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µ magnetic permeability  

µr relative magnetic permeability  

µ0 magnetic permeability of vacuum 

ρ gain ratio  

σ electrical conductivity  

σi singular values  

σp prior conductivity vector  

σ0 initial conductivity map 

σ
* 

reconstructed conductivity map   

σtrue true conductivity map 

Ω entire problem domain 

Ωc eddy current problem region 

Ωs current source region 

ω angular frequency 
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Abstract 

Magnetic induction tomography (MIT) is a non-invasive, soft field imaging modality 

that has the potential to map the electrical conductivity (σ) distribution inside an 

object under investigation. In MIT, a number of exciter and receiver coils are 

distributed around the periphery of the object. A primary magnetic field is emitted by 

each exciter, and interacts with the object.  This induces eddy currents in the object, 

which in turn create a secondary field. This latter is coupled to the receiver coils and 

voltages are induced. An image reconstruction algorithm is then used to infer the 

conductivity map of the object.    

In this thesis, the application of MIT for volumetric imaging of objects with low 

conductivity materials (< 5 Sm
-1

) and dimensions < 1 m is investigated. In particular, 

two low conductivity applications are approached: imaging cerebral stroke and 

imaging the saline water in multiphase flows. In low conductivity applications, the 

measured signals are small and the spatial sensitivity is critically compromised 

making the associated inverse problem severely non-linear and ill-posed. 

The main contribution from this study is to investigate three non-linear optimisation 

techniques for solving the MIT inverse problem. The first two methods namely, 

regularised Levenberg Marquardt method and trust region Powell’s Dog Leg method 

employ damping and trust region strategies respectively. The third method is a 

modification of the Gauss Newton method and utilises a damping regularisation 

technique. An optimisation in the convergence and stability of the inverse solution 

was observed with these methods compared to standard Gauss Newton method. For 

such non linear treatment, re-evaluation of the forward problem is also required. The 

forward problem is solved numerically using the impedance method and a weakly 

coupled field approximation is employed to reduce the computation time and memory 

requirements. For treating the ill-posedness, different regularisation methods are 

investigated. Results show that the subspace regularisation technique is suitable for 

absolute imaging of the stroke in a real head model with synthetic data. Tikhonov 

based smoothing and edge preserving regularisation methods also produced 

successful results from simulations of oil/water. However, in a practical setup, still 

large geometrical and positioning noise causes a major problem and only difference 

imaging was viable to achieve a reasonable reconstruction.  
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1 Introduction 

 

Magnetic induction tomography (MIT) which is also referred to as electromagnetic 

tomography, electromagnetic induction tomography and eddy current tomography is a 

non destructive electrical tomography technique for imaging the passive electrical 

properties namely electrical conductivity (σ), and magnetic permeability (µ) inside the 

volume of an object under examination. Reviews of MIT were given by [1-3]. 

Compared with its sister technique Electrical Impedance Tomography (EIT), MIT has 

the advantage that it does not require direct contact with the object but functions 

through an air gap using an array of coils. Similar behaviour is exhibited by ECT 

which operates effectively through an air gap for imaging of dielectric materials 

(electrical permittivity (ε)), but it is unsuitable for conductive materials (σ >> ωε) 

because the air layer dominates the response. Therefore, the contactless nature of MIT 

avoids the errors from which EIT suffer that are related to electrode contact 

impedances, and having the positions of the MIT sensors known and fixed also helps 

image reconstruction.  

Fuelled by the rapid advances in eddy current Non Destructive Testing (NDT), MIT 

adopted the eddy current concept and with multiple transmitter and receiver sensors, 

MIT developed applications in industrial process monitoring. In particular, the metals 

industry was first approached with applications such as molten steel visualisation [4-

7] and solidification monitoring for molten steel [8, 9] because their high 

conductivities cause a large flow of eddy currents that can be easily detectable.  Later, 

the contactless characteristic of the technique made MIT attractive for medical 

imaging applications especially for those where the attachment of the electrodes is 

inconvenient. However, the development of MIT for biomedical use has been much 

more difficult because of the low conductivities of biological tissues (0.02-2 Sm
-1

) 

that are many orders of magnitude lower than those of metals, and hence give much 

smaller signals. Nevertheless, with advances in sensor design and data acquisition, 

research in the field of MIT has shown that such technological difficulties can be 

overcome, signals are being measured and images are reconstructed at least for 

phantoms with simple representative material distributions. Among the medical 

applications that have been investigated using MIT include: detection of bleeding in 
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the brain (cerebral stroke) [10, 11], body composition [12-14], monitoring of the 

heart, and lung activity [15] and wound healing. Some of the main research groups 

which featured strongly in medical MIT are Bioimpedance group in Graz, Electronic, 

Biomedical and Instrumentation group in Barcelona, Medical Electronics and Signal 

Processing Research group in South Wales and Philips Medical Research in Aachen. 

On the other hand, there is a number of low conductivity industrial applications where 

materials exhibit conductivities that do not exceed 5 Sm
-1

. Some of them have 

materials which are similar to biological tissues like imaging of foodstuffs, while 

others have materials with relatively higher conductivity (approx 5 Sm
-1

) such as the 

inspection of process water for offshore multiphase flows. This latter is characteristic 

of high contrast material distribution, whereas the medical applications are of lower 

contrast. In this thesis, two applications are targeted namely, imaging of cerebral 

stroke and the measurement of saline water in oil/saline water pipelines. 

 

1.1 Principle of operation of MIT  

The principle of operation of MIT can be illustrated as shown in Figure 1.1 with a 

human head representing the object under investigation. MIT requires an alternating 

magnetic excitation field B0 (orange loops) to be coupled from the excitation coil to 

the object. The complex conductivity distribution 
0

 = +jκ σ ε ε
r

ω or changes κ∆  inside 

the object cause a secondary field perturbation ∆B (blue loops) due to the induction of 

eddy currents in the volume of the object. This secondary field ∆B is of interest and is 

measured in combination with the primary field B0 by receiver coils in the form of 

voltages or trans-impedances. In order to obtain sufficient information about the eddy 

current activity in the volume of the object, multiple independent measurements are 

collected by implementing numerous excitation and detection channels around the 

periphery of the object. The measured data are then passed to conditioning 

electronics, and transferred to a computer via a data acquisition board. A suitable 

image reconstruction algorithm is employed in order to recover the spatial distribution 

of the electrical conductivity in the target from the collected data. As mentioned 

earlier, MIT is also sensitive for permeability variations, and hence can be used for 

imaging this property. In this case, the interaction of the primary field B0 with the 

permeability µ
r
distribution produces magnetic dipoles in the volume, which generate 
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a secondary perturbation field ∆B. Likewise to conductivity imaging this secondary 

field is measured and processed for eventually mapping the permeability distribution 

in the object under study.  In this thesis, MIT is investigated for conductivity imaging 

due to the nature of the electromagnetic properties of the considered applications.  

 

Figure 1.1:  Principle of operation of MIT (based on schematic published by Scharfetter et al) 

 

1.2 Electromagnetic effects in MIT 

In MIT, when the excitation coils are energised, the spatial distribution of the 

magnetic flux inside the scanning region and hence the mutual coupling between the 

coils are altered when placing the object inside the region. The object material can be 

either ferro/ferri magnetic (µr >1) and/or has a high electrical conductivity. Compared 

to air, these materials typically cause the following electromagnetic effects which are 

represented below:  
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(a) Model  (b) Air target                 (c) Ferrite target         (d) Aluminium target 

Figure 1.2:  Schematic representation of the soft field effect [16]. 

 

 

Figure 1.3:  Phasor diagram demonstrating the electromagnetic effects of different material types 

in MIT [3] 

From the figures shown above the following conclusions could be drawn: 

• A permeable and non conducting object (ferrite) draws the magnetic flux lines 

into it, hence increasing the mutual coupling between some coil combinations 

as compared to others reflected by a rise in the detected signal as shown in 

Figure 1.2 (c). The secondary magnetic field coupled to the receiver coils is in 

phase with the primary field as illustrated by Figure 1.3. 

• A very conducting, non magnetic object (Aluminium) tends to reduce the flux 

penetrating it due to the development of strong eddy currents inside the 

material which generate a secondary magnetic field opposing the source field 

as shown in the phasor diagram. This is known as the skin effect.  

• For low conductive materials, which are the interest of this research, the 

phasor diagram shows the eddy current based magnetic field is perpendicular 

to the primary signal and its magnitude is very small. In order to be able to 

detect the corresponding induced voltages higher frequencies (up to 20 MHz) 

are generally favored compared to those used in metals inspection, because for 
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low conductivity applications the skin effect can be neglected, and hence the 

induced voltages are assumed to be proportional to frequency [17]. 

 

1.3 Image reconstruction in MIT: pitfalls, challenges and 

recent developments 

Image reconstruction represents a significant hurdle for the future development of 

MIT. In contrast to hard field tomography modalities where the measured data 

depends only on the information along the well defined projected electromagnetic 

beam, in MIT the magnetic field lines are less definite and the measured data depend 

on the property variation in the whole volume of the target. Consequently, image 

reconstruction in MIT requires the treatment of a nonlinear inverse problem. Many 

workers in the field of MIT have reported the application of linear optimisation 

methods which usually produced qualitative images with limited resolution. From a 

mathematical point of view, linear approaches cannot be prescribed as a suitable 

treatment; instead non linear iterative schemes should be employed. In this iterative 

process, the conductivity map is updated in order to minimise an objective function 

represented with a least squares functional until some predefined convergence criteria 

is met. The solution should be able to produce the best fit between the measured data 

and the model. Two computational procedures are re-evaluated after each update of 

the image, namely the forward problem and the inverse problem. The forward 

problem can be defined as follows: given an object Ω with a known property (e.g. 

electrical conductivity σ n∈� ) distribution, and a mathematical model of the MIT 

system, calculate the measurement set ( )V F σ= . On the other hand, the inverse 

problem is: given a measurement set of data V m∈� and sensitivity map J m n×∈� of 

the object, derive the property distribution Ωσ ⊂ . In a nonlinear optimisation 

scheme, the sensitivity must be re-evaluated after each update of the conductivity 

map. Various nonlinear optimisation methods have been developed in numerical 

analysis but hardly have been applied in MIT since they require the re-evaluation of 

the 3D forward problem leading to very long computation time and demanding 

memory storage. The first results of a nonlinear treatment of the MIT inverse problem 

for conductivity imaging were published by Soleimani [18]. Moreover, the MIT 
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inverse problem is ill-posed in the sense that small errors in the measured data may 

propagate with arbitrarily large errors in the estimate of the conductivity distribution. 

Two factors contribute to the ill-posedness of the MIT inverse problem.  These are 

that the data is often contaminated with noise and the fact that MIT is substantially 

more sensitive to the periphery of the object than to the central region. In order to deal 

with the ill-posedness of the problem the application of regularisation schemes is 

required to stabilise the solution. Therefore, a penalty term which carries a priori 

information is added to the objective function to be minimised. Most groups have 

reported the application of generalised Tikhonov regularisation methods where the 

employed matrices are more or less ad-hoc and the implicit prior information is 

simple. For applications with complex internal structures like imaging cerebral stroke, 

these priors are not representative of the actual solution and may be inappropriate. An 

additional difficulty is related to low conductivity applications, where measured 

signals are usually small. In fact, although MIT systems designed for such 

applications operate at relatively higher frequencies in order to be able to measure the 

induced voltages, there is an upper bound when selecting the highest frequency in 

order to remain well below the resonant frequencies of the transmitter or receiver 

coils. In this situation, the image reconstruction algorithm would need to deal with 

systems of lower signal to noise ratios (SNR).  

Image reconstruction in MIT can be divided into two main approaches: absolute 

imaging and difference imaging. In the former, a single projection of data is employed 

in the image reconstruction algorithm to yield a solution which represents the absolute 

conductivity distribution in the object. This approach requires a): an MIT system with 

high quality SNR and, b) a highly accurate forward model that can produce calculated 

data which can be fitted as well as possible to the measured data in the minimisation 

of the objective function. The second approach employs two data sets which can be 

taken for two different conductivity distributions. In biomedical MIT, biological 

tissues possess conductivities which change with frequency; hence difference imaging 

can be performed by using different frequencies. In industrial applications like in 

multiphase flow imaging, temporal difference imaging can be carried out since the 

fluid structure inside the pipe is continuously changing. Literature reported, difference 

imaging provide benefits in cancelling errors. However, image reconstruction using 
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this approach is performed linearly and it is not clear yet how to derive a nonlinear 

approach.  

 

1.4 Low conductivity applications for Magnetic Induction 

Tomography 

Research into MIT has been established in the metal industry as a further 

development to inductive sensing based NDT for certain industrial applications where 

imaging of shapes or interior structures is desirable. MIT is attractive in this domain 

mainly because the metals are very good conductors. Over the last decade, work in 

MIT has been extended to investigate the possibility of using this modality for 

imaging biological tissues for medical applications. The associated motivation was 

that MIT shares similar principles of operation with its counterpart EIT in the sense 

that both translate a set of measured voltage data to a map of the electrical 

conductivity distribution in the object under investigation. Not only this but also some 

of the limitations from which EIT suffer such as being an invasive modality (electrode 

skin contact), electrode positioning and contact impedances constituted advantages for 

MIT. Initial reports published in the literature demonstrated with experiments 

conducted under simplified laboratory conditions that phantoms including 

perturbations with low conductivities that are characteristic of biological tissues can 

be imaged. This successful outcome not only led to the further investigation of MIT 

for imaging various pathophysiological conditions, but also to the rise of certain low 

conductivity industrial process applications.  

In the medical field, the clinical use of MIT focused on some specific 

pathophysiological mechanisms causing physiological disturbances to biological 

tissues. In general broad perspective, these disturbances are manifested with changes 

in the normal physical and/or biochemical structure of body tissues, which produce 

changes in the tissue dielectric properties that can be determined with MIT. In the 

following, examples of some currently researched MIT clinical applications will be 

presented alongside with the MIT research groups involved and their progress so far. 

This presentation is preceded with a brief overview on the electric properties of 

biological tissues and their spectroscopic behaviour. 
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1.4.1 Tissue properties  

The range of the dielectric properties of biological tissues and their variations with 

frequency represents an immense topic. The literature reveals that the interest into this 

domain has a long history, but from a practical perspective research into the 

specification of this range effectively started in the 1950s and 1960s with large 

amount of the work and findings produced by Schwan and his collaborators. Foster 

and Schwan [19] reviewed the basic concepts of the dielectric phenomena in 

biological tissues and explained them in terms of the interactions happening at the 

cellular level. Pethig and Kell [20] covered similar ground and provided an account of 

theories formulated to describe the dielectric properties in terms of the underlying 

molecular processes. Common to all these publications is undoubtedly a more or less 

a tabulation of the dielectric properties of tissues illustrating the theoretical findings of 

these authors. Excellent reviews and publications summarising the electrical 

properties of biological materials can be found in the literature by for instance Geddes 

and Baker [21], Stuchly and Stuchly [22], Durney et al [23] and Duck [24]. Although 

a great deal of research has been devoted to investigate the dielectric properties of 

tissues and quantify their behaviour with frequency variation, the findings showed 

that there exist inconsistencies in the estimation; hence no consensus on the dielectric 

data was achieved. In addition, there were some gaps in the range of the data meaning 

that the research was incomplete in some areas related to some particular types of 

tissues and frequency ranges. Recent experimental studies based on modern swept 

frequency techniques using impedance analysers carried out by Gabriel et al [25, 26] 

tried to address these issues by seeking the determination of dielectric properties of 

tissues over ten frequency decades (10 Hz to 20 GHz), hence bridging the gaps which 

were outstanding and also providing a basis for the evaluation and the analysis of the 

dielectric data that was already available. The research also led to the development of 

parametric models [27] that can be used to predict the frequency dependent behaviour 

of dielectric properties of tissues which is of great interest to electromagnetic 

dosimetry. This area of science deals with the simulation of electromagnetic exposure 

of biological structures to radiation and the calculation of the induced internal fields 

for various applications.  
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The dielectric properties of biological tissues can be described in terms of the 

complex conductivity (κ ) written in the following form:  

 
0r

jκ σ ωε ε= +  (1.1) 

where σ  is the electrical conductivity expressed in (Sm
-1

) and 
r

ε  is the relative 

permittivity (Fm
-1

) and the angular frequency ω  in radians per second. This electric 

expression can be justified in connection with the physiological structure of tissues 

that comprises of cells containing membranes, intracellular and extracellular fluids. 

The fluids provide the conductivity component, whereas the cell membranes are thin 

and have a high resistivity, hence electrically behaving like a small capacitor with a 

certain permittivity [28]. The complex tissue conductivity depends on the volumes of 

the intracellular and extracellular spaces and also on the overall tissue structure. If 

cells are randomly distributed within the extracellular space, then one value for the 

conductivity will be found but if the cells are grouped together to form sheets, then 

the tissue conductivity at low frequencies can drop rapidly because the current has to 

find its way through the sheets of cells. Hence the conductivity spectra changes with 

the tissue type. 

When the electromagnetic radiation interacts with the constituents of a biological 

material, the tissue exhibits dielectric properties that change according to different 

biochemical mechanisms that happen as the frequency is increased from few Hz 

toward the GHz region. These mechanisms can be classified into three so called 

dispersions described as follows:  

a) The low frequency α dispersion is associated with ionic diffusion processes at the 

site of cellular membrane.  

b) The β dispersion, in the hundreds of kHz region, is caused mainly by the 

polarisation of cellular membranes which acts as barriers to the flow of ions 

between the intra and extra cellular media. Other contributions to the β dispersion 

come from the polarisation of protein and other organic macromolecules. This 

band is of interest in this thesis for the study of the cerebral stroke application as 

the employed frequencies fall in the range 1 MHz to 10 MHz in which large 

changes in tissue conductivity spectra are observed to be associated with malignant 

changes in tissue physiological structure caused by the stroke. 
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c) The γ dispersion, situated in the GHz band, is due to the polarization of water 

molecules.  

For stroke imaging, if the stroke is caused by blood accumulation in the brain, 

spectroscopic induction measurements at frequencies covered within the β dispersion 

can be desirable since they may aid in distinguishing the blood among other head 

tissues [25]. Figure 1.4 shows a plot of the electrical conductivity of biological tissues 

in the head over two decades of frequency [100 kHz-10 MHz] comprised within the β 

dispersion region. The trends clearly show the blood has a relatively more significant 

change of conductivity compared to other tissues. Frequency differential imaging 

between two frequencies such as 1 MHz and 10 MHz (since the β dispersion of blood 

is centred at 3 MHz [29]) can therefore be a possible option for stroke detection. 

Table 1-1 below shows the dielectric properties of the head tissues at the pair of 

frequencies: 1 MHz and 10 MHz.   

Table 1-1: Dielectric properties of head tissues at 1 MHz and at 10 MHz 

Tissue type Conductivity 

(Sm
-1

)@ 1 MHz 

Relative 

permittivity 

(Fm
-1

) @1 MHz 

Conductivity 

(Sm
-1

)@10 MHz 

Relative 

permittivity 

(Fm
-1

)@10 MHz 

Scalp 0.50268 1836.4 0.6168 170.700 

Skull 0.024353 144.51 0.0828 53.775 

CSF 2 108.99 2.002 108.600 

Grey matter 0.16329 860.42 0.2917 319.700 

White matter 0.10214 479.79 0.1585 175.700 

Ventricles 2 108.99 2.002 108.600 

Spinal cord 0.13026 926.14 0.2251 247.700 

Optic nerves 0.13026 926.14 0.2230 155.100 

Eye Sclera 0.61882 2178.3 0.7984 208.25 

Nasal cavity 

(air) 

0 1 0 1 

Ear canals (air) 0 1 0 1 

Olfactory (air) 0 1 0 1 

Blood 0.82211 3026.3 1.0967 280.03 
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Figure 1.4:  Plot of conductivity spectra for head tissues in the frequency range [1-10] MHz. 

 

1.4.2 Cerebral stroke 

Cerebral stroke is a life threatening pathological condition involving an accumulation 

of fluid in the brain. In the UK, a report by the National Health Service (NHS) 

Confederation [30] indicates every year an estimated 110,000 people in England 

suffer a stroke and the condition is the third largest cause of death. In addition to 

being described as a medical emergency, fatalities may not only result from the 

immediate brain injury; rather, progressive damage to brain tissue develops over time 

[31]. In fact, 30 % of affected people will suffer long term disability and 20 to 30 % 

will die within a month. It is also estimated that stroke costs the UK NHS about £2.8 

billion p.a., which is about 66 % of the annual costs to the wider economy, associated 

with lost productivity, disability and informal care.  Evidence shows that timely rapid 

diagnosis during the 24 hours following the stroke including first fast access to brain 

scanning and continuous monitoring of the lesion development can dramatically 

improve rates of survival and avoid associated potential neurological aggravations.  

Cerebral stroke can be broadly classified as extracellular vasogenic or intracellular 

cytotoxic in origin. The former, also called a “haemorrhage”, happens when a blood 

vessel bursts due to breakdown of tight endothelial junctions which make the brain 
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blood barrier. Cerebral haemorrhage can be classified as intracerebral if the blood 

artery ruptures inside the brain space, or subarachnoid if the blood is released in the 

subarachnoid space between the skull and the brain itself (Figure 1.5). In either case, 

the blood may cause a sudden pressure that can lead to a loss of blood supply to the 

affected tissue with resulting infarction, and the blood released by haemorrhage 

appears to have direct toxic effects on brain tissue and vasculature.  

 

Figure 1.5:  An ensemble of images illustrating Intracerebral  and Subarachnoid Haemorrhage 

types and the causes leading to their occurrence (From [32]). 

The other type of stroke is caused by “ischemia” which occurs when the blood supply 

to the brain cells is limited due to a partial or complete blockage of an artery that 

supplies the brain. In Figure 1.6, atherosclerosis in the carotid artery of the neck 

reduces blood flow to the brain. A rupture in the plaque can cause a blood clot to 

form. This clot may break loose and travel to an artery in the brain where it is trapped 

due to thin brain arteries (Figure 1.7) and hence resulting in blood blockage. At the 

cellular level, insufficient blood supply leads to inadequate functioning of the sodium 

and potassium pump in the cell membrane. As a result there is cellular retention of 

sodium and water leading to damage of brain tissues. Ischemic stroke is usually 

treated with thrombolytic drugs which operate by dissolving the blood clot to increase 

fluid circulation in the affected vessel. This treatment, however, increases the fatality 

of the hemorrhaged stroke by aiding in blood leakage. The two syndromes show the 

same symptoms and both require rapid medical intervention. Currently CT or MRI are 
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used to diagnose the type of the stroke, however, access to these facilities is often 

limited. Furthermore, the condition also develops in delayed fashion and medical care 

ideally requires portable scanners which can be used at the patient bedside for 

frequent monitoring purposes.  

 

Figure 1.6:  Ischemia type stroke visualised as a portion of a blood vessel leading to the brain 

where the blood flow has been obstructed due to the formation of a blood clot (From [32]) 

 

 

Figure 1.7:  Image showing the early stage of ischemia development with a blood clot has been 

blocked in a narrow artery (From [32]).   

In both types of the stroke (i.e. haemorrhage or ischemia) the local fluid accumulation 

in the brain space causes the composition of the tissues in the affected area to change 

leading to a change in associated electrical conductivity distribution. Tissue 

conductivity is known to be depressed in ischemia but the blood conductivity 
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experiences a change that is five times higher than that of normal brain tissues in the 

frequency range of interest 1-10 MHz. EIT has been suggested as an alternative, more 

practicable, and low cost imaging modality for detecting both types of stroke and 

considerable amount of publications have been issued with much of the work 

dominated by Holder in UCL and his collaborators. However, the inconvenience of 

having to attach the electrodes to the scalp and the errors that can be caused by poor 

contact motivated research interest into investigating the possibility of using the 

contactless MIT for this application. Initial findings using MIT showed that a 

simulated haemorrhage in a phantom can be imaged, yet problems related to the low 

spatial resolution, shape, exact location of the stroke and quantitative estimation of its 

conductivity were still outstanding. Image reconstruction has a major impact in this 

issue and its development could certainly improve the results. This is an objective 

treated in this thesis. A haemorrhage may also be detectable by multi-frequency 

imaging since the gradient of the conductivity versus frequency curve is 

approximately 90% per decade and only 20% per decade for blood in the range 1 – 10 

MHz [25]. Detecting ischemia by MIT might be more difficult since the change in 

tissue conductivity is less significant, and hence this thesis concentrates mainly on the 

detection or monitoring of haemorrhage based stroke.  

 

1.4.3 Lung ventilation and heart rate monitoring  

Another clinical application of vital importance where MIT has been proposed is the 

monitoring of lung and heart activity. Lung tissue has a conductivity which is about 

five times smaller than other soft tissues in the thorax. During the mechanical actions 

of the thorax, air which is an insulator is pumped into the lung through respiration, 

causing a change in the conductivity of the lung tissue. By imaging this change in 

conductivity using eddy current techniques the distribution of ventilation can be 

determined. In addition, it has been shown that cardiac related changes also affect the 

conductivity of the lung tissue. This is caused by the perfusion of blood, which is a 

conducting material, into the lungs. Hence MIT could potentially also be able to 

monitor heart rate. From the literature it has been shown that MIT can be a promising 

method for in vivo monitoring of heart rate [33] or lung activity [34]. More recent 

work by Steffen et al [15] based in the Philips Medical Research centre in Aachen 
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demonstrated that respiration frequency can be well correlated to the demodulated 

inductive signal taken from newborn animals as illustrated in Figure 1.8. On human 

adults they showed measurement changes in frequency domain demonstrating lung 

and heart activity under maintained respiration.  

 

Figure 1.8:  Comparison of air flow in the lung and magnetic induction  (From [15]) 

EIT has also been proved as a feasible imaging method for monitoring pulmonary 

activity in the lungs but again the use of electrodes is an inconvenience since 

unwanted side effects such as skin irritation, difficult application or additional cabling 

may occur. Not only does EIT suffer from this problem but also existing clinical 

techniques already in use for this application such as the electrocardiogram (ECG), 

impedance cardiography (ICG) and pulse oximetry. The related side effects appear to 

be a concern for the very sensitive skin of infants, which can be irritated or even 

damaged by the removal of electrodes. Overall MIT is an attractive imaging modality 

for monitoring various diseases where contactless measurements are preferred. 

Obviously the research spectrum and the clinical applications investigated using its 

sister technique EIT are relatively much broader and diverse and as a point of 

conjecture, MIT may approach similar problems in the near future. As an example, in 

pulmonary related diseases, EIT has not only been investigated with lung activity and 

heart activity but other areas have been approached like detection of pulmonary 

oedema. EIT has also been investigated as possible screening method for detecting 
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tumors notably breast cancer in women where there has been known to be a 

significant difference between normal breast tissues and tumors.  

In industrial process inspection applications, there is only a few problems involving 

materials with low conductivity as opposed to medical MIT where all tissues are 

mainly dielectric. In this thesis, we will approach a low conductivity application in the 

oil industry, and below is a brief introduction explaining the application and the 

results of the initial investigation carried with inductive sensors. Other low 

conductivity industrial applications that have been targeted recently by MIT include 

imaging food products and inspection of fractures in carbon fibre based materials. 

 

1.4.4 Oil/Gas/Water industrial process application 

In off-shore oil production, measurement of the sea water fraction (water cut) in 

multiphase flow in pipelines and separators is important for controlling productivity. 

Various commercial sensors are available employing capacitance, microwaves, 

ultrasound or γ rays, but their accuracy has been limited by factors such as scaling of 

the pipes, a limited range and the gas content of the mixture. Eddy current techniques 

have been suggested as a complementary method because they would be sensitive 

only to the conductive component of the mixture, i.e. the process water, which has a 

typical conductivity of 5 Sm
-1

. Furthermore, the use of several coils would enable the 

conductivity of the process water to be determined. Alberchtsen et al [35] 

demonstrated an experimental system using a single excitation coil with phantoms 

simulating different flow regimes. With non-cylindrically-symmetrical flow (e.g. 

stratified), the derived water fraction depended strongly on the position of the coil 

relative to the water/oil interface; the authors concluded that to overcome this 

problem, a tomographic system should be developed. More recent work by another 

Norwegian research group using a single channel inductive system has also concluded 

that the work should be extended to tomography. No one has yet constructed an MIT 

system for this application but our existing technology may be adapted for this 

purpose. Indeed, because the conductivity of the process water is generally higher 

than that of biological tissues the signals are larger and easier to measure, giving 

signal to noise ratios that may be sufficient for high frame rates. 
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1.5 Achievements 

This project ran as part of a collaborative research programme funded by the 

Engineering and Physical Sciences Research Council (EPSRC) and called LCOMIT 

“Low Conductivity Imaging using Magnetic Induction Tomography”. This 

programme brings together three of the world’s leading groups in MIT in Manchester, 

Swansea and Glamorgan universities as well as an industrial contributor being Philips 

Medical Research; It is designed to approach the fundamental, theoretical and 

practical problems of making MIT operate effectively with low conductivity materials 

(σ ≤ 5 Sm
-1

).  

Within this programme, this project aimed specifically to address the image 

reconstruction problem in MIT for low conductivity materials. Two applications have 

been approached, one of which is medical and consists of imaging cerebral stroke, 

and the second is industrial and aims to inspect multiphase flows for offshore 

oil/water applications. Overall, the thesis has concentrated on absolute imaging for 

both applications. For the stroke application, frequency difference has also been 

examined since it has been reported to be promising for imaging biological tissues. In 

addition, state difference imaging has also been an option to implement in the 

oil/water application. In this thesis, image reconstruction has also taken a solid step 

forward by considering imaging of more representative multi-layer head models 

which are the first kinds of their application in MIT. On the other hand, the practical 

results obtained from the industrial application also constitute the first findings of the 

possible implementation of MIT for this application. 

For absolute imaging, efficient algorithms have been designed for the forward and 

inverse problems. In the former, the objective was to develop a custom software in 

MATLAB for simulating MIT measurement data for three dimensional eddy current 

problems. The solver has been tested to be able to deliver a fast and memory efficient 

solution to the forward problem in MIT compared to conventional finite element (FE) 

software packages. This constituted an essential prerequisite for implementing 

nonlinear iterative image reconstruction algorithms which require the re-evaluation of 

the forward problem in every iteration of the minimisation procedure. The forward 

problem has been solved using the impedance method. Since only low conductivity 

applications are considered, which require medium frequencies within the RF band, 
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the application of a quasi static approximation has been implemented and examined. 

Because the MIT inverse problem is nonlinear, iterative techniques are commonly 

suggested. One of the first reports on nonlinear solution of the MIT inverse problem 

using the conventional Gauss Newton method was produced by [36]. Driven with the 

aim to achieve a better optimisation and stability of the MIT solution, work here has 

taken a further step by implementing more sophisticated nonlinear reconstruction 

methods. It has also delivered a comparative analysis on the resulting performance 

against that of previously reported method in MIT. For the biomedical application, 

imaging the stroke inside a realistic head model is classified as a large scale problem 

in conductivity, (i.e. a problem with a large number of degrees of freedom). The 

solution of the inverse problem using the direct inversion based Newton method is 

computationally expensive. In order to deal with this issue, the computationally robust 

Conjugate Gradient method based on the Krylov Subspace technique has been 

implemented in MIT for this application.   

Another important study was to investigate the incorporation of different priors that 

are used to regularise, and consequently stabilise the solution. In this respect, the 

performance of three forms of regularisation priors has been examined in the 

framework of the targeted biomedical and industrial application. These are 

represented with smoothing operators, edge preserving regularisation and structural 

information based prior. This latter was found more suitable for the medical 

application where advanced high resolution scanners like MRI or CT can provide 

images showing the initial state of the stroke lesion. By exploiting these images as a 

prior in the image reconstruction, MIT can be used for post diagnosis rather than for 

detection of the cerebral stroke.  

In difference imaging, the spectral behaviour of biological tissues has been employed 

in image reconstruction. The objective was to investigate the quality of the 

reconstructed images for the stroke using this approach. For the oil/ process water 

application, state difference imaging has been implemented and results appear 

promising. 
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1.6 Thesis organisation 

The thesis is divided into seven chapters. In Chapter 2, a brief introduction of the MIT 

image reconstruction problem is presented starting from a statistical point of view. A 

short background about the commonly used linear and nonlinear image reconstruction 

algorithms and regularisation methods is reviewed. In Chapter 3, the forward problem 

in MIT is approached. Starting with a review about the commonly used numerical 

methods for modelling the eddy current problem such as FEM, the chapter continues 

to present the application of the impedance method for generating the 3D 

electromagnetic forward solution of the MIT measurements. Then, the principal 

weakly coupled field assumption adopted in the calculation of the forward solution is 

examined against full wave analytical and numerical software packages. The benefits 

of the synthesised custom forward solver related to the computational time and 

memory demands as well as to the tolerance errors are quantified for validation 

purposes. For the biomedical application, the feasibility of detecting stroke is 

investigated in two phases: 

a) An analytical solution of the MIT forward problem is presented for a multilayer 

head model incorporating a stroke and employed to estimate the smallest 

detectable size above noise levels which are characteristic of current MIT systems 

b) A custom forward solver is employed as a numerical means together with 

realistic head model incorporating a large peripheral stroke to quantify the 

magnitude of the measured signal due to the stroke and compare it against the 

mechanical errors due to movement of the head and the coils. The process is 

carried out for both absolute and frequency difference imaging. 

Chapter 4 starts with a literature review on the fundamental optimisation methods 

namely the steepest descent method and Newton method. Then, a special class of 

nonlinear optimisation methods that are regarded as more efficient than conventional 

approaches such as Gauss Newton method are derived. These methods employ the 

concept of trust region and damping mechanisms which are presented and discussed. 

Using a simple test phantom with a single inclusion, which are assigned 

conductivities corresponding to white matter and stroke respectively, the efficiency 

and the benefits of these methods are analysed and compared against the performance 

of the conventional Gauss Newton method. In the last section, one of the proposed 
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optimisation methods is modified to incorporate Krylov subspace techniques.  This is 

presented in the framework of large scale problems encountered in the medical 

application. Chapter 5 starts with a brief introduction to different regularisation 

schemes that can be applied in MIT. Based upon the solution we obtain, the quality 

of such priors is examined in the context of the medical and industrial applications. In 

the medical application, since we are only interested in recovering the stroke among 

the complex structure of the head, a structural information prior comprising 

knowledge of the distribution of the head tissues is presented as a potential robust 

regularisation approach.  Assuming this prior can be developed based upon a pre-

diagnosis made by MRI or CT which accurately maps the initial state of the stroke 

together with the distribution of the other tissues, MIT could be used for post-

diagnosis i.e. for monitoring the progress of the stroke condition at the bed side of the 

patient. In Chapter 6, a set of simulations is carried out to investigate the suitability of 

frequency difference imaging for MIT. Simulated image reconstructions start with 

simple conductivity distribution crudely approximating the head with the stroke and 

continue to more realistic head model extracted from MRI data. In the last chapter, 

conclusions about the work and the results obtained in this thesis as well as the areas 

of research suggested to approach as a future work are discussed.  
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2 Background 

 

Image reconstruction in MIT is realised via the solution of an inverse conductivity 

problem that is both nonlinear and ill-posed. Being nonlinear, this inverse problem is 

usually evaluated iteratively by minimising a least squares functional. The ill-

posedness of the problem is treated using regularisation by introducing a penalty 

functional. This latter is used either to de-correlate the noise signals from the 

measurements, or to correlate the property values of the elements in the image 

according to some prior knowledge about the assumed solutions. In a probabilistic 

(statistical) setting, this penalty functional is referred to as “a prior”.  

For the solution of the inverse problem deterministic or probabilistic methods can be 

employed although the former is more commonly used. However, the concept of 

minimisation and the prior knowledge implemented in deterministic methods are in 

fact derived from theoretical probabilistic principles which provide a unifying 

analysis of general ill-posed problems. Hence, a starting point is to illustrate the link 

between probability theory and the general MIT deterministic minimisation problem. 

Then, a literature review on the most commonly applied image reconstruction 

deterministic methods is presented. In order to clarify how regularisation is 

implemented within these algorithms, the basic analytical tool of singular value 

decomposition is utilised.  

 

2.1 Probabilistic and deterministic approaches  

The main difference between probabilistic and deterministic methods is that in the 

former the unknown conductivity vector is characterised as a set of random variables 

with a probability density whereas in the latter the variables are non-random. Let us 

first present some notation about the basic tools used in probability theory.  

For a vector σ n∈� of n random variables, the marginal density of 
i

σ can be given by: 
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( ) ( ) 1 2 1 1 1i i i i n n
p p d d d d d dσ σ σ σ σ σ σ

∞ ∞
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−∞ −∞
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where  ( )σp  is the probability density function of the random vector σ  

The mean or expected value 
σ

m n∈� of σ can be defined as:  
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−∞

= = ∫σ
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The correlation matrix of the n random variables σ  is an n×n symmetric matrix  

written as:  
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The variance of σ is the correlation of the random vector ( )σσ m−  given by:  

( )( )( ) ( )T T T

σ σ σ σ σ
Var σ m σ m σσ m mE E= − − = −  (2.4) 

The conditional density of σ given the vector D is defined as follows:  

( )
( )
( )

,σ D
σ | D

D

p
p

p
=  (2.5) 

whenever ( ) 0Dp ≠ , otherwise ( ) 0σ | Dp = . Similarly we can write:  

( )
( )

( )
,σ D

D| σ
σ

p
p

p
=  (2.6) 

Hence,  

( ) ( ) ( ) ( )σ | D D D |σ σp p p p=  (2.7) 

This is called Bayes’ theorem.  

In MIT the vector D consisting of m measured data, can be related to the conductivity 

σ using the following model:  

 ( )+D F σ n=  (2.8) 
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where n is the noise distribution vector and σ is unknown.  Assuming σ and n are 

random sets, and the model ( )F σ  and n are independent, the conditional probability 

density of the measurements D given σ also referred to as the “likelihood” is written 

as:  

( ) ( ) ( ) ( ) ( )
1

( )+ ( )D| σ F σ n| σ F σ | σ n| σ n| σp p p p p

=

= = =
����	

 
(2.9) 

Assuming the probability density function of the random parameter n is Gaussian, 

( )n | σp can be written as:  
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where ( )det nVar  denotes the determinant of nVar . Assuming that n is Gaussian with 

zero mean nm  and variance nVar , from (2.9), (2.10) and (2.8) we can write:  
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Following similar Gaussian assumptions, the prior density ( )σp  can be written as: 
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From (2.11), (2.12), and using Bayes’ theorem (2.7) one can obtain the conditional 

density of σ given D as:  
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The conditional density ( )σ Dp |  is also called the “posterior density” since it gives 

the probabilities for the random parameters σ’s after the measurement data D, unlike 

the prior ( )σp  which assumes the probabilities for σ’s before the measurements. 

Clearly the prior information is split into two parts:  

a) The a-priori information about the noise which is embodied within the variance 

nVar can be used to de-correlate the noise from the measurements.  

b) The a-priori information about the parameter distribution represented by σVar and 

the expectation σm which can be employed to impart knowledge about the 

correlation of the conductivity voxel values and provide an initial prior 

respectively.  

In probability theory, the maximum a posteriori estimate (MAP) is the conductivity 

vector σ that maximises the posterior density (2.13). This is equivalent to solving for 

the vector σ that minimises the functional:  

( ) ( ) ( ) ( )

1 1

T T1 1

2 2

1 1
( ) = ( ) ( )

2 2

1 1
= ( )

2 2n σ

n σ σ σ

σVar Var

σ D F σ Var D F σ σ m Var σ m

D F σ σ m

F

− −

− −− − − − − −

− − − −

 (2.14) 

Assuming 1

nVar − and 1

σVar − are positive definite, the square root 1 2

nVar −  and 1 2

σVar −  

are well defined. Hence, in this case, (2.14) is identical to the generalised Tikhonov 

problem (also known as “ridge regression” in the probability literature [37]) given by:  

( ) ( )
22

2 2

1 1

2 2
p

F λ− − − −σ D F σ L σ σ( ) = ( )  (2.15) 

where 1 2

σ
Var Lλ− = , 

p
=

σ
m σ  is the initial prior and 1 2

n
Var I− =   . This latter setting 

is an assumption which infers that all the measurements are equally affected by noise. 

This is idealistic, which may be approximated with sensors, electronics and data 

acquisition circuit of high specifications that could sustain constant variance of noise. 

Otherwise, if the variance matrix W exists such that 1 1 2

n
W Var− −= , then the residual 

can be scaled by the variance matrix accordingly. This scaling will amount to an 

additional computational cost which depends on the structure of W, but as long the 
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variance matrix is diagonal or banded (which is often the case in practice), then the 

cost of scaling will only contribute marginally to the total cost of the algorithm. 

The parameter λ  is called the regularisation parameter which is used to control the 

amount of the regularisation (prior) imposed on the solution. Increasing λ  would 

mean reducing the variance 
σ

Var  and thereby reducing the size of the 1

σVar −  normed 

distance between σ  and 
p
σ . Hence, this can be interpreted as reinforcing the prior.  

If the conductivity vector is assumed to be not random, the minimisation problem can 

be solved deterministically. Using this approach, we seek the conductivity solution 

that best minimises the discrepancy between the data and the forward solution while 

keeping a reasonable proximity to the estimated prior. Using the generalised form 

(2.15), the Tikhonov method has two formulations which can be used to evaluate the 

solution:  

 T T T T

2

( )  

and

min

p

p

λ λ
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+ = − −

  
−     

   

J J L L σ J D L Lσ

DJ
σ
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where J  m n×∈� is called the Jacobian or the Sensitivity matrix which quantifies the 

sensitivity of measured data to small perturbations in property values inside the 

object. The former linear Tikhonov formulation is of interest in this thesis since the 

theoretical basis to its derivation will form the groundwork for the optimisation 

methods investigated in Chapter 4.  

 

2.2 Image reconstruction methods 

On the whole, image reconstruction algorithms find a solution (σ) to the MIT 

conductivity problem by constructing a discrete linear problem of the form:  

 ∆ = ∆D J σ  (2.17) 

This could be interpreted as seeking the absolute or the difference image from the 

difference of two sets of data, where one set can typically be linked to empty space 

for absolute imaging, or to homogenous background for state difference imaging. It 
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could also refer to a linearised step within an iterative nonlinear optimisation protocol, 

where each iterate solution is calculated recursively from previous iterates.  

For this section, we will drop the symbol ∆ and consider the simplified notation:  

 D J σ=  (2.18) 

The main problem with the MIT discrete inverse problem is that the Jacobian 

J  m n×∈�  is ill-conditioned and under-determined ( m n
 ). This section will review 

several computational tools and algorithms reported for analysis and treatment of such 

problem. 

 

2.2.1 SVD and GSVD 

The ordinary singular value decomposition (SVD) and its generalization (GSVD) 

form powerful numerical tools for analysis of general discrete ill-posed problems. For 

the MIT inverse problem, in particular, the SVD of the Jacobian J can reveal all the 

difficulties associated with the ill-conditioning of this matrix, while the GSVD of the 

pair (J, L) can yield insights into the regularisation methods which can be 

implemented for the evaluation of the problem. Detailed theory on the use of SVD, 

GSVD and other canonical decompositions for the study and analysis of general 

discrete ill-conditioned problems can be found in [38, 39]. 

Given the Jacobian J  m n×∈� being a rectangular matrix with m n
 , and rank r the 

SVD of J is a decomposition of the form:  

 
T T

1

m

i i i

i

υ σ ν
=

= =∑J UΣV  (2.19) 

where 
1

( ,..., )U m m

m
υ υ ×= ∈� and 

1
( ,..., )V n n

n
ν ν ×= ∈� are unitary matrices with 

columns that are orthonormal, i.e. T TU U V V I= = , and are called left and right 

singular vectors respectively, and the diagonal matrix  m n×∈Σ �  includes the singular 

values 
1

diag( ,..., )
r

σ σ , with r = rank (J), which are arranged in a non-increasing order 

such that:  

 
1 2

0
r

σ σ σ≥ ≥ ≥ ≥...  (2.20) 
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It is important to bear in mind the similarity in the notation 
i

σ  assigned to the 

ordinary singular values of J and to the discrete conductivity elements of the object.  

However, in the sequel it will always be clear from the context which of them is being 

described. 

The GSVD of the pair of matrices (J, L) is a matrix decomposition more general than 

the ordinary SVD, in the sense that it can be used to study the conditioning of J as 

well as the regularisation techniques used for treating the ill-conditioning of J.  In 

Tikhonov type regularisation (2.15), the matrix L can typically be either, the identity 

matrix, a diagonal weighting matrix or a discrete differential operator. For all these 

operators the general dimension of L can be exposed for simplicity as L  p n×∈� , 

where rankr
 

=  
 

J

L
 with r ≤ m and p > m. In this case, the GSVD of the pair (J, L) is 

a decomposition in the form:  

 ( ) ( )1 10
n r

− −

−= =J U Σ I Χ L V Η Χ  (2.21) 

where the unitary matrices U m m×∈� and V p p×∈�  have orthonormal columns, and 

Χ n n×∈�  is nonsingular with columns that are TJ J  orthogonal. Moreover, Σ and Η  

are r r×  diagonal matrices defined by ( )diag
i

σ  and ( )diag
i

η  respectively. The 

diagonal elements of Σ and Η are positive and ordered as follows:  

1 2
0 1

r
σ σ σ≤ ≤ ≤ ≤ ≤...         and       

1 2
1 0

r
η η η≥ ≥ ≥ ≥ ≥...  (2.22) 

The generalized singular values of the pair (J, L) are then defined as the 

ratios
i i i

γ σ η=  and 2 2 1
i i

σ η+ = ; hence, they appear in a non-decreasing order.  

Suppose that the matrix J is invertible (nonsingular), then its inverse can be computed 

in SVD terms as: 1 1 T

1

m

i i ii
ν σ υ− −

=
=∑J and an exact solution σ  to the system 

Jσ D= can be achieved as:  

 
( )1 T

1

m

i i i

i

σ υ ν−

=

=∑σ D  (2.23) 

In the MIT inverse problem J is however, singular and such an approach cannot be 

applied. Hence, a possible road to take is to compute a pseudo inverse which is also 
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referred to as “Moore-Penrose generalized inverse” †J as: 
rank( )† 1 T

1

J
J

i i ii
ν σ υ−

=
=∑ and 

obtain a least squares solution σ
LS

 to the least squares functional 
2

min Jσ D−  given 

by:  

 
( )

rank( )
† 1 T

1

J

σ J D D
LS i i i

i

σ υ ν−

=

= = ∑  (2.24) 

Unfortunately, because the Jacobian J in MIT is ill-posed, the minimum norm 

solution σLS will not be unique. In addition, the solution will be instable and very 

sensitive to perturbations and errors in the Jacobian J and the data D. For instance, 

this can be visualised with small changes in the data D leading to large changes in the 

solution.   

In order to explore the appropriate numerical treatment for the MIT inverse problem it 

should be necessary to first study the ill-conditioning of the Jacobian J, which enable 

us to pinpoint the problematic features which prevent us from achieving the desired 

unique, stable solution. For this purpose, the numerical decomposition tools, namely 

the SVD and the GSVD can be used. 

In connection with the ill-posedness of the MIT inverse problem, the SVD of the 

Jacobian J can show three important characteristic features:  

a) The singular values 
i

σ decay gradually to zero as the index i increases.  

b) The left and right singular vectors 
i

υ  and  
i

ν  tend to have more sign changes in 

their elements as the index i increases, i.e. as 
i

σ  deceases.  

c) The Fourier coefficients ( )
T

D
i

υ  decay to zero as least as fast as the singular 

values  
i

σ  

Another important observation can be extracted from the SVD of J if the collected 

measurement data are not independent, for example if some of the sampled voltages 

can be determined by reciprocity. These voltages are subsequently redundant, and 

such dependencies within the measurement dataset will then transfer to linear 

relations between the rows of J. In this case, the matrix J is classified as rank-

deficient where the rank of J is a scalar which quantifies the amount of independent 

information in the matrix J.  The SVD spectrum will show a well determined gap 
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which separates two clusters of positive and zero singular values. The independent 

information is then represented with the former cluster of positive values.  

 

Figure 2.1:  Plot of the singular values of the Jacobian of an ill-posed MIT problem 

 

Figure 2.2:  Plot of the singular values of the Jacobian of a rank-deficient MIT problem 

It is important to mention the features related to the ill-posedness and rank-deficiency 

of the MIT discrete problem as described earlier can only apply to a system without 

perturbations and errors. In practice, the components J and D can be subject to several 

sources of errors. One source relates to the discretisation process involved in setting 

up the system of equations and corresponding approximation errors affect both J and 

D. Another source of errors stems from the measurement system tolerances which 

obviously influence only D. Lastly, errors produced from computational rounding 



 56 

approximations which involve both J and D can also be taken into account. In light of 

these errors, some interesting observations can be made with regard to the SVD 

features of the ill-posed and may be rank-deficient J. If the Jacobian J incorporates 

redundant information, it can never be called exactly rank-deficient, but instead 

numerically rank deficient, in the sense that it will have a cluster of small but non-

zero singular values (Figure 2.2). These components should be ignored in the 

regularised solution, since otherwise, small perturbations in J and D will appear with 

large errors in the solution i.e. the reconstructed image. On the other hand, the effect 

of the errors on the ill-posed J will be that the singular values 
i

σ and the Fourier 

coefficients ( )
T

D
i

υ  will not decay exactly to zero, but will decrease until they settle 

to different levels τJ and τD respectively (Figure 2.1). These levels are, in effect, 

determined by the errors in J and D and hence can be used to determine how much 

useful information can be extracted from the ideal error-free MIT system ( Jσ V= ). 

The typical situation is that the measurement errors in D are larger than the other 

types of errors in J and D especially if extra care is taken in the discretisation 

procedure and rounding errors are minimized with the use of high precision advanced 

computer.  In this case, the coefficients ( )
T

D
i

υ  level off at τD before the 
i

σ values 

level off at τJ. If the coefficients ( )
T

D
i

υ  are assumed to settle at τD when the index i 

≥ iD, and the singular values 
i

σ  settle at τJ for i ≥ iJ, then the most of the useful 

information we seek to recover is comprised in the first iD components of the solution. 

Clearly, the remaining (m - iD) SVD components which also include the (m - iJ) 

elements will be dominated by noise, and therefore they should be filtered out in the 

regularised solution in the same way as described for the numerically rank deficient 

problem. In the following, the Jacobian J is assumed to be mainly ill-posed, since the 

collected measurements are considered to be linearly independent, and hence J is 

unlikely to be numerically rank deficient. Various common regularisation or filtering 

approaches will be described via the implementation of the “filter factors” in the 

regularised solution which provide answers to the following questions: a) Which SVD 

components could be considered erroneous and hence should be filtered out, and b) 

how to filter them out. Using the concept of the filter factors, the regularised solution 

takes the following form:  
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 1 T
σ VΦΣ U D−=         , or       ( )1 T

n r

−

−=σ ΧΦ Σ I U D  (2.25) 

which is generated using the SVD of J and GSVD of (J, L) respectively. This 

implementation is common to the regularised reconstruction methods presented 

below, expect that the filter function Φ  varies accordingly.  

 

2.2.2 TSVD  

Truncated SVD (TSVD) is the simplest method which can be used in the 

regularisation of the MIT inverse problem. By means of this method, the ill-

conditioning of the matrix J is treated by explicitly truncating (ignoring) the last (m-k) 

SVD components of J. This leads to a regularised solution which can be written as:  

 ( ) ( )T T

TSVD

1 1

m k
i i

i i i

i ii i

f
υ υ

ν ν
σ σ= =

= =∑ ∑
D D

σ  (2.26) 

where the filter factors 
i

f  can be defined as a piecewise function which simply 

consists of zeros and ones:  

 1

0

, ,

, ,
i

i k
f

i k

≤
=

>
 (2.27) 

The TSVD can be found suitable for regularising rank-deficient problems where the 

truncation level k is well defined and corresponds to the rank of the system matrix. 

However, since the MIT system J is ill-posed, there is no gap in the spectrum of 

singular values on the one hand, and on the other hand, the level at which the 

erroneous SVD components settle is not obvious for an accurate truncation to be 

applied. There exists also a TGSVD version for the GSVD, which can be applied in a 

similar fashion to the SVD. Due to its simple regularising properties, EIT is already 

familiar with TSVD and in MIT it has been implemented by [40] and [11]. However, 

although TSVD and TGSVD are proved theoretically to lead to a valid regularised 

solution, they are not favourably applied in practice in MIT inverse problems since 

their corresponding decompositions are very expensive to calculate and the cost is 
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prohibitive for large matrices J. However, from a theoretical point of view, they are 

useful and simple to analyse. 

 

2.2.3 Tikhonov regularisation method 

Tikhonov regularisation method is the most universally used regularisation tool for 

solving discrete ill-posed problems and has been extensively applied in EIT [41, 42] , 

ECT [43] and MIT [11].  Unlike the TSVD, the method provides stability to the ill-

posed least squares problem by damping or filtering the unwanted small singular 

values in an implicit fashion. As can be seen from the generalised Tikhonov 

formulation (2.15), this is effectively implemented by incorporating a penalty term, in 

the form of the smoothing seminorm L(σ) written in the discrete case as:  

 
( )

2

2

1

2
p

L λ= −σ L σ σ( )  (2.28) 

In the literature, this form of the penalty functional L(σ) is also referred to as the 

“Sobolev norm”. Here the penalty operator, L , carries a-priori information about the 

smoothness of the desired solution (see Chapter 5 for more details and examples on 

penalty operators), and λ controls the weight given to the minimisation of the solution 

regularisation term, relative to the minimisation of the data least squares functional. 

For a more general exposure of the penalty functional formulation, 
p
σ  has also been 

inserted to denote a-priori estimate of the solution. In practice, it is difficult to obtain 

the prior 
p
σ  which approximately reflects the true internal structure of the test object, 

hence users sometimes choose a homogenous distribution as a prior. Otherwise, 
p
σ  

can be chosen equal to zero, i.e. empty space is considered. 

The regularised solution σ  to the linear formulation of the generalised Tikhonov (gT) 

problem given by equation (2.16) can be written in terms of the GSVD of (J, L) in the 

following form:  

 
( )

T

gT T T

1 1

1
r m

i

i i i p i i i

i i ri

f f x x
υ

Κ υ
σ= = +

 
= + − + 

 
∑ ∑

D
σ σ D  (2.29) 

where 
i

Κ  is the i-th row of X
-1

.  The filter factors
i

f  can be defined as:  
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2

i

i

i

f
γ

γ λ
=

+
 (2.30) 

When choosing L  to be the identity matrix, i.e. ( )
2

2
1 2

p
L λ= −σ σ σ( ) , the 

generalised Tikhonov method reduces to its standard form (sT) which can simply be 

written as:  

 T T( )  
p

λ λ+ = − −J J I σ J D σ  (2.31) 

Similarly, with this specific form of Tikhonov regularisation (sT), we can write the 

regularised solution in terms of the SVD of J in the following generic form:  

 
( )

T
sT T

1

1
m

i

i i i p i

i i

f f v v
υ

σ=

 
= + − 

 
∑

D
σ σ  (2.32) 

where the corresponding filter factors are formulated as:  

 2

2

i

i

i

f
σ

σ λ
=

+
 (2.33) 

One important piece of insight that we can draw from equations (2.29) and (2.32) is 

the way Tikhonov regularisation is used to damp the contributions to the solution 

associated with the unwanted small singular components of the Jacobian J. The key 

mechanism is to have the filter factors close to 1 for large singular values 
i

σ and 

much smaller than 1 for small 
i

σ . This is implemented via the formulations for the 

filter factors as presented by (2.30) and (2.33) where we notice the filtering 

effectively sets in for those GSVD/SVD components for which 
i

γ λ< and 

i
σ λ< respectively. Hence, one should be prudent to select a reasonable value of the 

regularisation parameter λ so as the cluster of erroneous singular values levels just 

below λ . Otherwise, if λ is badly chosen, such as 
1

λ γ<  or 
m

λ σ< , Tikhonov 

regularisation is virtually negligible since all the filter factors are approximately equal 

to 1 and the basis vectors
i

x or 
i

v  related to the erroneous singular values will 

unfortunately propagate in the solution.  

Another important insight relates to the way the filter factors, and hence the 

regularisation parameter, control the influence of the a-priori information (the prior 
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p
σ  and the penalty operator L) on the regularised solution.  Equations (2.29) and 

(2.32) show that, for those GSVD/SVD components of the regularised solution 

resulting in filter factors (
i

f ) near one, and thus for 
i

λ γ< or
i

λ σ< , the basis 

vectors 
i

x  or 
i

v  of the regularised solution are essentially dominated by contributions 

from the left hand side term (D). However, for the other GSVD/SVD components 

where the filter factors (
i

f ) are close to zero, or equivalently 
i

λ γ> /
i

λ σ> , then 

the basis vectors 
i

x  or 
i

v  are influenced by contributions from the right hand side 

coefficient including the a-priori estimate 
p
σ . Hence, the role of the regularisation 

parameter in controlling the balance or the trade off between providing the good fit to 

the data and the good correlation to the prior is clear. Therefore, one should seek the 

optimum regularisation parameter which results in a regularised solution that is as 

close as possible to the true solution. The task of selecting the optimum regularisation 

parameter is challenging, which is reflected in literature with a range of parameter 

selection methods that have been devised for this purpose, namely: 

a) The Discrepancy Principle [44]: is based on the assumption that the variance value 

of the measurement noise δ  is known. In this case the regularisation parameter is 

chosen to so that:  

 Jσ D εδ− =  (2.34) 

      where 1ε >  is some predefined value. 

b) The L-curve: does not depend on a-priori knowledge of the noise level in the data. 

The method requires the plot of the “log” of the squared norm of the regularised 

solution against the squared norm of the residual for a range of values of 

regularisation parameter. This curve typically has an L shape. The L curve criterion 

for regularisation is to pick the parameter value corresponding to the “corner” of 

this curve.  For examples and implementation details for this method, see [39, 45]  

c) The Generalised Cross Validation method [46]: also does not require prior 

information of the variance of the noise δ .  To apply this method, one selects the 

regularisation parameter that minimises the GCV functional: 

 

( )

2

2
C I

GCV
trace

λ

λ

λ
−

r
( )=  (2.35) 
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where ( )Jσ D C I Dλ λ λ= − = −r  is the regularised residual.  

Although these methods have been theoretically validated, they did not find their way 

to practice for a number of reasons: a) they are found to successfully work for a 

limited number of applications, b) some of them rely on prior knowledge of the noise 

which cannot be estimated in practice, and c) some of them are expensive to calculate 

especially in the framework of nonlinear optimisation.  

Another useful tool of regularisation or prior information can be implemented in the 

form of adding constraints to the Tikhonov method. For example, in MIT image 

reconstruction, negative values in the regularised solution are not admissible since 

physically negative conductivity elements do not exist. Hence, these negative 

elements are truncated using the inequality condition:  

 0 (non-negativity)σ ≥  (2.36) 

In literature, other forms of constraints have been reported, which include 

monotonicity and convexcity and their inequality formulations are, respectively given 

by:  

 
1

0 (monotonicity)L σ ≥  (2.37) 

 
2

0 (convexcity)L σ ≥  (2.38) 

where L1 and L2 approximate the first and second derivative operators, respectively. 

In MIT, non negativity constraining is normally applied.  These constraints can also 

be combined in a matrix Ct. Thus, the inequality constrained Tikhonov solution solves 

the problem:  

T T T T( )  subject to: 0
p t

λ λ+ = − − ≥J J L L σ J D L Lσ C σ     (2.39) 

The constraints can, of course, be explicitly implemented to other regularisation 

methods.  

2.2.4 Other direct reconstruction methods  

Rutishauser [47] suggested a modification to Tikhonov’s method for achieving a 

regularised solution with sharper filter factors. In the standard form case this method 

amounts to solving the following system of equations:  
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 T T -1 T( ( ) )J J I J J I σ J Dλ λ λ+ + + =  (2.40) 

The corresponding filter factors are:  

 

( )

2

2 2

i

i

i i

f
σ

σ λ λ σ λ
=

+ + +
 (2.41) 

Beyond the classical 2-norm Tikhonov’s method, regularisation in other norms has 

also been investigated by solving problems of the general form:  

 ( ){ }2

min D Jσ Lσ
p

pq
λ− −  (2.42) 

where  1 ≤ q < ∞ and 1 ≤ p < ∞. Regarding the residual norm, the choice 1 ≤ q ≤ 2 is 

favourable since it leads to an estimation that takes into account possible outliers in 

the measured data. For the regularisation term, the 1-norm 
1

Lσ attracted a special 

attention in applied mathematics for some applications where one is interested in 

recovering the separation between high contrast materials (e.g. monitoring molten 

steel flow in pipes and imaging metals). While the Tikhonov 2-norm introduces 

smoothing a-priori information which penalises extreme variations in material 

properties (for example conductivities), the 1-norm is found to produce regularised 

solutions which reveal steep conductivity gradients and even mark discontinuities. 

The class of methods sharing this characteristic are known as “edge preserving 

regularisation methods”. Direct (single step) solutions using these regularisation 

methods are nonlinear unlike their counterpart Tikhonov method, (see section 5.2 for 

illustration). An example of a classical method in this range is “total variation (TV)”.  

For a one dimensional continuous σ , the TV penalty functional is defined as:  

 
( )

1

0

σ
σ

TV

d
L dt

dt
= ∫  (2.43) 

and for a general discrete problem with an object (Ω) in the multidimensional case:  

 
( ) 1 1

1

σ σ L σ
n

TV

i

L
=

= ∇ =∑  (2.44) 

where L1 is a discrete approximation to a 1
st
 order difference operator with each row 

(i) including only two nonzero coefficients, 1 and -1, e.g. row(i) = [0 0..1..0 0..-1..0], 

which occur in the columns corresponding to two adjacent conductivity elements 
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sharing an edge or a facet (i). TV regularisation method has been applied in EIT by 

Borsic [48], ECT by [49, 50], and in MIT [51]. Another edge preserving 

regularisation method with special features is investigated using MIT in Chapter 5.  

A further set of direct nonlinear methods include shape reconstruction algorithms 

designed to be implemented for specific applications where the values of the materials 

inside the test object are already known, but their shapes, boundaries and their 

geometry are unknown. An introduction study to this type of shape reconstruction 

methods was presented by Kolehmainen et al [52], and examples of such methods 

include the monotonicity method [53], the linear sampling method [54] and the level 

set technique [55]. The monotonicity method is a pixel based shape reconstruction 

method which relies in principle on the monotonicity of the mapping function 

: →J σ V . The method has the merit of being computationally efficient since it 

involves the computation of the singular values of relatively small matrices. The 

linear sampling method, which is also a pixel based shape reconstruction technique, 

shares similar advantages and time complexity as to the monotonicity method in the 

sense it can be applied for any number of perturbations with different conductivity 

values, as long as they are separated from each other by the background. In medical 

imaging, for instance, these methods can be applied for detection and shape 

reconstruction of anomalies inside approximately homogeneous tissues such as breast 

tumours. The third method, namely the level set technique, differs from its former 

counterparts in being an interface reconstruction technique. While being applied for 

piecewise conductivity distributions, this method seeks to recover the interface 

between two materials by shrinking the search to a narrow band area surrounding the 

interface to solve the associated inverse problem. Consequently the method is claimed 

to be more computationally cheap and able to provide an accurate estimation of the 

interfaces. This method could be very suitable for applications including two 

component phases where the goal is to recover the interface between two high 

contrast smooth regions. Overall, the limitation which could become critical for this 

class of methods is that they assume the materials and the background are 

idealistically smooth and their conductivities are known, which cannot be true in 

practice. For further details on implementation of such methods in ECT, EIT and MIT 

the reader can also refer to [18].   
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2.2.5 Iterative methods  

For the solution of the discrete MIT ill-posed inverse problem, the application of 

iterative methods can be favourable than direct methods in two respects:  

a) For large scale problems, (i.e. inverse problems involving large number of degrees 

of freedom) direct methods are not desirable since they lead to the formation of an 

immense coefficient matrix T T
( )H J J L Lλ= + that is difficult to store in memory on 

the one hand, and on the other hand the required inversion 1H −  is computationally 

expensive. Iterative methods have been designed to achieve an equivalent solution to 

that of a direct inversion method, in a way that the explicit formation of the 

coefficient matrix is avoided, and the algebraic operations do not go beyond matrix 

vector multiplications with J and J
T
.  

b) Because of the nonlinear relationship between the conductivity and the 

measurement data, it is almost impossible to find an accurate solution via a direct 

method. To improve the quality of the image reconstruction, iterative methods are a 

straightforward option in the framework of nonlinear optimisation. It is important to 

be aware that iterative schemes devised for nonlinear optimisation are not 

automatically suited for large scale problems and vice versa, although it is possible to 

merge both types of iterative schemes to generate specialised optimisation with 

combined features. 

For the iterative methods typically suitable for large scale problems, the methods 

generally amount to the regularised solution of the problem given by:  

 ( )
2

min subject to:D J σ σ
k

K− ∈  (2.45) 

where 
k

K  is the k-th dimensional subspace and k is the regularisation parameter. One 

of the classical iterative methods which follows this form (2.45) is the Landweber 

method commonly applied in ECT [43, 56]. The recursive formulation for the 

Landweber iterate takes the form:  

 T

1
( )σ σ J Jσ D

k k
α+ = + −  (2.46) 

where 
0
σ  is the starting vector (often 

0
0σ = ) and the fixed scalarα  is the relaxation 

factor. In this formulation, the Landweber iterate employs only first order derivative 

information stipulated by the Jacobian J, Hence the solution iterate can be computed 
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fast and with low memory accommodation unlike the linearised Tikhonov step where 

second order information is utilised. Clearly, for large problems with a large number 

of unknown parameters, this is an advantage. Another observation relates to the fact 

that the Jacobian J is not updated in the iterative procedure making the Landweber 

method a purely linear iterative method. For the nonlinear MIT inverse problem, the 

Landweber method might not be suitable for highly nonlinear problems as in those 

including complex distributions or high contrast material parameters. Only in cases 

where the material distribution is simple or low contrast, such method can be produce 

successful reconstruction. With regard to regularisation, while the Tikhonov method 

generates a regularised solution by explicitly inserting a penalty functional, 

Landweber method applies regularisation to the solution in an implicit way. To 

illustrate this fact, the filter factors associated with the Landweber method can be 

given by: 

 ( )21 1
k

i i
f ασ= − −  (2.47) 

As can be seen, the iteration k determines the filter factors and thus it plays the role of 

the regularisation parameter. A critical drawback of the Landweber method is that it 

usually requires a large number of iterations and hence its convergence characteristics 

are poor compared to its sister, the CG method described below. In order to improve 

its convergence quality, the basic Landweber method can be augmented with a 

projection to give the so called “projected Landweber iteration” written as:  

 ( )T

1
( )σ P σ J Jσ D

k k
α+ = + −  (2.48) 

where the projection P represents the “hard constraints” by which additional a-priori 

information about the solution is incorporated in the regularisation such as non-

negativity or upper boundary limitation.  In addition to ECT, this method has also 

been applied in MIT for a high contrast application related to imaging process water 

in oil/gas pipelines by [57].  Unfortunately, results were not encouraging and own 

observations by the authors concluded not only the method is slow to converge but is 

not suitable for highly nonlinear problems.  

A more sophisticated alternative to the Landweber method is the Conjugate Gradient 

(CG) method, which make use of the conjugate direction [58]. In origin, the method 

was designed to solve linear systems of equations, but later the method has undergone 
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several modifications to adapt it for nonlinear optimisation, a case which corresponds 

to the MIT inverse problem. Within these modifications, a great deal of research was 

devoted to derive robust preconditioners in order to enhance the convergence 

properties of the method. Overall, the method converges more quickly than the 

Landweber method and is widely applied in optimisation. In Chapter 4 on the MIT 

inverse problem, an elaborative description of the method is presented, which leads to 

an interesting implementation in MIT for large scale biomedical problems.    

Let us recall that the regularised solution obtained using either the standard or the 

generalised Tikhonov formula (2.16), (2.31) assumes the MIT ill-posed problem to be 

linear. The Tikhonov method can be modified to provide a solution to the nonlinear 

MIT problem by using a nonlinear iterative process which typically requires an 

evaluation of a series of linearised Tikhonov steps. Once the initial conductivity 

vector is estimated, for instance via a direct Tikhonov method, then the nonlinear 

Tikhonov solution can be obtained after recursively evaluating k iterate estimates, σ
k
, 

using the formula given by:  

 ( ) ( )
-1

T T T

1 k
= +σ σ J J L L J D J σ

k k k k k k
λ+ + −  (2.49) 

This iterative scheme is also known as the “modified Newton Raphson method” or the 

“Regularised Gauss Newton method”. Workers in the field of tomography found that 

updating the Jacobian matrix J
k

 at every iteration for the nonlinear treatment of the 

MIT problem is very time consuming. This is because the general numerical methods 

that have been designed so far for the evaluation of the forward problem and hence 

the computation of the Jacobian require a considerable deal of computation power to 

generate a solution. Therefore, a fixed Jacobian is usually used from the beginning of 

the iteration process, and the simulated voltages are simply calculated by multiplying 

the Jacobian with the current conductivity vector. Hence, equation (2.49) is 

approximated to 

 ( ) ( )
-1

T T T

1
= +σ σ J J L L J D Jσ

k k k
λ+ + −  (2.50) 

In the literature about ill-posed problems, this linear iterative method is called 

“iterative Tikhonov regularisation” [39]. This method can produce an improved 
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solution to the direct Tikhonov method only if the first estimate is not far from the 

true (desired) conductivity distribution.  
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3 Forward problem in Magnetic Induction 

Tomography   

 

3.1 Introduction 

Image reconstruction in MIT constitutes of two computational problems, namely: the 

forward problem and the inverse problem. In the forward problem a mathematical 

model of the MIT physical system is constructed. Electromagnetic field equations are 

applied with specific boundary conditions to calculate the eddy currents in an object 

of a given conductivity distribution and to determine the induced potentials in the 

receiver coils or the mutual impedances.  These received signals are used in the 

inverse problem to recover the conductivity distribution inside the object. Image 

reconstruction still represents a major difficulty to the development of MIT due to the 

following reasons: a) the loosely termed soft field effect characterising the forward 

problem where the physical relationship between the conductivity distribution and the 

received induced voltages is nonlinear [36]; b) the inverse problem is ill-posed and 

under-determined because of the limited number of independent measurements with 

respect to the unknown conductivity cells. Therefore, an appropriate treatment 

suggests that the solution of the conductivity distribution should be obtained using an 

iterative scheme whereby the forward and inverse problems are re-evaluated for a 

number of times to find the best fit of the simulated data to the measured physical 

data. Because the inverse problem is ill-posed, a small error in estimating the induced 

voltage change in the receiver coils will lead to a large error in predicting the image. 

Hence, for an accurate MIT reconstruction, a forward model capable of accurately 

calculating the voltages in the coils is required, especially in applications involving 

non-homogenous objects with irregular shapes such as the human head.   

Analytical methods have been employed to solve the forward problem in MIT (for 

example [59-61]) but their application is restricted to objects with simple conductivity 

distributions. Analytical methods may be used for problems with irregular boundaries 

at least in two dimensions using conformal mapping but such application is far from 

easy. In the last decade, numerical techniques have been used to solve the eddy 
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current problem in MIT and proved to be efficient for treating objects with complex 

shapes and interior material distributions. Of these methods, two techniques play a 

substantial role in computational modelling, namely the finite element method (FEM) 

and the finite difference method (FDM). FEM has been extensively implemented for 

solving the partial differential equations in EIT and MIT [62-66]. In this method, the 

problem domain is discretised into a mesh of irregular tetrahedra (often called finite 

elements FEs) and the method has the advantage that it is capable of easily modelling 

curved boundaries of objects by fitting irregular shaped FEs. On the other hand, FDM 

has also been applied mainly in NDT and MIT [67, 68]. Using the FDM, the problem 

is meshed with lines parallel to the Cartesian coordinate system, creating a grid of 

uniform sized voxels. The FDM has the advantage that regular grids can be easily 

generated. Other methods that have also been employed to model the forward 

problem in MIT include the boundary element method (BEM) and transmission line 

matrix method (TLM) ([69-71]). The BEM method is relatively fast and memory 

efficient compared to FEM or FDM since it discretises only the boundaries and 

therefore reduces the problem dimension by one. The BEM is however, only suitable 

for problem domains which consist of a few inhomogeneities. Using integral 

expressions derived at the interfaces and appropriate boundary conditions magnetic 

induction measurements can be calculated. In the TLM method, the MIT problem is 

decomposed into an array of transmission lines and excitation signals are modelled by 

Gaussian pulses which propagate through the grid. Since MIT systems usually operate 

at a single frequency, a Fast Fourier Transform (FFT) is required to calculate the 

sensor induced voltages. In this thesis, the author presents a method based on the 

FDM which is coined the term “the impedance method” or “the custom forward 

solver”. This method employs techniques from circuit theory analysis to solve the 

forward problem. 

The forward problem in MIT is an eddy current boundary value problem which is 

formulated in terms of magnetic vector and scalar potentials. When using FEM to 

evaluate the forward problem, Biro [72, 73] showed that edge based FEM has 

advantages over nodal FEM in approximating the magnetic vector potential. In MIT, 

edge FEM has been implemented by [65, 66, 74] and the eddy current boundary value 

problem was solved using an Ar, Ar-V formulation. This means, the electric field in 

the conductive object is expressed as the sum of the primary magnetic vector potential 
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As, the eddy current based magnetic vector potential Ar, and the scalar potential V. 

Using this approach the entire problem domain including the conductive target and 

the surrounding empty space needs to be discretised into finite elements, which 

usually leads to large system of linear equations. For high conductivity applications 

(for example molten steel visualisation [51]) one needs to follow this formulation in 

order to produce a reliable forward model. However, the corresponding computation 

and memory costs become expensive and a nonlinear iterative image reconstruction of 

three dimensional objects is far from being practical [11, 75] in real time.  In the 

biomedical field and low conductivity process applications where the conductivity of 

materials does not exceed a few Siemens per metre, a weakly coupled field 

approximation can be considered in MIT. The approximation basically ignores the 

skin effect (i.e. the diffusion effect) by assuming the incident primary magnetic field 

remains unaffected by the scattered secondary field caused by the eddy currents. 

Hence, the electric field in the conductive target is described only in terms of the 

primary vector potential As and the scalar potential V. In setting the condition for this 

approximation, Griffiths [2] stated that if the skin depth of the penetrating 

electromagnetic wave is larger than the dimension of the target, then the measured 

secondary field is proportional to the operating frequency of the primary field and the 

conductivity of the target under investigation, i.e.
0 r j )∆ ω ωε ε  − σ∝  (Β Β . Hence, in 

addition to low conductivity materials, only low frequency excitation signals can be 

employed for the approximation to be valid since the skin depth is also inversely 

proportional to the square root of the frequency. In the scope of this thesis the weakly 

coupled field approximation is implemented in the solution of the eddy current 

problem. In particular, two low conductivity applications are considered: the first is 

medical characterized as a low contrast application ( -12Smσ ≤  at 10 MHz [26]) and 

involves imaging stroke in the head. The second is a relatively high contrast case 

( -15Smσ ≤ ) and consists of inspecting the water fraction in oil/water pipelines. The 

assumption is carefully examined via analytical and numerical means. In effect, by 

means of simulations the range of frequencies over which the approximation is 

admissible is evaluated in the framework of the medical application.  

In literature, the weakly coupled field approximation was implemented by Gencer and 

Tek [40] who presented a numerical solution of magnetic induction measurements 
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using FEM. Another record of its application can be found in [67, 68] where an 

iterative method based on the so called “successive over relaxation technique” was 

employed to solve the forward problem. In the synthesis of the custom forward solver, 

the approximation is implemented using the impedance method whereby a linear 

system of equations is assembled and direct inversion is used to evaluate the forward 

solution. In order to verify the correctness and accuracy of the solver, analytical and 

numerical solutions of the eddy current problem for simple homogenous objects are 

employed for comparison. The forward solver is further tested on irregular shaped 

objects with complex structure and a good example in this respect is a realistic shaped 

head model. The computational efficiency attained by such solver is benchmarked 

against that of a commercial FE software package. Following the validation process, 

the forward solver is used in addition to the commercial FE software and an analytical 

derived expression to evaluate the sensitivity of a 16 channel MIT system prototype to 

a stroke, a step which is helpful to examine the required performance of MIT systems 

as well as the feasibility of stroke detection under predefined system performance 

criteria. 

 

3.2 Approaches 

3.2.1 Finite Element Method  

In this section the solution of the eddy current boundary value problem using FEM is 

considered in the general case where the diffusion effect cannot be ignored. In this 

case, the problem domain is split into two sub-domains as shown in Figure 3.1. One 

of which is the non-conducting region Ωn where a stationary field is assumed and the 

other is the conducting object Ωc comprising eddy currents. The Ar, Ar-V formulation 

reviewed in [72] employs a reduced magnetic vector potential Ar valid in the entire 

problem region, a modified scalar potential V applied in the conducting region, and an 

impressed magnetic vector potential As being the field produced by the coils in the 

infinite space when no material is present.  
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Figure 3.1:  Eddy current boundary value problem 

Assuming time harmonic fields with an angular frequencyω , we have:  

where H and E are the magnetic field intensity and the electric field intensity.  Vector  

Js is the electric current density in the excitation coil and ( j )σ ωε+ is the complex 

conductivity distribution in the object. The electric field intensity in the problem 

domain is described as:  

Biro [76] and Chari [77] suggested expressing the electric scalar potential as a time 

derivative, similar to the magnetic vector potential in order to introduce symmetry in 

the derived integral Galerkin equations. Hence equation (3.3) is modified into the 

following form:  

where: = +r sA A A . Given that: = ∇×B A  and substituting equation (3.4) into (3.1) 

and (3.2) we obtain the following equations that model the eddy current boundary 

value problem in MIT as:  

s( j )σ ωε∇× = + +H E J  ,                                                           (3.1) 

( j ) 0σ ωε∇ + =Ei                    (3.2) 

 = -j  -  ω ∇E A V                           (3.3) 

 = -j  -j  ω ω∇E A V                           (3.4) 

( ) ( ) sjν ωκ∇× ∇× + + ∇ =A A V J  ,                                        (3.5) 

j ( ) 0ω κ∇ + ∇ =Ai V  (3.6) 

Non-conducting region Ωn: 

 σ  = 0 

 µ = µ0     Ar 

 ε = ε0 
Transmitter coil     Receiver coil 

Eddy current region Ωc : 

σ > 0 

 µ ≥ µ0     Ar, V 
 ε > 1 

Js Jr 
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where 1ν µ= ( µ : magnetic permeability) and jκ σ ωε= + . 

After generating a tetrahedral mesh for the problem domain, edge FEM can be used to 

solve the eddy current problem described by equations (3.5), (3.6) and appropriate 

boundary conditions. For first order finite elements, the magnetic vector potential 

between edge nodes (i, j) is approximated by an edge basis function Ni j given by:  

= ∇ − ∇i j i j j iN L L L L  (3.7) 

where Li, Lj are nodal basis functions.  Applying the finite element Galerkin technique 

using edge basis functions we obtain the following equations: 

where N is any linear combination of edge basis functions, Ω is the entire problem 

domain, Ωc is the eddy current region and Ωs is the current source region. By 

discretising equations (3.8) and (3.9) a linear system of equations is assembled and 

solved using suitable numerical technique. The induced voltage (V) in the receiver 

coils can then be evaluated as follows:  

where J0 is a unit current density applied to the receiver coil. 

For further details about the application of edge FEM for solving the eddy current 

problem in MIT the reader might refer to ([18], [66], [65]) 

 

3.2.2 Finite Difference Method 

FDM is an alternative numerical technique to FEM. The main difference between the 

two numerical approaches being that the FDM is used to model the forward problem 

using regular grids. This is regarded advantageous in the sense that more efficient 

solvers can be implemented at the expense of the difficulty in accurately representing 

c s

( ) (j ( ) ( )d v d v d vν ωκ
Ω Ω Ω

∇× ∇× + + ∇ =∫ ∫ ∫ sN A N A Ni i iV J  (3.8) 

c

(j ( ) 0d vωκ
Ω

∇ + ∇ =∫ L Ai V  (3.9) 

s

0j ( ) dvω
Ω

= − ∫V AiJ  (3.10) 



 74 

curved boundaries or smooth interior structures. However, treatment for such problem 

has been demonstrated in [78] whereby peripheral voxels are trimmed to approximate 

the exact shape of curved boundaries. In this section the application of the FDM in 

MIT using the “the successive over relaxation method” is briefly reviewed. For more 

details [67] provides a fuller description of the method. Furthermore, the derivation 

will be presented based on the weakly coupled field approximation which neglects the 

skin effect. This approximation will be rigorously approached later in this chapter. 

Note when using this approximation only the conductive volume within the scanning 

region is discretised. 

When meshing the problem the object space is divided into cubic voxels with the 

nodes of the finite difference mesh at the voxel centres. A constant material 

conductivityκ is assigned to every voxel. The equations describing the current density 

(J) are: 

= 0  

 =   =  + j

 = j- -

κ κ σ ωε

ω

∇

∇

E

E A

iJ

J

V

 
(3.11) 

 

Figure 3.2 shows a single cell electrically connected to its six nearest neighbouring 

cells via an admittance Y and a voltage generator P representing the induced electric 

field, where: 

 = 

 = j

s

- ω s

Y κ

P A
 (3.12)  

and s is the internode spacing. 

The scalar potential V0 at the cell node is solved using the successive over relaxation 

method. In this process the voltage at the node V0 is updated iteratively using 

knowledge of the potentials at the neighbouring nodes and the connecting impedances 

and voltage sources. The system of equations is given by: 

( )
6

1
06

1

0 0

∆

 = + ∆   

i i i

i
i

i

i

λ

=

=

+

= −

′

∑

∑

i

Y P

Y

V

V V

V V V

 (3.13) 
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where V0 and 0  ′V are the old and the updated potential values at the cell node and λ is 

an acceleration factor that determines the rate of convergence. 

 

Figure 3.2:  Three dimensional cell connected electrically to its six nearest neighbours  

The secondary magnetic potential ( ∆A ) caused by the eddy current flow in the mesh 

elements .i.e. the branches between adjacent nodes of the conductive object is 

calculated by:  

where r is the distance from the mesh element to the point in space at which the field 

is calculated. The induced voltage in the receiver coil due to the target ( ∆V ) is 

obtained by integrating the secondary magnetic potential around the coil as shown by 

the equation below: 

j .dlω∆ = − ∆∫V A�  (3.15) 

where dl being defined as an element length within the coil 

The same result could be obtained by calculating the secondary magnetic field density 

using the Biot-Savart law and then carrying out a surface integration over the coil to 

obtain the induced voltage. 

 

4
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3.3 MIT system and coil sensitivity  

In this section, the simulation arrangement used to develop the forward model and 

calculate the simulated data is based on the Mark 1 which is a 16 channel MIT system 

made by [79]. As shown in Figure 3.3, the MIT system comprises a cylindrical 

conductive shield and a circular coil array. The sensor array consists of 16 excitation 

coils and 16 receiver coils, which are coaxially positioned and arranged in two 

concentric circles of radii 141.5 mm and 131.5 mm respectively. Each coil is made of 

two turns of 1 mm thickness copper wire with 50 mm diameter. A cylindrical 

aluminium screen with diameter 350 mm and height 250 mm surrounds the object 

space. The screen is intended to shield the system electromagnetically from external 

interferences and provides a ground termination for the electric field produced by the 

coils, which reduces the effects of capacitive coupling.  

Commercial FE software packages namely Maxwell 3D by Ansoft Corp and 

COMSOL by Multiphysics have been employed to model the tomography system. 

There have been some differences in the strategies adopted to model the system 

efficiently on these software platforms.  In Maxwell, the coils have been modelled as 

cylindrical rings made of stranded copper with an inner diameter of 50 mm and height 

of 2 mm. A uniform current density has been assigned to the excitation coils. The 

screen, with 2.5 mm thickness, was simulated using a perfect electrical conducting 

(PEC) material which does not require FE discretisation. In COMSOL, however, it 

appeared to be efficient to design the coils as filamentary. The shield was modelled as 

a cylinder and a magnetic insulation boundary condition was applied.  For simulations 

carried out in this chapter the excitation coil was driven with a unit current for 

simplicity and the operating frequency was 10 MHz. In order to discretise the problem 

domain adaptive meshing has been used in Maxwell simulations whereby the finite 

element mesh is iteratively refined as the field solution converges to a predefined 

error. This meshing protocol operates by increasing the mesh density in regions with 

high field strengths and keeping it coarser in other regions where the field is gently 

perturbed. In COMSOL simulations, the problem domain is directly meshed and mesh 

refinement tools are provided to increase the resolution in particular sub-domains.   

It has been mentioned in section (3.1) that the custom forward problem solver 

developed by the author employs a weakly coupled field approximation. In this case 
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the eddy current distribution in the object is determined using the primary magnetic 

vector potential computed in empty space when no material is present. For simulated 

problems described in this chapter the primary field in the target region is calculated 

numerically by COMSOL. As we will see in this chapter, there are eddy current 

problems for which analytical solutions have been derived. For such cases the screen 

is not modelled, hence a far field boundary condition by considering that the 

tangential component of the magnetic vector potential ( ˆ 0× =An , with normal n̂ ) 

vanishes on some larger enclosing surface has been applied.  

 

 

 

 

a) b) 

Figure 3.3:  Simulated 16 channel MIT system. a) Side view. b) Top view 

In addition to simulating the induced voltages by the MIT coil array the spatial 

sensitivity map has to be determined. In this process, the sensitivity of an excite-

detect coil pair to a small change in the conductivity of the object is evaluated. In 

what follows, the main steps in the derivation of an efficient formula for the 

sensitivity, which involves only the dot product of the electric fields of the excitation 

and detection coils, is briefly presented. This formula is used in the thesis to calculate 

the sensitivity matrix (i.e. the Jacobian) employed in image reconstruction. An 

elaborate description of the sensitivity analysis in MIT can be found in [80]. 

The electromagnetic field interaction in MIT is described by Maxwell’s equations, 

which for time harmonic fields with angular frequency ω are given by:  

Excite coils 

Receiver coils 

Screen 
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j 0,ωµ µ∇× = − ∇ =E H Hi  (3.16) 

S 0,κ ε∇× = + ∇ =H E EiJ  (3.17) 

where H and E are the magnetic field intensity and the electric field intensity.  Vector 

JS represent the current passing in the excitation coil,κ andε  are respectively the 

complex conductivity and the permittivity of the object . When combining (3.16) and 

(3.17) we obtain the equation:  

( ) Sj jν ωκ ω∇× ∇× + = −E E J  (3.18) 

Let us assume a small perturbation in the conductivity of the object κ κ δκ′ = +  

results in a perturbation of the electric field δ′ = +E E E while the excitation current 

is held constant. A parameterisation of the sensitivity can be obtained by finding the 

corresponding linearised change in the voltage induced in the coil. Substituting  

δ′ = +E E E  into equation (3.18) and subtracting from (3.18) while ignoring higher 

order terms we obtain: 

( ) ( )j 0ν δ ω δκ κδ∇× ∇× + + =E E E  (3.19) 

Taking the dot product with E gives:  

( ) j j 0ν δ ωδκ ωκ δ∇× ∇× + + =E E E E E Ei i i  (3.20) 

Using the identity vector:  

( ) ( ) ( )δ δ δ∇ ×∇× = − ∇×∇× + ∇× ∇×E E E E E Ei i i  (3.21) 

Swapping E andδ E in (3.21) and using equation (3.18) we obtain:  

( ) ( ) ( )

( ) ( )Sj j

δ δ δ

ωµκδ ωµδ δ

∇ ×∇× = − ∇×∇× + ∇× ∇×

= + + ∇× ∇×

E E E E E E

E E E E E

i i i

i i iJ
 

(3.22) 

 

Subtracting (3.21) from (3.22): 

( ) Sj jδ δ δ ωµκδ ωµδ∇ ×∇× − ×∇× = ∇×∇× + +E E E E E E E E Ei i i iJ  (3.23) 

Assigning the subscripts (1) and (2) which respectively relates to the excitation and 

detection coil pair to equations (3.23) and (3.20) and using the reciprocity theorem 

[81]:    
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( )1 2 1 2 0δ δ∇ ×∇× − ×∇× =E E E Ei  (3.24) 

We deduce:  

1 S2 1 2δ δκ=E E Ei iJ  (3.25) 

Taking the integrand over the domain (Ω) we obtain:  

1 S2 1 2d dδ δκ
Ω Ω

=∫ ∫E v E E vi iJ  (3.26) 

where:  

1 S2 1 S2

2 2
=

dv dl daδ δ
Ω Ω

=

∆

∫ ∫E E

V I

i iJ J
 (3.27) 

Therefore the sensitivity of the detection coil (coil 2) to a small change in 

conductivity is simply the multiplication of the electric field distribution due to the 

exciter (coil 1) and receiver (coil 2) provided they have been driven with the same 

current.   

 

3.4 Impedance method  

To solve the eddy current problem the impedance method is employed, which 

effectively treats the test object as an electrical network of passive and active 

electrical components and uses circuit analysis tools to translate the electromagnetic 

behaviour of the network into a linear system of equations which is solved to 

determine the unknown quantities. In fact, the impedance method has previously been 

implemented for estimation of the induced electric fields in the human body, for 

example from electronic article surveillance devices and portable appliances as well 

as from exposure to MRI and magnetic walk through metal detectors [82-85]. 

However, the impedance method has been implemented in different ways depending 

on the chosen circuit analysis technique. In what follows, three methods are 

investigated namely: the branch current method, mesh analysis and nodal analysis. 

The derivation of each method will be illustrated in accordance with Maxwell’s laws 

describing the electromagnetic problem.   
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At the start, the impedance method is devised to compute the eddy currents in a test 

object modelled as a two dimensional (2D) grid of regular sized pixels. The rationale 

is to keep the structure fairly simple to facilitate the validation process and the inter-

comparison procedure to whichever method can be promoted to solve three 

dimensional problems. Figure 3.4 shows an example of a grid with m×n cells, each of 

which is assigned a constant conductivity value and altogether forming an electrical 

network of lumped impedances. Each edge impedance is calculated by taking the 

impedance contributions by the neighbouring cells in parallel. For example, the edge 

impedance along the x direction of cell (i, j) is given by:  

 ( )1i , j i , j

i , j

x

x

y σ σ −

∆
=

∆ +
Z  (3.28) 

where x∆ = y∆  are the dimensions of the cell in the x, y direction; , , 1i j i jσ σ −, denote the 

conductivities of the cells sharing the impedance of interest.  

 

Figure 3.4:  m×n 2D model  

In order to test the performance of the impedance method implemented with the three 

different circuit analysis techniques, the following 2D test samples shown in Figure 

3.5, which comprise a U shaped object and a circular disc with a homogenous 

conductivity ( 11 Smσ −= ), were modelled. These test samples are assumed to extend 

to a depth of 1 m in the z direction for current density calculation.  
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a) b) 

Figure 3.5:  2D test models: a) Horse shoe, b) Circular disc  

 For simulations, the test objects were subject to a uniform time varying alternating 

magnetic field normal to the plane surface in the z direction (Bz) with magnitude of 1 

Tesla and angular frequency ( = 2 10 MHzω π × ). This field distribution can be 

approximated to that produced by a relatively large coil surrounding the test objects.  

 

3.4.1 Finite Integration Technique 

Recalling that the eddy current problem is described by the frequency dependent curl 

and divergence continuous equations from Maxwell’s laws illustrated as follows: 

 ( )

( )

( )

0j , a

j , b

0, c

ω µ

ω ε

∇× = −

∇× = +

∇ =

E H

H E

i

J

J

 (3.29) 

where E is the electric field, H is the magnetic field, J is the current density, ε  and 

0µ denote the permittivity and the permeability. In order to solve Maxwell’s equations 

on the discretised problems, the impedance method employs the Finite Integration 

Technique (FIT). FIT is a generalisation of the Finite Difference Time Domain 

(FDTD) method and is used to transform Maxwell’s equations originally expressed in 

integral continuous form to a discrete form suitable for mapping onto discrete 

problems [78]. Using (3.29), Maxwell’s equations in discrete form, also known as 

Maxwell’s grid equations are obtained below.  
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 ( )
� ( )

( )

0
j , a

j , b

0, c

ωµ

ωε

= −


= +


=

C E H

C H E

S

J

J

 (3.30) 

where E , H  are integral quantities corresponding respectively to the electric voltage 

along the pixel edges and the magnetic voltage on the pixel facets.  Vector J  is the 

charge current on the edges. The field quantities E and H are mapped on two different 

grids. These grids are dual to each other. The discrete curl and div operators are 

described by the coefficient matrices C and S in the grid and by �C  in the dual grid.  

At an operating frequency of 10 MHz a weakly coupled field approximation can be 

assumed under quasi-static conditions in which the secondary field due to the skin 

effect can be ignored. In addition, ωε is sufficiently small so as the displacement 

currents in the imaginary part of equation (3.30(b)) can also be neglected.  

 

3.4.2 Branch current method 

In the branch current method a current is assigned to each branch (edge) of the 

network (see Figure 3.4). Kirchhoff’s voltage law (KVL) equations are written for 

each closed, independent loop and Kirchhoff’s current law (KCL) equations are 

applied to the minimum number of nodes that will include all the branch currents of 

the network [86-88]. In theory, KVL and KCL are directly derived from the physical 

laws described by Maxwell’s equations in discrete form, where KVL is a 

simplification of the Faraday induction law and KCL can be found by taking the 

divergence of the eddy charge current J induced by the primary magnetic field. 

Therefore it can be seen that:  

 
0j

0 0

branch

facet

branch

node

emfωµ = − → =



= → =


∑

∑

C E H I

S I

Z

J
 (3.31) 

A linear system of simultaneous equations is assembled in a matrix format as XI=Q, 

where X, I and Q are the impedance matrix, the unknown branch current vector and 

the vector comprising the results on the right hand side of KVL and KCL equations.  
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For high resolution grids, the impedance matrix incorporates a high density of zero 

valued cells which are redundant in the computation procedure and overload the 

memory storage of the computer. In order to deal with this problem, sparse matrix 

technique is deployed which effectively stores only the non-zero elements together 

with their indices and eliminate operations on zero valued elements. The constructed 

sparse linear system is then solved in MATLAB using direct inversion which employs 

LU factorization and back-substitution since the impedance matrix is square but non-

symmetrical. Subsequently, the current density J is computed for each pixel as two 

components (Jx, Jy) relative to the (x, y) Cartesian coordinates system per unit length 

in the z direction.  

The eddy current solution results are presented in Figure 3.6 which visualises the 

current flow direction in vector notation on the plane surface of the samples. As 

expected, the eddy currents flow in loops normal to the field orientation and parallel 

to the excitation current flow in the coil, which agrees with theory. The current 

magnitude appears to be larger near the periphery due to larger flux coupling. 
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Figure 3.6:  Eddy current flow on the 2D test models calculated by the branch current method. 

 

3.4.3 Mesh analysis 

The mesh current method, also known as the loop current method, uses the concept of 

artificial currents which are assigned to the closed loops in the network and 

configured to circulate according to a user specified uniform direction. These loop 

currents are solved and their results are then used to determine the real currents in the 

network branches. In fact, this approach is an optimisation of the branch current 
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method, where the need to substitute the results of KCL into the equations derived 

from KVL is eliminated. Hence the simultaneous linear system of equations is formed 

by only applying KVL to every closed loop incorporating an unknown loop current in 

the network. This systemic approach is computationally efficient compared to the 

branch current method in the sense that the system comprises less equations and 

hence less unknown variables. The only drawback is that this circuit analysis 

technique can only be applied to planar networks with no impedance crossovers. The 

system of equations XI=Q is written following the formula shown below:  

 
0 0j jloop

facet

ω µ ωµ= − → = −∑C E H I HZ  (3.32) 

The impedance matrix X generated by the mesh analysis is a symmetric, positive 

definite sparse matrix. In this case, Cholesky factorisation is employed in the 

inversion process which effectively returns an upper triangular matrix R so that X= 

R
T
R, where R

T
 is the transpose of R, and back substitution is used to calculate the 

loop currents. Subsequently, KCL can be applied to extract the branch currents from 

the loop currents. 

To investigate the mesh analysis performance, the same test procedure was repeated 

and the eddy currents were computed. As can be seen from Figure 3.7 the eddy 

currents circulate in the same fashion as observed by the branch current method.  
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Figure 3.7:  Eddy current flow on the 2D test models calculated by the mesh analysis. 
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3.4.4 Nodal analysis 

Another method in circuit theory analysis is nodal analysis which has also been 

referred to in numerical methods as the scalar potential finite difference (SPFD) 

method [89, 90]. In contrast to the branch and loop current methods, nodal analysis 

employs the magnetic vector potential (A) as the external applied magnetic field. The 

electromagnetic problem in MIT is described by Maxwell’s equations as illustrated by 

the system of equations (3.29). Given that: 0µ=B H  and ∇× =A B  and when 

substituting the magnetic field density B by A, equation  (a)) becomes: 

 ( j ) 0ω∇× + =E A  (3.33) 

which infers that: 

 jω= − ∇ −E AV  (3.34) 

where V is the electric scalar potential. The Kirchhoff’s current equation (c)) is 

transformed into scalar potential form by substituting the electric field E from 

equation (3.34).  

 ( ) ( j )σ ωσ∇ ∇ =∇ − Ai iV  (3.35) 

The resulting differential continuous equation is then mapped onto the 2D electrical 

network of discrete pixels where V is now defined at the nodes (i.e. junctions) of the 

network.  As a consequence, the edge current in every branch is expressed in terms of 

the difference between the nodal voltages associated with the branch and the magnetic 

vector potential A that is evaluated half way of the branch length. In a similar fashion 

to the branch current and loop current methods a linear system of equations is 

synthesized of the form XV=P, where X, V and P  are the impedance matrix, the 

unknown nodal voltages and the magnetically induced voltage vector respectively. 

The system is solved directly using the Cholesky factorization and back-substitution 

which enables optimized inversion [91]. Once the nodal voltages are determined, 

Ohm’s law is applied to compute the current density (J) for each pixel.  

The same simulations made in the previous sections were carried out with nodal 

analysis. In order to produce a uniform magnetic field with a density of 1 Tesla, the A 

field was chosen to vary according to the function ( ) = 0.5 +1x xA ; ( ) = 0.5y+1yA , 

where A(x) and A(y) are the A field components in the (x, y) coordinate system. 



 86 

Figure 3.8 below depicts the current flow direction on the two test planes, which 

appears to agree with the results from the previous applied circuit theory methods.  
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Figure 3.8:  Eddy current flow on the 2D test models calculated by the nodal analysis   

In summary, this section has described the solution of the eddy current problem in 

MIT, which involves the coupling between the excitation source and the target.  The 

solution was demonstrated by means of the impedance method. Circuit analysis tools 

including the branch current method, mesh analysis and nodal analysis were 

introduced and their correlation with electromagnetic field principles describing the 

MIT problem was illustrated. Eddy current simulations were presented using 2D 

samples to test the performance of the algorithms which appear to produce similar 

results. As noted in section (3.4.3) the mesh analysis method applies only to planar 

networks. Hence in the following sections, where mainly 3D eddy current problems 

are considered, work continues with the impedance method based on the branch 

current and the nodal analysis techniques  

 

3.5   Evaluation with analytical and numerical methods 

The impedance method based on the branch current and nodal analysis techniques 

have been extended to solve 3D eddy current problems. In order to evaluate the 

method a test problem was devised, which seeks to determine the eddy current density 

in a sphere with homogenous conductivity distribution and subject to magnetic field 

from a circular filamentary coil of 50 mm diameter. The coil is positioned so it is 

symmetrical about the z axis and is 141.5 mm away from the origin. These 
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dimensions were chosen to conform to the 16 channel MIT system specifications 

elaborated in section (3.3). The model schematic is shown in Figure 3.9 including a 

sphere of 60 mm radius, conductivity ( -1
 1Smσ = ) and permeability ( 0µ µ= , air). 

Unit current excitation was passed around the coil and the operating frequency was 

set to 10 MHz. The solution of the eddy current problem was first generated by the 

impedance method. 

In order to test the eddy current results, the same problem was re-evaluated using 

analytical and numerical methods. For the analytical case, equation (3.36) given 

below describes the electric field in the conducting sphere [92]. Due to the 

geometrical homogeneity of the sphere and symmetry of the coil arrangement only the 

φ component of the electric field is used among the spherical coordinates (r, θ, φ). 

 ( )
( )

( )
( ) ( )

1

1/ 20 0 0 0
0

1 1/ 2 0
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n n

I rj I r a
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θ θ θ

α α

+
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+

= −

 
=  

 
∑E Θ Θ  (3.36) 

where µ0 is the permeability of free space, (r0, θ0) are the coordinates specifying the 

coil position, a is the sphere radius, ( )1 j / 2α ωµσ= + . Here, In+1/2(αr) are modified 

Bessel functions of the first kind with order (n+1/2) and ( )n θΘ  are the associated 

Legendre polynomials. I0 is the excitation current and (r0 sin θ0) is the radius of the 

coil. For conductivity of 1 Sm
-1

 the current density Jφ and the electric field Eφ are 

equated according to the definition: Jφ = σEφ. 

For numerical simulations Maxwell, COMSOL and TLM were used. The first two 

solvers account for the skin effect and displacement currents in the solution process.  

On the other hand, TLM solves the full wave Maxwell’s equations including wave 

propagation effects and is also intended to reflect the impact of the wave propagation 

assumption on measurements. For simulation results, Figure 3.10 depicts a map of the 

eddy current density distribution on the (x, z) plane. The eddy currents appear to be 

stronger in general near the periphery of the sphere and notably in the upper half close 

to the excitation. We also notice the symmetry of the eddy current distribution around 

the coil axis which can be explained by the symmetry of the problem. 
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Figure 3.9:  Model schematic for eddy current simulation  

Figure 3.11 plots the current density as calculated by the different solvers against the 

angle θ along the periphery of the sphere. As can be seen, the results show a very 

good agreement between the solvers. A small mismatch can be identified about θ = 

40
0
 where the eddy current flow exhibits a peak magnitude. This may be attributed to 

the discrepancy in the meshing mechanism adopted by the solvers based on either 

tetrahedra FEs or voxels. Figure 3.12 also shows the eddy current distribution along 

the y axis computed by the solvers. In addition to the quality of agreement, the eddy 

current flow conforms to the theory with stronger eddy currents circulating near the 

periphery of the sphere. 

 

Figure 3.10: Map of the eddy current distribution on the (x, z) plane 
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Figure 3.11: Eddy current on the surface as a function of θ  
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Figure 3.12: Eddy current along the x axis as a function of r . (y=0, z=0) 
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3.6 Weakly coupled field approximation in MIT forward 

solution 

This section focuses on evaluating the impact of the weakly coupled field 

approximation (i.e. neglecting the skin effect) in the solution of the MIT forward 

problem. The investigation will be divided in two stages. In the first part, a theoretical 

analysis of the approximation is presented using an analytical expression derived from 

full wave theory for an impedance change in a coil pair near an infinitely large flat 

conductor. This expression is used to quantify the error due to the approximation for a 

range of radio frequencies ( 10MHzf ≤ ) [93]. In addition, the work purposely seeks 

the highest frequency based upon a nominal allowable error margin of 1%.  This 

frequency figure is desirable for image reconstruction in order to increase the 

magnitude of eddy current based induced voltage above systematic noise levels. In the 

second part of this investigation numerical tools are employed where frequencies 

within the specified range are then used with the impedance method and the error is 

re-evaluated against a commercial FE solver (COMSOL) for a range of conductivities 

related to biological tissues. 

 

3.6.1 Theoretical analysis 

In this theoretical analysis two integral expressions for the impedance change of a coil 

pair due to a target are presented for the simple model shown in Figure 3.13. The 

magnetic induction set up includes a coaxial excitation and detection coil pair which 

are modelled as circular and filamentary, and a conductive non-magnetic plate that is 

infinitely large and parallel to the coil surface. For the analysis of the weakly coupled 

field approximation, one analytical expression is derived to calculate the induced 

mutual impedance change in the coil pair when such approximation is considered, 

whereas the second expression takes into account the skin effect in the solution. The 

results are compared and the corresponding error is quantified. 

 

 



 91 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Simplified MIT model for evaluating the skin effect 

The solution to the problem starts with the diffusion equation which describes the 

behaviour of the vector potential (A) in an isotropic, linear and inhomogeneous object 

due to an applied current density J0 as given by [15]:  
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where, σ, ε and µ are the conductivity, permittivity and permeability of the medium 

respectively. For operating frequencies below 10 MHz, 2 2d dA tµε is much smaller 

than d dA tµσ  and thus can be ignored. 

Solution of the differential equation yields integral equations of the magnetic vector 

potential in the regions I, II, and III which are shown in Figure 3.13. The magnetic 

vector potential in each region is expressed as follows:  
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where µ0 is the permeability of free space, l denotes the distance of the coil to the 

parallel plate surface; and c characterizes the thickness of the plate. 
0α α= , 

2

1 1jα α σµ ω= + , 
2α α= . I1(x) is a first order Bessel function of the first kind. I0 is the 

excitation current and r0 is the radius of the coils. The induced mutual impedance in 

the receiver coil in the presence of the object is given by:  
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Whereas in empty space the mutual impedance of the coil channel is: 
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Hence the change in the mutual impedance due to the conducting plate is obtained by 

simply taking the difference between equations (3.41) and (3.42): 
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(3.43) 

Now, the weakly coupled field approximation which is also referenced as the Born or 

the low diffusion approximation is applied. Considering the fact that in the low 

frequency limit 0σµ ω  is infinitely small and 2

1 0jα α σµ ω= +  can be approximated as: 

0jα α σµ ω α1 0 0= + 2  equation (3.43) simplifies to: 
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In the simulations, the coil dimensions and current excitation were set according to 

the MIT system specification described in section (3.3), (i.e. the coil diameter was set 

to 50 mm, the exciter and receiver coils are 141.5 mm away from the origin and a unit 

current is passed in the exciter coil). The conductive plate thickness c was selected to 

be 140 mm.  
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 b) 

Figure 3.14: The mutual impedance between the excitation and the detection coil at different 

frequencies for saline solutions (a) σσσσ = 0.01 Sm
-1

; (b) σσσσ = 0.1 Sm
-1

; using solutions (1) and (2) 
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Figure 3.14 shows the change in the mutual impedance of the excite-detect coil pair 

due to the object once by taking into account the skin effect (solution (1)) and the 

other by assuming the low diffusion approximation (solution (2)). As the frequency 

increases the mutual impedance measurements from solution (1) deviate progressively 

from those of solution (2) which exhibit a linear relationship with frequency. In 

addition, as the object conductivity rises from σ  = 0.01 to σ  = 0.1 Sm
-1

 the skin 

effect becomes more pronounced.  

In order to define the highest frequency at which the skin effect can reasonably be 

ignored, the plate conductivity was allowed to take values up to 1 Sm
-1

.  For each 

conductivity co-ordinate, the corresponding frequency was selected so as the error 

between solutions (1) and (2) is 1 %. From Figure 3.15 it can be seen that at an 

operating frequency of 1MHz, the saline conductivity of the homogenous plate is 

1Sm
-1

, whereas at 10 MHz the conductivity of the plate drops to 0.1 Sm
-1

. However, 

since most biological tissues are well below 1 Sm
-1

 according to [26] and the analysis 

considered here imposes an exaggerating geometrical definition which considers the 

plate to be infinitely large, hence we feel comfortable extending the range of 

acceptable frequencies up to 10 MHz at which the approximation can be valid, 

expecting the error will reduce with a finite volume object as will be shown in the 

following section. 
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Figure 3.15: Frequency versus conductivity with the error due to ignoring skin effects is 10% 
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3.6.2 Numerical analysis  

In section (3.4) the branch current and the nodal analysis methods have been 

described as circuit analysis tools that can be used to synthesise the impedance 

method for solution of 3D electromagnetic problems. It was also noted that the nodal 

analysis method is superior to the branch current method since for the same problem it 

requires far less equations and produces a symmetrical linear system of equations that 

can be solved efficiently. Hence in the following numerical simulations the 

impedance method is developed based on nodal analysis. 

In the numerical analysis of the weakly coupled field approximation, the multi-

channel MIT set up (Mark 1) depicted in Figure 3.16 (a) was modelled in COMSOL. 

The model consists of an array of excitation and detection coils, a screening shield 

and a conductive rectangular object. The dimensions and current excitation of a single 

channel are similar to those of the analytical model illustrated in the previous section 

(3.6.1).  Here, the electromagnetic field problem is numerically solved by COMSOL 

and the impedance method for three different coil combinations namely, adjacent, 

orthogonal, and the opposite cases as shown in Figure 3.16 (b) to examine the weakly 

coupled field approximation adopted by the impedance method solution at different 

sensor channels since MIT requires multiple sensor pick ups for image reconstruction. 

In order to calculate the induced voltages in the receiver coils due to the target using 

the impedance method, the tangential component of the secondary magnetic vector 

potential ( A∆ ) is integrated around the coil as expressed by equation (3.45), where 

A∆  is calculated using the Biot-Savart law in discrete form by integrating J over the 

conductive object volume Ω as displayed by equation (3.46) 

 ∆ j ∆ .dlω= − ∫V A�  (3.45) 

 0

14

c

n

n nr

µ
∆

π

Ω

=

= ∑A
J

 (3.46) 

where Jn is the current density calculated at the centre of voxel (n) and rn is the 

distance between the corresponding voxel centre and the elemental length dl of the 

coil . The skin effect error is estimated from the two solutions for each coil pair at two 

frequencies namely, 10 MHz and 1 MHz. For the impedance method, the object was 

discretised into 44×28×42 cubic voxels with 5 mm
3
 resolution. The object was 
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assigned a range of conductivities up 2 Sm
-1

 similar to those encountered in biological 

tissues.  

                                                       

                                  a)                     b)                                                                       

Figure 3.16: a) 16 channel MIT system with conductive box. b) Coil combinations 

Figure 3.17 (a) and (b) show the error due to neglecting the skin effect in the 

impedance method by comparing the induced voltage measurements against 

COMSOL. The simulated measurements were computed at frequencies 10 MHz and 

1MHz for three coil combinations. As can be seen, for conductivities below 2 Sm
-1

 

the largest error at 10 MHz is recorded for the opposite coil with 6 %, where the field 

is assumed to interact with a greater volume of the object making the case most prone 

to the diffusion effect. However, in the anatomical structure of the head, it is only the 

cerebral spinal fluid (CSF) whose conductivity is 2 Sm
-1

 and it is represented with a 

very thin layer, whereas all other tissues which occupy a substantial volume of the 

head including the white and grey matter, muscle corresponding conductivities do not 

exceed 0.5 Sm
-1

 at 10 MHz [26]. Taking this into account, the worst skin effect error 

at 10 MHz for the opposite coil does not exceed 0.4 % as illustrated by Figure 3.17 

(a). Image reconstruction using MIT in medical applications can be done differentially 

since all conductivities of all biological tissues exhibit frequency dependency. Since 

10 MHz has been proven to be about the upper limit for such approximation, the skin 

effect error was evaluated at another lower frequency 1 MHz. In this case, Figure 3.17 

(b) shows the error in the extreme case is about 0.1 % when the whole volume of the 

target is considered to have a conductivity of 2 Sm
-1

. 
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Figure 3.17: Plot of the error due to neglecting the skin effect between the Impedance method 

and COMSOL at the adjacent, perpendicular and the opposite coils at a) 10MHz, b) 1MHz 

 

3.7  Eddy current simulations with realistic head model 

Biomedical MIT is an important area where the application of the custom forward 

solver employing the impedance method and the weakly coupled field approximation 

can be suitable, since all biological tissues belong to the low conductivity range. In 

this section the operation of the custom forward solver is tested on an irregular shaped 

phantom with a complex structure represented with a realistic head model. A set of 

simulations is performed to examine the changes in eddy current distribution when a 
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stroke is included inside the brain. The forward solution is used to examine the 

sensitivity of a single MIT channel to the position of stroke. The gain in the 

computational power saving achieved with the custom forward solver is also 

investigated against COMSOL. 

 

3.7.1 Computational experiments 

An anatomically realistic multilayer head model was used to test the functionality of 

the custom forward solver. The FE meshed head model (supplied courtesy of Holder 

et al) was originally developed from segmented Magnetic Resonance (MR) data [94] 

and has been used for several EIT studies related to cerebral stroke and neurological 

imaging [95-98]. The head model comprised scalp, skull, CSF, grey matter, white 

matter, ventricles, spinal cord, eyes, optic nerves, and ear canals and nasal cavity. The 

head FE mesh consisted of 53,336 tetrahedra, where each tetrahedron was assigned 

one of the mentioned tissue types, and every tissue type was designated with its 

corresponding electrical conductivity (see Table 1-1). The dielectric properties of 

tissues were sourced from measurements in [26]. The FE mesh was then converted 

into a cubic mesh suitable for the impedance method with a resolution of 3.5 mm
3
 and 

mapped into a rectangular enclosure with dimensions of 62×45×63 voxels. 

Figure 3.18 (a, b and c) shows a 3D view of the head model with a cutaway plane 

displaying the conductivity distribution for the head with the following pathological 

cases: 

a) Healthy head: with normal tissues 

b) External intraparenchymal haemorrhage: a large stroke occupying a spherical 

region in the periphery of the left hemisphere of the brain and affecting the grey 

and white matter. 75 % of its volume consists of blood. 

c) Internal intraparenchymal haemorrhage: a small spherical stroke in the inner part 

of the brain falling in the white matter with bleeding taking up three quarters of 

the volume.  

The stroke is modelled by altering the conductivity of the affected tissue (grey and/or 

white matter) to account for the conductivity of the invasive blood which is 1.097Sm
-1
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at frequency of 10 MHz.  

In order to test the performance of the custom electromagnetic solver the following 

simulations have been devised:  

a) The head model was exposed to a time varying sinusoidal magnetic field 

generated by driving a single coil of the MIT system depicted in Figure 3.16 (a) 

with a unit current. The induced eddy currents in a healthy head and a head with 

large stroke volumes were calculated and corresponding eddy current flow maps 

on coronal and sagittal planes of the head were produced. 

b) The sensitivity of a single MIT measurement channel to the cerebral stroke was 

examined.  In doing this, an internal small stroke (Figure 3.18 (c)) was moved 

horizontally parallel to the co-ordinate y axis towards the periphery in steps of 

3.5 mm. The induced voltage change (∆V) due to the head as function of the 

stroke position was examined.  

c) The gain in the computational power saving was tested for this forward problem 

solver. A test object consisting of a simplified head modelled as a multi-shell 

sphere with layered tissue conductivities was solved both with COMSOL and our 

custom forward solver. Using this latter, the head was meshed to a fine resolution 

of 2 mm
2
 as encountered in medical applications quantifying for 260k conductive 

tissue cells. This results in about 280k unknown voltage nodes or degrees of 

freedom (DoF’s) to be solved using direct inversion. In COMSOL, the AC/DC 

module was used which ignores the propagation effects, but still accounts for the 

skin effect, and hence requires a full meshing of the problem including the head, 

the MIT system, and the problem region. The entire problem was discretised into 

160k quadratic tetrahedra, which amount to 1013k DoFs, but for the sake of 

comparison, the head was allocated 46k elements yielding a comparable number 

of DoFs to the impedance method. Boundary conditions were set so as to 

magnetically isolate the problem region from external interferences. The problem 

was solved both directly and iteratively with a stopping tolerance of 10
-6

. 
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                               a)                                                                              b)    

      

c) 

Figure 3.18: Head model with coronal cutaway plane showing conductivity distribution for a) 

normal head b) head with external large intraparenchymal haemorrhage c) head with internal 

intraparenchymal haemorrhage 

 

3.7.2 Results and discussion  

The induced current density (J) was evaluated in normal and different state 

pathological cases of the human head with stroke using the custom electromagnetic 

field solver based on the weakly coupled field approximation. Figure 3.19 depicts the 

J distribution on coronal and sagittal cross sectional planes of the head. As expected, 

the current flow is highest in regions with relatively high conductivities notably in the 

CSF layer as well as near the excitation coil where the flux density is strong. The 

eddy currents also tend to circulate in loops parallel to the current flow in the 

excitation coil as shown in Figure 3.20. In order to visualize the effect of the induced 

current density for a head with a stroke Figure 3.21 shows the current density 

distribution in the presence of a large external intraparenchymal haemorrhage. The 
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result is described by a relative rise in the current flow due to blood ingress in the 

very low conductive grey and white matter.  

To investigate the MIT measurement channel sensitivity to the cerebral stroke, Figure 

3.22 shows the induced voltage change (∆V) in the opposite receiver coil as the 

external stroke is moved parallel to the coil axis. When qualitatively interpreted, the 

trend shows the measured signal due to the head decreases as the stroke is moved 

towards the centre. However, from a quantitative point of view, the relative signal 

change between the two extreme positions of the stroke is very small (≈ 0.3%) 

inferring the signal proportion due to the stroke contributes weakly to the total signal.   
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Figure 3.19: Plot of the current density on a) sagittal b) coronal sectional planes of the head 

Drive coil 
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Figure 3.20: The direction of the current density on a sagittal sectional view 
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                           a)                                                                      b) 

Figure 3.21: a) Conductivity distribution b) Current density mapping of head with large 

peripheral stroke on coronal sectional plane. 
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Figure 3.22: MIT channel sensitivity profile along the coil axis (y axis) 

In the last test where the computational demands of the custom forward solver are 

compared with COMSOL, the results showed the electromagnetic field problem for 

the spherical head model was solved using a direct inversion in MATLAB in 3 

minutes 30 seconds and the peak memory capacity needed was about 4 GB on a 

Quadro 2.5 GHz CPU, 32 GB RAM workstation. However, using the COMSOL 

direct solver, the problem went out of memory and a solution was not possible. In an 

attempt to obtain a solution, an iterative solver scheme was employed and the problem 

was solved in 26 minutes and required a comparable memory of 4 GB, but at the 

expense of a tolerance error. Clearly, the impedance method proved to be fast and 

memory efficient and this is mainly attributed to the implementation of the weakly 

coupled field approximation which requires only the target to be meshed as opposed 

to FE based COMSOL. Such approximation is proved to be very much implementable 

for medical applications. 

 

3.8 Feasibility of stroke detection using an analytical model 

The previous section demonstrated that the most difficult case to detect is when the 

stroke lies in the centre of the MIT scanning region where the signal sensitivity is 

minimum. So far, two methods of image reconstruction in MIT have been 
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investigated, difference imaging and absolute imaging. The latter method suffers low 

sensitivity to the biological perturbation and systematic noise problems. In this section 

the limits of absolute imaging in detecting a central cerebral stroke will be 

investigated. For this purpose, an MIT system with a single measurement channel is 

used and an analytical solution is derived for an axial symmetrical head model. The 

sensitivity of the MIT channel to various sizes of stroke is analysed for two cases: (a) 

the background signal is measured and (b) the background field is cancelled out.  For 

image reconstruction, a priori knowledge of the shape boundary of the head is useful 

and therefore the analysis extends to consider the sensitivity of the MIT channel to 

changes in the diameter of the head model as an indication of the dimensional 

accuracy required from the shape scanning system. 

 

3.8.1  Model and validation 

A multi-shell head model was used, which consisted of a sphere with an axial 

changing piecewise conductivity profile (radii ak; conductivity σk; 0≤k≤K+1) 

simulating tissue layers: scalp, skull, cerebral spinal fluid (CSF), grey matter, white 

matter, and inner sphere representing the stroke. The excitation and receiver coils 

were modelled as filamentary circular elements, (rad. 25 mm) and positioned 141.5 

mm and 131.5 mm respectively to the origin as shown in Figure 3.23. The excitation 

current was sinusoidal with 1 A amplitude at a frequency of 10 MHz. Note, the 

channel dimensions and excitation frequency correspond to the 16 channel MIT 

system prototype described in section (3.3). The electrical parameters and the radii of 

the tissue layers are extracted from [26] and displayed in the table below. The 

conductivity of the stroke was computed from the white matter and the blood 

conductivities assuming the leakage blood occupies 3/4 of the affected tissue. 

Permeabilities are assumed to be the same for all layers for the sake of simplicity. 

Electromagnetic field coupling due to tissue permittivities is minute at this operating 

frequency and hence was neglected.  
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Figure 3.23: MIT channel and Analytical head model 

 

Table 3-1: Electrical properties and dimensions of human head tissues 

Tissue k Conductivity 

(Sm
-1

) 

Radius 

(mm) 

Stroke 

White matter 

Grey matter 

CSF 

Skull 

Scalp 

Outside 

0 

1 

2 

3 

4 

K 

K+1 

0.8624 

0.1582 

0.2917 

2.002 

0.0828 

0.6168 

0 

<=40 

54 

66 

62 

74 

80 

>80 

 

The electromagnetic field problem is described by the basic Maxwell’s equations and 

the constitutive laws of electromagnetism which are combined into a Poisson’s 

equation written in spherical coordinates (r, θ, φ) as: 

 
( ) ( )2

2 2

sin1 1 1

sin

r
j

r r r

ϕ ϕ

ϕ

θ
ωµσ

θ θ θ

 ∂ ∂∂
 + =
 ∂ ∂ ∂
 

E E
E  

 

(3.47) 

 

Using the method of separation of variables, the general solution of (3.47) is given by: 

 

σk 

a0 

r1 
ak 

aK 

σK 

σK+1= 0 

Excitation coil 

θ0 

r0 

Receiver coil 

σ0 
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where Rn and Θn are written in terms of modified Bessel functions and associated 

Legendre polynomials 
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where ( )1 j / 2α ωµσ= + . The limit of equation (3.49) when σ = 0 is given by: 
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Solution (3.51) only satisfies homogeneous equation. In the presence of a source 

( ) ( )0 0 0
j I r rωµ δ δ θ θ− − − , the Green function associated with this source can be 

shown to be: 
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where 0 0 0j sinI rγ ωµ θ= , ( )0max ,r r r> =  and ( )0min ,r r r< = . Since ( )1/ 2n
I + ∞  and 

( )1/ 2 0
n

K +  diverge, component ( )Rn r  of solutions in each region is given by: 
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From (3.48), (3.52) and   (3.55) the field outside the conductor is given by: 
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(3.56)

To compute the voltage change, the scattered field due to the target is integrated, 

which is the first term on the right hand side of the above equation. The scattered field 

is given by: 
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where the coordinates (r1, θ1) denotes the location of the receiver coil. In order to 

validate the analytical solution, a finite element model of the MIT model was 

constructed using COMSOL. The problem was meshed with 168,000 FEs 

approximated with quadratic shape functions. The change in the induced voltage due 

to the head was calculated analytically and numerically. The resulted error was 

estimated as 7.5 %. This level of error could be due to numerical solution associated 

with meshing quality. 

 

3.8.2 Results and discussion  

For a first analysis, the aim is to analyse the sensitivity of the measurement channel to 

various sizes of the central stroke and compare the results with noise levels exhibited 

by the currently developed MIT instrumentation; thus, the smallest radius of the 

stroke that could be resolved in absolute imaging could be deduced. Two cases were 

analysed: 

a) when the background field is not cancelled and the induced voltage comprises 

V0+∆V. The sensitivity of the channel to the stroke with respect to the background 

signal is expressed as:  
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2 1

0

(Signal/Background Ratio) SBR
∆ − ∆

=
V V

V
 (3.59) 

where V0 is the induced voltage correlated to the primary field and ∆V2 /∆V1 denote 

the induced voltages due to the head with/without stroke respectively. As expected, 

Figure 3.24 shows the sensitivity increases with the radius of the stroke. This is 

explained by stronger induced eddy currents increasing the coupled perturbation field. 

b) when the primary field is assumed to be perfectly eliminated.  The signal to target 

ratio (STR) is evaluated with respect to the induced voltage due to the unhealthy head 

as: 

 
2 1

2

STR
∆ − ∆

=
∆

V V

V
 (3.60) 

The simulation results depicted in Figure 3.24 show the channel sensitivity to the 

stroke has considerably improved. Taking the Mark 1 as a reference MIT system with 

a reported signal to noise ratio (SNR = ∆V2/noise) of 40dB a stroke of 27 mm radius 

and 5.45 contrast to the background potentially could be resolved. From a clinical 

perspective a stroke with such volume is too large which infers that current MIT 

system specifications need to be improved in order to increase the possibility of 

detecting a stroke within practical limits.  However, it is expected that relatively 

smaller stroke could theoretically be detected with future MIT systems such as the 

new Mark 2 which is being developed in Glamorgan University as part of this 

LCOMIT programme. 

In a second analysis, the MIT sensitivity to noise caused by error in shape scanning of 

the head boundary is analysed. This analysis seeks to obtain a view of the impact of 

the shape scan noise on MIT measurements of the head and helps in defining the 

criteria for design requirements of the optical shape scanner. In this investigation we 

assumed the background can be eliminated and the SNR was simulated for different 

radii of the head. The results displayed by Figure 3.25 indicate a spatial deviation of 

1.2 mm is equivalent to the system noise exhibited by the Mark 1.  
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Figure 3.24: (1/SBR) and (1/STR) versus radius of the stroke  
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Figure 3.25: Simulated SNR from shape scanner versus radius of the head 

 

3.9  Feasibility of stroke detection using a numerical model 

In this section, the possibility of detecting a haemorrhage type stroke is investigated 

by examining the signal due to the stroke against that of systematic errors that can 

happen in a real MIT system. 
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3.9.1 Results and discussion  

Figure 3.26 (a) and (b) shows the simulation arrangement which includes a head 

model and an MIT system. This latter is a model of the Mark 1 system simulated in 

COMSOL. The excitation coil was driven with unit current and induced voltages were 

measured through the receiver coils. A realistic multilayer head model (Figure 3.26 

(a)) consisting 7 biological tissues (Scalp, Skull, CSF, grey matter, white matter, 

spinal/optic nerves, and Eye balls) was placed in the scanning region so as the stroke 

line up with the sensor plane. The electrical conductivities for the corresponding 

tissues were obtained from Table 1-1. The voltages induced on the receiver coils were 

computed using our custom eddy current software which employs a pre-computed 

primary field A0 by an FE package (e.g. COMSOL) and solves the MIT forward 

problem using the impedance method. 

 

   

a) b) 

Figure 3.26: MIT system with a) Simulated Target (Head and stroke), and b) MIT coil array 

In a first analysis, one transmitter was excited and the differences in the voltage 

induced because of the presence of the head between the transmitter being in the 

correct orientation (solution (1)) and the transmitter being rotated by one and two 

degrees (solution (2)) were calculated for every receiver channel (equation (3.61)). 

The values were normalized to the rms of the induced voltages produced by the noise 

free case and plotted against the channel number (Figure 3.27 (a)). Receiver coil 

numbers are in order; number R1 and R15 are adjacent to transmitter T0, and R8 is 

the opposite receiver.  

1 Projection plane 

 

Excite coils 

 
Receiver coils 

 

Stroke 

Head Screen 

 T0 

 

R1 

 

R8 

 

R15 

 



 111 

 
solution1 solution2

solution2rms( )
d

∆ − ∆
=

∆

V V
V

V
 (3.61) 

 

 

a) 

 

b) 
Figure 3.27: Relative voltage errors caused by the coil rotation/displacement 

From the graph (Figure 3.27 (a)), we can see that the worst effected coils are the coils 

near the transmitter where the opposite coil has nearly zero error. On the same graph, 

the voltages induced by the background magnetic field are also plotted. The relative 

changes in the background measurements are smaller than the error in the secondary 

induced voltages except for the adjacent coils. The lines do not follow the same trend; 

hence it is difficult to use the background to compensate for the error on the 

secondary field.  
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On the other hand, Figure 3.27 (b) presents the results of the simulations for 

displacing the transmitter coil by 1 and 2 mm along its axis towards the centre of the 

object space. As can be seen, similar observations made for the mis-ortientation of the 

coil earlier remain valid for when the transmitter coil is displaced.   In a second 

simulation, the effect of the displacement of the head to measurements differences is 

quantified. The head is moved by 2 mm and the relative voltage differences are 

plotted on the graph below (Figure 3.28). In this case, MIT appears to be not as 

sensitive to the movement of the head as to the movement of the coils. The changes of 

the signal caused by the 50 ml stroke (inclusion) are also mapped in the figure for 

comparison. The relative signal from the stroke is in the same order of magnitude 

compared to the relative voltage errors caused by the movements of the coil and the 

head. This means that for a system that is built with these tolerances it will be very 

difficult to reconstruct the stroke. 

 

Figure 3.28: Comparison of the errors with the signal from a 50 ml stroke 

Recently frequency difference imaging has been suggested as attractive for imaging 

the stroke since biological tissues exhibit conductivity changes with frequency. 

Workers in the field of MIT reported this procedure whereby dual frequency 

measurements are used can reduce systematic errors investigated above [99]. In order 

to test if frequency difference can reduce the error caused by coil positioning, the 

following computational experiment was conducted. The induced voltages due to the 

presence of the head were computed at frequencies of 1 and 10 MHz for the case 

when the transmitter was in the correct position (solution (1)) and  displaced (i.e. 

rotated/moved - solution (2)). The voltage differences were calculated in a similar 



 113 

fashion to the absolute case and have been normalized to the rms value of the 

frequency difference measurements for the correct position according to the equation 

given below:  

 
1 2 1 2

1 2

2 2

f 1 2 f solution1 f 1 2 f solution2

2

f 1 2 f solution1

(f f ) ) (f f ) )

rms( (f f ) ) )
d

(∆ − ∆ − (∆ − ∆
=

(∆ − ∆

V V V V
V

V V
 (3.62) 

In Figure 3.29 (a) the results show that there is no improvement on the relative error 

caused by the movement of the coil.  

 

a) 

 

b) 
Figure 3.29: Comparison of errors between absolute and frequency difference measurements 

The error cancelation when frequency difference measurements are used is also tested 

for head displacement (Figure 3.29 (b)). Interestingly, the absolute and frequency 
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difference relative error show similar pattern, which infers that there is no advantage 

of using frequency difference for head displacement error cancelation. 
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4 Inverse problem in Magnetic Induction 

Tomography 

 

4.1 Introduction 

Image reconstruction in MIT aims to estimate the conductivity distribution within an 

object given a measurement set of induced voltages or mutual-impedances taken 

around the periphery of the object.  Image reconstruction is performed via the solution 

of an inverse problem that is ill-posed and nonlinear with respect to conductivity 

distribution. The nonlinearity stems from the fact that a local change in conductivity 

affects all measurement channels and the measurement sensitivity of a single channel 

to a local conductivity perturbation depends also on the conductivity variation in the 

background. For a given MIT mapping, with Jacobian : J σ D→ , the MIT system 

Jσ D= is regarded ill-posed if one of the Hadamard conditions are not met namely: a) 

Existence: a solution σ exists; b) Uniqueness: the solution is unique; and c) Stability: 

the solution is continuously dependent on the observed data. In MIT, the first two 

criteria could be fulfilled by imposing some constraints on the solution. The third 

condition is, however, the most problematic, whereby small changes in measurement 

data could often result in large reconstructed conductivity changes. One method to 

quantify the severity of the instability of the MIT inverse problem is by the condition 

number of the Jacobian matrix J, which represents the ratio of the largest singular 

value to the smallest singular value. For the MIT inverse problem which is unstable 

and hence ill-posed, the singular values of the Jacobian J tend to decay quickly 

towards zero giving large condition number. Furthermore, the MIT inverse problem is 

underdetermined which implies that a limited number of measurements, m, are 

usually used to reconstruct a large number of unknown conductivity elements, n, 

(m<<n). 

Numerical analysis often suggests solving the MIT inverse problem through 

minimization of a least squares functional given by the system of equations:  
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i.e. the task is to find the argument conductivity vector *
σ

n∈�  that minimises the 

objective function n: F →� � , i = 1, … ,m and m < n. Here the vector function 

→� �n mr :  is called the residual. F →� �n m :  denotes the forward operator and 

D m∈� is the measurement data. In nonlinear optimisation, the MIT inverse problem 

is usually solved in an iterative scheme by solving a series of linearised inverse 

solutions (
1 2 3

*
σ ,σ ,σ , . ..,σ ). For every conductivity update, one needs to re-compute 

the forward problem and recalculate the Sensitivity (the Jacobian). Because of the 

computation demands associated with a nonlinear treatment of the problem, many 

workers in the field of MIT solve the problem (4.1) by considering a linear 

approximation of the residual given by:  

 σ Jσ D−r( ) =  (4.4) 

where the Jacobian, J, is usually computed in empty space or a homogenous 

conductivity distribution. Theoretically this linear approximation should work fairly 

well for objects with very simple internal structures and small conductivity variations, 

i.e. for less nonlinear problems.  For instance, in medical imaging authors [11, 75, 

100, 101] reported differential single step reconstructions of a perturbation placed 

inside conductive background crudely approximating the shape and the structure of 

the head including a stroke. Results showed the perturbation can be reconstructed, but 

the images were over blurred and quantitatively unrepresentative of actual values of 

the tissues, which could possibly be improved via nonlinear reconstruction schemes. 

In some NDT applications [102, 103], where fast data acquisition and image 

reconstruction is essential, linear iterative reconstruction methods produced more or 

less satisfactory results since the tested objects involved conductivity distributions 

that are relatively simple. However, in [57] where similar methods were used to 

reconstruct experimental and simulated phantoms representative of multiphase flow 

patterns in the oil industry, linear algorithms failed to recover the internal 
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conductivity distribution especially for annular and bubble flow where the 

nonlinearity of the problem is obvious.  Therefore, in order to improve image 

reconstruction in these applications, the associated inverse problem should preferably 

be approached in a nonlinear framework. 

Starting with an initial guess 
0
σ , the nonlinear method produces a series of 

conductivity updates { }1 2 3
k

k =| , , , ...σ  which desirably should converge toward the 

minimiser *σ (also termed a “local minimiser”) of the given objective function F. 

These conductivity updates are obtained using the recurrence relation:  

 σ σ dα= +  (4.5) 

where the vector d , which is termed the “search direction”, is computed with the 

constrain to produce the descending condition for the objective function given by:  

 ( ) < ( )σ d σF Fα+  (4.6) 

An optimisation method which enforces this condition in its iterative procedure is 

called a “descent method”. Given the half line starting from σ  in the direction of d , 

the scalar 0α >  determines how much we need to move along the direction d  to 

achieve an optimum decrease in the objective function as: 

 { }
0

( + )*
σ dF

α

α α
>

=argmin  (4.7) 

This process of evaluating the step factor α ∗  is performed using a line search 

algorithm. In practice, the line search sub-problem (4.7) need not to be solved to a 

high degree of accuracy, which is important from the standpoint of computational 

cost. What is usually required is a sufficient decrease in the objective function F . For 

references on available strategies of line search, the reader could refer to [104, 105]. 

The optimisation methods presented in this chapter employ special techniques to 

simultaneously determine the search direction d  and the step factorα . Hence, the 

conductivity vector is updated by the search direction without the need for explicitly 

evaluating the step factorα .  

In order to calculate the search direction two widely known methods are usually used: 

the steepest descent direction and Newton’s method. These methods form the 

foundations for the derivation of the special optimisation methods which will be 
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investigated later in this chapter. A brief insight into the derivation of these 

fundamental methods is presented below. 

 

4.1.1 Steepest descent method 

The steepest descent method, also known as the gradient method is the simplest 

method in optimisation. Given the objective function F, the first order Tailor series 

expansion of F around the solution σ  yields: 

 T 2

T

( + ) = ( ) + ( ) + ( )

                  ( ) + ( )   for for sufficietly small. 

F F F O

F F

α α α

α α

∇

≈ ∇

σ d σ d σ

σ d σ
 (4.8) 

where [ ]( ) = ( )σ σ
i

F F σ∇ ∂ ∂  is the gradient (g). From (4.8) another special property 

of descent methods can be derived if d is a decent direction or equivalently condition 

(4.6) is satisfied:  

 T( + ) < ( )  ( ) < 0σ d σ d σF F Fα ⇔ ∇  (4.9) 

Using equation (4.8), when the conductivity vector is updated with a step dα , the 

relative gain in the reduction of the objective function is given by:  

 T

0

( )  ( ) 1
( )= ( ) cos

σ σ d
lim d σ σ

d d

F F
F F

α

α
θ

α→

− +
= − ∇ − ∇  (4.10) 

where θ  is the angle between the vectors d and ( )σF∇ . It is clear that the largest 

gain (reduction in F) is achieved when θ  is equal to π. Hence, the steepest direction 

d
sd

 is obtained by choosing ( )d σ
sd

F= −∇ . Using this method, the conductivity 

update can be written in the form:  

 

( )

σ σ d

σ σ

sd

F

α

α

= +

= − ∇
 (4.11) 

This method requires only the calculation of the gradient to determine the descending 

direction in each iterate of the optimisation. Since only first order derivative 

information of the objective function is used the convergence of this method is very 

slow. Nevertheless, for many inverse problems the method exhibit quite good 

convergence in the initial stage of the iterative process [106].  
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4.1.2 Newton’s method 

Another fundamental approach in optimisation techniques is Newton’s Method. This 

method can be derived by first approximating the objective function F with its second 

order Tailor series around the iterate σ as:  

 3T T 2

3T T 2

1
( + ) = ( ) + ( ) + ( ) + ( )

2

1
             = ( ) + ( ) + ( ) for small  

2

σ d σ d σ d σ d d

σ d σ d σ d , d

F F F F O

F F F

∇ ∇

∇ ∇

 (4.12) 

where 2 2( ) = ( )σ σ
i j

F F σ σ ∇ ∂ ∂ ∂  is the Hessian (H). As can be seen, for small step 

lengths d  higher order terms become insignificant in the series and approximating 

the objective function with a quadratic form is adequate.  Then, the task is to find the 

local minimiser (σ∗ ) of the approximate objective function F in the small 

neighbourhood of σ . The minimiser σ∗  must satisfy ( ) = 0σF
∗∇ . Using equation 

(4.12) we have:  

 2( + ) = ( ) + ( ) 0σ d σ σ dF F F∇ ∇ ∇ =  (4.13) 

Assuming that the Hessian (H) is invertible, the Newton’s search direction d
N

can be 

obtained by rearranging equation (4.13) as follows:  

 1 ( ) ( )H d σ d H σ
N N

F F
−= −∇ ⇔ = − ∇  (4.14) 

where 2 ( )H σF= ∇ . Using this approach the conductivity update is formulated as:  

 

1 ( )

σ σ d

σ H σ

N

F−

= +

= − ∇
 (4.15) 

where it can be seen that a full step is taken by considering 1α = when using this 

method.  

If the Hessian H is positive definite, which means that H is non-singular and for any 

nonzero vector v : T 0v H v > , then by multiplying both sides of equation (4.14) by 

Td
N

, one obtains:  
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 T T ( ) > 0d H d d σ
N N N

F= − ∇  (4.16) 

This shows that whenever the Hessian is positive definite, the Newton’s direction 

vector d
N

 is a descent direction as illustrated by equation (4.9).  

Newton’s method employs second order derivative information in evaluating the 

direction step by which the conductivity is updated. Whilst the steepest descent 

method is robust in the initial stage of the iterative image reconstruction protocol, 

Newton’s method is fast convergent in the final stage of the iterative procedure when 

σ  approaches the local minimiser σ∗ . During the iteration if σ  is in the close vicinity 

of σ∗  and the Hessian H is positive definite, then a quadratic convergence toward σ∗  

can be achieved, Otherwise, if H is close to be singular then the method diverges 

away from σ∗  [107].  

In the following section, two special optimisation methods, which provide a 

mechanism to combine the steepest descent method and Newton’s method in a single 

iterative optimisation process, will be presented. These hybrid methods are the 

Levenberg-Marquardt and the Trust Region. During optimisation, they switch to 

Newton’s method whenever the system is stable and σ  is close to the local minimiser 

σ
∗ , and employ the steepest descent direction whenever the system becomes unstable 

or the current iterate σ  is far from the solution σ∗ . When operating in Newton’s 

mode, it will be shown that these methods tend to take longer steps making the 

process fast converging, whereas in the steepest descent method they reduce the step 

size.  These hybrid methods employ so called damping and trust region techniques to 

control which of the aforementioned parent methods i.e. the steepest descent method 

and Newton’s method should be used, and hence manipulate the size and the direction 

of the step to achieve good stability and convergence of the algorithm in every iterate.  

Another special method based on Newton’s optimisation, which has been termed the 

Damped Gauss Newton method, is also investigated and proposed for the first time in 

the framework of MIT. The method employs similar damping process as for the 

Levenberg Method but uses it in the framework of controlling the amount of 

regularisation. The performance of the proposed methods is compared against that of 

standard Gauss Newton method. In this comparison, they will be judged upon 
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different issues which are critical for image reconstruction. Stability of the 

optimisation process, type of regularisation or equivalently the conformity of the a-

priori information with the problem, the choice of the regularisation parameter and the 

reliability of the stopping criteria are among these issues which form the basis to 

analyse these methods.  

Moreover, for large scale problems as in the medical application approached in this 

thesis, where enormous number of degrees of freedom can be encountered, the 

corresponding Hessian can be large. Therefore, a direct inverse of the Hessian 

becomes impractical due to the computational and memory costs. In this situation, 

Krylov sub-space methods can be regarded computationally cost effective to generate 

an implicit inverse of the Hessian. Therefore, one of the proposed optimisation 

algorithms is modified to incorporate the Krylov sub-space efficiency in producing an 

approximate for the inverse of the Hessian and is tested on MIT for head imaging.  

 

4.2 Nonlinear optimisation methods  

Non linear treatment of the inverse problem in MIT has already been presented using 

regularised Gauss Newton method. Examples of conductivity imaging using this 

approach in medical applications include [108] and in industrial process applications 

involve [36]. In this section, special methods that are more efficient will be 

approached. Some of these methods have already been applied in EIT, but to the 

author’s knowledge, this is the first time they have been implemented in the field of 

MIT. In the following subsection, the techniques employed by these methods in 

determining the search direction and the step length simultaneously will be described. 

  

4.2.1 Damping and trust region techniques 

Assume that the objective function F can be represented with a quadratic model M 

which approximates its behaviour in the neighbourhood of the current iterate (σ) as 

follows:  

 T T1
( ) = ( ) + ( ) +

2
d σ d σ d H dM F F∇  (4.17) 
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where H n n×∈�  is a symmetric matrix which can be the Hessian 2
( )σF∇  or an 

approximation to it. Note that when 2
( )H σF= ∇ , the model M is identical to the first 

three terms of the Tailor series expansion of F as illustrated on the right hand side of 

equation (4.12). In this case, the error difference between dM( )  and ( + )σ dF  is 

3
( )dO , so the approximation error is small when 

3
d is small. Hence, the model M 

is a good approximation to ( + )σ dF  only when the step d  is small. Based on this 

model two techniques can be introduced which compute the step d that minimises M 

but also adhere to additional constrains.  

Using the damping technique the step is determined as:  

 
T1

( )+
2

d
d d d d d

d
M γ
 

= =  
 

argmin  (4.18) 

where the scalar 0γ >  is a damping parameter. As can be seen, the term 

2T1 1

2 2
d d dγ γ= imposes a constraint, and in this form is seen to penalise large 

magnitudes of the step d.  

In the trust region technique, a positive number ∆ > 0  is defined, which represents the 

radius of a sphere (i.e. a trust region) inside which the model is considered accurate 

(or equivalently trusted), and the step size d is computed as:  

 { }( ) , s. t. ∆dd d d dtr M= = ≤argmin  (4.19) 

The central part in the algorithms of the hybrid optimisation methods described later 

satisfies the following form:  

Calculate d by (4.18), or (4.19) 

if  ( ) < ( )σ d σF F+  

     σ σ d= + ; 

Update γ  or ∆  

(4.20) 

If the step d  is a descent direction, the conductivity σ  is updated with a full step, i.e. 

by taking the step factor α = 1; Otherwise, if a descending condition is not satisfied, d 

is rejected (α = 0) and we do not move from the iterate σ . This does not mean an end 

to the iterative optimisation process since the problem can be treated by modifying the 
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damping parameter γ  or the trust region radius ∆  and recalculating the step with the 

hope that a descent direction will be achieved in the next iterate.  

The process of updating γ  or ∆  is controlled by the gain ratio ( ρ ) which features the 

quality of the model function M or equivalently determines how much the model M 

agrees with the objective function F. After calculating the step d, the gain ρ  can be 

evaluated using the following formula:  

 ( ) ( + )

(0) ( )

σ σ d

d

F F

M M
ρ

−
=

−
 (4.21) 

where the denominator defines the predicted reduction in the objective function 

whereas the numerator evaluates the actual reduction in the function value.  

By construction the denominator is positive.  Hence, based on the value of the gain 

ratio three cases can be identified:  

a) If ρ  is negative, it means the numerator is negative, which infers that the step d 

 was not descent and must be rejected. Hence, it is necessary to constrain the step 

 to be smaller and repeat the iteration.  

b) If ρ  is positive and smaller than 1, the penalty should be increased on the 

 magnitude of the step in the next iteration.  

c) If ρ  is close to 1, the model function is a good approximation of the objective 

 function, and taking a larger step in the next iteration would be recommended.  

Both damped and trust region methods provide means to implement these conditions. 

In a damped method, a small value of the gain ρ  indicates that the parameter γ should 

be increased in the next iteration, which effectively reduce the step size; whereas a 

large value of ρ  shows that the model M matches very well the behaviour of the 

objective function F, which suggests to decrease γ in the next iteration. Marquardt 

[109] proposed a strategy to monitor the value of γ , which has the form:  

if  < 0 25.ρ  

     2*γ γ= ; 

else if > 0 75.ρ  

      3/γ γ= ; 

(4.22) 

Experience shows that the choice of thresholds 0.25 and 0.75 works fine for many 

problems but minor changes to these values will not affect the method. However, the 
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method is quite sensitive to the numbers 
1

2m = , and 
2

3m =  since computational 

experiments show that considerably unstable inverse problems would require 

modification to these values. In this thesis, the following values have been selected, 

1 2
2m m= = . Nielsen [110] mentioned  that the discontinuity of the values of γ  across 

0.25 and 0.75 produces a flutter as demonstrated in Figure 4.1 and recommended the 

following strategy which we adopted throughout the thesis:  

if 0ρ >  

   

3
max(0.5 1 (2 -1) );

=2;

* ,γ γ ρ

η

= −
   

else  

      ;   = 2;γ γ η η η= * *  

      if η > 32  exit 

 

(4.23) 

Note that a stopping condition has been added to Nielsen’s method if the method fails 

to produce a descending condition after five consecutive trials. 

 

Figure 4.1:  Updating of the damping parameter ( γ ) by (4.23) (blue line) and by Marquardt 

method (4.22) (red line) 

With regard to the trust region based method, the step length d is controlled by the 

size of the radius ∆ .  The following strategy is adopted in this thesis:  

if  < 0 25.ρ  

     ∆ 2= d / ; 

else 

       if  0 75ρ > .      

            ∆ max(∆, 2* )= d ; 

         else 

               ∆=∆ ; 

(4.24) 
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4.2.2 Regularised Gauss Newton method 

The Gauss Newton method is the basis of Newton type methods used for solving non-

linear least squares problems.  In order to derive the equations for this method, one 

first needs formulas for the gradient F∇ and the Hessian 2
F∇ of the objective 

function F. Using the integral expression of the objective function in equation (4.2), 

the derivatives of F can be derived and expressed in terms of the Jacobian J (an 

m n× matrix representing the first order partial derivative of the residual function r 

with respect to conductivity variables (equation (4.3))) defined by:  

 

1
1

, ...,
, ...,

J i

i mj
j n

r

σ =
=

 ∂
=  

∂  
 (4.25) 

Hence: 

 

1

r rσ σ σ J σ σ
m

i i

i

F
=

∇ = ∇∑ Tr( ) ( ) ( )= ( ) ( )  (4.26) 

 
2 2

1 1

2

1

r r r r

r r

σ H σ σ σ σ

J σ J σ σ σ

J σ J σ Q σ

m m

i i i i

i i

m

i i

i

F
= =

=

∇ = = ∇ ∇ + ∇

+ ∇

+

∑ ∑

∑

T

T

T

( ) ( ) ( ) ( ) ( )

= ( ) ( ) ( ) ( )

= ( ) ( ) ( )

 
(4.27) 

By substituting (4.26), (4.27) into (4.14) and using (4.3), the equations for the 

standard Newton’s method described in section (4.1.2) can be written as:  

 H d σ J J Q d J F σ D
N N

F= −∇ ⇔ + = −T T ( ) ( ) ( ( )- )  (4.28) 

 σ σ d
N

= +  (4.29) 

where D m∈� is the measurement data set. If we exclude the second order term, Q , 

from the Hessian 2 σF∇ ( ) , Newton’s method simplifies to the Gauss Newton method 

with the following equations:  

 J J d J F σ D
GN

= −T T( ) ( ( )- )  (4.30) 

 σ σ d
GN

= +  (4.31) 
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The motivation for deriving the Gauss Newton method is that considerable 

computational saving can be achieved by ignoring the Q  term, as this computation 

requires the specification and calculation of 1 2( )mn n +  second order derivative 

terms 2

i
r∇ . In MIT, as for other electrical tomography modalities, it is often 

straightforward to form the Jacobian J from calculations of first order partial 

derivatives, which is used to compute the gradient F∇ . Hence, by knowing the 

Jacobian the approximate Hessian as adopted in the Gauss Newton method can be 

obtained directly with a simple matrix multiplication. When using this approximation, 

however, it can be seen that the Hessian is expressed only in terms of first order 

derivatives. The question is then, under which conditions can this approximation be 

considered valid. It is clear from the structure of Q  in formula (4.27) that this 

simplification can be performed only when 
i

r  is small (i.e. for problems with small 

residuals) or when 
i

r  is nearly a linear function (i.e. 2 σ
i

r∇ ( )  is small). In practice, 

many least squares problems have small residuals at the solution, and in such cases 

Gauss Newton method can give performance similar to Newton’s method. However, 

for large residual problems where the considered assumption cannot be justified and if 

the second order term Q  cannot be exactly determined, Quasi-Newton methods also 

termed “variable metric” methods can be a possible solution. Using these methods, 

the term Q  can be replaced with a Quasi-Newton approximation matrix G  and the 

search direction is calculated as follows:  

 J J G d J F σ D
qN

+ = −T T( ) ( ( )- )  (4.32) 

Two popular methods for constructing the matrix G are the Davidon-Fletcher-Powel 

DFP procedure [111], and the Broyden-Fletcher-Goldfarb-Shanno BFGS method 

[112-115].  

Since the MIT inverse problem is ill-posed and underdetermined, the Jacobian J is ill-

conditioned as described in section (3.1). There are number of factors contributing to 

the ill-conditioning of the Jacobian. First, the measurement sensitivity near the 

periphery of a test object with a homogenous conductivity is much larger compared to 

the central region [36], hence the secondary inductive signal coupled to the coils is 

mainly dominated by the contribution from the conductive elements near the 

periphery of the object space. Second, the measured data is contaminated with 
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hardware and arithmetic noise which is transferred to the Jacobian. In this case, the 

minimization problem would attempt to recover the conductivity that fits the noise as 

well. Another problem is that J is a rectangular ( m n× ) matrix where the collected 

number of measurements m is usually less than the number of unknown conductivity 

elements n. While the Jacobian is ill-conditioned (i.e. J has a large condition number) 

the system J JT  used in (4.30) to approximate the Hessian in the Gauss Newton 

method will be even more ill-conditioned because it will have twice the condition 

number of J. A direct consequence of this condition is the conductivity solution will 

be very prone to noise and will not be unique.  

A common way to stabilize the solution and allow for uniqueness is to use 

regularisation. This topic will be investigated and discussed in depth in the next 

chapter.  For now, the topic of interest is the nonlinear optimization method, and 

hence a simple common and popular regularisation method will be employed namely 

Tikhonov smoothing regularisation. Using this regularisation method, instead of 

minimizing the original objective function F, an approximate objective function �F  

will be adopted, as defined by:  

 � 2 21 1

2 2
σ σ

σ σ Lσ

F P

F λ= +
����	 ����	

( ) ( )

( ) r( )  
(4.33) 

where ( )σP  is a 2-norm penalty functional imposing a smoothing constraint on the 

conductivity distribution by means of a regularisation operator L and a regularisation 

parameter also termed a “hyper-parameter”. The task is therefore to seek the argument 

σ  that minimizes the original objective function F, and at the same time, reduces the 

magnitude of the penalty P. The hyper parameter λ  is chosen to control the weighting 

of the regularisation imposed on the solution. By following the same procedure in 

deriving expressions for the gradient �F∇ and the Hessian �2
F∇ , a regularised version 

of the Gauss Newton method can be constructed, which has the equations:  

 J J L L d J F σ D L Lσ
k k rGN k k k

λ λ+ = − −T T T T( ) ( ( )- )  (4.34) 

 
1

σ σ d
k k rGN+ = +  (4.35) 

In (4.34) and (4.35), the subscript k has been added to show the terms that are updated 

for every iteration of the optimisation procedure. Using the regularised Gauss Newton 
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method, the regularisation parameter λ  is kept constant throughout and can be 

selected using an empirical method or an appropriate parameter selection algorithm. 

Some workers in the field of MIT have used this standard Gauss Newton method as a 

nonlinear optimisation strategy for solving the conductivity inverse problem. 

Soleimani [36] combined this method with a line search strategy to further optimise 

reduction in the objective function especially when the starting guess is far from the 

solution. Using this approach an appropriate step length α should be computed and the 

conductivity is updated with d
rGN

α  instead of full step d
rGN

. In this thesis however, 

the method is used in its standard form described by (4.34)-(4.35) as a comparison 

tool for evaluating the performance of the special methods based on the damping and 

trust region techniques. Figure 4.3 shows the image reconstruction algorithm for this 

method.  

As illustrated in Figure 4.3, the initial guess σ0 is computed via a direct reconstruction 

method such as linear regularised Tikhonov method with a smoothing operator 

( TR L L= ) and a regularisation parameter 0λ . This latter was chosen based on the 

order of magnitude of the elements in 
0 0

J JT    as in [107], where 0J is the Jacobian 

computed by assuming a homogenous conductivity distribution (e.g, σ = 1 Sm
-1

 ) in 

the object under investigation. Hence, this gives:  

 ( )0 1 1,..., 0 0
( , )

*max J JT

i n
i i

λ ε =
 =    (4.36) 

where 1ε  is chosen by the user. In this thesis, for conductivity problems with noise 

free measurement data, less regularisation is required so a small value of 0λ  is 

preferred by setting 
1 1ε = , whereas for noise contaminated data, a larger value of 

0λ  

is a safe choice (for example: 2

1 10ε = or even 3

1 10ε = ). By knowing 0λ , the 

regularisation parameter λ  used in the iterative cycles is selected as follows:  

 
2 0*λ ε λ=  (4.37) 

where 2ε  is a user specified factor (eg. 3

2
10 ,1ε − ∈   ). Additional constraints are 

applied on elements with negative values and on elements with conductivities larger 

than the assumed maximum conductivity in the target in order to stabilize the 

solution.  
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The stopping criterion for this method is chosen so as to terminate the iteration when 

the following descending condition for the objective function �F is not met:  

 � �
1

( ) < ( )σ σ
k k

F F+  (4.38) 

As an example of the performance of this nonlinear optimization method, consider the 

simulated simple phantom (P1) approximating a head with a stroke region shown in 

Figure 4.2. The phantom consists of a background cylinder (diameter: 20 cm; height: 

16 cm) centred at the origin, and a cylindrical perturbation (diameter: 4 cm; height: 8 

cm) centred at (0, 0, 5) cm in the (x, y, z) co-ordinate space. The phantom has been 

discretised into 5056 cubic voxels of 10x10x10 mm
3
 resolution, of which 96 elements 

were allocated to the perturbation.  Notice the blocky form of the edges of the 

background and the perturbation, which do not conform to the smooth cylindrical 

boundaries of the real objects. This is a problem from which this type of regular cubic 

discretisation suffers, especially at low resolutions. However, in this study the interest 

lies in the performance of several optimization methods using a phantom of a given 

structure, and the treatment of the edges is not the immediate topic of investigation 

here. The background and the perturbation were assigned conductivities of 0.16 Sm
-1

 

and , 1.1 Sm
-1

 respectively corresponding to reported values for biological tissues of 

white matter and blood [26]. The MIT system used in this computational experiment 

is depicted in Figure 4.2 and is the same model presented in (section 3.3), which 

consists of 16 pairs of exciter and receiver coils arranged in two circles of radii 141.5 

mm and 131.5 mm respectively. The excitation coils are sequentially driven with a 

time varying sinusoidal unit current for simplicity. The system has been modelled in a 

commercial FE software (COMSOL by Multiphysiscs), and a simulation with empty 

space (i.e. no target) is performed to compute the primary magnetic vector potential 

A0 in the space designated for the phantom.  The forward problem is solved using the 

custom eddy current solver based on the impedance method presented in Chapter 3.  

The excitation frequency is set to 10 MHz.  In order to increase the number of 

measurements, 9 planes of projections were taken by displacing the coil array along 

the z direction in steps of 20 mm over the interval [ ]80 80,z ∈ −  mm.  The multiple 

measurement planes also provide more eddy current information to be obtained from 

the volume of the phantom. In total, 2304 independent simulated measurement data 

were collected and no noise has been added to the data. The same mesh for solving 
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the forward problem was employed for the inverse problem. The regularised Gauss 

Newton method is used to find the conductivity map that minimizes the difference 

between the simulated measured voltages and the calculated data using the forward 

model. Figure 4.4 shows the reduction of the objective function �F  during the iterative 

process. The image reconstruction results are shown in Figure 4.6 with vertical and 

different horizontal conductivity maps along the z axis. The results can be compared 

against the true conductivity maps shown in Figure 4.5.  

Figure 4.2:  Phantom (P1) and the MIT system model 

  

                              a)                                 b) 
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Problem: �{ } � 2 21 1
argmin ( ) ; ( ) = ( )

2 2σ

σ σ F σ D Lσ
nR

F F λ
∈

− +  

Algorithm: 

Select the regularisation parameter 

( )0 1 1,..., 0 0
( , )

*max J JT

i n
i i

λ ε =
 =   ; where 0J : Jacobian calculated for homogenous σ  

Find σ0 using single step reconstruction: 

1

0 0 0 0 0
σ J J L L J Dλ −= − +T T T( ) ; 

Evaluate the objective function: 

� 2 2

0 0 0 0

1 1
( ) = ( )

2 2
σ F σ D LσF λ− + ; 

Compute the gradient: T T

0 0 0 0
( ) ( ( ) ) +g J σ F σ - D L Lσλ= ; 

Calculate: T

0 0
( ) ( )A J σ J σ= ; 

Set 
2 0*λ ε λ= ; k = 0; set kmax; exit = false;  

while  k < kmax and exit ≠ true 

Compute the Hessian: TH A L L
rGN

λ= + ; 

Calculate the step: 1d H g
rGN rGN

−= − ; 

Update the conductivity map: σ =σ + d
New k rGN

; 

Constrain the conductivity map: 
max max

 = 1: ( ( ) 0) 0

 = 1: ( ( ) )

| σ

| σ σ σ

New

New

i n i

i n i

τ< =


> =

�
 

            Evaluate the objective function: �
2 21 1

( )= ( )
2 2

σ F σ D Lσ
New New New

F λ− + ; 

             if � �( )< ( )σ σ
New k

F F  

                 
1

σ σ
k New+ = ; 

                 T T

1 1 1
( ) ( ( ) ) +g J σ F σ - D L Lσ

k k k
λ+ + += ; 

                 T

1 1
( ) ( )A J σ J σ

k k+ += ; 

            else 

                    exit = true ; 

             end 

k = k+1; 

end  

Figure 4.3:  Regularised Gauss Newton Algorithm 
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Figure 4.4:  Convergence plot illustrating the minimisation of the objective function using the 

regularised Gauss Newton method.  
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Figure 4.5:  True conductivity maps for a) vertical slice (x=0) mm, b) horizontal slices in different 

z levels (z=-40; z=0; z=40) mm 
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Figure 4.6:  Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, b) 

horizontal slices in different z levels (z=-40; z=0; z=40) mm with No noise added to the data.  

 

4.2.3 Regularised Levenberg Marquardt method 

Levenberg [116] and Marquardt [109] suggested a modification to the Gauss Newton 

method by implementing the damping technique described in (section 4.2.1) to 

calculate the step vector d
LM

. The basic iteration using this method can be given by 

the equations:  

 J J I d J F σ D
LM

γ+ = −T T( ) ( ( )- )  (4.39) 

 σ σ d
LM

= +  (4.40) 

Notice that the difference between the Gauss Newton and the Levenberg Marquardt 

(LM) methods is the new term Iγ  which introduces the following effects:  
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a) For γ  sufficiently positive, the term Iγ can act as a regularisation operator, and 

hence can make the coefficient matrix ( TJ J Iγ+ ) positive definite. This ensures that 

d
LM

 is a descent direction.  

b) For very large values of γ , the effect of the term Iγ dominates that of TJ J in 

determining the step d
LM

, so that:  

1 1 1
d J F σ D g d

LM sd
γ γ γ

≈ − − = −T ( ( )- )=  (4.41) 

which represents a step 1α γ= of the steepest descent method (see section 4.1.1).  

c) When γ  is too small compared to the elements in the coefficient matrix ( TJ J ), 

d
LM

 is effectively close to the Gauss Newton step.  

In the iterative optimization process of the LM method, the damping parameterγ  can 

be decreased or increased depending on the value of the gain ratio ρ  which reflects 

how good the reduction in the objective function F compares with that of the 

quadratic model M (see section 4.2.1). Usually one starts with a large value of γ , 

which can make the steepest descent method more influential than the Gauss Newton 

method in determining the step d
LM

. This is a sensible approach especially if the first 

guess is far from the solution σ∗ . Through the iterations, γ  is reduced whenever the 

objective function records a descending direction compatible with that of the model 

M. This is intended to push the algorithm towards the Gauss Newton method as we 

approach the final stage of the interation. When the iterate solution attains the local 

minimiser σ∗ , the LM method switches to the steepest descent method whereby γ  is 

increased to penalise large magnitudes of the step d
LM

. This is meant to prevent the 

algorithm from a possible unwanted divergence away from the minimiser σ∗ . Thus, it 

is clear that the LM method can be considered as a hybrid method switching between 

a dominant steepest descent method and a dominant Gauss Newton method. This can 

be considered a good optimization strategy since the steepest descent method can 

offer efficient stability and the Gauss Newton method can provide fast convergence 

properties, which can be combined and employed in a sophisticated manner inside a 

single optimisation scheme.  
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An alternative version of the LM method has been suggested for the EIT ill-posed 

problem by attempting to apply the damping procedure to the regularised Gauss 

Newton method described by equations (4.34) and (4.35) [117, 118]. Hence the LM 

iteration is adapted as follows:  

 T T T T( ) ( ( )- ) J J I L L d J F σ D L Lσ
k k k rLM k k k

γ λ λ+ + = − −  (4.42) 

 
1

σ σ d
k k rLM+ = +  (4.43) 

The rational behind this modification is to be able to supply prior information about 

the solution through the regularisation operator L  and the hyper-parameter λ  in 

addition to the regularisation properties provided by the identity matrix I  within the 

damping term.  

The LM method described by equations (4.42) and (4.43) has been implemented in 

this thesis. While the regularisation parameter λ  is kept fixed, the damping 

parameterγ  is updated as illustrated in section 4.2.1. The updating is monitored via 

the gain ratio ρ  given by:  

 � �( ) ( )

(0) ( )

σ σ σ

σ

k k k

k

F F

M M

δ
ρ

δ

− +
=

−
 (4.44) 

where �F is the approximate Tikhonov objective function described by equation (4.33). 

Note that the step σ
k

δ  is used instead of d
rLM

 in the above formula. The reason is that 

after updating the current iterate σ
k
 with the step d

rLM
 as in (4.43), additional 

regularisation in the form of non-negativity constraining is applied and the 

conductivity vector 
1

σ
k +  can further be updated if it contains negative conductivities. 

Hence, the non-negativity constrained 
1

σ
k +  is validated as the updated conductivity 

vector, and the actual step used to produce this vector can be computed by:   

 
1

σ σ σ
k k k

δ += −  (4.45) 

The denominator in (4.44) is the reduction in the quadratic model (4.17) where: 

 � T T( ) = = ( ( )- ) +σ g J F σ D L Lσ
k k k k k

F λ∇  (4.46) 

and  
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 T TH J J L L
k k k

λ= +  (4.47) 

Therefore: 

 T T1
(0) - ( ) =

2
σ σ g σ H σ

k k k k k k
M M δ δ δ δ− −  (4.48) 

A large value of ρ  indicates that ( )σ
k

M δ  is a good approximation to �( )σ σ
k k

F δ+ , 

and hence we can reduce γ  so that the next LM step is closer to the Gauss Newton 

step. If ρ  is small, then ( )σ
k

M δ  is a poor approximation, so we should increaseγ  

with the aim to approach the steepest descent direction and penalize (i.e. reduce) the 

step length σ
k

δ . The strategy used in this chapter for updating the value of γ  has 

been given by the algorithm in (4.23).  

The following criterion was used to stop the iterative minimization procedure [107]:  

 ( )1 3 3
σ σ σ

k k k
ε ε+ − < +  (4.49) 

i.e. when the change in σ
k
, σ

k
δ , is very small. Here, 

3
ε  is a small positive number 

specified by the user. Using this criterion, the algorithm stops either when σ
k

δ  is 

smaller than 
3

ε  times σ
k

 if this latter is large, or smaller than 2

3
ε  if σ

k
 is close to 

zero. As mentioned earlier, in the final stage of the iterative process, the LM 

algorithm reaches a point where it switches back to the steepest descent method since 

the Gauss Newton step is not anymore a good step. Hence, this is seen in γ  being 

increased continuously in an attempt to produce a step that yields a large ρ  (i.e. a 

good fit between the gain in the model M and the reduction in �F ). Consequently, this 

augmentation of γ  leads to a continuous reduction in the step size d
rLM

, resulting in 

small σ
k

δ , and the process will be terminated by (4.49).  

The complete algorithm is presented below. The algorithm is not very sensitive to the 

choice of the initial value of γ  as long as it is sufficiently large. In this chapter, 

3

0
10γ λ−=  is selected, where

0
λ is the regularisation parameter used to produce the 

initial guess 
0
σ . The regularisation parameter ( λ ), however, is chosen in similar way 

to the Gauss Newton method.  In order to test the performance of the algorithm in 
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MIT, 3D image reconstruction was carried out with the same example (P1) as in 

section (4.2.2).  Recall, the measured data used for image reconstruction is free of 

noise. The convergence of the objective function �F  is shown in Figure 4.8. Image 

reconstruction results are depicted in Figure 4.9.  
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Problem: �{ } � 2 21 1
argmin ( ) ; ( ) = ( )

2 2σ

σ σ F σ D Lσ
nR

F F λ
∈

− +  

Select the regularisation parameter 

( )0 1 1,..., 0 0
( , )

*max J JT

i n
i i

λ ε =
 =   ; where 

0J : Jacobian calculated for homogenous σ  

Find σ0 using single step reconstruction: 
1

0 0 0 0
σ J J L L J Dλ −= − +T T T

0
( ) ; 

Evaluate the objective function: 

� 2 2

0 0 0 0

1 1
( ) = ( )

2 2
σ F σ D LσF λ− + ; 

Compute the gradient: T T

0 0 0 0
( ) ( ( ) ) +g J σ F σ - D L Lσλ= ; 

Calculate: T

0 0
( ) ( )A J σ J σ= ; 

Set 
2 0*λ ε λ= ; 3

0
10γ λ−= × ;  k = 0; set kmax; exit = false;  

 

while  k < kmax and exit ≠ true 

Compute the Hessian: TH A I L L
rLM

γ λ= + + ; 

Calculate the step: 1d H g
rLM rLM

−= − ; 

Update the conductivity map: σ =σ + d
New k rLM

; 

Constrain the conductivity map: 
max max

 = 1: ( ( ) 0) 0

 = 1: ( ( ) )

| σ

| σ σ σ

New

New

i n i

i n i

τ< =


> =

�
 

            if ( )3 3
σ σ σ

New k k
ε ε− < +  

 exit = true ; 

else  

                   Evaluate the objective function: �
2 21 1

( )= ( )
2 2

σ F σ D Lσ
New New New

F λ− + ; 

       Calculate the gain ratio: � �( ) ( )( ) ( ) (0) ( )σ σ σ σ
k New New k

F F M Mρ = − − − ; 

                   if 0ρ >  

                       
1

σ σ
k New+ = ;   

                       T T

1 1 1
( ) ( ( ) ) +g J σ F σ D L Lσ

k k k
λ+ + += − ; 

                      T

1 1
( ) ( )A J σ J σ

k k+ += ; 

                        
3max(0.5 1 (2 -1) ); =2;* ,γ γ ρ η= −    

                    else  

                       
;

= 2;

*

*

γ γ η

η η

=
 

                      if η > 32  exit = true;  end                                     

             end 
k = k+1; 

end  

Figure 4.7: Regularised Levenberg Marquardt Method 
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Figure 4.8:  Convergence plot illustrating the minimisation of the objective function using the 

regularised Levenberg Marquardt Method. 

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

80

60

40

20

0

-20

-40

-60

-80

S/m

0

0.2

0.4

0.6

 mm

m
m

 

 

100 75 50 25 0 -25 -50 -75-100

100

75

50

25

0

-25

-50

-75

-100

S/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 
                                  a) b) 

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75-100

100

75

50

25

0

-25

-50

-75

-100

S/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 
mm

m
m

 

 

100 75 50 25 0 -25 -50 -75-100

100

75

50

25

0

-25

-50

-75

-100

S/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 
c) d) 

Figure 4.9:  Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm with No noise added to the 

data. 
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4.2.4 Damped Gauss Newton method 

In the previous section, the LM method has been described as a modification of the 

Gauss Newton method which employs a damping mechanism in which the length and 

the search direction of the step d are simultaneously determined.  This is done by 

inserting the term I
k

γ  into the regularised Gauss Newton Hessian, 

T TH J J L L
rGN k k

λ= + . Although the LM method is a special method which can 

produce good stability and convergence to the MIT inverse problem, some drawbacks 

can be observed, which are mainly related to the quality of employed regularisation. 

First, the term I
k

γ  imposes regularisation effect on the elements in the coefficient 

matrix TJ J
k k

 via the identity matrix which is referred to as a zero order type 

regularisation. This is a classical type of regularisation which employs uniform 

weights to penalize the diagonal of the Hessian H
rGN

. During the iterative process, if 

the term I
k

γ  is more significant than TL Lλ , the sensitivity coefficient matrix J J
k k

T  

will be mainly penalized by I
k

γ . MIT, like other electrical tomography techniques 

such as EIT and ECT, suffer from a poor sensitivity in the central region of the target 

compared to the periphery. Hence, the conductive elements in the centre of the object 

should preferentially be penalized less than those near the periphery. However, the 

term I
k

γ  does not conform to this prior information, which makes its application for 

such electrical modalities not very attractive. Common negative aspects associated 

with this type of regularisation are usually manifested with noise being reconstructed 

near the periphery, which is amplified as the iterative procedure progresses. 

Second, if the regularisation term TL Lλ  is on the other hand more influential than 

I
k

γ  in the iteration, then having a fixed weight of regularisation (i.e. λ remains 

unchanged) constantly imposed on TJ J
k k

 will preserve the smoothness of the image 

especially if λ is large. As a result, this may prevent reconstruction of high frequency 

components of the image toward the final stage of the iterative process.  

In this section an alternative optimisation approach called “damped Gauss Newton 

Method”, which aims to deal with the drawbacks associated with regularisation in the 
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LM method, is presented. The proposed method is a modification of the regularised 

Gauss Newton method and is described by the equations:  

 J J L L d J F σ V L Lσ
k k k dGN k k k k

λ λ+ = − −T T T T( ) ( ( )- )  (4.50) 

 
1

σ σ d
k k dGN+ = +  (4.51) 

where the regularisation parameter 
k

λ  is now adaptable and selected in an identical 

fashion to the damping parameter 
k

γ . In this way, the identity matrix and the extra 

regularisation parameter, which are found in the LMM, can be avoided. The 

regularisation term TL L
k

λ  is now involved in a similar damping process as for the 

LMM. This modification produces the following effects:  

a) The algorithm is not sensitive to the initial choice of the regularisation 

parameter
k

λ  compared to the LM or the Gauss Newton method. The image 

reconstruction can start with a large 
k

λ  that produces a sufficiently smooth image, 

which is then gradually decreased to allow high frequency components of the image 

to be reconstructed.  

b) In case of poor accord between the reduction in the model M and the objective 

function �F , the hyper-parameter 
k

λ  is increased with the aim of enhancing the 

smoothing and restoring stability. This could result in a reduction of the step size 

d
dGN

, but does not necessarily switch to the steepest descent method.  

In equation (4.50), the gradient can be seen to incorporate a penalty term TL Lσ
k k

λ  in 

addition to the first order derivative of the residual, ( )σ∇r  (see equation (4.33)). 

When Tikhonov smoothing priors TR L L =  are used the key in the presence of the 

term Rσk kλ  is to find the smoothest solution that fits the measured data to within an 

acceptable tolerance rather than seeking the solution that fits the data as well as 

possible. In this case, this constraint is appropriate for applications where the 

experimental data are severely contaminated with noise. For imaging applications 

with low noise levels, omitting the term TL Lσ
k k

λ  can result in a better convergence. 

This chapter, however, deals with noise contaminated data; hence it is recommended 

to preserve this term in all algorithms that have been derived. This is in order to keep 

the system reasonably stable despite the fact that the spatial resolution can be 
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compromised with the usage of smoothing Tikhonov priors. However, for some 

applications where prior information within the matrix R is more representative of the 

internal structure of the test object, the presence of the term can be very advantageous. 

For instance, in medical imaging of cerebral stroke, MIT can be used for monitoring 

further development of the stroke condition after having been detected using MRI or 

CT scans. Regularisation can be constructed from anatomical data available from the 

MRI or CT images, which can help the MIT image reconstruction. This type of 

regularisation is approached in more depth in the next chapter.  

Like the LM method, the regularisation parameter λk can be updated based on the 

value of the gain ratio ρ  between the model M and the objective function �F . The 

complete algorithm using this method is shown below in Figure 4.10. The image 

reconstruction results including the convergence of the objective function and the 

reconstructed conductivity maps for the example (P1) in different z levels are 

presented in Figure 4.11 and Figure 4.12 respectively. 
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Problem: �{ } � 2 21 1
( ) ; ( ) = ( )

2 2σ

σ σ F σ D Lσ
nR

F F λ
∈

− +argmin  

Select the regularisation parameter 

( )0 1 1,..., 0 0
( , )

*max J JT

i n
i i

λ ε =
 =   ; where 

0J : Jacobian calculated for homogenous σ  

Find σ0 using single step reconstruction: 
1

0 0 0 0
σ J J L L J Dλ −= − +T T T

0
( ) ; 

Evaluate the objective function: 

� 2 2

0 0 0 0

1 1
( ) = ( )

2 2
σ F σ D LσF λ− + ; 

Compute the gradient: T T

0 0 0 0
( ) ( ( ) ) +g J σ F σ - D L Lσλ= ; 

Calculate: T

0 0
( ) ( )A J σ J σ= ; 

Set 0λ λ= ; k = 0; set kmax; exit = false;  

while  k < kmax and exit ≠ true 

Compute the Hessian: TH A L L
dGN

λ= + ; 

Calculate the step: 1d H g
dGN dGN

−= − ; 

Update the conductivity map: σ =σ + d
New k dGN

; 

Constrain the conductivity map: 
max max

 = 1: ( ( ) 0) 0

 = 1: ( ( ) )

| σ

| σ σ σ

New

New

i n i

i n i

τ< =


> =

�
 

 

            Evaluate the objective function: �
2 21 1

( )= ( )
2 2

σ F σ D Lσ
New New New

F λ− + ; 

Calculate the gain ratio: � �( ) ( )( ) ( ) (0) - ( )σ σ σ σ
k New New k

F F M Mρ = − − ; 

            if 0ρ >  

                
1

σ σ
k New+ = ; 

     3max(0.5 1 (2 -1) ); =2;* ,λ λ ρ η= −    

                T T

1 1 1
( ) ( ( ) ) +g J σ F σ - D L Lσ

k k k
λ+ + += ; 

               T

1 1
( ) ( )A J σ J σ

k k+ += ; 

            else  

                  
;

= 2;

*

*

λ λ η

η η

=
 

                  if η > 32  exit = true;  end                                     

             end 
k = k+1; 

end  

Figure 4.10: Damped Gauss Newton method 
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Figure 4.11: Convergence plot illustrating the minimisation of the objective function using the 

damped Gauss Newton method. 
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                                c)                               d) 

Figure 4.12: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm from noise free data. 
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4.2.5 Trust region Powell’s Dog Leg method 

While the LM method determines the length and the direction of the step by means of 

the damping process, the Powel’s Dog Leg (PDL) method employs the trust region 

strategy described in (section 4.2.1). Using this method, the step size and direction are 

controlled explicitly via the radius of the trust region ∆ . Like the LM method, the 

PDL method works in combination between the Gauss Newton method and the 

steepest descent method.  

Recall from (4.19) that in a trust region strategy, the step d
trPDL

is determined by 

solving the constrained optimisation problem:  

 

� �T T

( )

1
 ( ) + ( ) +

2

s.t. ∆

d

d

d σ d σ d H d ,

d

trPDL

M

trPDL

F F

 
 

= ∇ 
 
 

≤

������������	
argmin

 (4.52) 

where M is the model function, �F is the approximate objective function as defined in 

equation (4.33), �F∇ is the gradient, and H is the approximate Hessian as employed in 

the regularised Gauss Newton method, and ∆  is the radius of the trust region.  

The trust region and the LM method are closely related. In fact, it has been shown in 

[106] that for a positive damping parameter ( 0γ > ), the computed LM step 

d
rLM

satisfies:  

 

� �T T

( )

1
 ( ) + ( ) +

2

s.t.

d

d

d σ d σ d H d ,

d d

rLM

M

rLM

F F

 
 

= ∇ 
 
 

≤

������������	
argmin

 (4.53) 

However, there is no simple formula that illustrates the connection between the ∆  

and γ  values. 

Given the current iterate σ n

k
∈� , the step d  needed to obtain the next iterate 

1
σ

k +  

can be calculated by the regularised Gauss Newton method as follows:  

 H d g J J L L d J F σ D L Lσ
rGN rGN rGN k k rGN k k k

λ λ= − ⇔ + = −T T T T( ) ( ( ( )- ) + )  (4.54) 
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Or it can also be evaluated via the steepest descent method using the equation below: 

 d g d J F σ D L Lσ
sd sd sd k k k

λ= − ⇔ = − −T T( ( )- )  (4.55) 

While the regularised Gauss Newton method takes full step ( 1α = ) to obtain 
1

σ
k + , the 

steepest descent method needs to determine α . This latter can be computed by 

approximating the objective function �F  at the iterate 
1

σ σ d
k k sd

α+ = +  using a linear 

model as follows:  

�

�

2 2

2 2 2 2T T 2 T T 2

2 2

( )

1 1
( ) ( )+ ( )

2 2

1 1 1 1
( ) ( ) +  +

2 2 2 2

1 1
( )

2 2

σ

σ d σ J d L σ d

σ d J σ J d L σ d L Lσ Ld

σ L σ d

k

k sd k k sd k sd

F P

k sd k k k sd k sd k sd

F P

k k s

F

F α α λ α

α α αλ α λ

α

+ + +

= + + +

= + +

� i
��������	 ��������	

i
����������������	 ����������������	

i
��������	

r

r r

r

� ( ) ( )

2 2T T T T 2 2

T T T 2 T T T T

1 1
( )+

2 2

1
( ) + ( )+

2
g

J σ d L Lσ J d Ld

σ d J σ L Lσ d J J d d L Ld

sd

d k k sd k k sd sd

k sd k k k sd k k sd sd sd
F

αλ α α λ

α λ α λ

+ +

= + +
��������	

r

r

 

The function of α is minimal when:  

�
( )T T T T T T

2T

T T

0 ( )+ ( ) 0

Hg

d J σ L Lσ d J J L L d

gd g

d H d g H g

rGN
sd

sd k k k sd k k sd

sdsd sd

sd rGN sd sd rGN sd

F
λ α λ

α

α

 
∂  = ⇔ + + =

 ∂
 

⇔ = − =

������	��������	
r

 (4.56) 

Now, given two step candidates for computing the next iterate vector 
1

σ
k + , namely: 

= d
sd

αa , and = d
rGN

b , Powell proposed the following strategy for calculating the 

trust region step d
trPDL

, when the trust region has a radius ∆ :  

if  d
rGN

≤ ∆  

    d d
trPDL rGN

= ; 

elseif  d
sd

α ≥ ∆  

     ( )trPDL sd sd
= ∆d d * d ; 

else 

     ( ); s.b.d d d d d
trPDL sd rGN sd trPDL

α ζ α= + − = ∆  .  

(4.57) 
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The last case in the strategy is illustrated in Figure 4.13:  

 

 

 

 

 

 

 

Figure 4.13: Trust region Powell’s Dog Leg step 

With a and b defined as above, and c = a
T
(b - a), the positive scalar 0ζ >  can be 

computed by choosing the positive root of the quadratic equation in ζ  defined by:  

( )
2 2

2 22 2

( ) = + -

= - 2

ϕ ζ ζ

ζ ζ

− ∆

+ + − ∆

a b a

b a c a

 (4.58) 

As in the LM method, the gain ratio ρ  can be used to control the size of the trust 

region radius ∆ .  

� �( ) ( )( ) ( ) (0) ( )σ σ σ σ
k k k k

F F M Mρ δ δ= − + −  

where M is the quadratic model in σ
k

δ , 
1

σ σ σ
k k k

δ += −   and:   

T T1
(0) - ( ) =

2
σ σ g σ H σ

k k k k k k
M M δ δ δ δ− −  

Recall from previous sections on the LM method and damped Gauss Newton method 

that after calculating 
1

σ σ d
k k trPDL+ = + , any negative elements within 

1
σ

k+  are 

constrained to positive values very near to zero (e.g. 1×10
-4

) since negative 

conductivities do not exist in practice, which changes the vector 
1

σ
k+ . Hence, the 

actual step is now σ
k

δ  which is the difference between the constrained 
1

σ
k+  and the 

previous iterate σ
k
.  

b=d
rGN  

dtrPDL 

a= d
sd

α
∆  

σk 
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Similar to the LM method, the regularisation parameter is set to 
2 0*λ ε λ= , where 

2ε is specified by the user (e.g. 3

2 [10 ,0.1]ε −∈ ), and 0λ is selected according to 

equation (4.36), again 1ε  is a user specified constant (e.g. 1 1ε =  ). The initial trust 

region radius can be selected as: 
0

1∆ = . The same stopping criteria as for the LM 

method are applied here due the similarity in the convergence characteristics of both 

methods. The pseudo form of the algorithm is presented in Figure 4.14.  

Again, in order to test the performance of this method the same example (P1) have 

been used for image reconstruction, with noise free data generated from the custom 

forward model. The plots of the convergence of the objective function are depicted in 

Figure 4.15. The image reconstruction results are shown in Figure 4.16. 
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Problem: �{ } � 2 21 1
( ) ; ( ) = ( )

2 2σ

σ σ F σ D Lσ
nR

F F λ
∈

− +argmin  

( )0 1 1,..., 0 0
( , )

*max J JT

i n
i i

λ ε =
 =   ; where 

0J : Jacobian calculated for homogenous σ  

Find σ0 using single step reconstruction: 1

0 0 0 0
σ J J L L J Dλ −= − +T T T

0
( ) ; 

Evaluate the objective function: �
2 2

0 0 0 0

1 1
( ) = ( )

2 2
σ F σ D LσF λ− + ; 

Compute the gradient: T T

0 0 0 0
( ) ( ( ) ) +g J σ F σ - D L Lσλ= ; 

Calculate: T

0 0
( ) ( )A J σ J σ= ; 

Set 
2 0*λ ε λ= ; Set 

0
∆ = ∆  

Compute the Hessian: TH A L L
rGN

λ= + ; 

Calculate the step: 1d H g
rGN rGN

−= − ; 

Compute α by (4.56)       

k = 0; set kmax; exit = false; 0η = ; 

while  k < kmax and exit ≠ true 

            Compute d
trPDL

 by (4.57) 

Update the conductivity map: σ =σ + d
New k trPDL

; 

Constrain: { max max
 = 1: ( ( ) 0) 0;  = 1: ( ( ) )| σ | σ σ σ

New New
i n i i n iτ< = > =�  

            if ( )3 3
σ σ σ

New k k
ε ε− < +  

 exit = true ; 

else  

                   Evaluate the objective function: �
2 21 1

( )= ( )
2 2

σ F σ D Lσ
New New New

F λ− + ; 

       Calculate the gain ratio: � �( ) ( )( ) ( ) (0) ( )σ σ σ σ
k New New k

F F M Mρ = − − − ; 

       if 0 25.ρ <             

           2∆ = ∆ ; 

 elseif  0 75.ρ >  

            ( )max 2, * d
trPDL

∆ = ∆ ; 

       end 

                   if 0ρ >  

                       
1

σ σ
k New+ = ;   

                      T T

1 1 1
( ) ( ( ) ) +g J σ F σ - D L Lσ

k k k
λ+ + += ; 

                      T T

1 1
( ) ( )H J σ J σ L L

rGN k k
λ+ += + ; 

                       Compute α by (4.56)       
                    else  

                       = 1;η η +  

                      if η > 5  exit = true;  end                                     

      end;   k = k+1; 0η = ; 

end 

Figure 4.14: Trust region Powell’s Dog Leg algorithm 
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Figure 4.15: Convergence plot illustrating the minimisation of the objective function using the 

Powel Dog Leg method. 
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Figure 4.16: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm with No noise added to the 

data. 
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4.2.6 Simulations 

In order to assess the efficiency of the proposed special optimisation methods namely 

Levenberg Marquardt method (LMM), trust region Powell Dog Leg method (PDLM) 

and damped Gauss Newton method (DGNM), their performance was examined 

against the conventional regularised Gauss Newton method (RGNM). The solvers 

were compared with respect to the following five criteria: 

a) Convergence of the objective function �F , 

b) Convergence of the solution (reconstructed conductivity) error σ σ σ
k true true

−  

c) Stability of the algorithm 

d) Robustness of the selected stopping criteria 

e) Sensitivity to the choice of the regularisation parameter.  

In a first numerical experiment, the same example (P1) (Figure 4.2) was used with 

geometry and conductivity distribution described in section 4.2.2. Simulated 

measured data was generated from the custom forward solver. In real image 

reconstruction, data are always contaminated with noise caused by hardware and 

modelling inaccuracies. In order to account for the presence of noise, an additional 2 

% of the rms of the secondary induced voltages was added to the simulated data as 

normally distributed or equivalently Gaussian noise. To put this figure in context, the 

modelled MIT system (Mark 1) used in this chapter for image reconstruction was 

developed at Glamorgan University, our academic partner in this research project, and  

reported in [79] to have a signal to noise ratio (SNR = D/noise) of 40 dB which is 

equivalent of 1% percent added noise. Again, 3D image reconstruction was carried 

out with 5056 conductivity elements from a total of 2304 measurement data generated 

at 10 MHz frequency. For all methods, the maximum number of iterations was set to 

kmax = 20 to avoid the possibility of being stuck in an infinite loop. Using the RGNM, 

image reconstruction was carried out with several values for the regularisation 

parameter λ in an attempt to identify the band inside which the best convergence can 

be achieved, and eventually the ensemble (10
-1

, 10
-2

, 10
-3

) × λ0 was selected. For the 

sake of comparison, image reconstruction was repeated with these values using LMM 

and PDLM. However, as explained in section 4.2.4 the regularisation parameter for 

DGNM is involved in a damping process and the algorithm is flexible with regard to 
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the initial value as long as a large value is chosen as a starting point, thus λ is chosen 

equal to λ0.   

In a second simulation, the image reconstruction protocol was repeated with the same 

example (P1), but this time data was generated from Maxwell 3D, (a commercial FE 

software package by Ansoft Corp). This is a good stepping stone to generate 

simulated data that emulate real experimental data, where the noise may not follow a 

priori specified distribution. When compared with noise free data, the mean value of 

the noise was evaluated to be 2.36%. This figure is entirely caused by all sources of 

error due to meshing and field calculations.  

 

4.2.7 Results and discussion 

4.2.7.1 Convergence of the objective function 

For the standard RGNM, Figure 4.17 shows the optimum convergence was achieved 

with the regularisation parameter value (λ =10
-2

 λ0), whereas with λ =10
-1

 λ0, a weaker 

convergence was recorded and the optimisation failed with the λ =1e
-3

 λ0. However, 

using the LMM, DGNM and the PDLM, minor improvement was observed for all 

values of the regularisation parameter and the best convergence is similar in all of 

them (Figure 4.19, Figure 4.23, Figure 4.26). Unlike the RGNM, all the optimisations 

with LMM and PDLM were successful, which reflect their superiority in providing 

stability in the solution.  

For the second simulation with simulated data from Ansoft, similar observations as to 

the first experiment can be made in comparing the optimisation methods. The LMM 

and the PDLM (Figure 4.31, Figure 4.36) produced similar performance, which 

appears to be better relative to the RGNM (Figure 4.29). As can be seen in Figure 

4.34, DGNM, however, produced a remarkable convergence compared with all other 

methods. Another interesting remark comparing the two computational experiments 

can be drawn, wherein all algorithms appear to provide better convergence with 

Maxwell simulated data than with artificial data, although the noise level is larger in 

the former. This brings into light that not only the noise level affects image 

reconstruction, but also the type of its distribution.    
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4.2.7.2 Convergence of the solution error 

While the convergence error of the objective function is an available criterion to 

assess how efficient nonlinear optimization methods are in minimizing the least 

squares problem �F , the conductivity solution error is the major criterion with the 

ultimate answer to which optimization method is robust to produce a minimiser 

*
σ closer to the true distribution 

true
σ . Although this answer cannot be granted in 

reality but for comparison the true conductivity distribution is assumed to be known 

in order to analyse the efficiency of the proposed optimisation methods. Figure 4.17 

and Figure 4.18 depict the relative solution error norm over iteration and the 

conductivity maps of the conductivity vector argument that produces the smallest 

minimum of the objective function using the RGNM.  When comparing with the 

LMM (Figure 4.19, Figure 4.22) and PDLM (Figure 4.26) the minimum recorded 

solution error is comparable in all of them to approximately 50%, which is obtained 

with λ = 10
-2

 λ0. However, this latter value does not correspond to the curve that 

produced the minimum value of the objective function in case of the LMM and the 

PDLM. Indeed, with this image reconstruction experiment, the convergence error of 

the objective function does not correlate well with the solution (image) error in case 

of the LMM and the PDLM, and the reconstructed images that should practically be 

given are illustrated by Figure 4.21 and Figure 4.28 obtained with λ = 10
-3

 λ0. With 

regard to the DGNM, the best solution error norm is roughly the same compared with 

the RGNM in case of λ = 10
-2

 λ0 and the results are displayed in Figure 4.23 and 

Figure 4.25. Similar to the LMM and the PDLM, the actual reconstructed 

conductivity that must be validated in the DGNM is shown in Figure 4.24.   

For the second experiment with data obtained by Maxwell, a different scenario can be 

observed, whereby the trend exhibited by the objective function value is now a good 

indicator of the minimum of the solution error in all cases of the proposed nonlinear 

optimisation methods. In fact, from the solution error graphs (Figure 4.29; Figure 4.31 

and Figure 4.36) we observe that the LMM and the PDLM achieve smaller solution 

error compared with the RGNM. More interestingly, the DGNM (Figure 4.34) with its 

damping strategy applied to the regularisation parameter records the most superior 

solution error convergence with approximately 46%. This is manifested with a 

noticeable quantitative convergence on the corresponding conductivity maps shown in 
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Figure 4.35 where the reconstructed conductivity for the inclusion is approximately 

0.7 Sm
-1

, i.e. ≈155% improvement compared to the LMM and the PDLM, and ≈ 

200% relative to the RGNM. All algorithms, however, were able to recover the 

inclusion (stroke) feature, except that DGNM provided the sharpest images and the 

RGNM images are of relatively low resolution with a dominating blur.  

 

4.2.7.3 Stability of the optimisation 

Stability of the image reconstruction algorithms is another important aspect. The 

LMM and the PDLM are shown to provide better stability among the optimisation 

methods. Usually instability in optimisation methods is manifested when small 

changes in data are reconstructed with large conductivity changes, a process which is 

usually encountered in the final stage of the iterative process when the algorithm 

passes near to the local minimiser and diverges away. Using the damping and trust 

region techniques explained in section (4.2.1), the algorithms provide good control by 

being able to switch between the Newton’s method and the steepest descent method. 

Clearly this effect is noticeable in the final stage of the iteration where the LMM and 

the PDLM switch to small step sizes, which infers the steepest descent becomes 

dominant. This means that when the minimiser ( *
σ ) has been reached, the methods 

avoid divergence from the minimiser by converting the algorithm to usage of small 

steps that are terminated by the stopping criterion. Although the DGNM employs 

similar damping process like the LMM, it is not a hybrid method and hence cannot 

benefit from the steepest descent method. However, the algorithm controls the 

stability by increasing the regularisation weight which seems to be a satisfactory 

approach.  

 

4.2.7.4 Robustness of the stopping criteria 

The LMM and the PDLM employs an endpoint strategy to their iterative procedure 

which functions such that the iteration stops when the change in the conductivity 

solution i.e. σ
k

δ  is small (see section 4.2.3). Since the LMM and PDLM eventually 

convert to using small steps for updating conductivity as described in the previous 

section, this stopping strategy is theoretically adequate and reasonable. The 
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performance of such stopping mechanism is illustrated in (Figure 4.20, Figure 4.27, 

Figure 4.32). For the RGNM and the DGNM, this stopping criterion cannot be applied 

since the methods are not guaranteed to switch to small step sizes toward the end of 

the iterative procedure. Hence, a stopping technique that terminates the iteration when 

the descending condition for the objective function �F  described by (4.38) is not met 

is employed. The main difference between the conventional RGNM and the DGNM 

in this respect is the latter employs the special damping strategy whereby the 

regularisation parameter is increased in a series in order to obtain a descent direction, 

and if after a number of times (iterations) this is not achieved, the algorithm stops. 

This stopping approach appears to function reasonably well as illustrated by the plots 

of the solution error norm discussed earlier.  

 

4.2.7.5 Sensitivity to the choice of the regularisation parameter 

For solving the MIT conductivity inverse problem, the LMM and the PDLM require 

the specification of two parameters: the damping variableγ  and the constant 

regularisation parameter λ. From the results on the convergence of the objective 

function and the solution error the methods provided different convergence trends for 

different values of the regularisation parameter. Hence, it may be deduced that the 

methods are sensitive to the choice of such parameter, which infers a proper 

parameter selection method is required. However, the DNGM employs only one 

variable, i.e. the regularisation parameter which is updated in a similar way toγ . The 

DGNM is not sensitive to the choice of initial value of the hyper-parameter λ1 as long 

as it is sufficiently large to provide a smooth image, since it will be reduced through 

the iterations. In this respect, the DGNM is better than the LMM and the PDLM since 

it is less complex (employs less parameters) and is not sensitive to the choice of the 

regularisation parameter. 
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Figure 4.17: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with regularised Gauss Newton method (example (P1); data with 2% Gaussian 

noise).  
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Figure 4.18: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the regularised Gauss 

Newton method (example (P1); data with 2% Gaussian noise; λ = 10-2 λ0) 
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LMM: 
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Figure 4.19: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with LM method (example (P1); data with 2% Gaussian noise). 
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Figure 4.20: Performance of the stopping criterion for the LM method (example (P1); data with 

2% Gaussian noise). 
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Figure 4.21: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the Levenberg Marquardt 

method (example (P1); data with 2% Gaussian noise; λ = 10-3 λ0). 
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Figure 4.22: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the Levenberg Marquardt 

method (example (P1); data with 2% Gaussian noise; λ = 10-2 λ0). 
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Figure 4.23: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with damped Gauss Newton method (example (P1); data with 2% Gaussian 

noise). 
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Figure 4.24: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the damped Gauss 

Newton method (example (P1); data with 2% Gaussian noise). 
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Figure 4.25: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the damped Gauss 

Newton method (example (P1); data with 2% Gaussian noise). 
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PDLM: 
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Figure 4.26: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with Powell Dog Leg method (example (P1); data with 2% Gaussian noise). 
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Figure 4.27: Performance of the stopping criterion for the PDL method (example (P1); data with 

2% Gaussian noise). 
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Figure 4.28: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with the Powell Dog Leg 

method (example (P1); data with 2% Gaussian noise; λ = 10
-3

 λ0). 
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RGNM: 
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Figure 4.29: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with regularised Gauss Newton method (example (P1); simulated data from 

Ansoft). 

 

Figure 4.30: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with regularised Gauss Newton 

method (example (P1); simulated data from Ansoft; λ = 10-2 λ0). 
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LMM: 
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Figure 4.31: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with Levenberg Marquardt method (example (P1); simulated data from Ansoft). 
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Figure 4.32: Performance of the stopping criterion for the LM method (example (P1); data with 

2% Gaussian noise). 
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Figure 4.33: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with Levenberg Marquardt 

method (example (P1); simulated data from Ansoft; λ = 10
-3

 λ0). 
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DGNM: 
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Figure 4.34: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with damped Gauss Newton method (example (P1); simulated data from Ansoft). 
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Figure 4.35: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with damped Gauss Newton 

method (example (P1); simulated data from Ansoft). 
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PDLM: 
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Figure 4.36: Convergence plot of the objective function (left) and relative solution error (right) 

versus iteration with Powell Dog Leg method (example (P1); simulated data from Ansoft). 
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Figure 4.37: Reconstruction of conductivity distribution showing a) vertical slice (x=0) mm, [b); 

c); d)] horizontal slices in different z levels (z=-40; z=0; z=40) mm, with Powell Dog Leg method 

(example (P1); simulated data from Ansoft; ; λ = 10
-3

 λ0). 
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4.3 Krylov sub-space methods for large scale problems 

As discussed in the previous chapter, a nonlinear inverse problem is usually solved in 

an iterative scheme where in each iteration, three dimensional modelling of the 

forward problem is needed. Since the eddy current problem is often solved in high 

resolution, approaches have been suggested to deal with the associated high 

computational and memory demands. In some applications, the MIT inverse problem 

is solved with smaller number of unknown conductivity elements, which produces 

low resolution images. However in medical MIT applications like imaging local 

conductivity shifts (e.g. cerebral stroke) in the brain, which constitutes a topic of 

investigation in this thesis, the inverse problem may need to be solved with large 

number of degrees of freedom, if the solutions seeks to recover the shape of the stroke 

and estimate its volume, and/or if structural regularisation information is incorporated 

in the solution procedure. In order to make the problem less underdetermined, a large 

number of measurement data is collected. As a result, an outsized Hessian is formed 

and the task of computing the conductivity vector via direct inversion Newton based 

methods presented in section (4.2) is extremely computationally demanding. 

Furthermore, since the matrix is full, it is difficult to handle even matrix 

multiplication, which raises the enquiry about development of special numerical 

methods to handle this challenge.   

In this section, the application of special numerical techniques based on the Krylov 

sub-space methods, which can be used for the efficient calculation of large scale 

problems, is presented. Among these methods, the Conjugate Gradient (CG) 

optimisation technique has been successfully implemented in medical EIT. Originally 

the method was proposed by Hestnes and Stiefel in the 1950s as an iterative method 

for solving linear systems of the following form:  

 A x y=  (4.59) 

where A n n×∈�  is a symmetric positive definite matrix. Thus, the linear CG can be 

applied directly to the MIT forward problem since the coefficient matrix holds these 

properties and is sparse. While direct inversion methods solve (4.59) via factorisation 

and multiplication, the CG iteration projects the problem with its dimension into a 

lower dimension Krylov sub-space. Using an iterative scheme, the method reduces the 
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original problem into a sequence of lower dimension matrix problems. When applied 

to solve (4.59) the solution obtained by the nth iteration will lie in the associated 

Krylov subspace generated by A and y , like:  

 

{ }2 3 1

( ; ) where 

( ; )=span

x A y

A y y, Ay, A y, A y, ..., A y .

n n

n

n

K

K −

∈
 (4.60) 

This approach makes the CG method computationally efficient to handle large scale 

problems. The CG algorithm applied to the system (4.59) is presented below:  

0
r y Ax= −  

while  
0

r r
n

tol>  do 

     n = n + 1 

     if n = 1 
       =p r  

     else 

      
2 2

1 2
r r

n n n
β − −=  

       
1 1n n n n

β− −= +p r p  

     end 

     ( )2 T

1n n n n
α −= r p Ap  

      
1n n n n

α−= +x x p  

      
1n n n n

α−= −r r Ap  

end 

(4.61) 

 

where 
0

x  is an initial guess of the solution x , r  is the residual vector, p is the search 

direction and α  is the step size. Here, β  is a calibration scalar that is determined to 

enforce the special “conjugacy property” of the CG iteration, which requires the 

search direction vectors 
1n−p  and 

n
p  to be A conjugate. This means that the set of 

vectors produced by the CG iterations { }0 1 2 1n−p , p , p , ..., p  are found to be A 

orthogonal as:  

 T 0 for all
i j

i j= ≠p Ap  (4.62) 

 

4.3.1 Nonlinear Conjugate Gradient method 

Recall that the MIT inverse problem is treated through the minimisation of the 

nonlinear least squares problem: 
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� 2 21 1

2 2
σ F σ D LσF λ= − +( ) ( )   

Fletcher and Reeves proposed the nonlinear variant of the CG method (NLCG) in the 

1960s which has later been applied successfully to solve the EIT conductivity inverse 

problem [117]. The NLCG algorithm is presented below:  

�
0 0 0

( ) = ( )d σ g σF= − ∇ − , k=0; 

while  �( )σ
k

F tol∇ >  do 

     k = k + 1 

     Compute 
k

α  (line search) 

     
1 1

σ σ d
k k k k

α− −= +  

    � �( ) � �( )T T

1 1
( ) ( ) ( ) ( )σ σ σ σFR

k k k k k
F F F Fβ − −= ∇ ∇ ∇ ∇  

     �
1

( )d σ d
k k k k

F β −= −∇ +  

End 

(4.63) 

 

where the scalar FR

k
β  is calculated using a formula suggested by Fletcher and Reeves. 

k is the iteration number of the optimisation method. An alternative expression has 

been proposed later by Polak and Ribiere which is given by the pair of equations:  

 � � �( ) � �( )T T

1 1 1
( ) ( )- ( ) ( ) ( )σ σ σ σ σ

PR

k k k k k k
F F F F Fβ − − −= ∇ ∇ ∇ ∇ ∇  (4.64) 

 { }=max 0,PR PR

k k
β β  (4.65) 

where (4.65) enforces the condition that when PR

k
β is negative, the new search 

direction d
k
is chosen to be the steepest decent direction i.e. �( )σ

k
F−∇ . Hence, this 

condition ensures that new direction is always descent. There are many variants for 

determining β , but numerous references suggest that the Polak-Ribiere is the most 

robust and efficient variant [58, 104].  

 

4.3.2 Damped Gauss Newton Krylov method 

Since the NLCG employs only 1
st
 order derivative information in calculating the 

direction step, the convergence of the method is slow. As a result, a large number of 

iterations may be required to achieve a satisfactory optimisation. Since the 3D 

forward problem is recomputed every time the model is updated, the computational 
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time can be a major obstacle. In order to deal with this problem Vauhkonen [117] and 

Polydorides [119] applied the special block NLCG in EIT originally developed for 

optical diffuse tomography, which is based on the idea of splitting the inverse 

problem with its original dimension into sub-problems with smaller dimensions. In 

doing so, the original Jacobian J m n×∈�  is partitioned into sub-blocks by splitting the 

measurement data into smaller subsets, and using this approach the inverse problem is 

solved with a single data subset. After each update of the model, a different subset of 

data is selected to calculate the next iteration conductivity distribution. Although the 

iteration time and memory storage is significantly reduced via this approach, the 

method would still need a larger number of iterations. Since iterative inversion 

methods which employ 2
nd

 order information converge faster than methods employing 

1
st
 order derivative information, Horesh [120] and Polydorides [121] implemented 

another variant of the CG method which employs 2
nd

 order derivative of the objective 

function �F . In the Gauss Newton search direction the nonlinear inverse problem is 

linearised locally, i.e. the nonlinear inverse problem is decomposed into a series of 

linearly approximated steps. The linear iterative CG method described by (4.61) can 

be applied to estimate the linearised step d
dGN K−  used to update the iterate σ

k
 within 

the Gauss Newton algorithm by substituting:  

 

 ( ; )x A y
n n

K←   

With: 

 

( )T T T T
( ) ; ( ( )- ) +

dGN K n k k k k k k k
K λ λ−

−

 
 ← + −
  
 H g

d J J L L J F σ D L Lσ
������	 ������������	

 (4.66) 

While the iterative CG approach produces an approximation to the Newton direct 

inverse of the Hessian, the problem related to the explicit formulation of the immense 

approximated regularised Hessian T T( )J J L L
k k k

λ+  would still impose computational 

and memory storage difficulties in large scale problems. In order to deal with this 

problem all matrix-vector product operations comprised within the CG iteration in 

which the explicit Hessian is involved are modified as follows:  
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 ( ) ( )( )T TH d J J d L L d
k n k k n k n

λ= +  (4.67) 

 

As can be seen, the brackets surrounding the product J d
k n

 results in a vector, which 

is then multiplied by T
J

k
, so the immense term of TJ J

k k
 is never explicitly formed. 

The product H d
k n

 for explicit Hessian formulation requires u
3
 floating point 

operations, whereas the implicit formulation requires u
2
v+ uv

2 
(assuming that the 

computational cost of ( )TL L d
n

 is negligible since TL L  is a sparse matrix). 

Therefore, Horesh [120] explains this way of implicitly forming the Hessian is more 

efficient whenever ( )5 1 2v u< − . For large scale problems as considered in this 

section, v u
 , and therefore this formulation is favoured.  

In order to further optimise the convergence and stability of the CG iterative scheme, 

preconditioning of the approximate Hessian can be an advantage since the distribution 

of the singular values of this matrix can impact on the quality of this convergence. 

Favourably, the singular values should be clustered around a fixed positive number, 

and therefore fewer iterations are required to reach the convergence of the CG. Using 

an appropriate pre-conditioner Θ , the system (4.60) has a solution identical to the one 

of the preconditioned system given by:  

 -1 -1( ; ) x A y
n n

K Θ Θ←  (4.68) 

Several preconditioning matrices have been proposed in the literature, but in this 

section the following pre-conditioner will be employed:  

 
J

ji k

j i

diagΘ λ
=

 
= + 

 
∑  (4.69) 

and the algorithm (4.61) using the proposed pre-conditioner is modified to form the 

CG Krylov iterative scheme presented below used to calculate an approximation for 

the step d
dGN

 obtained via the inversion based damped Gauss Newton method. When 

employing this iterative scheme (inner iterations) within the iterative (outer iteration) 
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damped Gauss Newton, the method is called the damped Gauss Newton Krylov 

(DGN-K) method 

0 0
r g H d

k k
= − − ; n=0 

while  
0

r r
n

tol>  do 

     n = n + 1 

      =z Θ \ r   

     if n = 1 
       p z=  

     else 

      ( ) ( )T T

1 1 2 2
r z r z

n n n n n
β − − − −=  

       
1 1n n n n

β− −= +p z p  

     end 

     ( ) ( )T T

1 1
r z p H p

n n n n k n
α − −=  

      
1

d d p
n n n n

α−= +  

      
1

r r H p
n n n k n

α−= −  

end 

(4.70) 

 

where tol  is specified by the user, for instance, -31 10tol = ×  appears to be a 

reasonable choice for the cases considered here.  Note, n is the iteration index for the 

CG method and k denotes the index for the outer iteration for the iterative image 

reconstruction.  

 

4.3.3 Simulations 

In order to test the accuracy and the computational efficiency of the proposed DGN-K 

method, the following problems with different numbers of unknown conductivity 

elements (DoFs) are considered as follows:  

a) Example (P1) (Cylindrical background and an inclusion) comprising 5056 DoFs 

b) Head model (H1) (White matter and large stroke) comprising 9012 DoFs 

c) Head model (H2) (White matter and large stroke) comprising 30405 DoFs 

The two employed head models were obtained from an FE head model that was 

created by Holder et al from University College London who applied 53,336 FEs in 

the head cavity to simulate 7 different biological tissues. Since the scale (size) of the 

problem is the main focus of this investigation, two tissues were considered for 

simplicity namely: white matter (0.16 Sm
-1

) and the stroke (1.1 Sm
-1

) as shown in 
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Figure 4.38. For image reconstruction, 2304 simulated measured data was collected 

and absolute images for the three conductivity models were generated from the 

iterative DGN-K optimisation method.  In order to examine the computational 

benefits of this method, the same image reconstruction was carried out with the 

inversion based DGN method and comparisons were made according to the following 

criteria a) Convergence of the objective function and the solution error norm, b) 

image quality, and c) Computation time. 

 

 

Figure 4.38: Head model (white matter and large peripheral stroke) (9012 DoFs) 

 

4.3.4 Results and Discussion  

4.3.4.1 Convergence of the objective function and the solution error norm 

Figure 4.39 shows the convergence of the objective function and the solution error 

norm for the image reconstruction of the head model (H1) using the DGN-K and the 

DGN methods. Clearly, similar degree of convergence is attained using both methods, 

which infers that there is no loss of accuracy caused by the application of the Krylov 

sub-space method in combination of the Damped Gauss Newton method 
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Figure 4.39: Plot of the convergence of the objective function (left), and the solution error (right) 

 

4.3.4.2 Image quality  

Figure 4.40 shows the cutaway plane displaying the reconstructed conductivity 

distribution using the DGN-K and the DGN methods. Again, the reconstructed images 

resemble each other, which infers there is no loss in the image quality using the 

proposed CG method. 

 
 

Figure 4.40: Reconstructed images for the large scale head model (H1), using the DGN-K method 

(left) and the DGN method (right) 

 

4.3.4.3 Computation time  

In order to assess the computational cost saving using the DGN-K method compared 

to its counterpart candidate, the Newton version DGN method, the average time per 
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iteration was calculated for the three problems with different resolutions.  From 

Figure 4.41, it can be shown that as the problem size increases in scale, the 

computation time is reduced for the DGN-K.  For the Head model with 30k elements, 

the DGN-K is 8 times faster than the DGN method.   

 

Figure 4.41: Average computation time per iteration for (1: example (P1); 2: head model (H1); 3 

head model (H2)) 
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5 Regularisation methods in Magnetic Induction 

Tomography  

 

5.1 Introduction 

In Chapter 4, a class of nonlinear optimisation methods was investigated for use in 

image reconstruction of volumetric material properties using MIT. In order to 

compare the stability and convergence performance of these methods the same a-

priori knowledge about the solution or the regularisation operator was employed. This 

consisted of a 2
nd

 order Laplacian operator which penalises large changes in material 

properties (i.e. conductivity) of the object. Other than the regularisation matrix being 

common, the algorithms employed numerical mechanisms to control the convergence 

and maintain the stability of the solution throughout the iteration process. In 

summary, on the one hand, it was shown that all the proposed methods provided 

noticeable improvement in different respects of nonlinear optimisation of the ill-posed 

MIT inverse problem compared to the standard regularised Gauss Newton method 

(RGNM). On the second hand, the regularised Levenberg Marquardt method (LMM) 

and the trust region Powell Dog Leg method (PDLM) exhibited similar performance 

characteristics of which they demonstrated an outstanding stability toward the end of 

the iterative process by keeping away from unwanted divergence. The newly 

introduced damped Gauss Newton method (DGNM) was able to produce better 

quantitative convergence but is relatively more prone to instability at the last stage of 

the iterations especially if the data is heavily contaminated with noise. As a result of 

this assessment, in this chapter the (LM) method has been chosen to approach the 

investigation of regularisation in MIT.  

For image reconstruction in MIT, regularisation operators holding a-priori 

information about the object structure and the noise distribution in the data are 

introduced to help the solution of the underdetermined, ill-posed inverse problem. In 

Chapter 2, a detailed numerical analysis was presented, which demonstrates how such 

operators tend to filter noise form the data and correlate the solution toward some 

given prior. One of the very classical regularisation approaches in tomography is 
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standard Tikhonov regularisation which uses the identity matrix. This approach 

employs uniform weights to penalise the magnitude of the MIT data. However, due to 

the soft field effect that is typical of MIT, the sensitivity varies spatially and increases 

towards the periphery of the object, hence a common disadvantage associated with 

this operator is that the centre will be largely penalised and the noise will be pushed 

towards the border in the reconstructed image. With the introduction of the so called 

“generalised Tikhonov regularisation” several regularisation operators can be utilised 

with different prior information that suit a particular inspection application. In 

addition to the smoothing 2
nd

 order difference operator the objective in this chapter is 

to investigate three other regularisation matrices with different prior characteristics. 

The benefits and the limitations of such regularisation schemes in the MIT image 

reconstruction are examined for two low conductivity applications. The first considers 

the 3D reconstruction of a stroke in a simple target and a realistic shaped head. The 

second consists of inspecting the water fraction in water/oil pipelines via 2.5D image 

reconstruction. Three flow regimes are approached: stratified, annular and bubble 

flows.  

 

5.2 Regularisation priors  

Regularisation priors are numerical tools for treatment of ill-conditioned inverse 

problems as those encountered in EIT or MIT. They can provide probabilistic 

information about the conductivity values of the image elements and their correlation. 

Several regularisation operators have been proposed in the literature. Most commonly 

applied priors in electrical tomography include: smoothing operators, edge preserving 

priors and structural information based priors. Smoothing operators assume the 

conductivity distribution in the object is largely smooth. Hence they penalise large 

changes in the conductivity values of elements losing information about internal 

material boundaries and edges. In EIT, Hua et al [122] implemented two forms of 

smoothing operators: first (Neighbouring matrix) and second order Laplacian 

operators and concluded the second order operator is most effective in filtering noise 

at the expense of smoothing the image. Another regularisation approach proposed by 

Cheney et al [123] called NOSER consists of scaling the uniform weights of the 

identity matrix with the diagonal elements of the sensitivity coefficient matrix such 
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that [ ] T

, ,i i i i
 =  R J J . The image conductivity elements are then regularised using 

different weights according to their associated sensitivities. This approach can be 

more effective than the identity matrix regularisation since it accounts for the soft 

field nature of MIT where the sensitivity is a function of position. Dai et al [124] 

proposed other variants of NOSER by taking the exponent (p) of the sensitivity 

diagonal elements giving ([ ] T

, ,

p

i i i i
 =  R J J ). The choice of the exponent is heuristic 

compromise between reducing the noise in the centre (p = 0) or in the boundary (p = 

1). On the other hand, Casanova et al [125] demonstrated an edge preserving 

technique [126] using linear image reconstruction, which can be used in  MIT for 

detecting large variations in conductivity. Vauhkonen et al [42] proposed a 

regularisation method which takes into account prior information about the 

conductivity distribution in the object. 

In this chapter, the performance of four regularisation methods is investigated using 

the LM image reconstruction algorithm. These priors are described below: 

NOSER: 

( )
1 2

diag diag( )R J JT

k k=  

Second order Laplacian prior:  

( , )

T

for  = 

| 1 for  and are neighbours

0 otherwise

L N

R L L

n

u v

u v

N u v

Σ


= = −



=

 

Edge preserving regularisation:  

2

(1, 1) for two voxels  sharing a facet 

0 otherwise 

*

1

* ( )*

L

G L σ

E
G

R L E LT

j i

diag

β

−
= 


=

=
+

=

 

Subspace regularisation method: 

A learning set of conductivity distributions is constructed:  
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( )1 2
, ,...,σ σ σ σ

Q
=  

Given that the approximation for the correlation matrix corrσ can be calculated as:  

1

Q
T

i i i

i

σ ζ
=

=∑corr σ σ  

We assume the relative probabilities for the conductivity distribution are uniform, 

Hence:  

1 T

i iQσ
−=corr σ σ  

Having the matrix corrσ, the eigenvalues σi (note that σi are different from the 

conductivity vectors σi) and the corresponding eigenvectors 
iυ  are computed.  

A subspace Kυ is constructed by taking the first M eigenvectors corresponding to the 

largest eigenvalues.i.e. { }|1 ,iK span i M M Qυ υ= ≤ ≤ 
  

The orthogonal projector onto the subspace Kυ  can be written as P = UU
T
, where  

( )1,..., N M

Mυ υ ×= ∈U R  

T

T

= −

=

L I UU

R L L
 

 

5.3 Simulations 

A series of simulations has been devised to test the LM method and analyse the 

performance of the regularisation techniques for two low conductivity applications: 

 

5.3.1 Imaging cerebral stroke 

In a first test, the application of the proposed regularisation priors within the LMM 

was tested with a simple image reconstruction problem, the dimensions and the 

electrical properties of which have already been described in section 4.2.2. The 

problem (Figure 5.1 (a)) consists of a cylindrical background assigned a conductivity 

of 0.16 Sm
-1

 and a small perturbation with conductivity of 1.1 Sm
-1

, altogether 

crudely approximating a head with white matter and a stroke modelled as blood. This 
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seems a reasonable starting point to enable us to explore the regularising properties of 

the priors before moving to structures which are realistic of the actual problem.  

Figure 5.1:  a) Phantom (P1) and b) the MIT system model 

For image reconstruction the 16 channel MIT system Mark 1 (Figure 5.1(b)) 

presented and employed in Chapters 3 and 4 was used to simulate the data used for 

inversion. A dataset of 2034 induced voltages was compiled from 9 planes of 

projections achieved by scanning the object at different equally spaced positions (20 

mm displacements) in the vertical (z axis) direction. This process was carried out to 

obtain good sensitivity around the 3D object volume and increase the size of 

independent data. For mesh generation, the object was discretised into 5056 cubic 

voxels, of which 96 elements were allocated in the perturbation. The operating 

frequency was set to 10 MHz. The data was disturbed by adding a voltage data 

dependent Gaussian white noise with 1% variance and zero mean giving an SNR of 

40 dB. This noise is assumed to model the integral of various possible sources of 

noise namely: instrumentation noise, positioning and geometrical inaccuracies and 

numerical discretisation errors. The initial guess was obtained using a direct (single 

step) inversion of the data (see algorithm Figure 4.7) using the 2
nd

 order Laplacian as 

a regularisation matrix and a regularisation parameter 
0

λ  chosen to be 10
-8

.  In the 

iterative procedure, the damping parameter was initialised to γ(k=0) = 1×10
-3

 λ0  (k is the 

iteration index) and then has been dynamically varied in every iteration according to 

the gain in the reduction of the objective function value compared to that of the 

quadratic model function. The amount by which the damping parameter is increased 

  
                              a)                                 b) 
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or decreased follows the Levenberg Marquardt updating strategy described by (4.23). 

The regularisation parameter λ  was kept constant. 

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

100

75

50

25

0

-25

-50

-75

-100

S/m

0

0.1

0.2

0.3

0.4

mm
m

m

 

 

100 75 50 25 0 -25 -50 -75 -100

100

75

50

25

0

-25

-50

-75

-100

S/m

0

0.1

0.2

0.3

0.4

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

100

75

50

25

0

-25

-50

-75

-100

S/m

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 
                       a)                       b)                          c) 

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

80

60

40

20

0

-20

-40

-60

-80

S/m

0

0.1

0.2

0.3

0.4

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

80

60

40

20

0

-20

-40

-60

-80

S/m

0

0.1

0.2

0.3

0.4

mm

m
m

 

 

100 75 50 25 0 -25 -50 -75 -100

80

60

40

20

0

-20

-40

-60

-80

S/m

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 
                      d)                      e)                       f) 

Figure 5.2:  Case of simple phantom (one perturbation (1.1 Sm-1) in a homogenous background 

(0.16 Sm
-1

)).  Reconstructed images using a)-d) NOSER, b)-e) 2
nd

 Order Laplacian, c)-f) Edge 

preserving regularisation.   

Figure 5.2 shows horizontal and vertical slices of the 3D reconstructed object using 

the LMM algorithm with three types of regularisation, namely NOSER, 2
nd

 order 

Laplacian matrix and edge preserving prior. The results show the LMM algorithm 

with the NOSER and the 2
nd

 order Laplacian operator produced more or less similar 

quality of reconstruction, where both were able to recover the perturbation, but at the 

expense of some spatial artefacts. In addition, the perturbation is fairly well positioned 

within its original boundaries (dashed line) but with noticeable smoothing. On the 

other hand, we can clearly see the effect of edge preserving regularisation in marking 

the edges of the perturbation while smoothing the background region. However, such 

features of this prior also undesirably led to more or less recovering the edges of an 

artefact on the top left hand corner.  

In medical applications, a priori information about the internal anatomical structure of 

the head tissues and the initial state of the stroke may become available after a single 

high resolution MRI or CT scan.  In this case, this structural prior information can be 

utilised and MIT may be considered for monitoring changes in the condition of the 
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stroke. Vauhkonen et al [42]  presented the so called “Sub-space regularisation 

method (SSRM)” which employ anatomical structural information and probabilistic 

techniques, and has demonstrated its application for imaging of the thorax. Here, 

SSRM is implemented in MIT for head imaging and is used to predict the current 

state of the stroke as part of the continuous monitoring. The advantage of SSRM is 

that it is capable to produce a reasonable estimate of the material distribution even 

when the employed prior information is incompatible to some extent with the true 

internal structure of the object. This is because the minimisation process is not 

entirely biased to the prior information within the SSRM operator, but is also 

dependent on adjusting the reconstructed model to fit the actual measured data. 
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c) d) 

Figure 5.3:  Case of simple phantom (one perturbation (1.1 Sm
-1

) in a homogenous background 

(0.16 Sm
-1

)). a) Minimal state of the perturbation, b) Maximal state of the perturbation, c) 

Reconstructed perturbation from noise free data, d) Reconstructed perturbation using SSRM 

from data with 1% added random noise. 

A brief description of the SSRM algorithm is shown in section 5.2, and for more 

details see [63]. Given the initial state of the perturbation by Figure 5.3 (a) let us 

assume the expected maximal state (development) of the perturbation is depicted by 

Figure 5.3 (b). The actual state of the perturbation to be reconstructed at the current 

time is shown by the dashed frame. A learning set of 21 possible conductivity 

distributions was constructed to simulate different states of the perturbation randomly 

chosen between the minimal and maximal states. Using principal component analysis, 
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the first 5 eigenvectors in the SVD of the covariance matrix were used in the 

computation of the regularisation matrix.  The initial guess for image reconstruction 

was assumed to be a homogenous background (white matter: σ = 0.16 Sm
-1

) and the 

initial regularisation parameter 
0λ  was chosen to be 1×10

-12
.  Figure 5.3 (c) and (d) 

shows the reconstructed images without and with noise added to data. The method 

was able to recover the actual boundaries of the current state of the perturbation and 

was able to handle noise effectively.  

 

Figure 5.4: Simulated Target (Head and stroke) 

In a second simulation arrangement, a model with the shape of a head was employed. 

A spherical layer crudely approximating the CSF was added together with a 

rectangular perturbation simulating the abnormality (Figure 5.4). The head was 

meshed into 9012 cubic voxels of 7.5 mm
3
 resolution, which were distributed as 

(white matter: 7900, CSF: 1008, stroke region: 104) elements. The internal tissues 

were assigned conductivities as (white matter: 0.16, CSF: 1.5, stroke region: 1.1) Sm
-

1
. Note the CSF conductivity has been reduced to 1.5 Sm

-1
 from the value reported in 

the literature [26] of 2 Sm
-1

 in order to compensate for the increased thickness caused 

by mesh resolution. Figure 5.5(a) shows a sagittal plane view of the original image. 

For image reconstruction, the starting image was obtained using a single step 

inversion with 2
nd

 order Laplacian operator and regularisation parameter λ0 = 1×10
-9

. 

Using the LMM algorithm images were reconstructed from noise free data using 

NOSER, 2
nd

 order Laplacian and edge preserving priors as displayed by Figure 5.5 

(b)-(c) and (d) respectively. The results show the LMM algorithm with the cited 

regularisation mechanisms produced poor image reconstruction. The reason is the 



 185 

signal response is dominated by the signal contribution of the CSF located around the 

periphery of the head with the highest conductivity. It can be deduced that none of the 

a-priori information featuring smoothing or edge preserving priors proves to be useful 

to recover the stroke region.  
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                                c)                                  d) 

Figure 5.5:  Case of head with two tissues (white matter: 0.16,CSF: 1.5) Sm-1 and stroke region 

(blood: 1.1) Sm
-1

. a) True image. Reconstructed conductivity distribution using b) NOSER, c) 

2nd order Laplacian, d) Edge preserving regularisation from noise free data.  

The image reconstruction procedure was repeated using SSRM for regularisation. The 

initial conductivity distribution was assumed to be uniform (0.16 Sm
-1

) and λ0 = 

1×10
-12

. A series of 21 conductivity estimates simulating random contours of stroke 

region were taken between the minimal and maximal states of the stroke depicted by 

Figure 5.6 (a-b). Figure 5.6 (c) shows the SSRM was able to produce reasonable 

reconstruction of the current status of the stroke. Hence, this regularisation method 

proves to be promising for image reconstruction of the stroke region in an 

anatomically realistic head. To further test the method’s robustness, an extra tissue 

simulating the SCALP (skin and muscle) was modelled with conductivity of 0.6 Sm
-1

. 

Two different states of the stroke region have been attempted as shown by Figure 5.7 

(a) and (b). In case (a) this time a learning set of 84 conductivity estimates was 

constructed, which simulates 21 different states and 4 different conductivities of the 
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stroke region.  In this example the selected conductivities of the stroke region were 

calculated based on different percentages of blood in the affected white matter 

according to Table 5-1. For case (b) random noise with 1 % of rms value of the 

absolute voltage was added to the measurement data. Figure 5.7 (c) and (d) show the 

actual state of the stroke has been reasonably reconstructed when compared with the 

true distributions. 
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c) 

Figure 5.6:  a ) Minimal state of the stroke, b) Maximal state of the stroke, c) Reconstructed 

stroke conductivity from noise free data. 

  
a) b) 

  

c) d) 

Figure 5.7:  Case of head with three tissues (SCALP: 0.6, CSF: 1.5, white matter: 0.16) Sm
-1

 and 

stroke (blood: 1.1) Sm
-1

. a)-b) True images. c) reconstructed image from 84 conductivity and 

state estimates-d) reconstructed image from noise contaminated data (SNR = 40 dB) 
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Table 5-1: Conductivity estimates of the stroke region  

 70% blood and 

30% white 

matter 

80% blood and 

20% white 

matter 

90% blood and 

10% white 

matter 

100% blood 

Stroke (σ )Sm-1 
0.81 0.91 1 1.1 

 

5.3.2 Imaging oil / process water flow 

The application of MIT for monitoring the water fraction in multiphase flows has 

been reported in [35, 127]. Recently, work in partnership with the Universities of 

Swansea and Glamorgan conducted experimental and simulation studies using a 16 

channel MIT system to attempt imaging the saline water component in phantoms 

representing idealized conductivity distributions of stratified, annular and bubble flow 

regimes [57]. Two dimensional absolute conductivity reconstructions of cross sections 

of the phantoms were performed using linear Tikhonov and Landweber methods. 

Results showed that the isolated regions of conductivity in stratified flow regime were 

reasonably represented in the images; however local variations in conductivity found 

in annular and bubble flow types were difficult to resolve. This work concluded that 

the use of linear optimization algorithms in image reconstruction of the flow type  

might be a convincing reason to justify the inability to produce reasonable images for 

these types where the flow structures involved low conductivity features bounded by 

high conductive saline water. From the hardware side, it was later found the noise 

produced by the employed tomography system and in particular from the geometrical 

and positioning errors was not good enough to meet the low noise requirements of an 

absolute imaging algorithm. Consequently, two questions needed to be answered, 

which are the theme of this chapter: 

a) Can an absolute nonlinear image reconstruction algorithm be capable of 

recovering the internal structure in annular and bubble flow regimes using 

simulated data? 

b) Will it be possible to generate a fairly clean data from the new instrumentation 

system (Mark 2a) so as a successful absolute image reconstruction can be 

obtained? 
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In dealing with the first question, three phantoms representing stratified, annular and 

bubble flow models were simulated as shown in Figure 5.8 I)-II)-III). The simulated 

pipes (20 cm diameter and 50 cm depth) were filled with process water with 

conductivity of 5 Sm
-1

 and oil was assigned an infinitesimal conductivity of 0.013 Sm
-

1
. For continuous monitoring of industrial flow applications fast image reconstruction 

is required, hence one projection plane of sensor array was used to acquire data and a 

nonlinear 2.5D image reconstruction was considered. In this case, the cross sectional 

conductivity distribution on the sensor array plane was assumed to be invariant along 

the pipe axis. Hence, images are reconstructed in 2D and the forward problem is 

solved for the full 3D model. The Jacobian matrix was calculated by summing the 

sensitivity coefficients along the pipe axis. The coils were sequentially driven with 

unit excitation at a frequency of 1 MHz. This frequency was found suitable in order to 

have an efficient field penetration across the pipe volume and to reduce the impact of 

the skin effect. Images were reconstructed from noise free data and data with 1 % 

added random noise. The LM method was used to reconstruct the simulated data. For 

the stratified and the annular flow, the regularisation parameter λ was chosen 10
-9

 and 

for the bubble flow 10
-10

 was found suitable. Bear in mind the regularisation matrices 

for the NOSER and the edge preserving priors are normalized to the maximum value. 

Figure 5.8 below shows the images for three flow types reconstructed with three 

regularisation priors, NOSER, 2
nd

 order Laplacian matrix and edge preserving 

regularisation. Results show image reconstructions with all regularisation priors were 

successful in recovering the oil phase within the conductive process water, at the 

expense of some artefacts and some smoothing effects. For the stratified flow, the 

images were almost identical using the different regularisation priors. Regularisation 

using 2
nd

 order Laplacian and NOSER produced better image reconstruction for the 

annular flow, whereas the edge preserving method outperformed its other counterparts 

in the case of the bubble flow. In order to further process the images and remove the 

smoothing effect, thresholding was applied and the second set of results is also 

depicted in Figure 5.8. Overall it can be deduced that nonlinear absolute image 

reconstruction with the three priors was successful in producing reasonable estimates 

of the conductivity distribution in all the flow types considered. 
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Figure 5.8:  Non linear 2.5D  image reconstruction of idealised models of three flow regimes: I) 

stratified, II)Annular and III) bubble. a)-b)-c)-d)-e)-f)-g)-h)-i) are reconstructed from noise free 

data. a')-b’)-c’)-d’)-e’)-f’)-g’)-h’)-i’) are reconstructed from data with 1% added random noise. 

 

5.4 Practical experiments  

Recall from [57] on the initial MIT studies for oil/water pipeline inspection, stratified 

type flow was not a major issue and basic linear type image reconstruction algorithms 

produced reasonable results. Hence, in this practical study the other two flow types 

(i.e. the annular and the bubble flow regimes), which constituted a real challenge, 

were approached. In order to overcome this challenge, a new 14 channel tomography 

system (Mark 2a) was developed by Glamorgan University, South Wales. An obvious 

difference between this system and the Mark 1 coil arrays is that in the former the 

excitation and receiver coils are not coaxial, instead they are arranged in two planes 

with one above the other. The rationale behind this arrangement is to decrease the 

empty space primary linkage and hence increase the dynamic range of the secondary 

field which carries information about the target. The system is also reported to 

achieve a measurement phase noise of less than a 1 m
0
 for a time constant of 1 s for 

frequencies in the range 1-14 MHz [128]. This is compared to 17 m
0
 recorded with 

the previous (Mark 1) system whose electronic design and noise specification can be 

found in [129]. 
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            a) 

 

                        b) 

Figure 5.9:  MIT tomography systems a) 16 channel Mark 1 b) 14 channel Mark 2a, courtesy 

University of Glamorgan 

In an attempt to create a representation of an annular flow regime, a pipeline phantom 

(internal diameter 194 mm and height 494 mm – see Figure 5.10) was placed 

vertically and an annulus of oil/gas was created by inserting one plastic cylinder filled 

with tap water within the pipe. The remaining volume of the phantom was then filled 
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with saline to a height of 494 mm. Because the experiment has been conducted with 

an operating frequency of 10 MHz, a conductivity of about 0.1 Sm
-1

 has been used for 

the ‘seawater’ in order to keep the skin depth large so that the quasi-static model will 

be accurate. This choice of conductivity was suggested by our partner, with the intent 

to rerun the test with the conductivity of 5 Sm
-1

 typical of sea water at a later stage in 

the future, and obviously with a lower operating frequency (e.g. 1 MHz). For the 

oil/gas, the conductivity of the tap water was measured and found to be around 0.01 

Sm
-1

.  Seven measurements were taken for various representations of annular flow by 

choosing different diameters and positions for the oil/gas annulus cylinders. Table 5-2 

explains the geometrical arrangement for each measurement set carried out.  

 

Figure 5.10: Schematic of the experimental arrangement  

For the bubble flow regime, a water continuous phantom representing oil and/or gas 

bubbles was constructed by inserting hollow cylinders of diameter 36 mm and height 

494 mm filled with tap water into the pipe phantom which was filled with saline (0.1 

Sm
-1

) to a height of 494 cm (Figure 5.10). The cylinders were inserted according to a 

template which allowed for 8 different positions, labelled A to H, shown in Figure 

5.11.  Four different combinations of cylinders were placed within the pipe 

representing mainly unsymmetrical configurations. Table 5-3 describes the different 

bubble flow tests performed.  

494 

194 

Screen 

Saline tank 

Tap-water-filled Perspex pipe 

standing in tank so as to 
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For all the experiments performed in this study, two measurement sets were taken for 

each case with one measurement set taken with the tank all filled with saline 

(homogenous case) and the second measurement set was collected for when the 

Perspex pipes filled with tap water were inserted inside the tank (Actual case). This 

allows the possibility for difference imaging to be a viable option. 

Given that the tomography system consists of 14 pairs of exciter-receiver coils, the 

Mark 2a should in principle provide 196 measurement data points.  However, because 

of an outstanding fault associated with one receiver channel (Rx3) that was causing 

noticeable drift the measurements associated with such channel were neglected. 

Hence, only 182 data were employed for image reconstruction. The saline tank was 

discretised to a 5 mm
3
 resolution and 2.5D image reconstruction was considered.  To 

recall, this latter assumption infers that the forward problem is computed for the full 

3D tank and the inverse problem is solved in 2D to reconstruct the cross sectional 

plane of the tank which amounts to 1201 unknown conductivity elements or DoFs. 

Now, let us recall the question already posed earlier in the chapter:  

A test was performed involving rotating a tank of saline around the array showed 

large fluctuations (tens of millidegrees) in the measured data. These errors could 

probably be due to non-cylindrical symmetry in the set-up, such as if the tank is not 

quite circular in cross section or if its ends are not machined square. Because these 

errors were reproducible and unavoidable, although the reported electronic noise is 

1m
0
, the geometrical errors associated with the set up were much larger and absolute 

imaging was not a feasible option at this stage.  Hence, difference imaging relative to 

the full tank was tested since such errors can be well cancelled.   
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Table 5-2: Annular flow measurements protocol  

Case Description of measurement 

A 70 mm outer diameter column of ‘oil/gas’ positioned approximately 

centrally in tank = Perspex pipe containing water 0.012 Sm
-1

. 

B Same pipe in tank but moved towards Receiver (Rx10) so that distance to 

wall of tank = 41mm 

C Same pipe but now brought right against the tank’s wall. 

D 110 mm outer diameter column of ‘oil/gas’ positioned approximately 

centrally in tank = Perspex pipe containing water 0.012 Sm
-1

. 

E Same pipe in tank but moved towards Rx10 so that distance to wall of 

tank = 15mm 

F 150 mm outer diameter column of ‘oil/gas’ positioned approximately 

centrally in tank  

G Same pipe but now brought towards Rx10. Distance to wall of tank = 4 

mm. 

 

Table 5-3: Bubble flow measurements protocol  

Case Description of measurement 

H 2 tubes, A and C 

I 2 tubes, A and H 

J Now just 4 tubes, A, C, H and F. 

K 8 tubes, A-H, all in place 
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Figure 5.11: Position template for oil/gas bubble cylinders 

Figure 5.12 and Figure 5.13 present the images reconstructed from the measurement 

data corresponding to the annular and the bubble flow regimes respectively. For 

image reconstruction, a single step Tikhonov method (column I) and iterative LM 

reconstruction algorithm (column II) were tried.  In the inversion, a 2
nd

 order 

Laplacian operator was used to obtain a regularised solution. In order to determine the 

amount of regularisation, Tikhonov solution was obtained by choosing the 

regularisation parameter λ = 10
-2

.  For the LM method, the regularised Tikhonov 

solution is chosen as the first guess and the initial value for the dynamic damping 

parameter is selected as γ0 = 10
-3

 λ. Image reconstruction is repeated for different 

regularisation parameter values within the range [10
-1

, 10
-6

]×λ0  to achieve best 

optimised reconstructed solution. Further regularisation was implemented in the 

Tikhonov and within the LM iterations by constraining the reconstructed conductivity 

maps to lower and upper bounds. At the lower end, non-negativity bound was applied 

while at the upper bound conductivity elements were restricted assuming the 

difference between the saline and the tap water conductivities are a priori known. The 

sensitivity maps were calculated relative to homogenous full saline tank.  

 

E 
F 

G 

D 

A 
B 

C H 

Rx11 

194 

36 



 196 

A 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.01

0.02

0.03

 mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.01

0.02

0.03

 
 I II 

B 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0.01

0.02

0.03

0.04

 mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.01

0.02

0.03

0.04

0.05

 
 I II 

C 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 
mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 

 I II 

D 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 
 I II 

E 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 
 I II 



 197 

F 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 

 I II 

G 

mm

m
m

 

 

-100-75 -50 -25 0   25  50  75  100 

100 

75  

50  

25  

0   

-25 

-50 

-75 

-100

S/m

0

0.02

0.04

0.06

0.08

 
 I II 

Figure 5.12: 2.5 D image reconstruction of idealised models of annular flow regimes from real 

experimental data using difference imaging relative to full tank, I: Single step, II: Iterative 

method 

From Figure 5.12, the following results can be observed:  

• The tap water annulus representing the oil phase was fairly reconstructed by the 

single step Tikhonov method for cases A to F, and the linear iterative LM method 

appear to be able to improve the regularised Tikhonov solution, by reducing the 

smoothing and increasing the sharpness of the annulus feature.  

• The centralised tap water annular test cases (A, D and F) were reconstructed better 

than the annular cases shifted toward the periphery. For instance, as the 70 mm 

annulus is brought near to the tank edge (A.B and C (I-II)), the reconstructed 

annulus become increasingly distorted toward the centre of the tank.  

• A quantitative comparison shows as the annulus is shifted toward the edge, the 

conductivity of the reconstructed tap water annulus grow near the true realistic 

value.  

• By increasing the diameter of the tap water annulus from 70 mm to 150 mm, 

noticeable artefacts appear as the low conductive annulus grows closer to the tank 

edge. 
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• The images also show a common artefact present in all cases near the channel 

Rx3. Its presence can be justified by the lack of eddy current information around 

that region caused by dismissing the Rx3 data from the reconstruction data set.  
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Figure 5.13: 2.5D  image reconstruction of idealised models of bubble flow regimes from real 

experimental data using difference imaging relative to full tank, I: Single step, II: Iterative 

method. 
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With regards to the bubble flow reconstruction test cases, the following observations 

can be drawn from Figure 5.13:  

• Again fair reconstruction of some test cases was achieved with both the direct 

Tikhonov inversion and the LM algorithms, especially for cases H and J. Similar 

observation made for the annular flow regarding the improvement made by the 

LMM over the basic single step Tikhonov applies here.  

• Test cases involving bubbles located in the central region appear to go more or 

less lost in the reconstructed images (I, J, K), which can be justified with a 

compromise in the sensitivity in the central region compared to the periphery. The 

employed sensitivity maps are computed for a homogenous background; hence 

they are the cause of such problem and cannot be suitable for recovering features 

in the centre especially if these are accompanied with bubbles near the edge.  

• As the number of bubbles increases, it becomes difficult for the employed 

algorithm to discriminate between the reconstructed bubbles as can be seen in case 

K. Again, a number of factors can be associated with this difficulty, of note the 

sensitivity becomes increasingly unrepresentative of the true distribution, the a-

priori information assuming smooth variations in the conductivity turn to be not 

suitable and the number of independent data is much smaller than that of the 

unknown conductivity elements.     
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6 Frequency difference imaging of cerebral stroke 

 

6.1 Introduction 

Frequency difference imaging is another differential imaging technique that can be 

applied in MIT to reconstruct changes in the conductivity distribution inside a test 

object. While state difference imaging functions by mapping local conductivity 

changes of interest, relative to a given conductivity background (i.e. a reference state),  

frequency difference imaging exploits the spectral behaviour of the materials inside 

the object in order to map the conductivity changes from measurements taken at 

different frequencies.  

In medical imaging of cerebral stroke, state difference imaging cannot be applied 

since it requires one of the two datasets to be taken from the patient prior to the 

formation of the stroke. Clinical applications where state difference imaging can 

practically be useful could include monitoring lung activity by detecting conductivity 

changes between inspiration and respiration. Therefore, since all biological tissues 

have conductivities which are frequency dependents, frequency difference imaging is 

the only applicable differential imaging method for detecting conductivity changes 

related to the stroke. Nevertheless, initial reports on stroke imaging using MIT 

approached the state difference technique mainly to investigate the feasibility of 

detecting the stroke. For instance, Merwa et al [101] simulated MIT measurements at 

100 kHz on a human brain model comprising three tissue types, namely CSF, grey 

matter, white matter, and a spherical perturbation modelling the stroke. Difference 

images were reconstructed. Similar study was conducted by Zolgharni et al [130] 

using a more realistic head model consisting of 7 tissue types. Reconstructed images 

from phase changes at 10 MHz showed a large peripheral stroke  

(49 cm
3
) can be recovered from data contaminated with 17 m

0
 phase noise, which is 

characteristic of the Mark 1 MIT system employed in this thesis. In other modelling 

papers, Merwa et al [10] and Dekdouk et al [131] continued using the same technique 

to evaluate the sensitivity of the MIT coil channels to the stroke, and hence estimate 

the required noise level of MIT systems needed for possible detection of the lesion. 

Based on the noise level characteristics obtained from MIT systems they employed, 
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results showed centrally located strokes with radii of 20 mm and 27 mm, respectively, 

could be detected. Early work on stroke imaging using differential multi-frequency 

MIT measurements was presented in Brunner et al [100] who conducted a simulated 

and an experimental study to reconstruct the conductivity spectra of a vegetable 

material, which represents a perturbation, immersed inside a saline tank and compared 

it against parametric conductivity spectra obtained from a Cole model. Results 

showed good agreement between reconstructed and real data inferring that MIT 

spectroscopy and possibly frequency difference MIT can be a promising road to take 

toward detecting the stroke in a real human brain.  

For image reconstruction, Brunner et al [100] derived a linear formulation relating the 

change in the conductivity distribution to the difference between the data obtained at 

dissimilar frequencies. This formulation is given below:  

1 2

2

1
f f

2

f
f

∆
  = −   

  
D D D  (6.1) 

( )
1

T T

Ref Ref Ref
∆ ∆σ J J R J Dλ

−

= +  (6.2) 

 

where D m∈�∆  is the vector of the difference between the induced voltages 
1f

D  and 

2f
D  at the test frequencies f1 and f2. ∆σ

n∈�  are the reconstructed conductivity 

changes.  
Ref

m n×∈J �  denotes the Jacobian at the reference conductivity map σRef.  

This formulation assumes the measurement signals are linearly proportional to the 

square of the frequency, hence inferring that the sensitivity is quadratic dependent on 

frequency. This assumption is only valid in situations where the penetrating depth of 

the electromagnetic field is much larger than the object dimensions. Brunner showed 

that reconstructed difference images based on this formulation exhibit a fairly well 

localised perturbation but with noticeable smearing and smoothing caused by the 

linear nature of the algorithm. In what follows, this formulation will be further tested 

in MIT on simple models with a single perturbation as well as on phantoms 

approximating the realistic structure of a head with a stroke region.  
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6.2 Simulations 

6.2.1 Simple cylindrical model with perturbation  

The first test considers the image reconstruction of a single perturbation placed in 

different positions within a homogenous conductive background. The background is 

cylindrical with 200 mm diameter and 160 mm height and has been assigned a 

conductivity of white matter. The inner perturbation is a small cylinder of 40 mm 

diameter and 40 mm height and is assumed to have the conductivity of blood.  The 

properties assumed for white matter and blood are given in Table 7.1. Four test cases 

have been considered namely L1-L4 as shown in Figure 6.1. The simulated data are 

generated using the Mark 1 MIT setup described earlier in section 3.3. From this 

image reconstruction example, we intend to test the ability of the frequency difference 

formulation to recover the perturbation within the homogeneous region in 

symmetrical and unsymmetrical arrangements.  

 

    

    

(H = 0, V =  0) mm 

L1 

(H = 50, V =  0) mm 

L2 

(H = 0, V =  -40) mm 

L3 

(H = 50, V = -40) mm 

L4 

 

Figure 6.1:  Positions of the perturbation phantoms. H and V correspond to the horizontal and 

vertical displacements of the perturbation away from the centre of the phantom. 

For frequency difference imaging, the measurements are simulated at frequencies of 1 

MHz (reference frequency) and 10 MHz. In this range, the change in the conductivity 

of blood is about 5 times higher than that of white matter. Thus, from a theoretical 

Blood 

White matter 
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point of view there is a chance for frequency difference imaging to recover the blood 

perturbation. With regard to the choice of the frequency range, we are restricted with 

frequencies up to 10 MHz as an upper bound limit since the frequency formulation 

considered assumes the sensitivity map does not change with frequency, which is only 

true for weak perturbations of the primary magnetic field. In Chapter 3 (sections 3.6 

and 3.6.2) we have investigated the error due to this approximation and concluded the 

assumption will not hold valid for frequencies larger than 10 MHz. On the other side, 

the current system limitations with regard noise level does not facilitate going below 1 

MHz because the received signals becomes too small. So far, we have not developed 

models taking into account the change of the sensitivity with frequency. 

Table 6-1: Conductivities of blood and white matter tissues in the frequency range 100 k-100 

MHz (From [26]) 

 100 kHz 1 MHz 10 MHz 100 MHz 

σ(Blood) Sm
-1

  0.7 
 

0.8  1.1  1.2  

σ(White matter) Sm
-1

 0.08  0.1  0.16  0.32  

 

Simulated voltages were generated by solving Maxwell’s equations using the custom 

forward program that has been presented in Chapter 3. Nine equally spaced planes of 

measurements are simulated to form each dataset. Position of the planes relative to the 

background is shown in Figure 6.2, where the central axes of the of coils lie on each 

plane. It is also assumed that the location of the coil arrays relative to the shielding 

screen remains fixed. In total, 2304 induced voltages were collected for each 

frequency. 

 

For image reconstruction, the phantoms were discretised into cubic voxels with size 

of 10 mm, resulting in total 5056 unknown elements (i.e. conductivities) of which 48 

are allocated in the perturbation. In order to simulate modelling errors and 

instrumentation noise picked by the receiver coils, white noise was simulated and 

added to the obtained simulated voltages. In this respect, two ways of adding the noise 

were considered:  
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Figure 6.2: Position of the measurement planes relative to the background cylinder (d = 20 mm) 

 

Case 1: 

White noise with 0.01 % of the rms value of the induced voltages simulated at 10 

MHz was added to the data at 10 MHz and at 1 MHz. This approach assumes noise 

does not scale with frequency and is rather a pessimistic approach since the induced 

voltages at 1 MHz will be over contaminated due to the quadratic dependence of the 

data with frequency.  

Case 2: 

White noise with 1% of the rms value of the difference between the two datasets of 

induced voltages at 10 MHz and 1 MHz is added to the difference set. This is quite an 

optimistic method which considers the noise to scale perfectly with frequency. 

 

6.2.2 Head model with a peripheral stroke 

A model of the head (Figure 6.3) consisting of 7 biological tissues (Scalp, Skull, CSF, 

grey matter, white matter, spinal/optic nerves, and eye balls) was considered. The 

tissue conductivities were obtained from [26].  For the forward and inverse problems, 

the head was meshed into 9012 cubic voxels with a side length of 7.5 mm, of which 

119 elements were occupied by the stroke. Hence, the simulated stroke has a volume 

of about 50 ml. The vector of measurement voltages has been constructed from 11 

planes of projections interspaced with 20 mm and arranged parallel to each other 

along the z axis, i.e. the axis of the circular coil array, amounting to 2816 induced 

d 

Background 
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voltages. This data was contaminated with Gaussian noise synthesized in a similar 

fashion to the previous problem.  

 
 

Figure 6.3:  A model of a head with a stroke. 

 

Image reconstruction was carried out using single step Tikhonov method to generate 

the initial guess. Then, this guess was fed into a linear scheme using the LM method 

to produce an iterative estimate of the conductivity distribution.  For regularisation, a 

2
nd

 order Laplacian matrix taking the 2
nd

 order derivative between neighbouring 

voxels was employed.  

6.3 Results and Discussion 
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Figure 6.4:  Frequency difference images of reconstructed ∆σ from simulated data with noise 

(case 1). Four different positions of the perturbation: L1-L4. The Dotted line shows the true 

boundaries of the perturbation. Test frequencies: 10 MHz – 1 MHz   

Figure 6.4 shows the reconstructed images of the conductivity change ∆σ from the 

differential measurements taken at the test frequencies of 1 MHz and 10 MHz. The 

pictures display the sagittal (right column) and the transversal (left column) cross 

sections of the cylinder, which are selected so as they contain the centre of the 

perturbation. The cases L1-L4 for the different positions of the perturbation are 

distributed over the rows. The results show the perturbation was recovered in cases L2 



 207 

and L4, with fair positioning but with considerable smoothing. Quantitatively 

speaking, the perturbation was recovered with a maximum that is about 4 times 

smaller than the true value.  These negative aspects related to the low resolution and 

poor convergence of the reconstructed images are, to some extent, caused by the 

linear nature of the reconstruction algorithm. With a nonlinear reconstruction 

algorithm that allows the search direction and the step length to be optimized a further 

improvement can be achieved. However, it is not now clear how to synthesize such an 

algorithm in the framework of differential multi-frequency reconstruction. In case L3, 

the perturbation has been recovered, but has been shifted away from its original 

boundaries towards the edge. Lastly, the reconstruction completely failed in case L1. 

Hence, even with a simple model of a cylindrical homogenous background and a 

perturbation, it is unlikely to recover a perturbation in the centre than if it is near the 

edge. This conforms to a classical observation in MIT that the central regions suffer 

from low sensitivity. Therefore, it can be deduced that it would be impossible to see a 

stroke feature in the centre with such linear algorithm for more realistic head 

phantoms. The reconstructed data included random noise of 0.1% of the rms value of 

the data at 10 MHz, which had been added to the data at 10 and 1 MHz. This infers 

the data at 1 MHz is more disturbed than 10 MHz, with computed SNRs of 40 and 80 

dB respectively. The second set of images reconstructed in Figure 6.5 corresponds to 

the 2
nd

 case in which 1% of random noise was added to the difference data, which 

assumes noise scales with frequency. More or less similar observations can be made 

on the results shown below, except that a slight improvement on the reconstructed 

images can be observed in cases L2 and L3.  
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Figure 6.5:  Frequency difference images of reconstructed ∆σ from simulated data with noise 

(case 2). Four different positions of the perturbation: L1-L4. The Dotted line shows the true 

boundaries of the perturbation. Test frequencies: 10 MHz – 1 MHz 
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Figure 6.6:  Transversal a) and Sagittal b) cross sections of the true difference conductivity 

distribution ∆σ between the test frequencies 1 MHz and 10 MHz 

Figure 6.6 (a) and (b) depict pictures of the transversal and sagittal cross sections of 

the head respectively illustrating the conductivity difference between the maps 

estimated at 1 MHz and 10 MHz.  Figure 6.6 (b) also shows a peripheral stroke 

modelled as blood clot which exhibits the largest conductivity change estimated as 0.3 

Sm
-1

. Figure 6.7 (a) shows the corresponding reconstructed image with the single step 

Tikhonov formulation, where it is clear the stroke was not recovered. Instead, the 

region occupied by the neck, which consists of the scalp, appears with a larger 

reconstructed conductivity and includes an artefact with a conductivity of about 0.2 

Sm
-1

. As can be seen from Figure 6.6 (a-b), the scalp (muscle) exhibits a considerable 

conductivity change (∆σSCALP/Muscle = 0.12 Sm
-1

) after the stroke (∆σStroke = 0.3 Sm
-1

) 

and the eye balls (∆σeye balls = 0.18 Sm
-1

).  In addition, the scalp occupies an enormous 

part of the head and some parts of which are very close to the coil array like the nose 

and back of the head. Consequently, the received signal is dominated by the signal 

from the scalp. In order to reduce this problem, a further regularisation posterior to the 

Newton inversion has been applied, which constrains the scalp to an upper bound 

conductivity value since it is a-priori known that the stroke cannot evolve in parts 

such as the neck, the nose or the mouth. Figure 6.7 (b) shows the results when the 

reconstructed conductivity of the scalp in image (a) is constrained to a threshold of 

0.12 Sm
-1

.  This process subsequently reveals the stroke with a maximum of 0.16 Sm
-

1
 on the exact top left corner of the head.   
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When contaminating the data according to case 2 with 1 % random noise, and 

repeating the same reconstruction procedure, the advantages of constraining the scalp 

can be seen where the stroke emerges clearly from Figure 6.8 (a) to (b). Another 

important remark concerns the way the random noise is added, where in Figure 6.8 (b) 

the stroke is reconstructed better than in Figure 6.7 (b), inferring there is a benefit 

when the noise is scaled (i.e. to be dependent) with frequency. When we follow case 2 

and decrease the noise level to 0.01 %, we improve the SNR from 40 dB to 80 dB, 

which is a figure that has been published in the recent developed MIT system (Mark 

2a) [128] . The corresponding reconstructed image shows the stroke better localised.  

The ability to recover the stroke feature using the single step linear formulation and 

the posterior regularisation can be regarded as an achievement in the sense that a 

stroke with the volume 50 ml was reconstructed from within head model with 

complex shape and multiple tissues. Even with low resolution and poor localisation, 

these results are encouraging since they constitute one of the first reports to 

demonstrate the potential feasibility of image reconstruction of stroke in MIT on a 

head model with an approximation to realistic anatomical structure.  However, clearly 

it would be extremely difficult to achieve such results in practice for the following 

reasons:  

• There will be numerous sources of error that will increase the noise level much 

beyond the applied value, which can be classified into two subsets namely, a) 

geometrical errors, such as positioning errors,  registration of the outer shape 

boundary. b) modelling errors related to discretisation of the head tissues. c) 

Spectral errors which are linked with the quantification of noise with changing 

the applied frequency.  

• A satisfactory representative model of human head would require a very dense 

mesh with a fine resolution. This means a large number of degrees of freedom 

to solve, which will make the linear system of equations very much 

underdetermined. Hence this will accentuate the ill-posedness by increasing 

the condition number and making the system difficult to stabilise.  
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a) b) 
Figure 6.7:  Sagittal images of reconstructed ∆σ from simulated data with added Gaussian noise 

(case 1). a) Single step reconstruction. b) Single step reconstruction with constraining  
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Figure 6.8:  Sagittal images of reconstructed ∆σ from simulated data with added Gaussian noise 

(case 2 with 1% noise). a) Single step reconstruction. b) Single step reconstruction with 

constraining 
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Figure 6.9:  Sagittal images of reconstructed ∆σ from simulated data with added Gaussian noise 

(case 2 with 0.01% noise). a) Single step reconstruction. b) Single step reconstruction with 

constraining. 
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7 Conclusions and Future Work  

 

7.1 Conclusions 

The thesis has approached the image reconstruction problem in MIT for three 

dimensional imaging of, low conductivity materials not exceeding a few Siemens per 

meter.. The investigation constituted a subset of a large EPSRC funded project aimed 

at developing MIT for screening medical and industrial process applications with low 

conductivity profiles. The thesis covered four chief objectives:  

a) Formulate a new fast and memory efficient forward model to make nonlinear 

iterative optimisation of the MIT inverse problem a feasible method to adopt 

in practice.  

b) Investigate the feasibility of detecting cerebral stroke using numerical and 

analytical solutions of the eddy current problem  

c) Implement advanced optimisation techniques equipped with control and 

monitoring tools to further stabilise the MIT ill-posed inverse problem and 

achieve optimum convergence 

d) Investigate different regularisation methods for image reconstruction and in 

particular study their suitability for the medical and industrial process 

applications considered in this thesis.  

e) Conduct further analysis on the feasibility of detecting stroke using difference 

imaging based on multi-frequency measurements.  

Based on the results presented in this thesis, the following conclusions can be drawn: 

With regard to the forward modelling in MIT, a custom forward solver based on the 

impedance method was constructed. In order to efficiently implement the impedance 

method, nodal analysis has been selected among other circuit analysis techniques 

mainly because it requires relatively far less number of equations, and it is suitable for 

analysing three dimensional eddy current problems. In addition, initial testing of the 

impedance method based on this technique with two dimensional structures have 

shown that nodal analysis produces similar results compared to the branch current and 

mesh analysis techniques, which agrees with theory. For modelling 3D objects, 

validation tests involving the computation of the eddy current distribution in a 
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homogeneous conductive sphere subject to magnetic excitation from a single coil 

showed the constructed custom eddy current solver generates results matching those 

of commercial software packages (i.e. Ansoft, COMSOL and TLM) as well as coded 

analytical solution. Furthermore, the custom forward solver adopted a weakly coupled 

field assumption which, for objects of the size of the human head, appeared to be a 

valid approximation for low frequencies up to 10 MHz and low conductivity materials 

in the range of biological tissues (<0.5 Sm
-1

). Using the approximation, the custom 

forward solver exhibited considerable computational efficiency in speed and memory 

demands compared to commercial FEM solvers, which suggested that full 3D 

inversion using nonlinear MIT image reconstruction can be possible.  

With regard to the study on the feasibility of detecting cerebral stroke, results based 

on an analytical evaluation of the induced voltage in an opposite coil pair for a 

multilayer spherical head model showed that a central spherical stroke with 27 mm 

radius could possibly be detected above noise level reported on the Mark 1 prototype. 

This is using absolute imaging and is provided that the background field can be 

perfectly eliminated. From a clinical perspective such a stroke is very large, which 

infers noise levels have to be reduced much below current characteristics in order to 

increase the potential of detecting a central stroke. In a second numerical study on 

examining the effects of systematic errors which are experienced with the Mark 1 

system as well as those related to movement of the head, results showed the signal 

due to a large stroke located near the periphery of a realistic anatomical head is 

comparable to such effects. Exploiting the spectroscopic behaviour of biological 

tissues and performing frequency differential measurements does not cancel such 

errors. Therefore, it can be deduced that system optimisation is required to make MIT 

feasible for stroke detection and calibration of such errors in image reconstruction 

could be helpful.  

The subsequent study was set to implement efficient optimisation techniques to solve 

the MIT inverse problem. A selection of nonlinear optimisation techniques has been 

investigated in MIT namely LMM, DGNM and PDLM. Within the functionality of 

these methods, stability control tools were exploited; namely the damping mechanism 

and the trust region technique.  Performance tests to detect a perturbation in a 

homogeneous background using simulated data contaminated with noise have been 
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carried out to compare the efficiency of these methods against that of classical 

RGNM. From the results, it can be concluded that the LMM and the PDLM offer 

satisfactory stability especially toward the end of the optimisation by converting to 

small step sizes calculated by the steepest descent method. Hence, these two methods 

can be useful to achieve a guaranteed stable solution for reconstruction problems with 

data incorporating large errors. On the other hand, DGNM provided finer 

convergence compared to its counterparts and requires the specification of a lesser 

number of parameters. However, this method does not employ the steepest descent 

method. Hence, it may become unstable and cannot be guaranteed to remain near the 

objective function minimiser in the final stage of the iterative process.  

Since large scale inverse problems can be expected in future work on cerebral stroke 

imaging especially when more realistic head models will be deployed, initial work to 

deal with the inversion of large systems have been carried out by implementing 

Krylov subspace techniques in MIT. An algorithm denoted DGN-KM has been 

presented, which implements the linear preconditioned CG iterative scheme into the 

DGN method to replace the inversion operation. Simulations tests using three 

problems of different scales showed that as the problem scale grows the DGN-K 

method becomes more computationally efficient than its counterpart DGNM. Since 

DGN-KM employs 2
nd

 order derivative information like DGNM for calculating the 

length and the search direction of the step, comparison tests show there is no 

noticeable loss in the accuracy level of the DGN-KM solution. 

In connection with the study on regularisation, four regularisation priors, namely: 

NOSER, 2
nd

 order Laplacian, Edge preserving and SSRM have been implemented 

within the LM image reconstruction to solve the MIT inverse problem for a medical 

and an industrial process application. 

For the stroke imaging application, images reconstructed from a head phantom with 

two tissues and a perturbation showed the prior information implicit in the cited 

smoothing and edge preserving regularisation matrices is not good enough to produce 

reasonable absolute images of the stroke especially in the existence of the CSF layer 

which appears to dominate the measurement data. SSRM, however for the first time 

has been applied to MIT, and appears promising in enabling MIT to monitor the 
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stroke provided that structural information of the tissues is obtained a priori through 

high resolution medical scanners. 

In a second example of using MIT for imaging the water component in oil / process 

water pipelines, results showed that reasonable low resolution absolute 

reconstructions using simple smoothing and edge preserving regularisation priors can 

be obtained from simulated data disturbed with Gaussian noise. From the practical 

tests two flow regimes namely annular and bubble flow were considered. Using the 

new 14 channel MIT system to generate the data, and difference imaging using the 

LM algorithm and 2
nd

 order Laplacian operator reasonable reconstructions were 

obtained,for several cases which have been unsolvable with previous MIT systems 

and image reconstructed algorithms. However, reconstructions showed problems 

related to spatial resolution and artefacts which can be mitigated by addressing the 

outstanding hardware issues and increasing the number of independent of 

measurements.   

On the feasibility of detecting stroke using frequency difference imaging, a linear 

formulation has been implemented to examine the ability of the algorithm to recover a 

perturbation in different positions from inside a saline cylindrical model.  Based on 

the results from simulated data with added synthetic noise it can be deduced that a 

peripheral perturbation (volume: 50 ml) is easier to discriminate by virtue of a large 

sensitivity in the region whereas a perturbation in the centre remains a challenging 

case. In another simulation test involving a realistic head model and a peripheral 

stroke (50 ml), application of the linear direct Tikhonov method with smoothing 

regularisation and non-negativity constraining was not successful and the images 

showed a large conductivity artefact in the scalp which prevented the stroke feature 

from standing out. The application of further regularisation by constraining the scalp’s 

reconstructed conductivity appeared to reveal a large conductivity feature in the 

location associated with the stroke.  However, even if the feature relates to the stroke 

the quality of the reconstructed images is compromised. Thus, frequency difference 

reconstruction for this application may be improved with nonlinear algorithms.   
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7.2 Future Work 

From the work and research carried out in this thesis, it seems MIT has long way to 

go before it can successfully be introduced in the hospitals or the industry for imaging 

objects with low conductivity materials. From the applications investigated it also 

seems, MIT has got more potential to be used for imaging water fraction in oil 

pipelines than to be employed for discriminating between ischemia and haemorrhage, 

or even detecting a stroke in general. The reasons are quite obvious: a) the human 

head is extremely complex in outer shape and interior structure, b) the actual 

application imposes constraints such as the impossibility to utilize difference imaging 

because of the unavailability of data prior to the stroke formation, c) the small volume 

of the stroke and d) the limitation on the excitation field intensity.   

Indeed, MIT has been proposed as a possible medical imaging application for imaging 

the stroke just recently over the last decade, which infers MIT is still immature and 

requires further research.  However, one might also see that MIT shares many features 

in common with EIT which has been researched for three decades and still has not 

been established clinically. So do we think MIT needs more research in order to be 

used for detecting or monitoring the stroke? Furthermore, a substantial focus has been 

devoted to investigate MIT for imaging the stroke in particular, compared to other 

medical applications because the stroke is an emergency condition which could 

benefit from a fast scanning modality like MIT. Hence this latter could replace low 

time resolution established imaging techniques like MRI in the future. However, one 

might also say, MIT is also restrained in time by image reconstruction and by the time 

a substantial research is invested into MIT, the limitations of the other established 

techniques, notably the cost and the time resolution could be tackled. So could MIT 

have a role in the future, or will the ill-posedness and the sensitivity limitation of MIT 

remain major problems? In the author’s view, in order to increase the chances for 

MIT to become an imaging technique in the medical field or the low conductivity 

industry, a substantial investment of research, preferably a multidisciplinary research 

is required to address the missing ingredients and the research gaps before making 

any conclusions with regard to this modality.  The work presented in this thesis 

contributed to this aim and progress has been achieved. In what follows, the strategy 

to address the future work is outlined. 
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Regarding the image reconstruction in MIT, two major computational procedures are 

encountered: the forward problem and the inverse problem:  

The evaluation of the forward problem to produce computed data aimed at fitting the 

measured data as well as possible requires efficient numerical methods and accurate 

modelling.  

a) For stroke imaging, high definition head models should be used in the future. 

Hence, efficient meshing of the models is required to accurately represent the thin 

tissue structures which lead to large systems of equations. Direct methods will no 

longer become time and memory efficient and iterative methods such as the CG 

method based on the Krylov subspace technique or a similar alternative can be 

employed to solve the forward problem faster and accurately with low tolerance error. 

b)  The head model incorporates irregular outer shape and is important to be modelled 

accurately because MIT is most sensitive to peripheral regions. Any errors in 

modelling the outer boundaries would hamper the minimization process of the 

objective function and make the inverted solution highly unstable to noise because of 

the MIT ill-posedness. Both the FEM based on tetrahedral and FDM based on cubic 

voxels may be suitable for implementation. In [78], a technique has been presented to 

trim the cubic voxels to accurately model curved boundaries using the FIM. If models 

are to be generated from practical head phantoms, appropriate technologies such as 

high definition optical scanners have to be developed for accurate registration of outer 

boundaries.  In section (3.8), on examining the feasibility of detecting the stroke using 

analytical solution for a multilayer spherical head model, the results showed a 1.2 mm 

error in determining the outer boundaries is equivalent to the system noise exhibited 

by the Mark 1. Hence, shape scanners with resolution of sub-millimetres need to be 

developed. 

c) The developed forward model takes only the real part (the conductivity) of the 

biological tissues to compute the simulated data. The imaginary part caused by the 

permittivity can be taken into account especially at high frequencies. The inclusion of 

the imaginary dielectric component can be straightforward in the developed forward 

solver. Another issue of concern is the anisotropic nature of biological tissues. So far, 

the forward solver assumed tissues are isotropic and the software can be extended to 

model anisotropic tissues which should be important in clinical experiments.  
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In connection with the inverse problem, the thesis presented a new class of nonlinear 

optimization techniques to solve the MIT inverse problem. To stabilize the inverse 

solution and optimize convergence, the techniques employed dynamic damping 

parameter and trust region radius, as well as the implementation of a dynamic 

regularisation parameter. These techniques showed better performance than the 

standard Gauss Newton method and are generic. i.e. they can be employed in other 

applications where they can show more success. However, what could be done in 

continuation on stroke imaging is as follows:  

 

a) The sensitivity to the perturbation (i.e. the stroke) plays an essential role to the 

success of the image reconstruction.  From the thesis, we can infer it would be 

reasonable to focus or make MIT work on imaging peripheral stroke (e..g 

Subarachnoid or Subdural) since MIT is more sensitive near the border than to the 

centre of the test object. Peripheral stroke cannot be identified without an initial 

diagnosis using a high resolution scanning method like MRI or CT. Hence, MIT can 

be found valuable in monitoring the development of the stroke instead of detecting or 

identifying its type. It would also be necessary to ask clinicians whether peripheral 

stroke could develop toward the centre or just spread around the periphery. It may 

also be possible to investigate time difference imaging to detect changes in the stroke. 

Another issue of importance is to increase the sensitivity around the brain, hence the 

requirement for developing coil arrays which conform to the head shape. Recently, a 

helmet coil array (Mark 2b) has been developed by our academic partner in 

Glamorgan University and showed an improvement of sensitivity.   

b) There is much work can still be done on regularisation of the inverse problem. 

Defining regularisation as a method to incorporate a priori knowledge about the noise 

variation and the expected solution, existing regularisation matrices like smoothing 

and edge preserving priors were not successful in absolute imaging of the stroke 

because they did not hold representative information. In fact, the assumed information 

does not correlate to the head structure which features a complicated 3D distribution 

conductivity and also contain some large contrasts notably in the CSF region. In 

addition, the noise distribution between the MIT channels is assumed to be uniform, 

i.e. the coefficient matrix inside the Hessian ( TJ J ) is scaled with identity. In the 

future we would expect the second assumption to hold valid with the advances of high 
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specification acquisition systems and coil arrays. With regard to the first assumption, 

the implementation of regularisation matrix incorporating structural prior information 

(e.g. SSRM) of biological tissues was demonstrated to help the absolute image 

reconstruction. It would therefore seem reasonable to suggest that further work should 

be invested to research statistical methods to improve this regularisation method. As 

an immediate task, this regularisation should be investigated with high resolution head 

models obtained from MRI, and assign a margin of error to all tissues conductivities. 

With regard to the regularisation parameter, it would be interesting to research, 

implement and analyse different selection methods.  Regularisation can also be done 

posteriori to the inversion of the Hessian in the form of constraining. Hence, image 

processing tools can be added to the algorithm to include a-priori knowledge based on 

the analysis of the inverted solution. 

c) Multi-frequency differential imaging can also be further investigated for stroke 

imaging. In order to exploit the full spectral behaviour of the biological tissues in the 

selected frequency range for example 1-10 MHz, difference frequency images can be 

reconstructed for different test frequencies and reference frequencies within the 

frequency range. From the results, spectral conductivity curves can be plotted and 

fitted against frequency differential Cole models to infer tissue types. In doing this, 

the spectral behaviour of biological tissues can be well exploited and the MIT image 

reconstruction becomes less underdetermined.  

 

With regard to the application of MIT for imaging the sea water for oil/water 

applications, the thesis presented successful images reconstructed from a practical 

experiment. Future work should involve repeating the experiment for the true 

conductivity value of the sea water. The experiments should then be carried at low 

frequency of 1 MHz. In the long term, if the method is successful, work could 

continue with more realistic flow regimes and fast image capture rates 

 

To this end, the efforts devoted to further develop image reconstruction in MIT for 

imaging the stroke or the process water in oil pipelines should be transferred to other 

applications. For instance, in the medical field there are areas which seem easier than 

stroke imaging and MIT can have a successful role for example: monitoring lung 

activity. In this application state difference imaging with its benefits in cancelling 

geometrical errors and systematic hardware noise can be employed 
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