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Abstract 
 

Driven by climate change and the impending depletion of fossil fuels, the UK 

Government has set the great challenge to UK builders to produce zero-carbon 

homes as of 2016. Due to a lack of experience the merits of integrating onsite 

micro renewable energy systems were largely unknown. Barratt Development PLC, 

UK‟s largest builder, set out in 2006 to investigate how these new building 

regulations can best be tackled. The key points to be investigated are: how much 

CO2 can be offset using renewable energy systems in standard homes and at what 

cost; how reliable are these systems; and how can their performance be improved? 

At the EcoSmart village several systems were tested under realistic conditions, 

including PV, Solar Thermal, Micro Wind Turbines, GSHPs and microCHP.  

 The systems were tested over a 12-month period, integrated into standard 

Barratt homes, and running under near real-life conditions. Data was recorded from 

the test-site, including heat and electrical energy generation and consumption, 

temperature data and weather data. This data was used to establish the theoretical 

performance of the systems at the test site, and by doing so simple methods were 

found and tested that can be used by builders or architects to gain a better 

understanding of the expected performance of a particular system. The estimated 

energy generation was then compared to the measured performance. Detailed 

modelling and analysis of observations was carried out to provide explanations for 

any discrepancies, and based on this general recommendations were made on how 

the performance of the systems could be improved. 

 Given the commercial drivers behind carrying out this research project, a 

high emphasis was given to financial implications of installing the systems. For this 

purpose payback periods and life-time savings were estimated, based on measured 

performance and other influences such as feed-in tariffs. This was also done for 

embodied energy and embodied carbon, as this will ultimately determine how the 

systems can help to fulfil the purpose of Government legislation, which is to reduce 

the carbon footprint of the UK domestic sector. The table below provides a 

summary of the performance that can be achieved by some of the systems at the 

EcoSmart village, provided that the recommendations for simple improvements 

given in this thesis are followed. 

 

 Net Life-time Savings Specific cost 

System No. years Financial Carbon (tCO2) per tCO2 

PV (1kWp) 30 £4,690 8.0 -£586 

Solar Thermal 25 -£68 4.1 £17 

GSHP (vertical) 23 £2.479 to £12,804 12.2 to 22.2 -£203 to -£577 
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Nomenclature 

 

 

 

 

 

CA    Collector area (m²) 

 

PA   Pipe surface area (m²) 

 

TA    Surface area of hot water tank (m²) 

 

1c   Heat loss coefficient at (Tm – Ta) = 0 

 

2c   Temperature dependence of the heat loss coefficient 

 

3c   Wind speed dependence of the heat loss coefficient 

 

4c   Sky temperature dependence of the heat loss coefficient 

 

5c   Effective thermal capacity 

 

6c   Wind dependence in the zero loss efficiency 

 

cp   Performance coefficient (wind turbine)  

 

tempc   Temperature correction coefficient for PV (K-1) 

 

C   Cost (£) 

 

2CO   CO2 equivalent emissions (kg) 

 

PC   Specific heat capacity (J/Kg°K) 

 

CP   Coefficient of Performance (GSHP) 

 

df   t-value degrees of freedom 

 

D   Density (kg/m3) 

 

LE   Long-wave irradiance (W/m²) 

 

E   Long-wave irradiance on an inclined surface outdoors (W/m²) 

 

sE   Long-wave sky irradiance (W/m²) 

 

ET   Equation of time 
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f   Solar fraction 

 

RF    Collector efficiency factor 

 

FIT   Feed-in Tariff (£) 

 

skyVF   Sky view factor 

 

G   Hemispherical solar irradiance (W/m²) 

 
*G   Global hemispherical solar irradiance (W/m²) 

 

"G   Net irradiance (W/m²) 

 

forcedch ,   Forced convection coefficient (W/m²K-1) 

 

freech ,   Free convection coefficient (W/m²K-1) 

 

TH   Monthly average daily irradiation incident on collector surface  

(J/ m²) 

 

0I   Extraterrestrial radiation (W/m²) 

 

 j  Scale parameter of Rayleigh wind distribution (m/s) 
 

 

Tk   Clearness index 

 

tempk   Temperature correction factor (for PV) 
 

 

K   Incidence angle modifier 
 

 

L    Monthly total heating load for hot water requirements (J) 

 

 

m   Mass (Kg) 

 

 

m    Mass flow rate (Kg/s) 

 

n   Julian date, meaning the sum of days after 1st January  

 

N    Air change rate (ach) 

 
 

50N   Number of air changes per hour at 50 Pa pressure (ach) 

 
 

P   Pressure (Pa) 
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0P   Wind power (W) 

 

TP   Wind turbine power output (W) 

 

ACP   Alternating current electrical power (W) 

 

DCP   Direct current electrical power (W) 

 

PVP   PV generation power (W) 

 

50Q   Specific rate of air volume leakage at 50 Pa pressure (m³/hr.m²) 

 

Q   Energy (J) 

 

RQ   Radiation energy losses (J) 

 

lossQ   Rate of heat loss (W) 

 

LSr   Least Squares method residuals 

 

bR    Ratio between irradiation on horizontal surface and tilted surface 

 

R   Gas constant (J/kg°K) 

 
2R   Ratio of residual errors of Least Squares method 

 

 

RH   Relative humidity (%) 

 

RHI   Renewable Heat Incentive tariff (£) 

 

S   Average absorbed solar irradiation (J/m²) 

 

rS   Sum of Least Squares method residuals 

 

t    Total number of seconds in month (s) 

 

)(Cpaybackt  Carbon payback period (years) 

 

)(Epaybackt   Energy payback period (years) 

 

)(Fpaybackt  Financial payback period (years) 

 

solt   Solar time (hr) 

 

valuet   t-value of t-test 

 

aT   Ambient air temperature (°C) 

 

aT    Monthly average ambient temperature (°C) 
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dpT   Atmospheric dew point temperature (°C) 

 

eT   Collector outlet (exit) temperature (°C) 

 

cellT   PV cell temperature (°C) 

 

inT   Collector inlet temperature (°C) 

 

mT   Mean temperature of heat transfer liquid (°C) 

 

refT    Empirically derived reference temperature (100°C) 

 

sT   Sky temperature (°C) 

 

U   Heat loss coefficient (W/m²K) 

 

LU    Collector overall loss coefficient (W/m²K) 

 

U   Mean wind speed (m/s) 

 

u   Wind speed (m/s) 

 

*u   Friction velocity (m/s) 

 

V   Volume (m3) 

 

0z   Roughness length (m) 

 

PVZ   SAP over-shading factor 

  

   Solar absorptance 

 

   Tilt angle of collector surface (°) 

 

   Hemispherical emittance  

 

   Angle of incidence (°) 

 
   Surface drag coefficient 

 

   Wavelength (m) 

 
   System efficiency 

 

0   Zero-loss collector efficiency 

 

H   Heat exchanger efficiency 

 

inverter   Efficiency of inverter 

 

   Stefan-Bolzmann constant (J/s m² K4) 
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SD   Standard Deviation 

 

   Transmittance 

 

C   Heat loss time constant (s) 

 

)(     Monthly average transmittance-absorption product 

 

e)(   Effective transmittance-absorptance product 

 

en)(  Transmittance-absorptance product for radiation at normal incidence 

 
   Longitude of location (°) 

 

 
b
  Subscript identifying direct solar beam components 

 

 
d
   Subscript identifying solar diffuse components 

 

 
embodied

 Subscript for embodied values  

 

 
E

  Subscript referring to electrical energy (Wh) 

 

 
H   Subscript referring to heat energy (Wh) 

 

 
g
   Subscript identifying ground reflection components 
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1    Aims and Objectives 
 

 
 

 

As climate change becomes an ever more important cause for concern, many 

countries worldwide have responded to this and are actively trying to reduce their 

greenhouse gas emissions. In the UK, the domestic sector in particular has been 

identified as a main target for emission reductions, and UK house builders are 

facing great challenges set by impending legislation.  

 Barratt Developments PLC, the UK‟s largest builder, has taken the lead in 

investigating practical and cost-effective ways of meeting these challenges. In 2006 

it was anticipated that renewable energy systems would have a significant role to 

play, but it remained to be tested how exactly some of the available systems would 

perform. To do this, an elaborate test site, the EcoSmart show village, was built by 

Barratt Developments PLC where several renewable energy systems were tested in 

standard Barratt homes. This research project will set out to establish how on-site 

micro-generation of energy can help to offset the carbon footprint of a modern UK 

home, and how these systems can be improved for best performance. More 

specifically, this research will try to answer the following questions: 

 

1) How much CO2 can be displaced by the integration of micro-generation 

systems in standard UK homes, and what are the financial implications? 

 

2) Do all of the tested systems work reliably and perform as expected? 

 

3) How can the performance of micro-generation systems be improved? 

 

Throughout the course of the research it was discovered that the lack of reliable 

information available to builders and architects appears to be a major barrier for 

the successful integration of micro renewable energy systems. It was therefore 

decided to also explore the following point: 

 

4) How can a builder or architect easily obtain reliable information about the 

realistic performance of micro renewable energy systems? 
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Thesis Structure 

 

In order to provide the background to answer the questions outlined above, this 

thesis will be set out in the following structure: 

 

 In chapter 2 an introduction will be given to the drivers for recent 

legislation, which has ultimately caused Barratt to undertake this research. This 

includes climate change, the impending depletion of fossil fuels, and considerations 

from a financial point of view. Chapter 3, the literature review, will give an overview 

of other work done in this area that provides the foundations for the analyses.

 Chapters 4 and 5 will give a more detailed introduction to Barratt 

Developments, focussing on their role in the UK housing market, and to the 

EcoSmart village test site. 

 The research methodology, a description of support systems and some 

preliminary modelling including space heating estimates will be presented in 

chapters 6-9. This will provide the background for the analysis of the renewable 

energy systems. 

 Chapters 10-14 will describe the analyses of the five systems that were 

tested at the EcoSmart village in detail, exploring available resources, any reasons 

for discrepancies between expected and measured performance, and a prediction of 

financial and carbon emission savings. After preliminary data analysis it was 

decided to focus the research on the solar technologies and wind power in 

particular, as these systems showed the most promising or the most surprising 

results. 

 Chapters 15 and 16 will summarise the conclusions drawn from this 

research, and based on this will present answers to the questions set out above. 

Finally, chapter 17 will provide suggestions for further work that may be necessary 

to provide additional evidence in support of the conclusions drawn during this 

research.   
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2    Introduction 
 

This chapter will outline the underlying reasons why UK builders such as Barratt 

Developments face the challenges of vastly reducing the carbon emissions of new 

homes.  

 

2.1   The Need for Reducing CO2 Emissions 
 

The following sections provide an overview of research that identifies a widely 

accepted causal link between CO2 concentration in the atmosphere and global 

warming. The burning of fossil fuels is shown to be the highly probable cause for 

measured increases in atmospheric CO2 content. During the recent Copenhagen 

Climate Conference in 2009 it was agreed that everything must be done to limit the 

global temperature rise to a maximum of 2°C over the next century. Beyond this a 

chain reaction is triggered that causes further release of greenhouse gases through 

the warming of the oceans, leading to highly significant and irreversible climate 

change. This scenario is expected to have catastrophic consequences, including 

extreme weather, a global rise in sea level and a shift in climate patterns that could 

potentially result in mass starvations, destruction of eco-systems, acidified oceans 

and extensive uninhabitable regions.  

 Even if the widely accepted climatic models are proven to be wrong, and the 

CO2 emissions are not the leading cause for global warming, the sources of energy 

that are responsible for these emissions (fossil fuels) are expected to deplete within 

a matter of decades. Based purely on this perspective it will soon become 

imperative to reduce CO2 emissions. Energy must be conserved in the short term, 

and alternative sources of energy must be established in a cost-efficient way to 

ensure long term energy security for an ever more demanding world.  

 

2.1.1   Climate Change 

 

Inspired by revelations in ice age theory, John Tyndall believed in the mid-

nineteenth century that he had found a possible explanation for the dramatic 

changes in Earths‟ climate. He realised that some molecules within the atmosphere 

could absorb thermal radiation, and concluded that changes in atmospheric 

composition could be the leading cause for all climate changes1. In 1965, the issue 

of „man-made‟ climate change first appeared in a report from the President‟s 

Science Advisory Committee to US President Lyndon Johnson2, after the first carbon 

dioxide measurements3 and up-to-date temperature reconstruction4 became 

available.  
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The 1970’s Perception of Global Cooling – A Myth? 

 

Some publications5,6, even as recent as 20047, 20078 and 20089, suggest 

that during the 1970‟s there were widespread fears of an impending ice age, but a 

more thorough review10 of other publications from 1965-1979 confirmed that a 

general consensus amongst leading scientists in the late 1970‟s emerged, agreeing 

that global warming was a far greater issue than potential global cooling. After 

modelling aerosols from a volcanic eruption in Bali (1963) it was widely agreed in 

1978 that global warming through greenhouse gasses was the dominant force11 in 

climate change. This view was reflected in a report produced by a panel of experts, 

who were brought together in 1979 under the US National Research Council to 

clarify the view on climate change12. The panel concluded that the potential damage 

of carbon dioxide was real, and while there were still huge uncertainties, urgent 

action should be taken to address the issue. 

 

 

IPCC Fourth Assessment Report - Climate Change 2007 

 

In 1988 the IPCC was founded to provide an independent body to assess climate 

change in an open, transparent way, based on peer-reviewed scientific publications. 

The IPCC has established itself as the leading reference for climate change.13 

 In 2007, the most recent IPCC report was released, receiving huge publicity 

and recognition amongst scientists around the world. In this report the IPCC has 

concluded14 that it is now evident that the warming of the climate is unequivocal. 

This is based on trends in measured global temperature, sea level and snow cover 

of the northern hemisphere. Figure 2.1 shows an extract of modelled and measured 

inter-continental temperature increases with and without CO2 emissions. 
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Figure 2.1: Observed and modelled temperature, comparing natural variations and 

variations accounting for human intervention (Source: IPCC AR414) 

 
 

Continued greenhouse gas emissions at or beyond current levels will cause further 

warming and other climate changes.  

For climate change mitigation, different options are discussed. It is 

suggested that mitigation options exist that can reduce the 2030 emissions by 

around 30% at a net negative cost. Also, timely investments in the energy 

infrastructure have long term impacts on CO2 emissions. Figure 2.2 shows a 

sectoral breakdown of the potential emission reductions by 2030 for the cases of 

investing US$20, US$50 or US$100 per tCO2-eq/yr. 
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Non-OECD/EIT countries     EIT countries
15

    OECD countries
16

    World total 

Figure 2.2: Sectoral breakdown of potential CO2 emission reductions by 2030 

(Sourece: IPCC AR414) 

 

Based on Figure 2.2, an investment of US$100 per tCO2-eq/yr in every sector 

would result in bringing 2030 emissions to just below 2005 values. The total global 

investment would need to be in the region of US$3 trillion (3x1012) annually.  

Figure 2.2 also shows clearly that by far the greatest reductions in 

greenhouse gas emissions can be achieved in the buildings sector. Even with 

relatively little investment significant savings can be achieved. Given this evidence, 

it is important to focus all efforts on reducing greenhouse gas emissions in this 

sector first to achieve the greatest „value for money‟.  

 

 

Stern Review - The Economics of Climate Change 

 

In 2005, the UK government asked economist Sir Nicholas Stern to lead a review of 

the economics of climate change17. In its conclusion the review makes a clear 

statement that there is overwhelming evidence that climate change is a serious 

global threat, which will affect basic elements of life for people18. Dealing with these 

consequences will effectively reduce the global Gross Domestic Product (GDP) by 5-

20% annually, now and forever. To avoid this scenario, the report urges strong and 

sharp intervention. It is found that investments in the order of 1% of GDP now 

could avert a vast majority of the costs of dealing with climate change later. Other 

conclusions include: 
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- A stabilisation of atmospheric CO2 content at 500-550ppm would limit 

further warming at 2°C by the end of the 21st century. This could be 

achieved by investing 1% of GDP now. 

 

- A delay in actions may result in the opportunity of CO2 stabilisation at 

550ppm slipping by.  

 

- The transition to low-carbon energy will bring challenges for competitiveness 

but also opportunities for growth. Strong action is required to motivate the 

uptake of low carbon technologies. 

 

When asked about his Review in 2008, in light of the IPCC 4th Assessment Report 

that was released the year before, Nicholas Stern said: “We underestimated the 

risks, we underestimated the damage associated with temperature increases, and 

we underestimated the probabilities of temperature increases”19. He also added 

that based on the findings from the IPCC Report, he estimates that the cost 

involved in reducing carbon levels to non-dangerous levels would have doubled, to 

about 2% of global GDP. 

 

2.1.2 Depletion of Fossil Fuels 

 

 

Fossil fuels have a wide variety of uses in today‟s world. On top of providing large 

amounts of energy to power the modern world life-styles we have come to take for 

granted, fossil fuels are also required to produce a wide range of sub-products 

including polymers, pesticides and fertilisers. 

 It is widely accepted that crude oil is a finite resource, and that sooner or 

later an oil production peak is reached20. When this happens further oil extraction 

will subsequently become more and more difficult and expensive, with higher risks 

and technical challenges involved. Currently there is some debate over when 

exactly the oil production peak will be reached, with forecasts21 from recent years 

ranging from 2007-2030. Many of these models show a production peak that is 

imminent, expected to occur within the next 5-10 years at the latest.  

From an economic point of view the oil production peak is associated with 

significant consequences, as without timely intervention the demand in oil will 

remain high while the supply becomes more difficult and more costly. Experts22 

expect that demand side intervention will be required ideally 20 years before, but 

at least 10 years before the oil peak to avoid significant oil deficits and resulting 

economic complications. It has also been shown that the global GDP is directly 

linked (approximately 1:1) to oil production23, meaning any action taken after the 

oil production peak will effectively become even more expensive.  
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2.1.3 UK Carbon Emissions 

 

 

In 1997 the UK signed the Kyoto Protocol, thereby committing to a greenhouse gas 

emission reduction of 12.5% over 1990 levels by 2012. The aspirational target set 

by the UK government at the time was a reduction of 20%24. By 2008, the UK 

emissions show that the country is currently well underway to achieving even its 

voluntary target. Nonetheless, the total greenhouse gas emissions are still in the 

order of 0.63GtCO2-eq/yr25, which accounts for over 1.5% of world wide 

greenhouse gas emissions based on IPCC figures. A sectoral breakdown of the UK 

2008 greenhouse gas emissions is shown in Figure 2.3. 

 

 

Figure 2.3: 2008 Greenhouse gas emission distribution by sector (Based on 2010 

DECC figures for 2008 emissions25) 

 

 

For the future, promising trends can already be seen. Recent emission reductions 

from 2008-2009 showed decreases for all major sectors, in particular Business and 

Energy Supply, which both achieved more than 10% reductions. This was put down 

to an overall fall in energy consumption, combined with fuel switching from coal to 

nuclear electricity generation25. Figure 2.2 shows UK greenhouse gas emissions 

since 1990. 
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Figure 2.4: The recent trend in UK Greenhouse Gas Emissions (Source: DECC 

201025) 

 

 

2.1.4 The UK Domestic Sector 

 

 

It was previously shown by the IPCC 4th Assessment Report that the highest 

potential for reducing greenhouse gas emissions exists in the residential sector. 

Even small investments in this sector are expected to make a significant difference. 

 In 2008 the UK residential sector accounted for 24% of national greenhouse 

gas emissions25. A further breakdown of this value reveals the distribution shown in 

Figure 2.5. 
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Figure 2.5: Breakdown of energy use in UK domestic sector in 2000 (Source: DTI 

2002) 

 

The UK government has set targets to reduce greenhouse gas emissions 

significantly in the future. The currently set out milestone targets, which have been 

described as ambitious26, are as follows: 

 

- An 80% reduction over 1990 emissions of domestic sector by 2050  

- A 29% reduction over 2008 emissions of domestic sector by 202027  

 

 

2.1.5 Summary 

 

 

Most acknowledged research today leads to the conclusion that climate change is 

an undisputable fact, and greenhouse gas emissions are largely responsible. There 

is worldwide agreement that something needs to be done to minimise the vastly 

damaging effects. Evidence is presented that suggests immediate action is the best, 

if not the only option available. This evidence includes, but is not limited to: 

 

- Findings presented in the IPCC 4th Assessment Report 

- The Stern Review on the Economics of Climate Change 

- The link between the impending oil production peak and global GDP 

 

While worldwide action is required, this action must begin on a small, local scale. 

The UK Government has recently taken ambitious steps in setting out legislation 

that is intended to lead to rigorous reductions in UK greenhouse gas emissions, 
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most predominantly from the domestic sector. Academia and Industry are currently 

working hand-in-hand to present technically and economically feasible solutions.  

 

 

2.2 The Code for Sustainable Homes (CSH) 
 
 

To reduce the domestic sector carbon emissions, builders have been challenged to 

provide eco-home excellent rated and low carbon houses now, CSH28 level 5 in 

2013 and zero carbon homes as of 201629. There is currently some debate over the 

definition of “zero-carbon” homes. The Government had published a consultation30 

on the definition of zero carbon homes, in particular an approach based on: 

 

- high levels of energy efficiency in the home 

- a minimum level of carbon reduction to be achieved on-site 

- a list of allowable solutions for off-site energy generation 

 

The current definition31 of a “zero-carbon home” set by the DCLG in 2008 states: 

 

Zero Carbon Home: “Where net carbon dioxide emissions resulting from ALL 

energy used in the dwelling are zero or better. This includes the energy consumed 

in the operation of the space heating/cooling and hot-water systems, ventilation, all 

internal lighting cooking and all electrical appliances. The calculation can take 

account of contributions from onsite renewable/low carbon installations.  

Off-site renewable contributions can only be used where these are directly 

supplied to the dwellings by private wire arrangement.” 

 

This definition emphasises the fact that in order to be classed as zero-

carbon, a new-built home must rely on carbon reduction and offset solutions that 

are on-site or supplied by private-wire. While it is widely expected that a review of 

the definition will at least result in communal heating arrangements being accepted, 

a final definition has still not been reached. In March 2010 the UK Housing Minister, 

Grant Shapps, released a press statement32 to inform developers about his 

intentions to finalise the definition within “a matter of weeks”.  

 

The CSH point-scoring system is shown in Figure 2.6, consisting of 

mandatory and „tradable‟ categories. Figure 2.7 provides a summary on how many 

points are required for the various code levels. Details on the point scoring system 

and the various requirements for the different categories can be found in the CSH 

technical guide. 

 



 
34 

 

 

Figure 2.6: CSH point scoring system and categories (Source: CSH28, 2006) 

 

 

  

Figure 2.7: CSH level rating system (Source: CSH28, 2006) 

 

 

The point system is based on the percentage carbon reduction of the design 

emission rate (DER) over the target emission rate (TER), which is zero for code 

levels 5 and 6. The TER refers to the legal requirement in terms of annual carbon 

emission per square meter, and DER refers to the predicted emissions based on 

Standard Assessment Procedure (SAP) calculations. Figure 2.8 provides an 

overview of the requirements in terms of carbon reduction for each code level. 
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Figure 2.8: Required reduction of design emissions rate for different code levels 

(Source: CSH28, 2006) 

 

In order to calculate the reduction of the design emission rate for the CSH, SAP 

2005 must be used. SAP 2005 provides carbon emissions factors for different 

building features, such as mechanical cooling systems, as well as for various low or 

zero carbon technologies. These carbon emission factors are multiplied by the 

amount of energy that is expected from the system in order to calculate the total 

amount of carbon offset. This is then subtracted from the design emission rate, 

which must also be established using SAP 2005. Un-regulated emissions can also 

be estimated by SAP 2005. 

The CSH heavily encourages on-site energy generation. While creating some 

controversy, it must therefore be investigated how these systems can help to offset 

carbon and save energy and to achieve a CSH level 6 rating.  
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3     Literature Review 
 

 

This literature review will provide the background information on other related 

research, which will be used as a basis for the analyses described in this thesis, and 

show that this research has resulted in a valuable contribution to knowledge.  

 

3.1 Achieving Sustainability in Urban Developments 
in the UK 

 

 

In 2005, Shorrock et al.33 reviewed options of reducing carbon emissions 

from UK housing stock for BRE. It was assessed how emissions could be reduced by 

existing stock, how effective the existing energy efficiency policies are, and what 

possible scenarios of carbon emissions might lead us to 2050. The review of 

existing measures showed that in 2010 potentially 17.5Mt of carbon could be 

saved, with 6-13.5MtCO2/yr being saved cost-effectively. While by 2020 only 

13.5MtCO2/yr may be saved, in 2050 this figure could increase to 29.5MtCO2/yr due 

to new technological innovations. Improved insulation and energy efficiency 

measures are considered most cost-effective, while Solar Thermal provides a 

commercially non-viable option of saving carbon. PV was considered too expensive 

at the time. Using government grants, the cost of saving 1 tonne of CO2 had 

dropped to £74 by 2001. Using the BREHOMES model, future scenarios were 

explored. It was found that assuming at least 50% of buildings are equipped with 

heat pumps it would be possible to achieve 60.7% carbon savings by 2050, based 

on 2005 technology and modelling. This scenario would cost £55bn, but its 

cumulative savings would begin to outweigh costs after about 2012, taking 2001 as 

a starting point. As shown in Figure 3.1, by 2050 this scenario would bring great 

financial benefits to society.   
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Figure 3.1: Cost and savings associated with reducing CO2 emissions by 60% by 

2050 (Source: Shorrock et al33. 2005) 

 

 

The 40% House report34 (2005) set out to investigate what challenges would 

need to be overcome to reach the original government target of CO2 emission 

reduction by 60%35 of 1990 values by 2050. The target emission reduction was 

later revised and increased to 80%. It was already suggested that all new build 

homes are designed to have a zero-space heating demand36. While the report is 

mainly concerned with improving existing housing stock, the effect of micro 

generation on the national power grid was also explored. It was thought that given 

the centralised nature of the UK grid, micro generation of electricity on a large scale 

could lead to power instabilities. However, more recent studies suggested that the 

network is more stable than previously thought, being able to tolerate up to 50% 

micro-generating households. An investigation37 of network fault levels showed that 

the impact of micro-generation is not significant, as the faults were not severe 

enough to melt standard size network cabling. In a different study it is estimated 

that by 2050 30-40% of the UK‟s domestic sector electricity demand could be 

satisfied by micro-generation.38 

 

 

A technical consultancy report39 was prepared in 2007 for the South West 

Regional Development Agency and Government Office, exploring the viability as 

well as potential costs and benefits of regional zero-carbon developments. A brief 

review of government policy is given, looking at the Energy White Paper40 2003, 

The Energy Challenge: Energy Review41 2006, Climate Change and Sustainability 

Act 2006, the proposed changes to Part L of the building regulations and an early 
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version of the Code for Sustainable Homes. Emissions are perceived to be split 

between regulated (e.g. space heating) and non-regulated (e.g. appliances), with 

weighting for residential buildings of roughly 50:50. Several options were explored 

to achieve a zero-carbon rating, including energy efficiency, PV, communal biomass 

heating, GSHP and wind technology. It was found that „zero carbon‟ in terms of 

regulated emissions is achievable for about 14% extra cost for small urban 

developments using communal biomass and PV. While wind power theoretically 

gives a better cost/benefit ratio, it is recognised that wind is unlikely to work well in 

urban areas. Achieving zero carbon in terms of total emissions was not found to be 

technically viable without using large scale wind power. Energy efficiency, PV and 

biomass would only be able to offset 61% of total emissions. A cost benefit analysis 

was carried out, determining how much it would cost to offset one tonne of CO2 

using various different technologies. Results are summarised in Figure 3.2. For 

comparison, reducing the external wall U-value from 0.25 to 0.21 for a detached 

building is expected to cost £27,000 per tonne CO2 saved annually.  

 

 

Figure 3.2: Estimated cost of CO2 savings per year from various low or zero carbon 

technologies (Source: Maunsell & Capener39, 2007) 

 

Energy and carbon payback of low or zero-carbon systems is also considered, with 

CO2 paybacks achieved after 1-5 years for all technologies. Carbon payback of 

energy efficiency measures is found to take around 10 years42. It is envisaged that 

by 2026, 97% of CO2 reduction is achieved by renewable energy systems and only 

3% by energy efficiency measures as energy efficiency measures are included in 

future building regulations. It is further concluded that a key technology to 
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satisfying zero-carbon ratings is biomass CHP, despite being somewhat unproven 

on a small scale.  

 

The Renewables Advisory Board (RAB) released a report in 200743 in which 

they assessed the role of onsite energy generation in delivering zero-carbon homes. 

It recommends that onsite generation is enforced wherever possible to stimulate 

the market for micro renewable energy technology. This could create a new market 

for micro renewable systems worth £2.3 billion per year. Overall it is expected that 

PV plays the biggest role in fulfilling CSH Level 6 requirements, being fitted to 70% 

of all new homes built after 2016. Micro CHP is expected to have the second largest 

share, with systems being found in around 30% of all new zero-carbon homes. 

Micro wind turbines are expected in around 10% of zero-carbon homes, while Solar 

Thermal systems are only expected in less than 5% of new builds. Modelling has 

also predicted that 12% of newly built homes after 2016 will not be able to meet 

the stringent requirements set out by the CSH. It is further discussed how the cost 

of low or zero carbon technology compares with estimated CO2 savings, with results 

summarised in Figure 3.3. 

 

 

 

Figure 3.3: Capital cost for CO2 saving for various low and zero carbon technologies 

(Source: RAB43, 2007) 

 

For the case of single dwellings the lowest estimated cost of achieving CSH Level 6 

through renewable energy systems is around £13,000, while the cost drops to 

£7,000 for large developments in urban areas and £4,000 in rural areas. For single 
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dwellings the lowest cost is achieved using a 1.3kW micro CHP system and a 2.3kW 

PV system. 

 

 

In 2008 Moloney et al.44 investigated housing and sustainability from a 

different view by looking at the gap between technical solutions and householder 

behaviour in Australia, which is also applicable to other countries such as the UK. A 

knowledge gap was identified in the socio-technical factors influencing the uptake of 

new technical innovations45. After reviewing two case studies, it was concluded that 

the interaction between technology and householder behaviour can best be 

described as a relationship, which is a result of social practice. People‟s perception 

will strongly depend on social standards and norms, therefore to successfully 

mitigate climate change, more will need to be done than simply setting regulations.  

A knowledge gap has also been identified on the supply side of zero-carbon 

homes in the UK by Chen et al46 in 2008. Using a system for value judgement used 

in BRE‟s EcoHomes 200647, the knowledge about sustainability was assessed on a 

group of Architectural students. It was found that while many young Architects are 

aware of the sustainability issues, very few have been equipped with the technical 

knowledge that is required to address them. 

 

An assessment on meeting the challenge of building zero carbon homes was 

presented by Northumbria University in 200848, which discusses a holistic approach 

to meeting the 2016 targets. It suggests that zero-carbon homes can only be 

achieved through an interaction of regulations, supply chain, technology and 

behaviour, illustrated by Figure 3.4.  
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Figure 3.4: Interaction between supply chain, technology and behaviour to achieve 

zero-carbon homes (Source: Theobald et al48, 2008) 

 

Due to adequate regulations including CSH at least 2050 targets can be considered 

feasible49. Behavioural changes however are much more difficult to achieve. Only 

44% of the UK population is actively trying to save energy50, and only 4% feel that 

they personally can make a difference51. While there are recognised barriers for the 

general public to actively reduce their carbon footprint52, carbon taxing is largely 

opposed53 and even perceived to increase fuel poverty54. In terms of the supply 

chain it is observed that industry has adapted well so far, bringing various 

professionals closer together55. Currently good progress has been made with 

methods to deliver individual zero-carbon homes, but the next step is delivering 

eco-towns. This would provide the opportunity to bring together environmental, 

economic and social sustainability, but require a change in the planning system56. 

While some feel that achieving the 2016 CSH target is an insurmountable task from 

a supply chain perspective57, others believe it is achievable58 given political urgency 

and a strong will for implementation in a set timescale. The available technology to 

improve the thermal performance of existing buildings includes retrofitted 

insulation, double or triple glazing, and phase change materials59 to improve the 

thermal mass, where increasing thermal mass in particular can be very beneficial60. 

The application of the renewable energy systems Micro Wind, PV and Solar Thermal 

are also discussed. It is identified that existing methods of predicting wind energy 

generation are highly inadequate for urban environments, as wind speed variations 

and surface roughness are not considered. For both Wind and PV generation, there 

is a considerable mismatch between supply and demand, with about 70% of 



 
42 

renewable energy having to be exported for either system. In future, the use of 

smart metering is expected to improve energy exporting as well as behavioural 

changes. PV is perceived as the most versatile and promising technology, but there 

may be a shortage in the supply chain if demand begins to grow with the 

introduction of zero-carbon homes57.  

 

In 2008, a Zero-Carbon Task Group Report61 by the UK Green Building 

Council set out to revise the definition of „zero-carbon‟ set out in the Code for 

Sustainable Homes. After reviewing case studies and modelling a variety of 

scenarios, it was concluded that 10-80% of new builds would not be able to satisfy 

the original definition of zero-carbon. Instead, it was recommended that the 

definition is changed to also allow near-site energy generation, provided it can be 

demonstrated that these offsite solutions were installed specifically to provide for 

the particular development. This view is also shared by other researchers62. It was 

further found that the additional cost per dwelling for renewable energy systems 

would range on average from £13,000 for single urban dwellings to £800 for large 

rural developments, with the overall average being around £6,000. 

 

To take the financial analysis one step further, the Department for 

Communities and Local Government released a cost analysis63 of the Code for 

Sustainable Homes in 2008. This report assesses the estimated cost involved in 

achieving CSH Level 6 rating for different types of dwellings. Building Regulations 

2006 compliant buildings are used as a basis. The cost for achieving the minimum 

energy requirements varies largely depending on building type, while the cost of 

achieving a full CSH Level 6 rating will also depend on the ecological value and the 

flood risk associated with the development. Results are summarised in Table 3.A. 

Zero stamp duty is not accounted for by this analysis, which could reduce the cost 

implied with achieving CSH Level 6 ratings by up to £15,000.  

 

Table 3.A: DCLG63 Estimated costs in 2008 of achieving CSH Level 6 rating 

  Min. Energy for Level 6 Full Level 6 rating 

  
Excluding 

Micro Wind 
Including 

Micro Wind 
Best 
Case 

Worst 
Case 

Small 
Development 

Detached £40,200 £36,600 - £47,500 

Mid terraced £29,200 £24,800 - - 

End terraced £29,400 £24,700 - £37,700 

Market Town 

Detached £32,800 £13,100 £37,800 - 

Mid terraced £24,700 £9,000 - - 

End terraced £24,800 £8,800 £31,200 - 

 

 

The additional cost of achieving CSH Level 6 standards is expected to reduce by 

15% in 2010, 26% in 2016 and 35% by 2025. 
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This cost assessment was revised64 in 2010 (based on 2009 costs) with 

improved modelling and cost data validation. According to the revised assessment, 

the overall average cost of improving 2006 Building Regulation dwellings to CSH 

Level 6 ratings is around £38,500 in 2009, £34,800 in 2012 and £33,500 in 2017. 

This does not account for potential wind energy generation, but does assume 

communal biomass heating schemes.  

  

In 2009 Gupta and Chandiwala65 concluded that Industry is currently 

struggling to achieve CSH Level 6 requirements due to the barriers cost, skill and 

knowledge. To facilitate the CSH assessment of buildings in the design stage, a 

model was created, based on Passiv Haus66 and AECB Energy Standards67. Cost was 

found to be the key barrier68 to achieving CSH level 6. Modelling of different 

scenarios has shown that while achieving CSH Level 5 would cost around £26,000 

more than CSH Level 3, achieving Level 6 could mean extra costs up to £46,500. 

Based on this it is concluded that energy requirements should be reduced as much 

as possible before considering the integration of renewable energy systems in zero-

carbon homes.   

 

Considering the high cost involved with building CSH Level 6 dwellings using 

onsite solutions, in 2009 Chow explored the option of using district energy systems 

as a more cost effective measure69. A building energy model70, which is based on 

SAP 2005 and BREDEM, was used to estimate energy requirements. Based on 

modelled results it is estimated that 40m2 PV and a 10kW biomass boiler is required 

to satisfy the energy of a potential CSH Level 6 dwelling. This results in total cost of 

around £28,000. When looking at a larger development of 50 identical dwellings, it 

is proposed that a 225kW Wind turbine and a 500kW biomass boiler are able to 

provide all the required energy. A CHP system is mentioned as an alternative, but 

not considered for analysis. The estimated wind turbine output is based on an 

average of manufacturer predictions and measurements from similar case study 

systems71. While running costs are unchanged, capital costs are shown to reduce by 

74% to an estimated £7,300 per dwelling. It is also noted that the use of large 

wind turbines may not be suitable in urban areas due to regulatory space 

constraints and their high audiovisual impact. Financial payback for the individual 

solution is estimated to be 25 years, compared to 10 years for the district energy 

system. 

 

 

3.2 Review of Existing Zero-Carbon Homes in the 
UK 
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Apart from several low-carbon developments such as in Leeds72, several zero-

carbon buildings have been completed in the UK. Some privately built homes 

include the zero-carbon house in Birmingham73, or the zero-carbon home on 

Britain‟s most northern island of Unst74. These buildings are built to the highest 

standards of insulation and air tightness and make use of low energy appliances 

and natural day lighting where possible. They typically use PV, air or ground source 

heat pumps and large onsite heat storage capacities.  

 Other zero-carbon homes have also been built to provide proof of concept 

and experimental data. The BRE Innovation Park in Watford houses two of them, 

the Kingspan Lighthouse and the Barratt Green House, which is based on 

preliminary findings from the EcoSmart Village in Buckshaw. Both are shown in 

Figure 3.5. 

 

 

Figure 3.5: Barratt Green House (left) and Kingspan Lighthouse (right) 

 

 

The Kingspan Lighthouse75 features extensive use of renewable energy systems, 

including a large area (46m2) PV and solar thermal system, a wind catcher for 

ventilation with heat recovery system, and a biomass boiler. The Barratt Green 

House76 design is slightly more focussed on preserving energy, designed with high 

thermal mass to dampen heating and cooling needs in extreme weather. Large 

windows with shutters provide an active balance between natural day lighting and 

solar gain, while a mechanical ventilation system with heat recovery provides fresh 

air. Onsite energy is generated using a PV system, while some roof area is used for 

roof-top planting to further improve insulation and offset some carbon.  
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BedZED in Beddington, Sutton 

 

 

Figure 3.6: Photograph of BedZED development 

 

The most important development in recent years, and the only one of its kind in the 

UK at the time the EcoSmart Show Village was built, is the Beddington Zero Energy 

Development (BedZED)77. It comprises several conceptual homes ranging from CSH 

Level 3 to Level 6. The final cost of the development is estimated at £15M, which is 

relatively affordable, especially considering it was later found that 80% of the 

sustainability measures could have been realised at 20% of the cost78. Being 

developed throughout 1999 and completed in 2002, the 83 buildings were built with 

the following features: 

 

 Wind driven ventilation with heat recovery 

 Passive solar heating 

 PV system and low energy appliances 

 Rainwater harvesting 

 Communal biomass CHP 

 High insulation and air tightness 

 Locally sourced materials to reduce embodied energy 

 Office space to encourage and shared communal car schemes to encourage 

home working and reduce vehicle dependence79 
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Figure 3.7: Schematic diagram showing BedZED features (Source: Twinn77 2003) 

 

 

The BedZED development has been tried and tested for many years, realising its 

target of being a net zero-carbon development80. Throughout its first year of 

operation, the development surpassed its target reduction in energy demand for 

hot water, mains water and fossil fuel car mileage, and reached its target reduction 

for space heating. The only target reduction not reached by a margin of 25% was 

that of electricity demand81.  
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Hanham Hall in Bristol 

 

 

Figure 3.8: Model of Hanham Hall housing design (Source: Barratt Developments) 

 

This is another zero carbon development from Barratt Homes, comprising a zero-

carbon village with 178 homes that are built to CSH Level 6 standard, as well as 

several shops and offices. The development82 was initiated in 2009, the first homes 

are due to become available early 2011. This extensive development is expected to 

lay the foundations for future zero-carbon developments. Its features include: 

 

 Embodied energy conscious construction 

 Highest level of energy saving construction, including high levels of 

insulation and triple glazed windows, as well as high levels of air tightness 

 Natural day lighting and energy saving appliances 

 Communal biomass CHP system 

 Walking & cycling routs and extensive public transport to discourage use of 

cars 

 Greenhouses and allotments for growing own produce 

 

The development will consist of a mix of flats different size houses. Several 

partners were used as consultants, including BRE, Communities and Local 

Government and NHBC.  
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Greenwatt Way in Slough 

 

 

Figure 3.9: Model of Greenwatt Way development (Source: Inside Housing) 

 

This most recent development83 consists of 10 test homes that are designed to 

achieve CSH Level 6. The project was initiated by Scottish and Southern Energy 

(SSE), designed by PRP Architects and AECOM, and built by Bramall Construction. 

It will be monitored between 2010 and 2012 to assess the actual energy savings 

and the potential application after 2016. Features of the Greenwatt Way 

development include: 

 

 Highly energy efficient building design, high air tightness, triple glazed 

windows 

 Natural ventilation system with heat recovery 

 PV roof 

 Grey water recycling 

 Energy saving appliances and lighting  

 Smart metering 

 District heating from central plant room 

 

While electricity is largely offset using PV generation, all heat and hot water is 

supplied from a central plant room that uses a biomass CHP and solar hot water 

technology. During the monitoring phase the houses are being rented out. The 

development cost approximately £3.5M, and will be monitored and tested by BRE. 

The development cost of zero-carbon buildings appears to be decreasing 

considerably, with Bramall Construction, part of the Keepmoat Group and leading 

the construction of the Greenwatt development, reportedly being able to build zero-

carbon homes for under £130,00084.   
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3.3 Summary 
 
 

The review of existing literature and prototype zero-carbon developments 

has shown that meeting zero-carbon, and in particular CSH Level 6 standards, is a 

great but surmountable challenge. It was shown that currently energy efficiency 

measures are very useful to improve building standards and reduce overall energy 

demand, in particular for existing buildings. However, their effectiveness and 

viability will decrease dramatically over time as overall standards improve. In the 

medium to long term the integration of renewable energy systems is essential to 

offset any carbon emission of the remaining energy requirement. 

 The integration of micro renewable systems is not as difficult as anticipated 

by some, with tests showing that the grid could currently tolerate up to 50% of all 

UK households feeding energy into the grid. The market for micro renewable 

systems is expected to grow to £2.3bn per year, and any investments in reducing 

carbon emissions now will result in long term net savings. The most promising low 

and zero carbon technologies appear to be PV and biomass CHP or Boiler systems, 

with wind generation being perceived as being too constrained in urban 

environments. From a financial and energy point of view, it is undisputed that 

larger scale renewable energy systems perform significantly better than micro-

generation systems.  

 It was further identified that urban developments play a critical role in 

achieving national emission targets, and these are the areas that are both most 

challenging and most important. The anticipated cost involved for these cases 

ranges between £25,000 and £40,000 in 2010, and around £16,000 to £33,000 in 

2016, which has also been identified as one of the most significant barriers to 

achieving CSH Level 6. Some concerns have been raised about the original 

definition of „zero-carbon‟ which only allows off-site generation if supplied by 

private wire arrangement. It has been shown that communal or district energy 

generation could result in cost savings of up to 74% for individual households, and 

it is suggested that the next step in designing zero-carbon developments should be 

a move towards eco-towns rather than focussing on individual dwellings.  

 Further barriers to zero-carbon development that have been identified 

include behaviour of the general public on the demand side, and a lack of 

appropriate education about technical solutions for architects on the supply side. 

Efforts will need to be undertaken in both areas to ensure that the technical 

potential and feasibility of zero-carbon developments can be fully exploited in 

practice.  
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 Several private and public prototype developments in the UK how shown 

that achieving a CSH Level 6 is feasible in practice. The most noticeable existing 

developments are BedZED, as well as the concept studies Barratt Green House and 

Kingspan Lighthouse at the BRE Innovation Park. All three have achieved their 

zero-carbon rating by using innovative building design that is aimed to integrate 

energy efficiency and renewable energy as much as possible. Common features 

include high insulation and air tightness, natural ventilation, consideration for solar 

gains, rainwater harvesting, PV and private or communal biomass heating 

solutions. Two further developments, Hanham Hall and Greenwatt Way, are due to 

be completed very shortly. They have been designed to test zero-carbon 

development on a larger scale, in eco-towns. Both developments feature a 

combination of individual micro-generation such as PV, and communal solutions 

such as biomass heating.  
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4 Barratt Developments PLC 
 

 

To understand Barratt‟s motivation in building the EcoSmart village and initiating 

this research project, background information will be presented on the company, its 

position in the market and the general marketing strategy. 

 

4.1 The History of Barratt Developments 
 
 
Barratt Developments PLC has its origins in 1958, when the residential property 

development company was founded as Greensitt Bros. Being founded in Newcastle 

upon Tyne, it was taken over by Lewis Greensitt, a local Newcastle builder, and 

Lawrie Barratt, a former accountant, in 1962. The company was renamed as 

Greensitt & Barratt.  

Sir Lawrie Barratt was frustrated at the high price of houses for first time 

buyers and decided to build his own house in 195385. Based on this experience he 

adopted a market-driven approach, which was to “figure out how much low- and 

middle-wage people could afford and design homes that fit their budgets”.  

After completing rigorous expansion86 in 1968, Greensitt & Barratt was 

floated on the London Stock Exchange. Shortly after the floatation Lewis Greensitt 

left, and the company was renamed as Barratt Developments PLC87 in 1973. 

 As a result of the baby-boom88 after World War 2, the 1970‟s saw an 

unprecedented increase in first-time buyers, and Barratt expanded rapidly into all 

areas of the UK89. The strategic expansion moves were accompanied by a high 

profile marketing campaign including national television advertisement. Most 

famously, a campaign was run to promote £7,000 starter homes (around £30,000 

in today‟s worth90) featuring actor Patrick Allen and the Barratt Helicopter in 

197785. 

In 1983 Barratt sold 16,500 houses, making the company by far the largest 

builder in the country. In the mid-1980‟s the company successfully diversified into 

upmarket housing, and by 1999 Barratt had sold a total of over 250,000 homes, 

with around 27,000 plots awaiting development85.  

By 2004 Barratt had achieved annual average sales of around 6,400 houses 

since the founding of the company, meaning that out of all homes that are in 

existence today in England and Wales more than 1 out of 70 is a Barratt Home. The 

year 2007 provided another landmark for Barratt with the acquisition of Wilson 

Bowden PLC for £2.2bn in 200791 in response to similar actions taken by their 

largest rivals, George Wimpey and Taylor Woodrow. Arguably this investment was 
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made at an unfortunate time for Barratt, with the 2008 recession subsequently 

taking its toll.  

Today the Barratt group has become profitable again, with an operating 

profit of £34m recorded in 200992. Barratt Developments currently consists of a 

network of 25 house building divisions throughout Britain with an estimated 4000 

direct employees89.   

 

4.2 Market Position 

 
In order to gain an idea of the implications of reduced carbon emissions from 

Barratt homes, it is important to first understand how many new homes are built in 

the UK and what share Barratt have in this market. Barratt‟s marketing techniques 

will also be explored in more detail, as they play a role in assessing what difference 

the actions taken by Barratt will make to the future UK housing stock.    

 

 

Market Dynamics 

 

The current housing stock in the UK is estimated to consist of around 25.6 million 

homes34. In 2007, as a result of the lack of affordable homes for first-time buyers, 

the UK Government announced aspirations to build 240,000 new homes in England 

every year as of 201693. A projection of annual completions94 scaled up for the 

whole of the UK suggests around 320,000 new homes would be built as of 2016 if 

this challenge was to be fulfilled.  

 

 

However, due to the economic recession during 2008 there was a sharp decrease in 

housing completions instead. A historical variation of housing starts and 

completions over the last 12 years is shown in Figure 4.1. 
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Figure 4.1: Housing (new build) starts and completions in England since 1997 

(Source: DCLG Housing Statistics95 2009) 

 

 
With annual completions currently in the region of 113,00095 for 2009, the market 

is currently under 50% of the target set out by the Government. However, given 

time, the market should regain its previous strength, and proposed levels of 

240,000 new builds in England might still be reached by 2016 provided there are no 

further economic strains on the supply chain.  

Figure 4.2 shows the current (2010) age structure of the UK. While 

immigration may result in slight alterations, the current age structure can still be 

used to form the basis for future demand estimates. Assuming that first time 

buyers are typically aged late 20‟s to early 30‟s, a new peak demand can be 

expected for this age group around 2016. After this the housing demand for first-

time buyers is expected to steadily decrease until 2030. However, similar to the 

situation experienced with „WW2 baby boomers‟ during the 1980‟s, it can be 

expected that the 2016 first-time buyers will be looking to move up the property 

ladder and invest in bigger, better homes, thus increasing the demand for higher 

quality homes by 2030.  
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Figure 4.2: Age Structure of the UK with 2010 as baseline (Source: Office for 

National Statistics) 

 

 

Barratt’s Position in the Current UK Market 
 

 
The current market of an estimated 113,000 completions can be broken down into 

flats and houses based on NHBC estimates. In 2007 the market share of flats was 

predicted to be 51% of all new-builds, which is an increase over historic figures. 

22% of new builds would be terraced96, the remaining 27% detached housing. 

The average selling price of new build houses in the UK in August 2010 was 

around £213,100, with August 2009 selling prices averaging around £196,80097. 

The regional breakdown for both years is shown in Figure 4.3. 

 

 

Figure 4.3: Regional breakdown of house prices in August 2009 and 2010 (Source: 

DCLG Price Index97 2010) 
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According to the most recent Busniess Report92, Barratt Developments sold over 

13,200 homes in the UK in 2009, 50.5% of which consisted of houses and 49.5% of 

flats. This leads to the 2009 statistics presented in Table 4.A. 

 

Table 4.A: Barratt Developments 2009 estimated market share92 

 Barratt Sales UK Total Sales Market Share 

Houses 6700 55,000 12.2% 

Flats 6500 58,000 11.2% 

Total 13,200 113,000 11.7% 

 

 

The average price of a Barratt home in 2009 was £157,000, which is 20% below 

the national average of August 2009. While the actual difference will be smaller as 

many Barratt developments are based in the northern regions of the UK, it still 

highlights Barratt‟s underlying strategy to offer affordable homes.  

 

 

4.3 Marketing Strategy and Philosophy 

 

 
Historically, Barratt Developments has always been a company who had a high 

emphasis on marketing. They were one of the first companies, certainly in the 

building sector, to treat marketing as an integrated process in product 

development. To put the marketing ingenuity of early days into perspective, a brief 

review of marketing developments is outlined below. 

 

 In 1954, only shortly before Barratt Development was founded, the actual 

concept of marketing was introduced by Drucker98, stating that “Marketing is the 

unique function of business, it is the whole business seen from the customer‟s point 

of view. Concern and responsibility for marketing must permeate all areas of the 

enterprise.” During the 1950‟s and 1960‟s marketing was then further defined99 in 

detail. During the 1970‟s and 1980‟s a range of markets began to segment, leading 

to increased customer power and the wish to obtain more individualised 

products.100 Only then were customer opinions and wishes really taken into 

account, eventually leading to a consideration of treating marketing as a process 

rather than a function101. Using this philosophy meant every part of a company 

would essentially be concerned with marketing by constantly keeping the customer 

in mind.102 Sir Barratt has effectively done just this from the outset – he started off 
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in the early 1960‟s with the aim to create a product that is designed to fit the needs 

and wants of customers, being both affordable and of high quality.  

 Another rather innovative marketing concept is presented by experiential 

marketing. This type of marketing focuses on marketing a product by exciting 

people and creating a subconscious link between a product and a positive 

experience. It can be argued that Barratt Developments already implemented an 

early form of experiential marketing in the late 1970‟s. Their 1977 high profile 

campaign where a Barratt helicopter and a well known actor featured in TV 

advertisements reportedly received huge publicity at the time, creating an 

impressive Brand image. Again, Barratt Developments had shown that their 

marketing strategy was well applied and ahead of its time. 

 Today the marketing process remains a key cornerstone of the company, 

and Barratt make continuous efforts to develop their brand image to reflect this. In 

2007 it was recognised that product development based on customer feedback has 

become increasingly important across all industries, and it was decided to 

emphasise this with a new marketing campaign. The Barratt slogan was changed to 

“built around you”, and a high profile advertisement campaign was launched, 

including frequent TV and newspaper advertisement.  

During the 1980‟s the Barratt range was increased to also satisfy the up-

market for high quality homes, which has been a successful diversification to this 

date. Throughout most of its history Barratt had adopted the slogan “Britains 

Premier Housebuilder” to reflect its market position as well as its future aspirations. 

Today, the declared philosophy of Barratt Developments is both broadened and 

generalised to address all aspects of the business. While high levels of quality and 

customer satisfaction continue to be seen as core strengths, the philosophy now 

includes the 5 key areas Performance, Customer, People (staff), Partners and 

Planet (sustainability). The latter now plays a more important role than ever before.  

To reflect their ambitions Barratt have now taken the next step in being at 

the forefront of development. After the announcement of the CSH, Barratt 

Development initiated several pioneering projects to develop their understanding of 

the task ahead. This will also ensure they maintain their leading position in the UK 

housing market.  

 

- In 2006 the EcoSmart show village was built to test the performance of 

several low and zero carbon energy systems under real weather conditions.  

- In 2008 Barratt built the Green House in the BRE Innovation Park, one of 

the first zero-carbon concept homes in the UK. 

- In 2011 the company will complete the largest zero-carbon development in 

the UK, the Hanham Hall eco-town in Bristol. It comprises 195 units that are 

designed to meet CSH Level 6 standards, shown in Figure 4.4. 
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Barratt Development‟s persistent efforts to remain innovative in both marketing 

and product development is likely to ensure that they will be well prepared to enter 

a new era of zero-carbon development in the UK as of 2016. Barratt hope that this 

approach will enable them to continuously strengthen their market position in the 

foreseeable future. 

 

 

Figure 4.4: The latest Barratt Developments innovation; Eco-town Hanham Hall 

(Source: Barratt Developments) 
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5 The EcoSmart Show Village 
 
 

This chapter will provide a detailed overview of the EcoSmart village test site. 

 

 

 
The Barratt EcoSmart show village was constructed in 2006, located in the 

residential estate Buckshaw near Chorley, Lancashire. Figure 5.1 shows its location 

on a map, between the M6 and M61 motorways. Table 5.A gives the Latitude and 

Longitude of the test site.  

 

 

 

Figure 5.1: Map showing location of Buckshaw EcoSmart Village (Source: EcoSmart 

village brochure) 

 

Table 5.A: Latitude and Longitude of EcoSmart village (Source: Google Earth) 

Latitude 53.39° North 

Longitude 2.38° West 

 

 

The EcoSmart Village consisted of seven test homes which featured 2006 energy-

efficiency and renewable energy technologies. The test houses are based on 

popular conventional houses, as sold in large numbers by Barratts Development 

PLC every year. These standard houses were deliberately chosen to test the 

performance and of the systems without modifying existing designs to incorporate 

them. Figure 5.2 and Figure 5.3 provide an overview of the layout of the EcoSmart 

show village, where Figure 5.3 shows the names given to each house. Throughout 

the monitoring period the test houses were used as show homes. 
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Figure 5.2: Photograph showing a model of the test site 

 

 

 

 

Figure 5.3: Schematic layout of the test homes 

 

 

 

 
The test houses have been built to meet SAP 2001 standards, with improved U-

values for additional insulation and energy efficiency. They incorporate some of the 

following low or zero carbon systems: 

 

- Micro Wind Turbine (MWT) 

- Solar photovoltaic panel (PV) 

- Solar thermal collector panel (flat panel or evacuated tube) 

- Geothermal ground source heat pump (GSHP) 

- Micro combined heat and power unit (μCHP) 
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- Rainwater harvesting and recycling system 

- Energy efficient lighting 

- Under-floor heating and „smart‟ Heat Store systems 

 

 

 

Figure 5.4 provides an overview of the energy efficiency or generation features of 

the EcoSmart Village homes. Below is a detailed description of each building.  

 

 

Figure 5.4: Efficiency measures and renewable energy systems incorporated at the 

EcoSmart village 
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Alderney 

 

The House of the type “Alderney” is a fully detached 

property in the upper-class range of houses, consisting of 

two floors. The ground floor contains a large kitchen, dining 

room and separate lounge. The upstairs area consists of 4 

bedrooms and 2 bathrooms. Detailed information about the 

building is given in Table 5.B below. 

Table 5.B: Showing detailed information for Alderney 

Ground Floor Area (m²) 56.4 

First Floor Area (m²) 47.8 

Total Floor Area (m²) 104.3 

Total Volume of Building (m³) 253.4 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.16 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.57 

Insulation Doors (U-value, W/m²K) 1.59 

Space Heating Demand (kWh) 5278 

Hot Water Demand (kWh) 3500 

SAP Rating 98 

 

The energy saving lighting system has total power of 426 Watts. The building also 

contains several lights and appliances, which use power from sockets. The Alderney 

is equipped with a 2.5m² flat panel Solar Thermal system and a 400W rated Micro 

Wind Turbine. The wind turbine is mounted on the west side of the roof, the 

direction of prevailing wind, while the Solar Thermal system is south-facing. An 

inverter and import/export meter are used to export the generated electricity. 

Schematic diagrams of the systems are shown Figure 5.5. 

 

 

Figure 5.5: Schematic diagrams of Alderney systems 
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Palmerston 

 

The “Palmerston” house is a semi-detached property 

in the lower-class range, again consisting of two 

floors. The ground floor contains a lounge, and a 

compact kitchen / dining-area combination. The 

upstairs area consists of 3 bedrooms and 1 bathroom. 

Detailed information is given in Table 5.C below. 

Table 5.C: Showing detailed information for Palmerston 

Ground Floor Area (m²) 36.3 

First Floor Area (m²) 34.9 

Total Floor Area (m²) 71.2 

Total Volume of Building (m³) 173.6 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.22 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.58 

Insulation Doors (U-value, W/m²K) 0.89 

Space Heating Demand (kWh) 3194 

Hot Water Demand (kWh) 2917 

SAP Rating 102 

 

The Palmerston lighting system has combined power of 320W. The building also 

contains several lamps and appliances, which use power from sockets. The 

Palmerston uses a PV and a GSHP system. The 1.04kW PV system with area of 

7.8m² is south-facing with 45º inclination, and is interfaced with an inverter to 

allow AC electricity export. The 4.8kWe GSHP is a vertical borehole system and is 

combined with a smart heat-store system, which uses under-floor heat distribution. 

The schematic diagrams of both systems are shown in Figure 5.6. 

 

 

Figure 5.6: Schematic diagrams of Palmerston systems 
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Washington 

 

The “Washington” is a semi-detached property in the 

lower-class range, again consisting of two floors, similar 

in build but slightly smaller than the Palmerston. The 

ground floor contains a small kitchen and lounge / 

dining-room combination. The upstairs area consists of 

2 bedrooms and 1 bathroom. Detailed information 

about the building is provided in Table 5.D. 

Table 5.D: Showing detailed information for Washington 

Ground Floor Area (m²) 29.0 

First Floor Area (m²) 29.0 

Total Floor Area (m²) 58.0 

Total Volume of Building (m³) 141.6 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.16 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.59 

Insulation Doors (U-value, W/m²K) 0.89 

Space Heating Demand (kWh) 2556 

Hot Water Demand (kWh) 2667 

SAP Rating 106 

 

The building contains a 245W lighting system, as well as lamps and appliances, 

which use power from the sockets. Its systems are very similar to the Palmerston 

layout, comprising the same size and type of PV and GSHP systems. The GSHP is 

also interfaced with the same smart heat store and under-floor distribution system, 

and the PV system with an inverter and import/export meter. However, the 

Washington PV system faces east at an inclination of 45º. The schematic layout of 

the systems is shown in Figure 5.7. 

 

 

Figure 5.7: Schematic diagrams of Washington systems 
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Edinburgh 
 

The “Edinburgh” is a stand-alone property in the mid-class 

range, consisting of two floors. The ground floor contains a 

lounge, dining room and a kitchen with an adjacent utility 

room. The upstairs area comprises 3 bedrooms and 1 

bathroom. Detailed information is given in Table 5.E. 
 

Table 5.E: Showing detailed information for Edinburgh 

Ground Floor Area (m²) 48.6 

First Floor Area (m²) 38.9 

Total Floor Area (m²) 87.4 

Total Volume of Building (m³) 212.3 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.18 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.56 

Insulation Doors (U-value, W/m²K) 1.38 

Space Heating Demand (kWh) 5361 

Hot Water Demand (kWh) 3222 

SAP Rating 94 

 

The energy-saving lighting system requires 418W in total, and the building also 

contains other lamps and appliances using socket power. This building uses a gas-

fired μCHP system and a Micro Wind Turbine. The 1kW rated wind turbine is 

mounted at the highest point of the roof, and uses and inverter to allow electricity 

export. The μCHP system has a rated power output of up to 12kWt /1kWe, and like 

GSHP it is also interfaced with a smart heat store and under-floor heating. 

Schematic diagrams are provided in Figure 5.8. 

 

 

Figure 5.8: Schematic diagrams of Edinburgh systems 
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Buckingham 

The “Buckingham” is a stand-alone property in the mid-

class range, comprising two floors. It is very similar to the 

Edinburgh albeit slightly larger. The ground floor contains a 

lounge, separate dining room and a kitchen with attached 

utility room, while there are 4 bedrooms and 2 bathrooms 

upstairs. Details of the Buckingham are given in Table 5.F. 
 

Table 5.F: Showing detailed information for Buckingham 

Ground Floor Area (m²) 44.2 

First Floor Area (m²) 53.7 

Total Floor Area (m²) 97.8 

Total Volume of Building (m³) 239.7 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.18 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.55 

Insulation Doors (U-value, W/m²K) 1.38 

Space Heating Demand (kWh) 5860 

Hot Water Demand (kWh) 3389 

SAP Rating 94 

 

The Buckingham lighting systems has total power of 360W and the building uses 

some socket-powered lamps and appliances. Just like Edinburgh, the Buckingham 

also contains a μCHP system and a Micro Wind Turbine of the same size and make. 

Again, the μCHP uses a smart heat store for improved performance as well as 

under-floor heat distribution, while the wind turbine is connected to an inverter. 

Schematic diagrams of the Buckingham systems are shown in Figure 5.9. 

 

 

Figure 5.9: Schematic diagrams of Buckingham systems 
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Malvern 

The “Malvern” is fully detached and represents the 

most luxurious of the houses, consisting of three floors. 

The ground floor contains a large kitchen with utility 

room, spacious lounge and dining room. The first floor 

comprises 2 bedrooms, a bathroom and a study. The 

top floor contains 2 bedrooms and a bathroom. More 

details are summarised in Table 5.G. 

Table 5.G: Showing detailed information for Malvern 

Ground Floor Area (m²) 63.5 

First Floor Area (m²) 60.6 

Second Floor Area (m²) 45.1 

Total Floor Area (m²) 169.3 

Total Volume of Building (m³) 420.9 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.19 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.54 

Insulation Doors (U-value, W/m²K) 0.89 

Space Heating Demand (kWh) 8250 

Hot Water Demand (kWh) 4111 

SAP Rating 99 

 

The lighting system has total power of 690W, and apart from the usual lamps and 

appliances the Malvern also incorporates an integrated Lutron entertainment 

system. A 400W rated Micro Wind Turbine, a GSHP system, and PV system were all 

tested at the Malvern. The PV system faces east at 60º inclination and the GSHP is 

a combined horizontal and vertical system, each rated at 3.6kWe. Support systems 

are the same as for all other houses. Schematic diagrams are shown in Figure 5.10. 
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Figure 5.10: Schematic diagrams of Malvern systems 

Windermere 

The “Windermere” is a fully detached property in the upper-

class range of houses offered by Barratts, consisting of two 

floors. The ground floor contains a spacious kitchen, lounge 

and dining area. The upstairs area consists of 4 bedrooms 

and 2 bathrooms. Further details are given in Table 5.H. 

 

 

Table 5.H: Showing detailed information for Windermere 

Ground Floor Area (m²) 48.6 

First Floor Area (m²) 59.1 

Total Floor Area (m²) 107.7 

Total Volume of Building (m³) 263.9 

Insulation Walls (U-value, W/m²K) 0.28 

Insulation Roof (U-value, W/m²K) 0.18 

Insulation Ground (U-value, W/m²K) 0.24 

Insulation Windows (U-value, W/m²K) 1.55 

Insulation Doors (U-value, W/m²K) 2.07 

Space Heating Demand (kWh) 6444 

Hot Water Demand (kWh) 3583 

SAP Rating 94 

 

The Windermere energy-saving lighting system consumes 406W in total and also 

has several lamps and appliances using power from sockets. This building 

incorporates a 3m² Evacuated Tube Solar Thermal system and a 400W rated Micro 

Wind Turbine. The wind turbine is mounted on the west side of the roof, and its 

downstream path is partially obstructed by the Malvern house. The Solar Thermal 

system is facing south at an inclination of 45º. Further details are shown in the 

schematic diagrams in Figure 5.11. 

 

 

 

Figure 5.11: Schematic diagrams of Windermere systems 
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6 Methodology 
 
 

The EcoSmart village set-up, described in the previous chapter, was used as a test 

rig to measure and analyse the performance of several micro-generation renewable 

energy systems. The quality and quantity of data that is gathered from the test site 

is the key to making this analysis as robust and meaningful as possible. This 

chapter will provide an overview of the tools and methods used to evaluate energy 

resources and assess the theoretical and actual performance of all integrated 

energy systems.  

 

6.1 Monitoring Strategy and Apparatus 

  

Part of the uniqueness of this research project comes from the fact that these 

systems are monitored in near real-life conditions, installed in standard houses and 

under real weather conditions. The monitoring period lasted 15 months, during 

which the homes were used as show homes, open to visits by the general public. 

The monitoring strategy involved gathering as much data as possible in 

order to provide a true picture of the performance of the systems and account for 

any discrepancies between measured output and expectations. To provide a 

complete picture, the following data was gathered: 

 

 Weather data 

 Energy output data from the systems 

 Supplementary energy supplied to the building 

 Energy consumption of the buildings  

 Temperature within the buildings 

 

It was envisaged that this data would be sufficient to analyse the performance of 

each individual system. The buildings themselves were also analysed in detail to 

establish their energy demand. Based on these analyses it will be concluded what 

impact the renewable systems have had and at what cost/benefit ratio.  
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6.1.1 Simulated Living Conditions 

 
 

In order to allow the systems to function under realistic conditions and to simulate 

energy loads, it was attempted to simulate realistic living conditions as far as 

possible. As the houses at the EcoSmart village were used as show homes, which 

were open to visitors from 11:00 until 16:00 every day of the week, all lights and 

appliances such as desk lamps and televisions were switched on during opening 

hours. 

All heating systems throughout the show homes were controlled by 

thermostats, which were constantly set to 21°C. Some time into the recording 

phase all thermostats were fitted with anti-tampering devices to stop visitors from 

changing the temperature settings.  

The EcoVillage staff was asked to draw off hot water from the homes that 

were fitted with solar thermal systems. This was done during mid-day, long enough 

to empty the hot water cylinders entirely.   

 

 

6.1.2 Visitor Feedback 

 

All visitors to the EcoSmart village were asked to fill in a questionnaire in order to 

gain an understanding of the levels of appeal for the various systems, and how 

much people were generally willing to pay for these systems. The feedback 

questionnaires (shown in Appendix B, page 338) were analysed by Survey & 

Marketing Services Ltd. Extracts of the Summary Research Report are given for 

each of the systems. 

 

6.1.3 Measuring Apparatus 

 

The following section will describe the apparatus used to collect data at the 

EcoSmart village. 
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Weather Station 

 

 

Figure 6.1: Davis Vantage Pro 2 Plus Weather Station at EcoSmart village 

 

The weather station that was used to monitor on-site weather conditions was the 

UK version of the Vantage Pro 2 Plus from Davis Instruments Corp. It houses a 

solar powered integrated sensor suite and uses wireless technology to transmit 

data. The data was transmitted to the Davis WeatherLink data logger. Its 

integrated memory can store up to 4000 interval readings in case contact to the 

logging PC is interrupted. It samples weather data every second and then provides 

average values over the chosen sampling period. The weather station was mounted 

on the roof of the Washington building. The range of measurement parameters and 

their estimated accuracy provided by the distributor Ambient Weather Inc. are 

given in Table 6.A. However, given the mounting arrangement shown in Figure 6.1 

the accuracy of the anemometer and attached wind vane must be questioned. 

Despite being some way above the actual weather station, it is still mounted in 

relatively close proximity to some of the other integrated instruments, which is 

likely to provide some distortions in the wind flow.  

 

Table 6.A: Accuracy of Davis Vantage Pro 2 Plus weather station 

Measurement Parameter Maximum Error 

Wind speed 2% 

Wind direction 7º 

Outdoor Temperature 1ºC 

Indoor Temperature 1ºC 

Outdoor Humidity 3% 

Barometric Pressure 1 mbar 

Rainfall 4% 

UV 5% 

Global Solar Radiation 5% 
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Import/Export meter 

 

 

 

Figure 6.2: Import/Export Single Phase Credit Meter 5235 

 

The electricity that was generated by the renewable energy systems was exported 

to the grid. The two-way link to the grid was established using an import/export 

meter. The meter used for this project is the British Standard Single Phase Credit 

Meter, model 5235, shown in Figure 6.2. The meter is tested to IEC 62053-21 Class 

1 or 2 standard103, and has an estimated error of ±1%. These are predominantly 

used to measure PV and Wind generation and are referred to as „fixed‟ meters, and 

are usually treated as the benchmark meter. 

 

 

Electricity meter 

 

 

Figure 6.3: Electricity meter Metermaid 

 

The electricity meters used to measure all electricity generation and consumption 

were the Metermaid104 din-rail mounted AC kWh meters from the manufacturer 

Microcustom International Ltd., shown in Figure 6.3. They have a digital output 

allowing connection to the data logger, and are built to conform to EN61036 

standards, with accuracy rating given as ±1%. They were used to monitor PV and 
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Wind generators, μCHP, heat-store system, GSHP, as well as house lights and 

appliances. Readings from these meters will be referred to as „logger‟ readings, or 

„mobile‟ readings if taken manually by EcoVillage staff. They will usually be used for 

control and validation purposes. 

 

Heat meter 

 

 

Figure 6.4: Supercal 539 Plus Heat Meter 

 

The heat meters that were used to monitor all heat generating devices are the 

Supercal 539 Plus Heat and Cooling energy meters from the manufacturer Sontex, 

shown in Figure 6.4. These battery powered thermal energy meters comply with 

EN1434 (Class 3) and work by measuring the flow rate, using a small turbine, and 

temperature. They provide data on a display and through M-Bus and pulse output. 

The meter must be permanently connected directly into the pipe work. 

 

 

IButtons 

 

          

Figure 6.5: IButton temperature/humidity recorder 

 

IButtons105 are small portable sensors with integrated flash memory, developed by 

Maxim Integrated Products Inc. These devices are battery powered and do not 
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require a permanent data link. There are two different IButton models with different 

sensors and storage capacity: 

 

IButton type A - temperature and humidity: capacity for 4096 readings 

IButton type B - temperature only: capacity for 2048 readings 

 

According to the manufacturer, the IButton recording devices have accuracy limits 

of ±0.5º C. They are programmable, and data is retrieved using a USB link to a PC 

or Laptop. A picture of the IButton is shown in Figure 6.5. The IButtons were used 

to measure internal temperature and humidity. Due to metering problems 

described later, they were also used to measure the output of some of the heat 

generating systems. 

 

6.1.4 Data Capture 

 
The metering set-up and data capture phase was scheduled to continue for 15 

months after the EcoSmart village was constructed, with the aim of obtaining 12 

months of quality data under the strategy set out previously.  

 

List of Measurements 
 
The following list shows all energy readings that were taken from the EcoSmart 

Village, excluding weather data: 

 

- Electricity output of all PV systems 

- Electricity output of all Micro Wind Turbine systems 

- Electricity output of all μCHP systems 

- Electricity consumption of GSHP 

- Electricity consumption of Heat Store 

- Electricity consumption of all downstairs lights 

- Electricity consumption of all upstairs lights (if applicable) 

- Electricity consumption of all sockets (appliances) 

- Electricity consumption of all Malvern entertainment system 

- Heat output of all GSHP systems 

- Heat output of all μCHP systems 

- Gas consumption for all houses without low carbon heating system 

- Internal temperatures of every room in every house 

- Internal relative humidity of every house (measured in Lounge) 

- Flow rates from solar thermal systems using standard integrated flow 

meters (rotameter type) 

- Rain Harvest Tank meter 
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In addition to this, several readings were taken manually on a daily basis to provide 

control readings for the data logger readings. The list of manual readings is as 

above, with the following additions: 

 

- Total energy import of building 

- Total energy export of building 

- PV readings from a separate meter provided by PV supplier 

 

 

Logging Interval 
 

To provide a detailed dynamic picture of the performance of the renewable energy 

systems, an adequate time interval had to be chosen. 

For weather data it was anticipated that the measurement with most 

frequent variation is wind speed. The British Standard BS EN 61400-21:2002 was 

reviewed, which set out a framework for wind turbine testing. It suggested that 

wind data readings taken at 10-minute intervals would be adequate for the analysis 

of micro wind turbines. Consequently the weather data was logged at 10-minute 

intervals. This interval provided a 2-week safety buffer for the data logger if the 

uplink to the PC was interrupted. In 2008 the British Standard was reviewed, and 

the updated version BS 61400-21:2008 now suggests that 1-minute sampling 

intervals would be more appropriate.  

The data logger interval for all electricity meters was set slightly lower, at 5 

minutes, to allow a more in-depth analysis of any unexpected power fluctuations. 

In relation to this a study106 of the effects of analysin demand patterns at different 

time intervals revealed that 5-minute intervals are significantly more accurate than 

longer intervals, such as 1 hour. 

IButton sampling intervals needed to be considered differently. Ambient 

temperatures were not expected to vary significantly or frequently. With the added 

constraint of a limited memory, it was decided to use 20-minute intervals. This 

would provide enough memory for 28 days worth of data, allowing data retrieval 

during monthly visits.  

Manual readings were taken once every day by the EcoSmart village staff 

whenever it was possible.  

 

 

Metering Problems 
 

It was found that the heat meters for all GSHP and Solar Thermal systems were not 

working. Error messages were shown on the display, the technical manual 

suggested the solution „send back to manufacturer‟. Unfortunately this was not 
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possible, as they had already been integrated into the pipe work of the systems. As 

an emergency solution it was decided to attach IButton temperature sensors to the 

flow and return pipes of these systems to obtain temperature readings. This data 

could then be used indirectly to obtain energy generation estimates. 

 

6.2 Data Conditioning 
 
 

After taking measurements from the EcoSmart village it was required to prepare 

the data for accurate and efficient analysis. In order to condition the data, the 

format of the different data sets needed to be normalised. Initially the data which 

was recorded from the EcoSmart village had various different time intervals as 

previously justified. These are summarised below. 

 

Weather Station: 10-minute interval 

Energy readings (data-logger):  5-minute interval 

IButtons: 20-minute interval 

 

For analysis, the data had to be changed to equal intervals and the time stamp 

corrected and aligned.  

 
 

6.2.1 Data Normalisation and Interpolation 

 
 

MS Excel was chosen as a general platform for data analysis. The powerful platform 

contains appropriate tools to carry out different forms of analysis and is widely 

compatible with other systems.  

 To analyse and compare all data efficiently and correctly it needs to be in a 

compatible format. It was therefore decided to change all data to 5 minute intervals 

by means of linear interpolation.    

 

Energy Data: This data was already recorded at 5-minute intervals using the 

wireless data logger. The data was manually exported into an MS Excel 

spreadsheet, where date and time stamps were aligned and any gaps in the data 

were sized to represent the appropriate number of 5-minute intervals.  

 

Weather Data: This data was recorded using the software Weatherlink 5.3. Using 

the export function, a spreadsheet was created from various txt files. Some of the 

units of the data measurements had to be converted, as shown in Table 6.B 
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Table 6.B: Unit conversions of weather data 

Parameter Original Unit Converted Unit Conversion Equation 

Temperature Degree Fahrenheit (°F) Degree Celsius (°C) )95()32(  FC  

Wind speed Miles per hour (mph) 
Meters per second 

(m/s) 
mphsm  447.0/  

Pressure 
Inches of mercury 

(inHG) 
Millibar (mb) inHG33.8639 mb  

 

 

Once this was done, any gaps in the data were extended  to provide continuous 

time and date values. Having aligned the data, a Visual Basic Macro was used to 

space out the data. Linear interpolation, outlined in Table 6.C, was deemed to be 

appropriate given the nature of the data. 

 

Table 6.C: Interpolation of weather data 

0 Actual Reading x  

5 
Interpolated 

Reading 
2)(  yxz  

10 Actual Reading y  

 

 

Internal Temperature: Data was imported to spreadsheets from the IButton 

sensors. After combining all data, all time stamps were aligned and synchronised as 

well as possible. Some time differences remained in the order of 1-2 minutes. After 

all data had been aligned and spaced out to account for data gaps, the data was  

interpolated linearly as shown in Table 6.D. 

 

Table 6.D: Interpolation of internal Ibutton data 

0 Actual Reading x  

5 
Interpolated 

Reading 
2)(  zxu  

10 
Interpolated 

Reading 
2)(  yxz  

15 
Interpolated 

Reading 
2)(  zyv  

20 Actual Reading y  

 

 

Solar Thermal & GSHP Temperatures: The IButton sensors were also set to 20-

minute recording interval to allow for the same 28-day buffer. The data was aligned 

and interpolated using the same method as for internal temperature readings. 
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6.2.2 Time Stamp Correction  

 
 

During the monitoring phase a problem was encountered with the energy data 

readings that were recorded using the data logger. The system clock of the PC 

seemed to be faulty, causing the time to jump randomly every couple of hours. All 

attempts to rectify this problem during the recording stage, including the use of 

third party time-keeping software, failed.  

After the recording stage was completed and all data was retrieved and 

normalised, there were two sets of data that could be used to rectify this problem: 

 

1. The continuous energy data at 5-minute intervals with a wrong time and 

date scale, showing the energy output for a south-facing PV system 

2. The continuous weather data at 5-minute intervals (interpolated) with a 

correct time scale, showing global solar radiation 

 

To adjust the time and date of the energy data, the solar irradiation data with its 

corresponding time and date stamp was graphically compared on a day by day 

basis, and adjusted to match up. An example of this is shown in Figure 6.6. Once 

the solar radiation was consistently in line with the energy readings from the PV 

system, the date and time stamp was copied into the spreadsheet containing the 

energy readings.  

 

 

Figure 6.6: Example of PV generation and solar irradiation alignment 
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6.3 Data Validation 
 
 

Before detailed analysis can commence the accuracy of the recorded data needs to 

be verified. For this reason measurements were taken from different sources to 

provide control readings. The most valuable source of control readings is provided 

be the manual readings that were taken by the EcoVillage staff on a daily basis. 

These were typically read off from secondary control meters, referred to as „mobile‟ 

meters. Additionally, PV readings for Malvern system were available from an 

independent system from the manufacturer Fronius, who also supplied the inverters 

used for the PV systems. This will be referred to as „Fronius‟ data. 

 

6.3.1 Energy Readings 

 

 

To verify the accuracy of the energy data, three sets of available data for the 

Malvern PV system were analysed and compared. Monthly and annual results are 

shown in Table 6.E below. 

 

Table 6.E: Comparison of various meter readings for Malvern PV system 

 Malvern PV (kWh) 

 Fronius Mobile Fixed 

Nov-06 16.1 15 10 

Dec-06 8.0 8 5 

Jan-07 12.2 12 8 

Feb-07 23.3 24 17 

Mar-07 61.6 63 53 

Apr-07 90.9 88 72 

May-07 93.3 85 73 

Jun-07 101.6 96 83 

Jul-07 85.1 76 64 

Aug-07 89.2 88 76 

Sep-07 62.0 51 45 

Oct-07 35.0 29 22 

Annual 678.2 635 528 

 

 

When comparing the datasets in Table 6.E the most noticeable thing is that the 

fixed meter readings appear to be considerably lower than the other two sets, in 

the order of around 20%. This can be explained by the fact that the meters used 

were the import/export meters, which register a net value of energy generation and 

consumption. As will be explored in more detail later, the inverters used for PV and 

Wind Turbine systems require some external power to run. Therefore while the 

Fixed reading accounts for inverter consumption, the Fronius and Mobile readings 



79 
 

do not. When comparing the Fronius and Mobile readings, differences are 

insignificant for most months. Annually, there is a difference of about 6%. 

Considering that the Fronius readings were taken straight from the inverter, a 

difference in cable losses can account for part of the difference, while the remaining 

error between the two meters is at an acceptable level.  

 To further validate the energy readings, the energy balance was checked on 

a monthly basis for every building. An extract of this analysis is shown in Table 6.F 

for the Palmerston building. Data is shown for the month of February 2007, about 

half way through the monitoring period.  

 

Table 6.F: Electricity measurement balance for Palmerston, February 2007 

  Meter Readings (all in kWh)   

  Import PV GSHP Heat Store Lights Sockets Kitchen Net  

01/02/2007 4910 618.71 1644.5 982.6 624.2 1001.1 193.1   

28/02/2007 5546 655.18 2007.9 1103.5 689.6 1106.1 206.0   

Difference -636 -36.5 363.4 120.9 65.4 105 12.9 -4.9 

 

 

Table 6.F provides evidence that the metering and logging apparatus work within 

acceptable ranges of accuracy. The „import‟ reading was taken manually from the 

building‟s electricity meter while all other devices were metered as described. The 

net energy balance shows a difference of 4.9kWh for the entire month. This is a 

very small cumulative error considering that this is based on close to 50,000 

readings (6 sets over 28 days at 5-minute intervals), all of which consist of 3-4 

figure readings. 

 

6.3.2 IButton Sensors 

 
 

The maximum error specified by the manufacturer is ±0.5ºC. To verify this, 25 

IButtons that were used for measurements during this project were calibrated at 

the University of Manchester. Calibration was done using a low temperature oven 

with very accurate temperature settings. It was confirmed that none of the 

IButtons showed any deviation from the control temperature, or each other, of 

more than 0.5ºC.  

In order to attach the IButton sensors to the pipe work of heating systems 

the pressure sensitive adhesive Blu-Tack was used. The adhesive was applied in 

layers of approximately 1mm thickness, with no layer exceeding 2mm. The thermal 

effects resulting from the layer of Blu-Tack between the pipe and the sensor were 

investigated in a controlled set-up. For this purpose IButton sensors were attached 

to the outside of a glass of hot water with different thicknesses of Blu-Tack, using 
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very thin (<1mm), moderate (1-2mm) and very thick (~5mm) layers, shown in 

Figure 6.7.   

 

Figure 6.7: Testing thermal effects of using Blu-Tack to attach IButtons 

 

To provide a control reading, a fourth IButton was attached to the inside of the 

glass to measure water temperature. The control IButton was attached at the same 

height as the external IButtons. Results are summarised in Figure 6.8. 

 

 

Figure 6.8: Temperature variation of IButtons attached with different layers of Blu-

Tack 

 

Figure 6.8 shows that there is increased latency as a result of using a thicker layer 

of Blu-Tack. While the very thin layer, which is not a very secure option in practice, 

picks up the temperature changes of the glass very quickly, the thicker layers take 
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slightly longer. However, after approximately 1 minute the temperatures of all 

three layers converge and show a very similar variation in readings throughout the 

rest of the cooling phase of the glass. The significant difference between water 

temperature and IButton temperature can be attributed to the thermal losses from 

the relatively thick layer of glass. 

 The temperature difference between the IButtons and the water appears to 

decrease as the water cools, and can be expected to eventually converge at room 

temperature. It was decided to explore this further on a solar thermal system, 

where control temperatures from calibrated thermocouple sensors were available. A 

scatter graph was plotted, and the least squares method applied to find a linear 

equation that correlates IButton values to control values at minimal residual error. 

Results are show in Figure 6.9.  
 

 

 

Figure 6.9: Linear equation derived using least squares technique to correlate 

IButton readings and control readings 

 

The derived relationship is: 

 

 1818.10715.1  xy        (6.1) 

 

At IButton temperature of 25°C, the corrected temperature using equation (6.1) is 

equal to 25.6°C. This is an acceptable error, as it is of similar magnitude to the 

IButton error of ±0.5°C. The linear equation (6.1) is used to adjust all IButton 

readings.  

 

6.4 Statistical Methods for Data Analysis 
 
A large part of analysis carried out for this research involves comparing data sets, 

for example of data comparing theoretical system performance and measured 

system performance. Statistics will be applied to provide a meaningful quantitative 

comparison. The most commonly used methods for this purpose are set out below. 
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Mean and Standard Deviation 
 

The mean average will be used predominantly to determine the expected values of 

a distribution. The standard deviation of the data set will provide an indication of 

the expected data spread107, which provides an indication to the magnitude of error 

that can be expected. The standard deviation is found using equation (6.2), where 

(X) is the variable and (n) the number of variables. 

 

 
n

XX
SD

2)( 
        (6.2) 

 

The standard deviation of the data set accounts for about 68% of the data, 

assuming a normal distribution. 

 

Least Squares Method 

 

The least squares method is used on numerous occasions for curve fitting purposes. 

It is used to fit a linear or polynomial equation to a set of data points, with the aim 

of minimising the sum of squares of the residual errors. The term „residual error‟ 

refers to the difference between the observed value and the value according to the 

linear or polynomial model108. Equation (6.3) presents the least squares method, 

where (rLS) refers to residuals and (Sr), their sum, must be minimised. In equation 

(6.4) the term (y) refers to the observed value.  

 





n

i

iLSr rS
1

2

)(         (6.3) 

 

),( )()()( bxfyr iiiLS         (6.4) 

 
 

For linear least squares the model function is given by: 

 

 xbbbxf i 10)( ),(         (6.5) 

 
For the purposes of analysis the Excel-integrated function for curve fitting is used to 

minimise (Sr) and to find the resulting line of best fit with a minimal sum of 

residuals squared. 
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To evaluate how well the model relates to the data set, the (R2) value is found. This 

value relates the sum of residual squares to the sum of total squares, where (R2) 

converges to 1 as the sum of residual errors approaches zero. 

 

 

The t-test 
 

The t-test109 is a valuable tool when comparing two data sets110. It can be used to 

find the probability of two sample values within two similar datasets showing a 

statistically significant difference. The expression used to calculate the t-value is 

given by equation (6.6). 

 

2

2

2

1

2

1

21

nn

xx
t

SDSD

value





         (6.6) 

 

In order to relate the t-value to a statistical probability, the degree of freedom of 

the data must be determined. This is given by equation (6.7): 

 

221  nndf         (6.7) 

 

Using the t-value and the degree of freedom, the Student‟s t distribution table111 

can be used to determine the relevant probability of two random samples having a 

statistically significant difference.  

 

6.5 Payback Calculation Method 
 
 

Determining the value of a system based on payback period can be approached in 

three different ways; financial payback of capital investment, energy payback and 

carbon payback, where the term „carbon‟ refers to CO2 equivalent emissions. 

Energy and carbon payback are strongly related, while all three approaches are 

important. The financial payback will influence the motivation for consumers to opt 

for a specific system which can ultimately affect the product choice when buying a 

house. The energy payback, and the related carbon payback, will determine the 

viability from an environmental point of view as it will determine a systems‟ 

effectiveness in helping to mitigate climate change.  
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6.5.1 Feed-in Tariffs (FIT) 

 

 

In November 2008 the Planning and Energy Act112 set out a series of requirements 

for the UK government to meet its commitments to combat climate change, in 

particular by encouraging the use of renewable energy systems to generate power. 

In response to this, and after a period of industry consultation113, feed-in tariffs on 

renewable electricity generation have been introduced in April 2010114.  

The feed-in tariffs (FIT‟s) are fixed rates at which energy generated by 

renewable energy systems will be valued. These tariffs are incentives for installing 

renewable energy systems and do not require electricity to be exported to the 

national grid. However, if electricity is exported, an additional 5p/kWh will be paid 

on top of the nominal tariff. The model of the FIT‟s is such that initial tariffs are 

available for installations commissioned in or after April 2010. This tariff depends 

on the type of installation and is fixed for a certain period; 25 years for PV 

installations, 10 years for MicroCHP and a 20-year period for all other systems.  

For any installation commissioned after April 2012, there will be a 

„degression‟ value for the initial tariff, which is a reduction of the tariff to be 

received over the entire period. The degression is also linked to inflation, making it 

slightly flexible. Table 6.G provides an extract of tariffs for electricity generating 

renewable energy systems up to April 2020.  

 

Table 6.G: 2010 Feed-in tariffs113 

 Size 

Annual Tariff (pence/kWh), starting in 

April 
2010 

April 
2011 

April 
2012 

April 
2013 

April 
2014 

April 
2015 

April 
2016 

April 
2017 

April 
2018 

April 
2019 

April 
2020 

μCHP ≤2kW 10 10 10 10 10 10 10 10 10 10 10 

PV 
≤4 kW (new 

build) 
36.1 36.1 33 30.2 27.6 25.1 22.9 20.8 19 17.2 15.7 

PV 
≤4 kW 

(retrofit) 
41.3 41.3 37.8 34.6 31.6 28.8 26.2 23.8 21.7 19.7 18 

PV >4-10kW 36.1 36.1 33 30.2 27.6 25.1 22.9 20.8 19 17.2 15.7 

PV >10-100kW 31.4 31.4 28.7 26.3 24 21.9 19.9 18.1 16.5 15 13.6 

PV >100kW-5MW 29.3 29.3 26.8 24.5 22.4 20.4 18.6 16.9 15.4 14 12.7 

PV 
Stand alone 

system 
29.3 29.3 26.8 24.5 22.4 20.4 18.6 16.9 15.4 14 12.7 

Wind ≤1.5kW 34.5 34.5 32.6 30.8 29.1 27.5 26 24.6 23.2 21.9 20.7 

Wind >1.5-15kW 26.7 26.7 25.5 24.3 23.2 22.2 21.2 20.2 19.3 18.4 17.6 

Wind >15-100kW 24.1 24.1 23 21.9 20.9 20 19.1 18.2 17.4 16.6 15.9 

Wind >100-500kW 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.8 

Wind 
>500kW-
1.5MW 

9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 

Wind >1.5MW-5MW 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 
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These tariffs have been set out to allow a real rate of return on investment 

of 5-8%, allowing it to be seen as an ethical investment opportunity. As the tariffs 

are linked to inflation, the nominal rate of return can be as high as 7-10%, allowing 

electricity generating renewable systems to achieve financial payback within a 20-

year period.  

 

6.5.2 Renewable Heat Incentive (RHI) 

 
 

Similar to electricity generating systems, heat generating systems will also 

be subsidised under the Renewable Heat Incentive (RHI) scheme. A consultation 

document115 was released in February 2010 by the Department of Energy & Climate 

Change, responses to which are currently being analysed. The proposed tariffs are 

shown in Table 6.H. 

 

Table 6.H: Proposed RHI tariffs115 

Technology Size 
Tariff Tariff 

type 

Lifetime 

(pence/kWh) (years) 

Ground source heat 
pumps 

≤45kW 7 deemed 23 

Ground source heat 
pumps 

>45-350kW 5.5 deemed 20 

Ground source heat 
pumps 

>350kW 1.5 metered 20 

Air source heat pumps ≤45kW 7.5 deemed 18 

Air source heat pumps >45-350kW 2 deemed 20 

Solar thermal ≤20kW 18 deemed 20 

Solar thermal >20-100kW 17 deemed 20 

 

 
These proposed tariffs were calculated based on a rate of return of 6% for solar, 

and 12% for all other systems to reflect the level of risk and effort involved.  

 Unlike electricity generating systems it is rather difficult to meter heat 

generating systems. Metering heat generation could also encourage surplus heat 

generation in order to benefit from the RHI scheme. It is therefore proposed that 

tariffs for small/medium size systems, in particular for domestic applications, are 

fixed. This will be based on a „deemed‟ (reasonable heat requirement that the 

installation is intended to serve) number of kWh generated, rather than actual 

energy generated. It is yet to be decided what method or model this deemed 

requirement will be based on. The RHI scheme is set to start in April 2011, but it 

has been proposed that all installations commissioned after July 2009 are eligible to 

receive RHI tariffs. 
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6.5.3 Calculating Simple Financial Payback 

 

 

Financial payback is achieved when the capital investment of installing a system 

has been redeemed through savings generated over time. Savings are based on a 

comparison to likely alternatives, for example a grade A condensing gas boiler, or 

electricity that is imported from the national power grid. However, the capital cost 

of alternatives will not be considered for the purpose of this analysis.  

In order to provide a method of analysis that is widely applicable, while at 

the same time providing a robust and justifiable estimation of payback period, 

several assumptions were made. These include the following: 

 

1. No opportunity cost, possible interest payments or cost of alternatives 

are considered as it is outside the scope of this research to consider all 

options and rates that may apply. Instead, this research will provide a 

base-line case which can be adjusted for individual cases.  

 

2. Maintenance costs for the systems are assumed to equal estimates 

presented by the Department for Communities and Local Government in 

201064. While these estimates are rather generic, they should adequately 

reflect the vast majority of cases. 

 

3. It is expected that systems reach their expected life-time, and 

performance does not vary throughout the system‟s lifetime. While in 

practice performance will reduce over time, it can be argued that for 

most cases, given the appropriate maintenance, this reduction becomes 

negligible.  

 

4. The effect of expected climate change throughout the expected system 

life-time is assumed to have a negligible effect on system output. While 

this may ultimately prove to be wrong, this is an area which is currently 

too unpredictable. 

 

5. Energy prices are expected to vary over estimated system lifetime. 

Estimates for 2020 energy prices have been published by the 

Department for Energy and Climate Change116 (DECC) for different 

scenarios. For the purpose of payback calculations the prices for the 

„high‟ scenario are adopted, which predicts 3.6p/kWh for gas and 

14.3p/kWh for electricity.  
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6. Inflation has not been considered. The fact that FIT‟s and RHI‟s are 

linked to inflation should negate any effects of inflation on payback 

estimates.  

 

7. 2011 tariffs will be used for all payback estimates. This is done as capital 

investment costs are used from 2010 or previously, and the regression 

values of the tariffs are designed to account for expected variations in 

capital costs. 

 

8. For electricity generation, it is expected that 50% of energy is used 

directly, and 50% is exported to the national grid117 

 

 

The assumed average prices for gas and electricity import are summarised in Table 

6.I, where the gas price has been adjusted to account for efficiency losses of using 

a 90% efficient A-rated condensing gas boiler. 

 

Table 6.I: Estimated average energy prices116 over payback period 

Electricity (per kWh) Heat from Gas (per kWh) 

£0.143 £0.04* 
*adjusted to account for 90% efficient boiler 

 

 

The capital costs will need to be considered to calculate payback rates, as well as 

any known maintenance expenses. The capital costs of the EcoSmart village 

systems, provided by Barratt Developments, are summarised in Table 6.J. Capital 

costs will be adjusted later based on other research, where appropriate. 

 

Table 6.J: Capital cost for all systems installed at EcoSmart show village 

Renewable / Energy Efficiency System Installation Cost (£) 

Wind turbine (1.75m) 1500 

Wind turbine (1.1m) 2250 

Photovoltaic 4500 

Flat panel solar thermal collector 2600 

Evacuated tube solar thermal collector 3500 

GSHP (1) 7800 

GSHP (2) 12250 

µCHP 2700 
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Equation (6.8) will be used to calculate payback periods for all systems, where the 

term (C) refers to capital cost and the subscripts „H‟ and „E‟ refer to annual heat 

and electricity generation respectively. The values £0.04 and £0.143 are the 

assumed average prices for gas and electricity, and £0.05 is the FIT mark-up for 

electricity export to the grid.  
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6.5.4 Calculating Energy and Carbon Payback 

 
 

In order to calculate the carbon savings from the use of renewable energy systems, 

the typical carbon generation from burning fossil fuels must be established to 

provide comparative values. These values for gas and electricity are based on SAP 

2009 CO2 emission factors.  

It is also important to know the carbon footprint of an average household to 

estimate the carbon offset in terms of a percentage contribution. According to a 

British Gas report118 released in 2006 by Centrica PLC, there is a great variation of 

average domestic carbon footprint in cities throughout the UK, ranging from 

3255kgCO2 to 8092kgCO2 per annum. Due to the proximity of the test site and near 

average value, the average carbon footprint for Manchester will be used as a 

reference value for carbon calculations. This is given as 4862kgCO2.  

The carbon content for grid electricity and natural gas, as well as the 

average annual carbon footprint for a dwelling near Manchester are summarised in 

Table 6.K.  

 

Table 6.K: Carbon footprint of grid energy and average household near Manchester 

  per value 

)(2 gasCO 119 kWh 0.198 kgCO2 

)(2 yelectricitCO 119 
kWh 0.517 kgCO2 

)(2 annualCO 118 dwelling 4,862 kgCO2 

 

 

It must be noted that the carbon content shown in Table 6.K is based on the 

current situation. It is recognised that in future the carbon content of national 

energy grid is expected to decrease, as the proportion of large scale renewable 
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electricity generation and bio gas are increased in the electricity and gas networks. 

However, for carbon payback calculations the following assumption is made: 

 

1. As carbon payback periods are generally fairly short, the current estimates 

of carbon footprint are deemed as being sufficiently accurate for this 

analysis. 

 

 

Embodied Energy and Carbon 
 

 

With the carbon content of electricity and gas that will be offset by renewable 

energy generation accounted for, it must also be considered that the systems 

contain a certain amount of embodied energy and carbon. 

 Materials, manufacturing, transport and installation all contribute to the 

embodied energy of a system. Depending on what type of energy (heat, electricity 

or fuel for transport) is required for each of these processes, the amount of 

embodied carbon will vary. To provide an indication of magnitude, Figure 6.10 

summarises120 the estimated carbon content of the energy generated over the life-

time of several renewable energy systems. This is based on estimated generation 

and the embodied carbon of the individual systems. For comparison, the average 

life-time carbon content of PV generation is approximately 10% of the carbon 

content of electricity from the national grid.   

 

 

Figure 6.10: Estimated carbon content of renewable energy generation (Source: 

POSTnote120 2006) 
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As substantial research has already been done in this area the embodied energy 

and carbon for each individual system will be analysed in detail based on literature 

reviews.  

 Should no literature be available that provides a conclusive extimate for the 

embodied carbon of a particular system, this will be estimated based mainly on 

materials and their assembly. For the typical embodied energy and carbon of raw 

materials in the UK, the peer-reviewed121 Inventory of Carbon and Energy (ICE) 

database122 will be used as a reference. For assembly and any other processes that 

involve primary electricity, a carbon content factor of 0.23kgCO2/kWh was used, 

which was adopted from a 2007 UK Government consultancy report39. 

 

Having established the estimated embodied energy and carbon, the payback 

periods for energy and carbon will be calculated using equations (6.9) and (6.10) 

respectively. 
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7 Support Systems 
 

 

 
Many of the renewable energy systems tested at the EcoSmart village require 

support systems to provide energy more efficiently or in a useful form. The GSHP 

and µCHP systems for example are connected to a smart heat store that acts as a 

buffer between energy supply and demand.  

 The electrical systems also require a support system. Apart from the µCHP 

Stirling engine all on-site electricity generation is DC, which needs to be converted 

to AC for grid-integration by using an inverter.  

 This section will describe the support systems in detail, identify any 

implications they have on energy generation, and develop models where 

appropriate to account for any losses that may result from their use.  

 

7.1 The Inverter 
 
 

All small-scale wind turbine systems use a permanent-magnet generator, 

the output of which is rectified to give a DC voltage which varies with 

speed. Photovoltaic semiconductors generate a flow of electrons in one 

direction, also resulting in DC generation. For both cases inverters are 

required to change the DC power to AC power that can either be exported to the 

grid, or be used directly by appliances. 

 

7.1.1 Theoretical Background 

 
 

In its simplest form, an inverter uses a transformer and a switch on the primary 

coil to allow current to flow in opposite directions, causing the induction of 

alternating current in the secondary coil. The switching mechanism in inverters, 

which is required to change the direction of DC current, is called „commutation‟. 

This can be controlled in two ways, by self commutation or forced commutation. 

The main difference is that forced commutation allows the switch to control the 

„on‟ setting by using a device such as a thyristor, while the „off‟ setting is 

controlled by a supplementary circuit123.  

A self commutated inverter on the other hand can control both „on‟ and 

„off‟ settings. Using modern semi-conductor switching devices high switching 

frequencies exceeding several kHz are reached, which makes it much easier to 

filter harmonics, resulting in low network disturbances124. This property makes 
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self-commutated inverters more applicable to small-scale, grid-connected 

renewable energy systems. They can either be voltage commutated or current 

commutated, meaning the switching is controlled by either voltage or current 

levels. A survey has shown that practically all inverters used for peak loads of 

1kWh or less are self-commutated voltage type inverters125.   

  

Any inverter, whatever its type, requires a low-voltage control 

system, and most modern systems will employ a microprocessor. The power 

needed to drive the electronics is usually obtained from the AC mains by 

transforming down and rectifying, and using further devices to give a 

stabilised low-voltage power supply. It is unlikely that this can be done 

without consuming at least 5W, so that, even if the inverter is not switching 

it will consume at least 120Wh per day if it is left connected and 

operational. If the inverter starts to switch, then losses occur in each 

switching operation additional to those already mentioned. It is impossible 

to generalise but some feel for magnitudes can be obtained from the fact 

that if operating at its rated output, the inverter is unlikely to be more than 

about 90% efficient, with most of the losses being attributable to switching. 

Hence it is quite possible that the DC link needs to input a power of about 

2% of the inverter rating before any measurably significant power is fed 

into the mains.126 Based on this assessment, there are two types of losses 

involved when using inverters: 

 

- Efficiency losses across all power ranges, which have a greater 

overall effect on low power loads as a minimum „switching loss‟ needs 

to be overcome. This may be as much as 2% of the inverter rating 

 

- Energy consumption by the inverter for control (microprocessor) 

system when switched on, expected to be at least 5W, even while 

zero load is applied 

 

 

7.1.2 Efficiency Losses 

 
 

Inverters have varying efficiencies, which are usually rather low under low load 

levels, and increase as the input (DC) power approaches the rated power of the 

inverter. The typical efficiency curve of a generic inverter127 is as shown in Figure 

7.1. 
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Figure 7.1: Efficiency variation with power load of typical inverter (Source: 

Mondol127, 2007) 

 

The efficiency curves for the inverters used at the EcoSmart village were 

unobtainable, but the third party Fronius logger that was connected to the Malvern 

PV system measured both DC and AC power across the inverter. To obtain an 

efficiency variation based on the measurements a simple ratio was used, shown in 

equation (7.1). Results of these calculations up to a DC load of 700W are shown in 

Figure 7.2. 

 

DC

AC
inverter

P

P
         (7.1) 

 

 

 

Figure 7.2: Malvern PV inverter efficiency variation with respect to DC load 
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Based on this analysis the inverter shows a different behaviour than the generic 

inverter shown in Figure 7.1. Some of the efficiency values at low loads are greater 

than 100%, confirming that this is wrong.  

 

As mentioned before, a certain minimum power level needs to be reached to 

overcome relay switching losses. It was estimated that these losses could be as 

much as 2% of the rated power, in the case of the PV inverters around 20W. It is 

possible that the DC load is measured after these losses occur.  

 After an iterative process a moderate value of 15W (1.5% of inverter rating) 

was assumed. When adding this value of 15W to the DC load in equation (7.1), the 

resulting distribution is shown in Figure 7.3. This corrected efficiency curve is now 

much closer to the generic efficiency curve shown previously.  

 

 

Figure 7.3: PV Inverter efficiency with 15W DC correction for switching losses 

 

 

Validation  

 

As the inverter efficiency curve is based on an estimated correction factor, its 

accuracy must be validated. For this purpose a 2.7kWp domestic PV system was 

analysed, which uses a 2.8kW rated inverter. This control inverter is a Diehl 

Platinum 2800S model, which incorporates electricity meters and a data logger that 

is able to give values for DC load before switching losses and AC output. Using 

equation (7.1) the efficiency curve is calculated, which is shown in Figure 7.4. 
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Figure 7.4: Control inverter efficiency distribution 

 
 

The comparison of Figure 7.3 and Figure 7.4 shows very little difference. The good 

correlation between the adjusted efficiency curve for the EcoSmart systems and the 

control inverter suggests that the methods applied are sufficiently accurate for 

further use in system modelling.  

 

7.1.3 Inverter Energy Consumption 

 

 

The inverters consume energy when switched on, regardless of the DC load. 

While PV inverters were automatically switched off when zero DC load was 

applied, the unpredictable nature of wind meant that wind turbine inverters were 

constantly switched on. As previously described the electricity meters used to 

monitor the wind turbine systems were designed to measured electricity flowing 

both ways, hence recording both power consumption and power generation as a 

positive output.  

In order to determine the electric energy consumption of the inverters, 

three days were analysed which were known to have wind speeds consistently 

below the turbine cut-in speed of 2.5m/s. After analysing the weather data, the 

8th, 19th and 21st of July 2007 were chosen for this analysis. The total daily 

energy readings for the wind turbine meters on those particular days are shown 

in Table 7.A. 
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Table 7.A: Inverter energy consumption on days with negligible wind speeds 

    Daily inverter energy consumption (Wh) 

Eco Home System 08/07/2007 19/07/2007 21/07/2007 Average 

Buckingham Windsave 169.5 170.5 170.0 170.0 

Edinburgh Windsave 181.0 180.5 180.5 180.7 

Alderney StealthGen 159.5 159.5 159.5 159.5 

Malvern StealthGen 119.5 120.5 118.0 119.3 

Windermere StealthGen 122.5 130.0 130.0 127.5 

 
 

The values in Table 7.A can now be used to account for the annual inverter 

energy consumption of the wind turbine inverters. 

 For the PV inverters, similar energy consumption levels were assumed as 

for the 1kW rated inverter used for the Windsave turbines. It can be assumed 

that the PV inverters consume 7.3Wh of energy during every hour of daylight.  

 

7.1.4 Inverter Model 

 
 

To summarise the analysis on inverter losses, the simplified linear model given by 

equation (7.2) will be used. The resulting distribution is shown in Figure 7.5. 
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Figure 7.5: Linear model to represent inverter efficiency distribution 
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The derived model for the inverter will be used for PV and wind turbine inverters. 

The ranges given in equation (7.2) will be adjusted for the smaller inverter of the 

400W rated wind turbines. In addition to the efficiency model, a value for the 

inverter energy consumption will be subtracted from the annual yield, based on the 

method described above. 

 

7.2 The Heat Store 

 

The smart heat store systems used in conjunction with the GSHP and µCHP systems 

are the Gledhill BoilerMate systems. In this case the term „smart‟ refers to the 

ability to control the space heating system, being able to control when they are 

switched on and for how long. They were specifically designed for each of the space 

heating systems, taking into account what demand profiles would be best suited to 

ensure smooth and efficient running.  The different versions include the 

„BoilerMateHP‟ for use with heat pumps, the „BoilerMatemCHP‟ designed specifically 

for µCHP systems, as well as the „BoilerMateSol‟, which is intended to be used in 

conjunction with Solar Thermal systems. They are controlled by an integrated 

microprocessor control system, which is able to monitor temperature levels and 

automatically call on the heating system when required. At the same time the 

integrated storage tank provides a valuable buffer, which means the heating 

systems can run for longer periods at a time.  

The heat-store system also consumes a significant amount of energy, 

although the exact amount is not specified by the manufacturer. Electricity meters 

have been connected to the heat store systems. The energy consumed by the heat-

stores at the EcoSmart village were recorded and will be shown for each individual 

system. The exact algorithms of the heat store control were not investigated in 

detail, as this is outside the scope of this research project Figure 7.6 shows a 

general schematic layout of the Gledhill system, in this case for the „BoilerMateSol‟ 

system.  

. 

 



 
98 

 

Figure 7.6: Gledhill heat store system for solar thermal „BoilerMateSol‟ (Source: 

Gledhill brochure) 
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8 Preliminary Modelling 
 

 

 
In order to use the weather data that was gathered for analysis and modelling 

purposes, in particular for determining the theoretical performance of some of the 

renewable energy systems, some preliminary modelling was required. During 

preliminary analysis it was found that some data was required which was 

unavailable, or it was required in a different format. This section outlines and 

validates the methods used for conversions and derivations of the parameters 

required for system modelling.  

 

8.1 Estimating Beam and Diffuse Components of 
Global Solar Radiation 

 
 

For modelling of solar systems is it necessary to know the amount of direct beam 

and indirect diffuse solar radiation. 

Several recognised methods are known that can be used to divide the values 

for global solar radiation into beam and diffuse components. Methods have been 

empirically derived by Orgill & Hollands128, Erbs et al
129

 and Reindl et al130. These 

methods were reviewed and compared by Duffie & Beckmann131, who concluded 

that for practical purposes the Erbs method and the Orgill & Hollands method 

produce the same outcome. The Erbs method was chosen. It works on the basis 

that the diffuse and beam components of global solar radiation can be related to 

the intensity of the radiation measured on ground compared to the extraterrestrial 

radiation as seen outside the atmosphere.  

 

The instantaneous extraterrestrial radiation (I0) on a horizontal surface is found 

using equation (8.1), where (δ), (φ) and (ω) and angles of declination, Latitude 

and solar hour angle respectively and (n) is the Julian date: 

  

  sinsincossincos
365

360
cos033.010 










n
GI   (8.1) 

 
 

For analysis over discrete time intervals, in this case 1 hour, the relationship can be 

expresses as shown in equation (8.2). 
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Equation (8.2) requires the hour angle and declination angle to be found on an 

hourly basis. The solar hour angle can be calculated using equation (8.3), for which 

the solar time (tsol) can be found using equation (8.4) and the difference in 

longitude (ψ) between the location and that of the standard time zone. 

 

)12(15  solt          (8.3) 
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The term (ET), the equation of time, is given by equation (8.5): 
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The solar declination angle referred to in equation (8.1) defines the angular position 

of the sun at solar noon as a result of the earth tilt with respect to the plane of the 

equator, where north is taken as positive. As shown in Figure 8.1 the declination 

angle ranges –23.5º < δ < 23.5º. The declination angle can be found using 

equation (8.7). 

 
 

 

Figure 8.1: Diagram showing the declination angle as a result of earth tilt 
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The clearness index (kT) can be found using equation (8.8), where the term (I) 

refers to measured solar radiation on the ground.  
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Equation (8.9) derived empirically by Erbs et al129 can now be used to estimate the 

fraction of the diffuse radiation (Id) component using the clearness index derived 

previously. This equation was derived to calculate components of hourly radiation. 
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    (8.9) 

 

 

Using this method the diffuse and direct beam components of measured radiation 

on a horizontal surface have been estimated for the EcoSmart village. Monthly 

averages of these values have been summarized in Table 8.A and Figure 8.2.  

 

Table 8.A: Calculated values for diffuse factor and components of solar radiation  

  Total monthly values (Wh/m²) Average daily values (Wh/m²)   

  

Global 
Radiation 

Beam  Diffuse  
Global 

Radiation 
Beam  Diffuse  

0I

I
 

Jan-07 17107 5311 11795 552 171 380 0.69 

Feb-07 33370 13169 20201 1192 470 721 0.61 

Mar-07 73615 34922 38693 2375 1127 1248 0.53 

Apr-07 115195 60567 54628 3840 2019 1821 0.47 

May-07 93544 43216 50328 3018 1394 1623 0.54 

Jun-07 128901 51279 77623 4297 1709 2587 0.60 

Jul-07 92528 30614 61914 2985 988 1997 0.67 

Aug-07 95171 34048 61122 3070 1098 1972 0.64 

Sep-07 74901 24979 49922 2497 833 1664 0.67 

Oct-07 47495 14319 33175 1532 462 1070 0.70 

Nov-06 22442 6248 16194 748 208 540 0.72 

Dec-06 11994 2736 9258 387 88 299 0.77 

Annual 806261 321409 484852 2209 881 1328 0.60 
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Figure 8.2: Monthly distribution of Diffuse and Beam components 

 

 

These results show that during the test year, the annual proportion of diffuse 

radiation at the test site is around 60%. As expected this value varies throughout 

the year, being much lower in the summer months than winter months. This can be 

explained by the fact that the beam radiation is much less intense during winter 

months, meaning the proportion of radiation that reaches the ground due to 

atmospheric scattering becomes greater.   

 

Validation 

 

The method presented by Erbs et al. has been derived from field data, tested 

vigorously, and compared to other models as shown in Figure 8.3. 

 

 

Figure 8.3: Modelled variation of Radiation Fraction with Clearness Index (Source: 

Duffie & Beckmann131) 
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Although there should be little need for further validation, the results obtained 

using the method were compared to several other available data sets. These data 

sets include measured solar data from the Manchester area (Ringway weather 

station) from June 2009 until July 2010, as well as the CIBSE Test Reference 

Year132 for Manchester. To provide a simple verification the annual diffuse fractions 

of global solar radiation are compared, as shown in Table 8.B. 

 

Table 8.B: Comparison of diffuse fraction between model and control data 

 Annual Diffuse Fraction 

EcoSmart Village 2006/2007 60% 

CIBSE Manchester TRY 65% 

Manchester Ringway 2009/2010 58% 

 

 

Table 8.B shows that the ratio of diffuse radiation is rather similar to those of the 

control data sets. While the comparison of different years may not be entirely 

robust, as shown by the difference between TRY and Ringway data, it still adds to 

the existing evidence that this model produces results of acceptable correctness 

and accuracy. 

 

 

 

8.2 Estimating Dew Point Temperature 
 
 

Estimating the dew point temperature is required to calculate the sky emittance, 

which is used to determine radiant heat losses from solar thermal systems for 

modelling purposes. Dew point temperature was measured at the EcoSmart village, 

but measurements were not available for the modelling of other Solar Thermal 

systems. After methods for determining the dew point temperature were 

reviewed133, a relatively simple linear relationship134 between dew point 

temperature and relative humidity was found to be adequate for the purposes of 

this research. The mathematically derived relationship is expected to provide 

results with less than 1ºC error based on experimental trials134. The relationship is 

given in equation (8.10). 

 








 


5

100 RH
TT adp        (8.10) 
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Validation 

 

To provide independent validation, the weather data from November 2006 to 

November 2007 recorded at the EcoSmart village was used to assess the accuracy 

of the simplified linear model. For this purpose the differences between measured 

dew point temperature and results from the model were calculated for each of the 

5-minute data intervals. Figure 8.4 shows the 32,000 greatest differences for the 

overall 105,000 interval readings.  

 

 

 

Figure 8.4: Difference between measured and modelled dew point temperature 

 

Figure 8.4 provides an independent verification that the simplified model is able to 

estimate the dew point temperature to an accuracy of <1ºC error. The average 

error was found to be 0.41ºC over the 12-month period. Considering the accuracy 

of the weather station, given as 1ºC, the error of this simplified relationship is 

deemed acceptable for modelling purposes.  

 

 

8.3 Estimating Air Density 
 

 

Air density is an important factor when calculating the power output of a wind 

turbine. After modelling, variations up to 30% throughout the test period were 

found between warm, humid days and cold, dry days. Air density was not 

measure directly and must therefore be determined using other properties.  
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To determine135 the density of air it can be considered as an ideal gas for 

simplicity136.  Based on the ideal gas equation, equation (8.11) defines the 

density of air, consisting of a mix of dry air (subscript „d‟) and water vapour 

(subscript „v‟). 

 

 )()(
TR

P

TR

P
D

v

v

d

d        (8.11)  

 

The gas constants are known137 to be: 

 

KKgJRd  /05.287  

KKgJRv  /495.461  

       

The vapour pressure can be related to saturation pressure (subscript „s‟) and 

humidity as shown in equation (8.12). 

 

RHPP sv          (8.12) 

 

The saturation pressure of water vapour can be found using equation (8.13) 138. 
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where:  a0 = 6.1078 

   a1 = 7.5 
   a2 = 237.3 

 

Having found the vapour pressure, the dry air pressure can be found by means of 

subtraction. After finding both the water vapour pressure and the dry air pressure, 

the air density can now be calculated using equation (8.11). 

 

Validation 

 

No weather data could be found that contains measurements for air pressure, 

relative humidity and air density. Therefore the accuracy of calculations cannot 

be validated using real data. The two main sources of uncertainty come from 

assuming air can be treated as an ideal gas, and the algorithm to find saturation 

pressure based on temperature described by equation (8.13). The validity and 

accuracy has been established in the relevant reference documents, which lead 

to assume that while there are more accurate methods available, the presented 

solutions provide simple and fairly accurate approximations. On the whole, 
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accuracy for these calculations is not critical, but merely helps to improve the 

data input to other models. These models will also have other, more significant 

sources of uncertainty.  

 

8.4 Finding Wind Direction Difference 
 
 

The wind direction measured by the weather station was given in alphabetic terms, 

where N = north, S= south, etc. For numerical analysis this had to be converted to 

degrees. This conversion then allowed finding the wind direction change that would 

represent the smallest angular difference. 

 

The wind direction was converted from alphabetical to numeric values as shown in 

Table 8.C. 

 

Table 8.C: Wind direction conversion 

Alphabetic Numeric (º) 

N 0 

NNE 22.5 

NE 45 

ENE 67.5 

E 90 

ESE 112.5 

SE 135 

SSE 157.5 

S 180 

SSW 202.5 

SW 225 

WSW 247.5 

W 270 

WNW 292.5 

NW 315 

NNW 337.5 

 

 

Difference in wind direction was assessed by finding the modulus (absolute value) 

of subtraction of the numeric values from two consecutive time intervals. However, 

when the wind direction changed from say 350° to 10°, an algorithm was written to 

give this as a difference of 20° as opposed to the unlikely value of 340°. The 

algorithm essentially prevented computed changes that were greater than 180°, as 

this case was considered to be unlikely to occur in practice over the period of 10 

minutes sampling time. 
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9 Estimating Space Heating 
Requirements 

 
 

 

The energy demands of the dwellings at the EcoSmart village must be determined 

as accurately as possible to establish their carbon footprint and the energy loads for 

the space heating systems. Space heating typically accounts for more than half of 

the energy consumption in a domestic building139. 

 Several methods will be compared to simulate the energy performance of 

the buildings as accurately as possible. To ensure that input data for simulation is 

also as accurate as possible, a pressurisation test was carried out on two of the 

buildings to quantify the ventilation losses. The energy models will also be adjusted 

for average measured internal temperatures. The following section will present the 

results of this analysis, and provide a realistic indication to the space heating 

requirements of the buildings.  

 

9.1 Input Data 
 
 

All modelling methods require the specification of two important input variables: 

 

- Average internal temperature 

- Average ventilation losses 

 

9.1.1 Internal Temperature  

 
 

The heating systems of all houses were controlled by thermostat, which were all set 

to 21°C. The temperatures of every room in every house were measured and 

recorded throughout the trial period. The resulting average temperatures, taking 

into account the approximate sizes of the rooms, are given in Table 9.A. 

 

Table 9.A: Measured average internal temperatures over a 12-month period 

  Average internal temp. (°C) 

Palmerston 21.1 

Windermere 19.7 

Washington  21.3 

Malvern 20.9 

Edinburgh  21.9 

Buckingham 20.2 

Alderney  20.3 
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Table 9.A shows that the temperatures of all houses are fairly well controlled. All 

buildings apart from Windermere are within 1°C of the temperature that was set on 

the thermostat. These averages for measured temperature over a 12-month period 

will be used as a basis for modelling the heating requirement of each building. 

 

9.1.2 Ventilation Losses 

 

 

When considering the source of thermal losses from a domestic property, 

ventilation losses have a large part to play. Figure 9.1 shows the thermal image of 

one of the properties at the EcoSmart village. It can clearly be seen that the 

highest losses originate from trickle vents above the windows. Warm areas are also 

seen along roof edges. Given the roof structure it is likely that warm air from the 

vents is collecting there, although it is also possible that the edges themselves are 

areas of leakage. The wooden window frames also appear to act as thermal 

bridges.  

 

 

 

Figure 9.1: Thermal image of the Alderney home at the EcoSmart show village 

 

According to CIBSE Guide B2140 the recommended air change rate is 0.5-1.0 Air 

Changes per Hour (ach). This is related to the entire building volume. To minimise 

heat losses the ventilation rate should be reduced as much as possible. However, if 

the ventilation rate is too low, there is a high risk that the lack of fresh air can lead 

to sick building syndrome141. The test houses were designed to have ventilation 

rates of around 0.7-0.8ach. However, designed ventilation rates are rarely achieved 

in practice142 as there is much room for error during the construction phase. 
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 In order to obtain a feel for the difference between designed and actual 

ventilation rate, should there be any, a standard pressurisation test was carried out 

on two of the test homes. An alternative method of measuring the ventilation rate 

is provided by the tracer gas technique143, which involves measuring the flow of a 

unique gas to or from the test volume. This technique was unavailable to the 

research team. 

 

 

 

Pressurisation test 

 

The pressurisation test was carried out on the Windermere and the Palmerston. The 

Air Change Rate (ach) is the rate at which the entire volume of the building is 

replaced. The test is carried out by fitting a fan unit to the door of the dwelling, as 

shown in Figure 9.2, making sure that the surrounding frame is air-tight. 

 

  

Figure 9.2: Pressurisation fan unit 

 

After switching the fan on and while varying its speed, the pressure 

difference across the fan as well as air flow rate through the fan are measured. 

Using this data, the effective air change rate at a pressure of 50Pa can be 

calculated using methods and equations outlined in British Standard BS 

EN13829:2001. These two factors are related by the internal volume of the 

building, as shown by equation (9.1): 

 

VNQ 5050          (9.1) 

 

As these values only apply for the reference pressure difference of 50Pa, they must 

be converted to values which are representative of typical atmospheric conditions, 

with pressure differences related to wind speed.  

Sherman144 developed a simple approximation in 1987 for this conversion, 

based on the LBL infiltration model145. It is suggested that a conversion factor of 20 

can be used. This N50/20 method assumes average wind speed of 4m/s, whereas 
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the average wind speed recorded during the test period was 3.1m/s, which is likely 

to cause minor inaccuracies. The complete results from the pressurisation tests are 

shown in Table 9.B. Both results are within the recommended 0.5-1.0ach range. 

  

Table 9.B: Results from pressurisation test 

 Palmerston Windermere 

Mean Q50 (m³/hr) 2746 3136 

Q50specific (m³/hr.m²) 17.42 11.13 

Building volume (m³) 173.6 263.9 

Mean N50 (ach) 15.82 11.88 

Q50/20 (m³/hr) 137.3 156.8 

N50/20 (ach) 0.79 0.59 

 

 

 

Theoretical Estimate 

 

For all buildings where the pressurisation test was not performed the SAP 2005 

estimate will be used. The SAP method is based on a combination of generic values 

for various building features and properties. Estimates for the EcoSmart village are 

summarised in Table 9.C. 

 

Table 9.C: SAP estimated ventilation rate 

 N (ach) 

Palmerston 0.76 (0.79)* 

Windermere 0.77 (0.59)* 

Washington 0.74 

Malvern 0.83 

Edinburgh 0.81 

Buckingham 0.79 

Alderney 0.75 

* Measured values shown for comparison 

 

 
The comparison between SAP estimated ventilation rate and measured ventilation 

rate using the standard 50Pa pressurisation test is not fully conclusive. While the 

Palmerston values are very close with 4% difference, the Windermere values show 

a much greater difference of over 23%. The main conclusion to be drawn from this 

is that actual air change rates can be significantly different to estimated rates, and 

should ideally be assessed by testing for each individual case. Unfortunately this 

was not possible for the case of the EcoSmart village due to the limited resources 

available to the research team.  

 For further analysis the SAP estimated values will be used, except for the 

case of Palmerston and Windermere, where measured values were available. The 

previously found error of up to 23% may also apply to all other buildings. 
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9.2 Building Energy Models 
 
 

Having determined the average internal temperatures and ventilation rates, the 

buildings‟ space heating requirements can be modelled. Three different methods 

were used to gain a broad range of comparable estimates: 

 

- Simple heat loss model 

- SAP calculations 

- Software simulation 

 

 

9.2.1 Simple Heat Loss Model 

 
 

A good approximation of the heat losses of a building at a given time interval is 

provided by the steady state equation (9.2), where (A) is total external surface 

area, (N) is the air change rate and (V) is the total volume of the building. 

 

 ailoss TTNVUAQ 









3

1
     (9.2) 

 

This simplified method neglects heat gains from solar radiation, internal gains from 

other heat sources, and additional heat losses from wind-chill effects. These effects 

can be expected to cancel each other out to some extent, but significant 

inaccuracies will inevitably remain.  

The advantage of this method is that it can be used to calculate the 

theoretical energy loss for each of the 5-minute intervals of the recorded 

temperature data, although it must be noted that reasonable accuracy can only be 

ensured when using average values over several days or longer. For comparison, 

SAP uses yearly average values, and the building energy simulation software uses 

hourly data. 

 The design U-values were used for the simulation, which may result in minor 

errors. Internal and external temperatures for the buildings were recorded during 

the test period as described previously. The modelling time-step was chosen as 5 

minutes, in accordance with the available interpolated temperature data. The air 

change rates of the buildings are taken from Table 9.C. 

 Results for the 12 month test period are shown in Table 9.D. Average 

internal temperature is also given for reference.  
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Table 9.D: Results for simplified heat loss model 

 Annual thermal energy losses (kWh) Avg. internal temp. (°C) 

Palmerston 7,611 21.1 

Windermere 11,531 19.7 

Washington 7,481 21.3 

Malvern 20,433 20.9 

Edinburgh 13,133  21.9 

Buckingham 10,489  20.2 

Alderney 13,406 20.3 

 

 

 

 

9.2.2 SAP Calculations 

 

 
The SAP calculations were used to assess the buildings during the design stage. 

SAP146 uses generic values for heat loss, heat gain and ventilation losses together 

with building dimensions and other parameters such as U-values to estimate the 

annual energy requirement. 

  The SAP calculations are not very flexible in accounting for variations in 

weather data or more detailed construction properties, but it does allow for the 

manual adjustment of some values. Two of these values are the average internal 

temperature of the dwelling and the ventilation losses.  

Table 9.E shows a comparison of the initially estimated space heating energy 

requirements based on generic values, and the space heating requirements after 

the internal temperature and ventilation rate had been adjusted manually. 

 

Table 9.E: Space heating demand according to SAP calculations 

 Initial estimates (kWh/yr) Adjusted estimates (kWh/yr) 

Palmerston 3,772 4,576 

Windermere 7,589 6,285 

Washington 2,975 3,628 

Malvern 9,717 10,821 

Edinburgh 6,297 7,800 

Buckingham 6,881 7,070 

Alderney 6,222 6,445 

 

 

 

The adjusted values in Table 9.E differ by around 10-20% from the initial 

estimates. With the exception of Windermere, all buildings show a space heating 

demand that is greater than initially anticipated. Windermere‟s adjusted demand is 

mainly affected by the 23% lower measured air change rate.  
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9.2.3 Software Simulation – CASAnova 

 
 

The simulation software CASAnova147 was developed at the University of Siegen, 

Germany, and is freely available. It provides an academically verified and easy to 

use solution. It uses a single zone dynamic temperature model, and the calculation 

of heating demand is based on European norm BS EN832:2000. The model is based 

on an approximated representation of the building and it allows the import of third 

party hourly weather data. The input data for the energy simulation includes: 

 

- Geometry: building dimensions including area, number of floors, internal 

volume and orientation 

 

- Windows: orientation and size of windows, type, U-values, and shading 

 

- Insulation: independent U-values of walls, roof and floor, absorption 

coefficient, heat bridges and doors 

 

- Building: indoor set temperature, internal gains, mechanical and natural 

ventilation, air conditioning, type of construction 

 

- Climate: The ability to chose from several weather data sets, or import 

weather data 

 

- Energy: the type of heating and heat distribution systems, type of fuel used 

 

 

Despite only generating an approximated building model, the range of considered 

variables suggests that CASAnova is able to analyse the energy performance of a 

given building to a relatively high degree of accuracy.  

The energy losses for the buildings were simulated for measured average 

internal temperatures. Results are shown in Table 9.F.  

 

Table 9.F: Annual energy demand for space heating from CasaNova simulation 

  Estimated Heating Demand (kWh/yr) 

Palmerston 7,638 

Windermere 7,151 

Washington  6,066 

Malvern 14,936 

Edinburgh  10,207 

Buckingham 8,753 

Alderney  7,504 
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9.2.4 Model Comparison 

 

 

Table 9.G and Figure 9.3 show a comparison between all three methods for each 

individual building to provide a basis for meaningful analysis and validation. 

 

Table 9.G: Comparison between all three models 

  SAP (adjusted) (kWh) CASAnova (kWh) Heat Loss Model (kWh) 

Palmerston 4,576 7,638 7,611 

Windermere 6,285 7,151 11,531 

Washington 3,628 6,066 7,481 

Malvern 10,821 14,936 20,433 

Edinburgh 7,800 10,207 13,133 

Buckingham 7,070 8,753 10,489 

Alderney 6,445 7,504 13,406 

 

 

 

 

Figure 9.3: Graphical comparison between space heating models 

 

 
As shown by Table 9.G and Figure 9.3, there are significant differences between all 

estimates. SAP generally gives a much lower estimate for space heating demand 

than the two other methods. Perhaps the excessive use of generic values, which 

are unable to account for any weather variations, can be held partially responsible 

for this. The simplified heat loss model generally provides significantly higher 

estimates, which might be expected due to the inaccuracies discussed previously.  

Based on the presented analysis it appears that CASAnova can be expected 

to provide the most realistic estimate. This is concluded after a process of 

elimination, as SAP calculations involve too many assumptions and generic values 
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to be considered accurate, and the simplified heat loss model completely neglects 

solar gains and wind effects. 

 

9.2.5 Modelling Limitations  

 
 

The main modelling limitation is given by the ventilation losses. It was shown that 

the measured value of air change rate can be significantly different to the 

theoretical value. In one of two tests the difference was found to be over 23%. 

Another important thing to consider is that the ventilation rate, measured or 

simulated, only accounts for passive ventilation of the building under steady 

conditions, meaning when windows and doors remain shut. However, as these 

homes were used as show homes, doors in particular were opened randomly and 

frequently from the many visitors as well as staff of the EcoSmart show village. 

Therefore, no matter how good the simulation may be, there will always remain a 

significant and unquantifiable error.  

 

9.2.6 Model Validation 

 
 

Based on the comparison of three different models and a qualitative assessment, it 

was concluded that the CASAnova simulation program is expected to provide the 

most accurate estimates for space heating demand. For validation, the CASAnova 

results can be compared to measured energy supply for space heating. The space 

heating systems throughout the EcoSmart village are shown in Table 9.H. 

 

Table 9.H: Heating systems at the EcoSmart village 

  Heating System 

Palmerston GSHP 

Washington  GSHP 

Malvern GSHP 

Edinburgh  µCHP 

Buckingham µCHP 

Alderney  Boiler + Solar Thermal 

Windermere Boiler + Solar Thermal 
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At the EcoSmart village all buildings have variable input from low or zero carbon 

systems. As the heat meters for solar thermal and GSHP systems did not work, the 

only remaining buildings for comparison are Edinburgh and Buckingham. A 

comparison between CASAnova heat demand estimates and measured heat supply 

by the µCHP systems is shown in Table 9.I. 

 

Table 9.I: Comparison of CASAnova estimate with measured heat supply 

 
CASAnova Estimate 

(kWh) 
Measured Heat Supply 

(kWh) 
Difference 

(%) 

Edinburgh 10207 10790 5.7% 

Buckingham 8753 8256 -6.0% 

 

 

 

At first glance Table 9.I shows good correlation between the CASAnova estimate 

and the measured space heating demand of the two buildings. However, it must be 

stressed that these results may not be very accurate, as the uncertainties for 

ventilation losses including visitors opening doors can be quite significant. This 

effect may not have been as significant as for other homes as the Edinburgh and 

Buckingham were two of the smaller and arguably least interesting homes in terms 

of their energy systems, and they were located furthest from the entrance (sales 

office). Nonetheless, the small differences of 5.7% and -6% seem to confirm that 

the CASAnova simulation is sufficiently accurate to provide a suitable tool for 

estimating space heating demands. 



117 
 

 

10 Photovoltaic Systems 
 

 
PV systems are able to generate electricity from direct sunlight, and are often roof-

mounted to maximise solar potentials. With electricity being the most expensive 

and also most carbon intensive form of energy we use in the domestic sector, the 

prospects of generating „free, green electricity‟ are very promising. The following 

sections will assess the viability of building-integrated PV systems in the UK, both in 

energy and in financial terms. In addition to this, there will be a focus on finding a 

simple and accurate method that allows architects and builders to anticipate the 

performance of these systems without any technical background knowledge.  

 

 

10.1 Introduction 
 
 

Photovoltaic is the term used to describe materials or devices that are able to 

convert the energy that is contained by photos of light into electrical current and 

voltage.  

The integration of PV systems in the built environment in the UK has been 

contemplated and assessed for some time148, and over the last few years test sites 

such as the BRE Innovation Park have been constructed to demonstrate feasibility 

and effectiveness. Other countries, such as the Netherlands149 and Germany150 

have also had positive experiences with energy generation using roof-mounted PV 

systems, and are looking to continuously expand the use of this technology. 

 

10.1.1 Background Theory 
 
 

The following section will outline some of the physics behind photovoltaic electricity 

generation. Other literature151 provides more detailed descriptions. 

 

Semi-conductors and Band Gap Energy 

 

The materials used to convert light into electrical energy are semiconductors, 

predominately Silicone. On an atomic level, there is an outer valance band, where 

electrons are held in fixed positions, and a conduction band, where electrons are 

essentially free to move around. These bands are separated by a band gap, which 

represents a certain amount of energy (band gap energy). As electrons, excited by 

photon energy, move into the conduction band, they form negative charges and 
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effectively leave positive charges (described as holes) behind in the valence band. 

Figure 10.1 is used to illustrate this process.  

 

 

Figure 10.1: Schematic diagram showing how excited electrons move into 

conduction band 

 

 

The p-n Junction Diode 

 

To direct the flow of electrons, the semi-conductor is doped with other atoms that 

cause impurities and form an electric field within the crystals. These impurities are 

formed using so-called n-type materials (such as phosphorous). At the same time, 

the other side of the semi-conductor now becomes positively charged, forming the 

p-type material. This method effectively creates the so-called „p-n diode‟ and allows 

a potential difference to be created across the semi-conductor as electrons become 

excited.  

 

The I-V Curve and Internal Resistance 

 

The current and voltage characteristics of the PV cells are influenced by different 

factors, including air mass, solar radiation and cell temperature. Air mass describes 

the thickness of the atmosphere and affects the intensity of solar radiation, as well 

as the distribution of the solar spectrum152. Temperature also has a significant 

effect on power output by causing a variation in voltage across the PV cell. For 

silicone semi-conductors the voltage will typically drop around 0.37% per degree 

Celsius.  

 

 

 



119 
 

Shading on PV Cells 

 

PV cells are very sensitive to shading. Being connected in series, the internal 

resistance induced by shading can be very significant, reducing the overall output 

power by around 50% for 1 shaded cell (in an array of typically 32). To mitigate 

this effect bypass diodes can be used, which effectively form a bypass for individual 

modules if they are shaded.  

 

Standard Testing Conditions 
 
In order to provide a fair comparison between solar PV systems Standard Testing 

Conditions
153

 (STC) have been established for PV performance testing. These 

conditions include the following: 

 

- Solar radiation of 1000W/m2 

- Air mass of 1.5 

- Cell temperature of 25°C 

 

 

 

10.1.2 Capital Cost, Embodied Energy and Carbon 
 
 

Considering that PV technology has been around for a relatively long time, the cost 

in terms of money and energy is fairly well understood. The Department for 

Communities and Local Government released a cost projection154 for PV systems, 

which is based on market tested and peer reviewed data. The results of this 

projection are shown in Figure 10.2.  

 

 

Figure 10.2: Expected variation of capital cost with time (Source: DCLG154, 2010) 
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For comparison, the system capital cost for the EcoSmart Village systems in early 

2006 is given in Table 10.A. 

 

Table 10.A: Capital cost of the EcoSmart PV systems in 2006 

Size System cost 

1kWp £4,500 

 

The system cost for the EcoSmart Village refers to system capital cost only. As the 

systems are installed during the construction phase of the dwelling, and the 

installation method is similar to that of conventional roof-tiles, no additional 

installation costs were incurred. However, with reference to Figure 10.2 this value 

does provide a representative estimate for PV capital cost over the next 2-3 years 

and will therefore be used for analysis.  

 

Much literature is available that has assessed the embodied energy and carbon in 

modern PV systems, with a differentiation for building-integrated solutions. 

Estimates can vary significantly155, depending on whether the silicone is classed as 

recycled waste156 or not. Some critically reviewed estimates are summarised in 

Table 10.B. 

 

Table 10.B: Summary of estimates for embodied energy of PV systems 

Source 
Embodied Energy (kWh/m2) 

standalone roof-integrated 

Alsema & Nieuwlaar157 1300  

Nawaz & Tiwari158 1710 1380 

Wilson & Young159 2500  

Average 1837 1482* 

*based on average for standalone systems and the ratio found by Nawaz & Tiwari 

 

As shown in Table 10.B, the value that will be adopted for embodied energy of 

building-integrated systems is 1482kWh/m2, which is based on a literature review. 

 

All of the reviewed documents suggest that the energy required for the PV 

manufacturing process consists predominantly of electrical energy. All embodied 

carbon estimates are based on afore mentioned CO2 content factor for primary 

electricity. The resulting estimate for embodied carbon is shown in  

Table 10.C. This value is well in line with other estimates39, ranging from 101-599 

kgCO2/m
2.   

 

Table 10.C: Estimated embodied carbon of building-integrated PV systems 

Size Embodied CO2 

1 m
2
 341 Kg 
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10.1.3 EcoSmart Village Set-up 
 
 

 

Figure 10.3: Photographs Malvern (left), Palmerston (centre) and Washington 

(right) PV systems 

 

There are 3 similar mono-crystalline PV panels installed at the EcoSmart show 

village, shown in Figure 10.3, each having a different orientation and tilt. The 

systems were manufactured by SolarCentury Ltd. and have been installed in 

accordance with the Construction, Design and Management (CDM) regulations160. 

Each panel consists of 20 individual solar roof tiles, with a combined area of 7.8m², 

able to generate a peak output of 1.04 kW. The module efficiency at standard test 

conditions (STC) is stated as 14.9%. These parameters are summarised in Table 

10.D, while Table 10.E summarises orientation and tilt angles.  

 

Table 10.D: Specifications of SolarCentury PV system 

Type mono-crystalline 

Rated power 1.04 kW 

Surface Area 7.8 m² 

Efficiency 14.9 % 

 

 

Table 10.E: Summary of EcoSmart village PV systems 

System Orientation Inclination 

1 - Palmerston South 45° 

2 - Washington East 45° 

3 - Malvern East 60° 

 

 
The DC power that is generated by the PV systems is converted to AC power using 

an inverter, and exported to the power grid using an import/export meter. While 

there is no explicit warranty for the PV system, the manufacturer gives a guarantee 

that the system performance will not drop below 80% of its initial efficiency within 

25 years of commissioning.  
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10.2 Availability of Solar Energy 
 
 

The availability of solar radiation varies significantly with latitude. In the UK, during 

June and July daylight is experienced161 during 69% of the total number of hours, 

while in December this value drops to 32%. The path of the sun also varies 

significantly in northern latitudes, on a daily as well as an annual basis. This has a 

profound effect on the intensity of solar radiation on the earths‟ surface and on 

specific collector planes. This variation can be calculated using standard 

equations162. The resulting sun-path diagram163 for the EcoSmart village test site is 

shown by Figure 10.4.  

 

 

 

Figure 10.4: Sun-path diagram for the location of the EcoSmart village (Source: 

University of Oregon) 

 

 

Having established the predictable variations in availability, some relatively 

unpredictable variations are presented by weather and cloud cover. To account for 

this, the measured weather data must be used, which was previously split into 

beam and diffuse components of solar radiation using the method outlined in 

section “8.1 – Estimating beam and diffuse components of global solar radiation”. 
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10.3 Photovoltaic Energy Prediction 
 
 

Despite being shown to have questionable accuracy164, the Standard Assessment 

Procedure (SAP 2005) is the government recommended method for estimating PV 

generation. However, with PV being a very mature technology, many other simple 

and user-friendly models are available to predict the performance of PV systems 

throughout the world. Three of these models are: 

 

- PV GIS 

- PV Watts 

- PV Syst 

 

These PV estimation tools were used to predict PV generation at the EcoSmart 

village, and their predictions compared to the measured results and SAP 2005 

estimates. Based on this, a recommendation is made as to which of these tools is 

generally best suited to provide PV output estimates throughout the UK.  

 

 

10.3.1  PV GIS 
 
 

PV GIS (Geographical Information System) is a freely available web-based 

estimation tool. It was developed by the European Commission Joint Research 

Centre and requires little user input, including: 

 

- Location (using Google maps) 

- PV technology (e.g. mono-crystalline, thin film, etc.) 

- Rated size of the system (in kWhp) 

- System inclination and orientation 

- System integration (free-standing or roof-integrated) for temperature 

calculations 

 

Other than energy output for a given system the PV GIS tool provides several 

output options, including: 

 

- optimum inclination / orientation 

- PV generation from sun-tracking system 

- Solar irradiance on different planes 

 

These output options give PV GIS great flexibility and allow it to be used for design 

optimisation as well as evaluation of proposed designs.  
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To provide indications of estimation accuracy, the following parameters are also 

provided: 
 

- Distance between the chosen location and the location which the weather 

data is taken from  

- Estimated losses due to temperature affects 

- Estimated losses due to angular reflectance 

- In-plane irradiance as average daily and average monthly values 

- Sun-path diagrams 

 

PV GIS Method 

 

The PV GIS tool comprises vast amounts of data165 which has been spatially 

interpolated. This data includes: 

- Weather data166 from over 800 ground meteorological stations interpolated 

to 15-minute intervals 

- Linke Turbidity (haziness of the atmosphere due to aerosols) from 611 

locations167 

- A Digital Elevation Model168 to account for terrain shading 

 

Data modelling169,170 and interpolation techniques171 have been thoroughly 

validated172. The model also accounts for temperature losses, cable losses and 

inverter losses, which are largely adjustable by the user.  

 
 

PV GIS Results 
 

Input parameters were selected that most accurately represent the EcoVillage set-

up. All estimated losses were left at default values. Results are shown in Table 

10.F. 

 

Table 10.F: PV GIS estimates for EcoSmart village 

 
Palmerston Washington Malvern 

(kWh) (kWh) (kWh) 

Jan 31 14 13 

Feb 47 26 24 

Mar 71 50 46 

Apr 96 78 71 

May 119 107 97 

Jun 107 102 92 

Jul 113 105 94 

Aug 99 84 76 

Sep 82 59 54 

Oct 57 34 32 

Nov 32 16 14 

Dec 21 9 9 

Annual Yield 874 685 622 
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10.3.2  PV Watts 

 
 

The results of the PV Watts173 estimate are summarized in Table 10.G. A detailed 

review can be found in Appendix A, page 331. 

 

Table 10.G: PV WATTS estimates for EcoSmart show village 

 
Palmerston Washington Malvern 

(kWh) (kWh) (kWh) 

 22 6 5 

Feb 44 20 18 

Mar 70 43 37 

Apr 105 73 63 

May 126 101 88 

Jun 110 88 75 

Jul 112 89 76 

Aug 107 80 69 

Sep 86 56 49 

Oct 54 28 24 

Nov 30 12 10 

Dec 17 5 5 

Annual 
Yield 

882 598 520 

 

 

 
10.3.3  PV SYST 
 

 

Results for PV SYST analysis are summarized in Table 10.D. Details are given in 

Appendix B, page 332. 

 

Table 10.H: PV SYST estimation for EcoSmart show village 

 Standard (NASA) weather data EcoVillage data 

 
Palmerston Washington Malvern Malvern 

(kWh) (kWh) (kWh) (kWh) 

Jan 38 16 15 12 

Feb 44 24 23 21 

Mar 70 47 43 49 

Apr 96 74 68 71 

May 118 103 94 78 

Jun 111 104 94 79 

Jul 112 103 93 70 

Aug 99 83 76 70 

Sep 83 59 54 49 

Oct 52 32 30 32 

Nov 35 17 16 15 

Dec 33 13 12 8 

Annual 
Yield 

891 675 618 554 
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10.3.4  SAP 2005 
 

The Standard Assessment Procedure (SAP 2005) is currently the standard 

compliance tool for designers and PV suppliers to estimate the potential generation 

from a PV system.  

 The SAP methodology is highly simplified. One location, Sheffield, was 

chosen to represent the whole of the UK. As Sheffield has very similar Latitude to 

the test site the results should be fairly representative. Weather data for this 

location is represented by an average over the years 1960-1979119, giving a value 

(G) for annual irradiance. Solar data for three typical ranges of inclination, as well 

as orientations in 45° steps from north to south are available. An empirical factor 

(0.8) is used to account for angle changes throughout the year and any losses 

including inverter, and an over-shading factor (Zpv) is used to account for any 

shading. The SAP equation is given in equation (10.1), where (kWp) refers to the 

DC rating of the system. 

 

PVE ZGkWpQ ***8.0       (10.1) 

 

Table 10.I shows the relevant values of irradiance and the annual yield based on 

SAP 2005. As there is no shading, the over-shading factor was set to 1.  

 

Table 10.I: SAP 2005 estimate for EcoSmart Village 

System Orientation Inclination Irradiance (kWh/m
2
) Annual Yield (kWh) 

Palmerston South 45° 1023 851 

Washington East 45° 829 690 

Malvern East 60° 753 626 

 

 

 

10.4 Measured Results 

 

Several readings are available for the PV output at the EcoSmart village, comprising 

„fixed‟ (import/export meter) readings, „mobile‟ (electricity meter) readings, and 

„Fronius‟ (independent inverter meter) readings for Malvern. Results are shown in 

Table 10.J: 
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Table 10.J: Monthly breakdown of measured PV generation from all meters 

 Palmerston (kWh) Washington (kWh) Malvern (kWh) 

 Mobile Fixed Mobile Fixed Fronius Mobile Fixed 

Jan-07 16 13 9 6 12 12 8 

Feb-07 42 37 22 16 23 24 17 

Mar-07 81 75 56 49 62 63 53 

Apr-07 113 104 84 77 91 88 72 

May-07 101 93 83 74 93 85 73 

Jun-07 97 88 94 84 102 96 83 

Jul-07 72 64 76 65 85 76 64 

Aug-07 94 85 82 73 89 88 76 

Sep-07 66 60 46 41 62 51 45 

Oct-07 46 42 24 20 35 29 22 

Nov-06 25 21 14 8 16 15 10 

Dec-06 10 8 7 4 8 8 5 

Annual 763 690 597 515 678 635 528 

 
 

Table 10.J shows that there are some discrepancies between the different meters 

that were used. The difference in the measured yearly total PV generation, for the 

period from 01/11/06 until 30/10/07, is shown in Figure 10.5. 

 

 

 

Figure 10.5: Comparison of PV meter readings, showing measured annual output 

 

Figure 10.5 shows that that the readings from some meters show significantly 

higher outputs than the „fixed‟ meter, by up to 20% from the „mobile‟ meter and 

28% from the third party Fronius meter installed by the supplier. The reason for 

this discrepancy is that the import/export meter measures power generation and 

consumption, giving a net value. As was previously explored in detail, inverters 

consume energy while they are running, which accounts for the 20% difference in 

registered output. As the „fixed‟ (import/export) meter would be used as a 

reference by energy supply companies for determining the energy offset, this meter 

will be assumed to give the correct reading and will be used for further analysis.  
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Energy distribution 

 

Figure 10.6 shows the measured PV energy distribution as recorded from the east 

facing PV panel at 60° inclination (Malvern). The generating hours were grouped 

into different power bands:  

 

 P < 50W 

 50W <P< 100W 

 101W <P< 200W 

 201W <P< 400W 

 P > 400W  

 

 

 

Figure 10.6: Measured distribution of generating hours at various power levels 

 

The results shown in Figure 10.6 provide a valuable indication of the usefulness of 

the energy generated by the 1.04kW rated PV system. While the frequency of low-

power (below 100W) generation is fairly steady throughout the year, high-power 

generation (above 400W) is only achieved during the summer months. In total, the 

system was able to generate electricity for 2953 hours during the year, which 

equates to 34% of all hours and 66% of all daylight hours of the test year.  
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10.5 System Reliability 
 
 

The PV systems can be described as very reliable. During the entire project no 

problems were encountered with any of the three systems installed at the EcoSmart 

village. All systems consistently showed an energy output throughout every month, 

and the annual output was reasonably close to the expected output.  

 After the end of the project, the PV systems were dismantled and 

transported to the University of Manchester. During transportation, one of the PV 

panels was broken, but it was found that the panel was able to retain the pieces of 

broken glass, as shown in Figure 10.7. This indicates that even if the PV panel 

should shatter, either as a result of vandalism or extreme weather conditions, the 

risk of falling debris is very low.  

 

 

Figure 10.7: Broken PV panel was able to retain the shattered glass 

 

 
 

10.6 PV System Modelling 

 

To provide a basis for simulation and to verify the measured results from first 

principles a model for the PV systems was created. This model is verified and used 

with the recorded weather data to simulate all three systems and gain a better 

understanding of where losses originate from and how sensitive the systems are to 

external influences such as temperature.  

 

 

10.6.1  Angle Transformation 
 
 

Having previously found the beam component of solar radiation on a horizontal 

surface, this must now be adjusted for other planes using angle transformations. 

These equations will determine the angle (θ) between the sun and the surface in 
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question at a given time. This angle can then be related to the intensity of beam 

radiation on the surface in question. The relevant equations are outlined below with 

reference to Figure 10.8. 

 

 

  
 

Figure 10.8: Diagram showing the angles for the direct beam calculations 

 

It was previously shown how the hour angle (ω) and declination angle (δ) can be 

calculated using equations (8.4) and (8.7). In order to find the angle (θ) between 

the direct beam direction and the plane normal to the collector surface, equation 

(10.2) is used. The inclination angle (β), orientation (γ) and hour angle (ω) are 

shown in Figure 10.8. The term (φ) refers to the latitude of the location.  

 







sinsinsincos

coscossinsincoscoscoscoscos

cossincossincossinsincos







 (10.2) 

 

Equation (10.2) is a standard equation174 that has been widely used and tested in 

the past, and therefore will not require validation. The term cos(θ), when multiplied 

by the value of the beam component of solar radiation, defines the intensity of 

beam radiation that reaches the surface in question. To further refine the model, 

temperature variation of the PV system as well as any inverter losses must also be 

considered. 

 

10.6.2  Calculating Cell Temperature 
 

As explained previously, the performance of PV cells varies with cell temperature. 

Typically, the cell efficiency decreases around 0.3-0.5% per degree Celsius, where 

25°C (from STC) is used as a baseline. The following section will outline the 

methods that are used to determine cell temperature and verify their accuracy.  
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The NOCT Method 

 

Traditionally, the cell temperature is calculated using the Nominal Operating Cell 

Temperature, or NOCT. The NOCT temperature is derived during testing, given the 

following conditions: 

 

Solar irradiation = 800W/m2 

Ambient temperature = 20°C 

Wind speed = 1m/s 

 

The NOCT can then be used to estimate the cell temperature using equation (10.3), 

where the number 20 refers to the testing temperature (in °C) and 800 to the solar 

irradiance (in W/m2).  

 








 


800

20NOCT
GTT acell       (10.3) 

 

 

However, while being easy to use, the NOCT temperature model does have some 

severe limitations. It assumes that heat losses are linear and are not affected by 

changes in ambient temperature, which is not a very good approximation for 

radiation heat losses. The wind speed is assumed to be 1m/s constantly, which 

does not allow for any consideration of increased forced convection from the panel 

at higher wind speeds. Also, this simplified model was derived for rack-mounted PV 

panels, and does not account for the case of roof-mounting. When panels are roof-

integrated with not air gap, there cannot be any convection or radiation losses from 

the rear. 

 

 

Dynamic Temperature Model 
 

 
A more comprehensive temperature model is given by Eicker175, considering an 

energy balance including thermal losses from radiation and convection. However, 

this iterative model makes many assumptions and simplifications which are not 

explained in detail, verified, or justified. An earlier model, first published by Jones & 

Underwood in 2001176, was found to be more accurate. This model approaches 

finding the cell temperature based on the same energy balance as Eicker, but using 

differential equations and heat loss factors that are derived from first principles. Its 

accuracy was verified using measured data from a site in Northumbria.  
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The energy balance for the Jones & Underwood temperature model is given by 

equation (10.4), where subscripts „lw‟, „sw‟ and „conv' refer to long-wave radiation, 

short-wave radiation and convection respectively.  

 

PVconvswlwp PQQQ
dt

dT
C       (10.4) 

 

Using empirical data, the estimated time constant for a PV module was found to be 

7 minutes. This module was similar in size and composition to the SolarCentury PV 

module tested at the EcoSmart Village. The specific heat capacity was also 

estimated, based on the comprised materials. Results are shown below. 

 

pC  2918 J/°K 

 

The components of the energy balance can be found using equations (10.5) to 

(10.11): 

 

GAQsw          (10.5) 

 

The absorption coefficient ( ) is given as 0.77 for silicon177. However, reflection 

from the glass cover must also be accounted for. As will be described later with 

reference to Figure 11.7, a good incidence angle approximation for UK latitudes is 

around 50°, which relates to an angle correction factor of around 0.9. It can 

therefore be assumed that the glass cover effectively reduces the absorption 

coefficient by 10%, giving178: 

 

   = 0.7 

 

The long-wave radiation accounts for interactions with sky and ground, where   is 

the inclination angle of the module. 

 

 













 444

2

cos1

2

cos1
PVPVgroundgroundskyskylw TTTAQ 





  (10.6) 

 

With reference to equation (10.6) the ground temperature is taken as ambient 

temperature, and the subscript PV refers to module parameters. The sky emittance 

relative to ambient temperature is approximated using the relationship outlined in 

equations (11.15) and (11.16). The first value for module temperature is found 
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using the simplified NOCT model, all subsequent time steps use the temperature 

from the previous time-step.  

 

 ))(( ,, aPVfreecforcedcconv TThhAQ      (10.7) 

 

The subscripts „forced‟ and „free‟ in equation (10.7) refer to forced convection by 

wind at the front of the panel, and free natural convection by buoyancy at its rear 

respectively. An approximation for free convection was developed by Holman179, 

but can be taken as zero for the roof-integrated case, as there is no air gap to allow 

any kind of convection.  

 

After a literature review showed approximations for forced convection taking a wide 

range of values from 1.2180 to 9.6181 W/m2K-1 for a wind speed of 1m/s, it was 

decided to adopt an empirical relationship derived from test results presented by 

Jones & Underwood176. The resulting simple linear model is given by equation 

(10.8). 

 

 
85.1

5.0,
w

forcedc

v
h         (10.8) 

 

The electrical power output of the PV module is given by equation (10.9). The 

electrical efficiency is adjusted using a cell temperature approximation based on the 

NOCT method. The efficiency is adjusted using equation (10.10), where the 

subscript „std’ refers to standard testing conditions. Equation (10.11) gives the 

temperature correction factor, where „ctemp‟ is the temperature coefficient and 25 is 

the standard testing temperature in ºC. 

 

GAP elPV             (10.9) 

 

 stdelTempel k ,           (10.10) 

 

)25(1  PVtempTemp Tck         (10.11) 

 

From experimental results by Nishioka182 the temperature coefficient (ctemp) can be 

taken as –0.4% K-1 for mono-crystalline silicon modules. This is verified by 

manufacturer specifications183 for the SolarCentury C21 roof tiles, which states a 

coefficient of -0.38% K-1.  
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To solve the temperature differential equation (10.4), it can be multiplied by the 

number of seconds in the time step using the Euler approximation for integrating 

differential equations. However, while results are expected to be reasonably 

accurate, this approximation does have some limitations as the model time step of 

5 minutes is relatively high compared to the time constant of the panel of 7 

minutes. 

 

Temperature Model Validation 
 

Empirical data is used to validate the temperature model. Such data was collected 

by the US National Institute of Standards and Technology in 2001184, showing the 

difference between measured cell temperature and ambient temperature in relation 

to solar irradiance for several rear-insulated PV modules. This was done to simulate 

a case of PV roof-integration. While wind speeds are not given, a clear correlation 

can be seen. The NOCT model is also plotted for comparison, as shown in Figure 

10.9. 

 

 

Figure 10.9: Relation between irradiance and temperature difference between PV 

cell and ambient for roof-integrated PV (Source: Davis et al. 2001184) 

 

Figure 10.10 shows a similar comparison for the temperature model. For 

consistency and to allow a direct comparison, the wind speed of the model was set 

to 1m/s, and ambient temperature to a constant 20ºC. These are the same values 

which the NOCT model is based on.  
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Figure 10.10: Temperature – Irradiance relation of temperature model compared to 

NOCT model 

 

Figure 10.9 and Figure 10.10 show a good correlation. The temperature model 

appears to accurately simulate the PV cell temperature in comparison to the 

measured values. Although the model gives slightly higher temperatures (maximum 

difference to measured values is around 15%), this can be expected, as the 

modelled wind speed of 1m/s is set quite low. Compared to NOCT model results 

both measured and modelled temperatures are significantly higher (approximately 

by 70-100%), providing evidence that the NOCT method does not provide a valid 

approximation for the case of roof-integrated PV systems. The difference between 

NOCT prediction and actual temperatures can be as much as 30ºC, which equates 

to a difference in PV efficiency of 12%.  

 

 

10.6.3  Inverter Model 
 
 

Inverters have varying efficiencies, which is usually rather poor at low load levels, 

and increases as the input (DC) power approaches the rated power of the inverter. 

To account for this, an inverter model was previously derived from test data, and 

will be used for the PV system model. Details on inverter modelling are given in 

section “7.1.4 – Inverter model”. 
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10.6.4  The PV Model 
 
 

When combining all the sub-models described above, the complete PV model now 

considers the following: 

 

- Differentiation of beam and diffuse radiation components 

- Angle adjustments for beam irradiance for each time step 

- Module efficiency adjustment due to temperature variation for each time 

step 

- Efficiency losses from the inverter for each time step 

 

The comprehensive model is summarised by equation (10.12), where ηel is the 

effective module efficiency based on cell temperature, and subscripts „b‟ and „d‟ 

refer to beam and diffuse components of solar irradiance respectively.  

 

 dbinverterelPV IIAP   cos      (10.12) 

 

 

10.7 Model Validation 
 
 

In order to validate the PV model, its results were compared to measured data from 

the south-facing Palmerston system at 5-minute intervals. Several sample days 

were compared, including the 4th June 2007, which is shown in Figure 10.11.   

 

 

 

Figure 10.11: PV model validation, sample data for 4th June 2007 
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Figure 10.11 shows a very good correlation between the model and measured 

values. During intervals number 120 and 150 the model is slightly lower than the 

measurements and several spikes do not appear in the model. This can be 

explained by the fact that weather data was interpolated from 10-minute average 

values, and the fact that the beam and diffuse splitting model is not 100% 

accurate. Another area of minor concern is shortly after sunrise (marked in green), 

where the model estimates are slightly higher than the measured values. It appears 

that there is some slight shading to the east of the Palmerston module. This is 

confirmed when looking at other sunny days in June, which show the same pattern. 

However, this only has a minor effect on mid-summer PV generation and can 

therefore be neglected for analysis.  

To verify the inverter model, periods of low power generation were observed 

and found to give a very good correlation with the measured results. An example 

for this is presented in Figure 10.12, in particular the period marked in green.  

 

 

Figure 10.12: PV model with adjusted inverter efficiency, sample data for 11th May 

 

 

Using the model, monthly generation was estimated and compared to all available 

meter readings. These are summarised in Figure 10.13, Figure 10.14, and Figure 

10.15 for Palmerston, Washington and Malvern respectively. 
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Figure 10.13: Monthly comparison of PV model with meter readings for Palmerston 

 

 

Figure 10.14: Monthly comparison of PV model with meter readings for Washington 

 

 

Figure 10.15: Monthly comparison of PV model with meter readings for Malvern 
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All three comparisons show that the model is able to provide a good estimate for PV 

generation. The best correlation is given for measurements recorded for Palmerston 

using the data logger. Weather data for June, July and August contains some gaps 

which were filled by interpolation, meaning the model is slightly skewed for these 

months. Generally it appears to be in line with the mobile meter readings, while the 

fixed meter readings give a considerably lower output. The total annual generation, 

shown in Figure 10.16, shows a similar picture.   

 

 

 

Figure 10.16: Annual comparison of PV model with meter readings from all test 

systems 

 

 
In conclusion it can be said that the models‟ accuracy has been verified. On a daily 

basis the model correlates very well to the 5-minute interval measurements. It is 

able to provide monthly and annual estimates that fall well within the range of the 

measurements that were taken. However, this model does not account for inverter 

power consumption. While this could have been modelled, it was decided not to do 

so to avoid skewing the results for comparison with other meters.  

 

 

10.8 Evaluation and Comparison of PV Estimation 
Tools 

 

 
Despite previous attempts185 it has been recognised that the lack of technical 

understanding of PV systems in particular, and the resulting inability to conclusively 

estimate the potential gains, presents a major barrier to the integration of PV 

technology in building design186.  



 
140 

Now that the PV systems have been modelled to validate the measured 

results and explore the importance of correct temperature and inverter modelling, 

the tools that were used to gain an initial estimate can be critically evaluated. 

Based on this, it will be evaluated which tool would be most useful to architects and 

builders. Using this tool, a very simple method is subsequently derived to estimate 

the annual yield of a building-integrated PV system throughout the UK. 

 

 

10.8.1  Quantitative Comparison 
 
 

One of the most important factors in finding an adequate tool is the ability to 

accurately predict a site‟s yield. The estimated output from the various tools is 

compared to the measured results in Figure 10.17. 

 

 

 

Figure 10.17: Annual yield estimated for the test site using various tools, compared 

with measured output 

 

Figure 10.17 shows that with the exception of PV WATTS all estimation tools show a 

fairly good correlation with each other. PV WATTS shows an unexpectedly high 

drop-off for the east-facing systems. After a thorough examination of the tool, 

including further testing, it was concluded that the angle conversion algorithm is 

poorly designed and gives an excessive magnitude of error.  

Interestingly the east-facing Washington system can be expected to perform 

slightly better than it actually did. There may have been some edge shading of one 

of the PV modules. If the designed overlap of the PV tiles is slightly exceeded 

during installation, the output can decrease significantly even if only a thin strip 

along the edge of a module is constantly shaded187. 
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All estimation tools give values that are considerably higher than those 

shown by measurements. This can largely be explained by a difference in weather 

data and the lack of consideration for inverter energy consumption. The standard 

estimated loss factors suggested by the tools (14% for PV GIS) are also less than 

those derived from modelling (22%).  

All tools except SAP 2005 allow some degree of loss factor adjustment, and 

this has been taken into account wherever possible. Table 10.K, Table 10.L and 

Table 10.M show a comparison to the measured data for PV GIS, PV WATTS and PV 

SYST respectively. The comparison includes percentage differences and the effect 

of any adjustments that can be made. The difference in weather data, in terms of 

annual in-plane irradiation, was also considered. 

 

Table 10.K: Discrepancies of PV GIS results compared to measured data 

Difference Case 1 14% 

Difference Case 2 24% 

Difference Case 3 20% 

Average Difference 19% 

Difference in Radiation -8% 

Adjusted System Losses -8% 

Overall Discrepancy 3% 

 

Table 10.L: Discrepancies of PV WATTS results compared to measured data 

Difference Case 1 3% 

Difference Case 2 12% 

Difference Case 3 20% 

Average Difference 12% 

Difference in Radiation -7% 

Overall Discrepancy 5% 

 

Table 10.M: Discrepancies of PV SYST results compared to measured data 

Difference Case 1 14% 

Difference Case 2 22% 

Difference Case 3 21% 

Average Difference 19% 

Difference in Radiation -8% 

Overall Discrepancy 11% 

Discrepancy using EcoVillage weather data 4% 

 
 

The above comparison shows that all tools provide estimates that are effectively 

within 5% of the measured value. After further considering of inverter consumption 
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of possibly 50kWh annually, the tools predict the output very accurately, to within 

2-3% on average. 

 

 

10.8.2  Qualitative Comparison 
 
 

After the accuracy of all tools has been established, a detailed consideration of 

some other factors is provided in Appendix A, page 333. 

 

Based on this comparison, Table 10.N provides a ranking of the compared tools 

according to a point system. 

 

Table 10.N: Comparison of PV estimation tools 

Category Weighting PV GIS PV WATTS PV SYST 

Accuracy 10 points 8 7 9 

Weather data 10 points 8 6 10 

Output 10 points 10 7 9 

Ease of use 10 points 10 8 5 

Adjustability 10 points 7 5 10 

Accessibility 5 points 5 5 3 

Shading effects 5 points 5 1 3 

Cost 5 points 5 5 1 

TOTAL 65 points 58 44 50 

 

 
After a thorough comparison it can be said that all three tools have their merits, but 

PV GIS appears to be the best choice for providing a quick, easy and accurate 

estimate for PV generation throughout Europe.  

 

 

10.9 Considerations for the Integration of PV 
Systems 

 
 

As specified previously, it is important for architects and designers with little 

technical knowledge to be aware of the capabilities of PV systems and their 

expected performance. At present there is no recognized independent method of 

designing PV systems for domestic properties in the UK apart from estimations 

stated by specialist suppliers, and there is no recommended benchmark data 

available from either the government or professional engineering institutions 

derived from real data from systems installed on dwellings and tested under real 

weather conditions. In many cases the Government‟s Standard Assessment 

Procedure (SAP) is used to estimate the PV output, which amongst other things 
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does not account for the latitude of the location, losses due to temperature effects, 

or any variations in local weather conditions. With PV being a relatively predictable 

source of renewable energy, some considerations are outlined in this section.  

 

10.9.1  Minimum and Maximum Yields 
 
 

Figure 10.18 shows the variation of weekly PV generation from the energy readings 

of the south-facing Palmerston system throughout one year. Minimum, maximum 

and average values are charted. 

 

 

Figure 10.18: Weekly PV generation (maximum, minimum, & average weekly 

output) 

 

Based on the seasonal weekly averages shown in Figure 10.18, Table 10.O shows 

the upper and lower bounds of expected annual PV generation: 

 

Table 10.O: Estimated annual PV generation at extreme weather conditions 

 
East-facing 

kWh/yr 
South-facing 

kWh/yr 

Extremely Good Year 1280 1570 

Extremely Poor Year 350 429 

Measured Result 534 701 

 

 

 

10.9.2  Effect of Varying Latitude 
 
 

As explained previously, latitude of a PV system has a profound effect on the solar 

resources. Solar angles, thus solar intensity, reduce as distance from the equator 

increases. In the UK, moving north by as little as 1° latitude or a few hundred miles 

can already make a significant difference in PV generation. Just how significant the 



 
144 

effect is will be explored in the following section. Figure 10.19 shows a map of the 

UK with selected cities for latitude references.    

 

 

Figure 10.19: Distribution of Latitude references throughout the UK 

 

The PV potential for the reference locations was assessed using PV GIS. The four 

most likely scenarios for roof-integrated PV systems are summarised in Table 10.P. 

The location of the test site, Chorley, is also included for reference. 

 

Table 10.P: PV GIS estimates for reference locations throughout the UK 

Location Latitude Longitude 
45º / South 60º / South 45º / East 60º / East 

(kWh) (kWh) (kWh) (kWh) 

Aberdeen 57.1 -2.1 741 712 569 522 

Glasgow 55.9 -4.3 710 676 557 508 

Belfast 54.6 -6 758 722 594 542 

Chorley 53.7 -2.6 763 725 595 539 

Manchester 53.5 -2.2 760 723 596 543 

Birmingham 52.5 -1.9 769 729 605 549 

Bristol 51.5 -2.6 816 773 639 580 

Plymouth 50.3 -4.1 870 823 684 622 

 
 

It can be seen that the annual PV generation decreases significantly with increasing 

latitude, with one exception. Glasgow receives less solar radiation and consequently 

has a lower PV output than Aberdeen, which is further north. This is also shown by 

other published data188, and could be due to local weather conditions or differences 

in the geographical surroundings responsible for shading effects.   
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10.9.3 UK Benchmark – Look-up Chart for Estimating PV 

Output 
 
  

As the results of PV generation shown in Table 10.P are fairly uniform, the mean 

average energy generation can be found to provide a UK national benchmark for 

1kWp PV systems. Excluding the Chorley results to avoid distortion of the national 

average, this equates to 667.6kWh. This value has been rounded to 675kWh/yr 

by an iteration process in constructing Figure 10.20. This benchmark value will be 

used as a baseline value for analyzing the effects of changing PV orientation and 

inclination in the following sections.   

 

 

 Figure 10.20: Percentage difference between PV GIS results and benchmark value 

 

With reference to Figure 10.20, it can be expected that the average annual output 

estimate may differ by around ± 25% from the benchmark value, depending on 

latitude of the location, as well as orientation and roof inclination of the dwelling.  

 

 

10.9.4  Effect of PV Inclination and Orientation 
 
 

To take this analysis one step further and explore what changes have the most 

significant effect, the following orientation and inclination options are explored: 

 

- A percentage comparison of the output with varying module Inclination  

- A percentage comparison of the output with varying module Orientation 

 

Results are summarized in Figure 10.21. 
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Figure 10.21: Showing percentage differences, focusing on module inclination 

 

From Figure 10.21 it can be deduced that the difference in estimated annual output 

due to a change in module inclination is around 5% for south-facing systems, and 

around 10% for east facing systems. This indicates that the module inclination has 

a more significant effect on east-facing systems. 

 

A similar comparison was carried out to investigate the performance variations with 

changing orientation of the PV module while keeping inclination fixed. Figure 10.22 

shows the comparison between:  

 

- South and South-West 

- South and South-East 

- South and East 

                       

 

 

Figure 10.22: Percentage differences of annual output, focusing on module 

orientation 
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In terms of dwelling/module orientation as shown in Figure 10.22, the difference 

between SE and SW facing systems seems negligible. The differences in annual 

output between a directly south-facing and a SE- or SW-facing system are around 

5-7%. However, the difference between directly south- and directly east-facing 

systems on the other hand is much more significant, between 25-30%.  

 

10.9.5  Effect of Longitude 
 

It was previously assumed that the Longitude of a location has no effect on the PV 

output. To confirm this, PV GIS has been used to establish the potential PV output 

at two different locations with equal latitude. Seaside locations near the west coast 

of England and the east coast of Ireland were used to minimize the shadowing 

effects of surrounding terrain. As expected, the results in Table 10.Q show only a 

negligible variation of PV output with longitude. 

 

Table 10.Q: PV estimates for locations at different longitude 

Latitude Longitude 
Annual PV output 

(kWh) 

53.65º -3.27º 717 

53.65º -5.48º 718 
 

 

 

10.9.6  Summary 
 
 

The previous sections on PV systems have outlined the expected PV generation in 

the UK and shown how the output will vary depending on different basic 

parameters. This should provide architects and builders with some practical 

background information when considering the integration of PV in modern UK 

homes. To summarize, the following has been established: 

 

 Figure 10.20 can be used as a look-up chart together with the Benchmark value 

of 675kWh/yr to quickly and easily estimate the annual yield of a PV system in 

the UK 

 PV output varies significantly depending on latitude 

 Changes in inclination have a more significant effect on east-facing than on 

south-facing systems 

 Output of SE/SW facing systems is close to that of directly south-facing 

systems, whereas differences between directly south- and directly east-facing 

systems are much more significant 

 Differences between SE and SW facing systems are negligible 

 Longitude of location has a negligible effects on PV performance 
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10.10   Financial, Energy and Carbon Savings 
 

 

To provide a basis for savings calculations, generic values for capital cost, as well 

as embodied energy and carbon had been established in Table 10.A, Table 10.B and  

Table 10.C respectively. The values have been scaled to represent the PV systems 

at the EcoSmart village, with results summarised in Table 10.R. 

 

Table 10.R: Capital cost and embodied carbon for roof-integrated 1kWp PV system 

 EcoVillage 1kWp PV 

Capital Cost £4,500 

Embodied Energy 11,856 kWh 

Embodied Carbon 2,727 kgCO2 

 

 

Table 10.R presents values that are generic to roof-integrated mono-crystalline PV 

systems of size 1kWp, and as such can also be used as reference values for similar 

systems throughout the UK. Table 10.S provides a summary of the performance of 

all systems, as well as the previously established national benchmark value for UK 

systems.  

 

Table 10.S: Performance of EcoSmart systems and UK PV Benchmark 

 Measured (kWh) Estimated 

 (inc. inverter consumption) (kWh) 

Palmerston (45º / South) 690  

Washington (45º / East) 515*  

Malvern (60º / East) 528  

UK Benchmark  675 
*Underperformed by around 5-10% 

 
 
 

Based on the methods outlined previously and using equation (6.8), the estimated 

financial payback periods are shown in Table 10.T. The maintenance cost64 for PV 

systems is estimated to be £50 annually, based on the recommendation of an 

electrical inspection every 5 years and one inverter replacement throughout the 

life-time of the system. For calculation purposes the life-time is expected to be 30 

years, although a typical PV system may well be usable far beyond that, albeit with 

degraded efficiency.  
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Table 10.T: Average financial savings assuming the systems are new-builds, 

installed before April 2012 

  Annual Savings 

System Electricity offset 2011 Feed-in tariff 

Palmerston £98.67 £249.10 

Washington £73.65 £185.92 

Malvern £75.50 £190.61 

Benchmark £96.53 £243.68 

 

 

Table 10.T provides a good indication to the level of financial savings that can be 

expected from systems at the test site and throughout the UK. Table 10.U shows a 

summary of expected payback rates and life-time savings for the PV systems.  

 

Table 10.U: Payback rates and lifetime savings; financial, energy and CO2 

 Payback rate (years) 
Net savings over system life (30 

years) 

System Financial Energy Carbon Financial Energy (MWh) CO2 (t) 

Palmerston 12.9 17.2 7.6 £4,688 8.8 8.0 

Washington 17.3 23.0 10.2 £2,358 3.6 5.3 

Malvern 16.9 22.5 10.0 £2,530 4.0 5.5 

Benchmark 13.2 17.6 7.8 £4,488 8.4 7.7 

 

 

Table 10.U shows that, due to feed-in tariffs, the PV systems have become a long-

term financially viable option, being able to generate profits on invested capital of 

over 100% over its lifetime. The estimates of energy and carbon payback are in line 

with all the literature that was referred to previously. As PV displaces more carbon 

intensive electricity, life-time carbon savings are much greater than for solar 

thermal systems with a similar energy yield. However, the more carbon intensive 

manufacturing also means that in the short run (up to 10 years) the net carbon 

offset from PV systems will actually be negative as production rates increase to 

satisfy an increasing demand.   

The UK Benchmark value can be scaled using Figure 10.20 to provide 

estimates for other systems throughout the UK. Throughout the country, variations 

of up to 25% can be expected.  
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10.11  Conclusion 
 

 
During the literature review it was shown that PV systems experience a vastly 

growing popularity. They are perceived to be fairly simple and reliable systems with 

a long system life-time. This impression has been confirmed throughout this 

research. Furthermore, it was also found that, in general, architects and builders 

still tend to avoid the implementation of PV as they are not familiar with the 

systems and don‟t know what kind of performance can be expected. This issue has 

been addressed by providing an overview of the effect of varying installation 

parameters. A national benchmark value and look-up chart was derived to provide 

a simple method of estimating the output throughout the UK.  

 

In detail, it was further shown that: 

 

- PV Estimation tools such as PV GIS, PV WATTS and PV SYST can be very 

useful tools for architects and builders to determine the performance of a PV 

system at very early stages of a project, and without the need for extensive 

tests. PV GIS is the recommended choice. 

 

- High operating temperatures of PV modules can have significant reduction 

on the system output and efficiency, and should be considered when 

integrating PV systems.  

 

- Within the UK, the latitude of a location has a significant effect on PV 

generation (around 15% difference between Aberdeen and Plymouth), while 

longitude has no effect. 

 

- Based on measurements from the EcoSmart Village, the average total PV 

generating hours would be around 3,000 hours per year out of a theoretical 

4,480 hours. „High power‟ generation (>40% of rated power) was only 

achieved rarely during summer months. 

 

- Where it is not possible to install a south facing PV system, a performance 

reduction of 25-30% can be expected for directly west or east facing 

systems. Output of SE/SW facing systems is close to that of directly south-

facing systems. 

 

- Changes in inclination have a greater effect on east facing than on south 

facing systems. 
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- A method to estimate PV generation throughout the UK was derived using 

accurate models. This method is easier to use, more flexible and more 

accurate than SAP 2005. A Benchmark value for a 1kWp PV system in the 

UK was shown to be 675kWh per annum. This value may vary by ± 25% 

depending on location, orientation and inclination of the PV system, and can 

be adjusted using the look-up chart in Figure 10.20.  

 

- For 1kWp systems installed before April 2012 throughout the UK, the 

financial payback is expected to be 13.2 years ±25%. Net life-time financial 

savings are in the region of 200% of capital cost, and net carbon savings 

around 8 tonnes CO2. However, carbon payback is fairly high, taking 8 years 

on average and up to 10 years for the „worst-case‟ site and set-up. 
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11 Solar Thermal Systems 
 
 

11.1 Introduction 
 
 

Direct solar energy is considered the most abundant source of renewable energy on 

our planet. With selective materials having absorption efficiencies up to 95%189, 

harnessing solar energy in the form of heat should be very effective. Since the 

1980‟s solar thermal systems have become the most established type of micro 

renewable energy system in the UK, with approximately 100,000 systems installed 

nationwide190 and annual installation rates of several thousand191. They are 

predicted to become even more popular in the future, with a forecast global growth 

of 15-17% by 2030192, and 23% by 2050193. The following sections will assess 

several systems in practical as well as theoretical terms.  

 

11.1.1 Background Theory 

 
 

In its simplest form a solar thermal heater consists of pipes that are coated in a 

selective absorbing material. Transfer fluid is used to extract heat from the 

collector, typically consisting of a mixture of water and ethylene glycol (antifreeze), 

which is circulated through copper pipes that run along the absorber surface to 

ensure efficient heat conduction. Experimental research has previously suggested 

that other types of transfer fluid can be used, such as air194 or supercritical CO2
195. 

While some performance improvements were noted, control and power issues mean 

these ideas are not currently applicable on a large scale. 

Over the years these systems have evolved to become more efficient at heat 

absorption and to reduce losses. There are two common types of domestic Solar 

Thermal collectors used today, flat panel and evacuated tube.  

 

Flat Panel Systems 

 

Flat panel solar collectors are fairly simple systems consisting of an enclosed 

insulated volume that is covered by a flat sheet of glass. Copper pipes run through 

the enclosure, carrying transfer liquid to extract heat. A schematic diagram of the 

process is shown in Figure 11.1. 
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Figure 11.1: Simple schematic diagram of a typical flat panel solar thermal collector 

 

Typical flat panel solar collectors can reach conversion efficiencies of around 75% 

under standard testing conditions.196  

 

 

Evacuated Tube Systems 
 
 

To further reduce heat losses and improve overall efficiency of the collector system, 

evacuated tube type solar collectors are designed to eliminate any losses from 

thermal convection. This type of collector consists of several glass tubes that 

contain a vacuum, or consist of double-glazed tubes that are separated by a 

vacuum. Each glass tube contains a copper tube that allows heat extraction using a 

transfer liquid. A simple schematic is shown in Figure 11.2. 

 

 

 

Figure 11.2: Simple schematic diagram of a typical evacuated tube solar thermal 

collector 

 

 

While the copper tube can take different shapes and arrangements197, it usually 

takes the form of a U-tube. The vacuum around each copper tube provides 

additional heat loss prevention, although not all losses can be avoided198. The 

vastly reduced heat loss makes the evacuated tube system particularly suitable for 

colder climates, such as in the UK. Zero-loss efficiencies of evacuated tube 
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systems, only accounting for optical losses, can reach values of up to around 

80%199. This is slightly higher than for flat plate collectors due to the use of a 

diffuse reflector behind the evacuated tubes200. Evacuated tube systems also have 

the advantage of a more rapid start-up201 and virtually no maintenance 

requirements.    

 
 

After either flat panel or evacuated tube systems have been heated by the sun the 

hot transfer liquid is circulated to a storage cylinder, where a heat exchanger is 

used to transfer heat. After giving off heat to the colder storage cylinder, the cooled 

liquid is then circulated back to the solar collector.  

 

Heat exchanger 

 

To allow the solar panel to operate most effectively, the heat exchanger between 

the solar circuit and the storage cylinder must be as efficient as possible, ideally 

transferring all the heat and returning to the collector at lowest possible 

temperature. While experimental research202 shows some alternatives such as 

mantle heat exchangers may provide improvements203, the by far most common 

type used today comprises a horizontal coil inside the cylinder. This is often done 

using a counter-flow heat exchanger, which is more efficient than parallel flow, as 

shown schematically in Figure 11.3. 

 

 

Figure 11.3: Variation of tank temperature and heat exchanger temperature for 

parallel and counter-flow 
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Figure 11.3 shows clearly that if the cylinder temperature varies with height, the 

heat exchanger will be able to give off more heat with the entrance (flow) in the top 

connection, and exit (return) in the bottom connection. Depending on the degree of 

stratification within the cylinder, this difference can be quite significant.  

 

Control 

 

A good control strategy is essential to ensure efficient heat transfer. Most Solar 

Thermal systems come with a control panel, which is equipped with several 

thermocouples to monitor system temperatures. If the panel sensor exceeds the 

bottom cylinder temperature by a certain control temperature difference (for 

example 7°C), the pump is switched on and heat is transferred from the collector to 

the storage cylinder. In general a low flow rate is desireable as this gives improved 

stratification within the storage cylinder204, higher transfer temperatures through 

the heat exchanger which increases transfer efficiencies and slightly lower power 

consumption of the pump. 

 The control system is also used to prevent any overheating of the collector 

or the cylinder. Typically the control panel switches off the pump automatically 

when a certain safety temperature is reached at the bottom of the cylinder, or 

within the collector. When the safety temperature is detected, circulation is stopped 

and the transfer liquid left to expand. The fluid is forced into the expansion vessel 

attached to the solar circuit, where heat is dispersed until the temperature drops 

below a second threshold temperature, typically 70°C.  

 

 

11.1.2 EcoVillage Set-up 

 
 

 

 

Figure 11.4: Evacuated Tube System (left) and Flat Panel System (right) 
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Both types of Solar Thermal system, flat panel and evacuated tube, are tested at 

the EcoSmart village. Photos taken from both systems are shown in Figure 11.4, 

and the most important system parameters are summarised in Table 11.A. These 

values are taken from technical documents and building specifications. 

 

Table 11.A: System parameters for flat panel and evacuated tube system 

 Flat panel Evacuated tube 

Building Windermere Alderney 

Orientation south-facing south-facing 

Inclination 45° 45° 

Panel area (m2) 2.1 3 

Water cylinder 

(L) 180 250 

Warranty (yrs) 10 25 

 

 

The flat panel system was supplied by SolarPanelSystems Ltd and was predicted to 

provide up to 70% of hot water to a typical household. For comparison, other 

research205 suggests that a similar system is able to provide around 30% of hot 

water demand.  

The evacuated tube system „LaZer2‟ from the supplier Positive Planet Ltd. is 

predicted to provide 60-75% of hot water demand. While system efficiency is 

predicted to be around 50%, CO2 emissions are expected to reduce by around 

1000kg/year. The manufacturer-estimated financial payback rate is 31.5 years 

without RHI tariffs.  

 

The schematic diagram of the flat panel system provided by the supplier is shown 

in Figure 11.5. In both cases an A-rated condensing gas boiler was used to provide 

auxiliary heat. 

 

 

Figure 11.5: Solar thermal schematic diagram (source: SolarPanelSystems Ltd.) 
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11.1.3 Set-up Problems 

 
 

During the 15-month investigation several problems were encountered. Both 

systems had problems with the heat meters that were installed by the 

manufacturers. They displayed error messages and were unable to produce any 

energy readings to evaluate system performance. Being able to monitor the 

performance of the system is not just important for this experimental set-up, but 

would also be important for home owners, allowing them to adapt to the system 

and use it more effectively.  

 Some time after the flat panel system was installed and connected to a 

water cylinder, it was found that the system that was installed included an incorrect 

panel. As a result of this, the complete system was replaced in February 2007.  

 The evacuated tube system was initially installed with water as a transfer 

liquid in the collector circuit. At the request of the research team, glycol 

(antifreeze) was eventually added to the system at a later stage in order to prepare 

for sub-zero temperatures. However, after this was done, the system was found to 

have air trapped in the collector circuit, which was rectified in October 2006.  

 After many efforts to rectify problems promptly it was possible to collect 12 

months worth of meaningful data from the evacuated tube system, but only 4 

months worth of limited data for the flat panel system.  

 

11.1.4 Capital cost, Embodied Energy and Embodied CO2 

 
 

The Solar Trade Association206 estimates general capital cost in the order of £4000, 

while other estimates are in the region of £3000-3500 for flat panel systems. The 

capital costs for the flat panel and evacuated tube systems at the EcoSmart village 

are shown in Table 11.B. 

 

Table 11.B: Capital cost for EcoSmart village Solar Thermal systems 

System Capital Cost 

Flat Panel (Windermere) £2,600 

Evacuated Tube (Alderney) £3,500 

 

 

The values for capital cost from the EcoSmart village are slightly below the general 

estimates, which is due to the fact that the cost of the heat store system is not 

included. Nonetheless, they will be used as baseline values as system capital costs 

can generally be expected to decrease with time.   
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Solar Thermal systems are made up of several materials that have a rather high 

energy and carbon content, such as aluminium, stainless steel and glass122. While 

no information about the embodied energy or carbon could be found for evacuated 

tube collectors, several sources were found that have previously evaluated the 

embodied energy and carbon for flat panel collectors.  

 Some of the reviewed literature suggests values for embodied energy in the 

region of 780kWh/m2 (Canada207) to 890kWh/m2 (Italy208), while the assessment209 

of a UK 2.1m2 flat panel system estimated the embodied energy and carbon for 

different stages of the product life-cycle as shown in Table 11.C.  

 

Table 11.C: Embodied Energy and CO2 in solar thermal system life-cycle209 

 Energy (kWh) CO2 (Kg) 

Collector materials 844 240 

Material transport to factory 63 5 

External support (inc. pipe work) 553 143 

System transport from Germany to UK 64 5 

Installation 161 37 

Total 1685 430 

 

 

On average, the reviewed research agrees that the embodied energy for a 2.1m2 

flat panel solar thermal system is in the order of 1500-1870kWh, with a realistic UK 

estimate being around 1700kWh. The embodied carbon will be taken as 430kg.  

 

Little data is available for embodied energy of evacuated tube collectors. The 

only energy estimate that was found210 suggests embodied energy of 153kWh for 

an evacuated tube collector, but only considers the copper and glass content of 

individual tubes. Considering the materials that are involved the estimate for 

evacuated tube systems is not expected to change much from that of flat panel 

collectors. While considerably more glass is required, overall slightly less of the 

much more energy intensive metals are required for production. Energy resulting 

from transportation, installation and external support, making up around 50% of 

the embodied energy, can be expected to be very similar. Therefore the best 

available estimate for embodied energy is to assume a value equivalent to flat 

panel systems, of around 800kWh/m2, with 205kg/m2 embodied carbon. 
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11.2 Initial Energy Generation Estimate 
 

 
There are two recognised methods that can be used in the design stages for 

estimating the contribution of solar thermal energy to hot water demand in 

dwellings: 

 

1. The Utilisability method 

2. The f-chart method 

 

The utilisability method was developed by Whillier211 and later redefined by Liu and 

Jordan212. While this method can be useful, many graphs are required for 

references, making it inadequate for analytical representation. 

  The f-chart method was developed by Klein et al213, and is a more 

appropriate method for evaluating the performance of Solar Thermal systems. It is 

designed to calculate f, the solar fraction. This is defined as the fraction of the hot 

water load that is provided by the solar water heating system. The f-chart method 

which is summarised in this chapter is described in detail by Duffie & Beckman131.  

 

For liquid systems, the f-chart function is defined by equation (11.1): 

 

322 0215.00018.0245.0065.0029.1 YXYXYf    (11.1) 

 

 
Detailed simulations of Solar Thermal systems have been used to develop the 

empirical correlations for the dimensionless variables (X) and (Y), which are 

required to calculate (f), the monthly fraction of loads carried by solar energy. The 

two dimension groups are:  
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For the terms nRF )(  and LRUF , generic values have been found for both the flat 

panel and the evacuated tube systems, as the manufacturer did not provide values 

at the time and has subsequently gone into receivership. These generic values are 

based on the RETScreen International „Solar Water Heating Project Analysis 

(SWH3.2)‟ 214 and are shown in Table 11.D. 

 

Table 11.D: Generic nRF )(  and LRUF  values for solar thermal collectors 

  nRF )(   
LRUF   

Flat panel collector 0.68 4.9 

Evacuated tube collector 0.58 0.7 

 

 
Several other parameters needed for the f-chart method calculations can be 

deduced from the weather data, physical properties of the collector and energy 

requirements from the buildings. These values have been summarised on a monthly 

basis in Table 11.E.  

 The monthly hot water energy requirement (L) is based on the assumption 

that 200L will be drawn off every day, which will be about 40°C above the cold feed 

temperature. This results in a daily hot water energy requirement of 33.4MJ, or 

3,390kWh per year. This is not far from the average measured hot water 

consumption from 60 single family homes in Denmark and Austria, which found an 

average annual consumption of around 3,600kWh215. 

 

Table 11.E: Monthly parameters required for f-chart calculations 

  
N  

t  

(seconds) 
aT  

(°C) 
TH  

(MJ/m²) 

L  

(MJ) 

aref TT   

(°C) 

NHT  

(MJ/m²) 

January 31 2.68E+06 7.4 1.5 1037 92.6 109.1 

February 28 2.42E+06 6.0 3.3 936 94.0 196.8 

March 31 2.68E+06 7.3 6.8 1037 92.7 355.7 

April 30 2.59E+06 11.0 10.5 1003 89.0 516.6 

May 31 2.68E+06 11.7 10.5 1037 88.3 363.0 

June 30 2.59E+06 14.6 10.3 1003 85.4 465.6 

July 31 2.68E+06 14.7 7.8 1037 85.3 332.6 

August 31 2.68E+06 15.1 8.3 1037 84.9 359.6 

September 30 2.59E+06 13.5 6.9 1003 86.5 299.7 

October 31 2.68E+06 11.5 4.3 1037 88.5 204.3 

November 30 2.59E+06 9.2 4.2 1003 90.8 125.8 

December 31 2.68E+06 6.7 0.9 1037 93.3 73.5 
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However, determining the remaining two parameters, 
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, will require 

further calculations. 
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The mass flow rate for the flat panel system is given as 105litres/hr on a technical 

datasheet provided by the manufacturer. Assuming a water / glycol mixture in the 

collector side of the circuit with a density216 of 1.1132 kg/l, this equates to a mass 

flow rate of 0.0325kg/s. The flow rate of the evacuated tube system is estimated to 

be 0.037kg/s, based on other comparable systems.  

 

The values for specific heat capacity ( PC ) can be assumed to be: 

 

PC = 4186 JKg-1°K-1 for water 

PC = 3350 JKg-1°K-1 for a 50%217 glycol-water mixture216 

 

Glycol is found to have the smaller capacitance, and the efficiency of the heat 

exchanger can generally be expected to take a generic value131 of H = 0.7 . 

 

The other parameter required for using the f-chart method is the term 

n)(

)(




, which 

gives a ratio of the average monthly transmittance-absorption losses compared to 

the transmittance-absorption losses under optimum conditions.  

 The optimum transmittance-absorption product can be found based on 

manufacturer specifications as 0.87 for the flat panel system and 0.93 for the 

evacuated tube system. The average monthly losses can be determined using 

equations (11.7) and (11.8), where S  is the average absorbed solar radiation. 
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The effects of ground reflection have been included in equation (11.8) for 

completeness, but will be neglected during the calculation due to their insignificant 

effect on the outcome. The following calculations will also make reference to two 

graphs, which are shown in Figure 11.6 and Figure 11.7 below. 

 

 

Figure 11.6: Reference graph for transmittance-absorption ratio calculations 

(source: Duffie and Beckman131, 2006) 

 

 

 

Figure 11.7: Reference graph for average angle of incidence ( b ) calculations 

(source: Duffie and Beckman131, 2006) 
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Using simple trigonometry, the effective angle for diffuse irradiation is 31.2° for the 

collector inclined at 45°. From Figure 11.6, the value for 

n)(

)(



  that corresponds to 

an inclination of 31° is 0.98. 

 

 

The value for the diffuse transmittance-absorption losses is constant, whereas the 

value for the beam component varies throughout the year. A more accurate 

estimate can be calculated if specific values for each month are determined. Using 

Figure 11.7 it is possible to find monthly values of average beam inclination ( b ) of 

the collector surface for given values of inclination, assuming a south facing 

orientation of the system. Using these values for average beam angles, Figure 11.6 

can then be used to find the corresponding factor 

n)(

)(




, which allows the 

calculation of d)(  for each month. The results are shown in Table 11.F. 

 

 

Table 11.F: Results from beam transmittance-absorption losses calculations 

  b  
n)(

)(




 

b)(   

January 42° 0.95 0.822 

February 42° 0.95 0.822 

March 45° 0.94 0.813 

April 47° 0.93 0.804 

May 48° 0.92 0.796 

June 49° 0.92 0.796 

July 49° 0.92 0.796 

August 46° 0.93 0.804 

September 45° 0.94 0.813 

October 44° 0.94 0.813 

November 42° 0.95 0.822 

December 42° 0.95 0.822 

 

 

In order to complete the calculation for the effects of beam irradiation, the ratio 

between radiation on a horizontal plane and in-plane radiation for the collector 

surface ( bR ) must also be found. This can be done by using equation (11.9). 
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Where ( ) is the latitude, (  ) the system inclination ( ) the solar declination 

angle. The term ( s ) refers to the sunset hour angle for the tilted surface for the 

mean day of the month, which is given by equation (11.10): 
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 s        (11.10) 

 

 
Having found all variables, it is now possible to use the weather data in order to 

complete the calculations for ( S ) and )(  , shown in Table 11.G, hence allowing 

the determination of factors (X) and (Y). The results for each month are shown in 

Table 11.H for the flat panel, and Table 11.I for the evacuated tube system.  

 

 

For Flat Panel System: 

 

Table 11.G: Parameters required for f-chart calculation, based on flat panel system 

 

bH  

(kJ/m²) bR  
b)(   

dH  

(kJ/m²) d)(   
TH  

(kJ/m²) 

S  

(kJ/m²) )(   

Jan 2151 4.6 0.822 1370 0.848 3521 3349 0.78 

Feb 4431 2.9 0.822 2597 0.848 7028 5863 0.79 

Mar 6981 1.8 0.813 4493 0.848 11474 9271 0.78 

Apr 10459 1.3 0.804 6759 0.848 17218 12112 0.77 

May 5617 1.0 0.796 6077 0.848 11693 8320 0.76 

Jun 5686 0.9 0.796 9716 0.848 15402 11338 0.75 

Jul 3067 1.0 0.796 7585 0.848 10652 7947 0.74 

Aug 3914 1.2 0.804 7680 0.848 11593 8691 0.75 

Sep 3495 1.5 0.813 6493 0.848 9988 7838 0.76 

Oct 2309 2.4 0.813 4281 0.848 6590 5517 0.76 

Nov 2249 4.0 0.822 1943 0.848 4193 3852 0.78 

Dec 1296 5.6 0.822 1075 0.848 2371 2240 0.78 
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Table 11.H: X and Y value calculations required for f-chart calculation, based on flat 

panel system 

 LRUF  nRF )(  
R

R

F

F 
 

n)(

)(




 

aref TT   NHT  L

AC  
 X   Y  

Jan 4.9 0.68 0.961 0.91 92.6 109.2 2.01E-09 2.35 0.13 

Feb 4.9 0.68 0.961 0.91 94.0 196.8 2.01E-09 2.15 0.24 

Mar 4.9 0.68 0.961 0.90 92.7 355.7 2.01E-09 2.35 0.42 

Apr 4.9 0.68 0.961 0.89 89.0 365.3 2.01E-09 2.18 0.60 

May 4.9 0.68 0.961 0.88 88.3 292.4 2.01E-09 2.24 0.42 

Jun 4.9 0.68 0.961 0.87 85.4 410.9 2.01E-09 2.09 0.53 

Jul 4.9 0.68 0.961 0.86 85.3 298.7 2.01E-09 2.16 0.38 

Aug 4.9 0.68 0.961 0.87 84.9 318.8 2.01E-09 2.15 0.41 

Sep 4.9 0.68 0.961 0.87 86.5 258.1 2.01E-09 2.12 0.34 

Oct 4.9 0.68 0.961 0.87 88.5 166.3 2.01E-09 2.24 0.23 

Nov 4.9 0.68 0.961 0.90 90.8 125.8 2.01E-09 2.23 0.15 

Dec 4.9 0.68 0.961 0.90 83.3 73.5 2.01E-09 2.37 0.09 

 

 

Table 11.I: X and Y value calculations required for f-chart calculation, based on 

evacuated tube system 

 LRUF  nRF )(  
R

R

F

F 
 

n)(

)(




 

aref TT   NHT  L

AC  
X  Y  

Jan 0.7 0.58 0.961 0.91 92.6 109.2 2.87E-09 0.45 0.15 

Feb 0.7 0.58 0.961 0.91 94.0 196.8 2.87E-09 0.42 0.27 

Mar 0.7 0.58 0.961 0.90 92.7 355.7 2.87E-09 0.45 0.49 

Apr 0.7 0.58 0.961 0.89 89.0 365.3 2.87E-09 0.42 0.70 

May 0.7 0.58 0.961 0.88 88.3 292.4 2.87E-09 0.43 0.48 

Jun 0.7 0.58 0.961 0.87 85.4 410.9 2.87E-09 0.41 0.61 

Jul 0.7 0.58 0.961 0.86 85.3 298.7 2.87E-09 0.42 0.43 

Aug 0.7 0.58 0.961 0.87 84.9 318.8 2.87E-09 0.42 0.47 

Sep 0.7 0.58 0.961 0.87 86.5 258.1 2.87E-09 0.41 0.40 

Oct 0.7 0.58 0.961 0.87 88.5 166.3 2.87E-09 0.43 0.27 

Nov 0.7 0.58 0.961 0.90 90.8 125.8 2.87E-09 0.43 0.17 

Dec 0.7 0.58 0.961 0.90 83.3 73.5 2.87E-09 0.46 0.10 
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Using the values for (X) and (Y) from Table 11.H and Table 11.I for the flat panel 

and evacuated tube systems respectively, the f-fraction and hence the contribution 

to hot water requirements can be found using equation (11.1). Table 11.J gives 

monthly and annual values of f-chart fraction, hot water requirement ( L ), potential 

energy generation of the system ( fQ ) as well as system efficiency ( ), which is 

calculated using equation (11.11): 

 

   
NH

Q

T

H         (11.11) 

 

where ( NHT ) is the total monthly in-plane irradiance. 

 

 

Table 11.J: f-chart fraction, potential energy generation and efficiency of solar 

thermal systems at EcoSmart show village 

  Windermere (Flat Panel) Alderney (Evacuated Tube) 

  

f  L (kWh) 
fQ  

(kWh) 
  f  L (kWh) 

fQ  

(kWh) 

 

  

Jan 0.00 290 0.0 0.0% 0.12 290 34.7 38.2% 

Feb 0.10 290 28.2 24.5% 0.23 290 68.0 41.5% 

Mar 0.25 290 71.9 34.7% 0.41 290 120.3 40.6% 

Apr 0.40 290 117.0 38.8% 0.58 290 168.3 39.1% 

May 0.25 290 73.6 34.7% 0.41 290 120.1 39.7% 

Jun 0.35 290 102.4 37.7% 0.52 290 150.1 38.7% 

Jul 0.22 290 64.1 33.0% 0.38 290 108.9 39.3% 

Aug 0.25 290 72.9 34.7% 0.41 290 118.3 39.5% 

Sep 0.19 290 56.5 32.3% 0.34 290 99.9 40.0% 

Oct 0.09 290 26.2 22.0% 0.23 290 67.6 39.7% 

Nov 0.01 290 3.5 4.7% 0.14 290 41.0 39.1% 

Dec 0.00 290 0.0 0.0% 0.07 290 20.7 33.7% 

Annual 0.18 3480 616.2 31.0% 0.32 3480 1118.0 39.7% 

 

 

Table 11.J shows system efficiencies that are considerably lower than the 

efficiencies stated by the manufacturer. The flat panel system shows an efficiency 

value of 31% compared to the claimed 44% throughout the year, while the annual 

efficiency of the evacuated tube system is around 40% compared to the claimed 

50%. All values assume that there is an infinitely large storage capacity for the hot 
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water that is being generated. However, the f-chart calculations also account for 

the use of a heat exchanger, which results in overall higher system temperatures, 

meaning that energy absorption itself becomes less efficient. This is accounted for 

by the factor 

R

R

F

F 
. If this factor would be neglected, the system efficiency would 

improve by around 4-5%, bringing the value closer to the manufacturer-stated 

efficiency value. Based on this observation it is expected that the efficiencies 

claimed by the manufacturer were derived from testing without solar cylinders, 

which is a widely accepted industry standard218.  

 

Based on the f-chart calculations, Figure 11.8 shows a comparison between the 

expected maximum hot water generation from the systems and the demand for hot 

water energy. For both cases the expected hot water demand throughout the year 

is around 12.5GJ, which equates to about 290kWh per month. 

 

 

Figure 11.8: f-chart based output in relation to hot water demand 

 

Figure 11.8 shows that both systems are unable to satisfy the monthly hot water 

demand, even during the summer months. The flat panel system in particular is 

expected to have practically zero energy output during winter months. The 

discrepancy between demand and generated output may be reduced by increasing 

the size of the system, but it will be virtually impossible to satisfy 100% of the hot 

water demand, as this would require consistent solar radiation throughout each 

month and an extremely large and well-insulated storage cylinder.  
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Figure 11.9 shows the average monthly efficiencies for both systems based 

on f-chart calculations, confirming that the evacuated tube system has much better 

performance during the colder winter months compared to the flat panel system. 

 

 

Figure 11.9: Comparison of system efficiency between flat panel and evacuated 

tube system 

 

11.3 Measured Output from EcoSmart Systems 

 

Both solar thermal systems at the EcoSmart village experienced problems with the 

heat meters as described previously. The energy that was measured by the 

evacuated tube control panel in the period from 28th October 2006 until 29th 

October 2007 is shown in Table 11.K. The resulting overall system efficiency was 

calculated using equation (11.11).  

 

 

Table 11.K: Measured energy generation from evacuated tube system 

Month Energy output (kWh) Efficiency 

Nov-06 26 24.8% 

Dec-06 15 24.5% 

Jan-07 18 19.8% 

Feb-07 44 26.8% 

Mar-07 60 20.2% 

Apr-07 97 22.5% 

May-07 63 20.8% 

Jun-07 72 18.6% 

Jul-07 56 20.2% 

Aug-07 63 21.0% 

Sep-07 41 16.4% 

Oct-07 33 19.4% 

Annual 588 21.3% 
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IButton sensors were used to record temperature data from the flat panel system 

as the heat meter problems could not be resolved. In combination with the flow 

rate of the system, this allowed a calculation of the estimated energy that is being 

transferred to the water cylinder using equation (11.12). This data is available for 

the period between June and October 2007, and results are shown in Table 11.L.  

 

 

)( inept TTmCQ         (11.12) 

 

 

 

Table 11.L: Comparison of f-chart estimate and measured generation from heat 

meter and IButtons 

 Windermere (Flat Panel) (kWh) Alderney (Evacuated Tube) (kWh) 

 f-chart IButton f-chart IButton Meter 

Jun-07 102.4 53.5 150.1 87.3 72 

Jul-07 64.1 54.8 108.9 61.7 56 

Aug-07 72.9 58.7 118.3 60.1 63 

Sep-07 56.5 53.7 99.9 46.8 41 

Total 295.9 220.7 477.2 255.9 232 

 

 

Table 11.L shows that the energy values which were calculated based on IButton 

temperature readings for the evacuated tube system are close to the measured 

values from the heat meter. The difference to the predicted f-chart estimates can 

be expected due to losses incurred by the interaction between solar panel, hot 

water storage and auxiliary heat control that is not accounted for by the f-chart 

method. The measured annual output of the evacuated tube system was 588 kWh. 

This suggests that the use of temperature data and equation (11.12) will give a 

reasonable estimate for the performance of the flat panel system.  

 

The f-chart results can be used to scale the output up for the entire year. To 

do this, the percentage difference between f-chart and IButton results is found 

during the summer months, and then compared to the annual difference. This was 

found to be very similar at around 47%. The same method can now be applied to 

the flat panel system. The difference between f-chart estimate and the summer 

IButton values is 25%, suggesting that the annual output is also around 25% below 

the f-chart estimate. Based on this method, the annual yield of both systems is 

shown in Table 11.M. 

 

Table 11.M: Annual yield of EcoSmart Village solar thermal systems 

System Annual yield (kWh) 

Flat Panel (Windermere) 462* 

Evacuated Tube (Alderney) 588 
*based on 4 months of measured data 
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The results show that the flat panel system has performed much better than the 

evacuated tube system relative to its expected performance. However, it must be 

stressed that the results for the flat panel system can be expected to contain a high 

margin of error. 

 

 It is suspected that the main reason for this difference in performance can 

be related to the system control. In both cases additional heat energy was provided 

by a condensing gas boiler. Table 11.N provides an overview of the gas 

consumption for both dwellings, giving values independently recorded manually by 

the staff at the EcoSmart village and by the data logger.  

 

 

 

Table 11.N: Gas consumption for Alderney and Windermere homes 

 
Alderney 

Evacuated Tube (kWh) 

Windermere 

Flat Panel(kWh) 

 Logger Manual Logger Manual 

Nov-06 192 190 120 115 

Dec-06 213 216 142 141 

Jan-07 222 220 139 137 

Feb-07 201 198 122 122 

Mar-07 215 213 106 114 

Apr-07 160 160 42 39 

May-07 133 120 59 58 

Jun-07 72 72 29 28 

Jul-07 95 96 31 33 

Aug-07 67 68 23 23 

Sep-07 107 109 43 38 

Oct-07 130 132 61 64 

Annual 1807 1794 917 912 

 

 

Table 11.N shows that the gas consumption of Alderney (evacuated tube) was 

approximately twice as high as the gas consumption of Windermere (flat panel). 

This seems to indicate that the boiler was running much more often in Alderney, 

which seems odd considering that the house contains a larger and more efficient 

solar thermal system. A possible reason for this is the temperature control of the 

water cylinder.  

 After examining the return temperatures and gas consumption in more 

detail this confirmed that the heating control system of Alderney was set to 

maintain the water temperature at the bottom of the water cylinder at a minimum 

of 30°C, using the boiler if required. This leads to a much higher base temperature 

which needs to be overcome by the solar thermal system, meaning that the 

temperature in the collector circuit would have to reach a minimum of 37°C before 

any heat exchange can take place. The higher base temperature also results in 
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lower transmission efficiencies through the heat exchanger. For the flat panel 

system this was not the case, base temperatures were generally much lower. As an 

indication, the average return temperatures for flat panel and evacuated tube 

systems over the same period were 23.1°C and 33.3°C respectively.  

 When analysing the gas consumption patterns from both houses, it also 

confirmed that both boilers were set to come on for 30 minutes in the morning and 

evening of each day, regardless of the temperature of the water cylinder. This 

means that it is unlikely that either system was able to generate energy before 

noon, when the hot water was usually drawn off. 

 

 

Energy consumption 

 

While the solar thermal systems are assumed to generate energy that is 

entirely carbon free, it must be considered that these active solar thermal systems 

rely on an electric pump to move the heat transmission fluid through the heat 

exchanger. The evacuated tube system was equipped with a 60W pump and the flat 

panel system used a 30W pump. The power demand was confirmed by independent 

electricity measurements. Table 8.B shows a summary of running time as well as 

overall electricity consumption of both solar thermal pumps.  

 

Table 11.1.4.O: Energy consumption of solar thermal pumps 

 
Flat panel 

(Windermere) 
Evacuated tube 

(Alderney) 

Pump rating 30 W 60 W 

Annual runtime 835 hrs 592 hrs 

Runtime per kWh heat 1.81 hrs 1.01 hrs 

Electricity consumption per kWh heat 54.3 Wh 60.6 Wh 

Total annual electricity consumption 25.1 kWh 35.5 kWh 

 

 

With 54-60Wh electricity required for every kWh heat, effectively giving a 

coefficient of performance of 17-19, it can be said that the energy required for the 

pump is relatively small, and based on this can be neglected for all further 

calculations.  
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11.4 Domestic Control Systems 
 
 

As the heat meters of the solar thermal systems were not working properly, the 

data that was gathered for the two systems is not particularly robust. In order to 

verify this data, and to gain more experience from analysing other systems, two 

domestic control systems were found and monitored over extended periods of time. 

These will be referred to as „Test System 1‟ and „Test System 2‟. In addition to this 

a third system, referred to as „Control System‟, was set up in a controlled 

environment in an attempt to find out how exactly the solar thermal systems can 

be improved.  

 This section provides detailed information about these additional systems 

and the strategy which was used to analyse them. Initial conclusions will be drawn 

from the Solar Thermal set-up in a controlled environment. 

 

11.4.1 Methodology 

 
 

The two domestic control systems that were monitored are located in Manchester. 

These systems are installed in detached dwellings, each with a test family 

occupying the house and using hot water as they normally would throughout the 

test period. Both families have kindly volunteered to allow data to be collected at 

their homes. While this provides by no means a controlled laboratory set-up, it 

does provide a valuable insight into what happens during normal every-day use of 

the systems. This means that while data availability and accuracy is limited, the 

systems can be tested under real-life conditions. The most robust and 

comprehensive data was obtained from Test System 1, which will be used to 

validate the solar thermal model later on. 

 Another system was set up under controlled conditions at the University of 

Manchester. Based on this, conclusions about the practicalities of solar thermal 

installations will be drawn.  

 

11.4.2 Test System 1 

 
 

The home of test family 1 is located in south Manchester, near Manchester Airport. 

It is occupied by a family of 2, who can be described as energy conscious. They are 

generally careful not to waste hot water, and use most of their water in the 

morning, usually before any direct solar radiation reaches the west-facing solar 

collector. They are aware of the interaction between solar heat and supplementary 



173 
 

heat from the boiler, and try to keep central heating turned off for as long as is 

comfortable during the spring, summer and autumn seasons. 

The solar thermal system, an evacuated tube model, has been in operation 

for about 2 years prior to monitoring, and required considerable effort to get 

working properly. Despite being supplied by an established company, Vaillant, the 

installers were reportedly inexperienced. Initially, a wrong solar cylinder was fitted 

which later had to be replaced. Also, temperature sensors were not fitted correctly, 

meaning that the energy output could not be determined using the appropriate 

function on the control panel. The control panel was later replaced by the supplier, 

and additional temperature sensors were installed to allow an energy display by the 

control panel. Some of the design parameters of the Vaillant vtk570 system are 

given in Table 11.P. 

 

Table 11.P: Design parameters of Test System 1 

Latitude 53.3° 

Longitude -2.3° 

Collector type Evacuated tube 

Collector inclination 30° 

Collector orientation 250° (W/SW) 

Aperture area 3.0m2 

Zero-loss efficiency 64.2% 

 

 

Due to the nature of this set-up, it was not possible to measure several important 

parameters independently and accurately, including: 

- Direct solar energy generation 

- Hot water consumption 

- On-site weather data 

- Exact flow rate of the solar system 

 

Instead, the following measurements were taken: 

- Temperatures at several points on the system pipe-work and cylinder at 10-

minute intervals, available for 12 months with interruptions 

- Cumulative energy reading from control panel 

- Average hot water draw-off for a typical bath, etc 

- Weather data from a weather station in close proximity (approximately 3 

miles) to the test site 

- Flow rate from a flow-meter included in the pipe-work, with estimated error 

of ±0.25L/min 

 

Figure 11.10 shows a schematic diagram of the solar cylinder, including positions of 

temperature sensors. To measure and record the temperature conveniently, 
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IButtons were used. These were set to record at 10-minute intervals to provide a 

balance between data density and not disturbing the test family too much. 

 

 

Figure 11.10: IButtons on domestic solar thermal system (test family 1) 

 
 

As shown in Figure 11.10, IButtons were installed on every inlet and outlet point of 

the cylinder, as well as at the top and bottom of the cylinder, where cut-outs in the 

insulation had previously been made to attach sensors for the control panel. 

However, it proved later on that the 10-minute recording interval was too long for 

some of the readings. For example, the draw-off and cold water inlet sensors would 

not pick up a draw-off event that lasted, say, 5 minutes. The copper pipe with its 

very high thermal conductivity quickly resumed ambient (or cylinder) temperatures 

after the draw-off had been completed. Similarly, the solar flow and return sensors 

can only be considered accurate when energy transfer from the collector was 

uninterrupted and lasted longer than 10 minutes. The most useful and accurate 

temperature readings were found to be those giving top and bottom cylinder 

temperatures.  

 The boiler top-up temperature was measured to identify when heat was 

added by the boiler. Measuring the boiler return temperature was obsolete as the 

flow rate of this circuit was unknown.   
 

 

Test System 1 Validation 

 

The data from test system 1 will be used to validate the Solar Thermal model. 

However, before this can be done, the accuracy of this data must first be verified. 
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While there is little that can be done to validate the accuracy of the control panel 

figures, the use of the IButton sensors can be validated to some extent.  

During a sunny day, the IButtons were set to record at 1-minute intervals. 

Measured amounts of hot water were drawn off, and temperature readings from the 

control panel were noted to compare with the IButton data. The control panel uses 

calibrated thermocouple sensors that are placed inside specially designed pockets 

that protrude into the cylinder, as well as similar sensors that are firmly attached to 

the pipe work of the solar circuit.  

The IButton values at 1-minute intervals are shown in Figure 11.11, while 

Table 11.Q provides a comparison with the respective control values recorded from 

the control panel. 

 

 

Figure 11.11: Temperature variations of 1-minute IButton sampling test, showing 

draw-off events 

 

Table 11.Q: Control temperatures and respective IButton values, with reference to 

Figure 11.11 

 Bottom cylinder Top cylinder Solar flow Solar return Special 

Min. IButton control IButton control IButton control IButton control Occurrence 

6 38 41 43 45 60 61 36  5L draw-off 

20 43 45 44 46 52 52 42 40  

39         5L draw-off 

42 43 46 44 46 51 48 42  cloud (3 min.) 

64 30 31 44 46 45 46 31 32 23L draw-off 

70         cloud 

 

 

From Figure 11.11 it can clearly be seen when hot water is drawn off, as the 

bottom cylinder temperature drops, which causes the pump of the solar circuit to 

come on. The relatively high rate of heat transfer means that the bottom 

temperature quickly resumes a temperature equivalent to the top of the cylinder, 
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before the solar pump is switched off again after a cloud begins to shield the direct 

beam radiation. After a further draw-off the temperature difference between the 

bottom of the cylinder and the collector becomes great enough to bring the pump 

on again, which transfers heat until another cloud comes in at 17:40 (after 70 

minutes) and the sun is about to set.  

 

Table 11.Q shows that the most of the IButton readings are very close to the 

control temperatures, although they generally appear to be slightly lower, which 

can be expected considering they are attached to the outside of the pipe using blu 

tack. The IButton values were adjusted to account for this error, based on methods 

outlined in section “6.3.2 - IButton sensors”. 

The comparison of IButton values to the thermocouples and their response 

to controlled events confirm that the data gathered from test system 1 is 

sufficiently accurate to validate the solar thermal model. 

 

11.4.3 Test System 2 

 
System 2 is located in a detached home in Wilmslow, south Manchester. Test family 

2, a family of 2 persons, are often away from their home during the week. With this 

in mind they opted for a small system, with an aperture area of 2.3 m2 and a 

storage cylinder of only 100L. When they are at home they use most of their hot 

water early in the morning, usually between 6:00-7:00, for 2 showers. It is 

reported that the storage capacity of the cylinder is barely sufficient to provide 

enough water for the showers. As a result of this, the boiler is set to supplement 

heat to the storage cylinder between 5:00 and 7:30 whenever the temperature 

half-way up the cylinder drops below 50°C. This means that the boiler typically has 

at least 30 minutes to heat the cylinder up to 50°C, only leaving an estimated 

volume of about 35L to be heated by the solar thermal system throughout the day. 

In the evening the boiler is set to come on again between 18:00 and 23:00. Figure 

11.12 shows a schematic diagram of the hot water cylinder with attached IButton 

sensors. 
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Figure 11.12: Test system 2 hot water cylinder and sensor arrangement 

 

 

Details for the solar thermal system are given in Table 11.R. No complications 

during system installation were noticed by the test family.  

 

Table 11.R: Design parameters of Test System 2 

Latitude 53.3° 

Longitude -2.3° 

Collector type Evacuated tube 

Collector inclination 45° 

Collector orientation 225° (SW) 

Aperture area 2.3m
2
 

Zero-loss efficiency 64.2% 

 

 

The metering strategy adopted for this system is identical to that of test system 1, 

with temperature sensors (IButtons) installed in locations shown in Figure 11.10. 

Unfortunately no energy measurements were available from the control unit, as the 

control panel used by the system requires a flow meter to be connected in order to 

determine the energy output using the exact flow rate. The data that is available 

for analysis includes: 

 

- Temperatures at several points on the system pipe-work at 10-minute 

intervals, as for test system 1, available for 4 months with interruptions 

- Hot water draw-off for two morning showers, equal to cylinder capacity 

- Weather data from a weather station approximately 4 miles from the test 

site 

- Pump output power is known to be 50W 
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While the description of the family‟s hot water consumption is easily quantified and 

modelled, the irregular times of absence from the house are much more difficult to 

model. As an added complication, the system uses a variable speed pump. This 

makes any modelling of this system inherently inaccurate. The flow rate profile that 

is used by the control panel is shown in Table 11.S: 

 

Table 11.S: Flow control profile based on temperature difference between cylinder 

and collector 

Control temperature difference (°C) Pump power 

6 30% 

10 40% 

12 50% 

14 60% 

16 70% 

18 80% 

20 90% 

22 100% 

 

 

It was attempted to model this pump power variation based on temperature 

difference in order to accurately represent the flow rate variation. However, this 

attempt failed, as too many circular references were created. The flow rate is 

required to estimate the temperature output of the panel, while at the same time 

the flow rate depends on the temperature difference that is measured between the 

collector and the hot water cylinder. Instead of modelling the variation, a constant 

flow-rate of around 1L/min was assumed, which equates to operation at around 60-

70% power. 

 

The hot water usage profile of test family 2 is estimated to be: 

 

- 100L draw-off in the morning, between 6:00-7:00 

- approximately 20L draw-off in the evening, at around 22:00 

 

The transfer liquid used in the solar circuit is not based on ethylene glycol as all 

other systems that were analysed, but on propylene glycol. The transfer liquid is 

called Tyfocor LS219, has density of around 1.03Kg/m3, and with 3700KJ/Kg°K a 

slightly higher specific heat capacity than ethylene glycol at 45°C.  
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11.4.4 Control System Set-up 

 
 

After the experiences at the EcoSmart village it was decided to set up a solar 

thermal system in a controlled environment to provide more robust data for more 

flexible analysis.  

It was also found that the solar irradiance on a vertical plane shows much 

less variation throughout a typical year than that seen on a 45° plane. Applying 

solar thermal systems to vertical surfaces would not only free up valuable roof 

space for potential PV application, but if the output is more consistent throughout 

the year it would make sizing of the panel much easier. Figure 11.13 shows the 

monthly variation of solar irradiance on a 45° plane compared to that on a vertical 

plane.  

 

 

 

Figure 11.13: Comparison of Irradiance on a 45° inclined plane and vertical plane 

(source: PV GIS) 

 

Hot water requirements of a typical household can be assumed to be slightly 

greater during winter than during summer months, with average seasonal 

variations of around 30%220. Figure 11.13 shows that the irradiance variation on a 

vertical plane is more closely matched to this distribution than that on an inclined 

plane. 

 

Two identical flat panel systems were set up on the roof of a University of 

Manchester building to allow a more detailed and controlled study, and to assess 

the merits of a vertical system in detail. The flat panel systems had previously been 

used at the EcoSmart village and were sized 1m² each.  
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 This set-up was planned and constructed in collaboration with another 

researcher, Rebecca Warren, who is investigating the potential risk of legionella 

bacteria forming within water cylinders that are used with solar thermal systems. 

The set-up plans were independently reviewed and approved by experts at SKM 

Consulting Ltd.    

The controlled set-up was intended to replicate realistic conditions for 

domestic solar thermal systems, while also trying to create more favourable 

conditions to generate a higher energy output. To achieve this, an insulated shed 

was built on the flat roof of the building in order to replicate an insulated loft space. 

The panels are attached to the south facing wall (vertical) and roof (inclined at 45°) 

of this shed, and three water cylinders, each with a capacity of 200 litres, are 

installed inside. Each panel is connected to one of the water cylinders, while a third 

cylinder will be used to provide control reference readings. A simplified layout of 

this set-up is shown in Figure 11.14. 

 

 

 

Figure 11.14: Simplified layout of solar thermal shed 

 

 

Custom made cylinders were offered free of charge to the research team by a 

manufacturer of domestic water cylinders who was interested in supporting the 

research. These cylinders consisted of a standard stainless steel cylinder with 200L 

capacity, with an immersion heater inserted above the solar coil approximately one 

third of the way up the cylinder. On the control cylinder, the immersion heater is 

placed at the bottom of the cylinder. They are supplied with 8 sensor pockets that 
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protrude into the cylinder and provide space for thermocouples. Figure 11.15 shows 

the layout of the cylinders. 

 

 

Figure 11.15: Layout of solar thermal cylinders 

 

 

Hot water is automatically drawn off from the cylinders at regular intervals using 

motorised valves to simulate showers and baths. The immersion heater was placed 

above the solar heat exchanger to allow a certain amount of cold water to be 

available for solar heating, which is not affected by the immersion heater. The 

immersion heaters will be set to heat the cylinder temperature to 60°C once per 

day, which is a safety precaution to kill off any bacteria that may have accumulated 

in the cylinder.  

 

   

Results 

 

This set-up has proved to be much more difficult than initially anticipated. Work 

began in April 2009, with the shed scheduled to be completed by June, and 

plumbing by August 2009. While the construction of the insulated shed went well, it 

took slightly longer than scheduled and was completed by the end of July 2009. The 

plumbing side of the installation revealed many of the potential complications with 

setting up solar systems and continued well beyond the scheduled deadline. 

When the custom made water cylinders arrived, all three had immersion 

heaters installed at the bottom, not as specified above the solar coil on the solar 

cylinders, and at the bottom of the control cylinder. The manufacturer attempted to 

solve this problem by on-site insertion of new immersion heaters, which proved to 
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be a difficult task for the stainless steel cylinders. After many unsuccessful attempts 

the cylinders continued to leak, and some thermocouple pockets were also found to 

be leaking under pressure. After spending 3 months trying to fix the cylinders they 

were abandoned, and new cylinders were ordered from a different manufacturer, 

incurring a further 6 week delay for delivery. 

After further delays from adverse weather conditions the new cylinders were 

installed and connected by plumbers who are fully trained and certified to carry out 

solar system installations. After the systems were pressurised several leaks were 

discovered on the solar side. The original connections to the solar panels, which 

were left in-tact by the research team, had developed slow leaks. After taking the 

connections apart, it was found that these were fitted with non-solar rated rubber 

washers. The plumbers advised that only solar rated washers should be used, which 

are designed to cope with the high temperatures that can occur in the solar circuit.  

After several days of operation, it was noticed that despite experiencing low 

elevation sun during March 2010 the vertical system was not performing as well as 

the inclined system. Eventually it was discovered that the system had been 

connected the wrong way around – with the return pipe from the cylinder leading 

into the top of the collector, and flow pipe to the cylinder coming out of the bottom 

end. As the control panel temperature sensor was attached to the top of the 

collector, this means that whenever the collector heated up enough for the pump to 

switch on, the cold temperature of the return liquid meant that it switched off again 

shortly thereafter. After several weeks the plumbers were able to rectify the 

mistake.  

It was also found that the solar panels, in particular the vertical panel, had 

developed considerable amounts of condensation on the inside of the glass cover. 

On some days the area covered by condensation exceeds 50%.  

 

 

Conclusions 

 

Despite not producing data that is robust enough for analysis, this set-up was very 

successful in showing some of the many problems that can arise during Solar 

Thermal system installations. 

 

- Even well trained and fully certified plumbers who specialise in solar system 

installations make mistakes that result in poor performance. When installing 

the system in a domestic home, the particular mistake made during this set-

up (connecting the panel the wrong way around) would have been difficult 

to notice. Rigorous testing and commissioning of solar installations is 

essential. 
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- If (cheaper) non-solar rated washers are used to connect the solar panel, 

these may deteriorate after some time due to extreme temperatures and 

cause the system to leak and lose pressure. Again, this may not be easily 

noticed in a domestic situation. 

 

- Receiving wrong specification cylinders was experienced during this set-up, 

and was also experienced by test family 1 as described previously. If a 

family with little or moderate technical understanding receives a cylinder 

with an immersion heater fitted at the bottom, instead of above the solar 

coil, they may not notice and experience poor performance from their solar 

system. 

 

- Flat panel systems appear to be non-reusable. When uninstalling them, 

moisture can get into the insulated space, causing condensation on the 

inside of the glass cover. This may also occur on systems that are poorly 

designed and experience corrosion. 
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11.5 Solar Thermal Model 
 

 

Considering some of the significant discrepancies between expected and measured 

performance encountered for the monitored Solar Thermal systems it is imperative 

that a robust model is used to reveal the reasons for this, and to show how the 

systems can be improved. This model will need to consider the interaction between 

the solar panel, the hot water cylinder and auxiliary heat systems to provide an 

accurate simulation of the Solar Thermal systems.  

 After reviewing existing literature, some models were found that dealt with 

solar thermal panels221,222,223 and hot water cylinders224 individually, while a recent 

model also considered the interaction in detail225. However, all models that were 

found are based on the TRNSYS platform, and no validated model was found that 

encompassed an interaction of all three subsystems identified previously.  

 

11.5.1 Modelling Options 

 

Several options were considered for solar thermal system modelling.  

 

1. f-chart method: This method of solar thermal system modelling, used to 

provide initial estimates, is very generic and somewhat inflexible. It relies on 

average monthly or average daily values, making it difficult to create a 

dynamic model. While it is easily applied to systems for which very little 

data is available, its main weakness is that it does not account for the 

interaction with storage or control accurately. 

 

2. Dynamic model based on BS EN 12975: The British Standard EN 12975 

outlines testing procedures and energy calculations for solar thermal 

systems. Some of the methodology is similar to the f-chart method, but is 

much more flexible as „real-time‟ data can be used. Using this method would 

provide a complex but flexible dynamic model. 

 

3. RETScreen: This freely available tool was developed with contribution from 

many experts from academia, industry and government. It is based on the 

two methods introduced previously, the Utilisability method for cases 

without storage, and the f-chart method for cases with hot water storage. It 

was previously deduced that the f-chart method is prone to over-estimating 

the energy output due to various reasons. This is also reflected in the 

RETScreen analysis. In a validation exercise conducted by RETScreen, for 
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which the simulation was compared to measured results from 10 flat-panel 

systems in Canada, RETScreen was shown to overestimate the annual yield 

by 15-29%226. 

 

4. TRNSYS: This is a state-of-the-art modelling tool that has evolved over 

several decades. It is highly regarded by science and industry alike, with 

continuous development through many experts worldwide. Several existing 

models are available for the platform, some also including models for 

cylinders. However, the software was unavailable due to its price tag of 

$2250 for an educational license.  

 

5. T*Sol: This is a solar estimation tool that has become highly regarded 

among European solar industry. It is able to calculate the solar fraction for 

solar systems using flexible parameters, by making use of its own weather 

data. However, with it being a commercial application, the methodology 

applied to generate the output estimates is not revealed to the general 

public. A demo version of T*Sol Express was obtained for trial purposes, but 

it was decided not to purchase the full version at £130.  

 

 

After considering all options, it was decided to create a model for the solar collector 

based on BS EN 12975. This means the model can be flexibly designed to 

incorporate all aspects that are important to accurately simulate the solar thermal 

systems that were tested. This will be combined with a second model for a common 

hot water (dual coil) storage cylinder including stratification in 3 layers, with 

consideration for pipe losses and auxiliary heat. It was considered important to 

create a model of a stratified cylinder, as stratification combined with a relatively 

low collector flow rate can lead to significant improvements in transmission 

efficiencies, up to 38%227. 

The model will be created in MS Excel, which provides a flexible and 

powerful platform that allows viewing and editing on any system equipped with MS 

Office. To balance accuracy and practicality of the dynamic model, time intervals of 

10 minutes were chosen.  

 

11.5.2 Solar Collector Model 

 

 
According to BS EN 12975, results that have been obtained from testing and 

equation (11.13) can be used to compute the collector output. The methodology 

that was adopted for Solar Thermal panel modelling shown by equations (11.13) to 

(11.20) is described in detail in the BS EN 12975 documentation218. 
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The term (G”) is the net irradiance that also accounts for radiation losses, 

determined by equation (11.14). 
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Terms (ε), the emittance of the collector, and (α), its absorptance, are given by the 

manufacturer as 0.06 and 0.935 respectively. The term (EL) refers to the long-wave 

radiation in the collector plane.  

 

The long-wave radiation on collectors inclined at 45º or less is given by equation 

(11.15). 
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The term (εs), the emittance of the sky, can be found by considering the dew point 

temperature. This is shown in equation (11.16). 
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Having found G” for equation (11.13), equation (11.17) is used to determine (Q). 

Subscripts „b‟ and „d‟ refer to beam and diffuse components respectively. 
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Equation (11.17) is a generalised model that covers all types of solar thermal 

collectors. Evacuated tube type collectors experience close to zero convection 

losses and are not affected by wind, therefore terms including wind speed (such as 

coefficients c6 and c3) can be neglected. It is not mandatory for manufacturers to 

provide coefficients c4 and c5 in their technical data, so for general modelling 

purposes these terms will be neglected as well. Hence the simplified equation 

(11.18) is used for modelling purposes. 
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When the mean collector temperature is equal to ambient temperature, the product 

of transmittance and absorptance at normal incidence, and the efficiency correction 

factor, is equal to the maximum efficiency. 

 

 enRF )(0     when  ma TT       (11.19) 

 

To account for the situation where the solar irradiation is not normal (or within 2%) 

to the collector plane, an angle modifier is introduced to account for additional 

reflection losses at shallow angles, as shown in equation (11.20). 

 

   ene K          (11.20) 

 

The possibility of shading of the collector is also accounted for by the model. After 

specifying the boundary angles in a horizontal plane (azimuth) and vertical plane 

(elevation), these are compared to the solar azimuth and elevation angles for each 

time step. If the sun is within these specified boundaries, all direct beam values for 

the particular time interval are discarded. The diffuse component is assumed to 

remain unchanged.  

 A sky-view factor for the diffuse component is also introduced, shown by 

equation (11.21), where (β) refers to the inclination angle. This factor is then 

multiplied by the diffuse component for each time interval. 
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Shading caused by adjacent vacuum tubes was neglected for this model, as other 

research197 showed this only becomes significant at high angles of incidence of 70-

80º. Performance reduction from dust accumulation was also neglected. Other 

research228 concluded that regular precipitation results in negligible effects of dust 

accumulation.  
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11.5.3 Control System and Heat Transfer Model 

 
 

An IF statement (“is temperature of collector greater than bottom cylinder 

temperature plus control temperature (for example 7°C)?”) is used to determine 

whether heat transfer from collector to cylinder is taking place or not.  

 

- If no heat transfer is taking place, the collector remains in a stagnant state 

and the absorbed energy is stored within the collector, raising its 

temperature. 

- If the answer is yes, a second IF statement is used to determine whether 

the collector was previously in stagnant state or if heat transfer had taken 

place. 

 

o If heat transfer had taken place in the previous time interval, then 

the average temperature of the transfer liquid is calculated based on 

the solar energy that is absorbed during the current time interval.* 

o If the collector was in stagnant state previously, then the transfer 

temperature is calculated based on the heat stored in the collector up 

to this time, plus the solar energy absorbed during the current 

interval.  

 

*Note: This makes the model sensitive to heat transfer rate. If the flow rate is high, 

the average temperature over the 10-minute time interval is reduced significantly. 

In real life the energy would still be transferred at a relatively high temperature, 

but the temperature would drop off rapidly, possibly causing it to return to the 

stagnant state before the 10-minute interval is over. 

 

A third IF statement is used to find out if the resulting temperature of heat transfer 

liquid exceeds the safety temperature that is specified in the solar thermal control 

panel (usually 75°C). Should this be the case, it is assumed that transfer is taking 

place at the specified safety temperature and any additional heat in the solar 

system is dispersed via the expansion vessel. The excess heat is still accounted for 

when finding the mean panel temperature so that the collector heat loss can be 

modelled accordingly.  

 

If any heat transfer takes place from solar collector to the hot water cylinder, heat 

losses from the pipe-work are deducted. Energy losses in the „flow‟ pipe are found 

using pipe dimensions and estimated U-value (U=2.5 W/m2K), using equation 

(11.22). 
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The temperature drop over the length of the pipe can be determined using equation 

(11.23). 
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11.5.4 Cylinder Model 

 
 

In order to account for stratification effects which take place within the cylinder, it 

is modelled as 3 different vertical sections, Layers 1, 2 and 3, shown in Figure 

11.16.  

 

 

Figure 11.16: Schematic diagram of hot water cylinder showing 3 modelled layers 

 

 

Heat from the solar system is added to layer 1. The temperature of layer 1 at the 

end of the time interval is found the energy balance shown in equation (11.24).  

 

offdrawtranslossgaininitialLayer QQQQQQ 1    (11.24) 
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While the term ( gainQ ) refers to the energy transferred from the solar system and 

( initialQ ) is the energy contained by layer 1 at the start of the time interval, ( lossQ ) 

refers to thermal losses based on physical properties of the cylinder and its 

insulation. This is calculated using equation (11.22). Further energy losses are 

experienced when heat is transferred to the next layer, and when hot water is 

drawn off from the top and replaced by colder water entering the bottom. These 

two terms are referred to as ( transQ ) and ( offdrawQ  ) respectively.  

 
The rate of temperature change of the particular layer is calculated using a 

differential equation where rate of energy out is subtracted from rate of energy in. 

This is done using equation (11.25), which determines the resulting temperature at 

the end of the time interval. The term (600s) refers to the number of seconds of 

the time interval. The rates of heat gain or loss are measured in Watts, multiplying 

by time will result in a value for energy, measured in Joules.  
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Equation (11.25) is based on the differential equation shown below in equation 

(11.26). The method of breaking a differential equation down into small step 

changes has been developed and justified by Euler, describing the integration of 

ordinary differential equations229.  
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This temperature is then compared to the temperature of the next layer, layer 2. If 

the temperature is higher than the layer above, the energy difference is transferred 

to the next layer. In this case the energy difference is referred to as ( gainQ ) for 

layer 2, and taken as ( lossQ ) for layer 1. The same interaction occurs between 

layers 2 and 3. Using this method, the top layer is always the layer containing most 

energy, while the bottom layer contains the least energy.  

 

As hot water is drawn off, the layers are used to simulate the effects of 

stratification within the cylinder by creating a layer of cold water at the bottom that 

does not mix with any warmer layers above.  
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11.6 Model validation 
 
 

Results from Test System 1 are predominantly used to provide a comprehensive 

validation of the model. The annual results will also be compared to SAP and 

RETScreen estimates. 

 

11.6.1 Finding U-value of the Storage Cylinder 

 
  

To find a U-value for the cylinder allowing the calculation of the term ( lossQ ), the 

model is based on the cylinder used by test family 1. The hot water cylinder from 

this particular system is a vented dual-coil Albion Superduty Eco AG 1350x450 with 

capacity of 180L. Figure 11.17 shows the schematic diagram supplied by the 

manufacturer Albion. 

 

 

 

Figure 11.17: Schematic diagram of solar hot water cylinder (Source: Albion 

Superduty technical documentation) 

 

After online research and contacting the manufacturer‟s sales team and technical 

support team, it was not possible to determine a U-value for the cylinder required 

to calculate the heat loss.  

The U-value of the solar cylinder can be found using measured temperature 

data from the cylinder during holiday periods, while the central heating system was 

switched off. Figure 11.18 shows the variation of cylinder temperature over a 3-day 

holiday. The U-value that is found using this method will provide the average U-

value, including losses that occur through pipe connections. These losses often 

make up a large proportion of the total losses from insulated cylinders. 
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Figure 11.18: Variation of average temperature of solar cylinder during holiday 

period 

 

The temperature change and rate of heat loss can be found from the data 

presented in Figure 11.18. Equations (11.27) and (11.28) are used to relate this to 

the U-value of the cylinder. 
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Using equations (11.27) and (11.28) with 25°C ambient temperature, cylinder area 

of 2.11m2 and the measured over-night temperature losses, the U-values 

calculated for the 3 nights are: 

 

 3rd-4th April ‟10: U-value = 2.86 W/m²K 

 4th-5th April ‟10: U-value = 2.90 W/m²K 

5th-6th April ‟10: U-value = 2.90 W/m²K 

 

Mean U-value = 2.89 W/m²K 
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11.6.2 Steady-state Validation of Cylinder Model 

 
 

Figure 11.19 shows the temperature variation of the cylinder model under steady-

state conditions. The starting cylinder temperature is equal to the ambient 

temperature of 25°C. Heat is added at a steady input temperature of 40°C, 

assuming a flow rate of 1L/min, until the temperature of the cylinder levels out. 

The heat input is then removed and the cylinder is left to cool through conductive 

heat losses.  

 

 

 

Figure 11.19: Temperature variation of cylinder model under steady-state 

conditions 

 

As expected the temperature of the model shows an exponential increase with 

time. As heat is added, the energy is passed vertically up the cylinder through the 3 

modelled layers. While there is little variation between top and bottom 

temperature, there are several step changes, which can be explained by the 10-

minute modelling interval. Only allowing one heat exchange between layers per 

interval, heat getting into the bottom of the cylinder effectively takes 20 minutes to 

reach the top layer, while at the same time the cooler water from the top takes 20 

minutes to reach the bottom layer by modelled convection. This also causes a slight 

time lag between layers if heat is added at high rates, and it means the cylinder 

can never quite get to 40°C.   

As the cylinder cools, there is again an exponential temperature variation 

with time. The top layer takes considerably longer to cool down to ambient 

temperature (about 12 days after the heat source is removed, compared to only 7 

days for the bottom layer). Again, this shows that the modelled convection between 
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the layers works well. The time constant230 of the hot water cylinder can be 

determined using equation (11.29). 
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For the test system 1 cylinder, the time constant is equal to 48.1 hours. This means 

that, in theory, after 48.1 hours the cylinder should have given off 63.2% of its 

energy to its surroundings. After 2 days the model shows an average cylinder 

temperature of 30.5°C, which is a drop of 9°C assuming it started off at 39.5°C. 

Considering the initial 14.5°C difference between cylinder and surroundings, the 

cylinder has lost around 62.5% of its heat, confirming that the modelled heat loss is 

fairly accurate.  

 

 

Figure 11.20 shows a validation for the modelled stratification effect within the 

cylinder. Temperature variations after draw-off events are shown over a 24-hour 

period for all 3 modelled layers of a 180L cylinder. The heat supply to layer 1 is 

kept constant at 40°C with flow rate of 1L/min. The simulated hot water draw-off is 

of 20L, followed by 80L, and finally 150L.  

 

 

Figure 11.20: Stratification effect after various different draw-off events from the 

modelled cylinder 

 

Figure 11.20 shows that the stratification model works well. Each layer has a 

capacity of 60L. The first draw-off of 20L means that 20L of cold water (at 15°C) 

enters the bottom layer, and the displaced volume is shifted upwards through the 

layers. Layer 1 takes a new temperature, comprising of the remaining hot water 

mixed with the 20L of cold water taken in. Layers 2 and 3 remain at their starting 
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temperature. Over the next few hours the temperature of layer 1 converges to near 

40°C, the same temperature as the layers above.  

 The next draw-off is of 80L, which is 20L more than the capacity of layer 1. 

The entire volume in layer 1 is replaced by cold water. Layer 2 becomes a mixture 

of 20L cold water and 40L hot water at the previous temperature of layer 1, while 

layer 3 remains unchanged. After layers 1 and 2 have cooled down, it can be seen 

that layer 3 is now beginning to cool down (due to cylinder heat losses), as no 

additional heat is supplied from the layers below. 

 As 150L are drawn off, the entire volume of layers 1 and 2 is replaced by 

cold water, while layer 3 becomes a mixture of 30L cold water and 30L hot water at 

the previous temperature of layer 1. As layers 1 and 2 heat up again the step 

changes caused by the 10-minute interval in the model are particularly noticeable. 

On some occasions the temperature is even shown to decrease, which is a result of 

the overlap for a particular interval of more heat being taken away from a layer (as 

it is passed up to the next one) than is being supplied by either the solar circuit or 

the layer below. The 10-minute interval and resulting time lag is also responsible 

for the lower layers seemingly having a slightly greater temperature than the top 

layers on some occasions. 

 Apart from the unavoidable step changes which do not have any effect on 

the overall outcome, the stratification effect between 3 layers after hot water is 

drawn off is shown to be modelled correctly. This is important, as it will have a 

significant effect on the overall system performance. 

 

 

11.6.3 Input Data for Model Validation 

 
 

Test System 1 will be modelled for validation purposes. The relevant parameters for 

this system are summarised in detail in Table 11.T, based on technical data 

provided231 or derived otherwise.  
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Table 11.T: Model input parameters for Test System 1 

System Latitude 53.3 ° 

  Longitude -2.3 °  

  Collector inclination 30 ° 

  Collector orientation 0 °  

Collector Aperture area 3 m
2
 

  Absorptance 0.935   

  Emittance 0.06   

  Area-related heat capacity 8.3 kJ/m
2
K 

  Zero-loss efficiency  0.642   

  Angle modifier transverse 1   

  Angle modifier longitudinal 0.9   

  Angle modifier 0.9   

  c1 coefficient 0.885 W/m
2
K 

  c2 coefficient 0.001 W/m
2
K

2
 

Cylinder Cylinder capacity 180 L 

  Cylinder height 115 cm 

  Cylinder diameter 45 cm 

 Cylinder U-value 2 W/m
2
K 

 Distance collector to cylinder 5 m 

 Pipe diameter 15 mm 

 Typical ambient temperature 25 °C 

Control Transfer flow rate 1 L/min 

  Control temperature difference 7 °C 

  Boiler control   °C 

  Safety (max temp) shut down 65 °C 

 

 

In addition to the values shown in Table 11.T, weather data was used that was 

recorded at a distance of approximately 3 miles from the test site. The weather 

data consisted of 30-minute intervals which were linearly interpolated to give 10-

minute values. Global and diffuse irradiance as well as dry bulb temperature are 

available.  

 

When asked about their typical hot water consumption, test family 1 reported the 

following: 

 A wash in the morning, around 6:30 

 A shallow bath around 8:00 

 Washing up later during the day, around 10:00 

 Some hot water use throughout the day 

 Little hot water use in the evening 

 

With this in mind, the bottom cylinder temperature values throughout April 2010 

were examined closely. As hot water is drawn off, there should be a sharp decrease 

in temperature as cold water (around 15°C) flows into the bottom of the cylinder. 

When draw off is stopped the temperature should level out again. Figure 11.21 
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shows the cold feed temperature variation throughout a sample day where several 

times of draw-off can be deduced. 

 

 

 

Figure 11.21: Bottom cylinder temperature variation on 14th April 2010 

 

Several sharp temperature drop-offs can be seen in Figure 11.21. They indicate 

that hot water was drawn off mainly in the morning and the evening. The 

temperature decrease also provides an indication to the amount of water that was 

drawn off, while it must be kept in mind that while the solar system is transferring 

heat, the temperature drop will be less than for the same amount of water drawn 

off in the evening. For this particular sample day, the deduced hot water draw-off 

pattern is shown in Table 11.U. 

 

Table 11.U: Draw-off pattern for 14th April 2010 

Time Draw-off (L) 

07:10 5 

07:40 5 

08:50 20 

09:20 5 

10:20 5 

11:30 5 

15:30 5 

18:10 15 

21:20 10 

22:00 5 

Total 80 

 

 

The data in Table 11.U coincides well with the description of typical consumption 

given by the test family for most of the day, except that quite a lot of hot water 

was used in the evening. This was not the case for most other days that were 

examined. The average daily hot water consumption during April 2010 (excluding 

holidays) was deduced to be 71L, using the method outlined above. 



 
198 

 

When considering draw-off, the temperature of the water that replaces the hot 

water must also be considered. This will be referred to as cold feed temperature. 

While average ground temperatures are around 10-12°C, some water will stagnate 

in the un-insulated copper pipe-work within the house and quickly reach internal 

ambient temperatures. This amount could easily be 5L or more before the cold feed 

temperature approaches soil temperature. It is therefore assumed that the average 

cold feed temperature throughout the modelling period is 15°C.  

 

Based on evidence from April 2010 temperature data and from estimates made by 

the test family, the hot water draw-off pattern for a typical day is estimated as 

shown in Table 11.V. 

 

Table 11.V: Typical draw-off pattern for Test System 1 

Time Draw-off (L) 

07:00 10 

08:30 30 

11:00 10 

16:00 5 

21:30 10 

Total 65 

 

 

The pattern shown in Table 11.V will be used for all further analyses of test system 

1 carried out using the model for months other than April 2010. 

   

11.6.4 Detailed Model Validation - April 2010 

 
 

As there were some gaps in all 3 data sets for Test System 1, the weather data, the 

logged temperature data and manually recorded values from the control panel, one 

month with sufficient sun and data of high quality in all 3 sets was chosen for 

validation purposes. This month is April 2010.  

After recording energy generation data from the control panel it was found 

that this data contains errors. After the control panel was replaced by the 

manufacturer, the flow rate had been reset to 2L/min. However, the flow meter 

that is installed in the pipe-work consistently reads 1L/min. It was therefore 

decided that the temperature measurements from the cylinder would provide a 

more accurate set of reference data. Using equation (11.30), the energy change of 

the cylinder, based on average cylinder temperature, was calculated. 
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The results were summed to give daily totals and converted to kWh. The energy 

gain based on cylinder temperature is given in Table 11.W labelled „Sensors 

(cylinder temp.)‟. 

A comparison between the manually recorded data and the model output is 

given in Table 11.W and Figure 11.22. For data gaps in the cumulative manual 

data, which result from periods of absence from the house, the „Daily‟ value 

represents the cumulative value over the preceding gap. „Manual data‟ refers to 

data recorded from the control panel. 

 

Table 11.W: Comparison between measured and modelled generation of Test 

System 1 

  Manual data (kWh) Sensors (kWh) Model (kWh) 

  Cumulative Daily (cylinder temp.) Solar Solar + boiler 

01/04/2010 156 2   2.4   

02/04/2010 158 2 3.0 1.1 5.1 

03/04/2010           

04/04/2010           

05/04/2010           

06/04/2010           

07/04/2010 174 16 12.4 8.8 11.0 

08/04/2010 179 5 4.6 3.0 3.0 

09/04/2010 184 5 3.6 2.8 3.2 

10/04/2010 189 5 4.1 3.1 4.4 

11/04/2010 193 4 4.1 4.4 4.4 

12/04/2010 199 6 4.5 3.7 4.5 

13/04/2010           

14/04/2010 205 6 6.0 4.2 6.3 

15/04/2010           

16/04/2010         0.0 

17/04/2010 223 18 14.3 10.2 11.3 

18/04/2010 224 1 1.9 2.0 2.0 

19/04/2010           

20/04/2010 229 5 4.5 3.7 4.1 

21/04/2010 234 5 5.3 4.0 4.0 

22/04/2010           

23/04/2010           

24/04/2010           

25/04/2010           

26/04/2010 253 19 16.9 13.5 13.5 

27/04/2010 258 5 3.8 3.7 3.7 

28/04/2010 260 2 2.4 2.8 2.8 

29/04/2010 261 1 1.2 0.6 0.6 

30/04/2010       2.3 2.3 

Total*   107.0 92.6 74.0 83.9 
*Total does not include 30th April as no comparative data is available 
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When comparing the manual readings taken from the control panel to the values 

calculated using cylinder temperatures, it becomes apparent that the error is far 

less than the 100% that might be expected from doubling the flow rate. The only 

other heat source to the cylinder is the boiler top-up when top cylinder temperature 

drops below 45°C, which is observed to rarely come on during April 2010. In fact, 

looking at the daily temperature distributions (Figure 11.23 to Figure 11.26), it 

doesn‟t appear to come on at all after the 21st of April.  

  
To account for the added energy from the boiler, the boiler top-up has been 

added to the model. Figure 11.22 below shows a comparison for April 2010 

between energy gains based on measured cylinder temperature, and modelled 

output including modelled boiler top-up. 

 

 

Figure 11.22: Measured energy input to cylinder (based on top and bottom 

temperatures) compared to modelled input including boiler top-up 

 

The percentage errors between the two data sets are as follows: 

 Average Daily error including holiday cumulative output = 19.1% 

 Monthly total error = 9.6% 

 

Using the t-test analysis, the t-value for the two sets was found to equal 0.69. The 

degree of freedom of the two data sets is assumed to be 28. Using the Student‟s t 

distribution table232, the t-value of 0.69 at 28 degrees of freedom equates to a df/p 

value of less than 0.25 (t(0.25,28)=0.683).  

 

This means that when comparing the measured results to the model, less than 25% 

of values are expected to show a statistically significant difference. Given the 

uncertainties for hot water draw-off, flow rate and distance of 3 miles from the 

weather station, this is an acceptable accuracy. 
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To further compare the model to the measured data, temperature distributions for 

4 weeks in April are shown in Figure 11.23 to Figure 11.26.  

 

 

Figure 11.23: Comparison of measured cylinder temperatures and temperatures 

exported from model for week 1; 2nd to 8th April 2010 

 

 

 

Figure 11.24: Comparison of measured cylinder temperatures and temperatures 

exported from model for week 2; 9th to 15th April 2010 
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Figure 11.25: Comparison of measured cylinder temperatures and temperatures 

exported from model for week 3; 16th to 22nd April 2010 

 

 

Figure 11.26: Comparison of measured cylinder temperatures and temperatures 

exported from model for week 4; 23rd to 29th April 2010 

 

During most days in April the temperature variations are very close. Only on a few 

days, such as the 3rd, 8th, 11th  and 13th, can significant differences be noticed. In 

particular some of the holiday periods (for example 4th to 7th April) without 

uncertain variables such as draw-off, show an excellent match between model and 

measured temperatures. To go into a bit more detail, Figure 11.27 provides an 

overview of the model and measured temperature variation for one sample day, in 

this case the 12th April, which shows an average correlation with respect to the 

other days. 
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Figure 11.27: Temperature distributions for 12th April 2010, Test System 1 

 

During the 12th of April the first hours of the day show little difference between 

model and measured temperatures. However, true ambient temperature at this 

time may have been close to or even above 30°C, whereas the model is based on 

an average 25°C. This is evident before 6am when modelled bottom cylinder 

temperature decreases at a faster rate than measured temperature, while top 

cylinder temperatures show a similar rate of heat loss.  

 The modelled temperature draw-offs for this day, which are very close to 

estimates made by the test family, seem to coincide very well with the measured 

draw-offs and resulting temperature drop at the bottom of the cylinder. For both 

model and measured distribution, heat from the solar circuit is only provided after 

11am. This also occurs on every other day, which is a good validation for the 

shading calculations included in the model.  

 The rate of temperature increase of model bottom temperature is greater 

than the measured equivalent. As this is not the case for most other days (such as 

the holiday period of 4th-7th April), it may be assumed that inaccuracies in weather 

data, brought about by the distance of 3 miles between weather station and test 

site, are to blame. The maximum temperatures reached are similar for the model 

and measured values, the model only reaches maximum temperatures earlier 

during the day. The measured overall energy gain for this day is 4.1kWh, while the 

modelled gain is 4.5kWh. 

 

For further comparison, Figure 11.28 shows the comparison of average cylinder 

temperature for the model and measured data sets.  
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Figure 11.28: Comparison of average cylinder temperature in April 2010, measured 

vs. model 

 

Again, the average cylinder temperatures shown in Figure 11.28 appear to show a 

very good correlation. This adds to the evidence that the model represents the 

performance of Test System 1 accurately, and is a validation of the correctness and 

accuracy of the model.  

 

11.7 Modelling Domestic Solar Thermal Systems 
 
 

Having verified the accuracy of the model, this can now be used to analyse the 

annual performance of all Solar Thermal systems in more detail. Test systems 1 

and 2, for which accurate control data is available, will be analysed first to 

strengthen the robust verification of the model. 

 

11.7.1 Analysing Test System 1 

 
 

The model can now be used to fill gaps in the measured data for Test System 1, 

while at the same time using the available data for further verification of accuracy. 

Monthly totals of all values throughout the recording period are shown in table 

Table 11.X. 
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Table 11.X: Estimating annual yield of Test System 1, using model and measured 

results 

  Model (kWh) Measured (kWh) 

    
Cylinder 

temperature Control panel 

Jun-09 103.2     

Jul-09 96.9 104.4   

Aug-09 96.5 93.4   

Sep-09 63.1 77.5   

Oct-09 30.8     

Nov-09 10.0   18.0 

Dec-09 4.6     

Jan-10 6.2     

Feb-10 17.7   33.0 

Mar-10 62.1   74.0 

Apr-10 77.5 92.6 105.0 

May-10 109.4   128.0 

Jun-10 116.8 120.6 162.0 

 

 

 

Table 11.X only provides values that are suitable for estimating the solar energy 

generation. While there are temperature measurements available for the cylinder 

between October 2009 and March 2010, these are not used as the central heating 

system was switched on during that period. Figure 11.29 shows a graphical 

comparison of all values presented in Table 11.X. 

 

 

 

Figure 11.29: Monthly comparison of model and measured results, Test System 1 
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From Figure 11.29 it can be seen that there is a significant difference between 

energy output measured by the control panel and the model. Keeping in mind that 

the model was successfully validated and the flow rate setting of the control panel 

was found to be wrong, a significant difference was to be expected. Through a 

combination of wrong panel settings and the placement of temperature sensors that 

does not account for pipe losses, the control panel seems to consistently over-

estimate the energy output. The average difference between monthly model and 

control panel totals is 29.2%, with standard deviation of 13.5%. 

When comparing to monthly totals based on measured cylinder temperature, the 

model values show a good correlation, apart from the months of September 2009 

and April 2010 where the model prediction is considerably lower. It has already 

been explained previously that the central heating was on for part of April 2010, 

the model validation month. To account for this, a boiler model was added and was 

able to account for the difference in energy input to the cylinder. As September is a 

seasonal transition month, similar to April, it is expected that the heating system 

being switched on part-way through the month is also the reason for the difference 

in energy added to the cylinder. A detailed examination of September results 

confirmed that this is the case, and the model can account for the difference if the 

simulated boiler is switched on after 17th September. 

 

 

When neglecting September 2009 and April 2010, the average difference between 

the model and energy based on measured cylinder temperatures is 4.5%, with 

standard deviation of 2.3%. This confirms that the model has a very acceptable 

margin of error of less than 5% based on standard deviation. Using the model, the 

useful annual solar output can now be calculated for the test site and is presented 

in Table 11.Y. 

 

Table 11.Y: Annual yield of Test System 1 

Year Useful Solar Energy 

July 2009 - June 2010 692 kWh 
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Solar fraction 

 

In order to calculate the solar fraction, the hot water demand must first be 

established. The previously estimated hot water demand was around 65L per day. 

Assuming that the cold feed temperature is approximately 15°C as justified 

previously, and hot water temperature varies between 50-60°C. This gives a 

temperature increase of approximately 40°C. Using equation (11.31) the daily hot 

water energy can now be calculated, where subscript „cf‟ refers to cold feed 

temperature. 

 

 )( cfHWfHW TTmcQ            (11.31) 

 
Using the parameters described above the energy required for daily hot water 

consumption is 10.9MJ, or 3.0kWh. Annually, this means that the test family 

consumes about 1100kWh for water heating. The solar fraction can now be 

estimated using equation (11.32) based on results from previous system modelling. 

 

 HW

Sol

Q

Q
f 

        (11.32) 

 

%9.62f  

 
 

The calculated solar fraction is rather high, considering typical solar fractions of 

domestic solar thermal systems are estimated to be in the order of 40-50%191 by 

the Energy Saving Trust. This is probably a result of the near optimum combination 

of system size, cylinder size and hot water consumption, as indicated during 

previous analysis.  
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11.7.2 Analysing Test System 2 

 

As mentioned previously, modelling of test system 2 was rather difficult due to a 

lack of consistent quality data and a variable flow rate of the system. Nonetheless, 

the validated solar model should still provide a good indication of the energy 

generation of system 2 between July 2009 and June 2010. The temperature data of 

the solar flow and return pipes was available for 4 months, providing some control 

data for the model output.  

 

It was previously identified that test system 2 uses unfavourable boiler settings, 

with the boiler being set to come on before, during, and just after peak hot water 

consumption. While the boiler is on it maintains approximately two thirds of the hot 

water cylinder at 50°C, leaving only the bottom third of the volume able to absorb 

heat efficiently. The model results for this are labelled „current boiler settings‟. 

Ideally test system 2 should be set to only receive heat top-up from the boiler 

before peak hot water draw-off, giving more cold water volume to absorb solar heat 

efficiently. The model results for this case are labelled „optimised boiler settings‟.  

Figure 11.30 shows a comparison of modelled results for the current boiler 

settings and optimised boiler settings, as well as estimated generation based on 

available measured data.  

  

 

Figure 11.30: Comparison of modelled generation for different boiler settings and 

estimates based on measured data 

 

 

Despite the uncertainties Figure 11.30 shows a good correlation between modelled 

results using current boiler settings and the estimates based on measurements. 
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Annual generation estimates between July 2009 and June 2010 for test system 2 

are provided in Table 11.Z, comparing the two modelled boiler settings.  

 

Table 11.Z: Modelled annual yield between July 2009 and June 2010  

 Annual yield (kWh) 

Current boiler settings 361 

Optimised boiler settings 464 

 

Table 11.Z shows an expected annual yield of 361kWh. This is 48% lower than Test 

System 1, which is a very similar system albeit slightly larger. This difference can 

be largely explained by the fact that the hot water cylinder for Test System 2 is 

much smaller than the cylinder for Test System 1, with 80% less capacity. This 

means that overall less volume is available to absorb heat, and this reduced volume 

will also heat up quicker, reducing the transmission efficiencies even further.  

 The unfavourable boiler settings also play a significant part, as explained 

previously. Modelling of optimised boiler settings shows an improvement in annual 

yield of 103kWh, which would provide 29% more energy than using current 

settings.  

 

Based on the daily hot water draw-off profile of 120L, the daily hot water energy 

consumption is estimated to be around 5.6kWh/day, or 2030kWh annually. This 

provides the following solar fractions: 

 

7.17currentf  

8.22optimisedf  

 

 

This means that currently around 18% of the annual hot water demand is satisfied 

by solar energy. The solar contribution could potentially increase to 23% if the 

boiler settings were optimised.  

 

11.7.3 Analysing EcoSmart Alderney System 

 

 
Having validated the solar thermal model thoroughly using data from both test 

systems, the model can now be used to provide a theoretical simulation for the 

evacuated tube system that was installed at the EcoSmart village. Table 11.AA 

shows the system parameters that were used for the modelled simulation. 

 Some of the parameters were not disclosed by the manufacturer. Values 

including the area-related heat capacity, the transmittance value, and the angle 
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modifiers were assumed to be the same as for Test System 1. The flow rate of the 

Alderney system is stated as 2.5L/min, which is considerably higher than the 

1L/min used by Test System 1. As explained earlier, while an increased flow rate is 

not usually considered beneficial, the model is rather sensitive to any significant 

increases above 1L/min due to the 10-minute time steps. To avoid falsifying any 

results the flow rate in the model was left at 1L/min. The hot water draw-off was 

assumed to be 200L daily, drawn off at 12:00. The boiler model was used to 

simulate heating of two thirds of the storage volume to 55°C at 6am, and it was 

also used to constantly maintain the bottom cylinder temperature at a minimum of 

30°C. 

 

Table 11.AA: Input parameters for EcoSmart Village Alderney system modelling 

System Latitude 53.4 ° 

  Longitude -2.4 °  

  Collector inclination 45 ° 

  Collector orientation 0 °  

Collector Aperture area 3 m
2
 

  Absorptance 0.93   

  Emittance 0.06   

  Area-related heat capacity 8.3 kJ/Km
2
 

  Zero-loss efficiency  0.753   

  Angle modifier transverse 1   

  Angle modifier longitudinal 0.9   

  Angle modifier 0.9   

  c1 coefficient 1.54  W/Km
2
 

  c2 coefficient 0.01  W/K
2
m

2
 

Cylinder Cylinder capacity 250 L 

  Cylinder height 120 cm 

  Cylinder diameter 55 cm 

  Cylinder U-value 2.5 W/Km
2
 

  Distance collector to cylinder 5 m 

  Pipe diameter 15 mm 

  Typical ambient temperature 25 °C 

Control Transfer flow rate 1 L/min 

  Control temperature difference 7 °C 

  Boiler control - on (temp.) 55 °C 

  Boiler control - off (temp.) 55 °C 

  Safety shut down (max temp) 70 °C 

 
 

Figure 11.31 and Figure 11.32 show a comparison between the f-chart method that 

was previously used to obtain an initial estimate, the model, and the measured 

data that was recorded manually from the control panel of the solar thermal 

system.  
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Figure 11.31: Comparison between f-chart method, solar thermal model and 

measured results over a 12 month period 

 

 

 

 

Figure 11.32: Comparison between monthly average efficiency of the Alderney 

evacuated tube system, using f-chart, model and measured results. 

 

 

Figure 11.31, showing the monthly generation, indicates that while the model is 

proportional to the f-chart method, the f-chart consistently shows a significantly 

greater output, in the order of 50%. This percentage difference is further magnified 

during the winter months. While the model estimates a total output of 12.4kWh 

during November, December and January, the f-chart method estimates 45.4kWh 

for the same period. This over-estimation by the f-chart method, particularly during 

winter, can be explained by the fact that it does not consider interaction with the 

storage cylinder, nor does it consider any input from the boiler. While the f-chart 

method is able to estimate the amount of energy that is available to an infinite cold 
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storage volume, the model goes several steps further to consider constraints from 

storage size, stratification effects, draw-off patterns and boiler top-up.  

 Figure 11.32, showing the average monthly system efficiencies, confirms the 

observations. The f-chart method shows a significantly greater efficiency than the 

model for every month of the year, particularly during the winter. This is to be 

expected considering that only the model accounts for boiler interaction, as 

overcoming the temperature difference to the pre-heated storage cylinder becomes 

more difficult during the winter.  

The measured results that were obtained from the control panel are 

inconsistent with both f-chart and model estimates. During summer months 

efficiencies are relatively low, while during winter efficiencies above 60% are 

presented, which is considerably greater than what is predicted by the inherently 

over-estimating f-chart method.  

The collector has a fixed heat capacity, giving it a thermal inertia. When 

there is no direct solar radiation on the collector during the day, the material of the 

collector cools down to ambient temperature. This needs to be overcome first 

before any heat transfer can take place. During the winter, ambient temperatures 

are usually considerably lower, meaning more energy is required to bring the 

materials that make up the collector to a temperature that allows heat transfer. In 

addition to this, the proportion of energy required to overcome the thermal inertia 

with respect to the solar energy that is available is much greater during winter than 

it is during summer. On the other hand, due to its vacuum insulation the 

temperature dependence on the heat loss factor (given by c2 coefficient as 

described in BS EN 12795218) for any evacuated tube collector is very low, in the 

order of 0.01. With this in mind, it must be expected that the system efficiency, in 

other words the useful energy output to the storage cylinder with respect to 

available solar radiation as seen on the collector surface, is significantly greater 

during summer than it is during winter. This is confirmed by both model and f-chart 

simulations.  

Considering the above, the values from the control panel do not appear to 

make much sense. When considering that the zero-loss efficiency (η0) of the 

collector is given as 73.5%, this would mean that 84.4% of the solar energy that is 

absorbed by the collector during December ends up in the pre-heated storage 

cylinder. This is unlikely to be true, as most of the solar energy is already required 

to overcome the temperature difference between ambient temperature and water 

temperature in the cylinder. It appears that just as previously experienced with 

Test System 1, the energy output that is calculated by the control panel based on 

temperature and flow rate is rather inaccurate.  

 

To summarise the comparison, it would appear that the solar thermal model 

which has been validated thoroughly gives the most accurate estimate of actual 
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energy generation for the EcoSmart Village system. The trend of monthly variation 

that can be observed from the control panel values, especially during the winter, 

suggests that these are inaccurate. Similarly, the generation values calculated 

based on flow and return temperatures have limited accuracy, particularly during 

winter months, due to the 10-minute logging interval in combination with a high 

flow rate of the system. The f-chart method can provide a good indication for the 

performance of optimised systems, but lacks the important consideration for 

interaction with a storage cylinder, and is therefore prone to significantly 

overestimating the output of most real life Solar Thermal installations. 

 

11.7.4 Improving EcoSmart Alderney System 

 
 

It was previously discussed that the Alderney evacuated tube system showed a 

significant under-performance compared to the Windermere flat-panel system. This 

was on first consideration a surprise, given that the superior performance of 

evacuated tube systems had already been established. This result was largely 

attributed to unfavourable boiler control. In order to evaluate the system 

performance under improved conditions, the model was used with the following 

changes: 

 

- the bottom cylinder temperature is no longer maintained at minimum 30°C 

- the boiler only comes on once in the evening at 19:00, heating layers 2 and 

3 (67% of total capacity) up to 55°C 

 

It is recognised that for convenience and to avoid the questionable233 occurance of 

Legionella bacteria breeding, the boiler should come on at least once a day to 

ensure a comfortable and safe hot water temperature near 60°C is maintained. 

Results of a survey234 among solar hot water users found that around 65% of users 

have their boilers set to come on regularly both in the morning and the evening. 

However, it is more beneficial for this to happen in the evening, rather than in the 

morning, or both. For this case, after the storage volume has absorbed all available 

energy from the sun, minimal amounts of heat must be added to reach 55°C. The 

water can then be used either in the evening or the following morning, effectively 

cooling the storage volume and thus allowing it to absorb a maximum amount of 

solar energy the following day. If the water is heated in the morning instead, it is 

likely that less hot water is used between boiler top-up and the next solar cycle. In 

addition to this, any heat that is lost from the cylinder over night would also need 

to be topped up again by the boiler, should it be set to come on in the morning. 

These over-night losses can be as much as 6°C over 12 hours, which can be 

1.2kWh per day for a cylinder of 250L capacity, or 424kWh per year.  
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Figure 11.33 provides a comparison of model estimates for the EcoSmart Alderney 

(evacuated tube) system for the original boiler settings and the improved boiler 

settings outlined above.  

 

 

Figure 11.33: Comparison of effects of boiler setting on annual yield of EcoSmart 

Alderney solar system 

 

Figure 11.33 shows a significantly increased output across the whole year if boiler 

settings are improved as described. In particular the winter months November, 

December and January show improvements of over 100%. Over the whole year, 

the optimised boiler settings are able to provide an increase in energy output of 

25.9%. Table 11.BB compares the annual results for both scenarios. 

 

Table 11.BB: Performance of Alderney evacuated tube system with optimised boiler 

 Original boiler settings Improved boiler settings 

Annual yield (kWh) 592 746 

Annual efficiency 32.5% 36.4% 

Gas consumption (kWh) 1801 933 

 

 

As already indicated by Figure 11.33, the improvements are significant. Not only 

are an additional 154kWh of energy generated, meaning the efficiency of the 

system is increased by 12%, but gas consumption is nearly halved. With less gas 

required to maintain a base temperature of 30°C and with additional heat 

generated by the solar system, the overall gas consumption is severely reduced. 

With other energy savings from avoided over-night storage losses and other 

avoided auxiliary losses (for example boiler efficiency or losses in pipe work from 

boiler to storage cylinder) which can be quite significant235, the estimated annual 
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gas savings are 868kWh, or 48%. For comparison, the measured annual gas 

consumption of the overall colder Windermere, which has a smaller and less 

efficient flat-panel system, is around 915kWh.  

 

11.7.5 Analysis Vertical Solar Thermal Panel 

 
 

Previously it was discussed that a vertical collector may help to satisfy the hot 

water requirements throughout the year more consistently. For modelling purposes 

the same data was used as for the EcoSmart Village Alderney system, the only 

exceptions being that the inclination was set to 90° and the aperture area was 

doubled, now giving 6m2. The results are shown in Figure 11.34, with results from 

Alderney system modelling at inclination of 45° for comparison. 

 

 

 

Figure 11.34: Comparison between solar thermal generation of collector inclined at 

45° and vertical collector with twice the area 

 

Figure 11.34 does indeed show a considerably higher output by the vertical system 

during the winter months, with 162% additional energy generated between 

November and January at 100% extra collector area. The summer months show a 

similar output between the two options, confirming that over-heating would not be 

any more likely.  

However, throughout the whole year the improvement in energy generation 

is only 106.2kWh (17.9%), bringing the annual yield to 698kWh. Even considering 

that the extra energy can be considered more valuable to the household as it is 

generated during typical low-yield months, it comes at a high price considering the 

additional cost of doubling the collector area. Based on a preliminary financial 

anlysis, it must be concluded that from a financial point of view it is not worth 

installing a solar thermal system vertically and doubling the area. However, if a 
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cheap way is found to harness solar thermal energy, perhaps by using a simple flat 

panel system instead of evacuated tubes, then it may be considered as an option. 

The advantages are that a higher proportion of energy is generated during the 

winter, and roof space remains available for other alternatives such as PV.  

 

 

11.8 Financial, Energy and Carbon Savings 
 

 

 
The energy output of the system, and therefore annual savings and payback 

periods, are largely dependent on hot water requirements as well as user habits. 

Ideally the Solar Thermal system would constantly require a reservoir of cold water, 

to which the heat energy can be transferred at high transmission efficiencies.  

The control system also plays a crucial role in Solar Thermal generation 

efficiencies. The example of the Alderney system showed, that if the system is set 

to maintain a certain minimum temperature, the energy output is significantly 

decreased. On the other hand gas consumption also increased for these settings, 

adding to the overall high energy consumption of the building.  

Due to the uncertainties, payback and carbon savings should always be 

assessed for individual systems, taking into account as many aspects as possible 

such as variations in hot water demand and boiler settings.  

 

To provide a comprehensive overview and comparison, payback periods will be 

estimated for the following cases: 

1. EcoSmart Village Windermere (south-facing flat panel) system based on 

measured results 

2. EcoSmart Village Alderney (south-facing evacuated tube) system based on 

modelled results 

3. EcoSmart Village Alderney (south-facing evacuated tube) system with 

optimised boiler settings based on modelled results 

4. Test System 1 (west-facing evacuated tube) based on modelled results 

5. Test System 2 (southwest-facing evacuated tube) based on modelled 

results, using current boiler settings 

6. Test System 2 based on modelled results, using optimised boiler settings 

7. Vertical EcoSmart Village Alderney (south-facing evacuated tube) with 

double collector area based on modelled results 

 

The lifetime of Solar Hot Water systems can be assumed to be around 25 years236 

with theoretically no requirement for maintenance237. 
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Results of financial, energy and carbon payback calculations are shown in Table 

11.CC, Table 11.DD and Table 11.EE. 

 

Table 11.CC: Summary of system cost, energy and carbon 

Case 
Annual Yield 

(kWh) 
Capital Cost 

(£) 
Embodied Energy 

(kWh) 
Embodied CO2 

(Kg) 

1 462 £2600 1680 430 

2 592 £3500 2400 615 

3 746 £3500 2400 615 

4 692 £5500 2400 615 

5 361 £6300 1850 475 

6 464 £6300 1850 475 

7 698 £6500* 4800 1230 

*Approximation based on doubling the collector area but maintaining similar installation cost 

 

Table 11.DD: Financial annual savings 

 Annual Savings 

Case Gas offset RHI tariff 

1 £18.48 £83.16 

2 £23.68 £106.56 

3 £29.84 £134.28 

4 £27.68 £124.56 

5 £14.44 £64.98 

6 £18.56 £83.52 

7 £27.92 £125.64 

 

Table 11.EE: Payback rates and lifetime savings; financial, energy and carbon 

 Payback rate (years) Net savings over system life (25 years) 

Case Financial Energy Carbon Financial Energy (MWh) CO2 (t) 

1 50.7 3.6 4.2 -£475 9.9 2.54 

2 57.8 4.1 4.7 -£777 12.4 3.26 

3 27.3 3.2 3.7 -£68 16.3 4.10 

4 83.7 3.5 4.0 -£2,317 14.9 3.81 

5 346.3 5.1 5.9 -£4,639 7.2 1.53 

6 249.4 4.0 4.6 -£4,166 9.8 2.10 

7 142.8 6.9 8.0 -£3,289 12.7 3.84 

 

 

When comparing the cases that were analysed during this research, it is shown that 

assuming the systems work as they were modelled, none of them achieve financial 

payback over their lifetime. While the RHI tariff helps greatly to improve payback 

rates, the relatively low gas price means that after 20 years when the tariff is no 

longer available annual savings become very small compared to capital investment. 

For the four real-life cases (cases 1, 2, 4 and 5), financial payback rates are at least 

double the expected system life. The RHI contributes to reducing lifetime losses to 

£475-£4,639, where the flat panel system appears to provide the best value for 

money. If the boiler settings for the EcoSmart Village Alderney case would be 

improved, financial payback could be achieved after around 27 years, with only 
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about £70 lifetime losses. For test system 2 the optimised boiler settings would 

mean around £470 less is lost over system lifetime. The vertical option is rather 

poor, generating a financial loss close to £3,300 after 25 years of operation. 

However, if future capital cost predictions237 prove to be correct, financial payback 

may become achievable in the medium to long term. 

 

 The estimated embodied energy of all Solar Thermal systems is offset fairly 

quickly, with payback ranging between 3.2-6.9 years. This allows net energy 

generation of 7.2-16.3MWh over system lifetime. Apart from Test System 2 which 

suffers from a small hot water cylinder, the Windermere flat panel system is able to 

generate least energy, while the Alderney system with optimised boiler settings 

would generate more than any other case presented.  

A similar picture is presented for CO2, with the embodied amount being 

offset after 3.7-8.0 years. This allows a total CO2 offset during system lifetime of 

1.5-3.8 tonnes. Again, the south-facing Alderney system with optimised boiler 

settings would prove to be most beneficial for the environment, while Test System 

2 and the Windermere flat panel system are able to offset the least amount of 

carbon.  

 

For comparison, Table 11.FF provides an overview of the energy and carbon 

payback estimates from other research. 

 

Table 11.FF: Energy and CO2 estimates from other research 

 

 
The comparison with other research shows similar results, confirming the scalability 

of the analysis carried out for this project. Only the CO2 payback shows some 

inconsistencies, which will likely be due to the variation in modelling parameters of 

the solar systems.  

 

 

  

System details Location 
Energy payback  

(years) 
CO2 payback 

(years) 

FP, integ. storage, displacing gas Australia 2.5
238

 - 

Flat Panel, simple payback Australia 2.5
238

 - 

FP, integ. storage, no cylinder / pipes  Italy 0.5-1.6
239

 - 

Flat Panel, integrated storage Italy 2.5
208

 - 

Flat Panel, simple payback Canada 7.5
207

 <4 

Flat Panel, simple payback UK 2.6-6.1
209

 3.5-8.2 

Flat Panel, simple payback UK 3.0-5.2
235

 <2 
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11.9 Visitor Feedback 
 

 

The Buckshaw EcoSmart show village was open to any visitors, all of whom were 

asked to fill in a feedback questionnaire, asking for opinions of the set-up as well as 

individual systems.  

As shown in Figure 11.35, the feedback on solar thermal systems was 

largely positive, with 91% of visitors stating they find solar thermal appealing, with 

72% stating they found it extremely appealing. 21% of visitors definitely intend to 

buy a system, while a further 38% stated they would probably buy one. However, 

when asked for a maximum price at which they were willing to invest in a solar 

thermal system, assuming 2005 estimated payback rates, only 32% were willing to 

spend more than £1,500. 

In the overall ranking of all systems tested at the EcoSmart show village the 

solar thermal system ranked first. 

 

Appeal

72%

19%

5%

1%

3%
Extremely

Slightly

Undecided

Not at all

Not

answered

Propensity to purchase

21%

38%

22%

13%

4%

3%

Definitely

Probably

Undecided

Probably

not

Definitely

not

Not

answered
 

Figure 11.35: Statistics from feedback questionnaire. Source: SMS Market Research 

Summary Report 

 

 

11.10 Conclusion 
 

After analysing 4 different domestic Solar Thermal systems and attempting to set 

up an experimental test rig, the main conclusion to summarise the experiences is 

that Solar Thermal systems are very complex. In order to work well, many different 

aspects need to be considered, resulting in a high probability of mistakes that can 

severely impact energy generation. Specifically, this includes: 

 

- Installation must be carried out by experienced professionals, and even 

then there is a chance of making mistakes that are very difficult to notice 
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but can cause severe underperformance of the solar system in the short 

and long term. Such mistakes were made during the installation of 4 out 

of the 5 test systems. 

  

- Boiler control settings can make a significant difference to the efficiency 

of solar energy generation, hence solar energy output. Modelling has 

shown that this can make a difference in performance of over 25%. This 

was found to be a problem with 3 out of the 4 domestic test systems. A 

survey234 of over 50 Solar Thermal households found that 65% use 

highly unfavourable boiler control settings, which can reduce the Solar 

Thermal generation by up to 75%. 

 

- An efficient interaction between the solar system and the hot water 

storage cylinder must be ensured. If the storage size is too small, or 

doesn‟t contain a dedicated solar volume (as provided by a dual coil 

cylinder), the solar system will not be able to perform well. This was 

found to be a problem with 1 of the test systems. 

 

- Energy readings provided by the control panel are sometimes not 

accurate. This means users can be misinformed about the performance 

of their solar system, and it further reduces the chance of noticing any 

mistakes made during installation. This was found to be the case with 2 

of the 4 domestic test systems. For the other 2 domestic cases, energy 

estimates were not available at all due to missing sensors.  

 

 

Further conclusions that can be derived from the analysis are: 

 

- If a Solar Thermal system works well, it can be expected to reach average 

efficiency levels of 35-40% for evacuated tube systems, and around 25% for 

flat panel systems. This equates to an annual yield for typical south facing 

evacuated tube and flat panel systems of around 700kWh and 450kWh 

respectively. 

 

- RETScreen can be considered a valuable tool for solar generation estimates 

during the design stage. Being predominantly based on f-chart methodology, 

it is prone to overestimate by around 15-30%, but requires relatively little 

information about the proposed system. T*Sol may also of value, although 

its exact methods are not disclosed and a license fee is charged.  
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- Visitors to the EcoSmart village found the solar thermal systems very 

appealing, ranking it first out of all systems that were tested. UK-wide 

research confirms this trend, showing there are more solar thermal systems 

installed nationwide than any other micro renewable system.  

 

- The solar thermal systems that were evaluated during this research did not 

achieve financial payback after RHI tariffs. However, the carbon offset of a 

net amount of 2.5-3.8 tonnes of CO2 over 25 years is substantial. Energy 

payback periods of the systems are in the order of 3.2-4.1 years.  
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12 Micro Wind Turbine Systems 
 
 

In recent years urban micro wind applications have received much publicity, being 

an emerging technology that promises to be a very effective part of a solution to 

reducing carbon emissions. However, the lack of robust field data causes much 

speculation and debate among academia and government alike. The measurements 

taken from the EcoSmart test systems and the analyses set out below will help to 

provide a clarification over the real performance of building-integrated micro wind 

turbines, and what role they might play in achieving zero carbon homes.  

 

 

12.1 Introduction 
 

Large wind turbines are popular in many countries, and the achieved economies of 

scale have recently made them very worthwhile240. 

 Applying wind generation at a small scale appears promising at first glance. 

In theory, the performance of small and micro scale wind turbines has been shown 

to be beneficial241. It also makes sense to move the energy source as close to the 

consumer as possible to avoid any transmission losses242. Clausen et al243, for 

example, saw potential for micro wind, but also noted that technology had not 

reached the maturity of larger turbines.  

However, it was also found in other research that manufacturers generally 

tend to over-estimate the projected output significantly, using average wind speed 

data from higher altitudes244 or neglecting turbulence effects245. Some literature 

also suggests that horizontal axis turbines are inherently unsuitable for urban 

applications246 due to the complex wind patterns generated by this environment247. 

Focusing on problems associated with wind generation in urban environments, 

Eliasson et al248 measured counter-rotating vortices within the canyons, wind shear 

along canyon edges and high degrees of turbulence, even at low wind speeds. Wind 

tunnel simulations249 showed strong evidence that sharp flow accelerations develop 

around roof tops, causing high fluctuations of horizontal velocities. 

Despite some tentative warnings and concerns, in 2006 building-integrated 

micro wind energy was predicted to have a prosperous future250. 
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12.1.1 Background Theory 

 
 

Horizontal axis turbines are by far the most common type of micro wind turbine. 

Essentially, they consist of a number of blades rotating about a horizontal axis, 

driving a generator that uses this motion to generate electricity. Many blades 

are used when a high moment of inertia is desirable, while fewer blades are 

better for applications where a low starting torque and high end speed are 

required.    

 

Aerodynamics  

 

The blades attached to the rotor act as airfoils. The blades are designed such 

that when a certain wind speed is reached (typically about 3 m/s) the resultant 

lift force in the radial direction can overcome internal resistant forces and start 

to spin the rotor. As the blades begin to turn, another velocity vector is 

introduced, caused by the blades cutting through air in the direction of 

movement. The lift force then creates the resulting driving force of the system, 

as shown in Figure 12.1.  

 

 

Figure 12.1: Forces acting on single turbine blade 

  
 

Care must be taken to design the blades for a given optimal tip-speed ratio, 

referring to the ratio between wind speed and blade speed. For optimum 

performance the blades are usually twisted, such that the root of the blade is 

predominately orientated into the wind, whereas blade tips are orientated in the 

radial direction to account for the variation in relative radial velocity.  
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The Wind Power Equation 

 

Derived from linear momentum theory251, the power contained by the wind is 

given by equation (12.1). 

 

3

0
2

1
uAP          (12.1) 

 

However, as the air is still moving away from the rotor after it has passed 

through it, it is clear that not all power can be extracted from the wind. The 

maximum extraction efficiency, referred to as the power or performance 

coefficient (cp) is limited to 59% as defined by Betz‟s law252. The power 

generated by the turbine is therefore given by equation (12.2): 
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The actual value of (cp) largely depends on the tip-speed ratio of the 

blades, which is the ratio of rotational speed over wind speed. If the blades 

move too slowly in comparison to wind speed, a large part of the wind will 

pass through the turbine blades without losing any of its energy. If on the 

other hand blades move too fast, then the turbulent air from one blade will 

affect the next blade, reducing aerodynamic efficiency. The tip-speed ratio 

is mainly a function of the number of blades, but is also affected by the 

controller of the turbines as well as blade design253.  

A challenge for rotor design is to achieve this optimal tip-speed ratio at 

different wind speeds. In order to ensure a good efficiency the rotor must have a 

low moment of inertia about its horizontal axis. If the blades move faster than 

optimum, an electro-mechanical system can be used to monitor and adjust the 

tip-speed ratio to an optimal value. This system can also be used to restrict the 

rotor to a maximum radial velocity for safety reasons.  

There are further losses other than the variation in tip-speed ratio, 

mainly resulting from the generation and conversion of electric power due to 

mechanical friction and unavoidable leakage of the electric field. Overall 

efficiencies of wind turbine generators are typically in the range of 30-40%. 
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12.1.2 EcoSmart Village Set-up 

 

 

 

Figure 12.2: StealthGen wind turbine (left) and Windsave wind turbine (right) 

 

 

 
Two different wind turbine models were tested at the EcoSmart village, the 

Windsave WS1000 and the StealthGen D400, both shown in Figure 12.2. The 

Windsave model was installed on the roofs of the Buckingham and Edinburgh, while 

the StealthGen was installed on the Alderney, Malvern and Windermere. The 

turbines were installed with around 1.5-2m clearance from the roof top, which is 

similar to any domestic micro wind turbine arrangement. The effective hub height is 

around 8m. The weather station used to record wind data was mounted in a similar 

position on the roof of the Edinburgh home. The specifications of both turbines, as 

provided by manufacturer technical documentation, are summarised in Table 12.A. 

 

Table 12.A: Wind turbine specifications 

  Windsave StealthGen 

Diameter (m) 1.75 1.1 

Area (m
2
) 2.4 0.95 

Rated power (kWh) 1.0 0.4 

cut-in speed (m/s) 3.0 2.5 

cut-off speed (m/s) 12.5 16 

Warranty (yrs) 10 1 

 

 
While the StealthGen model has a smaller area, it has been optimised for high 

performance at low wind speeds, and has a greater wind speed range than the 

larger Windsave model. Power curves for both turbine models are also available, 

shown in Figure 12.3 and Figure 12.4, which were extracted from the technical 

manuals of the turbines. 
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Figure 12.3: Power curve for Windsave WS1000 (Source: Windsave WS1000 

datasheet) 

 

 

Figure 12.4: Power curve for StealthGen D400 (Source: StealthGen D400 User‟s 

Manual) 

 

The two wind turbine power curves indicate that the larger, 3-blade Windsave 

model has a reasonably constant coefficient of performance (cp), whereas the cp 

value for the 5-blade StealthGen model seems to vary significantly with wind 

speed.  
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 Similar to the PV system, both turbine models are connected to an inverter 

and an import/export meter. Figure 12.5 shows a schematic diagram of the system 

layout, which also includes a picture of the inverter. 

 

 

Figure 12.5: Schematic diagram of Wind Turbine system layout 

 

 

 

12.1.3 Capital Cost, Embodied Energy and Embodied CO2 

 

 
This section will analyse the capital cost and embodied energy and carbon of 

the two micro wind turbines. As generic values for embodied energy and 

carbon are difficult to find for wind turbines, especially for small -scale 

models, they will be estimated based on components. Methods and ratios 

will be applied that are derived from other research.  

 

Capital Cost 

 

The capital cost of the micro wind turbine systems at the EcoSmart village is 

summarised in tab.  

 

Table 12.B: Capital cost of the micro wind turbine systems 

Windsave WS1000 StealthGen D400 

£1,500 £2,250 
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Embodied Energy 

 

Detailed analysis of embodied energy has previously been covered by other 

research. Lenzen and Munksgaard254 for example released a very 

comprehensive study for a range of different sized wind turbine systems, 

covering over 50 case studies and an in-depth literature review. The relative 

mass and respective specific energy content of different components is 

summarised in Figure 12.6. 

 

 

Figure 12.6: Typical ratios of component weight and specific energy content of their 

raw materials (Source: Lenzen & Munksgaard254, 2002) 

 
Due to the vast amount of data used to estimate these relationships they 

will be used as a basis for the energy and carbon analysis of the EcoSmart 

village systems. However, as no tower or foundation is required for the 

building-mounted micro wind turbines, these factors will be omitted. Instead 

of this a new factor will be introduced to represent the embodied energy of 

the mounting pole and brackets.  

The mass of the Windsave turbine is 25kg, while the StealthGen 

turbine has a mass of 15kg. The embodied energy of the pole and mounting 

brackets was estimated based on a mass of 20kg and the properties of 

aluminium255. Table 12.C provides a breakdown of the estimated embodied 

energy of each component as well as transportation.  

 

Table 12.C: Estimated embodied energy of EcoSmart turbines, by component 

 Windsave (kWh) StealthGen (kWh) 

Blades 90 54 

Transmission 103 62 

Generator 120 72 

Nacelle cover 10 6 

Electrical 97 58 

Mounting 872 872 

Inverter 430 430 

Transportation 410 410 

Total 2,132 1,964 
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From Table 12.C the embodied energy of the Windsave and StealthGen 

turbines are about 2,130kWh and 1,960kWh respectively. The difference is 

smaller than might be expected at first glance, but most of the energy, such 

as from the mounting pole, inverter or transport will be similar. However it 

must be noted that this only accounts for energy in materials and 

transportation, but does not include energy used in turbine assembly. This 

factor would be required for a thorough life-cycle analysis256. 

An analysis of a 300W turbine257 estimated an embodied energy of 

1,815kWh, which is similar to 1,960kWh for the simliar 400W rated 

StealthGen turbine. Therefore it can be said that while the estimates may 

be on the low side, they can be seen as providing adequate results for this 

analysis.  

 

Embodied Carbon 

 

Based on the weight and material distribution of components, the embodied 

carbon content can also be found. Values for embodied carbon are largely 

based on the Inventory of Energy and Carbon (IEC) database255 published 

by the University of Bath. Table 12.D provides the estimated embodied 

carbon of the two turbines. 

 

Table 12.D: Estimated embodied energy of EcoSmart turbines, by component 

 Windsave (kgCO2) StealthGen (kgCO2) 

Blades 29.8 17.9 

Transmission 18.1 10.9 

Generator 15.6 9.4 

Nacelle cover 3.3 2.0 

Electrical 12.6 7.6 

Mounting 166.0 166.0 

Inverter 98.9 98.9 

Transportation 113.0 113.0 

Total 457 426 

 

 

The embodied carbon can be expected to have similar levels of accuracy as 

the values derived for embodied energy.   
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12.2 Urban Wind Potentials 

 

In order to estimate the potential generation of the micro wind turbines it must 

first be established how much energy is actually available. To do this, the main 

factors affecting generation, such as wind speed and turbulence intensity must 

be quantified. 

 

12.2.1 Average Wind Speed 

 
 

With reference to equation (12.1), the power contained by the wind is highly 

dependent on wind speed. Hence this is the predominant value that needs to be 

determined to assess the wind energy potential.  

 Wind databases exist, such as the NOABL (Numerical Objective Analysis 

Boundary Layer) wind speed database, currently maintained by the Department 

of Energy and Climate Change. This database appears to be the main source 

used by wind turbine manufacturers to establish site-specific potential power 

generation258. However, detailed impartial assessment259 of the database 

revealed the following limitations: 

 

- There is no allowance for the effect of local winds, such as mountain or 

valley effects 

- The model is based on a 1 km2 grid and does not account for topography 

on a small scale or local surface roughness 

- Each value is an estimated average over an area of 1 km2 

 

It is further explicitly recommended that this data should be used “as a guide 

only, and followed by on-site measurements for a proper assessment”260. 

 

For comparison, the average wind speed from the NOABL database is compared 

to the measured average speed at several urban, low-level locations. 

Measurements were taken at a hub height of approximately 8-10m for each 

location. For NOABL estimates the lowest possible height above ground level, 

10m, was chosen. Results are shown in Table 12.E. 
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Table 12.E: Difference between measured Average Wind Speed and NOABL 

database (Data source: NOABL and Turan et al.258) 

 Average Wind Speed (m/s) Difference 

 Measured (8-10m) NOABL (10m) (percentage) 

EcoSmart Village, Chorley 3.1 4.9 58% 

Sports Centre, Scotland 2.7 4.3 59% 

Primary School, Buckinghamshire 3.8 6.3 66% 

Reading University 2.8 4.8 71% 

Heriot Watt University, Edinburgh 2.8 5.1 82% 

 

 

Table 12.E shows that the NOABL estimated average wind speed for every 

location is about 60-80% greater than the measured value for each location. The 

main reason for this is suspected to be the lack of consideration for surface 

roughness in the NOABL database. The following section will discuss this effect 

in more detail.  

 

 

12.2.2 Turbulence Considerations  

 

 

Turbulence caused by surface roughness can have a profound effect on the 

energy potential of a particular site. This section will show how increased 

surface roughness reduces the average wind speed, which is assumed to be one 

of the main factors explaining why the NOABL database consistently over-

estimates average wind speeds, particularly for urban sites. It will also be shown 

how the turbulence intensity can be determined, and what implication this is 

expected to have on power generation using micro wind turbines.  

 

Effects of Surface Roughness 

 

As wind moves over the earth‟s surface, frictional forces are created when the air 

flow interacts with the ground, resulting in a layer of turbulent air. This layer is 

commonly referred to as the boundary layer. Wind shear within the boundary layer, 

and the related turbulence intensity, is greatest directly at the earths‟ surface and 

reduces as height above ground increases261. Mathematically, a simplified 

relationship for this variation is given by the logarithmic law. However, the 

logarithmic law causes some problems with negative numbers for any height below 

the reference plane, and is also difficult to integrate. For a more practical approach, 

the power law is often used by wind engineers262. Both relationships are outlined 

below.  
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Logarithmic Law 

 

The logarithmic law was first derived by Prandtl263 to describe the turbulent 

boundary layer on a flat plate. Based on this principle, the derived equation for 

wind shear (rate of change of mean wind speed) (U ) at height above ground 

(z) is given by equation (12.3). The term (z0) refers to roughness length, 

while (k) refers to the von Karman constant, taking an empirically derived 

value of 0.4.  
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The term ( *u ) is known as the friction velocity. Using a height of 10m as a 

reference plane, it is related to the surface drag coefficient ( ) and thereby 

effectively related to roughness length z0 as shown by equation (12.4). 
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Power Law 

 

This is essentially a simplified relationship which produces a similar result as the 

logarithmic law by matching the two laws at a reference height. This reference 

height (zref) is usually chosen as the average height over which matching is 

required. The power law that relates the wind shear at a height of 10m with any 

height (z) is given by equation (12.5), where equation (12.6) is used to match 

the power law to the logarithmic relationship. 
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The power law is able to give very similar results to the logarithmic law, hence 

can be seen as an adequate alternative to calculate wind shear for a given 

height within the turbulent boundary layer. 

 

As shown by the logarithmic law and the related power law, the wind shear is 

highly dependent on roughness length (z0) and surface drag coefficient ( ). 

Both values in turn are highly dependent on the type of terrain. Table 12.F 

gives a set of typical reference values which were adapted from the Australian 

Standard for Wind Loads264, one of several reliable international standards265. 

 

Table 12.F: Roughness length and drag coefficient for different terrain types 

(Source: Australian Standard AS1170.2) 

Terrain Type Roughness length z0 (m) Drag coefficient   

Very flat (snow, desert) 0.001-0.005 0.002-0.003 

Open (grassland, few trees) 0.01-0.05 0.003-0.006 

Suburban (buildings, height 3-5m) 0.1-0.5 0.0075-0.02 

Dense urban (buildings, 10-30m) 1-5 0.03-0.3 

 

  

Turbulence 

 

The level of turbulence essentially describes the gustiness of air, and can be 

measured using the standard deviation of a set of wind speeds. Equation (6.2) 

for standard deviation can be re-written in terms of wind speed (u(t)), given by 

equation (12.7). 
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Turbulence Intensity 

 

The turbulence intensity262 is given by the ratio of standard deviation of the 

fluctuating components to the mean value, or in other words the ratio of 

turbulence to average wind speed, as shown by equation (12.8). 
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With reference to equation (12.3) and using an empirically derived value for 

friction velocity, a good approximation for turbulence intensity in a longitudinal 

direction is given by equation262 (12.9). 
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Turbulence and turbulence intensity exist in three different planes, the 

longitudinal, lateral and vertical plane. While it is much more difficult to obtain 

measured data in the lateral and vertical planes, empirically derived ratios are 

available to estimate these components. These are given by equations262 

(12.10) and (12.11). 
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As increased turbulence is associated with an increased change in wind direction 

and wind speed, it is widely accepted that, for horizontal axis turbines, an 

increase in turbulence results in reduced efficiency. It has been suggested that 

the longitudinal turbulence intensity can be used as a heuristic safety factor 

which effectively reduces the output by its percentage value266. 

 

For example, an initial approximation of the longitudinal turbulence at the 

EcoSmart village test site, given an 8m hub height and high suburban surface 

roughness of 0.5m, is estimated to be: 

 

36.0,  allongitudinTurb  

 

This suggests that, as a result of turbulence, wind energy generation at the 

EcoSmart village can be expected to decrease by around 36% from the estimate 

purely based on wind speed. 
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12.3 Predicting Wind Generation 

 

As discussed previously, the NOABL wind speed database appears to be 

inadequate for estimating wind potentials in urban areas as it does not consider 

any surface roughness or turbulence effects. Alternative sources for estimating 

wind potentials at a site with no measured data were sought, and are described 

in this section. This will subsequently be used to estimate the output of the 

micro wind turbines at the test site. 

 

12.3.1 Estimating Average Wind Speed 

 
 

As a result of the known limitations of the NOABL database, a wind speed 

prediction tool267 was created by the Energy Saving Trust (EST). This tool 

accounts for local conditions and surface roughness, partly based on the user 

specification of the type of terrain. The available options include Urban, 

Suburban and Rural areas. While this tool was unavailable for the EcoSmart 

village project in 2006/2007, it can be a valuable tool to predict the potential 

generation for future projects. Table 12.G shows the Energy Saving Trust tool 

prediction for suburban terrain compared to measured average wind speed. The 

NOABL prediction, which was available in 2006/2007, is also shown for 

reference. 

 

Table 12.G: Annual average wind speed predictions compared to measurements 

Average wind speed at EcoSmart Village (m/s) 

Measured EST tool NOABL 

3.07 3.29 5.4 

 

 

Table 12.G clearly confirms that the NOABL estimate is much greater than the 

measured average wind speed, and that by considering surface roughness and 

local turbulence the Energy Saving Trust tool gives a value that is much more 

realistic. The EST value is only 7% greater than the measured value. The final 

recommendation by the EST tool is that this particular site is not suitable for 

micro wind generation, as the average wind speed is below 5m/s.  
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12.3.2 Weibull and Rayleigh Distribution 

 

The Weibull distribution is a probability distribution which is often used to 

describe the probability of wind speeds occurring at a particular site268. Starting 

off with an even, bell-shaped distribution, the Weibull distribution introduces a 

shape parameter and a scale parameter to adjust its shape. The shape 

parameter is used to define the distribution of wind speeds while the scale 

parameter is related to average wind speed. 

When little information is known about the actual wind distribution at a 

particular site, in the northern hemisphere it is often a good approximation to 

assume a shape parameter of 2. A Weibull distribution with shape parameter of 

2 is referred to as a Rayleigh distribution, and often provides the basis for 

manufacturer estimated wind generation269. Equations (12.12) and (12.13) can 

be used to determine the Rayleigh distribution. Variable „j‟ is the scale 

factor of the distribution, which is related to mean wind speed. 
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Figure 12.7 shows the Rayleigh distribution for the EcoSmart village test site, 

based on the average wind speed provided by the EST tool.  

 

 

 

Figure 12.7: Rayleigh distribution of estimated wind speeds at EcoSmart village 

test site 
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12.3.3 Estimated Annual Yield 

 
 

Based on the Rayleigh distribution, the annual energy output of the two micro 

wind turbines is estimated. Equation (12.14) is used for this purpose, where 

8760 is the number of hours in a year and 0.36 is the percentage reduction 

factor based on estimated longitudinal turbulence. The function is integrated 

over a wind speed range (u1) to (u2), which is 3m/s to 12.5m/s for the Windsave 

turbine and 2.5m/s to 16m/s for the StealthGen turbine. The results for both the 

average windspeed estimated by the NOABL database and the EST tool are 

given in Table 12.H. The energy generation estimated by the manufacturer is 

also shown for comparison. 
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Table 12.H: Initial estimates for micro wind generation at the EcoSmart test site 

 Estimated Annual Yield (kWh) 

 Windsave StealthGen 

NOABL 907 394 

EST tool 259 96 

Manufacturer 1150 570 

 

 

As shown by Table 12.H, the estimated output differs greatly, depending on the 

source of data. The estimate based on wind data from the EST tool, which was 

shown to be most realistic compared to the measured wind data, results in a 

very small energy yield estimate for the test site, only around 20-30% 

compared to the other estimates. The manufacturer estimate for energy 

generation is significantly greater than even the NOABL-based estimate, which 

was derived using data and methods that have been described as common 

industry practice. The difference can be accounted for if a different turbulence 

reduction factor is used. It was found that a commonly suggested average 

generic value266 for turbulence intensity is 0.15. When using this value instead 

of the site specific value of 0.36, the difference between the NOABL estimate 

and manufacturer estimate becomes negligible.  
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12.4 Measured Data 

 

This section will present the data that was recorded at the EcoSmart village 

during the test period. The recorded weather data is analysed in detail to 

establish the exact energy potentials at the site. This will be done using third 

party software271. The measured energy generation of all wind turbines will 

subsequently be presented. 

 

To provide a better overview, Figure 12.8 shows the exact layout of the test 

site including marked locations of all wind turbines as well as the weather 

station. A legend for Figure 12.8 is given in Table 12.I. 

 

 

 

Figure 12.8: Model of the test site, showing Wind Turbines and Weather Station 

 

Table 12.I: Key for Figure 12.8 

Key Building Model 

1a Buckingham Windsave 

1b Edinburgh Windsave 

2a Alderney StealthGen 

2b Malvern StealthGen 

2c Windermere StealthGen 

WS Edinburgh Weather Station 

 

 

12.4.1 Wind Data 

   

Weather data, including wind speed, wind direction, atmospheric pressure and 

humidity have been recorded directly at the site at 10-minute intervals in 

accordance with BS EN 61400-21:2002. After testing was completed, the revised 
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BS 61400-21:2008270 was released, which recommends using measurements at 1-

minute intervals. While this would have vastly improved the analysis it could not be 

anticipated at the outset of the research in 2006. Data were acquired using the 

Davis Vantage Pro 2 Plus weather station, which is a combined package including 

an anemometer, wind vane, as well as other sensors. The accuracy of the 

anemometer and wind vane is given by the manufacturer as 2% for wind speed and 

±7° for wind direction. However it must be noted that the rather compact mounting 

arrangement is likely to result in more significant inaccuracies due to wind 

distortions by other sensors or the mounting pole. Additionally, the weather station 

will experience different turbulence patters to those experienced by turbines 2a, 2b 

and 2c, which is a result of the different roof orientation.  

 

For more detailed analysis of the raw wind data, a software program was used 

to provide statistics on the data including wind-rose diagrams and energy 

distributions. The software used for this purpose is Windographer, developed by 

Mistaya Engineering Inc271. The software is based on similar principles and 

methodology as the popular and validated HOMER software272. Table 12.J 

provides an overview of results from the Windographer analysis on wind data. 

  

Table 12.J: Results from wind data analysis (Source: Windographer) 

 
 

 

Table 12.J provides a summary of the wind data that was recorded from the 

test site. The mean energy content of the wind, under consideration of Betz‟s 

law, can provide a good indication to the maximum potential wind energy 

generation. Figure 12.9 provides a monthly breakdown of the recorded wind 

speeds, giving mean, daily high & low, as well as maximum and minimum wind 

speeds recorded for each particular month. As expected, both mean and 

maximum wind speeds are considerably higher during the winter period. Figure 

12.10 provides frequency and Weibull distributions, which form the basis for 

Windographer energy generation estimates. 
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Figure 12.9: Monthly variation of wind speeds (source: Windographer) 

 

 

Figure 12.10: Frequency and Weibull distributions (source: Windographer) 

 

Interestingly, Figure 12.10 shows that the most common wind speed that was 

recorded at the test site is 0m/s. This leads to suggest that the anemometer 

response is poor at very low wind speeds. While this has no effect on the 

modelled generation estimate given later on as the affected wind speeds are 

below the cut-in speed of the turbines, it does appear to skew the Weibull 

distribution slightly. This may have an affect on the estimate provided by 

Windographer, as this is based on the Weibull distribution.  

Figure 12.11 and Figure 12.12 show wind rose plots. While Figure 

12.11 shows the distribution of mean wind speeds, Figure 12.12 shows the 

distribution of energy contained by the wind. Both these plots show that the 

vast majority of wind energy is available from the west, with the second largest 

fraction being available from the south. This may well have been influenced by 

the more exposed western face of the weather station, as there are buildings to 

the north, south, and at some distance to the east of the mounting position. 

Although the weather station is mounted at a height that is slightly above those 
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buildings, it can be expected that small-scale turbulence effects over roof tops 

will have had a significant influence on the measured wind distribution.  

 

 

Figure 12.11: Wind rose plot showing wind speed distribution 

 

 

Figure 12.12: Wind rose plot showing energy distribution 
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The evident wind energy potentials at the EcoSmart village site suggest that 

while average wind speed is rather low, the highly predominant wind direction 

might lead to a higher generation than at similar sites with more frequently 

changing wind direction. 

 
Before presenting the measured annual yield of the five micro wind turbines that 

were tested at the EcoSmart village, it must be noted that the electricity meters 

used to monitor the turbines were designed to measured electricity flowing both 

ways, hence recording both electricity consumption and generation as a positive 

output. While this did not create any complications for other systems, the 

meters for micro wind turbines also recorded power consumption of the 

inverters as a positive output. 

 

12.4.2 Inverter Losses and Energy Consumption 

 
 
The inverter losses have been previously described in section “7.2.1 – Efficiency 

losses”. The measured daily inverter consumption from the wind turbine 

inverters is reiterated in Table 12.K. 

 

Table 12.K: Average daily inverter energy consumption 

    Daily Inverter consumption (Wh) 

Eco Home System 08/07/2007 19/07/2007 21/07/2007 Average 

Buckingham Windsave 169.5 170.5 170.0 170.0 

Edinburgh Windsave 181.0 180.5 180.5 180.7 

Alderney StealthGen 159.5 159.5 159.5 159.5 

Malvern StealthGen 119.5 120.5 118.0 119.3 

Windermere StealthGen 122.5 130.0 130.0 127.5 

 

 

 

12.4.3 Measured Energy Output 

 
 

After having determined the energy consumption of the inverters the net energy 

generation was found. Table 12.L shows a summary of the actual energy output 

that was recorded in the period from 24/10/2006 until 27/10/2007 for all wind 

turbines installed at the EcoSmart village test site.  
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Table 12.L: Summary of annual wind turbine performance at EcoSmart village 

Eco Home System Generation 
Inverter 

Consumption 
Net 

Output Downtime 

    (kWh) (kWh) (kWh)   

Buckingham Windsave 36.1 55.9 -19.8 36 days 

Edinburgh Windsave 3.9 64.1 -60.2 10 days 

Alderney StealthGen 1.8 47.7 -45.9 66 days 

Malvern StealthGen 38.0 41.5 -3.5 18 days 

Windermere StealthGen 5.6 41.1 -35.5 43 days 

 
 

Table 12.L shows that the energy output of the wind turbines over the one year 

period was extremely poor. All systems showed severe underperformance 

compared to the estimations presented in Table 12.H. Only two systems showed 

a significant output, one Windsave turbine (turbine 1a in Figure 12.8) which 

generated 36.1 kWh and one StealthGen turbine (turbine 2b in Figure 12.8) 

which generated 38.0 kWh during the year. However, when considering the 

inverter energy consumption, all systems installed at the EcoSmart show village 

showed a negative net output, meaning in every case the inverter consumed 

more energy than the wind turbine was able to generate.  

 

 

12.5 Reliability 

 

System reliability is another area of concern. Table 6 has already provided an 

overview of system downtime, which was found to be in the range of 3%-18% 

over the one year period. These downtimes were largely caused by wind speeds 

that exceeded the rated „cut-off‟ speeds of the turbines. While average wind 

speeds over 10 minutes that exceed the cut-off speed were rarely measured, 

gust speeds were likely to have been significantly higher on several occasions. It 

is also possible that the power curve supplied by the manufacturer is not 100% 

accurate, as was found in other research projects such as the Warwick wind 

trials273. The excessive wind speeds caused the turbines to shut down and, on 

many occasions, they failed to automatically start up again. The turbines had to 

be reset manually. 

 A major issue for concern is the systems‟ apparent lack of ability to deal 

with extreme wind speeds that far exceed the rated cut-off speeds. On one 

occasion during extreme winds in January 2007, where average wind speeds 

above 18m/s were measured, a blade from one of the turbines detached and 

was later recovered far from the installation site. Figure 12.13 shows a 

photograph of the blade as it was recovered.  
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Figure 12.13: Damaged turbine blade which had detached during the storm on 

18th January 2007 

 

 

While this is unlikely to have occurred during standard operation, it is possible 

that the furling mechanism was responsible for this. When the wind speeds 

exceed the rated cut-off speeds of the turbine, a braking mechanism is applied, 

which forces the blades to come to a standstill. However, at very high wind 

speeds the transient loads during turbine shut-down and the aerodynamic forces 

acting on a stationary blade apply an extreme amount of stress to the root of 

the blades. It is also possible that on this occasion the furling mechanism failed 

and the rotor continued to spin uncontrolled. As blades are designed to be light 

and thin to maximise turbine efficiency, safety margins in blade design may not 

have anticipated and accounted for the forces under such extreme wind speeds 

as experienced on the 18th January 2007.   

A possible solution to this problem is to install the wind turbines using a 

tilting mechanism, which enables the home owner to manually retract the 

system in the event of a heavy storm. Such a system, shown in Figure 12.14, is 

suggested but not supplied by the manufacturer StealthGen.  

 

 

Figure 12.14: Retractable wind turbine (source: StealthGen D400 manual) 
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12.6 System Modelling 

 

As shown by the preceding presentation of results, there is a significant difference 

between the expectations shown in Table 12.H, and the actual performance shown 

in Table 12.L. In order to explore what variables might account for this the micro 

wind turbine systems will be modelled. The following section will describe the 

methodology for this procedure.  

 

12.6.1 Modelling Options 

 
 

Two options have been identified to model the micro wind turbine systems in 

detail.  

 

1. Using the wind data, a shape factor and scale factor for a Weibull 

distribution can be found. This probability distribution can then be used to 

find the energy output for binned wind speeds, using the power curve for 

each wind turbine. 

 

2. A dynamic model can be created, that calculates the energy generated 

over each available interval of weather data.  

 

Both options have their merits, but the dynamic model has the advantage of 

being more flexible and able to account for changing conditions during each 

interval. For example, the air density can be adjusted for each interval and 

accounted for when calculating the power output. The same is true for 

turbulence intensity. If the output is based on the Weibull distribution, the only 

way to account for density and turbulence variations is by using annual average 

values, which is not particularly accurate. With reference to Figure 12.10 

showing frequency and Weibull distributions, the annual average turbulence 

intensity as well as the Weibull distribution itself would be skewed by the many 

zero readings for wind speed.  

 

Based on the reasons explained above it was decided to use a dynamic model to 

represent the wind turbines. However, to provide control readings the model will 

be compared to results obtained from the Windographer software. Windographer 

uses the Weibull function as a basis for modelling.  
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12.6.2 Micro Wind Turbine Model 

 

 

The dynamic model for wind turbine analysis will be based on the following 

steps: 

 

- The air density is adjusted using methods outlined in section “8.3 – 

Estimating air density” 

- The power curves of both turbines are modelled 

- The turbulence intensity is calculated for each individual time interval 

- A simple inverter model is used to account for inverter efficiency losses 

 

Modelling the Power Curve 

 
Figure 12.3 and Figure 12.4 show the relationship between wind speed and the 

conrresponding expected power output of the two wind turbines. These power 

curves do not follow the shape of a third order polynomial, which might be 

expected due to the term (U3) in the wind power equation (12.2). This means 

that the coefficients of performance of the turbines are not constant, but vary 

with respect to wind speed. According to both manufacturers these power curves 

have been generated assuming an air density according to the international 

standard atmosphere (ISA), of 1.225kg/m3.  

 

By re-arranging the wind power equation (12.2), the coefficient of performance 

(cp) for different speed bands can now be determined using equation (12.15): 

 

3

02

UA

P
cp





        (12.15) 

 

Results for the (cp) variation with wind speed are shown in Figure 12.15. 
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Figure 12.15: cp variation with wind speed 

 

Figure 12.15 shows clearly that the StealthGen turbine was optimised for low 

wind speeds, whereas the Windsave model is designed to work at more 

consistent levels of efficiency. 

  

 

Turbulence Intensity 

 

It was decided to model the turbulence intensity for each individual time interval to 

obtain more accurate percentage reduction factors than for example a yearly 

average. To calculate individual values of turbulence intensity it was decided to find 

the standard deviation and mean wind speed over one hour, taking into account 

values up to 30 minutes before and 30 minutes after the particular time interval. 

While this should provide a great accuracy improvement over using a longer term 

(for example annual) average, the accuracy of this part of the model is still limited 

by the rather long time intervals of 10 minutes.  

 

 

Inverter Model 

 

The inverter model is based on the two models derived previously in section “7.1.4 

– Inverter model”. In addition to the efficiency, the inverter energy consumption 

will be included in the model. The average values that will be used for modelling 

purposes are given in Table 12.M. 

 

 

 



 
248 

Table 12.M: Inverter energy consumption used for inverter modelling 

 Energy Consumption (kWh) 

 Daily Annual 

Windsave Inverter 0.176 64.2 

StealthGen Inverter 0.136 49.6 

 

 

12.6.3 Model Results and Discussion 

 
 

The micro wind turbine systems at the EcoSmart village were modelled based on 

the methods outlined above. Table 12.N shows the results, split into winter and 

summer periods. The average wind speed recorded for each period is also given. 

For comparison, Table 12.O provides results from modelling using the 

Windographer software. 

 

Table 12.N: Results from micro wind turbine model 

 Average Wind Speed Energy Generation (kWh) 

 (m/s) Windsave StealthGen 

Winter (Nov-Mar) 3.8 98.2 34.1 

Summer (Apr-Oct) 2.5 -8.5 -11.2 

Annual AC (DC)* 3.1 90 (232) 23 (154) 

* DC generation given in brackets for comparison 

 

 

Table 12.O: Results from Windographer simulation 

 Windographer Estimate (kWh) 

 Windsave StealthGen 

Annual 263 144 

 

 

 
With reference to Table 12.N, the model shows that in theory the maximum 

annual net energy that can be expected from the Windsave and StealthGen 

turbines is 90kWh and 23kWh respectively. With DC generation given as 

232kWh and 154kWh, the inverter can be identified as the main source of 

losses. 

When looking at the inverter efficiency curve in section “7.1.2 – Efficiency 

losses” it shows that the efficiency drops off dramatically, below 50% efficiency, 

when the inverter load is below 10%. For the case of the Windsave turbines for 

example, this would include all steady wind speeds below 5 m/s. During the one 

year trial period, 85% of all wind speeds that were measured at the EcoSmart 

village were below 5 m/s.  
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In addition to this, the energy consumption of the inverters is very high 

in proportion to the turbine output. For example, for the Windsave turbine the 

inverter consumes around 28% of the expected DC generation, for the 

StealthGen inverter the consumption is as high as 32% of expected DC output.  

 Unless DC storage becomes a useful option, reducing the inverter losses 

is a challenging task. The wind turbines have great range of power output, and 

the frequency of low power generation is far greater than the frequency of high 

power generation. A possible solution might be using multiple inverter stages, 

for example one small inverter that is efficient at low loads, and a second 

inverter that has a high power rating, being able to convert high DC loads 

efficiently. However, this only becomes a financially feasible option for much 

larger systems than a 1kW rated wind turbine.  

 
The Windographer estimate is fairly close to the expected DC output, which at 

first glance may lead to believe that Windographer does not account for inverter 

losses. However, there are also other uncertainties. The method of using the 

Weibull probability distribution means that variations of parameters other than 

wind speed, such as air density, cannot be accounted for. The density model 

showed that due to high vapour content the air density was often around 10-

20% lower than standard atmosphere density, which is directly related to the 

energy estimate. The same is true for turbulence. If accounted for at all by 

Windographer, a generic annual average would have to be used. On the other 

hand, the many zero wind speed readings have skewed the Weibull distribution 

somewhat, as shown by Figure 12.10. While lack of consideration for turbulence 

and density would lead to over-estimation, the skewed Weibull distribution 

results in the opposite. The errors for this case might cancel each other out to 

some extent, but this appears to be more reliant on chance than robust 

modelling methodology.   

 

 

12.7 Detailed Analysis of Turbulence 

  

Considering the model results and discussion above, there is still a significant 

difference between the modelled output and the measured wind generation. The 

only remaining variable that despite being modelled retains a high degree of 

uncertainty is turbulence intensity. It was previously discussed that, in 

hindsight, it would have been more useful to record wind data using the shortest 

possible interval to get a better feel for turbulence. Other research274 confirms 

that the sampling period has a significant effect on measured wind speed, and 

using 1-minute intervals or less is advisable. Due to the lack of data the 

following discussion must take a more qualitative form, with limited 

mathematical analysis to confirm observed trends.   
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12.7.1 Micro Wind Turbine Response to Turbulence 

 

 
Turbulence is inevitably created around the sharp edges of the roofs of the 

buildings. This disrupts the smooth airflow over the turbine blades by causing 

sharp and frequent changes in both wind speed and wind direction. It was 

observed during the operation of all wind turbines that they are apparently 

unable to adequately deal with this problem. To explain this in more detail, it 

must be remembered that turbulence can exist in three planes with respect to 

the turbine; longitudinal, lateral and vertical. Figure 12.16 shows an example of 

the wind profile over an isolated house, based on computational fluid dynamics 

analysis275. This presents the „best case‟ scenario, with no obstructions of any 

kind in front of or near the building. Nonetheless this example already shows the 

extent of variation on a small scale even under optimum conditions.  

 

 

Figure 12.16: CFD diagram of wind velocity profile over a modelled isolated house 

(Source: Heath et al275, 2007) 

 

 

Longitudinal turbulence effectively refers to changes in wind speed, or more 

specifically the standard deviation of wind speed. The effect of this type of 

turbulence mainly depends on the mass of the blades, as well as their 

aerodynamic design. In many cases a sharp increase in wind speed will  cause 

the blade, or at least part of it if the blade is twisted, to stall. Instead of 
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speeding up the rotor by creating extra lift due to increased wind speed, the 

stall condition will actually slow it down. However, if a blade is designed to be 

very light to give the rotor a low moment of inertia, and with adequate amount 

of twist, then the problem presented by longitudinal turbulence can be vastly 

reduced.  

 

Problems caused by lateral turbulence (changes in wind direction) are more 

difficult to avoid for current horizontal turbine designs. At the EcoSmart village 

and another test site276 it was observed that the turbines spend much of their 

time trying to turn into the wind, altering their direction very frequently. At the 

same time the blades often remained almost stationary, or spun up very briefly 

before coming to a standstill again while the turbine continues to adjust its 

direction. The turning mechanism of the wind turbines appears to be very 

effective, causing the turbines to react promptly to a change in wind direction. 

However, while the turbine changes its position, the airflow is disrupted for 

some time, which causes the blades to slow down dramatically even when there 

is seemingly an adequate amount of wind. Once slowed down, a significant 

amount of time can go by before the turbine starts up again. An investigation277 

into the start-up behaviour of micro wind turbines revealed that even under 

moderately high steady wind speeds of 6-7m/s the start-up time can be 20 

seconds or more. Under turbulent conditions, it is very likely that the wind 

direction will change much more frequently than every 20 seconds. The start-up 

torque that defines this behaviour is largely influenced by blade design
278

. 

 

The effect of vertical turbulence is expected to be least significant, although 

being far from negligible. As the turbine is unable to react to changes in the 

vertical direction, the effective angle of attack on the blades can quite easily 

approach stall conditions. Also, blades on one side of the turbine will see the 

opposite effect as blades on the other side of the turbine. While being inherently 

inefficient, this can even result in lift being created in the same direction on both 

sides of the turbine, which is contrary to what is desirable for high rotational 

speeds.  
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12.7.2 Detailed Analysis of Turbulence at the Test Site 

 
 

The turbulence intensity in each plane can be determined by standard deviation, of 

wind speed for longitudinal turbulence, and of wind direction for lateral turbulence. 

The changes in wind direction were found using the model described in section “8.4 

– Finding wind direction difference”. No measurements are available for vertical 

wind speeds.  

 

The methodology of the dynamic wind turbine energy model was applied for this 

analysis, where the hourly standard deviation of measured wind speed or wind 

direction was found for each individual time interval. Turbines 1a and 2b, shown in 

Figure 12.8 have shown some energy output, so these turbines are used to 

analyse the effect of turbulence.  

Interestingly, both turbines showed very similar generation patterns. 

Between April and June 2007 six time periods where identified independently 

where noticeable energy generation was measured. Five out of the six 

generating periods, ranging from 12 hours to approximately two days each, 

coincided exactly. The differences between theoretical and actual AC generation 

over these periods are shown in Table 12.P.  

 

Table 12.P: Turbine generation and inverter losses during coinciding generating 

periods 

Case 
Duration 
(hours) 

Turbine 
Theoretical 
DC (kWh) 

Total Inverter 
losses (kWh) 

Theoretical 
AC (kWh) 

Measured 
AC (kWh) 

% of 
theoretical 

1 28 
1a 0.761 0.511 0.250 0.214 86% 

2b 1.475 0.571 0.904 0.749 83% 

2 59 
1a 1.591 1.368 0.223 0.215 96% 

2b 2.631 1.503 1.128 0.431 38% 

3 42 
1a 2.973 1.309 1.664 1.058 64% 

2b 6.132 1.446 4.687 2.224 47% 

4 13 
1a 0.932 0.325 0.607 0.248 41% 

2b 2.112 0.352 1.760 1.296 74% 

5 38 
1a 2.051 0.892 1.159 0.673 58% 

2b 4.586 0.989 3.597 2.492 69% 

 

 

Having established that turbines 1a and 2b tend to generate energy at the same 

time, and having pin-pointed these times, the energy generation can now be 

correlated to turbulence estimates based on weather data. 
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Figure 12.17: Lateral turbulence (hourly standard deviation of wind direction) 

during generating times of both turbines over a 4-week sample period in 2007 

 

 

Figure 12.18: Longitudinal turbulence (hourly standard deviation of wind speed) 

during generating times of both turbines over a 4-week sample period in 2007 

 
 

When looking at Figure 12.17 and Figure 12.18, showing lateral and 

longitudinal turbulence throughout the coinciding generating periods of turbines 

1a and 2b, it becomes apparent that lateral turbulence seems to have a greater 

effect on energy generation. Lateral turbulence was found to be noticeably lower 

during periods of energy generation compared to periods where no generation 

was measured. Similarly, periods where no generation was measured but lateral 

turbulence was also low generally coincided with periods of low wind speeds.  

 Figure 12.18 on the other hand does not appear to show any direct 

correlation between low longitudinal turbulence and turbine generation. The 

average measured standard deviation of wind speed at the test site is 0.49m/s. 

Turbulence intensity has also been calculated for the entire data set where 

average longitudinal turbulence intensity over 12 months was found to be 0.52. 

For comparison, the initial estimate for longitudinal turbulence intensity at the 

test site was 0.36.  
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While the average standard deviation of non-generating periods is 0.44m/s, the 

average standard deviation during generating periods is actually higher, at 

0.59m/s. It can be deduced that longitudinal turbulence does not appear to 

show a significant impact on turbine performance. To investigate this further, 

Figure 12.19 and Figure 12.20 show plots of lateral turbulence for periods of 

energy generation (cases 1 to 5 combined), and periods of no generation 

(combined „gaps‟ between cases 1-5) respectively.  

 

 

Figure 12.19: Lateral turbulence for combined periods of energy generation only, 

over a 4-week sample period in 2007 

 

 

Figure 12.20: Lateral turbulence for combined periods of zero generation only, 

over a 4-week sample period in 2007 

 
 

For this analysis all wind speeds below the cut-in speed of the turbine 2 (2.5m/s) 

have been neglected to avoid any skewing of the data, as the wind was found to 

change naturally more frequently at lower wind speeds. During periods of energy 

generation, the mean of the standard deviations of wind direction is 6.1° ± 8.1°.  

During non-generating periods on the other hand, the mean of the standard 

deviations of wind direction of is 10.9° ± 11.5°. The standard deviation is a 

measure for turbulence, indicating that lateral turbulence during non generating 

periods is about 80% greater than lateral turbulence for periods during which an 
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output was measured. To compare these values statistically, the t-test is used. This 

statistical function is able to compare two means in relation to the variation by 

finding the standard deviation of the difference.  

For the two datasets shown in Figure 12.19 and Figure 12.20 the t-value 

is 5.36. This is a high t-value, meaning that the difference between the two 

means is statistically significant, beyond a 0.001 uncertainty. In relation to the 

wind turbines that were tested this indicates that energy generation is strongly 

related to the amount of lateral turbulence.  

The actual turbulence experienced at the location of the turbines may 

even be enhanced by their mounting position relative to the building, and by the 

building geometry that surrounds them. The weather station is mounted in a 

similar position as both Windsave turbines, therefore this analysis can be seen 

as being representative for those two cases. For all of the StealthGen turbines 

however, the turbulence profile will be very different. Nonetheless it can still be 

expected to have a similarly significant effect. It appears that if micro wind 

turbines are to become a viable option for the urban environment in the future 

the technology must be improved dramatically to overcome this problem. 

Further testing and development by the manufacturer will be required.  

Vertical axis turbines279,280 could provide a potential solution if their 

efficiency can be improved. Alternatively, a better integration into building 

geometry might help to channel the airflow, increasing its velocity and also 

reducing lateral turbulence. Where this kind of building integration is not 

possible, a horizontally non-rotating, omni-directional ducted wind turbine could 

also be used. The duct would help to increase the speed of the airflow, increase 

aerodynamic efficiency of the blades, and if designed correctly eliminate most of 

the turbulence. This could be particularly useful if there is such a strong 

predominant wind direction as found at the EcoSmart village test site.  

 
 

12.7.3 Corroboration with Other Research 

 
 

 
The results from the micro wind turbine analysis were somewhat unexpected. As 

the five turbines only represent a very small sample it is important to validate these 

results as well as possible with reference to more comprehensive trials. While the 

EcoSmart Village project is one of the pilot projects investigating micro wind 

technology in detail, other large scale trials have also been carried out over recent 

years. The most noticeable investigations into micro wind turbine performance in 

the urban environment include the Warwick Wind Trials 2008, the WINEUR Project 

2007 and the Energy Saving Trust (EST) Wind Trials 2009.  
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From these studies it was also concluded that urban wind turbines faced 

several problems. The Warwick Wind Trials for example concluded that turbulence 

reduces output by 15-30%273. It was further shown that the urban capacity factor 

was only around 4-6.4%, compared to around 10% for rural sites.  

The WINEUR project specifically suggested281 a set of minimum 

requirements to make urban wind generation viable, including average wind speeds 

above 5.5m/s, the turbine to be mounted at least 50% higher than its surroundings 

and at a hub height at least 30% greater than building height. This is also 

confirmed by a CFD (computational fluid dynamics) analysis conducted by Heath et 

al275, showing that for a typical urban layout of buildings a hub height of at least 

50% above building height is required to capture wind that is not significantly 

affected by surrounding buildings.  

The EST Wind Trials282 were the most recent and most comprehensive trials 

conducted in the UK, and concluded that micro wind turbines do work, but only if 

installed properly in a suitable location. Building mounted turbines generally 

showed poor output, and urban sites were consistently found to have inadequate 

wind resources. It was also found that power-curves provided by manufacturers 

were often inaccurate and sometimes incorrect.  

 
Having reviewed recent reports on other research it can be concluded that the 

findings from the EcoSmart village are generally in line with more comprehensive 

large-scale trials. It appears that, at least using the current technology, horizontal 

axis micro wind turbines in built-up areas including urban and suburban terrain do 

not work well. The main reasons for this underperformance were identified as the 

lack of sufficiently high wind speeds as well as intense turbulence, in particular 

lateral turbulence, when mounted in close proximity to roof edges and other near-

by obstacles further downstream.  

 

 

 

12.8 Payback rate and carbon savings  

 

 
As none of the micro wind turbine systems were able to generate a positive 

energy output, the actual payback periods and carbon offset were not 

calculated. Instead, the theoretical DC generation values will be considered for 

this analysis. It is also assumed that the turbines will be mounted in a way that 

reduces lateral turbulence, suspected to be the main cause for the abysmal 

measured performance. For comparison, payback rates for a second case will be 

estimated, which assumes the same optimum turbine placement but including 

the use of an inverter for a grid-tied solution. Table 12.Q is used to reiterate 

the estimated annual DC generation as well as cost and embodied carbon. 
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Table 12.Q: Capital cost and embodied energy and carbon, compared to estimated 

annual DC yield 

 Windsave StealthGen 

Cost £1,500 £2,250 

Embodied Energy (kWh) 2132 1964 

Embodied Carbon (kgCO2) 457 426 

Annual DC Yield (kWh) 232 154 

 

 

Based on assumptions outlined in section “6.5.3 – Calculating simple financial 

payback” and on feed-in tariffs up to April 2011, the annual savings are shown 

in Table 12.R, and the resulting financial payback rates and life-time savings in 

Table 12.S. Based on other research254 the expected life-time of the two 

turbines is estimated to be around 20 years.  

 

Table 12.R: Annual savings expected at EcoSmart test site based on optimum 

conditions (No inverter, turbine located away from roof edges) 

  Annual Savings 

System Electricity offset 2011 Feed-in tariff 

Windsave £33.18 £80.04 

StealthGen £22.02 £53.13 

 

 

Table 12.S: Payback rates from EcoSmart systems based on optimum conditions 

(No inverter, turbine located away from roof edges) 

  Payback rate (years) Net savings over system life (20 years) 

System Financial Energy Carbon Financial Energy (MWh) CO2 (t) 

Windsave 13.2 9.2 3.8 £770 2.5 1.9 

StealthGen 29.9 12.8 5.4 -£747 1.1 1.2 

 
 

Under optimum conditions Table 12.S shows reasonably good payback rates for 

the Windsave turbine, while the StealthGen turbine is simply too small to justify 

the financial and energy expense. It must be stressed that Table 12.R and 

Table 12.S show results for the case of no inverter being used, and the turbines 

being mounted at a significant distance from roof edges or any other nearby 

obstacles. Wind speeds are assumed to be as measured by the EcoSmart village 

weather station, but it is assumed that lateral turbulence which caused great 

problems for the test systems is largely avoided.   

 Table 12.T presents a case for which turbines have been mounted in an 

optimum location to avoid most of the lateral turbulence, but are grid-tied, using 

an inverter.  
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Table 12.T: Estimated payback rates for optimum placement but using an inverter 

  Payback rate (years) 

System Financial Energy Carbon 

Windsave 34 24 10 

StealthGen 200 85 36 

 

 
Table 12.T shows that if an inverter is used, then the best possible payback 

rates to be expected from the test site are 34 and 200 years for the Windsave 

and StealthGen turbines respectively. This exceeds the expected lifetime of the 

systems. While the Windsave model can at least offset some carbon in the 

second half of its life, the smaller StealthGen turbine is shown to generate a 

positive net amount of carbon rather than offsetting any.  

 

Under the actual testing conditions, all systems showed a negative net output. 

This means that all systems would generate significant amounts of carbon over 

their lifetime, and the capital investment is lost entirely.  

Other studies have been conducted to show the viability of urban micro wind 

turbines. Financial payback estimates range from 170-240 years283 for a range of 

wind data from Turkey, to 30-90 years284 in the UK using a model that accounts for 

wind shear and terrain correction. A different approach to life-cycle analysis was 

taken by Allen et al285, who calculated the energy payback to be 9 years using a 

micro wind turbine model based on a Weibull distribution, including inverter.   

 

 

12.9 Visitor Feedback 
 

 
Extracts of the feedback questionnaire results regarding micro wind turbines are 

shown in Figure 12.21. The feedback on micro wind turbines showed a relatively 

high appeal, with 59% of visitors stating they find micro wind turbines extremely 

appealing, and a further 24% stating a slight appeal. 18% of visitors said they 

definitely intend to buy a system, while a further 33% said they would probably buy 

one. The most frequently (27%) stated maximum price visitors were willing to pay 

was £1,000, while only 18% of visitors were willing to invest more than £1,000 in a 

micro wind turbine, assuming 2005 estimated payback rates. 

In the overall ranking of all energy systems tested at the EcoSmart village 

the micro wind turbines ranked a close third, behind solar thermal and micro CHP 

systems. 
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Figure 12.21: Statistics from feedback questionnaire (source: SMS Market Research 

Summary Report) 

 

 

12.10 Conclusion 
 

Based on the analyses of the five micro wind turbines that were tested at the 

EcoSmart village it must be concluded that under the given conditions they do 

not work. The average wind speed was found to be 3.1m/s, which is much lower 

than the commonly suggested minimum average of 5m/s before wind turbines 

become a viable option. As well as low wind speeds, two other factors were 

found to have a major impact on system performance: Turbulence and 

Inverters. 

 Turbulence is created around sharp edges, such as roof edges, and exists 

in a longitudinal, lateral and vertical plane. The amount of lateral turbulence in 

particular was found to have a profound effect on generation potential, and the 

common horizontal axis turbine design appears to be inadequate to deal with 

this.  

 Inverters have poor efficiencies at low loads, which are very common 

when considering the physics behind wind generation and the typical available 

resources (U3 factor, Rayleigh wind distribution). At the test site it was found 

that for 85% of all wind speeds the inverter efficiency was below 50%. On top of 

this, the inverters consume energy when in standby, up to 60kWh annually. 

What little energy was generated by the turbines at the EcoSmart village was 

offset by inverter consumption.  

 Modelling showed that significant improvements are possible if the 

systems are used to supply DC electricity, thereby avoiding all inverter losses, 

and if the turbines are mounted in a location some distance away from the roof 

and other downstream obstacles to avoid the worst of the lateral turbulence. 

When comparing both turbines, the smaller StealthGen turbine is much less 

viable, not by design but because of its size.  
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Summary of conclusions:  

 

- All turbines showed net negative output 

 

- With average wind speed of 3.1m/s the test site has inadequate wind 

resources 

 

- Under optimum conditions that are rarely found in any urban area, DC 

generation at the test site is estimated to be 232kWh and 154kWh for 

Windsave and StealthGen turbines respectively, resulting in financial 

payback after 13-30 years. 

 

- Even under optimum conditions and given much greater wind speeds 

than those measured at the test site it seems unlikely that the output 

predicted by the manufacturer can be achieved 

 

- Inverters consumed a considerable amount of energy, ranging between 

41kWh to 64kWh annually. At low loads inverter efficiency is very poor.  

 

- Turbulence, in particular lateral turbulence, is a major concern for 

urban and suburban sites. This needs to be overcome by improved 

technology or building integration 

 

- At present, some micro wind turbines can pose severe safety risks due 

to detaching blades at extreme wind speeds  

 

- In 2006/2007, visitors to the EcoSmart village generally found micro 

wind turbines very appealing. This may have changed however, as 

these systems have received increasingly bad press after many systems 

were found not to work well 
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13 Ground Source Heat Pump Systems 
 

 

Ground Source Heat Pumps (GSHPs) are not strictly renewable energy systems, but 

help to use energy most effectively by effectively providing energy efficiencies far 

greater than 100%. This is achieved by absorbing heat energy from the ground, 

increasing it through the heat pump, and transferring it to the inside of the 

dwelling, thus providing energy for space heating.   

 While being proven technology using electricity, it has not yet established 

itself as a common space heating solution compared to gas boiler systems in the 

UK. However, with the impending requirements of achieving zero-carbon rating in 

domestic homes, and considering that space heating typically accounts for over half 

of the energy used, GSHP systems need to be considered as an option. The 

following section will assess the performance of the three GSHP systems that were 

installed at the EcoSmart village site and their potential applications in future zero-

carbon homes. 

 

13.1 Introduction 
 

 

Ground Source Heat Pumps are well evolved systems. The concept was first 

published in 1852 by Lord Kelvin, and after some further development they have 

gained commercial popularity in Europe286 and North America287.  

 In the UK, the take-up of GSHP technology has been very slow. In 2001 the 

reasons for this were explored288, and they were found to be a combination of the 

relatively mild climate, generally poor insulation levels of the UK housing stock and 

the competition presented by the extensive national gas grid. Other barriers 

included a lingering public perception of poor design and reliability issues from 

earlier days289. 

Since then however technology was adapted and GSHP systems were 

officially recognised as having a role to play by the Affordable Warmth and the 

Clear Skies programmes287. Research from the USA290, Netherlands291 and 

Switzerland292 all come to the conclusion that GSHP systems can provide cost-

effective means of reducing the carbon footprint of a domestic home.   
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13.1.1 Theoretical Background 

 
 

The term heat pump refers to any device that takes up heat at a certain 

temperature and releases it at a higher temperature. Ground source heat pumps 

use the earth as a heat source, or a heat sink for reverse cycle models. The theory 

behind heat pump operation is set out in BS EN 15450:2007293. 

 

The Ground as an Energy Source 

 

Energy is transferred to the earth‟s crust mainly by solar radiation. The ground 

absorbs this energy, and whatever remains after some initial long-wave radiation 

losses to the sky, is conducted deeper into the ground. It is difficult to estimate the 

exact amount of energy that is available for extraction, as this will not just change 

with soil density and composition, but also with weather conditions and moisture 

content. Nonetheless it is the soil temperature that is the most important factor to 

consider for ground source heat pump applications, as this is directly related to the 

extraction efficiency. A heat exchanger is used to extract heat from the ground, 

usually consisting of pipe-work that can be several hundred meters long.  

 

Different Types of GSHP Systems  

 

There are two types of GSHPs; vertical and horizontal systems. Vertical borehole 

systems are typically applied in domestic scenarios, where the borehole depth can 

be anything up to 180m, depending on system size and the anticipated load. 

 It was found by several studies293, 294 that soil temperature shows little 

seasonal variation below a depth of around 5m and horizontal heat exchanges may 

be applied to alleviate some of the capital cost of the system. While being more 

cost effective they are only viable for relatively small systems, as a larger 

horizontal area is required and the ground needs to be free of large rocks and 

boulders.  

 

 

Figure 13.1: Vertical U system (left) and horizontal slinky-type system (right) 

(source: Curtis288, 2001) 
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The Compression / Expansion Cycle 

 

The compression / expansion cycle forms the heart of the GSHP system. An electric 

pump is used to circulate the transfer liquid through the earth loop at a low base 

temperature of approximately 0°C. As the ground is considerably warmer, the 

transfer liquid will absorb heat directly through the pipe system. When the warm 

transfer liquid re-surfaces, it goes through a heat exchanger (the evaporator), 

giving off heat to the compression circuit. In this circuit, shown in Figure 13.2, a 

refrigerant is compressed, thus increasing the temperature in accordance with the 

gas law, shown in equation (13.1), where terms (n) and (R) are constants for the 

specific refrigerant. 

 

nRTPV          (13.1) 

 

 

 

Figure 13.2: Compression / expansion circuit of GSHP system (source: Calorex 

GSHP user manual) 

 
 

After the refrigerant has been compressed enough to reach temperatures of around 

40°C, it then flows through a second heat exchanger, the condenser. There the 

heat energy is transferred to a third circuit which circulates water between the heat 

pump and the storage tank. After the heat has been transferred to the internal 

distribution circuit, the refrigerant then passes through an expansion valve, where 

it is expanded and cooled back down to temperatures of around 0°C, ready to 

absorb more heat from the ground loop circuit. 
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13.1.2 EcoSmart Village Set-up 

 
 

 

Figure 13.3: GSHP unit (left) and borehole/piling operations (right) 

 

Three ground source heat pump (GSHP) systems, shown in Figure 13.3, were 

installed and tested at the EcoSmart village. Two of the systems were vertical 

borehole systems installed at the Palmerston and Washington homes, with pipes 

laid down to a depth of approximately 70m under ground. The third system, 

installed in the Malvern home, was intended to have a combination of pipes laid in a 

vertical borehole as well as pipes laid in a horizontal trench. Unfortunately, the 

horizontal part of the system was damaged beyond repair during the installation 

process. As a result of this the horizontal section was abandoned, and the Malvern 

home was forced to rely only on the vertical borehole system to satisfy its space 

heating requirements. The increased rate of heat extraction of this system is likely 

to result in reduced performance and lower efficiency294. 

The two systems installed at the Palmerston and Washington homes have 

rated power input levels of 4.8kW, whereas the rated input power of the remaining 

functional part of the Malvern system was 3.6kWh. The heat pumps were supplied 

by Geothermal Ltd. The heat pump systems were used in conjunction with the 

Gledhill smart storage system, which acted as a buffer for the space heating 

demand. As in every other house, the heat is distributed using an under-floor 

distribution system. This is vital to ensure good efficiency of the heat pump 

systems, as compression ratios and therefore power consumption would have to be 

much higher to reach the 55-60°C required for conventional radiators, as opposed 

to the 35-40°C that are sufficient for under-floor heat distribution. Figure 1.18 

shows a schematic diagram of the ground source heat pump systems.  
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Fig. 1.18: typical GSHP schematic diagram (Source: Energy Saving Trust295, 2004) 

 

The GSHP systems are expected to have a coefficient of performance (CP) of 3 or 

above according to the manufacturer, which means that in theory, for every 1kWh 

of electricity consumed by the system it is expected to generate at least 3kWh of 

heat energy. System properties and specifications have been summarised in Table 

13.A.  

 

Table 13.A: EcoSmart village GSHP system specifications 

 Palmerston Washington Malvern 

GSHP type vertical vertical vertical 

Model number HCW.048-4B HCW.048-4B HCW.036-4B 

Power rating (electric) 4.8kWh 4.8kWh 3.6kWh 

CP >3 >3 >3 

Flow rate (internal circuit) 21.0 L/min 21.0 L/min 14.7 L/min 

Transfer liquid 1 
(ground circuit) 

brine brine brine 

Transfer liquid 2 
(internal circuit) 

water water water 

 

 

To measure the performance of the GSHP devices, the input and output of the 

systems had to be monitored. Electricity meters were used to record the energy 

input to the system. Heat meters that were attached to the pipe work of the 

internal heat distribution circuit, as seen in figure 1.17, were intended to provide 

data for heat output of the system. However, it was found that all GSHP heat 

meters were not functioning correctly. This is a similar problem as was encountered 

for the solar thermal heat meters. The faulty meters could not be replaced as this 

would have involved opening up the GSHP circuit. Instead, IButton temperature 

sensors were fixed to the flow and return pipes of the internal circuit to measure 

and record temperatures. 
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13.1.3 Set-up Problems 

 
 

Some problems were encountered with the GSHP systems at the EcoSmart village. 

As mentioned, all heat meters failed shortly after installation and could not be 

replaced, as they were integrated into the heat exchanger circuit. This severely 

impacted on the quality of the available data.  

 While the heat meters presented a purely testing-related problem, the 

Malvern system also experienced a more significant problem that would affect the 

potential customer. After the pipes had been laid in trenches in the ground, part of 

the heat exchanger broke as the trenches were filled. It is suspected that this may 

have been caused by a sharp rock, or heavy machinery that operated directly over 

the pipes. A decision was made from a commercial point of view to abandon this 

horizontal system, as replacing the heat exchanger pipe would have been too 

expensive. While no literature was found that reports a similar problem, it is likely 

that this could happen if horizontal GSHP systems were to be regularly installed in 

new homes by Barratt or any other builder.  

 

13.1.4 Capital Cost and Embodied CO2 

 
 

Capital Cost 

 

The cost of a GSHP system can generally be divided into two parts; the cost of the 

heat pump and the cost of installing the heat exchanger. The effort and time 

involved with installing the heat exchanger largely depends on the type of heat 

exchanger, horizontal or vertical, and the consistency of the soil that needs to be 

penetrated. In general it can be assumed that installing the heat exchanger will 

account for 30-50% of total cost296. The capital costs of the three GSHP systems at 

the EcoSmart village are given in Table 13.B. 

 

Table 13.B: Capital cost of GSHP systems at the EcoSmart village 

System Type Capital Cost 

Palmerston Vertical £7,800 

Washington Vertical £7,800 

Malvern Vertical + Horizontal £12,250 

 

 

When considering capital cost for the Malvern system it must be kept in mind that 

this is for a combined horizontal and vertical system, for which the horizontal part 

had to be abandoned due to irreparable damage.  
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No literature was found that had established the embodied energy or carbon 

content of a typical GSHP system in detail. The only research in this area had been 

conducted on a very large GSHP scheme in Tokyo in 2002, involving 43,200 vertical 

boreholes297. This provided valuable information about the CO2 footprint of the 

drilling process required to install the vertical ground heat exchanger. Other values 

for embodied carbon were derived based on simplified assumptions and principles. 

Results of this analysis are given in Table 13.C. 

 

Table 13.C: Estimated embodied CO2 of GSHP units at EcoSmart village 

Process / Part Embodied CO2 (kgCO2) 

Drilling 370 

Transport 353 

Ground Heat Exchanger 82 

Heat Pump Unit 393 

Total 1,198 

 

 

The value for the drilling process is adopted from Genchi et al297, the value for 

transport is based on the assumption that drilling machinery is transported 100km 

using a heavy transport vehicle, while the pump unit is transported 200km using a 

light vehicle. It is assumed that the excavated soil is used for landfill nearby. Due 

to the lack of information it was further assumed that the pump unit, with mass of 

132kg, consists of 80% Steel for the pump, 15% Copper for pipes and fittings and 

5% Aluminium for casing. The values for average embodied CO2 of these materials 

were taken from the ICE database, and a factor of 30% was used to account for 

transport of primary material and pump assembly.    

 

13.2 Available Energy from the Ground 
 
 

For closed loop ground source heat pumps the ground provides a reservoir of 

renewable thermal energy, which is mainly replenished by the sun. However, the 

question must be asked, how much energy can the ground provide? 

 As indicated previously this is not easily answered and depends on many 

factors including soil composition, moisture levels and density. The rate at which 

heat is added by the sun is also impotant as the ground only acts as a heat store.  

 

Various different models298, 299, 300 exist to estimate the variation of soil 

temperature, that have largely been verified using measured results. The results 

from a verified model294 estimating ground temperatured for an area near 

Nottingham are reproduced in Figure 13.4. Figure 13.5 shows the temperature 
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distribution to be expected across Britain according to the standard BS EN 

15450:2007293, which deals with the design of heat pump systems. 

 

 

Figure 13.4: Modelled soil temperature variation in UK (Source: Doherty et al294, 

2004) 

 

 

 

Figure 13.5: Soil temperature variations in Britain (Source: BS EN15450293) 

 

Figure 13.4 and Figure 13.5, taken from two independent sources, both show that 

soil temperatures only vary significantly at depths less than about 3-5m. Beyond 

10m it can be assumed that the soil temperatures are constant at around 10°C, 

with maximum variations of around ± 1°C. 

 

After assessing the temperature variation with depth of typical soil, it must also be 

considered that the use of a GSHP means heat is extracted from the soil, and the 
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distribution can change over time. This has been investigated previously, and 

measurements have shown the change in temperature profile due to use of a 

vertical GSHP system. Figure 13.6 shows soil heat distribution after 3 months of 

GSHP operation during the winter in Germany286. 

 

 

 

Figure 13.6: Temperature profile in °C near borehole (BHE) at beginning [left] and 

after 3 months operation during winter in Germany [right] (Source: Raybach & 

Sanner286, 2000) 

 

Figure 13.6 shows that the temperature decreases significantly in immediate 

proximity to the borehole, particularly within a 5m range around it. Other 

research298 confirms this, where modelling of the ground temperature using a 

reverse-cycle heat pump in Hong-Kong resulted in significant temperature 

variations predominantly within a 5m range around the borehole. After conducting 

a detailed investigation, Hopkirk & Kaelin301 suggested that if several vertical heat-

exchangers are placed in close proximity they should at least be 5m apart, ideally 

15m, to avoid any thermal interference. 
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13.3 Theoretical Output 
 

 

Determining the theoretical performance of the heat pumps, which will be useful for 

system sizing for example, is relatively simple. The coefficient of performance (CP) 

of the GSHP systems determines how much electrical energy is required to satisfy 

the space heating demand of a building. According to the manufacturer, at least 

3kWh heat energy can be expected from an input of 1kWh of electrical energy. 

Using this CP value together with the estimated space heating requirements for the 

homes, the theoretical amount of required electrical energy can be established. This 

involves a simple calculation using equation (13.2). 

 

HE Q
CP

Q
1

        (13.2) 

 

Table 13.D is used to reiterate the space heating energy demand of the three 

dwellings previously found in section “9.2.4 – Model comparison”, while Table 13.E 

shows the estimated electrical energy required to satisfy this demand using the 

GSHP systems. CASAnova was previously shown to give the most accurate 

prediction, but SAP estimates are required for compliance and are therefore also 

included. A moderate Coefficient of Performance (CP) value equal to 3 is assumed.  

 

Table 13.D: Estimated space heating requirements  

HQ  SAP (adjusted) (kWh) CASAnova (kWh) 

Palmerston 4,576 7,638 

Washington 3,628 6,066 

Malvern 10,821 14,936 

 

Table 13.E: Electrical energy required for space heating using GSHP, assuming 

CP=3 

EQ  SAP (adjusted) (kWh) CASAnova (kWh) 

Palmerston 1,525 2,546 

Washington 1,209 2,022 

Malvern 3,607 4,987 
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13.4 Measured Results and Discussion 

 

As the heat output of the pumps could not be measured directly because the 

integrated heat meters were not working, the heat demand of the buildings must 

be determined as accurately as possible. To improve accuracy the ventilation losses 

must be adjusted to account for frequent opening of doors. Based on the adjusted 

energy demand and on the electricity consumption of the heat pumps the 

Coefficient of Performance (CP) can be calculated. 

 

13.4.1 Adjusting Ventilation Losses 

 
 

The energy demand for space heating was already assessed previously using the 

software CASAnova, which was validated and shown to be accurate using two of the 

EcoSmart buildings. However, it was also noted that one of the major unknown 

factors was ventilation losses of the dwellings.  

 Apart from building construction, other factors also have an affect on 

ventilation in practice. Opening doors for example, would allow for an air change of 

the building within minutes or even seconds. As the EcoSmart village homes were 

used as show homes, they had frequent visitors, who on the whole behaved very 

unpredictably. On some occasions it was observed that front doors were left open 

while people were inside, and even after they had left the building, in summer as in 

winter. This is a factor that becomes important when evaluating the performance of 

a space heating system based on estimated heat demand. For the purpose of 

determining the GSHP efficiency basd on heat demand the ventilation rate will need 

to be adjusted to account for the relatively frequent opening of doors. This, 

however, is inherently inaccurate as it was impossible to obtain any measured 

values other than the number of visitors. 

In order to estimate the additional heat losses due to the frequent opening 

of front doors, several assumptions have to be made. These are as follows: 

 

- the area of the front door is taken as 2m² with reference to the building 

specifications 

- while the door is open, it is assumed that there is a wind speed of 3m/s, 

with reference to the average annual wind speed of 3.1m/s. The Palmerston 

front door faces west and the Malvern door faces south, which are the two 

most predominant wind directions 

- the average daily time period during which the door is open is estimated to 

be 5 minutes per day, which appears reasonable for an average recorded 7 

visitors per day 
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- the door is fully opened for relatively short periods at a time, thus allowing 

for a volume flow rate equal to the wind speed with relation to door area, 

and individual air changes less than 100% of building volume 

 

The volume flow rate (V ) of air through the fully open door is given by equation 

(13.3): 

 

wAUV          (13.3) 

 

For the case of the EcoSmart village the volume flow rate is 6 m3/s. The effective 

change in air change rate ( ach ) is given by equation (13.4), where ( doort ) is the 

estimated time the door is open per day, tV  is the total building volume and 24 the 

number of hours per day. 

 
 

24
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       (13.4) 

 

The air change correction ( ach ) can then be added to the previously stated rate of 

air change due to ventilation losses by design (N), which does not account for open 

doors. The adjusted air change rates (Na) for all three GSHP systems are given in 

Table 13.F.  

 

Table 13.F: Adjusted air change rates 

 N  ach  aN  

Palmerston 0.79 0.43 1.22 

Washington 0.74 0.53 1.27 

Malvern 0.83 0.18 1.01 

 

 

 
 

13.4.2 Electricity Consumption 

 
 

The GSHP systems for the Palmerston and Washington dwellings are identical, and 

both buildings have a similar heat demand. It has been established that ventilation 

losses have a significant effect on the space heating demand of a building, which 

will be used to assess the performance of the GSHP systems. The ventilation losses 

of the Palmerston building were determined using a pressurisation test. Given the 

similarity between the Palmerston and Washington and the fact that Palmerston 
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heat demand will be more accurate, only the Palmerston system will be analysed in 

detail. The Washington system will be used to provide control readings. The 

Malvern system, being different in design, will also be analysed in detail.  

 
To reiterate, the available measurements to assess the GSHP performance consist 

of electricity consumption of the GSHP systems, electricity consumption of the 

Gledhill heat store systems, as well as temperatures of the flow and return pipes of 

the internal heat distribution circuit that connects the heat pump with the storage 

tank. Both the data logger readings and „manual‟ readings from the import/export 

meters are available for the electricity consumption. Table 13.G provides a monthly 

breakdown of the results that have been recorded for the Palmerston and for the 

Malvern system, where the subscripts „man‟, „log‟ and „store‟ refer to readings from 

the import/export meters (taken manually), the data logger and the Gledhill heat-

store respectively. 

 

Table 13.G: Monthly summary of GSHP related data for Palmerston and Malvern 

  Palmerston (kWh) Malvern (kWh) 

  manEQ ,  log,EQ  storeEQ ,  manEQ ,  log,EQ  storeEQ ,  

Nov-06 346 346 178 1477 1477 230 

Dec-06 435 435 161 1131 1131 274 

Jan-07 492 492 170 1315 1315 233 

Feb-07 376 339 78 988 1019 176 

Mar-07 29 0 92 770 778 162 

Apr-07 246 230 71 435 441 99 

May-07 180 176 71 394 426 102 

Jun-07 120 110 69 159 177 75 

Jul-07 133 121 83 248 240 81 

Aug-07 223 18 124 112 106 84 

Sep-07 204 32 138 171 209 135 

Oct-07 232 167 99 391 451 102 

Annual 3,016 2,466 1,334 7,591 7,770 1,753 

 

 

As for all other systems, the readings taken manually from the import/export 

meters will be used to analyse the performance of the GSHP system, as these 

meters are typically used by energy service companies. The „manual‟ readings are 

only available after January 2007, prior to this the data logger readings will be 

used. The remaining 9 months generally show a close correlation between manual 

and data logger readings, indicating that this is a valid approach. From Table 13.G 

the resulting annual total electricity consumption for the Palmerston and Malvern 

systems are 3016kWh and 7591kWh respectively. The difference is a result of the 

different size of homes where Malvern, having a building volume that is 240% of 

the Palermerston volume, will invevitably have a much greater space heating 

demand. 
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13.4.3 Coefficient of Performance 

 
 

After correcting the ventilation loss factor and finding the electricity consumption of 

the heat pumps the coefficient of performance can be calculated. Table 13.H shows 

the annual values for corrected heat demand, electricity consumption and resulting 

Coeffiecient of Performance (CP). 

 

Table 13.H: Adjusted annual heat demand and resulting annual CP values 

 HQ  (kWh) EQ (kWh) CP  

Palmerston 9,210 3,016 3.05 

Washington 7,942 2,818 2.82 

Malvern 17,409 7,591 2.29 

 

 

Table 8.F shows that the CP values for Palmerston and Washington appear to be 

reasonably close to the manufacturer expectations, predicting a CP value „of at 

least 3‟302. The Malvern CP value on the other hand is considerably lower, 

seemingly showing an underperformance of the system. At this point it must be 

noted that the Palmerston system has the most accurate and reliable data due to 

the fact that a pressurisation test was carried out on the dwelling. It must also be 

remembered that the Malvern system was effectively undersized after the 

horizontal part of the heat exchanger had to be abandoned, and a smaller heat 

pump used as a result.  

 

 

Validation  

 

The temperature data from the pipe work of the distribution circuit can be used 

together with the flow rate to find an approximation of the heat energy that is 

transferred to the storage tank. According to manufacturer specification, the flow 

rate value has an accuracy of 10%303, which will directly relate to the accuracy of 

the heat energy calculations. The specific heat capacity and density of pure water is 

used for these calculations.  

Table 13.I shows the results for these calculations for the Palmerston and 

Malvern dwellings. As the temperature data only appears to be reliable for the 

period between July and October 2007, the analysis will be based on these months 

only.  
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Table 13.I: Results from manual heat energy calculations based on temperature 

  Palmerston Malvern 

  EQ  (kWh) HQ (kWh) CP   EQ  (kWh) HQ (kWh) CP  

Jul-07 133 492 3.7 248 651 2.63 

Aug-07 223 607 2.72 112 358 3.19 

Sep-07 204 631 3.09 171 465 2.72 

Oct-07 232 786 3.39 391 1058 2.7 

Average  3.2  2.8 

 

 

Table 13.I shows the calculated heat output based on temperature calculations 

alongside the measured electricity consumption of the systems, and the resulting 

coefficients of performance (CP) over the corresponding month. An average CP 

value was determined, based on the data available for the 4-month period. The 

resultant average values of CP are 3.2 for Palmerston and 2.8 for Malvern. While 

the Malvern CP value is relatively consistent, the Palmerston value does show 

significant variations, ranging between 2.7 and 3.7. There is a range of possible 

reasons for this, including variation in ground water and ground temperature which 

cannot be determined, as well as metering errors. Particularly the pipe 

temperatures, taken at 20-minute intervals, leave much room for error. For the 

Palmerston system in August for example, an error of 10% in the temperature 

readings would directly relate to the CP and result in a difference of 0.27, giving a 

value of 2.99.  

 

When comparing the results from Table 13.I to the previously calculated CP shown 

in Table 13.H, there is little difference. The annual Cp value for Palmerston shows a 

difference of only 5%, while the Malvern system shows a difference of 22%. In 

general it can be expected that the CP during summer months is greater than the 

annual average, and given the relatively high error margins these temperature 

calculations appear to confirm that the previously calculated CP values are 

reasonably accurate. 

 

 

 

13.4.4 Temperature and Humidity Control 

 
 

The GSHP systems in all homes, including the Malvern, were found to be very good 

at consistently maintaining comfortable temperature as well as humidity levels. 

Table 13.J shows the average measured internal temperatures throughout the test 

year compared to the thermostat settings. 
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Table 13.J: Annual average internal temperatures 

 Thermostat setting (°C) Measured (°C) 

Palmerston 21.0 21.1 

Washington 21.0 21.3 

Malvern 21.0 20.9 

 

 

Table 13.J confirms the impression of the good temperature control. No other 

building at the EcoSmart village had internal temperatures as well controlled as 

those equipped with GSHP systems. This will also, to a large part, be down to the 

smart heat store. 

To provide a more detailed overview, Figure 13.7 and Figure 13.8 show 

examples of the temperature and humidity variations for the Palmerston lounge 

during the coldest period of the test year, January to February 2007.  

 

 

Figure 13.7: Palmerston internal temperature variations during winter period 

 

Figure 13.7 confirms that while external temperatures reach sub-zero levels, the 

GSHP system is able to maintain internal temperatures at comfortable 16-21°C. 

 

 

Figure 13.8: Palmerston internal humidity variations during winter period 
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As shown by Figure 13.8, the internal humidity levels measured in the Palmerston 

lounge were found to be at very comfortable levels, around 40-60% RH, while 

external values vary and are usually much greater. This is achieved without any 

active humidity control, and is suspected to be a result of the low temperature heat 

distribution system. Conventional radiators provide a much hotter surface that can 

dry out air that passes over it more than the cooler under-floor heating would. The 

under-floor heating may also be able to provide a comfortable atmosphere at lower 

air temperatures due to the increased room surface temperature, further reducing 

the „dry air‟ effect caused by space heating. 

  

13.5 System Reliability 
 
 

While all systems worked well most of the time, some reliability issues were 

encountered during the test period.  

Metering problems, which would not affect the system under real-life 

performance, have already been discussed. The Palmerston under-floor heating 

system was found to have a slow leak. This only became noticeable several months 

after construction was completed, and it was eventually discovered that the leak 

resulted from a nail being struck through one of the delicate pipes while the system 

was installed in the building. Finding the exact location of this leak was a costly and 

time-consuming process, which involved the removal of large areas of floor 

including bathroom tiles. Construction work was on-going for several weeks and 

would have caused severe disruptions for any family living in the home.  

 As for the GSHP system itself, it was functioning well most of the time. The 

only exception is a 3-week „down-time‟ of the Malvern system, where the system 

was operating at extremely low temperatures. During this time the system was not 

able to fully satisfy the relatively low heat demand. Figure 13.9 shows heat pump 

electricity consumption, internal and external temperatures for this period.  

 

 

Figure 13.9: Malvern heat pump power consumption and temperature variations 
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Figure 13.9 shows two gaps in the GSHP power consumption. The two-week gap 

towards the end of June is caused by a power failure of the data logger. However, 

the 3-week gap towards the end of August and beginning of September shows a 

partial failure of the GSHP system. While the system still consumed some power it 

is evident that the high-power compressor could not have been running. This is also 

reflected in internal temperature variations, which show that a sharp drop in 

external temperature to around 3°C in mid September in particular cannot be 

compensated. The system was repaired on 18th September. 

 

 

13.6 Performance Assessment 
 
 

This section will discuss the performance and any reasons for discrepancies in more 

detail. Before doing so it must be stressed that the available data, in particular for 

Washington and Malvern systems, has a relatively high error margin for reasons 

outlined previously. Given additional accurate data, including ground temperature 

measurements, the GSHP systems could be modelled and the sensitivity to all 

variables explored in more detail. Several comprehensive GSHP models304, 305, 306 

already exist that could be used for this purpose. 

 

During this 12-month test the Washington system and Malvern system showed CP 

values of 2.8 and 2.3. This is below 3, which is the minimum expected Coefficient 

of Performance. The Palmerston system achieved a CP of 3.1. 

 One factor that will have negatively affected the performance of all three 

systems is the fact that the pump units and some of the pipe-work of the internal 

distribution circuit was located outside. With reference to Figure 13.3, the pipes 

were somewhat poorly insulated and the pumps were encased in a thin wooden box 

to keep out the worst of wind and rain. There will have been substantial thermal 

losses, both inside the actual pump unit as well as from the pipe work. Also, any 

heat generated by the actual operation of the pump and compressor is lost to the 

atmosphere, whereas it could have generated internal gains to the home if located 

inside. The location was chosen to save space inside the home and avoid any 

problems from noise and vibrations.  

 Another common problem may have been the spacing between the ground 

heat exchangers. Being spaced approximately 5m apart, this is merely the 

minimum space recommended by other research301, and given the fact that the 

area was surrounded by buildings that provide significant solar shading this may 

not have been enough for optimum performance. Based on other research287, 291 it 
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should be possible to achieve a CP of at least 3.5, provided that the losses 

described above can be avoided. 

For the Washington system, data accuracy could be responsible for the 

apparent underperformance of the system. The main source of error is assumed to 

be the rate of ventilation losses from the building. No pressurisation test was 

carried out, and the significant effect of visitors opening doors is only a crude 

estimate. It can therefore be said that when analysing the system performance, the 

nearly identical Palmerston set-up has far greater data accuracy and should 

therefore be used as a main reference for the performance benchmark for the 

4.8kW heat pump model. The Washington system should be seen as verification of 

the Palmerston values. Given that the difference between Palmerston and 

Washington is less than 10%, it serves the purpose of confirming that the 

Palmerston value appears to be correct and relatively accurate. 

 The Malvern system shows the largest difference between measured and 

expected CP values, with the measured value being 23% below expectations. The 

main reason is expected to be the fact that the system was partially damaged 

during installation. The remaining part of the system consisted of a 3.6kW heat 

pump which had to satisfy a much greater space heating demand than the other 

two 4.8kW systems, which were installed in smaller homes. As a result of this the 

system was running and transferring heat at much longer intervals than the other 

two systems. This drained more heat from a smaller volume of soil. Also, greatest 

heat transfer efficiencies appear to be achieved when the heat pump system is 

switched on and the temperature in the storage tank is considerably lower than the 

output temperature of the heat pump system. When the systems are active and 

transferring heat for a long time, flow and return temperatures tend to converge, 

effectively reducing the efficiency of heat exchange. Figure 13.10 shows a typical 

variation of temperature difference between the flow and return pipes of the 

internal heat distribution circuit from the Malvern GSHP system.  

 

 

Figure 13.10: Temperature difference between Malvern GSHP flow and return pipes 
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Another reason for the discrepancy between expected and measured performance 

is again the ambiguity over ventilation losses. The Malvern represents the luxury 

line of Barratt homes, and could be perceived as the most „exciting‟ building for 

visitors to take a look at. It is quite possible that the Malvern was viewed more 

frequently than any other home in the EcoSmart village, thus experiencing higher 

ventilation losses from open doors than any other building at the show village. 

 

 

13.7 Visitor Feedback 
 
 

A summary of the feedback questionnaire results for GSHP systems are shown in 

Figure 13.11. The feedback showed that 51% of visitors found the systems have 

extremely high appeal, and a further 25% of visitors said they had slight appeal. 

These values are lower than for all other systems tested. Only 12% of visitors 

stated they definitely intend to buy a system, while another 22% said they would 

probably buy one. Again, the values for propensity to purchase are lower than for 

any other system. With the £7800 capital cost in mind, only 16% said they were 

prepared to pay more than £3000 for the system assuming 2005 estimated 

payback rates, while 30% of visitors did not answer this question.  

In the overall ranking of all energy systems tested at the EcoSmart show 

village the GSHP system was ranked last. 

 

Appeal

51%

25%

12%

9% 4%

Extremely

Slightly

Undecided

Not at all

Not

answered

Propensity to purchase

12%

22%

22%

23%

18%
4%

Definitely

Probably

Undecided

Probably not

Definitely not

Not answered

 

Figure 13.11: Statistics from feedback questionnaire (Source: SMS Market 

Research Summary Report) 
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13.8 Financial and Carbon Savings  
 

 

The annual savings as well as financial and carbon payback periods shown in Table 

13.K and Table 13.L are based on results from Table 13.H. As no reliable 

information could be found for the expected life-time of the system, the length of 

the RHI tariff (23 years) was assumed. In reality the GSHP systems should last 

longer than that, depending on the quality of the pump and the ground heat 

exchanger. It is also assumed that no maintenance will be required. The energy 

consumption of the smart heat store is also considered. Even though a different 

type of heat store may be available with considerably lower energy consumption, it 

is a requirement of the GSHP systems to be interfaced with such a buffer system to 

ensure smooth and efficient operation.   

 

Table 13.K: Annual savings of the three GSHP systems, based on 2011 RHI tariffs 

  Annual Savings 

System Electricity offset Heat store 2011 RHI tariffs Total 

Palmerston -£62.89 -£190.76 £644.70 £391.05 

Washington  -£85.29 -£180.32 £555.94 £290.32 

Malvern -£389.15 -£250.68 £1,218.63 £578.80 

 

 

Table 13.L: Financial and carbon payback periods and life-time savings 

 Payback rate (years) Net savings over system life (23 years) 

System Financial CO2 Financial CO2 (t) 

Palmerston 19.9 4.6 £1,194 4.8 

Washington 26.9 10.3 -£1,123 1.5 

Malvern 21.2 - £1,062 -11.1 

 

 

Table 13.L shows a relatively poor performance of the GSHP systems. The 

Washington system would not achieve financial payback, and the Malvern system 

would generate 11.1 tonnes of CO2 emissions over its expected life-time. However, 

these figures are slightly misleading, as several factors are not accounted for. As 

explained previously the Washington estimate is subjected to many uncertainties, 

and the Malvern system suffered from poor performance after the horizontal ground 

heat exchanger had to be abandoned.  

The only one of the three systems that produced reliable data and had no 

problems was the Palmerston system, which has an estimated financial payback 

period of around 20 years, and would offset at least 4.8 tonnes of CO2 during the 

first 23 years of its operation. It is believed that this could be significantly improved 

if the heat pump was installed inside the building, rather than subjecting it to 

outside temperatures. Another potential improvement to performance might be 
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spacing the vertical heat exchangers further apart. However, it is difficult to 

quantify these improvements without further testing. 

Regardless of any uncertainties in performance however, a comparison of 

the annual savings of the three systems shows an important trend. The larger the 

house, and the higher the overall heat demand, the more financially viable a GSHP 

system would become. Although exact methods of the RHI tariff have not yet been 

clarified, it is most likely that the tariff will be paid based on estimated heat 

demand. From this research it can be deduced that the 4.8kW rated systems used 

in Palmerston and Washington dwellings would probably have been of sufficient size 

for the Malvern home.  

 Carbon offset would also improve over time, as more renewable energy 

sources are integrated into the national grid. Alternatively, highly effective zero-

carbon space heating could be possible if the GSHP system is combined with a 

suitably sized PV system.  

 

 

13.9 Conclusion 
 

 

Firstly it must be mentioned that the data and resulting analyses of the GSHP 

systems has a high margin of error, with the most reliable analysis being that of the 

Palmerston system. The following points would have been required to provide 

robust data for the analysis: 

 

- The temperature of the ground along the length of at least one of the 

ground heat exchangers, and half way between at least two of the heat 

exchangers would have had to be measured 

 

- The homes should not have been used as show homes, and a pressurisation 

test carried out on all three dwellings to accurately determine the heat loss 

 

- In hindsight the heat meters should have been tested prior to integrating 

them into the heat pump circuits. However, constructing a suitable test rig 

would have been relatively expensive and time-consuming and at the time 

could not have been justified commercially. 

 

 

Nonetheless, the data that was obtained still provided some valuable indications, 

which are summarised below: 
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- All systems were able to consistently maintain comfortable temperature and 

humidity, which is reflected by the measured annual average internal 

temperatures of 21.1°C, 20.9°C and 21.3°C 

 

- The CP values were estimated to be around 3.1 for Palmerston, 2.8 for 

Washington and 2.3 for Malvern 

 

- Horizontal heat exchangers are more fragile than vertical ones and can 

sustain irreparable damage 

 

- The Malvern system showed that frequent long and continuous periods of 

system run-time can lead to inefficiencies. It is therefore important to size 

the systems appropriately, although a smaller system can still provide 

sufficient heating 

 

- The ability to offset carbon emissions is highly dependent on Coefficient of 

Performance. The threshold value is currently 2.61, although this may 

reduce if more „green‟ energy sources are integrated into the power grid in 

the near future 

 

- Thanks to the RHI scheme annual savings in the order of £300-600 can be 

expected, where savings are proportional to the heat demand of the 

dwelling. For an annual heat demand below 10MWh, financial payback takes 

at least 20 years. GSHP systems can become financially viable for heat 

demand above 20MWh, for which payback reduces to 10 years and an 

annual return on investment of over 10% is received.  

 

- If a „green‟ source of electricity is used and the system is sized appropriately 

then the GSHP could provide a 70% energy reduction and 100% carbon 

emission reduction for space heating 

 

- During the testing period, the general public found the GSHP systems 

unappealing, which may be related to the high capital investment. However, 

2011 RHI tariffs may help to change public appeal in the future 
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14 Micro Combined Heat and Power 
Systems 

 
 

Combined Heat and Power (CHP) generators have been around for some time, 

typically consisting of a steam turbine that drives an electric generator, while 

producing useful heat in the process. The idea of micro CHP (μCHP) is to scale the 

CHP concept down to become applicable to individual households. This was 

achieved in the late 1990‟s, when the first μCHP emerged on the market. Being 

able to run on solid fuels such as wood-chips, the μCHP unit could be a highly 

efficient solution to provide net zero carbon auxiliary heat for future zero carbon 

homes. 

 

 

14.1 Introduction 
 

 

Several different technologies are available for μCHP units307, including Internal 

Combustion, Steam Engines and Turbines, Gas Turbines, Fuel Cells, Organic 

Rankine Cycle (ORC), and the Stirling Engine.  

In a 2002 report308 to the Energy Saving Trust it was suggested that around 

13.5 million UK households were suitable for small μCHP units, and around 3.2 

million specifically for Stirling engine based μCHP units. However, it was 

recommended that more extensive independent product testing and field trials 

would be required. In a 2007 study from the Netherlands309 it was also concluded 

that the predominant barrier to successful μCHP implementation on a large scale 

was perceived to be technological uncertainty, further emphasising the need for 

robust field trials. 

 

14.1.1 Theoretical Background 

 

The μCHP unit can be compared to a conventional boiler, where the main difference 

is that there is a focus on generating electricity, and using the „waste heat‟ in the 

primary circuit of the central heating system. The μCHP unit that is tested at the 

EcoSmart village uses an external combustion Stirling engine to drive the electric 

generator. The Stirling engine, found to be more efficient, less noisy and having 

less vibration than internal combustion310, is able to burn many different types of 

fuel, provided the heat exchanger is specifically designed for this type of fuel. The 

operating temperature of the Stirling engine is around 700-1000 °C. The working 
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gas, in the case of the test unit (WhisperGen) Nitrogen, is repeatedly heated and 

cooled, causing a change in pressure which moves pistons back and forth. The 

pistons then drive an alternator to generate electricity. 

 

The Stirling engine can also be described by idealised thermodynamic analysis311. 

In phase 1, the isothermal expansion, the gas absorbs heat from the heat source as 

it expands, causing it to maintain a near constant temperature. Phase 2 is the 

isovolumetric heat removal phase, where the gas cools while remaining at a near 

constant volume. In the third phase, the isothermal compression, the volume is 

reduced while the gas remains at an almost constant low temperature by giving 

heat off to the heat sink. Phase four is the isovolumetric heat addition phase. This 

is where the gas is exposed to the heat source while it is compressed, so heat is 

added and pressure increases while the volume remains almost constant.  

 As the pistons create a cyclic movement, they are able to turn a wheel which 

is used to drive an electric AC generator. When the heat from the external 

combustion is captured and transferred to a heat transfer liquid, the system is able 

to provide heat energy as well as an electrical output. As this cyclic piston motion 

takes some time to reach a constant rhythm, the Stirling engine operates best 

when allowed to run for long continuous time periods.  

 

14.1.2 EcoSmart Village Set-up 

 

 

 

Figure 14.1: WhisperGen μCHP system at EcoSmart show village 

 

The micro combined heat and power (μCHP) system tested at the EcoSmart village 

is the model „WhisperGen Mk5‟ from the manufacturer WhisperTech, shown in 

Figure 14.1. The system is gas-fired and uses an external-combustion 4-cylinder 

Sterling engine. Two similar systems are tested independently, both controlled on 

heat demand. While being compact, at the size of a small dishwasher, the system is 

also reasonably quiet with low levels of vibrations.  
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The μCHP systems are connected to a Gledhill heat store system, which acts 

as a buffer for heat demand. This setup should allow the systems to run more 

smoothly and efficiently by decreasing the cycling periods of the systems. Table 

14.A provides more detailed system specifications.  

 

Table 14.A: Manufacturer specifications of WhisperGen μCHP system 

Model Mk5 AC Gas fired 

Engine 4 Cylinder double acting Stirling engine 

Fuel Natural Gas 

Electrical output 1kW rated 

Thermal output 7.5-13 kW 

Dimensions 480 x 560 x 840 (w x d x h) 

Dry weight 150 kg 

 

 

 
Figure 14.2, an extract of the technical specifications sheet, provides a more 

detailed overview of the WhisperGen Mk5 μCHP system. It shows the internal 

layout of the unit and provides a brief overview on how it works. At the EcoSmart 

village the electricity that was generated by the systems was exported to the grid 

using an import/export meter.  

 

 

 

Figure 14.2: WhisperGen μCHP system (source: WhisperGen technical specification 

brochure) 
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Figure 14.2 shows the internal arrangement of the WhisperGen μCHP unit. This 

works as follows: 

 

A) The gas burner heats the four cylinder heads of the Stirling engine 

B) The exhaust heat recovery unit uses the heat energy from exhaust gasses to 

heat the water 

C) The Stirling engine uses the heat from the gas burner to push the pistons 

back and forth 

D) The water is further heated as it passes through the engine 

E) The „wobble yoke‟ converts the straight line motion of the pistons into a 

rotating motion for the alternator 

F) The gas valve supplies and regulates the gas to the burner 

G) The rotary alternator generates AC electricity 

H) The water pipe connections deliver the hot water to the home‟s hot water 

cylinder, for the case of the EcoSmart village the heat is delivered to the 

smart heat store 

 

 

14.1.3 Capital Cost and Embodied Carbon 

 
 

Capital Cost 

 

The capital cost of the WhisperGen systems in 2006 is given in Table 14.B. 

However, it is expected that the capital cost of μCHP systems in general will 

increase significantly as new technology begins to replace inferior existing models. 

In 2011/2012 the projected capital cost64 is around £5,000, based on 1kWe rated 

fuel-cell systems.  

 

Table 14.B: Capital cost of μCHP system at EcoSmart village 

System Cost 

WhisperGen 1kWe £2,700 

 

 

Embodied CO2 

 

Similar to GSHP systems, there appears to be no estimates for embodied energy or 

carbon for the μCHP systems. The embodied carbon of the system will be estimated 

based on mass and presumed composition of materials. The system mass is 

specified as 150kg, and as a crude estimate it may be expected that 75% of the 

weight is Steel for the engine, 20% Copper for the generator and 5% Aluminium for 

casing and some internal parts. From previous experience for the somewhat similar 

GSHP system a factor of 30% should be suitable to account for primary transport 

and assembly. For secondary transportation, including delivery to the customer and 
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a factor for on-site installation, the value used for Micro Wind Turbine analysis is 

adopted. This is based on an average 400km round trip of one medium-sized 

commercial vehicle. Results are summarised in Table 14.C. 

 

Table 14.C: Estimated embodied CO2 of the WhisperGen μCHP units 

Process / Part Embodied CO2 (kgCO2) 

μCHP materials 357 

Primary transport / Assembly 107 

Secondary transport 410 

Total 874 

  

 

14.2 Results from Other Research 
 
 

Being relatively new technology, the Stirling engine μCHP systems, and in particular 

the WhisperGen (Whispertech) units, were subjected to some field trials and 

simulations. These are summarised below to provide a comparative overview of the 

practical research that was going on outside the EcoSmart show village.   

In 2003, a Whispertech μCHP unit with a rated 0.75kWe output was tested 

for three months in a controlled domestic dwelling set up in Ottawa, Canada312. This 

unit performed well, satisfying all heat demand including hot water, and reaching 

efficiencies of 82%, where 76% was heat and 6% electricity. It was also found that 

the unit required a „warm-up‟ period of 30 minutes before it was able to generate 

any electricity313. After the assessment it was recommended that more robust, 

long-term testing is carried out to fully establish reliability and to verify 

performance.  

In a simulation314 of 6 gas-powered μCHP units in Belgium in 2006, the units 

were able to reduce carbon emissions 9-27% compared to using an A-rated boiler 

and grid electricity. The WhisperGen unit specifically was able to provide 9% CO2 

savings. The simulated space heating demand was 32.4MWh, and it was concluded 

that Stirling engines show the greatest potentials in offsetting CO2.  

Also in 2006, results from the Carbon Trust micro-CHP Field Trials were 

released315. During these trials, 8 WhisperGen 1kWe systems, the same model that 

was tested at the EcoSmart village, were installed in customer homes and used 

under real-life conditions. The annual heat demand of the trial homes covered a 

wide range of 8-41MWh, and average overall efficiency of the 8 systems was 79.6% 

over one year. Based on the data that is presented the electric generation efficiency 

was 7.8% on average, resulting in an average CO2 saving of 2% compared to an A-

rated boiler. Two of the 8 systems failed to generate any CO2 savings for that 

particular scenario.  
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14.3 Theoretical Output 
 
 

The μCHP system has a rated electrical output of 1kW AC, and the manufacturer 

suggests that a simultaneous thermal energy output of around 7.5-13kW is 

achievable. This would indicate that when the system is designed to satisfy the 

heating requirement of a home, it is able to generate around 77-133Wh of 

electricity for every 1kWh of heat energy generated. In other words, around 8-13% 

electricity generation efficiency can be expected. The overall expected efficiency of 

the system is given as 90%. 

 

The estimated heat energy demand for the two μCHP test buildings, the 

Buckingham and Edinburgh, are shown in table Table 14.D. The previously 

validated CASAnova results will be used, SAP results are shown for comparison. 

 

Table 14.D: Estimated heating requirements 

  SAP (adjusted) (kWh) CASAnova (kWh) 

Edinburgh  7,800 10,207 

Buckingham 7,070 8,753 

 

Equations (14.1) and (14.2) are used to calculate the primary energy (in this case 

Natural Gas) required to satisfy the space heating demands, as well as the 

theoretical electricity generation of the two systems. The term total  refers to the 

overall efficiency of the systems including thermal and electricity output, whereas 

E  is used for electrical efficiency only, based on the thermal output. The subscript 

„Gas‟ refers to the total primary energy requirement. 

 

H

total

Gas QQ


1
        (14.1) 

 

HEE QQ          (14.2) 

 

Based on the above equations the estimated gas consumption and electricity 

generation was evaluated, as shown in Table 14.E. 

 

Table 14.E: Estimated gas consumption and electricity generation of μCHP systems 

 

 

 

 

 
 

 Edinburgh (kWh) Buckingham (kWh) 

 GasQ  
EQ  GasQ  

EQ  

CasaNova (kWh) 11,341 910 – 1,470 9,725 780 – 1,260 

SAP (kWh) 8,667 590 – 1,050 7,856 530 – 950 
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14.4 Measured Output 
 
 

The μCHP systems were interfaced with heat and electricity meters, and a gas 

meter was used to measure the gas consumption of the dwellings. Therefore it was 

possible to measure the performance of the systems directly, without the need to 

do any further calculations involving other measurements or estimates.  

 The following section will provide monthly generation and efficiencies, as 

well as annual values. The results will be discussed and any reasons for 

discrepancies to the expected performance will be explored.  

  

14.4.1 Buckingham System 

 
 

Table 14.F provides an overview of the recorded monthly values from the data 

logger as well as from the „manual‟ readings for the Buckingham system. The 

manual readings were read off on a daily basis from import / export and gas meters 

by EcoSmart show village staff. The subscript „store‟ refers to energy consumption 

of the smart heat store system used in conjunction with the μCHP system. 

 

Table 14.F: Monthly breakdown of measured results for Buckingham μCHP system 

 Data logger readings Manual meter readings 

 
Gas 
(m³) 

storeEQ ,  

(kWh) 
HQ  

(kWh) 
EQ  

(kWh) 

Gas 
(m³) 

storeEQ ,  

(kWh) 
HQ  

(kWh) 
EQ  

(kWh) 

Nov-06 188.4 72.4 1432 82.1 187.8  1400 24.6 

Dec-06 219.8 77.2 1757 66.5 226.5  1818 11.4 

Jan-07 218.0 75.9 1712 93.4 222.1  1731 32.1 

Feb-07 116.9 38.3 982 54.4 121.4 38.6 1012 9.0 

Mar-07 106.2 39.1 752 91.8 120.4 41.5 852 66.5 

Apr-07 79.4 16.4 533 69.1 92.0 18.8 614 45.6 

May-07 88.5 18.5 67 72.0 85.1 17.9 71 43.8 

Jun-07 48.1 10.7 1 38.4 49.1 10.7 0 23.4 

Jul-07 57.6 12.9 61 46.3 58.7 13.2 59 26.9 

Aug-07 45.7 10.6 96 36.8 46.3 10.8 95 22.1 

Sep-07 73.8 16.2 257 63.1 65.9 14.5 228 35.8 

Oct-07 93.4 18.9 356 79.3 99.9 20.6 376 53.6 

Annual 1335.7 407.1 8006 793.2 1375.2 186.6 8256 394.8 

 

 

Table 14.F shows very little difference between the values recorded by the data 

logger and the control readings taken manually. With the exception of electricity 

generation, total values show discrepancies of less than 5%, which might be 
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expected given some degree of rounding error for manual readings and some losses 

in data logger transmission.  

However, the readings for electricity output from the μCHP system shows 

some significant differences between data logger and manual control readings. To 

further highlight this discrepancy, Figure 14.3 shows a comparison between the two 

electricity output readings. The gas consumption and scaled heat generation are 

shown for reference. Gas consumption has been converted to energy based on the 

assumption that 1m3 of natural gas in the UK contains 10.8kWh of energy316. 

 

 

 

Figure 14.3: Comparison of Buckingham data 

 

As evident from Figure 14.3, the manual readings taken from the import / export 

meter do not agree with the data logger readings. In particular before February 

2007 the difference is very significant. This problem was not encountered for the 

Edinburgh system, and the data logger readings appear to be much closer to the 

expected output than the manual readings, in particular during the period from 

November 2006 until February 2007. This suggests there may have been a problem 

with the import/export meter used for this system.   

 In general the values from the manual readings would be used to assess the 

performance of the system, as these are taken from meters that would otherwise 

be used by Energy Service Companies for energy consumption charges. In this case 

however, based on the evidence that suggests metering errors, the data logger 

readings for generated electrical energy will be used for the assessment of the 

Buckingham μCHP system.  

 Figure 14.4 provides a comparison between the heat output and the 

electricity output for the Buckingham system. The primary energy consumption 

from gas is also shown to provide a first impression of the kind of efficiencies that 

were achieved. 
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Figure 14.4: Buckingham heat and electricity output compared to gas consumption 

 

Figure 14.4 shows some variation in μCHP performance throughout the test year. 

During most months the heat generation is proportional to the gas consumption. 

However, during the summer months May-August 2007, heat generation drops off 

dramatically while gas consumption of the unit remains reasonably high. This is 

highlighted when comparing the months of April and May 2007 directly. While the 

gas consumption is at comparable levels, the heat output during April is much 

higher than the heat output during May. Interestingly the electricity output, which 

is a result of the heating process, also remains at comparable levels. However, the 

internal temperatures of the dwelling, as seen in Figure 14.5 below, show that the 

heating system must have been functioning during this period. Considering that 

electricity generation is a direct result of heat generation, the most likely conclusion 

is that the Buckingham μCHP heat meter was not functioning properly during the 

summer periods. Given the many problems experienced with the heat meters in 

other applications this is entirely feasible.  

 

 

Figure 14.5: Internal temperature of μCHP-controlled homes, April-July 2007 
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Another discrepancy can be observed in Figure 14.4 during the period between 

January and April 2007. While external temperatures and solar irradiation do not 

change much from January to February, both gas consumption and heat output 

drop off quite significantly by around 40%. Figure 14.6 shows the temperature 

comparison for this period. 

 

 

Figure 14.6: Internal temperature of μCHP-controlled homes, January-April 2007 

 

Figure 14.6 provides confirmation for the unexpected variation seen in terms of 

Buckingham gas consumption for the period of February-March 2007. While both 

homes are very well controlled during January, performance of the Buckingham 

system drops off temporarily during February and early March. The system 

suddenly appears to be unable to control the internal temperature adequately, 

leading to large temperature variations and minimum internal temperatures as low 

as 9°C. The performance seems to recover throughout March, but temperatures are 

not as well controlled as before. It almost seems that a problem was triggered 

when the system was pushed to its limit by high heat demand. The manufacturer 

withdrew the unit from the market in 2007 as inhouse testing had revealed 

problems317. However, the nature of these problems was not disclosed.  

  

Efficiency 

 

To assess the performance of the Buckingham μCHP system in more detail, the 

efficiency of electricity generation was calculated on a monthly basis. The expected 

efficiency based on heat output should be 8-13%, and based on primary energy 

consumption the efficiency should be 7-11%. Table 14.G and Figure 14.7 provide a 

monthly comparison of electrical efficiency with respect to heat generation and to 
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primary energy. The monthly overall system efficiency is also found and shown for 

comparison.  

 

Table 14.G: Electrical efficiency and overall system efficiency for Buckingham 

 Electrical efficiency (%) 
System efficiency 

 of heat generation of primary energy 

Nov-06 5.5% 4.2% 75.9% 

Dec-06 3.5% 2.8% 80.0% 

Jan-07 5.1% 4.0% 79.0% 

Feb-07 5.1% 4.3% 84.5% 

Mar-07 9.7% 7.3% 75.4% 

Apr-07 10.1% 7.2% 71.4% 

May-07 50.4% 8.1% 16.2% 

Jun-07 100.0% 7.5% 7.5% 

Jul-07 43.9% 7.6% 17.2% 

Aug-07 27.9% 7.6% 27.4% 

Sep-07 21.7% 9.2% 42.5% 

Oct-07 17.4% 7.6% 43.8% 

Annual 8.8% 5.5% 63.3% 

 

 

Table 14.G shows fairly consistent values until February, giving around 5% 

electrical efficiency based on heat output and close to 80% overall efficiency. This is 

very close to what was measured during previous trials in Canada (2003) and by 

the Carbon Saving Trust in the UK (2003-2006). However, after February 2007 

performance apparently dropped off dramatically. Based on internal temperature 

measurements this is true during March and April, while results for the rest of the 

year are inconclusive due to suspected metering errors. Figure 14.7 shows the 

efficiency variation in graphical form. 

 

 

 

Figure 14.7: Electrical efficiency and overall efficiency of Buckingham system 
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To summarise it can be said that throughout the 12-month period the Buckingham 

μCHP system showed variable performance. Until February 2007 performance was 

in line with other field trials, giving overall efficiency of 80% and electrical efficiency 

of around 5%. During February however the system appears to have developed a 

problem. While electricity generation surprisingly remained high, heat generation 

was somehow reduced during the winter months, as evident by the internal 

temperature measurement which dropped to a low value of 9°C in February and 

March. After April 2007 the heat meter appears to have developed a problem, 

meaning results for the summer period are inconclusive. Nonetheless, an annual 

overall efficiency was recorded as 63.3%, which is significantly lower than the 

expected 90%. In terms of electricity generation the system performed just within 

the lower range of expectation, achieving an average electrical efficiency of 8.8%. 

 

 

14.4.2 Edinburgh System 

 
 

Table 14.H shows a monthly breakdown of the measured parameters for the 

Edinburgh μCHP system. While no manual control readings were obtained for the 

electricity consumption of the heat-store system, the data consistency of all other 

measurements suggest that the data logger readings can be considered to be 

sufficiently accurate.   

 

Table 14.H: Monthly breakdown of measured results for Edinburgh μCHP system 

 Data logger readings Manual meter readings 

 Gas 
(m³) 

storeEQ ,  

(kWh) 
HQ  

(kWh) 
EQ  

(kWh) 

Gas 
(m³) 

HQ  
(kWh) 

EQ  
(kWh) 

Nov-06 189.4 80.8 1553 83.2 189.3 1531 52.5 

Dec-06 200.5 186.2 1369 113.2 204.5 1408 104.3 

Jan-07 227.0 50.4 1032 150.9 236.6 1069 145.4 

Feb-07 198.2 49.8 1375 105.6 202.9 1389 97.1 

Mar-07 170.2 42.0 1255 97.5 180.9 1291 106.0 

Apr-07 104.8 18.8 697 66.6 118.3 798 70.2 

May-07 113.2 19.8 709 70.1 110.4 693 66.7 

Jun-07 64.2 11.3 378 41.1 64.8 382 40.5 

Jul-07 79.5 13.5 464 52.6 81.1 473 52.8 

Aug-07 66.9 11.2 392 44.9 67.7 396 47.7 

Sep-07 96.4 16.5 606 66.3 87.2 548 60.0 

Oct-07 117.4 21.2 771 76.6 125.6 812 84.2 

Annual 1627.4 521.7 10601 968.6 1669.3 10790 927.4 
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For Edinburgh, all readings show good consistency apart from the electricity 

generation for November 2006. For consistency with the Buckingham system, the 

data logger reading will be used for subsequent analysis. When comparing annual 

values, all logger and control readings are within 5% of each other, providing a 

verification of accuracy. Figure 14.8 shows a monthly performance comparison in 

terms of heat output, electricity output and gas consumption. 

 

 

 

Figure 14.8: Heat and electricity output compared to gas consumption of Edinburgh 

system 

 

 

With reference to Figure 14.8 the heat generation and gas consumption are 

generally in proportion to each other, with the exception of January 2007. This 

month shows the highest gas consumption, but lowest heat generation during the 

period November 2006 – March 2007. Apart from January 2007 there appears to be 

very little unexpected behaviour of this system, and performance seems good 

throughout. This is confirmed when looking at the temperature variations shown in 

Figure 14.5 and Figure 14.6, which show that the Edinburgh internal temperature 

seems to be much more stable than the Buckingham internal temperature. Having 

said this, when looking at Figure 14.6 there are several days in January and 

towards the end of March 2007, where the Edinburgh system appears to have 

temporary problems for several days. 
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Efficiency 

  

Table 14.I provides an overview of the monthly efficiencies of electrical generation 

as well as overall system efficiencies. 

 

Table 14.I: Electrical efficiency and overall efficiency for Edinburgh system 

 Electrical efficiency (%) System 
efficiency  of heat generation of primary energy 

Nov-06 5.2% 4.2% 82.0% 

Dec-06 6.9% 4.9% 71.1% 

Jan-07 12.0% 5.9% 49.4% 

Feb-07 6.5% 4.6% 70.4% 

Mar-07 7.6% 5.6% 74.3% 

Apr-07 8.1% 5.7% 70.6% 

May-07 8.8% 5.8% 66.2% 

Jun-07 9.6% 6.0% 62.7% 

Jul-07 10.0% 6.3% 62.3% 

Aug-07 10.8% 6.8% 63.0% 

Sep-07 9.9% 6.6% 67.0% 

Oct-07 9.4% 6.4% 68.6% 

Annual 8.2% 5.5% 67.7% 

 
 

Table 14.I confirms the consistent performance of the system, with January being 

the only month where performance drops off. Efficiency of electricity generation is 

similar to that of the Buckingham systems, although these measurements can be 

seen as being more reliable. Again, the annual electrical efficiency is at the bottom 

end of what was expected. Overall efficiency however is rather disappointing. Even 

though the system generally worked well, except for a few days in January, the 

overall annual efficiency is only 68%. This is less than the expected 90%, and is 

poor compared to an A-rated condensing gas boiler.  Figure 14.9 shows a graphical 

representation of efficiency variation throughout the test year.  
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Figure 14.9: Electrical efficiency and overall efficiency of Edinburgh system 

 

As emphasised by Figure 14.9, the overall efficiency of the Edinburgh system 

ranges between 62% - 82% when neglecting the January value, which is much 

more consistent than the Buckingham system. Apart from a few days the system 

appeared to work without any problems. However, despite having much fewer 

problems, the annual system efficiency of 67.7% is only slightly higher than the 

Buckingham system and much lower than that of an efficient condensing gas boiler.   

 

 

14.4.3 Summary and Discussion 

 

 

Both systems have shown relatively poor efficiencies. While an overall efficiency of 

90% was predicted by the manufacturer, other previous field trials found 

efficiencies to be in the region of 75-80%. At the EcoSmart village however, the 

reliable data of the Buckingham system shows an annual efficiency of 68%.  

 The main advantage of the μCHP over conventional boilers lies in the ability 

to generate electricity as well as heat. Both systems have shown that the electricity 

generation is not quite as good as expected by the manufacturer. It was previously 

found in other trials312 that there was a certain start-up time before electricity 

generation reached peak efficiencies. Figure 14.10 shows an extract of the typical 

gas consumption and electricity generation over one cycle for the Edinburgh 

system. 
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Figure 14.10: Gas consumption and electricity generation over one cycle 

 

 

Figure 14.10 confirms that after the gas comes on, the μCHP system takes some 

time to start generating electricity at peak levels. This time period is around 30 

minutes in this case, overall start-up times were found to vary between 25-40 

minutes. During this time electricity generation is of rather poor efficiency. As the 

μCHP system runs for periods of less than 30 minutes at a time on several 

occasions this can be seen as a key reason for the poor overall electricity 

generation. The system does continue to generate some electricity from latent heat 

after the gas is switched off, but at much lower levels than peak performance, and 

only for 10-15 minutes.  

 A reason for this behaviour lies in the nature of the Stirling engine. The 

temperature difference between the two pistons needs to build up first, before the 

piston interaction can become a rhythmic motion, overcome all resistances and 

eventually drive the generator at high speeds. This is a result of the Stirling engine 

having a low power density. After the heat source is switched off, there is still some 

momentum in the system, as well as a temperature difference between the two 

pistons, hence some additional energy can be generated without a direct heat 

source.  

 Based on this analysis it can be concluded that the Stirling engine μCHP can 

only work efficiently when allowed to run for long periods of time, making them 

somewhat unsuitable for the demand profiles found in modern UK homes. This is 

also confirmed by other research318, suggesting that for this reason this technology 

will be even less viable in the future. 

 

 

 



 
300 

14.5 System Reliability 
 
 

Both systems showed several reliability problems throughout the test period. In 

particular the Buckingham system was unable to control the internal temperatures 

of the test home during an extensive period of around two months. While the 

Edinburgh system performed better throughout the test year, it also experienced 

problems during a total period of around 10 days. These problems occurred despite 

the use of a heat-store, which was expected to reduce reliability issues by 

extending the run-time period of the systems. Extensive testing by the 

manufacturer Whispertech revealed similar problems, which resulted in the unit 

being withdrawn from the market to allow further testing and development to take 

place. The manufacturer Whispertech expects to be able to release an improved 

and updated version of the WhisperGen unit some time in 2011.  

 

14.6 Visitor Feedback 
 

Results from the feedback questionnaire with regard to μCHP systems are shown in 

Figure 14.11. The feedback on μCHP systems shows high levels of appeal of 86%, 

where 63% of visitors stated they find micro μCHP systems extremely appealing. 

20% of visitors stated they definitely intend to buy a system, while a further 41% 

would probably buy one. 20% of visitors said they were prepared to pay between 

£1750 and £2000 for a system, but only 11% were prepared to pay more than 

£2000 based on 2005 estimated annual savings of £108. 

In the overall ranking of all energy systems tested at the EcoSmart village 

the μCHP system ranked second, behind solar thermal systems. 

 

 

Appeal

63%

23%

7%

2%

5%
Extremely

Slightly

Undecided

Not at all

Not

answered

Propensity to purchase

20%

41%

21%

10%
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Definitely

Probably

Undecided

Probably not

Definitely not

Not answered

 

Figure 14.11: Statistics from feedback questionnaire (Source: SMS Market 

Research Summary Report) 
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14.7 Financial and Carbon Savings 
 

  

By nature, the gas-fired μCHP unit is a non-renewable energy system with 

efficiency below 100%. However, grid electricity is considerably more expensive 

than natural gas, and also has much higher carbon implications. Therefore due to 

the onsite electricity generation the systems should, in theory, be able to generate 

some carbon savings and hopefully financial savings compared to a condensing gas 

boiler and imported grid electricity. 

 Table 14.J shows the annual savings for the two μCHP systems. It can be 

expected that typically 50% of the electricity generated by μCHP systems is 

exported to the grid319. Based on the Feed-in tariff, it is therefore assumed that an 

additional 5p/kWh will be paid for 50% of the electricity generation. The carbon 

offset is calculated in comparison to a 90% efficient condensing gas boiler. Similar 

to GSHPs, the μCHP payback calculations also consider energy consumption by the 

heat store, as such a heat store unit would presumably have to be used to allow 

smooth and efficient operation. As the data for the Edinburgh system is more 

reliable, this system should be seen as the benchmark system. 

 

Table 14.J: Annual savings for the μCHP systems at the EcoSmart village 

 Annual Savings 

System Electricity offset Gas offset Heat store 2011 FIT tariffs Total 

Buckingham £113.40 -£139.30 -£58.20 £115.01 £30.91 

Edinburgh £138.57 -£142.17 -£74.60 £140.45 £62.25 

 

 

Based on the annual savings, the payback period is calculated. Carbon payback is 

also calculated based on the estimated embodied CO2 shown in Table 14.C. The 

results are presented in Table 14.K, which also shows net life-time financial and 

CO2 savings. The lifetime of a Stirling engine CHP is estimated to be 15 years320. 

 

Table 14.K: Payback rates and life-time savings of the μCHP systems 

 Payback rate (years) 
Net savings over 

system life (15 years) 

System Financial CO2 Financial CO2 (t) 

Buckingham 87.4 - -£2,237 -4.2 

Edinburgh 43.4 - -£1,766 -3.0 

 
 

The results of this analysis show clearly that these particular μCHP units would have 

been out-performed by a modern A-rated condensing gas boiler. While the 

Edinburgh system shows a better performance, the additional electricity 

consumption from both systems is not sufficient to overcome the losses due to poor 
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overall system efficiency. The only reason why the systems could eventually 

achieve payback is given by the FITs, which help to overcome any financial losses 

and even generate a small income.  

 No carbon offset is achieved in comparison to a 90% efficient condensing 

boiler, meaning that these systems, as tested at the EcoSmart village, would not 

provide a particularly good option to reduce the domestic carbon footprint. 

However, it must be stressed that these problems were recognised by the 

manufacturer and are currently being resolved.  

 
 

14.8 Conclusion 
 

 

Based on their ability to offset carbon emissions, which is the primary objective of 

systems that were being tested at the EcoSmart village, the μCHP systems have 

both failed. While one system had serious problems, even the system with minor 

problems had such poor efficiency that it could not provide any carbon savings 

compared to a modern A-rated condensing gas boiler. In detail, the following 

conculsions have been drawn: 

 

- Both systems were able to control internal temperatures very well for some 

time, before experiencing problems after a few months of operation which 

seems to have been caused by high heat demand during winter 

 

- One system failed for around 10 days, the second system experienced 

continuous problems over a period of approximately 2 months 

 

- Both systems showed low ratios of electricity generation, of 5-10%. A 

probable cause for this was identified as the long start-up time for electricity 

generation, which severely reduced efficiency during intermittent operation 

 

- System efficiencies for system one varied greatly and showed an annual 

average of 63.3%, while system two was more stable with annual average 

efficiency of 67.7%. Both values are far below the 90% estimated by the 

manufacturer. 

 

- The Feed-in tariffs are able to make up for financial losses, but the carbon 

footprint of the systems is significantly higher than that of a modern A-rated 

condensing gas boiler 
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- Due to reliability issues and underperformance the model has been 

withdrawn from the market by the manufacturer for further development 

 

- In 2006, the μCHP systems had high public appeal of 86%, with 20% of 

visitors of the EcoSmart village intending to buy one 
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15 EcoSmart Village Performance and 
Recommendations 

 
 

The performances of the building-integrated energy systems at the EcoSmart 

village have been assessed in detail. Based on modelling and literature research, 

advice was given on how these systems can be improved and what gains might be 

expected from the improvements. The results of the analyses are summarised in 

this chapter to facilitate a comparison. 

 

15.1 Performance of Renewable Energy Systems 
 

The performances of the energy systems in terms of their financial life-time savings 

and their ability to offset carbon emissions are summarised in Table 15.A. The 

result from the Malvern GSHP system is not included as it was felt that the lack of 

performance caused by the failure of the horizontal heat exchanger would skew the 

results. Methods and assumptions for these calculations are outlined in section 

“6.5.3 – Calculating simple financial payback”. 

 

Table 15.A: Estimated life-time financial and carbon savings based on EcoSmart 

village measurements 

 Net Life-time Savings Specific cost 

System No. years Financial Carbon (tCO2) per tCO2 

PV (1kWp) 30 £2,360 to £4,690 5.3 to 8.0 -£445 to -£586 

Solar Thermal (FP) 25 -£475 2.5 £187 

Solar Thermal (ET) 25 -£777 3.3 £238 

MWT (Windsave) 20 -£1,614 -0.4 - 

MWT (StealthGen) 20 -£2,316 -0.2 - 

GSHP (vertical) 23 -£1,123 to £1,194 1.5 to 4.8 £749 to -£249 

microCHP 15 -£2,237 to -£1,766 -3.0 to -4.2 - 

 
 

Table 15.A clearly shows that the best performing system was the PV system. Even 

for the „worst-case‟ generation substancial carbon offset and financial savings can 

be expected over its expected life time of 30 years. Carbon savings were also 

achieved by the solar thermal systems, albeit at rather high cost of £187-238 per 

tonne. The GSHP system performance varied considerably for reasons previously 

discussed, while micro wind turbines and micro CHP systems failed to achieve any 

carbon savings. 
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15.2 Recommendations of EcoSmart Village systems 
and possible improvements 

 
 

Throughout the analyses of test data, detailed system modelling and further 

research, it became apparent that there is significant room for improvement for all 

systems in the EcoSmart village test homes. It is expected that all the 

improvements suggested below could in future easily be carried out by a builder 

before, during, or shortly after the construction phase.  

 

 Micro wind turbines and micro CHP systems did not work well at the 

EcoSmart village and failed to generate any carbon savings. This was mainly 

due to design flaws, and substantial effort from the manufacturers would be 

required to achieve any positive output. Until these problems are resolved it 

is recommended that these systems are omitted.  

 

 The efficiency of the GSHP systems can be improved significantly if the 

pump units and all exposed pipe work is installed inside the building, and 

the ground heat exchangers are placed at least 10-15 meters apart. It is 

estimated that given these improvements a Coefficient of Performance of 

3.5 is achievable. The horizontal heat exchanger proved to be rather fragile 

and it can be assumed that a GSHP with slightly larger size than the 

Palmerston and Washington systems, at around 20% extra cost, would be 

sufficient for the Malvern home.  

 

 The smart heat stores used for GSHP systems consumed excessive amounts 

of energy. It should be possible to run a similar system using around 10% of 

the energy, based on the requirement for a small distribution pump and a 

very basic microprocessor control circuit. 

 

 If the boiler control for the solar thermal systems would be optimised, the 

performance of the systems could improve by an estimated 16-27%. 

 

 The comparison of the PV systems showed that as expected, the south-

facing system inclined at 45° shows the best performance. Based on 

modelling using the tool PV GIS this can be taken as the optimum set-up for 

PV systems across the UK. 

 

If the above mentioned improvements would be carried out at a site that is similar 

to the EcoSmart village, financial and carbon savings could be vastly improved. The 

expected savings, based on previous modelling and literature research, are 

summarised in Table 15.B. Methods for calculation are consistent with the methods 
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used for each of the previous payback analyses. For this comparison the Malvern 

GSHP system has now been considered, provided it is improved as described 

above. 

 

Table 15.B: Expected life-time savings of improved EcoSmart village systems 

 Net Life-time Savings Specific cost 

System No. years Financial Carbon (tCO2) per tCO2 

PV 30 £4,690 8.0 -£586 

Solar Thermal 25 -£68 4.1 £17 

GSHP (vertical) 23 £2.479 to £12,804 12.2 to 22.2 -£203 to -£577 

 

 

The expected effects of system improvements presented in Table 15.B confirm that 

the GSHP systems show a vast potential for improvement. The greatest benefit can 

be achieved by the Malvern home, which has a relatively high space heating 

demand. For the Malvern system, the financial savings for each tonne of carbon 

offset is comparable to that of the PV system.  

 Overall, the PV system remains the most beneficial system in terms of life-

time performance. It is able to provide the greatest financial return on CO2 

emission offsetting, and also has the potential to provide greatest overall life-time 

carbon savings if the size of the system is increased.  
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16 Conclusion 
 
 

The EcoSmart village was designed and built to test a range of renewable energy 

systems, to establish how they can contribute to reducing carbon emissions in 

domestic homes, how reliable they are and how they can be improved. Another 

important aspect for the successful integration is the ability to accurately predict 

the performance of these systems. The analysis of the test site was able to provide 

answers to all these points, which are summarised below.  

 

 

16.1  Availability of Resources 
 

 

The availability of adequate resources forms the basis for renewable energy 

systems to work well in the urban environment. These natural energy resources 

include direct solar radiation, wind and heat from the ground.  

 Even in UK climate the availability of direct solar radiation is sufficient for 

solar systems to generate a substantial amount of energy. The relatively cold 

ambient temperatures mean solar thermal systems can become less efficient unless 

well insulated using a vacuum, but they can also increase the efficiency of PV 

systems. 

 Wind resources in urban environments generally appear to be insufficient for 

wind energy generation. Average wind speeds of 3.1m/s were measured at the test 

site. A widely recognised minimum average wind speed for efficient wind generation 

is 5m/s.  

 Although ground temperatures were not measured, other UK research and 

the performance of the EcoSmart GSHP systems throughout the winter months 

suggest that resources are adequate. However, as ground energy is mainly supplied 

by the sun, it can be expected that ground shading will have a significant effect on 

the available resources. This should be investigated further if the application of 

GSHP systems is considered. 

 

 

 

 

 



 
308 

16.2 Predicting Realistic Performance 
 

 

During this research it was identified that there is a significant gap between the 

accuracy of methods used to predict system performance by academia and by 

industry. In an attempt to close this gap several methods were presented that can 

be used to accurately predict the performance of renewable energy systems. The 

methodology of these tools was critically reviewed and validated using data from 

the EcoSmart village. The following methods can also be used to validate the 

accuracy of future standard industry methods, such as SAP 2009. 

 

PV: Several freely available and accurate tools were found and validated. For the 

UK, the recommended tool is PV GIS, developed by the European Commission Joint 

Research Centre. To provide an even simpler alternative, a prediction method was 

developed during this research that uses a UK benchmark value and a look-up chart 

to account for variables.  

 

Solar Thermal: Due to the complexity and many variables it is very difficult to 

accurately predict the performance of these systems. A complex model was created 

and validated using results from this research. A less accurate but more user-

friendly tool is provided by RETScreen, developed by many experts from 

government, academia and industry in Canada.  

 

Micro Wind Turbines: Accurately assessing the available resources is essential for 

predicting wind turbine performance. The annual average wind speed can provide a 

good indication. A tool created by the Energy Saving Trust uses methodology that 

appears to provide accurate estimates. The use of the NOABL database is not 

recommended for urban or suburban sites. Apart from using average wind speeds 

each individual site must also be analysed for sources of turbulence, which can be 

caused by any nearby obstacle, including the roof on which the turbine may be 

mounted. It is recommended by other research to mount turbines at least at a 

height 50% above obstacle height. 

 

GSHP: In order to accurately predict the performance and carbon or financial 

savings from these systems the heat demand must be known. The most accurate 

tool or method that was reviewed during this research is given by the tool 

CASAnova, although in general some errors can be expected from variations in 

ventilation losses. Developed as an educational tool, it is freely available and does 

not require any licensing. SAP 2005 was found to underestimate the space heating 

demand. After establishing the heat demand, the coefficient of performance can be 

used to find the electric energy demand of the heat pump. It was found that a 
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realistic CP estimate is 3-3.5, although this can vary significantly based on heat 

pump model, installation method, and the composition and shading factor of the 

ground. 

 

MicroCHP: Similar to GSHP systems, it is essential to predict the energy 

performance of the building to predict system performance. When this is known the 

efficiency factors provided by the manufacturer or system field trials must be relied 

upon. 

 

 

16.3 Actual System Performance at the EcoSmart 

Test Site 
 

After thoroughly testing the integrated systems over a period of 12 months under 

real weather conditions and analysing the data in detail, a final verdict on the 

performance can be drawn. 

 

PV: The PV systems worked consistently and reliably. With the exception of one 

system, which showed underperformance of around 5%, it was found that all 

systems performed as expected. Based on 2006/2007 weather conditions the 

systems would save 5.3-8.0 tonnes of CO2 emissions throughout their expected 

life-time (30 years). With 2011 Feed-in Tariffs the annual return on investment 

would be 5.9-7.7%.  

 

Solar Thermal: Both Solar Thermal systems had some reliability issues resulting 

from incorrect installation and set-up, as well as mismatching components. Due to 

unfavourable boiler settings both systems were found to under-perform by an 

estimated 17-26%. The measured annual generation was found to be 462kWh (flat 

panel) and 588kWh (evacuated tube). This results in carbon emission savings of 

2.5-3.3 tonnes over the expected system life-time of 25 years. With 2011 RHI 

Tariffs the annual returns on investment would be 4.1% for the flat panel and 3.6% 

for the evacuated tube system, meaning no payback is achieved within the 

expected system lifetime.  

 

Micro Wind Turbines: These systems had several reliability issues. Manual start-

up was required after turbine furling during high wind speeds, leading to significant 

down-time. On one occasion a blade detached during extreme wind speeds, posing 

a high safety risk. The turbines also failed to perform well, which is a result of 

inadequate wind resources, lack of consideration for turbulence and inverter 

inefficiencies. The systems did not generate any carbon emission or financial 

savings.  
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GSHP: The only horizontal ground heat exchanger to be tested was damaged 

beyond repair during installation. As a smaller vertical heat exchanger remained in 

tact, this heat pump system effectively became undersized. Despite this it was able 

to maintain comfortable internal temperatures, albeit at significantly reduced 

efficiency. All systems using vertical ground heat exchangers worked consistently 

and reliably. However, the under-floor heat distribution circuit in one of the homes 

was found to have a slow leak, resulting in tedious and expensive repairs. All three 

systems underperformed slightly. This is suspected to be a result of the pump as 

well as some pipe work being exposed to cold ambient temperatures, and of the 

vertical heat exchangers not being placed far enough apart. Given the installation 

problems and general lack of performance, one system was found to effectively 

emit 11.1 tonnes of CO2 over the expected lifetime of 23 years, while the other two 

achieved emission savings of 1.5-4.8 tonnes of CO2. The estimate of 4.8 tonnes 

CO2 savings is based on the most reliable set of data. This system would also 

achieve financial payback after 19.6 years, while across all three systems the 

annual return on investment is in the range of 3.7-4.7%. This includes the energy 

consumption of the smart heat sore.  

 

MicroCHP: Neither of the two systems worked reliably. While one experienced 

down-time of around 10 days, the second showed severely reduced performance 

throughout 2 winter months. Overall efficiencies were 63% and 68%, with 

approximately 5-6% electricity generation. Both systems failed to outperform a 

grade A condensing gas boiler.  

 

 

16.4 Lessons Learnt 
 

While on the whole the energy generation from the systems tested at the EcoSmart 

village may be seen as disappointing, very valuable lessons have been learnt from 

many of the problems that were encountered. The detailed analysis of the test site 

has revealed that many of the problems can easily be avoided, while others are 

inherent to technology that has not yet fully matured. To summarise, the main 

problems include: 

 

- Solar Thermal systems are very complex systems. A finely tuned interaction 

of correct installation, sizing of components and control settings is required 

for these systems to work efficiently. 
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- Current designs of horizontal axis Micro Wind Turbines appear to be unable 

to adequately deal with turbulence, in particular the lateral turbulence 

caused by downstream obstacles and roof edges in urban environments. 

 

- GSHP systems should ideally be placed in a warm environment, such as the 

inside of the house, and the ground heat exchangers must be placed far 

enough apart (at least 10-15m) to work efficiently. 

 

- The gas-fired µCHP systems did not achieve the predicted efficiencies, and 

were found to have a higher carbon footprint than modern condensing gas 

boilers. The problems were recognised by the manufacturer and the unit was 

subsequently withdrawn from the market for further development. 

 

- The support systems, inverters for electrical and smart heat stores for space 

heating systems, can severely reduce the performance of the renewable 

energy systems. Both consume significant amounts of energy and, in the 

case of the inverters, are likely to lead to vastly reduced generation 

efficiencies. 

 

 

16.5 Recommendation 
 

Based on the analysis carried out as well as some experiences from other research, 

a final recommendation can be made. 

 

Solar thermal systems are able to provide significant hot water savings of up to 

40% if the system performance is improved. However, this is a challenging task. 

Due to the complexity and many variables, 4 out of 5 systems experienced 

problems as a result of inadequate installation, mismatch of components, and 

unfavourable control settings. Metering inaccuracies make it difficult to detect some 

of these problems. If solar thermal systems are used, it is essential that these are 

installed by experienced suppliers with good track record, and customers must be 

informed about how they can get the best performance from these systems. The 

actual savings will heavily depend on the hot water requirements of individual 

households. 

 PV systems have proven to be reliable and have consistently performed as 

expected. As grid electricity has higher carbon content than natural gas they can be 

very effective at reducing domestic carbon emissions, offsetting around 10% of the 

annual carbon footprint per 1kWp. With 2011 Feed-in Tariffs, average 1kWp PV 

systems throughout the UK are expected to generate a return on investment of 

7.6%, achieving payback after 13.2 years. Based on the reliability and the ability to 
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offset carbon emissions while generating considerable long-term financial savings, 

the integration of PV systems in every new home is recommended.  

 The horizontal axis micro wind turbine systems appear to be inherently 

inefficient in turbulent conditions, which are inevitable in urban environments. In 

addition to this, it can be expected that in most urban environments there is 

insufficient wind energy potential to see any significant output from these systems. 

It is therefore not recommended that these systems are installed on typical urban 

or suburban low or zero carbon homes.  

 GSHP systems are generally reliable and have the potential to perform well. 

However, care must be taken when installing the systems and the suggested 

improvements should be considered. It is recommended that only vertical ground 

heat exchangers are used, as horizontal heat exchangers appear to be fragile and 

can be damaged beyond repair. The under-floor heating system used with GSHPs 

can also lead to problems if they develop leaks after installation. The ability of the 

GSHP systems to generate carbon emission and financial savings generally 

increases with heat demand of the building. If the annual heat demand is relatively 

high (15-20MWh), the total carbon footprint of the home can be reduced by around 

15%, and an annual return on investment up to 12% can be achieved. It is 

recommended that GSHP systems are considered for large homes with high space 

heating demand. However, the main priority should be to reduce space heating 

demand as much as possible, meaning this should not be considered as a standard 

heating solution for typical low or zero carbon homes, unless applied to a 

communal scheme. The application of Air Source Heat Pumps (ASHP) might also be 

considered as a more mainstream solution, although it was outside the scope of 

this project to review and analyse these systems. 

 MicroCHP systems could potentially have some benefits, in particular if they 

are using bio fuel. However, they have not performed well at the EcoSmart village. 

It is therefore recommended that the improved systems are subjected to rigorous 

long-term (at least 12 months) independent testing before they are considered for 

large-scale application in new homes. 
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17 Further Work 
 

 
Due to the limited time and resources that were available for this research project, 

it was not possible to examine all aspects in the same amount of detail. This section 

will present a recommendation for some of the areas that will need to be explored 

further to provide a more complete picture. 

 

 It was already discussed that the available data for GSHP systems in 

particular was insufficient for an accurate assessment. It is recommended that in 

further field trials of these systems ground temperatures are measured to provide 

an overview of the effects of heat removal and in particular heat addition by the 

sun, as well as the effects of ground shading. 

 It was also mentioned that Air Source Heat Pumps (ASHPs) might provide a 

more practical alternative. These systems should be reviewed, tested, and 

compared to GSHPs. 

 

 During this research it was shown that support systems, such as the smart 

heat store, can have a significant effect on system performance. It is recommended 

that the control strategy and also the energy consumption of these stores are 

investigated in more detail. 

 

Many of the heat meters used at the EcoSmart village were not functioning 

properly. To avoid these problems in future it would be a useful exercise to test 

these meters and develop a better understanding of why exactly they failed. 
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Appendices 
 

A. PV Watts and PV SYST Comparison 
 

 

 

PV WATTS 

 

PV Watts321, developed by the RReDC322, is also a freely available web-based tool. 

It requires the following user input: 

 

- Location, where 9 different locations can be selected from for the UK 

- PV System DC Rating 

- DC to AC Derate Factor to calculate losses, comprising: 

 Inverter / Transformer efficiency 

 Diodes, connections and mismatch losses 

 Wiring losses 

 Soiling losses 

 Shading losses 

 Age 

- Array Type, including options for fixed tilt or sun tracking 

- Array tilt & azimuth 

- Energy supply data, should the user wish to estimate energy bill savings 

 

As for PV GIS, typical values have been suggested for each of the losses to improve 

user-friendliness, but can be adjusted individually if known. A separate help file is 

also available, providing explanations of parameters that may be unclear. 

 

PV WATTS Method 

 

The PV WATTS calculator uses actual representative samples of historic weather 

data, rather than averages based on historic weather data. These were chosen from 

several historic decades and comprise hourly values.  

 To calculate the output PV WATTS determines the solar radiation incident 

to the selected PV plane, as well as the module temperature for each hour of the 

year. The program then calculates the DC energy for each hour based on the 

radiation and the DC rating of the PV module. In order to calculate the AC output of 

the system, PV WATTS multiplies the DC values by the AC Derate Factor, which has 

been previously specified by the user. The previously specified inverter efficiency is 

adjusted for each hour as a function of the output load. After calculating the hourly 
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values of AC energy, these values are then summarised as monthly and annual 

energy generation estimates.  

 

PV WATTS Results 

 

Input parameters were chosen that best represent the set-up. The chosen UK 

location was Aughton near Ormskirk, (53.55° Latitude, –2.92° Longitude), at a 

distance of approximately 15 miles from the test site. The derate factor was chosen 

at 0.86 in order to use the same value as for the PV GIS simulation (which used a 

value of 14% for system losses).  

 

 

 

PV SYST 
 

 
PV SYST is a stand-alone program, requiring installation and licensing. The full 

license is available for 900CHF (around £450) from the Swiss University of Geneva. 

The weather data, which can be selected from many sources, consists of hourly 

intervals. As a unique feature it also allows weather data to be imported manually. 

The following input is required: 

 

- Location, can be chosen from a list or created using a separate tool 

- Weather data, which can be selected from one of many databases or 

imported manually 

- Horizon, where the user can manually specify any terrain (or building) 

shading 

- System, where information including size, tilt and orientation are specified 

- Module type and technology 

- Mounting type and ventilation 

 

Although not standard input options, some calculation parameters can also be 

adjusted by the user, including: 

 

- Standard module efficiency for different module types 

- Temperature correction factors 

- Wiring losses 

- Inverter efficiency 

 

With this many input options PV SYST is very flexible, albeit not quite as user-

friendly as the two web-based estimation tools. Like PV GIS, this tool is also able to 
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calculate the optimum inclination and orientation, as well as given the effective 

losses incurred by moving away from this optimum.  

 

PV SYST Method 

 

Using global solar radiation as a basis, an hourly model is used to calculate in-plane 

direct beam radiation and the diffuse component, the module temperature and the 

DC generation. A model validation323 using measurements found the following 

range of errors: 

- up to 10% for beam / diffuse model 

- ± 4°C for module temperature 

- Root mean square error up to 2.24% for DC output 

 

With the DC generation determined, an inverter model is used to simulate to 

provide AC output. Inverters can be modelled based on user specifications, a tool 

for this approach is provided.  

 Based on the independent validation, the creators of PV SYST are confident 

that the error margin of the final results of the simulation is in the order of 2-3%.  

 

PV SYST Results 

 

Again, all parameters were specified to best represent the set-up. A location was 

created with exact Latitude and Longitude, and the artificial horizon specified based 

on observations. Standard NASA satellite weather data was selected to simulate a 

case where little data is available. For better accuracy determination, a second test 

was carried out for the Malvern building, where imported weather data was used. 

Settings for system losses were kept at default values.  

 
 

PV Estimation Tools – Qualitative Comparison  

 

After the accuracy of all tools has been established, some other factors are also 

considered. These are outlined below.  

 

Accuracy: All tools provide acceptable accuracy, where PV WATTS appears to have 

an inherent flaw when converting angles. PV GIS benefits from its high flexibility, 

giving the most accurate results after adjusting losses to real values. PV SYST can 

be very accurate if recent local weather data is imported. PV WATTS does not 

appear to account for any shading, while this is automatically calculated by PV GIS. 
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Weather Data: PV GIS uses the comprehensive ESRA database, which is further 

interpolated to give a refined and accurate spread of data. PV SYST excels in this 

area, providing a choice of several data bases and providing an import option. 

However, this may also make it hard to find the most accurate data set. PV WATTS 

was designed for use in North America, only providing 9 fixed locations for UK 

weather samples. For better comparison, the standard weather is compared to the 

CIBSE Test Reference Year for the near-by location of Manchester. The comparison, 

giving good correlation of within 6% for all sets, is shown in Figure 17.1. 

 

 

 
 

Figure 17.1: Monthly comparison of solar radiation on horizontal surface between 

CIBSE test reference year and solar estimation tools 

 
 

Output: PV GIS and PV SYST are able to provide very comprehensive and detailed 

sets of results, including optimum PV angles. In particular for PV GIS all losses are 

specified, and in-plane irradiance presented in numeric and graphical form. PV 

WATTS is purely focussed on providing a numerical generation estimate, but similar 

to PV SYST it is also able to estimate financial savings.  

 

Ease of Use: PV GIS has a very user-friendly and flexible interface incorporating 

Google Maps. Data entry is done on one page and can be done very quickly. The PV 

WATTS locations choices are somewhat ambiguous, but good advice provided for 

estimating errors. PV SYST provides many input options that can be challenging 

and confusing for inexperienced user. The incorporation of tools provides flexibility 

but results in an overall lengthy process before getting a result.  

 

Adjustability: PV GIS allows adjusting system losses, explore a system with sun-

tracking capabilities, obtained detailed meteorological data for the given location 
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and optimum PV angles. A unique consideration for building-integrated systems is 

also given. PV WATTS has similar flexibility. While unable to obtain the optimum 

system set-up, it provides a comprehensive „AC derate factor calculator‟. Not 

having an option to choose between different PV technologies can be limiting. PV 

SYST is a very powerful tool, allowing the user to adjust the PV estimates for 

almost any possible scenario. 

 

Accessibility and Cost: PV GIS and PV WATTS are free web-based software tools. 

Assuming an Internet connection, they are accessible anywhere around the world. 

PV SYST on the other hand is a stand-alone program, which requires a local 

installation as well as licensing. A full license costs £450. However, the software is 

available for download from the internet and has a 10-day trial period. 
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B. Visitor Feedback Questionnaire 
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