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This thesis focuses on the valuation of real ogtimhen there is flexibility given by
the choice between two risky outputs. We develoglet®to value these rainbow
options and to determine optimal operating andstment policies. These models are
studied in the context of commodity applicationscéaese output flexibility is
particularly relevant in volatile commodity marketd/e provide insights into the
behaviour and sensitivities of option values ancerafing policies and discuss
implications for decision-making.

In the early stages of real options theory, reseaentred on basic options
with closed-form solutions, modelling single unagtty in most cases. The challenge
IS now to incorporate more complexities in the niede order to further bridge the
gap between theoretical models and reality, therplymoting the widespread
application of real options theory in corporateafice.

The new option models developed in this thesisoaganised in three self-
contained research papers to address specificrebspaoblems. The first research
paper studies an asset with flexibility to continsly choose the best of two risky
commodity outputs by switching between them. Weetlgy quasi-analytical and
numerical lattice solutions for this real option e taking into account operating
and switching costs. An empirical application tlexible fertilizer plant shows that
the value of flexibility between the two outputsnraonia and urea, exceeds the
required additional investment cost (given the peater values) despite the high
correlation between the commodities. Implicatiome derived for investors and
policy makers. The real asset value is mainly driby non-stationary commodity
prices in combination with constant operating colstthe second research paper, we
study an asset with flexibility to continuously dse the best of two co-integrated
commodities. The uncertainty in two commaodity psice reduced to only one source
of uncertainty by modelling the spread, which isameeverting in the case of co-
integration. Our quasi-analytical solution distirgnes between different risk and
discount factors which are shown to be particulaghgvant in the context of mean-
reversion. In an empirical application, a polyeémg plant is valued and it is found
that the value of flexibility is reduced by stromgan-reversion in the spread between
the commodities. Hence, operating flexibility igher when the commodities are less
co-integrated. In the third research paper, we ldpvesal option models to value
European sequential rainbow options, first on thet lof two correlated stochastic
assets and then on the spread between two stachastitegrated assets. We present
finite difference and Monte Carlo simulation resufor both, and additionally a
closed-form solution for the latter. Interestinglhe sequential option value is
negatively correlated with the volatility of one thfe two assets in the special case
when the volatility of that asset is low and thdiap is in-the-money. Also, the
sequential option on the mean-reverting spread doegecessarily increase in value
with a longer time to maturity.
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1 Introduction

This thesis focuses on the valuation of real ogtimhen there is flexibility given by
the choice between two risky outputs. We develdpateon models for these rainbow
options, mostly in the context of commodity apgiicas. The high volatility in
commodity markets in recent years increases ttevaate of flexibly choosing the
output product. We identify the factors driving tbption value, give guidance on
decision-making with regard to the exercise ofapdiand convey the implications of
the new models. The notion of rainbow option wast fintroduced by Rubinstein
(1991b). According to his definition and the deiiom in Hull (2006), rainbow
options are options on two or more risky assetdifdtein provides examples for
two-colour rainbow options including options deliveg the best of two risky assets
and cash, calls and puts on the maximum/minimumwaf risky assets, spread
options, portfolio options or dual-strike option&hile the rainbow options in this
thesis concentrate on choosing the best of twoy resbsets, the specific context
requires various rainbow option models to valuedgpgortunity.

In the past, the development of real options theentred around closed-form
solutions for basic options, modelling single utaiaty in most cases. The models
now need to incorporate more complexities in otdefurther bridge the gap between
theory and practice, thereby promoting the widesgprapplication of real options
theory in corporate finance. More recent reseaattiiens this trend, with real option
models considering multiple uncertainties, incnegsiflexibility, and complex
decision situations. The availability of abundammputer power facilitates this
development since the more complex problems fretyerequire numerical

solutions.



The new option models developed in this thesisoaganised in three self-
contained research papers to address specificrecbspaoblems. The first research
paper considers an American perpetual rainbow pgtoswitch between two risky
and correlated assets which can be exercised atimpyrepeatedly. We apply the
model to value a flexible fertilizer plant. The ead paper develops a rainbow option
model to switch between two risky assets under gpecial circumstance of co-
integration between these assets, so that thenogdio be valued based on the mean-
reverting price spread between them. This modeapied to a polyethylene plant.
The third paper develops a model to value a Eurogeguential rainbow option to
obtain the best of two risky assets, and anotheteinio value a European sequential
rainbow option to exchange one risky asset forlarovhen the spread between them
iIs mean-reverting (special case of co-integratidiaple 1 summarises which option

models are developed in each research paper.

Table 1. Overview of the Rainbow Option Models deped in this Thesis

Option model  Continuous Rainbow European Sequential
Option (American Rainbow
Perpetual Switching)
Uncertainties
. uasi-analytical :
Two-factor model with Q ' ytl (Filr:litjergief}fgfeilce
correlatedyBm assets Numerica ’
(Lattice) Monte Carlo)
Research paper #1 Research paper #3
Analytical
One-factor rr_lodel with Quasi-analytical Numerical
mean-reverting spread (Finite difference,
Monte Carlo)
Research paper #2 Research paper #3

—-10 -



Building on existing real options theory and modéhe option models developed in
this thesis subsequently add complexities to thablpm specification in order to
further narrow the gap between abstract valuatiwh @mplex reality. By doing so,
the portfolio of real option models available te ttesearch community is increased
and their application to practical valuation casss demonstrated. Moreover,
developing more realistic models is a key succas®f in enhancing the acceptance
of real options as a valuation method in a busieesgonment.

The alternative thesis format based on individeakearch papers in a format
suitable for submission for publication in a peeviewed journal is particularly
appropriate for this thesis because specific rebeproblems can be studied which
are also relevant to business. Furthermore, trevaate of real options theory to
valuation issues in the commodity context is seddsy developing research solutions
to different problems and applications, which agstlpresented in individual research
papers. This format is also in line with how acamenmesearch is conducted and
disseminated/communicated and therefore allowsoadar reach of the results. The
author of this thesis has conceived these resgmphrs, developed the main ideas,
the context and the real option models and solstioklentified appropriate
applications and reasoned the relevant implicationshort, he carried out the entire
research process leading to the research resulggessnted herein. The research
papers have been co-authored by the thesis supewis provided valuable ideas

and feedback, thought-provoking insights and gémgridance.

1.1  Research Objectives and Questions

The objective of the research is to develop vatmathodels for specific real rainbow

options which are likely to be encountered in cordityoapplications. This is done by
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using real options theory to account for the flditipof an active management to
react to a changing environment and to incorpamate information. The outcome of
the research answers the following research quesstio

1. What is the value of an asset with operating fldixybbetween two correlated
stochastic cash flows, when switching is continlppsssible by incurring a
switching cost, and operating costs are taken iatocount? At which
combinations of cash flow levels is switching opifh

2. What is the value of flexibility between two coegrated stochastic cash
flows with a mean-reverting spread and when swiighis continuously
possible by incurring a switching cost? At whichrega level is switching
optimal?

3. What is the value of a European sequential optio@arm option on the best of
two correlated stochastic assets? And what is thieevof a European
sequential option on an option on the mean-revgripread between two
stochastic co-integrated assets?

Each paper presented in this thesis addressed time @search questions above.

1.2  Contributionsto Knowledge

The main contribution to knowledge and to the rege@ommunity is that the real
options discussed in the research papers includ#éds thesis can now be valued and
optimal operating policies determined. These retibo models are designed to solve
specific valuation problems found in business dratdfore incorporate complexities
so that reality can be replicated more closelysThiturn increases decision-makers'
acceptance of real options theory as the prefexaldiation technique under

uncertainty and further bridges the gap betweerortheand practice, thereby
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contributing to the widespread application and vatee of real options theory.
Besides enhancing the understanding of real optiovslving the choice between
two stochastic outputs, we also discuss strategid policy implications for

stakeholders in flexible assets based on the mnodeaiésults. The specific research
findings are presented in the three research papergdually and discussed in the

concluding section of this thesis.

1.3 Thesis Overview

Before presenting the detailed structure of theithet makes sense to describe our
real rainbow options along some classifying feaute should be noted that these
rainbow options are all directed towards chooshgliest of two commaodity outputs.
The Figure below indicates where the models deeslom this thesis fit on a

timeline, ranging from investment opportunity to dperation'.

Figure 1. The Rainbow Option Models on a Timeline
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A I
Sequential European Continuous rainbow options

rainbow options (Research papers #1 and #2)

(Research paper #3)
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In all of the above models, uncertainty is givendbgychastic output prices. For the
continuous rainbow options, which refer to an ilethproject in operation, this is
reflected in stochastic instantaneous cash floweigded from the outputs. Slightly
different from that, the stochastic variables ie #equential option models are the
present values of the cash flows generated fronotiyeuts. For the sequential option,
we are only interested in the present value froendiitput because there is no output
switching subsequent to the initial choice. Tablbe?ow details the various option

characteristics.
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Table 2. Characteristics of the Rainbow Option Mede
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The remaining part of this thesis is structuredodlews. Chapter 2 reviews seminal
work on rainbow options. A structured overview ok tliterature relevant to the
models developed in this thesis is presented. Weuds alternative approaches to
modelling stochastic commodity prices and their lioghions on real option
valuation. Furthermore, numerical solution teche&jare discussed and compared
because the complexity of our rainbow option modielguently requires numerical
solution techniques. Chapters 3, 4 and 5 preseee thelf-contained research papers
on real rainbow options with a focus on commodfplecations, each addressing one
of the research questions. Chapter 3 (Researchr gdpedevelops a continuous
rainbow option on commaodity outputs. This real optmodel to choose the best of
two commodity outputs allows for continuous switghiand is presented in the form
of a quasi-analytical solution. An alternative nuive lattice solution is developed
which is less restrictive on operating costs andhér takes the possibility to
temporarily suspend operations into account. Tragehis applied to the valuation of
a fertilizer plant, which is flexible to produce amania or urea. Chapter 4 (Research
paper #2) presents a model for a continuous rainfjavon in co-integrated markets.
This is an option to choose the best of two comtrexiwhen their price spread is
mean-reverting. We apply the theoretical model due a polyethylene plant based
on the spread between polyethylene and ethylenapt€h5 (Research paper #3)
develops sequential real rainbow options, firstwa stochastic assets represented by
correlated geometric Brownian motion processes,saudnd, on the mean-reverting
spread between two co-integrated stochastic vasaldlhe sequential option follows
the logic of the Geske compound option but with dhelerlying option now being a

rainbow option. Chapter 6 concludes by summarisireg main findings, discusses



assumptions and the applied theory with a critiwal, and provides an outlook on

potential future research.
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2 Review of Rainbow Options and the Commodity Conte

Real options analysis is a strategy and valuatippraach which allows one to
"capitalize on good fortune or to mitigate loss't€Bley and Myers, 2003, p. 617).
Uncertainty, and thereby risk, is considered arooppity for real options because of
asymmetric payoffs (see Kester, 2004). This paelerses the traditional convention
in corporate finance that higher risk reduces thiees of an asset. The overall effect
of risk can now be interpreted in the frameworki afjeorgis and Mason (1987) who
consider an asset value to be the sum of static BRY option premium. Higher
uncertainty reduces the static NPV but increasesghion premium.

It should be noted explicitly that real options lgss is not only about getting
a number but provides a powerful strategic decismaking framework. It assists in
identifying opportunities, limiting risks, and chkalging or supporting intuition. The
usefulness of real options thinking is also evidemin the fact that contingent claims
analysis is an economically corrected version afigien tree analysis, as Trigeorgis

and Mason (1987) explain.

2.1  Rainbow Options

The term rainbow option was coined by Rubinste®@9(b) as “an option on two or
more risky underlying assets”. A two-colour rainboption is an option on two risky
assets, a three-colour rainbow is an option oretheky assets, and so on. Rubinstein
imposes the additional condition for a multi-factqtion to be a rainbow option that
it shall not be possible to transform the probleralgically so that it could be valued
as if it was an option on only one underlying risdgset. In other words, Rubinstein

assumes that the option value is not homogeneouegree one in the underlying
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assets. Homogeneity of degree one is given if piyitig the values of the underlying
assets by a factoi) gives the same result as multiplying the optiatug byAi. In
general, a function is said to be homogeneous afregge k if multiplying the
independent variables by a factdy) (s equivalent to multiplying the dependent
variable by to the power of k:

VA XA y)= A V(x,y).
An example for an analytical dimension-reducingeciasthe pure exchange option as
modelled by McDonald and Siegel (1986) where homeig of degree one allows
one to replace the ratio between the exchangeblesidoy a new variable, thereby
reducing uncertainty to one dimension. Subsequetitoas have largely ignored this
additional restriction in the definition of a ramls option (see Hull, 2006). Examples
of rainbow options therefore include options on best of several risky assets and
cash, options on the maximum or minimum of sevaekly assets, spread options,
portfolio options, switching options and exchangéans.

The particular challenge in valuing rainbow optioiss the mathematical
complexity introduced by multiple uncertaintiestive form of stochastic processes.
The partial differential equations describing thptian behaviour seldom have
analytical solutions, at best quasi-analytical Bohs. Seminal work on multi-factor
options include Margrabe (1978) and McDonald andgé&li (1986) who value
European and American perpetual exchange optiespgectively. They make use of
the homogeneity of degree one property of the puahange option and substitute
the ratio of one stochastic asset to the other bygle stochastic variable, reducing
the two-factor to a one-factor problem. Rubins{@i®91a) also uses relative prices in
his binomial approach to valuing European and Aacagri exchange options.

Moreover, he shows that exchange options can ke tosealue the option to choose

—-19-—



the best among two assets. The best of two isulned one asset plus the option to
exchange that asset for the other. Stulz (1982gldps an analytical formula for
European options on the minimum or maximum of tvesets. He does so by
transforming the double integral over the bivariatensity function into the
cumulative bivariate normal distribution. Johns@887) extends this type of option
to several underlying assets by using an intugipproach based on the interpretation
of the Black-Scholes formula. Rubinstein (1991bpvmtes an intuitive, though
mathematically precise and analytical approacloesEuropean two-colour rainbow
options such as the option delivering the bestwaf tisky assets and cash or the
option on the minimum or maximum of two risky assétor more complex rainbow
options, such as spread options or dual-strikeonptihe approximates the continuous
bivariate normal density function with a discreteapiate binomial density. This can
also be extended to account for American-style ¢alour rainbow options by setting
up a binomial pyramid which is like a three-dimemsil tree and models the
underlying asset values and their probabilitiesaah time step.

In the context of forward contracts, Boyle (198@®velops an approach to
evaluate the quality option (option to deliver ooet of several assets). Pearson
(1995) determines the value of a European spresidnopn two correlated log-
normal random walk variables by simplifying the ttaintegration problem to a one
factor integration problem which can be approxirdateith a piecewise linear
function. This is done by factoring the joint depmsiunction into the product of
conditional density function of one asset, givea tbrminal price of the other asset,
and marginal density function of the other assée &pproach is also applicable to
other two-factor European options when an analgkipression of the conditional

density function is available. Zhang (1998) sumsesia number of multi-factor
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options and acknowledges that "many problems @nite can be converted to options
written on the maximum or minimum of two assets"469). He also studies spread
options, which are options on the difference betwieo prices or indices, and the
possibility to model these either as a two-factptian based on the two underlying
assets or alternatively as a one-factor option wité spread as the underlying
variable. The latter approach has the disadvarntiagee "the correlation coefficient
between the two assets involved does not play aplcé role in the pricing formula”
(p. 479) and the sensitivity of the option withpest to the two underlying assets
cannot be derived. However, the sensitivity of tpdion with respect to the spread
can be derived in a one-factor model.

Geltner et al. (1996) model the opportunity to depdand for one of two
possible uses and determine the appropriate tin@ihgds et al. (1996) extend this
framework to include the possibility of redevelopid.e. they consider switching
between alternative uses. Trigeorgis and Mason7)1@i8cuss the general concept of
operating flexibility and in particular the optido switch to a more profitable use
(output product) if product flexibility is availadl Kulatilaka and Trigeorgis (2004)
note that in the presence of switching costs, tileesof operating flexibility needs to
be determined simultaneously with the optimal swittg policy and that multiple
switching is actually a complex compound exchangg#oa so that simple option
additivity no longer holds.

Real rainbow options play an important role in coodity applications
because often there is the option to choose betwéd&rent inputs or to choose
between different outputs. The petrochemical ingusiffers numerous examples
where the producer has the option to sell producir Ao process it further and sell

product B. If the facilities for the production Bfare in place, the producer has the
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option to sell the best of A and B. Furthermoranowdity prices can be observed as
actual market prices or as futures prices, whicbvides crucial information for
modelling the prices in the form of stochastic @sses.

Table 3 provides an overview of the literature valg to the research

problems in this thesis.

—22_



Table 3. Literature Overview on Rainbow Options
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2.2  Stochastic Processes for Commodity Prices

Option pricing models have been mostly developeduradt financial assets, in

particular common stock. In the majority of casemnmon stock is modelled by a
geometric Brownian motion process. In real optippl@ations, the uncertainty in the

underlying assets is typically more difficult tosaove than is the case for financial
options on common stock. In this section, we disatifferent stochastic processes
used to model commodity prices and their advantdigeslvantages in the context of
real options valuation.

Stochastic processes can be classified into cammu(diffusion) and
discontinuous (jump) processes. It can be arguatjtimps play a role in the spot
price behaviour of commodities, such as sudden ddmasupply changes influence
electricity prices or political crises impact onetloil price. So far, however,
commodity prices have been modelled mostly as oatis processes because of an
improved analytical tractability in the mathematicperations on these processes.
This is also why our focus is on continuous proess§he stochastic element is
modelled as a Wiener process which is a randonabiariwith a standard normal
distribution multiplied by the square root of tingiffusion processes can be either
non-stationary or stationary, where the basic mdaoiekthe former is the Brownian
motion with drift, and the basic model for the éatis the first-order autoregressive
process, also called the Ornstein-Uhlenbeck meaerieg process. Brownian
motion and mean-reversion both have the Markov entgp meaning that future
values depend only on the current value and ngiash values. Both processes can be
arithmetic or geometric. An arithmetic process esmmally distributed and can take

any value, positive or negative. This is why ariétim processes are suitable to model

—27—



profits and spreads. A geometric process is logaadly distributed and therefore
takes positive values only, which is why it is coomty used to model prices.

The geometric Brownian motion is the most frequenfied stochastic process
to model asset prices and has the advantage the®dsform solutions for valuations
dependent on these prices can be obtained in mesgscsuch as the Black-Scholes
formula for European call and put options. Closawirf solutions improve tractability
and transparency and thereby provide an importalar pfor further theory
development. Brennan and Schwartz (1985) model amaiitgnprices as random walk
described by geometric Brownian motion in ordevatue an investment opportunity
in natural resources. They also discuss the cormepbnvenience yield applied to
commodities as "the flow of services that accrugsah owner of the physical
commodity but not to the owner of a contract fafe delivery of the commodity"
(p. 139). The convenience yield is mathematicatiyiealent to the dividend vyield
(payout ratio) on common stock, and therefore dessrthe shortfall of the price
change in relation to the required return on theepPPaddock et al. (1988) also use
geometric Brownian motion to model asset valuegdbas oil prices and determine
the option value to develop oil reserves. They arthat the value of an oil reserve
follows geometric Brownian motion because the oweeuires a return on that asset
just as if it was common stock. Dixit and Pindyd©94) develop most of their
generic real option models based on the assumfitairthe underlying assets follow
geometric Brownian motion. They also do so whenlyapg real options theory to
value oil investments.

One might argue that commodity prices are deterthprémarily by supply
and demand economics and that the long-term equilibprice is therefore bound by

the long-term production cost. If prices exceed kbieg-term equilibrium price,
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above-average profits can be made inducing mordugers to enter the market
which increases the downward pressure on the market. On the other hand, if
prices fall below the variable cost, some high-qosiducers drop out of the market
and thereby tighten supply, which stabilises theketaprice. These dynamics might
be better represented by a price following a meaefting process. Bessembinder et
al. (1995) test whether investors expect priceset@rt. On the basis of regression
analyses between the change in spot prices andiatezbchanges in the futures term
structure, they find that equilibrium prices of iagitural commodities and crude oill
exhibit strong mean-reversion. Mean-reversion imildgium prices of metals is
much less but still statistically significant. Sentheir analysis is limited to maturities
of up to two years, conclusions on the price behavin the medium and long-term
cannot be inferred from this. According to SmitlddvicCardle (1999), managers in
oil and gas companies believe that oil prices teteesome long-run average. Mean-
reversion in oil prices is supported when using ieicgd data spanning a period of 94
years. Smith and McCardle (1999) value investmeppodunities when the
underlying commodity (oil) is modelled as geometriean-reversion as compared to
geometric Brownian motion. They find that the optiof flexibility is valued lower
when the underlying variable is mean-reverting beeaof the reduced uncertainty,
and point out that the methodology and findings I¢oalso be valid in other
commodity applications. This effect is consistenthwthe Laughton and Jacoby
(1993) explanation that mean-reversion reducesrtainogy which leads to a lower
discount factor and higher present value (discogngffect) but at the same time
reduces the option value (variance effect).

Alternative models for commodity prices have beemedoped, most of them

based on the basic processes explained above. Bzh(l®97) analyses three
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different models reflecting mean-reversion in cordityoprices: A one-factor model
with a mean-reverting price process, a two-factedeh with random walk in spot
prices and a stochastic convenience yield, andeg#factor model with a stochastic
interest rate in addition. He finds empirical evide that copper and oil prices exhibit
mean-reversion, but not gold prices. Furthermore,nbtes that the real options
approach leads to investments being made too [temean-reversion in the
commodity prices is ignored. This is also what Abaand Chamorro (2008) find
when they analyse investment opportunities on blexpower plants based on a fuel
price following inhomogeneous geometric Browniantio (IGBM). IGBM is a
mean-reverting stochastic process where the umugrtia log-normally distributed.
Schwartz and Smith (2000) develop a two-factor rhdole commodity prices with
mean-reversion in short-term prices and random walke long-term (equilibrium)
prices. Their model is equivalent to the Gibson 8oldwartz (1990) model of random
walk prices and stochastic convenience yields lsr#ue short-term price deviation
is a linear function of the convenience yield. Bhg® empirical comparisons for
crude oil, they find that this model outperformmpie geometric Brownian motion
and mean-reversion models. Cortazar and Schwa@@4flestablish a direct link
between the stochastic processes of commodityesitand the corresponding spot
prices and use principal components analysis teeldpva three-factor model of
copper prices from empirical data.

Several authors discuss the behaviour of commaulibes and compare the
suitability of different stochastic models. Bakdrat. (1998) take a critical stance
towards the assumption that commodity prices folebywure random walk process.
However, while noting that "the underlying econosnaf the marketplace constrains

the rise or fall of a commodity's price" (p. 122dahereby implying that not all price
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changes are permanent, they also acknowledge thiatalh price changes are
temporary. Hence, a model combining mean-revensitinrandom walk in the long-
term seems appropriate from their point of viewtheir concluding remarks, Baker et
al. (1998) point out that the more complex modelscommodity prices increase the
fidelity in the quality of the underlying "engindjut this "extra complexity can
impose severe burdens on the computations reqtoreshany valuations” (p. 145),
thus decreasing the fidelity in the valuation resuPindyck (2001) stresses the
validity of two-factor models for commodity pricegith short-term variations and
random walk in the long-term, but concludes by isgythat valuation errors in real
option applications have been shown to be relatigatall if a pure random walk is
assumed instead.

Song et al. (2010) analyse returns to land useséipdlate that agricultural
returns can be theoretically justified by both getna Brownian motion and mean-
reversion. This is supported by statistical testsctv are equivocal regarding the
stationarity or non-stationarity of agriculturaltums. Stationarity of a stochastic
variable is typically tested with an Augmented [RigkFuller (ADF) test which
assumes under the null hypothesis that the timessaas a unit root, implying that
the series is non-stationary. One issue here isthieanull hypothesis might also be
rejected due to insufficient information, so thdke tconclusion regarding non-
stationary behaviour might be erroneous. It is dfe advisable to perform an
additional test examining the opposite null hypetbel.e. that the series is stationary,
which the Kwiatkowski-Phillips-Schmidt-Shin (KPS&)st does. While the choice of
the stochastic model influences the real optiomejathe optimal investment timing,
the (a)symmetry of switching boundaries and theatffof uncertainty over time

(short-term vs. long-term variance), the exact afieften depends on the specific
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problem and parameters. Dixit and Pindyck (1994 rtbat performing statistical
tests, in particular the unit root test, is a sal@aapproach to determine whether the
price of a commodity follows random walk or meamea®sion. The results depend,
however, to a large degree on the data samplinggbecause mean-reversion for
commodities can be very slow. Empirical analysiscaide oil and copper suggests
that the random walk hypothesis cannot be rejefded period of 30-40 years. For
longer time periods, mean-reversion becomes mgrefisiant. They note that besides
statistical tests, theoretical considerations ahé tequirement for analytical
tractability should play a role in modelling comnitgdorices when used for valuation
purposes. In other words, when commodity pricesresssnt the underlying
uncertainty in real option problems, one needs atarixe the need for realistic
stochastic models and the need for developingrsparent valuation framework and
solution.

In our econometric analyses of empirical commoddya, such as regression
analysis or testing for stationarity (unit rootttd§PSS test) or other diagnostic tests,

we use the EViews 6 Student Version.

2.3  Overview of Solution Techniques

Pindyck (1991) demonstrates that investment oppii#s can be valued both by
contingent claims analysis and by dynamic programgmContingent claims analysis
uses a portfolio of assets which includes the déne (e.g. investment opportunity)
and the underlying assets in such proportions dlatisk is eliminated, so that the
contingent claim can be described by a differergguation. Dynamic programming
is based on the fundamental equation of optimalBgllman equation) which

stipulates that the required return on an asset pmsal the immediate payout plus
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the expected change in the asset value. It alsis leaa differential equation but uses
a discount rate equal to the required return ordéverative which is not known and
dependent on non-linear cash flows. This discoaatof problem can be solved by
using the risk-free interest rate provided that dinelerlying stochastic process has
been transformed into its risk-neutral form, whiish effectively the risk-neutral
valuation applied to contingent claims. Once thi#edgntial equation is specified
together with the boundary conditions, it is dddeato obtain an analytical solution
for the value of the contingent claim. However,nmost real options applications,
analytical solutions cannot be obtained due toctiraplexity involved in the models.
The best alternative is a quasi-analytical solutidmch requires a set of simultaneous
equations. Although the solution is then not alddain explicit form, thereby
compromising transparency and efficiency of compoma a quasi-analytical solution
is still preferable to solutions by pure numeri¢athniques because the value
matching and smooth pasting conditions can beigdrifransparently, more general
findings can be produced and the computationsyguedlly less onerous. If neither
analytical nor quasi-analytical solutions are ala#, one needs to refer to numerical
solution methods.

There are numerous numerical solution techniquesiladle. We discuss
trees/lattices, finite differences and Monte Caslulation since they are most
relevant in the valuation of contingent claims. é&rerview and comparison of these
techniques is given by Geske and Shastri (1985) tanldl (2006). They can be
classified into forward induction (Monte Carlo silation) and backward induction
procedures (trees, finite difference) accordingh® direction in time in which the

iteration problem is solved. The backward inductiwacedures rely on some kind of

—33-



grid spanned by discrete values of the underlysrgables at discrete time steps while
the Monte Carlo simulation generates random pdthiseaunderlying variables.

The Cox, Ross and Rubinstein (1979) approach pespimsuse binomial trees
to discretise the stochastic process. Uncertaimtythe state variable is then
represented by two alternative states, as pointetby Cortazar (2004). At each time
step, the current value of the state variable é9)iocrease to u-S with a probability
(p) or decrease to d-S with a probability (1-p).slitimportant to note that the
probability distribution of the state variable migt consistent with the risk-neutral
form of the stochastic process. The option valumastarts at the time of maturity,
where option values are known, and iterates baaksva#t each node, the value of the
option is determined by discounting the expectddevérom the two possible future
states at the risk-free rate until the option vadtidhe current time is determined.
When early exercise is taken into account, theooptialue at each node is the
maximum of continuation value and immediate exercAternative tree approaches
are possible, for example binomial trees with equaland down probabilities or
trinomial trees. Boyle (1988) transforms the binalntree to a trinomial tree and
extends it to account for two underlying variabldsich have a bivariate lognormal
distribution. Boyle et al. (1989) extend the binalmiree approach to a generalised
approximation framework for options on several utyileg variables.

The finite difference method solves the partialfedéntial equation by
transforming it into a difference equation andatarg backwards from the terminal
boundary condition. For this purpose, a grid ofueal of the underlying variable is
constructed for each time step, extending up tahberetical boundaries defined by
the boundary conditions. Schwartz (1977) applies thethod to a call option on

dividend paying stock and finds that values arey wose to market values and the
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Black-Scholes approach. Two variations of the dindifference method can be
distinguished. The explicit method determines tpgom value at each node as a
function of future values. Since the finite diffece is a backward induction
procedure, the option values at each node can aeéilyedetermined, iterating
backwards. In the implicit method, however, the@mpvalue at each node is given by
values one step back in time. This generates afsgmultaneous equations which
can only be solved once all nodes have been defiitdough the latter is more
complex to implement, it is more robust than theliekx method. Hull and White
(1990) suggest some modifications to the explinitd difference approach to ensure
convergence. Both the finite difference frameworld drees can be used to value
European and American options but not for path-ddeet options. While trees
provide the option value only for a specific stagtipoint, the finite difference
approach provides option values for a set of dffierstarting points. Brennan and
Schwartz (1978) establish a connection betweenefidifferences and trees. The
explicit finite difference method is shown to beur@lent to a trinomial tree while
the implicit finite difference is equivalent to authinomial tree.

Monte Carlo simulation relies on the Cox and Ro%876) risk-neutral
valuation approach insofar as many sample patttseafisk-neutral stochastic process
of the underlying variable are generated and tlezame payoff (expected payoff) is
discounted at the risk-free rate. Boyle (1977) imgpthe Monte Carlo simulation to
value European options on dividend-paying stock. dttesses that this solution
technique is particularly flexible with regard teetform of the underlying stochastic
process since "the distribution used to generdtemne on the underlying stock need
not have a closed form analytic expression.”" (p})38Vith regard to efficiency, it

should be noted that the standard error of thenasi is inversely proportional only to
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the square root of the number of simulation runsweler, efficiency can be
improved by using variance reduction technique$ sisccontrol variate and antithetic
variates. Boyle et al. (1997) discuss further tégqines to improve efficiency of Monte
Carlo simulations. They also present algorithmallmw the valuation of options with
early exercise opportunities. As Cortazar (2004)lars "these methods attempt to
combine the simplicity of forward induction with ethability of determining the
optimal option exercise of backward induction” ¢f2).

The Least Squares Monte Carlo simulation (LSMC) wdeveloped by
Longstaff and Schwartz (2001), based on Carrie@9g), specifically to value
American options by simulation. This method simegathe underlying asset paths,
approximates the conditional expectations at eatie tstep ex-post in order to
determine the optimal exercise policy, and finaligcounts the cash flows according
to this optimal exercise policy. The conditionalpegtation is approximated by a
regression function involving the level of the urlg@g asset as the independent
variable and the discounted cash flows from comtilon as the dependent variable.
For multi-factor American options, the LSMC tendslkte relatively more efficient
and more readily applicable than other numericathods such as trees or finite
differences. While Monte Carlo simulations are dbl@etermine option values with
complex, path-dependent payoff structures, the Isitham is conditional on the
starting point and needs to be repeated if a @iffestarting point is assumed.

The above mentioned techniques can all be useddifersion, jump or
combined jump-diffusion stochastic processes, ak&and Shastri (1985) point out,
although with different degrees of implementatiomplexity. The eventual choice of

the numerical solution method depends on the tympton in the specific valuation
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setting. Table 4 summarises the comparison of tlesemted numerical solution

techniques.
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Table 4. Comparison of Numerical Solution Methods

Trees Finite Difference

Monte Carlo Simulation

Least §uares Monte
Carlo Simulation

Approximation approach

Discretise the risk-neutral Discretise the (partial)
stochastic process and differential equation and
discount at the risk-free rate boundary conditions

Simulate the risk-neutral
stochastic process and
discount at the risk-free rate

Simulate the risk-neutral
stochastic process, determine
optimal exercise policy ex-
post, and discount at the risk-
free rate

Direction of induction

Backward induction Backwarduction

Forward induction

Backward and Forward
induction

Typical applications

European options
American options

European options
American options

European options
Path-dependent options

American options
Path-dependent options

Limitations

Increased complexity when Increased complexity when
used for Path-dependent  used for Path-dependent
options; Valuation conditional options

on starting point

Difficult to accommodate for
American options; Valuation
conditional on starting point

Valuation conditional on
starting point

Efficiency / Computation time

Efficient for one-factor
options, less efficient for options, less efficient for
options with three or more  options with three or more
variables or when there are variables

dividends

Efficient for one-fact
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We develop real rainbow option models to value perating asset with the flexibility to
choose between two commodity outputs. We providguasi-analytical solution to a
model with continuous switching opportunities bedwdwo commodity outputs, taking
into account operating and switching costs. A dfegersion of the former is a quasi-
analytical solution for one-way switching. In adaiit, a model with continuous
switching and temporary suspension options is deadeand solved by a numerical
lattice approach. The models are applied to amstithtive case, demonstrating that the
quasi-analytical solution and the lattice appropobvide near identical results for the
asset valuation and optimal switching boundaries.fiM that the switching boundaries
generally narrow as prices decline. In the presasfceperating costs and temporary
suspension, however, the thresholds diverge fordoaugh prices. A fertilizer plant with
flexibility between selling ammonia and urea isue in an empirical section using our
real option models. Despite the high correlationtween the two alternative
commodities, ammonia and urea, there is significahtie in the flexibility to choose
between the two. The results are highly sensitivehianges in expected volatilities and
correlation, as shown by using different sampliegiqds for the estimation of volatility
and correlation. Both strategic and policy implicas for stakeholders in flexible assets
are discussed, with some generalisations outseléettilizer industry.
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1 Introduction

When is the right time for an operator of a flerilbhcility to switch back and forth
between two possible commodity outputs in ordemeximise value when operating
and switching costs are taken into account? Whaaltofs should be monitored in
making these decisions? How much should an inveséyr for such a flexible
operating asset? What are the strategy implicatfonghe operator, investor and
possibly policy makers?

Flexible production and processing facilities aypidally more expensive to
operate, with a higher initial investment costnthaflexible facilities. One problem is
that one part of the flexible facility, which reges an additional investment cost,
might be idle at times. Investing in a facility whiis not productive all the time
seems counter-intuitive at first glance. What eqgtrently misunderstood is that the
additional option value through “operating flexityif (according to Trigeorgis and
Mason, 1987) may have significant value in uncertaarkets when input or output
factors have different volatilities. Examples okxible assets include shipping
(combination carriers), the chemical industry (fde fertilizer plants), electricity
generation (combined cycle: natural gas/ coal gasibn), and real estate (multiple
property uses).

The traditional approach to determine switching rutaries between two
operating modes is to discount future cash flons ase Marshallian triggers. This
methodology does not fully capture the option valigich may arise due to the
uncertainty in future input or output prices. Thalue of waiting to gain more
information on future price developments, and cquoseatly on the optimal switching

triggers can be best viewed in a real options fiaonke.
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Conceptually, the switch between two volatile asset commodities can be
modelled as an exchange option. Margrabe (1978)M&cidonald and Siegel (1986)
model European and American perpetual exchangermptrespectively, which are
linear homogeneous in the underlying stochasti@ltes. Hopp and Tsolakis (2004)
use an American exchange option based on a twe-saiable binomial tree to value
the option on the best of two assets where the aksé&e is a one-time decision. An
analytical model for flexible production capacity presented by He and Pindyck
(1992) where switching costs and product-specifperating costs are ignored,
thereby eliminating the components which would lea@ non-linearity of the value
function in the underlying processes. Brekke andie€ddrop (2000) also assume
costless switching in their study on the value pérating flexibility between two
stochastic input factors, in which they determine optimal investment timing for a
flexible technology in comparison to a technolodatt does not allow input
switching. Adkins and Paxson (2010) present quaalyéical solutions to input
switching options, where two-factor functions a@ homogeneous of degree one,
and thus dimension reducing techniques used in MabBioand Siegel (1986) and
Paxson and Pinto (2005) are not available. Otheragehes model the profits or
returns in the respective operating state to behsfic, such as Song et al. (2010),
and Triantis and Hodder (1990) who assume probtiow arithmetic Brownian
motion and switching is costless.

Geltner, Riddiough and Stojanovic (1996) developframework for a
perpetual option on the best of two underlying &ssapplied to the case of two
alternative uses for properties, and provide a ecehgnsive discussion of relevant

assumptions for such a contingent-claims problemmld€, Riddiough and Triantis
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(1996) extend the aforementioned model to allow redevelopment or switching
between alternative uses.

Sodal et al. (2006, 2007) develop a framework fooption to operate in the
best of dry or wet shipping markets, where switghietween the two is possible by
incurring switching costs. These authors assumé @ghanean-reverting stochastic
process is appropriate for the difference betwden ttvo types of freight rates.
Bastian-Pinto et al. (2009) focus on the Brazikaigar industry and model the price
of the two possible output commodities, sugar atidhreol, as mean-reverting. A
bivariate lattice is used to replicate the discestd correlated development of the two
commodity prices. However, they allow for switchiay no cost. Abadie and
Chamorro (2008) apply numerical solution techniquesvalue input flexibility
between two fuels following inhomogeneous Brownmntion in the presence of
switching costs.

We develop three real option models for an assit switching opportunities
between two commodity outputs, taking into accoswitching costs and operating
costs. The first one is a quasi-analytical solufmmcontinuous switching, the second
for one-way switching, and the third is a numerilzdtice solution for continuous
switching with suspension option. The rest of {hégper is organised in five sections.
Section 2 defines the framework, develops the opéibn models and provides the
solution methods. Section 3 provides a nhumeritatilation and compares the results
of the different models. Section 4 introduces eropirof the fertilizer industry,
including commodity price behaviour and paramegtineation, and values a flexible
fertilizer plant based on the new real option med&ection 5 discusses policy and

strategy implications. Section 6 concludes andusdises issues for future research.
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2 Modelling the Real Rainbow Options on Commodity Qtputs

21  Assumptions

The asset to be considered is flexible to produaedifferent commodity outputs by
switching between operating modes. We assume tbespof the two commodities, X

and y, are stochastic and correlated and followrggtnc Brownian motion (gBm):

dx = (u, -3, )xdt + o, xdz, (1)
dy = (py - éy)ydt +0, ydz, (2)
with the notations:
u Required return on the commodity
d Convenience yield of the commodity
o Volatility of the commodity

dz Wiener process (stochastic element)

p Correlation between the two commodities; dz, / dt

The instantaneous cash flow in each operating medbe respective commodity
price of the output product less unit operating coslltiplied by the production units,
l.e. o (X — G) in operating mode ‘1" and,ply — G) in operating mode ‘2. The
parameters pand p represent the production per time unit (year) andnd ¢ are

operating costs per unit produced. A switching @bs$;, is incurred when switching

from operating mode ‘1’ to ‘2’, and,$for switching vice versa.

Definitions
Variable operating cost xECy
Capacity R, P2
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Switching cost o S

Risk-free interest rate r

Further assumptions are that the operating costetsrministic and constant, the
lifetime of the asset is infinite, and the compasyot restricted in the product mix
choice because of selling commitments. Moreoveg, tifpical assumptions of real
options theory apply, with interest rates, yieldsk premium, volatilities and

correlation constant over time.

2.2 Quasi-analytical Solution for Continuous Switching

The asset value with opportunities to continuossiytch between the two operating
modes is given by the present value of perpetusth laws in the current operating
mode plus the option to switch to the alternativedm Let \{ be the asset value in
operating mode ‘1’, producing commodity x, and We asset value in operating
mode ‘2’, producing commaodity y accordingly. Theitehing options depend on the
two correlated stochastic variables x and y, andasthe asset value functions which

are defined by partial differential equations:

)
1, ,0%V, g2 262 A A YA
e o G — +(r—9, +\r— — =1V, + -c, )=0
(4)
1, ,0%, 1 o2 202V, 0V,

20 O OO B8 bR - nly-6)<0
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Two-factor problems which are linear homogeneotes, \f (A [x;ALy) = A [V (x;y),

can typically be solved analytically by substitutiof variables so that the partial
differential equation can be simplified into a daetor differential equation. An
example of this is the perpetual American exchasgen in McDonald and Siegel
(1986). Our continuous rainbow option encompassegnaber of complexities, such
as switching cost, operating cost and multiple cwitg, in order to make it more
realistic. As a consequence, the problem is nodohgmogenous of degree one and
the dimension reducing technique cannot be used. hkes an analytical solution
practically unavailable. Based on the approach dkids and Paxson (2010), we
derive a quasi-analytical solution for this kind tfo-factor non-homogeneous
problem. The partial differential equations areisiagd by the following general

solutions:

Vilx,y) = P - B0 P (5)

X

wheref,1 andp;» satisfy the characteristic root equation

3 02B1(B1y 1) +3 032/312(312 ~1)+ P00 By, + Bu(r-8,)+ Blz(r - 6y)_ r=0, (6)

and

VZ(X’ y) —Py _ P2Cy +B xP yﬁzz (7)

6y r

wheref,; andp,; satisfy the characteristic root equation

%05321([321 _1) +%0;2/|322([322 _1) +p0,0 By, + le(r -9, ) + Bzz(r - 6y)_r =0(8)

A, B, P11, B2, P21 and By, are assumed constant with respect to x and y. The
characteristic root equation (6) is solved by cambons off;; andp;, forming an
ellipse of such form thdi;; could be positive or negative afigh could be positive or

negative. The same is true for equation (8). Stheeoption to switch from x to y
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decreases with x and increases withfy; must be negative anfli, positive.
Likewise, B21 must be positive anfl;; negative. Switching between the operating
modes always depends on the level of both x amkt the switching points (%, yi2)
and (%1, Y21), the asset value in the current operating modst toel equal to the asset
value in the alternative operating mode net of @witg cost. These value matching

conditions are stated formally below:

c
A Xlzﬁll y12[312 + pgxlz _ PGy - BX12[321 y12[322 + P2Yi2 _ P2Cy -S, (9)
X r d, r
X c P2C
A X21Bll y21[312 + pl6 21 _ plr X —821 — BX21[321 y21522 + pgy21 _ 2r y (10)
X y

Furthermore, smooth pasting conditions hold abiendaries:

By A Xy, My, + % =By Bxy 2y, 22 (11)

B2 A Xlzﬁll )/12Blz ~=By,B )(12[321 )’12[322 T % (12)
y

By AX 21‘311_l 3/21[312 + g_i =B, Bx 21[321_l )/21[322 (13)

B AXo M Yo 27 = By B, P2y, 2 4 % (14)

y

There are only 8 equations, (6) and (8) - (14) Mf@unknownspi1, Bi2, 21, P22, A, B,
X12, Y12, X21, Y21, SO there is no completely analytical solutiont,¥Yer every value of
X, there has to be a corresponding value of y wdvatching should occur, (% Yi2)
and (%1, ¥21). SO0 a quasi-analytical solution can be found &suaning values for x,
which then solves the set of simultaneous equaftamall remaining variables, given
that X = %2 = X1. This procedure is repeated for many values gbrayiding the
corresponding option values and the switching baued. This quasi-analytical

solution implies, however, that the values of ABB, B12, B21 andp,2 change when a
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different x is chosen. Hence, the initial assumpbd these parameters being constant
over the whole range of x and y is now relaxed faas@s these parameters are
constant only locally. The local solution must tHs considered an approximation
because the derivatives at the chosen point amlagdd with constant parameter
values.

From (9) and (10), it can be seen by rearrangireg the total cost of

exercising the switching option is the sum of thatching cost and the difference in

c c
the present value of operating cosss, + (h —ﬁj and 821—[m—&] ,
r r r r

respectively. The optimal switching policy and thihe option value can only be
computed if the exercise cost is a positive numiérat means the continuous
switching option can only be valued if the presaltie of the difference in operating
costs does not exceed the switching cost. If thesnpse does not hold, the value of
flexibility can only be determined on the basiseobne-way switch with positive

exercise cost.

2.3  Quasi-analytical Solution for One-Way Switching

Deriving a solution for the asset value with a eves switching option from the
above model with continuous switching is straightafard. Assuming j&,>piCx, the

American perpetual option to switch from x to y daa determined. The switching

. . .. . C .
option vice versa is ignored because the exeransesgl—[m—&] might be
r r

negative. The asset valug ¥ given by (5) with its characteristic root eqaat(6),
and \% is given by (7) with B=0, thereby eliminating thption to switch back. The

characteristic root equation (6) together withuealmatching condition (9) and
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smooth pasting conditions (11) and (12) represt@ssystem of 4 equations, while
there are 5 unknown$;1, P12, A, Xi12, Y12 Applying the same solution procedure as
explained above, a quasi-analytical solution isamigd. It is noted again, that this
procedure is an approximation because the consfarftg andp;, are constant only

locally.

24 Numerical Solution for Continuous Switching with Suspension Option

The continuous switching option between the tworatpeg modes with the purpose
of choosing the best of two output products camw &le valued with a numerical
lattice. While this approach is less transpareahtthe quasi-analytical solution and
the computations are more onerous, it overcomeseitaction that the present value
of the difference in operating costs in the tworafiag modes must be smaller than
the switching cost. It requires, however, thatdp&on to suspend operations to avoid
net losses is taken into account so that the fixedndaries of the lattice can be
determined. The asset value functions at the fixedndaries x=0 and y=0 can be
reduced to known one-factor functions only if thesgension option is taken into
account. Without suspension option, the asset vdlretions at these fixed
boundaries would depend on both variables, x amdti, switching options between
them, so that the functions could therefore notléermined. It is assumed that costs
are incurred neither for suspension nor during easijon of the asset operation. The
results from the numerical lattice approach and d@si-analytical solution as
developed before can be compared on a like-for-bksis for the case of zero

operating costs because suspension is then irrdleva
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Both the techniques of constructing trees (latte@) of finite differences are
appropriate for this kind of valuation problem bhesa it involves American-style
options and only two stochastic factors. We usetcé approach based on the
modified explicit finite difference method. The Baard iteration requires the
specification of the switching boundary conditi@arsl the fixed boundaries. With the
switching triggers (¥%,y12) and (%1,¥21) as before, the general value matching and

smooth pasting conditions are:

Vl(XlZ! Y12) = VZ(Xlzv Y1z) -3 (15)

V1(Y211X21) —§1=V2(y21,X21) (16)

oV, (x,y) _3Va(xy) 7)
0X X=X12,Y=Y12 0x X=X12,Y=Y12

v, (x,y) _av,(xy) (18)
ay X=X12,Y=Y12 ay X=X12,¥Y=Y12

oVy(x,y) = Valx,y) (19)
OX  lx=xpr,y=yay 0 lemxory=ya

av,(x,y) _0Vy(x.y) (20)
ay X=X21,Y=Y21 ay X=X21,¥Y=Y21

On the fixed boundaries, the problem reduces fnem dtochastic factors to a single

stochastic factor. Figures 1 and 2 show the bouesl&or both operating modes. The

corresponding value functions are developed below.
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Figure 1. Generalised x-y-Grid with Asset ValugD&fined on the Fixed Boundaries

y

Option to switch and
then earn gy-c,)

with temporary i
suspension option

X12,¥Y12

X21,¥21,

RProducing Xx.

P1(X/x -C/T)

Option to earn f{x-cy) with
temporary suspension option

p1(X/8x -Cr) + Option to
temporarily suspend operation

Two-factor valuation problem with stochastic vatésbx and y and with the option to earn
either as cash flow,@nd ¢ are the respective operating cosisamd p are annual capacities,
o and 9, convenience yields of x and y respectively. Switghboundaries are shown
schematically, with (3%,y12) the boundary to switch from x to y, ang(¥.;) to switch back.

Asset value Yis given for the fixed boundaries when currentigdqucing x.

Figure 2. Generalised x-y-Grid with Asset ValugD&fined on the Fixed Boundaries

P2(Y/8y -GylT) +
Option to temporarily
suspend operation

Option to earn gy-c)
with temp. suspension
optior

p2(y/y -G,/r)

. X12,Y12

*Producihg Xo.¥o1

Cx X

Option to switch and then earm(y-cy)
with temporary suspension option

Two-factor valuation problem with stochastic vatésbx and y and with the option to earn
either as cash flow,@nd ¢ are the respective operating cosisapd p are annual capacities,
o and 9, convenience yields of x and y respectively. Switghboundaries are shown
schematically, with (3%,y12) the boundary to switch from x to y, ang(¥.;) to switch back.

Asset value Yis given for the fixed boundaries when currentigdqucing y.
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Case: x=0 and y=0
When both product prices fall to zero, gBm implileat they will remain zero forever.

The asset would then be suspended forever andlis is nil.

Vi(x =0y =0)=V,(0,0)=0 (21)

Case: y=0

If y is zero and the asset is currently in operatimode ‘1’, switching can be ignored.

The asset will be operated when the revenue frarceeds the operating cost, and
will be suspended otherwise, with the option toures operation. Brennan and
Schwartz (1985) provide models to value an asssedan a single underlying

stochastic cash flow, where there are operatingscasd temporary suspension is

possible.
Bx1 if
Vl(X;yZO):{Al(pl)()B I X <cC, (22)
Bl (plx) X2 + (plx)/6x - (p.l.cx)/r if x> Cy
where Al = (plcx )1_BX1 (BXZ _ BXZ _1) ’ (23)
Bxl _sz r 6x
g, = (100" ( Bu _Bu —1), (24)
Bxl - sz r 6x
2 2 2 2
Bx]/xzz%_(r_éx)/o-x i\/(('__6x)/0-x _%) +2r/0x . (25)

Bx1 andpx. are defined in (25) and represent the positive reaghtive solution to the
fundamental quadratic equation of a one-factor Acaerperpetual option on x. The
statement that the switching option can be ignevkdn y=0 is only valid because we
take the suspension option into account. If th@aasion option is ignored, switching

from x to y might still be a valid strategy evenewhy=0 as long as operating losses
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can be reduced this way. The asset value woulddbpend on both x and y even on
the fixed boundaries, for which values could thereinot be determined. This is why
the suspension option is incorporated into this encal solution for continuous
switching.

When the current operating mode is ‘2’, no valugased from that operating
mode since y=0 so that the asset value is giverthbyoption to switch to the
alternative mode. The option to invest in an asgiih operating costs and the

possibility of temporary suspension is:

V,(x;y =0)= D, (p,x) (26)

D. = Bl(pIX*)BXZ +PX* /0, =Py C, [T=Sy
L=

with
(plx *) Bx1

(27)

where x* is the switching boundary;ky=0) and satisfies the equation:

(B ~By2)B1 (px*) P2 + (B =1 (px*) /8, =B ((P1C,) /T +S,)=0  (28)

Case: x=0

The same logic applies as for the case of y=0.

A Py if y<cC
Va(x=0,y)= Z(pzy)B 2 o (29)
B, (p,Y) ™2 +(p2Y) /8, — (p,C,)/r 1fy>cy
1‘By1 —
where A2 — (pZCy) [ByZ _ By2 1], (30)
Byl - By2 r 6y
1‘By2 _
B, = (p2cy) [&_ Py 1]’ (31)
Byl _ByZ r 6y
=1_|r— 2 _ 2 _ 1)2 2
Byyy2 =3 (r 6y)/0y i\/((r 6y)/0y 2 +2r/0y : (32)
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By1 andpy, are defined in (32) and represent the positive reeghtive solution to the
fundamental quadratic equation of a one-factor Acaerperpetual option on y. The
value \, when x=0 is given by:

Vl(x =0 y) =D, (pz Y)Byl (33)

_ Ba(p2y?) P2 4 py * 18, - pye, IT =Sy,
(P2y™) Pa

with D, (34)

where y* is the switching boundary,fx=0) and satisfies the equation:

(By~By2)Bo (02y*) ™2 +(By ~ D) (py*) /3, - Byl((pZ Cy)/r +S,)=0  (35)

Case: x> o, ory = o
When one of the two prices approaches infinity, more switching to the other

product will take place and the suspension optecoines irrelevant.
Vy(x - ooy) = py(x/8, —C, /1) (36)

V,(x;y - ) =p,ly/3, - ¢, /r) (37)

25  Implementation of the Numerical Solution Method

Childs et al. (1996) solve a valuation problem tamio the one presented above.
They use a trinomial lattice to approximate thaueabf the redevelopment option for
property uses. The main difference is that theidehagnores operating costs (and the

suspension option as a consequence).
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Definition of the Lattice
Childs et al. (1996) provide a framework for th#it@ numerical solution which is
based on the Hull and White (1990) modificationtleé explicit finite difference

method. The lattice is spanned by x and y-valuestiame (t) as follows:

o Oy +/30t ek (r—éx—J/20§ )At

Xirjrk = Xmln , (38)
— i PO 3N jO' 3At 1—p2 k{r-o _]/20.2 At
Yiik =Ymin € e e y\/—(—) e ( y y) ' (39)

where (i,j,k) defines a point in the three-dimensiox-y-t grid by indicating the
number of increments in the respective variablentthe above functions, it can be
observed that the x-values in the grid depend oe,twhile y depends both on time
and on x. This interdependency is required in otdenap the correlation between the
two variables.

The lattice also defines the marginal probabiljties. the probabilities of up
or down movements of x and y within an incrementirog:

[
up over down
up 1/36 1/9 1/36

] over 1/9 4/9 1/9
down 1/36 1/9 1/36

Terminal values are required in order to solve fiystem by backward
iteration. Distant cash flows do not affect thesgr@ value significantly. So we make
the assumption that the switching option is no é&rgyailable beyond a distant point
in time, e.g. beyond fifty years of operation, whallows us to determine the value of
the asset in fifty years time as the terminal valliee terminal values are given by

equation (22) for Yand by equation (29) foryV
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Model Implementation

According to the x-y-t grid, asset values are deieed at each node. This results in a
value grid for each of Yand \4. First, all fixed boundaries are computed and tihen
terminal values. At the terminal boundary, switchis no longer possible, so the
asset value is given by the static value plus suspe option.

Starting from the terminal values backwards, and \, are determined at
every point in time. Vi is the value at (xax, y=jAy, t=kAt), assuming the current
operating mode is ‘1. It is equal to the sum aftantaneous cash flow and discounted
value of the higher of ¥and \\-S, at the time t+1 according to the marginal

probabilities.
VY ik = Max[pl(x —Cy )At;O] +e (gMaX[Vli,j,kﬂ! V2 ik _Sz] + ) (40)
The asset value at the present time (t=0) canfiresented as a surface spanned over

the x-y-area.

Figure 3. Grid of correlated Variables x and yttog Numerical Solution
y

A

j-Values —.

(here: |=2) / > X
I-Values
(here: i=3)

Two-factor valuation problem with stochastic vatésbx and y and with the option to earn
either as cash flow. Pairs of x and y in a valuatizid which maps the correlation between
the two.
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Determination of Asset Values at any x-y-point witin the Value Grid

The value VY or V, can be determined at any point within the valug dpy
interpolating between known values. It has to lertianto account that the grid is not
straight due to the dependence of y-values upasxs illustrated in Figure 3. The
Mathematica code of the numerical lattice solut®available in the Appendix to the

Thesis.

3 Numerical lllustration

The three models developed in the previous seetiemow applied to an illustrative
numerical case in order to compare the valuatisaltge and switching behaviour. We
present three scenarios for operating costs:

a) Zero operating costs in both operating modes

b) Non-zero but equal operating costs in both opegatiodes

c) Different operating costs in the two operating n®de
Scenario (a) has the advantage that the suspeopiton in the numerical lattice
solution is irrelevant so that this model can benpared with the quasi-analytical
solution. Scenario (b) can be used to identify thkie of the suspension option by
comparing the numerical lattice solution with theasj-analytical solution. Scenario
(c) is the most general one but is not applicablé¢he quasi-analytical solution for
continuous switching because of the aforementiaesttictions. Table 1 shows the
parameters used for the illustration and also prtesthe quasi-analytical solution for

continuous switching when operating costs are zero.
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Table 1. Quasi-analytical Solution for ContinuowstShing with No Operating Costs

Parameters Base case Sensitivities
Commodity price X 100 90 110
Commodity price y 100 100 100
Convenience yield of x Ox 0.03 0.03 0.03
Convenience yield of y dy 0.03 0.03 0.03
Volatility of x Ox 0.40 0.40 0.40
Volatility of y oy 0.30 0.30 0.30
Correlation between xand y ) 0.50 0.50 0.50
Risk-free interest rate r 0.05 0.05 0.05
Operating cost for x xC 0 0 0
Operating cost fory \C 0 0 0
Capacity of x p 1 1 1
Capacity ofy p 1 1 1
Switching cost fromxto y S 50 50 50
Switching cost fromy to x 8 70 70 70
Switching boundary xto y 1X 100 90 110
Switching boundary y to x 2X 100 90 110
Solution
Asset value in operating mode '1' 1(y) 5,254 4,990 5,526
Asset value in operating mode '2' 2(Xy) 5,255 5,010 5,510
A 16.17 15.99 16.31
B 15.72 15.53 15.90
Switching boundary xto y 3 (X) 150 137 163
Switching boundary xto y 2 (%) 53 46 60
B11 -0.317 -0.315 -0.319
Bi2 1.355 1.355 1.354
B21 1.333 1.332 1.334
B22 -0.289 -0.285 -0.293
Equations
Value matching condition EQ9 0.000 0.000 0.000
Value matching condition EQ 10 0.000 0.000 0.000
Smooth pasting condition EQ 11 0.000 0.000 0.000
Smooth pasting condition EQ 12 0.000 0.000 0.000
Smooth pasting condition EQ 13 0.000 0.000 0.000
Smooth pasting condition EQ 14 0.000 0.000 0.000
Characteristic root equation EQ6 0.000 0.000 0.000
Characteristic root equation EQ8 0.000 0.000 0.000
Sum 0.000 0.000 0.000

Asset values (Y V,) and switching boundaries;y ;) are obtained from (5) and (7) and the
simultaneous solution of (6) and (8) - (14).
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It can be seen that the option factors A and Boasitive,B;1 andf,, are negative and
B12 andp,; are positive, thereby fulfilling the requiremefrism the theoretical model.
The system of value matching conditions, smooth tipgs conditions and
characteristic root equations is fully satisfiedieTTable also shows that when x is
increased by 10% (from 100 to 110), the maximummgkan any of the parameters
A, B, B11, P12, B21 andpa2 is only 1.3%. This comparatively small change ssgg that
the approximation error by assuming these parasi@enstant in an infinitesimal

small area around x is not significant.

Table 2. Comparison of Switching models for lllastre Cases
x=100;y=100;p=1;p=1
dx=8y=0.03 ox=0.40;6y =0.30;p =0.50; r=0.05; $2=50; $1=70

Numerical solution for
Quasi-analytical solution Quasi-analytical solution continuous switching
Scenarios No switching for continuous switching  for one-way switching  with suspension option
Vi 3,333 5,254 4,875 5,143
V2 3,333 5,255 3,333 5,142
cx=¢/ =0
y12 150 396 158
— n.a. -
y21 53 -na.— 55
Vi 2,833 4,754 4,375 4,688
V2 2,833 4,755 2,833 4,686
cx=0/ =25
y12 150 396 155
- n.a. —
y21 53 -na.— 55
Vi 3,333 4,775 4,912
V2 2,833 2,833 4,864
cx=0,6=25 —-n.a.—
y12 442 184
— n.a. -
y21 -na.— 79

V, is the asset value when currently producing x,i% the asset value when currently
producing y. ¥ is the level of y (at the given level of x) wheiisi optimal to switch from x to
y, and ¥y is the level of y for switching vice versg.and ¢ are the operating costs andgmd

p. the annual capacities of x and y, respectivelyandcs, are the volatilitiesp, ands, the
convenience yieldsp is the correlation between x and y. r is the figle rate. $ is the
switching cost from x to y and,Sfor switching vice versa.
Solution with no switching is obtained from (5) afd) with A=B=0. Quasi-analytical
solution for continuous switching is obtained fr¢®) and (7) and the simultaneous solution
of (6) and (8) - (14). Quasi-analytical solutiom tme-way switching is obtained from (5) and
(7) with B=0 and the simultaneous solution of (@), (11), (12). Numerical solution for
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continuous switching with suspension option is wlad from the lattice approach based on
(21) - (40) and grid spacing of i=50, j=50, k=23@+0.2. Parameter values are from Table 1.

Table 2 presents the numerical results in the teoemarios for our three switching
option models and for the case of no switchingaptirhe asset values are given in
both operating modes,;\and \4, and the level of y is indicated when it is optinta
switch from x to y (y») and vice versa gy). With x and y having the same initial
values and the same yields, the asset value witewitzching is identical in both
operating modes when the operating cost is the .skligber operating costs reduce
the asset value. When operating costs are nilatiset value ¥ with continuous
switching opportunities is valued at 5,254 accaydio the quasi-analytical solution
and at 5,143 according to the numerical latticeitsmh, which is a difference of only
2.1% between the two models. The switching optialue is the difference between
the asset value and the value with no switchingapt.e. 5,254-3,333=1,921. Hence,
the option to continuously switch between the tyerating modes adds about 55%
to the inflexible asset value. Given the currenteleof x of 100, the switching
boundary y, is 150 (numerical lattice model: 158) angl s 53 (55). The spread
between y, and y; is caused by switching costs and increases wgh folatilities
and low correlation, following real options theolyshould be noted that changing x
also changes the switching boundarigsand g1, and that the switching boundaries
X12 and %; for a given level of y can be determined in a Emivay. The fact thatyy
and y; are not symmetrical to x = 100 is primarily duethe log-normality of the
commodity prices, and further due t@;$ S1 andoy # oy. The small differences
between the quasi-analytical solution and the nigalelattice solution are due to the
fact that both approaches are approximations. Tthese is uncertainty as to whether

the guasi-analytical solution or the numericalidattsolution is more accurate. The
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imprecision in the numerical lattice solution igraduced by the limited number of
grid points and the interpolation between grid poias a consequence. When the
number of grid points is doubled, the numericalidat solution values the asset at
5,165 which differs by only 1.7% from the quasidgtieal solution. Hence, the
precision of the lattice solution can be increasgdefining the grid. Moreover, the
lattice approach assumes a terminal boundary ofea@s beyond which switching is
no longer possible. Choosing a terminal boundarg®fyears with the same time
increment as before results in asset values whiel8d% lower, while a terminal
boundary of 100 years results in asset values wéieh0.3% higher. This suggests
that increasing the terminal boundary beyond 50sydardly impacts on the asset
value. When switching is only possible from x tdwt not vice versa, the switching
level yi» is much higher because the decision cannot beésedeThis is also why the
asset value Vis lower compared to continuous switching. Thesagalue \4 for the
one-way switching model is 3,333, just the samiassset with no switching.

When operating costs are non-zero but equal in bp#rating modes, the
asset values decline generally. While &f the numerical lattice solution was 2.1%
less than Y of the quasi-analytical solution when operatingtsavere nil, it is only
1.4% less in the presence of operating costs @ = 25). This may be an indication
of the positive value of the suspension option Whg part of the numerical lattice
solution only, but also shows that the value ofghspension option is not significant
for the given parameters. For the two quasi-ar@dytmodels, which do not take
temporary suspension into account, the switchingindaries are unchanged
compared to the case of zero operating costs bet¢hadotal operating costs cannot

be reduced by switching. Since the suspension mpgicot significant at the given
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parameters, the switching boundaries of the nuraleiattice solution are also similar
to the ones in scenario (a).

The quasi-analytical solution for continuous swinchis not available for
scenario (c) because it requires that the presalnevwof the difference in operating
costs in the two operating modes is smaller thansthitching cost, which is not the
case here. When operating costs are incurred inopeeating mode but not in the
other, intuition is confirmed that the asset vakiéower compared to the case of no
operating costs and higher compared to the casperfting costs in both operating
modes. Since scenario () assumes operating aaestsby incurred for y, switching

from x to y is delayed more and switching from wttakes place earlier.

Figure 4. Switching Boundaries of the Quasi-anefjtSolution for Continuous
Switching

Scenario ¢ = ¢, = 0 and Scenario ¢= ¢, = 25
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Y12 is the level of y when it is optimal to switch fnox to y, and y; is the level of y for
switching vice versa. Switching boundaries are iokth from solving (6) and (8) - (14)
simultaneously for parameter values from Tabledepkfor ¢ and ¢.
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Figure 5. Switching Boundary of the Quasi-analytigalution for One-Way
Switching
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Y12 is the level of y when it is optimal to switch fnox to y, and y; is the level of y for
switching vice versa. Switching boundaries are inbthfrom the simultaneous solution of (6),
(9), (11), (12), with B=0, for parameter valuesnfrdable 1 except for,and g.
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Figure 6. Switching Boundaries of the Numericalufioh for Continuous Switching
and Suspension Options
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y12 is the level of y when it is optimal to switch fnox to y, and y; is the level of y for
switching vice versa. Switching boundaries are fiattice solution based on (21) - (40) for
parameter values from Table 1 except foamd ¢, grid spacing of i=50, j=50, k=250}=0.2.
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The Figures above depict the shape of the switchingndaries  and y; according
to each model for different levels of x or y. Theitshing boundaries of the two
models with continuous switching opportunities (g4 and Figure 6) are almost
identical for the scenario of zero operating costgifirming again that the models are
equivalent in terms of the results except for tbenewhat lower precision of the
numerical lattice solution. The log-normal charaste of the underlying commodity
prices leads to higher variances in absolute temmsn prices increase. This causes
the switching boundaries;yand y; to spread further apart when the commodity
prices x and y increase. In the limit of x and yp@@aching zero, the switching
boundaries come close together but keep a minimatartte as a result of switching
costs. In the presence of operating costs and ssigpe options (Figure 6), the
switching boundaries take a different shape for l@wvels of the underlying
commodity prices. They are spread further apartdarlevels of x and y because the
asset operation can be suspended so that switobmgs only when there is a high
enough positive net cash flow in the alternativerapng mode. In the absence of the
suspension option, switching can occur even whemdt cash flow in the alternative
mode is negative as long as losses can be redwdesh operating costs are different
in the two operating modes, the switching boundameve in such a way as to delay
switching to the mode of higher operating costs an@ccelerate switching to the
mode of lower operating costs. Finally, Figure Salidbes the switching boundary,y
for one-way switching and shows that y needs talmeut four times as high as x to
trigger a switch if switching back is not possible.

The preceding comparison of the three models revibiat it is desirable to

obtain a (quasi-)analytical solution for the sakéransparency and accuracy, but that
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the numerical lattice solution approaches the ganaaslytical solution if the grid
spacing is further refined (which increases conutaime). Numerical approaches
used to value real options on two stochastic ostputh continuous switching, such
as in Childs et al. (1996) and Song (2010), midjerefore be compared to results
obtained from the quasi-analytical framework preddFor instance, we have used in
our lattice solution a time interval of 0.2 and thedel inaccuracy was 2.1%. Childs
et al. (1996) have used the same time intervaleQthings being equal, their results
might be expected to have a similar degree of imaoy and be improved by refining

the grid spacing or, better, using a quasi-analgolution.

Figure 7. Switching Boundaries of the Quasi-anefjtSolution for Continuous
Switching for Different Volatilities
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y1- is the level of y when it is optimal to switch fnox to y, and ¥, is the level of y for
switching vice versas, ando, are volatilities of x and y. Switching boundar&® obtained
from solving (6) and (8) - (14) simultaneously farameter values from Table 1 exceptdpr
andoy.
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Figure 7 illustrates the sensitivity of the switotpiboundaries to changes in volatility
according to the quasi-analytical solution. It ikacly evident that switching
boundaries are further apart when volatilities laigher. This is consistent with the
general real option theory because uncertaintyakert into account which delays
switching in order to gain more information. In t@st to this, the Marshallian rule
stipulates that switching is justified as soontesdifference between present value of
expected cash flows in the new operating mode aesgept value of expected cash
flows in the incumbent operating mode exceeds wi&lsing cost. To see how the
spread between the two switching boundaries igm@ifft when using our real option
model compared to the Marshallian rule, we usenalai approach to Adkins and

Paxson (2010) and define:

X
Plepg, -Pum, =, @
y X
X
p:l.6 21 mxm _ p26y21 myﬂ - 821 (42)
X y

The Marshallian rule is satisfied when all wedg@gi£, Qx01, Qy12, Qy01) are equal to

one. To determine the wedges for the real optiodehave transform equations (11) -

(12) into:
Ax Py, = Biy Bor i B.1 B [Bzz p16>:12 +B2 p%—z]/lz] (43)
B X, 7ty 22 = B Bay i B2 B [312 p16):12 + Bnpzé—i/lzJ (44)
and (13) - (14) into:
Ax iy, 12 = Bry Bor i BB (Bzz plg:ﬂ + lepzé—i/ﬂ] (45)
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1 X
B X21821 3’21[322 = ([312 P a1 +By P2 Y21 qu (46)

[312 [321 - Bll [322 6x 6y

Substituting (43) - (44) into (9) and (45) - (46)a (10) yields the wedges:

_ Blz B Bzz
X12 X21 1
Blz le - Bll Bzz

(47)

— — le ~ Bll
Q. =Q, =1- 48
12 v I312 le - Bll Bzz 48)

Sincef1, andPy; are positive anfl;; andf, are negative and the denominator of (47)
and (48) needs to be positive to justify the optratues in (43) - (46), the wedges are
less than one. This demonstrates that the switdiysteresis is larger than suggested

by the Marshallian rule.

Figure 8. Wedges of the Quasi-analytical SolutmmGontinuous Switching
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Wedges Q) lower than one indicate a switching hysteresiat tis larger than the one
suggested by Marshallian triggers. The lower thdges, the larger the switching hysteresis.
ox andoy, are volatilities of x and y. Wedges are obtainenf (47) and (48) for parameter
values from Table 1.
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Figure 8 shows the wedges as a function of vaiasli It is evident that the wedges
decrease rapidly when uncertainty is introduceck [Blwer the wedges, the larger the
switching hysteresis. When there is no volatilitye wedges are 0.6, and not 1.0 as
suggested by the Marshallian rule. This is inteémgdbecause it underpins the value of
waiting even when there is no uncertainty. Dixidapindyck (1994) provide the
optimal investment threshold agd times the investment cost when the underlying
variable has a deterministic growth rate. The wenfg@ 6 in the deterministic case is

therefored/r = 003/ 005.

4 Empirical Application

In this section, the real option approach is applethe valuation of a fertilizer plant
with switching opportunities between two output guwots, ammonia and urea. The
following simplistic scheme depicts the requiregut) the basic transformation and

the outputs of such a facility with production nfliexibility:

| . ! H 1 |
i Ammonia ! Ammonia . Urea
. : > , — Ures

Natural ga

____________________________

» Ammonie

Operating mode ‘1’ of our model corresponds to apeg only the ammonia plant
and selling ammonia. Operating mode ‘2’ correspotwlsoperating both plants,
because the production of urea requires ammonarasy material, but selling only
urea. V{ is then the value of the total fertilizer plantevhcurrently selling ammonia,
and \, the value of the total fertilizer plant when cunttg selling urea. Switching

between the two products is done by ramping upoamdthe downstream urea plant.
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The investment cost for an ammonia plant with aacdp of 677,440 mt per
year (p) is estimated by industry experts to be aroundd$85 Since the production
of one metric tonne of urea requires only 0.58 mammonia, the corresponding
capacity of the urea plant is 1,168,000 mt per year The investment cost for such a
urea plant is around $340 m, so that the investroest for the total fertilizer plant
sums up to $890 m. As is illustrated above, thalpecton of urea requires both the
ammonia and urea plant.

The industry dynamics are such that in times of tmand for fertilizer, the
equilibrium price is supply-driven. The marginabgucers with the highest cost base
— typically based in regions of high gas prices ,(MW&stern Europe) or inefficient
facilities (e.g. Eastern Europe) — drop out untié tprices have been stabilised.
Estimates indicate that about 10% of the globah wapacity was closed in January
2009 (Yara, 2009). In times of high demand on ttleeiohand, prices are no longer
determined by the cost base but by the marginalkeviar the customer at full capacity

of the industry.

4.1  Econometric Analysis of Commodity Prices

As discussed in the previous section, the reabaptiodel is based on the assumption
that commodity prices follow geometric Brownian mat We assume the historic
volatility of the commodity prices is a reasonabsimate of the future volatility. An
analysis of the time series month-by-month over |t#s decade reveals an annual
volatility of 57% for ammonia and 40% for urea.ctn also be seen from Figure 9

that the price movements are slightly more marl@daimmonia. Furthermore, the

RESEARCH PAPER #1 —-70 -



figure suggests a high correlation between the types of fertilizer. Numerical

analysis confirms this with a correlation betweemenia and urea of 0.92.

Figure 9. Prices of Ammonia and Urea
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Average of prices indicated in industry publicatdar the applicable month (Source: Yara).
Ammonia fob Black Sea. Urea bulk Black Sea.

The graph also suggests that the volatility wafidrign the last two years of the data
sampling period compared to the years before. [Qutire period 1998-2006, the
annualised volatilities of ammonia and urea werd 48d 30% respectively while the
price volatility has been significantly higher ihet years 2007-2008, with 88% for
ammonia and 71% for urea. During the period 199852@mmonia and urea were
closely correlated at 0.90 and slightly less catesl (0.82) during the years 2007-
2008.

There is only limited evidence for estimating th@eenience yields of the
fertilizer prices, since futures or forward pricase not publicly available. Our
assumption for these consumption commodities tbesefs that the convenience

yields are positive and at the same level as thlefree interest rate so that the
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expected growth rate in the risk-neutral settingiis The main reason for choosing
the convenience yields to equal the risk-free @gerate is that operating costs are
assumed constant and a positive growth rate ofah@nodity prices would increase
the net cash flow as time passes, thereby produeargasingly higher profits which

could not be economically justified.

Table 3. Econometric Analysis of Commodity Prices

Ammonia Urea
Parameter estimation
Volatility (o) 0.57 0.40
Correlation () 0.92
Volatility (o) in the period 1998-2006 0.48 0.30
Correlation ) in the period 1998-2006 0.90
Volatility (o) in the period 2007-2008 0.88 0.71
Correlation ) in the period 2007-2008 0.82
Testing for (non-)stationarity
Augmented Dickey Fuller test
Null-hypothesis: Series is non-stationary
Settings: Include intercept; Include 12
lags to account for autocorrelation
p-value 0.9203 0.9977
Hypothesis of non- Hypothesis of non-
Conclusion stationarity can clearly stationarity can clearly
not be rejected not be rejected
KPSS test
Null-hypothesis: Series is stationary
Settings: Include intercept
p-value 0.0000 0.0000
Hypothesis of stationarii  Hypothesis of stationaril
Conclusion can be rejected with can be rejected with
certainty certainty

Underlying data: Monthly prices as an average wigsrindicated in industry publications
(Source: Yara). Ammonia fob Black Sea. Urea bulkdBlSea.
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We have determined above the parameters for thengfeie Brownian motion
processes of the commodity prices. In order to destassumption of random walk
ammonia and urea prices for basic validity, we tbstse commodity prices for
stationarity. The Augmented Dickey-Fuller (ADF) ttexamines the null hypothesis
that the time series has a unit root, which meheseéries is non-stationary, while the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test exa@s the opposite hypothesis,
that the series is stationary. Table 3 summarisegsest results and conclusions. The
ADF tests finds that the null hypothesis of unib®ts cannot be rejected for both,
ammonia and urea, which is confirmed by the KPS$ tesults stating that both
variables are non-stationary. A stationary procassh as the Ornstein-Uhlenbeck
process would therefore not be appropriate to madanonia and urea prices. It
might well be that more complex stochastic processauld improve the commodity
price modelling, such as introducing a stochastinvenience yield or stochastic
volatility. This is however beyond the scope oftreal options valuation.

The empirical application uses the following setommodity parameters.

Overview of Commodity Parameters

Current ammonia price X $251 / mt
Current urea price y $243  /mt
Ammonia convenience yield Ox 5.0 %
Urea convenience yield dy 5.0 %
Ammonia volatility Oy 57 %
Urea volatility Oy 40 %
Correlation ammonia/urea p 0.92
Risk-free interest rate r 5.0 %

1. Average of prices in November 2008

RESEARCH PAPER #1 - 73—



4.2  Plant-specific Parameters and NPV Analysis of the Fertilizer Plant

Natural gas is the main raw material in the producof nitrogen-based fertilizers. At
current market prices (Nov 2008) in the US, natgeas represents about 90% of the
operating cost of both ammonia and urea. The ptamuof one metric ton (mt) of
ammonia requires 36 mm Btu of natural gas. The m@n@ production cost amounts
to $26/mt. Assuming a gas price of $7 per mm Btig, amounts to a total operating
cost for ammonia (¢ of $278 /mt. In some countries, fertilizer comiggnactually
have fixed-price gas contracts with state-ownedobeys while companies in other
places are exposed to the volatility of the (sp@tural gas market. We assume a
constant natural gas price in our analysis. Forptteeluction of one metric tonne of
urea, 0.58 mt of ammonia are required (0.58 x 36 Btenx gas price + 0.58 x $26).
The conversion of ammonia to urea further requs&s mm Btu of gas and other
processing costs of $22/mt. Based on the gas pfi$&/mm Btu, this comes to a total
operating cost for urea Jcof $220/mt. The assumption here is that the aninon
required for the production of urea cannot be irtgmbbut is supplied by the own
plant. The following parameters are used for thiéhr analyses:

Overview of Plant Parameters

Operating cost ammonia production x ¢ $278 /mt ammonia
Operating cost urea production y ¢ $220 /mt urea

Capacity ammonia plant 1p 677,440 mt ammonia per year
Capacity urea plant op 1,168,000 mturea per year
Switching costammonia> urea $  $150,000

Switching costurea> ammonia &  $150,000

1. The switching cost has been estimated to casresppproximately to the lost profit on selling aire
(assumed gross margin of $60/mt urea) over a twebees non-productive time plus 50% in addition
for inefficient use of materials and energy durthg switching process. This is a “best guess” using
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opinions of participants in the fertilizer industsince precise calculations of switching costs raoe
available.

The net cash flow (NCF) can be calculated as conitynpdce less operating cost and
is the net profit/loss per metric ton. The presealte of the fertilizer plant selling
ammonia in perpetuity is given by:

Vi(xiy) = py(x/8, —c, /1) (49)
With a current net cash flow of -$27 per ton (=Z&B), the value is negative at -
$366 m. If the option to suspend the asset operaticavoid net losses is taken into
account, using equations (22) - (24), the assatevad $2,220 m. The suspension
option is very valuable ($2,586 m) at the curremtegpof ammonia and even justifies
an investment of $550 m for the ammonia plant. present value of the fertilizer
plant selling urea only is:

Va(x:y)=p,ly/3, —c, /1) (50)
At the current price of urea, a net cash flow o8 $&r ton (=243-220) is earned and
the present value of selling urea is $537 m. Whth $uspension option, the asset
value increases to $3,168 m, which compares toastment cost of $890 m. Hence,
a static NPV analysis, ignoring the suspensionooptsuggests that both ammonia
and urea are not worthwhile investments at curpeites. When the suspension

option is taken into account, however, each investns highly valuable.

4.3  Fertilizer Plant with One-Way Switching Option

Let us now compare this to the hypothetical casa feftilizer plant which is flexible
to switch from ammonia to urea but not vice veid@e quasi-analytical solution for

one-way switching as developed in Section 2.3 ipliegp to the fertilizer plant
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parameters. The asset valug, urrently selling ammonia but with the option to

switch to selling urea, amounts to $1,450 m. Thiedual to the sum of perpetually

selling ammonia (-$366 m) and the switching op{{h,816), given as;fn Table 4.

Table 4. Value and Switching Boundary of Fertiligéant with One-Way Switching

V1 [m USD]
X
y 100 200 251 300 400
100 -1,772 -649 -20 602 1,900
200 -283 409 896 1,414 2,564
243 571 1,043 1,450 1,908 2,968
300 -switchtoy - 2,042 2,326 2,689 4,659
400 -switchtoy - -switchtoy - 4,241 4,403 5,019
F1 [m USD]
X
y 100 200 251 300 400
100 640 407 346 304 247
200 2,128 1,465 1,262 1,116 911
243 2,983 2,100 1,816 1,610 1,315
300 -switchtoy - 3,098 2,692 2,391 3,006
400 -switchtoy - -switchtoy - 4,607 4,105 3,366
Switching boundary
X12 100 200 251 300 400
y12 276 381 440 498 619

V, is the asset value when currently selling ammdr)a F, is the option to switch from
ammonia (x) to urea (y), given by the last tern{Sh Switching boundary ¢xy:») indicates
when to switch from ammonia (x) to urea (y). Assatues and switching boundaries are
obtained from (5) and the simultaneous solutiofi6df (9), (11), (12), with B=0. Prices of x
and y are in $/mt.

The option to switch can be obtained by investiBg¢@m for the urea plant which

brings in the flexibility. It increases in value ti higher urea prices because

switching becomes more attractive and decreaséshigher ammonia prices because

switching becomes less attractive. The switchingioopis always positive and

RESEARCH PAPER #1

— 76—



exceeds the total asset value when ammonia prigedow. The asset value,V
selling urea, is given by equation (50) becauseagssime no opportunity to switch
from urea to ammonia in this model, and amoun®&5®7 m at current prices.

At the current ammonia price of $251/mt, switchtogurea is recommended
when urea surpasses a level of $440/mt. As wasiomext earlier, the switching cost
makes the option non-homogeneous of degree onkeircammodity prices which
results in a switching boundary where y/x is natstant, as is evident in Figure 10.

There is a minimum level of y, below which switohins never optimal. This

0
minimum is defined by the case x=0 with,(x =0) = Py (Slz‘*%—%j—y
By -1 r rJp,

wherefy is the solution to the quadratic equation of a-famtor perpetual call option

ony.

Figure 10. Switching Boundary for the FertilizeaR with One-Way Switching

600

500
/ /

400 /
y 300 /
200 =

100

0 T T T T T 1
0 50 100 150 200 250 300

X

Switching boundary (%,y1,) indicates when to switch from ammonia (x) to uf@a Prices
are in $/mt. Switching boundary is obtained from simultaneous solution of (6), (9), (11)
(12), with B=0, for parameter values of the fergli plant.
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4.4  Fertilizer Plant with Continuous Switching and Suspension Options

The same parameters are now applied to the modkel aentinuous switching and
suspension options. As defined above, i¥ the value for the total fertilizer plant
assuming the current operating mode ‘1’, sellingramia. Correspondingly, Ms the
value of the total fertilizer plant assuming thatrrently urea is sold. Using the
numerical solution procedure based on a trinonattice as presented earlier, the
asset values for different combinations of commpodtices and the switching

boundaries are shown in Table 5.

Table 5. Values and Switching Boundaries of FediliPlant with Continuous
Switching and Suspension Options

V1 [mUSD] V2 [m USD]

y 100 200 251 300 400 |y 100 200 251 300 400

100 | 1,196 1,968 2,433 2,944 4,003 100 | 1,197 1,968 2,433 2,939 3,994
200 | 2,558 3,032 3,374 3,795 4,748| 200 2,558 3,034 3,374 3,792 4,731
243 | 3,297 3,694 3,972 4,332 5180 | 243 | 3,304 3,701 3,978 4,334 5,169

300 | 4361 4,685 4,907 5,202 5,907, 300 | 4379 4,704 4,926 5215 5910
400 | 6,373 6,612 6,780 7,004 7,527] 400 | 6,415 6,654 6,822 7,041 7,553

F1[m USD] > [m USD]

y 100 200 251 300 400 |y 100 200 251 300 400

100 | 3,608 3,025 2,799 2,646 2,350 100 | 4,000 4,771 5,236 5,742 6,797
200 | 4970 4,089 3,740 3,497 3,095 200 | 3,025 3501 3,841 4,259 5,198
243 | 5709 4,751 4,338 4,034 3527 | 243 | 2,767 3,164 3,441 3,797 4,632

300 | 6,773 5,742 5273 4,904 4,254| 300 3,842 2,835 3,057 3,346 4,041
400 | 8,785 7,669 7,146 6,706 5,874 400 | 2,210 2,449 2,617 2,836 3,348

Switching boundary Switching boundary
xi2 | 100 200 251 300 400 | xo1 | 348 442 491 563 706

y12 234 250 263 279 317 y21 100 200 243 300 400

V, is the asset value when currently selling ammdr)aand V4 the asset value when
currently selling urea (y).Fand k, are the values exceeding the static present \aflilee
respective operating mode, i.e. the total valuefleXibility (switching and suspension).
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Switching boundary (%, y:») indicates when to switch from ammonia (x) to ufgaand
boundary (x;, y»1) indicates when to switch vice versa. Asset vahras switching boundaries
are obtained from the lattice approach based oh{240) and grid spacing of i=50, j=50,
k=250,At=0.2. Prices of x and y are in $/mt.

Figure 11. Value Surface of the Fertilizer PlanthwZontinuous Switching and
Suspension Options

V1,V2
2. 1010 p=

Asset values in $ as a function of x and y.(dark colour) is the asset value when currently
selling ammonia (x), and /(light colour) the asset value when currentlyisgllurea (y).
Switching boundaries are indicated as lines whexeeu line is the boundary x yi1,) to
switch from x to y and the lower line the boundéty, y.;) to switch from y to x. Results are
from lattice solution based on (21) - (40) for paeter values of the fertilizer plant and grid
spacing of i=50, j=50, k=25@t=0.2.

Figure 12. Switching Boundaries for the FertiliBéant with Continuous Switching
and Suspension Options
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Straight (dotted) line as reference for x=y. Upliee represents boundary, %) to switch

from ammonia (x) to urea (y), lower line represembsindary (%i,Y»1) to switch vice versa.
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Switching boundaries are from lattice solution loage (21) - (40) for parameter values of the
fertilizer plant and grid spacing: i=50, j=50, k€23t=0.2. Prices are in $/mt.

The results above can be shown graphically in ¢inen fof value surfaces for\and
V, as a function of the commodity prices, togethehwhe switching boundaries. The
asset value increases both with x and y, as sHmultie case for an option to choose
the best among two alternatives. The value sunfepeesents the expected “options-
like” shape, with smooth transitions between openaand suspension as well as
between the two alternative operating modes, stgghia the switching boundaries
only by the switching cost. Vand \, should not be different by more than the
switching cost because otherwise switching wouke talace immediately. The fact
that Vi and \4 differ by more than the switching cost for somenbmations of x and

y provided in the table is caused by the impreaismroduced by interpolation within
the numerical solution grid which is necessaryduieve asset values for any x-y-
combination.

At current prices of $251 and $243 for ammonia areh, respectively, the
flexible fertilizer plant is valued at $3,972 m.i$ltompares to a present value of the
inflexible fertilizer plant of -$366 m when sellimgmmonia alone, or $537 m when
selling urea alone, so that the total value ofiligity (switching and suspension) is
worth $4,338 m for an ammonia producer and $3,44arra urea producer. The asset
value with continuous switching and suspensionongtialso exceeds the asset value
where only one-way switching is possible and ngsuosion option is available, as
calculated before ($1,450 m). Thus, the optionsndifmited switching and temporary
suspension add about 270%. Moreover, the real aalet significantly exceeds the

investment cost of $890 m for the total fertilipdant.
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An analysis of the switching boundaries(yi2) and (%1,Y»1) reveals that the
boundaries are far apart when commodity pricedoavethen narrow with increasing
prices and finally drift again apart for very highices. Generally, the boundaries
diverge with increasing commodity prices becauséhefincreasing variance of the
log-normal prices, reflecting the higher uncertairih the presence of operating costs
and a suspension option, however, a positive ret ftaw in the alternative operating
mode is a necessary requirement to trigger swigghia. the price level triggering the
switch must at least exceed the operating cost &fiect is highly relevant for low
prices and less relevant for higher prices. Funtioee, different capacities in the two
operating modes cause the boundaries to not mowg dhe 45° line. The combined
effect of the aforementioned phenomena producesshiape of the boundaries as
illustrated. Comparing the optimal switching beloavi with that of the asset with a
one-way switching option reveals that switching wecat significantly lower price
levels. Hence, the flexibility of unlimited switefg is valuable and the switching

triggers indicate more frequent switching.

45 Sensitivities and Discussion

We compare the valuation results for the fertiliptant with no flexibility, with
suspension option but no switching option, with-@ray switching but no suspension
option, and with continuous switching and suspensigtions. These asset values are
given in Table 6 for three scenarios reflectingedént volatilities and correlation
because ammonia and urea were much more volatildess correlated in the years

2007-2008 compared to the period 1998-2006.
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Table 6. Comparison of Valuation Models and SengitAnalysis

x =251 USD/ton; cx =278 USD/ton;ip= 677,440 tons p.a.
y =243 USD/ton; cy = 220 USD/ton;2p= 1,168,000 tons p.a.
dx =08y =0.05 r =0.05; S12 = S1=150,000 USD

Inflexible asset Asset with continuous
with suspension Asset with one-way switching and
Sensitivities Inflexible asset option switching option suspension option
0x=0.57,0y=0.40,0=0.92| V1 [m USD] -366 2,220 1,450 3,972
(Period 1998-2008) | v, [m UsSD] 537 3,168 537 3,078
0x=0.48,6y=0.30,0=0.90 V1 [m USD] -366 1,988 1,262 3,397
(Period 1998-2006) | v, [m USD] 537 2,599 537 3,401
0x=0.88,0y=0.71,0=0.82| V1 [m USD] -366 2,729 2,719 5,899
(Period 2007-2008) | v/, [m USD] 537 4,311 537 5,906

V, is the asset value when currently selling ammani \ is the asset value when currently
selling urea. x is the current ammonia price arid the current urea price, and ¢ are the
respective operating costs, and p the annual capacities, ando, the volatilities,p the
correlation, r the risk-free rat&, andd, the convenience yields;3s the switching cost from
ammonia (x) to urea (y) angSor switching vice versa.

Values of inflexible asset are obtained from (5) &r) with A=B=0. Values of inflexible asset
with suspension option are obtained from (22) a#).(Values of asset with one-way
switching option are obtained from (5) and (7) wi&h0 and the simultaneous solution of (6),
(9), (11), (12). Values of asset with continuoustaiting and suspension option are obtained
from the lattice approach based on (21) - (40)guwtispacing of i=50, j=50, k=25@\t=0.2.

We find that the option to suspend operations &Ri$86 m to the value of a
fertilizer plant selling ammonia only (-$366 m), Wehthis option is worth $2,631 m
for a fertilizer plant selling urea only ($537 nThe option to temporarily suspend
operations is a practical management tool if partoentracts are conceived
intelligently. Here, the real options approach |uleg an asset value which
incorporates more realistic management behaviaur #ssumed in a DCF approach.
When continuous switching opportunities between ammand urea are available in
addition to the suspension option, the fertilizéanp is valued at about $3,972 m
which is a surplus of about 80% on ammonia onlyaalt 25% on urea only.

When the sampling period for the commodity priceapseters is split into a
period 1998-2006 and a period 2007-2008, unceytagtiower in the former and

markedly higher in the latter period. As a consegee the asset values with
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flexibility are lower in the former period and sificantly higher in the latter. The
combined effect of higher volatility and lower oelation makes the flexible asset
comparatively much more attractive than the infxione. The asset value with
continuous switching and suspension option is \hlaé about $3,400 m if the
volatilities and correlation are based on 1998-2886, and at about $5,900 m based
on 2007-2008 data, which is a difference of $2,500In this comparison, only
volatilities and correlation are changed, not therent price level. This huge
difference emphasizes how sensitive these optieecbaalues are to changes in the
measures of uncertainty. An investor has to cilfica@valuate whether these
volatilities are expected to persist in the future whether this is a temporary
phenomenon based on market turbulences. The estimatf expected future
volatility and correlation is critical and shouldeally combine insights from historic
data with the expected commodity-specific marketasyics. It is also interesting to
observe that when uncertainty is comparatively |aive fertilizer plant with
suspension option and selling ammonia only is wartre than the one with a one-
way switching option to urea and no suspensioroapfut when uncertainty is high,
the value of the latter grows faster than the farnmidne explanation is that when
uncertainty is low and the current net cash flowagative, significant value is gained
from avoiding losses on selling ammonia, while tipside potential from switching
to urea grows fast when uncertainty is high. So d¢heice between a suspension
option and the option to switch from ammonia toaudepends on the expected
volatilities and correlation. The value of the exible asset is indifferent to changes
in volatility and correlation because no action dan taken in response to price

movements.

RESEARCH PAPER #1 - 83—



The asset value with continuous switching and susipa options is about

four times the investment cost. Even the assetegawithout switching but with a
suspension option are over three times the invedtroest. We identify the non-
stationary characteristic of the two commodity esicin combination with the
constant operating cost as one main reason foe thigh values because the upside
potential is huge while the downside is limited thg suspension option. As stated
earlier, we refer in our example to a fertilizeaq in an environment where natural
gas is sourced on a long-term contract at congtiareés which justifies the constant
operating cost. The price of natural gas on thetfsmarket, on the other hand, is
volatile and fertilizer prices are driven by thecprof natural gas in the medium- to
long-term. Hence, if natural gas is not availalileanstant prices, the operating cost
would be stochastic and correlated with the fesiliprices, thereby introducing a
third source of uncertainty and possibly changimg ¢option values. One conclusion
from this is that the availability of a gas sup@y constant prices makes an
investment in a fertilizer plant highly attractibecause it offers significant upside
potential (increasing fertilizer prices at constaperating cost) and the option to limit
the downside risk (suspend if fertilizer priced falow the constant operating cost).
The assumption of no operating and maintenances cdgting suspension, and
ignoring competitive and customer behaviour, furtbentribute to the high asset
values. Lattice inaccuracies certainly exist, kan be expected to be small, based on
our analysis in Section 3. Although we have shotatitically that the commodity
prices are non-stationary based on the 1998-2068 ttee comparatively high asset
values could be an indication that decision-makerght actually have a different

perception on the commodity price behaviour.
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5 Policy and Strategy Implications

There are a number of stakeholders whose decisiothdehaviour might potentially

be influenced by the research results.

Figure 13. Stakeholders in the Project

Cmesor > (overm

Fertilizer plant
Policy makers

Parties having an interest in the way a fertiliznt is set up or operated.

Plant
supplier

Investors

The numerical results have shown that at curreioegrit is worth supplementing an
existing ammonia plant by a downstream urea plaatrder to have the flexibility to

switch between the two products. For higher prides will hold true even more.

Only if the commodity prices go down so that a pable operation is no longer

possible should the investor not add a urea plam. important for the investor to

keep in mind that ammonia and urea prices are Yigbkrelated so that their

diversion in the long-term is limited. The mainwnis to reap the benefits of the
product choice are low switching costs and flexgl@ply contracts, meaning that the
company should not be stuck in rigid contractsifayat to supply a specific product

to contract customers, if it is better to sell thieer product.
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Operators

An obvious task of the operators is to minimise tperating costs as well as the
switching costs in order to make the most of thailable flexibility. Furthermore, the
current supply commitments and inventory levelsusdhdoe monitored continuously
in order to assess the practical level of flexifiliThe operational management should
be aware of the current market prices and regulapldate expected future prices.

Similarly, expected volatilities should be updaitedegular intervals.

Plant Suppliers

The above results prove a real opportunity for ppsauppliers, because it supports the
idea of more sophisticated (and expensive) asshesstrategy implication here is to
aggressively market more flexible assets, focusingthe financial benefits to the
investor. Internally, the asset could be optimiedlexibility, that is focusing design

on minimising downtime and costs of switching.

Customers/Commodity Traders

A commodity trader focused on arbitrage is notredgeed in long-term contracts and
therefore is not in conflict with the increasedxitelity request of the fertilizer
supplier. Other traders might have long-term custoagreements which they need to
back up by long-term supply agreements with thedpcers. Therefore they might
insist on long-term supply commitments for a speg@foduct or otherwise might turn

to single-product producers.
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Policy Makers

The interest of the policy makers in this contesin cbe considered to be the
functioning of markets. Let us consider the exangdle shift in fertilizer demand
from ammonia to urea. The end users and therefierpdlicy makers would welcome
a quick response in supply in order to gain fromdo prices. This will happen much
faster if the assets are capable of multi-prodpetration. The political support might
be put into place for instance by giving preferenoepermitting processes to

extending current facilities to incorporate flekiyiover new inflexible investments.

6 Conclusion and Areas for Future Research

Flexibility between output products is particularglevant in volatile commodity
markets. In this paper, we value an operating astletthe option to choose the best
of two commodity outputs. We develop three outpuitching models in the presence
of operating and switching costs, first a quasiigral solution for continuous
switching, second, a special case of the formerofa-way switching, and third, a
numerical lattice solution for continuous switchingith suspension options.
lllustrative numerical cases demonstrate that thasiganalytical solution and the
lattice approximation provide near identical resdittr the asset valuation and optimal
switching boundaries in a comparable setting. Whike switching boundaries are
found to narrow as prices decline, this is différienthe presence of operating costs
and temporary suspension when the thresholds égivferdow enough prices.
Applying these models to a fertilizer plant withtput flexibility between

ammonia and urea, the value of flexibility is sfgrant despite the high correlation

between the two alternative commodities and alsmeeds the required investment

RESEARCH PAPER #1 - 87—



cost for the specified parameters. The asset valbghly sensitive to volatilities and
correlation, and therefore depends on the data fmseelstimating these parameters.
The results also demonstrate that the possibifitiemporary suspension shapes the
asset value surface for low spreads between conmynadies and operating cost, and
this option is a practical, valuable management. tAa important implication for
policy-makers is that flexible assets contributa iast reaction of markets to changes
in demand and therefore constitutes a strategy hwisikems to be worthwhile
supporting.

The results and interpretation also raise soméndurtesearch questions. In
particular, the overall asset value seems to lterdtigh compared to the investment
cost, driven by non-stationary commodity prices dombination with constant
operating costs. In particular, the price of ndtgas as the input to the process and
main cost driver was assumed constant. A stochgasigrice can be expected to have
a positive correlation with fertilizer prices, pd®g reducing the asset value. Future
research might also relax the assumption of no t@a@mce costs during suspension,
and consider possible reactions of customers amdfoipetitors to product switches.
Further applications of the continuous rainbow aptmodel include alternative uses
of other facilities, such as multiuse sports oregainment or educational facilities,
transportation vehicles for passengers or cargating agricultural crops, and solar
energy for electricity or water desalination. Arathopic for future research is to
extend the quasi-analytical solution for continuawsitching to incorporate the

suspension option.
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commodities when their price spread follows anhanitic mean-reverting process. The
co-integration of the two variables effectivelyoalls the complexity to be reduced from
two sources of uncertainty to only one by focusamgthe spread, which is why the
model can also be applied to continuous entryfepdblems on a single mean-reverting
variable. We provide a quasi-analytical solutionvadue this real rainbow option and
determine the trigger levels which justify switchibetween the two operating modes by
incurring a switching cost. The risk-neutral valaatapproach distinguishes between the
different risk and discount factors which provesparticularly critical in the context
of mean-reversion. All parameters of our solutiod @stimated from empirical data. We
apply the theoretical model to value a polyethylptent based on the spread between
polyethylene and ethylene. The spread is showretstationary and the parameters of
the stochastic process are estimated by OLS regressid tested for validity. The
sensitivity analysis reveals important implicatioftr the valuation and operating
decisions of investors in a flexible plant, botlpeeding on the extent of mean-reversion
in the value-driver.
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1 Introduction

Industrial and agricultural applications frequengiyhibit inherent options to choose
between the best of two commodities. If these ogtiare well established, the
probability is high that the markets of these cordities are co-integrated to some
degree. If prices drift apart, suppliers would e the option and switch from the
less favourable to the more favourable productically by incurring a switching
cost, until the equilibrium is re-established. Tmsarket behaviour is reflected in a
mean-reverting price spread. In these cases, daetor valuation problem can be
reduced to a problem with a single stochastic fac@o-integrated markets are found
particularly when commaodities have similar appiimas and can be substituted rather
easily for one another or when the production aisbne commodity is heavily
influenced by another commodity. Examples include(Bulk) and wet (oil) markets
in the shipping industry (see Sodal et al., 20@@mmercial and residential uses of
real estate, industrial plants with flexibility dine product mix, refining margins and
other conversion processes in the chemical indusingh as the production of
polyethylene which is created by polymerisation etlfiylene. Both ethylene and
polyethylene are traded products, so that the asiore can be considered a real
rainbow option. The valuation of this rainbow optibased on the conversion spread
will be the subject of the empirical application.

Kulatilaka and Trigeorgis (2004) discuss the geneggproach of valuing
switching options, including options additivity aadymmetric switching costs. Stulz
(1982) and Johnson (1987) develop closed-form ismisitfor a European option on
the maximum or minimum of two or more assets. Asifamalytical solution to a
two-factor problem, where the option is not homagen of degree one in the

stochastic variables, is provided by Adkins andd8ax(2010a) and extended to a
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general switching model for two alternative enengyuts (2010b). Dockendorf and
Paxson (2009) develop a real option model on tlet betwo commodity outputs
with continuous switching, including the option temporary suspension, and apply
the model to value a flexible fertilizer plant. Alf the above mentioned models are
based on uncertainty represented by geometric Bamamotion.

The Schwartz (1997) analysis on the behaviour ofimodity prices reveals
that many commaodity prices exhibit strong mean rgwa. Also, Geman (2007) tests
energy commodity prices for mean reversion andsfitiét oil and natural gas prices
are mean-reverting during one period and randonk aating another. Tvedt (2000)
values a vessel with lay-up option in a shippingkeatwith freight rate equilibrium
and acknowledges in his conclusion that mean-rereishould be considered in the
freight rate dynamics to improve the model for picad valuation. Tvedt (2003)
develops an equilibrium model for freight rates @uggests mean-reversion as the
underlying stochastic process.

The option pricing theory on co-integrated asseis tbeen explored by Duan
and Pliska (2004), who value finite spread optionsstock indices subject to time-
varying volatility by means of Monte Carlo simutats. Dixit and Pindyck (1994)
provide a solution to the investment problem oraaset which follows a geometric
mean-reverting stochastic process, i.e. where #énable has an absorbing barrier at
zero. Option valuation on mean-reverting assetapglied by Bastian-Pinto et al.
(2009) to the Brazilian sugar industry by approxim@ the prices of sugar and
ethanol as discrete binomial mean-reverting prasessid determining the value of
switching between the two commodities within a biate lattice option framework.

plants on the basis of the spark spread with meaerting variations in the short term
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and an arithmetic equilibrium price in the longrterThey model the spread directly
from empirical data instead of considering elediriand natural gas price separately,
because the spread is considered the driver oftanuty.

Sodal et al. (2007) value the switching option fmmbination carriers
between the co-integrated dry and wet bulk markgtsodelling the price spread as
mean-reverting. The approach is based on the Belleggation which uses for the
solution of the maximisation problem a ratd¢o discount the future option values.
However, such a discount rate cannot be reasomalilpated because of the specific
risk characteristics of the options. Sodal's emairiapplication confirms that the
option value is highly sensitive to this discouatep. The option value almost triples
if p is reduced from 0.15 to 0.05. Furthermore, thé ¢lasvs of the static project with
no switching option, which include non-stochastislt flows, have been discounted
at the same rate. We develop an option model based on contingenitrsl and the
risk-neutral valuation approach, which only inclagmrameters that can be estimated
from empirical data.

The remaining part of this paper is organised devig: Section 2 introduces
the characteristics of the mean-reverting spreadyiges the present value of
perpetual cash flows without a switching optiongd @hen develops a model for the
continuous rainbow option. It also includes a congoa to the Sodal model and
demonstrates the advantages of the new model.o8e8tiapplies the continuous
rainbow option to the valuation of a polyethylenanp based on an econometric
model of the polyethylene-ethylene conversion ghre&pecific and general
implications are discussed in Section 4. Sectiocobcludes and raises issues for

further research.
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2 Valuing the Switching Opportunity

2.1  Modéling the mean-reverting spread

We assume that the asset can be operated in tvieredif modes where each
operating mode is associated with one commoditg fléxibility to switch between
two operating modes — the base mode (denoted pynd the alternative mode
(denoted by '1) — means that we are faced withunaerlying uncertainties, which
are the prices of the two commodities. In co-indéed markets, however, the prices
of the two commodities are bound to one anotheednynomic reasons, so that the
complexity can be reduced to only one underlyingeutainty by modelling the
difference between the two commodity prices as amreverting stochastic process.

Let (p) be the weighted spread of the commoditggs;

k
P=py _k_opo , (1)
1

where p and p are the commodity prices in the base and altarmmathode,
respectively, and kand k the capacities. The capacities enter into the temuan
order to account for the fact that product unitd aantput capacities of the asset may
be different in the two operating modes. Henceuwiéise the spread with regard to
the product sold in the alternative mode. The spoddwo co-integrated commodities
can be both positive or negative which is why theamreverting process is modelled
as an arithmetic Ornstein-Uhlenbeck process:

dp=n(m-p)dt+odz, (2)
wheren is the speed of reversion, m the long-run meathefspreads the standard
deviation and dz a standardised Wiener processaVde the notion of volatility

because volatility is commonly used to describestiamdard deviation of percentage
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changes in stock whiles for the arithmetic Ornstein-Uhlenbeck process hie t
standard deviation in absolute terms. The expecife of p at time t is given by:
Elp], =m+(p-m)e™ 3)

and the variance of:p

varph =& fi-e7r). @

Under risk-neutrality, the expected growth of th&ckastic process given in (2) must
be (r - 3) pdt, where r is the risk-free interest rate @rid the convenience yield. The
risk-neutral process of p, denoted byip then determined by:

dp" =(r-9)p" dt+odz", (5)
Let u be the instantaneous expected return of p, wisi@ssumed constant, amdhe
expected increase in the level of p. The converigied is then defined by:

n(m - p) _ (6)
p

O=U—-Ad=lU-

Inserting the convenience vyield from (6) into (3pydes the stochastic process of p

under risk-neutrality:

dp*=[nm—(u—r+n)p*] dt +odz . (7)

2.2  Discounted cash flow with no flexibility

Assuming no operating flexibility, the asset vaisieletermined separately for each of
the two operating modes as the discounted resgectish flow. The cash flow and
therefore the value of the asset in the base apgnatode is nil by definition because
the base mode is considered the reference pointalaing the operating flexibility.

The cash flow in the alternative operating modegieen by the spread less the
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additional operating cost,(p-c). The additional operating cost (c) is the gineed

difference in variable operating cost between w@ dperating modes:

k
c:cl—k—oc0 : (8)
1

The discount factor for stochastic variables cdasi a risk component and a time
component. For a geometric Brownian motion proct#ssyvariance over time is not
bounded and the risk discount factor is compoundethe same way as the time
discount factor. This is different from the meame®ing process, where the variance
over time is bounded and the applicable risk diatéactor cannot be compounded in
the same way as the time discount factor. Therefoean-reverting cash flows are
best discounted by discounting the equivalent msdtral cash flows by the risk-free

interest rate, as suggested by Bhattacharya (1943).M =™

N+u-r

, then from

equation (7):

dp*=(n+p-r)(M-p)dt+odz*. (9)
In analogy to equation (3), the expected value of fhe risk-neutral scenario is then
given by:

E[p*]t =M +(p-M)e -k (10)

The risk-neutral cash-flow could either be discednat the risk-free rate of return for
an asset lifetime of T years, or be discountederpgtuity at a higher rate taking into
account the physical deterioration of the assehénform of exponential decay. We
take the latter approach since we also need toidemsechnological, political and
environmental risk. Lek be the arrival rate of a Poisson event which ipowates

both physical deterioration and technological rskthat the risk-neutral cash-flow is
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discounted at the rate () The asset value in the alternative mode witlsoutching

opportunity is then:

m p C

+ —_
(r+7\)(1+“+)\J H¥n+A T+
n

Py =k, (B ] -c)e =k, )
0

The discounted cash flow consists of three paitstl¥; the long-term average (m) is
discounted at a rate of @¥1+(u+i)m). This discount rate increases with the
systematic risk in the stochastic fluctuations ofrgpresented by, and decreases
with the speed of mean-reversion),(because the faster p returns to its long-run
average the faster the risk dissipates. Wjt»(u+1), the discount rate is hardly
affected byu. Secondly, the current value of p is discountedpat+i) which
corresponds to discounting tihedecaying exponential function of p at the discount
rate p and accounting for deterioration and politicalteical risk. Thirdly, the
additional operating cost is discounted at the-fisk rate augmented by the Poisson

probability.

2.3 Continuous rainbow option

We now allow for flexibility between the two opdraj modes. In the base mode, the
commodity spread is foregone (zero cash flow) hmdlternative mode, the spread is
earned and variable operating costs are incurrgg,) \dnd \i(p) represent the values
of being in the respective operating mode, each thi¢ option to switch to the other
mode. The no-arbitrage approach can be used topspartial differential equations
describing the value functions. For this purpospos#folio comprising the asset and

quantities of the underlying process is shown tofree of stochastic components
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which therefore needs to earn the risk-free ratestifrn. For V4, the portfoliott is

established as:

=V, % (12)
The change in the portfolio value is given by:
dn:dvo—%dp—ép%dt, (13)
with
dv, = Ny dp+ 19%Vq dp® = Ny dp+102 62\/20 dt. (14)

op 2 op? op 2 0p
Inserting (14) into (13) shows that no stochastienponents (dz) are left in the
equation, so the portfolio must earn the risk-fr@e of return (the asset V must earn

the deterioration risk in addition):

2
1 26V°o|t épa 0dt—(r+)\)V0dt—rp%dt (15)
p

op° op

dmt=

Regrouping (15) provides the partial differentiquiation for \4:

aV,
-d)p—2 - ANV,=0
2" op? )p o (r"' ) 0=Y, (16)

and using the convenience yield from equation (6):

1. 0%V,

B,
2% o +[nm—(u—r+n)p]a—;—(r+k)vo=0- (17)

The same procedure is used to determine the pditiatential equation for ¥, the
asset value in the alternative operating modeedéids to be considered that a cash

flow of ky(p-c) is earned:

2
%0_266_‘:\)214_[“"‘—]_ H=r+n p]— r+)\) +k(p C)Z (18)
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A more general form of the above PDEs is obtaineg $ubstituting

a=2(r-p-n)/o?, b=2nm/o? andd = - 2(r +A)/o? . Equation (17) becomes:

2
0V, |
op?

(ap+b)% +dV, =0, (19)
op
With u>r andn>0, parameter (a) will always be negative. For a&@mpke (1956, p.

416) suggests substituting, = F(x) andx = \/H(p+§j to obtain:

0°F OF d__
E_X&_EF—O. (20)

Appendix A demonstrates in more detail how the abeguation is obtained and how

it can be further transformed into the following Wée equation by substituting

1

1,2
F= G(x)e4x (see also Kampke, 1956, p. 414):

2 2
sl
X

Spanier and Oldham (1987, p. 447) establish that abhove Weber differential
equation is satisfied by the parabolic cylinderchion of order (-d/a) and argument

(x) and (-x), represented ky_,,(x) andD_, (- x), so that G(x) is determined by:
G(x)=AD_ya(x)+BD_ya(-x), (22)

where A and B are constant parameters and the @aralylinder function is defined

by:
v+2 _ 2 2 _ [oVv+3 ﬁ — 2
D, ( ):EG 2 MTaaMm —X,E,X_ +£[—Iﬂxe 4M 1—V:—3X— , (23)
2 r(l“’J 22.2) 2 r(_vj 222
2 2

with M the Kummer function:
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a —a+k)rb
R T A LA

The asset in the base mode is therefore valued as:

V(p) = (AO EID_cVa(\/H(p+§D +B, EID_CV{— \/H(p+ng ei[ﬁ(m*;]f (25)

The value of the asset in the alternative operatiogle is determined by the non-

z 24
K (24)

homogenous partial differential equation (18), isdution to which consists of the
sum of the general solution to the homogeneous &MEa particular solution to the
non-homogeneous PDE. A particular solution to tke-homogeneous equation is the
present value of the perpetual cash flagpic) which has already been determined in

equation (11), and is repeated below:

- P mn _C
le(p)_kl(li"'r]"')\+(r+)\)(li+r]+)\) r+)\) (26)

With the substitutionss =

andWZK{ mn ¢ j the value

M1+ A (r+A)(u+n+A) r+x

of the asset operating in the alternative modeisrthined by the function below:

1 b)Y
V,(p) = [Al DD_OVa(\/H(p +§D +B, DD_d/a(— \/H(p +§Dje4[ﬁ(p+a)] rulp+w
(27)
The reader can verify that the solution to the hgemmus partial differential equation

based on a Bellman equation with the unspecifiedalint ratep, as provided by

Sodal et al. (2007), can be transformed into thevabequation by substituting

n-n+u-r, mo andp - r in the former, where notations apply as used

n+u-r
in this paper. This shows that our model carefdlstinguishes between the different

sources of risk and that these can be determineoh fempirical data. These
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advantages are illustrated in more detail in a migakapplication in the next sub-
section. It should be noted that the Sodal solutiotine non-homogenous differential
equation cannot be transformed in a similar wapuo non-homogeneous solution
since all stochastic and non-stochastic componeintse perpetual cash flows have
been discounted uniformly at the ragiein the former solution. We have solved
equation (20) by transforming it into the Weber &tpn, as suggested by Kampke
(1956). Kampke also provides a direct solution2@) (n the form of a series function.
In Appendix B, we show that this alternative pr@sdhe same valuation result but
appears to be less transparent and straightforward.

As Kulatilaka and Trigeorgis (2004, p. 195) st#éte, "valuation of the flexible
project must be determined simultaneously withdp#mal operating policy". So we
can expect the coefficients A and B to depend ensthitching boundaries given by
the spread levels ofypand p, where p triggers a switch from the base operating
mode to the alternative operating mode andiipe versa. In order to determine the
coefficients, we investigate the general form & t#alue functions. The option value
of switching from the base mode to the alternathade needs to increase with the
spread, since the spread can only be earned mitdreative mode, and tends towards
zero for large negative spreads. When operatintyenalternative mode and earning
the cash flow p-c, the option to switch and forélge cash flow needs to increase in
value with lower (more negative) p-values and sticag¢ almost worthless for very

high values of p. Figure 1 below depicts the gdrferan of the value functions.
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Figure 1. General Shape of the Value Functiopand \4
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Asset values as a function of the spread (p)isvthe asset value in the base modethé
asset value in the alternative mode. Switching flease mode to alternative mode gtfpr a
switching cost of §, reverse switching at dor Sy, Slope of \{ obtained from equation (26).

The parabolic cylinder functionfx) tends towards infinity for large negative vaue
of x and towards zero for large positive x fornat. It is a monotonically decreasing
function in x for (v < -0.20494) and has one logaximum for (-0.20494 < v < 0).
The exponential multiplier term in the option valmeV, and \, makes the option
values monotonically increasing and decreasingecsely for all v<0. For ¥, the
option value of switching increases with p and Ibees negligible for large negative
values of p. Hence Amust be zero andgBositive. For , it is the other way round,
so that A must be positive and;Eero.

Switching between operating modes occurs when thieevin the new
operating mode exceeds the value in the currentenbgdthe switching cost. These

rules are formalised by two boundary conditions,

Vo (Py) =Vi(Pu) —So1, (28)

Vi(PL) =Vo(PL) =S, (29)
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where 3; and S are the respective switching costg.awd \, must also comply with

the smooth pasting conditions at the trigger lev@lsaand p:

Vo (PH) _ Vi (pw)

, 30
op op (30)

Vo (p) - oV;(p.)
ap op

(31)

The four equations, (28), (29), (30), (31), enaldeto determine the four unknown
parameters, 8 A;, py and p. This system of simultaneous equations can besdolv
directly with appropriate software (e.g. Excel)n& the simultaneous equations are
solved numerically, we have a quasi-analytical smhu Appendix C provides the

detailed equations.

24  Comparison to the Sodal et al. (2007) model

We now compare our model in a numerical applicatwith the model by Sodal et al.
(2007) who values the flexibility to switch betwedrny and wet shipping markets
based on a mean-reverting freight rate spread.|Sstaounts all future cash flows at
a constant rate which is the rate of return required on the asSeice the asset
incorporates option characteristics, this discaatg can, however, not be specified
empirically and would not be constant over time.r&bwer, this general discount rate
p has been universally applied to all cash flowsesipective of whether these are
stochastic, deterministic or constant. In conttaghis, we have used the risk-neutral
approach in deriving the option model and are floeeeable to differentiate between
risky and risk-free cash flows. More precisely, explicitly take into account the
risk-free interest rate (r), the required instaetars return on the stochastic variable p

(w), and technological risk or deterioratio). (
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When Sodal et al. (2007) argues that the discaatetpr"can be seen as the
sum of a real interest rate, r, a rate of depneciak, and a possible adjustment for
risk" (p. 187), it is implied thalp:r+)\+(u—r):u+)\. Our purpose here is to
demonstrate that it is important to differentiaetvieen the different discount rates
and risk factors. Therefore, we use the same ecapidata as Sodal et al. (2007) and
vary u, r andA in such a way that they are always compatible witkir base case

assumption op=0.10.

Table 1. Comparison with the Sodal model

Sodal model| New model for cases compatible wifi=0.1
Base case I I ]

Parameters

General discountrate  p 0.10

Required return u 0.10 0.10 0.08

Risk-free interest rate r 0.10 0.05 0.05

Deterioration A 0.00 0.00 0.02
Solution

Upper switching trigger [$ per day] 4,969 4,969 4,968 4,968

Lower switching trigger p [$ per day] -4,230 -4,230 -4,228 -4,228

Value of flexibility Vo(p) [$ million] 5.432 5.432 10.771 7.72¢

Empirics based on Sodal et al. (2007) who valudléxbility to switch between dry and wet
shipping markets where the freight rate spread (@~ p.e) is modelled as an Ornstein-
Uhlenbeck mean-reverting process.

Option values and switching boundaries are obtafreed equations (25) and (27) withy#0
and B=0 and the simultaneous solution of equations (Z89), (30) and (31) for the
respective parameter values. Parameters: Curréunt wd the spread: p = $0 per day; Long-
run mean of p: m = -$5,400 per day (annualised bitiptying by 330 days); Speed of mean-
reversion of pm=2.4; Standard deviation of g = $22,600 per day (to have the same
annualised basis as Sodal, we also multiplpy 330 days although we would prefer to
multiply by the square root of 330); Differencedperating cost: ¢ = $0 per day; Capacity of
p: k1 = 1; Cost for switching from wet to dryy; S €40,000; Cost for switching from dry to
wet: S = €40,000.

Table 1 shows that our model exactly replicatesr thesults when we choose
pu=r=0.10, so the underlying assumption in the Soaadlel must be=p=r. In reality,
however, the required return on the stochasticgg®of p must be higher than on a

risk-free cash flow ((>r). We then choos@=0.10 and r=0.05 and find that the
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switching triggers hardly change but the asset evadimost doubles. This huge
difference is mainly due to the different approacbediscounting the mean-reverting
spread. The Sodal model implies that the risky cels from the spread are
discounted at the ratp, which represents the required return accordinght®
fundamental equation of optimality (Bellman equa}jotimes the discounting time
period. In the long-run, the mean-reverting spresadis towards its long-run mean
and the total variance is bounded, approackfiign. Hence, the total risk from the
stochastic fluctuations in the spread is not propoal to time. Compounding the risk
discount factor in the same manner as the intea¢stis not correct. The future cash
flows have thus been discounted too heavily inSbdal model. We have shown in
equations (5) - (7) how to transform the risky syre¢o the risk-neutral form which
can then be discounted at the risk-free rate r trres.

If we now choos@=0.08 and\=0.02, so thap=0.10 still holds, the asset value
is about 30% lower compared to the casqe®.10 and\A=0.00. In this example,
physical deterioration weighs heavier than riskdatipent. Our conclusion from the
comparison with the Sodal model is that it mattins real options with mean-
reverting stochastic variables how interest raigk-adjustment and deterioration
contribute to the total discount rate, and thani@ersal discount factor might produce

misleading results.

3 Empirical Application: Valuing a Polyethylene Plant

In this empirical section, the continuous rainboptian is applied to determine the
market value of a polyethylene plant which convettsylene into polyethylene. The
latter product is a plastic which is widely usedpipes, film, blow and injection

moulding applications and fibres, while ethylenetl® main product from the
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petrochemical naphtha cracking process. We asshaetlhe operating company
disposes of a continuous supply of ethylene, eitlyawvay of own upstream facilities
or by buying from the open market. Our purpos® iddtermine how much value can
be generated over and above the present valuehgfeee sales by having the
opportunity to convert ethylene into polyethyleAg first glance, this seems to be an
input/output option rather than an option on thst lué two outputs (rainbow option).
However, both commodities are traded and ethylemddcbe sold to the market
instead of converting it to polyethylene. In thahse, the polyethylene plant can be
considered a rainbow option on ethylene and poyetie, where ethylene is chosen
by suspending the plant operation (base mode) angethylene is chosen by
operating the plant (alternative mode). Figure Bwelepicts a simplified scheme of

the transformation.

Figure 2. Simplified Scheme of Inputs and Outpuita Bolyethylene Plant (HDPE)

T T T T T T T T T T T
Ethylene I Polymerisation H Polyethylene
| |

Other variable
production inputs
— Hydrogen

— Catalyst

- Hexane

— Stabilizers

— Electric power
— Steam

— Cooling water

Feed components and output of the slurry polymgoisgrocess of ethylene to high-density
polyethylene (HDPE)

While various patented polyethylene processes sed in industry, we focus on the
slurry process for the production of high-densitlypthylene (HDPE). The asset

under consideration is assumed to be in Europe avitannual production capacity of
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250,000 tons of HDPE and an initial investment @D@& million. Meyers (2004)
provides specific consumption data for the slumycpss which requires about 1,017
kg of ethylene for the production of 1,000 kg ofyebhylene. The conversion spread
is therefore defined as:
P = Ppolyethyiene ~ 1017 [Peinyiene (32)

Although other materials are required for the cluaiitransformation, prices of
polyethylene are largely determined by ethylenethes dominant feedstock. This
suggests that both prices are co-integrated,hey. &re bound in the longer term and
the difference between the two tends to revert long-term average which should
cover operating costs of converting ethylene togiblylene, capital costs and profit.
To further explain this mechanism, consider théofwing scenarios. An increase in
ethylene prices means higher production costs byegoylene which will eventually
lead to an increase in the market price of thedaithe extent of this price increase
depends on whether the market price is more costror demand driven at that
time. A cost-driven market price is much more resie to a change of production
costs than a demand-driven market price. Thisioglship is inverse for a change in
demand of polyethylene. A change of demand wiltl l&asignificant adjustments in
polyethylene prices in a demand-driven market bas Iso in a cost-driven market.
Furthermore, a polyethylene demand change will iagxact on the prices of ethylene
since about 60% of the global ethylene productiatpuot is used to produce
polyethylene, according to estimates of DeutschekB@009). While most of the
remaining share is used to produce other chemicalygsts, ethylene also has some

direct applications (e.g. fuel gas for special aapions or ripening of fruit).
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3.1  Econometric model for the stochastic spread

As Dixit and Pindyck (1994) acknowledge, both tlimal considerations and
statistical tests are important to determine whredheariable follows a mean-reverting
stochastic process. Following the discussion onlibgum mechanisms above, this
section intends to econometrically test the spriadmean-reversion and then to
estimate the parameters of this stochastic prodessording to Brooks (2008) and
Duan and Pliska (2004), a linear combination of -stationary variables of
integration order one will be stationary if the imbles are co-integrated. In other
words, the spread of polyethylene and ethyleneepris stationary and can be
modelled as an autoregressive mean-reverting poctee two commaodity prices are
co-integrated. Hence, we first test the commodiiggs for co-integration and the
spread for stationarity. If these tests confirm itiean-reverting nature of the spread,
the parameters of the Ornstein-Uhlenbeck processdatermined by means of an
Ordinary Least Squares regression and statisastd tire performed on the validity of
the regression.

Time series with monthly data for ethylene and ptilylene prices from Jan
1991 to Dec 2009 are the basis for the empiricalysrs. These prices are for
delivery within Europe, i.e. gross transaction @sic Figure 3 gives a graphical
representation of the historical commodity pricesaell as the conversion spread. It
can be seen from the figure that the two commaulityes tend to move together and

the spread is more stationary, though volatile.
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Figure 3. Time Series of Commodity Prices and ef$pread

Price [€/mt]

1,600
1,400
1,200 |
1,000 |
— —POLYETHYLENE
8004 \« oy LN vy ety ETHYLENE
—— SPREAD

600 -|

400

200

0 T T T T T T T T T T T T T T T T T T

92 94 96 98 00 02 04 06 08 Year

Monthly data, prices in € per metric ton and folivy within Europe. Ethylene: spot prices.
Polyethylene: HDPE quality (high-density polyetmd¢. Spread defined as polyethylene
price less 1.017 times ethylene price.

3.1.1 Test for mean-reversion

The purpose of this chapter is to test whethersgiread follows a mean-reverting/
stationary process. This can be done either dyrégtidemonstrating that the spread is
stationary or indirectly by showing that ethylenedapolyethylene prices are co-
integrated, because according to the Granger remigson theorem, this implies that
a linear combination of the two (such as the cosivarspread) is stationary.

Two variables are co-integrated if their levels mom-stationary and the™'1
difference in levels is stationary. An Augmentedk®2y-Fuller (ADF) unit root test
assumes that the series is non-stationary undenuhéypothesis. Hence, the two
variables are co-integrated if the ADF test statifstr each variable is not rejected on
the levels but rejected on th& difference in levels. Co-integration is confirmiead

ethylene and polyethylene prices by consideringptfedabilities of making an error
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when rejecting the null hypothesis of unit roots,shown in Table 2. When the p-
value is below 5%, the null hypothesis can be tegewith a confidence level of more
than 95%. The null hypothesis of unit roots carbi®tejected at the 1% level and at
the 5% level for polyethylene. For ethylene, it @sp not be rejected at the 1% level
but it is rejected at the 5% level with a p-vald®®43. We consider this confidence
level as good enough and accept the null hypottasimit roots for both ethylene

and polyethylene. The hypothesis of unit roots hie ' difference of the two

commodity prices can be rejected with certaintyisTimeans that the commodity
prices tend to be non-stationary, but the spread lsear combination of ethylene

and polyethylene prices is stationary.

Table 2. Augmented Dickey-Fuller Test for Unit Root Time Series

Probability of unit roots on Probability of unit roots on

prices 1° difference of prices
Ethylene 0.043 0.000
Polyethylene 0.057 0.000
Spread 0.005 0.000

MacKinnon one-sided p-values give the probabilitynaking an error when rejecting the null

. . . . . . 12 .
hypothesis that unit roots exit. Unit roots aresprd if the regressiop =3 qy,_; +u, yields
i=1
®>1 for any i, where yis the dependent variable at time t apdhe residual at time t. The
presence of unit roots indicates that the proceasi-stationary. Maximum number of lags to
account for autocorrelation: 12 months.

The same table also provides the ADF statistictifier spread, for which the null
hypothesis of non-stationarity is strongly rejectBdcause there is the possibility that
the null hypothesis might be rejected due to ineidfit information, we also perform
a stationarity test to confirm the above analy8ikPSS test assumes the series is
stationary under the null hypothesis. The KPSS dtistic for the spread series is
0.72, which means that the null hypothesis of @teatiity is rejected at the 5% level
(critical value:> 0.46) but not rejected at the 1% level (criticalue:> 0.74).
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3.1.2 Regression model

The Ornstein-Uhlenbeck process for the spreads(ppeécified in continuous time. In
order to estimate the parameters Ifh, c), the model needs to be converted to its
discrete time equivalent. The corresponding disetiete process of the spread is a
standard first-order autoregressive times seri€,Lj as expected from the Ornstein-
Uhlenbeck equation:

pe=mil-e™)+eMp s+, (33)

whereg; is normally distributed with mean zero and stadd#viationo,:
0.2
032——@—e4ﬂ. (34)

It should be noted, that the parametg@ndo depend on the chosen time intenkal

which is one month. The regression is then run on:

Py =a+Bp, +E,, (35)
with
n=-logp, (36)
o
m—l_B, (37)
___ |, logP
0 =0, 262 e (38)

To transform the parametefsandc from a monthly to an annual scale, multiply the
mean-reversion rate by twelve and the standarcatiemiby the square root of twelve.
Table 3 provides the parameter estimates of thessmpn model, based on the 1991-
2009 monthly data of the spread, as well as thestoamed parameters for the

Ornstein-Uhlenbeck process. Both parameteemndp, are statistically significant (p-

RESEARCH PAPER #2 -113-



values: 0.00), thereby confirming that the modeaugo-regressive. The regression
estimates the mean of the spread (m) at €317/etathual standard deviatios) @t
€198 and the mean-reversion rajg gt 1.35 on an annual basis. This mean-reversion
rate implies that the difference between p and expected to halve within 0.51 years

(=In2hy).

Table 3. Regression Model for the Ornstein-UhleRif&mcess of the Spread

Regression parameter Value Std. Error p-value
a 33.62 10.06 0.00

B 0.894 0.029 0.00

O 54.11

Parameters of the Spread Value Unit

m 316.8 EURM

Nmonth 0.11 per month

Nyear 1.35 peryear

Gmonth 57.2 EUR/t per month

Oyear 198.0 EUR/ per year

Ordinary least squares (OLS) regression model ef gblyethylene-ethylene spread (p):
p, =a+Bp,., +€,. P-values give the probability of making an emdren rejecting the null

hypothesis that the respective parameter is zero.

3.1.3 Statistical tests

The above regression model needs to undergo a mwhbdegnostic tests in order to

verify its validity. The residuals of the regressishould be homoscedastic, not
autocorrelated and normally distributed. Furthestdeon the stability of the

parameters and the linearity in the functional f@m performed. The results of these

tests are given in Table 4 and are discussed below.
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Table 4. Diagnostic Tests on Regression Model

Test p-value Interpretation

Heteroskedasticity test of residuals

White Test

Probabilty F-distribution 0.49 Do not reject thel mpothesis
of homoscedasticity

Autocorrelation test of residuals

Breusch-Godfrey

Probabilty F-distribution 0.21 Do not reject thel mpothesis of
no autocorrelation

Normality test of residuals
Bera-Jarque

Probability CHi-distrioution 0.01 Reject the null hypothesis of nalty

Test for misspecification of functional form

Ramsey's RESET test

Probabilty F-distribution 0.09 Do not reject thel mpothesis
of the functional form being linear

Regression modep, =a +Bp,_; +¢, -

The White test yields the probability according aa F-distribution for the joint null
hypothesis thatp;=0, p,=0 and p;=0 in the auxiliary regression of the residuals

§t2:p1+p2pt_l+p3pt_12+ut where uis a normally distributed disturbance term. Sqdare

terms are included.
The Breusch-Godfrey test yields the probabilitycaading to an F-distribution for the joint
null hypothesis thatp;=0 for i=1..12 in the auxiliary regression of thesiduals

12 . . . .

=V Y Pt D P U where yis a normally distributed disturbance term. Tocatt
i=1

for autocorrelation covering 12 months, 12 laggeds are included.

3
The Bera-Jarque test statistic is given ﬁ{sz+ (K ‘3)3J, whereg- Ei is the skewness
6 4 o

4
and g :ﬂsrj the kurtosis of the residuals distribution. Thed&&arque statistic is distributed
(0}

as a Chi-square with 2 degrees of freedom.
Ramsey's RESET test yields the probability accgdioa an F-distribution for the null

hypothesis thap,=0 in the auxiliary regression of the residugls= yl+y2pt_l+p1pt2+ut
where yis a normally distributed disturbance term.
The distribution of the residuals ought to be ohstant variance over time, i.e.
homoscedastic. If this is not given, the standardreof the parameter estimates

would be flawed and so would be any inference enstgnificance of the parameters.
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However, the parameter values would be unbiasech auwe the presence of
heteroscedasticity. The White test indicates that grobability of making an error
when rejecting the null hypothesis of homoscedigtis 0.49. We adopt the 0.05
probability level as the threshold between rejectamd non-rejection. Hence, the
residuals are not heteroscedastic. The autoregeessgression model already takes
into account autocorrelation in the spread. Wé s&kd to test whether the model
covers all of the autocorrelation. The consequentégnoring autocorrelation in the
residuals are the same as for heteroscedasticey, the parameters would be
inefficient but unbiased. The Breusch-Godfrey tesifirms that the residuals are not
correlated. The Bera-Jarque test for normal distidlm of the residuals rejects the
hypothesis of normality at the 1% significance leweeaning the residuals are not
normally distributed. While the residuals distrilout is not skewed, it is leptokurtic
(peaked relative to the normal) with a kurtosigldf7 (3.0 for a normal distribution).
Since the kurtosis does not impact on the meahefdasiduals distribution, this non-
normality has no practical consequences for thielitxabf the regression model.

The functional form of the chosen regression model linear. The
appropriateness of this form can be tested by meaRamsey's RESET test which
adds exponential terms of the dependent variabtegaegression model. With one
fitted term (square of the dependent variable), alternative hypothesis of a non-
linear functional form can be rejected at the Gigfnificance level so that our chosen
linear functional model is appropriate.

Parameter stability tests intend to verify if thergameter estimates are stable
over time or whether they change significantly. f®ening a series of Chow tests
with different breakpoints over the sampling perisaljgests that there might be

breakpoints at the end of 1998 and 2000, as caseba from Figure 4. Hence,
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parameter estimates based on data before the lbiatkpould be significantly
different from estimates thereafter. In the long-rthe polyethylene-ethylene
conversion spread depends on the conversion ratimmaeds to cover operating and
fixed/capital costs. With existing plants beingtdmited globally, any changes in
these factors would happen slowly which is why ¢heeems to be no economic
justification for a sudden change in the long-tdremaviour of the spread. Recursive
coefficient estimates show that bettand converge to stable values (see Figure 5)
which might be an indication of parameter stabititysimply a result of the power of
averaging. A CUSUM test also shows that the cunwdasum of the recursive
residuals is within the 0.05 significance rangealttimes, suggesting that the

parameters are stable.

Figure 4. Chow Tests on Parameter Stability widpeet to Particular Breakpoints
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P-value gives the probability of making an errorewhrejecting the null hypothesis of no
breakpoint. Chow test splits the sample data int periods divided by the breakpoint and
compares the residual sums of the regressionstfiese sub-samples with the residual sum of
the regression over the whole period. Ordinarytleagiares regression for the Ornstein-
Uhlenbeck procesgy, =a +Bp,; +¢,
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Figure 5. Recursive Coefficient Estimates
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Regression modeb, =a +fp,_, +¢,- C(1) corresponds t@, C(2) tof. Parameter estimates

start from Jan-1991 and subsequently add more ptatdas until all data up to Dec 2009 is
considered. Convergence towards a stable valugposed to indicate parameter stability but
interpretation is difficult since stable values htiglso be a result of the power of averaging.

3.2  Asset-gpecific parameters

The key characteristics of the polyethylene plaet@ven in Table 5 together with

the calculation of the operating margin based ersgiread as of December 2009.
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Table 5. Overview of Parameters for the PolyethylBtant

Capacity polyethylene 1K 250,000 mt per year
Feedstock ethylene ok 254,250 mt per year
Ramp-up cost e 40 ‘000 €
Ramp-down cost o) 20 ‘000 €
Current spread p 340.0€/mt polyethylene
Logistics cost 50.0 €/mt polyethylene
Consumption materials 74.%F/mt polyethylene
Personnel cost 4.0€/mt polyethylene
Variable operating cost C 128.%/mt polyethylene
Current margin p-c 211.5€/mt polyethylene

During the ramp-up phase the process stability o given at all times so that the
polyethylene produced is of lower quality. The rangpcost is then the lost income based on
an estimated price reduction of €20/mt for the logiade and a ramp-up time of 24h up to 3
days. When suspending the operations temporatily,variable personnel costs cannot be
eliminated immediately, assuming that one weekariea will be incurred for non-productive
time following a ramp-down.

As quoted commaodity prices refer to delivered pasglulogistics cost refer to delivery of
polyethylene within Europe. Current spread as afebaber 2009.

Source: Meyers (2004), ICIS website and discussiarviews with industry experts

Table 6. Cost of Consumption Materials for the HOB&rry Process

Production inputs Consumption for  Unit prices Cost for 1,000 kg
1,000 kg of HDPE of HDPE

Catalyst €4
Hydrogen 0.7 kg 2.4 €/kg €1.7
Hexan 7 kg 650 €/t €4.5
Stabilisers €20
Steam 500 kg 25 €/t €12.5
Electric power 600 kWh 45 €/MWh €27.0
Cooling water 200 m® 2.4 €ctin? €4.8

€745

Main production inputs to the HDPE slurry procesiseo than ethylene. Consumption data
based on Meyers (2004). Electric power and coolimier consumption data adjusted to
account for the extruder. Estimate for cost of bgéin on natural gas basis from FVS (2004).
Prices of hexan, steam and cooling water baseddustry experts interview. Electric power
based on average spot electricity prices at Europeargy Exchange.
Source: Meyers (2004), ICIS website, Interviewshwiiitdustry experts

The variable cost of production is composed of oom#ion material cost (see cost-
breakdown provided in Table 6), logistics cost tioe delivery of the final product
within Europe, and personnel cost. According taustdy experts from a supplier of

chemical plants, about 30 people are required teratp the shifts next to a
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management team of about 4-6. This is under thevgstson that the plant is part of a
larger petrochemical complex, so that general sesvcan be shared. Assuming an
annual personnel cost of €50,000 per employeetatia¢ personnel cost amounts to
€1.75 m. When the plant is not operated, a firedainel strategy would reduce the
cost but endanger the know-how base. Many Europeantries provide for some
flexibility with regard to personnel deployment,chuas flexible working-time
accounts and short-time allowance. Therefore, wesider 2/3 of the shift personnel
cost to be variable (€1 million) so that the valalpersonnel cost per ton of
polyethylene produced is €4. Annual maintenance fonghis kind of chemical plant
Is estimated at 1.5% of the investment cost (€3ian)l. Together with the fixed
personnel cost, the total fixed operating cost amwto €3.75 million.

As was said earlier in this paper, limited lifetimethe asset (deterioration)
and specific technological and political risks assted with the investment are

accounted for by a Poisson event with the arriedé k. The limited lifetime is

T
modelled in the form of an exponential decay, whege= j)\e'“dt is the
t=0

probability that the asset has reached the entsdifetime before T. Assuming an

expected lifetime of 20 years, uge=20 and ¢@,, = 05 to get the corresponding

arrival rate for deterioration adp = 0035. Investing in, owning and operating a

chemical plant is associated with significant tesibgical risks, ranging from non-
compliance of the chemical processes, patent ctflto product obsolescence.

Furthermore, political risks persist over the adgetime, such as terrorist attacks,

environmental issues or health concerns. We chagse 0045, and get the Poisson

arrival rate for the asset as=Ap +A+.
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3.3 Asset valuation

The theoretical model developed in Section 2 is applied to value a polyethylene
plant with the empirical data from above. As aneesion, we introduce a

hypothetical tax ratg on the cash flow, so that the cash flow in theraktive
operating mode become@—y)kl(p—c). The total asset value in the respective

operating mode is then given by AV and Ay, according to

Cix
AV, = Vo, —PV(cq, )+ PV(tax), where PV(cy, )= r_f:‘)\ is the present value of the

annual fixed operating cost and PV(tax) the presahie of the tax break. We assume
the investment cost (1) is linearly depreciatedraie depreciation period (T) for tax

accounting purposes, which is the case in GermangxXample, so the annual tax

break during T vyears is given byyl/T and its present value is

T
PV(taX):Z$V(1+1r)t . The asset value and switching boundaries forsgeified
t=1

parameters are given in Table 7 and representgcaphical form as a function of the

spread in Figure 6.
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Table 7. Value of the Polyethylene Plant and SvniglBoundaries

Parameters
Spread p 340
Standard deviation of p o] 198
Long-run mean m 317
Rate of mean-reversion n 1.35
Required return U 0.10
Risk-free interest rate r 0.05
Technical/political risk A 0.08
Cost difference c 1285
Capacity in base operating mode o k 254,250
Capacity in alternative operating mode 1 k 250,000
Switching cost from'0' to '1' 0D 40,000
Switching cost from'1'to '0' 15 20,000
Taxrate Y 0.30
Fixed annual operating cost fixC 3,750,000
Investment | 200,000,000
Substitution of variables
a -7.142E-05
b 2.182E-02
d -6.632E-06
u 1.144E+05
w 2.033E+08
Solution
Value in base operating mode o(®) see V1(p)
Value in alternative operating mode 1(™) 246,130,750
Upper switching boundary Ho 148.22
Lower switching boundary p 104.83
Coefficient B 2.358E+08
Coefficient A 3.836E+06
Equations
Value matching condition 1 EQ 24 0.000
Value matching condition 2 EQ 25 0.000
Smooth pasting condition 1 EQ 26 0.000
Smooth pasting condition 2 EQ 27 0.000
Sum 0.000
Asset Value
Value in base/alternative operating mode  V(p) 2467/E8D
PV of fixed operating cost P\ViQ 28,846,154
PV of tax break PV 37,386,631
Total asset value AV(p) =V(p)-PVix+PViax 254,671,227
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Figure 6. Value of the Polyethylene Plant as a BEonof the Spread
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Values of the polyethylene plant (AVAV,) in € as a function of the spread (p) in €/mt.
Switching from not operating to operating the asdefy, vice versa at,p Asset values on
dashed lines not applicable because switching efaiimg mode is triggered.

Option values and switching boundaries are obtafread equations (25) and (27) withy#0
and B=0 and the simultaneous solution of equations (@8), (30), (31), taking into account
the tax ratey, for the following parameter values. Long-run med&p: m = €316.8/mt; Speed
of mean-reversion of gy = 1.35; Standard deviation of p:= €198 p.a.; Variable operating
cost: ¢ = €128.5/mt; Capacity of p; k 250,000 mt p.a.; Switching cost for resuming
operation: g = €40,000; Switching cost for suspending operatf®p = €20,000; Required
return: p = 0.10; Risk-free rate of return: r = 0.05; Expot@ decay and
technological/political riskd. = 0.08; Tax ratey = 0.3; Fixed operating costjc= €3.75
million p.a.; Annual depreciation: €10 million f@0 years.

Considering first the alternative operating statben the plant is operated and the
spread is earned, it can be seen that the asset (A&V/,) increases linearly in p for
very high levels of p while the function is convéor lower levels of p. This is
explained by the option to switch to the base dpegamode which is relevant for
lower p-values and negligible for high p-valueseTalue function AY increases
steeply to the left of the switching boundarylecause the switching option would
largely exceed the discounted cash flows. Howether function AV is not relevant
for p<p. since the operating mode is changed, aflpe asset value in the base mode
(AVy) increases gradually until the option to switcld &arn the spread reaches V

So1 at the switching boundaryypEven for highly negative p-values, it is expected
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that p will eventually revert to the long-run megam) so that the option on the spread
declines only slowly towards zero for negative sgrkevels.

Table 8 provides the value of the asset in therradteve mode, currently
operating the plant, with and without operatingittdity, together with the switching
boundaries for the standard parameters and vasoesarios in order to test the
sensitivity to changing parameters. It should bteddere, that the physical asset is
basically the same in the flexible and inflexiblase. However, relations with
business partners and employees can be set up andged in a way that takes
flexibility into account or not. In particular, theompany is not obliged to deliver
certain quantities of either ethylene or polyethgl®@ver a longer period of time since
this would restrict the product choice and therefdhe operating flexibility.
Furthermore, the labour contracts allow the redunctf shift personnel during times
when the asset is not operated.

For the standard parameters, we find a value ofofferated plant with no
operating flexibility of €251 million compared tonaasset value with operating
flexibility of €255 million, which is a 2% premiumThe investment cost for a
polyethylene plant without flexibility is about €20nillion. The value of flexibility
(€4 million with standard parameters) needs to drapared to the cost of providing
this flexibility. Assuming the shift personnel recps a 10% higher income as a
compensation for the higher employment risk (duentyeased flexibility for the
employer), the discounted value of this additiar@dt in perpetuity amounts to about
€1 million (10% on the cost of variable shift pergel of €1 million, discounted at
r+1=0.13). Hence, incorporating flexibility increasdse net value by about €3

million.
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Table 8. Sensitivity Analysis of Switching Bound=riand Polyethylene Plant Values

Flexible asset Non-flexible asset
Sensitivities 0] pH AV1=Vi1-PV(aix) + PV(tax)] PW1-PV(aix) + PV(tax)
[€/mt] [€/mt] [million €] [million €]

Standard parameters 104.83 148.22 255 1 25
Sensitivity to volatility

=0 115.16 128.53 251 251
Sensitivity to mean-reversion)(

n=0 106.95 150.17 315 166
Operating cost sensitivity

c =€100/mt 76.00 119.41 291 289

¢ = €150/mt 126.58 169.95 22§ 222
Switching cost sensitivity

So1=S0=€0 128.50 128.50 255 251

So1 = Si0 = €200,000 80.01 162.62 254 251
Sensitivity to current spreadolp

po = 500 104.83 148.22 273 269

po = 150 104.83 148.22 234 229

Option values (Y) and switching boundaries () are obtained from equations (25) and (27) wigh®and B=0 and the simultaneous solution of equations (28),
(29), (30), (31), taking into account the tax ratéor the respective parameter values; B\obtained from equation (11). Standard pararee@urrent value of the
spread: p = €340/mt; Long-run mean of p: m = €3/hat;8Speed of mean-reversion ofi:1.35; Standard deviation of ¢:= €198 p.a.; Variable operating cost: ¢ =
€128.5/mt; Fixed cost:z¢ = €3.75 million p.a.; Capacity of p; k 250,000 mt p.a.; Switching cost for resumingragien: $; = €40,000; Switching cost for
suspending operation;S= €20,000; Required returp:= 0.10; Risk-free rate of return: r = 0.05; Expuotied decay and technological/political risk= 0.08; Tax
ratey = 0.3; Fixed operating cost;,c= €3.75 million p.a.; Annual depreciation: €10lrait for 20 years.
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The switching boundaries @nd p lie on either side of the variable operating
cost (c), but not symmetrically. Suspending theraijpens is recommended at a net
cash flow (p-c) of -€23.67/mt compared to restgrta €19.72/mt. This asymmetry is
explained by the long-run mean of p which is sigaifitly above the operating cost.
Suspension is delayed more than resumption. Thdclewg boundaries are
distributed symmetrically around the variable opiatacost if the long-run mean of
the spread is identical to the variable operatiogf or if the switching cost is zero, so
PL=pPn=C.

Let us first validate the behaviour of the valuadtion with regard to the
parameters of the underlying uncertainty and theth wegard to asset-specific
parameters. When testing for zero standard dewiatiee spread will tend towards its
long-run mean (m) in a deterministic way. With maied all stochastic elements
eliminated, the plant would always be operated taedoption to switch to the base
mode and thereby foregoing the cash flow (p-c) beirrelevant, so the operating
flexible asset is valued exactly the same as tflexible one. However, if the plant
was not operated for some reason, operation waailesbkéumed as soon as the spread
exceeds the variable operating cost because witty, the net cash flows (p-c) are
positive from that time on and the present valu¢hose net cash flows exceeds the
switching cost (&). Now, let the speed of mean-reversioy e zero so that the
Ornstein-Uhlenbeck process simplifies to a Brownmaotion process with no drift,
dp= 0o dz. For the inflexible plant, the present value dezdi when mean-reversion is
relaxed because the risk increases with time (atandeviation is proportional to the
square root of time). This is reflected in a higldescount rate for the spread in
equation (11). As a result, the present value @6€million is significantly lower

compared to the mean-reversion case and would usiifyj the investment. In
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contrast, the value of the flexible asset increasgsificantly by about 25% to €315
million when relaxing mean-reversion, which is @®@remium on the inflexible
asset. This is consistent with real options thd@mgause the lower the speed of mean-
reversion the higher the variance and the higheptition values.

Assuming different variable operating costs, the&ioop premium increases
with higher operating cost because the probahaitgxercising the switching option
increases. However, as long as the cash flow igyvassitive, (p-cy>0, the premium
is rather small. The option model confirms the itda that in the absence of
switching cost, switching is optimal as soon asgpeead crosses the operating cost,
so that the cash flow is given by Max[p-c;0]. Altlgh the switching cost
significantly influences the switching boundarigs effect on the asset value is minor
because the current and long-run expected sprefad above the operating cost and

hence the probability of incurring switching coatsl not operating the plant is low.

Figure 7. Switching Boundaries as a Function ofidtde Operating Cost
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Switching boundariesypand p in €/mt as a function of variable operating ca$tii €/ mt and

for different switching costs for resuming and srgging operation (= S) of €0, €50,000
and €200,000.

Switching boundaries are obtained from the simeltaus solution of equations (28), (29),
(30), (31), taking into account the tax ratefor the respective parameter values. Standard
parameters: Current value of the spread: p = €34Qaong-run mean of p: m = €316.8/mt;
Speed of mean-reversion ofyp=1.35; Standard deviation of p:= €198 p.a.; Capacity of p:
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k; = 250,000 mt p.a.; Required retupn= 0.10; Risk-free rate of return: r = 0.05; Expiatiez
decay and technological/political risk:= 0.08; Tax ratg = 0.3; Fixed operating cost;,c=
€3.75 million p.a.; Annual depreciation: €10 mitlior 20 years.

Figure 7 illustrates the sensitivity of the switohi boundaries to the variable

operating cost and to the switching cost. It carséen that while jpand p move in

line with the operating cost, the switching boumeirare not symmetrically

distributed around the operating cost because.nithe final analysis in Table 8

compares the case of an initial spread of €500&ntavspread of €150/mt, which

results in a difference in the asset value of algddtmillion.

Figure 8. Time Series of the Spread and Optimatcivig Points
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Monthly prices for the polyethylene/ethylene spréadlyethylene price less 1.017 times
ethylene price) in € per metric ton of polyethyleared for delivery within Europe. Suspend
conversion of ethylene to polyethylene if the sdr&sls below p = 104.8 €/mt and resume at
p. = 148.2 €/mt.

Switching boundaries are obtained from the simeltaus solution of equations (28), (29),
(30), (31), taking into account the tax ratefor the following parameter values. Variable
operating cost: ¢ = €128.5/mt; Capacity of p: %« 250,000 mt p.a.; Switching cost for
resuming operation: $= €40,000; Switching cost for suspending operatfp = €20,000;
Required returnip = 0.10; Risk-free rate of return: r = 0.05; Expotied decay and
technological/political riskd. = 0.08; Tax ratey = 0.3; Fixed operating costjc= €3.75
million p.a.; Annual depreciation: €10 million fap years.
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It is now interesting to simulate the asset operaton the basis of historical
commodity prices. Figure 8 shows the developmenthef polyethylene/ethylene
spread over the last two decades and the switddungdaries of the conversion plant,
assuming constant operating costs. It can be $erhte plant should have been idle
most of the year 2000 and in 2004 and 2005 for aboa month each time. In these
cases, ethylene should be sold in the market idstdabeing used to produce
polyethylene. Most of the time, however, the sprieaél exceeds the variable cost by
far, so that producing and selling polyethylene Wn@sbetter choice.

We are also interested in how the switching bouedarhange if the variance
in the spread was different. Figure 9 illustrates $witching boundaries;@and p for
the case of mean-reversiafr(.35) and for the case of no mean-reversigid). The
boundaries p and p diverge when the standard deviation of the spieackases
because increased uncertainty generally delaystawg. In the case of no mean-
reversion, the switching boundaries are spread stlsyanmetrically around the sides
of the operating cost (c) while they are "pulledvdd in the case of mean-reversion,
because the long run mean (m) of the spread isfis@gmtly higher than the operating
cost. Hence, with m>c, the expectation of the spmedurning to its long-run mean
accelerates switching to earn the spread and delayshing to forego the spread. It
can also be stated that the effect of mean-reversiothe switching boundaries is
stronger when the variance is smaller.

When the standard deviation is very low, the soluprocedure is less precise
because of the high exponentials in the equatieng. (n the parabolic cylinder
functions). For the case o0, py and p can also be determined by the following
argument. When there is no uncertainty and m>dchwng to earn the spread occurs

as soon as the spread exceeds the operating @ste lp=c=128.5. The lower
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boundary p must satisfy the condition that the discountedeetgd cash flow,
incurred during the time when the spread moves fppito py, equals the sum of the

appropriately discounted switching costs:

T

Ky ,[(E[pt ]* - C)e_(r”\)tdt =S +e"" Sy, (39)

t=0

where T is the expected time for the spread to nfimra p_ to py, given by:

T= —lln(wj . (40)
n \(p.—m

Inserting (40) in (39) and solving for provides p=117.4, i.e. even in the absence of
uncertainty, switching to forego the spread ocaumly once the net cash flow is as

low as -11.1.

Figure 9. Switching Boundaries as a Function of3tendard Deviation
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Switching boundariesypand p in €/mt as a function of the standard deviationif €/mt p.a.

for the case of mean-reversiafr(.35) and the case of no mean-reversigy.

Switching boundaries are obtained from the simeltaus solution of equations (28), (29),
(30), (31), taking into account the tax ratefor the respective parameter values. Standard
parameters: Long-run mean of p: m = €316.8/mt; Aldleé operating cost: ¢ = €128.5/mt;
Capacity of p: k= 250,000 mt p.a.; Switching cost for resumingragien: $; = €40,000;
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Switching cost for suspending operationy S €20,000; Required returp:= 0.10; Risk-free
rate of return: r = 0.05; Exponential decay andhtetogical/political riskd = 0.08; Tax rate

= 0.3; Fixed operating cost;,c= €3.75 million p.a.; Annual depreciation: €10 lmit for 20

years.

34 The Greek Letters

The risk measures Delta and Gamma of the asse¢ \aki provided in Figure 10.
Delta is defined as the change of the asset vaitrecanges in the spread (p), and
Gamma is the change of Delta with changes in theasp It can be seen that both
Delta in the base operating moad€V,), and Delta in the alternative operating mode,
A(V1), are increasing functions of the spread becaulmgleer spread increases the
immediate cash flow or the option on the spreaeyTihtersect twice, at pand at p,
satisfying the smooth pasting conditions. The meaerting characteristic of the
spread causes the Delta to level off when the dpreavery high or very low
(negative). But this levelling-off is slower whemetspread is low (negative) because
the long-run mean of the spread exceeds the opgrabst (c) and the switching
boundary p, so that a positive cash flow can be expectedraegoint.

These Delta and Gamma functions are relevant fdgihg if one intends to
reduce the risk from variations in the stochaspecead. The fact that the Delta
functions level off due to mean-reversion in thelenying process is positive for
hedging because the required adjustments in thgeheakitions are smaller compared
to the case where the underlying process is ndioséay. It would, however, be
difficult to implement this hedging since ethyleaed polyethylene are not futures

traded commodities.
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Figure 10. Delta and Gamma for Asset Values depgnain the Operating Mode
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Delta (top) and Gamma (bottom) for the asset vaiuthe base operating mode and in the
alternative operating mode as a function of theagpr(p in €/mt)A =8V / 8p andl’ = 52V /
3p° Dotted line indicates that function is only hylpetical because it is beyond the switching
boundary (p and p respectively).

Parameters: Long-run mean of p: m = €316.8/mt; &p#emean-reversion of p; = 1.35;
Standard deviation of @ = €198 p.a.; Variable operating cost: ¢ = €128t5@apacity of p:

k; = 250,000 mt p.a.; Switching cost for resumingragien: $; = €40,000; Switching cost for
suspending operation;sS= €20,000; Required returp: = 0.10; Risk-free rate of return: r =
0.05; Exponential decay and technological/politidak: 2 = 0.08; Tax ratey = 0.3; Fixed
operating cost:¢ = €3.75 million p.a.; Annual depreciation: €10lfait for 20 years.

4 Implications

4.1  Implicationsfor participantsin the polyethyleneindustry
Three generic strategies are available to companiedved in the production of
polyethylene: investing in a polyethylene plantbylding a new one or buying an
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existing one, optimising the operations, or divagtiThe model and the results from
the previous section enable us to evaluate thesdegies and to point out
opportunities and pitfalls.

Both investment and divestment decisions requamesiparency on the value of
the transaction asset to determine an appropresdction price or to compare to the
investment cost. When setting up a new plant,riiestment is supposed to add value
and the project should be implemented at the tiighe to maximise the value. The
polyethylene plant is valued at €255 million whimdmpares to the investment cost of
about €200 million. Hence, the investment wouldpositive in the current set of
circumstances. We have seen that the asset valulel wary by about 15% (or €40
million in absolute terms) if we vary the initiapread level between the extreme
levels of €150/mt and €500/mt. Ceteris paribus,itkestment is more valuable if the
current spread is high. With regard to taking tboeial investment decision, this needs
to be interpreted in combination with the time taild (about two years) and the
correlation between the spread and a possibly agtichinvestment cost.

In the design phase of the project, decisionsalen regarding the degree of
operating flexibility to be incorporated, both ploaly into the asset and structurally
in relations with business partners. This flextilhas been shown to be worth about
€4 million. Thus, the contracts with business pandnand employees should be
designed to allow the required operating flexipi(free choice between operating the
plant or suspending) as long as the additional ic@strred from these more flexible
contracts are less than €4 million. Furthermorteade-off between reduced operating
cost and higher investment cost is commonly en@adt For instance, if the
variable operating cost of the polyethylene plamild be reduced from €128.5/mt to

€100/mt, this would justify a €36 million highenv@stment cost.
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Transparency on the spread levels triggering sesgdbetween operating and
not operating is essential for the management w@fathe plant so that these critical
decisions can be prepared in good time. One needsetaware that switching
boundaries change when variable operating cost (@gistics cost) or the cost of

ramping up or down change.

4.2  General implications

The application of the continuous rainbow optiors Ishown that the flexible asset
increases in value when relaxing the mean-revergjpim the underlying uncertainty.
This is consistent with the Smith and McCardle @9€onclusion that the option of
flexibility is worth less when the underlying vabla is mean-reverting instead of
random walk. Fon=0, the stochastic process simplifies to a Browmigxtion with no
drift. Real options theory suggests that the vabfiereal options increases with
volatility, and a non-stationary Brownian motionrnsre volatile than a stationary
mean-reversion process. On the contrary, the iiflexasset decreases significantly in
value if mean-reversion is relaxed which is du¢h® higher discount rate. Laughton
and Jacoby (1993) call these two opposing phenortienaariance and discounting
effects. From this can be concluded that incorpogafiexibility in assets is more
valuable when the value drivers are non-stationahgereas additional value needs to
be carefully weighed against the extra cost faoxiflidity when the value-drivers are
stationary.

The results also highlight the relevance of asegsshe degree of co-
integration of markets. If two co-integrated valesb are modelled as geometric
Brownian motion with the appropriate correlatiomeit spread would not necessarily

be bounded and asset values based on these varmlgkt be overstated if a long
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time horizon is considered. As long as the spréad® co-integrated variables is the

value-driver, the spread should be modelled diyeadla stationary process.

5 Conclusion

This paper presents a real option model to contislyochoose between the best of
two co-integrated commodities. Since the spreawofco-integrated variables can be
modelled as arithmetic mean-reversion, the compjagireduced from two-factor to
one-factor. This real rainbow option can also lierpreted as an entry/exit valuation
problem on a mean-reverting stochastic variable. dfégelop a quasi-analytical
solution for which all parameters can thereforeebBmated from empirical data. A
comparison with the Sodal et al. (2007) model destrates how important it is for a
real option model with a mean-reverting stochgstacess to distinguish between the
different risk and discount factors instead of gsa single general discount rate.
Based on the risk-neutral valuation approach, weli@iy consider the risk-free
interest rate, the risk-adjusted instantaneousinedjueturn on the commodity spread,
and technological/political risk and physical deieation.

An application of the model to value a polyethylgaent based on the spread
between polyethylene and ethylene demonstrateshbaiption to switch between the
two commodities increases when there is no meagrs@n. For the empirical data,
the premium of the continuous rainbow option over vperation with no switching
flexibility amounts to 2% which is influenced byettmean-reverting characteristic of
the spread and the on average large positive ret @law, resulting in a low
probability of switching. However, the net value féxibility is shown to be
noticeable in absolute terms. When simulating reean-reversion, the flexible asset

is twice as valuable as the inflexible asset. Tb@nhfirms the intuition that
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incorporating flexibility into assets seems moremising when the value-drivers are
non-stationary, while the value of flexibility irog@ntegrated markets is more limited.
On the other hand, opportunities are found in eytiical investing when the value-
driver is stationary because the investment camége when prices and initial costs
are low, with prices expected to revert back tartleng-run mean by the time the
benefits are realised. An interesting extensiortht®® model would therefore be to
determine the optimal investment timing based @ireal investment cost and then on

a stochastic investment cost correlated with tmeasp
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Appendix A. Proof of the transformation of the PDEinto Weber's equation
Kampke (1956, p. 416, Equation 2.54) studies tferéntial equation:

GRYA N

Y
alp+b)—2
o a5

+(cp+d)V, =0

where a, b, ¢, d are constants. He provides thewig solution:

c
—=X

Vo(p) = F(x)e 2

wherex = \/ﬂ[p+ ab > 2Cj

a

2 _ 2
andﬁ+xﬁ c’ abc+adF 0
ax2  ox a’

(upper sign if a>0 and lower sign if a<0).

In our case, according to equation (19) repeatémhhe=0 and a<O0:

2
e +lamen)TErdy, =0 (19)

Hence, the above solution simplifies to:

and—; - -x—-—F=0. (20)

The derivation of equation (20) can be proved atovis. Let V,=Fx) and
_ b , I . _
X = \/ﬂ(p+gj , then the first and second derivative function¥ afre:

oV _0Fox _0F |al
ap axap T ox
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OF ox oF
o—— | oa—
0%V _ (ax apj _ (ax \/Hj _ aZFIal
op? ap ap ox?
Applying these derivatives to equation (19) andnighknto consideration that a<0, we

obtain (20):

0%V oV 0°F X b oF
—+(ap+b)a—p+dﬂ/ :y|a|+[a[———J+bJa—x\/H+dDF

op> \/H a

Now substituteF = G(x)e? , as suggested by Kampke (1956, p. 414, Equatith) 2.

and take the derivatives:

1.2
(%0, Lyg)er”

ox \ox 2
2 2 2
E: a—G+Xa—G+[1+1X2JG e%x .
x> (ox?> ox (2 4

Inserting the above functions into (20) provides eber equation:

2 2
_f; G :%%%}e. (21)
X
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Appendix B. Alternative direct solution to the PDE
A direct solution to equation (20) is provided bwrpke (1956, p. 414, Equation

2.44) as the following series function:

d d[d+2j d[d+2j(d+4j
Fix)=c, 1+%x2+a a x4+ 208 a 6

4! 6! Xt

Q+1 (d+1j(d+3] (d+1j(d+3](d+5j
+C2 X+ a X3+ a a 5+ a a a 7

3 o = X'+ (41)

In the following, we demonstrate that the aboveitsoh is equivalent to:

_ da 1 x° da+l 3 x°
F(x)—ClM(—,E,7]+CZXM{ > ’E’?J’ (42)

2

where M is the Kummer function as defined in equat{24). Writing (42) in the

series form provides:

L0 Sl
— * R ~ 6
Fx)=C, 1+%X—+a a X_,a.8 a ol

2
2 13 2? 13 e

o G20 (G20
vc, x| 142X la a S a a x>,

13 2 1B% 2122 1[BHT o

(43)

The numerators of the series in (43) and (41) bxoaosly the same. To show that the

denominators are also identical, it needs to beotsimated that:

13 2! (22 =4l
135 [3! 23 = 6!
1[3[5[7 [41 2 = 8l
1[3[5[7(9 5! [2° =10!
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13 [1! 2! =3I
135 2! (22 =5l
1[3[5[7 [3! (23 =7!
1[3[5[7(9 4! 2 =9l

Considering that M" = 24B[BL1.2n, it can be seen that the above transformations
hold. Hence, when the constants &hd G are chosen appropriately, the following
relationship holds, as can be verified with theirdg#bn of the parabolic cylinder

function in (23):

1y2 2 13 x?
(A D_ga(x) + BID_yq(~x))e? :clM(%,%, j+czx|v|(oyz+ = j.(44)

This shows that the above procedure results insétme value function as the one
provided in the text. It should be noted, howewegt its derivation is built on
information obtained from the solution of the Webgquation, namely the parameters

to be used in the Kummer functions in order to wbtiae required series function.

RESEARCH PAPER #2 — 140 -



Appendix C. System of equations
With Ay=0 and B=0, equations (25) and (27) simplify to

1

Vo(p) =B, EID—oVa(' Ja (p+gD e“[ﬁ(mzjjz and

V,(p)=A, [ID_OV{\/H (p+ED eg‘[ﬁ (“ZDZ +ulb+w.

With the value functions above, the two boundargditions, (28) and (29), can be

evaluated:

(B" DD—oVa(_\/H(pH +SJJ_A1 DD_cya(\/H(pH +SJDG‘1‘W("H*ZDZ

-ulp, —w+S,, =0, (28 operational)

00 o2 Ao o -2 o

-ulp, ~w-S,,=0. (29 operational)
For the evaluation of the smooth pasting conditidhe derivative function of the

parabolic cylinder function is used:

dp (x»=[—1f(x)av(f ())+ VD, (x»jif(x).

dx 2 dx

(30) can then be assessed and simplified:

@e‘l‘[ﬁ[pwznz{ By EID_l_OVa(—\/H(pH +§D+ A, DD_W{\/H(W +9m ~u=0

a

Similarly, from (31):

@e‘l‘m(pﬁznz{ B DD_Hya(— \/H(pl_ +9D+ A, [ID_l_d/a(\/H(pL +gm —u=0

a
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1 Introduction

In many cases, the process of investing is bestesepted by a sequence of
investments where the benefits are realised onlgnwthe final investment is
completed. While academic work has so far concttdran sequential options on
vanilla call options on Markovian assets, we depdlso models to value sequential
investment opportunities on the option to choosehist of two stochastic assets. The
first model is a sequential option on the bestwb tassets following geometric
Brownian motion (gBm) processes. The second maal sequential option on the
spread between two stochastic co-integrated asedtsre the spread is mean-
reverting. While the former is a two-factor and tla¢ter a one-factor model, we
consider both as rainbow options because both mgptwe about the choice between
two assets. Moreover, the options are Europeap;sty. assuming the investment
opportunities are available only at specified dates
An example of the first model is found in the condity industry when

investing in a fertiliser plant. An investor consid bidding for a long-term take-or-
pay gas supply contract, which is scheduled fotiancin order to use the gas to
produce fertiliser. Having secured the gas supply,investor needs to decide on the
design of the fertiliser plant, i.e. whether thamlis supposed to produce ammonia or
urea, and actually build the plant within a certime. The present value of the gas
cost is the intermediate investment (sequentiaionpéxercise price), the sum of
investment cost for the plant and present valueghef operating cost is the final
investment (rainbow option exercise price), and ékpected discounted cash flows
from selling either ammonia or urea are the twoeaulythg stochastic assets. Another
example for this type of option is found in agricwé where a farmer has the option

to prepare land in the autumn season in orderdw grheat or maize in the following
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spring. The cost for preparing the land is thermediate investment. The rainbow
option is then exercised in the spring season bwigig one of the two commodities.

The total cost of growing and harvesting is therefiegarded as the final investment,
and the present value of revenues from selling bemaize are the two underlying

stochastic assets of the rainbow option.

The second model, a sequential option on the sgdreadleen two assets, is
relevant to a similar application when a piece @bé land worn out by growing
maize is kept idle in order for the land to recoaed thereby create the option to
grow wheat instead of maize in the year thereaifierto change the use of land. The
foregone profit from keeping the land idle is tméermediate investment, the extra
cost of growing wheat instead of maize is the fingestment and the present value of
the difference between wheat revenues and maizenuveg is the underlying
stochastic spread. A sequential option to buildaatpwhich processes a lower value
product into a higher value product is another edanof this type of option.
Assuming an ethylene producer considers buildipplsethylene plant but needs to
acquire and prepare the land and secure the negepsamits which is the
intermediate investment. Building the plant is firal investment and the present
value of the difference between expected polyettgyland ethylene revenues is the
underlying stochastic spread.

Geske (1978) was the first to develop the clas&cabpean compound option
on a European call option where the underlying lsstic asset is a log-normal
Markovian variable. This compound option is alse thasis for the Carr (1988)
compound option on a Margrabe (1978) European exghaption. Carr imposes
assumptions on the proportionality of the interirpenditure and the (stochastic)

exercise cost of the exchange option, which makesompound option homogenous
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in the underlying assets and thereby allows foaaalytical solution. Paxson (2007)
provides a closed-form approximation to a compoerdhange option where the
exercise date of the compound option is fixed (Beem) while the exercise date of
the underlying exchange option is American fini&hilds et al. (1998) compare
several alternatives of sequential investment selsenmith parallel investments.

Stulz (1982) and Zhang (1998) provide valuationnfolae for European
rainbow options. Johnson (1987) uses an alternatayeto determine the value of an
option on the maximum of several assets, includlregtwo-colour rainbow option as
a special case. Dockendorf and Paxson (2009) deegl@mption model on the best of
two commodity outputs of correlated geometric Br@amnmotion processes with
continuous switching opportunities. They incorper@ihe possibility of temporary
suspension and apply the models to a flexibleliizti plant. Dockendorf and Paxson
(2010) further provide a quasi-analytical modelvidue the continuous option to
operate in the best of two co-integrated markekschvimplies that the spread follows
a mean-reverting stochastic process, and allowckimg between the two operating
modes at any time by incurring fixed switching sod/hile Rubinstein (1991) and
Shimko (1994) derive double and single integralusohs to European spread
options, and Kirk (1995) and Bjerksund and Stertslé#006) develop closed-form
approximations, Andricopoulos et al. (2003) applyadrature methods to the
valuation of complex options and extend this apginda multi-asset options (2007).

The remaining part of this paper is structured@d®ws. Section 2 presents
the general sequential investment model with theonp and timing. Section 3
develops the valuation framework for a sequenaaillrow option on two correlated
assets following geometric Brownian motion. Sectindevelops the valuation

framework for a sequential rainbow option on theameeverting spread of two co-
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integrated assets and derives a closed-form solufibe finite difference solution
method applied to the valuation frameworks is oetli in Section 5. Section 6 shows
sensitivities using the previous models and disssissome practical implications.

Section 7 concludes and discusses issues for fudghearch.

2 General Sequential Investment Model

21 I nvestment Sequence

We develop valuation models for a European calloopbn a two asset European
rainbow option. In other words, this option corsisf a sequential (or compound)
option and an "inner" rainbow option. The rainbgution can only be exercised once,
i.e. the choice between the two underlying assetsdde at maturity, and no further
switches are possible. The investment sequendewrsgraphically in Figure 1. The
motivation for this type of option is based on th&ture of many real investment
opportunities, which effectively leads to investrisebheing carried out in sequential

phases.

2.2  Definitions and Assumptions

The definitions below will be used throughout théagper:

SF Value of the sequential rainbow option

F Value of the ("inner") rainbow option
X Value of asset one
Y Value of asset two

P Spread between asset values Y and X, so P=Y-X

Ksg  Exercise price for the sequential option
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Ke Exercise price for the rainbow option
TsE Time to expiration of the sequential optiori=T

TF Time to expiration of the rainbow optiongT

Figure 1. Investment Sequence

Intermediate Final
investment investment
I I I » Time
To Tsk Te

Sequential option on European rainbow option

Abandon investment
opportunity

Rainbow optio
> Sequential
option exerci

Rainbow option

Leave rainbow option
unexercised

Exercise sequential

option:

Pay intermediate —»

investment and get the
rainbow option

> Exercise price~

Exercise rainbow option:
Pay final investment and ¢
the better of the two
stochastic assets

We set up models for two sequential rainbow optidinst, a sequential option on the
best of the stochastic assets X and Y, and se@sdgquential option on the spread

(P) between Y and X. The intrinsic values of the rnfer are
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I:'ntrinsic = MaX[MaX[X' Y] -K F ’0] and SI:intrinsic = MaX[F(X' Y) - KSF’O] , and

Fimnnsic:Max[P—KF,O] and SFimrinsiC:MaX[F(P)—KSF,O] for the latter. In our
approach, the typical assumptions of real optidreorty apply with interest rates,
yields, risk premium, correlations and volatilitieenstant over time. The financial
markets are perfect with no transaction costs. §tbehastic variables X and Y are
assumed to follow geometric Brownian motion witlcarelation denoted by. For

the alternative model, X and Y are assumed to bategrated so that the spread (P)

between the two is mean-reverting.

3 Sequential Rainbow Option on Two Correlated gBm Asets
3.1 Partial Differential Equation
The values of two stochastic assets, X and Y navdelled separately by geometric
Brownian motion with correlatiop. The behaviour of the variables is defined by:

dX =ay X dt+o,X dzy, (1)

dY =a,Ydt+o,Y dz,, (2
wherea is the respective drift rate; the volatility and dz a Wiener process. The
sequential rainbow option is a function of X, Y ainde t. Its incremental change is

determined by It6’s Lemma:

2 2 2
dSF= OSth+GSFdX+OSFdY+16 SFdx2+16 SFdY2+ 9°SF
ot X oY 2 X2 2 9Y? AXaY

dXdy (3)
The incremental asset changes dX and dY compreseAtiener processes dand
dzy. Letn be a portfolio containing SF and short positiohX and Y:

n=sF- 95y - 9SFy (4)
ox © oy

Considering convenience yieldg anddy, the incremental change s given by:
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dr=dsF- 2Fax - 9SF gy 5, x SFgi-5, v SSF gt (5)
X oY X oY

This portfolio does not contain any stochastic @ete and must therefore earn the
risk-free rate of return on the invested portfolialue =. The partial differential

equation (PDE) for the value function of the sediaénainbow option then follows:

dSF 1 ,,0°SF 1 ,_,0°SF 92SF
—+—0u X +—0yY 0,0y XY ——
ot 20X gxz 20T vz TPOxOYAT Ny
dSF dSF
+{r=0y X—+(r-0y )Y ——-ISF=0 6
(r=8x XS+ (r=3y )Y == ()

There are two particular difficulties with the aleosquation. First, SF is a function of
three variables (X, Y, t), and second, SF is noedr homogenous in X and Y,
because X and Y are part of the “inner” RainbowiaptTherefore, X and Y cannot
be substituted by a single variable. Equation (B)tains six derivative functions of
SF and SF itself. Hence, in order to fully desci#be a system of seven equations has

to be established.

3.2  Boundary Conditions

The sequential rainbow option is exercised at nitgtyiT sy if the value of the
rainbow option to be received is higher than thereise price of the sequential option
(Ksp). If the European rainbow option is acquiredsiekercised at its maturity )Tif

at least one of the assets X or Y exceeds the isggpdce k. Figure 2 illustrates the

exercise boundaries of both the sequential raintyotvon and the rainbow option.
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Figure 2. Exercise Boundaries of Sequential Opaiath Inner Rainbow Option

Exercise the sequential
option (F > Ksf)

Do not exercise

______ Determined by
FOXY t1=Tsp) = Ksr
> X
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@
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the Rainbow
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Y < Kg)
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> X

Above: Exercise boundary for the sequential rainlbbption at maturity -
Below: Exercise boundary for the rainbow optiomratturity T-

The value of the sequential option at maturity barfiormalised as follows.

FX,Y.t)-Ke it F>K
SF(X’Y’t:TSF):{( 0) T F<KzF
F

where the European rainbow option is given by Sti@82) as:

F(X, Y, t)= Xe™FN, (dy;,~0y,~py) + YE YN, (d,,~0,y,—0,)

-KeeF [1_ N,(-d,,~d,, p)]

with

F

dlz(lné(ﬂr— O'X)TFJ/(OX\/_)
dyy =d; + 0y Te
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d, :[mKY"'(r_BY _;Gs)TFJ/(GY\/E)
F

dp =d, +0y\Te

d, = (In ; +(dx —dy _; GS)TFJ/( Ga\/i)

dy; = (Iné +(dy — O _;GE)TFJ/(Ga\/E)

_ POy ~0Ox

a

_POx ~0Oy

P1 o

» P2

a

0, =02 ~200,0y +02

The stochastic variables are log-normally distioliti.e. they have an absorbing
barrier at zero. Hence, when either variable i®,zérwill stay so forever, so the
rainbow option simplifies to a vanilla call opti@nd the sequential rainbow option
reduces to a Geske (1978) compound option on timaineng stochastic variable.
With N, the bivariate cumulative normal function (see Kaz al., 2000), the
sequential rainbow option value for X=0 is givenlawe The case for Y=0 is

constructed similarly by substituting ¥y anddy for X, ox andox.

SF(X =0,Y,t)= Ye Y 'SF N, (h+ 0y [Ter, K+ 0y A [TrinTer /TF)
_KFe_rTFNz(h,k,—ﬂTSF/TF)_KSFe_rTSFNl(h) (9)

where

(Y1) +(r=8, =20y )er

h=
0\(\/Tislr
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In(Y/Kg)+(r—oy _;GYZ)TF
k =
O-Y\/E

Ve—ﬁy ('[ F_TSF) Nl(k + O.Y l.l.F _.[SF) -K . e_r(TF_TSF)Nl(k) — KSF = O

If one of the asset values tends towards infirtig, rainbow option will definitively

be exercised to obtain that asset, and the sequeption will also be exercised:
SHX =0,Y,t)= Xe>F -K e - K. e (10)
SHX,Y =w,t)= Ye > F K e 'F - K. e (11)
An additional condition is required describing theundary between exercising the
sequential real rainbow option and not exercisaggshown in Figure 3. An analytical

description of this boundary is not readily dedueduch is why the value of the

sequential rainbow option needs to be determineauinyerical methods.

Figure 3. Boundary Conditions for the SequentiahRaw Option on Two Assets

7 (XY t=Tse)
Y (X,Y=w ,t)_\ '
A 7 R .
'\ F(X,Y,t=TS|:) = KSF :l
(X=0,Y ) t
M Tsr
/ > X (X: o0 ,Y,t)
(X,Y=0,1)

Boundary conditions for the sequential rainbow aptias a function of the underlying
variables X and Y, between current time and matwuftthe sequential option &f). Kse is the
exercise price of the sequential option and Fasvdue of the inner rainbow option.
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4 Sequential Rainbow Option on the Mean-Reverting [gead

4.1  Partial Differential Equation

If the asset values X and Y are co-integrated, gbeead (P) between the two is

stationary and its stochastic process can be nextlai arithmetic mean-reversion:
dP=n(m-P)dt+odz (12)

where m is the long-run mean of the spreadhe speed of mean-reversianthe

standard deviation and dz a standardised Wienazepso We use the notation of

standard deviation for arithmetic processes siheddrm volatility is commonly used

to describe the standard deviation of percentagagds in stock (see Liu, 2007).

Dixit and Pindyck (1994) provide the expected vatieP at time T for the above

Ornstein-Uhlenbeck process as:
E[P]; =P +mft-e7), (13)

and the variance by time T as:

v2 :g_;(l-e-znT)_ (14)

Dockendorf and Paxson (2009) derive the risk-néwgaivalent (P) to the above

arithmetic mean-reverting process:
dF =«k(6-P)dt+0dz, (15)

_n

with Kk =n+p—r the speed of reversion art=
n+u-r

m the long-run mean and

the notation () referring to a setting under risk-neutrality.

We assume that asset X is owned in the base aagbhe gainbow option to
choose the best of X and Y is then essentiallyllaoption on the spread (P). Hence,
the sequential rainbow option is then the optioratguire the call option on the

spread. We construct a framework for the sequerdiabow option (SF) on a mean-
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reverting spread, following the same methodologynathe previous section on two
gBm assets. The partial differential equation foe bption on a single stochastic

variable of the general Itd process is given by:

6)Pa—SF- ISF=0 (16)
oP

GSF 2 628F
P
ot 706) (

With the yield of the arithmetic mean-reversion riggid = -n(m-P)/P, the
sequential option is defined by:

dSF 1 ,8°SF
—~ +~0

at 2  9pP?

+[nm-(u r+n)P]aﬂ:—rSF 0 (17)

The pay-off function of the sequential option, M@¥{sg0], is not linear in the
underlying variable (P). The exercise boundaryh&f sequential option cannot be

determined analytically.

4.2  Boundary Conditions

Boundary conditions are specified for extreme valokethe underlying asset and time
of maturity of the sequential option. At the timienoaturity of the sequential option,
Tsk its value is determined by the greater of thé @alion on P less exercise price

Ksgand zero.

HP,t)-K if F>K
SF(P't:TSF):{ ( )O " if F< KSF (18)
SF

To determine the value of the call option (F) oa ttormal mean-reverting variable P,
let (S) be a variable following arithmetic Browniamotion with a proportional drift
ratep:

dS=puSdt+odz. (29)
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Brennan (1979) derives the value of the call optionthis arithmetic stochastic
variable with exercise price K and time to maturitin a one-period framework. In
order to allow a more general interpretation, waganise his results to show that the
call option is a function of the expected valuettté underlying variable and of its

standard deviation by the time to maturity)(

qsozé”KdéL—K)N@%wTdm} (20)

with N the cumulative standard normal distributiand n the standard normal
distribution. The standard deviation of the arithmetic Brownian motion with
proportional drift rate as given above approacteer t—0 which is used in the
Brennan one-period model. Cox and Ross (1976) donike same result and point
out in addition that the arithmetic Brownian motwith proportional drift is a special
case of the arithmetic mean-reverting process.al, fthe former is obtained by
choosingn = —p and m = 0 in the mean-reverting process, as weodstrate in

Appendix A. This relationship can now be used toivdethe call option on the
arithmetic mean-reverting variable (P) by replaci§ ]. andv; with the applicable

(risk-neutral) expressions:

ﬂRﬂ:€”K4ﬁL—K)M&+wn@ﬂ (21)
d:dﬁL—K

Y

T
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E[P*]T =P "+ 9(1—e‘“)

2

2 _
Vi =

(1—e‘2'”).

K

The above call option is hence the discounted valuthe expected value of the
underlying (risk-neutral) asset less the exercigst,cboth multiplied by the
probability that the option will be exercised, plugerm accounting for the positive
option value effect from the variance. Taking afed#nt approach to deriving the
value of a European call option on an Ornstein-bldek variable, Bjerksund and
Ekern (1995) come to the same structure as inlf@fiwith different expected value
and variance of the underlying variable in the -ngkitral setting because they have
assumed the market price of risk of the underl@nthmetic mean-reverting variable
(p) to be independent of the level of p. Howevarce the market price of risk relates
the risk premium to the relative volatility, it mule a function of the underlying
variable when that one is arithmetic.

If P tends towards infinity, both the sequentialiop and the call option on P

will definitely be exercised:

SHP - w,t)= E[p*] e TF —Kge SF-K e TF . (22)

TF
On the other hand, if P tends towards minus infjnthe options are worthless

because they will definitely not be exercised:

SHP - -o,t)=0. (23)
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4.3 Closed-form Solution

The sequential option on the mean-reverting sprisadiven by the discounted
expected value of the maximum of inner call optless exercise price and zero,

evaluated in a risk-neutral setting:

SHP,t)=¢e "' (F(P*,t)— KSF)gSF(P*)dP* (24)

Ul—— 8

where P is again the risk-neutral form of the spread $(R)) the density function of

P’ at &5 and P the minimum level of Prequired to exercise the sequential option at
tse. The particular difficulty with this equation is find a solution to the integral over
the call option F. For this purpose, we use thati@iship between the arithmetic
Brownian motion with proportional drift and the nmegeverting process, as
established before. Childs et al. (1998) consigguential investment opportunities
involving two different assets, both following &tetic Brownian motion. We build
on their results to derive the sequential option amn arithmetic mean-reverting
variable.

Let C(S) be a call option on S with exercise price uZwKere both S and Z
are stochastic and follow arithmetic Brownian motias defined in equation (19),
correlated by. Hence, the exercise price consists of a stochesthponent (u times
Z) and a fixed component (K). Assuming this optisronly available if the value of

the stochastic variable Z at maturity is betweea &asbitrary constants, a and b, then

b
the value of that opportunity isj C,(St)g(z)dz, where g(Z) is the probability

Z=a
distribution of Z at maturity. Childs et al. (1998grive the value of this integral.
Choosing u=0 eliminates the stochastic componenhéenexercise price so that the

call option becomes a plain vanilla call optiontwd constant exercise price K. A
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sequential call option on S can now be valued @ liasis of the above integral
expression by choosing u=0 and Z to replicate ttodability distribution of S in a
risk-neutral setting ($ at time & and the lower and upper integration limits to

represent the range of &here the sequential option is exercised:

sAst)=e" s [(c[st)-Ker)ose(S Jas | (25)

ni— 38

with S the minimum level of Srequired to exercise the sequential option, ileens
the call option value equalssK Appendix B shows in more detail, how to derive th
explicit form for equation (25). The sequential iopt on the arithmetic mean-
reverting variable P can now be valued when theeetga values and volatilities of P
are used instead of those of the arithmetic Browmietion variable S, based on the

relationship between these stochastic processastiased before:
SF(P, t) — T ( E{p* ]TF - KFJ Nz(dTF o Ny p)

d,_ —-pd
+e Py _p n(dTSF) Nl{uJ
J1-p?

+e’ TFVTF n(dTF ) Nl{_dTSFl__F;SrF J
_e—rTsr: KSF Nl(dts;:)’ (26)

where N is the univariate and )\the bivariate cumulative normal distribution, n is

the normal density function, and

_ E[P*]TF -K¢
TF VTF !

_ E[P*]TSF -P
TSk v !

TSk
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gp ], =Pt + oft-e),

2
2 _
=

v (1_ e—2KT) ,

%9

p= ;i(e‘K(TF‘TSF) - e—K(TF‘fTSF))/(VTSFVTF ),

where P is the minimum level of the risk-neutral P reqdite exercise the sequential

option, given by:

e_r(TF_TSF) [(E[ﬁ* ]TF—TSF -K F) Nl(dTF—TSF )+ Vip-ter n(dTF‘TSF )} =Kse

— E[ﬁ* ]TF ~“Tsk

TE-Tsp
Y}
TF~Tsk

-K
d i

The first term of equation (26) is the discountedue of the risk-neutral expected
asset value at final maturity net of exercise cosiltiplied by the probability that

both the sequential and the inner option will bereised. The second and third terms
are the value contributions from the variance efihderlying asset to the sequential
option and the inner option, respectively. Finalthe last term represents the
discounted value of the sequential option exenprgze, multiplied by the probability

that it will be exercised. The correlation used eqguation (26) needs some
explanation. Assuming a stochastic process withepeddent increments, the

correlation of its distribution by time; with the distribution by time, is given by
\J1;/T, , Wwheret<t,. This is the case in the Geske (1978) compounidrophodel,

for instance, where the normalised process of théetdlying gBm variable has

independent increments. The arithmetic mean-rexgriprocess does not have
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independent increments, however. Doob (1942) pesvitie correlation function for
this stochastic process between two different gamtime.

Two limiting cases can be considered which are wihensequential option
matures either immediately or at the same timdéasnner option. In the special case
of tsF=1F, the variance and expected value of the underlgsget at maturity of the
sequential option are the same as at maturityeofrther option, hence the correlation
is perfect f=1). With P> Kg, it follows that dse<d.r, SO the cumulative normal
distribution in the second term in equation (26)ise, and nil in the third term.
Furthermore, Nd.r,d:srp) can be simplified to Nd.sp because the bivariate normal
distribution has the shape of a univariate normiatribution for p=1, and the
cumulative probability function is then determingdthe lower of ¢sr and dr, which
is d.se. The sequential option then simplifies to a singak option on the spread with

exercise price (K-+Kp):

SHP,t)=e ™ KE[P* -k, KSFJ N,(d,, )+ v, n(dTSF)} @27)

In the special case ofs=0, the sequential option needs to be exercisdtkereit
immediately by paying k- or not at all, so that the value is Max[F(P,t3gK0]. This
case implie=0 andv.s=0. If the initial level of P is lower thaR, d.sris —o and all
terms in equation (26) vanish which representscse where the sequential option
remains unexercised. If the initial level of P jfiss exercising the sequential option,
dise IS +o. As a consequence, R§g=0, Ni(d:sp=1 and N(drdisp0) can be

simplified to Ni(d.5). The sequential option for the casegfO0 is therefore given by:

SHP,t)= Max[e'”F KE[P* -k F) N,(d. )+ ve, ni(d,, )} ~Kep, o} . (28)
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Comparing our sequential option with the Geske ammg option shows that the
basic structure of these value functions is conipardowever with different factors
in the normal density and cumulative functions amdifferent correlation coefficient
and additional terms in our sequential option repnéing the value contribution from
the variance of the underlying arithmetic variable.

These differences are due to the different undeglgtochastic processes, i.e.
arithmetic mean-reversion (Ornstein-Uhlenbeck) gsometric Brownian motion
(gBm). Merton (1973) establishes that a Europedh agdion on a non-dividend
paying stock following a gBm cannot be greater ttrenstock itself. The logic is that
an American option on this common stock with zetereise price has the same value
as the stock itself, and the American option ideast as valuable as its European
counterpart. The assumption of perfect financiatkas rules out riskless arbitrage
opportunities. If the option value exceeded theeulythg stock, one could sell the
option, buy the stock and earn a risk-free returth@ remaining proceeds. Hence, the
value of a call option on a gBm asset cannot extkeedisset value even if there is
infinite volatility. The Black-Scholes formula resgs this premise by incorporating
volatility as a parameter to the cumulative staddaormal distribution, so that
volatility affects the option value only indirectiigrough the probability of exercising
the option. In contrast, the call option on an afdéowing an arithmetic I1t6 process
is not bounded by the underlying asset value bec#lus option value is always
positive or at least nil while the underlying asesah take negative values. This is
represented in the value functions of the simpleogdion (21) and the sequential call
option (26) by the fact that the variance is aditerm instead of appearing only in
the probability terms as is the case in the Blacke®s and Geske formulas on a

gBm asset.
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5 Finite Difference Solution Framework

The rainbow options presented in the precedingisecthave been defined by a
partial differential equation and boundary conditio The finite difference method
solves these valuation problems by spanning aay@l the stochastic variable(s) and
time and determining the option values by iteratigvie apply the implicit finite

difference method as outlined in Hull (2006) toueathe sequential rainbow options
because it ensures convergence. The Visual Badi fow the implementation of the

finite difference methods is provided in the Appirid the Thesis.

5.1 Finite Differences of the Sequential Rainbow Option on Two Assets

Equation (6) is to be transformed into a differeecgiation. The three-dimensional
space of X, Y and time t is divided into small erents or cubes. The time horizon
until the expiry date of the sequential optiosdTis divided into increments aft.
Similarly, the variables X and Y are divided intwiements oAX andAY between
their minimum and maximum values. Minimum and maximvalues are chosen in
such way that the boundary conditions (9) to (X&)satisfied. Since X and Y are log-
normal variables and the increments are consthatfihite difference procedure is
more precise and efficient when using the normdlisariables x =In X and

y=InY instead. Applying the specified boundary condgigmelds the option value

for each point on the boundaries. The option vafoeshe remaining points, which
are not described by a boundary condition, areraheed by the partial differential
equation, starting from the terminal boundary bamkis to the present time. For this

purpose, the partial differential equation needbdcexpressed in terms of the finite
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difference equivalents. Define Sk as the value of the sequential option atA%i
y=jAy, t=kAt, then Appendix C provides the finite differencepeessions for the
derivatives which results in the finite differereguation:

& ;SF_1jk t0,;SF 1k +G;SK j« 0 SRy +6,;SF jek

+fi SRt jeik 9 SF-1 -k TN SR -k + M SF- jerk =SF jxa (29)

where
_ _ 2 2
aijzl(r Oy OX/Z)At—EGXZAt,
b2 AX 2 Ax
s _ 2 2
bijzl( Oy cyY/Z)At—l—c’YzAt,
b2 Ay 2 Ay
2 2
G| :1+0—X2At+%At+rAt,
y
2 _ _ 2
= loxzm_l(r Sy GX/Z)At,
2 Ax 2 AX
2 _ 2
qj_ EOYZAt_l( 6Y OY/Z)At,
’ 2 Ay 2 JA\Y
= _POxOy A
" 4Ax Ay
g . = POXOy At
" 4px Ay
- —POxOy At
" 4Ax Ay
" Anx Ay

Appendix D describes the detailed procedure toestiis finite difference valuation

problem with two stochastic variables.
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5.2  Finite Differences of the Sequential Rainbow Option on the Spread
The procedure of setting up the finite differenarfework for the sequential option
on a mean-reverting spread (P) is similar to the mresented above, though simpler
because only one stochastic factor needs to beidesed. Equation (17) is
transformed into the finite difference equation:

aSF_qx + BSFy + GSR.qx =Sy (30)

where

—(u=r+n)i 2
ai:%([ﬂm (uAIrD+n)|AP]_ onm’
AP

2
b, =1+ 0—2+r At
AP

oo-Aflmcreaher], o)y

) AP AP?

and the solution methodology is then applied adogrtb Appendix D.

6 Real Option Sensitivities and Practical Implicatons

In this section, the two models are tested witrarégo their behaviour to changing
parameters. Furthermore, the option valuation msgared to the alternative valuation
technique Monte Carlo simulation. In a Monte Cailmulation, random paths of the
underlying stochastic variable in its risk-neutf@m are generated, the pay-offs at
maturity are calculated and discounted at the fris&-interest rate to obtain the
present values, which are then averaged over th&bau of simulation runs. The

Visual Basic code for the implementation of the MoiCarlo simulations is also

provided in the Appendix to the Thesis.
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It should be noted that the two sequential optiardets are not compared
directly because the second model implicitly assuthat one asset is already held
when the sequential option becomes available. $&igiential option then refers to
the spread between the two underlying asset valmesontrast, the holder of a
sequential option on two gBm assets might end up none of the two underlying
assets if they are out of the money at maturityer@&fore, a direct link between the
two cannot be established. In addition, differetdreise prices are chosen for the two
models in order to make clear that the investmesgaired to acquire one of the two
underlying assets would be different from the inresnts required to acquire the

spread between the two assets.

6.1  Sendtivities of the Sequential Rainbow Option on Two Assets

We apply the sequential rainbow option model on twoelated stochastic assets, as
developed in Section 3, with the finite differersmution method from Section 5, to a
set of numerical parameters in order to interptet bption behaviour and its
sensitivities. With the parameters provided in €ab) the sequential rainbow option
is valued at 21.53 which is only about 0.2% lesmmtthe value indicated by Monte
Carlo simulation (21.58). When the number of inasvn the finite difference grid is
increased, the valuation result approaches the &@atrlo simulation result. When
assuming Kg = 0, the sequential rainbow option simplifies teimple rainbow option
which is valued at 51.37. If the exercise pricetlod sequential option was not
optional, the NPV would be 14.26 which is the rawboption value less the
discounted Kr of 40. Hence, the additional value from the setjgkoption is about

51% (21.53 vs. 14.26).
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Table 1. Parameters and Valuation Results for thgué&ntial Rainbow Option on
Two Assets

Parameters

Value of asset X X 70
Value of asset Y Y 100
Volatility of X ox 0.40
Volatility of Y oy 0.30
Convenience yield of asset X Ox 0.00
Convenience yield of asset Y dy 0.00
Correlation between X and Y p 0.50
Risk-free interest rate r 0.05
Time to maturity of the sequential option TsF 15
Time to maturity of the rainbow option TF 3.0
Exercise price for the sequential option K 40
Exercise price for the rainbow option K 70
Rainbow Option (given by Kse=0) F 51.37

Finite Difference Solution

Maximum value of X Xaax 400
Maximum value of Y Yoax 400
Nr of increments in X Had AX 20
Nr of increments in Y YaxdAY 20
Nr of time increments Tsd AT 5
Sequential Rainbow Option SF 21.53

Monte Carlo Solution
Nr of simulations Nim 50000

Sequential Rainbow Option SF 21.58

Rainbow Option value is obtained from equation Biite difference solution of Sequential
Rainbow Option is based on equation (29) and baynaanditions (7), (9), (10), (11).
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While the stochastic assets X and Y are assuméakeothe initial values of 70 and
100 respectively according to Table 1, they aréedain Table 2 to obtain the option
values for different combinations of X and Y. Figut illustrates the sequential option
value surface as a function of X and Y. The valudage is in line with expectations
from real options theory because the option vaheeeiases with both X and Y, the
shape is convex in the area of being at-the mondynzore linear in the area of being

far in-the-money. The option value drops to zerly arhen both assets are worthless.

Figure 4. Sequential Rainbow Option on Two Asseta &unction of these Assets

Value surface of sequential rainbow option on sastic assets X and Y. Implicit finite
difference solution is based on equation (29) amehdary conditions (7), (9), (10), (11), with
Maximum value of X: X,x = 400; Maximum value of Y: ¥« = 400; Finite difference grid
set up on In(X) and In(Y) with 20 intervals for @astochastic variable and 5 time intervals;
Linear interpolation between grid points.

Option parameters: Time to maturity of the seqanbption: s = 1.5 years; Time to
maturity of the rainbow option = 3.0 years; Exercise price for the sequentialboptKse =
40; Exercise price for the rainbow option: K 70; Volatility of X: ox = 0.40 p.a.; Volatility
of Y: oy = 0.30 p.a.; Convenience yield of &; = 0.00; Convenience yield of ¥ = 0.00;
Correlation between X and ¥:= 0.50; Risk-free interest rate: r = 0.05 p.a.
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Table 2. Sequential Rainbow Option on Two Asse Bsanction of these Assets

Y X 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
10 0.00 0.03 0.20 0.64 1.64 3.56 6.49 9.69 15.19 20.11 2765 7034 42.29 51.33 59.74
20 0.00 0.03 0.20 0.65 1.65 357 6.49 9.70 15.19 20.10 2765 6934 4229 51.32 59.73
30 0.04 0.07 0.25 0.70 171 3.62 6.55 9.75 15.24 20.15 2769 7334 4231 51.34 59.75
40, 0.18 0.22 0.40 0.87 1.90 3.83 6.75 9.95 15.41 20.30 2782 8434 4241 51.43 59.82
50 0.60 0.65 0.84 1.35 2.37 4.33 7.29 10.49 15.96 20.85 28.30 5.323 42.76 51.77 60.16
60 167 172 192 244 351 5.49 8.47 11.67 17.10 21.96 29.32 6.293 43.56 52.53 60.88
70 3.69 3.73 3.94 4.46 5.56 7.56 10.51 13.67 19.04 23.83 31.02 37.86 44.96 53.80 62.04
80 6.01 6.05 6.26 6.77 7.88 9.87 12.78 15.93 21.12 25.77 32.80 39.37 46.50 55.05 63.02
90 10.92 10.93 11.12 11.58 12.69 14.61 17.40 20.32 2551 630.1 36.75 43.32 49.70 58.26 66.22

100 1531 15.29 15.47 15.89 16.99 18.86 2153 24.24 29.44 0834. 40.28 46.85 52.57 61.12 69.09
110 22.97 22.97 23.12 23.48 24.46 26.15 28.58 31.03 35.78 0340. 45.78 51.80 57.37 65.35 72.78
120 30.17 30.16 30.30 30.59 31.57 33.15 35.35 37.38 42.13 3846. 5145 57.47 62.07 70.05 77.48
130 38.01 38.00 38.10 38.37 39.06 40.36 42.32 44.40 4823 6551. 56.79 61.84 67.06 74.04 80.53
140 47.47 47.46 47.55 47.77 48.46 49.66 51.40 53.05 56.88 3060. 64.71 69.76 73.89 80.86 87.36
150 56.27 56.28 56.36 56.52 57.21 58.31 59.85 61.10 64.93 3668. 72.08 77.13 80.24 87.22 93.71

Value surface of sequential rainbow option on sastic assets X and Y. Implicit finite differencdwgn is based on equation (29) and boundary d¢mmdi (7),
(9), (10), (11), with Maximum value of X: %, = 400; Maximum value of Y: ¥.x = 400; Finite difference grid set up on In(X) dngY) with 20 intervals for each

stochastic variable and 5 time intervals; Line#eripolation between grid points.

Option parameters: Time to maturity of the sequaérdgption: tsg = 1.5 years; Time to maturity of the rainbow optier = 3.0 years; Exercise price for the
sequential option: k& = 40; Exercise price for the rainbow optiorg K 70; Volatility of X: ox = 0.40 p.a.; Volatility of Yoy = 0.30 p.a.; Convenience yield of X:
dx = 0.00; Convenience yield of ¥y = 0.00; Correlation between X and Y = 0.50; Risk-free interest rate: r = 0.05 p.a.
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An option on a stochastic asset with a yield sEléhan the risk-free rate and fixed
exercise price will be the more valuable, the larthe remaining time to maturity, as
shown in Figure 5. At maturity, the sequential bmw option (SF) is the maximum of
the rainbow option (F = 40.74) less exercise poicthe sequential option @k = 40)

and zero.

Figure 5. Sequential Rainbow Option on Two Asseta &unction of the Maturity

SF
- 25.00

21.53
- 20.00
- 15.00

- 10.00

- 5.00

TsE | T T T T 0.00
1.5 1.2 0.9 0.6 0.3 0.0

Sequential rainbow option value (SF) as a functbthe time to maturity of the sequential
option (s in years. Implicit finite difference solution lmsed on equation (29) and boundary
conditions (7), (9), (10), (11), with Maximum valoé X: X.x = 400; Maximum value of Y:
Ymax = 400; Finite difference grid set up on In(X) ahfY) with 20 intervals for each
stochastic variable and 5 time intervals; Line&erpolation between grid points.

Option parameters: Current asset value X = 70; édtirasset value Y = 100; Time between
maturities of the sequential option and the raintmpition: t--tse = 1.5 years; Exercise price
for the sequential option: & = 40; Exercise price for the rainbow optior: K 70; Volatility

of X: ox = 0.40 p.a.; Volatility of Y:oy = 0.30 p.a.; Convenience yield of Xx = 0.00;
Convenience yield of Y3y = 0.00; Correlation between X and {y = 0.50; Risk-free interest
rate: r = 0.05 p.a.

The sensitivity of the option to the volatilitie$ thhe underlying assets exhibits two

phenomena, according to the sensitivity analysikaible 3.
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Table 3. Sequential Rainbow Option on Two Assets Banction of Volatilities

GX

9% 0.00 0.05 0.10 0.20 0.30 0.40 0.50
0.00 4.10 4.16 4.39 5.96 9.09 1341 18.07
0.0§ 4.69 4.74 4.93 6.34 9.15 13.35 17.86
0.10 6.26 6.29 6.47 7.71 10.27 14.16 18.48
0.20 10.79 10.82 10.98 11.95 14.04 17.36 21.25
0.30 15.83 15.78 15.94 16.83 18.73 21.53 25.04
0.40 21.18 21.15 21.28 2214 23.83 26.30 29.39
0.50 26.59 26.59 26.76 27.64 29.21 31.42 34.17

Sequential rainbow option values for different ¥itities (o) of the stochastic assets X and Y.
Implicit finite difference solution is based on egon (29) and boundary conditions (7), (9),
(10), (11), with Maximum value of X: X = 400; Maximum value of Y: ¥, = 400; Finite

difference grid set up on In(X) and In(Y) with 2@&teérvals for each stochastic variable and 5
time intervals; Linear interpolation between grargs.

Option parameters: Current asset value X = 70;e@trmsset value Y = 100; Time to maturity
of the sequential optionisg = 1.5 years; Time to maturity of the rainbow optier = 3.0
years; Exercise price for the sequential optiog: K 40; Exercise price for the rainbow
option: K= = 70; Convenience yield of X3x = 0.00; Convenience yield of Y6, = 0.00;
Correlation between X and ¥:= 0.50; Risk-free interest rate: r = 0.05 p.a.

The sequential rainbow option behaves as a tyg@hloption, i.e. the option value
increases with volatility. However, there is oneeption when the volatility of Y is
low and the volatility of X is high. Fasx = 0.50, the option value decreases wken
increases from 0 to 0.05, and increasesocfor> 0.10. This seems to be counter-
intuitive at first glance. The initial values ofafd Y are 70 and 100 respectively. The
exercise prices of the sequential option and ofrdiebow option are 40 and 70,
respectively. With yields of zero and assumingublatility of both assets is zero, the
NPV is the higher of X and Y less the discountedreise prices. Y is expected to be
slightly in-the-money at maturity with an NPV o62. While a higher volatility of X
only increases the upside potential, a higher iiyatof Y means upside and
downside potential at the same time because aiyg$iPV might be increased or
lost altogether. Three factors determine whetheinarease in the volatility of Y
further increases or decreases the option value. firet factor is whether Y is
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expected to be in-the-money or out-of-the-monematurity. If it is in-the-money, a

low volatility might be beneficial in case the oti{enore volatile) asset drops below
the exercise trigger. If it is currently out-of-th@ney, there is not much to lose, so
high volatility is favourable. The second factor tise correlation between the

underlying assets.

Figure 6. Sequential Rainbow Option on Two Asseta &unction of the Correlation

SF
45.00 _‘ =0=5X=0.46Y=0.1
40.00 " =H#=5X=0.4,0Y=0.3
35.004 6X=0.5:5Y=0.5
30.00 -
25.00 - .
20.00 _0—
15.00 e e
10.00 -
5.00 -
0.00 | . T P
-1.00 -0.50 0.00 0.50 1.00
p -1.00 -0.50 0.00 0.50 1.00
o0x=0.40vy=0.1 17.26 16.39 15.35 14.16 12.67
o0x=0.40vy=0.3 27.72 26.44 24.53 21.53 16.95
ox=0.50y=0.5 41.07 40.98 38.68 34.17 26.10

Sequential rainbow option values as a functiorhefdorrelation between the stochastic assets
X and Y. Implicit finite difference solution is bed on equation (29) and boundary conditions
(7), (9), (10), (11), with Maximum value of X:.%, = 400; Maximum value of Y: ¥.x = 400;
Finite difference grid set up on In(X) and In(Y)tvi20 intervals for each stochastic variable
and 5 time intervals; Linear interpolation betwegid points.

Option parameters: Current asset value X = 70;e@trmsset value Y = 100; Time to maturity
of the sequential optionisg = 1.5 years; Time to maturity of the rainbow optior = 3.0
years; Exercise price for the sequential optiog: K 40; Exercise price for the rainbow
option: Kz = 70; Convenience yield of Xy = 0.00; Convenience yield of ¥y, = 0.00; Risk-
free interest rate: r = 0.05 p.a.

RESEARCH PAPER #3 —-174 -



If X and Y are highly correlated and only Y is imetmoney, a low volatility of Y
tends to be preferable in order to ensure a pespay-off. When the correlation is
low or negative, however, high volatility tendskie desirable for both assets because
one of the two would probably increase. This i® asident from Figure 6, showing
that the option value is significantly higher fagh volatilities unless the correlation
is high. The third factor is the magnitude of thelatlity of Y. As soon as the
volatility of Y surpasses a certain level, its effés again positive, except for almost
perfect correlation.

Considering the practical examples described inintreductory section, the
above results allow to value the opportunity to fmd a long-term take-or-pay gas
supply contract, which is scheduled for auctionprder to use the gas to produce
fertiliser (ammonia or urea). This valuation isesgnt for instance, if the local
investor (opportunity holder) needs to raise mooeyntends to sell shares. In the
case, where a farmer has the option to prepareitatite autumn season in order to
grow wheat or maize in the following spring, ouegeding analysis suggests that
high volatilities of both wheat and maize are galigifavourable to the option value
but that a low volatility of one crop (say wheat)desirable if the expected value of
only that crop is in the money and the correlatiotin the other crop (maize) is high.
If the circumstances allow, this insight might eviexduce the decision-maker to
consider other alternative crops with more suitabbenbinations of volatilities,

correlation and expected values, thereby creatioge maluable options.

6.2  Senditivities of the Sequential Rainbow Option on the Spread

The sequential option on the spread between theautwderlying assets, as developed

in Section 4, is now valued using the parametare&in Table 4.
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Table 4. Parameters and Valuation Results for dguéntial Rainbow Option on the
Spread

Parameters

Spread between Y and X P 30
Long-run mean of P m 50
Volatiity of P c 25
Speed of mean-reversion of P n 0.35
Required return on P [ 0.10
Risk-free interest rate r 0.05
Time to maturity of the sequential option TsF 15
Time to maturity of the inner (rainbow) option T 3.0
Exercise price for the sequential option 5K 20
Exercise price for the rainbow option K 20
Rainbow Option (given by Ks==0) F 19.96

Finite Difference Solution

Maximum value of P Rax 1000
Minimum value of P Rin -1000
Nr of increments in P Pl AP 200
Nr of time increments TsHAT 30
Sequential Rainbow Option SF 4.13

Monte Carlo Solution

Nr of time increments TsHAT 100
Nr of simulations Nim 6000
Sequential Rainbow Option SF 4.18

Closed-form Solution

Risk-neutral P at g E[P].sF 36.20
Risk-neutral P atd E[P).r 39.61
Critical P for exercising the sequential option critP 34.67
Risk-neutral B¢ at (T=-Tsp) E[Pcrit]cF-sk 38.76
Volatiity of P by Tse V,sp 23.37
Volatiity of P by T= \VAS 26.65
Volatiity of P by (T--Tsp) \VASS 23.37
d.se 0.07
d.r 0.74
direse 0.80
Correlation p 0.48
n(d.sp 0.40
n(dr) 0.30
Equation determining & F(Pyit: T Tsp)-Kse = 0.00
Sequential Rainbow Option SF 4.14

Closed-form solution is obtained from equation (Zeite difference solution is based on
equation (30) and boundary conditions (18), (223) (
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With these parameters, the sequential option isedhht 4.13 according to the finite
difference procedure, at 4.18 according to a M@ddo simulation and at 4.14 based
on the closed-form solution. Hence, both approxingamethods, finite differences
and Monte Carlo simulation, deviate by less than ftétn the exact solution.
Comparing these values with the NPV of 1.41 — gilsgrthe value of the rainbow
option (19.96) less the discounted exercise pricie sequential option @&=20) —
shows that the sequential option adds significahieshere.

Figure 7 keeps the time to maturity of the inneti@mpfixed sk = 3.0 years)

and varies the time to maturity of the sequentuiam (tsg).

Figure 7. Sequential Rainbow Option on the Spremd dunction of the Time to
Maturity

SF
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=o—Finite Difference

=-Monte Carlo
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3.00 - e
2.00 - o

1.00 4 F

0.00 FF T T T T T 1 TsE
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Sequential rainbow option value (SF) as a functibthe time to maturity of the sequential
option @sp). Closed-form solution is obtained from equati@®)( Implicit finite difference
solution is based on equation (30) and boundarylitions (18), (22), (23), with Maximum
value of P: R, = 1000; Minimum value of P: 2 = -1000; Finite difference grid divided into
200 intervals in P and 30 time intervals; Linedeipolation between grid points.

Option parameters: Current spread: P = 30; Timenaburity of the inner optiontg = 3.0
years; Exercise price for the sequential optiog: K 20; Exercise price for the rainbow
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option: K= = 20; Long-run mean of P: m = 50; Standard demmtf P:c = 25 p.a.; Speed of
mean-reversiom = 0.35; Required return on = 0.10; Risk-free interest rate: r = 0.05 p.a.

First of all, Figure 7 confirms our conclusion thiaé three solution methods provide
near-identical results. If the exercise pricg:I§ due immediatelyt§=0), one would
leave the option unexercised because the rainbdwropalue is less thand&k The
sequential option value increases with the timentdurity, due to several effects.
First and foremost, the variance increases withtithe to maturitytrsg and thereby
increases the option value. More precisely, théamae relevant for the exercise of
the sequential option if times the correlatiop, as can be seen in the second term
in equation (26). Whilev,r is independent otsy, p increases withtsg In a non-
monotonous way for the specified parameters. Sdgotie discounted exercise price
Kse decreases withse. And thirdly, the probability that both sequentaition and
inner option are exercised increases with a lotigeg to maturity of the sequential
option because the probability distributions oftRgg and of P atr are then more
closely correlated. While these effects dependeirtmagnitude on the parameters,
especially the speed of mean-reversion and thalifetvel of P, they are all positively
correlated withese. Hence, when the time to maturity of the innenap(z) is fixed,
the sequential option is the more valuable the e sequential option expires.

The following analysis discusses the effect of gassage of time on the
sequential option value. For this purpose, bothunitgtdates are fixedtg-tsg = 1.5
years) and we consider the case where there ististg left until expiry of the
sequential option t§=1.5) and the case where the sequential optionrexpi

immediately €s=0).
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Figure 8. Sequential Rainbow Option on the Spreaal Runction of the Spread (P)
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TSF -30.00 -10.00 10.00 30.00 34.70 50.00 70.00 90.00
wsk= 1.5 0.39 0.99 2.17 4.14 4.73 6.99 10.66 14.94
wsE=0 0.00 0.00 0.00 0.00 0.00 6.53 15.87 25.72

Sequential rainbow option value (SF) as a functibthe initial level of the stochastic spread
(P) for different times until expiry of the sequi@htoption (sp in years. Option values are
obtained from equation (26).

Option parameters: Time between maturities of #ishow option and the sequential option:
11se = 1.5 years; Exercise price for the sequentialooptKse = 20; Exercise price for the
rainbow option: k = 20; Long-run mean of P: m = 50; Standard dewmtf P:0 = 25 p.a.;
Speed of mean-reversion:= 0.35; Required return on R:= 0.10; Risk-free interest rate: r =
0.05 p.a.

Figure 8 illustrates the sequential option valu@ d&snction of the initial spread level

(P) for these two cases. While the functions tdies general form expected for an
option, with zero as the lower boundary for negaspread values and option values
increasing in P, the slope is always significailys than one. The reason for this is
the mean-reverting property of the spread, whicllsghe spread towards the long-
run mean (m=50). The general intuition is that dption value is worth more, the

more time is left until expiry. In our case, we dde consider three factors. First, the

spread level tends towards its long-run mean. Heanténitial spread higher than the
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long-run mean is pulled down while an initial sgrdawer than the long-run mean is
expected to increase. Second, the variance untiimaincreases the option value.
Third, the more time is left until expiry, the lowthe present value of the exercise
price. The combination of these factors resulthaeffect that for low initial values
of P, it is preferable to have more time left umtpiry, while immediate expiry is
preferable for high values of P. This is why thdueafunctions for maturities of

ts=1.5 andes=0 intersect, in our case at P=51.

Figure 9. Sequential Rainbow Option on the Spresa dunction of the Standard
Deviation
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Sequential rainbow option value (SF) as a functdrthe spread standard deviatios).(
Option values are obtained from equation (26).

Option parameters: Current spread: P = 30; Tinmadturity of the sequential optiots= 1.5
years; Time to maturity of the inner optior: = 3.0 years; Exercise price for the sequential
option: Ksg = 20; Exercise price for the rainbow option: ¥ 20; Long-run mean of P: m =
50; Speed of mean-reversians= 0.35; Required return on R:= 0.10; Risk-free interest rate:
r=0.05p.a
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The magnitude of the value obtained from the opfemtures can be assessed by
comparing the option value with the case of zeandard deviationoE0), where the
sequential option simplifies to the maximum of zaral expected value of the risk-
neutral spread at final maturity less exercisegwiaiscounted with the applicable

time periods, as shown below:

SF(P,0 = 0) = Max|e " (E[P *], K. )- e K o 0] (31)

TF
For the specified parameters, the option with zemdard deviation is then Max[-
1.68,0]=0, which is 4.14 less than the option valith c=25. Figure 9 illustrates the
sequential option value as a function of the steshd@viation and shows that it is a
convex function, approaching linearity when thendtad deviation is very high.

Next, we investigate the influence of the speedmaan-reversion on the
option value. Figure 10 shows that mean-reversameither increase or decrease the
value of a European sequential option dependingthen current level of the
underlying asset. Assuming zero mean-reversionpphtien value highly depends on
the initial spread level (P). For P=70, the optiatue is 20.31 while it is only 4.69 for
P=30. When introducing mean-reversion, two effeatsne into play. First, the
expected spread is pulled towards its long-run medgh a positive speed, and
second, the variance is reduced. Hence, the optiue decreases with the speed of
mean-reversion if the current spread is abovedhg-tun (risk-neutral) mean. If the
spread is below the long-run mean, the total eftectthe sequential option value
depends on the net effect from increased optionevaly an expected increase in P
and a reduced option value due to lower variartas. ihteresting to see that this net
effect is negative for a range of W< 0.50 and positive fof > 0.50 when an initial
spread of 30 is assumed. That means, variancetredug an important factor when

mean-reversion is introduced to a random walk m®cwhile the effect of further
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increases in the speed of mean-reversion on theroptlue is dominated by the
expected increase in P. For fast mean-reversienpption values based on different
initial spread levels converge since the initidfedence from the long-run mean is

almost immediately absorbed.

Figure 10. Sequential Rainbow Option on the Sprasad Function of the Mean-
Reversion Speed
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P=30, m=50 4.69 4.27 4.14 4.23 4.99 5.83
P=70, m=50 20.31 13.65 10.66 7.87 6.35 6.16

Sequential rainbow option value (SF) as a functbrihe mean-reversion speexq) (©f the
spread for different initial spread levels (P). ©Optvalues are obtained from equation (26).
Option parameters: Time to maturity of the sequéntiption: tsg = 1.5 years; Time to
maturity of the inner optioree = 3.0 years; Exercise price for the sequentialbopKsg = 20;
Exercise price for the rainbow option; kK= 20; Long-run mean of P: m = 50; Standard
deviation of Po = 25 p.a.; Required return onP= 0.10; Risk-free interest rate: r = 0.05 p.a.

Figure 11 illustrates that the sequential optioluedas a decreasing function in the

risk-premium (i-r). It should be noted that changes in the risdapum are not linked
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to changes the in instantaneous standard devi@t)dn this analysis. In a risk-neutral
setting, a higher risk-premium reduces the variamcé the long-run mean while
increasing the speed of mean-reversion, as caneée Bom equation (21). The
cumulative effect is that the option value converge zero for a very high risk-

premium and finds its maximum value when the rigdapum is zero.

Figure 11. Sequential Rainbow Option on the Sprasda Function of the Risk-
Premium
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| 6.15 4.14 2.60 1.50 0.77 0.34 0.13 0.04

Sequential rainbow option value (SF) as a functibthe risk premiumy(-r). Option values
are obtained from equation (26).

Option parameters: Current spread: P = 30; Tinmadturity of the sequential optiotsz= 1.5
years; Time to maturity of the inner optior: = 3.0 years; Exercise price for the sequential
option: Ksr = 20; Exercise price for the rainbow option: ¥ 20; Long-run mean of P: m =
50; Standard deviation of B:= 25 p.a.; Speed of mean-reversigm: 0.35; Risk-free interest
rate: r = 0.05 p.a.

Some of the findings above are best discussedeircdhtext of a practical example.

An ethylene producer considering building a plaot grocess ethylene into
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polyethylene would try to accelerate the intermedimvestment (acquisition and
preparation of land, permissions) if the currentveleof the spread between
polyethylene and ethylene is higher than its lomg+mean, so that the investment is
already productive when the spread is still aboxexage. On the other hand, if the
current level of the spread is below the long-rieam the investor might try to delay
the investment. The value of this investment oppoty also depends on the speed of
mean-reversion. Strong mean-reversion in the spreddces the variance until
maturity and thereby decreases the option valueveder, if the current level of the
spread is low, mean-reversion can be positive Isscthe spread approaches the long-
run mean faster. Hence, the current level of tlieagpcompared to its long-run mean,
the speed of mean-reversion and the time to mgtaré important factors to be

considered in the assessment and design of thdsokisequential option.

7 Conclusion

We have developed a model for a European sequeatidow option on the best of
two stochastic assets following geometric Brownmation processes, and another
model for a European sequential rainbow option be mean-reverting spread
between two co-integrated assets. The real optalnation is developed for each
model and numerical solutions are provided basetthefinite difference method and
compared to Monte Carlo simulation. For the sedakoption on a mean-reverting
spread, we develop a closed-form solution. Botloopinodels are tested extensively
for various sensitivities, providing important igkts into the value behaviour. We
find the interesting result, that in particularccimstances, the value of the sequential
rainbow option on two assets is negatively coreglatith the volatility of one of the

two assets. Also, the sequential option on the mmeaerting spread does not
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necessarily increase in value with a longer timemn@turity. With given maturity
dates, it is preferable to have less time untiligxpf the sequential option if the
current spread level is high enough above the fongmean. This is exemplified by
an application from the commodity industry. Assugihe commodities ethylene and
polyethylene are co-integrated, a producer of etig) considering investing into a
facility to convert ethylene into polyethylene, idwalue a longer time to maturity
of the investment opportunity if the price spreatiheen the two products is below its
long-run mean and therefore expected to increasmveMer, if the spread is
significantly above its long-run mean, the valuewditing is lower than the lost
profits of delaying the investment. Further reskaright focus on extending the new
sequential option models to American (finite) opsobecause real investment
opportunities can often be exercised over a peabdime instead of at a fixed

maturity date only.
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Appendix A. Proof of Arithmetic Brownian Motion as Special Case of Arithmetic
Mean-Reversion

The arithmetic mean-reverting process P is defioge@ther with its expected value
and variance by equations (12) - (14), and restaddalv:
dP=n(m-P)dt+odz,
E[P]; =P +mft-e7),

;=)

Choosingn = —p and m = 0 provides the stochastic process beldwghwis the

arithmetic Brownian motion with proportional drift:

dP=p Pdt+odz,

E[P], = P&,

2
o
vi = —(e2uT —1).

The relationship between arithmetic mean-reversioth arithmetic Brownian motion
with proportional drift can also be demonstratedhwihe risk-neutral stochastic

processes. The risk-neutral form of the former is:
dP* =k(6-P*)dt+odz,

P+l =p*E +6f-e7),

wherek =n+pu-r andg=—"1__m .
n+p-r
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Choosingn = —p and m = 0 impliesk=-r and 6=0, so that the risk-neutral
stochastic process of the arithmetic Brownian mmowdth proportional drift becomes:

dPf =rP*dt+odz,

EP+*], =P*@7,
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Appendix B. Derivation of the Closed-Form Solutionfor the Sequential Option
on the Mean-Reverting Spread

As defined in the main text, AS) is a call option on S with exercise price uZ+K,
where both S and Z follow arithmetic Brownian maticorrelated by. Childs et al.

(1998) derive the following:

jicz (st)g(z)dz = v, (u)e™*{- hsz(K’U)[Nz(_ hsz(K,u),h; (b),as,(u))

a

- Nz(_ hsz( K’U)’hz(a)’asz)]

_ GSZ(U)[n(hZ(a)) Nl[_ hsz(K’U) - O‘sz(u)hz("i)}

1—0(322(u)

_n(hz(b»Nl[—hsz(K,u)—asz(u)hz(b)ﬂ

1_0‘322(U)

+n(=hey (K, u))[Nl[ h,(b) + as,(u)hs, (K, U)]

1- 0‘322 (U)
_ h,(a) + as,(u) he,(K, u)
[Nl[ \/1_0(322(1") J]}

hz(a)=i[z]* and hz(b)=b_i[z]*,

where

_K-g[g +ugfz] |

hSZ(K’U) Vsz(u)

Vsz(u)= \/Vg —2upv, Vg +uivy,

o) = 2Y5 02
Sz
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We now choose u=0, & and b=o, which simplifies the expressions above to

(@)= 25 (o) =2 o (u=0)= K E <) ana

+p[n(hz(2))Nl(_ hS(jl)_%); Z(Z)ﬂ

+n(- hS(K)){l— Nl{hZ(?%S(K)H

The above function can be further simplified withme basic transformations of the

normal density and normal cumulative functionia): n(—a), Nl(a):1— Nl(— a),
N,(ab,p) = N,(a,»,-p)-N,(a-b-p). When Z is chosen to replicate the
probability distribution of S in a risk-neutral ey (S) at maturity of the sequential
option, the explicit form of the integral over tball option can be used to evaluate the
sequential option on S in equation (25). The setilesption on the arithmetic mean-
reverting variable P according to equation (26hen obtained by replacing the

expected values, volatilities and correlation ofigh those of P.
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Appendix C. Finite Difference Expressions for the 8quential Rainbow Option
on two Assets

Defining the normally distributed variablex =InX and y=InY, partial

differential equation (6) becomes:

0SF 1 , d°SF 1 , 0°SF 9°SF
= T50x 7 TS50y 3 tPOxOy ——
o 2 0x 2 oy oxoy

2 2
#lr-5, -2 9SF, -5, -2 95F_ 1sF=0
2 ) ox 2 ) oy
The derivatives of the sequential rainbow optioroading to the implicit finite

difference method are:

0SF _ SK i1~ Sk«
ot At

0SF _ SFi+1,j,k - SFi—:Lj,k
ox 2AX

OSF _ SF 1k —SF 1k
oy 20y

525F= SF.jk ¥ SFo1jk — Sk«
x> NG

GZSF: SE ik tSK ok — 25K«
ay? Ay?

GZSF: SFi+Lj+lk _S':iﬂ,j—],k _SFi—:L,j+1,k +SFi—l.j—1.k
ox oy 4AX Ay

These derivative functions are inserted into theigdadifferential equation describing

x and y to get the finite difference equation (29).
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Appendix D. Solution Methodology of the Finite Diference Problem

The matrix of values of the sequential rainbow aptis three-dimensional of the
order (i na +1) (max + 1) (Kmax +1). FOr each point in time, there is an x-y-layer of

option values, as exemplified below for the timenaturity and the present time.

Att=Tse
X
SO,C,kma) S.L,O,kma) S'Z,O,kma) &,O,kma) e Smax,o,kma)
S0,1,kma> S1,1,kma: S2,1,kma> S3,1,kma> ren Smax,l,kmev
y
2,kmay ,2,kmay ,2,kmay ,2,kmay ren max,2,kmay
Y 5 S S S S
Sijax,kma; S1,jmax,kma; S2,jma><,kma> S3,jmax,kma; e Smax,jmax,kmaz
Att=0:
So,co S100 Sp00 Sz0,0 . Smax0,0
Soic S11.c Sic Ss1.c . Smax1,c
Soz,c Sioc S S3oc . Smax2,c
Sijay,O S1,jma>,0 Sz jmax,0 S3 jmax,0 e S1ma><, jmax,0

The option values for t=sF are determined by boundary condition (7). Furtfeem
the values at X=0, X=Xax (assumed infinity) and Y=0, Y=Y respectively, are
given by boundary conditions (9) to (11). The illhation below shows that

(i max = 1) dimax —1) 0K max ) Unknown values are to be determined by means ef th

same number of finite difference equations.
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Unknown variables Known variables

/ /

[
So,ck S0k Sp0k / S3.0k . Smax,0k
So.1.k S11k Sk / S31k - Smax1k
So2.k S12k S0k Sz .k - Smax2,k
Sijax-l,k S1,jma><-1,|< S2,jma><-1,k S3,jma><-1,|< fes S1ma><,jma><-1,k
Sijax,k S1,jmax,|< Sz,jmax,k S3,jmax,|< e S1ma><,jmax,|<

This linear system is then solved by means of as§lan algorithm. For this purpose,

a matrix of the ordefi, ., —1)[{j,... —1) is created for every time interval as follows:

Known variables

1L t t 1

Soc S10 S0 .- Smaxs So1 @@--Smax,l Sz Si2 S ...

©

- AN
Sia: b1 1 &1 Ci1 Chg e fi1 |=[Siim

(& < L J

Each row describes one unknown variahlg 8y its finite difference equation, e.qg.
the first row for the variable 19k If any known variables are involved in this
equation, they are multiplied by the respectivadgce.g. 3o is multiplied by h 4,

and subtracted from the right-hand side of the #guaThis means that the left-hand
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side is a quadratic matrix of the ordgf,,, —-1)[{j,.., —1) of the unknown variables
multiplied by the respective factors. The right-tiande is a vector of the same order

with  known values. This system of(i,, -1){j.. -1) equations and

(i max —1)dimex —1) Unknowns is solved using the Gaussian algorithm.
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6 Conclusion

This Chapter summarises the main contributions famtings from the real option
models developed in this thesis. It also includesitical discussion of the option
models and their assumptions to make transparesit timitations. Finally, we
provide an outlook on potential areas of futureeaesh for real rainbow options in the

context of commodities.

6.1 Findings

In the course of this thesis, we have developedetsddr three types of real rainbow
options which are highly relevant to the valuatmcommodity-related assets and
investment opportunities. These models allow onevalue the options and give
guidance on optimal operating and investment pediciWe provide insights into the
behaviour and sensitivities of option values anckrapng policies and discuss
implications for decision-making. Some general ¢asions can be given. The option
of choosing between two uncertain assets alwaysahassitive value. Whether this
value exceeds the additional cost for installirexibility depends to a large extent on
the underlying uncertainty and starting price lsveAn investor in an asset with
output flexibility should generally prefer high wadility, low correlation and a low

degree of co-integration between the underlyingabées. Exceptions to this rule
have been identified and are discussed furthembedm operator of a flexible asset
needs to optimise the practical level of flexilgiland monitor the main drivers of
switching triggers in order to take the right opierg decisions. Policy makers

interested in the functioning of markets ought tonpote flexibility in real assets,
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particularly with regard to commodity outputs, whievould generally speed up
adjustments to a shift in demand.

The first type of real rainbow option developedaignodel with continuous
choice on the best of two commodity outputs. Thdel is appropriate to value an
asset with flexibility between two stochastic armtrelated revenue flows, described
by geometric Brownian motion, where operating caats incurred and switching
between the two operating modes is possible attiamy by incurring a switching
cost. Both quasi-analytical and numerical latticdusons are presented, with the
latter solution also taking into account that teeed operation can be suspended at no
cost. A comparison of these two approaches revbatshe quasi-analytical solution
is more transparent and accurate. The accurachieohtimerical lattice solution is
improved by refining the grid spacing, which in@gea computation time on the other
hand. It has the advantage, however, that it isenftaxible on operating costs.
Optimal switching policies are determined as a fiamcof the underlying commodity
prices. While the switching boundaries generallyedye when the underlying prices
increase because of increasing variance, theydnswge for very low prices when
operating costs and the option to suspend are takeraccount. This is because net
cash flows no longer justify the switching cost wigices are very low and the asset
operation can be suspended instead. In an empaiqication of the option model to
the valuation of a flexible fertilizer plant, thealue of flexibility between the two
outputs, ammonia and urea, exceeds the requireiticadd investment cost despite
the high correlation between the commodities. Tda value of the fertilizer plant is
found to be high compared to the investment cosiniy driven by non-stationary
commodity prices in combination with constant ofiagacosts and by the assumption

of no operating and maintenance costs during ssspen
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We have further developed a real option model taevéhe flexibility on the
best of two co-integrated commodities under thenge of unlimited switching by
incurring switching costs. The uncertainty in twaanodity prices is reduced to only
one source of uncertainty by modelling the sprehithvis mean-reverting in the case
of co-integration. Optimal spread levels for switchare determined. Our solution is
quasi-analytical and all parameters can be estaniaten empirical data. Moreover,
we distinguish between the different risk and disdofactors — as compared to an
existing model based a single general discount+ated demonstrate how this leads
to better results for a real option with a mearerég stochastic process. When the
model is applied to the valuation of a polyethyl@tent, based on the spread between
polyethylene and ethylene, we find that the valtilexibility highly depends on the
degree of mean-reversion in the spread betweenrtterlying variables. When the
spread is non-stationary, the potential pay-oftsmfrswitching are much higher
compared to the case where the spread revertsottgaun mean. Hence, operating
flexibility is higher when commaodity prices are roat-integrated. The valuation result
of this rainbow option on a mean-reverting spreactanceptually equivalent to a
continuous entry/exit option on a mean-revertiracisastic variable. This also leads
to the insight that anti-cyclical investing is pewtarly attractive when the value-
driver is a stationary variable.

The third type of option we have developed is aokhaan sequential rainbow
option, both on an option on the best of two catex stochastic assets following
geometric Brownian motion processes and on an o the spread between two
stochastic co-integrated assets. Numerical solsitttave been provided based on a
finite difference framework and Monte Carlo simidat In addition, we have

provided a full closed-form solution for the seqtnoption on the mean-reverting
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spread. It has been found that the sequential @ainbption value is negatively
correlated with the volatility of one of the twosa$s in the special case when the
volatility of that asset is low and the optionmsthe-money only on that asset. This is
because the chances are higher that at least seeeaseeds the exercise price at the
time of maturity. If the volatilities are very higthowever, the potential pay-offs
overcompensate the positive effect of having orsetasafely in-the-money. Another
interesting result is that the sequential optiontlma mean-reverting spread does not
necessarily increase in value with a longer timen&durity. Whether a longer time to
maturity has a positive effect on the option vatlepends especially on the initial
level of the spread in relation to the long-run mefrther on the speed of mean-
reversion, the risk-free interest rate and the tiila Furthermore, given a fixed
maturity of the inner option, the sequential opti@ue does not necessarily increase
in a monotonous way with the expiry date of theusedial option because of the
exponential correlation function of the mean-rewmgristochastic process between the

two maturities.

6.2 Critical Discussion

Developing several real rainbow option models affdre opportunity to compare
different approaches and methods. We also needstioglish the different problem
settings and highlight the limitations of each modke this section, we review these

critical issues and draw some further conclusioosfcomparison.

6.2.1 Problem framing

The continuous rainbow options in research paperand #2 assume that the asset is

already in operation, producing one of the tworalitive commodities. Guidance is
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given with regard to the optimal timing of switchibetween the operating modes but
not with regard to the optimal timing for investimgthe asset. The sequential options
developed in research paper #3 also do not inditeteoptimal investment timing
because they are defined as European options.

The continuous rainbow option on the spread betwwen co-integrated
commodities considers the asset operation in tree lmaode to be the base line
(starting point for valuation). The model does eoaluate whether this is a profitable
operation at all but rather focuses on the decigibich of the two commodities is the
better one at any point of time. The same is taretlie sequential option on the
spread where the underlying assumption is thatconanodity asset (present value of
the commodity revenues) is already held and thwogbcuses on exchanging it for
the alternative commodity asset. This is also wie/gequential option on two gBm
assets and the sequential option on the spreadttharompared directly.

The gap between the valuation given by the model #e true value is
influenced by the extent to which the model ignaedevant restrictions that would be
encountered in a realistic setting. The continuairgbow option models oversimplify
the flexibility insofar as some restrictions ineak life setting are ignored. We have
mostly assumed unlimited switching opportunitiessMeen the commaodity outputs. In
reality, the commodities are sold to customerseroftvith contractual long-term
supply arrangements. Switching to a different pobduight mean not being able to
satisfy the customer requirements which is at leagavourable to the business
relationship. Personnel costs have been differeatianto fixed (management) and
variable (operators). Although operators can prbbbhb fired and hired more easily
than management, qualified operators are cruciangure an efficient production

process. It would be difficult to retain these peophen the plant is under temporary
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suspension. While the model might overstate theevalf flexibility as explained
above, it should also be noted that not all optiewveslable in operating the asset have
been considered. Examples include the option tacedhe throughput, to change
input materials, to optimise the production proesssnd become more efficient, and
many more.

The sequential option on the spread can be integhras a sequential
exchange option. It is more general compared tcCtre (1988) sequential exchange
option insofar as it considers exercise pricesHerinner option and for the sequential
option to be fixed and independent of the undegyassets. On the other hand, it is
more restrictive insofar as it is only applicabte do-integrated markets, when the
spread is characterised by mean-reversion. We pi@sented in research paper #3 a
number of applications of the European sequerdiabow options. In other settings,
American finite sequential options might be morerapriate and Least-squares

Monte Carlo (LSMC) simulation would then be consatkas a solution technique.

6.2.2 Critical Assumptions

An intuitive approach of critically reviewing thealation models is to ask for
concerns if one was confronted with taking investindecisions based on the
approach presented. The stochastic processes cliosarodel the uncertainties
(commodity prices) have a significant effect on thaluation and Chapter 2
extensively discusses various approaches of madgatibmmodity prices. There is no
general consensus on the best way of modelling amtities, first because there are
an unlimited number of commodities and they exHhibige differences in behaviour,
and second because even for one commodity, ditfenemels exist, each with its
advantages and disadvantages. However, there deebesa tendency in the more

recent literature suggesting that commodity priaes not completely random walk.
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Demand/supply economics are at the root of thimmate. The short-term market
equilibrium is established by incumbents suspendingdj resuming production based
on their variable costs. The long-term equilibriugsn established by investment/
divestment decisions based on long-run total c@3pacity adjustments can take a
long time in the commodity industry because reqlinvestments are frequently very
large. Our analysis of urea and ammonia pricestHertwo-factor rainbow option
covers a period of ten years of historical datas lguite probable that the level of
stationarity in the prices would be different (heghor lower) if a different period
length was considered. Introducing a stochastioveoience yield according to the
Gibson and Schwartz (1990) model would be equivalemean-reversion in short-
term prices and random walk in the long-term pri&®chastic convenience yields
would be expected to improve the underlying "enjibat at the cost of complicating
the solution framework from two-factor to four-factwhich could hardly be handled
by a lattice. The stochastic process of the poljette-ethylene spread has been
clearly identified as mean-reverting and the vatuabf the polyethylene plant also

seems plausible when compared to the investment cos

6.2.3 Theory

The stochastic spread in research paper #2 is heddairectly from empirical data
instead of deriving its parameters from the stottbgsocesses of the two underlying
commodities. There is no direct connection to thwilatilities and correlation, so
assumed changes in these factors cannot be liokéx tspread and therefore are not
assessed regarding the effect on the option. Hawévie lack of information does
not compromise the results of the option model bsedhe spread is the value-driver
and capturing its empirical information directly ieneficial to the validity of the

stochastic process parameters. Fleten and Nasakkai®), who also model the
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spread directly when valuing gas-fired power pldmsed on the spark spread, say
that it "has the advantage of avoiding the neec*plicitly specifying the correlation
between electricity and natural gas prices" (p.)8Moreover, in co-integrated
markets, it is more promising to find the approtariatochastic model for the spread
(mean-reverting) than to find the appropriate sastic models for the individual
commodities.

We have used the contingent claims and risk-neafratoach to determine the
continuous rainbow option on the mean-revertinga@r as compared to the dynamic
programming approach used by Sodal et al. (20073 ®milar problem. Contingent
claims analysis assumes that the stochastic chamigéise underlying assets are
spanned by other assets in the open market which bea justified for many
commodities. Even if spanning did not hold in pi@st one could argue that the
theory still holds because if these assets weredthathe valuation would have to
follow the approach to rule out arbitrage. As exmd earlier, the dynamic
programming approach does not require spanningseéta but is based on an
arbitrary and constant discount rate. It leadh&dontingent claims and risk-neutral
valuation results if this arbitrary discount facterreplaced by the risk-free interest
rate and the underlying stochastic process isfoamed into its risk-neutral form. We
have shown this connection between our solutiontaacne in Sodal et al. (2007).
While the solution is determined analytically, waysthat the solution is quasi-
analytical because the system of equations neels smwlved simultaneously, due to
the involvement of confluent hypergeometric funesip so that an analytical

expression of the switching triggers and the caristes not available.
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6.2.4 Numerical solution methods

In research paper #1 we have used a trinomiatéaftree) based on the Hull and
White (1990) modification to the explicit finite ftBrence approach which ensures
convergence. The trinomial lattice is equivalenttbh@ explicit finite difference
approach. Correlation is taken into account anldenices the form of the grid insofar
as the interval size for one of the two variablepahds on the value of the other
variable. When a long time horizon is mapped, abescase in our application with
50 years, the non-linear form of the grid compksathe implementation of the lattice
significantly because the number and size of itisrmeeds to be chosen in a way so
that the relevant range of variable values is igried. The alternative implicit finite
difference method would require setting up and isgha system of (i-1) times (j-1)
times k equations, where i and j are the numberidfintervals of the two underlying
variables and k the number of time intervals. Wdittme horizon of 50 years and time
intervals of 3 months, k alone would be 250 andrthmber of intervals for each
variable also needs to be quite high to reflectrémge of possible values within this
long time period, so the system of equations wbelcbome hugely complex.

Although the basic Monte Carlo simulation is nopmpriate for American-
style options, it can be adapted for this purpmeinstance as a Least Squares Monte
Carlo simulation. However, when multiple switchingetween two underlying
variables is possible and a long time horizon kemainto account (such as 50 years),
even adaptations of Monte Carlo simulation areapgropriate. This is why a lattice
or explicit finite difference approach is the preéel method for the continuous
rainbow option on two stochastic variables.

In research paper #3, we have used the implidgtefulifference method which

is robust and always converges to the solutiorhefdifferential equations when the
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variable and time intervals approach zero. The emgntation is rather complex
because the difference equation needs to be strigll points in time before this
system of equations can be solved. Since the tonedn for the sequential option is
limited (up to 3 years in our numerical applicajiothe number of grid points and
therefore the number of equations is limited. White explicit finite difference
method is easier to implement because the equatiensolved for each point in time,
working backwards until the starting point, precansg have to be taken to ensure
convergence. Finite differences have proved toligatsy more efficient than Monte
Carlo simulation when solving for the one-factogusential options in research paper
#3. This is shown by the results of the sequempdion on the spread for which a
closed-form solution is available. The option valgigen by the finite difference
method is 4.13, almost exactly the same as thesdlomm solution (4.14). The
Monte Carlo simulation with a similar computing 8nmdicates an option value of
4.18. The accuracy of both numerical approachedeamproved by refining the grid
spacing and number of simulations, respectivelyotAer advantage of the finite
difference approach is that option values can keraened for different starting
values with only one computation run, while the Mo€arlo simulation needs to be

repeated for different starting values.

6.3 Directions of Future Research

We consider the main areas of future research ahreenbow options to be the
extension of the models to account for alternasiteehastic commodity prices and to
determine the optimal investment timing. The leval complexity/flexibility

incorporated in the models in this thesis closaeggaificant part of the gap between

traditional valuation models and reality. The foamould now be to develop these
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rainbow options for alternative stochastic processiecommodity prices in order to
be able to apply them to a variety of different coodities of different behaviour.
Promising approaches seem to be the Gibson anda&zh(#990) and Schwartz and
Smith (2000) two-factor commodity price models ippmrating both random walk
and mean-reversion, as well as a multi-factor stetth process based on commodity
futures pricing as outlined by Cortazar and Schavgl®94). While the expectation
would be to further improve the validity of the wation results, the transparency and
tractability would most certainly be reduced duéentreased complexity.

As part of the option valuation, optimal switchingplicies have been
determined for the new rainbow options. It wouldvrime interesting to determine the
optimal investment timing as a function of the uhgleg prices. In a next step, the
investment cost could be considered stochasticcandlated with the commodity
price which is especially interesting when the eatlsiver (e.g. commodity price or
price spread) is mean-reverting because it migkggnt a strong case for anti-cyclical
investment.

We have focused on modelling the commodity outp#s. interesting
extension would be to model the input in additibna first step, this could mean
allowing deterministic changes in the input pricééore advanced cases would
introduce a stochastic process for the input, thehaking the behaviour of revenues
and costs. Future research might also relax sontbeobther assumptions such as

neutral behaviour of competition and customersutipat switching.
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Appendix A.1. Implementation of Numerical Lattice ®lution

This Appendix lists the Mathematica code used tplément the numerical lattice
solution for the valuation of the flexible fertibz plant in research paper #1

('Continuous Rainbow Options on Commodity Outputs’)

Clear["Global x"]

(* Parameter values *)

T =50;

pl = 677440;
p2 = 1168000;
S12 =150000;
S21 =150000;
r = 0.05;

ox = 0.05;

oy = 0.05;

oX = 0.57;

oy = 0.40;
p=0.92;

cx = 278; cy = 220;
CurrentX = 251,

CurrentY = 243;

(* Grid definition *)

iISteps = jSteps = 50;

TimeSteps = 250;
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xmin = 0.01; ymin = 0.1;

imax = iSteps + 1; jmax = jSteps + 1; tmax = TinggSt+ 1;
At = T/TimeSteps;

AnalysisRangeX = 1000;

AnalysisRangeY = 1000;

* Modelling *)

B11 = 1/2 - (r 5X)/oX"2 + Sqrt[((r -5x)/ox 2 - 1/2)72 + 2 16x"2];
B12 = 1/2 - (r SX)/oX"2 - SAr[((r -5X)/oX 2 - 1/2)"2 + 2 X 2];
B21 = 1/2 - (r Sy)loy"2 + Sqrt[((r -dy)loy2 - 1/2)"2 + 2 hy"2];
B22 = 1/2 - (r Sy)loy”2 - Sqrt[((r -dy)/oy2 - 12)"2 + 2 hy"2];
Al = (p1 cx)N(1 $11)/(B11 -p12) BL2/r - B12 - 1)bx)
B1 = (p1 cx)(1 $12)/(11 -p12) BL1/r - B11 - 1)bx)
A2 = (p2 cy)N(1 $21)/(B21 -p22) B22/r - B22 - 1)by);
B2 = (p2 cy)\(1 $22)/(B21 -B22) B21/r - B21 - 1)by);

xStar = xStar /. FindRoofj(1 -f12) B1 (p1 xStar)p12 + 311 - 1) (p1 xStaryX -
B11 (pl cx/r + S21) == 0, {xStar, 2 cx}]

D1 = (B1 (pl1 xStar)p12 + pl xStadx - p1 cx/r - S21)/(p1l xStarj1l

yStar = yStar /. FindRoofj1 -22) B2 (p2 yStar)p22 + 321 - 1) (p2 yStardy -
B21 (p2 cy/r + S12) == 0, {yStar, 2 cy}]

D2 = (B2 (p2 yStar)p22 + p2 yStady - p2 cy/r - S12)/(p2 yStarj21,

V1 =Table[O, {i, 1, imax}, {j], 1, jmax}, {k, 1, tnax}]; (* Asset values assuming
current operating state 1 *)

V2 = Table[0, {i, 1, imax}, {j, 1, jmax}, {k, 1, tnax}]; (* Asset values assuming
current operating state 2 *)

x[i_, i, k_]:= xmin Exppx Sqrt[3At] (i - 1)] Exp[(r - 8x - 1/20x"2) At (k - 1)]

yli_, J_, k] :=ymin Exppx Sqrt[3At] p oy/ox (i - 1)] Exp[oy Sqrt[3At (1 -p"2)] (j -
1)] Exp[(r -8y - 1/2cy"2) At (k - 1)]
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For[i = 1, i <= imax, i++, For[j = 1, ] <= jmax, j;, V1[]i, j, tmax]] = If[x[i, j, tmax] >
cx, B1 (p1 x]i, j, tmax])B12 + pl (x]i, j, tmax]dx - cx/r), Al (p1 X[i, j, tmax])B11]]]
(* Terminal boundary for V1 *)

For[j = 1, j <= jmax, j++, For[i = 1, i <= imax, #; V2[[i, |, tmax]] = If[y][i, j, tmax] >
cy, B2 (p2 vyli, j, tmax])B22 + p2 (y[i, j, tmaxJdy - cy/r), A2 (p2 Vi, j, tmax])B21]]]
(* Terminal boundary for V2 *)

j12 = TablelO, {i, 1, imax}, {k, 1, tmax}]; (* Swithing boundary from state 1 to state
2%

i21 = Table[O0, {j, 1, jmax}, {k, 1, tmax}]; (* Swithing boundary from state 2 to state
1%

For[i = 1, i <= imax, i++, j12[[i, tmax]] = 1; FoyF 1, j < jmax && V1[[i, j, tmax]] >
V2[[i, j, tmax]] - S12 Exp[-rAt], j++, j12[[i, tmax]] = + 1]]

For[j = 1, ] <= jmax, j++, i21][[], tmax]] = 1; ForE 1, i < imax && V2[[i, j, tmax]] >
V1][[i, j, tmax]] - S21 Exp[-rAt], i++, i21[[j, tmax]] =i + 1]]

(* Filling of the grid *)
Forlk =tmax - 1, k >=1, k--,

For[i = 1, i <= imax, i++, V1[[i, jmax, K]] = Max[f (x[i, jmax, k]bx - cx/r), p2
(Y[i, jmax, K]/8y - cy/r) - S12]];

For[j = 1, | <= jmax, j++, V1[[imax, j, K]] = Max[f (x[imax, |, K]/ox - cx/r), p2
(y[imax, j, K]/8y - cy/r) - S12]];

For[i = 1, i <= imax, i++, V1[[i, 1, K]] = If[x[i, 1, K] > cx, B1 (p1 x[i, 1, k])p12 +
pl (x[i, 1, K]J©ox - cx/r), Al (p1 Xx[i, 1, K])B11]];

Forfj = jmax, j >= 1, j--, V1[[1, j, k]] = If[y[1,, k] >= yStar, B2 (p2 y[1, j, k])p22
+p2 (y[1, j, KBy - cy/r) - S12, D2 (p2 y[1, j, K]P21]];

For[i = 2, i <=imax - 1, i++,

For[j = 2, j <= jmax - 1, j++, V1[[i, j, K]] = Maxp1 (x[i, j, K] - cx) At, O] +
Expl-r At] (4/9 Iffj < j12[[i, k + 1]], VA[[i, j, k + 1]1, V2[[i, j, k + 1]] - S12] +
19 Iffj + 1 < j22[[i, k + 1], V[[i, j + 1, k + 1], V2[[i, j + 1, k + 1]] - S12] +
1/9 Iffj - 1 < ja2[[i, k + 1]], VA[[i, ] - 1, k + 3], V2[[i, j - 1, k + 1]] - S12] +

19 Iffj < j12[[i + 1, k + 1]], VA[[i + 1, j, k + 3], V2[[i + 1, j, k + 1]] - S12] +
19 Iffj < ja2[[i - 1, k + 4]], VA[[i - , j, k + T], V2[[i - 1, j, k + 1]] - S12] +
136 Ifj+ L <jL2[[i + 1, k+ 1]], VA[[i + 1, ] +1, k + 1], V2[[i + 1,] + 1, k +
1]] - S12] +

1/36 Iffj+ 1 <j12[[i- 1, k + 1], VA[[i - 1, +1, k+ 1]}, V2[[i - 1, j + 1, k + 1]]
-S12] +

136 Ifj- L <ji2[[i + 1, k+1]], VA[[i + 1,j-1, k+ 1], V2[[i + 1,j- 1, k + 1]]
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-S12] +
1/36 Iffj - 1 <j12[[i- 1, k+ 1]}, VA[[i- 1,j-1, k+1]], V2[[i- 1, ) - 1, kK + 1]] -
S12))I1;

For[i = 1, i <= imax, i++, V2[[i, jmax, K]] = Max[f (x[i, jmax, k]ox - cx/r) - S21,
P2 (y[i, jmax, KBy - cy/m]I;

For[j = 1, j <= jmax, j++, V2[[imax, j, K]] = Max[f (x[imax, |, kK]ox - cx/r) - S21,
p2 (ylimax, j, K]y - cy/m]I;

Forfj = 1, j <= jmax, j++, V2[[1, j, k]| = Iffy[1,j, k] > cy, B2 (p2 y[1, |, k])B22 +
P2 (y[1, ], KIBy - cy/r), A2 (p2 y[1, j, K]yB21]];

For[i =imax, i >= 1, i--, V2[[i, 1, K]] = If[x[i, 1, K] >= xStar, B1 (p1 x[i, 1, K]p12
+ pl (X[i, 1, k]ox - cx/r) - S21, D1 (p1 x[i, 1, K]pL1]];

For[j = 2, j <= jmax - 1, j++,

For[i = 2, i <=imax - 1, i++, V2[[i, j, K]] = Maxp2 (y[i, j, k] - cy) At, O] +
Exp[-r At] (4/9 If[i <i21][[j, k + 1]], V2[[i, j, k + 1]], VA][[i, j, k + 1]] - S21] +
9 IMfi + L <i2l[[j, k +1]], V2[[i + 1, j, k+ 1], VA][[i + 1, j, k + 1]] - S21] +
19 M[i-1<i2l[[j, k+1]], V2[[i-1,j, k+ 1], V1[[i- 1, j, k + 1]] - S21] +

19 Iffi <i21[[j + 1, k + 1]], V2[[i, j + 1, k + 2], VA[[i,j + 1, k + 1]] - S21] +
9 Iffi<i2a[[j- 1, k+ 1], V2[[i,j- 1, k+ 1], V1[[i,j- 1, k + 1]] - S21] +
V36 If[i+1<i2l[j+ 1, k+1]], V2[[i+1,j+1, k+1]], VA[[i+1,j+ 1,k +
1]] - S21] +

1/36 Iffi+ 1 <i21[[j- 1, k+1]], V2[[i + 1, -1, k+1]], V1[[i+ 1, - 1, k + 1]]
- S21] +

136 Iffi -1 <i2l[[j+ 1, k+1]], V2[[i- 1, +1, k+1]], V1[[i-1,j+ 1, k+ 1]]
- S21] +

/36 If[i-1<i2l[[j-1, k+1]], V2[[i-1,j-1, k+1]], V1[[i-1,)- 1, k +1]] -
S21)]I;

For[i = 1, i <= imax, i++, j12[[i, K]] = 1; For[j =1, j < jmax && V1[[i, j, K]] >=
V2[[i, j, K]] - S12, j++, j12[[i, K]] = + 1]];

For[j = 1, j <= jmax, j++, i21[[j, K]] = 1; For[i =1, i <imax && V2[[i, j, K]] >=
V1[[i, j, K]] - S21, i++, i24[[j, K]] =i + 1]]]

End of model *)

(*__ Determination of asset values at any x-y-puwiithin the grid at t=0 *)

GetiSteps[xValue_, k_] := Module[{iRefl = 1, iRef22}, If[xValue < x[1, 1, K],
IRefl = iRef2 = 1, If[xValue > x[imax, 1, k], iReft iRef2 = imax,For[i = 2, i <=
imax, i++, IffxValue > x[i, 1, k], iRefl = i; iRefZ i + 1, Break[]]]]]; {iRef1, iRef2}];

GetjSteps[xValue_, yValue , k_, i ] := Module[{jRef jmax, jRef2 = jmax, yRef},

For[j = 1, j <= jmax, j++, If[Part[i, 1] == Part[i2], yRef = y[Part[i, 1], j, k], yRef =
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y[Part[i, 1], j, K] + (xValue - x[Part[i, 1], j, RY(x[Part[i, 2], ], K] - x[Part[i, 1], j, K])
(y[Part[i, 2], |, K] - y[Part[i, 1], ], K])]; If[yValue < yRef, jRef2 = |; jRefl = jRef2 - 1;
IfjRef2 == 1, jRefl = 1]; Break([]]]; {iRefl, jRef}]

GetValue[xValue_, yValue_, k_, V1orV2_String] :=
Module[{Value, ValueArray, iRefl, iRef2, jRefl, |R& xDistance, xInterval,
yDistance, yinterval}, If[V1orV2 =="V2", ValueArna= V2, ValueArray = V1];
IRefl = Part[GetiSteps[xValue, K], 1];
iRef2 = Part[GetiSteps[xValue, K], 2];
JRefl = Part[GetjSteps[xValue, yValue, k, {iRefRaf2}], 1];
jRef2 = Part[GetjSteps[xValue, yValue, k, {iRefRaf2}], 2];
xDistance = xValue - x[iRefl, jRefl, k];
xInterval = x[iRef2, jRefl, k] - x[iIRefl, jRefl, k]
If[xInterval == 0, yDistance = yValue - y[iRefl, @1, k]; yInterval = y[iRef1,
jRef2, k] - y[iRefl, jRefl, k], yDistance = yValugy[iRefl, jRefl, k] + (y[iRef2,
JRefl, k] - y[iRefl, jRefl, k]) xDistance/xIntervalylnterval = (y[iRefl, jRef2, k]
+ (Y[iRef2, jRef2, k] - y[iRefl, jRef2, k]) xDistase/xInterval) - (y[iRefl, jRefl, k]
+ (y[iRef2, jRefl, k] - y[iRefl, jRefl, k]) xDistase/xInterval)];
If[xInterval == 0 && yInterval == 0, Value = Valuehay|[iRefl, jRefl, K]],
If[xInterval == 0, Value = ValueArray[[iRefl, jR&f K]] + (ValueArray[[iRef1,
jRef2, K]] - ValueArray[[iRefl, jRefl, K]]) yDistace/yInterval, If[ylnterval == 0,
Value = ValueArray[[iRefl, jRefl, K]] + (ValueArrfiyRef2, jRefl, K]] -
ValueArray[[iRefl, jRefl, Kk]]) xDistance/xInterva¥/alue = ValueArray[[iRef1,
JRefl, Kk]] + xDistance/xInterval (ValueArray[[iRef#Refl, K]] -
ValueArray[[iRefl, jRefl, K]]) + yDistancelyInterl/&Distance/xInterval
(ValueArray[[iRef2, jRef2, k]] - ValueArray[[iRefZRef1, K]]) + (xInterval -
xDistance)/xInterval (ValueArray[[iRefl, jRef2, kj]ValueArray[[iRefl, jRefl,
KIDI;

Value]

GetV1Value[xValue_, yValue , k ] := GetValue[xValug/alue, k, "V1"]
GetV2Value[xValue_, yValue , k ] := GetValue[xValug/alue, k, "V2"]
GetV1Value[251, 243, 1]

GetV2Value[251, 243, 1]
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Appendix A.2. Implementation of Finite Difference ®lution for
Sequential Rainbow Option on Two Assets

This Appendix provides the Visual Basic module ugedimplement the finite
difference solution for the sequential rainbow opton two correlated gBm assets as

developed in research paper #3 (‘'Sequential ReabBa Options’).

Public VolX " Volatility of X
Public VolY " Volatility of Y
Public YieldX "Yield/ Dividend pay-ouf &
Public YieldY " Yield/ Dividend pay-ouf &

Public Corr As Single ' Correlation between X &hd

Public r " Interest rate

Public TK " Expiry Date of SERO
Public TM " Expiry Date of Rainbow
Public K ' Exercise Price of SERO
Public M ' Exercise Price of Rainbow
Public x_min ' Lowest value of normal X
Public y_min ' Lowest value of normal Y

Public x_steps As Long ' Number of steps (intesyal X; Number of values in X is
X_steps+1

Public y_steps As Long ' Number of steps (intesyvad Y; Number of values in Y is
y_steps+1

Public t_steps As Long ' Number of time stepsefweils); Number of points in time
ist_steps+1

Public dx " Length of x-interval
Public dy ' Length of y-interval
Public dt ' Length of t-interval
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Public xytCube() As Single ' Three-dimensionaltegsin x-y-time of SERO values
Public aArray ' Two-dimensional matrixxfy of the constants 'a’

Public bArray

Public cArray

Public dArray

Public eArray

Public fArray

Public gArray

Public hArray

Public mArray

Function SERO(ValueX, ValueY, MaxX, StepsinX, Max&tepsinY,
ExpDateSERO, ExpDateRainbow, TimeSteps, ExPriceSER®riceRainbow,
IntRate, VolatilityX, VolatilityY, PayoutX, PayoutYCorrelation)

" Main function, returns the value of the SequériEizropean Rainbow Option
Dim i, j, t As Integer
Dim i_fix, i_rest, j_fix, j_rest
TK = ExpDateSERO
TM = ExpDateRainbow
K = ExPriceSERO
M = ExPriceRainbow
r = IntRate
VolX = VolatilityX
VolY = VolatilityY
YieldX = PayoutX
YieldY = PayoutY
Corr = Correlation

X_steps = StepsinX
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y_steps = StepsinY
t steps = TimeSteps
Xx_min = Log(MaxX / 100)
y_min = Log(MaxY / 100)
dx = (Log(MaxX) - x_min) / x_steps
dy = (Log(MaxY) - y_min) / y_steps
dt = TK/t_steps
ReDim xytCube(x_steps + 1,y _steps + 1, t_stepps
Call FillFactorArrays
Fort=1t_steps To O Step -1

FillXYArray (t)
Next t
i_fix = Fix((Log(ValueX) - x_min) / dx)
i_rest = (Log(ValueX) - x_min) / dx - i_fix
J_fix = Fix((Log(ValueY) - y_min) / dy)
j_rest = (Log(ValueY) - y_min) / dy - j_fix
SERO = xytCube(i_fix, j_fix, 0) + i_rest * (x@ube(i_fix + 1, j_fix, 0) -

xytCube(i_fix, j_fix, 0)) + _
j_rest * (xytCube(i_fix, j_fix + 1, O)xytCube(i_fix, j_fix, 0))

End Function

Function Geske(i, delta, Yield, Volatility, t, vanin)
Dim iBar
Dim iBarLow
Dim iBarHigh
Dim h
Dim ka

Dim Eq
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Dim UpperEndReached As Boolean

Dim LowerEndReached As Boolean

Dim result

Dim Vol

Vol = Volatility
iBar =i
iBarLow =i/2
iBarHigh =i * 2

UpperEndReached = False

LowerEndReached = False

" Approximation algorithm to determine leveltbé stochastic variable where the
option should be exercised

Do
Eq = Exp(iBar * delta + var_min) * Exp(-Yte* (TM - TK)) *
Application.NormSDist((Log(Exp(iBar * delta + varim) / M) + (r - Yield-1/2 *
Volatility * 2) * (TM - t * dt)) / (Volatility * Math.Sqr(TM - t * dt)) + Volatility *
Sqr(TM - TK)) - M * Exp(-r * (TM - TK)) * Application.NormSDist((Log(Exp(iBar *
delta + var_min) / M) + (r - Yield - 1 / 2 * Volaity ~ 2) * (TM - t * dt)) / (Volatility
* Math.Sqr(TM - t * dt))) - K
If Eq <-0.001 And UpperEndReached = Trherm
LowerEndReached = True
iBarLow = iBar
iBar = iBarLow + (iBarHigh - iBarLow)2
Elself Eq < -0.001 And UpperEndReached lsé=@&hen
LowerEndReached = True
iBarLow = iBar
iBar = iBar * 2
Elself Eq > 0.001 And LowerEndReached =eTTfihen

UpperEndReached = True
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iBarHigh = iBar
iBar = iBarLow + (iBarHigh - iBarLow)2
Elself Eq > 0.001 And LowerEndReached s€&dlhen

UpperEndReached = True

iBarHigh = iBar
iBar = iBar/ 2
Else
Exit Do
End If

Loop

h = (Log(Exp(i * delta + var_min) / Exp(iBardelta + var_min)) + (r - Yield -1/ 2
*Vol N 2) * (TK-t*dt)) / (Vol * Sqr(TK - t * dt))

ka = (Log(Exp(i * delta + var_min) / M) + (r¥deld -1/2*Vol*2) * (TM -t *
dt)) / (Vol * Sgr(TM - t * dt))

Geske = Exp(i * delta + var_min) * Exp(-Yield(TM - t * dt)) *
BivariateNormalCDF(h + Vol * Sqr(TK - t * dt), ka Yol * Sqr(TM - t * dt),
Sgr((TK-t*dt)/ (TM -t *dt))) - M * Exp(-r *(TM - t * dt)) *
BivariateNormalCDF(h, ka, Sgr((TK - t * dt) / (TMt-* dt))) - K* Exp(-r * (TK -t *
dt)) * Application.NormSDist(h)

End Function

Function DefiniteExercise(maxSteps, delta, Yieldar min)

" Assumes such a high level of X or Y respecti\eifinity), that the SERO will be
exercised with certainty

DefiniteExercise = Exp(maxSteps * delta + vamn)m Exp(-Yield * (TM - t * dt))
- M * EXp(-r * (TM -t * dt)) - K* Exp(-r * (TK - t * dt))

End Function

Function Rainbow(i, j)

Dim d1, d11, d2, d22, d12, d21, rho1l, rho2
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d1 = (Log(Exp(i * dx + x_min) /M) + (r - Yiel-1/2 *VoIX " 2) * (TM -
t_steps * dt)) / (VoIX * Sqr(TM - t_steps * dt))

d11 =d1 + VoIX * Sgr(TM - t_steps * dt)

d2 = (Log(Exp(j *dy +y _min) /M) + (r- Yied-1/2 *VolY »2) * (TM -
t _steps * dt)) / (VolY * Sqr(TM - t_steps * dt))

d22 =d2 + VolY * Sgr(TM - t_steps * dt)

d12 = (Log(Exp(j * dy + y_min) / Exp(i * dx +>min)) + (YieldX - YieldY - 1/ 2
*(VolX~2-2*Corr*VolX *VolY + VolY * 2) * (TM - t_steps * dt))) /
(Sar(VolX "2 -2 * Corr * VoIX * VolY + VolY ~ 2)* Sqr(TM - t_steps * dt))

d21 = (Log(Exp(i * dx + x_min) / Exp(j * dy + ymin)) + (YieldY - YieldX - 1/2
*(VoIX ™2 -2*Corr *VoIX * VolY + VolY ~ 2) * (TM - t_steps * dt))) /
(Sar(VolX ~ 2 - 2 * Corr * VoIX * VolY + VolY " 2)* Sqr(TM - t_steps * dt))

rhol = (Corr * VolY - VoIX) / Sgr(VolX ~ 2 - Z Corr * VoIX * VolY + VolY " 2)

rho2 = (Corr * VoIX - VolY) / Sgr(VolX ~ 2 - Z Corr * VoIX * VolY + VolY " 2)

Rainbow = Exp(i * dx + x_min) * Exp(-YieldX *TM - t_steps * dt)) *
BivariateNormalCDF(d11, -d12, -rhol) + Exp(j * dyy+min) * Exp(-YieldY * (TM
- t_steps * dt)) * BivVariateNormalCDF(d22, -d21he2) - M * Exp(-r * (TM -
t_steps * dt)) * (1 - BivVariateNormalCDF(-d1, -d2orr))

End Function

Function EuroCall(i, delta, Yield, Volatility, vamin)
' Black-Scholes European Call option

Dim d1, d2

Dim Vol

Vol = Volatility

d1 = (Log(Exp(i * delta + var_min) / M) + (r¥deld + 1/ 2 * (Vol * 2)) * (TM -
t _steps * dt)) / (Vol * Sqr(TM - t_steps * dt))

d2 =d1 - Vol * Sqr(TM - t_steps * dt)

EuroCall = Exp(i * delta + var_min) * Exp(-Y@t (TM - t_steps * dt)) *
Application.NormSDist(d1) - M * Exp(-r * (TM - t_sps * dt)) *
Application.NormSDist(d2)

End Function
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Sub FillFactorArrays()
' Calculate the constants a to f for all x-y values

aArray=1/2*(r-YieldX-1/2W¥olX"2)/dx*dt-1/2*VolX"2/dx
A2 *dt

bArray =1/2*(r-YieldY -1/2¥olY ~2)/dy*dt-1/2*VolY ~2/dy
A2 *dt

CArray =1+ VoIX"2/dx" 2 *dt+alY "2 /dy 2 *dt + r * dt

dArray =-1/2*VoIX"2/dx"2*d 1/2*(r- YieldX-1/2*VoIX " 2)
[ dx * dt

eArray=-1/2*VolY "2 /dy"2*d1/2*(r-YieldY-1/2*VolY * 2)
/ dy * dt

fArray = -Corr * VoIX * VolY / (4 * dx* dy) * dt
gArray = -Corr * VoIX * VolY / (4 * dx* dy) * dt
hArray = Corr * VoIX * VolY / (4 * dx *dy) * dt
mArray = Corr * VoIX * VolY / (4 * dx *dy) * dt

End Sub

Sub XYTArray()
' Determine the SERO-values for the x-y matrix=atK (Exercise Date of SERO)
Dimi,j, z
xytCube(0, O, t steps) =0
Fori=1To x_steps
' Boundary condition at Y=0, t=TK: SERO =axgEuroCall(X) - K; 0)
z = EuroCall(i, dx, YieldX, VolX, x_min)
If z-K>0 Then
xytCube(i, O, t_steps) =z - K
Else
xytCube(i, O, t_steps) =0

End If
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' Boundary condition at Y=Ymax, t=TK

xytCube(i, y_steps, t_steps) = DefiniteEisx(y_steps, dy, YieldY, t_steps,
y_min)

Next i
Forj=1Toy steps
' Boundary condition at X=0, t=TK: SERO =axiEuroCall(Y) - K; 0)
z = EuroCall(j, dy, YieldY, VolY, y_min)
If z- K> 0 Then
xytCube(0, j, t_steps) =z - K
Else
xytCube(0, j, t_steps) =0
End If
' Boundary condition at X=Xmax, t=TK

xytCube(x_steps, j, t_steps) = Definite€is¥(x_steps, dx, YieldX, t_steps,
X_min)

Next |
' Boundary condition at all other X,Y at t=TBRERO = max(Rainbow - K; 0)
Fori=1Tox_ steps-1
Forj=1Toy steps-1
z = Rainbow(i, j)
If z-K>0 Then
xytCube(i, j, t_steps) =z - K
Else
xytCube(i, j, t_steps) =0
End If
Next j
Next i

End Sub
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Sub FillXYArray(t)
Dimi, j
Ift=t_steps Then
Call XYTArray
Else
xytCube(0, 0,t) =0
Fori=1To x_steps
' Boundary condition at Y=0: SERO = f@esption of X
xytCube(i, 0, t) = Geske(i, dx, YieldXolX, t, x_min)
' Boundary condition at Y=Ymax
xytCube(i, y_steps, t) = DefiniteExsefly _steps, dy, YieldY, t, y_min)
Next i
Forj=1Toy_ steps
' Boundary condition at X=0: SERO = f@esption of Y
xytCube(0, j, t) = Geske(], dy, YieldYolY, t, y_min)
' Boundary condition at X=Xmax
xytCube(x_steps, j, t) = DefiniteExer(ix_steps, dx, YieldX, t, x_min)
Next j

" For all t<TK: Numerical procedure requirt® determine SERO values for the
fields of x-y

Call GaussAlgorithm(t)
End If

End Sub

Sub GaussAlgorithm(t)

" Numerical procedure to determine the SERO vdinethe fields of x-y for t<TK
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' using Gaussian Algorith to solve linear systerwariables

Dim LinSysOrder
Dim LinSys() As Single
Dim SArray() As Single
Dim StoreVar
Dimi
Dim |
Dimn
Dim summe
LinSysOrder = (x_steps - 1) * (y_steps - 1)
ReDim LinSys(LinSysOrder + 1, LinSysOrder)
ReDim SArray(LinSysOrder)
Forj=0 To LinSysOrder - 1

Fori=0 To LinSysOrder

LinSys(i, j) =0
Next i

Next |

" Fill matrix with constants a,b,c,d,e,f as h&d the results column
LinSys(LinSysOrder, ..)

Forj=0Toy steps-2
Fori=0To x_steps - 2
LinSys(i +] * (x_steps - 1), i + ) * (x_eyps - 1)) = cArray

LinSys(LinSysOrder, i +j* (x_steps - HLinSys(LinSysOrder, i + ) *
(x_steps - 1)) + xytCube(i+1,j+1,t+1)

Ifi=0 Then

" S(i-1,)) is known, therefore a*S(j)lis added to the results column
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LinSys(LinSysOrder, i +j * (x_step&)) = LinSys(LinSysOrder, i+ *
(x_steps - 1)) - xytCube(i, j + 1, t) * aArray

Else
LinSys(i - 1 +j* (x_steps - 1), ij* (x_steps - 1)) = aArray
End If
If j =0 Then
" S(i,J-1) is known, therefore b*S(,)-is added to the results column

LinSys(LinSysOrder, i +j * (x_step&) = LinSys(LinSysOrder, i + *
(x_steps - 1)) - xytCube(i + 1, j, t) * bArray

Else
LinSys(i + (j - 1) * (x_steps - 1)+ij * (x_steps - 1)) = bArray
End If
If i = x_steps - 2 Then
" S(i+1,)) is known, therefore d*S(if)lis added to the results column

LinSys(LinSysOrder, i +j * (x_step&)) = LinSys(LinSysOrder, i +j*
(x_steps - 1)) - xytCube(i + 2, j + 1, t) * dArray

Else
LinSys(i + 1 +j * (x_steps - 1), ij¥ (x_steps - 1)) = dArray
End If
If j=y_steps -2 Then
"S(i,j+1) is known, therefore e*S(il)Hs added to the results column

LinSys(LinSysOrder, i +j * (x_step&)p = LinSys(LinSysOrder, i + | *
(x_steps - 1)) - xytCube(i + 1, j + 2, t) * eArray

Else

LinSys(i + (j + 1) * (x_steps - 1)+ij * (x_steps - 1)) = eArray
End If
If (i = x_steps - 2) Or (j = y_steps -T)en

" S(i+1,j+1) is known, therefore f*S{i;}+1) is added to the results column
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LinSys(LinSysOrder, i +j * (x_step&)) = LinSys(LinSysOrder, i+ *
(x_steps - 1)) - xytCube(i + 2, j + 2, t) * fArray

Else
LinSys(i+ 1+ (j + 1) * (x_steps -, 1} | * (x_steps - 1)) = fArray
End If
If i=0)Or (j=0) Then
" S(i-1,j-1) is known, therefore g*S(j-1) is added to the results column

LinSys(LinSysOrder, i +j * (x_step&)p = LinSys(LinSysOrder, i + *
(x_steps - 1)) - xytCube(i, |, t) * gArray

Else
LinSys(i-1+ (j-1)* (x_steps -, 13 | * (x_steps - 1)) = gArray
End If
If (i =x_steps - 2) Or (j =0) Then
" S(i+1,j-1) is known, therefore h*Slif1) is added to the results column

LinSys(LinSysOrder, i +j * (x_step&)) = LinSys(LinSysOrder, i +*
(x_steps - 1)) - xytCube(i + 2, j, t) * hArray

Else
LinSys(i + 1 + (j - 1) * (x_steps -, 1)+ j * (x_steps - 1)) = hArray
End If
If i=0)Or (j=y_steps - 2) Then
"S(i-1,j+1) is known, therefore m*3(j+1) is added to the results column

LinSys(LinSysOrder, i +j * (x_step&)p = LinSys(LinSysOrder, i + | *
(x_steps - 1)) - xytCube(i, j + 2, t) * mArray

Else

LinSys(i-1+ (j+ 1) * (x_steps -, 1)} ) * (x_steps - 1)) = mArray
End If
Next i

Next |
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" Gaussian algorithm: Variable reduction
n=0
Do
Forj=n+ 1 To LinSysOrder - 1
StoreVar = LinSys(n, j)
Fori=0 To LinSysOrder
LinSys(i, j) = LinSys(i, j) - Lin&yi, n) * StoreVar / LinSys(n, n)
Next i
Next j
n=n+1

Loop While n < LinSysOrder - 1

' Gaussian algorithm: Determination of variable

SArray(LinSysOrder - 1) = LinSys(LinSysOrdem&ysOrder - 1) /
LinSys(LinSysOrder - 1, LinSysOrder - 1)

For j = LinSysOrder - 2 To O Step -1
summe =0
Fori=j+ 1 To LinSysOrder - 1
summe = summe + LinSys(i, j) * SArray(i
Next i
If LinSys(j, j) =0 Then
n=10
Else
SArray(j) = (LinSys(LinSysOrder, j) urmme) / LinSys(j, j)
End If

Next |
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' Transferring the option values from the "LysSmatrix to the normal xytCube
Dim rest As Integer
Dim multiple As Integer
Forj=0 To LinSysOrder - 1
rest = j Mod (x_steps - 1)
multiple = (j - rest) / (x_steps - 1)
xytCube(rest + 1, multiple + 1, t) = SAr(ay
Next |
End Sub

—-232 -



Appendix A.3. Implementation of Finite Difference ®lution for
Sequential Rainbow Option on Mean-reverting Asset

This Appendix provides the Visual Basic module ugedimplement the finite
difference solution for the sequential rainbow opton a mean-reverting spread as

developed in research paper #3 (‘'Sequential ReabBa Options’).

Public Mean ' Long-run mean of P
Public eta ' Speed of mean reversidh o
Public Vol " Volatility of P

Public u ' Expected return on P
Public r " Interest rate

Public TK " Expiry Date of SERO
Public TM " Expiry Date of Rainbow
Public K ' Exercise Price of SERO
Public M " Exercise Price of Rainbow
Public p_min ' Lowest value of P

Public p_steps As Long ' Number of steps (intex)vad P; Number of values in P is
p_steps+1

Public t_steps As Long ' Number of time stepsefivels); Number of points in time
Is t_steps+1

Public dp ' Length of p-interval

Public dt ' Length of t-interval

Public ptArray() As Single ' Two-dimensional systen p-time of SERO values
Public aArray() As Single ' List of p-dependeanstants 'a’

Public bArray() As Single

Public cArray() As Single
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Function SERO(ValueP, MinP, MaxP, StepsinP, ExpBaRO, ExpDateRainbow,
TimeSteps, ExPriceSERO, ExPriceRainbow, IntRategri®e ReversionSpeedP,
ExpReturnP, Volatility)

" Main function, returns the value of the Sequériizropean Rainbow Option

Dim i, t As Integer

Dim i_fix, i_rest

TK = ExpDateSERO

TM = ExpDateRainbow

K = ExPriceSERO

M = ExPriceRainbow

r = IntRate

Mean = MeanP

eta = ReversionSpeedP

Vol = Volatility

u = ExpReturnP

p_steps = StepsIinP

t _steps = TimeSteps

p_min = MinP

dp = (MaxP - MinP) / p_steps

dt =TK/t_steps

ReDim ptArray(p_steps + 1, t_steps + 1)

Call FillFactorArrays

Fort=t steps To O Step -1
FillXYArray (t)

Next t

i_fix = Fix((ValueP - p_min) / dp)

i_rest = (ValueP - p_min) /dp -i_fix

SERO = ptArray(i_fix, 0) +i_rest * (ptArray(ix + 1, 0) - ptArray(i_fix, 0))
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End Function

Sub FillFactorArrays()
' Calculate the constants a to c for all p-values
ReDim aArray(p_steps)
ReDim bArray(p_steps)
ReDim cArray(p_steps)
Dimi
Fori=0To p_steps

aArray(i)=1/2* ((eta* Mean - (u + eta) * (i*dp + p_min)) / dp - (Vol /
dp) ~ 2) * dt

Next i
Fori=0To p_steps
bArray(i) =1 + ((Vol / dp) * 2 + r)dt
Next i
Fori=0To p_steps

CArray(i) =-1/2 * ((eta * Mean - ¢(u + eta) * (i * dp + p_min)) / dp + (Vol /
dp) ~ 2) * dt

Next i

End Sub

Sub FillXYArray(t)
Dimi
Ift=t_steps Then
Call XYTArray
Else
ptArray(0, t) =0

ptArray(p_steps, t) = DefiniteExercise(t)
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" For all t<TK: Numerical procedure requir® determine SERO values
Call GaussAlgorithm(t)
End If

End Sub

Sub XYTArray()
' Determine the SERO-values for the t=TK (Exer@isge of SERO)
Dimi, z
' Boundary condition at all other X,Y at t=TBRERO = max(CallOnP - K; 0)
Fori=0 To p_steps
z = EuroCallMeanReversion(i * dp + pnmiM - t_steps * dt)
If z-K>0 Then
ptArray(i, t_steps) =z - K
Else
ptArray(i, t_steps) =0
End If
Next i
ptArray(0, t_steps) =0
ptArray(p_steps, t_steps) = DefiniteExerciss@ps)

End Sub

Function DefiniteExercise(t)

" Assumes such a high level of P (infinity), thae SERO will be exercised with
certainty

DefiniteExercise = ExpectedP(p_steps * dp + o, MM - t * dt) * Exp(-r * (TM -
t*dt)) - K* Exp(-r * (TK -t * dt)) - M * Exp(-r * (TM - t * dt))

End Function
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Function EuroCallMeanReversion(P, Time)
' European Call option on mean-reverting variable

Dimd

d = (ExpectedP(P, Time) - M) / VolP(Time)

EuroCallMeanReversion = Exp(-r * Time) * ((ExgpedP (P, Time) - M) *
Application.NormSDist(d) + VolP(Time) * Exp(-1 /*22d ~ 2) / Sqr(2 *
Application.Pi()))

End Function

Sub GaussAlgorithm(t)
" Numerical procedure to determine the SERO vdinethe p-values for t<TK
' using Gaussian Algorithm to solve linear systdmaviables
Dim LinSysOrder
Dim LinSys() As Single
Dim SArray() As Single
Dim StoreVar
Dimi
Dim |
Dimn
Dim summe
LinSysOrder = (p_steps - 1)
ReDim LinSys(LinSysOrder + 1, LinSysOrder)
ReDim SArray(LinSysOrder)
Forj=0 To LinSysOrder - 1
Fori=0 To LinSysOrder
LinSys(i, j) =0
Next i

Next |
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" Fill matrix with constants a,b,c as well hs tesults column LinSys(LinSysOrder,

)
Fori=0To p_steps-2
LinSys(i, 1) = bArray(i + 1)
LinSys(LinSysOrder, i) = LinSys(LinSysOrdgr+ ptArray(i + 1, t + 1)
Ifi=0 Then
' S(i-1,)) is known, therefore a*S(j)lis added to the results column

LinSys(LinSysOrder, i) = LinSys(LinSyer, i) - ptArray(i, t) * aArray(i +

Else
LinSys(i - 1, i) = aArray(i + 1)
End If
If i = p_steps - 2 Then
" S(i+1,)) is known, therefore c*S(if)lis added to the results column

LinSys(LinSysOrder, i) = LinSys(LinSy=der, i) - ptArray(i + 2, t) *
cArray(i + 1)

Else
LinSys(i + 1, i) = cArray(i + 1)
End If

Next i

" Gaussian algorithm: Variable reduction
n=0
Do
Forj=n+1To LinSysOrder - 1
StoreVar = LinSys(n, j)

Fori=0 To LinSysOrder
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LinSys(i, J) = LinSys(i, J) - Lin&yi, n) * StoreVar / LinSys(n, n)
Next i
Next j
n=n+1

Loop While n < LinSysOrder - 1

' Gaussian algorithm: Determination of variable

SArray(LinSysOrder - 1) = LinSys(LinSysOrdem&ysOrder - 1) /
LinSys(LinSysOrder - 1, LinSysOrder - 1)

For j = LinSysOrder - 2 To O Step -1
summe =0
Fori=j+ 1 To LinSysOrder - 1
summe = summe + LinSys(i, j) * SArray(i
Next i
If LinSys(j, j) =0 Then
n=10
Else
SArray(j) = (LinSys(LinSysOrder, j) umme) / LinSys(j, j)
End If

Next |

' Transferring the option values from the "LysSmatrix to the normal ptArray
Forj=0 To LinSysOrder - 1

ptArray(j + 1, t) = SArray(j)
Next |

End Sub
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Function Get_ptArray(P, t)
' For demonstration purposes in Excel
'‘Get_ptArray = Get_ptArray(i, j, Math.Round(dt))
'Get_ptArray = ptArray(Math.Round((P - p_mirgp), Math.Round(t / dt))
Dim i_fix, i_rest
i_fix = Fix((P - p_min) / dp)
i_rest=(P-p_min)/dp-i_fix

Get_ptArray = ptArray(i_fix, Math.Round(t / ity i_rest * (ptArray(i_fix + 1,
Math.Round(t / dt)) - ptArray(i_fix, Math.Round(tt)))

End Function

Function SequentialMeanReverting(P)
Dim ePBar
Dim ePBarLow
Dim ePBarHigh
Dim Eq
Dim UpperEndReached As Boolean
Dim LowerEndReached As Boolean
Dim d1, d2
ePBar = Exp(P)
ePBarLow = ePBar /2
ePBarHigh = ePBar * 2
UpperEndReached = False

LowerEndReached = False

" Approximation algorithm to determine leveltbé stochastic variable where the
sequential option should be exercised

Do
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Eq = EuroCallMeanReversion(Log(ePBar), TWK) - K
If Eq <-0.1 And UpperEndReached = Truehe
LowerEndReached = True
ePBarLow = ePBar
ePBar = ePBarLow + (ePBarHigh - ePBar) b2
Elself Eq < -0.1 And UpperEndReached =é&alsen
LowerEndReached = True
ePBarLow = ePBar
ePBar = ePBar * 2
Elself Eq > 0.1 And LowerEndReached = Tfhen
UpperEndReached = True
ePBarHigh = ePBar
ePBar = ePBarLow + (ePBarHigh - ePBar) b2
Elself Eq > 0.1 And LowerEndReached = Falsen
UpperEndReached = True
ePBarHigh = ePBar
ePBar = ePBar/ 2
Else
Exit Do
End If
Loop
d1 = (ExpectedP(P, TK) - Log(ePBar) + VolP(TK}) / VoIP(TK)
d2 = (ExpectedP(P, TM) - M + VoIP(TM) * 2) / \R{TM)

SequentialMeanReverting = ExpectedP(P, TM) pEx* TM) *
BiVariateNormalCDF(d1, d2, VolP(TK) / VoIP(TM)) - MExp(-r * TM) *
BivariateNormalCDF(d1 - VolP(TK), d2 - VolP(TM), B(TK) / VolP(TM)) - K *
Exp(-r * TK) * Application.NormSDist(d1 - VolP(TK))

End Function
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Function ExpectedP(P, Time)

ExpectedP = P * Exp(-(eta + u - r) * Time) + &he* eta / (eta + u -r) * (1 - Exp(-
(eta+u-r)*Time))

End Function

Function VolP(Time)

VoIP =Sqgr(1/2*Vol"2/ (eta+u-r)*(EXp(-2 * (eta+ u -r) * Time)))

End Function
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Appendix A.4. Implementation of Monte Carlo Simulaion for
Sequential Rainbow Option on Two Assets

This Appendix provides the Visual Basic module usednplement the Monte Carlo
simulation for the sequential rainbow option on tworrelated gBm assets as

developed in the research paper #3 (‘SequentidlFRaabow Options').

Function MonteCarlo(ValueX, ValueY, ExpDateSERO, pBateRainbow,
ExPriceSERO, ExPriceRainbow, IntRate, VolX, VolY,iedX, YieldY, Corr,
NrOfSimulations)
Dim X As Single
Dim Y As Single
Dim RainbowOption As Single
Dim SumOfOptionValues As Double
Dim dt As Double
Dimi, j
Dim SBM1, SBM2, VolXCorr, VolYCorr
SumOfOptionValues =0
For i = 0 To NrOfSimulations - 1
SBM1 = WorksheetFunction.NormSinv(Rnd())
SBM2 = WorksheetFunction.NormSinv(Rnd())
VoIXCorr = VolX * SBM1
VolYCorr = VolY * Corr * SBM1 + VolY * MathSqr(1 - Corr * 2) * SBM2
X = ValueX * Exp((IntRate - YieldX - VolX 72 / 2) * ExpDateSERO +

VolXCorr * Math.Sqr(ExpDateSEROQ))
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Y = ValueY * Exp((IntRate - YieldY - VolY "2 / 2) * ExpDateSERO +
VolYCorr * Math.Sqr(ExpDateSERQO))

RainbowOption = EuropeanRainbow(X, Y, ExpdRainbow - ExpDateSERO,
ExPriceRainbow, IntRate, VolX, VolY, YieldX, YieldYCorr)

If RainbowOption > ExPriceSERO Then

SumOfOptionValues = SumOfOptionValues +RainbowOption -
ExPriceSERO

End If
Next i
MonteCarlo = Exp(-IntRate * ExpDateSERO) * Sui@ptionValues /

NrOfSimulations

End Function

Function EuropeanRainbow(X, Y, TimeToMaturity, Eid@Rainbow, IntRate, VolX,
VolY, YieldX, YieldY, Corr)

M = ExPriceRainbow

r = IntRate

Dim d1, d11, d2, d22, d12, d21, rho1l, rho2

dl = (Log(X /M) + (r - YieldX - 1/ 2 * VolX ”2) * TimeToMaturity) / (VolX *
Sqr(TimeToMaturity))

d11 =d1 + VoIX * Sqgr(TimeToMaturity)

d2 = (Log(Y / M) + (r - YieldY - 1/ 2 * VolY ”2) * TimeToMaturity) / (VolY *
Sqr(TimeToMaturity))

d22 =d2 + VolY * Sqgr(TimeToMaturity)
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d12 = (Log(Y / X) + (YieldX - YieldY -1/ 2 {VoIX "~ 2 - 2 * Corr * VoIX *
VolY + VolY ~ 2) * TimeToMaturity)) / (Sqr(VolX » 2- 2 * Corr * VolX * VolY +
VolY # 2) * Sgr(TimeToMaturity))

d21 = (Log(X / Y) + (YieldY - YieldX - 1/ 2 {VoIX ~ 2 - 2 * Corr * VoIX *
VolY + VolY ~ 2) * TimeToMaturity)) / (Sqr(VolX ~ 2- 2 * Corr * VolX * VolY +
VolY ~ 2) * Sgr(TimeToMaturity))

rhol = (Corr * VolY - VoIX) / Sgr(VolX ~ 2 - Z Corr * VoIX * VolY + VolY " 2)

rho2 = (Corr * VoIX - VolY) / Sgr(VolX ~ 2 - Z Corr * VoIX * VolY + VolY " 2)

EuropeanRainbow = X * Exp(-YieldX * TimeToMatty) *
BivVariateNormalCDF(d11, -d12, -rhol) + Y * Exp(-Yo&¥ * TimeToMaturity) *
BivVariateNormalCDF(d22, -d21, -rho2) - M * Exp(-r TimeToMaturity) * (1 -
BivVariateNormalCDF(-d1, -d2, Corr))

End Function
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Appendix A.5. Implementation of Monte Carlo Simulaion for
Sequential Rainbow Option on Mean-reverting Asset

This Appendix provides the Visual Basic module usednplement the Monte Carlo
simulation for the sequential rainbow option on @amreverting spread as developed

in the research paper #3 ('Sequential Real Rairptions’).

Function MonteCarlo(ValueP, Mean, VolatilityP, ResienSpeed, ExpReturn,
IntRate, ExpDateSERO, ExpDateRainbow, TimeStepBriEESERO,
ExPriceRainbow, NrOfSimulations)

Dim SimP As Single

Dim RainbowOption As Single

Dim SumOfOptionValues As Double

Dimi

SumOfOptionValues = 0

For i = 0 To NrOfSimulations - 1

SimP = SimulateAssetValue(ValueP, Mean a\lililyP, ReversionSpeed,
ExpReturn, IntRate, ExpDateSERO, TimeSteps)

RainbowOption = Rainbow(SimP, Mean, Volati, ReversionSpeed,
ExpReturn, IntRate, ExPriceRainbow, ExpDateRainb@xpDateSERO)

If RainbowOption > ExPriceSERO Then

SumOfOptionValues = SumOfOptionValueRainbowOption -
ExPriceSERO

End If
Next i

MonteCarlo = Exp(-IntRate * ExpDateSERO) * Sui@ptionValues /
NrOfSimulations

End Function

Function Rainbow(P, Mean, Vol, eta, u, r, M, Time)

— 246 —



' European Call option on mean-reverting variable
Dim d1, d2
Dim ExpectedP
Dim VolP

ExpectedP = P * Exp(-(eta + u - r) * Time) + &he* eta / (eta + u -r) * (1 - Exp(-
(eta+u-r)*Time))

VolP=Sqgr(1/2*Vol*2/(eta+u-r)*(IEXp(-2 * (eta+ u -r) * Time)))
d = (ExpectedP - M) / VolP

Rainbow = Exp(-r * Time) * ((ExpectedP - M) *phlication.NormSDist(d) + VolP
*Exp(-1/2*d "™ 2)/Sqr(2 * Application.Pi()))

End Function

Function SimulateAssetValue(CurrentAssetValue, M&éan, eta, u, r,
TimeToMaturity, TimeSteps)

Dim dt As Double

Dim AssetValue

Dim i

Dim z

dt = TimeToMaturity / TimeSteps

AssetValue = CurrentAssetValue

Fori=1To TimeSteps
z = Vol * Math.Sqr(dt) * WorksheetFunctidlormSinv(Rnd())
AssetValue = AssetValue * (1 - (eta + i * dt) + eta * Mean *dt + z

Next i

SimulateAssetValue = AssetValue

End Function
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