	0	0	0	0	0	0	0	1	0	1
Δ_{4}^{15}	0	0	0	0	0	0	0	0	0	1	0	1
Δ_{4}^{16}	0	0	0	0	0	0	0	1	7	0	0	0
Δ_{1}^{17}	0	0	0	0	0	0	0	0	0	11	0	0
Δ_{1}^{48}	0	0	0	0	0	0	0	0	3	0	0	0
Δ_{4}^{19}	0	0	0	0	0	0	0	0	0	1	1	0
Δ_{4}^{20}	0	0	0	0	0	0	0	0	0	1	1	0
Δ_{4}^{21}	0	0	0	0	0	0	0	0	0	5	0	0
Δ_{4}^{22}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{4}^{23}	0	0	0	0	0	0	0	0	1	0	0	0
Δ_{4}^{24}	0	0	0	0	0	0	0	0	0	0	0	5
Δ_{4}^{25}	0	0	0	0	0	0	0	0	0	0	0	0

	Δ_{3}^{8}	Δ_{3}^{9}	Δ_{3}^{10}	Δ_{4}^{1}	Δ_{4}^{2}	Δ_{4}^{3}	Δ_{4}^{4}	Δ_{4}^{5}	Δ_{4}^{6}	Δ_{4}^{7}	Δ_{4}^{8}	Δ_{4}^{9}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	640	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	320	384	480	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	330	330	704	0	0
Δ_{3}^{2}	0	0	0	144	144	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	210	210
Δ_{3}^{4}	0	0	0	8	8	32	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	12	12	0	0	32	32	0	48	48
Δ_{3}^{7}	0	0	0	4	4	0	24	16	16	0	0	0
Δ_{3}^{8}	5	0	0	0	0	16	0	0	0	64	10	10
Δ_{3}^{9}	0	97	0	0	0	0	0	0	0	56	0	0
Δ_{3}^{10}	0	0	1	0	0	0	0	15	15	0	0	0
Δ_{4}^{1}	0	0	0	7	22	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	22	7	0	0	0	0	0	0	0
Δ_{4}^{3}	70	0	0	0	0	15	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	0	105	0	0	0	0	0	1	0	0	0
Δ_{4}^{6}	0	0	105	0	0	0	0	1	0	0	0	0
Δ_{4}^{7}	35	147	0	0	0	0	0	0	0	1	0	0
Δ_{4}^{8}	5	0	0	0	0	0	0	0	0	0	6	9
Δ_{4}^{9}	5	0	0	0	0	0	0	0	0	0	9	6
Δ_{4}^{10}	8	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{11}	8	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{12}	0	0	32	2	2	0	0	0	0	0	0	0
Δ_{4}^{13}	0	0	0	0	0	0	3	0	0	0	0	0
Δ_{1}^{14}	0	0	1	6	0	0	0	2	0	0	0	24
Δ_{1}^{5}	0	0	1	0	6	0	0	0	2	0	24	0
Δ_{4}^{6}	35	42	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{17}	0	11	0	0	0	11	0	0	0	11	0	0
Δ_{4}^{18}	14	84	0	0	0	2	0	0	0	32	0	0
Δ_{4}^{19}	0	0	3	0	1	0	0	1	3	0	4	0
Δ_{4}^{20}	0	0	3	1	0	0	0	3	1	0	0	4
Δ_{4}^{21}	5	51	0	0	0	0	0	0	0	20	0	0
Δ_{4}^{22}	4	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{23}	2	0	16	0	0	0	0	0	0	0	0	0
Δ_{4}^{24}	4	0	12	0	0	0	0	0	0	0	0	0
Δ_{4}^{25}	0	0	8	0	0	0	4	0	0	0	0	0

	Δ_{4}^{10}	Δ_{4}^{11}	Δ_{4}^{12}	Δ_{4}^{13}	Δ_{4}^{14}	Δ_{4}^{15}	Δ_{4}^{16}	Δ_{4}^{17}	Δ_{4}^{18}	Δ_{4}^{19}	Δ_{4}^{20}	Δ_{4}^{21}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	384	384	432	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	720	0	0	0	0	0
Δ_{3}^{4}	0	0	84	0	0	0	448	0	224	0	0	0
Δ_{3}^{5}	0	0	0	0	30	30	0	384	0	60	60	320
Δ_{3}^{6}	0	0	48	0	0	0	0	0	0	32	32	0
Δ_{3}^{7}	64	64	108	24	16	16	0	0	0	0	0	0
Δ_{3}^{3}	16	16	0	0	0	0	240	0	112	0	0	64
Δ_{3}^{9}	0	0	0	0	0	0	60	16	140	0	0	136
Δ_{3}^{10}	0	0	12	0	1	1	0	0	0	6	6	0
Δ_{4}^{1}	0	0	42	0	336	0	0	0	0	0	112	0
Δ_{4}^{2}	0	0	42	0	0	336	0	0	0	112	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	336	70	0	0	0
Δ_{4}^{4}	0	0	0	15	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	0	0	0	14	0	0	0	0	14	42	0
Δ_{4}^{6}	0	0	0	0	0	14	0	0	0	42	14	0
Δ_{4}^{7}	0	0	0	0	0	0	0	42	140	0	0	140
Δ_{4}^{8}	0	0	0	0	0	72	0	0	0	24	0	0
Δ_{4}^{9}	0	0	0	0	72	0	0	0	0	0	24	0
Δ_{4}^{10}	13	8	0	0	24	0	0	0	0	72	0	0
Δ_{4}^{11}	8	13	0	0	0	24	0	0	0	0	72	0
Δ_{4}^{12}	0	0	27	16	16	16	0	0	0	80	80	0
Δ_{4}^{13}	0	0	12	12	0	0	0	0	0	0	0	0
Δ_{4}^{14}	8	0	6	0	14	27	8	0	0	12	0	0
Δ_{4}^{15}	0	8	6	0	27	14	8	0	0	0	12	0
Δ_{4}^{16}	0	0	0	0	7	7	43	168	42	7	7	168
Δ_{4}^{17}	0	0	0	0	0	0	165	132	55	0	0	110
Δ_{4}^{18}	0	0	0	0	0	0	36	48	95	0	0	192
Δ_{4}^{19}	12	0	15	0	6	0	4	0	0	25	20	0
Δ_{4}^{20}	0	12	15	0	0	6	4	0	0	20	25	0
Δ_{4}^{21}	0	0	0	0	0	0	90	60	120	0	0	155
Δ_{4}^{22}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{23}	0	0	0	0	0	0	0	0	0	12	12	0
Δ_{4}^{24}	0	0	0	0	0	0	0	0	0	16	16	0
Δ_{4}^{25}	1	1	1	4	0	0	0	0	0	4	4	0

	Δ_{4}^{22}	Δ_{4}^{23}	Δ_{4}^{24}	Δ_{4}^{25}	Δ_{4}^{26}	Δ_{4}^{27}	Δ_{4}^{28}	Δ_{4}^{29}	Δ_{4}^{30}	Δ_{4}^{31}	Δ_{4}^{32}	Δ_{4}^{33}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	224	0	0	336	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	240	240	0	0	0	0
Δ_{3}^{6}	64	0	0	0	384	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	320	0	192	128	0	0	0	0	0	0
Δ_{3}^{3}	96	48	96	0	144	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	0	20	0	0	0	0	0	0
Δ_{3}^{10}	0	64	48	48	84	0	0	0	8	8	96	96
Δ_{4}^{1}	0	0	0	0	0	0	0	0	448	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	448	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	240	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	0	0	0	0	0	0	0	0	56	0	0
Δ_{4}^{6}	0	0	0	0	0	0	0	0	56	0	0	0
Δ_{4}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{8}	0	0	0	0	0	0	72	168	0	0	0	0
Δ_{4}^{9}	0	0	0	0	0	0	168	72	0	0	0	0
Δ_{4}^{10}	0	0	0	18	0	0	0	0	216	120	0	0
Δ_{4}^{11}	0	0	0	18	0	0	0	0	120	216	0	0
Δ_{4}^{12}	0	0	0	16	32	0	64	64	128	128	0	0
Δ_{4}^{13}	0	0	0	48	0	0	0	0	0	0	0	0
Δ_{4}^{14}	0	0	0	0	72	0	0	24	0	48	0	0
Δ_{4}^{15}	0	0	0	0	72	0	24	0	48	0	0	0
Δ_{4}^{16}	0	0	0	0	0	0	28	28	42	42	0	0
Δ_{4}^{17}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{19}	0	24	32	12	30	0	24	4	32	12	0	0
Δ_{4}^{20}	0	24	32	12	30	0	4	24	12	32	0	0
Δ_{4}^{21}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{22}	5	0	0	24	0	0	4	4	12	12	0	0
Δ_{4}^{23}	0	19	0	0	0	0	52	52	0	0	0	0
Δ_{4}^{24}	0	0	9	6	12	0	0	0	52	52	0	0
Δ_{4}^{25}	16	0	4	4	0	0	0	0	0	0	0	0

	Δ_{4}^{34}	Δ_{4}^{35}	Δ_{4}^{36}	Δ_{4}^{37}	Δ_{4}^{38}	Δ_{4}^{39}	Δ_{4}^{40}	Δ_{4}^{41}	Δ_{4}^{42}	Δ_{4}^{43}	Δ_{4}^{44}	Δ_{4}^{45}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	384	384	0	0	0	0	0	0
Δ_{3}^{7}	256	256	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	96	96	0	0	384	0	0	0	0	0
Δ_{3}^{9}	40	40	20	20	60	60	80	96	96	0	0	240
Δ_{3}^{10}	32	32	16	16	72	72	192	0	0	96	96	192
Δ_{4}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{8}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{11}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{12}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{13}	0	0	0	0	96	96	0	0	0	0	0	0
Δ_{4}^{14}	0	0	0	96	48	24	0	0	0	0	0	0
Δ_{4}^{15}	0	0	96	0	24	48	0	0	0	0	0	0
Δ_{4}^{16}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{17}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{19}	0	0	0	0	36	24	0	0	0	144	0	96
Δ_{4}^{20}	0	0	0	0	24	36	0	0	0	0	144	0
Δ_{4}^{21}	0	0	0	0	0	0	0	0	0	90	90	0
Δ_{4}^{22}	0	0	0	0	0	0	0	0	0	96	96	0
Δ_{4}^{33}	0	0	0	0	0	0	0	0	0	48	48	0
Δ_{4}^{24}	0	0	0	0	0	0	0	0	0	24	24	0
Δ_{4}^{25}	32	32	0	0	20	20	0	64	64	48	48	0

	Δ_{4}^{46}	Δ_{5}^{1}	Δ_{5}^{2}	Δ_{5}^{3}	Δ_{5}^{4}	Δ_{5}^{5}	Δ_{5}^{6}	Δ_{5}^{7}	Δ_{5}^{8}	Δ_{5}^{9}	Δ_{5}^{10}	Δ_{5}^{11}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{8}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{9}	240	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{10}	192	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	32	0	0	224	0	0	0	0	224	0
Δ_{4}^{2}	0	32	0	0	0	0	224	0	0	224	0	0
Δ_{4}^{3}	0	16	16	0	0	0	0	0	0	210	210	0
Δ_{4}^{4}	0	0	0	0	0	0	0	120	120	0	0	0
Δ_{4}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{6}	0	0	0	0	0	0	0	0	0	0	0	32
Δ_{4}^{7}	0	0	0	0	0	0	0	0	0	0	0	30
Δ_{4}^{8}	0	0	0	0	0	0	48	0	48	0	0	0
Δ_{4}^{9}	0	0	0	0	0	48	0	48	0	0	0	0
Δ_{4}^{10}	0	8	0	0	16	0	8	12	12	24	0	0
Δ_{4}^{11}	0	0	8	16	0	8	0	12	12	0	24	96
Δ_{4}^{12}	0	0	0	0	0	0	0	32	32	0	0	0
Δ_{4}^{13}	0	0	0	0	0	0	0	24	24	0	0	0
Δ_{4}^{14}	0	0	0	16	0	0	0	48	0	0	0	0
Δ_{4}^{15}	0	0	0	0	16	0	0	0	48	0	0	0
Δ_{4}^{16}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{17}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	0	0	4	4	12	12	6	6	0
Δ_{4}^{19}	0	0	0	0	0	0	0	0	0	0	24	0
Δ_{4}^{20}	96	0	0	0	0	0	0	0	0	24	0	0
Δ_{4}^{21}	0	0	0	1	1	0	0	0	0	0	0	0
Δ_{4}^{22}	0	0	0	0	0	0	0	32	32	12	12	0
Δ_{4}^{23}	0	2	2	0	0	2	2	0	0	8	8	0
Δ_{4}^{24}	0	0	0	0	0	4	4	20	20	0	0	0
Δ_{4}^{25}	0	0	0	0	0	0	0	2	2	0	0	0

	Δ_{5}^{12}	Δ_{5}^{13}	Δ_{5}^{14}	Δ_{5}^{15}	Δ_{5}^{16}	Δ_{5}^{17}	Δ_{5}^{18}	Δ_{5}^{19}	Δ_{5}^{20}	Δ_{5}^{21}	Δ_{5}^{22}	Δ_{5}^{23}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	240	0	0	0	0	0	0	0	0
Δ_{4}^{5}	32	0	112	168	0	0	0	0	0	0	0	0
Δ_{4}^{6}	0	112	0	168	0	0	0	0	0	0	0	0
Δ_{4}^{7}	30	35	35	0	0	0	0	0	0	0	0	0
Δ_{4}^{8}	0	0	64	0	0	64	0	0	0	0	0	0
Δ_{4}^{9}	0	64	0	0	64	0	0	0	0	0	0	0
Δ_{4}^{10}	96	16	0	18	0	0	0	0	0	0	0	48
Δ_{4}^{11}	0	0	16	18	0	0	0	0	0	0	0	0
Δ_{4}^{12}	0	0	0	16	0	0	0	0	0	0	0	0
Δ_{4}^{13}	0	0	0	48	0	0	0	0	0	0	0	0
Δ_{4}^{14}	0	0	0	0	0	64	0	192	0	0	0	128
Δ_{4}^{15}	0	0	0	0	64	0	192	0	0	0	0	16
Δ_{4}^{16}	0	0	0	0	0	0	0	0	32	0	0	0
Δ_{4}^{17}	0	0	0	0	0	0	55	55	0	66	66	55
Δ_{4}^{18}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{19}	0	0	0	0	0	32	32	0	0	96	0	0
Δ_{4}^{20}	0	0	0	0	32	0	0	32	0	0	96	0
Δ_{4}^{21}	0	0	0	0	10	10	0	0	0	0	0	15
Δ_{4}^{22}	0	0	0	0	16	16	0	0	0	0	0	0
Δ_{4}^{23}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{24}	0	0	0	6	16	16	0	0	64	0	0	0
Δ_{4}^{25}	0	16	16	7	0	0	0	0	0	0	0	0

	Δ_{5}^{24}	Δ_{5}^{25}	Δ_{5}^{26}	Δ_{5}^{27}	Δ_{5}^{28}	Δ_{5}^{29}	Δ_{5}^{30}	Δ_{5}^{31}	Δ_{5}^{32}	Δ_{5}^{33}	Δ_{5}^{34}	Δ_{5}^{35}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{3}	0	0	0	0	0	560	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	224	112	0	0	0	0	0	168	0	0	0
Δ_{4}^{6}	0	112	224	0	0	0	0	168	0	0	0	0
Δ_{4}^{7}	0	105	105	0	0	0	0	0	0	0	0	0
Δ_{4}^{8}	0	192	0	0	128	128	0	0	0	0	0	0
Δ_{4}^{9}	0	0	192	128	0	128	0	0	0	0	0	0
Δ_{4}^{10}	0	48	0	192	0	0	144	0	0	96	0	0
Δ_{4}^{11}	48	0	48	0	192	0	144	0	0	0	96	0
Δ_{4}^{12}	0	0	0	0	0	0	64	64	64	0	0	0
Δ_{4}^{13}	0	0	0	0	0	0	0	96	96	0	0	0
Δ_{4}^{14}	16	0	0	0	0	0	0	0	24	32	0	0
Δ_{4}^{15}	128	0	0	0	0	0	0	24	0	0	32	0
Δ_{4}^{16}	0	0	0	56	56	112	84	0	0	0	0	0
Δ_{4}^{17}	55	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	16	16	0	0	36	36	0	0	0
Δ_{4}^{19}	0	0	0	0	0	0	0	36	12	64	0	0
Δ_{4}^{20}	0	0	0	0	0	0	0	12	36	0	64	0
Δ_{4}^{21}	15	0	0	0	0	0	0	0	0	30	30	0
Δ_{4}^{22}	0	0	0	80	80	112	36	12	12	32	32	0
Δ_{4}^{23}	0	48	48	0	0	48	48	0	0	32	32	0
Δ_{4}^{24}	0	24	24	0	0	32	96	0	0	0	0	48
Δ_{4}^{25}	0	0	0	0	0	0	0	28	28	0	0	128

	Δ_{5}^{36}	Δ_{5}^{37}	Δ_{5}^{38}	Δ_{5}^{39}	Δ_{5}^{40}	Δ_{5}^{41}	Δ_{5}^{42}	Δ_{5}^{43}	Δ_{5}^{44}	Δ_{5}^{45}	Δ_{5}^{46}	Δ_{5}^{47}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	768
Δ_{4}^{5}	0	0	0	0	0	0	0	0	0	448	0	0
Δ_{4}^{6}	0	0	0	0	0	0	0	0	0	0	448	0
Δ_{4}^{7}	0	0	0	0	0	0	0	0	0	210	210	252
Δ_{4}^{8}	0	0	192	0	0	0	0	0	0	0	0	0
Δ_{4}^{9}	0	192	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{11}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{12}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{13}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{14}	0	0	0	0	192	0	0	0	0	0	0	0
Δ_{4}^{15}	0	0	0	192	0	0	0	0	0	0	0	0
Δ_{4}^{16}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{17}	0	55	55	110	110	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	0	0	0	0	48	48	0	0	0
Δ_{4}^{19}	0	128	64	32	0	192	96	96	0	0	0	0
Δ_{4}^{20}	0	64	128	0	32	96	192	0	96	0	0	0
Δ_{4}^{21}	0	60	60	30	30	90	90	0	0	0	0	0
Δ_{4}^{22}	0	0	0	0	0	0	0	0	0	48	48	192
Δ_{4}^{23}	0	0	0	48	48	0	0	96	96	80	80	0
Δ_{4}^{24}	48	0	0	48	48	0	0	16	16	64	64	0
Δ_{4}^{25}	128	0	0	0	0	64	64	96	96	32	32	0

	Δ_{5}^{48}	Δ_{5}^{49}	Δ_{5}^{50}	Δ_{5}^{51}	Δ_{5}^{52}	Δ_{5}^{53}	Δ_{5}^{54}	Δ_{5}^{55}	Δ_{5}^{56}	Δ_{5}^{57}	Δ_{5}^{58}	Δ_{5}^{59}
Δ_{0}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{1}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{2}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{8}	0	0	0	0	288	0	0	0	0	0	0	0
Δ_{4}^{9}	0	0	0	288	0	0	0	0	0	0	0	0
Δ_{4}^{10}	0	0	0	0	0	288	0	0	0	0	0	0
Δ_{4}^{11}	0	0	0	0	0	0	288	0	0	0	0	0
Δ_{4}^{12}	0	0	0	0	0	256	256	0	0	0	0	0
Δ_{4}^{13}	192	0	0	0	0	0	0	0	0	0	0	768
Δ_{4}^{14}	0	288	0	0	96	0	0	0	0	0	0	0
Δ_{4}^{15}	0	0	288	96	0	0	0	0	0	0	0	0
Δ_{4}^{16}	0	0	0	84	84	0	0	0	0	0	336	0
Δ_{4}^{17}	0	165	165	0	0	0	0	0	0	0	0	0
Δ_{4}^{18}	0	0	0	72	72	144	144	0	96	96	144	0
Δ_{4}^{19}	0	48	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{20}	0	0	48	0	0	0	0	0	0	0	0	0
Δ_{4}^{21}	0	90	90	0	0	0	0	0	0	0	0	180
Δ_{4}^{22}	24	0	0	0	0	0	0	0	96	96	240	0
Δ_{4}^{23}	0	0	0	0	0	144	144	0	0	0	240	0
Δ_{4}^{24}	0	0	0	24	24	120	120	0	64	64	192	0
Δ_{4}^{25}	112	0	0	32	32	16	16	64	64	64	0	0

	Δ_{0}^{1}	Δ_{1}^{1}	Δ_{2}^{1}	Δ_{2}^{2}	Δ_{2}^{3}	Δ_{3}^{1}	Δ_{3}^{2}	Δ_{3}^{3}	Δ_{3}^{4}	Δ_{3}^{5}	Δ_{3}^{6}	Δ_{3}^{7}
Δ_{4}^{26}	0	0	0	0	0	0	0	0	1	0	4	2
Δ_{4}^{27}	0	0	0	0	0	0	0	0	0	0	0	1
Δ_{4}^{28}	0	0	0	0	0	0	0	0	0	1	0	0
Δ_{4}^{29}	0	0	0	0	0	0	0	0	0	1	0	0
Δ_{4}^{30}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{31}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{32}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{33}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{3}^{34}	0	0	0	0	0	0	0	0	0	0	0	1
Δ_{3}^{35}	0	0	0	0	0	0	0	0	0	0	0	1
Δ_{4}^{36}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{37}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{38}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{4}^{39}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{4}^{40}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{41}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{42}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{43}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{44}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{45}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{46}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{6}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{7}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{8}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{9}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{10}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{51}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{13}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{14}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{15}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{16}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{17}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{18}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{19}	0	0	0	0	0	0	0	0	0	0	0	0

	Δ_{3}^{8}	Δ_{3}^{9}	Δ_{3}^{10}	Δ_{4}^{1}	Δ_{4}^{2}	Δ_{4}^{3}	Δ_{4}^{4}	Δ_{4}^{5}	Δ_{4}^{6}	Δ_{4}^{7}	Δ_{4}^{8}	Δ_{4}^{9}
Δ_{4}^{26}	4	0	14	0	0	0	0	0	0	0	0	0
Δ_{4}^{27}	0	2	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{28}	0	0	0	0	0	0	0	0	0	0	3	7
Δ_{4}^{29}	0	0	0	0	0	0	0	0	0	0	7	3
Δ_{4}^{30}	0	0	1	1	0	0	0	0	1	0	0	0
Δ_{4}^{31}	0	0	1	0	1	0	0	1	0	0	0	0
Δ_{4}^{32}	0	0	9	0	0	0	0	0	0	0	0	0
Δ_{4}^{33}	0	0	9	0	0	0	0	0	0	0	0	0
Δ_{4}^{34}	0	2	2	0	0	0	0	0	0	0	0	0
Δ_{4}^{35}	0	2	2	0	0	0	0	0	0	0	0	0
Δ_{3}^{36}	1	1	1	0	0	0	0	0	0	0	0	0
Δ_{4}^{37}	1	1	1	0	0	0	0	0	0	0	0	0
Δ_{4}^{38}	0	2	3	0	0	0	0	0	0	0	0	0
Δ_{4}^{39}	0	2	3	0	0	0	0	0	0	0	0	0
Δ_{4}^{40}	1	1	3	0	0	0	0	0	0	0	0	0
Δ_{4}^{41}	0	1	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{42}	0	1	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{43}	0	0	1	0	0	0	0	0	0	0	0	0
Δ_{4}^{44}	0	0	1	0	0	0	0	0	0	0	0	0
Δ_{4}^{45}	0	1	1	0	0	0	0	0	0	0	0	0
Δ_{4}^{46}	0	1	1	0	0	0	0	0	0	0	0	0
Δ_{5}^{1}	0	0	0	0	15	16	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	15	0	16	0	0	0	0	0	0
Δ_{5}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	3	0	0	0	0	0	0	0	12
Δ_{5}^{6}	0	0	0	0	3	0	0	0	0	0	12	0
Δ_{5}^{7}	0	0	0	0	0	0	3	0	0	0	0	4
Δ_{5}^{8}	0	0	0	0	0	0	3	0	0	0	4	0
Δ_{5}^{9}	0	0	0	0	1	2	0	0	0	0	0	0
Δ_{5}^{10}	0	0	0	1	0	2	0	0	0	0	0	0
Δ_{5}^{11}	0	0	0	0	0	0	0	0	1	2	0	0
Δ_{5}^{12}	0	0	0	0	0	0	0	1	0	2	0	0
Δ_{5}^{13}	0	0	0	0	0	0	0	0	3	2	0	4
Δ_{5}^{14}	0	0	0	0	0	0	0	3	0	2	4	0
Δ_{5}^{15}	0	0	0	0	0	0	4	4	4	0	0	0
Δ_{5}^{16}	0	0	0	0	0	0	0	0	0	0	0	3
Δ_{5}^{17}	0	0	0	0	0	0	0	0	0	0	3	0
Δ_{5}^{18}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{19}	0	0	0	0	0	0	0	0	0	0	0	0

	Δ_{4}^{10}	Δ_{4}^{11}	Δ_{4}^{12}	Δ_{4}^{13}	Δ_{4}^{14}	Δ_{4}^{15}	Δ_{4}^{16}	Δ_{4}^{17}	Δ_{4}^{18}	Δ_{4}^{19}	Δ_{4}^{20}	Δ_{4}^{21}
Δ_{4}^{26}	0	0	2	0	12	12	0	0	0	10	10	0
Δ_{4}^{27}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{28}	0	0	3	0	0	3	4	0	0	6	1	0
Δ_{4}^{29}	0	0	3	0	3	0	4	0	0	1	6	0
Δ_{4}^{30}	9	5	6	0	0	6	6	0	0	8	3	0
Δ_{4}^{31}	5	9	6	0	6	0	6	0	0	3	8	0
Δ_{4}^{32}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{33}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{34}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{35}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{36}	0	0	0	0	0	6	0	0	0	0	0	0
Δ_{4}^{37}	0	0	0	0	6	0	0	0	0	0	0	0
Δ_{4}^{38}	0	0	0	2	2	1	0	0	0	3	2	0
Δ_{4}^{39}	0	0	0	2	1	2	0	0	0	2	3	0
Δ_{4}^{40}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{41}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{42}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{43}	0	0	0	0	0	0	0	0	0	3	0	2
Δ_{4}^{44}	0	0	0	0	0	0	0	0	0	0	3	2
Δ_{4}^{45}	0	0	0	0	0	0	0	0	0	1	0	0
Δ_{4}^{46}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{5}^{1}	70	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	70	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	15	0	0	45	0	0	0	0	0	0	6
Δ_{5}^{4}	15	0	0	0	0	45	0	0	0	0	0	6
Δ_{5}^{5}	0	2	0	0	0	0	0	0	4	0	0	0
Δ_{5}^{6}	2	0	0	0	0	0	0	0	4	0	0	0
Δ_{5}^{7}	1	1	3	3	12	0	0	0	4	0	0	0
Δ_{5}^{8}	1	1	3	3	0	12	0	0	4	0	0	0
Δ_{5}^{9}	2	0	0	0	0	0	0	0	2	0	12	0
Δ_{5}^{10}	0	2	0	0	0	0	0	0	2	12	0	0
Δ_{5}^{11}	0	7	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{12}	7	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{13}	1	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{14}	0	1	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{15}	1	1	1	4	0	0	0	0	0	0	0	0
Δ_{5}^{16}	0	0	0	0	0	9	0	0	0	0	9	3
Δ_{5}^{17}	0	0	0	0	9	0	0	0	0	9	0	3
Δ_{5}^{18}	0	0	0	0	0	27	0	9	0	9	0	0
Δ_{5}^{19}	0	0	0	0	27	0	0	9	0	0	9	0

	Δ_{4}^{22}	Δ_{4}^{23}	Δ_{4}^{24}	Δ_{4}^{25}	Δ_{4}^{26}	Δ_{4}^{27}	Δ_{4}^{28}	Δ_{4}^{29}	Δ_{4}^{30}	Δ_{4}^{31}	Δ_{4}^{32}	Δ_{4}^{33}
Δ_{4}^{26}	0	0	8	0	15	0	44	44	44	44	0	0
Δ_{4}^{27}	0	0	0	0	0	3	6	6	6	6	0	0
Δ_{4}^{28}	2	26	0	0	33	6	33	30	0	0	8	0
Δ_{4}^{29}	2	26	0	0	33	6	30	33	0	0	0	8
Δ_{4}^{30}	6	0	26	0	33	6	0	0	33	36	0	4
Δ_{4}^{31}	6	0	26	0	33	6	0	0	36	33	4	0
Δ_{4}^{32}	0	0	0	0	0	0	6	0	0	3	0	0
Δ_{4}^{33}	0	0	0	0	0	0	0	6	3	0	0	0
Δ_{4}^{34}	0	0	0	12	0	0	0	12	6	6	0	0
Δ_{4}^{35}	0	0	0	12	0	0	12	0	6	6	0	0
Δ_{4}^{36}	0	0	0	0	0	0	0	6	0	6	0	0
Δ_{4}^{37}	0	0	0	0	0	0	6	0	6	0	0	0
Δ_{4}^{38}	0	0	0	5	1	0	0	18	2	2	0	0
Δ_{4}^{39}	0	0	0	5	1	0	18	0	2	2	0	0
Δ_{4}^{40}	0	0	0	0	0	12	6	6	3	3	0	0
Δ_{4}^{41}	0	0	0	5	0	0	0	0	5	0	0	10
Δ_{4}^{42}	0	0	0	5	0	0	0	0	0	5	10	0
Δ_{4}^{33}	4	2	1	3	1	0	4	2	1	5	5	0
Δ_{4}^{44}	4	2	1	3	1	0	2	4	5	1	0	5
Δ_{4}^{45}	0	0	0	0	0	6	2	1	0	2	6	4
Δ_{4}^{46}	0	0	0	0	0	6	1	2	2	0	4	6
Δ_{5}^{1}	0	210	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	210	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	6	12	0	0	36	0	36	0	36	0	0
Δ_{5}^{6}	0	6	12	0	0	36	36	0	36	0	0	0
Δ_{5}^{7}	32	0	20	3	12	0	0	0	0	0	0	0
Δ_{5}^{8}	32	0	20	3	12	0	0	0	0	0	0	0
Δ_{5}^{9}	12	8	0	0	12	0	0	0	0	0	0	0
Δ_{5}^{10}	12	8	0	0	12	0	0	0	0	0	0	0
Δ_{5}^{11}	0	0	0	0	0	42	0	0	0	0	0	0
Δ_{5}^{12}	0	0	0	0	0	42	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	18	18	0	0	0	0	6	24	0
Δ_{5}^{14}	0	0	0	18	18	0	0	0	6	0	0	24
Δ_{5}^{15}	0	0	4	7	8	0	0	0	0	0	48	48
Δ_{5}^{16}	9	0	9	0	0	0	0	27	0	9	18	0
Δ_{5}^{17}	9	0	9	0	0	0	27	0	9	0	0	18
Δ_{5}^{18}	0	0	0	0	0	0	45	27	0	36	0	0
Δ_{5}^{19}	0	0	0	0	0	0	27	45	36	0	0	0

	Δ_{4}^{34}	Δ_{4}^{35}	Δ_{4}^{36}	Δ_{4}^{37}	Δ_{4}^{38}	Δ_{4}^{39}	Δ_{4}^{40}	Δ_{4}^{41}	Δ_{4}^{42}	Δ_{4}^{43}	Δ_{4}^{44}	Δ_{4}^{45}
Δ_{4}^{26}	0	0	0	0	4	4	0	0	0	16	16	0
Δ_{4}^{27}	0	0	0	0	0	0	96	0	0	0	0	144
Δ_{4}^{28}	0	24	0	12	0	54	48	0	0	48	24	48
Δ_{4}^{29}	24	0	12	0	54	0	48	0	0	24	48	24
Δ_{4}^{30}	12	12	0	12	6	6	24	48	0	12	60	0
Δ_{4}^{31}	12	12	12	0	6	6	24	0	48	60	12	48
Δ_{4}^{32}	0	0	0	0	0	0	0	0	72	45	0	108
Δ_{4}^{33}	0	0	0	0	0	0	0	72	0	0	45	72
Δ_{4}^{34}	3	26	0	24	0	30	0	48	0	6	72	24
Δ_{4}^{35}	26	3	24	0	30	0	0	0	48	72	6	72
Δ_{4}^{36}	0	24	24	3	0	24	0	72	24	24	108	0
Δ_{4}^{37}	24	0	3	24	24	0	0	24	72	108	24	156
Δ_{4}^{38}	0	20	0	16	3	20	16	48	16	16	76	48
Δ_{4}^{39}	20	0	16	0	20	3	16	16	48	76	16	96
Δ_{4}^{40}	0	0	0	0	6	6	5	48	48	33	33	42
Δ_{4}^{41}	10	0	15	5	15	5	40	26	26	40	40	125
Δ_{4}^{42}	0	10	5	15	5	15	40	26	26	40	40	105
Δ_{4}^{43}	1	12	4	18	4	19	22	32	32	57	40	70
Δ_{4}^{44}	12	1	18	4	19	4	22	32	32	40	57	56
Δ_{4}^{45}	2	6	0	13	6	12	14	50	42	35	28	83
Δ_{4}^{46}	6	2	13	0	12	6	14	42	50	28	35	91
Δ_{5}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	45	0	90	0	0	0	0	216	0	0	0
Δ_{5}^{4}	45	0	90	0	0	0	0	216	0	0	0	0
Δ_{5}^{5}	0	48	0	72	36	144	0	0	0	0	0	0
Δ_{5}^{6}	48	0	72	0	144	36	0	0	0	0	0	0
Δ_{5}^{7}	48	24	24	0	36	0	32	0	0	24	0	96
Δ_{5}^{8}	24	48	0	24	0	36	32	0	0	0	24	0
Δ_{5}^{9}	0	16	80	0	84	0	96	0	0	0	0	48
Δ_{5}^{10}	16	0	0	80	0	84	96	0	0	0	0	0
Δ_{5}^{11}	42	35	7	21	0	0	0	84	84	0	84	0
Δ_{5}^{12}	35	42	21	7	0	0	0	84	84	84	0	126
Δ_{5}^{53}	3	0	0	90	0	72	84	72	0	36	36	0
Δ_{5}^{14}	0	3	90	0	72	0	84	0	72	36	36	108
Δ_{5}^{5}	16	16	32	32	28	28	0	64	64	64	64	96
Δ_{5}^{16}	0	27	0	0	0	27	18	0	0	27	81	54
Δ_{5}^{17}	27	0	0	0	27	0	18	0	0	81	27	54
Δ_{5}^{18}	0	0	0	9	0	27	0	0	0	27	27	0
Δ_{5}^{19}	0	0	9	0	27	0	0	0	0	27	27	27

	Δ_{4}^{46}	Δ_{5}^{1}	Δ_{5}^{2}	Δ_{5}^{3}	Δ_{5}^{4}	Δ_{5}^{5}	Δ_{5}^{6}	Δ_{5}^{7}	Δ_{5}^{8}	Δ_{5}^{9}	Δ_{5}^{10}	Δ_{5}^{11}
Δ_{4}^{26}	0	0	0	0	0	0	0	8	8	8	8	0
Δ_{4}^{27}	144	0	0	0	0	6	6	0	0	0	0	24
Δ_{4}^{28}	24	0	0	0	0	0	6	0	0	0	0	0
Δ_{4}^{29}	48	0	0	0	0	6	0	0	0	0	0	0
Δ_{4}^{30}	48	0	0	0	0	0	6	0	0	0	0	0
Δ_{4}^{31}	0	0	0	0	0	6	0	0	0	0	0	0
Δ_{4}^{32}	72	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{33}	108	0	0	0	0	0	0	0	0	0	0	0
Δ_{4}^{34}	72	0	0	0	1	0	4	12	6	0	4	12
Δ_{3}^{35}	24	0	0	1	0	4	0	6	12	4	0	10
Δ_{4}^{36}	156	0	0	0	2	0	6	6	0	20	0	2
Δ_{4}^{37}	0	0	0	2	0	6	0	0	6	0	20	6
Δ_{4}^{38}	96	0	0	0	0	2	8	6	0	14	0	0
Δ_{4}^{39}	48	0	0	0	0	8	2	0	6	0	14	0
Δ_{4}^{40}	42	0	0	0	0	0	0	2	2	6	6	0
Δ_{4}^{41}	105	0	0	0	1	0	0	0	0	0	0	5
Δ_{4}^{42}	125	0	0	1	0	0	0	0	0	0	0	5
Δ_{4}^{43}	56	0	0	0	0	0	0	1	0	0	0	0
Δ_{4}^{44}	70	0	0	0	0	0	0	0	1	0	0	4
Δ_{4}^{45}	91	0	0	0	0	0	0	2	0	1	0	0
Δ_{4}^{46}	83	0	0	0	0	0	0	0	2	0	1	3
Δ_{5}^{1}	0	15	16	0	0	0	70	0	0	0	210	0
Δ_{5}^{2}	0	16	15	0	0	70	0	0	0	210	0	0
Δ_{5}^{3}	0	0	0	0	6	0	0	0	0	0	0	0
Δ_{5}^{4}	0	0	0	6	0	0	0	0	0	0	0	90
Δ_{5}^{5}	0	0	2	0	0	3	16	12	0	54	0	0
Δ_{5}^{6}	0	2	0	0	0	16	3	0	12	0	54	0
Δ_{5}^{7}	0	0	0	0	0	4	0	19	10	0	0	0
Δ_{5}^{8}	96	0	0	0	0	0	4	10	19	0	0	0
Δ_{5}^{9}	0	0	2	0	0	18	0	0	0	3	8	32
Δ_{5}^{10}	48	2	0	0	0	0	18	0	0	8	3	0
Δ_{5}^{11}	126	0	0	0	7	0	0	0	0	28	0	1
Δ_{5}^{5}	0	0	0	7	0	0	0	0	0	0	28	2
Δ_{5}^{13}	108	0	0	0	4	0	8	24	0	0	0	0
Δ_{5}^{14}	0	0	0	4	0	8	0	0	24	0	0	0
Δ_{5}^{15}	96	0	0	0	0	0	0	2	2	0	0	0
Δ_{5}^{16}	54	0	0	0	0	0	12	0	0	0	0	0
Δ_{5}^{17}	54	0	0	0	0	12	0	0	0	0	0	0
Δ_{5}^{18}	27	3	0	0	0	0	3	0	0	9	0	0
Δ_{5}^{19}	0	0	3	0	0	3	0	0	0	0	9	0

	Δ_{5}^{12}	Δ_{5}^{13}	Δ_{5}^{14}	Δ_{5}^{15}	Δ_{5}^{16}	Δ_{5}^{17}	Δ_{5}^{18}	Δ_{5}^{19}	Δ_{5}^{20}	Δ_{5}^{21}	Δ_{5}^{22}	Δ_{5}^{23}
Δ_{4}^{26}	0	16	16	8	0	0	0	0	0	0	0	0
Δ_{4}^{27}	24	0	0	0	0	0	0	0	0	8	8	8
Δ_{4}^{28}	0	0	0	0	0	24	40	24	0	16	16	72
Δ_{4}^{29}	0	0	0	0	24	0	24	40	0	16	16	0
Δ_{4}^{30}	0	0	4	0	0	8	0	32	0	24	48	60
Δ_{4}^{31}	0	4	0	0	8	0	32	0	0	48	24	0
Δ_{4}^{32}	0	12	0	27	12	0	0	0	0	0	0	0
Δ_{4}^{33}	0	0	12	27	0	12	0	0	0	0	0	0
Δ_{4}^{34}	10	1	0	6	0	12	0	0	0	0	0	27
Δ_{4}^{35}	12	0	1	6	12	0	0	0	0	0	0	0
Δ_{4}^{36}	6	0	30	12	0	0	0	4	0	0	8	0
Δ_{4}^{37}	2	30	0	12	0	0	4	0	0	8	0	2
Δ_{4}^{38}	0	0	16	7	0	8	0	8	0	0	0	0
Δ_{4}^{39}	0	16	0	7	8	0	8	0	0	0	0	4
Δ_{4}^{40}	0	7	7	0	2	2	0	0	12	0	0	2
Δ_{4}^{41}	5	5	0	5	0	0	0	0	0	1	1	0
Δ_{4}^{42}	5	0	5	5	0	0	0	0	0	1	1	5
Δ_{4}^{43}	4	2	2	4	2	6	2	2	0	4	2	17
Δ_{4}^{44}	0	2	2	4	6	2	2	2	0	2	4	4
Δ_{4}^{45}	3	0	3	3	2	2	0	1	8	2	1	4
Δ_{4}^{46}	0	3	0	3	2	2	1	0	8	1	2	2
Δ_{5}^{1}	0	0	0	0	0	0	560	0	0	336	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	560	0	0	336	0
Δ_{5}^{3}	90	0	60	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	60	0	0	0	0	0	0	0	0	0	225
Δ_{5}^{5}	0	0	32	0	0	64	0	16	0	0	0	0
Δ_{5}^{6}	0	32	0	0	64	0	16	0	0	0	0	0
Δ_{5}^{7}	0	32	0	3	0	0	0	0	0	32	32	24
Δ_{5}^{8}	0	0	32	3	0	0	0	0	0	32	32	0
Δ_{5}^{9}	0	0	0	0	0	0	16	0	0	0	0	0
Δ_{5}^{10}	32	0	0	0	0	0	0	16	0	0	0	96
Δ_{5}^{11}	2	0	0	0	0	0	0	0	0	0	14	7
Δ_{5}^{12}	1	0	0	0	0	0	0	0	0	14	0	14
Δ_{5}^{13}	0	0	2	0	4	24	0	0	0	0	0	42
Δ_{5}^{14}	0	2	0	0	24	4	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	4	0	0	0	0	0	0	0	0
Δ_{5}^{16}	0	3	18	0	9	30	15	0	0	0	0	0
Δ_{5}^{17}	0	18	3	0	30	9	0	15	0	0	0	0
Δ_{5}^{18}	0	0	0	0	15	0	48	66	0	0	45	81
Δ_{5}^{19}	0	0	0	0	0	15	66	48	0	45	0	0

	Δ_{5}^{24}	Δ_{5}^{25}	Δ_{5}^{26}	Δ_{5}^{27}	Δ_{5}^{28}	Δ_{5}^{29}	Δ_{5}^{30}	Δ_{5}^{31}	Δ_{5}^{32}	Δ_{5}^{33}	Δ_{5}^{34}	Δ_{5}^{35}
Δ_{4}^{26}	0	16	16	32	32	128	0	24	24	0	0	0
Δ_{4}^{27}	8	8	8	0	0	0	0	30	30	16	16	0
Δ_{4}^{28}	0	0	0	0	0	0	6	6	0	0	48	0
Δ_{4}^{29}	72	0	0	0	0	0	6	0	6	48	0	0
Δ_{4}^{30}	0	0	0	0	24	0	6	6	6	24	16	0
Δ_{4}^{31}	60	0	0	24	0	0	6	6	6	16	24	0
Δ_{4}^{32}	0	9	18	0	0	0	0	0	45	0	0	36
Δ_{4}^{33}	0	18	9	0	0	0	0	45	0	0	0	36
Δ_{4}^{34}	0	33	0	12	24	4	36	30	12	2	28	12
Δ_{4}^{35}	27	0	33	24	12	4	36	12	30	28	2	12
Δ_{4}^{36}	2	26	0	12	36	12	0	6	24	2	30	0
Δ_{4}^{37}	0	0	26	36	12	12	0	24	6	30	2	0
Δ_{4}^{38}	4	40	24	0	0	8	4	20	2	0	32	0
Δ_{4}^{39}	0	24	40	0	0	8	4	2	20	32	0	0
Δ_{4}^{40}	2	15	15	13	13	26	18	0	0	18	18	12
Δ_{4}^{41}	5	0	5	20	5	5	5	20	20	10	5	26
Δ_{4}^{42}	0	5	0	5	20	5	5	20	20	5	10	26
Δ_{4}^{43}	4	11	0	14	12	10	8	19	20	4	12	16
Δ_{4}^{44}	17	0	11	12	14	10	8	20	19	12	4	16
Δ_{4}^{45}	2	13	8	8	0	4	9	11	5	8	12	18
Δ_{4}^{46}	4	8	13	0	8	4	9	5	11	12	8	18
Δ_{5}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	225	0	0	180	0	0	0	270	0	0	0	0
Δ_{5}^{4}	0	0	0	0	180	0	0	0	270	0	0	0
Δ_{5}^{5}	0	0	0	0	32	0	0	0	0	0	144	0
Δ_{5}^{6}	0	0	0	32	0	0	0	0	0	144	0	0
Δ_{5}^{7}	0	0	0	32	0	0	0	0	36	0	0	0
Δ_{5}^{8}	24	0	0	0	32	0	0	36	0	0	0	0
Δ_{5}^{9}	96	0	0	0	0	0	12	36	0	0	0	0
Δ_{5}^{10}	0	0	0	0	0	0	12	0	36	0	0	0
Δ_{5}^{11}	14	0	0	28	0	0	0	0	0	14	42	0
Δ_{5}^{12}	7	0	0	0	28	0	0	0	0	42	14	0
Δ_{5}^{5}	0	3	0	8	24	0	0	0	0	0	78	0
Δ_{5}^{14}	42	0	3	24	8	0	0	0	0	78	0	0
Δ_{5}^{5}	0	0	0	0	0	0	16	20	20	0	0	64
Δ_{5}^{16}	0	27	0	3	27	0	0	27	27	0	27	0
Δ_{5}^{17}	0	0	27	27	3	0	0	27	27	27	0	0
Δ_{5}^{18}	0	27	9	12	54	138	27	0	27	0	0	0
Δ_{5}^{19}	81	9	27	54	12	138	27	27	0	0	0	0

	Δ_{5}^{36}	Δ_{5}^{37}	Δ_{5}^{38}	Δ_{5}^{39}	Δ_{5}^{40}	Δ_{5}^{41}	Δ_{5}^{42}	Δ_{5}^{43}	Δ_{5}^{44}	Δ_{5}^{45}	Δ_{5}^{46}	Δ_{5}^{47}
Δ_{4}^{26}	0	0	0	0	0	32	32	32	32	32	32	64
Δ_{4}^{27}	0	24	24	72	72	0	0	0	0	48	48	48
Δ_{4}^{28}	0	48	40	0	104	72	24	0	24	0	8	0
Δ_{4}^{29}	0	40	48	104	0	24	72	24	0	8	0	0
Δ_{4}^{30}	0	48	96	24	48	72	56	24	0	0	0	0
Δ_{4}^{31}	0	96	48	48	24	56	72	0	24	0	0	0
Δ_{4}^{32}	72	0	0	36	0	30	36	36	18	54	78	36
Δ_{4}^{33}	72	0	0	0	36	36	30	18	36	78	54	36
Δ_{4}^{34}	36	0	8	0	48	24	8	0	28	36	24	72
Δ_{4}^{35}	36	8	0	48	0	8	24	28	0	24	36	72
Δ_{4}^{36}	24	0	48	0	36	28	24	0	36	24	36	48
Δ_{4}^{37}	24	48	0	36	0	24	28	36	0	36	24	48
Δ_{4}^{38}	16	8	48	16	32	24	16	24	56	40	40	32
Δ_{4}^{39}	16	48	8	32	16	16	24	56	24	40	40	32
Δ_{4}^{40}	12	12	12	15	15	15	15	31	31	42	42	42
Δ_{4}^{41}	30	40	15	25	10	15	20	15	15	20	30	66
Δ_{4}^{42}	30	15	40	10	25	20	15	15	15	30	20	66
Δ_{4}^{43}	24	20	18	10	50	36	20	26	18	26	24	28
Δ_{4}^{44}	24	18	20	50	10	20	36	18	26	24	26	28
Δ_{4}^{45}	28	15	17	12	36	16	12	31	29	45	36	28
Δ_{4}^{46}	28	17	15	36	12	12	16	29	31	36	45	28
Δ_{5}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	0	48	0	144	48	48	0	96	0	96	0
Δ_{5}^{6}	0	48	0	144	0	48	48	96	0	96	0	0
Δ_{5}^{7}	96	128	0	0	0	128	96	0	32	0	32	0
Δ_{5}^{8}	96	0	128	0	0	96	128	32	0	32	0	0
Δ_{5}^{9}	0	48	0	208	48	0	0	0	32	0	96	0
Δ_{5}^{10}	0	0	48	48	208	0	0	32	0	96	0	0
Δ_{5}^{11}	0	28	42	0	0	0	28	0	112	0	0	0
Δ_{5}^{12}	0	42	28	0	0	28	0	112	0	0	0	0
Δ_{5}^{53}	0	0	36	0	72	0	12	0	48	0	0	72
Δ_{5}^{14}	0	36	0	72	0	12	0	48	0	0	0	72
Δ_{5}^{5}	0	0	0	0	0	32	32	64	64	0	0	0
Δ_{5}^{16}	54	0	63	0	36	27	27	27	63	0	45	0
Δ_{5}^{17}	54	63	0	36	0	27	27	63	27	45	0	0
Δ_{5}^{18}	0	0	54	45	54	45	0	0	0	27	0	0
Δ_{5}^{19}	0	54	0	54	45	0	45	0	0	0	27	0

	Δ_{5}^{48}	Δ_{5}^{49}	Δ_{5}^{50}	Δ_{5}^{51}	Δ_{5}^{52}	Δ_{5}^{53}	Δ_{5}^{54}	Δ_{5}^{55}	Δ_{5}^{56}	Δ_{5}^{57}	Δ_{5}^{58}	Δ_{5}^{59}
Δ_{4}^{26}	0	16	16	96	96	32	32	0	0	0	256	64
Δ_{4}^{27}	0	48	48	12	12	72	72	0	32	32	0	240
Δ_{4}^{28}	0	96	120	60	0	72	0	0	0	0	48	96
Δ_{4}^{29}	0	120	96	0	60	0	72	0	0	0	48	96
Δ_{4}^{30}	24	168	60	0	12	12	12	0	48	0	24	96
Δ_{4}^{31}	24	60	168	12	0	12	12	0	0	48	24	96
Δ_{4}^{32}	36	9	0	36	54	45	0	144	0	72	36	216
Δ_{4}^{33}	36	0	9	54	36	0	45	144	72	0	36	216
Δ_{4}^{34}	36	24	24	24	24	96	60	48	96	24	72	72
Δ_{4}^{35}	36	24	24	24	24	60	96	48	24	96	72	72
Δ_{4}^{36}	24	24	0	42	90	24	0	48	56	0	84	96
Δ_{4}^{37}	24	0	24	90	42	0	24	48	0	56	84	96
Δ_{4}^{38}	20	24	8	48	104	72	20	32	32	0	72	112
Δ_{4}^{39}	20	8	24	104	48	20	72	32	0	32	72	112
Δ_{4}^{40}	12	21	21	66	66	51	51	72	42	42	168	126
Δ_{4}^{41}	55	20	40	30	10	15	40	50	65	60	50	160
Δ_{4}^{42}	55	40	20	10	30	40	15	50	60	65	50	160
Δ_{4}^{43}	32	35	36	44	20	72	32	48	76	44	76	124
Δ_{4}^{44}	32	36	35	20	44	32	72	48	44	76	76	124
Δ_{4}^{45}	34	26	17	47	40	51	33	68	76	50	71	164
Δ_{4}^{46}	34	17	26	40	47	33	51	68	50	76	71	164
Δ_{5}^{1}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{2}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{3}	0	0	270	0	0	0	0	0	0	0	0	0
Δ_{5}^{4}	0	270	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{5}	0	0	0	0	72	144	0	0	0	0	0	0
Δ_{5}^{6}	0	0	0	72	0	0	144	0	0	0	0	0
Δ_{5}^{7}	0	0	144	96	24	24	48	0	32	32	0	0
Δ_{5}^{8}	0	144	0	24	96	48	24	0	32	32	0	0
Δ_{5}^{9}	24	0	96	48	0	0	144	0	32	96	48	0
Δ_{5}^{10}	24	96	0	0	48	144	0	0	96	32	48	0
Δ_{5}^{11}	84	0	84	84	0	84	0	0	84	112	84	0
Δ_{5}^{12}	84	84	0	0	84	0	84	0	112	84	84	0
Δ_{5}^{5}	72	54	0	0	0	90	0	0	168	24	0	72
Δ_{5}^{14}	72	0	54	0	0	0	90	0	24	168	0	72
Δ_{5}^{5}	240	16	16	0	0	32	32	0	64	64	0	0
Δ_{5}^{16}	0	81	27	27	135	54	0	0	0	54	81	108
Δ_{5}^{17}	0	27	81	135	27	0	54	0	54	0	81	108
Δ_{5}^{18}	0	135	54	54	27	0	27	0	0	0	162	0
Δ_{5}^{19}	0	54	135	27	54	27	0	0	0	0	162	0

	Δ_{3}^{8}	Δ_{3}^{9}	Δ_{3}^{10}	Δ_{4}^{1}	Δ_{4}^{2}	Δ_{4}^{3}	Δ_{4}^{4}	Δ_{4}^{5}	Δ_{4}^{6}	Δ_{4}^{7}	Δ_{4}^{8}	Δ_{4}^{9}
Δ_{5}^{20}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{21}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{22}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{23}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{24}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{25}	0	0	0	0	0	0	0	2	1	2	4	0
Δ_{5}^{26}	0	0	0	0	0	0	0	1	2	2	0	4
Δ_{5}^{27}	0	0	0	0	0	0	0	0	0	0	0	2
Δ_{5}^{28}	0	0	0	0	0	0	0	0	0	0	2	0
Δ_{5}^{29}	0	0	0	0	0	1	0	0	0	0	2	2
Δ_{5}^{30}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{31}	0	0	0	0	0	0	0	0	1	0	0	0
Δ_{5}^{32}	0	0	0	0	0	0	0	1	0	0	0	0
Δ_{5}^{33}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{34}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{35}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{36}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{37}	0	0	0	0	0	0	0	0	0	0	0	1
Δ_{5}^{38}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{5}^{39}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{40}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{41}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{42}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{43}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{44}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{45}	0	0	0	0	0	0	0	1	0	1	0	0
Δ_{5}^{46}	0	0	0	0	0	0	0	0	1	1	0	0
Δ_{5}^{47}	0	0	0	0	0	0	1	0	0	1	0	0
Δ_{5}^{48}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{49}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{50}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{51}	0	0	0	0	0	0	0	0	0	0	0	1
Δ_{5}^{52}	0	0	0	0	0	0	0	0	0	0	1	0
Δ_{5}^{53}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{54}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{55}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{56}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{57}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{58}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{59}	0	0	0	0	0	0	0	0	0	0	0	0

	Δ_{4}^{10}	Δ_{4}^{11}	Δ_{4}^{12}	Δ_{4}^{13}	Δ_{4}^{14}	Δ_{4}^{15}	Δ_{4}^{16}	Δ_{4}^{17}	Δ_{4}^{18}	Δ_{4}^{19}	Δ_{4}^{20}	Δ_{4}^{21}
Δ_{5}^{20}	0	0	0	0	0	0	3	0	0	0	0	0
Δ_{5}^{21}	0	0	0	0	0	0	0	6	0	15	0	0
Δ_{5}^{22}	0	0	0	0	0	0	0	6	0	0	15	0
Δ_{5}^{23}	1	0	0	0	8	1	0	4	0	0	0	2
Δ_{5}^{24}	0	1	0	0	1	8	0	4	0	0	0	2
Δ_{5}^{25}	1	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{26}	0	1	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{27}	3	0	0	0	0	0	3	0	1	0	0	0
Δ_{5}^{28}	0	3	0	0	0	0	3	0	1	0	0	0
Δ_{5}^{29}	0	0	0	0	0	0	6	0	0	0	0	0
Δ_{5}^{30}	2	2	1	0	0	0	4	0	0	0	0	0
Δ_{5}^{31}	0	0	1	2	0	1	0	0	2	3	1	0
Δ_{5}^{32}	0	0	1	2	1	0	0	0	2	1	3	0
Δ_{5}^{33}	1	0	0	0	1	0	0	0	0	4	0	2
Δ_{5}^{34}	0	1	0	0	0	1	0	0	0	0	4	2
Δ_{5}^{35}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{36}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{37}	0	0	0	0	0	0	0	1	0	4	2	2
Δ_{5}^{38}	0	0	0	0	0	0	0	1	0	2	4	2
Δ_{5}^{39}	0	0	0	0	0	3	0	2	0	1	0	1
Δ_{5}^{40}	0	0	0	0	3	0	0	2	0	0	1	1
Δ_{5}^{41}	0	0	0	0	0	0	0	0	0	6	3	3
Δ_{5}^{42}	0	0	0	0	0	0	0	0	0	3	6	3
Δ_{5}^{43}	0	0	0	0	0	0	0	0	1	3	0	0
Δ_{5}^{44}	0	0	0	0	0	0	0	0	1	0	3	0
Δ_{5}^{45}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{46}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{47}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{48}	0	0	0	1	0	0	0	0	0	0	0	0
Δ_{5}^{49}	0	0	0	0	3	0	0	2	0	1	0	2
Δ_{5}^{50}	0	0	0	0	0	3	0	2	0	0	1	2
Δ_{5}^{51}	0	0	0	0	0	1	1	0	1	0	0	0
Δ_{5}^{52}	0	0	0	0	1	0	1	0	1	0	0	0
Δ_{5}^{53}	1	0	1	0	0	0	0	0	2	0	0	0
Δ_{5}^{54}	0	1	1	0	0	0	0	0	2	0	0	0
Δ_{5}^{55}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{56}	0	0	0	0	0	0	0	0	1	0	0	0
Δ_{5}^{57}	0	0	0	0	0	0	0	0	1	0	0	0
Δ_{5}^{58}	0	0	0	0	0	0	2	0	1	0	0	0
Δ_{5}^{59}	0	0	0	1	0	0	0	0	0	0	0	1

	Δ_{4}^{22}	Δ_{4}^{23}	Δ_{4}^{24}	Δ_{4}^{25}	Δ_{4}^{26}	Δ_{4}^{27}	Δ_{4}^{28}	Δ_{4}^{29}	Δ_{4}^{30}	Δ_{4}^{31}	Δ_{4}^{32}	Δ_{4}^{33}
Δ_{5}^{20}	0	0	21	0	0	0	0	0	0	0	0	0
Δ_{5}^{21}	0	0	0	0	0	5	10	10	15	30	0	0
Δ_{5}^{22}	0	0	0	0	0	5	10	10	30	15	0	0
Δ_{5}^{23}	0	0	0	0	0	4	36	0	30	0	0	0
Δ_{5}^{24}	0	0	0	0	0	4	0	36	0	30	0	0
Δ_{5}^{25}	0	12	6	0	6	4	0	0	0	0	6	12
Δ_{5}^{26}	0	12	6	0	6	4	0	0	0	0	12	6
Δ_{5}^{27}	15	0	0	0	9	0	0	0	0	9	0	0
Δ_{5}^{28}	15	0	0	0	9	0	0	0	9	0	0	0
Δ_{5}^{29}	21	9	6	0	36	0	0	0	0	0	0	0
Δ_{5}^{30}	6	8	16	0	0	0	2	2	2	2	0	0
Δ_{5}^{31}	2	0	0	7	6	10	2	0	2	2	0	20
Δ_{5}^{32}	2	0	0	7	6	10	0	2	2	2	20	0
Δ_{5}^{33}	4	4	0	0	0	4	0	12	6	4	0	0
Δ_{5}^{34}	4	4	0	0	0	4	12	0	4	6	0	0
Δ_{5}^{35}	0	0	5	20	0	0	0	0	0	0	10	10
Δ_{5}^{36}	0	0	3	12	0	0	0	0	0	0	12	12
Δ_{5}^{37}	0	0	0	0	0	3	6	5	6	12	0	0
Δ_{5}^{38}	0	0	0	0	0	3	5	6	12	6	0	0
Δ_{5}^{39}	0	3	3	0	0	9	0	13	3	6	6	0
Δ_{5}^{40}	0	3	3	0	0	9	13	0	6	3	0	6
Δ_{5}^{41}	0	0	0	6	3	0	9	3	9	7	5	6
Δ_{5}^{42}	0	0	0	6	3	0	3	9	7	9	6	5
Δ_{5}^{43}	0	6	1	9	3	0	0	3	3	0	6	3
Δ_{5}^{44}	0	6	1	9	3	0	3	0	0	3	3	6
Δ_{5}^{45}	3	5	4	3	3	6	0	1	0	0	9	13
Δ_{5}^{46}	3	5	4	3	3	6	1	0	0	0	13	9
Δ_{5}^{47}	10	0	0	0	5	5	0	0	0	0	5	5
Δ_{5}^{48}	1	0	0	7	0	0	0	0	2	2	4	4
Δ_{5}^{49}	0	0	0	0	1	4	8	10	14	5	1	0
Δ_{5}^{50}	0	0	0	0	1	4	10	8	5	14	0	1
Δ_{5}^{51}	0	0	1	2	6	1	5	0	0	1	4	6
Δ_{5}^{52}	0	0	1	2	6	1	0	5	1	0	6	4
Δ_{5}^{53}	0	6	5	1	2	6	6	0	1	1	5	0
Δ_{5}^{54}	0	6	5	1	2	6	0	6	1	1	0	5
Δ_{5}^{55}	0	0	0	3	0	0	0	0	0	0	12	12
Δ_{5}^{56}	3	0	2	3	0	2	0	0	3	0	0	6
Δ_{5}^{57}	3	0	2	3	0	2	0	0	0	3	6	0
Δ_{5}^{58}	5	5	4	0	8	0	2	2	1	1	2	2
Δ_{5}^{59}	0	0	0	0	1	5	2	2	2	2	6	6

	Δ_{4}^{34}	Δ_{4}^{35}	Δ_{4}^{36}	Δ_{4}^{37}	Δ_{4}^{38}	Δ_{4}^{39}	Δ_{4}^{40}	Δ_{4}^{41}	Δ_{4}^{42}	Δ_{4}^{43}	Δ_{4}^{44}	Δ_{4}^{45}
Δ_{5}^{20}	0	0	0	0	0	0	63	0	0	0	0	126
Δ_{5}^{21}	0	0	0	10	0	0	0	6	6	30	15	30
Δ_{5}^{22}	0	0	10	0	0	0	0	6	6	15	30	15
Δ_{5}^{23}	27	0	0	2	0	6	8	0	24	102	24	48
Δ_{5}^{24}	0	27	2	0	6	0	8	24	0	24	102	24
Δ_{5}^{25}	33	0	26	0	60	36	60	0	24	66	0	156
Δ_{5}^{26}	0	33	0	26	36	60	60	24	0	0	66	96
Δ_{5}^{27}	9	18	9	27	0	0	39	72	18	63	54	72
Δ_{5}^{28}	18	9	27	9	0	0	39	18	72	54	63	0
Δ_{5}^{29}	3	3	9	9	9	9	78	18	18	45	45	36
Δ_{5}^{30}	24	24	0	0	4	4	48	16	16	32	32	72
Δ_{5}^{31}	20	8	4	16	20	2	0	64	64	76	80	88
Δ_{5}^{32}	8	20	16	4	2	20	0	64	64	80	76	40
Δ_{5}^{33}	1	14	1	15	0	24	36	24	12	12	36	48
Δ_{5}^{34}	14	1	15	1	24	0	36	12	24	36	12	72
Δ_{5}^{35}	5	5	0	0	0	0	20	52	52	40	40	90
Δ_{5}^{36}	9	9	6	6	6	6	12	36	36	36	36	84
Δ_{5}^{37}	0	2	0	12	3	18	12	48	18	30	27	45
Δ_{5}^{38}	2	0	12	0	18	3	12	18	48	27	30	51
Δ_{5}^{39}	0	12	0	9	6	12	15	30	12	15	75	36
Δ_{5}^{40}	12	0	9	0	12	6	15	12	30	75	15	108
Δ_{5}^{41}	6	2	7	6	9	6	15	18	24	54	30	48
Δ_{5}^{42}	2	6	6	7	6	9	15	24	18	30	54	36
Δ_{5}^{43}	0	7	0	9	9	21	31	18	18	39	27	93
Δ_{5}^{44}	7	0	9	0	21	9	31	18	18	27	39	87
Δ_{5}^{45}	9	6	6	9	15	15	42	24	36	39	36	135
Δ_{5}^{46}	6	9	9	6	15	15	42	36	24	36	39	108
Δ_{5}^{47}	15	15	10	10	10	10	35	66	66	35	35	70
Δ_{5}^{48}	6	6	4	4	5	5	8	44	44	32	32	68
Δ_{5}^{49}	4	4	4	0	6	2	14	16	32	35	36	52
Δ_{5}^{50}	4	4	0	4	2	6	14	32	16	36	35	34
Δ_{5}^{51}	4	4	7	15	12	26	44	24	8	44	20	94
Δ_{5}^{52}	4	4	15	7	26	12	44	8	24	20	44	80
Δ_{5}^{53}	16	10	4	0	18	5	34	12	32	72	32	102
Δ_{5}^{54}	10	16	0	4	5	18	34	32	12	32	72	66
Δ_{5}^{55}	6	6	6	6	6	6	36	30	30	36	36	102
Δ_{5}^{56}	12	3	7	0	6	0	21	39	36	57	33	114
Δ_{5}^{57}	3	12	0	7	0	6	21	36	39	33	57	75
Δ_{5}^{58}	6	6	7	7	9	9	56	20	20	38	38	71
Δ_{5}^{59}	3	3	4	4	7	7	21	32	32	31	31	82

	Δ_{4}^{46}	Δ_{5}^{1}	Δ_{5}^{2}	Δ_{5}^{3}	Δ_{5}^{4}	Δ_{5}^{5}	Δ_{5}^{6}	Δ_{5}^{7}	Δ_{5}^{8}	Δ_{5}^{9}	Δ_{5}^{10}	Δ_{5}^{11}
Δ_{5}^{20}	126	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{21}	15	1	0	0	0	0	0	10	10	0	0	0
Δ_{5}^{22}	30	0	1	0	0	0	0	10	10	0	0	5
Δ_{5}^{23}	24	0	0	0	5	0	0	6	0	0	24	2
Δ_{5}^{24}	48	0	0	5	0	0	0	0	6	24	0	4
Δ_{5}^{55}	96	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{26}	156	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{27}	0	0	0	3	0	0	2	6	0	0	0	6
Δ_{5}^{28}	72	0	0	0	3	2	0	0	6	0	0	0
Δ_{5}^{29}	36	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{35}	72	0	0	0	0	0	0	0	0	2	2	0
Δ_{5}^{31}	40	0	0	4	0	0	0	0	6	6	0	0
Δ_{5}^{32}	88	0	0	0	4	0	0	6	0	0	6	0
Δ_{5}^{33}	72	0	0	0	0	0	6	0	0	0	0	2
Δ_{5}^{34}	48	0	0	0	0	6	0	0	0	0	0	6
Δ_{5}^{35}	90	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{36}	84	0	0	0	0	0	0	6	6	0	0	0
Δ_{5}^{37}	51	0	0	0	0	0	1	8	0	3	0	2
Δ_{5}^{38}	45	0	0	0	0	1	0	0	8	0	3	3
Δ_{5}^{39}	108	0	0	0	0	0	3	0	0	13	3	0
Δ_{5}^{40}	36	0	0	0	0	3	0	0	0	3	13	0
Δ_{5}^{41}	36	0	0	0	0	1	1	8	6	0	0	0
Δ_{5}^{42}	48	0	0	0	0	1	1	6	8	0	0	2
Δ_{5}^{43}	87	0	0	0	0	0	2	0	2	0	2	0
Δ_{5}^{44}	93	0	0	0	0	2	0	2	0	2	0	8
Δ_{5}^{45}	108	0	0	0	0	0	2	0	2	0	6	0
Δ_{5}^{46}	135	0	0	0	0	2	0	2	0	6	0	0
Δ_{5}^{47}	70	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{48}	68	0	0	0	0	0	0	0	0	1	1	4
Δ_{5}^{49}	34	0	0	0	1	0	0	0	6	0	4	0
Δ_{5}^{50}	52	0	0	1	0	0	0	6	0	4	0	4
Δ_{5}^{51}	80	0	0	0	0	0	1	4	1	2	0	4
Δ_{5}^{52}	94	0	0	0	0	1	0	1	4	0	2	0
Δ_{5}^{53}	66	0	0	0	0	2	0	1	2	0	6	4
Δ_{5}^{54}	102	0	0	0	0	0	2	2	1	6	0	0
Δ_{5}^{5}	102	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{56}	75	0	0	0	0	0	0	1	1	1	3	3
Δ_{5}^{57}	114	0	0	0	0	0	0	1	1	3	1	4
Δ_{5}^{58}	71	0	0	0	0	0	0	0	0	1	1	2
Δ_{5}^{59}	82	0	0	0	0	0	0	0	0	0	0	0

	Δ_{5}^{12}	Δ_{5}^{13}	Δ_{5}^{14}	Δ_{5}^{15}	Δ_{5}^{16}	Δ_{5}^{17}	Δ_{5}^{18}	Δ_{5}^{19}	Δ_{5}^{20}	Δ_{5}^{21}	Δ_{5}^{22}	Δ_{5}^{23}
Δ_{5}^{20}	0	0	0	0	0	0	0	0	24	42	42	0
Δ_{5}^{21}	5	0	0	0	0	0	0	25	40	46	36	30
Δ_{5}^{22}	0	0	0	0	0	0	25	0	40	36	46	0
Δ_{5}^{23}	4	14	0	0	0	0	36	0	0	24	0	32
Δ_{5}^{24}	2	0	14	0	0	0	0	36	0	0	24	26
Δ_{5}^{25}	0	1	0	0	12	0	12	4	0	0	8	4
Δ_{5}^{26}	0	0	1	0	0	12	4	12	0	8	0	0
Δ_{5}^{27}	0	2	6	0	1	9	4	18	0	18	6	45
Δ_{5}^{28}	6	6	2	0	9	1	18	4	0	6	18	12
Δ_{5}^{29}	0	0	0	0	0	0	46	46	0	39	39	60
Δ_{5}^{30}	0	0	0	4	0	0	8	8	0	32	32	16
Δ_{5}^{31}	0	0	0	5	8	8	0	8	0	0	0	4
Δ_{5}^{32}	0	0	0	5	8	8	8	0	0	0	0	0
Δ_{5}^{33}	6	0	13	0	0	6	0	0	8	12	0	12
Δ_{5}^{34}	2	13	0	0	6	0	0	0	8	0	12	6
Δ_{5}^{35}	0	0	0	10	0	0	0	0	0	2	2	0
Δ_{5}^{36}	0	0	0	0	6	6	0	0	0	0	0	0
Δ_{5}^{37}	3	0	3	0	0	7	0	6	16	14	6	15
Δ_{5}^{38}	2	3	0	0	7	0	6	0	16	6	14	0
Δ_{5}^{39}	0	0	6	0	0	4	5	6	4	2	14	3
Δ_{5}^{40}	0	6	0	0	4	0	6	5	4	14	2	0
Δ_{5}^{41}	2	0	1	3	3	3	5	0	12	12	8	6
Δ_{5}^{42}	0	1	0	3	3	3	0	5	12	8	12	6
Δ_{5}^{43}	8	0	4	6	3	7	0	0	0	0	0	0
Δ_{5}^{44}	0	4	0	6	7	3	0	0	0	0	0	6
Δ_{5}^{45}	0	0	0	0	0	5	3	0	0	9	0	0
Δ_{5}^{46}	0	0	0	0	5	0	0	3	0	0	9	0
Δ_{5}^{47}	0	5	5	0	0	0	0	0	0	1	1	10
Δ_{5}^{48}	4	4	4	15	0	0	0	0	0	0	0	0
Δ_{5}^{49}	4	3	0	1	6	2	10	4	8	12	6	9
Δ_{5}^{50}	0	0	3	1	2	6	4	10	8	6	12	24
Δ_{5}^{51}	0	0	0	0	2	10	4	2	8	6	2	12
Δ_{5}^{52}	4	0	0	0	10	2	2	4	8	2	6	0
Δ_{5}^{53}	0	5	0	2	4	0	0	2	0	10	4	1
Δ_{5}^{54}	4	0	5	2	0	4	2	0	0	4	10	4
Δ_{5}^{55}	0	0	0	0	0	0	0	0	0	0	0	0
Δ_{5}^{56}	4	7	1	3	0	3	0	0	6	6	0	3
Δ_{5}^{57}	3	1	7	3	3	0	0	0	6	0	6	3
Δ_{5}^{58}	2	0	0	0	3	3	6	6	4	10	10	15
Δ_{5}^{59}	0	1	1	0	2	2	0	0	8	2	2	2

	Δ_{5}^{24}	Δ_{5}^{25}	Δ_{5}^{26}	Δ_{5}^{27}	Δ_{5}^{28}	Δ_{5}^{29}	Δ_{5}^{30}	Δ_{5}^{31}	Δ_{5}^{32}	Δ_{5}^{33}	Δ_{5}^{34}	Δ_{5}^{35}
Δ_{5}^{20}	0	0	0	0	0	0	0	0	0	21	21	0
Δ_{5}^{21}	0	0	10	30	10	65	60	0	0	30	0	6
Δ_{5}^{22}	30	10	0	10	30	65	60	0	0	0	30	6
Δ_{5}^{23}	26	4	0	60	16	80	24	6	0	24	12	0
Δ_{5}^{24}	32	0	4	16	60	80	24	0	6	12	24	0
Δ_{5}^{25}	0	2	2	0	0	0	0	0	54	28	2	24
Δ_{5}^{26}	4	2	2	0	0	0	0	54	0	2	28	24
Δ_{5}^{27}	12	0	0	21	25	8	9	18	18	0	0	18
Δ_{5}^{28}	45	0	0	25	21	8	9	18	18	0	0	18
Δ_{5}^{29}	60	0	0	8	8	34	0	9	9	0	0	0
Δ_{5}^{30}	16	0	0	8	8	0	31	18	18	16	16	16
Δ_{5}^{31}	0	0	36	16	16	8	18	11	20	0	16	16
Δ_{5}^{32}	4	36	0	16	16	8	18	20	11	16	0	16
Δ_{5}^{33}	6	14	1	0	0	0	12	0	12	15	22	0
Δ_{5}^{34}	12	1	14	0	0	0	12	12	0	22	15	0
Δ_{5}^{35}	0	10	10	10	10	0	10	10	10	0	0	30
Δ_{5}^{36}	0	0	0	6	6	0	0	0	0	18	18	33
$\Delta_{5}^{37} 7$	0	12	7	4	6	11	33	0	9	6	24	6
Δ_{5}^{38}	15	7	12	6	4	11	33	9	0	24	6	6
Δ_{5}^{39}	0	21	3	0	27	18	15	6	3	0	33	6
Δ_{5}^{40}	3	3	21	27	0	18	15	3	6	33	0	6
Δ_{5}^{41}	6	6	6	23	12	12	27	6	3	12	15	12
Δ_{5}^{42}	6	6	6	12	23	12	27	3	6	15	12	12
Δ_{5}^{43}	6	9	2	3	6	3	3	9	0	15	21	24
Δ_{5}^{44}	0	2	9	6	3	3	3	0	9	21	15	24
Δ_{5}^{45}	0	0	0	6	4	0	0	18	0	16	12	18
Δ_{5}^{46}	0	0	0	4	6	0	0	0	18	12	16	18
Δ_{5}^{47}	10	0	0	0	0	0	0	15	15	0	0	20
Δ_{5}^{48}	0	8	8	4	4	0	3	9	9	12	12	24
Δ_{5}^{49}	24	2	6	32	18	30	16	20	5	16	2	0
Δ_{5}^{50}	9	6	2	18	32	30	16	5	20	2	16	0
Δ_{5}^{51}	0	4	12	6	2	6	8	6	11	10	26	8
Δ_{5}^{52}	12	12	4	2	6	6	8	11	6	26	10	8
Δ_{5}^{53}	4	4	8	8	2	8	6	5	12	30	8	16
Δ_{5}^{54}	1	8	4	2	8	8	6	12	5	8	30	16
Δ_{5}^{55}	0	0	0	0	0	0	3	6	6	12	12	33
Δ_{5}^{56}	3	1	12	16	2	3	6	9	9	18	6	18
$\Delta_{5}^{57} 7$	3	12	1	2	16	3	6	9	9	6	18	18
Δ_{5}^{58}	15	2	2	3	3	7	4	10	10	13	13	8
Δ_{5}^{59}	2	4	4	5	5	0	6	6	6	13	13	20

	Δ_{5}^{36}	Δ_{5}^{37}	Δ_{5}^{38}	Δ_{5}^{39}	Δ_{5}^{40}	Δ_{5}^{41}	Δ_{5}^{42}	Δ_{5}^{43}	Δ_{5}^{44}	Δ_{5}^{45}	Δ_{5}^{46}	Δ_{5}^{47}
Δ_{5}^{20}	0	84	84	21	21	63	63	0	0	0	0	0
Δ_{5}^{21}	0	70	30	10	70	60	40	0	0	45	0	6
Δ_{5}^{22}	0	30	70	70	10	40	60	0	0	0	45	6
Δ_{5}^{23}	0	60	0	12	0	24	24	0	24	0	0	48
Δ_{5}^{24}	0	0	60	0	12	24	24	24	0	0	0	48
Δ_{5}^{25}	0	48	28	84	12	24	24	36	8	0	0	0
Δ_{5}^{26}	0	28	48	12	84	24	24	8	36	0	0	0
Δ_{5}^{27}	18	12	18	0	81	69	36	9	18	18	12	0
Δ_{5}^{28}	18	18	12	81	0	36	69	18	9	12	18	0
Δ_{5}^{29}	0	33	33	54	54	36	36	9	9	0	0	0
Δ_{5}^{30}	0	88	88	40	40	72	72	8	8	0	0	0
Δ_{5}^{31}	0	0	24	16	8	16	8	24	0	48	0	48
Δ_{5}^{32}	0	24	0	8	16	8	16	0	24	0	48	48
Δ_{5}^{33}	36	12	48	0	66	24	30	30	42	32	24	0
Δ_{5}^{34}	36	48	12	66	0	30	24	42	30	24	32	0
Δ_{5}^{35}	55	10	10	10	10	20	20	40	40	30	30	40
Δ_{5}^{36}	36	12	12	12	12	6	6	36	36	18	18	72
Δ_{5}^{37}	12	47	54	14	61	42	31	24	36	27	15	18
Δ_{5}^{38}	12	54	47	61	14	31	42	36	24	15	27	18
Δ_{5}^{39}	12	14	61	24	50	12	15	16	33	18	21	24
Δ_{5}^{40}	12	61	14	50	24	15	12	33	16	21	18	24
Δ_{5}^{41}	6	42	31	12	15	55	57	18	27	18	21	36
Δ_{5}^{42}	6	31	42	15	12	57	55	27	18	21	18	36
Δ_{5}^{43}	36	24	36	16	33	18	27	39	25	26	30	42
Δ_{5}^{44}	36	36	24	33	16	27	18	25	39	30	26	42
Δ_{5}^{45}	18	27	15	18	21	18	21	26	30	25	25	30
Δ_{5}^{46}	18	15	27	21	18	21	18	30	26	25	25	30
Δ_{5}^{47}	60	15	15	20	20	30	30	35	35	25	25	2
Δ_{5}^{48}	68	8	8	8	8	20	20	28	28	36	36	40
Δ_{5}^{49}	8	30	18	42	28	26	34	16	8	16	18	20
Δ_{5}^{50}	8	18	30	28	42	34	26	8	16	18	16	20
Δ_{5}^{51}	12	30	30	32	66	22	12	18	20	28	22	48
Δ_{5}^{52}	12	30	30	66	32	12	22	20	18	22	28	48
Δ_{5}^{53}	24	54	28	28	10	44	42	30	20	12	20	32
Δ_{5}^{54}	24	28	54	10	28	42	44	20	30	20	12	32
Δ_{5}^{55}	51	12	12	12	12	12	12	36	36	24	24	48
Δ_{5}^{56}	42	33	3	16	10	21	21	29	15	29	35	36
Δ_{5}^{57}	42	3	33	10	16	21	21	15	29	35	29	36
Δ_{5}^{58}	12	36	36	42	42	40	40	18	18	16	16	20
Δ_{5}^{59}	32	21	21	20	20	20	20	35	35	27	27	19

	Δ_{5}^{48}	Δ_{5}^{49}	Δ_{5}^{50}	Δ_{5}^{51}	Δ_{5}^{52}	Δ_{5}^{53}	Δ_{5}^{54}	Δ_{5}^{55}	Δ_{5}^{56}	Δ_{5}^{57}	Δ_{5}^{58}	Δ_{5}^{59}
Δ_{5}^{20}	0	63	63	63	63	0	0	0	63	63	63	252
Δ_{5}^{21}	0	90	45	45	15	75	30	0	60	0	150	60
Δ_{5}^{22}	0	45	90	15	45	30	75	0	0	60	150	60
Δ_{5}^{23}	0	54	144	72	0	6	24	0	24	24	180	48
Δ_{5}^{24}	0	144	54	0	72	24	6	0	24	24	180	48
Δ_{5}^{25}	48	12	36	24	72	24	48	0	8	96	24	96
Δ_{5}^{26}	48	36	12	72	24	48	24	0	96	8	24	96
Δ_{5}^{27}	18	144	81	27	9	36	9	0	96	12	27	90
Δ_{5}^{28}	18	81	144	9	27	9	36	0	12	96	27	90
Δ_{5}^{29}	0	135	135	27	27	36	36	0	18	18	63	0
Δ_{5}^{30}	12	64	64	32	32	24	24	16	32	32	32	96
Δ_{5}^{31}	36	80	20	24	44	20	48	32	48	48	80	96
Δ_{5}^{32}	36	20	80	44	24	48	20	32	48	48	80	96
Δ_{5}^{33}	36	48	6	30	78	90	24	48	72	24	78	156
Δ_{5}^{34}	36	6	48	78	30	24	90	48	24	72	78	156
Δ_{5}^{35}	60	0	0	20	20	40	40	110	60	60	40	200
Δ_{5}^{36}	102	12	12	18	18	36	36	102	84	84	36	192
Δ_{5}^{37}	12	45	27	45	45	81	42	24	66	6	108	126
Δ_{5}^{38}	12	27	45	45	45	42	81	24	6	66	108	126
Δ_{5}^{39}	12	63	42	48	99	42	15	24	32	20	126	120
Δ_{5}^{40}	12	42	63	99	48	15	42	24	20	32	126	120
Δ_{5}^{41}	30	39	51	33	18	66	63	24	42	42	120	120
Δ_{5}^{42}	30	51	39	18	33	63	66	24	42	42	120	120
Δ_{5}^{43}	42	24	12	27	30	45	30	72	58	30	54	210
Δ_{5}^{44}	42	12	24	30	27	30	45	72	30	58	54	210
Δ_{5}^{45}	54	24	27	42	33	18	30	48	58	70	48	162
Δ_{5}^{46}	54	27	24	33	42	30	18	48	70	58	48	162
Δ_{5}^{47}	50	25	25	60	60	40	40	80	60	60	50	95
Δ_{5}^{48}	65	8	8	28	28	34	34	132	68	68	48	216
Δ_{5}^{49}	8	76	84	32	42	41	44	24	40	44	162	120
Δ_{5}^{50}	8	84	76	42	32	44	41	24	44	40	162	120
Δ_{5}^{51}	28	32	42	55	42	40	24	32	60	40	54	160
Δ_{5}^{52}	28	42	32	42	55	24	40	32	40	60	54	160
Δ_{5}^{53}	34	41	44	40	24	23	44	44	28	44	62	152
Δ_{5}^{54}	34	44	41	24	40	44	23	44	44	28	62	152
Δ_{5}^{55}	99	18	18	24	24	33	33	87	60	60	36	228
Δ_{5}^{56}	51	30	33	45	30	21	33	60	52	68	51	186
Δ_{5}^{57}	51	33	30	30	45	33	21	60	68	52	51	186
Δ_{5}^{58}	24	81	81	27	27	31	31	24	34	34	78	164
Δ_{5}^{59}	54	30	30	40	40	38	38	76	62	62	82	198

Chapter 3

A Commuting Involution Graph for the Baby Monster

3.1 Literature Review

Suppose G is a finite group and X is a subset of G. Then the commuting graph on X, denoted $\mathcal{C}(G, X)$, is a graph whose vertex set is X, with any two points connected by an edge if and only if they commute. If the set X is a conjugacy class of involutions then we call the graph $\mathcal{C}(G, X)$ the commuting involution graph for G with respect to X. These graphs have been studied by many different authors and a brief history will be outlined here.

3.1.1 The Work of Brauer and Fowler

In Brauer and Fowler's famous 1955 paper On Groups of Even Order, [5], the case was studied where G was a group of even order and X the set of non identity elements. One result states that if G has more than one conjugacy class of involutions then the distance between any two involutions is at most 3. The proof is included here as it is elementary, fairly short and elegant.

Lemma 3.1.1 (R. Brauer and K. Fowler). Let G be a finite Group of even order
with more than one class of involutions. If x and y are two non-conjugate involutions then there exists an involution w which commutes with both x and y.

Proof. Consider the subgroup $D=\langle x, y\rangle$ of G. It is a well known fact that D is a dihedral group of order $2 m$ where m is the order of $x y$. Furthermore if m is even then $(x y)^{\frac{m}{2}}$ is an involution contained in the centre of D and in particular commutes with both x and y. Therefore if we can prove that the order of $x y$ is even then we are done.

So suppose that m is odd. Then if S_{1} and S_{2} are Sylow 2-subgroups of D containing x and y respectively, then $\left|S_{1}\right|=\left|S_{2}\right|=2$. However by Sylow's Theorems, S_{1} is conjugate to S_{2} implying that x is conjugate to y, a contradiction. Hence m must be even and we are done.

Theorem 3.1.2 (R. Brauer and K. Fowler). If a group G of even order contains more than one class of involutions then for any two involutions $x, y \in G$, we have $d(x, y) \leq 3$.

Proof. If x and y are not conjugate in G, then by Lemma 3.1.1, $d(x, y) \leq 2$. Thus suppose that x, y are contained in the same involution conjugacy class C. Now let z be an involution not in C. Then again by Lemma 3.1.1, there exists an involution $w \in G$ such that w commutes with both y and z. First suppose that $w \notin C$, then by Lemma 3.1.1, $d(x, w) \leq 2$ and since w commutes with $y, d(x, y) \leq 3$. So assume that $w \in C$, then there exists a $g \in G$ such that $x=w^{g}$. Then as w commutes with z, $x=w^{g}$ commutes with z^{g}. However as $z \notin C$ we have $z^{g} \notin C$, and thus by Lemma 3.1.1, $d\left(z^{g}, y\right) \leq 2$. Hence $d(x, y) \leq 3$ as required.

This result also gives us two easy corollaries.

Corollary 3.1.3 (R. Brauer and K. Fowler). If G has even order and contains more than one class of involutions then any two elements g_{1} and g_{2} such that $\left|C_{G}\left(g_{1}\right)\right|$ and $\left|C_{G}\left(g_{2}\right)\right|$ are even have distance at most 5.

Proof. Since $C_{G}\left(g_{1}\right)$ and $C_{G}\left(g_{2}\right)$ have even order they both contain involutions x_{1} and x_{2}. Thus by Theorem 3.1.2, $d\left(x_{1}, x_{2}\right) \leq 3$, and we have $d\left(g_{1}, x_{1}\right)=1$ and $d\left(g_{2}, x_{2}\right)=1$, hence our result follows.

A similar argument gives us the second corollary

Corollary 3.1.4 (R. Brauer and K. Fowler). Let G be a group of even order which contains a real element g such that $C_{G}(h)$ has odd order for every non-identity h in $C_{G}(g)$. Then G contains involutions which have distance greater than 2.

3.1.2 The Work of Fischer

Commuting graphs came up in Fischer's work on 3-transposition groups. A group G is said to be a 3 -transposition group if it is generated by a set D of involutions of G such that D is a union of conjugacy classes of G and for all $a, b \in D$, the product $a b$ has order 1,2 or 3 . A good example of a 3 -transposition group is the symmetric group S_{n}, where the set D is the conjugacy class of transpositions.

The study of the commuting graph $\mathcal{C}(G, D)$ where D is a conjugacy class of 3transpositions in part led to the proof of Fischer's Theorem, a classification of all almost simple 3-transposition groups and led to the discovery of three new sporadic simple groups.

Theorem 3.1.5 (Fischer's Theorem, B. Fischer). Let D be a conjugacy class of 3transpostions of the finite group G. Assume the centre of G is trivial and the derived subgroup of G is simple. Then one of the following holds:

1. $G \cong S_{n}$ and D is the set of transpositions of G.
2. $G \cong S p_{n}(2)$ and D is the set of transvections of G.
3. $G \cong U_{n}(2)$ and D is the set of transvections of G.
4. $G \cong O_{n}^{\epsilon}(2)$ and D is the set of transvections of G.
5. $G \cong P O_{n}^{\mu, \pi}(3)$ is the subgroup of an n-dimensional projective orthogonal group over the field of order 3 generated by a conjugacy class D of reflections.
6. G is one of the three Fischer sporadic groups $F i_{22}, F i_{23}$ or $F i_{24}$, where D is a uniquely determined class of involutions.

A proof of this theorem is given in [3].

3.1.3 The Work of Segev

In 2001, Segev published the following result in [38].

Theorem 3.1.6 (Y. Segev). Let G be a minimal non-soluble group, that is G is not soluble but every proper quotient of G is soluble, and suppose X consists of all non-identity elements of G. Then the commuting graph for G with vertex set X has diameter at least 3.

This theorem was part of the solution of the Finite Soluble Quotients Conjecture, that is that finite quotients of the multiplicative group of finite dimensional division algebras are soluble. In an early paper by Rapinchuk and Segev [23], they proved the following result

Theorem 3.1.7 (Non-Existence Theorem at Diameter ≥ 4, Y. Segev). Let \mathcal{G} be a class of finite groups. Then a member $G \in \mathcal{G}$ is called minimal if no proper quotient of G belongs to \mathcal{G}. If we assume that

1. The members of \mathcal{G} are non-soluble.
2. If $G \in \mathcal{G}$ and $N \unlhd G$ with G / N soluble, then $N \in \mathcal{G}$.
3. If $G \in \mathcal{G}$ and $N \unlhd G$ is a soluble normal subgroup of G then $G / N \in \mathcal{G}$.
4. The commuting graph of minimal members of \mathcal{G} has diameter ≥ 4.

Then no member of \mathcal{G} is a quotient of the multiplicative group of a finite-dimensional division algebra.

Now if we could replace the bound in condition 4 above with ≥ 3, and if we take \mathcal{G} to be the class of non-soluble finite groups then the Finite Soluble Quotients Conjecture will follow by using Theorem 3.1.6.

Important in the proof of Theorem 3.1.6 is the following idea. Let

$$
\mathcal{C}_{2}(L)=\left\{(a, b) \in L \times L \mid C_{A u t(L)}(a) \cap C_{A u t(L)}(b)=1\right\}
$$

where L is a finite group. Now $\operatorname{Aut}(L)$ acts naturally on $\mathcal{C}_{2}(L)$ in the following way

$$
(a, b) \mapsto\left(a^{\alpha}, b^{\alpha}\right)
$$

for $\alpha \in \operatorname{Aut}(L)$. Consider the following property:

$$
\operatorname{Aut}(L) \text { has at least } 5 \text { orbits on } \mathcal{C}_{2}(L) .
$$

Now suppose that G is a finite group, $K \neq 1$ is a normal subgroup of G and $L \leq K$ is a subgroup such that

$$
K=L^{g_{1}} \times L^{g_{2}} \times \ldots \times L^{g_{n}}
$$

for $g_{i} \in G$. We assume that G acts transitively on

$$
X=\left\{L^{g_{1}}, L^{g_{2}}, \ldots, L^{g_{n}}\right\}
$$

by conjugation and suppose $\Sigma \leq \operatorname{Syn}(n)$ is the permutation group induced from this action. We assume Σ is soluble and that $C_{G}(K)=1$. Now it is true that G having the structure as above, with L being non-abelian simple, is the same as saying that G is minimal non-soluble. Now if we assume further that L has the property mentioned above then we have the following lemma

Lemma 3.1.8 (Y. Segev). If G is as above, then the commuting graph for G on the
set of all non-identity elements, has diameter at least 3.

Then using this lemma with the observation above we come to the proof of Theorem 3.1.6. It must be noted that the proof of Lemma 3.1.8 relies on the following theorem, originally proved in [15], which uses the Classification of Finite Simple Groups in its proof.

Theorem 3.1.9 (G. Malle, J. Saxl and T. Weigel). Every Finite simple group except $U_{3}(3)$ can be generated by two elements, one strongly real and the other an involution.

The proof of the Finite Soluble Quotients Conjecture was completed by A. Rapinchuk, G. Seitz and Y. Segev in [2].

3.1.4 The Work of Bundy, Bates, Rowley and Perkins

Peter Rowley has been the driving force behind the recent surge of results concerning commuting involution graphs, where the set X is a conjugacy class of involutions of a group G. It is the overall aim to calculate these graphs, to some extent, for all the involution conjugacy classes for all the finite simple groups and their automorphism groups as well as a few other interesting examples. Over the last 10 years Rowley and three of his former PhD students, D. Bundy, C. Bates and S. Perkins (now S. Hart) have written four papers $[9],[11],[12]$ and $[10]$ on the subject which cover many of the simple groups, as well as the finite Coxeter groups. More recently A. Everett and P. Taylor, two more of Rowley's students, have completed work on some of the remaining cases.

Commuting Involution Graphs for Symmetric Groups

In [10], Bundy, Bates, Rowley and Perkins carried out an extensive amount of work on the commuting involution graphs for $G \cong S_{n}$, see [10].

Now let G be the symmetric group on n objects, and let X be a conjugacy class of involutions. A typical element of X will be the product of disjoint transpositions,
hence we may assume that any element of X has cycle type $1^{r} 2^{m}$ for a fixed m. Two results were proved,

Theorem 3.1.10 (Bundy, Bates, Rowley and Perkins). For $G \cong S_{n}, \mathcal{C}(G, X)$ is disconnected if and only if $n=2 m+1$ or $n=4$ and $m=1$.

Theorem 3.1.11 (Bundy, Bates, Rowley and Perkins). If we suppose that $\mathcal{C}(G, X)$ is connected then one of the following holds:

1. The diameter of $\mathcal{C}(G, X)$ is at most 3.
2. $2 m+2=n \in\{6,8,10\}$ and the diameter of $\mathcal{C}(G, X)$ is at most 4 .

Important in the proofs of these two theorems is the idea of an x-graph. We now pick a fixed $a \in X$ and without loss of generality suppose $a=(1,2)(3,4) \ldots(2 m-$ $1,2 m)$, so in particular a has cycle type $1^{(n-2 m)} 2^{m}$. We now let G act on $\Omega=\{1 \ldots n\}$ in the usual manner and let

$$
\mathcal{V}=\{\{1,2\},\{3,4\} \ldots\{2 m-1,2 m\},\{2 m+1\},\{2 m+2\}, \ldots\{n\}\}
$$

so \mathcal{V} is the set of orbits as a acts on Ω. Now for $x \in X$ we will define a graph, denoted \mathcal{G}_{x}, whose vertex set is \mathcal{V} with $v_{1}, v_{2} \in \mathcal{V}$ connected by an edge if and only if there exist $\alpha \in v_{1}$ and $\beta \in v_{2}$ with $\alpha \neq \beta$ such that x interchanges α and β. Furthermore the vertices corresponding to the 2 -cycles of a will be coloured black, and the points fixed by a coloured white. The x-graph gives us valuable information on $\mathcal{C}(G, X)$. The following lemma gives a good example.

Lemma 3.1.12 (Bundy, Bates, Rowley and Perkins). Let $x \in X$. Then $x \in \Delta_{1}(a) \cup$ $\{a\}$ if and only if each connected component of \mathcal{G}_{x} is one of the following:

The structure of the x-graph also gives us the sizes of each G_{a} orbit, and two involutions $x, y \in X$ are in the same G_{a} orbit if and only if their corresponding x graphs are isomorphic. These two facts alone give us a wealth of knowledge about
$\mathcal{C}(G, X)$. This essentially means that all information about $\mathcal{C}(G, X)$ can be worked out via these x-graphs and as they are purely combinatorial in nature, and fairly easy to deal with, this simplifies the problem greatly.

Commuting Involution Graphs in Coxeter Groups

In [9], Bates, Bundy, Perkins and Rowley studied the commuting involution graphs for the finite irreducible Coxeter groups. We recall there are three infinite families of finite Coxeter groups, that is A_{n}, the symmetric group on $n+1$ points, B_{n} and D_{n} as well as the 7 exceptional finite coxeter groups $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$ and I_{n}.

We recall that we can think of B_{n} as the group of signed permutations on n objects. That is, we define the sign change to be the element which sends i to $-i$ and fixes all other j. Then take this element and combine it with S_{n} to get B_{n}. More precisely we write a permutation in S_{n} (including 1-cycles) and add a plus or minus sign above each i. For example if

$$
w=(\stackrel{+}{1}, \overline{2})(\overline{3}, \stackrel{+}{4}) \in B_{4}
$$

then $w(1)=2, w(2)=-1, w(3)=-4$ and $w(4)=3$. The Coxeter Group D_{n} is the subgroup of index 2 in B_{n} consisting of all elements which involve an even number of sign changes. Now if we express an element w as a product of disjoint cycles, then we say a cycle $\left(i_{1}, \ldots i_{n}\right)$ is positive if it contains an even number of negative signs, and negative if it contains an odd number. We can now define an obvious extension of cycle type in the symmetric group, the signed cycle type, that is the usual cycle type, but with a + or - sign above each cycle, where we again include cycles of length 1. As expected, it is true that elements in B_{n} are conjugate if and only if they have the same signed cycle type, and conjugacy classes in D_{n} are parameterized by signed cycle type, with one class for each cycle type except in the cases where the signed cycle type contains only even length positive cycles, in which there are two. In [9] the authors proved two main theorems, which we are now in a position to state.

Theorem 3.1.13 (Bundy, Bates, Rowley and Perkins). Suppose that $G \cong B_{n}$ or D_{n} and let

$$
a=(\stackrel{+}{1}, \stackrel{+}{2}) \ldots\left(2 m^{+}-1,2{ }^{+}\right)\left(2 m^{+}+1\right) \ldots\left(2 m+{ }^{+} k_{1}\right)\left(2 m+\bar{k}_{1}+1\right) \ldots\left(2 m+\bar{k}_{1}+k_{2}\right) .
$$

Let $X=a^{G}$ and $k=\max \left\{k_{1}, k_{2}\right\}$. Then we have the following:
(i) If $m=0$ then $\mathcal{C}(G, X)$ is the complete graph.
(ii) If $k=0$, then the diameter of $\mathcal{C}(G, X)$ is at most 2.
(iii) If $k=1$ and $m>0$ then $\mathcal{C}(G, X)$ is disconnected.
(iv) If $k \geq 2$ and $n>5$ then the diameter of $\mathcal{C}(G, X)$ is at most 4.
(v) If $n=5, m=1$ and $k=2$ then the diameter of $\mathcal{C}(G, X)$ is 5 .
(vi) If $n=5, m=1$ and $k=3$ then the diameter of $\mathcal{C}(G, X)$ is 2.
(vii) If $n=4, m=1$ and $k=2$ then $\mathcal{C}(G, X)$ is disconnected.

For the exceptional Coxeter groups we have the following result

Theorem 3.1.14 (Bundy, Bates, Rowley and Perkins). Suppose that G is an exceptional finite Coxeter group, X a conjugacy class of G and $a \in X$.
(i) If $G \cong I_{n}$ then $\mathcal{C}(G, X)$ is either disconnected or consists of a single vertex.
(ii) If $G \cong E_{6}$ then the diameter of $\mathcal{C}(G, X)$ is at most 5 .
(ii) If $G \cong E_{7}$ or E_{8} then the diameter of $\mathcal{C}(G, X)$ is at most 4 .
(iv) If $G \cong F_{4}$ and $|X|>1$ then either $\mathcal{C}(G, X)$ is disconnected or has diameter 2.
(v) If $G \cong H_{3}$ or H_{4} and $|X|>1$ either $\mathcal{C}(G, X)$ is disconnected or has diameter 2.

Note that the commuting involution graph for the family A_{n} has already been calculated in [10] as $A_{n} \cong \operatorname{Sym}(n+1)$.

Theorem 3.1.14 is proved by using MAGMA and calculating the commuting involution graph directly. As these groups are relatively small this problem is computationally fairly easy, and just consists of some easy number crunching. For Theorem 3.1.13 as they had a more concrete understanding of the elements of B_{n} and D_{n}, the commuting involution graphs can be constructed without use of a machine. As in [10], central to the calculation is the idea of an x-graph. Indeed, for $x \in X$ we define a graph \mathcal{G}_{x} as follows. Without loss of generality we fix $a \in X$,

$$
a=(\stackrel{+}{1}, \stackrel{+}{2}) \ldots\left(2 m^{+}-1, \stackrel{+}{2}_{m}\right)(2 m+1) \ldots(n)
$$

and define

$$
\mathcal{V}=\{\{1,2\}, \ldots,\{2 m-1,2 m\},\{2 m+1\} \ldots\{n\}\} .
$$

Then \mathcal{G}_{x} has vertex set \mathcal{V}, with $v_{1}, v_{2} \in \mathcal{V}$ connected by an edge if and only if there exists a $\alpha \in v_{1}$ and $\beta \in v_{2}$ with $\alpha \neq \beta$ such that x interchanges $\pm \alpha$ and $\pm \beta$. Within \mathcal{G}_{x} we will colour the vertices corresponding to the 2 cycles black and the others white.

As in [10], information on these x-graphs can be pulled across to $\mathcal{C}(G, X)$, however whereas in the case of the symmetric groups two elements $x, y \in X$ are in the same G_{a} orbit if and only if \mathcal{G}_{x} and \mathcal{G}_{y} are isomorphic, for Coxeter groups this in general is not true, however these graphs are still a great deal of use.

Commuting Involution Graphs in Special Linear Groups

In [11], the authors Bates, Bundy, Perkins and Rowley gave bounds on the commuting involution graph for special linear groups over fields of characteristic 2 , and gave the exact disc sizes for 2 and 3 dimensional special linear groups over any finite field. They proved the following theorems.

Theorem 3.1.15 (Bundy, Bates, Rowley and Perkins). Suppose $G \cong L_{2}(q)$, the 2 dimensional projective special linear group over the field of q elements, then
(i) If q is even then $\mathcal{C}(G, X)$ consists of $q+1$ cliques of size $q-1$, that is $\mathcal{C}(G, X)$ consists of $q+1$ copies of the complete graph on $q-1$ vertices.
(ii) If $q \equiv 3 \bmod 4$ with $q>3$ then $\mathcal{C}(G, X)$ is connected with diameter 3. Furthermore

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =(q+1) / 2 \\
\left|\Delta_{2}(t)\right| & =(q+1)(q-3) / 4 \\
\left|\Delta_{3}(t)\right| & =(q+1)(q-3) / 4
\end{aligned}
$$

(iii) If $q \equiv 1 \bmod 4$ with $q>13$ then $\mathcal{C}(G, X)$ is connected with diameter 3. Furthermore

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =(q+1) / 2 \\
\left|\Delta_{2}(t)\right| & =(q+1)(q-5) / 4 \\
\left|\Delta_{3}(t)\right| & =(q+1)(q+7) / 4
\end{aligned}
$$

Note that this theorem misses out the cases where $q=3,5,9$ and 13 . However in three of the cases we have a isomorphism into the class of alternating groups, which have already been studied, that is $L_{2}(3) \cong \operatorname{Alt}(4), L_{2}(9) \cong \operatorname{Alt}(6)$ and $L_{2}(5) \cong \operatorname{Alt}(5)$, and hence these graphs are given in [10]. Finally the graph for $L_{2}(13)$ is calculated separately. We remark that the graphs for $L_{2}(9)$ and $L_{2}(13)$ are both connected and have diameter 4 and that the graph for $L_{2}(3)$ is in fact the complete graph on 3 vertices.

Theorem 3.1.16 (Bundy, Bates, Rowley and Perkins). Suppose that $G \cong S L_{3}(q)$. Then $\mathcal{C}(G, X)$ is connected and has diameter 3. Furthermore we have
(i) If q is even then

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =2 q^{2}-q-2 \\
\left|\Delta_{2}(t)\right| & =2 q^{2}(q-1) \\
\left|\Delta_{3}(t)\right| & =q^{3}(q-1)
\end{aligned}
$$

(i) If q is odd then

$$
\begin{aligned}
\left|\Delta_{1}(t)\right| & =q(q+1) \\
\left|\Delta_{2}(t)\right| & =\left(q^{2}-1\right)\left(q^{2}+1\right) \\
\left|\Delta_{3}(t)\right| & =(q+1)(q-1)^{2}
\end{aligned}
$$

We also have that the commuting involution graphs for $L_{3}(q)$ and $S L_{3}(q)$ are isomorphic.

Theorem 3.1.17 (Bundy, Bates, Rowley and Perkins). Let K be a possibly infinite field of characteristic 2 and suppose that $G \cong S L_{n}(K)$. Also suppose that V is the natural $K G$-module associated to G, and set $k=\operatorname{dim}_{K}[V, t]$, where $[V, t]=$ $\left\langle v^{t}+v \mid v \in V\right\rangle$. Then
(i) if $n>4 k$ then the diameter of $\mathcal{C}(G, X)$ is 2 ;
(ii) if $3 k \leq n<4 k$ then the diameter of $\mathcal{C}(G, X)$ is at most 3;
(iii) if $2 k<n<3 k$ or k is even such that $n=2 k$, then the diameter of $\mathcal{C}(G, X)$ is at most 5;
(iv) if $n=2 k$ where k is odd then the diameter of $\mathcal{C}(G, X)$ is at most 6 .

Central to the proof of Theorem 3.1.17, is the following lemma

Lemma 3.1.18 (Bundy, Bates, Rowley and Perkins). Suppose $x, y \in X$ then
(i) $[V, x] \leq C_{V}(x)$
(ii) if $[V, x][V, y] \leq C_{V}(x) \cap C_{V}(y)$ then $[x, y]=1$.

Now if $[x, y]=1$ then $d(x, y)=1$ and so we can prove the following corollary

Corollary 3.1.19. Let $x, y \in X$ with $x \neq y$. If $C_{V}(x)=C_{V}(y)$ then $d(x, y)=1$.

By using this corollary we can determine which vertices should be joined by an edge by studying their fixed spaces. This converts our problem to simply studying linear algebra.

Commuting Involution Graphs for Sporadic Groups

In [12], Bundy, Bates, Rowley and Perkins studied commuting involution graphs for the 26 sporadic simple groups and their automorphism groups. All cases were covered in this paper apart from J_{4} with the class $2 B, F i_{24}^{\prime}$ with the classes $2 B$ and $2 D$, the Baby Monster, $B M$, with the classes $2 C$ and $2 D$ and the Monster \mathbb{M} with the class $2 B$. The J_{4} and $F i_{24}^{\prime}$ cases have recently been calculated by Rowley and P. Taylor and will be published in the near future.

The idea of the calculations was to pick a fixed vertex t and split the involution class X into smaller chunks, that is into the sets $X_{C}=\{x \in X \mid t x \in C\}$ where C is any conjugacy class of the group G in question. They then determined which disc of $\mathcal{C}(G, X)$ each X_{C} belonged to. In all cases they found that the diameter of $\mathcal{C}(G, X)$ was at most 4 , only being 4 in a limited number of cases.

For many of the sporadic simple groups, the commuting involution graph for the class $2 A$ was calculated as part of the primary investigation into the group. For example in $F i z_{24}$ the commuting involution graph for the class $2 A$, the class of 3 -transpositions which generate the group, was calculated during Fischer's investigation into 3 -transposition groups. Similarly for the class $2 A$ of the Baby Monster, similar graphs were studied by Fischer and by Ivanov and data from these commuting involution graphs can easily be extracted from these papers.

For the other cases a mixture of brain and machine was used. For the smaller sporadic groups they used the following computational method, using the smallest
degree non-trivial faithful permutation representation given in the online AtLas.

- Calculate $C=C_{G}(t)$ and $S \in \operatorname{Syl}_{2}(C)$.
- Compute $T=S \cap X$. This can be done easily by using the dimension of the fixspace as a conjugacy class invariant, that is the subspace of the natural G-module which is fixed by an element of the conjugacy class.
- Calculate $\Delta_{1}(t)$, the first disc of $\mathcal{C}(G, X)$, which is the union of the conjugacy classes of C in $T \backslash\{t\}$. Let R_{1} be a full set of representatives for these conjugacy classes.

For $i \geq 2$ carry out the following steps

- Compute representatives R_{i} of the $C_{G}(t)$ orbits of $\Delta_{i}(t)$. This is done as follows

1. For each $r \in R_{i-1}$ find $g \in G$ such that $r=t^{g}$.
2. Calculate $\Delta_{1}(r)$ as $\Delta_{1}(t)^{g}$.
3. Run through $\Delta_{1}(r)$ and discard element in orbits that have already been found.

- Calculate $\left|\Delta_{i}(t)\right|=\sum_{r \in R_{i}} \frac{\left|C_{G}(t)\right|}{\left|C_{G}\langle\langle t, r\rangle)\right|}$.
- Stop when $\sum_{i}\left|\Delta_{i}(t)\right|=|X|$.

This method works well in Magma for the smaller sporadic groups, however fails in larger ones as we often have to store many elements in a large matrix representation, and we run out of memory. For the larger sporadic groups they changed tactics by instead of considering the element t and varying the product $z=t x$, they fixed an element $z \in C$, for a conjugacy class C, and considered all the possible elements t which could arise. Using this method we can now consider the maximal p-local subgroup M which contains z. In most cases a smaller permutation representation for M is given in the online Atlas, which makes calculations possible. In this paper, the authors also extensively used Bray's algorithm [6], a very efficient method for
calculating the centralizer of an involution. As this algorithm is fairly restrictive, as it is only applicable to involutions, the authors used a slight modification, given in [4], that can be applied to real elements, that is elements which are conjugate to their inverse.

3.2 Basic Definitions and Results

From now on we will assume that X is a conjugacy class of involutions and $\mathcal{C}(G, X)$ is the commuting involution graph of G with respect to X.

Now the following simple lemma shows that our graph is invariant under action by G.

Lemma 3.2.1. The map $\varphi_{g}: X \mapsto X$ given by $x^{\varphi_{g}}=x^{g}$ is a graph automorphism.

Proof. Clearly φ_{g} is a bijection as X is a conjugacy class, therefore we just need to show φ_{g} is compatable with the graph structure of \mathcal{C}, that is x and y are joined by an edge if and only if $x^{\varphi_{g}}$ and $y^{\varphi_{g}}$ are joined by an edge. So suppose that $x y=y x$ then

$$
\begin{aligned}
x^{\varphi_{g}} y^{\varphi_{g}} & =g^{-1} x g g^{-1} y g \\
& =g^{-1} x y g \\
& =g^{-1} y x g \\
& =g^{-1} y g g^{-1} x g \\
& =y^{\varphi_{g}} x^{\varphi_{g}}
\end{aligned}
$$

Clearly the opposite direction is also true, and hence φ_{g} is a graph automorphism.

Hence the distance between any two vertices x and y is the same as the distance between x^{g} and y^{g} for any $g \in G$. Therefore the sizes and structures of the discs $\Delta_{i}(t)$
are independent on our choice of t. We will frequently make use of this by choosing a particular t which makes our life as easy as possible.

We have the following elementary result, proved in [12], which will be a very powerful tool in the study of these graphs.

Lemma 3.2.2 (Bundy, Bates, Rowley and Perkins). Let $x \in X$ and let $z=t x$. Suppose z has order m, then the following are true.
(i) $x \in \Delta_{1}(t)$ if and only if $m=2$.
(ii) If m is even, greater or equal to 4 and $z^{m / 2} \in X$, then $x \in \Delta_{2}(t)$.
(iii) If $C_{C_{G}(z)}(x) \cap X=\emptyset$ then $d(t, x) \geq 3$. In particular if $C_{C_{G}(z)}(x)$ has odd order, then $d(t, x) \geq 3$.
(iv) Suppose m is odd and assume that there doesn't exist any elements $g \in G$ of order $2 m$ such that $g^{2}=z$ and $g^{m} \in X$. Then $d(t, x) \geq 3$.

Proof. We follow the proof given in [12]. We first note that z being an involution is equivalent to x and t commuting (as t and x are involutions). Hence $m=2$ if and only if $x \in \Delta_{1}(t)$. Part (ii) follows from the properties of dihedral groups. Indeed firstly note that t and x generate a dihedral group of order $2 m$ and as m is even, $z^{m / 2} \in Z(\langle t, x\rangle)$. Hence $z^{m / 2}$ commutes with both t and x, and thus $d(t, x) \leq 2$. On the other hand, as $m>2, d(t, x) \geq 2$. Thus $d(t, x)=2$ as required.

Now note that $C_{G}(t) \cap C_{G}(x) \cap X=C_{C_{G}(z)}(x) \cap X$ which we will assume to be empty. Therefore there are no elements in X which commute with both t and x and thus $d(t, x) \geq 3$. So in particular if $C_{C_{G}(z)}(x)$ has odd order, then it cannot contain any involutions and thus its intersection with X must be empty. Hence (iii) follows.

Finally for (iv) note that if m is odd then $d(t, x) \geq 2$ by (i). Now suppose that $d(t, x)=2$, then there exists $y \in C_{G}(t) \cap C_{G}(x) \cap X$. Now z has odd order, so there
exists an integer i such that $\left(z^{i}\right)^{2}=z$. Let $w=y z^{i}$, then

$$
\begin{aligned}
w^{2} & =y z^{i} y z^{i} \\
& =y^{2}\left(z^{i}\right)^{2} \text { as } y \text { commutes with both } t \text { and } x \\
& =z .
\end{aligned}
$$

We also have

$$
\begin{aligned}
w^{m} & =\left(y z^{i}\right)^{m} \\
& =y^{m} z^{i m} \\
& =y \text { as } y \text { is an involution, and } z \text { as order } m .
\end{aligned}
$$

However by hypothesis G has no such element, and hence $d(t, x) \geq 3$ as required.

The following elementary Lemma about centralizers of involutions will be useful.

Lemma 3.2.3. Let t and x be involutions in G and suppose $z=t x$. Then

$$
C_{G}(t) \cap C_{G}(x)=C_{C_{G}(t)}(x)=C_{C_{G}(z)}(t) .
$$

Proof. It is clear that $C_{G}(t) \cap C_{G}(x)=C_{C_{G}(t)}(x)$. Now suppose that $g \in C_{C_{G}(z)}(t)$, then g commutes with both z and t. Now $x=t z$ and hence $g x=g t z=t z g=x g$ and hence g commutes with both t and x, so $C_{C_{G}(z)}(t) \subseteq C_{G}(t) \cap C_{G}(x)$. The other inclusion is similar.

Crucial to the study of $\mathcal{C}(G, X)$ is the following idea.
Definition 3.2.4. For two conjugacy classes X and C of G, with t a fixed element of X we define

$$
X_{C}=\{x \in X \mid t x \in C\} .
$$

We first note that as both X and C are conjugacy classes, the sets X_{C} will be independent on the choice of t. Indeed we have the following easy lemma.

Lemma 3.2.5. For t a fixed involution in X, C a conjugacy class of G and $g \in G$ we have

$$
\{x \in X \mid t x \in C\}=\left\{x \in X \mid t^{g} x \in C\right\}
$$

Proof. The condition that $t^{g} x \in C$ is equivalent to $t x^{g^{-1}} \in C$ as C is a conjugacy class. Hence

$$
\begin{aligned}
\left\{x \in X \mid t^{g} x \in C\right\} & =\left\{x \in X \mid t x^{g^{-1}} \in C\right\} \\
& =\{x \in X \mid t x \in C\} \text { as } X \text { is a conjugacy class. }
\end{aligned}
$$

The following lemma is an important observation about X_{C}, and will play an important role when we study commuting involution graphs, especially in the case of sporadic simple groups.

Lemma 3.2.6. For C a conjugacy class of G, the set X_{C} is a union of $C_{G}(t)$ orbits, as $C_{G}(t)$ acts on X_{C} by conjugation.

Proof. We must show that for $g \in C_{G}(t)$ and $x \in X_{C}, x^{g} \in X_{C}$, then our result will follow. That is, we must show that $t x^{g} \in C$.

$$
\begin{aligned}
t x^{g} & =t g^{-1} x g \\
& =g^{-1} t x g \text { as } g \text { commutes with } t \\
& =g^{-1} c g \text { where } c \in C
\end{aligned}
$$

Hence $t x^{g}$ is an element of C as required.

Lemma 3.2.7. For $x \in X$ and $g \in C_{G}(t)$, we have $d(t, x)=d\left(t, x^{g}\right)$.

Proof. Suppose $d(t, x)=n$, then there exists a chain of elements $t=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=x$ such that $x_{i} \in X$ and $x_{i} x_{i+1}=x_{i+1} x_{i}$, and no shorter chain
exists. If we conjugate each element of the chain by g, then each pair of adjacent elements still commute, so we get the following chain,

$$
t=t^{g}=x_{0}^{g}, x_{1}^{g}, x_{2}^{g}, \ldots, x_{n}^{g}=x^{g}
$$

In this case, no shorter chain can exist between t and x^{g}, as if there were, we could conjugate back to t and x, producing a shorter chain between them. Hence $d(t, x)=$ $n=d\left(t, x^{g}\right)$ as required.

Now Lemma 3.2.7 shows us that the discs of $\mathcal{C}(G, X)$ consist of unions of $C_{G}(t)$ orbits of X. Therefore our general tactic will be to pick a particular $x \in X$, calculate which disc it belongs to and then note that the entire orbit $x^{C_{G}(t)}$ belongs to this disc. Now from Lemma 3.2.6, we see that the sets X_{C} are also unions of $C_{G}(t)$ orbits, for C a conjugacy class of G. So we will break down the sets X_{C} into their constituent orbits and determine in which disc each orbit belongs to. It is usually the case that every orbit contained in a particular X_{C} will belong to the same disc of $\mathcal{C}(G, X)$.

For example for the sporadic simple group J_{2} and the conjugacy class of involutions $X=2 A$ the set X_{C} such that $C=2 A$ make up the first disc, the set X_{C} such that $C=4 A$ makes up the second disc, the set X_{C} such that $C=3 B$ makes up the third disc and finally the sets X_{C} such that $C=5 A, 5 B *$ make up the fourth disc. All the other sets X_{C} are empty.

If we have a set X_{C} splitting between two discs we will simply write the size of the intersection of X_{C} and that disc in brackets after the Atlas name for C. For example in the sporadic simple group $M c L$, with the class $X=2 B$ the set $X_{4 A}$ splits between the second and third discs, so we will write $4 A(1980)$ in the second disc, and $4 A(990)$ in the third.

Now due to some ingenious character theory by Burnside we can easily calculate the sizes of the sets X_{C} from the character table of G.

Definition 3.2.8. Let G be a finite group and C_{i}, C_{j} and C_{k} be three conjugacy classes of G. Let $a_{i j k}$ be the number of pairs (a, b) with $a \in C_{i}$ and $b \in C_{j}$, such that
$a b=g$ where g is a fixed element in C_{k}. Then the integers $a_{i j k}$ for all possible i, j and k are called the class structure constants for G.

Using some character theory we can easily calculate the values of the class structure constants.

Lemma 3.2.9. Let $C_{1}, \ldots C_{n}$ denote the conjugacy classes of G, and suppose that $g_{i} \in C_{i}$. Then for all i, j and k

$$
a_{i j k}=\frac{|G|}{\left|C_{G}\left(g_{i}\right)\right|\left|C_{G}\left(g_{j}\right)\right|} \sum_{\chi} \frac{\chi\left(g_{i}\right) \chi\left(g_{j}\right) \overline{\chi\left(g_{k}\right)}}{\chi(1)}
$$

where the sum is over all irreducible characters of G.

Proof. See [16], page 128, Lemma 2.12.

Lemma 3.2.10.

$$
\left|X_{C}\right|=\frac{|G|}{\left|C_{G}(g)\right|\left|C_{G}(t)\right|} \sum_{\chi} \frac{\chi(g) \chi(t)^{2}}{\chi(1)}
$$

again where the sum is over all ireducible characters of G, and g is a representative of C.

Proof. We must first show that

$$
\left|X_{C}\right|=|\{(g, h) \in C \times X \mid g h=t\}|
$$

and then using Lemma 3.2.9 our result will follow. Indeed,

$$
\begin{aligned}
|\{(g, h) \in C \times X \mid g h=t\}| & =|\{(g, h) \in C \times X \mid g=t h\}| \\
& =|\{h \in X \mid t h \in C\}| \\
& =\left|X_{C}\right| .
\end{aligned}
$$

Another concept that will be important to us will be the extended centralizer of an element g in G. The extended centralizer, $C_{G}^{*}(g)$ for $g \in G$ is defined as follows

$$
C_{G}^{*}(g)=\left\{x \in G \mid g^{x}=g \text { or } g^{x}=g^{-1}\right\} .
$$

Note that $C_{G}^{*}(g)=N_{G}\left(\left\{g, g^{-1}\right\}\right)$, so in particular $C_{G}^{*}(g)$ is a subgroup of G. The size of the extended centralizer of an element with respect to the size of the centralizer is closely related to that element being real or not.

Definition 3.2.11. An element $g \in G$ is said to be real (in G) if there exists an $x \in G$ such that $g^{x}=g^{-1}$. Furthermore, g is said to be strongly real if there is a conjugating element which is an involution.

Lemma 3.2.12. Let $g \in G$, then
(i) If g is an involution then $C_{G}^{*}(g)=C_{G}(g)$.
(ii) If g is not real then $C_{G}^{*}(g)=C_{G}(g)$.
(iii) if g is real and not an involution, then $\left|C_{G}^{*}(g)\right|=2\left|C_{G}(g)\right|$

Proof. Parts (i) and (ii) follow easily from the definition. For part (iii), let $C^{-1}=$ $\left\{x \in G \mid g^{x}=g^{-1}\right\}$. Clearly $C_{G}^{*}(g)$ is the disjoint union of $C_{G}(g)$ and C^{-1} as any element which centralizes g cannot invert it. Therefore if we show there exists a bijection between $C_{G}(g)$ and C^{-1} then we are done. Indeed, consider the following map

$$
\begin{aligned}
\varphi: C_{G}(x) & \mapsto C^{-1} \text { such that } \\
g^{\varphi} & =h g
\end{aligned}
$$

for a fixed $h \in C^{-1}$. Firstly, this map is well defined. Indeed, consider a $g \in C_{G}(x)$, then $x^{h g}=\left(x^{-1}\right)^{g}=x^{-1}$, hence $g^{\varphi}=h g \in C^{-1}$. Clearly φ is injective, therefore we
just need to show it is surjective. So take $z \in C^{-1}$ and let $y=h^{-1} z$, then clearly $y^{\varphi}=z$, thus we need to show is that $y \in C_{G}(x)$. Indeed,

$$
\begin{aligned}
x y & =x h^{-1} z \\
& =h^{-1} h x h^{-1} z \\
& =h^{-1} x^{-1} z \\
& =h^{-1} z x z^{-1} z \\
& =h^{-1} z x \\
& =y x .
\end{aligned}
$$

Hence $y \in C_{G}(x)$ and our map is indeed a bijection. Therefore our lemma holds.

Lemma 3.2.13. Let t, x be non-commuting involutions from a finite group G and let $z=t x$. Then
(i) z is strongly real in G
(ii) $\left|C_{G}^{*}(z)\right|=2\left|C_{G}(z)\right|$
(iii) $C_{G}^{*}(z)=\left\langle C_{G}(z), t\right\rangle$

Proof. The element z is clearly strongly real as $z^{t}=(t x)^{t}=x t=z^{-1}$. Part (ii) of the lemma follows straight from Lemma 3.2.12. For part (iii), it is clear that $\left\langle C_{G}(z), t\right\rangle \subseteq C_{G}^{*}(z)$ as both $C_{G}(z)$ and t are contained in $C_{G}^{*}(z)$. Now suppose that $w \in C_{G}^{*}(z)$ and thus either $z^{w}=z$ or $z^{w}=z^{-1}$. Now if $z^{w}=z$ then $w \in C_{G}(z)$ and we are done, so suppose that $z^{w}=z^{-1}$. Then

$$
\begin{aligned}
z^{w t} & =\left(z^{-1}\right)^{t} \\
& =t x t t \\
& =t x \\
& =z .
\end{aligned}
$$

Hence $w t \in C_{G}(t)$ and therefore as $w=w t t$, we have $w \in\left\langle C_{G}(t), t\right\rangle$ implying that $C_{G}^{*}(z) \subseteq\left\langle C_{G}(t), t\right\rangle$, and we are done.

We will finally give two more useful tools, both of which we will use extensively when studying $\mathcal{C}(G, X)$.

3.2.1 The Fix Space

Let $\rho: G \mapsto G L_{n}(\mathbb{F})$ be a representation of a finite group G, where \mathbb{F} is some field of positive characteristic. Let V be the associated G-module, a copy of the n-dimensional vector space over \mathbb{F} with the obvious action. For an element $g \in G$, we define the fixspace of g as follows

$$
\text { Fix }_{g}=\left\{v \in V \mid v^{g}=v\right\} .
$$

Note that $F i x_{g}$ is the eigenspace of the matrix $\rho(g)$ corresponding to the eigenvalue 1 , where 1 is to the multiplicative identity in \mathbb{F}. Clearly, if 1 is not an eigenvalue of $\rho(g)$, then Fixg is trivial.

Lemma 3.2.14. For $g \in G, F i x_{g}$ is a subspace of V.

Proof. Let $v, w \in F i x_{g}$ and let $\lambda_{1}, \lambda_{2} \in \mathbb{F}$. Consider the following

$$
\begin{aligned}
\left(\lambda_{1} v+\lambda_{2} w\right)^{g} & =\lambda_{1} v^{g}+\lambda_{2} w^{g} \\
& =\lambda_{1} v+\lambda_{2} w
\end{aligned}
$$

Hence $\lambda_{1} v+\lambda_{2} w \in$ Fix x_{g}, and our lemma follows.

The following Lemma will give us an important tool when studying $\mathcal{C}(G, X)$.

Lemma 3.2.15. Let g, h be two conjugate elements in G. Then

$$
F i x_{g} \cong F i x_{h} .
$$

In particular the dimensions of the two fix spaces are equal.

Proof. As g and h are conjugate in G, there exists an $a \in G$ such that $g^{a}=h$. Consider the following map,

$$
\begin{aligned}
\theta: \text { Fix }_{g} & \mapsto \text { Fixh } \\
\theta(v) & =v^{a}
\end{aligned}
$$

Firstly suppose $v \in F i x_{g}$, then

$$
\begin{aligned}
\theta(v)^{h} & =\left(v^{a}\right)^{h} \\
& =v^{a h} \\
& =v^{g a} \\
& =v^{a} \\
& =\theta(v)
\end{aligned}
$$

Hence $\theta(v) \in F i x_{h}$, and this map is well defined. Now by its definition, θ is clearly linear, so all there is left to prove is that it is a bijection. Now θ is obviously injective, so suppose $w \in$ Fix , and consider $w^{a^{-1}}$. Hence $\left(w^{a^{-1}}\right)^{g}=w^{a^{-1} g}=w^{h a^{-1}}=w^{a^{-1}}$, and thus $w^{a^{-1}} \in$ Fix x_{g}. Clearly as $\theta\left(w^{a^{-1}}\right)=w$, our lemma easily follows.

Lemma 3.2.15 shows that the dimension of the fix space is a conjugacy class invariant and gives us an easy way to see if two elements are in different conjugacy
classes. Assuming you are working inside a linear representation, the fixspace can be easily computed in Magma as the eigenspace of 1 . When we are dealing with groups with very large dimension linear representations we can more often than not tell exactly which conjugacy class an element is in by simply using the dimension of the fixspace. For the Baby Monster, Rob Wilson [43] gave the dimension of the fixed space for representatives for all conjugacy classes of elements of even order in the 4370 dimensional representation over the field of 2 elements. During our investigation into the commuting involution graph for $B M$ we will make extensive use of this.

3.2.2 Bray's Algorithm and Generalizations

In this section we will give details of an algorithm which computes elements which commute with a given involution. We follow the details which are given in [6].

The following elementary observation is the main justification for the algorithm.

Lemma 3.2.16 (J. Bray). For $g, h \in G$ with g an involution we have

$$
g[g, h]^{-n}=[g, h]^{n} g
$$

for all $n \in \mathbb{N}$.

Proof. Consider the following,

$$
\begin{aligned}
g[g, h]^{-n} & =g \underbrace{\left(h^{-1} g h g\right) \ldots\left(h^{-1} g h g\right)}_{n \text { times }} \\
& =\underbrace{\left(g h^{-1} g h\right) \ldots\left(g h^{-1} g h\right)}_{n \text { times }} g \\
& =[g, h]^{n} g .
\end{aligned}
$$

Therefore if $[g, h]$ has even order, say $2 m$, then $g[g, h]^{m}=g[g, h]^{-m}=[g, h]^{m} g$ and hence $[g, h]^{m}$ commutes with g. On the other hand, if $[g, h]$ has odd order, say $2 m+1$
then $g h[g, h]^{m}=h g[g, h]^{m+1}=h g[g, h]^{-m}=h[g, h]^{m} g$, and thus $h[g, h]^{m}$ commutes with g. Therefore in both cases we have produced an element which commutes with g. We also note that $\left[g, h^{-1}\right]=\left([g, h]^{h^{-1}}\right)^{-1}$ and thus $\left[g, h^{-1}\right]$ has the same order as $[g, h]$ and therefore in the even case the $[g, h]$ above can be replaced by $\left[g, h^{-1}\right]$ producing two elements instead of one (in the odd case these two elements are equal). So we propose the following algorithm to produce a set S of elements which commute with g,

1. Initialise S to be $\{g\}$.
2. Choose a random element h, which isn't an involution.
3. If $[g, h]$ has even order, $2 m$, then add $[g, h]^{m}$ and $\left[g, h^{-1}\right]^{m}$ to S.
4. If $[g, h]$ has odd order, $2 m+1$ then add $h[g, h]^{m}$ to S.
5. Make another random element h.
6. Go to Step 3 unless you have enough elements.

Obviously if we have enough elements then $C_{G}(g)=\langle S\rangle$, however in the case of large groups in which calculating $|\langle S\rangle|$ is difficult we may not know when to stop. However in our case we often do not require all of $C_{G}(t)$, just part of it, so this algorithm will be sufficient. We will refer to this algorithm as Bray's Algorithm.

At this point we make an important remark on how we make random elements . We obviously want our results to be reproducible and therefore any random elements created will need to be stored. Say our group has a large degree matrix representation in which we work, for example in the Baby Monster. Then we will not want to store these elements as matrices, as this will take up far too much memory. Instead, suppose that our group G is generated by a number (normally two) of known elements, say x and y. Then to produce a random element we produce a random string of $x \mathrm{~s}$ and $y s$ and store this in an array, which will hopefully only take a few bytes of memory. Then to produce the element we just write a procedure that goes through the array
multiplying the required elements together - this is the approach we will usually take. A full code listing for producing random elements and the algorithms given in this section can be found in Appendix 4.

In [4], Rowley and Bates made the following improvement to Bray's Algorithm so that it will work on strongly real elements. The following elementary facts underpin the method,

Lemma 3.2.17 (C. Bates and P. Rowley). Suppose that we have $t \in G$, z a real elements of G which is inverted by t, and let $h \in C_{G}(t)$. Then for any $i \in \mathbb{N}$,

$$
z[z, h]^{-i}=\left([z, h]^{i}\right)^{t} z .
$$

Proof. Since $z^{t}=z^{-1}$, we have

$$
z[z, h]^{-1}=z h^{-1} z^{-1} h z=z h^{-1} z^{t} h z .
$$

Now since $h \in C_{G}(t)$ and $z t^{-1}=t^{-1} z^{-1}$, we have

$$
\begin{aligned}
z h^{-1} z^{t} h z & =z h^{-1} t^{-1} z t h z \\
& =z t^{-1} h^{-1} z h t z \\
& =t^{-1} z^{-1} h^{-1} z h t z \\
& =[z, h]^{t} z
\end{aligned}
$$

and thus, $z[z, h]^{-1}=[z, h]^{t} z$. To complete the proof of the lemma, a simple induction argument suffices.

Lemma 3.2.18 (C. Bates and P. Rowley). Suppose that $t \in G, z$ is a real element of G inverted by t, and let $h \in C_{G}(t)$. If we let $\mathcal{R}(t)$ denote the set of real elements of G inverted by t, then

$$
\langle[z, h]\rangle \cap \mathcal{R}(t) \subseteq C_{G}(z) .
$$

Proof. Suppose $[z, h]^{i} \in \mathcal{R}(t)$ then $\left([z, h]^{i}\right)^{t}=[z, h]^{-i}$, and thus by Lemma 3.2.17 we
have $[z, h]^{i} \in C_{G}(z)$. Therefore $\langle[z, h]\rangle \cap \mathcal{R}(t) \subseteq C_{G}(z)$ as required.

Now suppose t and x are involutions in G. Now as $z=t x$ is a real element in G inverted by t, Lemma 3.2.18 leads us to the following algorithm to compute elements in $C_{G}(z)$.

1. Use Bray's algorithm to produce an element h in $C_{G}(t)$.
2. Calculate $w=[z, h]$ and n, the order of w.
3. Test whether w^{i} is inverted by t, where $1 \leq i \leq n$.
4. If so output w^{i} and go to Step 1.

As for the previous algorithm if we produce enough elements in $C_{G}(z)$ we may hope to generate the entire centralizer, however knowing when to terminate is a difficult question. In practice this algorithm isn't nearly as efficient as Bray's algorithm - it will often only compute elements in $\langle z\rangle$.

3.3 The Baby Monster

The Baby Monster, $B M$ is the second largest of the sporadic simple groups, having an order of

$$
4,154,781,481,226,426,191,177,580,544,000,000
$$

with a factorisation of

$$
2^{41} \times 3^{13} \times 5^{6} \times 7^{2} \times 11 \times 13 \times 17 \times 19 \times 23 \times 31 \times 47
$$

It is a so called $\{3,4\}$-transposition group as it is generated by the class $2 A$ of $\{3,4\}$ transpositions, elements which product to an element of order $1,2,3$ or 4. During Fischer's investigations on $\{3,4\}$-transposition groups he calculated $\mathcal{C}(B M, 2 A)$ before the baby monster was even constructed. During this work, Fischer was led to
predict a simple group of this order, but could not construct it. Eventually, after extensive computation, Leon and Sims [19] gave a computational construction of a group of the correct order, and proved it had the properties Fischer predicted and showed it was unique. Later Griess gave a non computational construction of the baby monster, related to the 196,884 dimensional Griess Algebra also used to construct the monster. The baby monster has 184 conjugacy classes, with four involution conjugacy classes and the maximum element order is 70 . The smallest faithful linear representation of the baby monster is 4370 dimensional over the field of two elements, meaning that calculations inside $B M$ are rather difficult and ingenious workarounds need to be found for even simple calculations. This representation was originally constructed by Rob Wilson [42] and can be found in the online Atlas [22]. We will use standard Atlas notation for all conjugacy classes.

As has already been noted, the commuting involution graph for $2 A$ was known even before the construction of the baby monster. The class $2 B$ was calculated by Bundy, Bates, Rowley and Perkins in [12], using the point line collinearity graph for the maximal 2-local geometry for the baby monster, computed by Rowley and Walker in [26] and [27]. The commuting involution graphs for the classes $2 C$ and $2 D$ are still open, with the class $2 C$ being investigated in this thesis.

From now on in this chapter G will be the Baby Monster, X the class $2 C$ and t will be a fixed element in X. We will denote the commuting involution graph of G with respect to X by $\mathcal{C}(G, X)$. As in [12], we wish to calculate the diameter of $\mathcal{C}(G, X)$, calculate the sizes of each of the discs and give the conjugacy classes of products $t x$ for x running through each of the discs. Not all of this has been possible, however all classes X_{C} have been located within the disc structure of $\mathcal{C}(G, X)$, except for those C of elements of 2-power order, and the classes $7 A$ and $14 D$. The results will be summarized in the following theorem.

Theorem 3.3.1 (B. Wright). The following table gives the locations of the sets X_{C} in the graph $\mathcal{C}(G, X)$, where G is the Baby Monster and X is the conjugacy class $2 C$, for various conjugacy classes C.

Table 3.1: Location of X_{C} in $\mathcal{C}(G, X)$ for various classes C

$\Delta_{1}(t)$	$\Delta_{2}(t)$	$\Delta_{3}(t)$
$2 B, 2 C, 2 D$	$3 A, 5 A, 6 C, 6 G, 6 H, 6 I, 6 K, 9 B$,	$3 B, 5 B, 10 D, 10 F, 11 A, 12 G, 12 J$,
	$10 B, 10 C, 12 B, 12 D, 12 F, 12 L$,	$12 M, 19 A, 20 G, 22 B, 24 G, 33 A$,
	$12 O, 12 R, 13 A, 15 A, 17 A, 20 D$,	$35 A, 48 A$
	$20 F, 21 A, 24 A, 24 C, 24 H, 26 A, 40 D$	

Furthermore the sets $X_{18 C}$ and $X_{30 D}$ split over two discs of $\mathcal{C}(G, X)$, with 3311126603366400 elements from $X_{18 C}$ contained in $\Delta_{2}(t)$ and the other 1103708867788800 elements in $\Delta_{3}(t)$ and 3311126603366400 elements from $X_{30 D}$ contained in $\Delta_{2}(t)$ and the other 3311126603366400 elements in $\Delta_{3}(t)$.

The rest of this chapter will be devoted to the details of the calculation of this graph. We first give a table of the sizes of the sets X_{C} where C runs over all conjugacy classes of G. These were computed in Gap, using the ClassMultiplicationCoefficient(tbl,i,j,k) command, where tbl is the character table for $B M$ stored in the Character Table Library of GAP, i and k are equal to 4 , as $2 C$ is the fourth conjugacy class of $B M$, and j runs from 1 to 184 corresponding to all conjugacy classes of $B M$. The classes C for which X_{C} is zero are obviously omitted to conserve space. There are 77 non zero class structure constants.

Table 3.2: Class Structure Constants For 2C.

C	Structure Constant $\left\|X_{C}\right\|$	factors
1A	1	1
2A	4524975	$3^{2} \times 5^{2} \times 7 \times 13^{2} \times 17$
2C	184246272	$2^{13} \times 3^{3} \times 7^{2} \times 17$
2D	350859600	$2^{4} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17$
3 A	4004675584	$2^{15} \times 7 \times 13 \times 17 \times 79$
3B	141937868800	$2^{19} \times 5^{2} \times 7^{2} \times 13 \times 17$
4B	6629575680	$2^{10} \times 3^{3} \times 5 \times 7 \times 13 \times 17 \times 31$
4 C	185253868800	$2^{8} \times 3^{5} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17$
4 E	224550144000	$2^{11} \times 3^{4} \times 5^{3} \times 7^{2} \times 13 \times 17$
4 F	235777651200	$2^{9} \times 3^{5} \times 5^{2} \times 7^{3} \times 13 \times 17$
4G	1005984645120	$2^{15} \times 3^{4} \times 5 \times 7^{3} \times 13 \times 17$
4H	1482030950400	$2^{11} \times 3^{5} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17$
4J	3233522073600	$2^{14} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
5A	4598786949120	$2^{20} \times 3^{4} \times 5 \times 7^{2} \times 13 \times 17$
5B	11037088677888	$2^{22} \times 3^{5} \times 7^{2} \times 13 \times 17$
6 C	6882212413440	$2^{15} \times 3^{2} \times 5 \times 7^{2} \times 13 \times 17 \times 431$
6G	22993934745600	$2^{20} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17$
6H	14371209216000	$2^{17} \times 3^{4} \times 5^{3} \times 7^{2} \times 13 \times 17$
6I	11496967372800	$2^{19} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17$
6K	30658579660800	$2^{22} \times 3^{3} \times 5^{2} \times 7^{2} \times 13 \times 17$
7A	110370886778880	$2^{23} \times 3^{5} \times 5 \times 7^{2} \times 13 \times 17$
8B	17245451059200	$2^{18} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
8D	30179539353600	$2^{16} \times 3^{5} \times 5^{2} \times 7^{3} \times 13 \times 17$
8 E	17245451059200	$2^{18} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
8 F	25868176588800	$2^{17} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
8G	51736353177600	$2^{18} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$

8H	103472706355200	$2^{19} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
8I	51736353177600	$2^{18} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
8J	155209059532800	$2^{18} \times 3^{7} \times 5^{2} \times 7^{2} \times 13 \times 17$
8K	137963608473600	$2^{21} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
8L	248334495252480	$2^{21} \times 3^{7} \times 5 \times 7^{2} \times 13 \times 17$
8N	275927216947200	$2^{22} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
9B	572293487001600	$2^{25} \times 3^{2} \times 5^{2} \times 7^{3} \times 13 \times 17$
10B	344909021184000	$2^{20} \times 3^{5} \times 5^{3} \times 7^{2} \times 13 \times 17$
10C	331112660336640	$2^{23} \times 3^{6} \times 5 \times 7^{2} \times 13 \times 17$
10D	331112660336640	$2^{23} \times 3^{6} \times 5 \times 7^{2} \times 13 \times 17$
10F	275927216947200	$2^{22} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
11A	2207417735577600	$2^{25} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
12B	45987869491200	$2^{21} \times 3^{4} \times 5^{2} \times 7^{2} \times 13 \times 17$
12D	99640383897600	$2^{20} \times 3^{3} \times 5^{2} \times 7^{2} \times 13^{2} \times 17$
12 F	229939347456000	$2^{21} \times 3^{4} \times 5^{3} \times 7^{2} \times 13 \times 17$
12G	310418119065600	$2^{19} \times 3^{7} \times 5^{2} \times 7^{2} \times 13 \times 17$
12J	413890825420800	$2^{21} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
12L	551854433894400	$2^{23} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
12M	551854433894400	$2^{23} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
12 O	413890825420800	$2^{21} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
12R	827781650841600	$2^{22} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
13A	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
14D	1655563301683200	$2^{23} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
15A	1765934188462080	$2^{27} \times 3^{5} \times 5 \times 7^{2} \times 13 \times 17$
16A	827781650841600	$2^{22} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
16C	1655563301683200	$2^{23} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
16D	827781650841600	$2^{22} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
16E	827781650841600	$2^{22} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$

16F	1655563301683200	$2^{23} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
17A	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
18C	4414835471155200	$2^{26} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
19A	13244506413465600	$2^{26} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
20D	827781650841600	$2^{22} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
20F	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
20G	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
21A	2207417735577600	$2^{25} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
22B	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
24A	1103708867788800	$2^{24} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
24C	1103708867788800	$2^{24} \times 3^{5} \times 5^{2} \times 7^{2} \times 13 \times 17$
24G	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
24H	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
26A	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
28A	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
28B	3311126603366400	$2^{24} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
30D	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
32 A	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
32B	6622253206732800	$2^{25} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
33A	13244506413465600	$2^{26} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
35A	13244506413465600	$2^{26} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
40D	13244506413465600	$2^{26} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
48A	13244506413465600	$2^{26} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$

At this point we make a comment on how we differentiate between conjugacy classes in $B M$. Obviously, as the order of $B M$ is large and it has a large matrix representation dimension, using the IsConjugate command in MAGMA is impossible. Instead we use the co-dimension of the fixspace of an element to distinguish between classes. In [43], Rob Wilson gave the co-dimensions for all the classes of even order elements in $B M$. In most cases this will tell us exactly which class a particular element is in. If we have a number of classes with the same co-dimension of fixspace, we can load the element into the 4371 dimensional representation for $B M$ over \mathbb{F}_{3} and check the trace of the elements in question.

For elements of odd order it is fairly straight forward to calculate the dimension of the fixspace from the character table, however in most cases (apart from elements of order 3 and 5) the order of an element uniquely defines which class it belongs to.

From the Atlas, we glean the following information about centralizers of involutions

Class	Shape of Centralizer	Size of Centralizer
$2 A$	$2{ }^{2} E_{6}(2): 2$	$2^{38} \times 3^{9} \times 5^{2} \times 7^{2} \times 11 \times 13 \times 17 \times 19$
$2 B$	$2^{1+22} . C o_{2}$	$2^{41} \times 3^{6} \times 5^{3} \times 7 \times 11 \times 23$
$2 C$	$\left(2^{2} \times F_{4}(2)\right): 2$	$2^{27} \times 3^{6} \times 5^{2} \times 7^{2} \times 13 \times 17$
$2 D$	$2^{9} .2^{16} . O_{8}^{+}(2): 2$	$2^{38} \times 3^{5} \times 5^{2} \times 7$

Using Lemma 3.2.2 part (i), we can quickly calculate the first disc of $\mathcal{C}(G, X)$. Indeed $\Delta_{1}(t)=X_{2 B} \cup X_{2 C} \cup X_{2 D}$, and thus $\left|\Delta_{1}(t)\right|=539,630,847$. We can also use Lemma 3.2.2 to gather some information about the other discs of $\mathcal{C}(G, X)$. The Atlas[18] gives us information about which conjugacy class different powers of elements of G are contained in - for example we know that the cube of a 6 A element in G is contained in $2 A$, and the fourth power of a $20 B$ element lives in $5 B$. We can use this information as well as part (ii) from the lemma to determine whether certain sets X_{C} are contained in the second disc.

Indeed, consider the class $C=6 K$. From the Atlas we know the cube of an element from $6 K$ is contained in $2 C$. Hence by Lemma 3.2.2 (ii), $X_{6 K} \subseteq \Delta_{2}(t)$. The
same argument can be used to show $X_{10 C}$ and $X_{26 A}$ are both contained in the second disc.

Now part (iv) of Lemma 3.2.2 gives us a final bit of easy information about $\mathcal{C}(G, X)$. Indeed, consider $x \in X$ such that $z=t x \in 19 A$. Now suppose there existed a $g \in G$ such that $g^{2}=z$. From the Atlas, we know that $g \in 38 A$. The 19th power of such an element lives in $2 A$, and hence there does not exist a $g \in G$ such that $g^{2}=z$ and $g^{19} \in X$. Thus $d(t, x) \geq 3$. Again the same argument can be used to show for $x \in X_{C}$ with $C \in\{5 B, 11 A, 33 A, 35 A\}$ that $d(t, x) \geq 3$.

For the sets $X_{19 A}, X_{33 A}$ and $X_{35 A}$ we can prove something further, that they are all in fact orbits of X as $C_{G}(t)$ acts by conjugation. Indeed, consider $x \in X_{19 A}$, that is $z=t x \in 19 A$. We wish to prove that $X_{19 A}=x^{C_{G}(t)}$. Now by the Orbit Stabilizer Theorem and Lemma 3.2.3

$$
\left|x^{C_{G}(t)}\right|=\frac{\left|C_{G}(t)\right|}{\left|C_{C_{G}(t)}(x)\right|}=\frac{\left|C_{G}(t)\right|}{\left|C_{C_{G}(z)}(t)\right|} .
$$

We now note that

$$
\frac{\left|C_{G}(t)\right|}{\left|X_{19 A}\right|}=2 .
$$

Now as $x^{C_{G}(t)} \subseteq X_{19 A}$, if we can prove $\left|C_{C_{G}(z)}(t)\right|=2$ then we must have $X_{C}=x^{C_{G}(t)}$ and thus X_{C} is a $C_{G}(t)$ orbit. Consulting the Atlas we see that $\left|C_{G}(z)\right|=38=2 \times 19$, so the possible orders of $C_{C_{G}(z)}(t)$ are $1,2,19$ and 38 . Now $C_{C_{G}(z)}(t)$ cannot have order 38 as $z \in C_{G}(z)$ and t inverts z, so definitely doesn't commute with it. So if we prove $C_{C_{G}(z)}(t)$ contains an involution we are done.

On the other hand $t \in C_{G}^{*}(z)$, and since z is real, Lemma 3.2.12 tells us that $\left[C_{G}^{*}(z): C_{G}(z)\right]=2$, so in particular $C_{G}(z) \unlhd C_{G}^{*}(z)$. Hence we must have $C_{G}(z)^{t}=$ $C_{G}(z)$. Now by Sylow's Theorems, any Sylow 2-subgroup of $C_{G}(z)$ will have order 2, that is they are just the identity and an involution, and there will be an odd number of such subgroups. Thus, as t is an involution, there must exist a Sylow 2-subgroup P such that $P^{t}=P$. Therefore the single involution in P must commute with t and thus we are done.

This same method can be also used to show that $X_{33 A}$ and $X_{35 A}$ are both $C_{G}(t)$ orbits. Now we can easily prove these elements are in the third disc of $\mathcal{C}(G, X)$ by finding an element in the second disc which commutes with our x in question, proving that $d(t, x) \leq 3$, and thus must be equal to 3 . For $x \in X_{19 A}$, using the 4370 dimensional representation for $B M$, and Bray's Algorithm, we can find a $\tau \in X_{40 D}$ such that x commutes with τ. Since $X_{40 D} \subseteq \Delta_{2}(t)$ and $d(t, x) \geq 3$, we have $d(t, x)=$ 3. Now as $X_{19 A}$ is a $C_{G}(t)$ orbit, we have $X_{19 A} \subseteq \Delta_{3}(t)$. Similarly we can find a $\tau \in X_{40 D}$ and $\xi \in X_{17 A}$ such that τ commutes with an $x \in X_{33 A}$ and ξ commutes with a $y \in X_{35 A}$. Hence $X_{33 A}, X_{35 A} \subseteq \Delta_{3}(t)$. Details of these calculations will be given in Appendix 4.

We now change tactic slightly, and instead of fixing an element t of X and varying $x \in X_{C}$ for a certain conjugacy class C, we will fix a $z \in C$ and vary t and then $x=t z$. In this case assuming z has order at least 3 , we want to vary t over all $2 C$ elements which invert z. Hence we want to vary t over

$$
Y=\left(C_{G}^{*}(z) \backslash C_{G}(z)\right) \cap 2 C .
$$

Now as t_{1} runs over Y, then for each t_{1} as $t, t_{1} \in 2 C$ where t is our fixed element, there exists a $g \in B M$ such that $t_{1}^{g}=t$, and hence we can also spin around z, so that $d(t, x)=d\left(t, t_{1} z\right)$ where x will run over X_{C}.

The original tactic was to let $C_{G}(t)$ act on X_{C} and take a representative x_{i} from each orbit, and calculate $d\left(t, x_{i}\right)$. Letting $C_{G}(z)$ act on Y will do exactly the same job for us. First note that $C_{G}(z)$ can act on Y, that is for $t \in Y$ and $g \in C_{G}(z)$, that t^{g} inverts z. Indeed

$$
\begin{aligned}
z^{t^{g}} & =g^{-1} t g z g^{-1} t g \\
& =g^{-1} t z t g \\
& =g^{-1} z^{-1} g \\
& =z^{-1}
\end{aligned}
$$

Now since t^{g} is clearly a $2 C$ element, $t^{g} \in Y$ and $C_{G}(z)$ does act on Y. Now suppose $t_{1}, t_{2} \in Y$ are in the same $C_{G}(z)$ orbit. Then there exists $g \in C_{G}(z)$ such that $t_{1}^{g}=t_{2}$. Now let $x_{1}=t_{1} z$ and $x_{2}=t_{2} z$. Now as $g \in C_{G}(z), x_{1}^{g}=x_{2}$ and $d\left(t_{1}, x_{1}\right)=d\left(t_{2}, x_{2}\right)$. So for $z \in C$ with $|z| \geq 3$ we carry out the following routine

1. Calculate $Y=\left(C_{G}^{*}(z) \backslash C_{G}(z)\right) \cap 2 C$. If X_{C} was empty for a class C then clearly so will Y, so we will ignore it.
2. Let $C_{G}(z)$ act on Y and split Y into Orbits $Y_{1}, \ldots Y_{n}$.
3. For a representative $t_{i} \in Y_{i}$ Calculate $d\left(t_{i}, t_{i} z\right)$, which will correspond to $d(t, x)$ for different $C_{G}(t)$ orbit representatives x as $C_{G}(t)$ acts on X_{C}.

Step 3 above can be carried out using the following method. Calculate $C_{i}=C_{C_{G}(z)}\left(t_{i}\right)$ and see if $C_{i} \cap 2 C \neq \emptyset$. If so then $d\left(t_{i}, t_{i} z\right)=2$. If $C_{i} \cap 2 C=\emptyset$ then try and find a path of length 3 or 4 between t_{i} and $t_{i} z$.

In practice this routine won't always work as calculating $C_{G}(z)$ and $C_{G}^{*}(z)$ inside $B M$ is very difficult. So the general idea will be to go down to a maximal subgroup M, or part of M which contains $C_{G}^{*}(z)$. By having a stand alone version of M with a reasonably sized permutation representation and understanding the fusion between classes of M and classes of $B M$ we hope to be able to carry out this routine.

3.3.1 The Class 17A

Let $z=t x \in 17 A$. From the Atlas it is easy to see that $C_{G}(z) \cong 17 \times 2^{2}$ and $C_{G}^{*}(z) \cong(17: 2) \times 2^{2}$. So suppose $C_{G}^{*}(z)=L_{1} \times L_{2}$ where $L_{1} \cong 17: 2$ and $L_{2} \cong 2^{2}$. Now as $t \in C_{G}(z), t=t_{1} t_{2}$ where t_{1} is an involution in L_{1} and $t_{2} \in L_{2}$ and either $t_{2}=1$ or an involution. Now as $C_{G}(z)=\langle z\rangle \times L_{2}$ and t inverts z we can deduce that

$$
C_{C_{G}(z)}(t)=L_{2}
$$

and in particular $\left|C_{C_{G}(z)}(t)\right|=4$. Thus

$$
\left|x^{C_{G}(t)}\right|=\frac{\left|C_{G}(t)\right|}{4}=\left|X_{17 A}\right|
$$

and hence $X_{17 A}$ is a $C_{G}(t)$ orbit.
Now by applying Bray's Algorithm to an $x \in X_{2 D}$ we can find a $w \in X_{17 A}$ which commutes with x. Hence $d(t, w) \leq 2$, and since $t w$ is not an involution we deduce that $X_{17 A} \subseteq \Delta_{2}(t)$. See Appendix 2 for calculation details.

3.3.2 The Class 3A

In this subsection we will be swopping between conjugacy classes of G and conjugacy classes of $F i_{22}:$ 2, so to make things clear we will write $C_{B M}$ for conjugacy class C in the Baby Monster and $Y_{F i_{22}: 2}$ for class Y in $F i_{22}: 2$.

Now suppose $z=t x \in 3 A_{B M}$, and thus $x \in X_{3 A}$. From the Atlas we see that $C_{G}(z)=3 \times F i_{22}: 2=\langle z\rangle \times F i_{22}: 2$ and $C_{G}^{*}(z)=S_{3} \times F_{22}: 2$. For compactness we will write $C_{G}^{*}(z)=S \times L$ where $S \cong S_{3}$ and $L \cong F i_{22}: 2$.

We claim that $2 C_{B M} \cap L=2 F_{F i_{22}: 2}$. Indeed, suppose that $u \in 2 C_{B M} \cap L$, then $z u$ is an element of order 6 . Now $(z u)^{2}=z^{2}=z^{-1}=z^{t}$ and therefore $z u$ cubes to a $2 C_{B M}$ element. Similarly, $z u$ must square to a $3 A_{B M}$ element. Now from the Atlas, G has eleven classes of elements of order 6 , however only the class $6 F_{B M}$ squares to a $3 A_{B M}$ and cubes to a $2 C_{B M}$. Hence $z u \in 6 F_{B M}$. Therefore

$$
\left|C_{G}(z u)\right|=2^{11} \times 3^{5} \times 5 \times 7 .
$$

Now as z and u commute and $C_{G}(z)=\langle z\rangle \times L$

$$
\left|C_{L}(u)\right|=2^{11} \times 3^{4} \times 5 \times 7
$$

Consulting the ATLAS, we see that $F i_{22}: 2$ has 6 classes of involutions, with the following centralizer sizes:

Class	Centralizer Size
$2 A_{F i_{22}: 2}$	$2^{17} \times 3^{6} \times 5 \times 7 \times 11$
$2 B_{F i_{22}: 2}$	$2^{18} \times 3^{4} \times 5$
$2 C_{F i_{22}: 2}$	$2^{17} \times 3^{3}$
$2 D_{F i_{22}: 2}$	$2^{14} \times 3^{6} \times 5^{2} \times 7$
$2 E_{F i_{22}: 2}$	$2^{14} \times 3^{4} \times 5$
$2 F_{F i_{22}: 2}$	$2^{11} \times 3^{4} \times 5 \times 7$

Therefore we must have that $u \in 2 F_{F i_{22}: 2}$. The argument in the other direction is similar, showing that indeed, $2 C_{B M} \cap L=2 F_{F i_{22}: 2}$.

Now using Magma and the 3510 degree permutation representation for $F i_{22}: 2$ we found a $v \in 2 F_{F i_{22}: 2}$. This was done by randomly searching for a involution and checking whether $C_{F i_{22}: 2}(v)$ had the correct size. We then found a $P \in \operatorname{Syl}_{2}\left(C_{F i_{22}: 2}(v)\right)$ and checked whether P contained a representative for each class of involutions in $F i_{22}: 2$ (again done by checking whether the centralizer of each representative had the desired size).

On the other hand, $t, x \in C_{G}^{*}(z)$, and hence

$$
t=t_{1} u_{1} \text { and } x=t_{2} u_{2}
$$

where $t_{1}, t_{2} \in S$ and $u_{1}, u_{2} \in L$. Now

$$
\begin{aligned}
z & =t x \\
& =t_{1} u_{1} t_{2} u_{2} \\
& =t_{1} t_{2} u_{1} u_{2} \text { as we have a direct product. }
\end{aligned}
$$

However $z \in S$ hence $u_{1} u_{2}=1$ and $z=t_{1} t_{2}$. Now $1=t^{2}=t_{1}{ }^{2} u_{1}{ }^{2}$, and as we have a direct product we thus have both t_{1} and u_{1} involutions or the identity, similarly for u_{2} and t_{2}. Note that on the other hand, z must have order 3 , hence neither t_{1} or t_{2} can be the identity and they cannot be equal. Also note that as $u_{1} u_{2}=1$ we must
have $u:=u_{1}=u_{2}$. Therefore

$$
t=t_{1} u \text { and } x=t_{2} u
$$

where t_{1}, t_{2} are distinct involutions in S and u is either the identity, or an involution in L.

Now whichever class of involutions of $F i_{22}: 2$ the element u belongs to, we know that a conjugate of it (in $F i_{22}: 2$) commutes with our element $v \in 2 F_{\text {Fi22:2 }}$. Hence u must commute with a conjugate of v, say w, again a $2 F_{F i 22: 2}$ element. Therefore $w \in 2 C_{B M} \cap L$. Again as we have a direct product in $C_{G}^{*}(z)$ and $w \in L, w$ must also commute with both t_{1} and t_{2} and hence with both x and t. Now as $t x$ is not an involution this shows that $d(t, x)=2$ and thus $X_{3 A} \subseteq \Delta_{2}(t)$.

3.3.3 The Class 5A

The case where $z=t x \in 5 A$ can be handled in a similar manner to $3 A$. From the AtLAS, we have $C_{G}^{*}(z) \cong 5: 2 \times H S: 2$ and $C_{G}(z) \cong 5 \times H S: 2$. Therefore if we let $C_{G}^{*}=S \times L$ where $S \cong 5: 2$ and $L \cong H S: 2$ then $C_{G}(z)=\langle z\rangle \times L$.

Now we claim $2 C_{B M} \cap L=2 B_{H S: 2}$. Indeed, consider the element of order 10, $z u$. Now $(z u)^{5}=u$ and hence is an element of $2 C_{B M}$. The only class of elements of order 10 in G that does this is $10 C_{B M}$. So in particular $\left|C_{G}(z u)\right|=2^{7} \times 3^{2} \times 5^{2}$, and hence $\left|C_{L}(u)\right|=2^{7} \times 3^{2} \times 5$. Now $H S: 2$ has 4 classes of involutions, with the following centralizer sizes

Class	Centralizer Size
$2 A_{H S: 2}$	$2^{10} \times 3 \times 5$
$2 B_{H S: 2}$	$2^{7} \times 3^{2} \times 5$
$2 C_{H S: 2}$	$2^{8} \times 3^{2} \times 5 \times 7$
$2 D_{H S: 2}$	$2^{8} \times 3 \times 5$

Hence $u \in 2 B_{H S: 2}$ and $2 C_{B M} \cap L=2 B_{H S: 2}$. Now using Magma and the degree 100 permutation representation of $H S: 2$ we can find a $v \in 2 B_{H S: 2}$ and confirm that
$C_{H S: 2}(v)$ contains a representative for each of the 4 classes of involutions. The same argument as in the $3 A$ case shows that $X_{5 A} \subseteq \Delta_{2}(t)$.

3.3.4 The Class 10B

Let $z=t x \in 10 B$ and hence from the Atlas we see that $z^{2} \in 5 A$. The Atlas also tells us that

$$
C_{G}^{*}\left(z^{2}\right)=S \times L
$$

where $S \cong \operatorname{Dih}(10)$ and $L \cong H S: 2$. Note that $t, x \in C_{G}^{*}\left(z^{2}\right)$, and hence $t=t_{S} t_{L}$, $x=x_{L} x_{S}$ and $z=z_{L} z_{S}$, with $t_{L}, x_{L}, z_{L} \in L$ and $t_{S}, x_{S}, z_{S} \in S$. Both t and x are involutions hence t_{S}, x_{S} must also be involutions and t_{L}, x_{L} are either involutions or the identity. Also note that z_{S} must have order 5 and z_{L} must be an involution. Now $z_{S}=t_{S} x_{S}$ hence $t_{S} \neq x_{S}$ and $z_{L}=t_{L} x_{L}$ therefore t_{L} and x_{L} must commute.

Now from the Atlas we see that $z_{L} \in 2 B_{B M}$, however we wish to know which class of $H S: 2 z_{L}$ belongs to. Indeed consider the element $z_{L} z^{2}=z^{7}$, a $10 B_{B M}$ element. Hence

$$
\left|C_{G}\left(z_{L} z^{2}\right)\right|=2^{10} \times 3 \times 5^{2}
$$

and thus

$$
\left|C_{L}\left(z_{L}\right)\right|=2^{10} \times 3 \times 5 .
$$

Looking this up in the Atlas, we see that $z_{L} \in 2 A_{H S: 2}$ and more generally, $2 B_{B M} \cap$ $L=2 A_{H S: 2}$.

Since $C_{G}(s) \geq L$ where $s=t_{S}$ or x_{S} we can easily work out which class of involutions (in the Baby Monster) t_{S} and x_{S} live in. Indeed, as $L \cong H S: 2$ and 11 divides $|H S: 2|$ but doesn't divide $\left|F_{4}(2)\right|$ we can deduce that $s \notin 2 C_{B M}$, as the centralizer of a $2 C$ element in $B M$ has shape $\left(2^{2} \times F_{4}(2)\right): 2$. Similarly, 5^{3} divides $|H S: 2|$, but not $\left.\right|^{2} E_{6}(2) \mid$ or $\left|O_{8}^{+}(2)\right|$, hence $s \notin 2 A_{B M}$ and $s \notin 2 D_{B M}$. Therefore, we must have $s \in 2 B_{B M}$ for $s=t_{S}$ or x_{S}.

We also wish to know which class of G, and thus $H S: 2, t_{L}$ and x_{L} live in. Note
that $t=t_{S} t_{L}$, and that $t \in 2 C_{B M}$ and $t_{S} \in 2 B_{B M}$. We see from the table in Appendix 1 that the only way a $2 B_{B M}$ element and another involution can product together to get a $2 C_{B M}$ element is for it to be a $2 C_{B M}$ element. Hence we must have that $t_{L}, x_{L} \in 2 C_{B M}$, and hence in $2 B_{H S: 2}$.

We wish to know pull everything across to $H S: 2$ and use Magma to finish off the job - working in the degree 100 permutation representation of $H S: 2$. We will change tack, and instead of fixing t and looking at possible z s we will fix z and look at the possible t s and thus x s. We will use the following algorithm, which we have already mentioned.

1. Pick a $z_{L} \in 2 A_{H S: 2}$.
2. Calculate $Y=\left(C_{H S: 2}^{*}\left(z_{L}\right) \backslash\left(C_{H S: 2}\left(z_{L}\right)\right) \cap 2 B_{H S: 2}\right.$, this will give us a possible list of $t \mathrm{~s}$.
3. Let $C=C_{H S: 2}\left(z_{L}\right)$ act on Y and spit into orbits U_{i} with representatives u_{i}.
4. For each representative calculate $C_{i}=C_{C}\left(u_{i}\right)$, this will be equal to $C_{C_{B M}(z)}(t)$ for appropriate choices of z_{S} and t_{S}.
5. For each C_{i}, check whether it contains a $2 B_{H S: 2}$ and thus a $2 C_{B M}$

We note that if we find an orbit representative u_{i} such that the element $u_{i} z_{L} \notin 2 B_{H S: 2}$ then we can ignore it as $x_{i}=u_{i} z_{L}$ must also be a $2 B_{H S: 2}$ element. If we find that all C_{i} contain a $2 B_{H S: 2}$ for all relevent u_{i} then we may deduce that $X_{10 B} \subset \Delta_{2}(t)$.

In this case we find that $|Y|=200$ which splits into two orbits U_{1} and U_{2} under action by $C_{L}\left(z_{L}\right)$ of sizes 120 and 80 . Let $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$, then $\left|C_{C_{L}\left(z_{L}\right)}\left(u_{1}\right)\right|=$ 128 and $\left|C_{C_{L}\left(z_{L}\right)}\left(u_{1}\right)\right|=192$, with both of these centralizers containing a $2 B_{H S: 2}$ element. Hence $X_{10 B} \subseteq \Delta_{2}(t)$. We also note that

$$
\left|X_{10 B}\right|=\frac{\left|C_{G}(t)\right|}{192}+\frac{\left|C_{G}(t)\right|}{128}
$$

and thus $X_{10 B}$ must be the union of two $C_{G}(t)$ orbits.

The Classes $15 A, 20 D, 20 F, 30 D$ and $40 D$ can all be dispatched in a similar way. In these cases let $z=t x$ be a member of the required class, in all these cases z taken to an appropriate power is a $5 A$ element, and hence $t, x \in S \times L$ where $S \cong \operatorname{Dih}(10)$ and $L \cong H S: 2$. Hence let $z=z_{S} z_{L}, t=t_{S} t_{L}$ and $x=x_{S} x_{L}$. Note that we must still have $t_{S}, x_{S} \in 2 B_{B M}$ and $t_{L}, x_{L} \in 2 C_{B M}$, and hence $t_{L}, x_{L} \in 2 B_{H S: 2}$. In these cases we will work in the degree 100 permutation representation of $H S: 2$ and calculate $Y=\left(C_{H S: 2}^{*}\left(z_{L}\right) \backslash\left(C_{H S: 2}\left(z_{L}\right)\right) \cap 2 B_{H S: 2}\right.$ where z_{L} is the element in question.

3.3.5 The Class 15A

In this case we must have $z_{L} \in 3 A_{B M}$ and as $H S: 2$ only has one class of elements of order 3 , we must have $z_{L} \in 3 A_{H S: 2}$. We now have that $|Y|=48$ which splits into two orbits U_{1}, U_{2} with representatives u_{1}, u_{2} under action by $C_{L}\left(z_{L}\right)$. Now in both cases $C_{C_{L}\left(z_{L}\right)}\left(u_{i}\right)$ contains a $2 B_{H S: 2}$ element, with these centralizers having sizes 16 and 240. Consulting our table of class structure constants we see that

$$
\left|X_{15 A}\right|=\frac{\left|C_{G}(t)\right|}{16}+\frac{\left|C_{G}(t)\right|}{240}
$$

and thus $X_{15 A} \subseteq \Delta_{2}(t)$ and splits into two orbits under the action by $C_{G}(t)$.

3.3.6 The Class 20D

In this case $z_{L} \in 4 B_{B M}$. Now we have $z_{L} z^{4}=z^{9}$ is a $20 D_{B M}$ element and hence $\left|C_{G}\left(z_{L} z^{4}\right)\right|=2^{9} \times 5$, thus $\mid C_{L}\left(z_{L} \mid=2^{9}\right.$. Looking this up in the AtLAS we see that $z_{L} \in 4 B_{H S: 2}$. Calculating as before we see that $|Y|=32$ which splits into two orbits both of size 16. However we may instantly ignore one of these as for a representative $u_{2}, u_{2} z_{L} \in 2 A_{H S: 2}$. For a representative u_{1} of the other orbit we see that $C_{C_{L}\left(z_{L}\right)}\left(u_{1}\right)$
contains a $2 B_{H S: 2}$ element and has size 32 . Now as we expect

$$
\left|X_{20 D}\right|=\frac{\left|C_{G}(t)\right|}{32}
$$

and thus $X_{20 D}$ is a single $C_{G}(t)$ orbit in $\Delta_{2}(t)$.

3.3.7 The Class 20F

In this case we have $z_{L} \in 4 G_{B M}$ and again $z_{L} z^{4}=z^{9}$ is a $20 F_{B M}$ element. Thus $\left|C_{G}\left(z_{L} z^{4}\right)\right|=2^{7} \times 5$ and hence $\left|C_{L}\left(z_{L}\right)\right|=2^{7}$. Using our trusty companion, the Atlas, we see that $z_{L} \in 4 C_{H S: 2}$. Now $|Y|=20$ and splits into three orbits of sizes 8,8 and 4 with representatives u_{1}, u_{2} and u_{3}. Instantly we see that we can ignore u_{3} as $u_{3} z_{L} \in 2 A_{H S: 2}$. For the other two, $C_{C_{L}\left(z_{L}\right)}\left(u_{i}\right)$ contains a $2 B_{H S: 2}$ element in both cases, and these centralizers both have size 16 . We note that

$$
\left|X_{20 F}\right|=\frac{\left|C_{G}(t)\right|}{16}+\frac{\left|C_{G}(t)\right|}{16}
$$

and thus $X_{20 F}$ splits into two orbits under action by $C_{G}(t)$ and $X_{20 F} \subseteq \Delta_{2}(t)$.

3.3.8 The Class 30D

In this case $z_{L} \in 6 B_{B M}$. We quickly see that $z_{L} z^{6}$ is a $30 D$ element, and hence $\left|C_{G}\left(z_{L} z^{6}\right)\right|=2^{4} \times 3 \times 5$. Therefore $\left|C_{L}\left(z_{L}\right)\right|=2^{4} \times 3$ and hence $z_{L} \in 6 B_{H S: 2}$ or $6 E_{H S: 2}$. Without loss of generality we pick our $z_{L} \in 6 B_{H S: 2}$ and calculate as usual. In this case we have $|Y|=12$ which splits into 3 orbits of sizes 6,3 and 3 with representatives u_{1}, u_{2} and u_{3}. Now let $C_{i}=C_{C_{L}\left(z_{L}\right)}\left(u_{i}\right)$, then $\left|C_{1}\right|=8,\left|C_{2}\right|=16$ and $\left|C_{3}\right|=16$ with C_{2}, C_{3} containing a $2 B_{H S: 2}$ element, and C_{1} not. We now note that

$$
\left|X_{30 D}\right|=\frac{\left|C_{G}(t)\right|}{8}+\frac{\left|C_{G}(t)\right|}{16}+\frac{\left|C_{G}(t)\right|}{16}
$$

and thus we must have that exactly half of $X_{30 D}$ is in $\Delta_{2}(t)$ and the other half has distance at least 3 from t. On the other hand, in all cases the commuting involution graph for $H S: 2$ has diameter 3, hence we must have the other half of $X_{30 D}$ in $\Delta_{3}(t)$.

3.3.9 The Class 40D

For $z \in 40 D$ we must have $z_{L} \in 8 L_{B M}$ and $\left|C_{G}\left(z^{8} z_{L}\right)\right|=2^{4} \times 5$. Hence $\left|C_{L}\left(z_{L}\right)\right|=2^{4}$ and therefore $z_{L} \in 8 B_{H S: 2}$. So we again choose a $z_{L} \in 8 B_{H S: 2}$ and calculate as usual. In this case $|Y|=12$ which splits into three orbits of size 4 . We may instantly dismiss one of these as $u_{1} z_{L} \in 2 A_{H S: 2}$ for a representative u_{1}. For the other two orbits, $\left|C_{C_{L}\left(z_{L}\right)}\left(u_{i}\right)\right|=4$ for representatives u_{i}, with both of these centralizers containing a $2 B_{H S: 2}$ element. Hence $X_{40 D} \subseteq \Delta_{2}(t)$, and by considering $\left|X_{40 D}\right|$, we see that $X_{40 D}$ splits into two orbits under the action by $C_{G}(t)$.

3.3.10 The Class 13A

From the AtLas we see that for $z=t x \in 13 A, C_{G}^{*}(z)=L \times S$ where $L \cong 13: 2$ and $S \cong \operatorname{Sym}(4)$. Now S has two conjugacy classes of involutions, $2 A_{\text {Sym (4) }}$ represented by $(1,2)$ and $2 B_{\text {Sym (4) }}$, represented by $(1,2)(3,4)$. Clearly $\left|C_{\text {Sym }(4)}\left(2 A_{\text {Sym (4) }}\right)\right|=2^{2}$ and $\left|C_{S y m(4)}\left(2 B_{S y m(4)}\right)\right|=2^{3}$. Now let $v \in 2 C_{B M} \cap S$, then $v z$ is an element of order 26 which to the 13 th power is in $2 C_{B M}$. So by consulting the Atlas we see that $v z \in 26 A_{B M}$, and thus $\left|C_{G}(v z)\right|=2^{3} \times 13$. Hence $\left|C_{S}(v)\right|=2^{3}$ and therefore, $v \in 2 B_{S y m(4)}$, giving $2 C_{B M} \cap S=2 B_{S y m(4)}$. Now let $t=t_{L} t_{S}$ and $x=x_{L} x_{S}$ where $t_{L}, x_{L} \in L$ and $t_{S}, x_{S} \in S$. As before it is easy to see that t_{L} and x_{L} are distinct involutions and $t_{S}=x_{S}=u$ is either the identity or an involution.

So now consider the element $v=(1,2)(3,4) \in 2 B_{S y m(4)}$, an easy calculation shows that $C_{S y m(4)}(v)=\langle(1,3)(2,4),(3,4)\rangle$. In particular it is clear that $C_{S y m(4)}(v)$ contains a representative for each of the two involution conjugacy classes in $\operatorname{Sym}(4)$. An argument identical to that in $3 A$ and $5 A$ shows that $X_{13 A} \subseteq \Delta_{2}(t)$.

3.3.11 The Class 6C

Let $z=t x \in 6 C$. As $z^{2} \in 3 A$ we can determine which disc $X_{6 C}$ is in by calculating inside $F i_{22}: 2$ using the same method as in $10 C$. Indeed note that $z, t, x \in C_{G}^{*}\left(z^{2}\right)=$ $S \times L$ where $S \cong \operatorname{Sym}(3)$ and $L \cong F i_{22}: 2$. From the $3 A$ calculation recall that $2 C_{B M} \cap L=2 F_{F i_{22}: 2}$. Let $z=z_{S} z_{L}, t=t_{S} t_{L}$ and $x=x_{S} x_{L}$. The calculation proceeds just as in $10 C$, and we see that $z_{S} \in 3 A_{B M}$ and $z_{L} \in 2 B_{B M}$. So consider the element $z^{2} z_{L}$, clearly a $6 C$ element, and thus $\left|C_{G}\left(z^{2} z_{L}\right)\right|=2^{18} \times 3^{5} \times 5$ implying that $\left|C_{L}\left(z_{L}\right)\right|=2^{18} \times 3^{4} \times 5$. Hence $z_{L} \in 2 B_{F i_{22:}: 2}$ and more generally, $2 B_{B M} \cap L=2 B_{F i_{22: 2}}$. Now as before, $C_{G}\left(t_{S}\right) \geq L$ and hence we must have $|L|$ dividing $\left|C_{G}\left(t_{S}\right)\right|$. Now note that 3^{9} divides $\left|F i_{22}: 2\right|$ but not the sizes of the centralizers of $2 B_{B M}, 2 C_{B M}$ or $2 D_{B M}$ elements. Thus we must have $t_{S}, x_{S} \in 2 A_{B M}$. Hence we have the $2 C_{B M}$ elements t and x being the products of a $2 A_{B M}$ element and another involution. Looking at the Class Structure Constants given in Appendix 1 we see that $t_{L}, x_{L} \in 2 A_{B M} \cup 2 D_{B M}$.

Now we wish to know which classes of $F i_{22}: 2,2 A_{B M}$ and $2 D_{B M}$ correspond to. Indeed suppose $v \in 2 A_{B M} \cap L$ then $z^{2} v$ is an element of order 6 which squares to a $3 A_{B M}$ and cubes to a $2 A_{B M}$. Hence $z^{2} v \in 6 A_{B M} \cup 6 B_{B M}$. First suppose $z^{2} v \in 6 A_{B M}$ then $\left|C_{G}\left(z^{2} v\right)\right|=2^{17} \times 3^{7} \times 5 \times 7 \times 11$ and thus $\left|C_{L}(v)\right|=2^{17} \times 3^{6} \times 5 \times 7 \times 11$ implying that $v \in 2 A_{F i_{22}: 2}$. On the other hand if $v \in 6 B_{B M}$, then a similar argument shows that $v \in 2 D_{F i_{22}: 2}$. Hence $2 A_{B M} \cap L=2 A_{F i_{22}: 2} \cup 2 D_{F i_{22}: 2}$. Similarly, $2 D_{B M} \cap L=$ $2 C_{F i_{22}: 2} \cup 2 E_{F i_{22}: 2}$. We are now in a position to write down the total fusion for the involution classes of $F i_{22}$: 2 into involution classes of $B M$.

Involution Class in $F i_{22}: 2$	Centralizer size (in $F i_{22}: 2$)	Class in $B M$
2A	$36,787,322,880$	2 A
2B	$106,168,320$	2 B
2C	$3,538,944$	2 D
2D	$2,090,188,800$	2 A
2E	$6,635,520$	2 D
2F	$5,806,080$	2 C

By using Magma we can say more about t_{L} and x_{L}. By loading the 4370 dimensional representation of $B M$ and feeding in the generators for $M \cong S_{3} \times F i_{22}: 2$ given
in the Atlas we can determine exactly which classes t_{L} and x_{L} belong to. Firstly we produce elements in M which have orders not among the orders of elements from $F i_{22}$: 2. We produced two elements u_{1}, u_{2} of orders 60 and 33. As neither $F i_{22}$ or $\operatorname{Sym}(3)$ have elements of these orders we know that $u_{1}^{20}, u_{2}^{11} \in S$ and $u_{1}^{3}, u_{2}^{3} \in L$. In fact we can quickly see that u_{1}^{20}, u_{2}^{11} generate S, and by checking element orders, we can see that u_{1}^{3}, u_{2}^{3} generate L. Now we can quickly produce the three involutions in S and by producing elements of even order and powering down, and checking the class structure constants given in [12] and the power maps given in the Atlas, we can produce a representative for each of the 6 classes of involutions in L. Now we just need to check whether an involution from S times the representative from each class of involutions in L is a $2 C$ involution in $B M$, which we can easily check using the dimension of its fixed space. We see that only involutions from the classes $2 D_{F i_{22} \text { :2 }}$ and $2 E_{F i_{22}: 2}$ when multiplied by an involution from S are in $2 C$ in $B M$. Hence $t_{L}, x_{L} \in 2 D_{F i_{22}: 2} \cup 2 E_{F i_{22}: 2}$.

We will now proceed in MAGMA using the 3510 degree permutation representation of $F i_{22}: 2$. Now without loss of generality we may pick a $z_{L} \in 2 B_{F i_{22}: 2}$ and follow the procedure in the 10 C case, however this time we have two separate cases, corresponding to the two different possible classes for t_{L}. So we calculate $Y_{C}=C_{G}^{*}\left(z_{L}\right) \cap C$ where C is either $2 D$ or $2 E$ in $F i_{22}: 2$.

In Case 1, where $Y=C_{L}\left(z_{L}\right) \cap 2 D_{F i_{22}: 2}$ we find that $|Y|=656$ and there are 2 orbits of sizes 576 and 80 . In both cases $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$, where y_{i} is a representative of each orbit, contain $2 F_{F i_{22}: 2}$ elements.

In Case 2, where $Y=C_{L}\left(z_{L}\right) \cap 2 E_{F i_{22}: 2}$ we find that $|Y|=26928$ and there are 4 orbits of sizes $8640,17280,576$ and 432 . In all cases $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$, where y_{i} is a representative of each orbit, contain $2 F_{F i_{22}: 2}$ elements.

So we deduce that $X_{6 C} \subseteq \Delta_{2}(t)$.

We can use similar arguments to deal with the classes $6 H, 12 D, 12 G, 12 J, 12 L$, $21 A, 24 A, 24 C, 24 G, 30 D$ and $48 A$. In each case let z be in the class mentioned in
the section heading, z_{S} be the $3 A$ element in S corresponding to some appropriate power of z and let z_{L} be the 3rd power of z living inside $L \cong F i_{22}: 2$. In all cases we will use the routine used in the $6 C$ case, with t_{L} and x_{L} in the classes $2 D_{F i_{22}: 2}$ and $2 E_{F i_{22}: 2}$.

3.3.12 The Class 6H

Elements in $6 H$ square to $3 A$, so we calculate in exactly the same way as in $6 C$. In this case $z_{L} \in 2 D_{B M}$, so $z^{2} z_{L}=z^{5}=z^{-1}=z^{t}$ is a $6 H$ element and hence $\left|C_{G}\left(v^{2} z_{L}\right)\right|=10616832$. This implies that $\left|C_{L}\left(z_{L}\right)\right|=3538944$ and thus $z_{L} \in 2 C_{F i_{22}: 2}$. As in $6 C$ we pick a $z_{L} \in 2 C_{F i_{22}: 2}$ and split our calculation into two cases.

In Case 1, we let $Y=C_{L}\left(z_{L}\right) \cap 2 D_{F i_{22:}: 2}$ and find that $|Y|=288$. Under the action by $C_{L}(z), Y$ splits into four orbits and $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element for each representative y_{i}.

In Case 2, we let $Y=C_{L}\left(z_{L}\right) \cap 2 E_{F i_{22}: 2}$ and $Y=4704$. In this case Y splits into 4 orbits and again $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element for each representative y_{i}. Hence $X_{6 H} \subseteq \Delta_{2}(t)$.

3.3.13 The Class 12D

Elements in $12 D$ to the fourth power are in $3 A$, so we calculate in the usual way. In this case $z^{3} \in 4 B$ and clearly $z^{4} z_{L}$ is again a $12 D$ element. Hence $C_{G}\left(z^{4} z_{L}\right)=663,552$ and thus $C_{L}\left(z_{L}\right)=221,184$ implying that $z_{L} \in 4 A_{F i_{22}: 2}$. So using the usual routine and splitting our calculation into two cases we get the following results.

In Case 1, $Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}$ and $|Y|=40 . Y$ splits into two orbits of sizes 36 and 4 and in both cases $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element for the two orbit representatives y_{i}.

In Case 2, $Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}$ and $|Y|=1368$. In this case, Y splits into five orbits $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and Y_{5}, with sizes $576,576,108,36$ and 72 and representatives $y_{1}, y_{2}, y_{3}, y_{4}$ and y_{5} respectively. We quickly see that $y_{1} z_{L}$ isn't in
one of the required classes so will be dismissed. For $i=2,3,4,5, C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element, however we see that $C_{C_{L}\left(z_{L}\right)}\left(y_{1}\right)$ doesn't, so it was important for us to dismiss it. Hence $X_{12 D} \subseteq \Delta_{2}(t)$.

3.3.14 12G

We can quickly see that elements in $12 G$ to the fourth power are in $3 A$ and cube down to $4 C$. An easy calculation shows that $z_{L} \in 4 C_{F i_{22}: 2}$ and hence we will pick a $z_{L} \in 4 C_{F i_{22}: 2}$ and carry out the usual routine.

In case $1, Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}$ and we see that $|Y|=16$. We find that Y is a single orbit with representative y under action by $C_{L}\left(z_{L}\right)$. However in this case $y z_{L} \in 2 F_{F i_{22}: 2}$ and so will be ignored.

In case $2, Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 E_{F i_{22}: 2}$ we see that $|Y|=528$, which splits into four orbits of sizes 19219248 and 48. However we may instantly dismiss two of these orbits, one of size 192 and the other of size 48. So we are left with two orbits, with representatives y_{1} and y_{2}. We can easily calculate that $\left|C_{C_{L}\left(z_{L}\right)}\left(y_{1}\right)\right|=128$ and $\left|C_{C_{L}\left(z_{L}\right)}\left(y_{2}\right)\right|=256$ and both of these centralizers do not contain a $2 F_{F i_{22}: 2}$ element, and thus for $x \in X_{12 G}, d(t, x) \geq 3$. As the commuting involution graph in all cases for $F i_{22}: 2$ has diameter at most 3, we see that $d(t, x) \leq 3$. Hence $X_{12 G} \subseteq \Delta_{3}(t)$. We also note that

$$
\frac{\left|C_{G}(t)\right|}{128}+\frac{\left|C_{G}(t)\right|}{256}=\left|X_{12 G}\right|
$$

and so $X_{12 G}$ splits into two orbits under action by $C_{G}(t)$.

3.3.15 The Class 12J

Elements in $12 J$ to the fourth power are in $3 A$ and cube to $4 E$. Hence $z_{S} \in 3 A$ and $z_{L} \in 4 E$ and we may again calculate inside $F i_{22}: 2$. Firstly consider the element $z^{4} z_{L}$, a $12 J$ element and hence $\left|C_{G}\left(v^{4} z_{L}\right)\right|=2^{10} \times 3^{3}$, giving us $\left|C_{L}\left(z_{L}\right)\right|=2^{10} \times 3^{2}$. Hence $z_{L} \in 4 D_{F i_{22}: 2}$. Now as usual, we pick a $z_{L} \in 4 D_{F i_{22}: 2}$ and carry out the usual routine.

Firstly we quickly note that $\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}=\emptyset$. Thus in this case $t_{L} \notin 2 D_{F i_{22}: 2}$.

For $Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 E$ we see that $|Y|=144$, which is itself an orbit under the action by $C_{L}\left(z_{L}\right)$ with representative y. In this case we see that $y z_{L} \in 2 E_{F i_{22}: 2}$ and hence is a possible t_{L}, with $\left|C_{C_{L}\left(z_{L}\right)}(y)\right|=64$. Now we also note that

$$
\frac{\left|C_{G}(t)\right|}{\left|C_{C_{L}\left(z_{L}\right)}(y)\right|}=\left|X_{12 J}\right|
$$

Hence $X_{12 J}$ is indeed a single orbit under action by $C_{G}(t)$. Furthermore $C_{C_{L}\left(z_{L}\right)}(y)$ doesn't contain a $2 F_{F i_{22}: 2}$ element, hence $d(t, x) \geq 3$ for $x \in X_{12 J}$. However as the commuting involution graph for $F i_{22}: 2$ has diameter at most 3 in all cases we deduce that $X_{12 J} \subseteq \Delta_{3}(t)$.

3.3.16 The Class 12L

Elements in $12 L$ to the fourth power are in $3 A$ and cube to $4 G$. By an easy calculation we see that $z_{L} \in 4 E_{F i_{22}: 2}$ and so we will carry out our usual routine.

In case $1, Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}$ we see that $|Y|=12$ which splits into two orbits of sizes 8 and 4. The orbit of size 4 can be instantly dismissed as $y_{2} z_{L} \in 2 F_{F i_{22}: 2}$ for a representative y_{2}. On the other hand, for a representative y_{1} for the orbit of length 8 , we see that $y_{1} z_{L} \in 2 E_{F i_{22}: 2}$ and its centralizer in $C_{L}\left(z_{L}\right)$ contains a $2 F_{F i_{22}: 2}$ element.

In case $2, Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 E_{F i_{22}: 2}$ which has size 228. In this case, Y splits into 9 orbits under action by $C_{L}\left(z_{L}\right)$, four of which can be instantly dismissed. For representatives y_{i} for the other 5 orbits, $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element in each case. Hence $X_{12 L} \subseteq \Delta_{2}(t)$.

3.3.17 The Class 21A

Elements in $21 A$ to the seventh power are in $3 A$ and cube to $7 A$. Now $F i_{22}: 2$ only has one class of elements of order 7 , so we must have $z_{L} \in 7 A_{F i_{22}: 2}$. We will use the
usual routine, with the following results.
In case $1,\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}=\emptyset$, and so this case will be ignored.
In case $2, Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 E_{F i_{22}: 2}$ with $|Y|=7$. In this case, $C_{L}\left(z_{L}\right)$ is transitive on Y and $C_{C_{L}\left(z_{L}\right)}(y)$ contains a $2 F_{F i_{22}: 2}$ element for the single representative y. Hence $X_{21 A} \subseteq \Delta_{2}(t)$ and $X_{21 A}$ is a $C_{G}(t)$ orbit.

3.3.18 The Classes 24 A and 24 C

Let z be in one of the classes $24 A$ or $24 C$, then in both cases $z^{8} \in 3 A$ and so we may use the usual procedure with a small twist. As usual let $z=z_{S} z_{L}$, and in both cases we see that $\left|C_{L}\left(z_{L}\right)\right|=768$. Now $F i_{22}: 2$ has 5 classes of elements of order 8 with centralizer size 768 , so we will have to check them all to cover both the $24 A$ and the $24 C$ cases. So we let z_{L} run over the classes $8 A_{F i_{22}: 2}, 8 B_{F i_{22}: 2}, 8 E_{F i_{22}: 2}, 8 F_{F i_{22}: 2}$ and $8 G_{F i_{22}: 2}$ and carry out the normal routine. Obviously telling exactly which classes correspond to $24 A$ and which to $24 C$ will be very difficult as we cannot distinguish between them easily, therefore we will produce 5 non-conjugate elements in $B M$ of order 8 whose centralizer size in L is equal to 768 , which will cover the required classes without explicitly knowing which class each z_{L} belongs to. We will call these five elements z_{1}, \ldots, z_{5}.

The results for z_{1} are as follows. For $Y=\left(C_{L}^{*}\left(z_{1}\right) \backslash C_{L}\left(z_{1}\right)\right) \cap 2 D_{F i_{22}: 2},|Y|=4$, a single orbit. In this case $C_{C_{L}\left(z_{1}\right)}(y)$ contains a $2 F_{F i_{22}: 2}$ element for a representative y. For $Y=\left(C_{L}^{*}\left(z_{1}\right) \backslash C_{L}\left(z_{1}\right)\right) \cap 2 E_{F i_{22}: 2},|Y|=68$, which splits into six orbits of sizes $12,24,12,12,4$ and 4 . Again $C_{C_{L}\left(z_{1}\right)}\left(y_{i}\right)$ contains a $2 F_{F i_{22}: 2}$ element for each representative y_{i}.

For z_{2} we get exactly the same results as in z_{1}.
For the z_{3} case we quickly see that $\left(C_{L}^{*}\left(z_{3}\right) \backslash C_{L}\left(z_{3}\right)\right) \cap 2 D_{F i_{22}: 2}=\emptyset$, so we only have a single case to check. For $Y=\left(C_{L}^{*}\left(z_{3}\right) \backslash C_{L}\left(z_{3}\right)\right) \cap 2 E_{F i_{22}: 2}$ we get a single orbit of size 48 , whose centralizer size (in $C_{L}\left(z_{3}\right)$) is 16 . Note that $\frac{\left|C_{G}(t)\right|}{16}>\left|X_{24 A}\right|=\left|X_{24 C}\right|$ and hence we cannot have z_{L} in the same class as z_{3} so we will ignore this case.

For z_{4} we get the following results. For $Y=\left(C_{L}^{*}\left(z_{4}\right) \backslash C_{L}\left(z_{4}\right)\right) \cap 2 D_{F i_{22}: 2}, Y$ is a single orbit of size 4 with representative y. In this case $C_{C_{L}\left(z_{4}\right)}(y)$ contains a $2 F_{F i_{22}: 2}$ element. For $Y=\left(C_{L}^{*}\left(z_{4}\right) \backslash C_{L}\left(z_{4}\right)\right) \cap 2 E_{F i_{22}: 2},|Y|=52$, which splits into 5 orbits. All the centralizers in $C_{L}\left(z_{4}\right)$ for representatives of these five orbits contain a $2 F_{F i_{22}: 2}$ element.

The results for z_{5} are very similar to the z_{4} and so will not be produced here. Thus in all cases we see that $d(t, x)=2$ for x in either $X_{24 A}$ or $X_{24 C}$, and therefore $X_{24 A}, X_{24 C} \subset \Delta_{2}(t)$.

3.3.19 The Class 24 G

Elements in $24 G$ to the sixth power are in $3 A$ and cube to $8 D$, so we may calculate inside $F i_{22}$: 2. Now consider the element $z^{8} z_{L}$, a $24 G$ element, and hence $\left|C_{G}\left(v^{8} z_{L}\right)\right|=768$. Therefore $\left|C_{L}\left(z_{L}\right)\right|=256$ implying that $z_{L} \in 8 C_{F i_{22}: 2}$. So we do the usual job, by picking a $z_{L} \in 8 C_{F i_{22}: 2}$ and carrying out the standard routine to get the following results.

We quickly see that $t_{L} \notin 2 D_{F i_{22}: 2}$ as $\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 D_{F i_{22}: 2}$ is empty. So we only have a single case to check.

For $Y=\left(C_{L}^{*}\left(z_{L}\right) \backslash C_{L}\left(z_{L}\right)\right) \cap 2 E_{F i_{22}: 2}$ we see that $|Y|=48 . Y$ splits into 4 orbits under the action by $C_{L}\left(z_{L}\right)$, with sizes $8,16,16$ and 8 . In this case all $C_{C_{L}\left(z_{L}\right)}\left(y_{i}\right)$ for representatives y_{i}, again do not contain a $2 F_{F i_{22}: 2}$ element.

Therefore we can deduce that for $x \in X_{24 G}, d(t, x) \geq 3$. However consulting [12] we see that the diameter for the commuting involution graph for $F i_{22}: 2$ in all cases has diameter at most 3 , thus $d(t, x) \leq 3$. Hence $X_{24 G} \subseteq \Delta_{3}(t)$.

3.3.20 The Class 48A

For $z \in 48 A$ we have $z^{16} \in 3 A$ so we may use the usual routine. Now $\left|C_{G}(z)\right|=96$ so it is easy to see that $C_{L}\left(z_{L}\right)=32$. Now $F i_{22}: 2$ has two classes of elements of order 16 , both of which have centralizer sizes of 32 , so we will have to test both. As in the
$24 A-24 C$ case, we will produce two non conjugate elements of order 16 in $F i_{22}: 2$ and call them z_{1} and z_{2}, without knowing precisely which class each one is in.

For z_{1} we only have a single case to check as $\left(C_{L}^{*}\left(z_{1}\right) \backslash C_{L}\left(z_{1}\right)\right) \cap 2 D_{F i_{22}: 2}$ is empty. For $Y=\left(C_{L}^{*}\left(z_{1}\right) \backslash C_{L}\left(z_{1}\right)\right) \cap 2 E_{F i_{22}: 2}$, we see that $|Y|=24$, which splits into three orbits under the action by $C_{G}\left(z_{1}\right)$. We can discount one of these orbits straight away as $y z_{L} \in 2 F_{F i_{22}: 2}$ for a representative y. For the other two orbits, with representatives y_{1} and y_{2}, we see that $\left|C_{C_{L}\left(z_{1}\right)}\left(y_{i}\right)\right|=4$ and both centralizers do not contain a $2 F_{F i_{22}: 2}$ element.

For z_{2} we find that $\left(C_{L}^{*}\left(z_{2}\right) \backslash C_{L}\left(z_{2}\right)\right) \cap 2 D_{F i_{22}: 2}$ is empty. In the other case we get a single $C_{L}\left(z_{L}\right)$ orbit of size 8 , with centralizer of a representative y_{3} in $C_{L}\left(z_{2}\right)$ containing a $2 F_{F i_{22}: 2}$ elements, with this centralizer having size 6, 635,520 .

We now note that

$$
\left|X_{48 A}\right|=\frac{\left|C_{G}(t)\right|}{2}
$$

So the only way this is possible is for y_{1} and y_{2} to be in different orbits of $X_{48 A}$ and y_{3} not being a possible t_{L} due to z_{L} not being in the class $16 A_{F i_{22}: 2}$ or $16 B_{F i_{22}: 2}$ which corresponds to z_{2}. Hence for $x \in X_{48 A}, d(t, x) \geq 3$, however again as the diameter of the commuting involution graph for $F i_{22}: 2$ in all cases is at most 3, we deduce that $X_{48 A} \subseteq \Delta_{3}(t)$.

3.3.21 Classes Which Power to 5B

Classes $5 B, 10 D, 10 F$ and $20 G$ all power down to $5 B$, so these classes will be treated similarly. Since $H=N_{B M}(5 B) \cong 5_{+}^{1+4}: 2_{-}^{1+4}: \operatorname{Alt}(5) .4$, calculating inside this group directly would be difficult due to its complex structure. So we wish to compute a permutation representation of H of a reasonable degree in which to carry out our calculations. Our general aim is to find τ, the central involution in the extraspecial group 2^{1+4} such that $C=C_{H}(\tau) \cong 5: 2^{1+4}: \operatorname{Alt}(5) .4$. We will let the generators of H act on the cosets of C in H to produce a permutation representation of degree 5^{4}. Note that τ will commute with the central element of order 5 in 5^{1+4}, so this
representation will not be faithful, however it will give us a faithful representation of $H /\langle w\rangle$ where w is this central 5 element, which will be sufficient for our purpose.

Our first job is to find the element τ. This is fairly straightforward, by taking a random element of order 8 and powering down to an involution we have a good chance of producing the required element, we can check by using Bray's Algorithm to produce elements in its centralizer and seeing if the element orders match those which we expected. Since we are working in a large matrix representation of $B M$ we cannot ask directly for the coset action of H on $H / C_{H}(\tau)$ as simply just storing these groups would take up a huge amount of memory, so we have to be clever in our approach.

We first note that if \mathcal{T} is a transversal of $C_{H}(\tau)$ in H, then \mathcal{T} is also a transversal for 5 in 5^{1+4}, which is much easier to produce. Indeed we can easily produce the 5 linearly independent generators for 5^{1+4} in H by powering down from appropriately ordered random elements in H, with w being the central element of order 5. Now since the other 4 generators commute modulo w, a transversal for 5 in 5^{1+4} will be given by the 5^{4} words in the four non-central generators in which we ignore the order of the generators.

Now $H=\left\langle w_{1}, w_{2}\right\rangle$, with the generators w_{1} and w_{2} given as a straight line program in the online Atlas. We wish to calculate the action of w_{1} and w_{2} on $\gamma \in \mathcal{T}$. Indeed we wish to write γw_{i} as $\gamma^{\prime} h$ where $h \in C_{H}(\tau)$ and $\gamma^{\prime} \in \mathcal{T}$. Hence we run through all $\delta \in \mathcal{T}$ and determine whether $\delta^{-1} w_{i} \gamma \in C_{H}(\tau)$, by simply checking whether $\delta^{-1} w_{i} \gamma$ commutes with τ. When we find such a δ, of which there will be exactly one in \mathcal{T}, we will let $\gamma^{\prime}=\delta$. If we then order our transversal, then if γ is the $m^{\text {th }}$ element of of \mathcal{T} and γ^{\prime} is the $n^{\text {th }}$, then the element of our permutation representation corresponding to w_{i} will send m to n.

As we have 625 of these transversal elements to work through, instead of multiplying together the words in the generators of 5^{1+4} to produce a transversal, we will store it simply as a word (that is as an array containing the names of the generators in question) and act on a random vector v from the natural 4370 dimensional G-module
for $B M$ over $G F(2)$. This will at least give us a shortlist for possible elements γ^{\prime}, which we can go through more carefully if we get more than one possibility. The Magma code for this procedure is given in Appendix 3.

This procedure gives us a 625 degree permutation representation of the group $\bar{H} \cong 5^{4}: 2_{-}^{1+4}: \operatorname{Alt}(5) .4$. Note that this group is isomorphic to $H /\langle w\rangle$, where w is the central 5 element in 5^{1+4} inside H. Inside \bar{H} we want copies of $C_{H}(w)$ and $C_{H}^{*}(w)$ modulo $\langle w\rangle$. The first is simply given by \bar{H}^{\prime}, the derived subgroup of \bar{H}, and for the second we find an involution a not in \bar{H}^{\prime} and calculate $\left\langle\bar{H}^{\prime}, a\right\rangle$. We will call these groups \bar{C} and $\overline{C^{*}}$ respectively. These groups have the orders we expected from the Atlas, namely 1,200,000 and 2,400,000, the sizes of the centralizer and extended centralizer in $B M$ of a $5 B$ element, divided by 5 .

We now have to map the classes of involutions in \bar{H} across to G. Indeed \bar{H} has 4 classes of involutions. If we find words for representatives of these four classes in the generators of \bar{H} and map these over to H, sitting inside G, we can easily see which class they belong to in G. This mapping works in the obvious way, if $\overline{w_{1}}$ and $\overline{w_{2}}$ are the two generators for \bar{H} corresponding to the generators w_{1} and w_{2} of H. then we simply replace w_{i} with $\overline{w_{i}}$ in a word for a particular element. Table 3.3 gives the mapping of the involution classes of \bar{H} to the involution classes in $B M$.

Table 3.3: Mapping between involution classes in \bar{H} and $B M$.

Class in \bar{H}	Size of Centralizer in \bar{H}	Class in G
$2 A_{\bar{H}}$	19200	$2 B_{B M}$
$2 B_{\overline{\bar{H}}}$	9600	$2 C_{B M}$
$2 C_{\bar{H}}$	7680	$2 D_{B M}$
$2 D_{\bar{H}}$	1600	$2 D_{B M}$

Now if we want to find the distance between t and x where $x \in X_{5 B}$, we first note that we may pick $z \in 5 B$ as our central element of order $5, w$. We now want to calculate $C_{C_{G}(z)}(t)$ for different choices of t and see if it contains any $2 C_{B M}$ elements.

We first note that as t has order 2 and $\langle w\rangle$ is a 5 -group,

$$
C_{C_{G}(z)}(t) /\langle w\rangle=C_{C_{G}(z) /\langle w\rangle}(\bar{t})=C_{\bar{C}}(\bar{t})
$$

where \bar{t} is the image of t in \bar{H}.
We now calculate the possible t s in \bar{H}. These must be $2 C_{B M}$ elements which invert, but don't centralize z. Therefore the set of possible t s is given by

$$
Y=\left(\overline{C^{*}} \backslash \bar{C}\right) \cap 2 B_{\bar{H}}
$$

We can differentiate between the different involution classes of \bar{H} by simply calculating the sizes of centralizers. We find that $|Y|=500$, and \bar{C} acts transitively on Y. For y a random element from Y we see that $\left|C_{\bar{C}}(y)\right|=2400$, which is what we expect, as that would make

$$
\left|X_{5 B}\right|=\frac{\left|C_{G}(t)\right|}{\left|C_{C_{G}(z)}(t)\right|}
$$

agreeing with the fact that \bar{C} acts transitively on Y. We also find that $C_{\bar{C}}(y)$ does not contain any $2 B_{\bar{H}}$ and thus $2 C_{B M}$ elements, hence $d(t, x) \geq 3$ for $x \in X_{5 B}$. If we now return to our 4370 dimensional representation of $B M$, we can easily find an $s \in B M$ such that $t t^{s}$ is a $5 B$ element, and using Bray's algorithm we can find a $\tau \in X_{26 A}$ such that τ commutes with t^{s}. Since $X_{26 A} \subseteq \Delta_{2}(t)$ we deduce that $X_{5 B} \subseteq \Delta_{3}(t)$. Details of this calculation are given in Appendix 4.

For $z=t x \in 20 G$, we can again calculate inside \bar{H} as $z^{4} \in 5 B$. Firstly we must work in the 4370 dimensional representation of H inside of G and find a $20 G_{B M}$ element inside of H which to an appropriate power is w. Once we have it, call it z and transport it over to \bar{H} to get \bar{z}, by taking a word of z in the generators for H, and replacing these for the generators of \bar{H}. We now have to find images of $C_{G}(z)$ and $C_{G}^{*}(z)$ inside of \bar{H}, however this is easy due to the following observation.

If $z \in 20 G$ then $z=w f$ where $w \in 5 B$ and f has order 4 . Now note that

$$
\begin{aligned}
K=C_{G}(z) & =C_{G}(w) \cap C_{G}(f) \\
& =C_{C}(f)
\end{aligned}
$$

where $C=C_{G}(w)$. We wish to pinpoint \bar{K} inside of \bar{H}, however

$$
\bar{K}=\overline{C_{C}(f)}=C_{\bar{C}}(\bar{f})
$$

as the order of w and f are coprime. Also note that \bar{f} is equal to z once it has been transported over to \bar{H}.

Hence inside \bar{H}, let $\overline{C_{z}}=C_{\bar{C}}(\bar{z})$ where $\bar{C}=\overline{H^{\prime}}$ as in the $5 B$ case. We note that $\left|\overline{C_{z}}\right|=96$, which is equal to $\frac{\left|C_{G}(z)\right|}{5}$ as expected. A similar technique can be used to calculate $\overline{C_{G}^{*}(z)}$, or a group close to it, however note that it is not necessary true that

$$
\overline{C_{G}^{*}(z)}=C_{C^{*}}^{*}(\bar{z})
$$

however $\overline{C_{G}^{*}(z)}$ will always be contained in $C_{\overline{C^{*}}}^{*}(\bar{z})$. In fact in our case, $\left|C_{\overline{C^{*}}}^{*}(\bar{z})\right|=384$, so if we take a $2 B_{\bar{H}}$ involution, y, from $C_{\bar{C}^{*}}^{*}(\bar{z})$ such that $y \bar{z}$ is also a $2 B_{\bar{H}}$ involution, then $\overline{C_{G}^{*}(z)}=\left\langle\overline{C_{z}}, y\right\rangle$, which we will call $\overline{C_{z}^{*}}$.

Now our list of possible t s is $Y=\left(\overline{C_{z}^{*}} \backslash \overline{C_{z}}\right) \cap 2 B_{\bar{H}}$. By calculating this in Magma, we see that $|Y|=12$ and $\overline{C_{z}}$ acts transitively on this. Again $\left|C_{\overline{C_{z}}}(y)\right|=8$ for a representative $y \in Y$, which agrees with $X_{20 G}$ being a single $C_{G}(t)$ orbit. Now $C_{\overline{C_{z}}}(y)$ does not contain any $2 B_{\bar{H}}$ elements, and thus $d(t, x) \geq 3$ for $x \in X_{20 G}$.

Exactly the same method also works for $z \in 10 D$. Indeed, in this case define $\overline{C_{z}}$ in exactly the same way as in $20 G$, and thus we have $\left|\overline{C_{z}}\right|=4800$, which is what we expected from the Atlas. Now in this case $\left|C_{C^{*}}^{*}(\bar{z})\right|=9600$, twice that of $\left|\overline{C_{z}}\right|$, and thus we must have $\overline{C_{G}^{*}(z)}=C_{\bar{C}^{*}}^{*}(\bar{z})$, and so we set $\overline{C_{z}^{*}}=C_{C^{*}}^{*}(\bar{z})$. Again set $Y=\left(\overline{C_{z}^{*}} \backslash \overline{C_{z}}\right) \cap 2 B_{\bar{H}}$ and let $\overline{C_{z}}$ act on it. Again Y splits into a single orbit with y as a representative. In this case $\left|C_{\overline{C_{z}}}(y)\right|=80$, agreeing with $X_{10 D}$ being a single $C_{G}(t)$
orbit. Now $C_{\overline{C_{z}}}(y)$ again doesn't contain any $2 B_{\bar{H}}$ involutions, hence $d(t, x) \geq 3$ for $x \in X_{10 D}$.

Similarly for $z \in 10 F$, we can define $\overline{C_{z}}$ and $\overline{C_{z}^{*}}$ in exactly the same way as in $10 D$. In this case $|Y|=20$ and $\overline{C_{z}}$ again acts transitively on Y and $\left|C_{\overline{C_{z}}}(y)\right|=96$. Now $C_{\overline{C_{z}}}(y)$ again contains no $2 B_{\bar{H}}$ involutions, hence $d(t, x) \geq 3$ for $x \in X_{10 F}$.

For C one of the classes $5 B, 10 D, 10 F$ and $20 G$ we can easily prove that $X_{C} \subseteq$ $\Delta_{3}(t)$. Indeed we choose a $x \in X_{C}$ and calculating elements in $C_{G}(x)$ by using Bray's algorithm. Once we have a list of elements $w \in C_{G}(x)$, we just check to see whether $w \in 2 C$ and $t w$ is in a known class in the second disc. If this happens (which it does in all cases) then $d(t, w) \leq 3$ and thus $X_{C} \subseteq \Delta_{3}(t)$ as X_{C} is made up of a single $C_{G}(t)$ orbit in these cases. Details of these calculations are given in Appendix 4.

3.3.22 Classes Which Power to 3B

The classes $3 B, 6 G, 6 I, 6 K, 9 B, 12 B, 12 F, 12 M, 12 O, 12 R, 18 C$ and $24 H$ all power down to a 3B element, and since H, the normalizer of a $3 B$ element, has shape

$$
H \cong 3_{+}^{1+8} \cdot 2_{-}^{1+6} \cdot U_{4}(2) \cdot 2
$$

it can be treated in a similar manner to $5 B$. Again we find the central involution in 2_{-}^{1+6}, which we will call τ, by finding a element of order 16 and taking it's eighth power. By doing this we give ourselves a good chance of finding the required involution, and then using Bray's Algorithm we check to see if elements in the centralizer of τ, which has shape $3.2_{-}^{1+6} \cdot U_{4}(2) .2$, have the required orders. As in the $5 B$ case we compute a transversal for 3 in 3^{1+8}, which will also be a transversal for $C_{H}(\tau)$ in H. As in $5 B, H$ acting on these cosets will give us a faithful permutation representation for $H /\langle w\rangle$ of degree 6561 where w is the central 3 element in 3_{+}^{1+8}. As this degree is much larger than the representation in the $5 B$ case obviously this calculation was much more time consuming. To combat this problem the program was run on ten machines each doing part of the transversal. Even so this still took seven days to
calculate the coset action for the two generators for H, considerably longer than the two hours it took to calculate the representation in the $5 B$ case. It is easy to see that $\bar{H}=H /\langle z\rangle$ has shape $3^{8} \cdot 2_{-}^{1+6} \cdot U_{4}(2) .2$.

As in the $5 B$, case $\bar{C}=C_{H}(w) /\langle w\rangle=C_{\bar{H}}(w) \cong 3^{8} .2_{-}^{1+6} \cdot U_{4}(2)$, is calculated by taking the derived subgroup of \bar{H}, and $\overline{C^{*}}=C_{H}^{*}(w) /\langle w\rangle$ is just \bar{H} itself. Now by taking representatives for the 7 classes of involutions in \bar{H} and transporting them over to $B M$, can can calculate the mapping of the involution classes of \bar{H} into $B M$, which is given in Table 3.4.

Table 3.4: Mapping of involution classes of \bar{H} into $B M$.

Class in \bar{H}	Size of Centralizer in \bar{H}	Class in $B M$
$2 A_{\bar{H}}$	$26,873,856$	$2 A_{B M}$
$2 B_{\bar{H}}$	$9,953,280$	$2 B_{B M}$
$2 C_{\bar{H}}$	$6,635,520$	$2 D_{B M}$
$2 D_{\bar{H}}$	373,248	$2 C_{B M}$
$2 E_{\bar{H}}$	331,776	$2 D_{B M}$
$2 F_{\bar{H}}$	248,832	$2 C_{B M}$
$2 G_{\bar{H}}$	62,208	$2 D_{B M}$

We now calculate in the same way as in $5 B$, and as 2 is coprime to 3 , we see that

$$
C_{C_{G}(z)}(t) /\langle w\rangle=C_{C_{G}(z) /\langle w\rangle}(\bar{t})=C_{\bar{C}}(\bar{t})
$$

where t is an involution in H and \bar{t} is its image in \bar{H}.
Now as $2 C_{B M}$ corresponds to $2 D_{\bar{H}} \cup 2 F_{\bar{H}}$, we calculate

$$
Y=\left(\overline{C^{*}} \backslash \bar{C}\right) \cap\left(2 D_{\bar{H}} \cup 2 F_{\bar{H}}\right) .
$$

However as $\left|C^{*}\right|=43,535,646,720$ we have to be clever about this, as if we calculate it naively we will quickly run out of memory. Since $\overline{C^{*}}=\bar{H}$, we can simply calculate the two classes $2 D_{\bar{H}}$ and $2 F_{\bar{H}}$ on two different machines, and compute the elements not in \bar{C}. Once this is complete we will have two much smaller sets, which we can combine on a single machine to get Y. In fact our job is made easier as $\left(\overline{C^{*}} \backslash \bar{C}\right) \cap 2 F_{\bar{H}}$
is empty, hence

$$
Y=\left(\overline{C^{*}} \backslash \bar{C}\right) \cap 2 D_{\bar{H}}
$$

However again our job is made easy as if we pick a random $2 D$ element $y_{1} \in \overline{C^{*}} \backslash \bar{C}$ and calculate

$$
\frac{|\bar{C}|}{\left|C_{\bar{C}}\left(y_{1}\right)\right|}
$$

which is equal to the size of of the orbit Y_{1} of Y containing y_{1}, as \bar{C} acts on Y, we find that $\left|Y_{1}\right|=116,640$, the size of the conjugacy class $2 D$ of \bar{H}. Therefore we must have had that $Y=2 D_{\bar{H}}$ with \bar{C} acting transitively on it. Now we can easily calculate that $\left|C_{\bar{C}}\left(y_{1}\right)\right|=186,624$, and this centralizer contains either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ involution. Since

$$
\left|X_{3 B}\right|=\frac{\left|C_{G}(t)\right|}{186624}
$$

we deduce that $X_{3 B} \subseteq \Delta_{2}(t)$ and is a single $C_{G}(t)$ orbit of X.
Now suppose $z \in 6 G_{B M}$, such that $z^{2}=w$. We then transport z over to \bar{H} to get an involution, which we will call \bar{z}. We now calculate

$$
\overline{C_{z}}=\overline{C_{G}(z)}=C_{\bar{C}}(\bar{z})
$$

and note that $\left|C_{z}\right|=4,976,640$ as expected. We now wish to calculate $\overline{C_{z}^{*}}=\overline{C_{H}^{*}(z)}$, however in general

$$
\overline{C_{H}^{*}(z)} \neq C_{\bar{H}}^{*}(\bar{z})
$$

though as said before, $\overline{C_{H}^{*}(z)} \subseteq C_{\bar{H}}^{*}(\bar{z})$. Hence we find an involution $\xi \in \overline{C^{*}}$ which inverts \bar{z}, then together with C_{z}, will generate C_{z}^{*}. If we carry this out, we find that C_{z}^{*} has the required size, twice that of $\left|\overline{C_{z}}\right|$. We follow the usual routine, by calculating $Y=\left(\overline{C_{z}^{*}} \backslash C_{z}\right) \cap\left(2 D_{\bar{H}} \cup 2 F_{\bar{H}}\right)$, and we find that $|Y|=4320$ and $\overline{C_{z}}$ acts transitively on this. We can also easily calculate that $\left|C_{C_{z}}(y)\right|=1152$, where y is a random element from Y and $C_{C_{z}}(y)$ contains either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ element. Thus
as

$$
\left|X_{6 G}\right|=\frac{\left|C_{G}(t)\right|}{1152}
$$

we see that $X_{6 G} \subseteq \Delta_{2}(t)$ and consists of a single $C_{G}(t)$ orbit.
For $z \in 6 I$, we find that $|Y|=1440$ and again $\overline{C_{z}}$ acts transitively on Y. In this case $\left|C_{C_{z}}(y)\right|=2304$, where y is a random element from Y and $C_{\overline{C_{z}}}(y)$ contains either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ element. Thus as

$$
\left|X_{6 I}\right|=\frac{\left|C_{G}(t)\right|}{2304}
$$

we see that $X_{6 I} \subseteq \Delta_{2}(t)$ and consists of a single $C_{G}(t)$ orbit.
For $z \in 6 K$ we have $|Y|=576$, which splits into two orbits, Y_{1}, Y_{2} as C_{z} acts on it. In this case, $\left|Y_{1}\right|=432$ and $\left|Y_{2}\right|=144$, however for $y_{1} \in Y_{1}, y_{1} z \in 2 G_{\bar{H}}$, and thus is not a $2 C_{B M}$ element, so can be ignored. For y_{2} in the other orbit, we have $y_{2} z$ a $2 D_{\bar{H}}$ element. For this element, $\left|C_{C_{z}}\left(y_{2}\right)\right|=864$, and contains either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ element. Hence as

$$
\left|X_{6 K}\right|=\frac{\left|C_{G}(t)\right|}{864}
$$

we see that $X_{6 K} \subseteq \Delta_{2}(t)$ and consists of a single $C_{G}(t)$ orbit.
For $z \in 12 B$ we find that $|Y|=1296$ which splits into two orbits of sizes 864 and 432. For a representative y_{1} from the first orbit, we find that $y_{1} z$ is a $2 G_{\bar{H}}$ element, and so can be ignored. For y_{2} in the other orbit, we have $y_{2} z$ is a $2 D_{\bar{H}}$ element and $\left|C_{C_{z}}\left(y_{2}\right)\right|=576$, with this centralizer containing either a $2 D_{\bar{H}}$ or $2 F_{\bar{H}}$ element. Hence as

$$
\left|X_{12 B}\right|=\frac{\left|C_{G}(t)\right|}{576}
$$

we see that $X_{12 B} \subseteq \Delta_{2}(t)$ and consists of a single $C_{G}(t)$ orbit.
For $z \in 12 F$, we see that $|Y|=400$ we find that Y splits into two orbits as $\overline{C_{z}}$ acts upon it, of sizes 360 and 40 . We can easily see that both these orbits are legitimate, with centralizer sizes, in $\overline{C_{z}}$, of representatives from the orbits of 128 and 1152. Both these centralizers contain either a $2 D_{\bar{H}}$ or $2 F_{\bar{H}}$ element, and hence $X_{12 F} \subseteq \Delta_{2}(t)$.

We also see that

$$
\left|X_{12 F}\right|=\frac{\left|C_{G}(t)\right|}{128}+\frac{\left|C_{G}(t)\right|}{1152}
$$

and hence $X_{12 F}$ consists of two $C_{G}(t)$ orbits.
For $z \in 12 M,|Y|=192$ which splits into 3 orbits of sizes 96,48 and 48. The two orbits of size 48 can instantly be discounted as $y_{i} z \in 2 G_{\bar{H}}$ for representatives y_{i} of the two orbits. For a representative y for the orbit of size 96 we see that $y z \in 2 D_{\bar{H}}$ and that $\left|C_{C_{z}}(y)\right|=48$ with this centralizer not containing either a $2 D$ or $2 F_{\bar{H}}$ involution. We also note that

$$
\left|X_{12 M}\right|=\frac{\left|C_{G}(t)\right|}{48}
$$

so $X_{12 M}$ is a single $C_{G}(t)$ orbit, with $d(t, x) \geq 3$ for $x \in X_{12 M}$. Now by using Bray's Algorithm on an element $x \in X_{12 M}$ in $B M$, we can find an element $\tau \in X_{20 D}$ which commutes with x. Since we know $X_{20 D} \subseteq \Delta_{2}(t)$ and $X_{12 M}$ consists of a single $C_{G}(t)$ orbit, we have $d(t, x) \leq 3$ for all $x \in X_{12 M}$, and thus $X_{12 M} \subseteq \Delta_{3}(t)$. Details of this calculation are given in Appendix 4.

For $z \in 12 O$, we have $|Y|=144$ splitting into two orbits of sizes 48 and 96 . The orbit of size 96 can be ignored as $y_{2} z \in 2 G_{\bar{H}}$ for a representative y_{2}, however the other must be considered as $y_{1} z \in 2 D_{\bar{H}}$. For this orbit we have $\left|C_{C_{z}}\left(y_{1}\right)\right|=64$ with this centralizer containing either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ involution. We note that

$$
\left|X_{12 O}\right|=\frac{\left|C_{G}(t)\right|}{64}
$$

hence $X_{12 O}$ is a single $C_{G}(t)$ orbit contained in $\Delta_{2}(t)$.
For $z \in 12 R$, we find that $|Y|=32$, which splits into two orbits, both of size 16 , when acted on by $\overline{C_{z}}$. One of these orbits can be instantly ignored, however for the other $\left|C_{C_{z}}(y)\right|=32$, for a representative y. This centralizer contains either a $2 D$ or a $2 F$ involution, and since

$$
\left|X_{12 R}\right|=\frac{\left|C_{G}(t)\right|}{32}
$$

we see that $X_{12 R} \subseteq \Delta_{2}(t)$ and is a single $C_{G}(t)$ orbit.

For $z \in 24 H$ we see that $|Y|=48$, which splits into three orbits Y_{1}, Y_{2} and Y_{3} when acted upon by C_{z}. For y_{1} a representative of Y_{1} we see that $y_{1} z \in 2 G$, and hence Y_{1} can be ignored. For the other two orbits, $y_{i} z \in 2 D$ for representatives y_{i}, and in both cases $\left|C_{C_{z}}\left(y_{i}\right)\right|=16$ and both centralizers either contain a $2 D$ or a $2 F$ involution. We now note that

$$
\left|X_{24 H}\right|=\frac{\left|C_{G}(t)\right|}{16}+\frac{\left|C_{G}(t)\right|}{16}
$$

and hence $X_{24 H}$ splits into two orbits of equal size when acted upon by $C_{G}(t)$, both of which are contained in $\Delta_{2}(t)$.

The classes $9 B$ and $18 C$ are a little more involved as the factorization of the order of the element in question consists of multiple powers of 3 . Hence it is not necessarily true that

$$
C_{\bar{C}}(\bar{z})=\overline{C_{H}(z)},
$$

however it is true that

$$
\overline{C_{H}(z)} \leq C_{\bar{H}}(\bar{z}) .
$$

Suppose $z \in 9 B$ such that $z^{3}=w$. Then in this case, $\left|C_{\bar{H}}(\bar{z})\right|=11,664$, the same size as $C_{G}(z)$. Also $\left|C_{\overline{C *}}^{*}(\bar{z})\right|=23,328$, twice the size of $C_{\bar{H}}(\bar{z})$. We will proceed as normal with $Y=\left(C_{\overline{C *}}^{*}(\bar{z}) \backslash C_{\bar{H}}(\bar{z}) \cap\left(2 D_{\bar{H}} \cup 2 F_{\bar{H}}\right)\right.$, with $C_{\bar{H}}(\bar{z})$ acting upon this. We find that $|Y|=84$, splitting into two orbits Y_{1} and Y_{2}, with representatives y_{1} and y_{2}, of sizes 81 and 3 . In both cases $y_{i} z \in 2 D_{\bar{H}}$, and hence are legitimate orbits. We can also easily calculate that $\left|C_{C_{\bar{H}}(\bar{z})}\left(y_{1}\right)\right|=144$ and $\left|C_{C_{\bar{H}}(\bar{z})}\left(y_{2}\right)\right|=3888$, with both centralizers containing either a $2 D$ of $2 F$ involution in \bar{H}. We also note that

$$
\left|X_{9 B}\right|=3 \times\left(\frac{\left|C_{G}(t)\right|}{114}+\frac{\left|C_{G}(t)\right|}{3888}\right)
$$

Hence the orbits of $X_{9 B}$ with $C_{G}(t)$ acting upon it are 3 times larger than the orbits of Y with $C_{\bar{H}}(\bar{z})$ acting upon it. Thus $X_{9 B}$ breaks into two orbits, both of which belong to $\Delta_{2}(t)$.

Now suppose that $z \in 18 C$ with $z^{6}=w$. In this case, again $\left|C_{\bar{H}}(\bar{z})\right|=432$, the same size as $C_{G}(z)$, so we need to be careful. As in the $9 B$ case $\left|C_{\overline{C *}}^{*}(\bar{z})\right|=864$, twice the size of $C_{\bar{H}}(\bar{z})$. Calculating Y as usual, we find that $|Y|=24$, which splits into three orbits when $C_{\bar{H}}(\bar{z})$ acts upon it. These orbits, with representatives y_{1}, y_{2} and y_{3} have sizes 18,3 and 3 , all of which are $2 D_{\bar{H}}$ elements when multiplied by z, and hence are legitimate orbits. The centralizer sizes of these three representatives in $C_{\bar{H}}(\bar{z})$ are 24, 144 and 144 respectively, with the second two containing either a $2 D_{\bar{H}}$ or a $2 F_{\bar{H}}$ involution and the first not. Again we note that

$$
\left|X_{9 B}\right|=3 \times\left(\frac{\left|C_{G}(t)\right|}{24}+\frac{\left|C_{G}(t)\right|}{144}+\frac{\left|C_{G}(t)\right|}{144}\right)
$$

and thus the orbits of $X_{18 C}$ with $C_{G}(t)$ acting upon it are 3 times larger than the orbits of Y with $C_{\bar{H}}(\bar{z})$ acting upon it. Therefore $X_{18 C}$ breaks into 3 orbits, with $3,311,126,603,366,400$ elements of distance at least 3 from t, and 1,103,708,867,788,800 in $\Delta_{2}(t)$.

For the elements which are a distance at least 3 from t, we can say more. Indeed, if we take the element y_{1} and map it over to $B M$ then the elements of $y_{1}\langle w\rangle$ will map to y_{1} in \bar{H}. In this coset only the element $y_{1} w^{2}$ is an element of $X_{18 C}$, and hence this must be a representative of the orbit contained in $X_{18 C}$ not in the second disc. Now by using Bray's Algorithm we can find an element of $X_{26 A}$, which we know to be in the second disc, which commutes with y_{1} and thus $d\left(t, y_{1}\right) \leq 3$. Therefore $3,311,126,603,366,400$ elements of $X_{18 C}$ are contained in $\Delta_{3}(t)$, and $1,103,708,867,788,800$ elements in $\Delta_{2}(t)$. Details of this calculation are given in Appendix 4.

3.3.23 Classes Which Power to $11 A$

The classes $11 A$ and $22 B$ both power down to an $11 A$ element, so will be treated similarly. After consulting the AtLas, we see that for $z \in 11 A, C_{G}^{*}(z) \cong 11$: $2 \times \operatorname{Sym}(5)$ and $C_{G}(z) \cong 11 \times \operatorname{Sym}(5)$. Now as the 2 on the bottom inverts the 11, $11: 2 \cong \operatorname{Dih}(11)$, and hence $C_{G}^{*}(z) \cong \operatorname{Dih}(11) \times \operatorname{Sym}(5)$, which is easily produced in

Magma, using the command
H := DirectProduct(DihedralGroup(11), SymmetricGroup(5));.
Now H has 5 classes of involutions with the following centralizer sizes

Class in H	Size of Centralizer in H
$2 A$	264
$2 B$	240
$2 C$	176
$2 D$	24
$2 E$	16

Now by studying the orders of products of pairs of element from each class in H we can determine that $2 D_{H}$ corresponds to $2 C_{B M}$. Now as the Baby Monster has only one class of elements of order 11, we may pick any element of order 11 to be our representative $z \in 11 A_{B M}$. In MAGMA we can easily calculate $C=C_{H}(z)$, and check to see that $|C|=1320$ which is what we expect from the AtLas, as $\left|C_{G}(z)\right|=1320$ and $C_{G}(z) \leq H$. We also note that because of the way we have set things up, $E C=C_{G}^{*}(z)=H$.

Now let $Y=(E C \backslash C) \cap 2 D_{H}$. This is easy to calculate using the size of the centralizer as a conjugacy class invariant. We find that $|Y|=110$, which is a single C orbit as C acts on Y by conjugation. We also note that for a representative $y \in Y$, $y z \in 2 D_{H}$ as expected. Now $\left|C_{C}(y)\right|=12$ and $C_{C}(y)$ only contains $2 A_{H}$ and $2 C_{H}$ involutions, which do not correspond to $2 C_{B M}$ involutions. Hence $X_{11 A}$ is a single $C_{G}(t)$ orbit and for $x \in X_{11 A}, d(t, x) \geq 3$, which agrees with the information already gained from the power maps of G.

We also note that $\left|X_{11 A}\right|=\frac{\left|C_{G}(t)\right|}{12}$ which agrees with the fact that $X_{11 A}$ is a single $C_{G}(t)$ orbit, by using the orbit stabilizer theorem. Now for $x \in X_{11 A}$ there exists a $\tau \in X_{40 D}$ such that τ commutes with x. Since $\tau \in \Delta_{2}(t)$, we see that $d(t, x) \leq 3$ and thus $d(t, x)=3$. As $X_{11 A}$ is a single $C_{G}(t)$ orbit we deduce that $X_{11 A} \subseteq \Delta_{3}(t)$. Details of this calculation will be given in Appendix 4.

Now suppose $z \in 22 B_{B M}$. Now H contains ten classes of elements of order 22, five with centralizer size 120 in H, which fuse to the class $22 A$ in $B M$ and the other five of centralizer size 88 in H, which fuse to the class $22 B$ in $B M$. Thus we pick a z in H with a centralizer size in H of 88 . We now let $C=C_{H}(z)$ and find an involution in H which inverts z, with together with C will generate $E C=C_{H}^{*}(z)$. As per usual, we now let $Y=(E C \backslash C) \cap 2 D_{H}$, and find that $|Y|=22$. Now C acts transitively on Y, and $\left|C_{C}(y)\right|=4$ for a representative $y \in Y$, with this centralizer again only containing either $2 A_{H}$ or $2 C_{H}$ involutions. Hence $X_{22 B}$ consists of a single $C_{G}(t)$ orbit and for $x \in X_{22 B}, d(t, x) \geq 3$.

Again we also note that $\left|X_{22 B}\right|=\frac{\left|C_{G}(t)\right|}{4}$ confirming that $X_{22 B}$ is a single $C_{G}(t)$ orbit. Now for $x \in X_{22 B}$ there exists a $\tau \in X_{17 A}$ such that τ commutes with x. Since $\tau \in \Delta_{2}(t)$, we see that $d(t, x) \leq 3$ and thus $d(t, x)=3$. As $X_{22 B}$ is a single $C_{G}(t)$ orbit we deduce that $X_{22 B} \subseteq \Delta_{3}(t)$. Details of this calculation will be given in Appendix 4.

Chapter 4

Appendices

4.1 Appendix 1

The following table gives the possible involution classes produced when you multiply two involutions together in the Baby Monster. This table was computed in Gap using the ClassMultipicationCoeffient command.

Class of involution u	Class of involution v	Possible involution classes of product $u v$
$2 A_{B M}$	$2 A_{B M}$	$2 B_{B M}, 2 C_{B M}$
$2 A_{B M}$	$2 B_{B M}$	$2 A_{B M}, 2 D_{B M}$
$2 A_{B M}$	$2 C_{B M}$	$2 A_{B M}, 2 D_{B M}$
$2 A_{B M}$	$2 D_{B M}$	$2 B_{B M}, 2 C_{B M}, 2 D_{B M}$
$2 B_{B M}$	$2 B_{B M}$	$2 B_{B M}, 2 D_{B M}$
$2 B_{B M}$	$2 C_{B M}$	$2 C_{B M}$
$2 B_{B M}$	$2 D_{B M}$	$2 A_{B M}, 2 B_{B M}, 2 D_{B M}$
$2 C_{B M}$	$2 C_{B M}$	$2 B_{B M}, 2 C_{B M}, 2 D_{B M}$
$2 C_{B M}$	$2 D_{B M}$	$2 A_{B M}, 2 C_{B M}, 2 D_{B M}$
$2 D_{B M}$	$2 D_{B M}$	$2 A_{B M}, 2 B_{B M}, 2 C_{B M}, 2 D_{B M}$

4.2 Appendix 2

Details of the $17 A$ calculations. Using our standard generators for $B M$ and our standard representative t for a $2 C$ element we carry out the following calculation. Note that a and b in the following calculation correspond to the two generators of
$\left(2^{2} \times F_{4}(2)\right): 2$ given in the online Atlas.

```
t := (a*a*b*a*b*b*a*a*b*a*b*b*b*b*a*a*a*b*b*b*a*b*a*b*a*b)^17;
w1 := y*x*y*x*y*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*x;
w2 := t`w1*t*t`w1;
x2d := t`w2;
rand := y*x*y*x*y*y*x*y*x*y*y*x*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*
x*y*y*x*y*x*y*x*y*y*x*y*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*y*x*y*y*x*y*x*
y*y*x*y*x*y*y*x*y*y*x*y*x*y*x*y*x*y*x*y*y;
BrayLoop2(~S,rand,G,x2d);
```

First note that $x 2 d \in X$ such that $t * x 2 d \in 2 D$, and thus $x 2 d \in X_{2 D}$. Now S contains a single element, we'll call it s

```
s := Random(S);
```

s is an element of order 12 which powers down to a $2 C$ element, which we'll create.
s := s^6;

We see that the order of $t s$ is 17 , and thus $s \in X_{17 A}$, and by the way we have created it $x 2 d$ and s will commute.

Order (t*s);

Hence $d(t, s)=2$.

4.3 Appendix 3

Details of calculating a permutation representation for $H \cong 5_{+}^{1+4}: 2_{-}^{1+4}$: Alt(5).4. All calculations will be carried out in the 4370 dimensional representation of $B M$ with the generators w_{1} and w_{2} for H given in the online Atlas.

The first job is to find the appropriate element τ, we find that

```
t := (w2*W2*W2*w 2*w1*W2*W2*W1**W1*W1*W1)^4;
```

should do the job for us. Indeed, if we use Bray's algorithm on the element t we see that possible element orders agree with our known shape of $C_{H}(t)$.

The five generators for 5_{+}^{1+4} are given by


```
x2 := (w1*w1*w1*w1*w2*w1*w1*w1*w1*w1*w1*w1*w2*w1*w1*w1*w1*w2*w1*w
x3 := x2^w1;
x4 := x2^w2;
x5 := x4^(w1*w2);
```

with $x 1$ being the central generator. We can check in Magma that the group generated by these five elements is indeed an extraspecial group of the required order.

We then create the transversal for 5 in 5_{+}^{1+4}

```
Trans := [];
for i1 in [0 .. 4] do
    for i2 in [0 .. 4] do
        for i3 in [0 .. 4] do
                        for i4 in [0 .. 4] do
```

z := [];
if i4 ne 0 then
for j in [1 .. i4] do
z := Append(z,"x2");
end for;
end if;
if i3 ne 0 then
for j in [1 .. i3] do
z := Append(z,"x3");
end for;
end if;
if i2 ne 0 then
for j in [1 .. i2] do

```
        z := Append(z,"x4");
    end for;
end if;
if i1 ne O then
    for j in [1 .. i1] do
        z := Append(z,"x5");
    end for;
end if;
Trans := Append(Trans,z);
end for;end for;end for;end for;
```

Note that this will only give us words for each element in the transversal, if we want to use the element we must multiply the word together first. Next we define two functions which allow us to let a word z act on a vector v in the 4370 dimensional G-module.

```
WordAct := function(z,v);
    w := v;
    for i in [1 .. #z] do
        if z[i] eq "w1" then
                w := W^W1;
            end if;
            if z[i] eq "w2" then
                w := W^W2;
            end if;
            if z[i] eq "x1" then
                w := w^x1;
                    end if;
            if z[i] eq "x2" then
            w := w^x2;
                end if;
                    if z[i] eq "x3" then
```

```
    w := w^x3;
    end if;
    if z[i] eq "x4" then
    w := w^x4;
    end if;
    if z[i] eq "x5" then
    w := w`x5;
    end if;
    if z[i] notin {"w1","w2","x1","x2","x3","x4","x5"} then
        print "ERROR!";
        return 0;
    end if;
    end for;
    return w;
end function;
w1inv := w1^-1;
w2inv := w2^-1;
x1inv := x1^-1;
x2inv := x2^-1;
x3inv := x3^-1;
x4inv := x4^-1;
x5inv := x5^-1;
WordActInv := function(z,v);
    W := v;
    for i in [0 .. (#z-1)] do
        if z[#z-i] eq "w1" then
            w := w`w1inv;
        end if;
        if z[#z-i] eq "w2" then
```

```
    w := W^W2inv;
    end if;
    if z[#z-i] eq "x1" then
    w := w^x1inv;
    end if;
    if z[#z-i] eq "x2" then
    w := w^x2inv;
    end if;
    if z[#z-i] eq "x3" then
    w := w^x3inv;
    end if;
        if z[#z-i] eq "x4" then
        w := w^x4inv;
        end if;
        if z[#z-i] eq "x5" then
            w := w^x5inv;
        end if;
        if z[#z-i] notin {"w1","w2","x1","x2","x3","x4","x5"} then
            print "ERROR!";
            return 0;
        end if;
    end for;
    return w;
end function;
```

WordAct produces the vector v^{z} and WordActInv produces the vector $v^{z^{-1}}$. We will then run the following code to create the permutation representation of $w 1$.

```
V := GModule(G);
perm_w1 := [];
for i in [1 .. #Trans] do
    poss := {};
```

```
v := Random(V);
for j in [1 .. #Trans] do
    w := WordActInv(Trans[j],v);
    w := W`W1;
    w := WordAct(Trans[i],w);
    w := w^t;
    s := v^t;
    s := WordActInv(Trans[j],s);
    s := s^w1;
    s := WordAct(Trans[i],s);
    if s eq w then
        poss := poss join {j};
    end if;
end for;
if #poss ge 2 then
    poss2 := {};
    v := Random(V);
    for j in poss do
    w := WordActInv(Trans[j],v);
            w := w^w1;
            w := WordAct(Trans[i],w);
            w := w^t;
            s := v^t;
            s := WordActInv(Trans[j],s);
            s := s^w1;
            s := WordAct(Trans[i],s);
            if s eq w then
                poss2 := poss2 join {j};
            end if;
        end for;
    poss := poss meet poss2;
```

end if;
if \#poss ge 2 then
poss2 := \{\};
v := Random(V);
for j in poss do
w := WordActInv(Trans[j],v);
w := w^w1;
w := WordAct(Trans[i],w);
w := w^t;
s := v^t;
$\mathrm{s}:=\operatorname{WordActInv}(\operatorname{Trans}[j], \mathrm{s})$;
s := s^w1;
s := WordAct(Trans[i],s);
if s eq w then
poss2 := poss2 join \{j\};
end if;
end for;
poss := poss meet poss2;
end if;
if \#poss ge 2 then
perm_w1 eq Append(perm_w1,0);
print "SORT OUT ENTRY ",i;
else
perm_w1 := Append(perm_w1,Random(poss));
end if;
if i mod 50 eq 0 then
print i;
end if;
end for;

Note that this code runs through the full transversal to find possible $\gamma \mathrm{s}$ by acting on
a random vector v, the one we want being in this set. If the set of possibilities has size one, then we know that this must be the real one however if there is more than one we run the procedure on another random vector and take the intersection of the possible $\gamma \mathrm{s}$. If there is still more than one possibility after a third attempt we put a zero in and deal with it manually. When we ran this code in all cases we never had to do this.

We then repeat this code with $w 1$ replaced with $w 2$ in all cases. This code was tested on smaller groups with similar maximal subgroups, in which the CosetAction command in Magma could be used. Exactly the same group was calculated in both cases.

The code used to produce the $3 B$ representation is very similar, but involves a great deal more computational time.

4.4 Appendix 4

Details for showing $X_{C} \subseteq \Delta_{3}(t)$ for $C \in\{5 B, 10 D, 10 F, 11 A, 12 M, 18 C, 19 A, 20 G, 22 B$, $33 A, 35 A\}$. We have already proved that X_{C} is a single $C_{G}(t)$ orbit, and that $d(t, x) \geq 3$ for $x \in X_{C}$. So all we need to do is find a $w \in 2 C$ which commutes with x and which we know to be in the second disc. Now the centralizer of a $2 C$ involution in $B M$ has shape $\left(2^{2} \times F_{4}(2)\right): 2$, and we can get a straight line program from the online Atlas which gives generators a and b for a subgroup H of $B M$ of this shape. Now by taking an involution in the central 2^{2} part of H, we can find a t such that $C_{B M}(t)=H$. We will take this t to be the origin of $\mathcal{C}(G, X)$ from which we measure our discs. Thus we set t to be the following element

```
t := (a*a*b*a*b*b*a*a*b*a*b*b*b*b*a*a*a*b*b*b*a*b*a*b*a*b)^17;
```

For $5 B$, if we let
$\mathrm{g}:=\mathrm{t} \wedge(\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y}) * \mathrm{t} * \mathrm{t} \wedge(\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y})$;
a := y*x ${ }^{y}{ }^{2} x * y * y * x * y * x * y * y * x * y * x * y ;$
where x and y are our generators for G, then $t^{g} \in X_{5 B}$ and if we use Bray's algorithm on t^{g} with a being our random element we get a $2 C$ element in $X_{26 A}$, which we know to be in the second disc.

For $10 D$, if we let
$\mathrm{g}:=\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} ;$
a := $\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y}$;
then $t^{g} \in X_{10 D}$ and again using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{26 A}$.

For $10 F$, if we let
$\mathrm{g}:=\mathrm{t}^{\wedge}(\mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y})$;
a := y*y*x*y*y*x*y*x*y*x*y*y;
then $t^{g} \in X_{10 D}$, and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{17 A}$, which we know to be in the second disc.

For $11 A$ is we let
g := $\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y}$;
a := $\mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y}$;
then $t^{g} \in X_{11 A}$ and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{40 D}$, which is in the 2nd disc.

For $12 M$, if we let
$\mathrm{g}:=\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y}$;
а := x*y*y*x*y*x*y*y*x*y*x*y*y*x*y*x*y;
then $t^{g} \in X_{12 M}$, and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{20 D}$, which is in the 2nd disc.

For $18 C$, if we let

```
y1 := (w2*w1*w2*w2*w2*w1*w2*w1*w2*w2*w2*w1*w2*w2*w2*w1*w2*w2*w2*w2*w2*w2*w2*w1*w2*w1
w := (w1*w1*w1*w2*w2*w2*w2*w1*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w2*w1*w2)^10;
a := x*y*x*y*x*y*x*y*x*y*x*y*x*y*x*y*y*x*y;
```

Then $y 1 * w^{2}$ is a member of the orbit contained in $X_{18 C}$, which is not in $\Delta_{2}(t)$. By using Bray's Algorithm on $y 1 * w^{2}$ with a as the random element we get a $2 C$ element in $X_{26 A}$ which commutes with $y 1 * w^{2}$. As we know that $X_{26 A}$ is contained in $\Delta_{2}(t)$ we deduce that $d\left(t, y 1 * w^{2}\right) \leq 3$.

For $19 A$ is we let
$\mathrm{g}:=\mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x}$;
а := x*y*y*x*y*x*y*x*y*y*x*y*x*y*y;
Then $t^{g} \in X_{19 A}$ and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{40 D}$, which is in the 2nd disc.

For $20 G$, if we let
$\mathrm{g}:=\mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y}$;
a := $\mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y}$;
then $t^{g} \in X_{20 G}$, and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{26 A}$, known to be in $\Delta_{2}(t)$.

For $22 B$ is we let

```
g :=y*y*x*y*x*y*y*x*y*x*y*x*y*x*y*x*y*y*x*y*y*x*y*y*x*y*x*y*y*x*y*x*y*y*x
a := x*y*y*x*y*y*x*y*x*y*x*y;
```

Then $t^{g} \in X_{22 B}$ and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{17 A}$, which is in the 2 nd disc.

For $33 A$ is we let
g := x*y*x*y*y*x*y*x*y*y*x*y*x*y;
a := $\mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y}$;
Then $t^{g} \in X_{33 A}$ and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{40 D}$, which is in the 2nd disc.

For $35 A$ is we let
g := $\mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{y} * \mathrm{x} * \mathrm{y} * \mathrm{x}$;
a := y*y*x*y*x*y*y*x*y*y*x*y*y*x*y*x;
Then $t^{g} \in X_{35 A}$ and using Bray's algorithm on t^{g} with a as the random element we get a $2 C$ element in $X_{17 A}$, which is in the 2nd disc.

4.5 Appendix 5

We will now give code listings for the programs used while studying the commuting involution graph for the Baby Monster.

4.5.1 BrayLoop

The is procedure carries out a single loop of Bray's algorthithm. Used as
BrayLoop (${ }^{\sim} \mathrm{S}, \mathrm{h}, \mathrm{G}, \mathrm{g}$), where S is the set where the output is to be saved, h is the random element to be used, G is the group that is being calculated inside (simply used to get ahold of the identity) and g is the element you want to find commuting elements for.

```
BrayLoop:= procedure(~S,h,G,g)
    Z:=IntegerRing();
    S:={};
    c:=1;
```

```
    \(c:=c+1 ;\)
    com \(:=\left(\mathrm{g}^{\wedge}-1\right) *\left(\mathrm{~h}^{\wedge}-1\right) * \mathrm{~g} * \mathrm{~h}\);
    order_com := Order(com);
    if (order_com mod 2) eq 0 then
        p := order_com/2;
        \(\mathrm{p}:=\mathrm{Z}!\mathrm{p} ;\)
        w1 := comp;
        w2 \(:=\left(\left(g^{\wedge}-1\right) * h * g *\left(h^{\wedge}-1\right)\right)^{\wedge} p\);
        S := S join \{w1,w2\};
else
        p := (order_com - 1)/2;
        \(\mathrm{p}:=\mathrm{Z}!\mathrm{p}\);
        w1 := h*(com^p);
        S := S join \{w1\};
end if;
```

end procedure;

4.5.2 RandomWord

RandomWord(n) is a function which produces a word of length n in the generators x and y of $B M$ and saves it as an array. Note that as x has order 2 and y order 3, the function is carefulto make sure the word is in as compact a form as possible that is there are no consecutive x s, and no strings of consecutive y 's of length 3 or more. Note that this function simply creates a array where the entries are the names "x" and " y ", and not the actual elements, to conserve space. To convert such an array into a usable element use the function MultiplyRandomWord.

```
RandomWord := function(n)
if n le 2 then
    print "Don't be lazy, do it yourself!";
```

```
return 0;
else
i:=1;
z:= [];
while i le n do
    if i eq 1 then
    a:=Random(1);
    if a eq 0 then
                            z[1] := "x";
                            z[2] := "y";
                            i:=3;
    else
                    z[1]:= "y";
                            b:=Random(1);
                            if b eq 0 then
                            z[2] := "x";
                            i:=3;
    else
                                    z[2] := "y";
                                    i:=3;
                    end if;
    end if;
    else
        z1 := z[i-2];
        z2 := z[i-1];
            if z1 eq "x" then
            a:=Random(1);
            if a eq 0 then
                z[i] := "x";
                i:=i+1;
            else
```

```
    z[i] := "y";
    i:=i+1;
    end if;
        else
            if z2 eq "y" then
                z[i] := "x";
                i:=i+1;
            else
                z[i] := "y";
                i:=i+1;
            end if;
                end if;
                    end if;
end while;
return z;
end if;
end function;
```


4.5.3 MultiplyRandomWord

Used to convert an array produced using RandomWord into a using element. Used as MultiplyRandomWord (${ }^{\sim} \mathrm{g}, \mathrm{z}, \mathrm{G}$) where g is where you want to store the element, z is the word you want to convert, and G is a group you want to do it in.

```
MultiplyRandomWord := procedure(~a,z,G)
```

```
n:=#z;
a:=Identity(G);
for i in [1 .. n] do
    if z[i] eq "x" then
```

 \(\mathrm{a}:=\mathrm{a} * \mathrm{x}\);
    ```
end if;
if z[i] eq "y" then
    a:=a*y;
```

end if;
end for;
end procedure;

4.6 Appendix 6

Table which gives correspondence between orbit names in Theorem 2.3.2 and orbit names in [34] and [35].

| Name in [34] | Name here | Name in [34] | Name here | Name in [34] | Name here |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta_{1}^{1}(a)$ | $\Delta_{1}^{1}(a)$ | $\Delta_{3}^{4}(a)$ | $\Delta_{3}^{1}(a)$ | $\Delta_{4}^{1}(a)$ | $\Delta_{4}^{16}(a)$ |
| $\Delta_{2}^{1}(a)$ | $\Delta_{2}^{2}(a)$ | $\Delta_{3}^{5}(a)$ | $\Delta_{3}^{9}(a)$ | $\Delta_{4}^{2}(a)$ | $\Delta_{4}^{3}(a)$ |
| $\Delta_{2}^{2}(a)$ | $\Delta_{2}^{3}(a)$ | $\Delta_{3}^{6}(a)$ | $\Delta_{3}^{8}(a)$ | $\Delta_{4}^{3}(a)$ | $\Delta_{4}^{18}(a)$ |
| $\Delta_{2}^{3}(a)$ | $\Delta_{2}^{1}(a)$ | $\Delta_{3}^{7}(a)$ | $\Delta_{3}^{6}(a)$ | $\Delta_{4}^{4}(a)$ | $\Delta_{4}^{17}(a)$ |
| $\Delta_{3}^{1}(a)$ | $\Delta_{3}^{3}(a)$ | $\Delta_{3}^{8}(a)$ | $\Delta_{3}^{2}(a)$ | $\Delta_{4}^{5}(a)$ | $\Delta_{4}^{7}(a)$ |
| $\Delta_{3}^{2}(a)$ | $\Delta_{3}^{4}(a)$ | $\Delta_{3}^{9}(a)$ | $\Delta_{3}^{10}(a)$ | $\Delta_{4}^{6}(a)$ | $\Delta_{4}^{21}(a)$ |
| $\Delta_{3}^{3}(a)$ | $\Delta_{3}^{5}(a)$ | $\Delta_{3}^{10}(a)$ | $\Delta_{3}^{7}(a)$ | | |

Bibliography

[1] Gap - Groups, Algorithms, Programming, http://www.gap-system.org.
[2] Y. Segev A. Rapinchuk and G. Seitz, Finite quotients of the multiplicative group of finite-dimensional division algebra are sovable, Journal of AMS 15 (2002), 929 - 978.
[3] M. Aschbacher, 3-transposition groups, Cambridge Tracts in Math., 1997.
[4] C. Bates and P. Rowley, Centralizers of real elements in finite groups, Arch. Math. 85 (2005), 485 - 489.
[5] R. Brauer and K. A. Fowler, On groups of even order, Annals of Mathematics 62 (1955), 565 - 583.
[6] J. Bray, An improved method for generating the centralizer of an involution, Arch. Math 74 (2000), 241 - 245.
[7] F. Buekenhout, Diagrams for geometries and groups, J. Comb. Theor. 27 (1979), $121-151$.
[8] \qquad , Finite groups and geometries: a view on the present state and on the future. groups of lie type and their geometries, London Math. Soc. Lecture Note Ser. 207 (1993), $35-42$.
[9] S. Perkins C. Bates, D. Bundy and P. Rowley, Commuting involution graphs for finite Coxeter groups, Journal of Algebra 6 (2003), 461 - 476.
[10] , Commuting involution graphs for symmetric groups, Journal of Algebra 266 (2003), 133 - 153.
[11] , Commuting involution graphs in special linear groups, Journal of Algebra 85 (2004), 4179 - 4196.
[12] , Commuting involution graphs for sporadic simple groups, Journal of Algebra 316 (2007), 849 - 868.
[13] J.J. Cannon and C. Playoust, An introduction to algebraic programming with Magma, Springer-Verlag, 1997.
[14] R. T. Curtis, A new combinatorial approach to M_{24}, Math. Proc. Cambridge Philos. Soc. 79 (1976), $25-42$.
[15] J. Saxl G. Malle and T. Weigel, Generation of classical groups, Geom. Dedicata 49 (1994), 85 - 116.
[16] D. Gorenstein, Finite Groups - second edition, Chelsea Publishing Company, 1980.
[17] A. Ivanov, A geometric characterization of Fischer's baby monster, Journal of Algebraic Combinatorics 1 (1992), 45-69.
[18] S.P. Norton R.A. Parker J.H. Conway, R.T. Curtis and R.A. Wilson, Atlas of finite groups. maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985.
[19] J.S. Leon and C.C Sims, The existence and uniqueness of a simple group generated by 3,4-transpositions., Bull. Am. Math. Soc. 83 (1977), 1039 - 1040.
[20] S. Linton, Private communication.
[21] J. Maginnis and S. Onofrei, On a homotopy relation between the 2-local geometry and the bouc complex for the sporadic group co3, Journal of Algebra 315 (2007), $1-17$.
[22] J. Tripp I. Suleiman S. Rogers R. Parker S. Norton S. Nickerson S. Linton J. Bray R.A. Wilson, P. Walsh, A world wide web atlas of group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
[23] A. Rapinchuk and Y. Segev, Valuation-like maps and the congruence subgroup property, Invent. Math. 144 (2001), 571 - 607.
[24] M.A. Ronan and S.D. Smith, 2-local geometries for some sporadic groups, Proc. A.M.S. 37 (1980), 283 - 289.
[25] P. Rowley, A Monster graph I, Proc. London Math. Soc. 90:1 (2005), 42 - 60.
[26] P. Rowley and L. Walker, A 11,707,448,673,375 vertex graph related to the baby monster i, J. Combin. Theory Ser. A 2 (2004), 181 - 213.
[27] , A 11,707,448,673,375 vertex graph related to the baby monster II, J. Combin. Theory Ser. A 2 (2004), $215-261$.
[28] , The maximal 2-local geometry for J_{4}. I., JP Journal of Algebra, Number Theory and Applications 9:2 (2007), 145-213.
[29] \qquad , The maximal 2-local geometry for J_{4}. II., JP Journal of Algebra, Number Theory and Applications 10:1 (2008), $9-49$.
[30] \qquad , The maximal 2-local geometry for J_{4}. III., JP Journal of Algebra, Number Theory and Applications 10:2 (2008), 129 - 167.
[31] \qquad , A 195,747,435 vertex graph related to the Fischer group Fi23, part I, Preprint (2009).
[32] \qquad , A 195,747,435 vertex graph related to the Fischer group Fi23, part II, Preprint (2009).
[33] \qquad , A 195,747,435 vertex graph related to the Fischer group Fi23, part III, Preprint (2009).
[34] P.J. Rowley and L.A. Walker, Octad orbits for certain subgroups of M_{24}, Preprint (2010).
[35] _, The point-line collinearity graph of the Fi i_{24} maximal 2-local geometry, the first 3 discs, Preprint (2010).
[36] P. Walsh S. Linton, R. Parker and R. Wilson, Computer construction of the monster, Journal of Group Theory 1 (1998), 307 - 337.
[37] Y. Segev, On the uniqueness of the Co C_{1} 2-local geometry, Geom. Dedicata 25 (1988), 159219.
[38] , The commuting graph of minimal nonsolvable groups, Geometriae Dedicata 88 (2001), $55-66$.
[39] P. Taylor and P. Rowley, Involutions in Janko's simple group J ${ }_{4}$, Preprint (2010).
[40] , Point-line collinearity graphs of two sporadic minimal parabolic geometries, Preprint (2010).
[41] J. Tits, Buildings of spherical type and finite BN-pairs, Springer-Verlag 386 (1974).
[42] R. Wilson, A new construction of the Baby Monster and its applications, Bull. London Math. Soc 25 (1993), 431 - 437.
[43] R. A. Wilson, Conjugacy class representatives in Fischer's baby monster, LMS J. Comput. Math. 5 (2002), $175-180$.

