
 

 

 

 

 

 

 

Dry Reforming of Methane Using 

Non-Thermal Plasma-Catalysis 

 

 

A thesis submitted to The University of Manchester for the degree of Doctor 

of Philosophy in the Faculty of Engineering and Physical Sciences. 

 

 

 

 

2010 

 

Helen J. Gallon 

 

School of Chemistry 

 

 

 

 

 



 2 

Contents 

 

List of Figures 

List of Tables 

Abstract 

Declaration 

Copyright 

Acknowledgements 

List of Abbreviations 

 

Chapter 1. Methane Reforming 

1.1 Introduction 

1.2 Natural Gas 

  1.2.1 Global Climate Change 

1.3 Biogas 

1.4 Syngas Applications 

1.4.1 Gas-to-Liquid Conversion 

  1.4.2 Fischer-Tropsch Process 

1.5 H2 Energy 

  1.5.1 Proton Exchange Membrane (PEM) Fuel Cells 

  1.5.2 Methods for Production of H2 

  1.5.3 Hydrogen Infrastructure 

1.6 Industrial Approaches to Methane Reforming 

  1.6.1 Steam Methane Reforming (SMR) 

   1.6.1.1 Carbon Deposition 

  1.6.2 Partial Oxidation of Methane 

  1.6.3 Autothermal Reforming 

1.6.4 CO2 Reforming of Methane 

 1.6.4.1 The Calcor Process 

 1.6.4.2 The SPARG Process 

  1.6.5 Thermocatalytic Decomposition of Methane  

1.7 Plasma-Assisted Methane Reforming Technologies  

1.8 References 

 

 

7 

18 

21 

22 

23 

24 

25 

 

 

26 

27 

28 

29 

31 

33 

33 

35 

35 

37 

39 

40 

41 

42 

44 

44 

45 

47 

47 

47 

48 

49 



 3 

Chapter 2. Plasma-Catalysis and Analytical Techniques 

2.1 Introduction to Plasma 

2.2 Applications of Plasma 

2.3 Types of Plasma 

2.4 Generation of Non-Thermal Plasma by Electric Fields 

2.5 Continuous and Pulsed Direct Current Discharges 

2.5.1Corona Discharges 

2.4.2 Gliding Arc Discharges 

2.6 Radio Frequency Discharges 

2.7 Atmospheric Pressure Plasma Jet 

2.8 Dielectric Barrier Discharge 

2.8.1 The Packed-Bed Reactor 

2.9 Microwave Discharges 

2.10 Plasma-Catalysis 

  2.10.1 Plasma-Catalyst Configurations 

  2.10.2 Plasma-Catalyst Interactions 

  2.10.3 Synergistic Effects in Plasma-Catalysis 

2.11 Plasma Power Measurement 

2.12 Gas Chromatography 

2.12.1 Micro-Gas Chromatography 

2.12.2 Thermal Conductivity Detection 

2.12.3 Flame Ionisation Detection 

2.13 Fourier-Transform Infra-Red Spectroscopy 

  2.13.1 Vibrational Modes of CO2 

  2.13.2 Vibrational Modes of CH4 

2.14 X-Ray Diffraction 

2.15 Scanning Electron Microscopy 

2.16 Elemental Analysis 

2.17 References  

 

Chapter 3. Dry Reforming of Methane: Effect of Packing 

Materials in a DBD Reactor 

3.1 Introduction 

 

52 

52 

53 

54 

57 

58 

60 

61 

62 

63 

65 

66 

66 

68 

69 

71 

73 

76 

77 

79 

79 

80 

81 

82 

82 

84 

85 

86 

 

 

 

90 



 4 

3.2 Experimental Section 

3.3 Results  

3.3.1 Dry Reforming of CH4 in a Coaxial DBD with No 

Packing Material. 

3.3.2 Comparison of Dry Reforming of CH4 with Different 

Reactor Packing Materials. 

3.3.3 Dry Reforming of CH4 in a BaTiO3 Packed-Bed DBD 

Reactor 

3.4 Calculations of the Thermodynamic Equilibrium Composition for 

Dry Reforming of Methane 

3.5 Effect of Different Packing Materials on the Electrical 

Characteristics of DBDs 

3.6 Images of Plasma Generation on Packing Materials (AIST, Japan) 

3.6.1 Plasma Generation in the Absence of a Packing 

Material  

3.6.2 Quartz Wool 

3.6.3 γ-Al2O3 

  3.6.4 BaTiO3 Beads 

3.7 Discussion 

3.8 Conclusions  

3.9 References 

 

Chapter 4. Dry Reforming of Methane in a Coaxial DBD 

Reactor: Variation of CH4/CO2 Ratio and Introduction of 

NiO/Al2O3 Catalyst (AIST, Japan) 

4.1 Introduction 

4.2 Experimental Section 

4.3 Results  

  4.3.1 CH4 Reforming 

  4.3.2 CO2 Reforming 

  4.3.3 Variation of CH4/CO2 Ratio 

4.3.4 Variation of CH4/CO2 Ratio Using a NiO/Al2O3 

4.4 Cross Sections for the Electron Impact Dissociations of CH4 and  

93 

96 

96 

 

100 

 

105 

 

109 

 

110 

 

116 

119 

 

119 

120 

120 

121 

123 

124 

 

 

 

 

127 

128 

130 

130 

135 

138 

144 

149 



 5 

CO2 

4.5 Calculations of Thermodynamic Equilibrium Compositions for 

Dry Reforming of CH4 with Variation in CH4/CO2 Ratio 

4.6 Discussion 

4.6.1 Comparison of Dry Reforming of CH4 with Different 

DBD Reactor Systems 

4.6.2 Introduction of an Unreduced NiO/Al2O3 Catalyst 

4.7 Conclusions 

4.8 References 

 

Chapter 5. Plasma-Reduction of NiO/Al2O3 in a Coaxial DBD 

Reactor 

5.1 Introduction 

5.2 Experimental Section 

5.3 Results 

  5.3.1 Reduction of NiO/Al2O3 in a CH4 Plasma 

  5.3.2 Reduction of NiO/Al2O3 in a 20 % H2/Ar Plasma 

  5.3.3 Treatment of NiO/Al2O3 with an Argon Plasma 

5.3.4 Reduction of NiO/Al2O3 coated BaTiO3 by 20 % 

H2/Ar in a Packed-Bed DBD Reactor 

5.4 Catalyst Characterisation 

  5.4.1 XRD 

  5.4.2 SEM 

5.5 Electrical Properties of the Plasma when Packed with NiO/Al2O3 

5.5.1 Effect of NiO Reduction on Electrical Parameters 

5.6 Temperature Programmed Reduction of NiO/Al2O3 

  5.6.1 Thermal Reduction of NiO/Al2O3 by CH4 

5.6.2 Thermal Reduction of NiO/Al2O3 by H2 

5.6.3 Characterisation of Thermally Reduced Ni/Al2O3 

Catalysts 

5.7 Discussion 

5.7.1 Comparison of Reduction Temperatures for 

NiO/Al2O3 

 

153 

 

157 

157 

 

158 

158 

159 

 

 

 

162 

166 

167 

167 

172 

176 

179 

 

180 

180 

182 

186 

188 

192 

193 

195 

196 

 

200 

200 

 



 6 

5.7.2 Mechanism for Plasma-Reduction of NiO/Al2O3 with 

CH4 

5.8 Conclusions 

5.9 References 

 

Chapter 6. Dry Reforming of Methane: Performance of Plasma-

Reduced Ni/Al2O3 Catalysts in a Coaxial DBD Reactor 

6.1 Introduction 

6.2 Experimental Section 

6.3 Results 

6.3.1 Dry Reforming of Methane Using Plasma-Reduced 

Ni/Al2O3 Catalysts 

6.3.2 Plasma-Assisted Dry Reforming of Methane With and 

Without a Ni/Al2O3 Catalyst at Low Discharge Powers 

 6.4 Catalyst Characterisation 

  6.4.1 XRD 

  6.4.2 SEM 

6.5 Discussion 

6.6 Conclusions 

6.7 References 

 

Chapter 7. Further Work 

7.1 Plasma-Catalytic Decomposition of Methane 

7.2 Development of a Plasma-Membrane Reactor 

7.3 Development of Specialist Catalysts for Plasma Processes 

7.4 Development of a Micro-Reactor System for Catalyst Screening 

7.5 References 

 

Appendices 

Appendix A: Power Measurement in a DBD Plasma Reactor 

Appendix B: Calculation Methods for Electrical Parameters  

Appendix C: Publications and Conference Presentations 

Final Word Count: 53, 866   

202 

 

203 

203 

 

 

 

207 

208 

209 

209 

 

215 

 

217 

217 

219 

222 

223 

223 

 

 

224 

225 

226 

226 

227 

 

 

228 

240 

242 



 7 

List of Figures 

 

Chapter 1 

Figure 1.0: Proven world natural gas reserves by geographical 

region in 2010, FSU denotes the former soviet union. 

Figure 1.1: Schematic diagram showing the Earth‟s energy 

balance through incoming and outgoing radiation. All 

values are in W m
-2

 and represent the energy budget 

for the period of March 2000 to May 2004. 

Figure 1.2 Schematic diagram showing the main applications of 

syngas. 

Figure 1.3: Schematic diagram of a PEM fuel cell. 

Figure 1.4: Schematic diagram of the components of a single fuel 

cell and their simplified integration into a fuel cell 

stack. 

Figure 1.5: Schematic flow diagram of a conventional SMR 

process. 

Figure 1.6: Carbon limit curve showing the relationship between 

the atomic H/C and O/C ratios in the feed and the 

equilibrated H2/CO ratio at the reformer exit. Carbon 

deposition is thermodynamically favoured at 

conditions to the left of the curve. 

Figure 1.7: Schematic diagram of an autothermal reformer. 

 

Chapter 2 

Figure 2.0:  Voltage-current properties of different DC plasma 

discharges. 

Figure 2.1:  Schematic diagram of a corona discharge reactor in a 

coaxial wire-cylinder configuration. 

Figure 2.2:  Schematic diagram of a corona discharge reactor in a 

point-to-plate configuration.  

Figure 2.3:  Schematic diagrams showing different forms of corona 

discharges in a point-to-plate electrode configuration 

 

 

 

27 

 

28 

 

 

 

32 

 

36 

37 

 

 

41 

 

43 

 

 

 

 

45 

 

 

57 

 

58 

 

58 

 

59 

 



 8 

Figure 2.4:  Schematic diagram of a gliding arc discharge reactor. 

Figure 2.5:  Electrode configurations for RF discharges a) CCP 

with the electrodes inside the gas chamber, b) CCP 

with the electrodes outside the gas chamber, c) ICP 

with the discharge located inside an inductive coil and 

d) ICP with the discharge located adjacent to an 

inductive coil. 

Figure 2.6:  Schematic diagram of an atmospheric pressure plasma 

jet. 

Figure 2.7:  Schematic diagrams of planar, coaxial and surface 

DBD configurations. 

Figure 2.8:  Image of plasma generation in a packed-bed DBD 

reactor, showing microdischarges at the contact points 

between BaTiO3 beads. 

Figure 2.9:  Schematic diagram of a microwave plasma reactor. 

Figure 2.10:   Schematic diagram of different plasma-catalyst 

configurations. Configuration (a) is a plasma-only 

system, (b) is a single-stage arrangement, (c) is a two-

stage arrangement with catalytic post-processing and 

(d) is a two-stage process with catalytic pre-

processing. 

Figure 2.11:  Diagram showing possible interactions in a single-

stage plasma-catalytic reactor and potential benefits 

for the reaction performance. 

Figure 2.12:  Results obtained by Zhang et al. showing the 

synergistic effect of a DBD and catalyst on CO2 

reforming of CH4 (total flow rate = 60 ml min
-1

, 

CH4:CO2:Ar = 1:1:2, power = 60 W, 450 °C, 
(a)

 during 

catalyst only reaction, the catalyst bed was heated to 

450 °C. 

Figure 2.13:  Schematic diagram of the circuit used for measuring 

the discharge power of a DBD reactor. 

Figure 2.14:  Voltage (V) and current (I) waveforms for a DBD. 

60 

62 

 

 

 

 

 

63 

 

64 

 

65 

 

 

66 

68 

 

 

 

 

 

69 

 

 

72 

 

 

 

 

 

73 

 

74 



 9 

Figure 2.15:  Q-V Lissajous figure.   

Figure 2.16:  Gas chromatograms using Plot Q (top) and Molsieve 

5A (bottom) columns in an Agilent 3000A micro-GC. 

Figure 2.17:  A schematic diagram of a two-channel Agilent 3000A 

micro-GC with thermal conductivity detection. 

Figure 2.18:  Schematic diagram of a typical thermal conductivity 

detector. 

Figure 2.19:  Vibrational modes and wavenumbers for the IR 

absorptions of CO2. 

Figure 2.20: Vibrational modes and wavenumbers for the IR 

absorptions of CH4. 

Figure 2.21:  Reflection of X-rays at an angle (θ) from two planes of 

atoms with separation distance (d) in a crystalline 

solid. 

Figure 2.22:  Schematic of a scanning electron microscope. 

Figure 2.23: Schematic diagram of a CHNS elemental analyser. 

 

Chapter 3 

Figure 3.0:  Schematic diagram of the experimental set-up used for 

plasma-assisted dry reforming of methane. 

Figure 3.1:  Coaxial DBD reactor a) dissembled and b) assembled 

with packing material in the discharge gap held in 

place by quartz wool. 

Figure 3.2:  BaTiO3 packed-bed DBD reactor. 

Figure 3.3:  Conversions of CH4 and CO2 in plasma-assisted dry 

reforming of methane in the absence of a packing 

material. 

Figure 3.4:  Product selectivities in plasma-assisted dry reforming 

of CH4 in the absence of a packing material. 

Figure 3.5:  H2 yields in plasma-assisted dry reforming of methane 

in the absence of a packing material. 

Figure 3.6:  Gas stream carbon balance in plasma-assisted dry 

reforming of methane in the absence of a packing 

75 

77 

 

78 

 

79 

 

81 

 

82 

 

83 

 

 

84 

85 

 

 

93 

 

94 

 

 

95 

96 

 

 

97 

 

97 

 

98 

 



 10 

material. 

Figure 3.7:  CH4 conversions during plasma-assisted dry reforming 

of methane with different reactor packing materials. 

Figure 3.8:  CO2 conversions during plasma-assisted dry reforming 

of methane with different reactor packing materials. 

Figure 3.9:  H2 yields during plasma-assisted dry reforming of 

methane with different reactor packing materials. 

Figure 3.10:  Selectivities of H2 and CO during plasma-assisted dry 

reforming of methane with different reactor packing 

materials (discharge power = 35 W). 

Figure 3.11:  Selectivities of higher hydrocarbons during plasma-

assisted dry reforming of methane with different 

reactor packing materials (discharge power = 35 W). 

Figure 3.12:  Conversions of CH4 and CO2 in plasma-assisted dry 

reforming of methane in a BaTiO3 packed-bed DBD 

reactor. 

Figure 3.13:  Product selectivities in plasma-assisted dry reforming 

of methane in a BaTiO3 packed-bed DBD reactor. 

Figure 3.14:  H2 yields in plasma-assisted dry reforming of methane 

in a BaTiO3 packed-bed DBD reactor. 

Figure 3.15:  Gas stream carbon balance for the plasma-assisted dry 

reforming of methane in a BaTiO3 packed-bed DBD 

reactor. 

Figure 3.16:  Thermodynamic equilibrium gas compositions for dry 

reforming of CH4 at elevated temperatures in the 

absence of a catalyst (CH4/CO2 = 1, pressure = 1 atm). 

Figure 3.17:  Electrical waveforms for the plasma-assisted dry 

reforming of methane with no packing in the discharge 

gap (discharge power = 30 W). 

Figure 3.18:  Electrical waveforms for the plasma-assisted dry 

reforming of methane with quartz wool in the 

discharge gap (discharge power = 30 W). 

Figure 3.19: Electrical waveforms for the plasma-assisted dry 

 

101 

 

102 

 

102 

 

103 

 

 

103 

 

 

106 

 

 

106 

 

107 

 

107 

 

 

109 

 

 

111 

 

 

111 

 

 

112 



 11 

reforming of methane with zeolite 3A beads in the 

discharge gap (discharge power = 30 W). 

Figure 3.20:  Lissajous figures of a CH4/CO2 = 1 DBD with the 

discharge gap packed with quartz wool, zeolite 3A and 

in the absence of a packing material, at a fixed 

discharge power of 30 W. 

Figure 3.21:  Schematic diagram of the optical microscopic 

observation system for plasma generation on different 

surfaces. 

Figure 3.22:  DBD reactor used to take images of plasma generation 

on different surfaces during dry reforming of CH4 a) 

DBD cell (side-view), b) quartz upper plate of DBD 

cell with a 6 mm discharge gap. 

Figure 3.23:  Microscope-ICCD image of plasma generation in the 

absence of a reactor packing material. 

Figure 3.24:  Microscope-ICCD images of a) quartz wool, b) 

uniform plasma discharge observed on the surface of 

quartz wool c) streamer formation on the quartz wool 

surface. 

Figure 3.25:  Microscope-ICCD images of a) γ-Al2O3 beads and b) 

plasma generation on γ-Al2O3 beads. 

Figure 3.26:  Microscope-ICCD images of a) BaTiO3 beads, b) 

spots of plasma generation at contact points between 

BaTiO3 beads and c) streamer extending over the 

surface of a BaTiO3 bead. 

 

Chapter 4 

Figure 4.0:  Schematic diagram of the experimental set-up and 

coaxial DBD reactor used for dry reforming of 

methane experiments (carried out at AIST, Tsukuba). 

Figure 4.1: Conversions of CH4 in a DBD reactor (feed gas 100 % 

CH4). 

Figure 4.2: Product selectivities during the reforming of CH4 in a 

 

 

113 

 

 

 

117 

 

 

118 

 

 

 

119 

 

119 

 

 

 

120 

 

121 

 

 

 

 

 

128 

 

 

131 

 

131 



 12 

DBD reactor (feed gas 100 % CH4). 

Figure 4.3: Gas stream carbon balance during the reforming of 

CH4 in a DBD reactor. 

Figure 4.4: CO2 conversion in a DBD reactor (feed gas 100 % 

CO2). 

Figure 4.5: CO selectivity during the reforming of CO2 in a DBD 

reactor (feed gas 100 % CO2). 

Figure 4.6: Gas stream carbon balance during the reforming of 

CO2 in a DBD reactor. 

Figure 4.7: Effect of CH4/CO2 ratio on CH4 conversions in 

plasma-assisted dry reforming of methane in a DBD 

reactor. 

Figure 4.8:  Effect of CH4/CO2 ratio on CO2 conversions in 

plasma-assisted dry reforming of methane in a DBD 

reactor. 

Figure 4.9: Product selectivities during the plasma-assisted dry 

reforming of CH4, where CH4/CO2 = 0.33. 

Figure 4.10: Product selectivities during the plasma-assisted dry 

reforming of CH4, where CH4/CO2 = 1. 

Figure 4.11: Product selectivities during the plasma-assisted dry 

reforming of CH4, where CH4/CO2 = 3. 

Figure 4.12: Effect of CH4/CO2 ratio on H2 yield in plasma-assisted 

dry reforming of methane in a DBD reactor. 

Figure 4.13: Effect of CH4/CO2 ratio on the H2/CO ratio in plasma-

assisted dry reforming of methane in a DBD reactor. 

Figure 4.14: Effect of CH4/CO2 ratio on CH4 conversions in 

plasma-assisted dry reforming of methane with 

unreduced NiO/Al2O3 in the DBD reactor. 

Figure 4.15: Effect of CH4/CO2 ratio on CO2 conversions in 

plasma-assisted dry reforming of methane with 

unreduced NiO/Al2O3 in the DBD reactor. 

Figure 4.16: Product selectivities during the plasma-assisted dry 

reforming of CH4 with unreduced NiO/Al2O3, where 

 

135 

 

136 

 

136 

 

138 

 

139 

 

 

139 

 

 

141 

 

141 

 

142 

 

142 

 

143 

 

145 

 

 

146 

 

 

147 

 



 13 

CH4/CO2 = 0.33. 

Figure 4.17: Product selectivities during the plasma-assisted dry 

reforming of CH4 with unreduced NiO/Al2O3, where 

CH4/CO2 = 1. 

Figure 4.18: Product selectivities during the plasma-assisted dry 

reforming of CH4 with unreduced NiO/Al2O3, where 

CH4/CO2 = 3. 

Figure 4.19: Effect of CH4/CO2 ratio on H2 yields in plasma-

assisted dry reforming of CH4 with unreduced 

NiO/Al2O3 in a DBD reactor. 

Figure 4.20: Effect of CH4/CO2 ratio on the H2/CO ratio in plasma-

assisted dry reforming of CH4 with unreduced 

CH4/CO2 in a DBD reactor. 

Figure 4.21: Cross sections for the low energy electron impact 

dissociations of CH4 and CO2. 

Figure 4.22: Electron energy distribution function for a CH4 and 

CO2 plasma. Calculated using ELENDIF computer 

code for conditions of CH4/CO2 = 1 at 1 atm and 

127 °C. 

Figure 4.33:   Electron energy distribution function for a 100 % CH4 

plasma. Calculated using ELENDIF computer code for 

conditions of 1 atm and 127 °C. 

Figure 4.24:   Electron energy distribution function for a 100 % CO2 

plasma. Calculated using ELENDIF computer code for 

conditions of 1 atm and 127 °C. 

Figure 4.25: Thermodynamic equilibrium gas compositions for 

CH4 reforming at elevated temperatures in the absence 

of a catalyst (pressure = 1 atm). 

Figure 4.26: Thermodynamic equilibrium gas compositions for 

CO2 reforming at elevated temperatures in the absence 

of a catalyst (pressure = 1 atm). 

Figure 4.27: CH4 conversions calculated from thermodynamic 

equilibrium compositions for dry reforming of 

 

147 

 

 

148 

 

 

148 

 

 

149 

 

 

150 

 

151 

 

 

 

152 

 

 

152 

 

 

154 

 

 

155 

 

 

156 

 



 14 

methane with different feed gas ratios (pressure = 1 

atm).  

Figure 4.28: CO2 conversions calculated from thermodynamic 

equilibrium compositions for dry reforming of 

methane with different feed gas ratios (pressure = 1 

atm). 

 

Chapter 5 

Figure 5.0:  CH4 consumption and concentration of reduction 

products during reduction of NiO/Al2O3 in a 100 % 

CH4 DBD. 

Figure 5.1:  H2 production and carbon balance in the gas stream 

during reduction of NiO/Al2O3 in a 100 % CH4 DBD. 

Figure 5.2:  Production of higher hydrocarbons during reduction of 

NiO/Al2O3 in a 100 % CH4 DBD. 

Figure 5.3:  Power and temperature profiles for reduction of 

NiO/Al2O3 in a 100 % CH4 DBD. 

Figure 5.4:  H2 consumption during reduction of NiO/Al2O3 in 

20 % H2/Ar DBD. 

Figure 5.5:  CO2 and CO concentrations during reduction of 

NiO/Al2O3 in a 20 % H2/Ar DBD. 

Figure 5.6:  CH4 concentration during reduction of NiO/Al2O3 in a 

20 % H2/Ar DBD. 

Figure 5.7:  Power and temperature profiles for reduction of 

NiO/Al2O3 in 20 % H2/Ar DBD. 

Figure 5.8:  Concentration of gaseous products CO2 and H2 during 

the treatment of a NiO/Al2O3 catalyst in an Ar DBD. 

Figure 5.9:  Power and temperature profiles for the treatment of a 

NiO/Al2O3 catalyst in an Ar DBD. 

Figure 5.10:  XRD patterns of NiO/Al2O3 catalysts after a) no 

treatment, b) CH4 plasma-reduction, c) H2 plasma-

reduction, d) treatment in an Ar plasma. NiO peaks at 

2θ = 37.2°, 43.2°, 62.9°, 75.4° and 79.4°. Ni peaks at 

 

 

156 

 

 

 

 

 

167 

 

 

168 

 

168 

 

169 

 

172 

 

173 

 

173 

 

175 

 

176 

 

177 

 

179 

 

 

 



 15 

2θ = 44.4°, 51.6°, 76.1°, 92.1° and 98.1°. 

Figure 5.11:   SEM images of the NiO/Al2O3 catalyst as supplied a) 

mag. 50 × b) mag.  500 × c) mag. 1000 × d) mag. 4000 

×. 

Figure 5.12:  SEM images of the NiO/Al2O3 catalyst reduced in 

CH4 plasma a) mag. 50 × b) mag.  500 × c) mag. 1000 

× d) mag. 4000 × e) mag. 12000 × f) mag. 25000 ×. 

Figure 5.13:  SEM images of the NiO/Al2O3 catalyst reduced in 

H2/Ar plasma a) mag. 50 × b) mag.  500 × c) mag. 

1000 × d) mag. 4000 ×. 

Figure 5.14:  SEM images of the NiO/Al2O3 catalyst after treatment 

with Ar plasma a) mag. 50 × b) mag.  500 × c) mag. 

1000 × d) mag. 4000 ×. 

Figure 5.15:  Electrical waveforms for applied voltage, gas voltage 

and current in a 100 % CH4 DBD in the absence of a 

catalyst (CH4 flow rate = 100 ml min
-1

, discharge 

power = 30 W). 

Figure 5.16:  Electrical waveforms for applied voltage, gas voltage 

and current in a 100 % CH4 DBD packed with 

NiO/Al2O3 catalyst (CH4 flow rate = 50 ml min
-1

, 

discharge power = 30 W). 

Figure 5.17:  The applied voltage waveforms of a 100 % CH4 DBD 

packed with the unreduced NiO/Al2O3 catalyst and the 

reduced Ni/Al2O3 catalyst. 

Figure 5.18: Lissajous figures for CH4 DBD for NiO/Al2O3 and 

CH4 plasma-reduced Ni/Al2O3 at a fixed discharge 

power of 30 W (CH4 flow rate = 50 ml min
-1

). 

Figure 5.19:  Lissajous figures for a 20 % H2/Ar DBD for 

NiO/Al2O3 and H2/Ar plasma-reduced Ni/Al2O3 at a 

fixed discharge power of 30 W (total flow rate = 100 

ml min
-1

). 

Figure 5.20: TPR profile for the reduction of NiO/Al2O3 by 10 % 

CH4/He (mass of catalyst = 25.0 mg, flow rate = 100 

 

182 

 

 

183 

 

 

184 

 

 

185 

 

 

187 

 

 

 

187 

 

 

 

190 

 

 

191 

 

 

192 

 

 

 

193 

 



 16 

ml min
-1

, temperature ramp = 10 °C min
-1

). The inset 

shows the profiles of H2O, CO2 and CO in the 

temperature range 400 – 500 °C. 

Figure 5.21: TPR results for reduction of NiO/Al2O3 by 5 % H2/He 

(mass of catalyst = 50.5 mg, flow rate = 100 ml min
-1

, 

temperature ramp = 10 °C min
-1

). 

Figure 5.22: XRD patterns of NiO/Al2O3 catalysts after a) no 

treatment, b) CH4 TPR and c) H2 TPR. NiO peaks at 

2θ = 37.2°, 43.2°, 62.9°, 75.4° and 79.4°. Ni peaks at 

2θ = 44.4°, 51.6°, 76.1°, 92.1° and 98.1°, Graphite 

peak at 26.3°. 

Figure 5.23: SEM images of Ni/Al2O3 which has been reduced 

thermally in CH4 TPR a) mag. 500 × b) mag. 1000 × 

c) mag. 4000 × d) mag. 8000 ×. 

Figure 5.24: SEM images of Ni/Al2O3 which has been reduced 

thermally in H2 TPR a) mag. 500 × b) mag. 1000 × c) 

mag. 4000 ×. 

 

Chapter 6 

Figure 6.0: CH4 conversions during dry reforming of methane in 

DBD with Ni/Al2O3 catalysts. 

Figure 6.1: CO2 conversions during dry reforming of methane in 

DBD with Ni/Al2O3 catalysts. 

Figure 6.2: Product selectivities during dry reforming of methane 

using a Ni/Al2O3 (reduced in a 100 % CH4 plasma). 

Figure 6.3: Product selectivities during dry reforming of CH4 

using a Ni/Al2O3 (reduced in a 20 % H2/Ar plasma). 

Figure 6.4: H2 yields during dry reforming of methane in DBD 

with Ni/Al2O3 catalysts. 

Figure 6.5: Gas stream carbon balance during dry reforming of 

methane in DBD with Ni/Al2O3 catalysts. 

Figure 6.6: H2 concentration and carbon balance during dry 

reforming of methane with a Ni/Al2O3 catalyst. 

 

 

 

196 

 

 

197 

 

 

 

 

198 

 

 

199 

 

 

 

 

210 

 

210 

 

212 

 

123 

 

123 

 

214 

 

215 

 



 17 

Figure 6.7: XRD patterns of Ni/NiO on Al2O3 catalysts a) fresh 

NiO/Al2O3 catalyst b) CH4 plasma-reduced Ni/Al2O3 

c) CH4 plasma-reduced Ni/Al2O3 after dry reforming 

of CH4 d) H2/Ar plasma-reduced Ni/Al2O3 e) H2/Ar 

plasma-reduced Ni/Al2O3 after dry reforming of CH4. 

Figure 6.8: SEM images of a Ni/Al2O3 (pre-reduced in a 100 % 

CH4 plasma) catalyst after dry reforming of methane 

a) mag. 50 × b) mag. 500 × c) mag. 1000 × d) mag. 

4000 × e) 12000 ×. 

Figure 6.9: SEM images of a Ni/Al2O3 (pre-reduced in a 20 % 

H2/Ar plasma) catalyst after dry reforming of methane 

a) mag. 50 × b) mag. 500 × c) mag. 1000 × d) mag. 

4000 × e) 24000 ×. 

 

Chapter 7 

Figure 7.0:  A schematic diagram showing the production of H2 

and carbon nanotubes from CH4 via the use of plasma-

catalysis and membrane technologies. 
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Abstract 

This thesis has studied CO2 reforming of CH4 in atmospheric pressure, non-

thermal plasma discharges. The objective of this research was to improve the 

current understanding of plasma-catalytic interactions for methane reforming.  

Chapter 1 introduces the existing and potential applications for methane 

reforming products. The industrial approaches to methane reforming and 

considerations for catalyst selection are discussed. 

Chapter 2 introduces non-thermal plasma technology and plasma-catalysis. An 

introduction to the analytical techniques used throughout this thesis is given. 

Chapter 3 investigates the effects of packing materials into the discharge gap. 

The materials were found to influence the reactant conversions for dry 

reforming of methane in the following order: quartz wool > no packing > 

Al2O3 > zeolite 3A > BaTiO3 > TiO2. In addition to the dielectric properties, the 

morphology and porosity of the materials was found to influence the reaction 

chemistry. The materials also affected the electrical properties of the plasma 

resulting in surface discharges, as opposed to a filamentary discharge mode.  

Chapter 4 investigates the effects of variation in CH4/CO2 ratios on plasma-

assisted dry reforming of CH4. Differences in the reaction performance for 

different feed gas compositions are explained in terms of the possible reaction 

pathways and the electron energy distribution functions. A NiO/Al2O3 catalyst is 

introduced for plasma-catalytic dry reforming of CH4, which was found to have 

no significant effect on the reaction performance at low specific input energies. 

Chapter 5 presents the plasma-assisted reduction of a NiO/Al2O3 catalyst by 

CH4 and H2/Ar discharges. When reduced in a CH4 discharge, the active 

Ni/Al2O3 catalyst was effective for plasma-catalytic methane decomposition to 

produce H2 and solid carbon filaments. A decrease in the breakdown voltage 

was observed, following the catalyst reduction to the more conductive Ni phase. 

Chapter 6 investigates the performance of the plasma-reduced Ni/Al2O3 

catalysts for plasma-catalytic dry reforming of methane. Whilst the activity 

towards dry reforming of CH4 was low, the CH4 plasma-reduced catalyst was 

found to be effective for catalysing the decomposition of CH4 into H2 and solid 

carbon filaments; both potentially useful products. 

Chapter 7 discusses further work relevant to this thesis. 
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1. Methane Reforming 

 

 

1.1 Introduction 

Methane is the predominant component of natural gas and has formed a major 

part of the energy market for many years. In Britain, the discovery of natural gas 

in the North Sea in 1965 meant that a cleaner form of gas became accessible. At 

that time, town gas manufactured from coal was supplied to homes by a national 

network until a program for conversion to natural gas was completed in 1976. 

To this date, natural gas is distributed to homes where it is combusted in a 

highly exothermic reaction (1.0) to provide energy for central heating, gas 

heating and cooking. It is also utilised in gas fired power stations to generate 

electricity for the national grid, where the energy released during combustion is 

used to drive a gas or steam turbine.  

 

CH4 + 2 O2 → CO2 + 2 H2O   ΔH° = -891 kJ mol
-1

  (1.0) 

 

The uses of methane are not restricted to the energy sector; many synthetic 

chemicals originate from methane such as methanol, ammonia, liquid fuels and 

other speciality chemicals. Methane is first converted into synthetic gas, or 

syngas as it is commonly abbreviated, in a process known as methane reforming. 

Syngas is a mixture of hydrogen and carbon monoxide and has a wide range of 

uses in synthetic chemistry (as its name suggests). Methane is a very stable 

molecule due to the high strength of the four C-H bonds, which have an average 

bond enthalpy of 413 kJ mol
-1

 [1]. Adverse reaction conditions are necessary in 

order to overcome the high activation energies required to break these bonds. 

Established industrial methods for methane reforming involve reacting CH4 with 

steam or another oxidant under high temperatures, pressures and the presence of 

catalysts that are prone to sintering and deactivation under these harsh operating 

conditions. Frequent replacement of spent catalysts and high energy 

consumption add to the overall running costs of methane reforming processes. 

Many research efforts are focussed on the development of alternative 
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technologies that allow methane reforming to proceed under milder reaction 

conditions, in attempt to make it a more economically favourable process. 

This chapter discusses the existing and potential applications for methane 

reforming products, H2 and CO. There are several different industrial 

approaches to methane reforming; the challenges associated with these methods 

are discussed in this chapter, which explains the motivation behind the research 

in this thesis. 

 

 

1.2 Natural Gas 

Methane is the main constituent of natural gas and is naturally abundant in many 

locations around the world. Natural gas and other fossil fuels are formed over 

millions of years, deep beneath the Earth‟s surface. Continued extraction of 

natural gas could eventually lead to depletion of the current sources. Figure 1.0 

shows the geographical distribution of proven reserves of natural gas, of which 

significant proportions are found in Middle Eastern countries and Russia [2]. 

Environmental concerns as well as uncertainties surrounding the sustainability 

and cost of future sources of natural gas have led to considerable interest in 

alternative methane sources. 
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Figure 1.0: Proven world natural gas reserves by geographical region in 2010, 

FSU denotes the former soviet union (data taken from [2]). 
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1.2.1 Global Climate Change 

The combustion of natural gas and other fossil fuels for domestic, industrial and 

automotive energy demands creates considerable emissions of CO2. Carbon 

dioxide concentrations in the atmosphere have increased dramatically (past what 

could be considered a natural fluctuation) since the use of fossil fuels by 

industrialised nations became widespread. Figure 1.1 depicts the Earth‟s energy 

balancing mechanisms through incoming and outgoing radiation. Greenhouse 

gases exist naturally in the atmosphere and have a vital role in maintaining this 

energy balance, by absorbing and reflecting radiation back to the Earth‟s surface, 

a concept that is widely known as the greenhouse effect. Anthropogenic 

greenhouse gas emissions which include CO2, methane, nitrous oxide (N2O), 

sulphur hexafluoride (SF6), chlorofluorocarbons (CFCs) and 

hydrochlorofluorocarbons (HCFCs) have led to an enhanced greenhouse effect, 

whereby increased levels of radiation are trapped in the Earth‟s atmosphere. 

This has resulted in increased average global temperatures, a decrease in the pH 

of the ocean surface and significant changes to local weather systems: 

collectively known as global climate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic diagram showing the Earth‟s energy balance through 

incoming and outgoing radiation. All values are in W m
-2

 and represent the 

energy budget for the period of March 2000 to May 2004. The broad arrows 

indicate the flow of energy in proportion to their importance (taken from [3, 4]). 
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Carbon dioxide emissions from fossil fuel combustion are believed to be the 

most significant contributor to global climate change. This has been globally 

recognised in the 1997 Kyoto Protocol, an international agreement by United 

Nations member states that commits these industrialised nations to reducing 

their CO2 emissions. Whilst the legally binding duration of this agreement is due 

to run out in 2012, member states are continuing the implementation of CO2 

reduction strategies by continued investment in renewable energy technologies. 

 

 

1.3 Biogas 

Biogas is a renewable source of methane and can be formed by the anaerobic 

decay of organic matter. Almost all organic matter can be used as a biogas 

feedstock. However, the use of waste products is particularly advantageous as it 

can prevent the unnecessary waste of useful energy sources and offers increased 

financial profits to plant operators. Industries that generate biogas from waste 

products could use it directly on-site as a fuel and/or for electricity generation 

that could be resold to the national grid [5]. Waste biomass sources that have 

potential for industrial biogas generation include: 

 

Wastewater treatment – the treatment of wastewater inevitably generates 

sludge, which needs to be chemically treated and disposed of, in a process that 

incurs considerable financial cost. An alternative waste management strategy is 

the generation of biogas from wastewater sludge in anaerobic digestion tanks. 

This process has been considered economically feasible [5], which has led to the 

implementation of biogas generators at several sites across the U.K. 

Animal manure – Manure has important uses in farming as a fertiliser, and 

recently also as a source for on-farm biogas generation. The usual practice is to 

store the manure for several months until it is needed. During this time, gases 

that are produced from the manure can be released straight into the atmosphere, 

if they are not properly collected. To make use of these gases, the manure can be 

transferred to an anaerobic digester for biogas generation. The remaining 

substrate after biogas production still contains nutrients that give it value as a 

fertiliser [6]. 
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Food waste – Waste materials from food processing industries, agricultural 

processes and forestries all have the potential to generate biogas through the use 

of anaerobic digesters. In the U.K, several plants of this type are in operation 

including the use of brewery by-products, potato peelings, fish waste, sugar cane 

waste and other food wastes from kitchens. 

Landfill gas – the organic fraction of municipal solid waste in landfill sites is 

biologically digested by micro-organisms, releasing a stream of methane-rich 

gas. Currently, landfill gas is often flared to prevent a risk of explosion on 

mixing with oxygen. Collection of this gas and subsequent use for energetic 

purposes could be a viable alternative [6, 7]. Challenges associated with landfill 

gas collection include inconsistent gas pressure and variable gas composition 

resulting from differences in local ecosystems within the landfill, as a result of 

the heterogeneous nature of the waste. 

 

Other methods for biogas generation include the collection of biogas from large-

scale cultivation of algae [8] and the growth and subsequent anaerobic digestion 

of dedicated energy crops such as rape. The latter method is more controversial 

as it requires the occupation of land that could otherwise be used for growing 

food as well as substantial energy expenditure associated with the farming of 

these crops [9]. 

The composition of biogas varies greatly depending on the biomass source, but 

it is always produced with a significant CO2 component (≤ 50 %), in contrast to 

natural gas, where CO2 is present in relatively low concentrations (≤ 8 %). Table 

1.0 gives an approximation of the composition of natural gas and biogas 

generated from three different waste biomass sources for comparison. Water 

vapour, H2 and trace compounds such as sulphides, siloxanes, aromatics and 

halogenated compounds may also be present in each of these gas sources [7]. 

Biogas can be upgraded to increase the methane concentration and remove 

corrosive H2S and halogenated compounds. When biogas is upgraded to natural 

gas standard, it is known as biomethane and can be used as a natural gas 

substitute for electricity generation or as a fuel, particularly in the transport 

sector. The high expense of upgrading biogas and converting existing vehicles 

and infrastructure to use gas instead of liquid fuels (petrol and diesel) have 

prevented this transition [6]. 
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 Natural 

Gas 

Biogas sources 

Municipal 

landfill sites 

Waste water 

treatment plants 

Animal 

manure  

CH4 (%) 70 – 90 47 – 62 60 – 67 55 – 70 

CO2 (%) 0 – 8 32 – 43 33 – 38 29 – 44 

C2 – C4+ (%) 

hydrocarbons  

0 – 20 - - - 

O2 (%) 0 – 0.2 < 1 < 1 < 1 

N2 (%) 0 – 5 < 1 – 17 < 2 < 1 – 2 

H2S (ppm) 0 – 5 27 – 500 < 1 – 4 3 – 1000 

 

Table 1.0: Compositions of natural gas and biogas from three different sources, 

(-) denotes unknown concentrations (data taken from [7] and [10]).  

 

While combustion of renewable methane sources does emit CO2, it is more 

favourable than fossil fuel combustion. The carbon in biogas was originally 

absorbed from the atmosphere by plants during photosynthesis. Eventually, the 

same amount of carbon is returned to the atmosphere during combustion of the 

plant-derived fuel; therefore no additional carbon is introduced into the Earth‟s 

carbon cycle. Provided that the plant source is regenerated, the fuel can be 

considered carbon-neutral. This is in contrast to combustion of fossil fuels 

where carbon that has been removed from the carbon cycle for millions of years 

is reintroduced without an efficient removal mechanism. 

 

 

1.4 Syngas Applications 

Syngas has direct application as a fuel. It can be combusted in a gas turbine, 

internal combustion engine or boiler, in much the same way as natural gas. Most 

recently installed plants that generate electricity from syngas use an integrated 

gasification combined cycle (IGCC) system. This method generates syngas from 

the gasification of coal, petroleum coke, heavy oil or biomass. The syngas is 

then cleaned of sulphur compounds, ammonia, metals and particulates before it 

is used to drive a gas turbine that generates electricity [11]. If the syngas is 
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generated from biomass sources, this method of electricity generation can be 

considered as a renewable and clean alternative to the use of fossil fuels.  

Reforming of natural gas represents the lowest cost route to production of 

syngas [12], which has found a wide range of uses in synthetic chemical 

industries as shown in Figure 1.2. The H2 and CO constituents can be separated 

and used individually for producing various chemicals such as ammonia (NH3) 

in the case of H2, or acids and other carbonylation products in the case of CO. 

Syngas can also be used in the direct reduction of iron ore (the DRI process) for 

industrial steel manufacture. Other processes use the mixture of H2 and CO to 

react these two species directly using catalysts and elevated temperatures. 

 

 

Figure 1.2: Schematic diagram showing the main applications of syngas. 
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1.4.1 Gas-to-Liquid Conversion 

The conversion of syngas to liquid products is the main route to the synthesis of 

liquid fuels and many important oxygenated compounds such as methanol and 

dimethyl ether (DME). There are several key reactions for gas-to-liquid 

conversion (Fig. 1.2) such as the Fischer-Tropsch (F-T) process for production 

of liquid fuels, synthesis of methanol (CH3OH) from the direct reaction between 

H2 and CO and the oxo synthesis where alkenes of variable carbon number are 

reacted with syngas to produce alcohols and aldehydes with one additional 

carbon to the alkene reactant [13]. An important factor in determining the 

chemistry of syngas is the H2/CO ratio; this can be adjusted using a water-gas 

shift reaction, downstream of the methane reformer. 

A renewed interest in gas-to-liquid processes has been initiated by the increasing 

legislation for cleaner energy sources, which includes the production of liquid 

fuels from biomass-derived sources. Another reason for interest in these 

reactions comes from the natural gas industry, where gas-to-liquid conversions, 

if carried out at remote offshore locations could enable some governments to 

profit from stranded natural gas reserves at oil wells where the natural gas by-

product is otherwise flared. There is little economic interest in transporting gas 

from remote locations due to the low volumetric energy content of natural gas 

compared with liquid oil [14, 15]. Natural gas is transported from several 

countries after liquefaction, by cooling to -162 °C at atmospheric pressure. It is 

then reheated to recover the gas when it reaches the destination. However, this is 

an expensive solution and it does not address the need for sustainable sources of 

energy. 

 

1.4.2 Fischer-Tropsch (F-T) Process 

The Fischer-Tropsch process was established in 1923 by German researchers, 

Franz Fischer and Hans Tropsch. They discovered that syngas could be 

converted into a mixture of linear and branched hydrocarbons and alcohols 

using various metal catalysts at elevated temperatures [16]. For commercial F-T 

synthesis, iron and cobalt catalysts are used at temperatures of 200 – 300 °C and 

pressures of 1000 – 6000 kPa. A syngas ratio of H2/CO = 2 is generally required. 

Potassium and iron catalysts are used to promote the water-gas shift reaction 

which is used to modify the H2/CO ratio [17]. The main reactions of F-T 
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synthesis are shown in Table 1.1. Conventional refinery processes are used to 

separate and upgrade the syncrude mixture into useful products such as diesel, 

kerosene, naphtha and waxes. High quality liquid fuels can be produced by this 

method with very low aromaticity and zero sulphur impurities [18]. 

 

Main reactions 

1. Alkanes (2n +1) H2 + n CO → CnH2n+2 + n H2O 

2. Alkenes 2n H2 + n CO → CnH2n + n H2O 

3. Water-gas shift CO + H2O ↔ CO2 + H2 

  

Side reactions 

4. Alcohols 2n H2 + n CO → CnH2n+2O + (n -1) H2O 

5. Boudouard reaction  2 CO → C + CO2 

  

Catalyst Modifications  

6. Catalyst oxidation x M + y O2 ↔ MxO2y 

7. Catalyst reduction MxOy + y H2 ↔ y H2O + x M 

8. Bulk carbide formation y C + x M ↔ MxCy 

  

 

Table 1.1: Major reactions in the Fischer-Tropsch synthesis, where n, x and y 

are integers and M represents a metal catalyst (modified from [17]). 

 

F-T processes are a well-established set of reactions that have been improved 

greatly over the years with advances in catalysis and reactor design. However, 

further breakthroughs are necessary if the large scale manufacture of liquid fuels 

from biomass sources is to become viable for today‟s energy markets [12]. 

Specific challenges arises from the high cost of syngas production and 

preparation including sulphur removal, partial oxidation or steam reforming of 

methane, heat recovery and the cooling of syngas; these processes have been 

estimated to induce 66 % of the total costs of the production of liquid fuels from 

natural gas [19].  
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1.5 H2 Energy 

The depletion of fossil fuel reserves and the adverse effects of global climate 

change have led to the emergence of several new energy technologies in recent 

years. One of which, is the use of H2 as an energy carrier that can be used to 

generate electricity by combustion in an internal combustion engine (ICE) or by 

the use of fuel cells, where chemical energy is converted into electricity using an 

electrochemical cell. The latter is favourable, particularly for automotive 

applications, given that the transfer of chemical energy associated with fuel cells 

is more efficient than methods of combustion where loss of energy as heat is 

inevitable. Additionally, the use of H2 as a fuel for ICEs would result in 

emissions of nitrogen oxides (NOx) due to the combustion of hydrogen-air 

mixtures, thus fuel cells are preferable in terms of a cleaner air quality [20]. The 

oxidation of hydrogen produces zero harmful emissions; H2O is the only by-

product of both ICE and fuel cell applications. However, for H2 to be considered 

as a clean source of energy it should be derived from renewable sources and not 

from fossil fuels. 

As with any fuel, issues of safety must be addressed prior to endorsement. H2 is 

a flammable gas over a wide range of concentrations (4 – 75 %) and burns with 

a colourless flame. The ignition temperature of H2 is higher than petroleum-

derived fuels and if allowed to leak, H2 will quickly rise and disperse, lessening 

the risk of fire. Overall, safety concerns do not prevent the use of H2 as a fuel 

[21].  

 

1.5.1 Proton Exchange Membrane (PEM) Fuel Cells 

The basic components of a PEM fuel cell are the anode, cathode and a proton 

exchange membrane sandwiched between layers of catalysts, as shown in Figure 

1.3. At the anode, H2 is oxidised and the resulting protons diffuse through the 

PEM layer. At the cathode, O2 from air is reduced to form H2O. The electrons 

released travel around an external circuit, providing electricity to the load. The 

PEM is most commonly a Nafion-based polymeric electrolyte. The membrane 

has hydrophilic pores of ~ 10 nm in size, which allow the passage of H
+
 ions 

only through the membrane. The oxidation and reduction reactions in the fuel 

cell are promoted by Pt-based catalysts, which are more efficient at higher 
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temperatures. However, the proton-conducting channels in the membrane are 

also strongly temperature dependent, with high temperatures causing the pore 

size to shrink, hindering the proton exchange mechanism [22]. These factors 

limit PEM fuel cells to working temperatures in the range of 80 – 100 °C; this 

requires the use of efficient cooling systems to prevent overheating of the cells. 

At these relatively low temperatures, any CO impurities (as low as 50 ppm) in 

the H2 feed can cause poisoning of the catalysts due to a strong adsorption 

affinity of CO towards the Pt catalysts [20, 23]. Therefore, the purity of H2 is 

critical for the operation of PEM fuel cells.  

 

 

Figure 1.3: Schematic diagram of a PEM fuel cell, CL = catalyst layer, DL = 

diffusion layer and BPP = bipolar plate (taken from [20]). 

 

To amplify the power generation from fuel cells, several units are arranged in 

series to form a fuel cell stack as illustrated in Figure 1.4, where three fuel cell 

units are integrated, sandwiched between bipolar plates. The bipolar plates act as 

gas separators between the adjacent cells and must be electrically conductive to 

assist the flow of current around the integrated circuit. Increasing the number of 

individual fuel cell units can allow the generation of several hundred volts of 

electricity. Several leading car manufacturers have developed PEM fuel cell 

technologies that are sufficiently advanced to be able to power motorised 

vehicles at acceptable speeds over a 300 mile range, meeting the criteria for 

commercial vehicles. The low operating temperatures offer a rapid response, 

which enables acceptable acceleration and braking to be met [24]. In addition, 

   H2                                                O2 

e
-
 

         Anode                                                                       Cathode 

                  -                                                                        + 



 37 

PEM fuel cells have been reported as 2 – 3 times more energy efficient than the 

currently employed petrol or diesel ICEs [20, 25]. 

 

 

 

 

Figure 1.4: Schematic diagram of the components of a single fuel cell and their 

simplified integration into a fuel cell stack (taken from [20]). 

 

1.5.2 Methods for Production of H2 

Unlike fossil fuels, H2 cannot be extracted from underground; it must be 

produced from another source, as a secondary fuel. The annual production of H2 

has been estimated at around 65 million tons by the International Energy 

Agency in 2007, of which ~ 96 % comes from fossil fuels, either from 

reforming of natural gas, refinery/chemical off-gases or by coal gasification [26]. 

If a transition towards H2 energy and fuel cells is to be made possible, large 

quantities of renewable H2 will need to be produced from an abundant source 

and at a lower cost than offered by current methods. This has been 
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internationally recognised by many governments, who currently have initiatives 

in place for the development of H2 technologies. Brief descriptions of the key 

emerging technologies for H2 production are given in this section. 

 

Reforming of natural gas with carbon sequestration – The most established 

method for H2 production is by reforming of natural gas; the existing methods 

for this are described in section 1.6. However, even if significant advances were 

to bring down the cost of methane reforming, there is still the issue of the carbon 

by-product. Carbon capture and sequestration (CCS) is a possible option, 

whereby the carbon dioxide product is liquefied and injected deep underground 

beneath imporous layers of rock or into the deep ocean where it would form 

CO2 „lakes‟. These technologies are currently at an experimental stage and have 

significant technological, economic and environmental issues which would need 

to be addressed before it could be implemented on a large scale. 

Biogas reforming – Reforming of biogas from renewable sources is a potential 

route to syngas production, without the need for carbon sequestration. Since 

biogas contains CH4 in conjunction with CO2 there is no need for an additional 

oxidant. Dry reforming of CH4 with CO2 using thermal catalysis is discussed in 

section 1.6.4. 

Biomass gasification/pyrolysis – This process is similar to the process of coal 

gasification, except that the organic matter comes from a renewable source, such 

as woody materials or waste organic products. Under conditions of high 

temperatures, catalysis and the presence of an oxidant (O2, air or steam), a 

combination of reactions can take place including pyrolysis, partial oxidation 

and steam reforming of hydrocarbons, as well as methanation and the water-gas 

shift reaction. Optimisation of reaction conditions can maximise the yield of 

syngas production. Biomass gasification requires temperatures of ~ 700 °C; 

however, higher temperatures are usually favoured in order to reduce the 

formation of tar [27]. 

Electrolysis of water – Electricity from renewable sources can be used to split 

H2O into H2 and O2. The electricity can be supplied from intermittent sources 

such as wind turbines, solar cells, hydroelectric or geothermal facilities; for each 

of these sources the electricity generation does not necessarily meet the demand 

at a given time. Since it is difficult to store excess electricity, the energy can be 
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used in electrolysis of H2O to produce H2, which behaves as an energy carrier 

that can be converted back to electricity when it is needed. This method has the 

advantage that it does not coproduce CO, which is incompatible with fuel cells. 

 

1.5.2 Hydrogen Infrastructure 

Hydrogen energy could be used in stationary, portable and mobile applications. 

Large stationary power plants (~ 250 kW) could produce the electricity supply 

for buildings; initially this is likely to provide supplementary energy to larger 

sites such as hospitals, office buildings and factories. If this market proved to be 

successful, H2 could be phased into use for residential areas from smaller plants 

(5 – 10 kW). Building regulations would need to be updated for the change of 

fuel, which could mean a costly modification of the existing infrastructure [24]. 

Portable applications such as laptop computers and mobile telephones require a 

lower power output (< 1 kW). This is possible with H2 fuel cells but the size of 

the H2 storage unit and fuel cell stack are likely to make these applications 

uncompetitive with the existing battery-powered technologies. The automotive 

market is considered to be the main application for H2 energy. This transition 

would require the replacement of current vehicles and infrastructure with those 

capable of using H2 as a fuel. 

The technical challenges of H2 storage and delivery to the consumer are a major 

barrier to the widespread use of hydrogen. Being the lightest chemical element, 

compressed H2 gas has a very low energy per unit volume of 0.5 kW h dm
-3

 but 

the highest energy output per unit weight of any substance at 33.3 kW h kg
-1

. 

Comparisons of the gravimetric and volumetric energy densities of the most 

common fuels are shown in Table 1.2. For automotive applications, storage of 

compressed H2 gas is not feasible in most cases, where available space is 

insufficient for large H2 tanks (buses and lorries being among the exceptions). 

Consequently, alternative methods for storing hydrogen in a liquid or solid form 

are being explored. Hydrogen can be stored as a cryogenic liquid in pressurised 

tanks by supercooling to < -253 °C at 1 bar. This increases the energy density to 

2.4 kW h dm
-3

 but this is still relatively low and expensive to implement, since 

sophisticated insulation is required for the tanks and energy must be consumed 

during the compression. Storing hydrogen as a solid ionic-covalent hydride of 

light elements such as lithium, boron, sodium, magnesium and aluminium can 
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increase the energy density further. However, solid storage methods must be 

able to rapidly absorb and desorb hydrogen at close to room temperature and 

pressure as well as being inexpensive to prepare and resistant to poisoning; 

conditions that are not met by current solid hydrogen storage methods [21]. The 

difficulties and cost of H2 storage make it likely that production sites would 

need to be widespread to reduce the need for transporting H2 over long distances. 

Compressed gas and cryogenic H2 could be delivered to the locations where it is 

needed or transported in pipes to fuelling stations or homes, in a similar way to 

natural gas.  

 

Fuel Specific energy 

(kW h kg
-1

) 

Energy density 

(kW h dm
-3

) 

Liquid H2 33.3 2.4 

H2 gas (200 bar) 

Liquid natural gas 

33.3 

13.9 

0.5 

5.6 

Natural gas (200 mbar) 13.9 2.3 

Petrol 12.8 9.5 

Diesel 12.6 10.6 

Coal 8.2 7.6 

LiBH4 6.2 4.0 

Methanol 5.5 4.4 

Wood 4.2 3.0 

Electricity (Li-ion battery) 0.6 1.7 

 

Table 1.2: Gravimetric and volumetric energy content of fuels, excluding the 

weight and volume of the container (taken from [21]). 

 

 

1.6 Industrial Approaches to Methane Reforming 

In the absence of a breakthrough technology it is likely that H2 will continue to 

be produced from fossil fuels for some time. This section describes the main 

industrial methods for reforming of methane. The method of reforming is often 
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determined by the required H2/CO ratio of the resulting syngas, depending on its 

end use and also on the scale of the required plant.  

 

1.6.1 Steam Methane Reforming (SMR) 

 

 

 

 

 

 

 

 

Figure 1.5: Schematic flow diagram of a conventional SMR process. HTS = 

high temperature shift, LTS = low temperature shift and PSA = pressure swing 

adsorption (taken from [28]). 

 

A conventional set-up for SMR is shown in Figure 1.5. Firstly, the natural gas is 

desulphurised to prevent catalyst poisoning. It is then mixed with excess steam 

and fed into a pre-reformer at 527 °C. Steam reforming is a highly endothermic 

process as shown by equation 1.1. It is carried out over Ni-based catalysts in the 

temperature range 697 – 827 °C at 3.5 MPa to produce syngas and CO2 [28]. A 

water-gas shift (1.2) is established to drive the equilibrium towards H2 and CO2 

using high temperatures and oxide catalysts such as NiO, CaO and SiO2 [16]. 

This is carried out over two stages; a high temperature shift that accomplishes 

most of the reaction and a low temperature shift over a more active catalyst, 

which minimises the remaining CO content in the feed gas. 

 

CH4 + H2O → CO + 3 H2  ΔH° = 241 kJ mol
-1

  (1.1) 

CO + H2O ↔ CO2 + H2   ΔH° = -41 kJ mol
-1

  (1.2) 

 

A pressure swing adsorption stage purifies the H2 product by using sorbents to 

selectively remove CO2 from the gas stream at high pressure (as well as smaller 

amounts of H2O, CH4 and CO). A swing to low pressure is accompanied by 

Natural 

gas feed 

Desulphurisation 

   Steam 

527 °C 

        Pre- 

     reformer 

Steam 

reformer 

827 °C  
H2 

Heat  

exchanger 

HTS (350-550 °C) 

    LTS (200-250 °C) 

Shift reactors 

Heat 

exchanger 
  PSA 



 42 

desorption of the CO2 from the sorbent material. Heat exchangers are used to 

recycle the excess energy by using it to heat water for the production of steam.  

Challenges associated with SMR include the deactivation and sintering of 

catalysts, the need for adjustment of the H2/CO syngas ratio and the disposal of 

unwanted by-products. Each of these factors contributes to the high capital costs 

of SMR.  

  

1.6.1.1 Carbon Deposition 

Carbon deposition is a major setback to SMR (and reforming of other 

hydrocarbon feedstocks). The formation of solid carbon ultimately forms a 

barrier on the surface of the catalyst that prevents reactant molecules from 

accessing the active sites, leading to deactivation. Carbon deposition can be 

attributed to two main reactions, direct methane decomposition and the 

disproportionation of carbon monoxide (1.3 and 1.4). The use of excess steam 

lowers the rate of carbon deposition but increases the H2/CO ratio of the syngas 

produced. Usually a H2-rich syngas is produced by SMR, where H2/CO = 3 

which is higher than the ideal starting mixture for the Fischer-Tropsch synthesis 

(H2/CO ≈ 2). The syngas ratio can be adjusted to a certain extent by modifying 

the CH4/steam ratio and by the addition of CO2 to the feed [29]. 

 

Methane decomposition:  CH4 → C + 2 H2  ΔH° = 75 kJ mol
-1

 (1.3) 

Boudouard reaction:   2 CO → C + CO2 ΔH° = -171 kJ mol
-1

 (1.4) 

 

The thermodynamic potential for carbon formation for different CH4/H2O and 

CH4/CO2 ratios is shown in Figure 1.6. The carbon limit curve is calculated 

using the atomic O/C and H/C ratios in the feed stream and the temperature and 

pressure of the reformer outlet at conditions of 900 °C and 5 bar. The H2/CO 

ratio corresponds to the equilibrated gas at the reformer outlet. Mixing ratios to 

the left side of the carbon limit curve have a thermodynamic potential for carbon 

formation whilst those on the right side of the curve do not. The shape of the 

curve indicates that flexible H2/CO ratios can be obtained by changing the 

mixing ratios of the feed gas, at the expense of carbon deposition. For example, 

a H2/CO ratio of 0.6 can be obtained but carbon deposition will almost certainly 

hinder the catalytic reaction under the range of conditions shown on the graph. 
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By working at conditions to the right side of the curve, carbon deposition can be 

reduced; however, this may increase the running costs due to higher steam and 

CO2 requirements in the feed gas. Consequently, development of catalysts that 

can kinetically inhibit carbon formation and other advanced methods of methane 

reforming are the focus of many research groups with the aim of establishing 

reaction conditions that enable reforming reactions to proceed at conditions to 

the left of the carbon limit curve but with reduced carbon deposition.  

 

 

 

 

Figure 1.6: Carbon limit curve showing the relationship between the atomic 

H/C and O/C ratios in the feed and the equilibrated H2/CO ratio at the reformer 

exit. Carbon deposition is thermodynamically favoured at conditions to the left 

of the curve (taken from [29]). 
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1.6.2 Partial Oxidation of Methane (POX) 

 

CH4 + ½ O2 → CO + 2 H2   ΔH° = -36 kJ mol
-1

  (1.5) 

 

Partial oxidation of methane (1.5) can be achieved with or without the presence 

of catalysts. In non-catalytic POX, methane is mixed with excess O2 and ignited. 

Temperatures of > 1127 °C and pressures of 50 – 70 atm are required to bring 

about large conversions of methane. Several types of catalysts have been 

investigated for POX including supported transition and noble metal oxides and 

various transition metal carbides, with the effect of lowering the operating 

temperatures to 727 – 927 °C. At these conditions some complete combustion of 

CH4 will occur, as well as steam reforming and CO2 reforming of methane [29].  

The main advantages of POX are that it is a slightly exothermic reaction and 

therefore it requires less external heating and it produces syngas with a H2/CO 

ratio of ~ 2 with very little CO2 content, which is suitable for the F-T synthesis 

without further adjustment [30]. However, the high running costs of this process 

have made it uncompetitive with SMR. The main setbacks are due to the costs 

of separating the O2 reactant from air and the need for a soot scrubber system 

downstream of the reformer, as well as the problems of high energy input, 

catalyst deactivation and sintering that also plague the SMR process. 

 

1.6.3 Autothermal Reforming of Methane 

 

CH4 + x H2O + (1 – x/2) O2 → CO2 + (x + 2) H2   (1.6) 

 

Autothermal reforming of methane combines steam methane reforming and 

partial oxidation of methane in a single reactor. This method for syngas 

production was first developed by Haldor Topsøe and has been used in industry 

since the late 1950s. The autothermal reactor contains an upper combustion zone 

and a lower catalyst bed as shown in Figure 1.7. Separate streams of natural gas 

with steam and O2 are mixed as they enter a turbulent diffusion flame, where the 

methane is oxidised by either H2O or O2. The overall exothermic reaction can be 

simplified as shown by equation 1.6. Gases exiting the combustion chamber are 

passed through a bed of Ni/MgAl2O4 catalysts where further equilibration of the 
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gas mixture occurs. The resulting syngas ratio can be modified by changes to the 

adiabatic heat balance at the reactor outlet, which is influenced by the 

composition of the feed gas. Soot precursors are destroyed in the catalyst bed, 

allowing the soot-free production of syngas [29, 31]. 

 

 

 

Figure 1.7: Schematic diagram of an autothermal reformer (taken from [29]). 

 

1.6.4 CO2 Reforming of Methane 

Dry reforming of methane with CO2 is an attractive process from an 

environmental perspective as it involves the destruction of two greenhouse gases 

(1.7) that can be renewably generated as biogas. Dry reforming may also be 

applicable to low-grade natural gas that contains a large amount of CO2, such as 

is often found at oil wells. The recovery of CO2 from flue gases for use as a 

reactant in dry reforming has been discussed by Kraus [15], who concluded that 

it is unfeasible due to the high energy input required for current methods of CO2 

recovery. 

 

CH4 + CO2 → 2 CO + 2 H2  ΔH° = 247 kJ mol
-1

  (1.7) 

 

Dry reforming of methane is strongly endothermic and therefore requires 

temperatures in excess of 640 °C and catalysis to bring about CH4 conversions 
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[32]. At temperatures in the range 560 – 700 °C carbon formation is 

thermodynamically favoured by both decomposition of methane and the 

Boudouard reaction (1.3 and 1.4 respectively). To reduce carbon formation, dry 

reforming of CH4 is usually carried out at temperatures > 750 °C, where carbon 

formation is less thermodynamically favourable [32]. The severity of carbon 

deposition is more pronounced in dry reforming of methane than for SMR or 

partial oxidation of methane due to the low O/C atomic ratio in the feed gas, 

which is made worse with higher CO2 content [15]. Increasing the operating 

pressure above atmospheric may be preferable in industry to minimise reactor 

dimensions and improve reaction rates; however, this also increases the rate of 

carbon deposition.  

There are several reviews in the literature that discuss the catalytic aspects of 

dry reforming of methane [15, 33-35]. In general, transition metals Fe, Co, Ni 

and Cu and noble metals Ru, Rh, Pd, Ir and Pt have shown the most promising 

catalytic activity (usually in the reduced form) [36]. Noble metals are generally 

more catalytically active towards dry reforming of methane; however, the use of 

noble metals is limited by their relatively high cost. Subsequently most catalytic 

investigations concentrate on the use of supported bimetallic catalysts or the use 

of metal promoters [32]. The metals are typically incorporated into an oxide 

support such as SiO2, Al2O3, MgO,, CaO, CeO2, ZrO2 or La2O3 [15]. The support 

should maximise the surface area, provide a high dispersion of the active metal 

and be stable at high temperatures. Whilst most catalyst supports do not possess 

catalytic activity, they may have an interactive role in the chemistry. The 

acidity/basicity of the support is an important factor in influencing the carbon 

deposition. Carbon deposition is favoured on acidic supports such as SiO2 whilst 

Lewis base supports such as Al2O3 have been reported to reduce carbon 

deposition [37]. Lewis bases have a high affinity for the chemisorption of CO2 

and it has been suggested that adsorbed CO2 reacts with deposited carbon to 

form CO, thereby reducing coke formation [38]. However, the influence of 

acidic and basic supports on dry reforming of CH4 has not been fully ascertained. 

The rate of catalysis can be enhanced by the use of smaller metal crystallites in 

order to maximise the metal surface area. Therefore, the use of nano-sized metal 

particles on basic supports is considered favourable for dry reforming of 

methane. 
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There are two advanced methods for CO2 reforming of methane that have 

minimised the problem of carbon deposition, namely the Calcor process and the 

SPARG (sulphur-passivated reforming) process. 

 

   1.6.4.1 The Calcor Process 

The Calcor process is used for the production of high purity CO at chemical 

manufacturing plants. The process is carried out on-site due to the high toxicity 

and associated risks of transporting carbon monoxide. In this case, dry 

reforming of methane has been optimised to reduce the H2 content of the 

product gas. The reaction is carried out in excess CO2 by passing a 

desulphurised feed through reformer tubes filled with unspecified catalysts of 

different activities and shapes at low pressure and high temperature [39].  

 

   1.6.4.2 The SPARG Process 

The SPARG process works on the principle of „promotion by poisoning‟ [40]. 

The active sites on the catalyst that promote carbon nucleation can be „blocked‟ 

by the addition of H2S to the feed gas. The chemisorption of sulphur to the 

catalytic sites is thermodynamically favoured over carbon growth. However, 

sufficient activity remains in the catalyst to obtain high conversions of methane. 

Variation of the CO2 and steam concentrations in the feed gas allow production 

of syngas with a low H2/CO ratio (< 1.8), under conditions to the left of the 

carbon limit curve (Fig. 1.6) which is usually prevented by carbon formation 

[29]. 

 

1.6.5 Thermocatalytic Decomposition of Methane 

 

CH4 → C (s) + 2 H2   ΔH° = 76 kJ mol
-1

  (1.8) 

 

An alternative technique is the direct decomposition of methane to produce H2 

and solid carbon as shown by equation 1.8. The reaction does not directly 

produce any COx by-products; however CO2 emissions are associated with the 

energy input required for decomposition. The reaction can be performed in a 

fluidised bed reactor with periodic removal of the deposited carbon [41]. The 

carbon can be produced in various forms, such as amorphous, filamentous, 
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graphitic or as carbon nanotubes, depending on the operating conditions. Solid 

carbon is easier to sequester than gaseous products and has many uses in 

industry for which it can be marketed, for example, as a pigment, a reducing 

agent in the metallurgic industries, a stiffening agent for car tyre production or 

as a reinforcing agent in the construction industry [42].  

Methane decomposition can be achieved entirely thermally or with catalysis. 

Non-catalytic methane pyrolysis can produce a reasonable yield at 

temperatures > 1200 °C. The use of metal or carbonaceous catalysts can lower 

the required operating temperature. Catalysts such as supported nickel, iron or 

copper are effective for CH4 conversion. However, these catalysts are prone to 

sintering and deactivation at high temperatures and the rates of methane 

conversion are thermodynamically limited at lower temperatures. Carbon 

catalysts such as activated carbon or carbon black can act as „seed carbons‟ 

promoting further carbon growth. Seed carbons are also still prone to 

deactivation, as the deposited carbon has a lower surface area and activity 

compared to the original catalyst [41]. 

 

 

1.7 Plasma-Assisted Methane Reforming Technologies 

The previously described challenges associated with conventional methods of 

methane reforming have led to a major interest in alternative reforming 

techniques in pursuit of milder reaction conditions, more durable catalysts and 

reduced energy costs. Plasma reformers have shown potential for H2 production 

from methane either at fuelling stations or on-board vehicles, where the H2 

could be used directly as a feedstock for fuel cells. This would eliminate the 

need for H2 storage and transport, as the existing infrastructure would be used to 

supply natural gas to fuelling stations. The feasibility of this concept is 

discussed by Petitpas et al. [43], together with a review of the existing 

technologies. In favour of plasma reformers is the low device weight, 

compactness, rapid response and low cost.  

Bromberg et al. at the Massachusetts Institute of Technology have developed a 

series of thermal and non-thermal plasma reformers known as „plasmatrons‟ 

[44-46]. The hydrocarbon feed is partially oxidised in air or water-air mixtures 
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in a plasma discharge to produce a H2-rich gas with low CO content (1.5 – 3 

vol. % CO with ~ 40 % H2 in the product gas) [44]. They have been used to 

reform natural gas, biofuels and heavy oil fractions. The main drawback of these 

reformers is their reliance on electrical power to achieve 50 – 300 W required to 

sustain the plasma. The efficiency could be improved by heat recycling, better 

thermal insulation and improved reactor design. Catalysts for NOx removal and 

particulate traps would also need to be incorporated into the plasmatron design. 

However, the technology is in the early stages of development, further 

technological advances and investigations would need to be conducted before 

the technology could be suitably advanced for marketing. Another plasma 

process for H2 production is the Kværner process; originally developed in 

Norway in the late 1980s and has been used industrially since 1992 for the 

decomposition of CH4 into H2 and a high-grade carbon black. The technology 

uses an arc plasma at temperatures of ~ 1600 °C [47]. The research in this thesis 

focuses on the use of a plasma technology for dry reforming methane, using 

model mixtures of CH4 and CO2 representative of the main components of 

biogas without its impurities. In particular, the interactions between plasma and 

catalysts are examined.  
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2. Plasma-Catalysis and Analytical Techniques 

 

 

2.1 Introduction to Plasma 

Plasma is a partially or wholly ionised gas. When energy is applied to a 

substance, the molecules become more energetic and transform through four 

distinct states of matter: solid, liquid, gas and finally plasma. Generally, this 

increased energetic state is associated with heating, however, plasma can also be 

generated from a gas by the application of an electric field, energetic beam or by 

adiabatic gas compression [1]. Under these conditions of increased energy, the 

gas molecules can become dissociated or ionised. This results in a „soup‟ of 

freely moving charged particles and neutral gas species, sufficient to make the 

plasma electrically conductive; a property that distinguishes plasma from neutral 

gas which is an electrical insulator. Approximately equal concentrations of 

positive ions and electrons make the plasma quasi-neutral. 

Plasma is naturally abundant throughout the universe and comprises ~ 99 % of 

the observable cosmos, including the solar corona, solar wind and nebula [2, 3]. 

Plasma is also present in the upper region of the Earth‟s atmosphere (at 

altitudes > 100 km) [3] where interactions with cosmic radiation lead to the 

dissociation of atmospheric gas molecules. This produces a region of ions and 

freely moving electrons, known as the ionosphere. Plasmas can be visible on 

Earth as naturally occurring phenomena including lightning, the Aurora Borealis 

and the Aurora Australis. 

 

 

2.2 Applications of Plasma 

Since the first investigations into electrical arcs in the early 19
th

 century, several 

laboratory techniques have been developed for the generation of man-made 

plasma discharges. Pioneering studies by Siemens in the 1850s led to the first 

important industrial application of plasma: the synthesis of ozone (O3) from an 

O2 silent discharge for water purification [4]. However, it was not until the 

1920s that Langmuir named this phenomenon as a „plasma‟ [5]. In recent years, 

plasma technologies have progressed to include a wide range of applications 
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across many industries. Some important applications at various stages of 

development are listed below: 

 

 Surface modification – etching of semiconductors, „plasma hardening‟ of 

metallic components for cars and aircrafts [2]. 

 Thin film deposition – anti-reflective coatings for lenses, hydrophilic and 

hydrophobic coatings for textiles [2], deposition of diamond and cubic boron 

nitride films for cutting tools [6].  

 Pollutant remediation – destruction of volatile organic compounds (VOCs) 

from diesel exhausts and flue gases [4], destruction of odorous molecules [7]. 

 Chemical synthesis – O3 generation [7], synthesis of acetylene (C2H2) [4]. 

 Lighting – excimer based UV and fluorescent lamps [4]. 

 Biomedical techniques – tissue engineering, blood coagulation, 

deactivation of micro-organisms, sterilisation of instruments and surfaces [3]. 

 Plasma display panels – large area flat-screen televisions [7]. 

 Lasers – CO2 laser discharges for cutting and welding [7]. 

 

Although several of these plasma technologies are relatively advanced, the 

empirical focus has been on the development of deliverables, whilst a basic 

understanding of the plasma chemistry is still lacking in many cases [2].  

 

 

2.3 Types of Plasma 

There are two main types of plasma: high-temperature plasma (such as 

thermonuclear fusion plasmas or thermal arc torches) and low-temperature 

plasma. All plasmas consist of multiple components including electrons, excited 

molecules and atoms, ions, radicals, neutral gas species and photons. The extent 

to which these constituents have reached thermal equilibrium is used to further 

classify the plasma as thermal or non-thermal (which are also known as 

equilibrium and non-equilibrium plasmas respectively). These classifications are 

shown in Table 2.0. 
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Low-Temperature Plasma High Temperature 

Plasma Non-Thermal Plasma Thermal Plasma 

T0 ≈ Ti ≈ Tr < Tv << Te 

≤ 10
5
 K 

T0 ≈ Ti ≈ Tr ≈ Tv ≈ Te  

≤ 2 × 10
4
 K 

T0 ≈ Ti ≈ Tr ≈ Tv ≈ Te  

≥ 10
7
 K 

 

Table 2.0: Subdivision of plasmas, where T0 = gas temperature, Ti = ion 

temperature, Tr = rotational temperature, Tv = vibrational temperature and Te = 

electron temperature (modified from [8]).  

 

In thermal plasma, sufficient applied energy and time for equilibration has 

resulted in a plasma discharge that can be defined by a single temperature. In 

contrast, non-thermal plasmas are characterised by multiple temperatures 

relating to different plasma species. Highly energetic electrons (10
3
 – 10

5
 K) can 

exist together with species of substantially lower temperatures such as excited 

species, ions and neutral molecules. Heavy gas molecules usually exhibit the 

lowest temperatures in these systems and in many cases the bulk gas remains 

close to room temperature [3].  

 

 

2.4 Generation of Non-Thermal Plasma by Electric Fields  

The most widely used method for the formation of non-thermal plasma is by the 

application of an external electric field between two electrodes surrounded by a 

volume of gas. The plasma can be operated either at low pressures (1 – 10
3
 Pa) 

or at atmospheric pressure and above.  

The breakdown voltage (Vb) defines the minimum voltage required to 

breakdown a gas to form a plasma discharge. Vb is dependent on the gas 

pressure (p) and the distance between the electrodes (d). This relationship is 

described by Paschen‟s Law (2.0), where a and b are constants that are 

dependent on the gas type [9]. 

 

( )

ln( )
b

a pd
V

pd b



  (2.0) 
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An applied voltage causes free electrons, that exist to some extent in a gas 

volume as a result of an interaction with cosmic radiation, to become accelerated. 

At the point where the breakdown voltage is reached, the current flow will 

increase sharply due to an intensive avalanche of electrons in the discharge gap 

between the electrodes. These high energy electrons will collide with gas 

molecules leading to the formation of new „active‟ plasma species including 

excited molecules and atoms and their relevant degrees of freedom, radicals, 

ions and new stable gas molecules. These collision processes are shown in Table 

2.1.  

 

Electron/Molecular Reactions 

Excitation 

Dissociation 

Attachment 

Dissociative attachment 

Ionisation 

Dissociative ionisation 

Recombination 

Detachment 

e
-
 + A2 → A2

*
 + e

- 

e
-
 + A2 → 2 A + e

- 

e
-
 + A2 → A2

-
 

e
-
 + A2 → A

-
 + A 

e
-
 + A2 → A2

+
 + 2 e

- 

e
-
 + A2 → A

+
 + A + e

- 

e
-
 + A2

+
 → A2 

e
-
 + A2

-
 → A2 + 2 e

- 

Atomic/Molecular Reactions 

Penning dissociation 

Penning ionisation 

Charge transfer 

Ion recombination 

Neutral recombination 

M + A2 → 2 A + M 

M
*
 + A2 → A2

+
 + M + e

- 

A
±

 + B → B
±
 + A 

A
-
 + B

+
 → AB 

A + B + M → AB + M 

Decomposition 

Electronic 

Atomic 

e
-
 + AB → A + B + e

- 

A
*
 + B2 → AB + B 

Synthesis 

Electronic 

Atomic 

e
-
 + A → A

*
 + e

-
, A

*
 + B → AB 

A + B → AB 

Table 2.1: The main plasma processes. A and B represent atoms and M stands 

for a temporary collision partner (taken from [4]). 
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During collisions between electrons and heavy gas molecules only a small 

portion of the energy is transferred, due to the relative sizes of the species 

involved. In most non-thermal plasma systems for gas processing, the plasma is 

only weakly ionised. The degree of ionisation in the plasma can be defined as 

the ratio of the density of charged particles to the density of neutral species, this 

is generally in the range of 10
-7

 – 10
-14

 [3].  

In addition to the plasma species shown in Table 2.1, photons are also generated 

in the plasma volume. In an electronically excited gas molecule or atom, an 

electron exists in a high energy orbital further from the nucleus, whilst an 

electron „hole‟ exists in the lower energy orbital that it was originally excited 

from. This excited state is metastable and can spontaneously return to its more 

stable ground state. When an electron is de-excited back to its lower energy 

orbital, the excess energy is released in the form of a photon. This initiates a 

chain of reactive photon absorptions and emissions as molecules are excited and 

de-excited within the plasma. Consequently, the plasma can exhibit a visible 

glow if the energies of the emitted photons are in the visible region of the 

electromagnetic spectrum. 

In plasma processing of gases, each of the plasma species may have different 

roles in the plasma chemistry. Electrons, being the first to receive energy from 

the electric field, distribute this energy through collisions, generating new 

reactive species. Vibrationally excited molecular states can transfer a significant 

proportion of energy into gas heating, which will accelerate chemical reactions 

in the plasma. Ions and radicals are able to make a significant contribution in 

plasma chemical synthesis due to their ability to react in plasma at lower 

temperatures than would be required by thermal reaction methods. Control over 

the complex chemical processes in a plasma by selection of appropriate gases, 

plasma type and operating conditions could allow the selective synthesis of  the 

desired end products [3]. 

Several different types of non-thermal plasma can be formed depending on the 

type of applied electric field used to drive the plasma formation. This may be a 

continuous or pulsed direct current (DC) or an alternating current (AC) which 

may utilise radio frequencies (kHz – MHz) or microwave frequencies (GHz).  
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2.5 Continuous and Pulsed Direct Current Discharges 

Several types of direct current (DC) discharge can be obtained depending on the 

voltage-current characteristics as depicted in Figure 2.0. The initial breakdown 

of a gas at low current is known as a Townsend discharge. The transition from 

Townsend discharge to corona, through to subnormal glow discharge and 

normal glow discharge is accompanied by an increase in current and 

simultaneous decrease in the applied voltage. A normal glow discharge can be 

characterised by a constant current density at the cathode surface, which is only 

partially covered by the discharge. As the current is increased with increasing 

voltage, an abnormal glow discharge develops which completely covers the 

cathode surface. At even higher currents, an irreversible glow-to-arc transition 

can occur. The arc is sustainable at low voltage and high current due to heating 

of the cathode to the point of thermionic emission (heat-induced current flow) 

[8].  

 

 

 

Figure 2.0: Voltage-current properties of different DC plasma discharges (taken 

from [1]). 

 

The most widely used DC discharges in plasma processing of gases are the 

corona discharge and the gliding arc discharge, typical reactor configurations for 

these are described in the following sections. 
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2.5.1 Corona Discharges 

Corona can occur at atmospheric pressure in regions of non-uniform electric 

fields. They appear when the field at one or both electrodes is stronger than in 

the surrounding gas. This is prevalent near sharp points, edges or thin wires. 

Coronas have frequently been observed at high voltage transmission lines, 

lightning rods and ships‟ masts during electrical storms, where the discharge 

takes the shape of a crown (from which corona takes its name) [10]. A corona 

discharge can be formed by applying either continuous or pulsed DC voltage 

between two electrodes. The electrodes are most commonly arranged as a 

grounded cylindrical outer electrode (e.g. a stainless steel tube) with a high 

voltage wire or rod inner electrode (Figure 2.1) or as a point-to-plate (Figure 2.2) 

or point-to-point electrode configuration. The area between the electrodes where 

the corona is formed is occupied by a continuous flow of gas.  

 

 

 

 

Figure 2.1: Schematic diagram of a corona discharge reactor in a coaxial wire-

cylinder configuration. 

 

 

 

 

Figure 2.2: Schematic diagram of a corona discharge reactor in a point-to-plate 

configuration.  
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Corona discharges can take on several forms depending on the relative polarity 

of the electrodes. For a point-to-plate electrode configuration, the different types 

of corona discharge are shown in Figure 2.3, where the applied voltage increases 

from left to right. Positive corona is formed at a pointed anode, whilst negative 

corona is formed at a pointed cathode. In a positive corona, the initial 

breakdown of the gas produces a burst pulse, which is limited to the area 

immediately surrounding the electrode. The discharge is space-charge limited 

and therefore requires an increase in voltage to create additional charged species, 

leading to the formation of streamers. Streamers extend into the inter-electrode 

gap and several transient streamers can be observed at a given time. In this mode, 

the corona occupies a relatively large active volume and has a low temperature 

of ~ 27 °C [10]. 

 

 

 

 

Figure 2.3: Schematic diagrams showing different forms of corona discharges 

in a point-to-plate electrode configuration (modified from [10]). 
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In both positive and negative corona, high current flow will result in complete 

breakdown and the formation of a single spark discharge that bridges the 

discharge gap. A spark discharge is confined to a narrow channel and produces 

an unsteady current. The spark is usually noisy and causes local heating in the 

channel in which it is formed and is therefore not a desirable outcome. The use 

of short DC pulses, typically of nanosecond duration can overcome the problem 

of unwanted spark formation. By varying between plasma pulses and plasma 

afterglow, the current flow can be controlled. This can improve the energy 

efficiency of the process and allow operation at higher powers [8].  

 

2.5.2 Gliding Arc Discharges 

 

 

 

Figure 2.4: Schematic diagram of a gliding arc discharge reactor. 

 

An atmospheric pressure gliding arc discharge can be formed between two flat 

knife-shaped electrodes with a gas flowing between them, as shown in Figure 

2.4. The discharge is initially formed at the point where the discharge gap is 

narrowest and proceeds to „glide‟ up the electrodes, pushed by the flow of gas. 

The arc grows in volume as it proceeds up the electrodes and then extinguishes 

when it reaches the top, where the electrodes diverge. The arc is immediately 

reignited at the shortest gap and the cycle continues. Gliding arcs may be 

thermal or non-thermal, depending on the applied power and gas flow rate. It is 

also possible to operate in the transitional regime, whereby the discharge has 

thermal characteristics in the lower part of the gliding-arc and evolves into a 

Gas inlet 

Gas outlet 

Electrode 

+ 

Electrode  

– 

 

 

Thermal 

Non-thermal  



 61 

non-thermal discharge as it proceeds up the electrodes [3]. Gliding arc 

discharges are suitable for applications that require relatively large gas flows 

(several L min
-1

) and can be either DC or AC driven. 

 

 

2.6 Radio Frequency Discharges 

Radio frequency (RF) electromagnetic fields can be used to generate weakly 

ionised plasma at low pressures, typically in the range 1 – 10
3
 Pa [1]. At higher 

pressures, the properties of the RF discharge will change as the collision 

frequency increases, leading to a discharge approaching a thermal regime when 

close to atmospheric pressure [4]. RF discharges usually operate at frequencies 

in the range 1 – 100 MHz corresponding to wavelengths in the range 300 – 3 m 

[1]. A frequency of 13.56 MHz (λ = 22 m) is particularly common for industrial 

applications. The large wavelength relative to the size of the discharge chamber 

allows relatively homogeneous plasmas to be formed by this method [4]. In 

order to maximise the energy efficiency of the system, the plasma reactor is 

usually connected to an RF generator with an impedance matching network. 

This matches the impedance of the generator to that of the plasma discharge and 

minimises reflected RF power [1, 3]. RF discharges are particularly 

advantageous for applications that require the electrodes to be outside of the 

discharge region, thereby preventing contamination with metal vapours given 

off at the electrodes [4]. The two main types of RF discharge are capacitively 

coupled plasmas (CCPs) and inductively coupled plasma (ICPs). Typical reactor 

designs for each of these configurations are shown in Figure 2.5.  

Capacitively coupled plasmas can be formed by applying an RF voltage between 

two planar electrodes, which are usually spaced a few centimetres apart [1]. The 

electrodes can be located either inside or outside the discharge chamber (Figure 

2.5 a and b respectively). When an RF voltage is applied across the discharge 

gap, a strong electric field is established resulting in the ignition of a plasma 

discharge. The electrons respond to the electric field by rapidly oscillating back 

and forth within a cloud of positively charged ions. Due to the relatively large 

size of the ions, they respond only to time-averaged electric fields [11]. 
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Inductively coupled plasmas can be formed using an inductive solenoid coil that 

is wrapped around the discharge chamber or a planar coil that is situated 

adjacent to it (Figure 2.5 c and d). When an electric current passes through the 

induction coil, a strong magnetic field is established in the discharge gap which 

induces a low electric field (in contrast to CCP, which primarily produces an 

electric field). ICPs can achieve high electron densities and electrical 

conductivities and are less suited for creating non-thermal plasma at 

atmospheric pressure than the previously described CCP [3]. 

 

 

Figure 2.5: Electrode configurations for RF discharges a) CCP with the 

electrodes inside the gas chamber, b) CCP with the electrodes outside the gas 

chamber, c) ICP with the discharge located inside an inductive coil and d) ICP 

with the discharge located adjacent to an inductive coil (taken from [3]). 

 

 

2.7 Atmospheric Pressure Plasma Jet 

The atmospheric pressure plasma jet (APPJ) or atmospheric pressure glow 

discharge is a well-developed form of AC discharge that can sustain a non-

thermal regime at atmospheric pressure. It requires an inert gas such as helium 

or argon. Various additive gases can be used in the discharge; however, the 

discharge can become unstable if the additive concentrations are too high, 

possibly due to the increase in breakdown voltage associated with non-inert 

gases. A coaxial APPJ set-up is shown in Figure 2.6. A high voltage inner 

electrode is surrounded by an outer electrode in the shape of a nozzle. The 

a) b) 

c) d) 
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plasma is directed through the nozzle to form a plasma „jet‟. Planar 

configurations are also possible, usually with discharge gaps of 1 – 2 mm [3]. 

Plasma jets have widespread use in the production of microelectronic devices 

and in surface treatment. More recently, the applications of this discharge for 

pre-treatment of catalysts has been investigated (this work is reviewed in 

Chapter 5 of this thesis). 

 

 

 

 

Figure 2.6: Schematic diagram of an atmospheric pressure plasma jet (taken 

from [12]). 

 

 

2.8 Dielectric Barrier Discharges 

The dielectric barrier discharge (DBD) or silent discharge (as it was originally 

known, due to a lack of noisy spark formation) is a strongly non-thermal plasma 

that can be operated at atmospheric pressure. It is driven by a sinusoidal AC 

voltage in the frequency range from 50 Hz to 500 kHz [7]. DBDs are able to 

form stable discharges in a range of different gases at relatively high discharge 

powers, making them particularly suitable for many industrial applications. 

The DBD reactor consists of two electrodes with one or more dielectric barriers 

positioned in the discharge gap (in the path of current flow). Materials with high 

relative permittivity such as quartz, glass and ceramics are suitable for use as 

dielectric barriers. Several DBD configurations are possible including planar, 

cylindrical and surface discharges, as illustrated in Figure 2.7. The spacing in 

the discharge gap can vary from 0.1 mm to several centimetres. The DBD is a 

non-uniform plasma discharge, it consists of many tiny breakdown channels 

known as microdischarges or filaments that cover the entire surface of the 
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dielectric material and extend across the discharge gap. The dielectric barrier 

limits the flow of current causing the microdischarges to become extinguished, 

leaving significant charge deposition on the dielectric surfaces. As the polarity 

of the electrodes is rapidly changing, the microdischarges are reformed at the 

point where the breakdown voltage is reached in the next half cycle of the AC 

voltage sine wave. This results in the continuous formation of nanosecond 

microdischarges at a frequency which is twice that of the applied frequency [7]. 

The microdischarges appear as „spikes‟ on the current waveform. In appearance, 

the microdischarges are randomly distributed over the surface of the dielectric. 

In reality, the position of the microdischarge formation is dependent on the 

residual charge distribution on the dielectric surface [13, 14]. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic diagrams of planar, coaxial and surface DBD 

configurations (taken from [7]). 

 

The terms „relative permittivity‟ and „dielectric constant‟ are synonymous, 

meaning the ability of a material to store electrical charge relative to a vacuum. 

Where DBD plasmas are concerned, exclusive use of the term „dielectric 

constant‟ is used. 
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2.8.1 The Packed-Bed Reactor 

A special modification to the DBD reactor exists in the form of the packed-bed 

DBD reactor (Figure 2.8). The gap between two parallel electrodes is packed 

with dielectric pellets, such as barium titanate beads (BaTiO3). The dielectric 

pellets have an excellent ability to concentrate electrostatic lines of flux leading 

to enhanced electric fields at the contact points between the beads. As there are 

many contact points in close proximity, the average electric field strength can be 

enhanced and in turn electron energies increased, this is known as the packed-

bed effect. The electric field strength can be enhanced by a factor of 10 to 250 

depending on the dielectric constant, curvature and contact angle of the packing 

material [3]. Higher electric field strengths give rise to higher electron energies. 

As with conventional DBD reactors, the microdischarges are driven by an AC 

voltage. In the packed-bed configuration, relatively low applied voltages (< 30 

kV) can ignite a discharge over a large electrode separation (~ 5 cm) [15].  

 

 

 

Figure 2.8: Image of plasma generation in a packed-bed DBD reactor, showing 

microdischarges at the contact points between BaTiO3 beads. 

 

The use of both coaxial and packed-bed DBD reactors have been employed for 

experiments in this thesis due to the ability to form stable discharges at 

atmospheric pressure as well as the ease of combining DBD plasmas with 

catalysts. 
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2.9 Microwave Discharges 

Microwave discharges are commonly generated using a frequency of 2.45 GHz, 

corresponding to a wavelength of 12.24 cm. At microwave frequencies (0.3 – 10 

GHz), only the electrons are light enough to oscillate with the electric field, 

resulting in a discharge which is far from thermodynamic equilibrium [4]. As 

with RF discharges, microwave discharges can be operated at low pressures (10
3
 

– 10
4
 Pa) or atmospheric pressure, where the properties can approach that of a 

thermal plasma. A typical experimental set-up for a microwave discharge 

reactor is shown in Figure 2.9. It consists of a waveguide that directs the 

microwaves towards the plasma load with optimised energy transfer and 

minimal reflected power. A continuous flow of gas occupies the region where 

the plasma is formed, which can be contained inside a quartz tube or other 

discharge chamber. The microwave power supply is connected to a circulator 

which protects the power supply from the reflected microwave energy [1]. 

 

 

 

Figure 2.9: Schematic diagram of a microwave plasma reactor (taken from 

[15]). 

 

 

2.10 Plasma-Catalysis 

Several different types of plasma have been investigated for dry reforming of 

CH4 over the last 15 years, most notably, DBDs [16-22], atmospheric pressure 

plasma jets [23-25], gliding arc discharges [26, 27], coronas [28-30] and a 
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microwave discharge [31]. Whilst the use of a plasma discharge alone has 

shown that syngas can be generated at low temperature and atmospheric 

pressure, the selectivities towards the desired products are typically low. In 

addition to syngas, significant amounts of higher hydrocarbons (C2 – C4), 

oxygenates, liquid hydrocarbons and polymers can be formed [18, 32]. The use 

of plasma in combination with heterogeneous catalysis can provide an attractive 

solution, as it combines the low temperature activity, fast response and 

compactness of the plasma reactors with the high selectivity of catalytic 

reactions. 

The two main applications for plasma-catalysis are for destruction of pollutant 

molecules and hydrocarbon reforming for production of syngas. Generally, 

plasma-catalytic reactors have been shown to be effective for clean-up of 

nitrogen oxides (NOx), chlorofluorocarbons (CFCs) and other volatile organic 

compounds (VOCs). Typically, the pollutants are in low concentrations (< 1000 

ppm) in waste gas streams. The choice of catalyst and reactor configuration can 

lead to selective removal of the unwanted species, whilst lowering the operating 

temperature and giving an overall increased energy efficiency [33-37]. Several 

challenges arise for plasma-catalytic hydrocarbon reforming, where bulk gas 

conversion is required in order to obtain significant yields of H2. Hydrocarbon 

decomposition via electron impact processes requires highly energetic electrons, 

particularly in the case of methane where C-H bond strength is highest. The 

efficiency of the reactor configuration is therefore of increasing importance in 

this application, so as not to waste energy through ineffective collisions with 

electrons of insufficient energy. The majority of electron impact processes 

should ideally result in ionisation and dissociation of gas molecules. 

High reactant conversions can be obtained for dry reforming of methane with 

the use of a carrier gas to dilute CH4 and CO2 [21, 38]. Inert carrier gases cannot 

be considered inert in the plasma state due to the presence of high densities of 

electrons and excited gas molecules. Gases such as helium and argon have low 

breakdown voltages in comparison with CH4 and CO2, which can have a 

significant effect on the reaction chemistry due to increased ionisation in the 

plasma discharge. However, inert gases are expensive and would require 

separating from the reaction products. For these reasons, dry reforming of 

methane in plasma with the use of a diluent gas is not considered industrially 
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relevant. This thesis focuses on the undiluted dry reforming of methane using 

plasma-catalysis. 

 

2.10.1 Plasma-Catalyst Configurations 

 

 

 

Figure 2.10: Schematic diagram of different plasma-catalyst configurations. 

Configuration (a) is a plasma-only system, (b) is a single-stage arrangement, (c) 

is a two-stage arrangement with plasma pre-processing and (d) is a two-stage 

process with plasma post-processing (modified from [36]).  

 

Non-thermal plasma can be combined with catalysts in either single-stage or 

two-stage configurations, as illustrated in Figure 2.10. In a single-stage system, 

the catalyst is placed directly into the plasma discharge; this allows direct 

interaction between the plasma and catalyst. Reactions in this configuration will 

involve short-lived active species such as excited atoms and molecules, radicals, 

electrons and photons [36]. In a two-stage plasma-catalyst arrangement, the 

catalyst is positioned either downstream or upstream of the plasma discharge. 

The active species in these configurations are end products and/or long-lived 

intermediates resulting from the plasma or catalytic treatments in plasma pre-

d) 

a) 

 

 

 

 

b) 

 

 

 

 

c) 
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processing and post-processing respectively. The typical lifetimes of 

vibrationally excited species has been reported as 1 – 100 ns at atmospheric 

pressure, this is extremely short and therefore vibrational species would not be 

involved in reaction mechanisms involving a two-stage plasma-catalysis 

configuration [39]. For the purpose of the investigations in this thesis, plasma-

catalysis refers to the single-stage process, where the catalysts are packed 

directly into the discharge gap of a coaxial DBD reactor. 

 

2.10.2 Plasma-Catalyst Interactions 

The interactions between plasma and catalyst become complex when the 

catalyst is placed directly in the plasma discharge. Both the chemical and 

physical properties of the plasma and catalyst can be modified by the presence 

of each other. A review by Chen et al. [33] considers each of these effects in 

detail. The influence of the catalyst on the plasma has been distinguished from 

the influence of the plasma on the catalyst. Figure 2.11 shows these effects, 

together with the potential enhancements to the reaction performance for VOC 

abatement. Similar enhancements are possible for plasma-catalytic dry 

reforming of CH4. 

 

 

Figure 2.11: Diagram showing possible interactions in single-stage plasma-

catalysis (SPC) with potential benefits for the reaction performance (taken from 

[33]). 
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Introducing catalyst pellets to a plasma discharge can have a similar effect to 

dielectric pellets in a packed-bed DBD reactor. If the dielectric properties and 

morphology of the selected catalyst are suitable, enhancement of the average 

electric field strength can occur, resulting in an enhanced efficiency of the 

chemical reactions taking place in the discharge. Catalyst surfaces can directly 

change the physical characteristics of the plasma discharge. Different discharge 

modes can be generated such as filamentary microdischarges and homogeneous 

surface discharges. This is discussed in detail in Chapter 3 of this thesis, where 

changes to the discharge modes are accompanied by changes to the dry 

reforming of CH4 reaction performance. In addition, the plasma region can be 

extended if the discharge is able to propagate along a catalyst surface, this could 

lead to greater generation of active species in the plasma volume. 

Surface adsorption within a plasma volume can have a significant contribution 

to improved reaction performance. When reactant gas molecules are adsorbed 

onto the catalyst surface, the retention time and concentration of those species in 

the plasma discharge will be enhanced. This could lead to an increased 

probability of reactive collisions with active species in the plasma volume. 

Appropriate selection of catalysts could therefore result in improved selectivities 

towards desired reaction products. 

The plasma may facilitate catalytic surface reactions by enriching the gas stream 

with radicals and excited species. This is in contrast to thermal catalysis where 

gas molecules are mostly in the ground state when they are adsorbed onto a 

catalyst surface [39]. Non-thermal plasma produces ions, radicals and 

electronically excited species with internal energies that are often higher than 

the activation energies for thermal catalysis; these species can enhance plasma 

volume reactions. This can be attributed to the high threshold energies required 

to generate these species through electron impact processes. For ions and 

radicals, threshold energies of 5 – 20 eV are typically required and for 

electronically excited species, threshold energies are in the range of 1 – 10 eV. 

Vibrationally excited species are produced with lower threshold energies of 0.1 

– 1 eV, hence the internal energies are too low to facilitate plasma volume 

reactions. However, activation energies for reactions involving vibrational 

species can be lowered when adsorbed to a catalyst surface. Consequently, the 

vibrational state can be a significant contributor to the acceleration of catalysis 
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in a plasma system. This is not the case for relatively low energy rotationally 

excited species (0.01 – 0.1 eV), whose involvement in plasma-catalytic 

mechanisms can be disregarded. In addition, the energy required for surface 

adsorption of radical species may be lower than for adsorption of ground state 

gas molecules. This effect can also lead to enhancements in plasma-catalysis, in 

comparison with thermal catalysis where dissociative adsorption is often the 

rate-limiting step [39]. 

Exposure of a catalyst to a plasma discharge has been shown in many cases to 

modify the catalyst surface, this can be through reduction of the active metal 

and/or enhancements in metal dispersion. Studies in this area are reviewed in 

Chapter 5 of this thesis.  

The integration of a catalyst in the plasma discharge results in a voltage 

potential across the catalyst bed. The voltage and resulting charges that 

accumulate on the surface could lead to changes in the work function of the 

metal catalyst. This effect has not been directly investigated in plasma systems. 

However, changes to the work function of metal films deposited on solid 

electrolytes have been shown to be strongly correlated with enhancements in 

catalytic activity. This effect has been investigated for several different metals in 

a technique known as electrochemical promotion of catalysis [39-41]. 

 

2.10.3 Synergistic Effects in Plasma-Catalysis 

In several studies the combination of plasma and catalysts has been found to 

have synergistic effects. Figure 2.12 shows synergy in the plasma-catalytic dry 

reforming of CH4 over Cu-Ni/γ-Al2O3 in a DBD reactor.  
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Figure 2.12: Results obtained by Zhang et al. [19] showing the synergistic 

effect of a DBD and catalyst on CO2 reforming of CH4 (total flow rate = 60 ml 

min
-1

, CH4:CO2:Ar = 1:1:2, power = 60 W, 450 °C, 
(a)

 during catalyst only 

reaction, the catalyst bed was heated to 450 °C. 

 

The effect was observed in the conversions of CH4 and CO2, where the result for 

the plasma-catalytic reaction was greater than the sum of the catalyst only or 

plasma only results. H2 and CO selectivities were also enhanced by the use of 

plasma-catalysis. Synergy in plasma-catalysis has been demonstrated for several 

reactions including steam reforming of biogas over Ni/γ-Al2O3 catalysts [42], 

hydrogenation of CO2 [43] and destruction of toluene [36], benzene [44] and 

hydrofluorocarbons [45]. However, the synergistic effect can not be generalised 

to all plasma-catalytic reactions as shown by contrasting results for the 

decomposition of dichloromethane, where the destruction in plasma-catalysis 

was displaced to lower temperatures in comparison with thermal catalysis, but a 

synergistic effect was not observed [46]. 
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2.11 Plasma Power Measurement 

 

 

 

Figure 2.13: Schematic diagram of the circuit used for measuring the discharge 

power of a DBD reactor (taken from [47]). 

 

There are two possible methods for determination of the discharge power in a 

plasma reactor. These require the measurement of the high voltage (V) and 

either the voltage across a resistor (R) or the voltage across a capacitor (C). 

Figure 2.13 shows the circuit used for measuring the discharge power 

throughout the work in this thesis, which is adaptable to both methods of power 

determination by the means of a switch.  

 

Current Method 

The first method measures the high voltage and the current through a resistor 

(hence, the current through the plasma reactor). Figure 2.14 shows typical 

waveforms for the high voltage and current in a DBD reactor, recorded using an 

oscilloscope. The spikes on the current waveform correspond to 

microdischarges of nanosecond duration. 

 

V 

switch 
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Figure 2.14: Voltage (V) and current (I) waveforms for a DBD. 

 

The instantaneous power (p) at any given time can be calculated as shown in 

equation 2.1 by multiplying the voltage V(t) and current I(t). The current is 

found as shown in equation 2.2, where VR is the voltage across the resistor and 

R is the resistance. 

 

( ) ( )p V t I t     (2.1) 

 

( )
( )

RV t
I t

R
    (2.2) 

 

The average power over a single period (T) can be found by integrating the 

discharge power over one cycle, where t0 is the centre of the cycle: 
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          (2.3) 

 

This method is difficult to perform accurately due to the short duration of the 

microdischarge current pulses. Even when a high bandwidth sampling 
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oscilloscope is used to record the current trace, overlap of the current spikes can 

lead to poor resolution and inaccurate power measurements [47]. 

 

Lissajous Method 

This method was first described by Manley in 1943 [14] and is now considered 

to be the most accurate method for DBD power determination. It requires the 

measurement of the high voltage and the voltage (Vc) across a capacitor with an 

oscilloscope. This can be used to find the charge Q(t) accumulated as a result of 

current flow through the capacitor (of capacitance, C): 

 

( ) ( )cQ t C V t     (2.4) 

 

By recording the values for Q(t) and V(t) over a series of regularly sampled 

points which capture the full cycle of the AC sine wave, we can plot the charge 

against high voltage (Fig. 2.14). The resulting plot is known as a Q-V Lissajous 

figure, the area of which is equal to the discharge power.  
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Figure 2.15: Q-V Lissajous figure.  

 

The area of the Lissajous figure can be calculated as shown by the integration in 

equation 2.5 [14, 48]. The gradients and positions of the lines that make up the 
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Lissajous figure can be used to calculate some of the electrical parameters of the 

discharge, including the peak-peak charge, charge discharged, transferred charge 

and capacitance [14, 49-51].  
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       (2.5) 

 

This method has been employed throughout this work for accurate measurement 

of the discharge power and calculation of discharge electrical parameters. 

Details of these calculations can be found in Appendix B. 

 

 

2.12 Gas Chromatography 

Gas chromatography (GC) has been used for the analysis of complex gas 

mixtures during the experiments in this thesis. In general, chromatography refers 

to the chemical separation of mixtures into pure substances and can be used for 

both gases and liquids. Essentially, chromatography requires a „mobile phase‟ 

(containing the mixture to be separated) and a „stationary phase‟ through which 

the mobile phase can be eluted. In gas chromatography, the mobile phase is 

usually an inert carrier gas such as helium or argon. The carrier gas is 

continuously passed through a column containing the stationary phase.  

GC columns originally consisted of a tube containing a packing of solid support 

material with various liquid or solid coatings depending on the type of mixture 

being separated. Most GCs now use capillary columns, which offer several 

advantages over packed columns. The stationary phase is coated uniformly on 

the inside of a capillary tube which eliminates problems associated with uneven 

packing. Capillary columns are made of a flexible material so that longer lengths 

can be wound into compact coils that allow for a better resolution of the 

separated gas mixture [52].  

The mixture to be separated is injected into the column. Different gas species 

pass through the column at different rates depending on the strength of 

electrostatic interactions with the walls of the column. This causes the gas 

mixture to become separated into individual components that reach the end of 

the column and are detected at different times. By measuring the retention time 



 77 

of each species in the column, the component gases can be identified by 

comparison with chromatograms for known species. Retention times are 

affected by the gas concentration, flow rate and pressure as well as the column 

material and temperature [53], therefore selection of appropriate column 

materials and operating conditions are critical for resolution of the gas mixture. 

The signal produced by each gas as it reaches the detector results in a peak on 

the chromatogram at a residence time that is characteristic for that gas. The peak 

area is proportional to the gas concentration. Examples of two gas 

chromatograms are shown in Figure 2.16. 

 

 

 

Figure 2.16: Gas chromatograms using Plot Q (top) and Molsieve 5A (bottom) 

columns in an Agilent 3000A micro-GC. 

 

2.12.1 Micro-Gas Chromatography 

Most of the gaseous analysis carried out in this thesis has used a micro-GC 

(Agilent 3000A with Cerity software) which is shown schematically in Figure 

2.17. The micro-GC contains two columns of different materials that use 

different carrier gases. Both columns use thermal conductivity detection, 
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allowing the analysis of the full range of gases present in the experiments (liquid 

products such as H2O could not be measured by GC as they are damaging to the 

columns). Gas samples were pumped into the GC automatically and heated to a 

set temperature before reaching the temperature-controlled column. Micro-GCs 

have several advantages over conventional instruments, such as the small size of 

the required sample and of the instrument, which allow micro-GCs to be used 

for bench-top or portable applications. The run time for each sample is 3 

minutes and samples can be run back to back without the need for column cool 

down, which is necessary with conventional GC instruments.  

The micro-GC used for the experiments in this thesis was regularly calibrated 

over a wide range of concentrations for each of the gases of interest. CH4 (10 – 

100 %), CO2 (10 – 60 %) and H2 (1 – 100 %) were calibrated using dilutions of 

the pure gases (BOC Gases). CO (5 – 15 %) was calibrated using dilutions of a 

15 % CO/N2 mixture (SIP Analytical Ltd). C2H6 and C3H6 (1 – 10 %) were 

calibrated from dilution of the pure gases (Argo International Ltd). In addition, 

CO2, H2, CO, C2, C3 and C4 hydrocarbons were regularly calibrated at 

concentrations of 0.05 % using a certified universal gas calibration standard 

(Agilent Technologies). Calibration curves (GC peak area vs. concentration) 

were plotted for each gas and were used to determine accurate gas 

concentrations from GC peak areas during the experiments. 

 

Figure 2.17: A schematic diagram of a two-channel Agilent 3000A micro-GC 

with thermal conductivity detection. 
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2.12.2 Thermal Conductivity Detection  

Thermal conductivity detectors (TCD) can be used for the detection of any gases 

that are different in thermal conductivity to the carrier gas. TCD detectors 

consist of several filaments in a Wheatstone bridge arrangement as depicted in 

Figure 2.18. The column effluent and reference gas enter cells containing 

analytical filaments, R3 and R4. The other filaments that make up the bridge (R1 

and R2) have fixed resistances therefore the change in voltage across the bridge 

is proportional to the change in resistance when a constant current is applied. 

The resistance of the analytical filament varies depending on the temperature, 

which is influenced by the thermal conduction of the gas being detected. The 

voltage across the bridge is measured and the signal is amplified to provide the 

GC response signal. Electrically heated tungsten-rhenium or platinum wires are 

typically employed for the analytical filaments [52, 53]. The filaments often 

have a non-linear response and therefore require individual calibration for each 

type of gas being analysed. 

 

 

Figure 2.18: Schematic diagram of a typical thermal conductivity detector 

(taken from [54]). 

 

2.12.3 Flame Ionisation Detection 

Flame ionisation detectors (FIDs) are the most commonly used GC detectors for 

organic gases due to their high detection limits. In FID, the effluent gas from the 

column is mixed with H2 and passed through a jet into a chamber, where it is 

mixed with air and ignited to produce a continuous flame. As different gases are 

eluted from the column, they pass into the flame and undergo combustion. A 
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very small proportion (0.001 %) of the organic sample is ionised during 

combustion. The carbon ions are collected onto a polarised electrode, creating 

an electrical signal that is amplified to provide the GC response signal. A major 

limitation of this method is the inability to detect H2 gas [52].  

 

 

2.13 Fourier-Transform Infra-Red Spectroscopy 

Fourier-transform infra-red (FTIR) spectroscopy is a universal technique that 

can be applied to the analysis of solids, liquids or gases. In this thesis, it has 

been used for the analysis of high concentrations of CH4 and CO2 (30 – 70 %) 

during the experiments carried out at AIST, Japan as detailed in Chapter 4. A 

short gas cell of 50 mm (Pike Technologies) was used to avoid signal saturation 

associated with high gas concentrations. 

When IR radiation is incident on a gas sample, absorption will occur if the IR 

wavelength is resonant with the vibrational frequency of the molecule. The 

vibrational frequency remains the same but the amplitude changes as a result of 

the absorbed energy. The vibrational mode may correspond to stretching, 

rocking, wagging, scissoring or twisting motions of the functional groups [55]. 

The absorption of IR radiation for each type of chemical bond occurs at a 

characteristic wavenumber creating a “fingerprint” IR spectrum for each type of 

molecule. In order for absorptions to be IR active, there must be an interaction 

between IR radiation and a changing dipole moment. Homonuclear diatomic 

molecules such as H2, N2 and O2 have no changing dipole moment as the 

molecule vibrates and are therefore IR inactive [56]. Polyatomic molecules have 

several fundamental modes of vibration that can give complex absorption 

spectra. For a molecule with N atoms, the total number of coordinates required 

to specify the position of all atoms is 3N and they are said to have 3N degrees of 

freedom. Since three coordinates are required to specify the centre of mass of 

the molecule, three degrees of freedom can be subtracted for translation of the 

whole molecule in space, three more degrees of freedom can express the rotation 

of the molecule about its axes, leaving 3N-6 vibrational modes for non-linear 

molecules. Linear molecules can rotate about only two axes and therefore have 

two rotational modes leaving 3N-5 vibrational modes. 
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The intensity of the signal on the IR spectrum is proportional to the 

concentration of that species, making FTIR spectroscopy suitable for both 

qualitative and quantitative analyses.  

 

2.13.1 Vibrational Modes of CO2 

Carbon dioxide is a linear molecule and has 3(3) – 5 = 4 vibrational modes, two 

of which are degenerate resulting in the three modes shown in Figure 2.19. The 

symmetric stretch is IR inactive due to a lack of changing dipole moment, whilst 

the antisymmetric stretch and bending modes are IR active. The bending 

vibration has a degenerate mode that is perpendicular to the motion shown in 

Figure 2.17 (c). The IR spectrum of CO2 will therefore contain two fundamental 

vibrational bands at 2349 cm
-1

 and 667 cm
-1 

[57]. These vibrational transitions 

are superimposed with rotational lines caused by the simultaneous vibration and 

rotation of the molecules; this gives rise to the fine structure of the IR vibration 

bands. In polyatomic molecules such as CO2, it may happen that two vibrational 

levels belonging to different vibrations (or combinations thereof) may be 

accidently degenerate. This can lead to weak absorption bands at energies nearly 

equal to the addition of the energies corresponding to those vibrational modes, 

this is known as Fermi resonance [57]. During the work in Chapter 4 of this 

thesis, a calibrated rotational-vibrational transition at 3730 cm
-1

 was used to 

quantify the CO2 concentrations in the gas mixtures. This is a Fermi resonant 

band caused by the perturbation of vibrational modes v1 + v3 [58]. Considerable 

care was taken not to confuse this absorption with potential interference from 

the fundamental absorption bands of water vapour in the same region.  

  

 

 

 

Figure 2.19: Vibrational modes and wavenumbers for the IR absorptions of 

CO2 (taken from [59]). 

 

a) Symmetric stretch,  

v1 ≈ 1330 cm
-1

 

  

b) Antisymmetric stretch  

v3 ≈ 2349 cm
-1

 

 

c) Bend (doubly degenerate)  

v2 ≈ 667 cm
-1
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2.13.2 Vibrational Modes of CH4 

Methane is a non-linear molecule and therefore has 3(5) – 6 = 9 modes of 

vibration. Of these nine modes, there are two triply degenerate modes which 

result in vibrational bands on the IR spectra at 3020 cm
-1

 and 1306 cm
-1

, these 

correspond to v3 and v4 as shown on Figure 2.20. The remaining three 

vibrational modes correspond to symmetric motions and are therefore IR 

inactive (v1 and v2) [57]. During the work carried out in Chapter 4 of this thesis, 

a rotational-vibrational band at 3158 cm
-1

 was used to determine the CH4 

concentrations in the experimental gas mixtures. 

 

 

 

 

Figure 2.20: Vibrational modes and wavenumbers for the IR absorptions of 

CH4 [57]. 

 

 

2.14 X-Ray Diffraction 

X-Ray diffraction (XRD) is a technique used to characterise crystal structures at 

the atomic level. Under the influence of an electromagnetic field, the electrons 

a) Symmetric stretch,  

v1 ≈ 2914 cm
-1

 

 

b) Symmetric deformation (doubly 

degenerate), v2 ≈ 1526 cm
-1

. 

c) Asymmetric stretch (triply 

degenerate), v3 ≈ 3020 cm
-1

. 
d) Asymmetric deformation (triply 

degenerate), v4 ≈ 1306 cm
-1

. 



 83 

in a crystal structure will oscillate at the incoming frequency. Destructive 

interference between the incident X-rays and electron oscillatory motion will 

occur in almost all directions. In a few characteristic directions, the waves will 

be in-phase and constructive interference will occur, resulting in X-ray 

reflection from the specimen surface at an angle θ (equal to the angle of 

incoming radiation) [60]. This is illustrated in Figure 2.21. The intensities of the 

reflected X-rays are dependent on the electron densities around the atoms. The 

types of atom and interatomic distances are specific to each crystal structure, 

resulting in a characteristic XRD pattern. 

 

 

          

Figure 2.21: Reflection of X-rays at an angle (θ) from two planes of atoms 

with separation distance (d) in a crystalline solid. 

 

To obtain an XRD pattern, a collimated beam of monochromatic X-rays is 

directed at a crystal surface. The X-ray source and a detector are automatically 

rotated about the sample surface to obtain the desired range of angles for the 

incoming and reflected radiation. For X-ray powder diffraction, the samples 

are prepared by grinding the solid into a fine homogeneous powder, which is 

pressed into a sample holder and smoothed. This produces a sample where the 

crystallites are distributed at random orientations. Only crystallites with 

atomic planes that are parallel with the smoothed surface will contribute to the 

reflected intensities. 

 The instrument used for XRD analysis in this work was a Philips X‟Pert 

diffractometer with multi-channel detector and X‟Pert Data Collector software. 

Incident beam 

of collimated 

X-rays 

Reflected 

X-rays  

Atomic 

planes 
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The machine was set to detect 2θ in the range 5 – 100 º. XRD was performed 

at room temperature with a scanning speed of 0.042 º min
-1

. The source of 

radiation for the XRD came from a copper anode, which emits radiation at a 

wavelength of 1.45060 Å. X‟Pert Highscore Plus Database was utilised for 

comparison of experimental XRD patterns with those of known species. 

 

 

2.15 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) has been used in this thesis to produce 

high resolution images of catalyst surfaces for the work in Chapters 5 and 6. 

SEM uses an accelerated beam of electrons (λ ≈ 0.12 Å) as the illuminating 

source for producing images of surface structures. Resolution of structures as 

small as 10 nm can be resolved by SEM [61]. 

 

 

 

Figure 2.22: Schematic of a scanning electron microscope (taken from [61]). 

 

Figure 2.22 shows a typical environmental scanning electron microscope 

(ESEM). The electron source is a thermionic tungsten filament that emits high 

energy electrons (1 – 30 keV) when a voltage is applied. Magnetic lenses focus 

electrons through an aperture to produce an intense electron beam. The scanning 

coils deflect the beam causing it to sweep a rectangular area of the sample in a 

grid fashion at a set speed. When the beam strikes the sample, high energy 

backscattered electrons are emitted as well as relatively low energy secondary 
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electrons. These signals are detected, amplified and fed to a cathode ray tube to 

produce an image of the surface structure [62]. The instrument used for imaging 

in these experiments was an FEI Quanta 200 ESEM and was operated at a 

pressure of 0.60 Torr. The high vacuum conditions prevent collisions between 

electrons and atmospheric gas molecules that would interfere with the imaging. 

 

 

2.16 Elemental Analysis 

Elemental analysis of both liquid and powder samples has been performed using 

a Carlo Erba EA 1108 elemental analyser. A micro-sample (milligram quantities) 

is introduced into a combustion chamber in a flow of helium carrier gas. 

Complete combustion of the sample in high purity O2 converts carbon into CO2, 

hydrogen into H2O, nitrogen into N2 and NOx and sulphur into SO2. 

Subsequently the combustion products are passed over a removable bed of 

copper, in the second part of a two tier furnace as shown in Figure 2.23. The 

purpose of the copper is to remove the remaining O2 and convert any NOx 

combustion products into N2. The remaining gases are then passed through a GC 

column and identified quantitatively using thermal conductivity detection [63]. 

 

 

Figure 2.23: Schematic diagram of a CHNS elemental analyser. 
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3. Dry Reforming of Methane: Effect of Packing 

Materials in a DBD Reactor 

 

 

3.1 Introduction 

When introducing a catalyst into a plasma discharge, the influence that the 

dielectric properties of the catalyst have on plasma generation must be 

considered for dry reforming of CH4, in addition to other operating parameters 

such as specific input energy (SIE), CH4/CO2 molar ratio, gas temperature, 

operating pressure and DBD configuration. Catalysts that have been 

investigated in coaxial DBD reactors for dry reforming of methane include 

nickel/alumina [1, 2], various zeolites [3-6], metal-coated monoliths [7] and 

ceramic foams [8]. Table 3.0 summarises some of the conditions used and the 

results of these previous studies. The use of a Ni/Al2O3 catalyst by Song et al. [1] 

has been shown to enhance reactant conversions. However, the selectivity 

towards H2 decreased compared to the reaction with plasma and Al2O3 (without 

the „active‟ metal). The use of zeolites has been shown by several authors to be 

effective for enhancing selectivities towards light hydrocarbon products, 

particularly C2 – C4 species. Zeolites are known for their adsorbent properties, 

these are beneficial to plasma reactions because it allows species to be adsorbed 

onto the zeolite surface or inside the pore structure, which can increase the 

residence time of the reactant species in the plasma discharge. This can lead to 

an increased probability of successful collisions with active plasma species. 

Interestingly, the selectivity towards higher hydrocarbons (C5+) was reduced 

and the formation of plasma polymerised films was inhibited by the use of 

zeolites with a small pore size (0.42 nm). The authors suggested that this was 

due to shape-selectivity, where long chain hydrocarbon formation is limited by 

a lack of available space in the zeolite pores [4]. 

This chapter investigates the effects of different reactor packing materials on 

both the chemical and physical properties of plasma-assisted dry reforming of 

methane in a coaxial DBD reactor. The materials studied include quartz wool, 

alumina beads (γ-Al2O3), barium titanate beads (BaTiO3), zeolite 3A beads and 
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titanium dioxide beads (TiO2), as well as the reaction in the absence of any 

packing material. Zeolite 3A is a potassium exchanged zeolite with a molecular 

composition of Na35.4K60.0Al95.4Si96.6O384·160 H2O [9]. It consists of a three-

dimensional cage structure with pores running perpendicular in the x, y and z 

planes, which are 0.3 nm in diameter. Negative charges that exist inside the 

zeolite pore structure are neutralised by freely moving protons. These constitute 

acidic sites that under thermal conditions can catalyse the isomerisation and 

cracking of hydrocarbons. Consequently, zeolites have important industrial uses 

as cracking catalysts in oil refining [10]. The other materials studied in this 

chapter do not exhibit catalytic activity in the traditional sense; however, they 

do have different dielectric constants and morphologies which can influence the 

plasma discharge, as well as different adsorbent properties which will affect the 

residence time of gas molecules in the plasma discharge. A second DBD reactor 

configuration, known as a packed-bed DBD reactor containing BaTiO3 beads as 

the dielectric material, has also been investigated. Comparisons have been made 

between the performances of the dry reforming of methane reaction using the 

two different reactor configurations. 

The analysis of plasma electrical signals has been carried out for the 

characterisation of discharge modes when quartz wool and zeolite 3A are 

present in the plasma discharge, as well as for no packing material. In addition, 

images of plasma generation on several different surfaces have been taken using 

a microscope-intensified charge coupled device (ICCD) camera to demonstrate 

the observable effects of reactor packing materials on plasma generation. 
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Catalyst Power 

Range 

(W) 

Temp. 

(°C) 

 

SIE
a
 

(kJ L
-1

) 

CH4 

Conversion 

(%) 

CO2 

Conversion 

(%) 

H2 

Selectivity 

(%) 

CO 

Selectivity 

(%) 

H2/CO  Other Identified 

Products 

Ref. 

2 – 10 wt. % 

Ni/γ-Al2O3 

130 - 260
 

55.2 – 55.7 32.6 – 33.5 51.9 – 53.5 60.6 – 63.9 1.0 – 

1.1 

C2 – C4 

hydrocarbons 

[1] 

 
 

Zeolite A 

 

100 – 

500 

 

150 

 

30 – 150
 

 

 

6.0 – 63.6 

 

2.0 – 39.4 

 

23 – 50
a
 

 

43 – 50
b
 

 

0.7 –  

1.6 

 

C2 – C5+ 

hydrocarbons 

[3] 

 

Zeolite HY 100 – 

500 

150 30 – 150
 

 

12.5 – 63.0 2.6 – 37.0 - 41.8 – 46.1 0.9 –  

1.0  

 

C2 – C5+ 

hydrocarbons 

[4] 

Zeolite NaX 500 150 37.5 – 200 60 – 22
 b
 50 – 18

b 
- 40.1 – 44.9 - C2 – C5+ 

hydrocarbons 
[5] 

Zeolite NaY 

 
Quartz 

fleece 

500 

 
 

500 

150 

 
 

150 

150 

 
 

150 

66.6 

 
 

68.4 

39.9 

 
 

39.7 

38.6
a 

 

 

36.4
a
 

 

42.7 

 
 

46.0 

- 

 
 

- 

C2 – C5+ 

hydrocarbons 

[6] 

 
 

 

Perovskite 
(LaNiO3)-

coated 

monolith 

12 
 

RT 32 19.2 13.3 - 40.5 1.1 C2 – C5+ 
hydrocarbons, 

methanol, ethanol, 

acetone 

[7] 

 

Table 3.0: Comparison of plasma-catalytic performances for dry reforming of CH4 in coaxial DBD reactors (CH4/CO2 = 1, pressure = 1 bar), 
a
 

indicates where data has been calculated and 
b
 indicates where data has been taken from graphs, RT = room temperature.
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3.2 Experimental Section 

Figure 3.0 shows a schematic representation of the experimental set-up used in 

this investigation. 

 

 

 
 

 

Figure 3.0: Schematic diagram of the experimental set-up used for plasma-

assisted dry reforming of methane (MFCs = mass flow controllers). 

 

CH4 and CO2 (BOC Gases, 99.9 %) were fed into the reactor at a pressure of 1 

bar and a total flow rate of 50 ml min
-1

. All experiments were conducted at a 

mixing ratio of CH4/CO2 = 1. Gas flow rates were controlled by previously 

calibrated mass flow controllers (MKS Instruments) and gas mixtures were 

stabilised before the plasma was turned on. The experiments have been carried 

out in a coaxial DBD reactor (Figure 3.1) with a double dielectric barrier to 

prevent any contribution from the metal electrodes on the reaction performance. 

The reactor consisted of two coaxial quartz tubes with stainless steel (SS) mesh 

electrodes of 5.7 cm length, which are positioned on the inside of the inner tube 

and outside of the outer tube. Polytetrafluoroethylene (PTFE) plugs with rubber 

o-rings were used to seal the reactor at each end. When assembled, the reactor 

had a discharge gap of 4.5 mm. The materials investigated were packed inside 

the discharge gap and held in place with quartz wool as shown in Figure 3.1 (b), 

AC Voltage 

Cold Trap 

Micro-GC 
MFCs 

Exhaust gas 

DBD 

reactor 

CH4 

CO2 



 94 

so that the quartz wool was positioned outside of the discharge region. The 

materials investigated in this chapter are quartz wool (Fisher Scientific), γ-

Al2O3 beads (4 mm diameter), zeolite 3A beads (2 mm diameter, Fisher 

Scientific), BaTiO3 beads (4 mm diameter) and TiO2 pellets (5 mm, Alfa Aesar). 

Each of the reactor packing materials (except quartz wool) was baked at 600 °C 

for 3 hours prior to use, to remove any adsorbed gas species. During the 

experiments, the material was packed into the reactor so that it filled the entire 

discharge volume of 16.5 cm
3
. 

 

 
 

 
 

Figure 3.1: Coaxial DBD reactor a) dissembled and b) assembled with packing 

material in the discharge gap held in place by quartz wool. 

 

The second reactor configuration investigated was a BaTiO3 packed-bed DBD 

reactor, consisting of two parallel plate stainless steel electrodes positioned 4.2 

cm apart, inside a quartz tube as shown in Figure 3.2. The area between the 

End plug 
Outer quartz tube (OD: 28 mm, ID: 25 mm) 

SS outer electrode 

Inner quartz tube (OD: 16 mm, ID: 13 mm) 

SS inner electrode 

Quartz wool 

Packing 

material 

Gas inlet 

Gas outlet 
5.7 cm 

a) 

b) 
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electrodes was packed with BaTiO3 beads (4 mm) that were baked at 600 °C 

prior to each experiment to remove any adsorbed species. 

 

 

 

 

 

Figure 3.2: BaTiO3 packed-bed DBD reactor. 

 

A custom built high voltage power supply consisting of an audio amplifier, a 

signal generator and a high voltage transformer was used to apply a variable 

voltage of < 22 kVpk-pk across the discharge gap. The AC sine wave frequency 

of 31 – 39 kHz was optimised for each experiment and remained constant 

throughout. The optimised frequency varied depending on the packing material. 

A LabVIEW system was utilised for the measurement of the plasma power by 

the area calculation of Lissajous figures [11]. The LabVIEW system is based on 

a 2-channel analogue to digital conversion (ADC) sampling method using 

Picoscope hardware (ADC – 200); this was used to record the waveforms for 

the high voltage AC sine wave (via a 1000:1 reducing probe) and the voltage 

across a capacitor (typically 22 nF). Details of the method for power calculation 

and functions of the LabVIEW system can be found in Appendix A. After a 

change in the electrical input, the plasma was allowed to stabilise before 

analysis of the gas mixture was carried out. Gases exiting the reactor were 

analysed using a micro-GC (described in section 2.12.1). A cold trap consisting 

of a glass thimble surrounded by solid CO2 was placed downstream of the 

reactor in order to condense any liquid products that were formed in the plasma 

reaction. Calculations of reactant conversions, product selectivities, H2 yields 

and carbon balances in the gas stream are defined as shown in equations 3.0 – 

3.4. The quantities in square brackets represent the molar % of the total gas 

volume and „n‟ represents the carbon number of the product gas. 

Gas outlet Gas inlet 

Stainless Steel electrodes 

BaTiO3 beads 

4.2 cm 
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Conversion = {[reactant]converted / ( [CH4]initial + [CO2]initial)} × 100 %         (3.0) 

Selectivity (Cn) = {n × [product] / ([CH4]converted + [CO2]converted)} × 100 %  (3.1) 

Selectivity (H2) = {[H2] / (2 × [CH4]converted)]} × 100 %          (3.2) 

H2 Yield = (CH4 Conversion × H2 selectivity) / 100 %         (3.3) 

Carbon Balance = [CH4] + [CO2] + [CO] + (2 × [C2]) + (3 × [C3]) %         (3.4) 

 

The uncertainty in the measurement of the gas concentrations to one standard 

deviation is < 2 %. The associated uncertainty in conversion, selectivity and 

yield data to one standard deviation is typically < 3 %. 

 

 

3.3 Results 

3.3.1 Dry Reforming of CH4 in a Coaxial DBD with No Packing Material 

Dry reforming of CH4 has been carried out initially with no packing material 

inside the discharge gap. The results are shown in Figures 3.3 – 3.6.  
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Figure 3.3: Conversions of CH4 and CO2 in plasma-assisted dry reforming of 

methane in the absence of a packing material. 
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Figure 3.4: Product selectivities in plasma-assisted dry reforming of CH4 in the 

absence of a packing material. 
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Figure 3.5: H2 yields in plasma-assisted dry reforming of methane in the 

absence of a packing material. 
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Figure 3.6: Gas stream carbon balance in plasma-assisted dry reforming of 

methane in the absence of a packing material. 

 

Conversions of both CH4 and CO2 increased with increasing applied power up 

to 25.2 % and 14.0 % respectively, at a discharge power of 35.9 W. This is a 

commonly reported effect of increased input power [1, 3-7, 12-14]. High 

discharge power leads to the generation of more highly energetic electrons and 

ultimately a higher degree of ionisation in the plasma discharge than for a 

discharge operating at a lower power. This will increase the collision frequency 

between active plasma species, leading to higher conversion efficiencies. From 

the stoichiometry of the dry reforming of CH4 reaction (3.5), equal conversions 

of CH4 and CO2 would be expected. However, this is not the case for dry 

reforming of CH4 in non-equilibrium plasma conditions, where CH4 

conversions were 1.8 to 3.4 times greater than CO2 conversions over the range 

of discharge powers tested. This is in agreement with results obtained by Song 

et al. [1] for the same reaction where CH4 conversions were twice as large as 

CO2 conversions under DBD conditions. This difference in conversion 

efficiencies between CH4 and CO2 may be attributed to the higher dissociation 

energy and ionisation energy of CO2 compared with CH4 (equations 3.6 – 3.9), 

making CO2 more resistant to the formation of active species in the plasma 
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discharge [13]. Another possible explanation is that additional product channels 

exist for dissociated CH4 species in methyl coupling reactions and that 

recombination of radicals back to CO2 is more likely than recombination in the 

case of CH4. These mechanisms are discussed in detail in Chapter 4 of this 

thesis.  

 

CH4 + CO2 → 2 H2 + 2 CO    (3.5) 

Bond dissociation energy (C–H) = 4.55 eV   (3.6) 

Bond dissociation energy (C=O) = 5.52 eV  (3.7) 

Ionisation energy (CH4 → CH4
+
 + e

-
) = 12.9 eV (3.8) 

Ionisation energy (CO2 → CO2
+
 + e

-
) = 13.8 eV (3.9)  

 

Figure 3.4 shows that CO and H2 were the main reaction products with 

selectivities of 36.9 % and 20.7 % respectively at a discharge power of 35.9 W. 

Higher hydrocarbons were also observed in lower concentrations. C2 species 

were formed with greater selectivity than C3 species and saturated hydrocarbons 

C2H6 and C3H8 were formed with higher selectivities than the unsaturated 

species of the same carbon number, C2H2/C2H4 and C3H6 respectively. No 

detectable amounts of C4 hydrocarbons were produced under these conditions. 

Although some variation in product selectivities with increasing input power 

can be observed in Figure 3.4, the effect is small and the relative selectivities of 

all products do not change significantly as the power is increased. The syngas 

molar ratio of H2/CO varied slightly in the range from 0.73 to 0.86. The yields 

of H2 are shown in Figure 3.5, since CH4 conversion increased with applied 

power and the selectivity did not change significantly, the H2 yield also 

increased as the power was increased, reaching 5.5 % at 35.9 W. Figure 3.6 

shows the carbon balance in the gas stream. Initially, the addition of carbon-

containing species before the plasma was turned on, gave a total of 101.9 %. 

This error is associated with the calibration of the bulk gases CH4 and CO2 and 

can be considered negligible. As the power was increased, the carbon balance 

decreased. The sum of the selectivities of the carbon-containing products at 35.9 
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W is equal to 54.2 %, indicating that 45.8 % of the carbon converted went into 

the production of liquid products or solid carbonaceous deposits that were not 

detected by micro-GC. This corresponds to 9.2 % of the total carbon in the 

reaction mixture. Deposited solid carbon could be found on the walls of the 

reactor in the form of soot and as traces of a yellow-orange film close to the 

discharge area. A similar product has been described by Liu et al. [12] who 

operated the same reaction at a higher input power of 500 W. IR analysis of this 

solid product identified a highly branched hydrocarbon structure containing 

many oxygenated groups. The deposition of this polymerised product could 

create problems for prolonged run times, should the dielectric barrier become 

coated. The authors also reported that the formation of the polymerised product 

could be inhibited by the addition of zeolite to the discharge gap [5]. In addition, 

a small amount of colourless liquid was collected in the cold trap during this 

investigation. The liquid sample was analysed and the results are shown in 

section 3.3.2. 

 

3.3.2 Comparison of Dry Reforming of CH4 with Different Reactor Packing 

Materials 

The results for plasma-assisted dry reforming of methane with different 

materials inside the discharge gap are shown in Figures 3.7 to 3.11. In 

comparison to the reaction with no packing material, the conversions of CH4 

shown in Figure 3.7 were enhanced by the addition of quartz wool to the plasma 

discharge but there was no significant change to CO2 conversions (Figure 3.8). 

The addition of Al2O3 decreased the conversions of both CH4 and CO2 slightly 

at low discharge powers, whilst BaTiO3, zeolite 3A and TiO2, caused a 

significant decrease in the conversions when they were used inside the 

discharge gap, in comparison to the reaction with no packing material. Carbon 

dioxide conversions were consistently lower than methane conversions for each 

packing material. In the cases of Al2O3, zeolite 3A and TiO2, the CO2 

conversions were slightly negative at low applied powers, indicating that the 

CO2 concentrations had actually increased when the plasma discharge was 

switched on. This may be caused by residual adsorbed CO2 which has become 

desorbed under plasma conditions or alternatively a reaction between CH4 and 
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other adsorbed species such as O2 or H2O. Negative CO2 conversions were not 

observed in the cases of no packing, quartz wool and BaTiO3, which have 

negligible adsorption properties in contrast to Al2O3, zeolites and TiO2, which 

are known for their adsorbent properties. 
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Figure 3.7: CH4 conversions during plasma-assisted dry reforming of methane 

with different reactor packing materials. 
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Figure 3.8: CO2 conversions during plasma-assisted dry reforming of methane 

with different reactor packing materials. 
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Figure 3.9: H2 yields during plasma-assisted dry reforming of methane with 

different reactor packing materials. 
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Figure 3.10: Selectivities of H2 and CO during plasma-assisted dry reforming 

of methane with different reactor packing materials (discharge power = 35 W). 
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Figure 3.11: Selectivities of higher hydrocarbons during plasma-assisted dry 

reforming of methane with different reactor packing materials (discharge power 

= 35 W). 
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Figure 3.9 shows the yields of H2 for each of the packing materials. It can be 

seen that the relative H2 yields reflect the conversions of CH4. Quartz wool 

enhanced the H2 yield in comparison to no packing material, whilst the other 

materials resulted in decreased H2 yields. The selectivities towards H2 and CO 

at a discharge power of 35 W are shown for comparison in Figure 3.10. The 

carbon selectivities towards CO varied between 23.1 % for zeolite 3A and 

36.9 % when no packing material was present. Hydrogen selectivities varied 

between 17.8 % for Al2O3 and 26.4 % for zeolite 3A. Results for the use of 

zeolite A in plasma dry reforming of CH4 by Jiang et al. [3] also showed a 

decrease in CO selectivity compared with no packing material, but a 

comparison was not made for the H2 selectivities. The selectivities towards 

hydrocarbon products are shown in Figure 3.11. For no packing, quartz wool 

and Al2O3, the selectivities towards the light hydrocarbon products varied only 

slightly. However, for zeolite 3A a significant enhancement in the selectivity 

towards the unsaturated C2 species, acetylene and ethylene was observed. 

Selectivities towards other hydrocarbon species were also equal to or slightly 

greater for the use of zeolite 3A, than observed for the other materials. A small 

amount of butane was also formed, which was only observed for the use of 

zeolite and quartz wool and not for the use of the other packing materials. In 

contrast, Jiang et al. [3] observed an unspecified C4 species as the main 

hydrocarbon product for the use of zeolite A with a DBD. One possible 

accountable difference is the smaller pore diameter of the zeolite used in this 

study (0.3 nm as opposed to 0.42 nm). In line with suggestions made by Zhang 

et al. [4], the smaller pore size could lead to the inhibition of long-chain species 

and as a consequence, the formation of the short-chain C2 species are enhanced. 

This is also supported by the observation that C2H2/C2H4 were formed with a 

higher selectivity than C2H6, as the unsaturated hydrocarbons are shorter in 

length than the saturated species due to the presence of double and triple bonds.  
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 No Packing Quartz Wool Alumina Zeolite 3A 

% wt. C and 

H in liquid 

product 

C = 3.2 

H = 10.7 

C = 2.3 

H = 11.2 

C = 2.7 

H = 11.1 

C = 0.7 

H = 12.4 

 

Table 3.1: Carbon and hydrogen compositions of liquid products obtained 

during plasma-assisted dry reforming of methane with different reactor packing 

materials (discharge power = 35 W).  

 

The elemental analyses of the colourless liquid products that were collected in 

the cold trap are shown in Table 3.1. The relative concentrations of carbon and 

hydrogen in the liquid samples suggest that they contain mostly H2O, assuming 

that the only other element present in the samples was oxygen. However, some 

carbon-containing compounds are present, and the concentrations of these were 

decreased slightly when quartz wool or alumina was used as a packing material. 

When zeolite 3A was used, the carbon content of the liquid sample decreased 

significantly from 3.2 % (for no packing) to 0.7 %. This indicates that the 

selectivity towards liquid hydrocarbons (C5+) or oxygenated species was 

significantly reduced by the use of zeolite 3A in the discharge gap. This is in 

contrast to the results of Eliasson et al. [5], who reported the GC analysis of the 

organic compounds in a yellow liquid sample obtained during dry reforming of 

methane in DBD packed with zeolite NaX. The analysed sample was found to 

contain > 200 different species of branched hydrocarbons ranging from C5 to 

C11. They did not report the identification of H2O as a reaction product. This 

indicates that the properties of the different zeolites influences the formation of 

reaction products significantly, this could be a result of different framework 

structures, pore sizes and acid/base properties. 

 

3.3.3 Dry Reforming of CH4 in a BaTiO3 Packed-Bed DBD Reactor 

The results for plasma-assisted dry reforming of methane in a packed-bed DBD 

configuration are shown in Figures 3.12 to 3.15.  
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Figure 3.12: Conversions of CH4 and CO2 in plasma-assisted dry reforming of 

methane in a BaTiO3 packed-bed DBD reactor. 
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Figure 3.13: Product selectivities in plasma-assisted dry reforming of methane 

in a BaTiO3 packed-bed DBD reactor. 
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Figure 3.14: H2 yields in plasma-assisted dry reforming of methane in a 

BaTiO3 packed-bed DBD reactor. 
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Figure 3.15: Gas stream carbon balance for the plasma-assisted dry reforming 

of methane in a BaTiO3 packed-bed DBD reactor. 
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At comparable discharge powers the conversions of CH4 and CO2 were lower in 

the BaTiO3 packed-bed reactor (Figure 3.12) than in the coaxial DBD reactor. 

This indicates that the input of energy in the coaxial reactor is likely to be more 

efficient for production of highly energetic electrons and other plasma active 

species. Figure 3.13 shows the product selectivities in the packed-bed reactor. 

These differ from the results obtained for the coaxial reactor configuration in 

that CO selectivity is slightly lower, whilst H2 selectivity is slightly greater. 

Selectivity towards C2H2/C2H4 is greater in the packed-bed configuration at low 

power. However, it decreases significantly with increased input power. Figure 

3.13 also shows that a small amount of butane was formed in addition to the C2 

and C3 species, which was not observed in the coaxial configuration except 

when zeolite or quartz wool were used as the packing materials. Despite 

selectivities towards H2 being higher in the packed-bed reactor, the H2 yields 

shown in Figure 3.14 are lower than in the case of the coaxial DBD due to 

lower conversions of methane. Figure 3.15 shows the carbon balance in the gas 

stream which decreases with input power, due to the formation of liquid carbon-

containing species and/or the deposition of solid carbon products. The carbon 

loss from the gas stream was greater in the case of the coaxial DBD reactor 

(with no packing) compared to the packed-bed DBD reactor at comparable 

discharge powers. This can be attributed to lower reactant conversions in the 

packed-bed DBD system, meaning that the difference in carbon balance is due 

to unconverted CH4 and CO2, rather than a reduced selectivity towards the 

formation of solid or liquid carbon products. Examination of the BaTiO3 beads 

after the plasma reaction revealed some deposition of carbon black in small 

spots that corresponded to the contact points between the beads where plasma 

formation was most intense. However, no polymerised film could be seen on the 

walls of the quartz tube in the packed-bed DBD reactor configuration. These 

results indicate that overall the coaxial DBD reactor offers greater potential for 

H2 production from dry reforming of methane than the packed-bed DBD 

configuration. 
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3.4 Calculations of the Thermodynamic Equilibrium Composition 

for Dry Reforming of Methane 

The thermodynamic equilibrium compositions for dry reforming of methane at 

temperatures ranging from 100 – 1100 °C have been calculated using HSC 

Chemistry Software (Ver. 5.0). The assumed equilibrium products were H2, CO, 

H2O and C2 hydrocarbons. The results are shown in Figure 3.16. Temperatures 

of > 400 °C are required for the conversion of both CH4 and CO2 under 

equilibrium conditions in the absence of a catalyst. The concentrations of CH4 

and CO2 decrease with increasing temperature up to ~ 800 °C, although CO2 

conversion is ~ 10 % greater than CH4 conversion at a given temperature. At 

temperatures > 800 °C, there is close to complete conversion of both reactants 

to produce syngas. A small amount of H2O production is predicted which peaks 

at ~ 600 °C. 

 

0 500 1000

0

20

40

60
 CH

4

 CO
2

 H
2

 CO

 H
2
O

C
o

m
p

o
s
it
io

n
 (

m
o

l.
 %

)

Temperature (°C)

Figure 3.16: Thermodynamic equilibrium gas compositions for dry reforming 

of CH4 at elevated temperatures in the absence of a catalyst (CH4/CO2 = 1, 

pressure = 1 atm). 

 

There are several key differences between the thermodynamic equilibrium 

compositions in dry reforming of methane and the compositions that have been 
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experimentally observed under plasma conditions, where equilibrium conditions 

are not met. During the plasma experiments in the coaxial DBD reactor, the 

maximum observed temperature (measured using a thermocouple on the outer 

electrode) was 275 °C, this is significantly lower than the temperatures required 

for conversions under thermal conditions. This low temperature chemical 

activity in plasma results from collisions with highly energetic electrons and 

other active plasma species such as excited molecules and free radicals. The 

relative conversions of CH4 and CO2 are also distinctly different. Under thermal 

conditions, CO2 conversion is greater than CH4 conversion, whilst the opposite 

is true of plasma-assisted dry reforming of methane. Another noticeable 

difference is the formation of higher hydrocarbons with the use of plasma that 

are not produced during the thermal reaction. 

 

 

3.5 Effect of Packing Materials on the Electrical Characteristics of 

DBDs 

The waveforms for the discharge current and applied voltage have been 

measured using an oscilloscope (Textronix TPS 2014), for the comparison of 

electrical characteristics during plasma generation on quartz wool, zeolite 3A 

and in the absence of a packing material. In addition, the voltage across a 

capacitor has been measured and used to calculate the gas voltage. Details of the 

calculation method can be found in Appendix B.  
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Figure 3.17: Electrical waveforms for the plasma-assisted dry reforming of 

methane with no packing in the discharge gap (discharge power = 30 W). 
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Figure 3.18: Electrical waveforms for the plasma-assisted dry reforming of 

methane with quartz wool in the discharge gap (discharge power = 30 W). 
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Figure 3.19: Electrical waveforms for the plasma-assisted dry reforming of 

methane with zeolite 3A beads in the discharge gap (discharge power = 30 W). 

 

In Figure 3.17, which shows the current signal in the absence of a packing 

material, the waveform is quasi-sinusoidal with numerous superimposed current 

spikes per half-cycle. These current pulses correspond to filamentary 

microdischarges. In appearance, they are randomly distributed in time and space 

over the dielectric surface and extend across the entire discharge gap. The 

typical radii of these current filaments have been reported as in the range of 100 

– 200 μm [15]. The duration of a single filamentary microdischarge in this case 

is ~ 40 ns. When quartz wool is packed into the discharge gap, the characteristic 

spikes of the filamentary microdischarges can be observed on the current 

waveform as shown in Figure 3.18. The amplitude of several spikes is large in 

comparison with the case of no packing material, showing that the strength of 

current pulses has been enhanced. In addition to the filamentary mode, the 

quartz fibres provide a surface along which a surface discharge can propagate. 

Therefore, it is likely that both filamentary and surface discharges operate when 

quartz wool is present in the discharge gap. The introduction of zeolite 3A to the 

discharge region causes both the amplitude and the number of current pulses to 
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decrease significantly (Figure 3.19). When zeolite beads were packed into the 

discharge gap, the available discharge volume was greatly reduced, effectively 

limiting the distance over which filamentary microdischarges can form. 

However, weak filaments can be generated in the void between particle-particle 

and particle-quartz barrier. The relative contributions of filamentary and surface 

discharges is therefore dependent on the particle size and hence volume fraction 

of the packed material [16]. 

The Lissajous figures for no packing, quartz wool and zeolite 3A are shown in 

Figure 3.20 for a constant discharge power of 30 W. The shape of the Lissajous 

figure for no packing material and quartz wool are almost identical and can 

barely be distinguished on the same plot. However, the Lissajous shape changed 

when zeolite beads were used as a reactor packing material. This further 

indicates that physical changes to the discharge mode have taken place.  
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Figure 3.20: Lissajous figures of a CH4/CO2 = 1 DBD with the discharge gap 

packed with quartz wool, zeolite 3A and in the absence of a packing material, at 

a fixed discharge power of 30 W. 
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The angles in the Lissajous figures represent different electrical parameters of 

the discharge. These have been calculated for the plasma discharges and are 

shown quantitatively in Table 3.2. Methods for the calculation of these 

parameters have been derived from several publications on electrical properties 

of DBDs [17-19] and are detailed in Appendix B. 
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Gas Type Packing  

Material 

Applied 

Voltage pk-pk 

(kV) 

Breakdown 

Voltage  

(kV) 

Charge  

pk-pk 

(nC) 

Charge 

Discharged 

(nC) 

Transferred Charge 

per Half Cycle  

(nC) 

Total 

Capacitance 

(pF) 

 CH4/CO2 No Packing 16.4 2.19 202 122 81 7.7 

CH4/CO2 Quartz Wool 18.2 1.59 211 103 70 7.5 

CH4/CO2 Zeolite 3A 19.0 0.66 343 177 77 15.8 

 

 

Table 3.2: Electrical parameters of a DBD at constant power (30 W) in the absence of a packing material and when quartz wool and zeolite 3A 

are packed into the discharge gap. Methods for the calculation of these parameters have been derived from several publications on electrical 

properties of DBDs [11, 17-19] and are detailed in Appendix B. 
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The results in Table 3.2 show that despite the constant dissipated power in the 

plasma discharge, the applied voltage increases from 16.4 kVpk-pk, in the case of 

no packing to 18.2 kVpk-pk and 19.0 kVpk-pk in the cases of quartz wool and the 

zeolite respectively. Given that the discharge power is the same in each case, 

the current must be smaller in the quartz wool and zeolite packed plasma 

discharges. This is due to the increased resistance of the packing materials in 

comparison with the gas gap, which will limit the current flow. The breakdown 

voltage (Vb) decreases significantly with the addition of packing materials from 

2.19 kV to 1.59 kV for quartz wool and 0.66 kV for zeolite. This can be 

attributed to a change in discharge mode in going from purely filamentary 

discharge to a combination of filamentary and surface discharges with quartz 

wool and predominantly surface discharge when zeolite is used. The breakdown 

of gas in the formation of surface discharge is likely to require a lower 

breakdown voltage due to the accumulation of charges that occur on the surface 

of the packing material. This is demonstrated in the data for peak to peak charge 

shown in Table 3.2 where the charge is greater for quartz wool (211 nC) and 

zeolite (343 nC) discharges compared with the discharge when no packing 

material is present (202 nC). Especially in the case of zeolite packing, the peak 

to peak charge is large, which suggests that the zeolite has an enhanced ability 

to store electrical charge on the surface. This is demonstrated by a larger 

capacitance value of 15.8 pF, more than twice the magnitude of the capacitance 

for no packing and for quartz wool (7.7 pF and 7.5 pF respectively). 

 

 

3.6 Images of Plasma Generation on Packing Materials (work 

carried out at AIST, Japan) 

Images have been taken of plasma generation during dry reforming of CH4 in 

the absence of a packing material and with different materials packed inside the 

discharge gap. A schematic diagram of the optical observation system used to 

take these images is shown in Figure 3.21. The system consists of a parallel-

plate DBD reactor, an AC power supply (Neon transformer), an XY stage, an 

optical microscope (Hamamatsu Photonics, A7976), an image-intensified 

charge coupled device (ICCD) camera and a PC installed with HiPic software 
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(Ver. 8.1). The ICCD consisted of an image-intensifier (Hamamatsu Photonics, 

C9016-03) and a digital CCD camera (Hamamatsu Photonics, C8484-05G). 

This microscopic observation system offers a rough-but-rapid evaluation of 

materials for plasma-catalytic processes [20].  

 

 

 

Figure 3.21: Schematic diagram of the optical microscopic observation system 

for plasma generation on different surfaces. Taken from [20].  

  

The gas mixture of CH4 and CO2 (CH4/CO2 = 1) was controlled using mass flow 

controllers at a total flow rate of 100 ml min
-1

 at a pressure of 1 bar. The 

revolver was positioned to use a lens of 2 × magnification. The lens was 

focused onto the packing material using the XY stage. A 45 kV potential 

difference was applied across the discharge gap and the plasma was allowed to 

stabilise before the images were taken. The exposure time of the ICCD camera 

was set to 100 ms, which corresponds to ~ 5 cycles of the AC applied voltage 

(50 Hz). The DBD reactor consists of a closed glass cell with a 6 mm discharge 

gap. Aluminium tape electrodes (10 mm × 28 mm) were attached to the outer 

sides of the two glass dielectrics (Figure 3.22 a). The upper face of the cell was 

a quartz plate, through which the images were taken (Figure 3.22 b). 

Imaging of plasma generation on different materials or catalysts can yield 

valuable information about the influence of that material on the discharge 
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formation. Challenges associated with imaging of CH4 and CO2 discharges 

include a relatively low light intensity and the need for a closed cell to contain 

the gas mixture. The use of a closed gas cell inevitably leads to some reflection 

of light that can interfere with the quality of the images. 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: DBD reactor used to take images of plasma generation on 

different surfaces during dry reforming of CH4 a) DBD cell (side-view), b) 

quartz upper plate of DBD cell with a 6 mm discharge gap. 

 

3.6.1 Plasma Generation in the Absence of a Packing Material 

In the absence of a packing material, the plasma was of a relatively high 

intensity at one electrode but it was not uniform across the discharge gap as 

shown in Figure 3.23. Formation of a few individual plasma filaments could be 

observed extending across the discharge gap. 
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Figure 3.23: Microscope-ICCD image of plasma generation in the absence of a 

reactor packing material. 

 

3.6.2 Quartz Wool 

a) 

 

 

 

 

 

 

 

 

b)     c) 

 

 

 

  

 

 

 

 

Figure 3.24: Microscope-ICCD images of a) quartz wool, b) uniform plasma 

discharge observed on the surface of quartz wool c) streamer formation on the 

quartz wool surface. 
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The addition of quartz wool to the discharge gap enhanced the intensity and 

uniformity of the plasma generation. Figure 3.24 (a) shows the discharge gap 

when it was packed with quartz wool, before the plasma was switched on. 

When the plasma discharge was turned on, plasma filaments could be seen 

extending across the entire discharge gap between the two electrodes, as shown 

in Figure 3.24 (b and c). 

 

3.6.3 γ-Al2O3 

The use of Al2O3 beads in the discharge gap appeared to give a relatively low 

intensity of observable plasma, as shown in Figure 3.25. Weak surface 

discharges could be observed on the beads, as well as slightly more intense 

microdischarges between the beads where the electric field strength is likely to 

be greater. 

 

a)     b) 

      

 

Figure 3.25: Microscope-ICCD images of a) γ-Al2O3 beads and b) plasma 

generation on γ-Al2O3 beads. 

 

3.6.4 BaTiO3 Beads 

Plasma generation in the presence of BaTiO3 beads is shown in Figure 3.26. In 

Figure 3.26 (b), three spots of intense plasma can be observed that correspond 

to the contact points between the beads. This is due to an enhanced electric field 

strength at these contact points. In addition, the formation of a single plasma 

filament was observed, that extended across the surface of the upper-most bead 
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(Figure 3.26 c). Kim et al. [21] have obtained similar images of plasma 

generation with the presence of zeolite in the discharge gap, they found that 

plasma generation could be extended more homogeneously across the surface of 

the beads when the zeolite beads were coated with silver nanoparticles.  

 

a) 

 

 

 

 

 

 

 

 

 

b)     c) 

 

 

 

 

 

 

 

 

Figure 3.26: Microscope-ICCD images of a) BaTiO3 beads, b) spots of plasma 

generation at contact points between BaTiO3 beads and c) streamer extending 

over the surface of a BaTiO3 bead. 

 

 

3.7 Discussion 

The observed changes in both conversion efficiencies and product selectivities, 

when different materials were present in the discharge gap suggest that these 

materials may have had catalytic effects on dry reforming of methane. However, 
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the role of a catalyst in plasma systems may be substantially different to that of 

catalysts in conventional thermal reactions. In conventional catalysis, the role of 

the catalyst is in the adsorption and dissociation of gas molecules. There are two 

generally accepted models for heterogeneous catalysis: 1) the Langmuir-

Hinshelwood mechanism, where gas molecules are adsorbed onto the catalyst 

surface and reactions occur between adsorbents and 2) the Eley-Rideal 

mechanism where adsorbed molecules react upon collision with species still in 

the gas phase [22]. The plasma may assist in these processes by providing 

radicals and vibrationally excited species (formed in the plasma volume) that 

could be more susceptible to adsorption and also more reactive. The 

chemisorption and desorption processes are likely to differ significantly in a 

plasma where substantial charges exist on the surface of materials packed in the 

discharge gap [23]. In addition, new stable molecules will be formed in the 

plasma volume, for example in a CH4 and CO2 discharge, higher hydrocarbons 

C2 and C3 are formed. These hydrocarbons may also be adsorbed onto a catalyst 

and undergo conversion into new species. This provides alternate reaction 

pathways in plasma systems that do not exist by conventional thermal catalysis. 

These processes may help to explain why some materials that do not possess any 

thermal catalytic activity can have catalytic effects in plasma systems. 

The addition of packing materials into a discharge gap can affect the type of 

discharge formed as shown by the observed changes to the current waveforms 

for the use of different packing materials. The change in discharge mode 

between filamentary and surface discharges or a combination of both may 

induce a shift in the energy distribution of the accelerated electrons, which in 

turn will influence the production of active plasma species such as free radicals 

and excited states and ultimately lead to the formation of different end products 

[24]. Materials that can enhance the plasma intensity such as quartz wool are 

effective in improving conversions of CH4 and CO2. Other materials such as 

zeolite are effective in changing the product selectivities towards different end 

products such as H2 and also C2 – C4 hydrocarbons (in the case of zeolite 3A). 

The dielectric constants of the packing materials studied in this chapter vary 

greatly as shown by the data in Table 3.3. Assuming that the dielectric 

properties of the gas in the discharge gap is negligible, one might expect that the 

differences in plasma generation and hence, chemical activity for the different 
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packing materials could be attributed to a trend in dielectric constants, however 

this is not the case. This suggests that the dielectric properties of the packing 

material may not be as significant as other factors such as the size, shape and 

porosity of the material. 

 

Material Dielectric Constant (k)  Reference 

Quartz 4 [25] 

Al2O3 9 [26] 

Zeolite 1 – 3 [25] 

BaTiO3 6000 – 10000  [27] 

TiO2 114 [28] 

 

Table 3.3: Dielectric constants of the packing materials at 1 MHz (at ~ 300 K). 

 

Packing materials can also enhance the ability to form a stable plasma discharge 

at a given voltage. For example, the range of input powers that could be 

achieved when no packing material was present in the coaxial reactor was quite 

narrow (~ 18 W – 37 W), whereas with packing materials present there was an 

ability to form stable discharges at a wider range of input powers for the same 

range of applied voltages. 

 

 

3.8 Conclusions 

The comparison of a coaxial DBD reactor and a BaTiO3 packed-bed DBD 

reactor has shown that the coaxial configuration is more effective for converting 

CH4 and CO2 and resulted in higher yields of H2. In addition, the coaxial 

configuration provides a greater potential for modification of reaction products 

by the addition of catalysts to the discharge gap. The use of different packing 

materials in the coaxial reactor revealed changes to the reactant conversions and 

product selectivities for the use of different packing materials. The activity was 

found to decrease in the order: quartz wool > no packing > Al2O3 > zeolite 3A > 

BaTiO3 > TiO2. Zeolite 3A was found to improve selectivities towards H2 as 
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well as light hydrocarbons (C2 – C4), which is thought to be due to shape 

selectivity, determined by the pore size of the zeolite.  

Analysis of the electrical waveforms showed that changes to the discharge 

mode occurred when different packing materials were used in the discharge gap. 

Intense filamentary discharges were formed when quartz wool was packed into 

the discharge gap. Whereas the addition of zeolite 3A can inhibit filamentary 

discharges but allows the formation of a weak surface discharge. Microscope-

ICCD images of these packing materials show that enhanced plasma generation 

is visible on quartz wool in comparison with other packing materials. The 

evaluation of the plasma activity with different packing materials in the 

discharge gap can provide an insight into the appropriateness of these materials 

for use as catalyst supports. This could aid the development of supported 

catalysts specifically for plasma processes. 
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4. Dry Reforming of Methane in a Coaxial DBD Reactor: 

Variation of CH4/CO2 Ratio and Introduction of a 

NiO/Al2O3 Catalyst 

 

 

4.1 Introduction 

The work in this chapter has been carried out whilst a fellow at the National 

Institute for Advanced Industrial Science and Technology (AIST) in Tsukuba, 

Japan. This fellowship has formed part of an ongoing collaboration with the 

Excited State Chemistry Group of these national laboratories. Consequently, the 

experimental set-up and DBD reactor used in this study is slightly different to 

that used in the rest of this thesis. 

The present understanding of the reactions of CH4 and CO2 in plasma-assisted 

dry reforming of methane is limited, making it difficult to optimise reaction 

conditions or predict end-products theoretically. In a review by Istadi [1] the 

discharge power, discharge gap, voltage and CH4/CO2 molar ratio are identified 

as having the most significant effects on the reaction performance. The 

reforming of CH4-only and CO2-only in DBDs has received little attention in the 

literature; however, the behaviour of these species in a plasma discharge has 

fundamental implications for plasma-assisted dry reforming of methane. The 

reforming of undiluted CH4 in DBD with a ceramic foam packing material has 

been investigated by Kraus et al. [2], who identified the reaction products as H2, 

ethane, ethylene and propane. Paulussen et al. [3] have investigated undiluted 

CO2 reforming in a DBD reactor for the formation of CO and O2. Variation of 

CH4/CO2 mixing ratio for dry reforming of methane in DBDs has been studied 

over various zeolites [4, 5], Ni and Rh-coated ceramic foams [6], perovskite 

LaNiO3 [7] and in the absence of a catalyst [8-10]. In general, it is agreed that 

increasing the discharge power or the inlet gas temperature leads to increased 

reactant conversions but the effects of mixing ratio and reactor geometries on 

dry reforming of methane is more ambiguous, particularly concerning the 

relative selectivities of products. 
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This chapter investigates the effect of the variation in feed gas ratios (CH4/CO2) 

in the absence of a catalyst, including the reforming of 100 % CH4 and 100 % 

CO2 in a DBD reactor. The effect of the addition of a NiO/Al2O3 catalyst to the 

discharge gap is also examined for different feed gas ratios. The catalyst used in 

these experiments is a commercial steam methane reforming catalyst. In the 

latter part of this chapter, results for the calculated thermodynamic equilibrium 

gas compositions for dry reforming of methane are presented for different feed 

gas ratios and comparisons are made with the reaction in non-equilibrium 

plasma. 

 

 

4.2 Experimental Section 

The experimental set-up used for this investigation was similar to that used at 

The University of Manchester except for the addition of a valve with gas 

sampling point downstream of the DBD reactor and the use of FTIR 

spectroscopy in place of the micro-GC, as shown in Figure 4.0.  

 

 

 

Figure 4.0: Schematic diagram of the experimental set-up and coaxial DBD 

reactor used for dry reforming of methane experiments (carried out at AIST, 

Tsukuba). 
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Methane and carbon dioxide (Takachiho, 99.99% and 99.95 % respectively) gas 

flows (50 – 100 ml min
-1

) were controlled by previously calibrated mass flow 

controllers (Kofloc) and fed into the reactor at a pressure of 1 bar. 

Concentrations of CH4 and CO2 were measured using FTIR spectroscopy 

(Perkin Elmer, Spectrum One) with a 50 mm length gas cell (Pike Technologies) 

to avoid signal saturation caused by high concentrations of these reactant gases. 

The humidity of the laboratory air was controlled throughout and the area 

immediately surrounding the gas cell was continuously purged with N2 to avoid 

any interference from atmospheric H2O vapour and CO2. Concentrations of 

product gases (H2, CO and C2 – C3 hydrocarbons) were measured using three 

GC instruments with a sampling and injection technique (H2 – Shimadzu GC-8A 

with TCD, hydrocarbons – Shimadzu GC-14A with FID, CO – Shimadzu GC-

14B with TCD). 

Figure 4.0 also shows the coaxial DBD reactor that was used in these 

experiments. It consisted of a single quartz tube (OD: 24 mm, ID: 20.5 mm) 

which acted as the dielectric barrier, as well as containing the gas flow. A 

concentrically positioned stainless steel rod (OD: 12.5 mm) served as the inner 

electrode and a silver paste (Nilaco) that was uniformly painted to the outside of 

the quartz tube (5 cm length) served as the outer electrode. The volume of the 

discharge region was 10.4 cm
3
. The reactor was housed in a furnace, which was 

switched off after pre-treatment of the catalyst. 

During plasma-catalytic experiments, a 33 wt. % NiO/Al2O3 catalyst (Johnson 

Matthey) was introduced to the discharge gap. Prior to use, the catalyst was 

crushed and sieved to give particle sizes of 1 – 1.2 mm and was heated to 

300 °C in a N2 atmosphere to remove any adsorbed species. During the 

experiments, the catalyst filled the entire discharge gap and was supported by 

quartz wool, which was positioned just below the discharge region (Fig. 4.0). 

Approximately 12 g of catalyst were used for each experiment. Between 

experiments an O2 plasma was used to oxidise any carbonaceous deposits on the 

reactor walls; a technique which has been described by Kim et al. [11]. 

A high voltage power supply (Dawonsys) was used to apply a variable AC 

voltage of < 28 kVpk-pk at a fixed sine wave frequency of ~ 1 kHz. The voltage-

current waveforms were measured using an oscilloscope (Tektronix TDS-3034B) 

and the plasma power was calculated using the Lissajous method by software 
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that was developed in-house at AIST (V-Q Lissajous Program Ver. 1.71). 

During these experiments, the power in the reactor was increased between each 

measurement up to a maximum of ~ 30 W. In order to achieve a higher specific 

input energy (SIE), the total flow rate was varied between 50 and 100 ml min
-1

. 

The SIE is defined as shown by equation 4.0. The short lifetimes of active 

species and the rapid reactions in a plasma discharge means that the gas flow 

rates (and residence times) are not a limiting factor in plasma reactions and 

therefore do not directly influence the reaction performance. However, the 

specific input energy is an important variable that directly influences the 

reaction and this parameter does change with flow rate and/or residence time. 

The experiments that are reported in Chapter 3 were carried out at a constant 

flow rate; therefore it was not necessary to convert the conditions to units of SIE 

(kJ L
-1

). For comparison, the experiments in this chapter were performed in the 

range 5 – 25 kJ L
-1

 and the experiments in Chapter 3 were performed in the 

range 23 – 43 kJ L
-1

. 

 

Specific Input Energy (kJ L
-1

) = [Power (W) / Flow rate (L s
-1

)] / 1000 (4.0) 

 

Calculations of conversions, selectivities, H2 yields and carbon balances were 

performed as described in Chapter 3 (equations 3.0 – 3.4). 

 

 

4.3 Results 

In order to optimise reaction conditions for dry reforming of methane, it is 

important to gain an understanding of the fundamental reactions taking place in 

both CH4-only and CO2-only plasmas in the absence of a catalyst.  

 

4.3.1 CH4 Reforming 

The results for reforming of CH4 in a DBD are shown in Figures 4.1 – 4.3. The 

conversions of CH4 increase from 0.8 – 2.5 % with increasing SIE in the range 

4.7 – 10.9 kJ L
-1

 (Fig. 4.1). The low conversions reflect the high stability of the 

CH4 molecule. Figure 4.2 shows that the relative selectivities of the products of 

CH4 reforming decrease in the order: C2H2 > H2 ≈ C3H8 > C2H4 ≈ C2H6 ≈ C3H6.  
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Figure 4.1: Conversions of CH4 in a DBD reactor (feed gas 100 % CH4). 
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Figure 4.2: Product selectivities during the reforming of CH4 in a DBD reactor 

(feed gas 100 % CH4). 
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The decrease in product selectivities with increasing SIE (Fig. 4.2) is not 

considered to be significant in this case due to an association of larger 

measurement uncertainties for very small gas concentrations (< 0.5 % of the 

total gas concentration) using GC. Kraus et al. [6] performed CH4 reforming in a 

DBD reactor containing a ceramic foam. The detected hydrocarbon products 

were C2H6/C2H4 (unseparated) and C3H8 in a 3/1 ratio. Brock et al. [2] carried 

out reforming of 1.13 % CH4 diluted in helium using a DBD, they reported 

ethane and propane to be the main reaction products. These studies are in 

contrast to this investigation where acetylene (C2H2) was observed in the highest 

concentration amongst the reaction products. 

In a plasma discharge, the formation of higher hydrocarbons proceeds via 

reactions involving ions, radicals and electronically excited species. Radical 

reactions where the rate-determining step is the formation of methyl radicals 

(CH3˙) are likely to be the most important processes in plasma mechanisms [12]. 

Reactions also proceed via CH2˙ and CH˙ radicals but the rate of formation of 

these species is lower than for methyl radicals and therefore is considered less 

significant, as implied by the rate constants for the electron impact processes 

shown in equations 4.0 and 4.1. Table 4.0 lists the main radical reactions 

responsible for the formation of H2 and light hydrocarbons, and demonstrates 

the complexity of the possible reaction mechanisms occurring within the plasma 

volume. Competing reactions include the recombination of radicals to form CH4 

and the electron impact dissociations of the higher hydrocarbons to give lighter 

hydrocarbon products, as well as the reactions of excited state species. There are 

generally two routes to C2 hydrocarbons: reactions involving primary radicals 

(CH3˙, CH2˙, CH˙ and H˙) and those involving secondary radicals (C2H3˙, 

C2H5˙, C2H7˙ etc.). It could be expected that C3+ hydrocarbons would be less 

abundant as they can only be formed through reactions of secondary radicals. 

However, in this investigation C3H8 was more abundant than C2H6 and C2H4 in 

the reforming products. 
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Eq. Reaction Rate constant /  

cm
3
 molecule

-1
 s

-1
 

Temperature 

Range / K 

 

 

4.0 

 

Primary Processes 

CH4 + e
-
 → CH3˙ + H˙ + e

-
 

 

 

3.46 × 10
-10 

 

 

400 

4.1 

4.2 

4.3 

 

 

4.4 

 

 

4.5 

4.6 

4.7 

4.8 

 

 

4.9 

4.10 

4.11 

4.12 

4.13 

4.8 

4.14 

4.15 

 

 

4.16 

4.17 

4.18 

4.19 

CH4 + e
-
 → CH2˙ + H2 + e

-
 

CH4 + e
- 
→ CH˙ + H2 + H˙ + e

-
  

CH4 + e
-
 → C + H2 + H2 + e

-
 

 

Hydrogen Formation 

H˙ + H˙ → H2 

 

Ethane Formation 

CH3˙ + CH3˙ → C2H6 

CH4 + CH2˙ → C2H6 

C2H6 + e
-
→ C2H5˙ + H˙ + e

-
 

C2H5˙ + C2H5˙ → C2H4 + C2H6 

 

Ethylene Formation 

CH3˙ + CH3˙ → C2H4 + H2 

CH2˙ + CH2˙ → C2H4 

CH3˙ + CH2˙ → C2H4 + H˙ 

C2H5 + CH3˙ → C2H4 + CH4 

C2H5˙ + CH2˙ → C2H4 + CH3˙ 

C2H5˙ + C2H5˙ → C2H4 + C2H6 

C2H5˙ + H˙ → C2H4 + H2 

C2H5˙ → C2H4 + H˙ 

 

Acetylene Formation 

CH2˙ + CH2˙ → C2H2 + H2 

CH˙ + CH˙ → C2H2 

CH2˙ + CH˙→ C2H2 + H˙ 

C2H4 + H˙ → C2H3˙ + H2 

3.13 × 10
-10 

 

 

 

 

8.0 × 10
-14

 

 

 

1.19 × 10
-7

 

4.3 × 10
-1 

 

2.51 × 10
-11 

 

 

 

 

7.01 × 10
-11 

9.13 × 10
-12 

3.01 × 10
-11

 

2.51 × 10
-11 

2.82 × 10
-12

 

3.04 × 10
-8 

 

 

5.3 × 10
-11 

1.99 × 10
-10 

 

2.84 × 10
-11

 

400 

 

 

 

 

400 

 

 

400 

298 

 

323 – 488 

 

 

 

 

300 – 3000 

351 – 521 

300 – 2500 

323 – 488 

503 – 753 

400 

 

 

298 

298 

 

300 – 1500 
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4.20 

4.21 

4.22 

 

 

4.23 

4.24 

4.25 

4.26 

4.27 

4.28 

 

 

4.29 

4.30 

4.31 

4.32 

4.33 

4.34 

4.35 

4.36 

4.37 

C2H4 + e
- 
→ C2H3˙ + H˙ + e

-
 

C2H3˙ + H˙ → C2H2 + H2 

C2H3˙ → C2H2 + H˙ 

 

Propane Formation 

C2H6 + CH3˙ → C3H8 + H˙ 

C2H5˙ + CH3˙ → C3H8 

C2H6 + CH2˙ → C3H8  

C2H5˙ + CH4 → C3H8 + H2 

C2H5˙ + C2H4 → C3H8 + CH˙ 

C2H5˙ + C2H5  ̇→ C3H8 + CH2˙ 

 

Propene Formation 

C2H3˙ + CH3˙ → C3H6 

C2H4 + CH3˙→ C3H6 + H˙ 

C2H5˙ + CH3˙ → C3H6 + H2 

C2H4 + CH2˙→ C3H6 

C2H5˙ + CH2˙ → C3H6 + H˙ 

C2H6 + CH2˙ → C3H6 + H2 

C2H6 + CH˙ → C3H6 + H˙ 

C3H8 + e
-
 → C3H7˙ + H˙ + e

-
 

C3H7˙ → C3H6 + H˙ 

 

2.02 × 10
-10

 

4.98 × 10
-9 

 

 

4.7 × 10
-11 

4.06 × 10
-11 

4.8 × 10
-12 

 

 

 

 

 

1.2 × 10
-10 

 

 

 

 

 

3.0 × 10
-11

 

 

200 – 2000 

500 – 2500 

 

 

300 – 800 

400 

304 

 

 

 

 

 

298 

 

 

 

 

 

298 

 

Table 4.0: Radical reactions and kinetic data (where available at low 

temperatures) for the reforming of CH4 in a plasma discharge (rate data taken 

from NIST online database [13]).  

 

Figure 4.3 shows that the carbon balance in the gas stream decreases with 

increasing SIE. The selectivity towards coking can be obtained by subtracting 

the selectivities of carbon-containing products from 100 %, using Figure 4.2 

(assuming that formation of other unidentified carbonaceous products is 

negligible). Using this method, the selectivity towards solid carbon at 10.9 kJ L
-1

 

is ~ 22 %. This accounts for a loss of ~ 0.6 % of the total carbon from the gas 

mixture. However, a larger loss of ~ 2 % carbon is apparent from the carbon 
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balance. The discrepancy between these values is within the uncertainty of 3 % 

associated with the measurements. Brock et al. observed a very large selectivity 

towards coking of 89.0 % (with 6.8 % CH4 conversion) in a DBD reactor [2]. 

However, in this case the CH4 reactant was diluted in helium which may have 

had a detrimental effect on the relative product selectivities. In the study of 

undiluted CH4 reforming by Kraus [14], carbon deposits were observed on the 

ceramic foam that was used to pack a DBD reactor, but the deposition was not 

quantified. 
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Figure 4.3: Gas stream carbon balance during the reforming of CH4 in a DBD 

reactor. 

 

4.3.2 CO2 Reforming 

 

CO2 → CO + ½ O2    ΔHº = 283 kJ mol
-1

   (4.38) 

 

The plasma reforming of CO2 is much more straightforward than plasma 

reforming of CH4, owing to the formation of only two gaseous products as 

shown by equation 4.38. The conversions of CO2 increased with increasing SIE 

from 3.1 – 5.3 % at specific input energies of 6.1 – 13.6 kJ L
-1

 (Figure 4.4). For 

the same SIE, the conversions of CO2 are approximately twice as large as the 
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conversions of CH4. This is thought to be due to a lower threshold energy for the 

electron impact dissociations of CO2 (~ 6.4 eV) compared with that of CH4 

(~7.5 eV), as discussed in section 4.4. 
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Figure 4.4: CO2 conversion in a DBD reactor (feed gas 100 % CO2). 
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Figure 4.5: CO selectivity during the reforming of CO2 in a DBD reactor (feed 

gas 100 % CO2). 
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The selectivity towards CO is largely independent of the SIE. Under the range 

of conditions tested, the CO selectivity varied between 67.3 % and 71.9 %. 

Similar results were obtained by Paulussen et al. [3], who reported that the CO 

yield was weakly dependent on the discharge power, varying between 3.5 % and 

6 % for a variation of wall power in the range 100 – 200 W. The primary and 

secondary radical processes showing the formation of CO and O2 are shown in 

Table 4.1. The dissociation of CO2 is responsible for the formation of carbon 

monoxide and oxygen radicals (4.39) or solid carbon and O2 (4.40). O2 can be 

formed during the coupling of oxygen radicals (4.41). In addition, CO can 

undergo a dissociation that is responsible for the deposition of solid carbon 

(4.42). 

 

Eq. Reaction Rate constant / 

cm
3
 molecule

-1
 s

-1
 

Temperature 

Range / K 

 

 

4.39 

4.40 

 

 

4.41 

4.42 

 

Primary Processes 

CO2 + e
- 
→ CO + O˙ + e

-
 

CO2 + e
- 
→ C + O2 + e

-
 

 

Secondary Processes 

O˙+ O˙ → O2 

CO + e
-
 → C + O˙ + e

-
 

 

 

1.29 × 10
-9 

 

 

 

1.39 × 10
-9

 

 

 

400 

 

 

 

400 

 

Table 4.1: Radical reactions and kinetic data (where available at low 

temperatures) for reforming of CO2 in a plasma discharge (rate data taken from 

NIST online database [13]).  

 

The carbon balance in the gas stream during the plasma-assisted reforming of 

CO2 is shown in Figure 4.6. The carbon balance decreases slightly with 

increasing SIE. At 13.6 kJ L
-1

, the selectivity towards solid carbon is 28.1 %, 

accounting for a loss of ~ 1.5 % of the total carbon from the gas mixture. In a 

similar investigation, Kraus et al [6] observed carbon in the reactor after dry 

reforming of CH4, but they were unable to quantify this carbon deposition. 



 138 

0 5 10 15

75

80

85

90

95

100

C
a

rb
o

n
 B

a
la

n
c
e

 (
%

)

SIE (kJ L
-1
)

 

Figure 4.6: Gas stream carbon balance during the reforming of CO2 in a DBD 

reactor. 

 

4.3.3 Variation of CH4/CO2 Ratio 

Methane conversions are strongly influenced by the presence of CO2. The 

conversions of CH4 increased significantly with increasing CO2 concentration in 

the feed gas. This is shown in Figure 4.7 in the results for dry reforming of CH4 

at three different CH4/CO2 ratios. The conversions of CO2 increased only 

slightly with increasing CO2 in the feed gas, as shown in Figure 4.8. In 

agreement with these observations, Goujard et al. [7] reported increased 

conversions of both reactants with a decreasing CH4/CO2 feed gas ratio. 

Conversions of CH4 are promoted by the presence of excited oxygen species in a 

plasma discharge containing CO2 [1]. The reactive oxygen may assist by the 

removal of H atoms from CH4 to generate hydroxyl radicals (4.43) [7]. In turn, 

hydroxyl radicals could have a similar role in the reaction chemistry by 

removing an H atom from CH4 to form H2O (4.44). 

 

CH4 + O˙ → CH3˙ + ˙OH    (4.43) 

CH4 + ˙OH → CH3 ˙ + H2O   (4.44) 
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Figure 4.7: Effect of CH4/CO2 ratio on CH4 conversions in plasma-assisted dry 

reforming of methane in a DBD reactor. 
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Figure 4.8: Effect of CH4/CO2 ratio on CO2 conversions in plasma-assisted dry 

reforming of methane in a DBD reactor. 
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During plasma-assisted dry reforming of methane, the conversions of CH4 are 

greater than the conversions of CO2. This is in agreement with the results 

obtained in Chapter 3. However, these results are surprising, considering the 

results for reforming of CH4-only and CO2-only, where the CO2 conversions 

were greater than those of CH4. It has been suggested by Yao et al. [15] that 

CO2 conversions during dry reforming of methane are hindered by a competing 

reaction between CO and ˙OH radicals (4.45); a process that is not possible 

during CO2 reforming alone. 

 

CO + ˙OH → CO2 + H˙  (4.45) 

 

The relative product selectivities for each of the three CH4/CO2 feed gas ratios 

are shown in Figures 4.9 – 4.11. It is clear that for higher CH4/CO2 ratios, higher 

selectivities towards C2 and C3 hydrocarbons are obtained. The highest 

selectivity of hydrocarbons was observed for a pure methane feed; however, the 

conversion of CH4 was lower in the absence of CO2. The selectivity towards H2 

was found to increase slightly for increasing the CH4/CO2 ratio. It follows that 

selectivity towards CO is strongly dependent on the feed gas ratio, with greater 

selectivities when there is a higher CO2 content in the feed. These results are in 

agreement with those obtained in similar studies [7, 10, 16]. 

Figure 4.12 shows the H2 yields for three different CH4/CO2 feed gas ratios. H2 

yields were greater when the CH4 concentration in the feed was low due to 

enhanced conversions of CH4. The H2/CO ratio in the product gas is shown in 

Figure 4.13, where higher CH4/CO2 ratios lead to a lower syngas ratio.  
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Figure 4.9: Product selectivities during the plasma-assisted dry reforming of 

CH4, where CH4/CO2 = 0.33. 
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Figure 4.10: Product selectivities during the plasma-assisted dry reforming of 

CH4, where CH4/CO2 = 1. 
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Figure 4.11: Product selectivities during the plasma-assisted dry reforming of 

CH4, where CH4/CO2 = 3. 
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Figure 4.12: Effect of CH4/CO2 ratio on H2 yield in plasma-assisted dry 

reforming of methane in a DBD reactor. 
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Figure 4.13: Effect of CH4/CO2 ratio on the H2/CO ratio in plasma-assisted dry 

reforming of methane in a DBD reactor. 

 

The generation of O˙ and ˙OH radicals in dry reforming of CH4 can create 

additional product channels leading to the formation of oxygenated species. The 

formation of H2O, methanol (CH3OH), dimethyl ether (CH3OCH3) and 

formaldehyde (CH2O) have been reported as minor reaction products [10, 17] as 

well as heavier oxygenates including C7 – C12 species [7]. Many different 

reactions are possible in a CH4/CO2 mixture, these have been listed by Nair et al. 

[18] showing the formation of many higher oxygenated compounds. In this 

investigation, a small amount of methanol was detected using a colourimetric 

methanol detection tube; however, quantification was not possible using this 

method. The most probable route to methanol formation is through the coupling 

of methyl and hydroxyl radicals (4.46).  

 

CH3˙ + ˙OH → CH3OH   (4.46) 

 

The results for the gas stream carbon balance show that deposition of carbon 

was more severe for mixing ratios with a lower CH4/CO2 ratio. However, this is 
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due to the higher conversions of CH4 and CO2 in this case and no significant 

difference in the selectivities towards solid carbon could be derived from the 

experimental results. This is due to errors associated with the measurement of 

very small hydrocarbon concentrations giving a relatively large fluctuation in 

the calculated selectivities for the hydrocarbon species. Across each of the feed 

gas ratios, the selectivities towards solid carbon (or other unidentified 

carbonaceous products) fluctuated in the range 10 – 38 %. Goujard et al. [7] 

described the same observation as „missing carbon‟ and it has been quantified as 

34.2 – 43.1 %. However, in this case the missing carbon clearly increased with 

increasing CO2 content in the feed gas. They suggested that the selectivity 

towards oxygenated species was higher in CO2-rich mixtures. In contrast, Huang 

et al. [16] reported the opposite trend of increased „missing carbon‟ for CH4-rich 

mixtures, which they suggested was a result of CH4 decomposition to give H2 

and solid carbon. 

 

4.3.4 Variation of CH4/CO2 Ratio Using a NiO/Al2O3 Catalyst 

The presence of a catalyst in a plasma discharge can affect the plasma reactions 

in a number of different ways, as previously discussed. It has been shown in 

Chapter 3 that introducing different packing materials into the discharge gap can 

affect the performance of plasma-assisted dry reforming of methane, despite an 

absence of active catalytic sites. This has been discussed in terms of the 

dielectric properties of the material, as well as the importance of particle size, 

shape and porosity, all of which are important considerations when selecting a 

reforming catalyst for use in a plasma system. Following on from this work, the 

effect of introducing an unreduced NiO/Al2O3 catalyst to the discharge gap has 

been investigated using three different CH4/CO2 feed gas ratios for comparison 

with previous results. In conventional catalytic reactions, this material does not 

show any catalytic activity in the oxidised form (it is active in the reduced 

Ni/Al2O3 form). The catalyst was not reduced in-situ during the plasma reaction 

in this study because the temperature of the plasma remained close to room 

temperature throughout. The use of Al2O3 as a packing material has been shown 

to decrease the reactant conversions during methane reforming compared to the 

reaction with no packing material at the same power. However, the presence of 
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33 wt. % NiO supported on Al2O3 may lower the dielectric constant and change 

the reaction performance, resulting in a possible catalytic effect. 

The results for dry reforming of methane with an unreduced NiO/Al2O3 packed 

into the discharge gap of the DBD reactor are shown in Figures 4.14 – 4.20. The 

conversions of CH4 (Figures 4.14) are not significantly changed in the presence 

of the catalyst compared with the plasma-only reaction. The conversions of CO2 

are increased in the presence of the NiO catalyst (Figure 4.15). One tentative 

explanation is that CO2 is adsorbed more strongly onto alumina, resulting in a 

longer residence time for CO2 molecules in the plasma and an increased 

probability of a dissociative reaction. 
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Figure 4.14: Effect of CH4/CO2 ratio on CH4 conversions in plasma-assisted 

dry reforming of methane with unreduced NiO/Al2O3 in the DBD reactor. 
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Figure 4.15: Effect of CH4/CO2 ratio on CO2 conversions in plasma-assisted 

dry reforming of methane with unreduced NiO/Al2O3 in the DBD reactor. 

 

The relative product selectivities for each of the three CH4/CO2 ratios tested are 

shown in Figures 4.16 – 4.18. The same general trends in product selectivities 

with different CH4/CO2 mixing ratios have been obtained in the presence and 

absence of the catalyst, although the product selectivities are not exactly the 

same in all cases. No significant differences in the product selectivities with and 

without the catalyst can be conclusively determined from the results. The H2 

yield at ~ 10 kJ L
-1

 varies between 0.6 – 1.6 % with the catalyst (Figure 4.19), 

compared with 0.9 – 1.9 % in the absence of the catalyst. The H2/CO ratios in 

the presence of the catalyst are shown in Figure 4.20, these are comparable to 

the H2/CO ratios during dry reforming of methane when no catalyst was present 

(Fig. 4.13). Overall, it can be deduced that the reaction performance has not 

been significantly improved by the presence of the unreduced NiO/Al2O3.  
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Figure 4.16: Product selectivities during the plasma-assisted dry reforming of 

CH4 with unreduced NiO/Al2O3, where CH4/CO2 = 0.33. 
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Figure 4.17: Product selectivities during the plasma-assisted dry reforming of 

CH4 with unreduced NiO/Al2O3, where CH4/CO2 = 1. 
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Figure 4.18: Product selectivities during the plasma-assisted dry reforming of 

CH4 with unreduced NiO/Al2O3, where CH4/CO2 = 3. 
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Figure 4.19: Effect of CH4/CO2 ratio on H2 yields in plasma-assisted dry 

reforming of CH4 with unreduced NiO/Al2O3 in a DBD reactor. 
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Figure 4.20: Effect of CH4/CO2 ratio on the H2/CO ratio in plasma-assisted dry 

reforming of CH4 with unreduced CH4/CO2 in a DBD reactor. 

 

 

4.4 Cross Sections for the Electron Impact Dissociations of CH4 

and CO2 

 

CH4 + e
-
 → CH3˙ + H˙ + e

-
  (4.0) 

CO2 + e
-
 → CO˙ + O˙ + e

-
  (4.39) 

 

The cross sections depicted in Figure 4.21 represent the probability of a 

dissociative reaction during a gas molecule collision with a free electron, as a 

function of the electron energy. The activation energy (Ea) for the electron 

impact dissociation of methane (4.0) is reported to be ~ 7.5 eV [19] and an 

increasing probability of dissociation exists at higher electron energies. Carbon 

dioxide has a lower activation energy of ~ 6.4 eV for electron impact 

dissociation (4.39) [20]. The CO2 cross section peaks at ~ 6.9 eV and then drops 

to almost zero at 9 eV. This means that collisions between CO2 and energetic 
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electrons will result in a dissociation when the electron energy is within a fairly 

narrow range (6.4 < eV < 9). 
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Figure 4.21: Cross sections for the low energy electron impact dissociations of 

CH4 and CO2 (data taken from [19] and [20]). 

 

A solution of the Boltzmann equation has been performed for determination of 

the electron energy distribution function (EEDF) in a CH4 and CO2 plasma 

discharge. This has been achieved using the ELENDIF computer code [21] 

developed to solve Boltzmann‟s equation for partially ionised plasmas using the 

electron-molecule cross sections for CH4 and CO2, from the works of Erwin and 

Kunc [19] and Phelps [20]. The output EEDF is shown in Figure 4.22. The 

ELENDIF computer code has also been used to calculate the mean electron 

energy of this electron distribution, which is indicated on the EEDF at 4.4 eV. 

By comparison of the cross sections and EEDF, it is clear that the mean electron 

energy is below the threshold energy for electron impact dissociation of both 

CH4 and CO2. Only the higher energy electrons in the tail of the EEDF have 

sufficient energy to induce a reaction during collisions.  

→ 

→ 
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Figure 4.22: Electron energy distribution function for a CH4 and CO2 plasma. 

Calculated using ELENDIF computer code for conditions of CH4/CO2 = 1 at 1 

atm and 127 °C. 

 

Figures 4.23 and 4.24 show the EEDF for a 100 % CH4 plasma and a 100 % 

CO2 plasma, respectively. The mean electron energy in a CH4 plasma is 4.6 eV, 

whereas the mean electron energy in a CO2 plasma is 4.3 eV, as indicated on the 

EEDFs. The mean electron energy is lower in a CO2 plasma because there are 

more successful electron impact collisions with CO2 (4.39) than in the case of 

CH4. During reactive collisions some of the electron energy is transferred to the 

dissociation products, therefore the mean electron energy is decreased. During 

electron impact collisions with CH4 (4.0), a higher proportion of collisions are 

unsuccessful, in which case the electrons would retain more energy, on average. 

In a mixture of CH4 and CO2 as shown in Figure 4.22, the mean electron energy 

(4.4 eV) is between that of CH4-only and CO2-only plasmas, as would be 

expected. 
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Figure 4.23: Electron energy distribution function for a 100 % CH4 plasma. 

Calculated using ELENDIF computer code for conditions of 1 atm and 127 °C. 
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Figure 4.24: Electron energy distribution function for a 100 % CO2 plasma. 

Calculated using ELENDIF computer code for conditions of 1 atm and 127 °C. 

 



 153 

Considering the relative proportion of electrons above the threshold energies for 

each species, it is expected that the electron impact dissociation of CO2 should 

be greater than the electron impact dissociation of CH4 during dry reforming of 

methane. This supports the results obtained for reforming of CO2-only and CH4-

only where CO2 conversions are greater than CH4 conversions under equivalent 

reaction conditions. However, during dry reforming of CH4, the conversions of 

CH4 are greater than those of CO2, suggesting that another process may be 

important for breakdown of CH4 molecules during dry reforming. As previously 

suggested (in section 4.3.3), it is probable that reactive oxygen radicals and 

hydroxyl radicals play a major role in enhancing the dissociation of CH4 in a 

plasma discharge.  

 

 

4.5 Calculation of Thermodynamic Equilibrium Compositions with 

Variation in CH4/CO2 Ratio  

HSC Chemistry Software (Ver. 5.0) has been used to calculate the 

thermodynamic equilibrium gas compositions for CH4 reforming, CO2 

reforming and dry reforming of CH4 at various CH4/CO2 mixing ratios and 

elevated temperatures. The assumed equilibrium products were H2, CO, O2 and 

C2 hydrocarbons. Reforming of CH4 requires temperatures > 500 °C but higher 

temperatures are needed to achieve significant conversions (Figure 4.25). At 

temperatures > 1500 °C, close to complete conversion of CH4 can be obtained. 

Methane is predominantly decomposed to form H2 and solid carbon; although a 

significant amount of C2 hydrocarbons are formed at temperatures >1000 °C. 

Ethylene is the most abundant hydrocarbon product at high temperatures, 

acetylene production is low (< 6.4 % of the total gas mixture) and peaks at 

955 °C and a smaller amount of ethane (< 0.05 % of the total gas mixture) is 

also produced, which peaks at 1150 °C. 

The temperature of the DBD reactor during the experiments in this investigation 

remained close to room temperature as a result of the use of low applied power 

and low AC frequency (in contrast to the DBD reactor used in the other chapters 

of this thesis, where significant gas heating resulted from the use of high applied 

power and high AC frequency). In the experimental results for plasma-
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reforming of CH4 (section 4.3.1), a 2.5 % conversion of CH4 was obtained. By 

comparison, a temperature of ~ 700 °C would be necessary to achieve this small 

conversion in the absence of the plasma. The relative product selectivities differ 

greatly between the plasma experimental results and the thermodynamic 

equilibrium compositions. In the plasma reaction, acetylene was the most 

abundant product, followed by H2 and propane. The thermodynamic equilibrium 

composition does not contain C3 hydrocarbons at temperatures < 2000 °C. 

Carbon deposition is severe in both cases; however, it is greater in the thermal 

reaction where H2 is the main product, in comparison to plasma CH4 reforming 

where higher hydrocarbon formation is more significant. 
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Figure 4.25: Thermodynamic equilibrium gas compositions for CH4 reforming 

at elevated temperatures in the absence of a catalyst (pressure = 1 atm). 

 

The thermodynamic equilibrium composition for CO2 reforming at elevated 

temperatures is shown in Figure 4.26. CO2 is converted to CO and O2 at 

temperatures > 2000 °C. Complete CO2 conversion requires temperatures of 

~4000 °C. Carbon dioxide is more difficult to destroy than methane by thermal 

methods due to a higher bond dissociation energy for a C=O bond (5.52 eV) 

compared to a C-H bond (4.55 eV) [9]. The experimental results for plasma 
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reforming of CO2 gave conversions of 5.3 %. In the absence of a non-thermal 

plasma, a temperature of ~1840 °C would result in the same conversion. 
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Figure 4.26: Thermodynamic equilibrium gas compositions for CO2 reforming 

at elevated temperatures in the absence of a catalyst (pressure = 1 atm). 

 

Figures 4.27 and 4.28 show the conversions of CH4 and CO2 calculated from 

the thermodynamic equilibrium compositions at various mixing ratios. 

Conversions of both gases start at ~ 400 °C and increase with increasing 

temperature. A lower CH4/CO2 ratio gives higher CH4 conversions at the same 

temperatures and a higher CH4/CO2 gives higher CO2 conversions at the same 

temperatures. This is in contrast to plasma-assisted dry reforming of CH4 where 

both CH4 and CO2 conversions are increased when the CH4/CO2 ratio is lower. 
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Figure 4.27: CH4 conversions calculated from thermodynamic equilibrium 

compositions for dry reforming of methane with different feed gas ratios 

(pressure = 1 atm).  
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Figure 4.28 CO2 conversions calculated from thermodynamic equilibrium 

compositions for dry reforming of methane with different feed gas ratios 

(pressure = 1 atm). 
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The observed differences between the thermodynamic equilibrium compositions 

for dry reforming of methane and the experimental results in a DBD show that 

methane and carbon dioxide conversions proceed via different reaction 

mechanisms for these two types of reactions. The reactions of radicals and 

excited species are important in the plasma mechanism, whereas pyrolysis of 

gas molecules (mostly in the ground state) dominates thermal reaction 

mechanisms. The formation of C3+ hydrocarbons and methanol are not 

thermodynamically feasible under equilibrium conditions; however, under non-

equilibrium plasma conditions these products were observed.  

 

 

4.6 Discussion 

4.6.1 Comparison of Dry Reforming of CH4 with Different DBD Reactor 

Systems 

Two different coaxial DBD reactor systems have been used to obtain results for 

dry reforming of methane. The results obtained in Chapter 3 used a DBD reactor 

with two dielectric barriers, whereas the results obtained in this investigation 

used a DBD reactor with a single dielectric barrier, where the stainless steel 

electrode was in contact with the plasma. The discharge gap and electrical 

parameters also differed between these two reactors. Each of these factors could 

affect the reaction chemistry. In both reactors, CH4 conversions were 

significantly higher than CO2 conversions and the same gaseous reaction 

products were identified. In general, hydrocarbons with a lower carbon number 

(C2 species) are produced with a higher selectivity than products with higher 

carbon numbers (C3+ species); this has also been consistently observed by other 

researchers [4, 7, 8, 10, 16, 22]. However, the relative selectivities of reaction 

products, particularly the C2 species were substantially different between the 

two different DBD systems investigated. In this study (using a single dielectric), 

dry reforming of methane consistently yielded acetylene (C2H2) as the main 

hydrocarbon product. In contrast, the results for the reactor with a double 

dielectric (section 3.3.1) show that ethane (C2H6) was the most abundant 

hydrocarbon product. Other researchers have reported the formation of saturated 

hydrocarbons with a higher selectivity than unsaturated species in DBD [4, 7, 8, 
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10, 16, 22]; this is in contrast to the results of this study. Interestingly, 

researchers that have investigated dry reforming of methane with alternative 

types of plasma have also produced acetylene with a higher selectivity than 

ethylene and ethane, these methods have all included pulsed DC discharges such 

as point-to-point reactors [15, 23], microwave plasma [24], corona [25], and a 

glow discharge [26]. It is not clear why these differences in C2 product 

selectivities are observed. 

It should also be considered that the contact between the plasma and the 

stainless steel electrode could affect the reaction chemistry. Li et al. [27] have 

investigated dry reforming of methane in DBD with different electrode materials 

(aluminium, copper, steel and titanium) and they found the choice of electrode 

to have little influence over the reaction chemistry. However, a direct 

comparison between DBD reactors with double dielectric and single dielectric 

has not been made.  

 

4.6.2 Introduction of an Unreduced NiO/Al2O3 Catalyst 

The results of this investigation have shown that dry reforming of methane is not 

catalysed by the presence of NiO/Al2O3. It has been shown in Chapter 3 that the 

addition of Al2O3 to the plasma discharge resulted in decreased conversions of 

both CH4 and CO2, which was accompanied by a change in discharge type from 

filamentary mode to surface discharge. The dielectric properties of the catalyst 

will be altered by the presence of 33 % wt. NiO but this has not had a 

detrimental effect on the reaction performance indicating that if used in the 

„active‟ reduced form (Ni/Al2O3), this catalyst may be beneficial to the reaction 

mechanism. 

 

 

4.7 Conclusions 

Comparison of the results for plasma-assisted reforming of CH4-only and CO2-

only in a DBD reactor has shown that the CO2 conversions are approximately 

double the conversions of CH4 under the range of conditions tested. This can be 

explained in terms of the cross sections for electron impact dissociations of CH4 

and CO2, which are expected to be the most significant processes for the 
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breakdown of these gases in a non-thermal plasma discharge. However, for a 

mixture of CH4 and CO2 the conversions of CH4 are higher than those of CO2, 

indicating that another process is important in the breakdown of CH4. It has 

been suggested that CH4 reacts with active oxygen and hydroxyl radicals to 

form methyl species; these can combine with a number of different species 

during coupling reactions to form the reaction products observed in this study. 

Possible reactions for each of the investigated reforming processes have been 

given together with the rate data for these processes (where available). This data 

may help to indicate the relative importance of each of these processes. 

The presence of an unreduced NiO/Al2O3 catalyst to the discharge gap during 

dry reforming of CH4 made no significant improvements to the reaction 

performance. However, it did not hinder the reaction significantly either 

indicating that it may be a suitable catalyst for plasma-assisted dry reforming of 

methane in the reduced form, which is known to be active for conventional 

catalytic methane reforming. 
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5. Plasma-Reduction of a NiO/Al2O3 Catalyst in a 

Coaxial DBD Reactor 

 

 

5.1 Introduction 

NiO/Al2O3 catalysts are used commercially for large-scale production of 

hydrogen via steam methane reforming (SMR), prior to which they are reduced 

to Ni/Al2O3 by hydrogen-containing gases or natural gas-steam mixtures at 

elevated temperatures [1]. The reduction generates active Ni sites, which are 

effective for hydrogen production from methane. The use of non-thermal, 

atmospheric pressure plasma for reduction of supported metal catalysts has been 

investigated by several researchers as a potential alternative to thermal reduction 

processes (Table 5.0). Plasma-reduction methods have been reported to have 

several advantages including short treatment time, the use of inexpensive and 

non-hazardous reducing agents and enhanced physical and chemical properties 

of the prepared catalyst.  

Liu et al. [2, 3] have reported the use of a H2/N2 atmospheric pressure, glow 

discharge plasma jet for calcination and reduction of NiO/γ-Al2O3 and NiO/SiO2 

catalysts. A short plasma treatment time of ten minutes resulted in improved 

dispersion and reduced Ni particle size, in comparison with a sample reduced 

thermally over 2 hours. The plasma-reduced samples had a higher specific 

surface area due to a reduction in sintering, which is known to be a major 

drawback of thermal reduction methods. Noble metal catalysts including Rh, Ir, 

Pd, Pt, Ag and Au supported on various materials, have been successfully 

reduced in an argon glow discharge by Cheng et al. [4]. The reducing capability 

of argon plasma is surprising due to the inert nature of argon gas. The authors 

suggested that free high energy electrons in the plasma act as the reducing 

species and that this is independent of the type of plasma-forming gas. Wang et 

al. [5] proposed that an indirect plasma-reduction mechanism may exist where 

adsorbed H2O on the catalyst surface may dissociate under discharge conditions 

producing H˙ radicals and hydrated electrons eaq
-
, which are both strong 

reducing species [6]. In support of this hypothesis they were able to reduce 

Pd/HZSM-5 in an O2 glow discharge [7]. However, they were unable to reduce 
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Ni(NO3)2, Fe(NO3)3 and Co(NO3)2 catalysts in an argon glow discharge; in these 

cases only decomposition to the oxide forms was observed [4, 8]. IR imaging of 

the glow discharge reactor shows that the catalyst bed was close to room 

temperature (< 30 °C) under the discharge conditions [9].  

Plasma-reduction in DBD is limited to Pt- and Co-based catalysts in a H2/N2 

discharge [10]. However, the catalyst temperature under discharge conditions 

was not ascertained during these experiments and therefore it is difficult to 

deduce the reduction mechanisms involved. Further investigations in this area 

are required in order to define the reaction mechanisms for plasma-reduction of 

metal catalysts. In particular, whether plasma-reduction of metal catalysts is a 

consequence of plasma active species (eg. high energy electrons) or whether the 

reduction is an effect of elevated temperature under discharge conditions. 

Reduction of a 33 wt. % NiO/Al2O3 catalyst by 100 % CH4 and 20 % H2/Ar 

DBD is presented in this chapter. Analyses of gas compositions exiting the 

reactor provides information about the reactions occurring both in the plasma 

volume and on the catalyst surface. Characterisation of these catalysts has been 

carried out using X-ray diffraction (XRD) and scanning electron microscopy 

(SEM). Temperature programmed reduction (TPR) has been performed on the 

NiO/Al2O3 catalyst in both CH4/He and H2/He in order to determine the 

reducing temperature required under these gas streams in the absence of a non-

thermal plasma. In addition, the effect of metal reduction on the electrical 

properties of the plasma has been investigated. 
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Catalyst 

(Reduced Form) 

Plasma Type & Reactor 

Conditions 

Gas 

Type 

Method Additional 

Information 

Reference 

 

Ni/SiO2 

Ni/α-Al2O3 

 Glow 

 1 atm 

 25 ml min-1 

 527 °C 

20 % H2/N2 

 

Ni(NO3)2/SiO2 and Ni(NO3)2/Al2O3 

were calcined and reduced by cold 

plasma jet for 10 minutes. 

 Yin & co-workers 

[2] 

[3] 

Pd/γ-Al2O3 

Pt/TiO2 

Ag/TiO2        

Au/TiO2 

Pd/HZSM-5 

Pt/γ-Al2O3 

Ir/γ-Al2O3 

Rh/γ-Al2O3 

Pt/C 

Pd/SBA-15 

Pt/SBA-15 

Ag/SBA-15       

Au/SBA-15 

 Glow 

 50-200 Pa 

 900 V 

 Room temperature 

 

 

 

 

 

 

 

 

 

Ar 

 

 

 

 

 

 

 

 

 

 

 

 

The following catalyst precursors were 

treated in plasma for 10 minutes, 

stirred and repeated 5 or 6 times. 

Followed by calcinations thermally if 

required. 

PdCl2/γ-Al2O3, H2PtCl6/TiO2, 

AgNO3/TiO2, HAuCl4/TiO2, 

PdCl2/HZSM-5, H2PtCl6/ γ-Al2O3, 

H2IrCl6/ γ-Al2O3, RhCl3/ γ-Al2O3, 

H2PtCl6/C, PdCl2/SBA-15, 

H2PtCl6/SBA-15, HAuCl4/SBA-15, 

AgNO3/SBA-15 and PdCl2/HZSM-5 

 

Ni(NO3)2/Al2O3, Ni(NO3)2/ZrO2, 

Fe(NO3)3 and Co(NO3)2 could 

not be reduced by this method. 

 

Liu & co-workers  

[4] 

 

 

 

[11] 

[12] 

[13] 

[14] 

[5] 
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Table 5.0: Plasma-reduction of supported metal catalysts. 

Pd/HZSM-5  Glow 

 50-200 Pa 

 900 V 

Room temperature 

O2 [7] 

Pt/γ-Al2O3 

Co/ γ-Al2O3 

 DBD 

 1 atm 

 3 kV 

 37-39 W 

 10 ml min-1 

 Temp not given. 

20 % H2/N2 

 

H2PtCl6/ γ-Al2O3 and Co(NO3)2 were 

treated by plasma for 120 minutes. 

TPR was performed on each 

catalyst. Results show that the Pt 

catalyst reduced rapidly between 

200-250 °C and reduction of the 

Co catalyst started at 120 °C and 

continued to reduce various Co 

species up to 680 °C. 

Kim & co-workers 

[10] 

Ag/TiO2  

Au/TiO2  

Pd/TiO2  

Pt/TiO2 

 Glow 

 24 Pa 

 10 W 

 Temp not given. 

 

H2 Ions of Ag, Au, Pd and Pt incorporated 

into ultra-thin films of TiO2 were 

treated by a H2 plasma etcher. 

  Kunitake & co-workers 

[15] 
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5.2 Experimental Section 

The experimental set-up used for this investigation is described in section 3.2, 

with the only modification being the substitution of reactant gases. Reduction of 

a 33 wt. % NiO/Al2O3 catalyst (Johnson Matthey) has been accomplished using 

methane (BOC Gases, 99.9 %) and a mixture of 20 % hydrogen (BOC Gases, 

99.995 %) in argon (BOC Gases, 99.9 %) as the plasma-forming gases. In 

addition, the behaviour of the catalyst in an argon discharge has been 

investigated. This commercial catalyst may contain other unspecified 

components such as carbonates. The total gas flow rates were 50 ml min
-1

 in 

CH4 experiments and 100 ml min
-1

 in H2/Ar and Ar-only experiments. 

NiO/Al2O3 catalyst pellets were crushed to give particles of non-uniform 

dimensions (0.85 mm – 5 mm). The catalyst was heated to 300 °C for 3 hours 

immediately before each experiment to remove moisture. The catalyst was 

packed into the discharge gap and held in place by quartz wool (Figure 3.1 b). 

Preliminary experiments were carried out using a uniform catalyst particle size 

of 0.5 – 0.8 mm. Plasma generation was weak under these conditions and 

subsequently the use of non-uniform particles showed a marked improvement in 

plasma generation, possibly due to an enhanced transfer of electrical charge in 

the voids between catalyst particles. 

Prior to each experiment, the system was purged to remove air and stabilise the 

gas mixtures. The plasma was turned on at t = 0 and gases exiting the reactor 

were analysed by micro-GC at regular intervals. Experiments were carried out 

under approximately constant applied voltage and optimised frequency. The 

optimised frequency varied depending on the gas type. The conditions for each 

experiment are shown in Table 5.1. In an attempt to gain an approximation of 

the minimum bulk gas temperature, a thermocouple (CVT Heater Controller) 

was used to measure the temperature of the outer electrode of the reactor. No 

external heating was applied to the reactor. 
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Gas Type Applied Voltage 

(kVpk-pk) 

Frequency (kHz) 

100 % CH4 

20 % H2/Ar 

100 % Ar 

21.2 

18.3 

18.1 

33.1 

31.2 

31.9 

 

Table 5.1: Experimental conditions used for plasma-reduction of NiO/Al2O3. 

 

 

5.3 Results 

5.3.1 Reduction of NiO/Al2O3 in a CH4 Plasma 

Plasma reduction of a NiO/Al2O3 catalyst has been carried out in 100 % CH4 in 

a coaxial DBD reactor. The results for the gaseous analysis are shown in Figures 

5.0 – 5.2. Product gases CO2, CO, H2, C2H2/C2H4, C2H6, C3H6 and C3H8 were 

observed. The discharge power and temperature are shown in Figure 5.3.  
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Figure 5.0: CH4 consumption and concentration of reduction products during 

reduction of NiO/Al2O3 in a 100 % CH4 DBD. 
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Figure 5.1: H2 production and carbon balance in the gas stream during 

reduction of NiO/Al2O3 in a 100 % CH4 DBD. 
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Figure 5.2: Production of higher hydrocarbons during reduction of NiO/Al2O3 

in a 100 % CH4 DBD. 
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Figure 5.3: Power and temperature profiles for reduction of NiO/Al2O3 in a 

100 % CH4 DBD. 

 

Figure 5.0 shows the consumption of the reducing gas CH4, which increases 

initially as the discharge power and temperature increase and then remains 

constant after ~ 150 minutes on stream. The overall reduction proceeds as 

shown by equation 5.0, generating CO2 and H2O. The production of CO is likely 

to be a result of partial oxidation of CH4 by NiO (5.1) and/or the water-gas shift 

reaction (5.2). Concentrations of both CO2 and CO peaked at ~ 60 minutes, 

before decreasing, as the rate of NiO reduction slows down. The evolution of 

CO2 and CO terminates when reduction of NiO is complete at ~ 150 minutes. 

 

4 NiO (s) + CH4 (g) → 4 Ni (s) + CO2 (g) + 2 H2O (l)  (5.0) 

NiO (s) + CH4 (g) → Ni (s) + 2 H2 (g) + CO   (5.1) 

CO (g) + H2O (l) ↔ H2 (g) + CO2 (g)     (5.2) 

CH4 (g) → C (s) + 2 H2 (g)     (5.3) 

2 CO (g) ↔ C (s) + CO2 (g)     (5.4) 

 

H2 concentration and carbon balance in the gas stream are shown in Figure 5.1, 

it can be seen clearly that the data points mirror each other. This suggests that 
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methane decomposition (5.3) catalysed by metallic Ni is responsible for 

generation of H2 and solid carbon. As the reduction proceeds, Ni sites are 

generated and the rate of methane decomposition increases. When reduction of 

NiO is complete and all Ni sites are generated, the rate of the catalytic reaction 

5.3 becomes constant. As a result, CH4 consumption plateaus as does the H2 

concentration and the carbon balance.  

A second reaction that is possible for carbon deposition in this experiment due 

to the presence of carbon monoxide is the Boudouard reaction (5.4). However, 

the shape of the H2 and carbon balance profiles in Figure 5.1 indicate that 

catalytic CH4 decomposition is significant and therefore, reaction 5.4 can be 

considered less important in this case. 

Higher hydrocarbons ethylene/acetylene, ethane, propene and propane were 

detected and are shown in Figure 5.2. These products are likely to be generated 

in the plasma volume by radical coupling reactions, as discussed in section 4.3.1, 

where these products were observed in a CH4 DBD in the absence of a catalyst. 

Higher concentrations of hydrocarbon products are observed in the early stages 

of the experiment before NiO reduction has taken place. As the catalyst is 

reduced the concentration of hydrocarbons decreased to close to zero. This 

indicates that in the presence of active Ni sites, CH4 consumption in surface 

reactions 5.0, 5.1 and 5.3 may successfully compete with radical coupling 

reactions in the plasma volume and therefore production of higher hydrocarbons 

is negligible in the presence of the catalyst. 

In addition to the gaseous products, a colourless liquid was collected in the cold 

trap during the experiment. The masses of the reduced catalyst and liquid 

product are shown in Table 5.2, together with the carbon and hydrogen contents 

that have been determined by elemental analysis. 
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 Before Reduction After Reduction 

Mass of catalyst (g) 19.53 20.06 

Mass of liquid product (g) - 0.78 

% wt. C and H in the catalyst C = 3.3 

H = 1.3 

C = 16.7 

H = 0.0 

% wt. C and H in the liquid 

product 

- C = 0.5 

H = 11.3 

 

Table 5.2: Mass and elemental analysis of NiO/Al2O3 catalyst and liquid 

product before and after reduction in a 100 % CH4 DBD. 

 

Table 5.2 shows that the mass of the catalyst increased by 0.53 g after the 

reduction. The expected mass of the catalyst after reduction was 18.15 g due to 

loss of oxygen from the sample, assuming that the NiO was completely reduced 

to Ni. The observed mass increase is due to deposition of solid carbon on the 

catalyst (1.91 g). The elemental analysis shows that a 5-fold increase in the 

carbon content of the catalyst was observed after reduction. Using the observed 

mass increase of the catalyst to calculate the carbon loss from the gas stream, 

predicts a carbon loss of 34 % and therefore 66 % of the carbon remaining in the 

gas stream. This is in excellent agreement with the results shown in Figure 5.2, 

in which the carbon balance is ~ 66 % of the original value. After the reduction, 

a colour change from grey to black was observed in the catalyst, further 

indicative of the presence of carbon in the reduced catalyst. 

The relative concentrations of carbon to hydrogen in the liquid product reveals 

that it contained mostly H2O, with trace amounts of higher hydrocarbon (C5+) 

(assuming that the only other element present in the liquid is oxygen). This is in 

agreement with the reaction for NiO reduction (5.0) in which H2O is a reaction 

product. The calculated mass of H2O expected for the reduction of NiO/Al2O3 is 

0.820 g, a difference of 4.7 %. However, the calculation does not account for 

any H2O that might be consumed in the water-gas shift reaction (5.2). 
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5.3.2 Reduction of NiO/Al2O3 in a 20 % H2/Ar Plasma 

Reduction of NiO/Al2O3 by 20 % H2 in an argon carrier gas has been carried out 

in a coaxial DBD reactor. The consumption of H2 during the reduction is shown 

in Figure 5.4. Although H2O is the only product of NiO reduction by H2 (5.5), 

the presence of small amounts of carbon-containing gases CO2, CO and CH4 

have been detected and are shown in Figures 5.5 and 5.6. The discharge power 

and temperature of the reactor are shown in Figure 5.7. 

 

NiO + H2 → Ni + H2O      (5.5) 

0 50 100 150 200 250

-5

0

5

10

15

20

25

30

35

40

H
2
 C

o
n

s
u

m
p

ti
o

n
 (

%
)

Time (mins)

 

Figure 5.4: H2 consumption during reduction of NiO/Al2O3 in a 20 % H2/Ar 

DBD. 
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Figure 5.5: CO2 and CO concentrations during reduction of NiO/Al2O3 in a 

20 % H2/Ar DBD. 
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Figure 5.6: CH4 concentration during reduction of NiO/Al2O3 in a 20 % H2/Ar 

DBD. 
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Figure 5.7: Power and temperature profiles during reduction of NiO/Al2O3 in a 

20 % H2/Ar DBD. 

 

Figure 5.4 shows that H2 consumption peaked at ~ 30 minutes and then 

gradually returned to its initial concentration indicating that reduction of NiO 

had gone to completion. Similar profiles for H2 consumption have been obtained 

for plasma-reduction of Pt and Co-based catalysts by Kim et al [10]. The 

evolution of carbon-containing products is due to the plasma action causing 

reactions to occur with carbonates that are present in the catalyst. Consequently, 

the concentrations of CO2 and CO are significantly lower than in the case of 

plasma-reduction with CH4, where CO2 and CO are products of the reduction. 

Concentrations of CO2 and CO peaked at ~ 20 minutes as shown in Figure 5.5, 

the presence of these species with H2 and H2O make the water-gas shift reaction 

possible (5.2). The production of CH4, shown in Figure 5.6 is a result of a 

reaction between H2 and carbonates in the catalyst. The concentration of CH4 

peaked initially at 20 minutes and then decreased. This is possibly due to CH4 

consumption in reduction of NiO, producing CO2 and CO as shown in reactions 

5.0 and 5.1 respectively. A second peak in CH4 production at a lower 

concentration is observed at ~ 75 minutes, when the rate of NiO reduction is 

slower and therefore CH4 may be less readily consumed in NiO reduction. All 
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carbon–containing product gases decreased to zero as the surface carbonate 

source in the catalyst became used up. 

 

 Before Reduction After Reduction 

Mass of catalyst (g) 7.39 6.32 

Mass of liquid product (g) - 0.61 

% wt. C and H in the 

catalyst 

C = 3.3 

H = 1.3 

C = 2.3 

H = 0.0 

% wt. C and H in the liquid 

product 

- C = 0.5 

H = 11.8 

 

Table 5.3: Mass and elemental analysis of NiO/Al2O3 catalyst and liquid 

product before and after reduction in a 20 % H2/Ar DBD. 

 

The carbon and hydrogen contents of the NiO/Al2O3 catalyst before and after 

reduction are shown in Table 5.3. The carbon content of the reduced Ni/Al2O3 

catalyst decreased by 30 %, in accordance with the production of carbon-

containing gases CH4, CO2 and CO. It is possible that only surface carbonates 

reacted whilst carbonates in the bulk of the catalyst remained present in the 

sample. In contrast to the catalyst reduced in CH4, there was no colour change 

observed for the reduction of NiO/Al2O3 in H2. The liquid product analysis 

showed that it is predominantly H2O with trace amounts of higher hydrocarbons. 

The calculated mass of H2O expected from the reduction by H2 is 0.59 g, close 

to the observed mass of 0.61 g. 

When the sample was removed from the reactor, a pyrophoric reaction was 

observed by a rapid temperature increase to 93 °C, this energy is released as a 

result of a highly exothermic oxidation of Ni to form an amorphous NiO film on 

the surface of the catalyst. This is in contrast to the reduction of NiO in a CH4 

plasma, where no exothermic reaction was observed on removing the catalyst 

from the reactor. In the case of the CH4 plasma-reduction, carbon deposition 

prevented the re-oxidation by forming a protective physical barrier. 
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5.3.3 Treatment of NiO/Al2O3 Catalyst with an Argon Plasma 

The treatment of NiO/Al2O3 with an argon plasma has been carried out, in order 

to determine whether NiO can be reduced by high energy electrons at a 

temperature significantly higher (up to 320 °C) than previously investigated by 

other researchers in this field. Previous research on treatment of NiO/Al2O3 in 

an argon plasma was conducted in a discharge that was close to room 

temperature where NiO reduction was not observed; despite the ability to reduce 

other metals under the same conditions (Table 5.0). The results of the gaseous 

analysis and profiles for power and temperature are shown in Figures 5.8 and 

5.9 respectively. 
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Figure 5.8: Concentration of gaseous products CO2 and H2 during the treatment 

of a NiO/Al2O3 catalyst in an Ar DBD. 
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Figure 5.9: Power and temperature profiles for the treatment of a NiO/Al2O3 

catalyst in an Ar DBD. 

 

The products detected by micro-GC were CO2 and H2, as shown in Figure 5.8. 

The concentration of CO2 peaked at ~ 10 – 20 minutes. The source of CO2 in 

this experiment is considered to be solely from the carbonates present in the 

catalyst. As the NiO catalyst was found not to be reduced, there cannot be any 

involvement of CO2 with a NiO reduction mechanism or water-gas shift reaction 

(5.2), as in the case of H2 and CH4 plasmas. A small amount of H2 was detected 

which peaked at the same time as CO2. Similarly, this is a result of the plasma 

action releasing species from the catalyst, although the concentration of H2 was 

negligible at < 0.06 % throughout the experiment. There was no observed 

evolution of CO, as was seen in experiments where CH4 or H2 were present. 

This indicates that CO production is a result of the NiO reduction and water-gas 

shift mechanisms (in the case of CH4 and H2 plasma-reductions) and that CO is 

not released directly from the plasma action on carbonates that may be present 

in the catalyst.  
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 Before Reduction After Reduction 

Mass of catalyst (g) 18.57 17.70 

Mass of liquid product (g) - 0.40 

% wt. C and H in the 

catalyst 

C = 3.8 

H = 1.6 

C = 3.4 

H = 0.3 

% wt. C and H in the liquid 

product 

- C = 0.4 

H = 12.2 

 

Table 5.4: Mass and elemental analysis of NiO/Al2O3 catalyst and liquid 

product before and after treatment in an Ar DBD. 

 

Table 5.4 shows the mass of the catalyst and liquid product, as well as the 

elemental analyses of these samples for the carbon and hydrogen content. The 

mass loss observed in the catalyst is possibly due to a loss of residual adsorbed 

H2O from the catalyst surface. As in previous cases, the liquid product was 

mostly H2O with trace amounts of carbon. The mass of H2O collected during 

this experiment is unexpectedly high in comparison with previous results for 

CH4 and H2 plasmas, given that reduction of NiO did not occur in this 

experiment. The water collected could be either from H2O adsorbed on the 

catalyst surface which has been desorbed under plasma conditions and/or a 

result of reactions between OH groups which are abundant on the alumina 

support. In CH4 and H2 plasma-reduction experiments, the mass of H2O 

collected was 0.78 g and 0.61 g respectively, however, it is possible that a 

water-gas shift (5.2) has reduced the concentration of H2O during these 

experiments (NiO/Al2O3 is known to be an effective catalyst for water-gas shift 

[16]). In addition, it is possible that a reaction between OH groups on the 

catalyst support, which could result in H2O formation, would be suppressed by a 

competing reaction that involves OH groups in the reduction of NiO when CH4 

or H2 are present. 

In agreement with previous work by Cheng et al. [4, 8], where NiO reduction 

did not occur in a room temperature glow discharge, the results of this 

experiment show that NiO reduction does not occur in an argon DBD at elevated 

temperature. Cheng et al. [4] made the observation that ion pairs (M
n+

/M) with 
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positive standard electrode potentials are reducible in an argon plasma and those 

with negative standard electrode potentials (i.e. Ni
2+

/Ni) are not reducible under 

these conditions. The results of this study are in agreement with this hypothesis. 

Metal reduction by argon plasma may be feasible in accordance with the 

electrochemical properties of the metal and if the electrochemical properties are 

such that the catalyst is not reducible under these conditions, the temperature of 

the system will have no effect. 

 

5.3.4 Reduction of NiO/Al2O3 coated BaTiO3 by 20 % H2/Ar in a Packed-

Bed DBD Reactor 

A powdered coating of 33 wt. % NiO/Al2O3 has been applied to BaTiO3 beads 

(4 mm diameter). Reduction of the NiO/Al2O3 coated BaTiO3 by 20 % H2/Ar 

has been carried out in a packed-bed DBD reactor (this reactor has been 

previously described in section 3.2). The NiO reduced rapidly under these 

conditions and an orange arc-like discharge was observed, after which the 

experiment was immediately terminated. A colour change from grey to black 

was observed in some of the beads used in this experiment. The black beads 

were found to be highly conductive, showing a resistance of 10 Ω when 1 kV 

was applied (measured using a Kyoritsu mega ohm meter). Due to the highly 

conductive coating, a large electric current was able to flow directly through the 

packed-bed where there are many contact points between the beads, giving 

arcing rather than a stable plasma discharge. In contrast, the grey beads still had 

insulating properties (∞ Ω), which is essential for the formation of a DBD. 

Although several studies have been carried out previously in which BaTiO3 

beads have been combined with catalysts in the reactor [17-19], this is the first 

study to coat the catalyst directly onto the beads and thereby modify the 

dielectric properties of the beads. 
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5.4 Catalyst Characterisation 

5.4.1 XRD 

The bulk structures of all the catalysts were investigated by X-ray powder 

diffraction. The XRD pattern of a fresh sample of NiO/Al2O3 (as supplied) was 

also analysed for comparison, the results are presented in Figure 5.10. 
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Figure 5.10: XRD patterns of NiO/Al2O3 catalysts after a) no treatment, b) CH4 

plasma-reduction, c) H2 plasma-reduction, d) treatment in an Ar plasma. NiO 

peaks at 2θ = 37.2°, 43.2°, 62.9°, 75.4° and 79.4°. Ni peaks at 2θ = 44.4°, 51.6°, 

76.1°, 92.1° and 98.1° [20]. 

 

The fresh NiO/Al2O3 shown in Figure 5.10 (a) shows broad NiO peaks at 2θ = 

37.2°, 43.2°, 62.9°, 75.4° and 79.4°, as well as some sharp unidentified peaks at 

2θ < 37°. Peaks for Al2O3 have been looked for and cannot be found, indicating 

that the support is amorphous and therefore is not detectable by XRD. It can be 

seen from Figure 5.10 (d) that the sample treated with argon plasma is similar to 

the fresh sample, confirming that the NiO crystal structure remained unchanged 

during treatment with an Ar DBD. Figure 5.10 (b and c) show the appearance of 
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peaks corresponding to metallic Ni at 2θ = 44.4°, 51.6°, 76.1°, 92.1° and 98.1°. 

These peaks indicate that metal reduction has taken place in both CH4 and H2/Ar 

plasma. The NiO peaks at 2θ = 62.9° and peak shoulders at 2θ ≈ 44° on the 

XRD patterns of the reduced catalysts, indicate that the bulk of the catalyst may 

not have been fully reduced. There is a peak at 2θ = 24.8° on the fresh catalyst, 

which matches the reference pattern for nickel silicate hydrate (3 NiO·2 SiO2·2 

H2O) [20]; this species is also reduced in both CH4 and H2/Ar plasma as 

indicated by the disappearance of this peak on Figure 5.10 (b and c). 

Crystallite sizes (Table 5.5) have been calculated using the well-known Scherrer 

equation (5.6), where d is the average volume diameter of the crystallite,  is the 

wavelength of the incident X-rays from a Cu source,  the X-ray incidence angle 

with respect to the sample surface, β is the peak width at half peak height (in 

radians) and β0 is the instrumental line broadening [21]. 

 





cos)(

89.0

o
d


       (5.6) 

 

Sample Crystallite Size (nm) 

a) Fresh NiO/Al2O3 6 

b) CH4 plasma reduced Ni/Al2O3 6 

c) H2/Ar plasma reduced Ni/Al2O3 7 

d) NiO/Al2O3 after Ar plasma  6 

 

Table 5.5: Estimation of the crystallite size of a NiO/Al2O3 catalyst after 

plasma treatments. Uncertainty in the measurement to one standard deviation is 

± 1 nm. 

 

Table 5.5 shows that the crystallite size was not affected by the plasma 

treatment. The small crystallite size (6 nm) of NiO in the fresh catalyst and Ni 

in the plasma-reduced samples indicates that no sintering of Ni particles has 

occurred under plasma conditions. These findings are in agreement with results 

obtained in previous work [10, 11], where direct comparisons of Pt/Al2O3 
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catalysts before and after plasma-reductions have shown that crystallite sizes in 

the nm range have not been changed significantly by plasma treatment.  

 

5.4.2 SEM 

SEM images of samples of each catalyst are shown in Figures 5.11 to 5.14 at 

various magnifications. The images show an amorphous Al2O3 phase with 

highly dispersed nanoparticles of Ni/NiO. 

 

a)     b) 

 

 

 

 

 

 

 

 

 

c)     d) 

 

 

 

 

 

 

 

 

 

Figure 5.11: SEM images of the NiO/Al2O3 catalyst as supplied a) mag. 50 × b) 

mag. 500 × c) mag. 1000 × d) mag. 4000 ×. 
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a)     b) 

 

 

 

 

 

 

 

 

 

c)     d) 

 

 

 

 

 

 

 

 

 

e)     f) 

 

 

 

 

 

 

 

 

 

Figure 5.12: SEM images of the NiO/Al2O3 catalyst reduced in CH4 plasma a) 

mag. 50 × b) mag. 500 × c) mag. 1000 × d) mag. 4000 × e) mag. 12000 × f) mag. 

25000 ×. 
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a) b) 

 

 

 

 

 

 

 

 

c)     d) 

 

 

 

 

 

 

 

 

 

Figure 5.13: SEM images of the NiO/Al2O3 catalyst reduced in H2/Ar plasma a) 

mag. 50 × b) mag. 500 × c) mag. 1000 × d) mag. 4000 ×. 
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a)     b) 

 

 

 

 

 

 

 

 

 

c)     d) 

 

 

 

 

 

 

 

 

 

Figure 5.14: SEM images of the NiO/Al2O3 catalyst after treatment with Ar 

plasma a) mag. 50 × b) mag. 500 × c) mag. 1000 × d) mag. 4000 ×. 

 

The catalyst that has been reduced by a CH4 plasma (Figure 5.12) is different in 

appearance to the other three samples. This can be seen by the naked eye due to 

a colour change from grey to black, as well as the adherence of individual 

particles to form large solid blocks (Figure 5.12 a). The cotton wool-like 

structures that can be seen in Figure 5.12 (b – d) are fibrous carbon structures; 

these can be seen clearly in Figure 5.12 (e and f) in which individual carbon 

nanofibres are visible. SEM software allowed the measurement of these carbon 

fibres, which revealed a mean outer diameter of 55 nm, ranging from 28 – 80 

nm. The presence of carbon fibres on the surface of the catalyst provides a 

protective barrier that prevents re-oxidation of Ni on exposure to air. For this 
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reason, the pyrophoric oxidation observed with the H2 plasma-reduced sample 

was not observed for the CH4 plasma-reduced sample. 

Plasma production of carbon nanostructures has been extensively reviewed [22-

25], due to the great potential of these materials for a wide range of applications 

including as a hydrogen storage media [26] and a reinforcing agent in polymers 

and metals [22]. The use of thermal arc-jet plasma for continuous carbon 

nanotubes (CNT) synthesis from CH4, catalysed by Ni-Y powders has been 

reported by Choi et al. [27], the produced CNTs had an outer diameter of 10 – 

50 nm. It would be interesting to further investigate the structure of the carbon 

deposited in this study by the use of transmission electron microscopy (TEM). 

 

 

5.5. Electrical Properties of the Plasma when Packed with 

NiO/Al2O3 

The voltage and current signals for CH4 discharges in the empty DBD reactor 

and in the presence of a NiO/Al2O3 catalyst packed into the discharge gap are 

presented in Figures 5.15 and 5.16, at a fixed discharge power of 30 W. 

Filamentary discharges which correspond to the numerous current spikes that 

can be seen in Figure 5.15 are less easily formed in the presence of a catalyst 

due to a decrease in the effective discharge gap. The catalyst surface allows for 

the formation of a homogeneous surface discharge which is shown by a decrease 

in the number and amplitude of current spikes seen in Figure 5.16. The same 

effect was observed in a previous investigation when the reactor was packed 

with zeolite as described in section 3.5. 
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Figure 5.15: Electrical waveforms for the applied voltage, gas voltage and 

current in a 100 % CH4 DBD in the absence of a catalyst (CH4 flow rate = 100 

ml min
-1

, discharge power = 30 W). 
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Figure 5.16: Electrical waveforms for the applied voltage, gas voltage and 

current in a 100 % CH4 DBD packed with NiO/Al2O3 catalyst (CH4 flow rate = 

50 ml min
-1

, discharge power = 30 W). 
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5.5.1. Effect of NiO Reduction on Electrical Parameters 

Reduction of NiO to Ni may result in changes to the dielectric properties of the 

catalyst and hence, the plasma discharge. Table 5.6 shows some of the plasma 

electrical properties for 100 % CH4 and 20 % H2/Ar plasma discharges, packed 

with both NiO/Al2O3 and Ni/Al2O3 (before and after the plasma-reductions). 
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Gas Type Packing  

Material 

Applied 

Voltage pk-pk 

(kV) 

Breakdown 

Voltage  

(kV) 

Charge  

pk-pk 

(nC) 

Charge 

Discharged 

(nC) 

Transferred Charge 

per Half Cycle  

(nC) 

Total 

Capacitance 

(pF) 

  CH4 NiO/γAl2O3 18.9 0.75 377 207 76 15.6 

CH4 Ni/γ-Al2O3 15.6 0.64 434 281 129 20.6 

Ar/H2 NiO/γ-Al2O3 17.7 0.88 408 227 88 17.8 

Ar/H2 Ni/γ-Al2O3 13.9 1.07 360 220 119 17.8 

0 

Table 5.6: Electrical parameters of DBD at constant power (30 W) when unreduced NiO/Al2O3 and reduced Ni/Al2O3 are packed into the 

discharge gap. Methods for the calculation of these parameters have been derived from several publications on electrical properties of DBDs 

[28-31] and are detailed in Appendix B. 
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Table 5.6 and Figure 5.17 show that the applied voltage required to sustain a 

discharge power of 30 W in CH4 is lower for the more conductive Ni phase. At a 

maximum, the applied voltage for the discharge packed with NiO/Al2O3 was 

18.9 kVpk-pk and when packed with Ni/Al2O3 it was reduced to 15.6 kVpk-pk. The 

same effect can be seen in the H2/Ar discharge with a reduction in applied 

voltage from 17.7 kVpk-pk to 13.9 kVpk-pk. 
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Figure 5.17: The applied voltage waveforms of a 100 % CH4 DBD packed with 

the unreduced NiO/Al2O3 catalyst and the reduced Ni/Al2O3 catalyst. 

 

The breakdown voltage (Vb) increases in going from NiO to Ni for a H2/Ar 

discharge from 0.88 kV to 1.07 kV respectively. This can be explained by the 

increase in transferred charge per half cycle from 88 nC to 109 nC, resulting in a 

reduced charge remaining in the discharge region at the end of each half cycle. 

Consequently, an increased voltage is required to breakdown the gas. However, 

the observation was different in the CH4 discharge, where a slight decrease in Vb 

was observed in going from NiO to Ni (0.75 kV to 0.64 kV respectively); in this 

case, there is thought to be significant contribution from a change in gas 

composition when Ni is present. 

Lissajous figures for the CH4 and H2/Ar discharges are shown in Figures 5.18 

and 5.19 respectively. The data was recorded at a fixed discharge power of 30 

W before and after the reduction of NiO/Al2O3. The total capacitance of the 
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DBD system can be calculated from the Lissajous figure and is shown in Table 

5.6. In a CH4 discharge, the capacitance increases in going from a NiO/Al2O3 

packing to a Ni/Al2O3 packing, from 15.6 pF to 20.55 pF respectively. However, 

the metal reduction is coupled with a change in the gas composition to include a 

significant concentration of H2. This could also affect the capacitance of the 

system. It can be seen from Figure 5.19 that in a H2/Ar discharge (where gas 

compositions are similar for both NiO/Al2O3 and Ni/Al2O3) the reduction of 

NiO in the catalyst had little effect on the Lissajous figure and correspondingly, 

the capacitance remained constant (17.77 – 17.78 pF). These results suggest that 

the gas composition has a major contribution to the total capacitance which is 

more significant than the change in the material from NiO/Al2O3 to Ni/Al2O3.  
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Figure 5.18: Lissajous figures for a CH4 DBD packed with NiO/Al2O3 and CH4 

plasma-reduced Ni/Al2O3 at a fixed discharge power of 30 W (CH4 flow rate = 

50 ml min
-1

). 
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Figure 5.19: Lissajous figures for a 20 % H2/Ar DBD packed with NiO/Al2O3 

and H2/Ar plasma-reduced Ni/Al2O3 at a fixed discharge power of 30 W (total 

flow rate = 100 ml min
-1

). 

 

 

5.6 Temperature Programmed Reduction of NiO/Al2O3 

TPR of the NiO/Al2O3 catalyst has been carried out with CH4 and H2 in helium 

diluents, in order to compare both the temperature and products of these 

processes with the plasma-reduction processes. The experiments were 

performed at a pressure of 1 bar in a fully automated CATLAB microreactor 

(Hiden Analytical) at Newcastle University. The microreactor outlet fed into a 

soft ionisation quadrupole mass spectrometer (QIC-20) via a heated capillary 

line for continuous online analysis. An internal K-type thermocouple in an inert 

alumina sleeve was inserted into the microreactor catalyst bed for both control 

and measurement of the temperature.  
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5.6.1 Thermal Reduction of NiO/Al2O3 by CH4 

The results for TPR of NiO/Al2O3 with 10 % CH4 in helium are shown in Figure 

5.20. The onset of reduction occurred rapidly at 440 °C, as can be seen by a 

sharp decrease in CH4 concentration and simultaneous increase in H2, H2O, CO2 

and CO. The molar consumption and production of each gaseous species have 

been calculated and are shown in Table 5.7. 
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Figure 5.20: TPR profile for the reduction of NiO/Al2O3 by 10 % CH4/He 

(mass of catalyst = 25.0 mg, flow rate = 100 ml min
-1

, temperature ramp = 10 °C 

min
-1

). The inset shows the profiles of H2O, CO2 and CO in the temperature 

range 400 – 500 °C. 

 

Species Total μmol 

NiO 

CH4 consumption 

H2 produced 

H2O produced 

CO2 produced 

CO produced 

111 

3509 

4654 

197 

31 

287 

 

Table 5.7: Total μmol of each species consumed or produced during the TPR of 

NiO/Al2O3 by CH4 (mass of catalyst = 25.0 mg, flow rate = 100 ml min
-1

, 

temperature ramp = 10 °C min
-1

). 
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In the temperature range 440 – 500 °C (Figure 5.20, inset), the reduction of NiO 

by CH4 is observed by the presence of reduction products CO2, CO and H2O (5.0 

– 5.2). Simultaneously, a rapid catalytic conversion of CH4 to H2 and solid 

carbon (5.3) takes place between 440 °C and 600 °C, for this reason, the molar 

quantities for CH4 consumption and H2 production far exceed the stoichiometry 

of the NiO reduction. At temperatures > 600 °C, catalytic CH4 conversion has 

ceased due to heavy carbon deposition and subsequent deactivation of the 

catalyst. Pyrolysis of CH4 to form H2 and solid carbon (5.3) is observed at 

temperatures > 800 °C; however, this is in the gas phase and is distinct from the 

catalytic process observed at lower temperatures. This is in agreement with 

results obtained by Qin et al. [32] where CH4 was heated to 800 °C at 

atmospheric pressure in the absence of a catalyst and pyrolysis of CH4 was 

observed to form coke and H2. 

 

4 NiO (s) + CH4 (g) → 4 Ni (s) + CO2 (g) + 2 H2O (l)  (5.0) 

NiO (s) + CH4 (g) → Ni (s) + 2 H2 (g) + CO   (5.1) 

CO (g) + H2O (l) ↔ H2 (g) + CO2 (g)     (5.2) 

CH4 (g) → C (s) + 2 H2 (g)     (5.3) 

 

After TPR had been carried out, a 16.1 mg increase in the mass of the catalyst 

was observed. Elemental analysis revealed that the reduced catalyst contained 

42.5 wt. % carbon as a result of heavy carbon deposition from both the catalytic 

and pyrolytic decomposition of CH4. The onset temperature of 440 °C for NiO 

reduction by CH4 is significantly lower than reduction temperatures that have 

been previously presented in the literature, with most studies investigating 

reduction of NiO by CH4 at temperatures ≥ 600 °C [33-35]. Chernavskii et al. 

[36] reported a reduction temperature of 550 °C for TPR studies of 2 - 6 wt. % 

NiO/Al2O3. They reported no change in reduction temperature for this range of 

metal loading; however, studies of NiO/ZrO2 in the same publication show that 

increased Ni loading decreased the reduction temperature. The NiO loading in 

this study is significantly greater than in other studies, therefore it can be 

deduced that the low reduction temperature is a result of a relatively high Ni 

loading on the catalyst. 
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The molar quantities listed in Table 5.7 show that the amount of CO far exceeds 

the amount of NiO in the sample, which is unexpected if NiO is considered to be 

the main source of oxygen in the gaseous products. This observation was also 

observed in TPR studies by Chernavskii et al. [36] and led them to suggest that 

CO is released as a result of an interaction between adsorbed carbon (Cad) 

formed in the decomposition of CH4 and surface hydroxyl groups (OH) on the 

catalyst support (5.7). NiO can be reduced by hydrogen generated in the same 

reaction (5.8). 

 

Cad + OH → CO (g) + H    (5.7) 

NiO + H → Ni + OH      (5.8) 

 

5.6.2 Thermal Reduction of NiO/Al2O3 by H2 

The results for TPR of NiO/Al2O3 by 5 % H2 in helium are shown in Figure 5.21 

and Table 5.8. The onset of NiO reduction in H2 occurred at the lower 

temperature of 280 °C producing H2O as the only product (5.5).  

 

NiO + H2 → Ni + H2O     (5.5) 

 

The observed reduction temperature is similar to results obtained by Richardson 

et al. where the onset of NiO/Al2O3 reduction was found to occur at 300 °C in 

H2 [1] or at the lower temperature of 275 °C when a NiO/Al2O3 catalyst was 

promoted with Ca [37]. A small amount of CH4 was also observed during the 

TPR experiment; however, this is likely to be a reaction between H2 and 

carbonates already present in the catalyst, as seen previously in H2 plasma-

reduction of this catalyst (section 5.3.2). A model for the reduction of 

NiO/Al2O3 has been proposed by Richardson et al. [1]. The authors suggested 

that H2 is dissociated firstly on NiO and then more rapidly on Ni sites as they 

become available. The hydrogen atoms rupture the Ni-O bonds, producing Ni
0
 

atoms and H2O. The reduced Ni atoms will then diffuse away from the centre of 

reduction and nucleate to form metal clusters of a similar size to the original 

NiO crystallites [37]. 
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Figure 5.21: TPR profile for the reduction of NiO/Al2O3 by 5 % H2/He (mass of 

catalyst = 50.5 mg, flow rate = 100 ml min
-1

, temperature ramp = 10 °C min
-1

). 

 

Species Total μmol 

NiO 

H2 consumption 

H2O produced 

223 

388 

597 

 

Table 5.8: Total μmol of each species consumed or produced during the TPR of 

NiO/Al2O3 by H2 (mass of catalyst = 50.5 mg, flow rate = 100 ml min
-1

, 

temperature ramp = 10 °C min
-1

). 

 

5.6.3. Characterisation of Thermally Reduced Ni/Al2O3 Catalysts 

XRD patterns of the thermally reduced samples of Ni/Al2O3 are shown in Figure 

5.22. An estimation of crystallite size for these samples has been calculated 

using the Scherrer equation and is shown in Table 5.9. The XRD pattern for the 

CH4 TPR sample (Fig. 5.22 b) shows that complete reduction of NiO to Ni has 

occurred. The sharp Ni peaks indicate that the sample has a large crystallite size, 

which has been calculated as 22 nm. In this experiment, the temperature was 

raised to 1000 °C resulting in sintering of the Ni particles. In addition, the high 

temperatures have caused graphitisation of the deposited carbon, which can be 
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observed by the peak at 2θ = 26.3°. The broad peaks in Figure 5.22 (c) show that 

a small crystallite size of 6 nm was retained in the H2 reduced sample; however 

the temperature was raised only to 600 °C during this experiment. 
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Figure 5.22: XRD patterns of the NiO/Al2O3 catalysts after a) no treatment, b) 

CH4 TPR and c) H2 TPR. NiO peaks at 2θ = 37.2°, 43.2°, 62.9°, 75.4° and 79.4°. 

Ni peaks at 2θ = 44.4°, 51.6°, 76.1°, 92.1° and 98.1°, Graphite peak at 26.3° 

[20]. 

 

Sample Crystallite Size (nm) 

a) Fresh NiO/Al2O3 6 

b) Ni/Al2O3 – TPR in CH4 22 

c) Ni/Al2O3 – TPR in H2 6 

 

Table 5.9: Estimation of the crystallite size of Ni/NiO-Al2O3 after TPR. 

Uncertainty in the measurement to one standard deviation is ± 1.2 nm. 
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SEM images of the catalysts that were reduced thermally in CH4 and H2 are 

shown in Figures 5.23 and 5.24 respectively.  

 

a)     b)  

 

 

 

 

 

 

 

 

 

c)     d) 

 

 

 

 

 

 

 

 

 

Figure 5.23: SEM images of Ni/Al2O3 which has been reduced thermally in 

CH4 TPR a) mag. 500 × b) mag. 1000 × c) mag. 4000 × d) mag. 8000 ×. 

 

 

 

 

 

 

 

 

 

  

   



 199 

a)     b) 
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Figure 5.24: SEM images of Ni/Al2O3 which has been reduced thermally in H2 

TPR a) mag. 500 × b) mag. 1000 × c) mag. 4000 ×. 

 

Carbon fibres were formed on the CH4 thermally reduced sample as can be seen 

by the cotton wool-like structures in Figure 5.23 (c and d). From XRD and SEM 

analyses, the catalyst has been found to contain both amorphous carbon and 

crystalline graphitic carbon as a result of exposure to high temperatures (600 – 

1000 °C). Mechanisms for carbon formation from CH4 on Ni catalysts at 

elevated temperatures have been reviewed [38, 39]. Carbon deposition is 

generally regarded as a negative effect, which can lead to a loss of catalytic 

activity caused by blockage of the Ni sites or pore mouths and/or a physical 

breakdown of the catalyst support. Rostrup-Nielsen and Trimm [38] 

characterised carbon deposition into 4 distinct morphologies: 1) well-ordered 

graphitic deposits, 2) carbon whiskers, 3) non-orientated deposits and 4) various 
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carbides. The Ni/Al2O3 sample that was thermally reduced in H2 (Figure 5.24) is 

similar in appearance to the H2 plasma-reduced sample shown previously in 

Figure 5.13. There are no carbon structures on either of the H2 reduced catalysts. 

 

 

5.7 Discussion 

5.7.1 Comparison of Reduction Temperatures for NiO/Al2O3 

The temperatures of the reactor during each of the plasma-reduction 

experiments have been recorded and are shown in Figures 5.3 and 5.7. In the 

case of a CH4 discharge the recorded temperature was ~ 320 °C and for a H2/Ar 

discharge it was ~ 390 °C, at similar discharge powers of ~ 117 W and ~ 115 W 

respectively. These temperatures were measured from the electrode on the 

outside of the reactor and can be regarded as a lower limit for the temperature of 

the bulk gas. The temperature of the DBD system is proportional to the applied 

power, since there is no external temperature control or insulation of the reactor 

to prevent heat loss. Significant energy loss through gas flow cooling and 

radiation is able to prevent excessive temperature rise. Plasma processes are 

allothermal; the energy input is independent of the reactions occurring within 

the plasma reactor. For this reason, differences in reactor temperature exist 

between different experiments even when the discharge powers are similar; this 

is a result of the differing thermodynamics of the reactions taking place. A 

possible explanation for the lower temperature in CH4 plasma compared with 

the H2/Ar plasma is the significant rate of an endothermic CH4 decomposition 

(5.3) that will remove energy in the form of heat from the system. 

 

CH4 (g) → C (s) + 2 H2 (g)  ΔHº = 75.6 kJ mol
-1

 (5.3) 

 

Reduction of 33 % NiO/Al2O3 by CH4 in the absence of a plasma discharge 

requires 440 °C as shown by the TPR results (Fig. 5.20). During the CH4 plasma 

reduction, the temperature of the outer electrode was recorded as 320 °C. This is 

a lower limit for the temperature of the bulk gas. It is feasible that a 120 °C 

difference may exist between the centre of the discharge and the outer wall of 

the reactor. However, the catalyst packing will give reasonable thermal 

conduction between the plasma and the outer electrode.  
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In TPR of NiO/Al2O3 with CH4, carbon monoxide production was far greater 

than carbon dioxide production. However, the relative concentrations of these 

products were different for the plasma-reduction in CH4 where CO2 production 

was ~ 5 times greater than CO. The complexity of the possible reactions 

occurring in CH4 reduction makes it difficult to draw conclusions about 

mechanistic differences from this study. CO and CO2 concentrations may be 

dependent on not just the CH4 reduction mechanism but also the rate of 

reduction by CO and H2, the water-gas shift, the Boudouard reaction and 

potentially dry reforming of CH4. 

Reduction of 33 % NiO/Al2O3 by H2 requires 280 °C as shown by the TPR 

results in Figure 5.21. This is significantly lower than the temperature recorded 

for the H2/Ar discharge at 390 °C. Therefore a thermal reduction would have 

taken place in the DBD reactor. However, these processes were not optimised 

and therefore it is possible that the reduction could take place at a lower 

discharge power and hence lower temperature. The product CH4 was observed 

in both the plasma-reduction and thermal reduction in H2. However, the 

production of CO2 and CO was observed only in the plasma-reduction, 

indicating that the plasma is responsible for the formation of these products 

from the catalyst. 

In an argon discharge, which did not have reducing capability for NiO/Al2O3, 

the reactor reached a steady temperature of 315 °C at 85 W (Fig. 5.9). Similarly, 

in studies by Cheng et al. [4], NiO could not be reduced by an Ar glow 

discharge at room temperature despite the ability to reduce noble metal catalysts 

under the same conditions. Literature values for reduction temperatures of noble 

metal supported catalysts indicate that noble metals are more easily reduced than 

transition metals. Tauster et al. [40, 41] reduced Ru, Rh, Pd, Os, Ir, and Pt on 

various oxide supports at 200 °C in H2 and in the case of Pd/TiO2 at 175 °C. 

Based on these results, there is no evidence that free high energy electrons have 

a role as a reducing species for NiO/Al2O3 as they have been shown to for noble 

metal catalysts [4, 5, 11-14]. In plasma experiments where CH4 and H2 are 

present, these gases can act as the reducing species at elevated temperature by 

the same mechanism as that of conventional, thermal reduction of NiO. 

Although it is possible that the plasma has an enhancing role in metal reduction 

such as by the dissociation of the reducing gas or activation of the catalyst 
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surface, further studies would be needed with cooling of the reactor in order to 

determine whether plasma-reduction could occur at lower temperatures. 

 

5.7.2 Mechanism for Plasma-Reduction of NiO/Al2O3 with CH4 

By analogy with thermal reduction of NiO/Al2O3 by CH4, the first step in the 

plasma-reduction is likely to be the decomposition of adsorbed CH4 to form 

active adsorbed carbon (Cad) and hydrogen as shown by the following equations 

[35]: 

 

CH4 (g) → CH4 (ad)       (5.9) 

CH4 (ad) → CH3 (ad) + H (ad)     (5.10) 

CH3 (ad) → CH2 (ad) + H (ad)     (5.11) 

CH2 (ad) → CH (ad) + H (ad)     (5.12) 

CH (ad) → Cad + H (ad)      (5.13) 

2 [2 H  (ad) → H2 (g)]      (5.14) 

Overall: CH4 (g) → Cad + 2 H2     (5.15) 

 

NiO can be reduced by active adsorbed carbon (5.16) to form carbon monoxide. 

The generated CO can then go on to reduce NiO as shown in equation 5.17, 

giving the overall reduction shown in equation 5.0. 

 

Cad + NiO → CO + Ni      (5.16) 

CO + NiO → CO2 + Ni      (5.17) 

4 NiO (s) + CH4 (g) → 4 Ni (s) + CO2 (g) + 2 H2O (l)  (5.0) 

 

Reduction of NiO by hydrogen is also possible (5.5), as H2 is produced through 

CH4 decomposition in the plasma. If this reaction was significant, a greater mass 

of water would have been expected in the reaction products. However, a water-

gas shift could explain the low mass of H2O observed. 

  

H2 + NiO → H2O + Ni       (5.5) 
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5.8 Conclusions 

Reduction of a 33 wt. % NiO/Al2O3 by CH4 plasma has been carried out in a 

DBD reactor. The consumption of CH4 and production of gaseous products have 

been monitored throughout the reduction process. The evolution of reduction 

products CO2 and CO indicate when the plasma-reduction has gone to 

completion. The gaseous analysis showed that the consumption of CH4 

remained high (~ 37 %) even after catalyst reduction was complete due to the 

decomposition of CH4 into H2 and solid carbon. SEM images revealed the 

presence of carbon fibres on the catalyst after reduction in CH4 plasma. The 

carbon fibres provide a protective barrier, making it possible for a Ni/Al2O3 

catalyst to be exposed to air without oxidising. Comparison of the reduction 

temperatures for the plasma and thermal reductions, indicates that the reduction 

mechanism may be similar in both cases. A mechanism has been proposed for 

the reduction of a NiO/Al2O3 catalyst in a CH4 plasma. The reduction of a 

NiO/Al2O3 catalyst by a H2 DBD has been carried out. The consumption of H2 

has been monitored throughout the reduction process. XRD analysis showed that 

the plasma-reduced Ni crystallites had a similar size before and after the 

reduction in both CH4 and H2/Ar DBD. The reduction of NiO/Al2O3 catalysts by 

CH4 and H2 in a DBD reactor is an effective method for catalyst activation for 

plasma-catalytic reactions such as dry reforming of CH4 where it provides a 

convenient and in-situ method for catalyst reduction without the need for 

additional pre-treatment of the catalyst. Treatment of a NiO/Al2O3 catalyst in an 

argon DBD has been carried out and did not reduce the catalyst or change the 

morphology of the catalyst significantly in comparison with a freshly supplied 

sample. A NiO/Al2O3 catalyst has been applied as a coating to BaTiO3 beads 

and used in a packed-bed DBD reactor. In H2/Ar plasma, the NiO/Al2O3 coating 

was rapidly reduced to Ni/Al2O3 leading to significant changes in the dielectric 

properties of the beads and limiting the formation of a stable plasma. 
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6. Dry Reforming of Methane: Performance of Plasma-

Reduced Ni/Al2O3 Catalysts in a Coaxial DBD Reactor 

 

 

6.1 Introduction 

Dry reforming of methane using conventional catalytic methods has three main 

challenges that limit the use of this process on a commercial scale:  

1) The intensively endothermic reaction requires temperatures > 700 °C to 

obtain reasonable yields of H2 and CO, incurring high energy costs. 

2) The high carbon content of the reactant gas mixture leads to severe coke 

deposition and a subsequent „blocking‟ of metal sites causing deactivation of 

the catalysts. 

3) The occurrence of the reverse water-gas shift reaction leads to a decrease of 

the H2/CO ratio in the product gas to < 1, which is unfavourable for 

applications in the Fischer-Tropsch synthesis [1]. 

Each of these factors is determined by the thermodynamic equilibria of the 

reactions involved. The use of non-thermal plasma for dry reforming of methane 

can, to some extent, overcome thermodynamic limitations. This has been shown 

for dry reforming of methane, where products have been formed in DBD that 

are not thermodynamically favourable such as the production of H2 at 

temperatures < 400 °C. However, reactant conversions and desired product 

selectivities are still low. 

The success of NiO/Al2O3 catalysts in steam methane reforming has led to an 

interest in this catalyst for dry reforming of methane in DBD. Wang et al. [2] 

have investigated the effect of a 10 wt. % NiO/Al2O3 catalyst for dry reforming 

of methane with the dilution of CH4 and CO2 in an argon carrier gas. They 

reported a synergistic effect on the CH4 and CO2 conversions above 400 °C. 

They also compared the use of Ni/Al2O3 (pre-reduced in H2) and the same 

catalyst in the unreduced NiO/Al2O3 state. They found that during dry reforming 

of methane in DBD, the unreduced catalyst was reduced in-situ (at 300 – 550 °C) 

and that a high carbon content of 11.45 % wt. was observed on this catalyst, 

compared to 5.37 % wt. carbon for the use of the pre-reduced Ni/Al2O3. Images 

obtained by transmission electron microscopy (TEM) revealed that mostly 
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graphite was formed on the pre-reduced catalyst. In contrast, the carbon 

deposited on the catalyst that was reduced in-situ during dry reforming of CH4 

was mostly filamentous in structure. Song et al. [3] investigated dry reforming 

of CH4 in DBD using a pre-reduced 5 wt. % γ-Ni/Al2O3 in the absence of a 

diluent gas. The presence of the catalyst had little effect on the CH4 conversions 

and on H2 and hydrocarbon selectivities. However, an increase in CO2 

conversions was obtained from 30.95 % (without catalyst) to 33.48 % (with the 

catalyst). They investigated various nickel loadings and found no significant 

difference between the uses of nickel in the 2 – 10 wt. % range. Kraus et al. [4] 

investigated dry reforming of CH4 in DBD using a porous Al2O3 foam with a 6 

wt. % nickel coating. The yields of H2 and hydrocarbons were unchanged by the 

presence of the Ni catalyst. However, CO yields were increased by 20 – 40 % 

compared to the results for an uncoated Al2O3 foam. Optical emission 

spectroscopy was performed during these experiments; in addition to the 

characteristic bands of CO2 and CH4, they identified strong bands for CO, CO2
+ 

and weak bands corresponding to OH and C2 species. 

This investigation follows on from the work in the previous chapter where 

NiO/Al2O3 catalysts were reduced in a 100 % CH4 plasma and in a 20 % H2/Ar 

plasma. The plasma-reduced Ni/Al2O3 catalysts have been used in plasma-

catalytic dry reforming of methane to investigate whether this catalyst is able to 

enhance the reaction performance in DBD. Characterisation of the used catalysts 

has been performed using XRD and SEM analyses.  

 

 

6.2 Experimental Section 

The experimental set-up used in this investigation has been described in section 

3.2. Non-uniform particles of 33 % wt.  NiO/Al2O3 catalyst (Johnson Matthey) 

were packed into the discharge gap (~ 19.5 g, 0.85 mm – 5 mm) and reduced in 

100 % CH4 or 20 % H2/Ar plasma, as described in Chapter 5. Dry reforming of 

CH4 (CH4/CO2 = 1) was carried out in DBD using the reduced Ni/Al2O3 

catalysts in the discharge gap, without removing the catalyst from the reactor 

after the reduction stage. The total gas flow rate was 50 ml min
-1

 at a pressure of 

1 bar. The gas mixtures were allowed to stabilise before the plasma was turned 
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on and after each increase in discharge power, before taking the micro-GC 

measurements. 

 

 

6.3 Results 

6.3.1 Dry Reforming of CH4 Using Plasma-Reduced Ni/Al2O3 Catalysts 

The results for dry reforming of methane in a DBD reactor using Ni/Al2O3 

catalysts are shown in Figures 6.0 – 6.6. Comparisons are made between the 

reaction performances of the catalysts reduced by the two plasma-reduction 

processes (in 100 % CH4 or in 20 % H2/Ar). The presence of the catalysts in the 

discharge gap enabled significantly higher discharge powers to be obtained in 

comparison to the same reaction in the absence of a packing material (without 

exceeding the maximum input voltage of 22 kVpk-pk). This is due to an enhanced 

ability of the catalyst to store electrical charge relative to a discharge gap 

containing only gas with no packing material. The measured charge in the 

absence of the catalyst was 202 nC and this increased to 348 nC during dry 

reforming of methane with the Ni/Al2O3 catalysts. 

The methane conversions were significantly greater for the catalyst that was 

reduced in a H2/Ar plasma compared to the CH4 plasma-reduced catalyst as 

shown in Figure 6.0. This may be explained by the high carbon deposition 

during the CH4 reduction. The deposited carbon may reduce the accessibility of 

gas molecules to the active Ni sites. In contrast, the H2/Ar plasma reduction 

process did not deposit any carbon on the catalyst and therefore the dissociation 

of CH4 on the catalytic Ni sites could not be limited by accessibility. Methane 

conversions increased with increasing discharge power, as expected. The highest 

conversion of CH4 was 24.4 %, this was obtained for the H2/Ar reduced sample 

at 80 W. In comparison, the conversion of CH4 when using the CH4 plasma-

reduced sample was ~ 5 % at the same discharge power. 
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Figure 6.0: CH4 conversions during dry reforming of methane in DBD with 

Ni/Al2O3 catalysts. 

 

0 20 40 60 80 100

-6

-4

-2

0

2

4

6

8

10

12

14
 Ni/Al

2
O

3
 (reduced in CH

4
)

 Ni/Al
2
O

3
 (reduced in H

2
/Ar)

C
O

2
 C

o
n

v
e

rs
io

n
 (

%
)

Power (W)

Figure 6.1: CO2 conversions during dry reforming of methane in DBD with 

Ni/Al2O3 catalysts. 
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The carbon dioxide conversions are shown in Figure 6.1. For both catalysts, 

negative CO2 conversions were obtained at low powers. This may be explained 

by the cyclical adsorption and desorption of CO2 at low discharge powers, 

which is not observed at higher powers as the rate of desorption exceeds that of 

adsorption. In Chapter 3 (section 3.3.2) negative CO2 conversions (of -1.2 % at 

the lowest) were also obtained for the use of low discharge powers when the 

discharge gap was packed with Al2O3, zeolite 3A or TiO2 and it was suggested 

that this was due to the desorption of CO2 under the action of the plasma. The 

observation that CO2 conversions were more negative in the case of a CH4-

reduced Ni/Al2O3 catalyst (-4.6 %) compared to the H2/Ar reduced catalyst (-

1.2 %) suggests that a reaction of deposited carbon may be responsible for a 

large part of the CO2 formation in that instance. The negative CO2 conversions 

remained stable over an extended run time of 120 minutes at low power. As the 

discharge power was increased the CO2 conversions increased. The catalyst that 

was reduced in a H2/Ar plasma gave higher conversions of CO2, although the 

difference was less than observed for the CH4 conversions. At a power of ~ 80 

W, a CO2 conversion of 7.6 % was obtained when using the catalyst reduced in 

H2 and a CO2 conversion of 3.9 % was obtained when using the catalyst reduced 

in CH4. As with the CH4 conversions, the different results for the use of the 

catalysts may be caused by a reduction in catalytic activity as a result of carbon 

deposition.  

The product selectivities for the use of each catalyst are shown in Figures 6.2 

and 6.3. In both cases, H2 and CO were the most abundant products. Smaller 

amounts of acetylene/ethylene, ethane and propane were also formed. Propene 

and butane were not produced during these reactions. The product selectivities 

at lower discharge powers have been omitted from the graphs due to the 

negative CO2 conversions being problematic for the selectivity calculations. The 

catalyst that was reduced in a CH4 plasma gave higher selectivities towards H2 

and hydrocarbons compared to the catalyst that was reduced in a H2/Ar plasma. 

At discharge powers between 70 W and 100 W, the selectivity towards H2 

increased steadily from 35 % to 45 % (Fig. 6.2). This result is greater than the 

H2 selectivities obtained in the absence of the catalyst or any of the investigated 

packing materials in Chapter 3 (results that were obtained at lower discharge 

powers). The CO selectivities were in the range 13 – 19 % for discharge powers 
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between 60 and 80 W and were similar for both catalysts. The selectivities 

towards CO in Figures 6.2 and 6.3 are much lower than those observed in the 

absence of a catalyst and for the use of other packing materials, which were in 

the range 24 – 37 % at a discharge power of 35 W (section 3.3.2). These results 

are in contrast to results obtained by Song et al. [3], who found that the H2 

selectivity decreased slightly and the CO selectivity increased when a Ni/Al2O3 

catalyst was introduced during dry reforming of methane at a discharge power 

of 130 W. 
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Figure 6.2: Product selectivities during dry reforming of methane using a 

Ni/Al2O3 catalyst (reduced in a 100 % CH4 plasma). 
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Figure 6.3: Product selectivities during dry reforming of CH4 using a Ni/Al2O3 

catalyst (reduced in a 20 % H2/Ar plasma). 

 

0 20 40 60 80 100

0

2

4

6

8

 Ni/Al
2
O

3
 (reduced in CH

4
)

 Ni/Al
2
O

3
 (reduced in H

2
/Ar)

H
2
 Y

ie
ld

 (
%

)

Power (W)

 

Figure 6.4: H2 yields during dry reforming of methane in DBD with Ni/Al2O3 

catalysts. 
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The yields of H2 are shown in Figure 6.4. At the same discharge power, the 

yield of H2 was slightly greater using the catalyst that was reduced in a H2/Ar 

plasma as a result of higher CH4 conversions. The highest yield of H2 (8.2 %) 

was obtained for the CH4 plasma-reduced catalyst, at a discharge power of 97 W. 

This is greater than the maximum H2 yield (5.6 %) that was obtained in the 

absence of the catalyst (at a lower discharge power). 

The carbon balance in the gas stream for the use of both catalysts is shown in 

Figure 6.5. Higher conversions of CH4 and CO2 at higher discharge powers are 

accompanied by higher carbon deposition. As previously described, carbon 

deposition could be a result of several reactions including methane 

decomposition, the Boudouard reaction and/or electron impact dissociations of 

other gas molecules that might produce solid carbon. The formation of H2 as a 

percentage of the total gas mixture resembles a mirror image of the carbon 

balance as shown in Figure 6.6. Following this observation, it is suggested that 

methane decomposition to give solid carbon and H2 is the dominant process that 

is responsible for carbon deposition during these experiments. At temperatures 

below 350 ºC (the maximum temperature of the bulk gas) this is likely to be a 

result of electron impact dissociations of methane rather than methane pyrolysis. 
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Figure 6.5: Gas stream carbon balance during dry reforming of methane in 

DBD with Ni/Al2O3 catalysts. 
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Figure 6.6: H2 concentration and carbon balance during dry reforming of 

methane with a Ni/Al2O3 catalyst.  

 

6.3.2 Plasma-Assisted Dry Reforming of Methane With and Without a 

Ni/Al2O3 Catalyst at Low Discharge Powers 

It can be seen clearly from Table 6.0 that the reaction performance for dry 

reforming of methane was better in the absence of the catalyst at low discharge 

powers. The conversions of both CH4 and CO2 were significantly greater in the 

absence of the catalyst. When the Ni/Al2O3 catalysts were present the CO2 

conversions were negative or close to zero at a discharge power of 38 W. The 

H2 yield was also higher in the absence of the catalyst at 5.2 % compared to 

<1 % when using a catalyst in the discharge zone. The differences in reaction 

chemistry may be due to physical differences in the plasma discharge in going 

from a filamentary discharge in the absence of a catalyst to a surface discharge 

when the catalyst was present. For example, the electron energy distribution 

function is likely to differ between these two types of discharge at the same 

discharge power.  
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Conversions (%) Selectivities 

(%) 

H2 Yield (%) 

CH4 CO2 H2 CO 

No Catalyst 25.2 14.0 20.7 36.9 5.2 

Ni/Al2O3 (reduced in 

a CH4 plasma) 

6.4 -3.8 4.5 9.1 0.3 

Ni/Al2O3 (reduced in 

a H2/Ar plasma) 

10.0 0.3 7.1 7.5 0.7 

 

Table 6.0: Comparison of dry reforming of methane in DBD with and without 

Ni/Al2O3 catalysts (~ 38 W). 

 

It was not possible to make a comparison at higher discharge powers because in 

the absence of the catalyst, the plasma discharge became unstable when the 

power exceeded ~ 40 W. At low discharge powers the amount of hydrocarbons 

produced was very low, but their production became more significant at higher 

discharge powers. 

The micro-analytical results for the carbon and hydrogen content in the plasma-

reduced catalysts (after dry reforming of methane) and liquid products of dry 

reforming are shown in Table 6.1.  

 

 % wt. C and H in 

catalyst 

% wt. C and H in liquid 

product 

No Catalyst - C = 3.2 

H = 10.7 

Ni/Al2O3 (reduced in a 

CH4 plasma) 

C = 21.8 

H = 0 

C = 0.5 

H = 12.6 

Ni/Al2O3 (reduced in a 

H2/Ar plasma) 

C = 4.0 

H = 0 

C = 0.5 

H = 12.0 

 

Table 6.1: Carbon and hydrogen compositions of the catalysts and liquid 

products after dry reforming of CH4. 
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The high rate of carbon deposition during the reduction stage is likely to be 

responsible for the majority of the carbon deposited (21.8 wt. %) on the CH4 

reduced sample. The catalyst that was reduced in H2/Ar plasma contained only 

~2 wt. % after the reduction stage and a further 2 wt. % was deposited during 

dry reforming of CH4. It can be determined from the low carbon content of the 

liquid samples that they contained mostly H2O. The carbon contents of the 

liquid samples from the plasma-catalytic reactions were significantly lower than 

the liquid sample produced during the plasma-only reaction. This suggests that 

the selectivities towards higher hydrocarbon species (C5+) or oxygenated liquid 

compounds such as CH3OH were higher in the absence of the catalyst. 

 

 

6.4 Catalyst Characterisation 

6.4.1 XRD 

The XRD patterns for the catalyst samples are shown in Figure 6.7. For 

comparison, the XRD patterns for a fresh sample of the catalyst (with no pre-

treatment) and plasma-reduced Ni/Al2O3 catalysts (without dry reforming of 

CH4) are also shown. After dry reforming of methane, the catalyst can be 

characterised as being in the reduced Ni/Al2O3 state, as shown by the broad 

peaks at positions that are characteristic of nickel. The bulk Ni was not oxidised 

to NiO during the plasma reaction in CH4 and CO2.  

An estimation of the Ni and NiO crystallite size for each of the catalyst samples, 

using the Scherrer equation, is shown in Table 6.2. The Ni/NiO particles were 

calculated as having dimensions of 6 to 8 nm. Within the uncertainty of the 

measurements (± 1 nm) there is no significant difference between these values. 
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Figure 6.7: XRD patterns of Ni/NiO on Al2O3 catalysts a) fresh NiO/Al2O3 

catalyst b) CH4 plasma-reduced Ni/Al2O3 c) CH4 plasma-reduced Ni/Al2O3 after 

dry reforming of CH4 d) H2/Ar plasma-reduced Ni/Al2O3 e) H2/Ar plasma-

reduced Ni/Al2O3 after dry reforming of CH4. NiO peaks at 2θ = 37.2°, 43.2°, 

62.9°, 75.4° and 79.4°. Ni peaks at 2θ = 44.4°, 51.6°, 76.1°, 92.1° and 98.1° [5]. 

 

 

Sample 

 

Crystallite Size 

(nm) 

a) Fresh NiO/Al2O3 7 

b) CH4 plasma-reduced Ni/Al2O3 6 

c) CH4 plasma-reduced Ni/Al2O3 after dry 

reforming of CH4  

7 

 

d) H2/Ar plasma-reduced Ni/Al2O3  8 

e) H2/Ar plasma-reduced Ni/Al2O3 after 

dry reforming of CH4 

8 

 

 

Table 6.2: Estimation of crystallite sizes of Ni/NiO-Al2O3 after plasma 

reactions. Uncertainty in the measurement to one standard deviation is ± 1 nm. 
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6.4.2 SEM 

Images have been taken using scanning electron microscopy and are shown in 

Figures 6.8 and 6.9 for the catalyst samples that were reduced in CH4 and H2/Ar 

plasmas respectively and used during this investigation for dry reforming of 

methane. It has been shown (in section 5.4.2) that the carbon deposited on the 

catalyst in a CH4 plasma has a filamentous structure. These carbon filaments can 

be viewed on the catalyst after dry reforming of methane as shown in Figure 6.8 

(e). The catalyst in Figure 6.9 has been reduced in a H2/Ar plasma and then used 

in dry reforming of methane. Carbon filaments could not be observed using 

SEM on this sample. It is possible that the carbon deposited during dry 

reforming of methane has a different structure. However, the carbon content was 

low (4 wt. %) in comparison to the sample reduced in CH4 (21.8 wt. %), 

therefore it is possible that with an extended run time for dry reforming of 

methane, similar carbon filaments would be formed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 220 

a)     b) 

 

c) d) 

e) 

 

 

 

 

 

 

 

 

 

Figure 6.8: SEM images of a Ni/Al2O3 (pre-reduced in a 100 % CH4 plasma) 

catalyst after dry reforming of methane a) mag. 50 × b) mag. 500 × c) mag. 

1000 × d) mag. 4000 × e) 12000 ×. 
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a) b) 

 

 

 

 

 

 

 

 

 

c)     d) 

e) 

 

 

 

 

 

 

 

 

 

Figure 6.9: SEM images of a Ni/Al2O3 (pre-reduced in a 20 % H2/Ar plasma) 

catalyst after dry reforming of methane a) mag. 50 × b) mag. 500 × c) mag. 

1000 × d) mag. 4000 × e) 24000 ×. 
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6.5 Discussion 

The performance of a Ni/Al2O3 catalyst during dry reforming of methane in a 

DBD is changed by the reduction method of the catalyst. Lower reactant 

conversions were obtained for the catalyst that was reduced in a CH4 plasma, 

which is most likely to be due to a deactivating effect of the deposited carbon. 

Higher CH4 and CO2 conversions were obtained for a catalyst that was reduced 

in a H2/Ar plasma, which contained a much lower carbon content after the 

reduction process. In conventional catalytic dry reforming of methane, the 

dissociative adsorption of methane is the rate determining step [6]. The 

observation that reactant conversions were higher in the absence of the catalyst 

suggests that the rate determining step is different for the plasma-catalytic 

reaction. Both catalytic surface reactions and electron impact plasma volume 

processes may be involved in the reaction mechanism. The relative importance 

of these processes is difficult to ascertain. 

It has been confirmed that the carbon deposited on the catalyst in a 100 % CH4 

plasma is filamentous in structure. However, the form of the deposited carbon in 

the dry reforming of methane reaction could not be determined as there were no 

observable carbon structures on the catalyst that had been reduced in a H2/Ar 

plasma. Graphitic deposits were not observed in either case as witnessed by the 

XRD results. There is evidence to suggest that the growth mechanism for carbon 

filaments in plasma processes produces a length of stacked bell-shaped graphene 

layers with the catalytic metal particle positioned on the protruding end of the 

filament [7]. In this case, the active metal could still be expected to be involved 

in catalytic reactions but any possible interactions with the catalytic support 

would be modified. The selectivity and yield of H2 was enhanced for the use of 

the catalyst that was reduced in a CH4 plasma, therefore it is suggested that this 

catalyst is more active towards the decomposition of CH4 into H2 and solid 

carbon, rather than for a dry reforming of methane mechanism that involves 

reactions with CO2.  
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6.6 Conclusions 

Comparisons of dry reforming of methane with and without the use of a 

Ni/Al2O3 catalyst showed that for the same discharge power, the results were 

more promising in the absence of the catalyst. However, the higher discharge 

powers that could be obtained when the catalyst was present led to ultimately 

higher reactant conversions and yields of H2. The enhanced conversions are 

accompanied by increased carbon deposition. It is suggested that electron impact 

dissociation of methane is the dominant process for the formation of H2 and 

solid carbon during these reactions. 

The presence of the catalyst made the reactor more effective at coupling power 

into the plasma discharge. Higher discharge powers could be achieved in the 

presence of the catalyst (without exceeding the maximum input voltage) due to 

an increased charge carrying capacity of the catalyst.  
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7.0 Future Work 
 

The main focus for the investigations in this thesis has been the interactions 

between a plasma discharge and catalysts in a combined system. Following on 

from this work, there are several promising directions for future research, as 

detailed in this chapter. 

 

 

7.1 Plasma-Catalytic Decomposition of Methane 

The results in Chapters 5 and 6 have demonstrated that a Ni/Al2O3 catalyst can 

be effective for catalysing CH4 decomposition in a DBD. When using a plasma 

of 100 % CH4, selective production of solid carbon and H2 can be obtained with 

minimal formation of higher hydrocarbon by-products. Optimisation of the 

plasma-catalytic reaction conditions for H2 production from CH4 would be an 

important objective for further investigations. 

The solid carbon product is potentially a very interesting material in its own 

right. Plasma processes have been shown to produce a variety of carbon 

products including amorphous carbon black, carbon fibres and various 

fullerenes such as nanotubes and buckyballs [1, 2]. Carbon nanostructures have 

been dubbed as „supermaterials‟ due to their unique range of properties 

including extraordinary strength and hardness and a broad range of optical, 

thermal and electrical properties depending on the morphology and 

incorporation of other elements into the carbon structures. Production of these 

specialist carbon materials is currently achieved using three main methods: 

thermal arc discharges or laser ablation methods at temperatures of ~ 3730 °C or 

by chemical vapour deposition (CVD) which usually operates at ~ 1230 °C [1]. 

Active metal catalysts such as supported nickel are typically employed to 

catalyse the decomposition of a precursor such as methane, ethylene, CO etc. 

In Chapters 5 and 6 of this thesis, SEM images were presented of carbon 

nanofibres produced on a Ni/Al2O3 catalyst in a non-thermal plasma at relatively 

low temperatures (< 400 °C). Complete characterisation of these structures 

using Raman spectroscopy and TEM would be an important first step for further 

investigations. Growth of carbon nanotubes on a substrate is a highly desirable 

process for a wide range of industries. The extreme temperatures used in current 
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methods for carbon growth would have adverse effects ultimately leading to the 

destruction of many desirable substrate materials. Consequently, low-

temperature processes for growth of carbon nanostructures (that could preserve 

the substrates) would have promising implications for many industries. 

 

 

7.2 Development of a Plasma-Membrane Reactor 

Hydrogen fuel cell technologies require high purity H2 in order to avoid catalyst 

poisoning. In order to access the value of the H2 produced in plasma reactions it 

must be separated from the unconverted CH4 and any other gaseous reaction 

products. The use of membrane technologies in a plasma-catalytic combined 

system is a potential solution. A preliminary investigation combining the use of 

plasma-catalysis and membranes has been reported by Nguyen et al. [3], where 

the excess heat from the plasma was used to drive the flow of H2 through a Pd-

Ag membrane. The reaction scheme in Figure 7.0 is suggested as a potential 

method for the production of high purity H2 with co-production of useful solid 

carbon products.  

 

 

 

Figure 7.0: A schematic diagram showing the production of H2 and carbon 

nanotubes from CH4 via the use of plasma-catalysis and membrane technologies. 
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7.3 Development of Specialist Catalysts for Plasma Processes 

The development of specialist catalysts for plasma-assisted dry reforming of 

methane and other plasma processes would be a beneficial area for further 

investigations. The results in Chapter 3 of this thesis have demonstrated that 

when different materials are placed in a plasma discharge, the physical 

properties of the plasma can be modified. This leads to significant changes in 

the reaction chemistry. It is suggested that the dielectric properties, size, shape 

and porosity of the material can have a substantial influence. In particular, the 

incorporation of voids in a catalytic material is considered important for the 

formation of filamentary discharges in a plasma-catalytic DBD system. For this 

reason, exploring the use of quartz wool impregnated with Ni particles could be 

a promising catalyst for plasma-assisted dry reforming of methane. Further 

studies in this area with careful control of a single variable would allow a better 

understanding to be gained of the relative importance of each of these factors. In 

addition to the features mentioned above, there are several important factors that 

should be deliberated when developing catalysts for any heterogeneous 

processes, such as: 

1) High catalytic activity towards the desired reaction(s). 

2) Inhibition of processes that lead to undesired by-products. 

3) High surface area of the active species to enhance reaction rates. 

4) Interactions of the support material. 

5) High stability at elevated temperatures.  

6) Costs of preparation and components. 

 

 

7.4 Development of a Micro-Reactor System for Catalyst Screening 

In order to test the performance of potential catalysts quickly and efficiently, 

screening of small amounts of catalysts for the desired plasma reactions would 

be required. The DBD reactors used for the investigations in this thesis required 

relatively large amounts of catalysts in order to completely fill the discharge gap. 

Consequently the use of these reactors for screening purposes is difficult 

because the quantities of catalyst required are too large. A solution to this 

problem would be the development of a micro-reactor system that could 

accommodate several DBD cells in parallel allowing micrograms of different 
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catalysts to be simultaneously tested for the same reaction. Microreactors can be 

formed with the same features as typical DBD reactors except on a smaller scale, 

with discharge gaps typically of ≤ 1 mm [4]. 
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Appendix A: 

 

Power measurement in a DBD plasma reactor 
 

Peter Gorry 

 

 

Experimental set up 

 
 

Fig 1 Circuit for measuring the discharge power of a plasma reactor 

 

Figure 1 shows a typical circuit layout [1]. The power can be determined by 

measuring the high voltage U(t) and either the current flowing through the 

resistor R, or the charge on capacitor C. A switch is used to select which method 

is used.   

 

Current method 
 

This is the simplest to understand and we follow here the formalism of Feng and 

Castle [2]. The instantaneous power in the reactor is simply given by 

 

 p(t) U(t)  i(t)  (1)

  

 

where U(t) is the high voltage (HV) on the reactor and i(t) is the current flowing 

through the reactor (and resistor R). The current i(t) is simply found from  

 i(t) 
VR(t)

R
 (2)
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where  VR(t) is the voltage across R.  

 

The average power over a single cycle of the high voltage, period T, is given by 

 P 
1

T
pdt

t0 T 2

t0 T 2

 
1

T
U(t)  i(t)dt

t0 T 2

t0 T 2

 
1

T

U(t) VR(t)

R
dt

t0 T 2

t0 T 2

   (3) 

where t0 is the centre of the cycle. 

 

The problem with this method is that the plasma itself is a series of 

microdischarges of short duration (typically ≤ 2 ns) and the current waveform 

need to capture this information accurately. This in turn requires a very high 

bandwidth (and expensive) sampling oscilloscope [3]. 

 
Fig 2 Reactor voltage, U(t), and current i(t). 

In practice, even with such an instrument, the overlap of spikes makes the use of 

Eqn 3 very difficult to perform accurately. 

 

Lissajous method 
 

This method was introduced by Manley [4] in 1943. In the absence of any way 

of accurately recording the microdischarge current spikes the alternative is to 

replace the probe resistor R by a probe capacitor C. The capacitor accumulates a 

charge from the current flowing through the reactor and this can be determined 

by measuring the voltage on the capacitor Vc. 

 q(t)  C Vc(t)  (4) 
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The advantage is that the charge is stored in the capacitor and doesn‟t require a 

fast transient digitiser to record it. The energy per cycle, W, can be found from 

Eqn 3 by multiplying by T. 

 W  U(t)  i(t)dt
t0 T 2

t0 T 2

  (5)  

The current flowing through the measuring capacitor, C, is given by 

 i(t) 
dq

dt
 C

dVc

dt
 (6)

  

hence we have  

 q(t)  C Vc(t)  (7)

  

and the energy per cycle becomes  

 W  U(t) C Vc(t)dt
t0 T 2

t0 T 2

  U(t) dq(t)
t0 T 2

t0 T 2

  (8) 

If we record U(t) and q(t) as a series of n regularly sampled points over one 

cycle we can approximate Eqn 8 by a summation, using trapezoidal integration, 

as 

 W 
Uk1 Uk

2







k1

n

 (qk1  qk )  (9) 

We now simply have to multiply by the number of cycles per second to get the 

power in the reactor. So, if the voltage U has a frequency, f, where f = 1/T , we 

have 

 P W  f  f
Uk1 Uk

2







k1

n

 (qk1  qk )  (10) 

The integrals in Eqns 8 and 10 represent the area of a U-q Lissajous figure. 
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Equivalent circuit analysis 

 

Fig 3 (a) Equivalent circuit for the DBD reactor and (b) resulting q-U Lissajous. 

The equivalent circuit and q-U Lissajous is shown in figure 3 [3,5]. In Fig 3a Cd 

is the capacitance of the dielectric barrier and Cg is the capacitance of the air 

gap. When the voltage across the air gap exceeds Ud microdischarges start, this 

is represented by the bipolar zenner diode and continue to develop until the 

maximum voltage U0.  

  

The total capacitance, CT, is given by 

 
1

CT


1

Cg


1

Cd
 (11) 

During the discharge on period the current depend on the dielectric barrier 

capacitance alone, Cd, and during the off period it depends on the total 

capacitance, CT. We have 

 

dq

dU
 CT 

CgCd

Cg Cd
              Discharge off

dq

dU
 Cd                                 Discharge on

 (12) 
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Cyclic integration 

The energy in a cycle is given by the integral defined in Eqn 8. This 

corresponds to a cyclic integral in the U-q plane (i.e.  q along the x axis and U 

along the Y axis – so the axes are transposed from those in Fig 3b). 

Figure 4 shows the integration A-B-C-D – i.e. where U is +ve. From A-B dq is 

+ve and the shaded area in Fig. 4(i) is calculated. From B-C-D dq is –ve and the 

shaded area in Fig. 4(ii) will be subtracted from the shaded area in Fig. 4 (i) – 

leaving the shaded area in Fig. 4 (iii). The second half of the cycle does exactly 

the same for the negative U values. So the integral in Eqn 8 represents the area 

of the Lissajous figure.                            

 

               i                                       ii                                                   iii 

 

Fig 4 Energy integral defined in Eqn 8 over +ve U values 

 

LabVIEW Implementation 
 

The implementation in Labview is based on two channel ADC sampling using 

hardware from Picoscope (ADC200). This is used to record the high voltage 

waveform (via a 1000:1 reducing probe) and the voltage across the probe 

capacitance (typically 22 nF). The instrument interface is divided into two parts, 

a two channel sampling oscilloscope with signal averaging (upper part), and a 

Plasma Power section for evaluating Eqn 10 (lower part). 
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Fig 5 LabVIEW interface for plasma power determination 

 

 

Picoscope ADC200 connections 
 

Chan A:  HV via 1000:1 reducing probe. 

Chan B:  Vc from probe capacitor. 

 

Analysis methodology 
 

The power is calculated from Eqn 8 using the numerical approximation of Eqn 

10. 

 P W  f  f
Uk1 Uk

2







k1

n

 (qk1  qk )  (10) 

This requires the frequency, f, of the HV supply and a single cycle of data from 

U(t) and Vc(t).  
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Fig 6 Suitable data sample (top trace) and extracted single cycle. 

 

 

Determination of Frequency 

 
In fact this is the major difficulty in the analysis and a multi-solution approach 

is performed.  

3 – 5 cycle data limit 

The evaluation of Eqn 10 requires a single complete cycle be extracted from the 

U(t) and Vc(t) data streams. The frequency analysis is performed in several 

stages which require a minimum of 3 cycles and a maximum of 5 cycles to be 

recorded. The power analysis section checks that the data in channel A ( U(t) ) 

has between 3-5 peaks above a threshold 75% of the maximum value and a peak 

width of at least 20 data points long. Analysis only proceeds if the data passes 

this test. 

The sampling rate and the number of points must be set to ensure this is 

true. 
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Single tone analysis 

An initial determination of the frequency is performed using fast fourier 

transform (FFT) techniques which requires that the U(t) data have at least 3 full 

sine wave cycles for accurate values. The data processing is 

 Data  Hanning Window FFT Autopower Spectrum Fundamental 

Frequency 

The fundamental frequency is accurate to 1-2 Hz for a pure sine wave without 

noise. However, the presence of noise can introduce uncertainties of 5-20 Hz in 

a 30 kHz signal. The approach also is unreliable with less than two cycles of 

data. 

 

Three parameter least squares fit 

The estimate of the frequency, f0, from the single tone analysis is used in a two-

level least squares process to find a more robust estimate of the frequency. The 

signal U(t) can be represented by 

 

 U(t)  Asin(t )  (13)

  

where  =2f.  

 

We require to calculate least-squares estimates for A, , and   by fitting U(t) to 

Eqn 13 [6-8]. In terms of the N sampled data points we need to minimise the 

Least-Squares 2
 value with respect to each parameter from  

 

  2  Ui  Asin(ti ) 
2

i1

N

  (14)

  

  

 
 2

A
 0       

 2


 0       

 2


 0  (15)
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Unfortunately 2
 is non-linear in  and  so there are no analytical expressions 

to these derivatives in Eqn 15. We can partially linearise the expression in Eqn 

14 by expanding the sine expression. 

 

 
U(t)  Asin(t )  Asin(t)cos() Acos(t)sin()

        asin(t) bcos(t)
 (16)

  

 

where a  Acos()  and  b  Asin()  

so   =tan1 b

a







 and  A 

a

cos()
 (17) 

 

And equations 14 and 15 become 

  2  Ui  asin(ti ) bcos(ti ) 
2

i1

N

  (18)

  

 
2

a
 0       

2

b
 0       

 2


 0  (19)

  

Now 2
 is non-linear in  only. We adopt a grid approach to determining . 

The single tone frequency f0 is used to calculate an intial guess 0 and Eqns 18 

and 19 solved for this fixed 0. i.e. the linear least-squares is solved analytically 

for parameters a and b only (hence  and A from Eqn 17). 

 

This calculation is repeated at values of f = f0 ± nf   where n =1…5 and 

typically f =20 Hz is used. The eleven 2
 vs f values centred on fo are then 

least-squares fitted to a parabola  

 2  c0  c1 f  c2 f
2     yielding a minumum at  fmin  

c1

2c2

 (20)

  

 

The process is then repeated on a finer grid with f0=fmin and f =f /3. The final 

estimate of the frequency is the fmin value from this second application. Finally 

a and b (hence A and ) are found for this final value of fmin. This is generally 

accurate to 1-3 Hz even for slightly noisy data. 
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Single cycle integration 

The final least-squares parameters for A,  and  are then used to determine the 

start and end of a complete cycle. Since U(t) is used to trigger data collection  

will be a +ve number so we must start at U(t) = 0 in the 2
nd

 cycle.  

 

 tstart 
2 


   and    tend  tstart T     where   T 

1

f
 (21) 

 

The single cycle can be converted to array indices simply from  

 nstart 
tstart

t
    and   nend 

tend

t
     where  t   sampling period  (22) 

 

This single cycle is „cut out‟ from U(t) and Vc(t) and the integration of Eqn 10 

(via Eqn 7) performed. 

 

Statistical Analysis 

The power analysis section can be used to repeat the data collection + power 

determination for a number of samples. This allows determination of mean 

values for A, f and P with the associated uncertainties in their means: 

 f 
1

NS
fk

k1

NS

     where  NS  is the number of samples  (23) 

 
f


1

NS (NS 1)
fk  f 

2

k1

NS

   (24) 

The equivalent quantities are also calculated for A and P. 

 

File outputs – two channel oscilloscope 

Datalog format 

The data from the two channel oscilloscope section is stored in a proprietary 

LabVIEW format for retrieval at a later date. This also stores all running and 

display parameters. Such a file is also very useful as a way to configure the 

instrument for particular experimental conditions. The Power analysis settings 

and the current values of f, A and P (and errors) are also stored – but not the 
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extracted waveform (since this can be easily extracted again by implementing a 

single analysis).  

 

Export format 

The voltage waveforms are saved in a tab-delimited text file suitable for reading 

into Excel. The three columns are: 

 Time/µs ChanA/V ChanB/V 

These are simply the raw data returned by the Picoscope unit. No other 

information is exported. 

 

File outputs – Plasma Power 

Export format 

The time, voltage waveform U(t) and charge q(t) are saved in a tab-delimited 

text file suitable for reading into Excel. Time is in microseconds and charge in 

microcoulombs. The three columns are: 

 Time/µs U/V q/µC 
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Appendix B: Calculation Methods for Electrical Parameters 

 

Calculation of the gas voltage, Ug 

The gas voltage, Ug can be calculated from equations A1 and A2: 

 

g app dU U U            (A1)   

  

c c d dU C U C    (A2) 

 

Where Uapp is the applied voltage, Ud is the voltage across the dielectric material, 

Uc is the voltage across a capacitor, Cc is the capacitance of the capacitor used 

and Cd is the capacitance of the dielectric material which is shown on Figure A1. 

  

Calculation of the breakdown voltage, UB 

The breakdown voltage, UB can be calculated from equations (A3 and A4): 

 

min
1

1 / d

B

g

U U
C C




 (A3) 

  

1 1 1

t g dC C C
     (A4) 

 

Where Umin is the minimum external voltage, which is depicted in Figure A1, Cg 

is the capacitance of the gas gap, Cd is the capacitance of the dielectric material 

and Ct is the total capacitance. 

 

 

Measurement of the charge, Q and capacitance, C 

The charge (Qpk-pk), charge discharged (Qd) and charge transferred per half cycle 

(Qtrans) are taken from a measurement of the Lissajous figure as shown in Figure 

A1. 
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Figure A1: Schematic diagram showing the measurement of electrical 

parameters on a Lissajous figure. 
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