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Abstract 

 

Quantum Chemical Topology (QCT) descriptors, calculated from ab initio wave functions, have 

been utilised to model pKa and mutagenicity for data sets of pharmaceutically relevant 

compounds.  The pKa of a compound is a pivotal property in both life science and chemistry since 

the propensity of a compound to donate or accept a proton is fundamental to understanding 

chemical and biological processes.  The prediction of mutagenicity, specifically as determined by 

the Ames test, is important to aid medicinal chemists select compounds avoiding this potential 

pitfall in drug design.  Carbocyclic and heterocyclic aromatic amines were chosen because this 

compounds class is synthetically very useful but also prone to positive outcomes in the battery of 

genotoxicity assays. 

The importance of pKa and genotoxic characteristics cannot be overestimated in drug design, 

where the multivariate optimisations of properties that influence the Absorption-Distribution-

Metabolism-Excretion-Toxicity (ADMET) profiles now features very early on in the drug discovery 

process. 

Models were constructed using carboxylic acids in conjunction with the Quantum Topological 

Molecular Similarity (QTMS) method.  The models produced Root Mean Square Error of 

Prediction (RMSEP) values of less than 0.5 pKa units and compared favourably to other pKa 

prediction methods.  The ortho-substituted benzoic acids had the largest RMSEP which was 

significantly improved by splitting the compounds into high-correlation subsets.  For these 

subsets, single-term equations containing one ab initio bond length were able to accurately 

predict pKa.  The pKa prediction equations were extended to phenols and anilines. 

Quantitative Structure Activity Relationship (QSAR) models of acceptable quality were built based 

on literature data to predict the mutagenic potency (LogMP) of carbo- and heterocyclic aromatic 

amines using QTMS.  However, these models failed to predict Ames test values for compounds 

screened at GSK.  Contradictory internal and external data for several compounds motivated us to 

determine the fidelity of the Ames test for this compound class.  The systematic investigation 

involved recrystallisation to purify compounds, analytical methods to measure the purity and 

finally comparative Ames testing.  Unexpectedly, the Ames test results were very reproducible 

when 14 representative repurified molecules were tested as the freebase and the hydrochloride 

salt in two different solvents (water and DMSO).  This work formed the basis for the analysis of 

Ames data at GSK and a systematic Ames testing programme for aromatic amines.  So far, an 

unprecedentedly large list of 400 compounds has been made available to guide medicinal 

chemists.  We constructed a model for the subset of 100 meta-/para-substituted anilines that 

could predict 70% of the Ames classifications.  The experimental values of several of the model 

outliers appeared questionable after closer inspection and three of these have been retested so 

far.  The retests lead to the reclassification of two of them and thereby to improved model 

accuracy of 78%.  This demonstrates the power of the iterative process of model building, critical 

analysis of experimental data, retesting outliers and rebuilding the model.  
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Chapter 1                                                                                                                

Introduction and Industrial Context 

 

1.1 Introduction 

 

An Engineering Doctorate (EngD) was created in collaboration with GlaxoSmithKline (GSK) and the 

School of Chemistry at The University of Manchester.  The project focus was to use computational 

methods to impact on the progress of drug discovery.  A specific aim of the project was to extend 

the use of ‘Quantum Chemical Topology’1, 2 (QCT) descriptors3  for property predictions.  

Subsequently pKa and toxicity were identified as two important molecular properties to the 

industrial sponsor and the wider scientific community.  These selected properties enabled the 

extension and robust testing of QCT descriptors and also provided interesting results from which 

several conclusions have been drawn.      

 

1.2 Industrial Context 

 

1.2.1 GlaxoSmithKline (GSK) 

 

GlaxoSmithKline (GSK) was formed on the 27th December 2000 as a result of the merger of 

SmithKline plc and Glaxo Wellcome plc.  It is now one of the largest pharmaceutical companies in 

the world4 with 100,000 employees in 114 different countries and a market share in 150 

countries.  Sales in 2009 amounted to £28.4 billion with profits before taxation of £8 billion.  It is 

world leader in research-based pharmaceuticals engaged in the creation, discovery, development, 

manufacture and marketing of pharmaceuticals and consumer health-related products to create 

value for stakeholders. 

 

The complexity of the organisation means there are numerous stakeholders including employees, 

customers, suppliers, regulators, charities, aid workers, environmental and animal rights 

campaigners, health and safety authorities, governments, local areas and site neighbours, unions, 

academia and competitors  All have unique needs and interests.  GSK’s mission statement (below) 

places patients as central stakeholders.  

 

“We have a challenging and inspiring mission to improve the quality of human life by 

enabling people to do more, feel better and live longer.” 
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At times, this may cause conflicts with other stakeholders, particularly shareholders, who have a 

financial interest in the company.  GSK has to be profitable but has set itself the scientific goal to 

improve human health and therefore is actively involved in researching treatments for rare and 

unprofitable diseases.  GSK is also involved in patent pools, where they forgo their patent rights, 

to provide essential medicines to developing countries.  Local companies make the medicines 

generically at a mutually-agreed licence fee. 

     

1.2.2 Key Products 

 

GSK’s product portfolio is divided into Pharmaceuticals and Consumer Healthcare.  The principal 

pharmaceutical products are grouped into nine main therapeutic areas (Table 1.1).  Respiratory, 

anti-virals and vaccines represent the three therapeutic areas which provide the largest turnover 

for GSK.  In 20095 GSK had two of the world’s top 60 pharmaceutical products (Seretide/Advair 

(respiratory) and Valtrex (anti-viral)) compared to eight in 20056.  A broader range of products are 

currently maintained to provide growth and stability as opposed to a reliance on blockbuster 

drugs.  Sales were boosted by the H1N1 global influenza pandemic in 2009.  Sales of GSK’s 

pandemic vaccine, amounting to £883 million, contributed to the total vaccine turnover.  

Similarly, a significant increase in sales of Relenza contributed to the anti-virals turnover.   The 

consumer healthcare portfolio comprises of over-the-counter medicines such as cold remedies 

and nicotine replacement therapy, oral healthcare such as Aquafresh and Sensodyne and nutrition 

healthcare including Lucozade, Horlicks and Ribena.  The percentage turnover that the consumer 

healthcare portfolio contributes to the total is small (Table 1.2) compared to the sales generated 

from pharmaceutical product, but the diverse product range represents important revenue 

streams to GSK; which continue to grow.  

    

Table 1.1.  GSK pharmaceutical turnover by therapeutic area for 2009 and 2008. 

Therapy area % of total 
2009 

2009 2008 

  £m £m 

Respiratory 29 6,997 5,817 
Anti-virals 18 4,150 3,206 
Central nervous system 8 1,870 2,897 
Cardiovascular and urogenital 10 2,298 1,847 
Metabolic 5 1,181 1,191 
Anti-bacterial 7 1,592 1,429 
Oncology and emesis 3 692 496 
Vaccines 16 3,706 2,539 
Other 4 1,063 959 
  23,466 20,381 
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Table 1.2.  GSK consumer healthcare turnover for 2009 and 2008. 

 % of total 
2009 

2009 2008 

  £m £m 

Over-the-counter medicines 50 2,319 1,935 
Oral healthcare 32 1,484 1,240 
Nutritional healthcare 18 851 796 
  4,654 3,971 

 

1.2.3 Key Markets 

 

Although GSK has a market share in 150 countries, the biggest single market is the United States.  

The US market grew by 3.6% in 2009 however, sales of GSK’s pharmaceuticals declined by 13%.  

To combat the reduction in sales, GSK has placed emphasis on improving sales in the Emerging 

Markets (i.e. Brazil, Russia, India and China).  This resulted in a 20% increase in sales in 2009 to £3 

billion, representing 10% of the total sales.    Operating in different markets means GSK has to be 

adaptable to local rules and cultures.  It means the company has to liaise with different regulatory 

bodies such as the Food and Drug Administration (FDA) in the US and the European Medical 

Agency.  Furthermore, direct advertising of prescription drugs is forbidden in Europe, meaning 

marketing is directed largely at doctors and health authorities who decide which drugs to 

prescribe.  In the US, pharmaceutical companies directly target patients with marketing 

campaigns.  It is expected that the recent US health care reform will have huge implication for the 

pharmaceutical industry in the near future.  

 

Table 1.3.  Breakdown of the value of the pharmaceutical market by geographical region.        

World market by geographical 
region 

Value  
£bn 

% of total Growth % 

USA 187 40 3.6 
Europe 131 28 4 
   France 25 5 - 
   Germany 24 5 - 
   Italy 16 3 - 
   UK 12 3 - 
Rest of World 150 32 9.9 
   Emerging markets 55 14 - 
   Asia Pacific 20 4 - 
   Japan 50 11 - 
   Canada 11 2 - 

Total 468 100  
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1.2.4 Research and Development at GSK 

 

The average cost of developing a new drug is estimated to be $868 million, but can vary between 

$500 and $2000 million depending on the therapy7.  It also takes around twelve years for a drug 

to reach market and therefore the structure of GSK is vital in supporting the organisation’s 

purpose.  At a high level the business areas responsible for delivering new drugs are shown in 

Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  The business functions and inter-relationships responsible for delivering new drugs to customers. 

 

The function of Research and Development (R&D) is to deliver new drugs to the pipeline.  The 

pressure due to this has intensified over the last few years as the increase in the discovery of 

novel drugs has not risen as predicted, regulatory approval has decreased and patent expiry has 

meant increased erosion of market share by generic drug manufacturers.  To maintain a 

competitive pipeline, research is organised into six Centres of Excellence for Drug Discovery 

(CEDDS) each focusing on defined therapy areas.  Separate R&D functions, for example biological 

pharmaceutical research, vaccine research and R&D China each have their own defined roles.  

 

In 2008, the new Chief Executive Officer of GSK, Andrew Witty, took the CEDD model one step 

further and initiated the creation of a number of smaller Discovery Performance Units (DPUs) 

within each CEDD, to focus on a particular disease area.  The DPU model was based on the success 

of small biotechnology companies over the last decade.  There are now thirty-six DPUs, each 

being a compact, fully-empowered, focused and integrated team, which is responsible for a small 

part of the drug pipeline.  Some standalone DPUs not linked to CEDDs have also been created to 

explore new therapy areas or new ways of working, such as the academic DPU which forms drug 

discovery collaborations with academia.  Each DPU has a three-year business plan defining the 
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overall budget and clear objectives.  The DPUs have to present to the Drug Discovery Investment 

Board, which is made up of internal and external experts, who review the success and decide on 

future investment.  This creates internal competition and an entrepreneurial culture with the 

potential to enhance both the scientific basis and commercial value of the business.  One 

outcome of this initiative is that GSK and the healthcare providers are now in direct dialogue.  

Developing drugs that will reimburse the cost of getting the drug to market is fundamental. 

 

Molecular Discovery Research (MDR) is an R&D function that supports the CEDDs in the entire 

drug discovery process.  Within MDR is Computational and Structural Chemistry (CSC).  The 

function of CSC is to provide computational chemistry support to the CEEDs and DPUs throughout 

the drug discovery process.  The aim is to improve the quality of drug candidates, reduce attrition 

and as a consequence reducing costs and adding value to the business.  In the United Kingdom 

CSC is divided into two groups, Lead Generation (LG) and Lead Optimisation (LO), each with its 

own manager responsible for around fifteen employees.  LG and LO are sub divided into specific 

teams of around six employees aligned to the therapy area of each of the CEDDs with line 

managers responsible for each group. 

 

Patent expiries, regulatory issues and price pressures from healthcare providers have created an 

environment where the sector is associated with lower growth and higher risk.  Shortly after 

becoming CEO, Andrew Witty outlined three strategic priorities to transform GSK into a company 

that delivers more growth, less risk, and improved financial performance to overcome the 

unprecedented challenges in the pharmaceutical industry.  The focus was to grow a diversified 

global business, deliver more products of value and simplify the operating model.  The strategic 

priorities have caused changes across GSK and in particular R&D.  The business has created a 

more balanced portfolio over the last two years and moved away from the emphasis to discover 

the next ‘blockbuster’ drug.  GSK has and continues to improve its pipeline by acquiring, 

collaborating, and in-licensing promising compounds from other organisations.  This has meant 

the externalisation of approximately 30% of discovery research with 47 external partners where 

the risks associated with drug discovery are shared5.  The operating model is also evolving to 

reduce complexity and improve efficiency to ultimately reduce cost.  The evolution has seen the 

closure of a number of R&D sites across Europe but an expansion into China in line with the 

strategic priorities.  
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1.2.5 Drug Design Process 

 

The process of drug discovery is time consuming, expensive and highly risky8.  It begins with the 

identification of an unmet medical need or a judgement on the adequacy of existing therapies.  At 

this stage, a decision will be made whether to proceed with a discovery project based on a 

multitude of information including, the potential for reimbursement from a new drug, how many 

patients would use the drug, the existing expertise within the organisation, how likely a tractable 

target can be found, the cost of failure and ultimately the chance of success.  If the decision is 

made to pursue the therapeutic indication, then a research team is formed and the objectives of 

the project are set.   

 

The next stage is to identify a suitable target implicated in the mechanism of a particular illness.  

These include ion channels, kinases, nuclear receptors and other enzymes and proteins that are 

crucial to the survival of the cell or able to restore the functional capabilities of malfunctioning 

cells.  If possible a structure of the target is generated using X-ray crystallography and/or NMR.  

Assay development is also undertaken to develop tests that will be able to detect biological 

activity in vitro.   

 

High-throughput screening (HTS) is applied to a compound library to identify biologically active 

compounds (i.e. a ‘hit’).  When a number of hits have been identified, structure-activity 

relationships (SAR) are investigated and biological (e.g. P450 inhibition) and pharmacokinetic 

properties (e.g. solubility) are measured to identify promising chemotypes for the start of 

chemistry.  Only hits that have attractive properties are declared lead compounds.  Lead 

optimisation is then focused on generating analogues of the lead compounds to optimise the 

absorption, distribution, metabolism, excretion and toxicity (ADMET) properties while 

simultaneously improving the potency of the compounds.  This is a multidimensional optimisation 

procedure where properties such as solubility, ionisation and lipophilicity can impact on the 

ADMET profile.  Improving one aspect of the ADMET profile can have a detrimental affect on 

another.  Generally, one series of compounds will be optimised and, where possible, exposed to 

different assays to enhance the understanding of the ADMET.  Representative compounds from 

the series will be screened in low throughput assays (e.g. the Ames test) as early as possible to 

provide reassurance that issues relating to toxicity will not curtail the drug discovery programme 

in the future.  If undesirable properties in the chemical series are identified and cannot be 

rectified, lead optimisation starts on alternative compounds.  Some lead optimisation may have 

already been undertaken on these compounds however, switching to a new lead series is costly, 

both in terms of time and expenditure, and therefore undesirable.  If lead optimisation identifies 
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a compound that has desirable target potency and ADMET profile, further safety assessment and 

in vivo studies are conducted.  If the in vitro assays have successfully predicted the efficacy and 

safety in vivo, then the candidate will progress to clinical trials in humans.  If the candidate makes 

it through all three phases of clinical trials, regulatory approval for market access is sought. 

 

Despite the careful considerations taken before project initiation, less than 1 in 50 projects get a 

drug to market9.  In the discovery phase only 1 in 5 projects gets as far as selecting a compound 

for clinical trials.    These failures are attributed to biological problems which include poorly 

validated targets and chemistry problems such as chemical instability or toxicity. The advent of 

the target-based approach to drug discovery was expected to drive the discovery of new 

medicines. HTS has considerably expanded the number of compounds that can be evaluated for 

their biological activity10 however, in the last two decades the number of new drugs approved has 

not risen9.  

 

Recently, there has been increased emphasis on fragment-based drug design.  It is based on 

screening a smaller number of molecules, typically several thousand fragments with a molecular 

weight between 100 and 250, in the hope of finding low-affinity ligands with activity in the high 

micromolar to millimolar range.  The fragments probe key binding interactions in the protein, but 

are small enough to minimise the chances of unfavourable interactions that can prevent larger 

molecules from binding efficiently.  In comparison, conventional screening campaigns evaluate a 

million or more compounds in the hope of finding relatively potent drug leads.  The active 

fragments are then grown into a lead compounds with a binding affinity that is the sum of the 

individual parts11.  GSK have entered into a collaboration with Astex Therapeutics to apply 

fragment-based methods to multiple targets identified by GSK12 with the aim of increasing 

discovery productivity. 

 

Computers play a pivotal role throughout the drug discovery process13.  Beyond structural 

drawing, structure conversion, molecular visualisation, data handling and other techniques, 

several computation techniques have improved the efficiency of the drug design process.  At the 

lead generation stage, HTS requires a compound library to be screened against for activity.  One 

approach is to screen all the compounds in the organisation’s corporate library.  This was 

performed with two million GSK compounds to identify compounds that could be developed to 

inhibit the malaria parasite Plasmodium.  The screen took five scientists around a year to 

complete but identified 13,500 structures  for potential further investigation14.   
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Molecular modellers use methods to reduce the size of screening libraries making them more 

focused.  If the structure of the biological target is known or can be predicted by homology 

modelling, then virtual screening using docking can be applied to select the most appropriate 

compounds for screening.  De novo design may also be used to build inhibitors from scratch given 

the target binding site.    If the structure is not known but a number of active compounds have 

been identified, then pharmacophore models can be constructed for the positioning of key 

features like hydrogen-bonding and hydrophobic groups.  Such models can be used as a template 

to select the most promising compounds.  Similarity searching against active compounds is also 

useful when the target structure is unknown. 

 

Rules of thumb can be used to create libraries based on drug-likeness.  The rule-of-five15 

highlights that most orally administered drugs have a molecular weight of 500 or less, a LogP no 

higher than 5, five or fewer hydrogen-bond donor sites, and 10 or fewer hydrogen-bond acceptor 

sites.  Extending the rule-of-five, Veber and co-workers16 suggest that a maximum of seven 

rotatable bonds is optimal for bioavailability and Clark and Picket17 indicate polar surface area as 

another key property.  For fragment libraries design, a molecular weight less than 300, 3 or less 

hydrogen-bond donors and acceptors, and LogP less than three is advised for efficient lead 

discovery18.  Gleeson19 also highlighted that almost without exception absorption, distribution, 

metabolism, excretion and toxicity (ADMET) liabilities increase with increasing molecular weight 

and/or LogP.  Ionization states also play either a beneficial or detrimental role depending on the 

property in question.  Filtering a library based on rules can significantly reduce the number of 

compounds to screen and increase the chances that an identified hit will progress to market. 

 

In the lead optimisation phases, predictions need be made to investigate how changing molecular 

or structural features will affect physical properties.  They are usually predicted from Quantitative 

Structure Activity Relationships (QSARs) that have been trained on experimental data.  

Bioisosteric replacements20, 21 may be suitable to apply to lead compounds.  Bioisosteres are 

substituents or groups with similar physical or chemical properties which produce broadly similar 

biological properties to a chemical compound.  The idea is to preserve the desired activity without 

making significant changes in chemical structure.  Bioisosteric replacements may be used to 

improve properties such as solubility and hydrophobicity.  They may also be used to reduce 

undesirable features such as compound toxicity. 

 

The number of possible compounds in the small-molecule universe is estimated at 1040 - 10100. 

Typically a drug discovery programme tests 105 - 107 compounds22.  Despite this small coverage of 



26 
 

chemical space, the fact that lead compounds are identified and optimised to drug molecules is 

impressive.  The process has undoubtedly improved with the use of computers at all stages.                           

 

1.3 Project Brief 

 

This project will extend the use of QCT descriptors for property predictions  using a method 

known as Quantum Topological Molecular Similarity23 (QTMS).  Two distinct properties important 

in the ADMET profiles of drugs will be used to create models to predict the properties of new 

compounds.  Although pKa and mutagenicity are both important in ADMET and can be linked here 

we treat them separately as they were used to satisfy different objectives.   QCT descriptors will 

be used to predict pKa for large data sets of drug-like compounds.  The models will be extensively 

validated and the results compared to software frequently being used today.  QCT descriptors will 

also be applied to the prediction of toxicity, specifically mutagenicity, in an attempt to create 

models that enable chemists at GSK to predict the results for new compounds, giving an early 

indication of the likely outcome in an assay.  This will enable them to make informed choices 

about progressing with lead compounds and also rank molecules for priority testing in low 

throughput assays.   

 

1.3.1 Project Objectives 

 

The specific objectives to be completed are as follows: 

In relation to pKa 

1. Apply QTMS to a large data set of drug-like molecules. 

2. Investigate the use of different machine learning methods. 

3. Improve the validation of the results from QTMS beyond the uses of the cross-validation 

statistic   . 

4.  Compare the results to publically and commercially available pKa prediction tools. 

5. Investigate whether only ab initio bond lengths can be used to predict pKa.  

6. Test the models by predicting the pKa of drug molecules. 

In relation to mutagenicity 

7. Apply QTMS to predict mutagenic potency of carbocyclic and heterocyclic primary 

aromatic amines. 

8. Establish the experimental requirements for a reliable data set. 

9. Verify the reliability of the computational classification scheme by getting some outliers 

retested experimentally. 
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1.3.2 Project Flow 
 

A number of sub-projects have emerged that attempt to satisfy the objectives.  These projects 

represent stages in the research when findings highlighted areas for further research. 

1) pKa Prediction from “Quantum Chemical Topology” Descriptors 

2) pKa Prediction from a Single Ab Initio Bond Length 

3) Prediction of the Mutagenic Potency of Primary Aromatic Amines Using “Quantum 

Chemical Topology” Descriptors. 

4) Experimental and Computational Investigations into the Mutagenicity of Carbocyclic and 

Heterocyclic Primary Aromatic Amines. 

5) Predicting Mutagenic and Non-Mutagenic Carbocyclic and Heterocyclic Primary Aromatic 

Amines.       
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Chapter 2                                                                                                        

Background Theory                                                                                                    

 

2.1 Quantum Mechanics 

 

Electronic structure methods use the laws of quantum mechanics rather than classical physics as 

the basis for their computations.  Quantum mechanics states that the electronic structure and 

properties of any given molecule, in any of its available states, may be determined in principle by 

solutions of Schrödinger’s equation.  Equation 2.1 describes the wave function of a particle: 

 

 
   

   
             

  

  

        

  
 Equation 2.1 

 

where    is the wave function,   is the mass of the particle,   is Plank’s constant, and   is the 

potential field in which the particle is moving.    , is a differential operator, where   is equivalent 

to partial differentiation with respect to the particle’s coordinates. The Schrödinger equation for a 

collection of particles like a molecule is very similar.  In this case,   would be a function of the 

coordinates of all particles in the system.  As stated, the energy and many other properties of the 

particle can be obtained by solving   .  Many different wave functions are solutions to the 

equation, corresponding to different states of the system. 

 

For most molecular ab initio calculations the time-independent Schrödinger’s equation, which 

takes the simplified form: 

 

                              Equation 2.2 

 
Here   represents the wave function of the position of the electrons and nuclei within a 

molecule, which are denoted as    and     respectively.  E is the allowed energies of the system and 

H is the Hamiltonian operator, which is made up of kinetic and potential energy terms: 

 

      Equation 2.3 
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The kinetic energy in three dimensions is a summation of the Laplacian, denoted by   , over all 

the particles in the molecule: 

 

     
  

   
 

 

  
 

 
  

   
  

  

   
  

  

   
   Equation 2.4 

 
The potential energy component is the Coulomb interaction between each pair of charged 

entities where each atomic nucleus is treated as a single charged mass: 

 

   
 

    
  

    

    
    

 Equation 2.5 

  
where      is the distance between the two particles, and     and    are the charges on the 

particles j and k.  For an electron, the charge is -e, while for a nucleus, the charge is Ze; where Z is 

the atomic number for that atom.  Thus, the equation that represents the electron-nuclear 

attraction, the electron-electron repulsion, and the nuclear-nuclear repulsion is given by: 

 

                                                                                                                                                     

   
 

    
      

   
 

    
 

  

    
  

    
 

    

    
     

 

    
 

    

  Equation 2.6 

 
The Schrödinger equation is an eigenvalue equation with the solutions being a spectrum of 

eigenvalues (E) and corresponding eigenfunctions ( ).  It is solved to find the wave function “ ” 

from which chemical properties for the system can be determined.  Currently there is no clear 

chemical interpretation of  , however,      gives the probability of finding an electron at a given 

point.  From  , we can therefore generate a probability density P(r) by integrating   over all 

spatial coordinates except the set of coordinates describing one electron, and by summing over all 

spin coordinates.  This must be carried out as each electron is described by four coordinates 

(three spatial coordinates and a spin coordinate) and so the integration renders the wave function 

into three dimensions from originally residing in a high dimensional space.  The P(r) is multiplied 

by the number of electrons N to give the electron density ρ(r), or just ‘ρ’.  

 

The equation solved is time-independent, therefore the solutions are for a frozen structure at 

zero Kelvin.  The system is usually isolated, so best represents a molecule in the gas phase.  The 

gas-phase, zero Kelvin approximation is used to reduce the computational cost of the ab initio 

calculation.  It is important to consider the impact of such approximations when applying ab intio 

data to real-world systems, which are dynamic and interact with a wealth of other species in the 
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local environment.  Often solvent interactions are considered, either implicitly or explicitly, in an 

attempt to account for a proportion of these interactions. 

 

2.1.1 Level of Theory 

 

It is possible to model reactions, molecular structures and dynamic processes in silico using 

quantum chemistry.  Due to computational limitations a number of approximations must be made 

before reaching practical molecular orbital methods that can provide approximate solutions to 

the Schrödinger equation.  There are two main classes of electronic structure methods: 

 

 Semiempirical methods, such as AM1, incorporate experimental parameters in an 

attempt to predict molecular properties.  Such methods are computationally very fast, 

however, their success is determined by having appropriate experimental input for the 

system under investigation. 

 Ab initio methods rely on no experimental values; but are based solely on fundamental 

constants.  The ability of these methods to predict molecular properties solved exclusively 

by equations means that they are computationally very demanding. 

 

The ‘Born-Oppenheimer approximation’ (BOA) simplifies the general molecular problem 

experienced by ab initio calculations by separating the nuclear and electronic motion.  The 

motivation behind this is based on the fact that there is a large difference between the masses of 

electrons and nuclei, allowing electrons to respond almost instantaneously to the motion of the 

nuclei.  This means there is a large difference in timescale of electronic and nuclear motion, 

therefore allowing the electronic motion to be treated as occurring in a field of fixed nuclei, and 

so the Schrödinger equation is solved as a parametric function of the nuclear coordinate. 

 

The most basic ab initio method in common use is the Hartree-Fock ‘Self Consistent Field’ (SCF) 

method.  As well as utilising the BOA a further approximation is used.  The Schrödinger equation is 

initially solved for a single electron in a system, which experiences all remaining electrons via an 

average field of negative charge.  An initial guess is used to create the first field, and when the 

wave function for the first electron has been solved it is used to calculate the field for the next 

electron.  When the wave functions for all electrons have been calculated the process starts again 

and iterates in this manner until there is a negligible change in the wave function and the field has 

become consistent.  This method of using an electron cloud to represent all other electrons is 

known as the Hartree-Fock Approximation.  
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The Linear Combination of Atomic Orbitals (LCAO) is also introduced to make calculations of 

molecules practical.  The approximation is based on the idea that orbitals are not just centred on 

one nucleus, but on every nucleus in the molecule.  Basis sets are introduced to mathematically 

represent the atomic orbitals within a molecule, which in turn combine to approximate the total 

electronic wave function. 

 

The above approximations generate a scheme that provides solutions to the Schrödinger 

equation.  These methods, however, neglect the Coulomb correlation energy experienced by 

electrons of opposite spin.  Coulomb correlation arises from charge repulsion and its neglect 

causes electrons to move too close together, therefore the energy calculated will always remain 

above the exact energy.  The difference between these two energies is known as the correlation 

energy.  Fermi correlation between electrons of the same spin arises from the Pauli Exclusion 

Principle, and is included in the ‘exchange’ term in Hartree-Fock calculations. 

 

‘Density Functional Theory’ (DFT) and Moller-Plesset Perturbation Theory also use the Born-

Oppenheimer and LCAO approximations.  Unlike HF calculations, they partially account for the 

Coulomb correlation.  Moller-Plesset Perturbation Theory takes the estimates offered by HF 

calculations and adds a corrective contribution from the Coulomb correlation.  DFT is based on 

the theorems of Hohenberg-Kohn24 which state that the ground state energy of a non degenerate 

system, as well as its electronic properties, are solely defined by its electron density.  As such, DFT 

does not use the wave function but an electron probability density function which refers to the 

probability of finding an electron in a volume centred on a point with coordinates x, y and z.  DFT 

methods take a different approach to HF and Moller-Plesset methods by incorporating Coulomb 

correlation with an exchange-correlation energy term based directly on the electron density.  

These methods partition the energy into several terms: 

 

E DFT = E nuclear + E core + E Coulomb + E exchange-correlation 

 

  whereas HF theory contains: 

 

E HF = E nuclear + E core + E Coulomb + E exchange 

 

The tem E exchange-correlation
 is the only one that is not determined directly because of its 

unknown mathematical formulation.  Usually E exchange-correlation
 is described as a sum of the 

exchange term and the electronic correlation.  The exchange term can be calculated by using 
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approximations that applies a homogenous electron density, such as the Local Density 

Approximation25 and the Local Spin Density Approximation26, by using gradient corrected 

functional such as the Generalised Gradient Approximation (GGA) methods (e.g. Becke9527 (B95) 

and Lee-Yang-Parr28 (LYP)).  E exchange-correlation
 can also be calculated using hybrid density 

functionals, which combines a conventional GGA method with a percentage of Hartree-Fock 

exchange.  Examples of hybrid density functional include B3LYP29 and B3PW9130.   

 

2.1.2 Basis Sets 

 

Basis sets are functions used to represent atomic orbitals, which in turn combine to form 

molecular orbitals.  Using a linear combination of atomic orbitals a single molecular orbital (  ) 

can be constructed: 

 

       

 

   

   Equation 2.7 

 
where N is the set of functions used,    refers to an arbitrary basis function, and each has 

associated with it some coefficient    .  The total molecular wave function is then calculated as 

the antisymmetric product of the single molecular orbitals. 

 

Most ab initio programs use Gaussian-type atomic functions as basis functions.  Gaussian 

functions have the general form: 

 

                   
 
 Equation 2.8 

 
where    is composed of x, y, and z,   is a constant determining the shallowness of the function, 

and n, l, and m are integers that determine the directional dependence.  If n + l + m = 0 then there 

is no directional dependence and the Gaussian function represents an ‘s-type’ orbital.  When n + l 

+ m = 1 then the Gaussian function lies along one of the axes and represents a ‘p-type’ orbital.  A 

single Gaussian function, however, does not give an accurate representation of an orbital, so a 

combination of several is required.  The more atomic orbitals used to construct the basis set, the 

closer the energy approaches the exact value for a given molecule.  It would seem sensible to use 

very large basis sets in calculation, however, due to the large computational time and cost, the 

size of the basis sets that can be used are  limited. 

 



33 
 

Minimal basis sets use one (single) basis function for each type of atomic orbital occupied in the 

separate atoms.  Larger basis sets more accurately approximate the atomic orbitals by imposing 

fewer restrictions on the locations of the electrons in space, hence it is often necessary to use 

larger basis sets than the minimal.  The double and triple zeta basis sets use two and three basis 

functions for each type of atomic orbitals in atoms, respectively.  In a molecule, the electron 

density around the atom will be different to that around the separate atom, using two or three 

functions per orbital allows for variation due to bonding and other interactions.  Split valence 

basis sets are used to reduce the computational time and cost and are based on the assumption 

that the core electrons of an atom are less affected by the chemical environment than the valence 

electrons.  In other words the core electrons retain their atomic characteristics and so the 

flexibility needed to account for bonding is not so crucial.  This leads to split valence basis sets 

consisting of a minimal representation of the core electrons combined with double or triple zeta 

representations of the valence electrons. 

 

Adding polarization and diffuse functions is a further modification that improves accuracy.  

Polarization functions add orbitals of higher angular momentum to atoms in molecules that are 

not normally occupied in the separate atoms.  Using these functions improves the flexibility of the 

basis sets and better represents the electron density in bonding regions between atoms by 

allowing the electron density to be polarized.  Diffuse basis functions are extra functions that are 

added to basis sets to represent very broad electron distributions.  They allow a better 

representation of the electron density when it is spread over a large region in mid to large sized 

molecules. 

 

2.2 Quantum Chemical Topology 

 

The theory of Quantum Chemical Topology (QCT), sometimes referred to as Atoms in Molecules 

(AIM), is a partitioning method pioneered by Richard Bader and co-workers in the early 1970s.  

Essentially the theory forms a bridge between quantum mechanics and working chemical 

concepts such as the atom and the bond.  The electron density, obtained from the wave function, 

is partitioned into atomic portions, with each having its own unique properties.  This method has 

a solid basis as the electron density can also be observed experimentally, for example using X-ray 

crystallography as well as being derived computationally from ab intio calculation previously 

outlined.  The applications of QCT are continually expanding and being applied to new areas of 

chemistry. 

 

 



34 
 

2.2.1 Partitioning the Electron Density 

 

Figure 2.1 displays a relief map of the electron density ( ) in the symmetry plane of the furan 

molecule.  Figure 2.2  shows the same furan molecule but the electron density is represented by a 

2-dimensional contour map.  Inside each contour line lies a set of non-intersecting contour lines 

of higher electron density; these are nested contours.  In Figure 2.1 and Figure 2.2 it can be 

observed that the electron density is high around the atom centres and quickly drops when the 

distance from the atom centres increases.  Bonding interactions can be observed along the ridges 

of the high electron density that run between atom centres.     

 

 
Figure 2.1.  A relief map of the electron density of the furan ring in the symmetry plane.  Ridges of electron density 
can be observed running between atoms. 

 

 
Figure 2.2.  A contour plot of the electron density in the symmetry plane of furan. 

 

The gradient vector of the electron density      points in the direction of the greatest increase in 

 .  A succession of infinitesimally small gradient vectors forms the gradient path.  A gradient path 

has three important properties; its always orthogonal to the contour surface, gradient paths 

never cross except when     , and they have a beginning and an end.  An infinite collection of 

gradient paths forms the gradient vector field (Figure 2.3).  In reality, gradient vector fields of   

are shown using a finite number of gradient vector paths.  As gradient vector paths start at 
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infinity, they are traced backwards, from a small circle (the nuclei) with a certain number of 

equally spaced points, following the gradient vectors of decreasing  . 

 
Figure 2.3.  The gradient vector field superimposed on a contour map of   in the symmetry plane of furan. 

 

In Figure 2.3 there are gradient vectors paths that do not terminate at a nucleus; the places where 

they do terminate are known as critical points.  The special points between two bonded nuclei 

where gradient vector paths terminate are known as ‘bond critical points’ (BCPs).  A collection of 

vector paths in 3-dimensional space that terminate at a BCP defines the Interatomic Surface (IAS).  

The IAS, sometimes called the zero-flux surface, distinguishes itself from other arbitrary surfaces 

in that at every vector     has no component through the IAS.  This is equivalent to saying that 

the gradient vector field must be parallel to the IAS at every point on its surface.  The IAS defines 

the boundary between two atoms (Figure 2.4).  Not all atoms in a molecule will be completely 

enclosed with IAS formed between neighbouring atoms and as gradient paths extend to infinity it 

is useful to cap atoms using an outer shell to give them a finite volume.  The ‘atomic basin’ defines 

the region of an atom bound by IAS and an outer envelope (Figure 2.5).   
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Figure 2.4.  The IAS is formed from the gradient vector field lines terminating at the Bond Critical Point (purple 
sphere).  The example shows the interatomic surface defining the boundary between oxygen and carbon atoms of 
formic acid.   

 
Figure 2.5.  The 3-dimentional basin of the oxygen atom of formic acid.  The basin is surrounded by the red 
interatomic surface and capped.  Bond Critical Points are shown as purple spheres lying along the grey bond paths. 

 

2.2.2  Critical Point 

 

The idea of bond critical points has already been introduced.  A BCP forms when the gradient 

paths terminate at a point in space between two bonded nuclei, this means the BCP is the centre 

of the IAS.  The BCP is also the point where   reaches a maximum within the IAS, any 

displacement away from the BCP within the IAS reduces the value of   compared with the 

electron density at the BCP, denoted as  b.  It is important to note that  b is not a maximum in all 

directions; if this were true then the BCP would be identical to a nucleus.  In fact,  b is a minimum 

in the orthogonal direction to the IAS meaning it is a saddle point.  The orthogonal direction to the 

IAS at the BCP is referred to as the bond path (BP), and is a special type of gradient path 

connecting two nuclei.  Figure 2.4 shows the BCPs between bonded nuclei.  The gradient paths 

forming the IAS terminate at the BCP, not shown are the gradient paths that originate at the BCP 

and terminate at nuclei.  These gradient paths form the atomic interaction line (AIL).  The AIL is 

found between every pair of nuclei whose atomic basins share a common IAS.  However, the 

presence of an AIL between two nuclei does not necessarily mean they are bonded, for example, 

AILs can be found between two noble gas atoms at any separation.  An extra condition is 

required, namely that the molecule is in an energy minimum on its energy surface.  It is also 

important to note that, except for symmetrical bonds, BCPs can occur anywhere along the bond.  

In addition to BCPs there are other types of CPs.  These are the ring critical point, cage critical 

point and nuclear or non-nuclear attractor.  Each CP can be categorised by three eigenvalues, 

              calculated from the Hessian matrix at the CP.  At CP, the three eigenvalues are 

always non-zero and the signs determine the types of CP being considered.  A nuclear CP is 
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characterised by three negative eigenvalues, meaning a maximum of electron density in all 

directions.  A ring critical point is a saddle point, having two positive curvatures (i.e. two negative 

eigenvalues) and one negative curvature (i.e. positive eigenvalues).  At the ring critical point the 

electron density is a minimum in the plane of the ring and a maximum perpendicular to it.  A cage 

critical point has three positive eigenvalues meaning it is a minimum of the electron density in all 

directions.  Cage critical points appear within structures bonded by two or more rings.         

 

2.2.2.1 Bond Critical Point Properties 

 

QCT provides a means of evaluating several properties of BCPs using the electron density alone.  

Using all the BCPs in a molecule, these properties can be utilized to provide a compact 

representation of a given molecule.  The properties that have been evaluated and used in this 

work are listed below. 

 

1. The electron density ( b) derived from quantum mechanics, is the first.  It has been used to 

derive bond orders31 and also displays strong correlations with bond energy32.  

 

2. At the BCP, the Hessian of the electron density has two negative eigenvalues            

and one positive one       .  The eigenvector associated with    is tangential to the bond, 

and so    describes curvature along the bond.  The eigenvectors corresponding to    and    

are orthogonal to the bond, and so    and    describe curvature perpendicular to the bond. 

 

3. The sum of the three eigenvalues is the Laplacian of the electron density, denoted by    , 

which gives a measure of the local charge concentration or depletion at the BCP (Equation 

2.9).  If the negative eigenvalues    and    dominate, then an accumulation of charge takes 

place in the plane perpendicular to the bond.  This is common for shared interactions, such as 

covalent bonds.  This results in a negative value for the Laplacian.  If the positive eigenvalues 

  dominates, then the electron density accumulates along the bond towards the nuclei.  This 

is common for closed-shell interactions such as ionic, hydrogen and van der Waals bonds.  

This results in a positive value for the Laplacian.       

  

             Equation 2.9 
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4. The ellipticity of the electron density, denoted by   and defined in Equation 2.10, provides a 

further useful property associated with BCPs.  If   protrudes more in one of two directions 

perpendicular to a bond, then an oval pattern appears, such as pure double bonds.  This 

ovality is measured by the ellipticity.  Single bonds are characterized by     and    being 

nearly identical, and hence   is near zero. 

 

   
  
  
    Equation 2.10 

    

5. Two types of kinetic energy density, denoted by K(r) and G(r)33 can also be obtained as further 

BCP properties.  Interpreting K(r) in chemical terms is not straightforward, however a useful 

formula describing its link to the Laplacian and G(r) is given by Equation 2.11. 

     

                 Equation 2.11 

 

6. The equilibrium bond length, denoted by Re, is not strictly a BCP property. However, it can be 

considered as the sum of the distances between the BCP and one nucleus and the distance 

between the same BCP and the other nucleus, neglecting any deviation from a straight line 

the bond path may exhibit and hence, can artificially be turned into a BCP property. 

 

2.2.2.2 Atomic Properties 

 

In order to give the full overview of QCT, it is important to mention atomic properties although 

full details will not be provided.  Unlike bond properties which are evaluated at a single point, 

volume integration over an atomic basin yields the atomic properties associated with that 

particular basin.  Obtaining the atomic properties is much more computationally demanding than 

the calculation of BCP properties.    The most commonly used atomic properties include the 

population, volume, different types of energy, and electrostatics.  It is important to note that as 

QCT strictly partitions the atoms in a molecule, summations of a group of atoms can give 

fragment properties, while summations over all atoms give the molecular properties.  This 

concept has led to much work being undertaken in the transferability of atoms and functional 

groups (fragments) with similar QCT properties. Although not strictly related to this work, 

substituent effects demonstrate that changing the chemical environment in one part of a 

molecule can induce significant changes in surrounding moieties.  This principle forms the basis 

for this work, since changes can be predicted using QCT and will be encapsulated in the wave 

function and thus in the properties calculated at the BCP used to predict the property of interest. 
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2.3 Quantitative Structure-Activity Relationships 
 

It has been known for millennia that different chemicals have different biological effects.  

However, it was not until the science of chemistry had become sufficiently developed to assign 

structures to compounds that it became possible to speculate about the causes of such biological 

properties.  These developments allowed researchers to link the structure of molecules to certain 

activities and propose structure-activity relationships (SARs).  There are however, problems 

associated with SARs, the main one being that the relationships are empirical and are semi-

quantitative, in that the changes in structure are represented as ‘all or nothing’ effects and the 

relationship only applies to the set of compounds from which it was derived34.  

 

Modern quantitative structure-activity relationship (QSAR) methods owe their origins to the work 

of Hansch and Fujita in the 1960s35.  They successfully used an approach based on applying linear 

free-energy relationships (LFERs)36 to correlate suitable physiochemical parameters to biological 

activities.  Their work was a bold extension to the work of Hammett37 almost three decades 

before.  Hammett discovered that pKa of benzoic acids and phenylacetic acid in aqueous solution 

was solely dependent on the substituent and a proportionality constant fixed by the solvent and 

temperature.  These relationships turned out to be universal and can be used to predict pKa for 

different ring substituents with known   constants38.  Since this advance, QSAR have been 

successfully applied to optimisation problems in drug and agrochemical design.  In 1995 Hansch et 

al. estimated that somewhere between 15 000 and 20 000 chemical QSARs had been published, 

while about 6000 biological equations have been published39.  These numbers must have 

significantly grown over the last 15 years.   

 

QSAR is the process by which the chemical structure of a series of molecules is quantitatively 

correlated with a well-defined process, such as biological activity (e.g. toxicity and 

biodegradability) or physiochemical properties (e.g. solubility and pKa).  The ultimate aim of all 

QSAR studies is to determine an equation of the following form: 

 

Activity = f (x1, x2, …., xn) Equation 2.12 

 

In Equation 2.12, f is a mathematical function, which is usually determined using an appropriate 

statistical technique and x represents the molecular descriptors that provide information about 

aspects of the molecular structure.  This is where the fundamental difference between SARs and 

QSARs lies. The Q in QSAR refers to the way the molecular structure is quantitatively represented 

by descriptors.  Therefore, the main challenges in QSAR are to find appropriate descriptors to 
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represent the molecular structure and a function that relates the activity to those descriptors.  

The choice of descriptors is not a simple process, since there are thousands available.  These are 

loosely characterized as theoretical, empirical or derived from readily available experimental 

characteristics of the structure40.  A good QSAR will produce an excellent correlation between the 

activity with the molecules used in the training set but should also be able to predict the activity 

of molecules outside that data set.  QSARs can however end up as a futile fitting exercise without 

true predictive power.  Some QSAR models use hundreds of descriptors to predict the required 

activity.  The high correlation between the number of brooding storks and newborn babies in 

West Germany between 1965 and 1980 highlights the potential pitfalls of using the wrong 

descriptors41.  There is a higher probability of accidental correlation the larger the number of 

independent variables in the model.   Furthermore, using a large number of descriptors may 

produce good predictive models but chemical understanding is difficult, and so it is argued that 

the use of fewer descriptors with known physical meanings provides easier interpretation of the 

models and mechanistic insight into the activity that is being predicted.        

 

2.4 Quantum Topological Molecular Similarity (QTMS) 

 

2.4.1 Background 

 

Popelier3 defined a novel similarity measure by utilising information available from QCT.  BCP 

properties for the drug Haloperidol were mapped into abstract space.  The distance     between 

two BCPs i and j is defined as simply their Euclidean distance (Equation 2.13).  Note that here only 

the values of  ,    , and   are used meaning the abstract space has three dimensions. 

 

            
 
        

    
 
        

 
 
   

 Equation 2.13 

 

 
The distance between two BCPs gives an idea about how similar the different bonds are.  Taking 

this idea further, it is suggested that BCP space can compactly and reliably describe the electronic 

structure of a molecule meaning molecules can be compared for similarity.  The distance        

between two molecules A and B is then defined as the sum of the BCP distance as calculated from 

Equation 2.14.  The lower the value of        , given by Equation 2.14, the more similar the two 

molecules are. 

 

            
      

 Equation 2.14 
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In principle every BCP in molecule A could be compared with every BCP in molecule B under this 

definition.  In the original work, a set of congeneric molecules was used so only corresponding 

BCPs in A and B were compared.  This is a priori matching procedure, but is a natural mode of 

operation for molecules typical for QSAR.  The practical use of this technique was demonstrated 

by reproducing the acidities of two sets of benzoic acids (as expressed via the Hammett equation) 

and at the same time recovering the portion of the molecule responsible for the acidity.  

Following these promising results the method was developed further by O’Brien and Popelier42 

and evolved into what is currently known as QTMS.     

 

2.4.2 QTMS Analysis 

 
 
 

Figure 2.6 summarises the main computational modules involved in a QTMS analysis together 

with the corresponding names of the computer programs that are most commonly used.  The 

details of data generation, machine learning techniques and chemometric analysis applied to 

different data sets are specifically provided in the relevant Chapters.  As with all QSAR studies, the 

first steps are to select the property of interest and a suitable data set.  Young et al.43 have 

highlighted the importance of chemical data curation in the context of QSAR modelling and others 

have demonstrated that the type of chemical descriptors has a much greater influence on the 

prediction performance of QSAR models than the nature of the optimisation techniques44, 45.  

Clearly, small structural errors or wrongly assigned experimental values within the data set can 

lead to significant loss of predictive ability of QSAR models.  Recently, Fourches et al. provided a 

procedure to prepare a data set to be as accurate and consistent as possible46.  The steps include 

removal of inorganics and mixtures, structural conversion and cleaning, normalization of specific 

chemotypes, removal of duplicates and finally manual checking.  Many of the data sets used in 

this work were taken from the literature therefore many of the steps in the outlined procedure 

had already been performed, however manual checking was carried out and errors were 

detected.  The errors and subsequent corrections are discussed in relevant chapters.  

 

 

 

 

 

 

 

 

 



42 
 

 

 

 

 
 
 
 
Figure 2.6.  Chart representing the main modules involved in a QTMS analysis.  The bond text represents the names 
of the programmes used in this work. 

 

The second step in QTMS is the generation of molecular geometries and wave functions.  An 

approximation of the geometry of each molecule is provided by MOLDEN47.  Using the 

programme GAUSSIAN03,48 geometries are optimised at a certain level of theory.  The 

optimization steps are by far the most computationally expensive stage in the QTMS process.  This 

expense is governed by the level of theory selected which can depend on time and computational 

resources available.  The electronic wave function calculated by GAUSSIAN is then passed on to a 

local version of the programme MORPHY9849, which locates the BCPs using a robust algorithm50.  

This yields a property vector for each BCP, providing a discrete “quantum fingerprint” for each 

molecule, when all BCPs appearing in a molecule are combined.  A common skeleton associated 

with each molecule is defined to allow the location of descriptors important to the statistical 

analysis to be indentified in each molecule.  In addition, the common skeleton allows the BCPs in 

one molecule to be mapped onto the BCPs in other molecules.  This is not a fundamental 

requirement of the method, and the constraint of a common skeleton can be relaxed51.  A two-

dimensional data matrix is then constructed to display and allow easy manipulation of the data.  

Usually the first column contains unique identifications (e.g. chemical names) for each molecule in 

the data set.  The second column contains the corresponding activities.  The remaining columns 

contain the BCP properties associated with particular bonds selected from the common skeleton.  

For example, if all eight BCP properties are used to describe the molecules and there are four 

bonds in the common skeleton then each molecule is described by 32 descriptors (8 descriptors 

x4 bonds).  BCP properties are inexpensive to obtain computationally and can be calculated for a 

data set of one hundred compounds on a standard PC in minutes.  The next step is to construct a 

model using a suitable machine learning technique.             

 

2.4.2.1 Partial Least Squares 

 

Projection to latent structures by means of partial least square (PLS)52 is a multivariate linear 

regression technique, which attempts to correlate independent variables with the dependent 

variable of interest.  PLS utilises latent variables (LVs) to reduce the dimensionality of the data set, 

whilst retaining the majority of the variance in the independent variables that describe the 

dependent variable.   LVs are constructed from linear combinations of the original independent 
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variables into a set of new variables, subject to a condition that all newly constructed LVs are 

orthogonal to one another. 

 

                        
                        
                        

 Equation 2.15 

   
Each coefficient,     , represents the contribution of each variable to a particular LV.  The sign of 

the coefficient indicates whether a particular variable makes a positive or negative contribution to 

the LV, and the magnitude of the coefficient shows how much the variable contributes to the LV.  

LVs are constructed in such a manner that the first extracted variable explains the maximum 

variance in the data set.  The second variable then explains the maximum part of the remaining 

variance in the data set and so on.  The maximum number of LVs can never exceed the smaller of 

the number of descriptors or compounds used to construct the model.  The LVs are then 

combined in a linear fashion to correlate with the variable of interest creating a model. 

 

                     Equation 2.16 
     

 

PLS may seem very similar to principal component regression (PCR), which involves principal 

component analysis (PCA) followed by multilinear regression (MLR).  They differ in that the PLS 

algorithm is actually an iterative procedure53.   Unlike, PCR, where PCA takes place followed by 

regression analysis, LVs are constructed so as to maximize their correlation with the dependent 

variables and LVs will only enter the PLS equation in the order, one, two, three etc.  The main 

advantage of PLS over PCR is its ability to handle cases where the number of independent 

descriptors greatly exceeds the number of dependent variables.  It is also capable of handling 

large numbers of noisy, incomplete, and collinear descriptors in a data set.       

 

2.4.2.2 Parameters to Assess the Quality of the Model 

 

In this work, PLS models have been constructed using the programme SIMCA-P54 to fit the 

descriptors to the experimental values of interest.  The predefined criterion for determining the 

significant number of LVs was used.  If the value of    (Equation 2.21) of the newly constructed LV 

is less than 0.097, then that LV is not considered significant, and no more LVs are computed; the 

PLS regression is then deemed complete.  The construction of models using SIMCA-P provides 

three statistics (i.e.   ,    and RMSEE) to give an indication of goodness-of-fit and goodness-of 

prediction.  We provide a general overview of these statistics here.  The uses of statistical 
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measure are explicitly stated in each Chapter, where applicable.   The first statistic is the squared 

correlation coefficient (  ), 

 

    
              

  
   

             
  

   

 Equation 2.17 

 

where n is the number of observations in the entire data set,         is the calculated value for 

molecule i from the regression equation,        is the corresponding experimental value, and    is 

the mean experimental value of the entire data set.     can take the value of 0, where the PLS 

model is explaining none of the variance up to 1 where the regression explains all of the variance.  

The Root Mean Squared Error of Estimation (RMSEE) is calculated as, 

 

        
                  

  
   

     
 Equation 2.18 

 
where n is the number of observations in the entire data set and a is the number of LVs used to 

construct the PLS model.
  

Another common error measure is the Root Mean Squared Error (RMSE), which is defined as, 

       
                  

  
   

   
 Equation 2.19 

 

In an alternative expression sometimes encountered in the literature the denominator in the 

RMSE equation is sometimes set to  .  Because the denominator of the RMSEE is always smaller 

than that of RMSE, RMSEE is always larger then RMSE.  Hence, RMSEE penalises the deviation 

between observed and calculated data more than RMSE, and is therefore a more severe error 

measure.  In turn, the RMSE is more severe than the Mean Absolute Error (MAE), which is given 

by, 

     
                 
 
   

 
 Equation 2.20 

 

In summary, the RMSEE is always larger than the RMSE, which is in turn always larger than the 

MAE, or RMSEE > RMSE > MAE.  This is important to keep in mind when comparing results to the 

literature, where RMSE and MAE frequently appear.  The MAE is also less sensitive to larger 

outliers than both the RMSE and RMSEE since all the individual differences are weighted equally 

in the average.  For the RMSE and RMSEE, the errors are squared before they are averaged. This 

means that these two measures give a relatively higher weight to large errors compared to the 

MAE.   
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It should be noted, however, that high values of    and low error values do not always indicate a 

predictive model, and can be quite misleading.   The statistic    is employed in conjunction with 

   which provides an indication of the predictive ability of the model.
  

Using K-fold Cross-

Validation (CV), this cross-validated    is calculated as 

 

      
                   

  
   

             
  

   

 Equation 2.21 

 

In K-fold CV the original set is partitioned in K CV subsets. The default setting for K in SIMCA-P is 

exactly seven, provided there are more than 7 data points in the total data set.  Hence, if the total 

number of compounds   is divisible by 7 then there are n/7 compounds in each of the 7 CV 

subsets. If   is not divisible by 7 then the remaining compounds will be evenly distributed over 

the 7 CV subsets (note that the number of subsets does not vary). The compounds in the first CV 

subset are predicted from a model constructed from the remaining six CV subsets, all combined in 

one training set. The compounds in the second CV subset are then predicted from a different 

model, now constructed from the new remaining six CV subsets, excluding the second CV subset. 

Again these six subsets are all combined in one (new) training set. This process is repeated for the 

third and higher CV subsets, until each compound has been excluded exactly once. Each 

compound will then have been predicted by its corresponding training set. The predicted pKa 

value for compound  , denoted by         , is obtained from the regression equation constructed 

from each training set.  The automatically generated    is based on ‘leave-one-seventh’ of the 

data out rather than ‘leave-one-out’, which is not recommended because of its known pitfalls34, 55.  

However, if the model is constructed from seven or less compounds then the CV is ‘leave-one-

out’.  The default ‘leave-one-seventh’ CV can be altered at the discretion of the user in the newer 

version of SIMCA-P.  One may question if the use of CV is justified against an assessment based on 

splitting data sets into a training and test set. Hawkins et al. recommend that, when the data set 

is small, then CV may be better than splitting the data set56.  The majority of the data sets used to 

create models in this work are small in the sense of Hawkins et al. who advocates CV when the 

data set is less than 100 compounds. 
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A useful statistics which are not automatically provided when models are constructed in SIMCA-P 

is given below.  The Root Mean Square Error of Prediction (RMSEP) is provided by  

 

        
                   

  
   

 
 Equation 2.22 

 
and differs from the RMSEE, looking at the numerator, because           is obtained from the 

models constructed from the training set during CV.  

 

2.4.2.3 Further  Considerations 

 

As with any data analysis, PLS models work best when the data is relatively symmetrical in its 

distribution.   If the observations lie in two distinct clusters in the y-variable, then an artificially 

good QSAR may be obtained that predicts well when the observations lie within one cluster but 

poorly if it lies in between.  An observed versus predicted plot gives insight into the distribution of 

the data so the problem can be avoided. 

 

PLS analysis provides a number of ways to identify data points with large residual errors.  The 

easiest way to identify outliers is to examine the observed versus predicted plot.  Observations 

that do not seem to fit the trend should be inspected.  This can lead to the identification of errors 

in the calculations of descriptors, which can easily be rectified.  If no errors are obvious then 

major structural or mechanistic differences relative to the rest of the data set may be responsible 

and the observation may be excluded.  If there are a number of observations that have to be 

excluded for the same reason then the use of more local models may be more appropriate. 

 

As with all regression techniques, there is a desire to reduce the number of variables used to 

construct models with the aim of improving the models predictions, reducing the number of 

calculations, and simplifying the interpretability and understanding of the models.  SIMCA-P 

provides VIP (variable importance in the projection) values, which offer a concise summary of the 

importance of each descriptor.  VIP plots can be examined and descriptor variables with a VIP 

value less than unity are considered unimportant to the model and can be removed52.  Other 

variable reduction techniques can be employed and these are discussed in subsequent chapters.  
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2.4.3   Applications of QTMS 

 

The applications of QTMS have been numerous.  The exact implementations of QTMS have varied 

over the years but, almost without exception, they follow the procedure in Figure 2.6.  After the 

incorporation of a firm statistical framework, the results of the study on para-benzoic acids 

presented in Section 2.4.1 were confirmed by  more rigorous statistical treatment, which included 

CV and randomisation of the y-variable23.    Popelier et al.51 showed that the one-to-one mapping 

between molecules in less congeneric series of molecules can be achieved.  Para- and meta-

benzoic acids were combined to model Hammet ς constants.  Furthermore, with a small 

modification para-substituted phenylacetic acids were added to the set.   

 

In further extensions to the QTMS methodology, VIP plots were introduced to highlight the bonds 

that appeared to contribute the most to the activity.  Consistently, the bonds with the highest VIP 

values were associated with the mode of activity for the data set under investigation.  For 

example, QTMS highlighted the bonds of the carboxylic group in carboxylic acids, the O-H bond in 

phenols, and the C-N bond in anilines as the most important to the prediction of pKa 
57.  These 

results are consistent with the mechanism of dissociation for the acids.  The ‘active centre’, 

highlighted by VIP plots, has also been shown to correctly move around in a data set of para-

substituted phenols depending on the activity or property being predicted.  Without any prior 

knowledge of the systems or mechanism of action, QTMS is able to reproduce the property of 

interest.  QTMS was used to predict the mutagenic potency for a set of triazenes with two 

proposed mechanisms for their metabolism to genotoxic metabolites58.  The study suggested a 

preferred mechanism; something which has yet to be confirmed experimentally.  However, if this 

information is known, then the common skeleton can, in the first instance, be reduced to the 

bonds that are expected important reducing the number of descriptors.    Ideally, the active 

centre is well localised, but there have been cases where it is turns out to be rather diffuse or 

“contaminated” with bonds one would not associate with the activity59.  No systematic 

investigation into this contamination has been performed however, this issue is revisited in 

Chapter 4. 

 

The QTMS method is closely related to another technique known as StruQT60.  This method has 

been used to predict wavelengths of the lowest UV transitions for a set of anthocyanidins and to 

distinguish between reaction pathways for the electrophilic addition of hydrochloric acid to 

propene61.  StruQT has been combined with inductive logic programming to include background 

knowledge and remove the need for molecular alignment62.  This method was tested on a large 

set of mutagenic compounds but only produced slightly better results than the original StruQT 

analysis. 
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Over the years, QTMS methods have produced excellent results of relevance to biology58, 63, 

medicinal51, 59, 64, 65, environmental66, industrial and physical organic chemistry60, 61, 67, 68.  In all 

cases the models had excellent validation statistics and also provided information about the 

active centre or region of the compounds thought to be important to the activity.  From the 

aforementioned QTMS publications it has become clear that QTMS descriptors are effective at 

capturing electronic effects.  Therefore we deduce that when QTMS fails, electronic effects are 

not as important to the predicted property or activity as, for example, solubility or steric effects.  

This was the case for the predictive QSAR models of phenols65 where LopP was introduced to 

describe the importance of hydrophobicity for hepatocyte toxicity prediction in conjunction with 

QTMS descriptors capturing the important electronic effects.  A lipophilicity descriptor, logKo/w, 

also had to be introduced to predict the toxicity of aromatic aldehydes69.  The model suggests that 

lipophilicity dominated but electronic factors are also important (this publication is in Appendix 

A).  Another example is the QTMS study70 on a remarkable and unusual set of ortho alkyl 

substituted phenols, known for their cytotoxicity and previously investigated by the Hansch 

group71.  The QTMS results do not support their proposal that a steric factor is important in the 

determination of the cytotoxicity.  In fact, QTMS results suggest no steric contribution 

whatsoever. 
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Chapter 3                                                                                                                

pKa Prediction from “Quantum Chemical Topology” 

Descriptors for Carboxylic Acids  

 

3.1 Introduction 

 

The publication relating to the work in this Chapter is provided in Appendix A. 

 

In chemistry and biochemistry, the acid dissociation constant, the acidity constant, or the acid-

ionization constant (  ) is a specific type of equilibrium constant that indicates the extent of 

dissociation of hydronium ions from an acid, which is represented by 

 

  
                 

 
      

 
     

 

     
where 

   
    

      

    
  

 

As this constant differs for each acid or base, and varies over many degrees of magnitude, it is 

represented by the symbol pKa, where 

 

              

 

In general, a larger value of    (or smaller value of pKa) indicates a stronger acid, since the extent 

of dissociation is large at the same concentration. 

 

The pKa of a compound is an important property in both life sciences and chemistry since the 

propensity of a compound to donate or accept a proton is fundamental to understanding 

chemical and biological processes. As the pKa value of a molecule also determines the amount of 

protonated and deprotonated species at a specific pH, for example at physiological pH, knowing 

the pKa of a molecule gives insight into pharmacokinetic properties.  These properties can be 

strongly effected by pKa, which therefore influences a compound’s ADMET profile.  A drug 

generally has to pass through at least one biomembrane via passive diffusion, or by carrier-

mediated uptake, before it can produce any biological effect.  Neutral molecules are easily 
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absorbed by phospholipid membranes while these lipid bilayers in the cell walls have very low 

permeability for ions and highly polar molecules.  The solubility of charged molecules is 3 to 4 log 

units higher than that of neutral counterparts, whereas the reverse is true for lipophilicity, which 

is 3-4 log units lower if the compound is charged72.  Ionisable groups also affect the ability of 

molecules to interact with biological targets as they can influence binding orientation in protein 

active sites.  Many biological systems also use proton-transfer reactions to communicate between 

the intra- and extracellular media and the rate of the proton-transfer reaction depends, in-part, 

on the pKa values of the species involved73.  It is estimated that ninety-five percent of medicinal 

compounds are ionisable, to some extent at physiological pH74, while approximately sixty percent 

of drug molecules listed in the World Drug Index can be ionised between pH 2 and 1275.  Beyond 

ADMET profiles, pKa  can be important in drug formulation and chemical synthesis.  The benefit of 

in silico pKa prediction is that physical samples are not needed. Therefore, predictions can 

influence decision-making in a drug development process before expensive and time-consuming 

synthetic work is undertaken.   

 

There are a number of well established experimental techniques76, such as spectroscopy, 

potentiometry, conductometry, competitive reactions and titrometry that can accurately 

determine pKa values for a molecule. However, experimental determinations of the acidity of a 

specific part of a large biological molecule, such as a protein, is not a straightforward task77 and is 

often associated with large uncertainties in the results.  For small molecules, the accuracy of pKa 

measurements can be affected by choice of experimental method, pH meter calibration, 

temperature control, solvent composition and chemical stability78.  The benefits of a technique 

that accurately predicts the dissociation constant without the need for “wet” experiments are 

clear. The chemical industry, in particular the pharmaceutical and agrochemical sectors, screen 

thousands of compounds during the discovery process for many properties simultaneously, 

including the dissociation constant. More efficient techniques are required because of the 

logistics of measuring the pKa values of these compounds.  There are also problems associated 

with certain techniques. For example, high-throughput UV absorption measurements can often 

miss groups not in close proximity to a UV-chromophore79.  

 

pKa estimation continues to receive much attention.  A recent perspective by Lee and Crippen80 

highlighted the importance of the equilibrium constant and the multitude of methods available 

for predicting pKa values for both proteins and small molecules.  In the context of small molecules 

the methods generally fall into two main categories: (i) predictive models, using a range of 

descriptors and learning methods79, 81-86, and (ii) ab initio quantum chemical methods based on 

different thermodynamic cycles73, 87-92. The first category was reviewed by Lee and Crippen and 
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includes linear free energy relationships and quantitative structure activity/property relationships 

(QSAR/QSPR).  This category of models relies on choosing the right descriptors to model the pKa of 

a particular dataset. Structural, physiochemical, topological, geometrical, constitutional, 

electrostatic, quantum-chemical and thermodynamic descriptors have all been used to predict pKa 

with varying success. Gruber and Buss93 performed semiempirical calculations on some 190 

phenols and carboxylic acids. They used multi-linear regression, with descriptors such as heats of 

formation, molecular orbital energies and charge densities, to produce a three-term equation for 

the benzoic acid derivatives (  =0.67) and a four-term equation for the aliphatic acids (  0.80). 

Citra94 criticized this linear free energy relationship-based approach for lacking scientific bases 

and vast use of correction factors favouring quantum mechanical methods. A three-term equation 

for 57 benzoic acids (        , was reported using a method similar to that of Gruber and Buss. 

Gross and Seybold95 rejected the use of semiempirical methods, instead using density functional 

theory, after a set of survey calculations demonstrated it performed significantly better for the 

descriptors they employed.  After studying phenols they found that atomic charge (  =0.89) and, 

the difference between the HOMO and LUMO energies (  =0.95), correlated with pKa. After 

rejecting the use of ab initio methods as too computationally demanding, Tehan96, 97 and co-

workers produced QSARs for numerous classes of acids and bases using semiempirical 

descriptors. Xing and Glen83 fashioned a novel structure tree representation of atoms to align 

molecules.  Twenty-four atom types and nine group types that were of biological interest were 

used in conjunction with PLS to produce a QSAR for a large set of acids and bases (  =0.93 and 

  =0.85).  Following this procedure, Xing84 and co-workers reduced the number of atom types 

and increased the group types used, also noting that splitting the dataset improved their results. 

The approach introduced by Xing has been taken up by numerous authors82, 86, 98. For example, 

Jelfs et al.79 utilized the tree fingerprint method to develop a prediction method using 

semiempirical chemical properties, such as partial charge and electrophilic superdelocalizability of 

atoms undergoing protonation or deprotonation, to produce an online pKa prediction web-tool at 

Novartis.   

 

In the second category of methods, ab initio quantum chemical methods based on different 

thermodynamic cycles89, 90 have started to receive more attention91, 99.  The method involves 

calculating the standard change in Gibbs energy related to the dissociation of a proton from the 

compound under study in water. The method utilizes gas phase and aqueous phase ab initio 

calculations but depending on the thermodynamic cycle used, involves at least four separate 

geometry optimizations for each prediction.  The choice of thermodynamic cycle, level of theory, 

and solvation model can all affect pKa calculation100.  Ho and Coote100 suggest that a realistic error 

margin should be in the vicinity of 2 pKa units, including a partial cancellation of errors.  The 
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calculation of pKa based entirely on first principles can be criticised for being too computationally 

demanding as it requires thermodynamic analysis and high levels of theory101.  Pulay et al.102 

produced a number of one-term equations to predict pKa.  These equations rely on entropic 

effects cancelling each other out and use only the enthalpy energy difference between the 

protonated and deprotonated forms, in conjunction with the COSMO continuum solvation 

model103, to describe the solvation.  After an initial investigation using 34 molecules to compare 

methods (B3LYP, OLYP, HF and PW91) and basis sets (3-21G(d) to 6-311++G(3df,3pd)) for 

geometry optimisation and single point energy calculations, they concluded that OLYP/3-21G(d) 

for geometry optimisation, and OLYP/6-311+G** for the energy calculation, were the best 

compromise between computational expense and accuracy101.  Extending the work to a dataset of 

370 different organic acids, including carboxylic acids, phosphonic acids, alcohols, thiols, and 

oximes, they produced linear regression equations for individual classes of compounds with mean 

absolute deviations of 0.4 pKa units102.  Out of all the commercial packages available for pKa 

prediction, Schrödinger’s Jaguar104 application is the only tool that employs this method.  The 

Jaguar package uses empirical correction terms, where calculated values are fitted to 

experimental values stored in a database, to repair deficiencies in both, the ab initio calculations 

and solvation models.  Namazian77, 105-108 and co-workers used an equation73, 87 that relates the 

standard change of Gibbs energy to the pKa of 66 carboxylic acids.  They achieved an    of 0.81 

and a MAE of 0.48. 

 

Here we evaluate QTMS descriptors in an extension to previous QTMS studies, which have shown 

good predictive ability for pKa 
57, 109.  Adam110 obtained impressive results by incorporating QCT 

into his study.  Using transferability between similar molecules, an idea at the origin of QCT111 

where any molecular property is the sum of the values of the property for the individual 

partitioned atoms , he obtained an    for aliphatic and benzoic acids greater than 0.84, in most 

cases, using the energy of the dissociating proton in solution as the only descriptor. On the other 

hand, QTMS descriptors have been successfully employed for carboxylic acids and anilines57, and 

phenols in aqueous112 and polar solvents109. 

 

Over recent years there have been a number of publications comparing pKa prediction methods. 

Dearden et al.113 compared ten prediction software packages (ADME Boxes114, VCCLAB115, ADMET 

Predictor116, Pipeline Pilot117, SPARC118, Marvin119, QikProp120, ACD/Labs121, Pallas122, ChemSilico 

pKa 
123) using an undivulged test set of 653 molecules and found a package called ADME Boxes to 

be the most accurate judged by    and the mean absolute error (MAE). As Lee and Crippen 

highlighted80, the VCCLAB predictions were actually made by ADME Boxes, since VCCLAB links to 

ADME Boxes to make the predictions.  The differing results for these two packages were 
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attributed to the difference in SMILES handling.  Pharma-algorithms, the company responsible for 

ADME Boxes, has merged with ACD/Labs keeping the ACD/Labs company name.  Therefore, 

VCCLAB now uses ACD/Labs pKa predictions.  The    and MAE range for the ten packages were 

0.96 to 0.57, and 0.32 to 1.48, respectively.  This comparison was based on a test set provided by 

ChemSilico. ChemSilico had verified that none of the compounds were part of their training set, 

which was not the case for the other packages.  This may be one of the reasons for ChemSilico 

performing the worst.  Meloun et al.124 used the REGDIA regression diagnostics algorithm, in the 

package S-Plus, to compare the pKa predictions of 64 drug molecules from four packages: 

ACD/Labs, Marvin, Pallas and SPARC. They found that ACD/Labs  achieved the best predictive 

power and the most accurate results.  Balogn et al.125 used 248 drugs, agrochemicals and 

intermediates to compare ACD/Labs, Epik126, Marvin, Pallas and VCCLAB.  It is clear from their 

paper that at the time the predictions were made, VCCLAB was still using ADME Boxes 

predictions.  VCCLAB was found to be the most predictive. However, it was suggested that 

ACD/Labs and Marvin are the most suitable methods for medicinal chemistry as VCCLAB only 

calculates pKa for the most acidic and basic groups.  The    and MAE ranged from 0.95 to 0.49, 

and 0.30 to 1.79, respectively. Liao and Nicklaus127 have compared nine programs to predict pKa, 

both commercially available and free. They used 197 pharmaceutical substances with 261 pKa 

values and found ADME Boxes, ACD/Labs and SPARC to rank the highest based on    and MAE.  

The    and MAE for all nine programs ranged from 0.94 to 0.58, and from 0.39 to 1.28, 

respectively.  It is interesting to note that when pKa was predicted for sites for which the 

experimental pKa was determined to be between medicinally more relevant interval of 5.4 to 9.4 

log units, the    ranged from 0.68 to 0.35, and the MAE from 0.45 to 1.04. The relatively poor 

performance of Jaguar128 confirms the discussion above on the second category of methods. The 

Jaguar method uses quantum mechanics to calculate the free energy change in going from the 

protonated to the deprotonated state.  Empirical correction terms are then used to repair 

deficiencies in both the ab initio calculations and the solvent models, which brings the MAE below 

2 pKa units. This error is suggested as satisfactory for this type of methods. 

 

In the past, we tended to utilize the interpretative ability of PLS at the chemometric stage to 

identify the active centre.  While this is a compelling feature of QTMS, we concentrate here on 

highly predictive models for pKa estimation. For this reason, we have used other statistical 

methods, such as support vector machines (SVM) and radial basis function neural networks 

(RBFNN), which yield models that are not so interpretable but possibly more accurate.  We have 

also extensively cross-validated our models and moved away from relying on SIMCA-P for 

validation. The 228 carboxylic acid compounds included in this study is the largest set of 
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compounds investigated with QTMS. This large set of diverse carboxylic acids facilitates the aim of 

extending the domain of applicability and producing more predictive models. 

3.2 Methods and Computational Details 

3.2.1 Data Set 

 

We seek to predict the pKa of molecules or fragments with pharmaceutical relevance. We 

therefore used the dataset of Tehan et al.97, who had previously applied a variety of filters in 

order to remove non-drug like molecules from their dataset. We selected carboxylic acids as 

compounds of interest because we want to apply the QTMS methodology to a large set of diverse 

compounds and extending previous applications of QTMS.  After iodine-containing molecules had 

been removed, since the basis sets were not readily available, our dataset contained 228 

carboxylic acids with a pKa range of 0.51-6.20.  This included 44 meta- and para-substituted 

benzoic acids, 50 ortho-substituted benzoic acids and 134 aliphatic carboxylic acids. The observed 

pKa values for all 228 carboxylic acids are listed in Appendix B. 

3.2.2 Data Generation 

 

The data generation process for QTMS can be found in Chapter 2 and a previous publication23.  In 

short, an approximation of the geometry of each molecule is provided by MOLDEN47. Using the 

programme GAUSSIAN0348 geometries were optimized successively at five different levels of 

theory: AM1, HF/3-21G(d), HF/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311+G(2d,p). The levels 

are denoted by letters A, B, C, D and E, respectively, for consistency with previous publications. 

The wave function calculated by GAUSSIAN is then passed on to a local version of the programme 

MORPHY9849, which locates the BCPs.  In this study the electron density (), the three eigenvalues  

of the Hessian of the electron density (1, 2 and 3), the two types of kinetic energy (K(r) and G(r)) 

and the equilibrium bond lengths (Re) have been used to describe each BCP.  Since 2
 and  are 

calculated using 1, 2 and 3, we have chosen to exclude the former.  The numbering scheme 

given to atoms in the common skeleton of each molecule is shown in Figure 3.1. This allows the 

location of descriptors important to the statistical analysis to be identified in each molecule. 

Secondly, the scheme allows BCPs in one molecule to be mapped onto corresponding BCPs in 

other molecules. We end up with five data matrices (one for each level of theory) consisting of 

228 observations (i.e. measured pKa values) and 21 descriptors for each observation, that is, 7 

descriptors obtained for each of the three bonds in the common skeleton.   
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Figure 3.1.  Numbering scheme of the common skeleton of the carboxylic acids.   

 

3.2.3 Machine Learning and Chemometric Analysis 

3.2.3.1 Partial Least Squares  

 

Partial least squares (PLS)52 analysis was carried out to fit the BCP descriptor variables to the 

experimental pKa values. The programme SIMCA-P54 was used along with its predefined criterion 

for determining the significant number of Latent Variables (LVs) to appear in the PLS equation. 

 

First, the initial model is constructed, involving all descriptors at each level of theory. Then the VIP 

plots are examined because they offer a concise summary of the importance of each of the 

descriptors. Descriptor variables with a VIP value less than unity are considered unimportant to 

the model and hence discarded52, 129. The models are then reconstructed with the reduced set of 

variables. We also built models using just the Re of the three bonds in the common skeleton to 

demonstrate that using BCP properties as descriptors provides more information than Re alone.  

As well as producing global models for the carboxylic acids, we repeated the PLS analysis after 

splitting the dataset into aliphatic and benzoic acids, which were further split into meta/para-

substituted and ortho-substituted sets.  Altogether there are three subsets. 

3.2.3.2  Support Vector Machines  

 

Support vector machines (SVM), originally proposed by Vapnik130 to solve pattern recognition 

problems131, were extended in 1996 for linear and nonlinear support vector regression (SVR)132.  

SVM have found numerous applications in chemistry including drug design, QSAR/QSPR, 

chemometrics, sensors, chemical engineering and text mining133. 

 

As with other multivariate statistical methods, the performance of SVM for regression depends on 

the combination of several parameters.  We employed a Gaussian Radial Basis Function kernel for 

SVR because of its effectiveness and speed in the training process134.  This function contains an 

extra parameter γ (a constant) that controls the amplitude of the Gaussian function, thereby 

controlling the generalization ability of the SVM to some extent.  The user-prescribed parameters 

(i.e. γ, ε of the ε-insensitive loss function and capacity parameter C) were chosen based on the 

lowest root mean squared error (RMSE) of the training data. The SVR programmes were written 
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by former group member C.X. Xue in an R-file, based on a script written in the R language for 

SVM, which utilized the e1071 package135. The scripts were compiled using the R 2.5.1 compiler136 

and run on a Pentium D PC with 1GB RAM. 

 

3.2.3.3 Radial Basis Function Neural Networks (RBFNN) 

 

The subject of neural networks is covered in depth in the work by Haykin137 and Gurney138.  The 

theory of RBFNNs as applied to QSARs has been extensively described in the paper of Yao et al.139. 

The training procedure involved the forward subset selection routine, which selected the centres 

for the RBF one at a time and adjusted the weights between the hidden layer and the output layer 

after the addition of each centre, using a least-squares140 solution. One third of the training set 

was randomly selected and ‘held back’ as test data, and training was terminated when the error 

on the test data showed no further improvement. RBFNN training was carried out using a range of 

RBF widths between 0.2 and 5.0 and the width yielding the lowest error on the test set was 

selected. 

3.2.3.4 Comparison of the Methods 

 

To compare these three machine learning methods we used k-fold cross validation (CV), where 

the datasets were divided in 4, 7 (as implemented in SIMCA-P) and 10 CV groups.  The division of 

the datasets was carried out using systematic sampling where the compounds were ordered 

according to their pKa values and assigned to a group accordingly. For example, for 4-fold CV the 

first compound was grouped with the fifth, ninth, thirteenth, etc. In random sampling method, 

the compounds were ordered by random numbers and divided into groups of different sizes 

depending of the k-fold CV being used (e.g. for 10-fold CV for the 50 ortho-substituted benzoic 

acids the first five compounds were group one, the next five group 2 etc.). Each CV group was 

excluded in turn so that each compound was excluded from the training data exactly once, and 

the RMSEP of prediction and    were calculated for the CV group according to Equation 2.22 and 

Equation 2.21, respectively.  The method that produced the lowest RMSEP in conjunction with the 

highest    was considered to be the most accurate. 

 

3.3 Results and Discussion 

3.3.1 Choice of Level of Theory 

 

Table 3.1 shows a summary of the initial PLS analysis at the five different levels of theory for the 

dataset and subsets. At each level, three different models were generated: a bond length only 
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model, a model with bond length involving all BCP descriptors (amounting to 21, which derives 

from 3 bonds and 7 descriptors per bond), and a model including only those descriptors from the 

bond length and BCP descriptor model having a VIP score greater than one. At level A, only a bond 

length model can be generated. This is because semiempirical (AM1) wave functions do not 

contain core densities, which corrupts the topology by affecting the position or even appearance 

of BCPs3, 100. The level A results are rather disappointing compared to the previous QTMS study of 

carboxylic acids57, where an    and    of 0.920 and 0.891 were obtained, respectively, and 

compared to the results in the literature discussed in the introduction earlier.  

 

Table 3.1.  Summary of the initial PLS analysis to determine the level of theory to use for the comparison of learning 
methods

b
.  

                          

  All acids ortho subset para/meta subset aliphatic subset 

Level Descriptors LVa       LVa       LVa       LVa       

A bond lengths 2 0.554 0.537 1 0.733 0.717 1 0.768 0.756 2 0.795 0.767 

B bond lengths 2 0.506 0.484 1 0.741 0.717 1 0.664 0.573 2 0.728 0.693 

 BCP properties 1 0.600 0.595 1 0.761 0.716 1 0.683 0.601 2 0.771 0.731 

 BCP properties (VIP>1) 3 0.638 0.616 1 0.757 0.718 1 0.708 0.651 2 0.726 0.713 

C bond lengths 2 0.593 0.581 1 0.770 0.754 1 0.783 0.758 2 0.729 0.696 

 BCP properties 2 0.660 0.637 1 0.770 0.747 1 0.779 0.750 3 0.805 0.744 

 BCP properties (VIP>1) 2 0.661 0.648 1 0.783 0.763 1 0.779 0.752 4 0.823 0.791 

D bond lengths 2 0.448 0.431 1 0.745 0.728 1 0.720 0.672 2 0.704 0.674 

 BCP properties 6 0.783 0.742 1 0.769 0.752 1 0.759 0.724 5 0.815 0.768 

 BCP properties (VIP>1) 7 0.696 0.646 1 0.794 0.775 1 0.772 0.742 2 0.788 0.758 

E bond lengths 2 0.462 0.446 1 0.767 0.757 1 0.737 0.700 2 0.700 0.672 

 BCP properties 6 0.766 0.731 1 0.767 0.754 1 0.749 0.710 5 0.813 0.763 

 BCP properties (VIP>1) 7 0.728 0.693 1 0.792 0.782 1 0.750 0.712 4 0.808 0.778 

              

 

a Number of latent variables. b The bold text highlights the best models for each set (i.e. all, ortho, para/meta and 
aliphatic) based on the highest   .  

 

Outlier detection was undertaken using the subset models as they were more easily 

distinguishable from correct predictions than in the models containing all the carboxylic acids.  In 

all the para- and meta-substituted models, compound 37 (3,4-diamino-benzoic acid) was always 

an outlier. This compound was one of three zwitterions in the subset including compound 15 (3-

aminobenzoic acid) and 21 (4-aminobenzoic acid).  These compounds were predicted reasonably 

well (observed pKa values of 4.74 and 4.85 and predicted pKa values of 4.14 and 4.82, respectively) 

according to the best para- and meta-substituted model marked in bold in Table 3.1. However, 

compound 37 was predicted consistently poorly (observed pKa of 3.49 and a predicted pKa of 4.62 

according to the same model). The zwitterions were all modelled in their neutral form, which 

sufficed for the monoamino-benzoic acids but was not appropriate for diamino-benzoic acid, 

which was predicted to have a larger pKa value due to the fact that the increased stability in its 

zwitterionic form is not encapsulated in the BCP descriptors.  As in this work, Tehan97 and co-

workers struggled to model this effect and had few problems with the monoamino-benzoic acids. 

In line with Tehan’s approach we omitted 37 as an outlier.  In the ortho-substituted models, two 

compounds were identified as outliers and removed from the models, namely 72 (2,6-
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dihydroxybenzoic acid) and 79 (2-hydroxy-3,5-dinitro-benzoic acid) whose pKa values were 

predicted to be 2.60 and 1.86 compared to observed values of 1.05 and 0.70, respectively. The 

hydroxyl group at the ortho position(s) in these compounds could be held responsible for their 

over prediction because internal hydrogen bonding in the anionic form could increase the stability 

of the ion therefore decreasing their pKa values. This effect is not encapsulated in the BCP 

descriptors and therefore absent from the models. The issue with this reasoning is that there are 

a further 11 compounds in the subset that are hydroxyl-substituted at the 2 position and they are 

predicted well. 

 

Four further compounds were identified as outliers from the aliphatic carboxylic acid models and 

removed. They were 124 (4-[(4-chloro-2-methylphenyl)oxy]butanoic acid), 150 (cyanoacetic acid), 

155 (9-hydroxy-9H-fluorene-9-carboxylic acid/flurenol) and 228 (4-(cyclopropylcarbonyl)-3,5-

dioxocyclohexanecarboxylic acid)). Tehan97 and co-workers brought into question the reliability of 

the observed pKa value of compound 124, with which we concur. Compound 155 (Figure 3.2a) 

was excluded from their model on the basis that the proximity of the carboxyl group to the two 

aromatic rings and the presence of an α-hydroxy group make its pKa difficult to predict. 

Alternatively, the observed pKa is incorrect. We can confirm that it is the observed pKa value that is 

the most likely cause for discrepancy. Our best model predicts the pKa to be 2.87 while the 

experimental value given by Tehan (our source data set) is 1.09.  A different source141 gives the 

observed pKa value of 2.96, which is close to our predicted value and the value predicted by 

ACD/Laboratories142 as 3.04.  Furthermore, there is a similar structure (104, 

hydroxy(diphenyl)acetic acid) in the dataset that has an observed pKa of 3.05 (Figure 3.2b).  A 

literature value for the observed pKa values of these compounds (155 and 104) with their 

respective hydroxyl group removed was found to be 3.61143 for 155 (Figure 3.2c) and 3.9144 for 

104 (Figure 3.2d), a difference of only 0.3 log units. The difference of 1.96 log units (=3.05-1.09) 

between compounds 155 and 104 generated by the addition of a hydroxyl group at the same 

position in each is unlikely when considering the difference is 0.3 log units between the analogous 

compounds, thus further supporting a wrong observed pKa.  No reason for compounds 150 and 

228 being outliers can be offered but they were both excluded. 
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Figure 3.2.  Structures and experimental pKa values for compounds 155 and 104 and their analogues fluorine-9-
carboxylic acid and diphenyacetic acid. 

 

Table 3.2 shows the results of the PLS analysis after the outliers were removed.  Here, one of the 

BCP property models always outperforms the bond length model at each level of theory in terms 

of both    and   . Generally, the models improved when the VIP<1 “cut-off” was used.  After 

considering the    and    for all of the models, we found that level C gave the optimum results 

for the subsets. However, level E gave the best results for a model involving all carboxylic acids, 

although this model is constructed from 6 LVs.   

 

Table 3.2.  Summary of the initial PLS analysis after the outliers had been removed.  

  All acids ortho subset para/meta subset aliphatic subset 

Level Descriptors LV
a
       LV

a
       LV

a
       LV

a
       

A bond lengths 2 0.630 0.612 2 0.797 0.787 1 0.900 0.896 2 0.795 0.748 

B bond lengths 2 0.601 0.581 2 0.838 0.801 1 0.905 0.902 2 0.837 0.828 

 BCP properties 4 0.769 0.730 1 0.837 0.810 1 0.912 0.911 2 0.863 0.852 

 BCP properties (VIP>1) 4 0.764 0.749 1 0.835 0.815 1 0.909 0.908 6 0.895 0.861 

C bond lengths 2 0.696 0.688 1 0.841 0.832 1 0.931 0.929 1 0.875 0.875 

 BCP properties 3 0.802 0.779 1 0.837 0.819 1 0.931 0.928 3 0.897 0.873 

 BCP properties (VIP>1) 2 0.787 0.782 1 0.848 0.836 1 0.933 0.932 4 0.911 0.901 

D bond lengths 2 0.486 0.455 1 0.777 0.762 1 0.912 0.906 3 0.807 0.784 

 BCP properties 6 0.860 0.839 2 0.851 0.813 1 0.923 0.919 3 0.882 0.869 

 BCP properties (VIP>1) 4 0.738 0.689 1 0.842 0.833 1 0.927 0.925 2 0.890 0.881 

E bond lengths 2 0.535 0.498 1 0.803 0.794 2 0.917 0.907 2 0.810 0.788 

 BCP properties 6 0.879 0.844 2 0.866 0.818 1 0.917 0.913 2 0.875 0.858 

 BCP properties (VIP>1) 7 0.845 0.818 1 0.844 0.835 1 0.918 0.913 3 0.897 0.886 

              

  

a Number of latent variables.  b The bold text highlights the best models for each group based on having the highest   . 
  

 

 

Figure 3.3 shows a comparison of the CPU time needed for optimization for nine of the 

compounds (three from each subset) that converged at each level of theory without any restarts 

versus the highest    from each level of theory.  This demonstrates that apart from the models 
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involving all the carboxylic acids, there is no improvement in    above level C despite a significant 

increase in computational expense. Level A and B are inferior in all cases.  At this stage, we are in 

a position to explore different statistical learning methods to predict pKa values based of BCP 

properties.  To test the suitability of Level C in pKa prediction and to examine whether the initial 

results still hold, we carried out the analysis with level C and the more computationally expensive 

level E. 

 

 

Figure 3.3.  Comparison of the CPU times needed to optimize the compounds versus the highest    value at each 
level of theory (A, B, C, D and E). 

 

3.3.2 Comparison of the Statistical Learning Methods 

  

The data for all comparisons in Section 3.3.2 to Section 3.3.5 can be found in Table 3.3.  For each 

learning method, there are four groups of compounds to test: all carboxylic acids, aliphatic acids, 

meta/para- and ortho-substituted acids. There are three different sizes of CV sets for both the 

systematic and random sampling method. This gave 24 values (= 4 groups of compounds  3 CV 

set sizes  2 sampling methods) of    and RMSEP to compare for each learning method employed. 

At level C, SVM gave the lowest RMSEP value 16 times out of 24 comparisons, PLS 7 out of 24 

comparisons, and RBFNN 2 times out of 24 comparisons (the RMSEP for the random sampling 

para/meta 10-fold CV models were identical for PLS and SVM). Again out of 24 comparisons but at 

level E this time, SVM gave the lowest RMSEP 21 times, PLS 3 times and RBFNN 2 times (the 

RMSEP for the systematic sampling para/meta 4-fold CV models and the random sampling 7-fold 

CV models were identical for PLS and SVM). This clearly demonstrates that SVM is superior to 

both PLS and RBFNN, at both levels of theory. 
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Table 3.3.  Summary of the results obtained from the three machine learning methods at level C and E.  The values in 
bold are the lowest RMSEP and the values in italics are the next lowest RMSEP. 

            

   PLS SVM RBFNN 

 
k-fold 
validation set    RMSEP    RMSEP    RMSEP 

Level C         

systematic  4-fold all 0.782 0.422 0.897 0.288 0.878 0.316 

sampling   ortho 0.812 0.408 0.797 0.398 0.746 0.472 

   para/Meta 0.917 0.121 0.915 0.117 0.847 0.147 

   aliphatic 0.893 0.288 0.899 0.28 0.874 0.317 

  7-fold all 0.778 0.424 0.895 0.291 0.927 0.256 

   ortho 0.844 0.361 0.819 0.391 0.774 0.437 

   para/Meta 0.934 0.104 0.915 0.126 0.900 0.129 

   aliphatic 0.920 0.265 0.904 0.27 0.910 0.267 

  10-fold all 0.779 0.420 0.888 0.295 0.884 0.308 

   ortho 0.845 0.355 0.848 0.352 0.832 0.372 

   para/Meta 0.939 0.101 0.942 0.096 0.942 0.107 

   aliphatic 0.905 0.335 0.907 0.262 0.889 0.298 

random 4-fold all 0.775 0.440 0.891 0.295 0.860 0.338 

sampling  ortho 0.836 0.379 0.836 0.378 0.807 0.407 

   para/Meta 0.927 0.120 0.910 0.129 0.235 0.325 

   aliphatic 0.907 0.267 0.900 0.282 0.883 0.305 

  7-fold all 0.778 0.426 0.860 0.290 0.912 0.282 

   ortho 0.801 0.382 0.807 0.395 0.753 0.460 

   para/Meta 0.928 0.112 0.925 0.105 0.789 0.177 

   aliphatic 0.903 0.273 0.915 0.251 0.881 0.308 

  10-fold all 0.778 0.423 0.885 0.300 0.855 0.345 

   ortho 0.827 0.369 0.843 0.352 0.761 0.412 

   para/Meta 0.929 0.097 0.930 0.097 0.878 0.135 

    aliphatic 0.903 0.269 0.911 0.261 0.891 0.295 

Level E           

systematic  4-fold all 0.814 0.391 0.873 0.269 0.849 0.352 

sampling   ortho 0.806 0.417 0.842 0.372 0.690 0.520 

   para/Meta 0.916 0.131 0.916 0.131 0.920 0.126 

   aliphatic 0.875 0.313 0.900 0.275 0.902 0.280 

  7-fold all 0.821 0.375 0.885 0.301 0.907 0.289 

   ortho 0.836 0.370 0.851 0.354 0.852 0.350 

   para/Meta 0.906 0.133 0.913 0.125 0.869 0.159 

   aliphatic 0.894 0.285 0.909 0.263 0.893 0.293 

  10-fold all 0.816 0.377 0.881 0.303 0.859 0.339 

   ortho 0.834 0.371 0.861 0.342 0.749 0.423 

   para/Meta 0.917 0.122 0.919 0.119 0.892 0.146 

   aliphatic 0.883 0.299 0.906 0.262 0.762 0.435 

random 4-fold all 0.787 0.407 0.888 0.298 0.864 0.334 

sampling  ortho 0.825 0.390 0.846 0.366 0.712 0.487 

   para/Meta 0.870 0.160 0.908 0.137 0.760 0.220 

   aliphatic 0.877 0.307 0.901 0.280 0.876 0.314 

  7-fold all 0.814 0.387 0.886 0.289 0.897 0.304 

   ortho 0.879 0.398 0.788 0.405 0.641 0.554 

   para/Meta 0.911 0.129 0.913 0.129 0.848 0.167 

   aliphatic 0.884 0.299 0.905 0.269 0.903 0.279 

  10-fold all 0.814 0.383 0.886 0.299 0.882 0.311 

   ortho 0.879 0.380 0.832 0.368 0.704 0.483 

   para/Meta 0.908 0.119 0.914 0.116 0.853 0.139 

    aliphatic 0.883 0.295 0.904 0.269 0.878 0.312 
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3.3.3 Comparison of the Level of Theory 

 

Comparing the results of each    and RMSEP values obtained at both levels of theory, level C 

produces the highest    46 times out of 72 (=324) comparisons and the lowest RMSEP 45 times 

out of the 72 comparisons, with one value being the same for level C and E. This suggests that 

level C is superior to level E because it has the highest number of higher    and RMSEP values.   

 

3.3.4 Comparison of the Validation Set Selection Method 

 

At each level of theory, there are 36 RMSEP and    values to compare because there are 3 

machine learning methods, 3 values for r in k-fold CV and 4 compound groups (36=334).  At 

level C, there are 24 higher    values for systematic sampling compared to 11 for random 

sampling and 1    value that is the same (36=24+11+1). There are 22 RMSEP values lower for 

systematic sampling compared to 13 lower RMSEP values for random sampling and 1 RMSEP 

value that is the same (36=22+13+1).  At level E, there are 19 higher    values for systematic 

sampling compared to 16 for random sampling and 1    value that is the same (36=19+16+1). 

There are 21 RMSEP values that are lower for systematic sampling compared to 15 values for 

random sampling (36=21+15).  The better results gained from systematic sampling is not 

surprising because this method ensures the maximum value for the denominator in the    

equation. Using systematic sampling means that the most dissimilar compounds in relation to 

their pKa values are excluded and so it is more likely that the training set will contain similar 

compounds to the CV set therefore leading to better predictions145. When random sampling is 

used one cannot ascertain that the CV sets contain all similar compounds in terms of their pKa 

values. Hence, the models are possibly trained using compounds dissimilar to the CV set, which 

can lead to poor prediction statistics. If the CV sets contain similar compounds in terms of their 

pKa values, then this can lead to a small denominator in the   , thus increasing the    value. 

 

3.3.5 Comparison of Validation Set Size 

 

With regards to the k-fold validation, 10-fold validation generally provided the highest    and the 

lowest RMSEP values, although this was not always the case. When the difference is calculated 

between the highest and lowest    values for the k-fold CV set size for each subset and each 

method, the mean difference is 0.057 (standard deviation (SD) of 0.127) and 0.039 (SD=0.042) for 

level C and E, respectively. When the same is calculated for the RMSEP values, then the mean 

difference is 0.041 (SD=0.040) and 0.042 (SD=0.042) for level C and E, respectively. When the poor 

result for 4-fold-para/meta-random sampling using RBFNN at level C is omitted, then the mean 
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difference for    is 0.032 (SD=0.025) and the mean value for RMSEP is 0.035 (SD=0.024). The k-

fold CV does give different results but the difference is small. It is not surprising that 10-fold CV 

generally gives the best validation statistics because the smaller the CV groups, the more 

compounds there are to train the models.  What these results do suggest is that the models still 

provide good predictions even when 25% of the compounds are omitted in training when using 4-

fold CV. 

 

3.3.6 Confirmation of Finding Based on Averages  

 

Table 3.4, Figure 3.4 and Figure 3.5 show the results of all the subsets and learning methods when 

the k-fold CV results have been averaged and the results of the subsets and learning methods 

when the sampling methods have been averaged from Table 3.3.  These results confirm what had 

previously been suggested. There is little difference between the CV statistics for the random and 

systematic sampling methods.  Excluding the RBFNN para/meta results at level C, the largest 

difference in    and RMSEP values is 0.021 and 0.029, respectively, for the RBFNN all acid models.  

At level E, the largest difference in    and RMSEP is 0.078 and 0.077, respectively, for the RBFNN 

ortho models. Based on the final average results of the k-fold and sampling methods, it is clear 

that SVM generally gives the best CV statistics.  However, at level C the PLS statistics for the 

para/meta and ortho models provide the highest    value and lowest RMSEP. However, these are 

close to the    value and RMSEP value provided by SVM.  Comparing the “all acid” models and the 

aliphatic models, the    value and RMSEP for SVM are much better than the    and RMSEP for 

PLS.  At level E, SVM provides the highest    and lowest RMSEP in all cases. Although PLS was 

better than SVM in two cases at level C, we chose SVM as the best learning method. This decision 

is based on the fact that, when PLS was superior, the difference between the statistics was small 

and, when SVM was better, then the difference between the statistics was large. Comparing the 

averages of systematic and random sampling for SVM level E only provides better CV statistics for 

the ortho dataset.  The difference between the statistics is small but this may suggest that the 

more expensive level E accounts more for the steric effects than level C in some way. 

 

Improved models were created when the dataset was split into aliphatic and aromatic subsets, 

which were further split into meta/para and ortho-substituted carboxylic acids.  The subset 

models provided significant improvements on the “all acid” model.  The para/meta model was the 

most accurate in prediction, followed by the aliphatic and then the ortho model.  The excellent CV 

results of the para/meta models are not surprising because the pKa difference caused by 

substituent changes can be accurately predicted by the Hammett equation and BCP properties 

display a strong correlation with Hammett’s sigma parameter3.  The lower    value and higher 

RMSEP for the ortho model can be explained in terms of steric effects146.  Whereas the pKa of 
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meta- and para-substituted carboxylic acids is affected mainly by inductive and resonance 

contributions, the pKa of ortho-substituted carboxylic acids is highly sensitive to steric 

contributions. Primary steric hindrance to deprotonation is important where there are bulky 

groups around the acidic centre.  Secondary steric effects may either be acid-weakening (if there 

is steric hindrance to solvation), or acid-strengthening (if there is steric inhibition of resonance in 

the neutral molecule).  We have already stated that when QTMS fails, one can be certain that 

steric effects are very important.  Since the BCP properties do not account for steric effects, we 

can be confident that this is the reason for the poorer results.  Since the results of the aliphatic 

subset are an improvement on the ortho subset, the steric effects must be less important for the 

former subset (Table 3.4). 

 

Table 3.4.   Average values of the results from Table 3.3. 

   PLS SVM RBFNN 

   set    RMSEP    RMSEP    RMSEP 

Level C        

systematic sampling all 0.780 0.422 0.893 0.291 0.897 0.293 

   ortho 0.834 0.375 0.821 0.380 0.784 0.427 

   para/Meta 0.930 0.109 0.924 0.113 0.896 0.128 

   aliphatic 0.906 0.296 0.903 0.271 0.891 0.294 

random sampling all 0.777 0.430 0.879 0.295 0.875 0.322 

   ortho 0.821 0.377 0.829 0.375 0.774 0.426 

   para/Meta 0.928 0.110 0.922 0.110 0.634 0.212 

   aliphatic 0.904 0.270 0.909 0.265 0.885 0.303 

average of systematic  all 0.778 0.426 0.886 0.293 0.886 0.307 

and random sampling ortho 0.828 0.376 0.825 0.378 0.779 0.427 

   para/Meta 0.929 0.109 0.923 0.112 0.765 0.170 

    aliphatic 0.905 0.283 0.906 0.268 0.888 0.298 

Level E           

systematic sampling all 0.817 0.381 0.880 0.291 0.872 0.327 

   ortho 0.825 0.386 0.851 0.356 0.763 0.431 

   para/Meta 0.913 0.129 0.916 0.125 0.893 0.144 

   aliphatic 0.884 0.299 0.905 0.267 0.852 0.336 

random sampling all 0.805 0.392 0.887 0.295 0.881 0.316 

   ortho 0.861 0.389 0.822 0.380 0.686 0.508 

   para/Meta 0.896 0.136 0.912 0.127 0.820 0.176 

   aliphatic 0.881 0.300 0.903 0.273 0.886 0.301 

average of systematic  all 0.811 0.387 0.883 0.293 0.876 0.322 

and random sampling ortho 0.843 0.388 0.837 0.368 0.724 0.469 

   para/Meta 0.905 0.132 0.914 0.126 0.857 0.160 

    aliphatic 0.883 0.300 0.904 0.270 0.869 0.319 
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Figure 3.4.  A graphical representation of Table 3.4 for level C.  The bar charts represent the RMSEP, and the lines 

represent the    values obtained. 
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Figure 3.5.  A graphical representation of Table 3.4 for level E.  The bar charts represent the RMSEP, and the lines 

represent the    values obtained. 
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3.3.7 Comparison to pKa Prediction Software 

 

To compare pKa prediction by the QTMS method with available (commercial) software, we have 

used the methods provided by a number of organizations, namely  ACD/Labs’ pKa DB142, the 

SPARC147 online calculator (SPARC Performs Automated Reasoning in Chemistry), VCCLAB’s web-

based ALOGPS 2.1 program148, and ChemAxon’s pKa Plugin149 for the Marvin software package. 

Recently, it was stated that the web-version of the SPARC performs 50,000-100,000 calculations 

per month124.  Each software package enables the user to input the structures in SMILES 

format150. 

   

We removed each of the compounds in turn from the global and subset carboxylic acid models 

built using PLS, SVM and RBFNN, for both level C and E and rebuilt the models using the new 

model to predict the pKa of the compound omitted85. Using this method, we acknowledge that the 

compounds are not an external test set (e.g. they have been used for initial variable and 

parameter selection in some cases) nor can we be sure that they have not been used to train the 

packages we investigated.  Table 3.5 gives the RMSEP for the methods based on leave-one-out.  

The RMSEP obtained from testing the alternative computer programs are also given in Table 3.5.  

These results confirm that SVM provides the best models to predict pKa.  The SVM models have 

the lowest RMSEP in all the LOO cases apart from the level C ortho and para/meta carboxylic acid 

models, where the PLS models have the lowest RMSEP of 0.388 for the ortho model and 0.121 for 

the para/meta model, compared to 0.407 and 0.123 for the SVM models, respectively. Comparing 

levels of theory confirms that level C is the best as it generally provides the lowest RMSEP for the 

models.  There are some exceptions to this. For example, the ortho model at level E, using SVM 

has an RMSEP of 0.367 compared to 0.407 for level C.  Where level E provides a lower RMSEP the 

largest difference observed in RMSEP between level C and E is 0.04 for the SVM ortho models and 

the PLS all carboxylic acid models.  In fact, the difference between the models at the different 

levels judged by RMSEP (based on LOO) is negligible when considering the large increase in CPU 

time needed to optimize the compounds at level E (See Figure 3.3). 
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Table 3.5.  The RMSEP for the three learning methods based on leave-one-out.  The RMSEP for the commercial 
computer programmes are given at the bottom of the table. 

  RMSEP 

 method PLS SVM RBFNN 

 Level C    
 QTMS (all) 

0.427 0.293 0.363 
 QTMS (subset avg.) 

0.285 0.276 0.321 
 QTMS ortho subset 

0.388 0.407 0.477 
 QTMS para/meta subset 

0.121 0.123 0.138 
 QTMS aliphatic subset 

0.278 0.252 0.291 

 Level E    
 QTMS (all) 

0.396 0.301 0.323 
 QTMS (subset avg.) 

0.311 0.278 0.323 
 QTMS ortho subset 

0.407 0.367 0.486 
 QTMS para/meta subset 

0.136 0.131 0.168 
 QTMS aliphatic subset 

0.313 0.276 0.285 

 Compared software/tools RMSE   

 ACD/Laboratories 0.263   

 VCCLAB 0.279   

 SPARC 0.356   

 ChemAxon 0.398   

 

 

 

Figure 3.6.  Comparison between QTMS and other pKa prediction software, based on the RMSEP. 

 

Figure 3.6 graphically compares our QTMS SVM models to the results obtained from the 

commercial predictions.  Recently, Meloun and Bordovská124 have rigorously compared the same 

packages using 64 drugs and other organic molecules with complex and diverse structural 
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patterns.  Although we only base our ranking on the RMSEP, we too found ACD/pKa to be the 

most accurate method. This conclusion contradicts the findings of Dearden et al.113 who 

compared ten prediction tools using a test set of 653 compounds. They found that ACD/pKa  was 

the least accurate out of the four programs we investigated, with and without inclusion of 

tautomeric compounds. The other three programs were ordered in the same way as in our study: 

VCCLAB being the most accurate followed by SPARC and then ChemAxon.  Apart from ACD/Labs, 

which is consistent across all the subsets, the other methods vary in their prediction ability. Out of 

all the methods, QTMS has the lowest RMSEP for the para/meta substituted benzoic acids and 

aliphatic carboxylic acids, but has the highest RMSEP for the ortho-substituted benzoic acids. As 

has been previously pointed out59, 70, QTMS fails when steric effects are important, which is the 

case for the ortho substituted benzoic acids. 

3.4 Summary 
 

The results presented in this systematic study indicate that BCP descriptors are effective in 

predicting the pKa of small- to large-sized carboxylic acids of pharmaceutical relevance. 

Furthermore, extensive cross validation shows that there is no need to use the computationally 

more expensive level E when level C provides similar, if not superior, CV statistics.  More 

predictive models were gained from splitting the dataset.  Generally, SVM provides the best 

learning method although the lack of interpretability may mean it is not necessarily the most 

suitable method when mechanistic understanding is important. Finally, we have also 

demonstrated that predictions from our QTMS method compete with frequently used pKa 

prediction tools. 
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Chapter 4                                                                                                                 

pKa Prediction from an ab initio Bond Length for Phenols, Benzoic 

Acids and Anilines 
 

4.1 Introduction 
 

QTMS51, 59, 63 is a new approach to solving QSAR/QSPR problems using properties defined by QCT1, 

2, 151.  QCT defines so-called critical points inside a given molecule, where quantum mechanical 

functions such as the electron density are evaluated. These and other values are QTMS 

descriptors. In Chapter 3 and our publication152 we modelled the pKa of 228 carboxylic acids using 

the QTMS methodology, in which equilibrium bond lengths are usually added to the descriptor 

pool152. Indeed, as early as 2002, ab initio equilibrium bond lengths featured in the rationalisation 

of antitumor activity of (E)-1-phenylbut-1-en-3-ones63
. Better models were achieved using the 

descriptors defined by QCT than with bond lengths alone.  This has generally been the case in 

previous QTMS studies that predicted pKa and other properties57, 69, 153, 154.  Superior models were 

achieved when the benzoic acids were split into ortho- and meta-/para-substituted groups.  

However, we believe that if the focus is placed on accuracy rather than globality, which means 

splitting chemical classes beyond the common aliphatic, ortho-, para- and meta-substituted 

groups, then strong correlations between a single ab initio bond length and pKa are achievable, 

without the need for the computation of QCT descriptors. This is the approach and strategy in this 

Chapter.  Furthermore, simple linear equations using just one bond length will be constructed and 

shown to be equal to if not better than using several bond lengths in more sophisticated multi-

term equations. Quantum mechanical methods are becoming standard in computational drug 

design155 and the equations presented here offer a simple and practical way to predict pKa using 

information generated from first principles. 

   

Using the accuracy of first-principle methods, Han and co-workers studied the complete series of 

chlorophenols156.  Using B3LYP/6-311++G(d,p) for geometry optimisation, in conjunction with a 

molecular probe to simulate the acid-base interaction, they found that several molecular 

parameters correlated well with the acidity of the phenols.  They found ammonia to be a better 

molecular probe than water because it is a stronger base and induces larger measurable changes 

in the molecular properties.  The C-O bond length (r(C-O)), O-H bond length (r(O-H)) and O-H…N 

hydrogen bond length (r(O-H...N)) all correlated well with the experimental pKa, with correlation 

coefficients (  ) ranging from 0.89 to 0.97 for the phenol-ammonia complexes.    The complete 

series of bromophenols, fluorophenols and hydroxybenzoic acids was also investigated using the 

same methods and similar correlations were noted157, 158.  The authors of these papers 



71 
 

demonstrated that weaker correlations were observed with the molecular properties of 

monomeric phenols without using the molecular probe159, 160.  Strong correlations (   > 0.92) were 

also found for aliphatic and carboxylic acids161 with the use of a molecular probe.  These 

correlations demonstrated that specific bond lengths could be used to predict pKa beyond the 

complete series of halogen phenols, although ortho-substituted benzoic acids had to be modelled 

separately and all the benzoic acids were mono-substituted, apart from one compound.  It was 

suggested that bond lengths were more practical to use because the calculation of vibration 

frequencies was computationally more demanding. 

 

Yu et al.162 have recently compared the semiempirical approach to predict pKa, originally purposed 

by Tehan and co-workers97, to ACD/Labs121 and SPARC118.  The semiempirical method performed 

significantly better when the data set was split into compound class-specific subsets. However, 

the overall performance was inferior to both that of ACD/Labs and SPARC.  The authors suggest 

that improvements may be possible using higher-level quantum chemical methods to calculate 

the descriptors and the exploration of other quantum chemical parameters.      

   

With the end-user in mind, we will demonstrate that the required accuracy in pKa prediction can 

be achieved with a relatively low level of ab initio theory.  This offers the opportunity for pKa 

predictions of large data sets within an acceptable time.  A comparison with previous work will 

show that the use of the probe molecule is unnecessary.  The correlations are generated for 

phenols, carboxylic acids, and anilines, and subsequently used to predict the pKa values of drug 

molecules. The advantage of single-term linear regression equations over multi-term equations 

will also be discussed.  One advantage is the easier detection of outliers, allowing that the 

experimental data can be challenged. A second advantage is a reduced potential of over-fitting.  

Finally, we will describe a procedure that can be followed to predict pKa. While this work is limited 

to three classes of compounds, the procedure is expected to be generic and hence applicable to a 

diverse range of compounds.  

 

4.2 Methods and Computational Detail 
 

4.2.1 Data Sets 

 

Table 4.1 provides the constitution of the data sets for the phenols, benzoic acids and anilines.  

The experimental pKa values for the phenols and benzoic acids were taken from a paper by Tehan 

et al.97 while the anilines’ experimental pKa values were taken another paper96 by Tehan et al., 

unless otherwise stated. These authors had previously applied a variety of filters in order to 



72 
 

remove non-druglike molecules.  Where we have used other sources for experimental pKa values 

to correct experimental values from our original data source, expanded the data set or tested our 

models, we explicitly highlight these occurrences in the text. The experimental pKa values are 

listed in Appendix C with the corresponding chemical name and the identification numbers used 

in this Chapter.   

 

Table 4.1.  A summary of the data sets investigated.   

Compound Class  # of compounds 
Phenols  171 
 Meta/Paraa 55 

 Orthob 90 

 Ortho, capable of forming Internal 
Hydrogen Bonds (ortho-phenols-IHB)c 

26 

Benzoic Acids  94 
 Meta/Parad 44 

 Orthoe 50 

Anilines  52 
 Meta/Paraf 24 

 Orthog 28 
 

a Two iodine containing compounds removed (4-iodophenol (compound 35) and 3-iodophenol (compound 
50).  4-hydroxyacetophenone (compound 58) was also removed since the CAS number and name provided 
did not match, therefore causing ambiguity. The name given was hydroxyacetophenone whilst the CAS 
number relates to 4-hydroxyphenylacetaldehyde. The experimental pKa quoted is 8.05, which is the same as 
that of 4-hydroxyacetophenone (compound 12).  
b One iodine containing compound removed 2-iodophenol (compound 134).  2-methyl-4-chlorophenol 
(compound 90) corrected since the name and CAS number provided did not match.  The name provided for 
compound 90 was already in the dataset (compound 174) so the CAS number was trusted and the structure 
corrected to 2-chloro-4-methylphenol.  
c The name provided for compound 83 was incorrect and was corrected to 3,5-4’-trichloro-2’-nitro 
salicylanilide. 
d Two iodine containing compounds removed (3-iodobenzoic acid (compound 207) and 4-iodobenzoic acid 
(compound 212)).   
e Three iodine containing compounds removed (2-iodobenzoic acid (compound 233), 2-hydroxy-5-iodo-
benzoic acid (compound 247) and 3,5-diiodosalicylic acid (compound 249)) . 
f Two iodine containing compounds (3-iodoaniline (compound 297) and 4-iodoaniline (compound 298)) 
were removed.  The macro pKa value (3.07) for 3-aminobenzoic acid (compound 275) was provided in the 
original data set.  The micro pKa value (4.53) was found in the literature72 and  subsequently adopted.  
g  One iodine-containing compound removed (2-iodoaniline (compound 325)). 

 

4.2.2 Data Generation and Analysis 

 

The phenols, benzoic acids and anilines were treated separately.  The discussion below provides a 

general overview of the data generation and analysis.  More details about the exact analysis of 

each data set are given in the results (Section 4.3).   An initial guess of the geometry of each 

compound was provided by MOLDEN47.  Using the programme GAUSSIAN0348, geometries were 

optimised at HF/6-31G(d) level.  The bond lengths of interest  were then extracted and a PLS52 

analysis was carried out to fit the bond lengths to the experimental pKa values. SIMCA-P54 was 
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used for the majority of the data analysis.  Models using all the bond lengths of interest were 

initially created using the predefined criterion for determining the significant number of Latent 

Variables (LVs) to appear in the PLS equation.  If the value of    of the newly constructed LV is less 

than 0.097, then no more LVs are computed; the PLS regression is then deemed complete.  

Separate models were also created for the ortho-, para- and meta-substituted compounds.  

Variable Important in the Projection (VIP) plots for the models were subsequently examined.  VIP 

plots provide a condensed summary of the relative importance of each variable to the model, in 

this case the contribution of specific bond lengths.  The bond lengths that contributed the most to 

the models were then used to construct one-term bond length models for the compound classes 

and the results analysed.  Attempts were then made to separate these models into chemically 

meaningful groups of compounds where one common bond length showed high correlation with 

the experimental pKa values.  We refer to these groups of compounds as high-correlation subsets.  

Through the analysis of the single-bond-length equations, the influence of conformation was 

investigated.  Outliers and errors were detected and where possible corrected.  Higher levels of 

ab initio theory were examined and comparisons of the results with and without an ammonia 

probe were made for a selection of the high-correlation subsets.  The predictions made from the 

high-correlation subsets were compared to the predictions made from models constructed using 

all the bond lengths and more diverse training sets.  Models were validated using leave-many-out 

and compared using a variety of statistics discussed in Section 4.2.3 below.  Finally, we tested the 

power of these models to predict the pKa of drug molecules127. 

 

4.2.3 Statistics 

 

In this work we report   , RMSEE and    values for the constructed models. We assess our 

models by means of RMSEE, which is the strictest criterion of quality, both in terms of outlier 

assessment and the series of inequalities mentioned in Chapter 2. We base our comparisons on 

RMSEE and use this as a guide to indicate which models should be cross validated.  We only 

performed full k-fold CV on the most promising models.  In the current work k is set to exactly 

seven throughout, provided there are more than 7 data points in the total data set.  

   

One may question whether the use of CV is justified against an assessment based on splitting the 

data set into a training and test set. Hawkins et al.56 recommend that, when the data set is small, 

then CV may be better than splitting the data set into training and test sets. The high-correlation 

subsets we use to create models are small in the sense of Hawkins et al. who advocate CV when 

the data set contains less than 100 compounds. CV should involve using a suitable variable 

selection technique to select the variables important to the training set, each time a CV subset is 
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excluded. This procedure renders a ‘true   ’ rather than a ‘naïve   ’, where variable selection is 

not performed each time a CV subset is removed. Below we argue that our assessment procedure 

is generating a true   . Essentially, the main argument is that variable selection does not apply to 

our way of setting up a model. This is because we only consider either an all-bond-length model 

or a single-bond-length model. The latter type of model was based on the most important 

variable in the VIP plot of the all-bond-length model.   During the CV of the all-bond-length model, 

the VIP plots for the seven models created in CV were monitored and in the vast majority of 

cases, the most important bond length remained the same for all the models. Furthermore, 

SIMCA-P automatically selects the number of LVs to construct the all-bond-length models.  

Because a new model is constructed for each of the seven training sets, variable selection is 

performed by default.  For these reasons we consider the    value quoted to be the ‘true   ’.  By 

default, SIMCA-P automatically produces a    value when models are constructed.   

 

CV also provides a means to calculate the RMSEP (Equation 2.22) for the cross-validated models.  

The squared correlation coefficient also obtained through CV and denoted by    
 , which is not be 

confused with   , is calculated as, 

   
   

               
  

   

             
  

   

 Equation 4.1 

 

where the variables have already been explained. 

 

We also use a further metric denoted as   
 , which is calculated as, 

  
      

         
        

   Equation 4.2 

 

Here,    
  and      

  are the squared correlation coefficient values between the observed (X-

variable) and predicted (Y-variable) pKa values, obtained through CV, with intercept not set to 

zero and set to zero, respectively. 

   

A high    
  value does not necessarily indicate that the predicted values are very close to the 

experimental values.  There may be considerable numerical differences between the observed 

and predicted values in spite of the presence of a good overall correlation.  When this is the case 

there will be substantial differences between    
  and      

 , which the   
  statistic penalises 

heavily.  Mitra et al.154 have shown that in the case of small data sets,   
  calculated from a CV 

when variable selection is performed at each CV step, reflects the external validation 

characteristics of the developed model.  Based on the reasoning above about ‘true   ’ we believe 

that our quoted   
  values are ‘true                           

 ’.  Ultimately, we judge the 
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performance of the models based on RMSEP. However, we stress that RMSEE is used to decide 

which models to perform full CV on. 

4.3 Results 

4.3.1 Phenols 

 

Figure 4.1 shows the common skeleton and bonds screened to predict the pKa of the phenol 

compounds (Table 4.1).  In previous QTMS studies, conformation has not been taken into account 

with the knowledge that the substitution effects have a greater influence on the models.  We 

show that conformation is important in some cases (discussed later).  We initially investigated the 

use of the 8 phenol bond lengths of the common skeleton in order to model all the phenol 

compounds together and the common groupings of ortho, meta/para  and ortho-phenols that we 

deemed capable of forming internal hydrogen bonds97.  During the course of this work, suspected 

errors in the initial dataset were corrected and the importance of conformation was examined. 

 

 

Figure 4.1.  The eight bond lengths used to predict the pKa of the phenol compounds.  The main text refers to bond 
lengths 1-7 and 7-8 as r(C-O) and r(O-H), respectively. Reference to other bonds makes use of this numbering scheme 
to distinguish between the C-C bonds, e.g. r(C1-C2). 

 

Inspection of the VIP plot modelling all the phenol compounds showed that r(C-O) and r(O-H) 

contributed most to the model.  Therefore, these bonds were monitored to see if they could 

model the 171 phenol compounds individually (Table 4.2), in line with our motivation discussed in 

the Introduction.  The    decreased and the RMSEE increased when these two bond lengths were 

used individually.  The reduction in the quality of the model was less for r(C-O) on its own than for 

r(O-H) on its own.  We determined what influence splitting the data set into meta-/para- and 

ortho-substituted phenols (common for compounds of this type) had on the quality of the 

models.  The RMSEE for the model constructed using all the bond lengths for meta-/para-

substituted phenols decreased by approximately 50% but the RMSEE for the ortho-substituted 

phenols increased.  The reduction in the quality of the models of the meta-/para-substituted 

phenols when using r(C-O) on its own or r(O-H) on its own is also small compared to the all-bond-

length model.  This suggests that the meta-/para-substituted phenols can be modelled using just 



76 
 

one bond length. The RMSEE for the ortho-substituted model increased when using r(C-O) on its 

own or r(O-H) on its own. This is not surprising since different ortho-substituents can affect the 

pKa of compounds because of their close proximity to the acidic hydrogen.  These effects include 

steric hindrance to protonation or deprotonation and internal hydrogen bonding. 

 

To investigate the large deterioration of the ortho-substituted phenol model, when using all the 

bond lengths compared to using just r(C-O) or r(O-H) on their own, we inspected the predicted  

versus observed pKa plots. Figure 4.2a shows such a plot for all 171 phenols using a regression 

model using only r(C-O). Inspection of Figure 4.2a suggests subsets of phenols that have a higher 

   value than the full set of 171 phenols. It was rewarding to find that such high-correlation 

subsets, identified by eye, later turned out to be meaningful chemical subsets. For example, in 

Figure 4.2b it is clear that o-halogen phenols (shown in dark blue) and o-nitro (shown in light blue) 

phenols are separate high-correlation subsets.  This was seen for other o-phenols depending on 

the o-substituent.  It appeared that meta-/para-phenols were a high-correlation subset 

irrespective of the different substituents.  A number of compounds appeared to be outliers from 

the high-correlation subset to which they would have been expected to belong to.  An example of 

this is shown in Figure 2b for 4,6-dinitro-o-cresol (compound 135).  4,6-dinitro-o-cresol appeared 

to belong to the o-halogen high-correlation subset (dark blue in Figure 4.2b), which was 

inconsistent with the compound’s structure. Inspection of the optimised structures showed that 

this was caused by the anti conformation of the acidic proton being used instead of the syn 

conformation that was found for the other o-nitrophenols.  When this compound was optimised 

as the syn conformer, it correctly moved into the o-nitrophenol high-correlation subset (light blue 

in Figure 4.2b).  This example illustrates the situation for a number of other compounds that 

appeared to belong to high-correlation subsets different to the chemically meaningful subsets we 

had identified. All the ortho-phenols were subsequently optimised in the syn and anti form and 

the energies were used as a guide to decide which high-correlation subset they belonged to.  

Because of symmetry conformation plays no role in di-ortho-substituted phenols with identical 

substituents. However, for the asymmetrical di-ortho-substituted and the mono-ortho-

substituted compounds, the orientation of the acidic hydrogen can have a large influence on bond 

lengths.  The results of the detailed modelling of the o-phenols and identification of high-

correlation subsets are reported in the following section. 
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Table 4.2.  The results of the phenol compounds modelled with the bond lengths calculated at the HF/6-31G(d) level 
of theory. 

 
 

 

 

 

 

 

 

 

 

 

Subsets # LV # Bonds # Compounds       RMSEE 

All 4 All 171 0.92 0.88 0.67 

All 1 r(C-O) 171 0.86 0.85 0.88 

All 1 r(O-H) 171 0.52 0.51 1.62 

Meta/Para 2 All 55 0.91 0.87 0.34 

Meta/Para 1 r(C-O) 55 0.87 0.85 0.41 

Meta/Para 1 r(O-H) 55 0.84 0.83 0.45 

Ortho 4 All 116 0.92 0.86 0.72 

Ortho 1 r(C-O) 116 0.85 0.85 0.99 

Ortho 1 r(O-H) 116 0.47 0.46 1.84 

Ortho without Ortho-IHB 5 All 90 0.94 0.88 0.65 

Ortho without Ortho-IHB 1 r(C-O) 90 0.88 0.87 0.94 

Ortho without Ortho-IHB 1 r(O-H) 90 0.59 0.58 1.72 
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Figure 4.2.  (a)  Plot of predicted vs. observed pKa for the phenols using r(C-O).  (b)  Plot of the predicted vs. observed 
pKa for the phenols using r(C-O) separated by colour into chemically meaningful high-correlation subsets.  The 
different pKa values of 4,6-dinitro-o-cresol calculated from r(C-O) for the syn and anti conformer is highlighted in red 
as an example. 
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4.3.2 Ortho-Phenols 

 

By Inspection of the structures of the compounds belonging to high-correlation subsets and their 

energies, rules were determined based on the o-phenols in the data set to assign the compounds 

to specific o-phenol high-correlation subsets.  These rules were confirmed by the detailed 

investigation of the high-correlation subsets.  In Sections 4.3.2.1 to 4.3.2.6 we discuss the results 

that allowed us to state the rules here.   In the case of the o-phenols it was fortuitous that the 

energies could be used as a guide, without exception. These rules are encapsulated in the flow 

chart below (Figure 4.3) showing which high-correlation subset a phenol of interest should be 

predicted from. 

 

It should be noted that certain phenols can belong to different high-correlation subsets. For 

example, 2-nitro-6-chlorophenol (compound 141) can be predicted by the o-nitro and the o-

halogen models depending on the direction of the acidic hydrogen (i.e. syn and anti). We will 

show that the better prediction is made by the o-nitro model because nitro substituents decrease 

the pKa more than chlorine substituents as the former are more electron-withdrawing. We will 

also show that for meta-/para-substituted phenols the influence of conformation on the quality of 

the models is minimal.  We screened the compounds in search of high-correlation subsets from 

different classes of compounds in the ortho subset, previously (see RMSEE values larger than 0.5 

in Table 4.2) shown to produce poor correlations when modelled together.  We compare all-

bond-length models to single-bond-length models using CV discussed in Section 4.2.3. 
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Figure 4.3.  Flow chart describing which high-correlation subset a new compound should be predicted from. 
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4.3.2.1 o-Nitrophenols 

 
Table 4.3.  The statistical details of the models created for the o-nitrophenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Syn All 4 23 0.97 0.37 0.91 0.65 0.88 0.87 0.79 
HF Syn r(C-O) 1 23 0.91 0.58 0.91 0.58 0.91 0.90 0.82 
HF Syn r(O-H) 1 23 0.85 0.77 0.84 0.78 0.83 0.80 0.70 
HF Syn All 2 22  0.97 0.38 0.93 0.51 0.94 0.94 0.93 
HF Syn r(C-O) 1 22  0.94 0.48 0.94 0.50 0.93 0.93 0.87 
HF Syn r(O-H) 1 22 0.88 0.71 0.87 0.73 0.85 0.84 0.75 
HF Anti All 2 23 0.98 0.33 0.88 0.81 0.82 0.80 0.70 
HF Anti r(C-O) 1 23 0.79 0.90 0.78 0.91 0.77 0.71 0.58 

B3LYP Syn All 2 23 0.94 0.50 0.90 0.61 0.89 0.89 0.82 
B3LYP Syn r(C-O) 1 23 0.91 0.58 0.91 0.59 0.90 0.89 0.81 

 

The results from CV are reported in Table 4.3 to allow comparisons between models.  Inspection 

of the VIP plot for the all-bond model using all the o-nitrophenols revealed that r(C-O) was the 

most important descriptor followed by r(O-H). For this reason we created separate models for 

each of these two bond lengths. Looking at    it is surprising that this value remains high for 

either of the single-bond-length models compared to the all-bond-length model. Inspection of the 

plot showing observed versus predicted pKa values for the single-bond-length models caused 

suspicion about the experimental pKa of 2,3-dinitrophenol (compound 87, experimental pKa given 

as 4.96).  Another source109 quoted the experimental pKa of this compound to be 5.24.  This 

increase in pKa moves it towards a value of approximately 6 log units predicted by our different 

models.  Removal of compound 87 from the fitting procedure improved the model statistics.  

When compound 87 was removed during CV of the all-bond-length model, the resulting model 

used only two LVs compared to the three LVs making up the models with compound 87 included. 

This suggests that the program SIMCA-P had added a LV to fit compound 87. This was not the case 

for the single-bond-length models as the fitting was minimal here.  During CV, the VIP plots of the 

models were inspected when each CV group was removed in turn.  r(C-O) followed by r(O-H) were 

the most important bonds to all the models in CV.  The r(C-O) model, when compound 87 was 

removed, produced the lowest RMSEP (0.50) and a high   
  (0.87).  This was pleasing considering 

only one bond length is used. 

  

Table 4.3 also provides the statistics relating to the models built using anti conformations.  The all-

bond-length model has the highest    value in conjunction with the lowest RMSEE. However, the 

model is shown to be weaker when CV is performed compared to that constructed using the 

lower energy syn conformations.  The r(C-O) model using the anti conformations is also poorer 

than when the syn conformers are used.  The VIP plot for the all-bond-length anti model showed 

r(C-O) to be the most important, however, r(C5-C6) was the next most important and r(O-H) was 

ranked sixth. 

   



82 
 

The use of a higher level of theory, B3LYP/6-311+G(2d,p), did not improve the results (Table 4.3) 

and produced very similar statistics suggesting the more economical HF/6-31G(d) is sufficient.   

This conclusion is supported by a study of 2,4-dinitrophenol where the HF/6-31G(d) level of 

theory performed very well for predicting the geometrical parameters163.  In that work, the HF 

method failed to reproduce the vibration frequency of the O-H bond stretch. However, this is of 

no importance as we only use the bond lengths. 

 

4.3.2.2 o-Halogen Phenols 

 
Table 4.4.  The statistical details of the models created using o-halogen phenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Syn All 1 32 0.75 0.89 0.71 1.05 0.64 0.55 0.45 
HF Syn r(C-O) 1 32 0.88 0.61 0.87 0.62 0.87 0.86 0.79 

HF Syn r(O-H) 1 32 0.63 1.08 0.63 -
a
 - - - 

HF Syn All 2 26 0.95 0.40 0.91 0.44 0.93 0.91 0.81 
HF Syn r(C-O) 1 26 0.97 0.27 0.97 0.29 0.97 0.97 0.94 
HF Syn r(O-H) 1 26 0.60 1.06 0.58 - - - - 
HF Anti All 2 32 0.83 0.74 0.70 - - - - 
HF Anti rC-O) 1 32 0.83 0.72 0.81 - - - - 
HF Anti r(O-H) 1 32 0.61 1.12 0.53 - - - - 
HF Anti All 2 26 0.94 0.40 0.91 0.46 0.92 0.91 0.81 
HF Anti r(C-O) 1 26 0.96 0.35 0.96 0.35 0.95 0.95 0.91 
HF Anti r(O-H) 1 26 0.78 0.79 0.76 - - - - 

B3LYP Syn All 1 32 0.71 0.97 0.65 - - - - 
B3LYP Syn r(C-O) 1 32 0.87 0.64 0.86 - - - - 
B3LYP Syn r(O-H) 1 32 0.52 1.24 0.44 - - - - 
B3LYP Syn All 2 26 0.93 0.46 0.86 0.67 0.83 0.81 0.70 
B3LYP Syn r(C-O) 1 26 0.96 0.32 0.96 0.33 0.96 0.96 0.92 
B3LYP Syn r(O-H) 1 26 0.72 0.89 0.70 - - - - 

a A dash in this Table 4.5 to Table 4.33 indicates that various cross-validation statistics were not collected as 

justified in the main text. 

 

The statistics relating to the o-halogen phenols are given in Table 4.4.  The o-halogen phenols 

were initially modelled as syn conformations.  The models built from all the compounds were 

inspected.  The VIP plot for the all-bond-length model showed r(C-O) was the most important 

followed by r(O-H).  The r(C-O) model gave better statistics than the all-bond-length model.  

Inspection of the observed versus predicted plot for this model revealed six suspicious data 

points.  The structures of the compounds that represent these points are shown in Figure 4.4.  We 

will discuss each outlier in turn starting with 2,4,6-tribromophenol. A different experimental pKa 

of 6.1 for 2,4,6-tribromophenol (compound 120) was found109 instead of the value of 6.8 given in 

the source we used for the experimental pKa values.  The value of 6.1 was much closer to that 

predicted from our correlation and was hence adopted.  
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Figure 4.4.  Structures (and their compound numbers) that belong to the data points that seemed to be outliers in the 
o-halogenphenol models. 

 

Next we explain why 6-chloro-2-nitrophenol (compounds 141) and 6-chloro-2,4-dinitrophenol 

(compound 160) should only be predicted from the o-nitro high-correlation subset model.  We 

note that these compounds have both o-nitro and o-halogen substituents and so the pKa could be 

predicted by either the o-nitro or o-halogen high-correlation subsets.  To obtain a reasonable 

prediction from the latter for compounds 141 and compound 160, we used the conformation in 

which the acidic hydrogen points towards the halogen, which we note is not the lowest energy, 

but is consistent with the conformations used for the other o-halogen phenols.   6-chloro-2,4-

dinitrophenol (compound 160) was predicted reasonably well by the r(C-O) model (experimental 

pKa of 1.6 compared to a predicted pKa of 2.1).  However, 6-chloro-2-nitrophenol (compound 141) 

had an error of 1 pKa.  These two compounds were predicted more accurately by the o-nitro high-

correlation subset, where the acidic hydrogen points towards the nitro groups, which were the 

lowest energy conformations.  From these two compounds, we conclude that phenols with a nitro 

and a halogen substituent in either ortho positions should be predicted from the o-nitro high-

correlation subset and not the o-halogen high-correlation subset. 

  

Pentafluorophenol (compound 156) showed the largest discrepancy between observed and 

predicted pKa.  2-fluorophenol (compound 129) was the only other compound in our data set that 

had an o-fluoro substituent and appeared to belong to the o-halogen high-correlation subset.  It 

was clear that o-chlorophenols and o-bromophenols formed a single high-correlation subset. 

However, because we only had two o-fluorophenols in the dataset it was impossible to establish if 

this class of compounds needed to be modelled separately or if the experimental pKa of 

pentafluorophenol (compound 156) should be challenged.  The experimental value we adopted 

from the work of Tehan et al. was verified against an alternative literature source157, where the 
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same pKa value of 5.53 was used to produce excellent correlations. This check confirmed that the 

experimental value used is accurate. We therefore calculated the bond lengths of a further three 

o-fluorophenols, for which we had experimental pKa values, to verify that they produce a separate 

high-correlation subset. The r(C-O) of 2,4-difluorophenol (compound 330), 2,6-difluorophenol 

(compound 331) and 2,3,5,6-tetrafluorophenol (compound 332) were calculated and the 

correlation between r(C-O) of the five o-fluorophenols  and pKa was checked.   An    of 0.91 and 

RMSEP of 0.40 suggested that o-fluorophenols indeed produce their own high-correlation subset 

and cannot be included with the other o-halogen compounds.  To confirm that this was not a 

fortuitous result based on the HF/6-31G(d) level of theory, we compared our result to that 

obtained by Han and Toa157 using B3LYP/6-311++G(d,p) and an ammonia probe.  Using their r(C-

O) equation to predict the pKa for the same five o-fluorophenols, we obtained an    and RMSEP of 

0.90 and 0.41, respectively. After this confirmation we removed 2-fluorophenol (compound 129) 

and pentafluorophenol (compound 156) from subsequent analysis of the o-halogen high-

correlation subset because it was clear they produced a separate o-fluorophenol high-correlation 

subset.  Reasons for 3-chloro-4-hydroxybenzoic acid (compounds 171) and bromofenoxim 

(compound 175) having large residuals were unclear but they were also excluded. 

   

Now we focus on the influence of the omission of outliers. Table 4.4 shows how the models 

improved when the six compounds were removed, resulting in good CV results.   Table 4.4 shows 

that the single-bond-length models benefit approximately equally from this omission compared to 

the all-bond-length models. For example, upon omission of six outliers the RMSEE for the r(C-O) 

model roughly halves, from 0.61 to 0.27. Equally, the RMSEE for all-bond-length model also halves 

from 0.89 to 0.40.  A similar trend is observed for RMSEP.  The most dramatic improvement due 

to the omission of outliers is seen in the   
  statistic.  For the all-bond-length models with outliers 

included, a   
   value of 0.45 suggests that poor predictions are made in CV, while reasonable 

predictions are made for the single-bond-length model, suggested by an   
  of 0.79.  After outlier 

omission, the   
  value for the all-bond-length model improves to 0.81, suggesting a large 

improvement in prediction.  However, the r(C-O) model without outliers is superior based on an 

  
  of 0.94. It is interesting to note that the r(C-O) models are always superior to the all-bond-

length models in the original model fit and in CV. The r(O-H) models were not cross-validated as 

they were inferior to the other models based on the original fitting statistics. This is why the 

corresponding CV statistics are not listed in Table 4.4. 

  

High-correlation subsets using the anti conformations were also investigated with and without 

the identified outliers.  The outliers were still suspicious data points in the inspected correlations.  

These were removed and models with all bond lengths and r(C-O) were cross-validated to 
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compare to the models constructed using the syn conformations.  Using just the r(C-O) provided a 

better model than using all bond lengths, as with the syn conformer models, but not as good as 

the models where the syn conformers were used.  Using r(O-H) once again provided a poor 

correlation.  Inspection of the observed pKa versus predictive pKa plot from r(O-H) revealed  high-

correlation subsets different to those seen when all the phenols were modelled with r(C-O).  The 

structures of the phenols producing these separate high-correlation subsets were inspected and 

showed that di-o-bromophenols, di-o-chlorophenols and mono-orthophenols (i.e. those 

substituted with a chlorine or bromine at the ortho position) belong to their own subsets.  This is 

not surprising, as r(O-H) is affected by the substituent that it points towards, resulting in separate 

models for the di-o-phenols and a single high-correlation subset for the mono-o-phenols as the 

acid hydrogen points towards a hydrogen in each case.  This observation is confirmed by 2-chloro-

6-methylphenol (compound 90) not belonging to any high-correlation subset as the methyl group 

has a different influence to that of a hydrogen.  These results confirm the success of r(C-O) and 

the syn conformation models. The statistics of the models constructed with and without the six 

outliers using B3LYP/6-311+G(2d,p) geometries and the syn conformation offer no improvement 

to those created using HF/6-31G(d). 

 

4.3.2.3 o-Alkylphenols 
Table 4.5.  The statistical details of the models created using o-alkylphenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF anti All 3 29 0.96 0.44 0.94 - - - - 
HF anti r(C-O) 1 29 0.93 0.58 0.3 - - - - 
HF anti r(O-H) 1 29 0.79 1.00 0.78 - - - - 
HF anti All 2 25 0.94 0.28 0.83 0.42 0.79 0.76 0.64 
HF anti r(C-O) 1 25 0.91 0.34 0.9 0.37 0.89 0.87 0.78 
HF anti r(O-H) 1 25 0.36 0.90 0.36 0.91 0.30 -1.06 -0.05 

B3LYP anti All 3 29 0.95 0.52 0.91 - - - - 
B3LYP anti r(C-O) 1 29 0.92 0.62 0.92 - - - - 
B3LYP anti r(O-H) 1 29 0.83 0.91 0.83 - - - - 
B3LYP anti All 2 25 0.92 0.33 0.76 - - - - 
B3LYP anti r(C-O) 1 25 0.92 0.32 0.91 - - - - 
B3LYP anti r(O-H) 1 25 0.37 0.90 0.35 - - - - 

 

The anti conformation is the lowest energy for the o-alkylphenols, which is opposite to the syn 

conformation favoured by the o-nitro and o-halogenphenols.  For symmetrical 2,6-substituted 

phenols the conformation is irrelevant. However, the acidic hydrogen pointing towards an alkyl 

group is more stable than it pointing out of plane between the two ortho substituents.  For 

asymmetrical 2,6-substituted phenols, e.g. 2-(1,1-dimethylethyl)-4,6-dimethylphenol (compound 

164), the conformation with the hydrogen pointing towards the methyl group has the lowest 

energy.  Three compounds that also had o-nitro and o-halogen substituents were initially included 

in the modelling (Table 4.6) as the conformation where the acidic hydrogen pointed towards the 

alkyl substituent, which we note is not the lowest energy.  These compounds fitted into the alkyl 

high-correlation subset relatively well. However, they are modelled better in the lower energy 
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conformation by the o-nitro and o-halogen high-correlation subsets. Therefore, the compounds 

were excluded from CV in agreement with two rules listed in Section 4.3.2. The models using all 

the bond lengths are comparable to the model using just r(C-O) (Table 4.5).  The correlation 

obtained using r(O-H) was inferior to that obtained using r(C-O).  There was no notable 

improvement when using B3LYP/6-311+G(2d,p)  generated bond lengths compared to those 

calculated with HF/6-31G(d).     

4.3.2.4 o-Phenols Capable of Forming Internal Hydrogen Bonds.  

 
Table 4.6.  The statistical details of the models created using o-phenols capable of forming internal hydrogen bonds. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF O-H-O All 2 26 0.83 0.71 0.8 - - - - 
HF O-H-O r(C-O) 1 26 0.77 0.81 0.76 - - - - 
HF O-H-O r(O-H) 1 26 0.30 1.41 0.27 - - - - 
HF O-H-O r(C2-C3) 1 26 0.72 0.90 0.69 - - - - 
HF O-H-O All 1 23 0.88 0.50 0.83 0.79 0.74 0.74 0.71 
HF O-H-O r(C-O) 1 23 0.95 0.32 0.95 0.33 0.94 0.94 0.92 
HF O-H-O r(O-H) 1 23 0.35 1.16 0.23 1.31 0.15 -1.50 -0.04 
HF O-H-O r(C2-C3) 1 23 0.85 0.56 0.82 0.62 0.80 0.78 0.69 

 

Twenty-three out of the 26 compounds in this high-correlation subset had the same common 

skeleton with different substituents around both aromatic rings (Figure 4.5).  Two different 

internal hydrogen bonds can be formed i.e. O…H-N and O-H…O. Because the latter structure 

corresponds to the lowest energy this was the only conformation considered.  The three 

compounds that did not have the same common skeleton are shown in (Figure 4.6).  

 

Figure 4.5.  The common skeletons and different hydrogen bonds than can be formed by the o-phenols capable of 
forming internal hydrogen bonds. 

 

 

Figure 4.6.  The three compounds in the class of phenols capable of forming internal hydrogen bonds that did not 
have the same common skeleton as the rest of the compounds. 

 

The observed versus predicted plots for the models containing all 26 compounds were inspected.  

The three compounds, 2-hydroxybenzamide (compounds 59), methyl salicylate (compound 61) 

and 2-vanillin (compound 62), which did not have the same common skeleton as the majority of 
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the compounds in this high-correlation subset, appeared to be outliers.  Methyl salicylate was 

identified as an outlier by Tehan et al.97.  One would not be surprised if this compound did not fit 

the models because of its similarity to compounds 59 and 62.  The reason for these outliers could 

be the lack of structural similarity between these three compounds and the rest of the o-phenols 

capable of forming an internal hydrogen bond.  We suggest that these compounds belong to their 

own high-correlation subset needed to predict pKa using just r(C-O).  This was confirmed by an    

value of 0.95 for the correlation of pKa and r(C-O), although more data points for these types of 

compounds are needed to confirm this.  The pKa of the remaining 23 compounds were modelled 

using all the bond lengths (Table 4.6).  Once again the r(C-O) was most important in the VIP plot, 

however, it was followed by r(C2-C3) and not r(O-H).  The r(C-O) model gave the best statistics for 

the original model and CV statistics compared to the all-bond-length model and the other single-

bond-length models. 

4.3.2.5  o-Methoxy/ethoxyphenols 

 

This high-correlation subset consisted of only eight compounds.  The pKa range was small (7.4 for 

vanillin (compound 124) to 10.28 for 4-methyl-2-methoxyphenol (compound 104)).  Removing 

vanillin, which had a much lower pKa value than the rest, resulted in a range of only 0.74 log units.  

The syn conformation is the lowest energy in all cases.  According to the statistics, the models 

deteriorate when vanillin is included (Table 4.7).  To increase the size of the dataset we sourced 

21 compounds from Ragnar et al.164.  Five of these compounds were already present in our 

dataset. A comparison of the given pKa values in that publication and in our dataset showed they 

were in good agreement, the largest difference being 0.05 pKa units.  We used the 16 remaining 

compounds as a test set for the syn models.  It was pleasing to note that including vanillin gave 

lower values for RMSEP in all cases and that the r(C-O) bond length model gave the lowest RMSEP 

(Table 4.8).  The models created without vanillin had rather poor CV statistics (i.e.   ) because of 

the small pKa range. However, these models actually produced reasonable predictions for the test 

set, which included extrapolation outside the range of pKa values used to create the models.  We 

added the 16 compounds to the Tehan compounds and created new models containing more 

compounds to increase the domain of applicability of the model (Table 4.7). 
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Table 4.7.  The statistical details of the model created using o-methoxy/ethoxyphenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF syn All 1 8 0.76 0.52 0.25 0.75 0.42 0.25 0.24 
HF syn r(C-O) 1 8 0.87 0.37 0.85 0.63 0.83 0.78 0.64 
HF syn r(O-H) 1 8 0.82 0.44 0.82 0.44 0.77 0.67 0.52 
HF syn All 1 7  0.76 0.26 0.14 - - - - 
HF syn r(C-O) 1 7  0.47 0.39 0.17 - - - - 
HF syn r(O-H) 1 7  0.15 0.49 -0.10 - - - - 
HF anti All 1 8 0.82 0.44 0.29 - - - - 
HF anti r(C-O) 1 8 0.88 0.36 0.86 - - - - 
HF anti r(O-H) 1 8 0.91 0.31 0.90 - - - - 
HF anti All 1 7 0.82 0.23 0.44 - - - - 
HF anti r(C-O) 1 7 0.51 0.37 0.09 - - - - 
HF anti r(O-H) 1 7  0.64 0.32 0.28 - - - - 
HF syn All 1 24 0.84 0.39 0.79 0.82 0.39 0.19 0.21 
HF syn r(C-O) 1 24 0.91 0.29 0.89 0.53 0.69 0.57 0.45 
HF syn r(O-H) 1 24 0.85 0.37 0.83 0.58 0.61 0.43 0.35 

 

Table 4.8.  The results of testing 16 methoxyphenols in the methoxy/ethoxyphenol models. 

     Model Statistics 16 Compound Test Set 
Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP 

HF syn All 1 8 0.76 0.52 0.25 0.43 
HF syn r(C-O) 1 8 0.87 0.37 0.85 0.30 
HF syn r(O-H) 1 8 0.82 0.44 0.82 0.41 
HF syn All 1 7 0.76 0.26 0.14 0.53 
HF syn r(C-O) 1 7  0.47 0.39 0.17 0.77 
HF syn r(O-H) 1 7  0.15 0.49 -0.10 0.42 

 

4.3.2.6 Miscellaneous o-Phenols 

 

2-cyanophenol, 2-hydroxybiphenyl, 2-amino-4-nitrophenol and 2-aminophenol are the only 

representatives of these classes of o-phenol compounds.  It is expected that these would produce 

separate high-correlation subsets but as there are few examples, this was not investigated.  

  

4.3.3 Meta- and Para-Phenols 

 

The meta/para phenol models were already of high quality using just r(C-O) with an  

   value of 0.87 and an RMSEE of 0.41, without taking into account conformation (Table 4.2).  The 

r(C-O) and r(O-H) were the most important to the all-bond-length model according to the VIP plot.  

We investigated conformations to see if it was important as seen in the case of the o-phenols.  

Different conformations are only possible for the asymmetrical meta- and meta-/para-phenols.  

Different conformations based on the direction of the acidic hydrogen were optimised and an r(C-

O) model was created using all the conformations and all the compounds.  The differences 

between the predicted pKa values for the same compounds in the different conformations were 

calculated.  The average difference was found to be less than 0.1 log unit.  For this reason we 

decided that conformational differences would not be considered in the subsequent 

investigations for the meta- and para-phenols.  After modelling the para-phenols and meta-

phenols separately and finding little improvement to the models, we investigated high-correlation 

subsets between similar compound classes.  The dataset contained 6 nitrophenols, including 3-
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trifluoromethyl-4-nitrophenol and 3-nitro-4-cresol, 14 halogen phenols, including 3-

trifluoromethylphenol, 4-trifluoromethylphenol, 4-chloro-3,5-dimethylphenol, 3-methyl-4-

chlorophenol, 15 alkylphenols, 5 methoxy/ethoxyphenols, 2 hydroxybenzaldehydes, 2 

hydroxyacetophenones, and 11 compounds we classed as miscellaneous, which included 

compounds such as m/p-cyanophenol, m/p-phenylphenol and m/p-aminophenol.  We 

investigated the nitro, halogen and alkylphenols to see if treating these classes of compounds 

separately produced high-correlation subsets. 

4.3.3.1 m-/p-Nitrophenols  

 
Table 4.9.  The statistical details of the model created using m-/p-nitrophenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 6 0.98 0.25 0.91 0.52 0.83 0.83 0.83 
HF N/A r(C-O) 1 6 0.90 0.45 0.89 0.47 0.83 0.81 0.69 
HF N/A r(O-H) 1 6 0.98 0.21 0.97 0.27 0.95 0.95 0.94 

 

The r(O-H) model produced the highest correlation and the lowest RMSEE (Table 4.9).  As there 

were only 6 compounds, we tested the model using 5 compounds for which pKa values could be 

found in the literature. These were 3-methyl-4-nitrophenol (compound 351), 3,5-dimethyl-4-

nitrophenol (compound 352) and 3-chloro-4-nitrophenol (compound 353), 3-fluoro-4-nitrophenol  

(compound 349) and 3,5-difluoro-4-nitrophenol (compound 350)165-167.  The RMSEP for these 

compounds is shown in (Table 4.10).  The results are above the 0.5 pKa unit threshold that we aim 

for but it must be considered that there are no halogen-substituted compounds in the training set 

and that the predictions for 3-fluoro-4-nitrophenol and 3,5-difluoro-4-nitrophenol are 

extrapolations as there are no stronger acids in this high-correlation subset. 

 

Table 4.10.  The statistics relating to the 5 compound test set. 

     Model Statistics 5 Compound Test Set 
Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP 

HF N/A All 2 6 0.98 0.25 0.91 0.62 
HF N/A r(C-O) 1 6 0.90 0.45 0.89 0.64 
HF N/A r(O-H) 1 6 0.98 0.21 0.97 0.62 

 

4.3.3.2 m-/p-Halogen Phenols 

 

The all-bond-length model produced the best statistics, however, the r(C-O) model was very 

similar in terms of RMSEE (Table 4.11).  Three compounds were tested by the models with the 

RMSEP shown in Table 4.12.  The test compounds were 3-chloro-4-nitrophenol (compound 353), 

3,5-difluoro-4-nitrophenol (compound 350) and 3-fluoro-4-nitrophenol (compound 349).  Their 

predictions are extrapolations because no compounds in the training set are stronger acids.  The 
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predictions are poor, suggesting that the nitro group has the greatest effect and they should be 

predicted by the nitro model.   

 

Table 4.11.  The statistical details of the models created using m-/p-halogen phenols. 

     Model 
Statistics 

CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 14 0.93 0.17 0.78 0.32 0.74 0.73 0.66 

HF N/A r(C-O) 1 14 0.86 0.23 0.81 0.30 0.76 0.75 0.69 

HF N/A r(O-H) 1 14 0.79 0.29 0.70 0.38 0.65 0.63 0.55 

 
Table 4.12.  Results of the 3 compound test set.  

     Model Statistics 3 Compound Test Set 
Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP 

HF N/A All 2 14 0.93 0.17 0.78 1.05 

HF N/A r(C-O) 1 14 0.86 0.23 0.81 1.06 

HF N/A r(O-H) 1 14 0.79 0.29 0.70 1.46 

 

4.3.3.3 m-/p-Alkylphenols 

 

Modelling of the alkyl phenols was attempted but as Table 4.13 shows, proved unsuccessful 

because of the small pKa range (0.53 pKa units) of this class.  For these compounds the best 

prediction would come from using the mean pKa value of this high-correlation subset (10.2) 

knowing that the error is approximately 0.25 pKa units. 

 

Table 4.13.  The statistical details of the models created using m-/p-alkylphenols 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 15 0.38 0.13 0.13 0.32 0.18 0.02 -1.94 

HF N/A C-O 1 15 0.19 0.15 0.15 0.30 0.15 0.09 -3.04 

HF N/A O-H 1 15 0.02 0.16 -0.04 0.38 0.17 0.04 -19.52 

 

4.3.3.4 Comparison of the models created for the high-correlation subsets of phenols to 

those constructed using different subsets of all the phenols.   

 

Table 4.14 provides the statistics for different subsets of o-phenols to compare to the predictions 

from the high-correlation subset models constructed separately for o-nitro, o-halogen, o-alkyl, o-

methoxy/ethoxy and the o-phenols capable of forming internal hydrogen bonds.  We performed 

this analysis to prove that the predictions from the single-bond-length high-correlation subset 

models were better than those made by models constructed using all the o-phenols and all bond 

lengths. The eight outliers that were identified from the high-correlation subsets have been 

removed to give a fair comparison.  The lowest energy conformation was used for all the 

compounds.  The models created for all the o-phenols with the eight outliers removed (116 

compounds – 8 outliers = 108 compounds) have lower RMSEEs than the models created with the 
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outliers included (Table 4.2).  Removal of the miscellaneous compounds has only a small effect on 

the statistics, however, the models improve slightly when the o-phenols capable of forming 

internal hydrogen bonds are removed.  In all cases the internal statistics and CV statistics are the 

best for the models created using all the bond lengths compared to those created using r(C-O) 

and r(O-H).  The CV statistics confirm that the models created using r(C-O) are better than those 

that created using r(O-H).    

 
Table 4.14.  The statistics relating to the models constructed for subsets of o-phenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF 
Lowest 
energy 

All 4 

108  outliers 
identified in 

previous 
sections 

removed) 

0.93 0.67 0.90 0.81 0.90 0.89 0.83 

HF 
Lowest 
energy 

r(C-O) 1 108 0.88 0.89 0.88 0.89 0.88 0.86 0.77 

HF 
Lowest 
energy 

r(O-H) 1 108 0.53 1.76 0.52 1.76 0.52 0.14 0.20 

HF 
Lowest 
energy 

All 4 

104 (ibid but 
without 

miscellaneous 
compounds) 

0.95 0.60 0.92 0.72 0.92 0.92 0.87 

HF 
Lowest 
energy 

r(C-O) 1 104 0.89 0.89 0.89 0.88 0.88 0.87 0.78 

HF 
Lowest 
energy 

r(O-H) 1 104 0.54 1.76 0.54 1.76 0.53 0.18 0.22 

HF 
Lowest 
energy 

All 5 
81 (ibid 

without o-
phenols IHB) 

0.96 0.57 0.93 0.67 0.94 0.93 0.88 

HF 
Lowest 
energy 

r(C-O) 1 81 0.89 0.92 0.89 0.91 0.89 0.87 0.79 

HF 
Lowest 
energy 

r(O-H) 1 81 0.62 1.68 0.62 1.68 0.61 0.41 0.34 

 
 

Table 4.15.   The statistics relating to the models constructed for subsets of m-/p-phenols. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 55 0.91 0.34 0.87 0.37 0.89 0.88 0.81 

HF N/A r(C-O) 1 55 0.87 0.41 0.85 0.43 0.85 0.83 0.72 

HF N/A r(O-H) 1 55 0.84 0.45 0.83 0.48 0.82 0.78 0.66 

HF N/A All 2 

35 (only nitro, 

halogen, alkyl 

compound) 

0.96 0.26 0.94 0.30 0.94 0.94 0.88 

HF N/A r(C-O) 1 35 0.95 0.30 0.94 0.31 0.94 0.94 0.89 

HF N/A r(O-H) 1 35 0.95 0.29 0.95 0.30 0.95 0.94 0.90 

 

Table 4.15 provides the statistics for different subsets of m/p-phenols to compare to the 

predictions from the high-correlation subsets.  The internal model statistics are the same as those 

given in Table 4.2 since no outliers were indentified.  Here we also provide the CV statistics for 

these models.  The all-bond-length model has the best statistics followed by the r(C-O) and the 

r(O-H) models, respectively.  The CV statistics confirm that models of high quality have been 

generated and the RMSEP is below 0.5 pKa units for all the models.  An improvement in the 

models is noticeable when only the m-/p-nitro, halogen and alkyl phenols are investigated as 
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high-correlation subsets are used to construct models.  The all-bond-length, r(C-O) and r(O-H) 

models have virtually the same statistics.  

 
Table 4.16.  The statistics relating to the models constructed using all the phenols 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF  ALL 8 4 163 0.93 0.63 0.91 0.68 0.92 0.91 0.84 

HF  C-O 1 163 0.89 0.80 0.88 0.80 0.88 0.87 0.78 

HF  O-H 1 163 0.57 1.55 0.56 1.55 0.56 0.24 0.25 

 

Table 4.16 provides the statistics for the models created using all the phenols without the eight o-

phenol outliers identified from the high-correlation subsets.  Small improvements in the internal 

statistics are observed compared to the models with the eight outliers included in Table 4.2.  The 

all-bond-length models has the best CV statistics followed by r(C-O) and r(O-H), respectively. 

 

We now compare the predictions made from the high-correlation subsets to those made by the 

models constructed from combinations of compounds from the high-correlation subsets and the 

models constructed with all the phenol compounds (171-8(outliers)=163).  To compare the 

predictions from the high-correlation-subsets to those obtained from the different subset models 

of the o-phenols, m-/p-phenols and all the phenols shown in Table 4.14, Table 4.15 and Table 

4.16, respectively, we use the RMSEP.  From the CV of the different models we calculated the 

RMSEP for only the compounds that belonged to high-correlation subsets.  For the o-phenols this 

involved five high-correlation subsets (i.e. o-nitro, o-halogen, o-alkyl, o-phenols capable of 

forming IHB and o-methoxy/ethoxy) and three different models (i.e. all-bond-length, r(C-O) and 

r(O-H)).  We then calculated the mean RMSEP from all-bond-length, r(C-O) and r(O-H) models 

constructed using all the compounds that belonged to high-correlation subsets.  This provided 

three average RMSEP values.  This was repeated for only the compounds that formed high-

correlation subsets from the models constructed from the o-phenols without the o-phenols 

capable of forming internal hydrogen bonds and miscellaneous compounds, all the o-phenols 

without the miscellaneous compounds, all the o-phenols (Table 4.14) and all the phenols (Table 

4.16).  The average RMSEP values obtained for the compounds belonging to high-correlation 

subsets are given in Table 4.17.  Note that the models constructed without the o-phenols capable 

of forming internal hydrogen-bonds were not used to calculate an RMSEP for this high-correlation 

subset. Therefore the value is based on the remaining four high-correlation subset compounds.  

The RMSEP from the high-correlation subsets is lower in all cases and the r(C-O) models provide 

the lowest RMSEP compared to the all-bond-length models and the r(O-H) model.  This indicated 

that better predictions are made by the high-correlation sets and proves the ability of a single ab 

initio bond length to predict pKa of o-phenols. 

 



93 
 

Table 4.17.  The average RMSEP for the o-phenols predicted from the relevant models. 

 Compounds used to build models 

# Bonds All phenols  All o-phenols 

All o-phenols 
without 

miscellaneous o-
phenols 

All Ortho without 
miscellaneous o-
phenols and o-

phenols capable of 
forming IHB 

High-correlation 
subsets 

All 0.69 0.77 0.72 0.73 0.58 

r(C-O) 0.83 0.81 0.81 0.84 0.42 

r(O-H) 1.67 1.68 1.70 1.66 0.85 

 

The same was performed for the m-/p-phenols for the compounds identified as forming high-

correlation subsets.  The results are shown in Table 4.18.  The improvement in the RMSEP from 

using the predictions made by the high-correlation subsets is much less than that observed for the 

o-phenols.  However, it is interesting to note that both the r(C-O) and r(O-H) models have lower 

RMSEP than the models constructed from all the bond lengths.  These results suggest that either 

r(C-O) or r(O-H) can be used to predict the pKa for m-/p-phenols.     

 
Table 4.18.  The average RMSEP for the m/p-phenols predicted from the relevant models. 

 Compounds used to build models 

# Bonds All phenols All m-/p-phenols 
Nitro, halogen and  

alkyl phenols 
High-correlation 

subsets 

All 0.41 0.36 0.32 0.34 

r(C-O) 0.67 0.39 0.34 0.31 

r(O-H) 1.21 0.43 0.30 0.27 

 

4.3.4 Benzoic Acids 

 

The pKa of these compounds have been previously modelled using QTMS152 where inevitably, the 

importance of the COOH group was identified.  Reasonable bond length models were created 

using r(C=O), r(C-O) and r(O-H), but these models were inferior to those using QTMS descriptors.  

We added the bond linking the carboxylic group to the benzene ring, r(C-C), as this type of bond 

produced strong correlations for the phenols.  The common skeleton of the benzoic acids is 

shown in Figure 4.7 and the constitution of the data set is shown in Table 4.1.  All-bond-length 

models and single-bond-length models were constructed for all the compounds and the subsets 

of meta-/para- and ortho substituted benzoic acids to investigate which bonds correlated the 

strongest with pKa (Table 4.19).  For all the benzoic acids, the all-bond-length model produced the 

best correlation followed by r(O-H).  For the o-benzoic acids, r(O-H) produced the best 

correlations followed by the all-bond-length-model.  For the m-/p-benzoic acids the all-bond-

length-model and r(O-H) models were very similar and so we focus here on the high-correlation 

subsets for the o-benzoic acids since little improvement was found using high-correlation subsets 

for the m-/p-phenols.  A brief discussion of the modelling of the m-/p-benzoic acids is provided in 
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Section 4.3.5.4.    Outliers in the benzoic acid data set have previously been detected152, so in line 

with our motivation, we investigated high-correlation subsets and identified these compounds. 

 
Figure 4.7.  The 4 bond lengths used to predict the pKa of the benzoic acids.  The main text refers to bond lengths 1-2, 
1-3, 3-4, and 1-5 as r(C=O), r(C-O), r(O-H) and r(C-C), respectively.  

 
 

Table 4.19.  The results for the benzoic acids. 

 

 

4.3.5 Ortho-Benzoic Acids 

 

Inspection of the observed versus predicted plot for the all-bond-length model highlighted 2,6-

dihydroxybenzoic acid (compounds 252) and 2-hydroxy-3,5-dinitro-benzoic acid (compound 259) 

as outliers.  When these compounds were removed all the models improved (Table 4.20).  An 

explanation of these outliers is included in the o-hydroxybenzoic acid section.  According to the 

VIP plot, r(C-C) now contributed most to the all-bond-length model and also produced the lowest 

RMSEE when the single-bond-length models were constructed.  High-correlation subsets seen in 

the observed versus predicted plots were not as pronounced as for the phenols, but inspection of 

the structures in the data set revealed that o-halogen benzoic acids and o-hydroxybenzoic acids 

Subsets # LV # Bonds # Compounds       RMSEE 

All 2 All 94 0.83 0.72 0.40 

All 1 r(O-H) 94 0.77 0.76 0.47 

All 1 r(C-O) 94 0.57 0.56 0.64 

All 1 r(C-C) 94 0.39 0.34 0.76 

All 1 r(C=O) 94 0.15 0.07 0.90 

Ortho 1 All 50 0.59 0.53 0.66 

Ortho 1 r(O-H) 50 0.69 0.68 0.57 

Ortho 1 r(C-O) 50 0.36 0.33 0.82 

Ortho 1 r(C-C) 50 0.28 0.13 0.87 

Ortho 1 r(C=O) 50 0.27 0.17 0.88 

Meta/Para 2 All 44 0.79 0.74 0.22 

Meta/Para 1 r(O-H) 44 0.79 0.78 0.21 

Meta/Para 1 r(C-O) 44 0.72 0.67 0.25 

Meta/Para 1 r(C=O) 44 0.70 0.68 0.26 

Meta/Para 1 r(C-C) 44 0.49 0.45 0.34 
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formed high-correlation subsets.  These observations were partly due to the number of examples 

of these classes of compounds in the data set.  There were 15 o-halogen benzoic acids and 14 o-

hydroxybenzoic acids.  There were only 3 examples of o-nitrobenzoic acids and a further 18 

compounds that were classed as miscellaneous, including o-amine, o-alkyl and o-methoxy 

substituted benzoic acids.  The sufficiently large number of o-halogen benzoic acids and o-

hydroxybenzoic allowed us to investigate the performance of simple linear regression against PLS 

using all the bond lengths.  

 

Table 4.20.  The statistical details of the models created for the o-benzoic acids.  

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 48 0.80 0.43 0.79 - - - - 

HF N/A r(C-C) 1 48 0.69 0.53 0.69 - - - - 

HF N/A r(O-H) 1 48 0.65 0.56 0.65 - - - - 

HF N/A r(C-O) 1 48 0.60 0.60 0.60 - - - - 

HF N/A r(C=O) 1 48 0.55 0.64 0.53 - - - - 

 

4.3.5.1   o-Halogen Benzoic Acids 

 

Considering the carboxyl group, the planar syn conformation was used due to the stability 

resulting from intramolecular hydrogen bonding.  Depending on the nature and number of the 

ortho substitutions the carboxyl group can adopt different conformations.  Full geometry 

optimisation was performed using the HF/6-31G(d) level of theory on the different possible 

conformations and the energies inspected.   For 2-monohalogen-substituted benzoic acids, two 

minimum energy conformations were found.  In one conformation the carboxylic O-H was closest 

to the halogen, while in the other the carboxylic C=O was closest.  For symmetrical benzoic acids, 

the carboxylic groups were almost perpendicular to the aromatic ring.  For asymmetric o-halogen 

benzoic acids, the lowest energy conformation could be either that with the carboxylic O-H being 

closest to the halogen or vice versa. 

  

For seven of the 2-monohalogen-substituted benzoic acids, the carboxylic O-H closest to the 

halogen was the most stable.  For o-bromobenzoic acid (compound 234) and 2-chloro-5-

nitrobenzoic acid (compound 269) the carboxylic C=O closest to the halogen was the most stable.  

The anomaly with o-bromobenzoic acid is interesting as the opposite conformation is favoured by 

2-chlorobenzoic acid (compound 245) and 2-fluorobenzoic acid (compound 254) and is 

presumably due to steric hindrance caused by the bulky bromine substitution.  It should also be 

noted that the difference in energies between the two conformations of o-bromobenzoic acid 

was less than 0.15 kJmol-1 calculated at the HF/6-31G(d) level of theory.  The presence of the 5-

nitro substitution in 2-chloro-5-nitrophenol (compound 269) could be the cause of this compound 

favouring a different conformation.  For asymmetric o-halogen benzoic acids, the carboxylic OH 
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closest to the halogen was found to be the lower energy conformation.  The influence the 

conformation can have on the modelling can be seen from the observed versus predicted plot in 

Figure 4.8.  The different conformations of the same compound cause the predicted pKa to be 

quite different. 

 

 

Figure 4.8.  Observed versus predicted plot of the o-halogen benzoic acids from the PLS model constructed using all 
the bond lengths and different conformations for the same compound where applicable. 

 

Models were constructed using the all-bond-length and single-bond-length models employing the 

lowest energy conformations (Table 4.21).  The observed versus predicted plot was inspected and 

3-amino-2,5-dichlorobenzoic acid (compound 250) was identified as an outlier, which may also 

exist as a zwitterion.  Both forms were modelled but it remained an outlier and so was removed 

from all subsequent analysis.  r(C-C) and r(O-H) were identified as the most important bonds from 

the VIP plot for the all-bond-length model and so were the only bonds considered for further 

analysis (Table 4.22).  In the r(C-C) model, 2-chloro-5-nitrobenzoic acid (compound 269) and 2-

chloro-6-methyl-benzoic acid (compound 273) had the largest errors from their experimental 

values.  When these compounds were removed the models improved.  2-chloro-6-methyl-benzoic 

acid had a predicted pKa of 2.20, which is lower than the experimental value of 2.75.  It is known 

that any ortho substitutions increase the acidity of benzoic acids, regardless of the electronic 

effect of the ortho substitution on the benzoic acids.  Toa and co-workers demonstrated that this 

effect was not captured by the molecular properties, including bond lengths, in the set of benzoic 

acids they investigated and led to a higher predicted pKa for 2-methylbenzoic acids compared to 

experiment.  However, this does not explain the lower pKa predicted by r(C-C), which must be due 

to steric interference from the o-methyl substitution.  2-chloro-5-nitrobenzoic was one of the two 

compounds that had a lower energy with the carboxylic C=O bond being closer to the halogen 

than the OH.  Using the bond length from this conformation appears to corrupt the correlation.  

Using r(C-C) from the higher energy conformation moved this compound back into the 
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correlation.  2-Bromobenzoic acid (compound 234), which also had a different low energy 

conformation compared to the majority of the halogen benzoic acids, fitted the correlation when 

either conformation was used.  For the r(O-H) model, 2-chloro-5-nitrobenzoic acid and 2-chloro-6-

methyl-benzoic acid did not fit the correlation, for what appeared to be the same reasons given 

for the r(C-C) model.  However, these compounds were not the worst predicted because 2,3,5,6-

tetrafluoro-4-methyl-benzoic acid (compound 262) also had a predicted value of 1.56 compared 

to an experimental pKa of 2.00.  When 2-chloro-5-nitrobenzoic acid and 2-chloro-6-methyl-

benzoic acid were removed, the models improved.  The reason for 2,3,5,6-tetrafluoro-4-methyl-

benzoic acid not fitting the correlation is unclear, but for the o-halogen phenol high-correlation 

subset, o-fluorophenols could not be included, which was probably the case here.  When 2,3,5,6-

tetrafluoro-4-methyl-benzoic acid was removed, the correlation improved further.  When 2-

chloro-5-nitrobenzoic acid was modelled using the higher energy conformation and the one that 

was consistent with the majority of the other compounds, it fitted the correlation.  The same was 

true for 2-bromobenzoic acid with an improvement in the model observed.  These results suggest 

that r(O-H) is more sensitive to conformation than r(C-C) and also demonstrates that inconsistent 

conformations can corrupt the correlations. 

   

To attempt to solve the conformation issues with 2-bromobenzoic acid and 2-chloro-5-

nitrobenzoic acid we reoptimised the halogen benzoic acids at the HF/6-31G(d,p) level of theory, 

that is, now adding p functions on the hydrogen atoms.  2-bromobenzoic acid, with the carboxylic 

OH closest to the bromine, became the lowest energy conformer; however, the lowest energy 

conformation for compound 2-chloro-5-nitrobenzoic acid did not change.  The models created 

using the geometries calculated using additional polarisation functions were very similar to those 

created using HF/6-31G(d) bond lengths (data not shown). 

 

The best models obtained from r(C-C) and r(O-H) were exposed to CV.  The r(C-C) model produced 

the best CV statistics, which included the lowest RMSEP compared to the r(O-H) model.  It is also 

noteworthy that this model included 2,3,5,6-tetrafluoro-4-methyl-benzoic acid (compound 262), 

which was not included in the r(O-H) model. 
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 Table 4.21.  The statistical details of the models created for the o-halogen benzoic acids.    

     Model Statistics CV 
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 2 15 0.72 0.35 0.68 - - - - 
HF Lowest Energy r(C-C) 1 15 0.63 0.40 0.59 - - - - 
HF Lowest Energy r(O-H) 1 15 0.61 0.41 0.57 - - - - 
HF Lowest Energy r(C-O) 1 15 0.61 0.41 0.57 - - - - 
HF Lowest Energy r(C=O) 1 15 0.05 0.64 -0.04 - - - - 
HF Lowest Energy All 2 14 (-250) 0.86 0.22 0.84 - - - - 
HF Lowest Energy r(C-C) 1 14 (-250) 0.83 0.25 0.81 - - - - 
HF Lowest Energy r(O-H) 1 14 (-250) 0.70 0.33 0.66 - - - - 
HF Lowest Energy r(C-O) 1 14 (-250) 0.68 0.34 0.62 - - - - 
HF Lowest Energy r(C=O) 1 14 (-250) 0.09 0.57 -0.01 - - - - 

 
 
Table 4.22.  The statistical details of the models created using r(C-C) and r(O-H) for the o-halogen benzoic acids. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy r(C-C) 1 14 (-250) 0.84 0.25 0.83 - - - - 
HF Lowest Energy r(C-C) 1 13 (-250, 273) 0.90 0.20 0.88 - - - - 

HF Lowest Energy r(C-C) 1 
12 (-250, 273 

and 269) 
0.94 0.16 0.92 - - - - 

HF Mixed r(C-C) 1 
13 (-250, 

273)(269 conf 
a) 

0.93 0.16 0.91 - - - - 

HF Mixed r(C-C) 1 
13 (-250, 

273)(269 conf 
a, 234 conf a) 

0.93 0.16 0.92 0.19 0.90 0.89 0.82 

HF Lowest Energy r(O-H) 1 14 (-250) 0.70 0.33 0.66 - - - - 
HF Lowest Energy r(O-H) 1 13 (-250, 273) 0.76 0.30 0.71 - - - - 

HF Lowest Energy r(O-H) 1 
12 (-250, 273 

and 269) 
0.81 0.28 0.77 - - - - 

HF Lowest Energy r(O-H) 1 
12 (-250, 273 , 
269 and 262) 

0.89 0.22 0.85 - - - - 

HF Mixed r(O-H) 1 
12 (-250, 273 , 
and 262) (269 

conf a) 
0.88 0.22 0.85 - - - - 

HF Mixed r(O-H) 1 
12 (-250, 273 , 
and 262) (269 

and 234 conf a) 
0.92 0.18 0.90 0.26 0.84 0.83 0.79 

 

 

4.3.5.2 o-Hydroxybenzoic Acids 

 

As with the o-halogen benzoic acids, the syn conformation was used for the carboxylic group.  

Unconstrained optimisation of the carboxylic group resulted in it being coplanar with the 

aromatic ring.  Taking the simplest o-hydroxybenzoic acid in the data set, salicylic acid (compound 

23), four stable conformations were found (Figure 4.9).  Full geometry optimisation was 

performed on the 14 o-hydroxybenzoic acids in each of the four conformations. The most stable 

conformation was always the one where the hydroxyl hydrogen forms an intramolecular 

hydrogen bond with the C=O oxygen (Figure 4.9d). The bond lengths from these conformations 

were used in modelling (Table 4.23).  2,6-Dihydroxybenzoic acid (compound 252) and 2-hydroxy-

3,5-dinitro-benzoic acid (compound 259) were omitted as outliers in Chapter 3 and our 

publication152 on the basis of the presence of the hydroxyl group at the ortho position(s).  We 

were therefore cautious with including these compounds, but interested to investigate whether 

the previous omissions were justified.    
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Figure 4.9.  The stable conformations of salicylic acid. 

 
 

Table 4.23.  The statistical details of the models created for the o-hydroxybenzoic acids. 

     Model Statistics CV  
Statistics 

Method Conformation 
# 

Bonds 
# LV # Compounds    RMSEE    RMSEP    

       
    

  

HF Lowest Energy All 3 14 0.97 0.16 0.91 0.74 0.73 0.67 0.55 
HF Lowest Energy r(O-H) 1 14 0.98 0.13 0.97 0.15 0.96 0.96 0.92 
HF Lowest Energy r(C=O) 1 14 0.54 0.59 0.45 - - - - 
HF Lowest Energy r(C-C) 1 14 0.15 0.80 -0.07 - - - - 
HF Lowest Energy r(C-O) 1 14 0.00 0.87 -0.10 - - - - 
HF Lowest Energy All 2 12 (-252 and 259) 0.92 0.12 0.82 - - - - 
HF Lowest Energy r(O-H) 1 12 (-252 and 259) 0.92 0.12 0.90 - - - - 
HF Lowest Energy r(C-O) 1 12 (-252 and 259) 0.87 0.15 0.79 - - - - 
HF Lowest Energy r(C=O) 1 12 (-252 and 259) 0.72 0.21 0.62 - - - - 
HF Lowest Energy r(C-C) 1 12 (-252 and 259) 0.55 0.27 0.37 - - - - 
HF Lowest Energy All 3 13 (-252) 0.97 0.13 0.87 - - - - 
HF Lowest Energy r(O-H) 1 13 (-252) 0.97 0.14 0.94 - - - - 
HF Lowest Energy r(C-O) 1 13 (-252) 0.89 0.25 0.78 - - - - 
HF Lowest Energy r(C=O) 1 13 (-252) 0.63 0.46 0.45 - - - - 
HF Lowest Energy r(C-C) 1 13 (-252) 0.49 0.54 0.30 - - - - 
HF Lowest Energy All 3 13 (-259) 0.98 0.12 0.69 - - - - 
HF Lowest Energy r(O-H) 1 13 (-259) 0.97 0.11 0.97 - - - - 
HF Lowest Energy r(C=O) 1 13 (-259) 0.42 0.51 0.38 - - - - 
HF Lowest Energy r(C-O) 1 13 (-259) 0.19 0.60 -0.1 - - - - 
HF Lowest Energy r(C-C) 1 13 (-259) 0.03 0.66 -0.1 - - - - 

 

In all the single-bond-length models involving all compounds, r(O-H) produced the best 

correlations compared to any other single-bond-length model or the all-bond-length model.  For 

the all-bond-length model and the r(O-H) model, 2,6-dihydroxybenzoic acid and 2-hydroxy-3,5-

dinitro-benzoic acid were found lying on the regression line. However, these two compounds did 

not lie on the regression line corresponding to single-bond-length models other than r(O-H).  Also, 

when these compounds were excluded, these models did improve. Sequentially removing these 

compounds demonstrated that 2,6-dihydroxybenzoic acid had the greatest influence in reducing 

the correlation statistics.  This is probably due to the fact that 2,6-dihydroxybenzoic acid is the 

only 2,6-substituted benzoic acid. Indeed, the r(C=O), r(C-O) and r(C-C) models suffer from the 

presence of the second substitution, which is not the case for the r(O-H) model.  r(O-H) and r(C-O) 

produce good models when 2-hydroxy-3,5-dinitro-benzoic acid is included.  The two highly 
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electron-withdrawing nitro groups in the meta positions deteriorated the correlation for the 

r(C=O) and r(C-C) models.  It is interesting to note that r(C-C) produces the worst correlations for 

o-hydroxybenzoic acids but the best for the o-halogen benzoic acids.  We have demonstrated that 

r(O-H) gives good correlations with pKa when 2,6-dihydroxybenzoic acid and 2-hydroxy-3,5-

dinitro-benzoic acid are included but models obtained from bond lengths other than r(O-H) suffer 

from their inclusion.  The current work and its conclusion can be used to explain why we had to 

exclude these two compounds in Chapter 3 and our publication152 where we did not restrict 

ourselves to a single-bond-length model, nor concentrated on particular high-correlation subsets.  

In this previous publication, properties from bonds other than r(O-H) were used to model the pKa. 

We have shown above that these bonds cause deterioration in the models for 2,6-

dihydroxybenzoic acid and 2-hydroxy-3,5-dinitro-benzoic acid.  This is confirmed by the CV 

statistics for the all-bond-length model. 

 

We also constructed similar models with the different conformations.  It was interesting to find 

that strong correlations were found but different bond lengths became important according to 

the VIP plot.  Good models can also be constructed using different conformations and all the bond 

lengths in a PLS model. However, when only one bond length is used, the models drastically 

deteriorate.  

  

4.3.5.3 Comparison of the models created for the high-correlation subsets of o-benzoic 

acids to those constructed using different subsets of all the benzoic acids.  

  

A comparison between the RMSEP values, as performed from the o-phenols, is not worthwhile 

here because different bonds gave better results.  

4.3.5.4 Meta-/Para-Benzoic Acids  

  

The models and statistics for the m-/p-benzoic acids are given in Table 4.24.  Inspection of the 

observed versus predicted plot for the all-bond-length model and all the single-bond-length 

models highlighted 3,4-diamino-benzoic acid as a large outlier.  This compound was excluded by 

Tehan et al. and also in Chapter 3 and our publication152 for the reason that it may be partially in a 

zwitterionic form in solution.  After excluding this compound, the models significantly improved.  

The all-bond-length model and four single-bond-length models were cross-validated, constructed 

from the remaining 43 m-/p-benzoic acids.  The results in Table 4.24 show that only r(O-H) is 

required to predict the pKa for these compounds.  The corresponding statistics are almost exactly 

the same as those of the all-bond-length model.  Furthermore, the r(C-O) model demonstrated 

good predictive ability, which decreases for the r(C=O) model and further for the r(C-C) model. 
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Table 4.24.  The statistical details of the models created for the m-/p-benzoic acids. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF N/A All 2 44 0.79 0.22 0.74 - - - - 
HF N/A r(O-H) 1 44 0.79 0.21 0.78 - - - - 
HF N/A r(C-O) 1 44 0.72 0.25 0.67 - - - - 
HF N/A r(C=O) 1 44 0.70 0.26 0.68 - - - - 
HF N/A r(C-C) 1 44 0.49 0.34 0.45 - - - - 
HF N/A All 2 43 0.93 0.12 0.92 0.13 0.92 0.92 0.85 
HF N/A r(O-H) 1 43 0.92 0.13 0.91 0.13 0.91 0.91 0.84 
HF N/A r(C-O) 1 43 0.90 0.15 0.90 0.15 0.90 0.89 0.80 
HF N/A r(C=O) 1 43 0.83 0.19 0.83 0.20 0.82 0.78 0.65 
HF N/A r(C-C) 1 43 0.61 0.29 0.59 0.30 0.57 0.29 0.27 

 

4.3.6 Anilines 

 

Figure 4.10 shows the common skeleton and bonds screened to predict pKa of the aniline 

compounds.  Table 4.1 provides the constitution of the data set for the aniline compounds.  Here 

we use the pKa values associated with the dissociation of the hydrogen from the conjugated acid.  

Of course, the protonation of the substituted anilines are associated with pKb values but because 

pKa + pKb = 14, all the pKa values are related to the pKb values. Therefore, using either pKa or pKb 

does not change the models’ statistics.  In contrast to phenol and benzoic acid, aniline is 

symmetrical and therefore most compounds have only one stable conformation.   We used the 

conformation with the lowest energy.  All-bond-length models were created for all the anilines 

and for o-aniline and m-/p-aniline subsets (Table 4.25).  It was pleasing to note that the VIP plot 

for the all-bond-length model with all the anilines highlighted r(C-N) as the most important bond 

followed by r(N7-H8) and r(N7-H9).  Models were subsequently constructed using a three-bond-

length model r(CNH2) and single-bond-length models using r(C-N), r(N7 -H8) and r(N7 -H9).  The 

RMSEE for these models was higher than the RMSEE obtained using all the bond lengths. 

However, r(C-N) gave a lower RMSEE than r(CNH2).  The r(N7 -H8) and  r(N7 -H9) gave similar 

statistics.  Models were constructed for the m-/p- and o-aniline subsets using the same bonds to 

investigate whether the models improved.  For the m-/p-anilines all the RMSEE values decreased 

compared to the same models built from all the compounds.  The opposite occurred for the o-

anilines where the RMSEE increased compared to the models built using all the anilines 

suggesting that the o-anilines caused the high RMSEE in these models.  In both cases the r(N-H) 

models were very similar but were inferior to those constructed using r(C-N).  We also noted that 

the RMSEE for the majority of the models was greater than 0.5 and the statistics for the m-/p-

aniline models were especially poor compared to those obtained for the phenols and benzoic 

acids.  Next we attempted to identify high-correlation subsets in line with our motivation.   
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Figure 4.10.  The nine bond lengths used to predict the pKa of the aniline compounds.  The main text refers to bond 
lengths 1-7 as r(C-N), and bond lengths 7-8 and 7-9 as r(N7-H8) and r(N7-H9), respectively.  References to other bonds 
make use of this numbering scheme to distinguish between the C-C bonds, e.g. r(C1-C2).  Where just the bonds 
associated to the NH2 group are used, i.e. r(C-N), r(N7-H8) and r(N7-H9), then r(CNH2) is used. 

 
Table 4.25.  The results of the aniline compounds modelled with the bond lengths calculated at the HF/6-31G(d) level 
of theory. 

 

4.3.7 Ortho-Anilines 

 

The observed versus predicted plots and the VIP plots for all the o-aniline models in Figure 4.11 

were inspected.  In contrast to the all-bond-length model constructed from all the anilines, the 

VIP plot for the all-bond-length model constructed from only the o-anilines gave r(C2-C3) as the 

second most important bond.  Pentafluoroaniline (compound 313) has an experimental pKa of -

0.28, however, the model predicted it to be 1.21.  When this compound was removed the VIP plot 

gave r(C2-C3) as the fourth most important bond behind the three bonds associated with the C-

NH2 group.  It is not surprising that this compound caused problems since o-fluorophenols appear 

to form their own high-correlation subset and 2,3,5,6-tetrafluoro-4-methyl-benzoic acid had been 

excluded from the benzoic acid modelling.  As pentafluoroaniline was the only o-fluoroaniline in 

the data set, we excluded it and rebuilt the models (Table 4.26).  The models for the o-anilines 

improved compared to those in Table 4.25.  This time the correlation between r(C-N) and pKa 

Subsets # LV # Bonds # Compounds       RMSEE 

All 3 All 52 0.89 0.84 0.70 

All 1 r(CNH2) 52 0.74 0.73 1.06 

All 1 r(C-N) 52 0.78 0.78 0.96 

All 1 r(N7-H8) 52 0.67 0.65 1.18 

All 1 r(N7-H9) 52 0.66 0.63 1.21 

Meta/Para 4 All 24 0.90 0.76 0.40 

Meta/Para 2 r(CNH2) 24 0.77 0.71 0.58 

Meta/Para 1 r(C-N) 24 0.66 0.63 0.69 

Meta/Para 1 r(N7-H8) 24 0.59 0.55 0.76 

Meta/Para 1 r(N7-H9) 24 0.58 0.55 0.77 

Ortho 3 All 28 0.89 0.81 0.79 

Ortho 1 r(CNH2) 28 0.69 0.64 1.29 

Ortho 1 r(C-N) 28 0.76 0.73 1.14 

Ortho 1 r(N7-H8) 28 0.60 0.54 1.46 

Ortho 1 r(N7-H9) 28 0.59 0.49 1.49 
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(Figure 4.11) was inspected in conjunction with the structures of the compounds in an attempt to 

identify high-correlation subsets.  Ten o-halogen anilines, five o-nitro anilines and four o-alkyl 

halogen allowed us to investigated high-correlation subsets for these compounds.  

Table 4.26.  The statistical details of the models created for the o-anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 3 27 0.91 0.72 0.83 1.16 0.76 0.74 0.66 
HF Lowest Energy r(CNH2) 1 27 0.74 1.19 0.64 1.40 0.61 0.56 0.48 
HF Lowest Energy r(C-N) 1 27 0.80 1.06 0.74 1.20 0.72 0.68 0.57 
HF Lowest Energy r(N7-H8) 1 27 0.66 1.37 0.54 1.58 0.51 0.43 0.36 
HF Lowest Energy r(N7-H9) 1 27 0.65 1.38 0.53 1.61 0.50 0.43 0.36 

 

 

 

Figure 4.11.  Plot of r(C-N) versus pKa for the o-anilines.  

 

4.3.7.1 o-Halogen Anilines  

 

Table 4.27 gives the statistics for the models created for the o-halogen anilines.  The RMSEE and 

RMSEP for all the models are below 0.5 pKa units and are much lower than those obtained from 

the models constructed with all the o-anilines.  The r(CNH2) model has the lowest RMSEP followed 

by the r(C-N) model.  The statistics for all the models are very similar and their predictive ability is 

confirmed by high   
   values.   
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Table 4.27.  The statistical details of the models created for the o-halogen anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 1 10 0.95 0.38 0.94 0.43 0.92 0.92 0.87 
HF Lowest Energy r(CNH2) 1 10 0.97 0.32 0.96 0.42 0.93 0.93 0.90 
HF Lowest Energy r(C-N) 1 10 0.95 0.39 0.94 0.44 0.93 0.92 0.90 
HF Lowest Energy r(N7-H8) 1 10 0.94 0.44 0.93 0.48 0.91 0.90 0.85 
HF Lowest Energy r(N7-H9) 1 10 0.94 0.42 0.94 0.44 0.92 0.92 0.87 

 

4.3.7.2 o-Nitro Anilines  

 

These models were constructed with only 5 o-nitro anilines, which is probably the reason for the 

large variations in the quality of the models (Table 4.28).  r(CNH2) gave the lowest RMSEE and 

RMSEP followed by r(C-N).  It is interesting to note that for o-nitro anilines both the r(N-H) models 

were poor in contrast to the o-halogen anilines where they produced good models. 

 

Table 4.28.  The statistical details of the models created for the o-nitro anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 2 5 0.99 0.37 0.92 1.45 0.66 0.65 0.61 
HF Lowest Energy r(CNH2) 2 5 1.00 0.14 1.00 0.34 0.98 0.98 0.98 
HF Lowest Energy r(C-N) 1 5 0.98 0.40 0.97 0.54 0.95 0.95 0.95 
HF Lowest Energy r(N7-H8) 1 5 0.80 1.37 0.77 1.58 0.66 0.64 0.56 
HF Lowest Energy r(N7-H9) 1 5 0.01 3.06 -0.1 4.42 0.76 -0.12 0.05 

 

4.3.7.3 o-Alkyl Anilines  

 

The small number of examples of o-alkyl anilines was not ideal.  However, good models were 

constructed for these compounds and using only r(C-N) provided a lower RMSEP compared to any 

of the other models Table 4.29.  We note that the r(N7-H8) and r(N7-H9) models are very different.  

This can also be observed for the o-nitro anilines (Table 4.28).  For the o-alkyl anilines this 

difference is caused by two compounds having two ortho-methyl substituents in the 2 and 6 

positions, whereas the other two compounds are only mono-ortho substituted.  This reason also 

applies to the o-nitro anilines where only one compound has nitro substituents in the 2 and 6 

position.  These results highlight the drawback of using the r(N-H) bond length, a problem that 

does not  apply to the r(C-N) model.  This difference is not observed for the r(N-H) o-halogen 

anilines model (Table 4.29), which was constructed using 10 compounds, including three di-ortho 

halogen substituted compounds.  
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Table 4.29.  The statistical details of the models created for the o-alkyl anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 1 4 0.99 0.08 0.77 0.25 0.93 0.78 0.57 
HF Lowest Energy r(CNH2) 2 4 0.96 0.26 0.86 0.95 0.54 0.52 0.47 
HF Lowest Energy r(C-N) 1 4 0.97 0.16 0.95 0.23 0.90 0.90 0.88 
HF Lowest Energy r(N7-H8) 1 4 0.17 0.87 -0.1 1.22 0.98 -2.75 -0.90 
HF Lowest Energy r(N7-H9) 1 4 0.52 0.66 0.36 1.64 0.28 0.27 0.26 

4.3.8 Meta-/Para- Anilines 

 

The RMSEEs for the m-/p-anilines (Table 4.25) were much higher than those obtained for the 

phenols and benzoic acids.  Similarly to the o-anilines, the VIP plot for the all-bond-length model 

gave a bond length, r(C1-C2), not part of the CNH2 group, as the second most important bond.  The 

VIP plots and observed versus predicted plots were inspected for the r(CNH2) and single-bond-

length models.  These revealed 3,5-dinitroaniline (compound 280) as a suspicious data point.  

When this compound was removed, the VIP plot for the all-bond-length model returned r(C-N), 

r(N7 -H8) and r(N7 -H9) as the most important bonds in that order.  

 

Models were constructed without 3,5-dinitroaniline and the statistics improved (Table 4.30).  The 

RMSEE for the r(C-N) model was below 0.5 pKa units.  The observed versus predicted plot revealed 

that the meta-substituted anilines were predicted far worse than the para-substituted anilines.  

We separated the m-/p-anilines and constructed models of the separate classes (Table 4.31 and 

Table 4.32).  The r(C-N) model for the p-anilines gave an RMSEE of 0.27. However, the r(C-N) 

model for the m-anilines had an RMSEE of 0.59.  This was unexpected as the single-bond-length 

models for the p-/m-phenols and p-/m-carboxylic acids provide good correlations.  Inspection of 

the observed versus predicted plot did not reveal any suspicious data points nor any chemically 

meaningful high-correlation subsets.  Ab initio bond lengths generated at the HF/6-31G(d) level of 

theory have previously been used in our group to model the pKa of a different data set of 36 m-/p-

substituted anilines57. An    value of 0.92 and a    value of 0.88 were obtained using PLS. 

However, all the bond lengths in the common skeleton were used and the bond lengths linking 

the substituents to the aromatic ring were also included.  Twenty m-substituted anilines were 

added to our data set in an attempt to improve the r(C-N) model (Table 4.33).  The RMSEE for the 

r(C-N) model increased to 0.74 compared to 0.59 obtained previously.  Once again, no obvious 

chemically meaningful high-correlation subsets could be found. 

Table 4.30.  The statistical details of the models created for the m-/p-anilines with 3,5-dinitroaniline removed.   

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 3 23 0.92 0.32 0.82 0.55 0.72 0.68 0.57 
HF Lowest Energy r(CNH2) 2 23 0.85 0.42 0.79 0.58 0.69 0.64 0.53 
HF Lowest Energy r(C-N) 1 23 0.80 0.48 0.76 0.54 0.73 0.68 0.57 
HF Lowest Energy r(N7-H8) 1 23 0.74 0.54 0.70 0.60 0.66 0.59 0.48 
HF Lowest Energy r(N7-H9) 1 23 0.73 0.56 0.69 0.60 0.66 0.56 0.45 
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Table 4.31.  The statistical details of the models created for the p-anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 1 11 0.90 0.38 0.87 0.50 0.80 0.79 0.70 
HF Lowest Energy r(CNH2) 2 11 0.97 0.24 0.93 0.37 0.90 0.89 0.81 
HF Lowest Energy r(C-N) 1 11 0.95 0.27 0.93 0.33 0.92 0.92 0.92 
HF Lowest Energy r(N7-H8) 1 11 0.93 0.33 0.88 0.44 0.87 0.87 0.86 
HF Lowest Energy r(N7-H9) 1 11 0.93 0.33 0.90 0.40 0.89 0.89 0.89 

 
Table 4.32.  The statistical details of the models created for the m-anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 4 12 0.97 0.21 0.91 0.53 0.67 0.46 0.36 
HF Lowest Energy r(CNH2) 2 12 0.80 0.47 0.75 0.65 0.54 0.41 0.34 
HF Lowest Energy r(C-N) 1 12 0.66 0.59 0.61 0.63 0.56 0.41 0.34 
HF Lowest Energy r(N7-H8) 1 12 0.58 0.65 0.52 0.70 0.45 0.21 0.23 
HF Lowest Energy r(N7-H9) 1 12 0.54 0.69 0.50 0.72 0.42 0.03 0.16 

 
Table 4.33. The statistical details of the models created for the m-anilines with the twenty additional m-anilines. 

     Model Statistics CV  
Statistics 

Method Conformation # Bonds # LV # Compounds    RMSEE    RMSEP    
       

    
  

HF Lowest Energy All 4 32 0.81 0.49 0.57 0.86 0.35 0.04 0.16 
HF Lowest Energy r(CNH2) 2 32 0.72 0.56 0.67 0.61 0.63 0.52 0.42 
HF Lowest Energy r(C-N) 1 32 0.49 0.74 0.44 0.78 0.41 -0.03 0.14 
HF Lowest Energy r(N7-H8) 1 32 0.41 0.81 0.34 0.83 0.32 -0.38 0.05 
HF Lowest Energy r(N7-H9) 1 32 0.37 0.83 0.34 0.85 0.30 -0.64 0.01 

 

4.3.9 Comparison of the Correlation Obtained With and Without an Ammonia Probe 

 

As mentioned in the Introduction, the complete series of chlorophenols, bromophenols and 

fluorophenols has previously been investigated separately for correlations of molecular properties 

with pKa 
156, 157, 159, 160.  Having demonstrated that strong correlations between pKa and one bond 

length can be achieved for halogen phenols, we investigated whether better results could be 

achieved using an ammonia probe and a higher level of theory.  For all the monomeric o-halogen 

phenols in the dataset, the syn conformation was the lowest in energy apart from the two 2-

halogen-6-nitrophenols.  It is suggested that when a probe molecule is introduced, the anti 

conformer (where the hydroxyl hydrogen points away from the closest halogen) is more stable156, 

157.  This can only be the case for mono-ortho-substituted halogen phenols. The ammonia, as a 

probe molecule, is positioned with its lone pair at the hydroxyl hydrogen of the halogen phenols, 

conserving the Cs symmetry if other meta-/para-substituents are ignored (Figure 4.12). 
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Figure 4.12.  The general structure and number scheme for the phenol-ammonia complex. 

 

Full geometry optimisations were performed at the HF/6-31G(d) and B3LYP/6-311++G(d,p) level 

of theory on the data set of o-halogen phenols (30 compounds), without the two 2-halogen-6-

nitrophenols, in the presence of the ammonia probe.  For the asymmetric halogen phenols, 

geometry optimisations were preformed on both the syn and anti conformers.  Contrary to the 

calculated energies of the monomeric halogen phenols, where the syn conformation was 

consistently lower in energy, the same was not found for the halogen phenol-ammonia 

complexes.  For the asymmetric halogen phenols, at both levels of theory, we generally found the 

syn conformation to be most stable.  However, in some cases the lowest energy conformer was 

not consistent at both levels of theory for the same compound.  These findings were contrasting 

with the work of Han et al.156.  For example, we find the syn conformer of 2-chlorophenol to be 

most stable using both levels of theory and including the basis-set superposition error (BSSE) in 

the HF calculation.  For this reason we constructed models based on the three possible 

combinations: each compound being in its lowest energy conformer, each in its syn conformer 

and each in its anti conformer (Table 4.34) (symmetrically substituted compounds such as 2,6-

dichlorophenol can of course not be assigned anti or syn but this fact did not exclude them from 

the dataset). The four compounds previously identified as outliers were still outliers in the models 

even after the introduction of the probing ammonia.  This can be seen by an improvement in all 

the models statistics when the outliers are removed.     
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Table 4.34  The statistics relating to the models constructed for the phenols and an ammonia probe. 

   HF B3LYP 

Conformation Bonds # Compounds # LV       RMSEE # LV       RMSEE 

Lowest Energy           

 All 30 4 0.97 0.92 0.31 2 0.94 0.88 0.42 

 C-O 30 1 0.90 0.90 0.51 1 0.91 0.90 0.50 

 O-H 30 1 0.81 0.78 0.71 1 0.73 0.70 0.84 

 O-H...N 30 1 0.54 0.44 1.11 1 0.56 0.49 1.09 

 All 26 3 0.99 0.98 0.18 2 0.98 0.96 0.26 

 C-O 26 1 0.97 0.97 0.27 1 0.95 0.95 0.36 

 O-H 26 1 0.94 0.93 0.42 1 0.88 0.87 0.59 

 O-H...N 26 1 0.72 0.70 0.89 1 0.77 0.76 0.81 

Syn           

 All 30 4 0.97 0.92 0.30 2 0.95 0.89 0.37 

 C-O 30 1 0.90 0.90 0.51 1 0.91 0.91 0.49 

 O-H 30 1 0.82 0.79 0.69 1 0.75 0.72 0.82 

 O-H...N 30 1 0.59 0.48 1.04 1 0.57 0.51 1.08 

 All 26 2 0.98 0.96 0.25 2 0.99 0.97 0.20 

 C-O 26 1 0.98 0.98 0.25 1 0.96 0.96 0.34 

 O-H 26 1 0.93 0.92 0.44 1 0.90 0.89 0.54 

 O-H...N 26 1 0.87 0.86 0.61 1 0.78 0.78 0.78 

Anti           

 All 30 1 0.87 0.84 0.58 2 0.93 0.87 0.43 

 C-O 30 1 0.91 0.91 0.49 1 0.91 0.91 0.49 

 O-H 30 1 0.85 0.82 0.62 1 0.85 0.82 0.65 

 O-H...N 30 1 0.46 0.38 1.21 1 0.61 0.55 1.02 

 All 26 3 0.98 0.95 0.24 2 0.97 0.95 0.28 

 C-O 26 1 0.97 0.97 0.29 1 0.95 0.94 0.39 

 O-H 26 1 0.90 0.84 0.54 1 0.93 0.90 0.46 

 O-H...N 26 1 0.50 0.30 1.18 1 0.70 0.60 0.91 

              

These results indicate that there is no need to use the more expensive B3LYP/6-311++G(d,p) level 

of theory as the models generated using HF/6-31G(d) are of equal and sometimes of superior 

quality.  The lowest RMSEEs are produced by the all-bond-length models followed by the r(C-O), 

r(O-H) and r(O-H…N) models, respectively.  This is confirmed by the VIP plot for the all-bond-

length models ranking the importance of these bond lengths to the models in the same order. In 

most cases the difference between the statistics for the all-bond-length models and the r(C-O) 

models is small, suggesting that the single r(C-O) models are suitable for predicting pKa of halogen 

phenols.  Considering the single-bond-length models, the syn conformation generally produces 

the lowest RMSEEs.  This is because the influence of the o-halogen substitution is constant for 

each complex considered.  For the lowest-energy and the anti-conformation models, the 

influence is not constant and therefore corrupts the correlations. For example, the anti 

conformation models created using r(O-H…N) have the highest RMSEE. This is caused by 2-chloro-

6-methylphenol (compound 174).  The presence of the methyl group causes the O-H…N bond 
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length to be much larger than it is for the other compounds, presumably because of steric 

hindrance and repulsions between the hydrogens, and therefore has a predicted pKa much higher 

than the other compounds when the experimental pKa is not the highest of all halogen phenols.  

Han and co-workers156, 157 found that separate correlations were required for pKa with r(O-H…N) 

for di-ortho halogen phenols because of steric interference.  By using the syn conformation, every 

compound is exposed to steric interference from the o-halogen substitution, although it appears 

that separate correlations may still be needed for r(O-H…N) and possibly r(O-H).  

Pentabromophenol (compound 142) corrupted the correlations for all the r(O-H…N) models.  Han 

and Tao157 excluded this compound from their equations on the basis that the full geometry 

optimisation of its complex with ammonia had not converged (note that our geometry 

optimisation of this complex did converge though).  Removing this compound from the r(O-H…N) 

model with the syn conformations, which is the best r(O-H…N) correlation, did not improve it 

enough to be better than the r(C-O) model. 

 

This investigation into using an ammonia probe demonstrates that single bond-lengths can be 

used to predict the pKa of o-halogen phenols. The results obtained from HF/6-31G(d) and 

B3LYP/6-311++G(d,p) are comparable.  The use of r(C-O) with the syn conformation produced the 

best statistics for the single-bond-length models and has the advantage of avoiding erratic 

predictions caused by non-halogen ortho-substitutions for di-orthophenols and the need for 

separate correlations for di-ortho-halogenated phenols.  However, comparing the r(C-O) model to 

that obtained using the monomeric phenols where an   ,    and RMSEE of 0.97, 0.97, and 0.27, 

were obtained, respectively, the use of an ammonia probe is unnecessary considering the 

increase in time taken to perform the geometry optimisation.  Large improvements are seen in 

the models using the r(O-H) bond length obtained from the o-halogen phenol-ammonia complex 

compared to those models obtained from the monomeric halogen phenols. However, the 

improvements are not strong enough to make the use of a probe the preferred option over the 

monomeric r(C-O) model. 

 

Zhang and co-workers performed density functional calculations (B3LYP/6-311++G(d,p)) on the 

complete series of hydroxybenzoic acids158.  They concluded that, for the twelve compounds that 

had experimental pKa values, the use of an ammonia probe produced stronger correlation than 

the monomer.  We have repeated the calculations with and without the probing ammonia and 

compared the correlations to those obtained using HF/6-31G(d) (Table 4.35).  The conformation 

with the carboxylic OH and ammonia probe on the opposite side from the ortho substitution was 

used to minimise steric hindrance161. The ammonia probe was placed collinearly with the acidic 

OH bond to form a hydrogen bonded complex with the hydroxybenzoic acids (Figure 4.13).    
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Using a higher level of theory and an ammonia probe produce slightly better correlations than 

those obtained with HF/6-31G(d).  The results obtained for the monomer using HF/6-31G(d) do 

not seem to suffer a deterioration when the probe is removed, like those obtained using B3LYP, 

which supports the use of the monomer and the lower level of theory. 

 

Figure 4.13.  The general structure and number scheme for the hydroxybenzoic acid-ammonia complex. 

 
Table 4.35.  The statistical details of the correlations for the hydroxybenzoic acids modelled by Zhang et al.

158
  

  B3LYP HF 

Compounds Bonds    RMSEE    RMSEE 

Hydroxybenzoic acids with probe      
 r(O-H) 0.98 0.15 0.97 0.20 

 r(O-H…N) 0.99 0.12 0.98 0.17 

Hydroxybenzoic acids monomer      
 r(O-H) 0.85 0.44 0.96 0.23 

 

Nine of the fourteen o-hydroxybenzoic acids from the benzoic acid data set (modelled above) 

were not considered by Zhang et al. as they had different substitutions in the meta and para 

positions (i.e. methyl, bromine, benzene, nitro, chlorine, amine). Our current work expands on 

theirs by showing that the correlations obtained including these nine compounds with 

hydroxybenzoic acids retains the very good statistics of the single-bond length models, as shown 

in Table 4.36.  The results are consistent with those for the twelve acids and suggest that only 

small improvements are achieved by using a probing molecule compared to using the monomer in 

conjunction with the HF/6-31G(d) level of theory.  

 

Table 4.36.  The statistical details of the correlations for the hydroxybenzoic acids modelled by Zhang et al.
158

 
including nine o-hydroxybenzoic acids with non-hydroxyl substitutions in the meta and para positions.    

  B3LYP HF 

Compounds Bonds    RMSEE    RMSEE 

Hydroxybenzoic acids with probe      
 r(O-H) 0.97 0.19 0.96 0.21 

 r(O-H…N) 0.98 0.16 0.97 0.19 

Hydroxybenzoic acids monomer      
 r(O-H) 0.78 0.48 0.94 0.25 
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4.4 Discussion: Summary and Application 
 

Data sets of phenols, benzoic acids and anilines have been deconstructed and high-correlation 

subsets have been identified where one ab initio bond length, calculated at the HF/6-31G(d) level 

of theory, can be used to predict pKa.  For the phenol dataset, lower RMSEEs were found when 

they were modelled as o-phenols and m-/p-phenols separately.  The o-phenols had an RMSEE 

greater than 0.5 pKa units when they were modelled together using all the bond lengths.  When 

r(C-O) and r(O-H) were used alone to predict pKa, the models drastically reduced in quality. 

Subsequent analysis of the observed versus predicted plots for these two bond lengths revealed 

the possibility of improving the predictions by further deconstructing the data set in to high-

correlation subsets.  Notably, that the high-correlation subsets, identified in the predicted versus 

observed correlation plots, were chemically meaningful.  These high-correlation subsets, which 

included o-nitrophenols, o-halogenphenols, o-alkylphenols, o-phenols capable of forming internal 

hydrogen bonds and o-methoxy/ethoxyphenols, were fully analysed by comparing all-bond-length 

models to single-bond-length models.  All-bond-length models differ from single-bond-length 

models in their capacity to highlight outliers.  Outliers are readily exposed in single-bond-length 

models, where they cannot benefit from the fitting flexibility offered by all-bond-length models.  

In other words, the simplicity of the single-bond-length models calls for the obligatory 

investigation of a number of suspicious compounds. The majority of outliers could be explained 

by wrong conformations, erroneous experimental pKa values and structural differences with the 

rest of the compounds in the high-correlation subset.  In most cases, r(C-O) models were the best, 

compared to all-bond-length and r(O-H) models. 

       

The m-/p-phenol models for r(C-O) and r(O-H), constructed using all the compounds, were 

comparable to the all-bond-length model, which was not the case for the o-phenols.  However, 

because improved models were found by separating the o-phenols into high-correlation subsets, 

the same separation was carried out for the m-/p-phenols.  Small improvements were noted but 

these were not comparable to the improvements seen for the high-correlation subsets of o-

phenols.  For all the phenols, r(C-O) consistently provided the best models. 

   

Through analysis of the phenol data set, we proposed rules to decide in which conformation the 

phenols need to be optimised in order to make the best possible prediction. Secondly, these rules 

also determined which high-correlation subset scores the best prediction.  In the cases of the 

phenols, these rules were decided based on the energy of each compound. We note that no 

compound violated these rules. 
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The benzoic acids were subjected to a similar analysis as the phenols.  From previous work on this 

data set in Chapter 3, it was known that the bonds making up the carboxylic acid group produced 

the best correlation with pKa and therefore we limited the analysis to just these four bonds.  The 

m-/p-benzoic acids showed excellent statistics for single-bond-length models compared to the all-

bond-length model. Hence, no high-correlation subsets were determined for these compounds.  

For the m-/p-benzoic acids, r(C-O) provided the highest    value and the lowest RMSEE.  High-

correlation subsets were identified from the o-benzoic acids, for o-halogenbenzoic acids and o-

hydroxybenzoic acids. 

 

The energy of the different o-halogenbenzoic acids could not be used as a definitive guide to 

determine from which conformation the bond lengths should be taken.  Two single-bond-length 

models, r(C-C) and r(O-H), showed comparable statistics to the all-bond-length model.  The r(C-C) 

produced the lowest RMSEP when outliers had been removed. Furthermore, the low RMSEP 

obtained for the r(C-C) model required two compounds to be optimised in the syn conformation, 

which we know was not the lowest energy. However, the syn conformation was required to 

comply with the rest of the high-correlation subset.  

 

The lowest energy conformers of the o-hydroxybenzoic acids were of the same conformation 

across the series and were used to build the models for this high-correlation subset.  The four 

bonds investigated for single-bond-length models produced varying statistics.  The r(O-H) model 

produced the lowest RMSEE out of all the single-bond-length models and it was also lower than 

the all bond-length model.  By investigating this high-correlation subset with different bond 

lengths we were able to explain why two compounds (2,6-dihydroxybenzoic acid (compound 252) 

and 2-hydroxy-3,5-dinitro-benzoic acid (compound 259)) were determined as outliers in Chapter 3 

and our publication.  By using r(O-H) alone the pKa of these compounds can be predicted from the 

remaining compounds in this high-correlation subset. 

 

The analysis of all the bond lengths in the common skeleton of the anilines highlighted that the 

bonds associated with the CNH2 group contributed the most to the all-bond-length model.  As was 

seen for the o-phenols and o-benzoic acids, high-correlation subsets could be extracted from the 

o-anilines, which were chemically meaningful and produced good models using just one bond 

length.  r(C-N) consistently produced the best models for the o-halogen, o-nitro and o-alkylaniline.   

The models created with r(N7-H8) and r(N7-H9) were always inferior to those created with r(C-N). 

   

In contrast to the single-bond-length models for m-/p-phenols and benzoic acids, the RMSEE for 

the m-/p-aniline model using the r(C-N) was much higher than that of the all-bond-length model 



113 
 

and nearly greater than 0.5 pKa units.  Constructing separate models for the m-anilines and p-

anilines highlighted that it was the m-anilines that caused the high RMSEE.  This unusual finding 

remained when a further twenty m-anilines where added to the data set.  We were unable to 

identify high-correlation subsets from the models constructed with the thirty-two m-anilines and 

presently are unable to explain this interesting discrepancy. 

 

In this study our emphasis has been on accuracy rather than globality.  The results demonstrate 

that one bond length from the group of compounds of interest can be used to predict pKa.  In 

order for this to work however, high-correlation subsets need to be identified and treated 

separately.  Generally, properties of ortho-substituted compounds are notoriously more difficult 

to predict than m-/p-substituted compounds.  This has been demonstrated by the vast 

improvements in the statistics of the ortho models when the high-correlation subsets were 

identified.  While high-correlation subsets were identified for the m-/p-phenols, the 

improvements in modelling these separately were minor. 

   

Some may highlight certain drawbacks in attempting to model pKa with a single bond-length.  

These include the need for many highly localised models that require experimental pKa values to 

construct models and may not be applicable to a compound for which a pKa prediction is needed.  

Furthermore, the need to consider different conformations may be regarded an unnecessary 

hindrance.  However, we argue that these are advantages of using a single bond-length.  We have 

shown that the predictions from high-correlation subsets are more accurate, modelled with a 

single bond-length, compared to using multiple bond lengths and combining more diverse 

compounds.  The use of high-correlation subsets and a single bond-length revealed compounds 

with wrongly assigned experimental pKa values that were not clearly obvious from all-bond-length 

and all compound models.  In the majority of cases the lowest energy conformer for each 

compound was the same as that of the other compounds and so was used as a guide to 

determine which conformer should be used.  Where this was not the case, e.g. for two of the 

halogenbenzoic acids, the lowest energy conformation of the other compounds in the high-

correlation subset was used to correct the conformation from which the bond lengths were 

calculated and restore consistency for all compounds.  The energy can also be used to determine 

which high-correlation subset a compound belongs to or should be predicted from.  We have 

even demonstrated the ability of the single bond- length models to extrapolate outside the pKa 

range of the compounds used to construct it. 

   

The division of the data sets in order to find high-correlation subsets was not a trivial task. 

However, the resulting procedure offers a practical and simple approach to predict pKa and can be 
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applied to more complex structures.  Drug discovery programmes generate numerous, similar 

structures when a SAR is being explored.  If pKa is important to the activity and the compounds 

form a high-correlation subset then this procedure can be used.  The most time consuming step 

would be the determination of the high-correlation subsets and identification of the bond length 

that correlates the strongest with pKa.  Producing a pKa prediction tool that contains hundreds of 

equations and programming it to know which equation is the right one to use is straightforward 

and computationally undemanding. 

 

The use of the HF/6-31G(d) level of theory stems from recent work69, 152 where using higher levels 

of theory did not improve the models created.  We confirmed this by comparing the correlations 

obtained using B3LYP/6-311+G(2d,p) for some of the high-correlation subsets and the statistics 

did not improve.  The use of an ammonia probe also did not improve the results either.  The most 

time consuming step in predicting the pKa of a new compound is the geometry optimisation.  We 

compared the time for an example compound (benzoic acid), at HF/6-31G(d) and the higher level 

B3LYP/6-311++G(d,p) using the ammonia probe.  For the monomer the optimisation took 7 mins 

using HF/6-31G(d) and 1 hour 23 mins using B3LYP/6-311++G(d,p).  The calculation time increased 

to 21 mins and 1 hour 29 mins , when the ammonia probe was included, for HF/6-31G(d) and 

B3LYP/6-311++G(d,p), respectively.   We have demonstrated that the prediction of pKa using a 

single bond-length can be applied beyond, for example chlorophenols, bromophenols and 

fluorophenols.  Furthermore, a single bond-length can be used to predict poly-substituted 

compounds with different substituents provided a suitable high-correlation subset model has 

been constructed. 

 

To test the use of single bond lengths to predict pKa, we chose 24 compounds from a data set of 

drug molecules127, that were part of a 197 compound set used to compare nine pKa prediction 

packages (Figure 4.14).  It contains 20 phenols and 4 anilines for which micro pKa values had been 

measured.  There were also 7 carboxylic acids in the original data set but we had already 

considered four of them and we had no suitable subset models from which we could predict the 

remaining three.  The structures of the 24 molecules were taken from the supplementary 

information provided by Liao and Nicklaus and optimised at the HF/6-31G* level of theory.  In line 

with our results, we optimised the ortho-substituted molecules in the conformation determined 

by our models and arbitrary conformations for meta-/para-substituted molecules.  We only 

considered the neutral forms of the drugs.  The relevant bond lengths were extracted and 

subjected to relevant bond length models to predict the pKa.   
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385     Actetaminophen 390      17α-Dihydroequilin 

  
386     Chlorotetracycline 391    17β-Dihydroequilin 

  
387     Oxytetracycline 392     17β-Dihydroequilenin 

  
388     Tetracycline 393     Enkephalin 

 
 

389     Clioquinol 394     17β-Estradiol 
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395     Estrone 400     Normorphine 

  
396     Ethinyl estradiol 401     Morphine-6-glucuronide 

  
397     Isoproterenol 402     Tyrosine 

  
398     Labetalol 403     Vanillin 

 

 

399     Morphine 404      Iso-Vanillin 
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405     ortho-Vanillin 408      Procaine 

  
406      4-Aminobenzoic acid 409      Sulfacetamide 

 

 

407      Benzocaine  
Figure 4.14.  The structures ID and name, taken from Liao and Nicklaus

127
, of the drug molecules we predicted the pKa 

for.  The micro pKa of interest is highlighted in grey. 

 

Table 4.37 provides the experimental pKa of the 24 molecules and Table 4.38 gives the predicted 

pKa values from the nine pKa prediction programmes compared by Liao and Nicklaus127.  Some of 

the molecules were already present in the data set that we used to create single bond-length 

models. These are highlighted in Table 4.37 with the experimental pKa used by Tehan et al.96, 97 

included.  We also state which compound class the molecules belong too (i.e. either phenol or 

aniline), as well as from which high correlation-subset the prediction was made and which bond 

length was used.  Where the molecules were already in our models, we removed them in turn and 

reconstructed the single bond-length model to make the prediction.  We also used the 

experimental pKa provided by Liao and Nicklaus127.  

    

We will first discuss the predictions for the phenols.   Acetaminophen (compound 385) was 

predicted to be 9.01 compared to the experimental pKa of 9.63.  An experimental value of 9.38 

was provided by Tehan et al., which is closer to the prediction made by the model constructed 

from the meta-/para-phenol high-correlation subset.  The predictions for the tetracyclic 

compounds 386, 387 and 388, which all have similar structures, were very poor.  We used the 

ortho-phenol model constructed from the ortho-phenols capable of forming internal hydrogen 

bonds.  The errors indicate that this was not a suitable model and a new model would be needed 
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to make predictions for these compounds. Compounds 390 and 391 only differed by the 

stereochemistry of a distant hydroxyl group separated by many bonds from the phenolic group of 

interest for the pKa predictions. One would expect such a distant change to have little effect on 

the pKa, which is why it is not surprising that all the pKa programmes (apart from Jaguar, see Table 

4.38) predicted the pKa of these two drugs to be identical.  However, the experimental pKa for 

these compounds curiously turned out to be 10.29 and 9.77, respectively.  Such an unexpectedly 

large pKa difference of 0.52 pKa units is difficult to accept and therefore needed resolving. Our 

original data source of Liao and Nicklaus’s work used the experimental pKa values published in a 

book78 in 2007.  A check of this source confirmed that Liao and Nicklaus correctly adopted the pKa 

values and structures from this book.  We therefore checked the primary reference168 where the 

experiments to determine the pKa values of these two compounds were performed.  The pKa of 

compound 390 was the same (i.e. 10.29) as that quoted in Liao and Nicklaus’s work.  The pKa for 

compound 391 did not relate to that compound and actually was that of 17β-dihydroequilenin168.  

The structure of 17β-dihydroequilenin is shown in Figure 4.14 and labelled 392.  We did predict a 

small difference for compounds 390 and 391, but when the correct structure was used the 

prediction was much better.  We used the correct structure and predicted the pKa from three 

(ACD, Marvin and SPARC) of the nine programmes used in the pKa comparisons.  All three 

programmes made an accurate prediction when the correct structure was used. The absolute 

error (AE) (calculated as                  ) for compound 392 was 0.35 compared to AEs for the 

nine programmes that ranged from 0.05 to 1.36.  The MAD of our predictions for steroids 393, 

394 and 395 was 0.37.  We also correctly predicted the order of the pKa values, which only Epik, 

Jaguar and SPARC achieved as well.  It is interesting to note that Marvin, Pallas and Pipeline Pilot 

predicted the same pKa values for all three compounds suggesting they do not detect the different 

structures. 

   

Compound 397 had an AE of 0.74.  We predicted it from the model constructed from the ortho-

phenols capable of forming internal hydrogen bonds.  The structure was very different from those 

used to construct this model, which probably explains the poor predictions.  The opiates 398, 399, 

400 were predicted from the model constructed from ortho-methoxy substituted phenols, 

although they do not strictly have o-methoxy substitutions.  Considering this, the predictions for 

compounds 398 (AE = 0.58) and 399 (AE = 0.62) were reasonable, but the prediction for 

compound 400 (AE = 1.96) was poor.  The predictions from seven (no prediction was provided by 

Jaguar or SPARC) of the pKa programmes were mixed, with AEs between the range of 0.07-1.83.  

Compound 401 had a very accurate prediction with an AE of 0.07.  We did not make a prediction 

for compound 404 as we had previously excluded it as an outlier.  The prediction for compounds 
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402 (AE = 0.06) was very good and only reasonable for compound 403 (0.61).  The AE of these 

three compounds for the predictions from the nine programmes ranged from 0 to 1.51. 

 

We now focus on the four aniline compounds.  Two of the four substituted anilines were already 

in our original data set.  They were all predicted from the model constructed from the para-

anilines.  Table 4.39 gives the MAE for our predictions and for the nine programmes.  For all four 

anilines, the MAE ranged from 0.11 for SPARC to 1.21 for Pipeline Pilot.  The prediction from the 

r(C-N) model was 0.29, which ranks it the fifth lowest MAE prediction in Table 4.39.  An MAE of 

0.26 was obtained for the two anilines not present in our original data set.  This MAE was ranked 

third lowest.  The MAE ranged from 0.1 for ADME Boxes and SPARC to 1.79 for Pipeline Pilot.  

These results are encouraging considering the small number of para-substituted anilines and the 

use of only r(C-N).   

     

Table 4.37.  The experimental pKa values for the 24 drug molecules.  The model used to make the prediction from is 
also highlighted.   

Compound 
Class 

ID Exp. 
pKa 
Liao 

Exp pKa 
Tehan 

High-Correlation 
subset 

Bond 
length 
used 

Predicted 
pKa 

Absolute 
Error 

Phenols        
 385 9.63 9.38 Meta/Para r(C-O) 9.01 0.62 
 386 9.30 - Ortho-IHB r(C-O) 5.06 4.24 
 387 9.11 - Ortho-IHB r(C-O) 5.76 3.35 
 388 9.69 - Ortho-IHB r(C-O) 6.06 3.63 
 389 8.16 - Iodine containing molecules were not considered in this work 
 390 10.29 - Meta/Para r(C-O) 10.15 0.14 
 391 9.77 - Meta/Para r(C-O) 10.11 0.34 
 392 9.77 - Meta/Para r(C-O) 10.00 0.23 
 393 9.89 - Meta/Para r(C-O) 9.54 0.35 
 394 10.71 - Meta/Para r(C-O) 9.95 0.76 
 395 10.34 - Meta/Para r(C-O) 10.06 0.28 
 396 10.40 - Meta/Para r(C-O) 10.33 0.07 
 397 10.07 - No suitable high-correlation subset -see structure 
 398 7.41 - Ortho-IHB r(C-O) 6.67 0.74 
 399 9.40 - Methoxy r(C-O) 9.98 0.58 
 400 9.80 - Methoxy r(C-O) 10.42 0.62 
 401 9.36 - Methoxy r(C-O) 11.32 1.96 
 402 10.27 - Meta/Para r(C-O) 10.14 0.13 
 403 7.40 7.40 Methoxy r(C-O) 7.46 0.06 
 404 8.90 8.89 Methoxy r(C-O) 9.50 0.61 
 405 7.91 7.91 Identified as outlier previously 

Anilines        
 406 2.50 2.38 Para r(C-N) 2.02 0.48 
 407 2.52 2.51 Para r(C-N) 2.33 0.19 
 408 2.29 - Para r(C-N) 2.48 0.19 
 409 1.76 - Para r(C-N) 1.46 0.30 
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Table 4.38.  The predicted pKa for the 24 drug molecules made by nine programmes.  The values were taken from the supplementary material provided by Lioa and Nicklaus
127

. 

a Site was not calculated because of complexity. 
b Programme failed to predict value.   

ID Liao pKa ACD
121

 ADME Boxes
114

 ADMET Predictor
116

 Epik
126

 Jaguar
128

 Marvin
119

 Pallas
122

 Pipeline Pilot
117

 SPARC
118

 

  
Pred AE Pred AE Pred AE Pred AE Pred AE Pred AE Pred AE Pred AE Pred AE 

385 9.63 9.86 0.23 9.8 0.2 10.02 0.39 10.12 0.49 10.0 0.4 9.46 0.17 9.48 0.15 9.50 0.13 9.49 0.14 

386 9.3 8.03 1.27 11.4 2.1 8.53 0.77 7.55 1.75 a 
 

10.97 1.67 7.56 1.74 7.33 1.97 b 
 387 9.11 8.48 0.63 12.5 3.4 8.87 0.24 7.43 1.68 a 

 
11.43 2.32 8.04 1.07 7.79 1.32 b 

 388 9.69 8.50 1.19 12.0 2.3 8.90 0.79 8.49 1.20 a 
 

11.44 1.75 8.06 1.63 7.81 1.88 b 
 389 8.16 7.23 0.93 7.9 0.3 7.91 0.25 6.15 2.01 8.3 0.1 7.34 0.82 3.83 4.33 7.90 0.26 7.80 0.36 

390 10.29 10.15 0.14 10.5 0.2 10.24 0.05 11.01 0.72 10.8 0.5 9.41 0.88 10.28 0.01 11.12 0.83 10.40 0.11 

391 9.77 10.15 0.38 10.5 0.7 10.24 0.47 11.01 1.24 10.7 0.9 9.41 0.36 10.28 0.51 11.12 1.35 10.40 0.63 

392 9.77 - - - - - - - - - - - - - - - - - - 

390* 
 

10.08 
         

9.41 
     

10.41 
 391* 

 
10.08 

         
9.41 

     
10.41 

 392* 
 

9.78 
         

9.79 
     

9.91 
 393 9.89 9.97 0.08 9.8 0.1 9.94 0.05 10.15 0.26 a 

 
9.51 0.38 9.71 0.18 8.53 1.36 10.00 0.11 

394 10.71 10.27 0.44 10.5 0.2 10.41 0.30 11.42 0.71 10.9 0.2 10.33 0.38 10.37 0.34 13.18 2.47 10.54 0.17 

395 10.34 10.25 0.09 10.4 0.1 10.30 0.04 11.19 0.85 10.7 0.4 10.33 0.01 10.37 0.03 13.18 2.84 10.48 0.14 

396 10.4 10.24 0.16 10.4 0.0 10.41 0.01 11.41 1.01 10.8 0.4 10.33 0.07 10.37 0.03 13.18 2.78 10.51 0.11 

397 10.07 9.60 0.47 9.5 0.6 9.81 0.26 9.75 0.32 a 
 

9.81 0.26 9.38 0.69 10.01 0.06 10.49 0.42 

398 7.41 8.21 0.80 7.7 0.3 9.28 1.87 8.20 0.79 a 
 

8.05 0.64 8.04 0.63 8.54 1.13 9.98 2.57 

399 9.4 9.48 0.08 9.4 0.0 9.71 0.31 11.22 1.82 a 
 

10.26 0.86 10.38 0.98 8.16 1.24 10.34 0.94 

400 9.8 9.54 0.26 9.7 0.1 8.54 1.26 9.89 0.09 a 
 

9.77 0.03 9.22 0.58 9.67 0.13 10.96 1.16 

401 9.36 9.43 0.07 9.6 0.2 9.70 0.34 11.19 1.83 a 
 

10.25 0.89 10.43 1.07 8.16 1.20 b 
 402 10.27 10.01 0.26 10.2 0.1 10.02 0.25 10.38 0.12 a 

 
9.79 0.48 9.43 0.84 10.47 0.21 10.47 0.21 

403 7.396 7.78 0.38 7.6 0.2 8.91 1.51 7.62 0.22 7.6 0.2 7.81 0.41 7.59 0.19 7.25 0.15 7.79 0.39 

404 8.889 9.25 0.36 8.7 0.2 9.53 0.64 9.12 0.23 9.2 0.3 9.39 0.50 8.98 0.09 8.89 0.00 9.18 0.29 

405 7.912 8.18 0.27 7.9 0.0 7.98 0.07 8.25 0.34 7.7 0.2 8.74 0.83 8.17 0.26 7.91 0.00 7.58 0.33 

406 2.5 2.51 0.01 2.1 0.4 2.53 0.03 2.84 0.34 a 
 

2.69 0.19 2.04 0.46 2.19 0.31 2.36 0.14 

407 2.515 2.51 0.01 2.6 0.1 2.67 0.16 2.03 0.49 2.7 0.2 2.78 0.27 2.51 0.01 3.46 0.95 2.39 0.13 

408 2.29 2.12 0.17 2.4 0.1 2.63 0.34 1.94 0.35 1.1 1.2 2.70 0.41 3.23 0.94 3.46 1.17 2.22 0.07 

409 1.76 0.93 0.83 1.9 0.1 1.81 0.05 1.51 0.25 1.8 0.0 2.14 0.38 1.87 0.11 4.16 2.40 1.64 0.12 
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Table 4.39.  MAE for all four aniline molecules and for the two anilines not in our original dataset. 

Method 
MAE 

(4 anilines) 
MAE 

(2 anilines) 

r(C-N) 0.29 0.26 
ACD 0.25 0.50 
ADME Boxes 0.2 0.1 
ADMET Predictor 0.14 0.20 
Epik 0.36 0.30 
Jaguar 0.5 0.6 
Marvin 0.31 0.40 
Pallas 0.38 0.53 
PP 1.21 1.79 
SPARC 0.11 0.10 

   
   

In Table 4.40 we present the single bond-length equations that can be applied to the prediction of 

pKa for suitable compounds.  We encourage an extension of this list of equations to cover more 

chemical space using the information and protocols we have devised.   
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Table 4.40.  The high-correlation subsets we investigated with their associated equation to predict pKa.  The number of compounds used to construct the equation and relevant statistics are also 
provided. 

 

 

 

Compound 
Class 

High-Correlation-Subset Equation # 
compounds 

   RMSEE    RMSEP rCV
2
      

    
  

Phenols o-nitro phenols pKa = 137.575r(C-O) – 337.575 22 0.94 0.48 0.94 0.50 0.93 0.93 0.87 

 o-halogen phenols pKa  = 147.411r(C-O) – 365.540 26 0.97 0.27 0.97 0.29 0.97 0.97 0.94 

 o-alkyl phenols pKa  = 162.106r(C-O) – 405.207 25 0.91 0.34 0.9 0.37 0.89 0.87 0.78 

 o-phenols-IHB pKa  = 160.912r(C-O) – 397.578 23 0.95 0.32 0.95 0.33 0.94 0.94 0.92 

 o-methoxy/ethoxyphenols pKa  = 128.767r(C-O) – 318.646 24 0.91 0.29 0.89 0.53 0.69 0.57 0.45 

 m-/p-phenols pKa  = 122.985r(C-O) – 304.553 55 0.87 0.41 0.85 0.43 0.85 0.83 0.72 

Benzoic Acids o-halogen benzoic acids pKa  = -53.316r(C-C) + 153.475 13 0.93 0.16 0.92 0.19 0.90 0.89 0.82 

 o-hydroxy benzoic acids pKa  = -975.258r(O-H) + 1758.265 14 0.98 0.13 0.97 0.15 0.96 0.96 0.92 

 m-/p-benzoic acids pKa  = -770.717r(O-H) +1390.747 43 0.92 0.13 0.91 0.13 0.91 0.91 0.84 

Anilines o-halogen anilines pKa  = 83.401r(C-N) – 216.089 10 0.95 0.39 0.94 0.44 0.93 0.92 0.90 

 o-nitro anilines pKa  = 89.774r(C-N) – 230.712 5 0.98 0.40 0.97 0.54 0.95 0.95 0.95 

 o-alkyl anilines pKa  = 47.563r(C-N) – 123.095 4 0.97 0.16 0.95 0.23 0.90 0.90 0.88 

 m-/p-anilines pKa  = 67.932r(C-N) – 175.213 23 0.80 0.48 0.76 0.54 0.73 0.68 0.57 

 p-anilines pKa  = 80.644r(C-N) – 208.635 11 0.95 0.27 0.93 0.33 0.92 0.92 0.92 

 m-aniline pKa  = 56.090r(C-N) – 144.080 12 0.66 0.59 0.61 0.63 0.56 0.41 0.34 
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4.5 Summary 
 

We have investigated the prediction of pKa for phenols, carboxylic acids and anilines.  We aimed 

to construct models that were able to predict pKa within 0.5 pKa units using a single bond length 

from a monomer geometry optimised by an affordable and sufficiently reliable ab initio method, 

which was determined to be HF/6-31G(d).  We achieved this by grouping molecules into high-

correlation subsets, which were visually identified from observed-versus-predicted plots.  It was 

pleasing to note that the structures in each subset contained a common substitution pattern, e.g. 

an OH group adjacent to a NO2 group. We have shown that improvements in model statistics are 

small for high-correlation subsets of meta-/para-substituted compounds compared to one model 

containing all these compounds. However, for ortho-substituted compounds, the statistics of 

high-correlation subsets improve much compared to a single model for all ortho compounds. 

  

In the majority of cases, the models constructed from a single bond length were superior or, at 

the very least, similar to the models constructed using all the bond lengths.  In each all-bond-

length model, the most important bonds (i.e. those with the highest VIP value) were associated 

with the functional group where the deprotonation occurs.  However, the most important bond 

differed between high-correlation subsets.  For example, for the o-halogen benzoic acids, r(C-C) 

produced the best statistics, but for the o-hydroxybenzoic acids, r(O-H) was the best.  The use of 

an ammonia probe or a higher level of theory for the o-halogen phenols and the hydroxybenzoic 

acids provided no advantage over the use of single bond lengths generated for the monomer at 

HF/6-31G(d).  The constructed models were used to predict the pKa for a set of 24 drug molecules.  

The predictions were accurate (MAE 0.06 to 0.62) for all the molecules, apart from those where a 

reason for the poor prediction was identified.  For example, one reason could be that a suitable 

high-correlation subset model was not available or that the experimental pKa turned out to be 

wrong.  We have listed fifteen single-bond-length equations from which the pKa of relevant 

compounds can be predicted.  We encourage an extension of this list of equations, which can be 

constructed in a relatively small amount of CPU time on a standard PC.  
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Chapter 5                                                                                                             

Prediction of Ames Mutagenicity of Carbocyclic and Heterocyclic 

Primary Aromatic Amines Using ab initio Charge Densities                                                                                                       
 

5.1 Introduction 

5.1.1 Drug Toxicity and Attrition Rates 

 

Toxicology is the study of adverse effects of chemicals on living organisms.  Historically, toxicology 

formed the basis of therapeutic and experimental medicine.  Today, it continues to develop and 

expand by assimilating knowledge and techniques from branches of biology, chemistry, 

mathematics and physics. 

 

Safety issues relating to drug toxicity occur throughout the drug discovery process.  Since the 

number of drugs discovered in pharmaceutical research has fallen in the last decade, it has 

become crucial to look at the reasons for failures169. 

 

There are a number of reasons why toxicity has become an important issue.  Two decades ago, a 

major problem for the pharmaceutical industry was unpredictable metabolism and 

pharmacokinetics in humans170.  Figure 5.1 shows that increased knowledge about the basic and 

practical aspects of human metabolism and distribution have helped a great deal.   Far fewer 

drugs fail in development due to the iterative process of chemical synthesis, target screening, and 

in vitro metabolism studies.  

 

 

Figure 5.1.  Reasons for the termination of drug candidates in development between 1964-1985
170

 and in 2000
171

. 
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Less progress has been made in accurately predicting human toxicity problems with drugs and the 

challenge remains considerable.  Human adverse drug reactions (ADRs) are one of the most 

common causes of pharmaceutical product recall.  An estimated 100,000 deaths per year are 

attributed to ADRs, making it the sixth leading cause of death in the United States172. 

5.1.2 Genetic Toxicology and Primary Aromatic Amines 

 

Genetic toxicology is the study of the ability of chemicals to cause heritable or somatic genetic 

defects in humans.  Genotoxicity encompasses DNA damage (chemical modification), 

mutagenicity (point mutation), clastogenicity (chromosome breakage) and aneugenicity 

(chromosome loss) caused by a chemical or its metabolites. 

 

Carbocyclic and heterocyclic primary aromatic amines (AAs) are one of the most important classes 

of industrial compounds as they are widely used in the cosmetic, dye, pesticide, petrochemical 

and pharmaceutical industries.  They are also known to be present in tobacco smoke and cooked 

meats.  The chemical reactivity of AAs is an asset to drug synthesis but a bane for biological 

systems.  While this compound class is ubiquitous in drug molecules (e.g. Ropivicaine, Lidocaine, 

Piroxicam, Lornoxicam, Tenooxicam, Atorvastatin, Leflunomide, Sorafenib and Acomplia), their 

genotoxic tendencies are perceived as a serious risk.  Cleavage of the appropriate amide bond in 

these compounds means these drugs have the potential to release aromatic amines in vivo. 

 

Cytochromes (CYPs) P450s are a family of haem-containing proteins that catalyse the metabolism 

of a broad range of molecules173, 174, including the majority of drugs175.  Fifty-seven P450s have 

been identified and they account for approximately three-quarter of the enzymes involved in drug 

metabolism.  Of the fifty-seven human P450s, five are involved in ~95% of these reactions (Figure 

5.2).  They are implicated in toxicological events because they have the ability to metabolise 

molecules that present no risk to human health into compounds that are toxic.  CYP P450 1A2 

(CYP1A2) accounts for approximately 13% of hepatic P450s176 and is implicated in the metabolism 

of drug molecules such as paracetamol and caffeine177, as well as AAs. 
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Figure 5.2.  Contributions of enzymes to the metabolism of marketed drugs.  The results are from a study of Pfizer 
drugs, and similar percentages have been reported by other pharmaceutical companies.  (A)  Fraction of reactions on 
drugs catalyzed by various human enzymes.  (B)  Fractions of P450 oxidations on drugs catalysed by individual P450 
enzymes

173
. 

 

Figure 5.3 shows the widely accepted mechanism for the conversion of AAs to DNA-reactive 

metabolites.  The initial step in the activation of AAs is enzymatic N-oxidation by CYP1A2 to yield 

an N-hydroxylamine product.  The N-hydroxyl species can be further converted to highly reactive 

N-acetoxy or N-sulphate esters that permit a more facile heterolysis of the N-O bond or undergo 

direct N-O bond cleavage.  This process generates highly reactive electrophilic nitrenium ions, 

which can bind to DNA to form adducts, resulting in genetic damage, mutations and, ultimately 

carcinogenesis.      

 

 

 

 

 

 

 

 

Figure 5.3.  A scheme representing the metabolic activation of AAs and subsequent DNA binding
178

. 
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5.1.3 Using Carbocyclic and Heterocyclic Primary Aromatic Amines in Drug 

Candidates 

 

The regulatory agencies for pharmaceutical preparations require that all drug candidates are 

tested for the potential of causing genetic mutations.  The impracticality and cost of long-term 

animal tests means that an early judgement on compound toxicology needs to be based on a 

regulatory battery of in vitro tests179.  The three obligatory assays determine 1) genetic mutations 

in bacteria (i.e. the Ames test180); 2) chromosomal damage to mammalian cells (e.g. the 

chromosome aberration assay or the mouse lymphoma assay); and 3) chromosomal damage 

using rodent haematopoietic cells.  Not all positive results in genotoxicity assays preclude  further 

development of drug candidates, however, there is a concomitant high probability of rodent 

carcinogenicity and therefore, by implication, human carcinogenicity181, 182.  The highest concern is 

attached to positive outcomes in the Ames test because of the assay’s high specificity in relation 

to rodent carcinogenicity which shows a positive correlation of between 63-90%183.  Occasionally, 

genotoxic drugs can progress to market if their therapeutic benefit outweighs the risk associated 

with them, e.g. some oncology drugs. 

The risks associated with AA drug fragments have not halted their use since 89 drugs with this 

moiety are approved and an additional 131 molecules have entered clinical trails183.  International 

regulatory guidelines require a computational SAR assessment of a drug molecule184, 185  as part of 

the development process, or at very least an investigation of chemical structure to ensure the 

standard battery of International Committees on Harmonization (ICH) genotoxicity tests will be 

suitable for the drug in question186.  Guidance on SAR assessment of putative drug metabolites is 

less clear, however metabolites that trigger SAR alerts for genotoxicity or that are known 

mutagens would obviously represent a cause for concern in any drug development programme187.  

Most attention is focussed on predicting the likely outcome of AAs in the Ames test because of its 

ability to detect rodent carcinogens.  An introduction to the principles of the Ames test is given in 

Section 5.1.4.  Experimental details are provided in the next Chapter. Section 5.1.5 contains a 

review and discussion on literature and commercial methods for predicting the Ames test result 

for AAs.                  

5.1.4 The Ames Test 

 

The Ames test uses amino acid-requiring strains of Salmonella typhimurium and Escherichia coli to 

detect point and frameshift mutations, which involves substitution, addition or deletion of one or 

a few DNA base pairs180.  The principle of this test is that it detects compounds that mutate 

mutant bacteria back to the wild type and thereby restore the functional capability of the bacteria 

(revertants) to synthesise an essential amino acid.  The revertant bacteria are detected by their 



128 
 

ability to grow in the absence of the amino acid required by the mutant strain.  Often it is the 

metabolites of compounds that are responsible for their mutagenic activity, therefore the Ames 

test is performed in the presence (+S9) and absence (-S9) of rat liver homogenate, known as S9, to 

mimic mammalian metabolism.   

 

This bacterial reverse mutation test is long-established, relatively easy to conduct by trained 

persons and inexpensive188, 189.  However, in comparison to other commonly used toxicity 

assays190, a complete assay is low-throughput, results take at least three days to generate and 

gram quantities of test compound can be required, which are not necessarily available in the early 

stages of drug development .  Further considerations associated with the Ames test include: 

 

 The test utilises prokaryotic cells, which differ from mammalian cells in such factors as 

uptake, metabolism, chromosome structure and DNA repair process. 

 The test, conducted in vitro, requires the use of exogenous sources of metabolic 

activation, which cannot mimic entirely the mammalian in vivo conditions.  Thus the 

test does not provide direct information on the mutagenic and carcinogenic potency 

of a substance in mammals. 

 Although there is a correlation between Ames positive results and mutagenic activity 

in other tests, there are examples where mutagenic compounds are not detected in 

the Ames test and vice versa.  Reasons for this include the nature of the endpoint 

detected, differences in metabolic activation, or differences in bioavailability. 

 The Ames test is not appropriate for the evaluation of certain types of compounds, for 

example highly bactericidal compounds.   

 Although many compounds that are positive in the test are mammalian carcinogens, 

the correlation is not absolute. 

 

The factors discussed above prevent the extensive and early use of the Ames test in the lead 

optimisation stage, along with the other in vitro battery of tests for genotoxicity (Figure 5.4).  

There is the possibility to employ cut-down versions of the regulatory tests.  These typically 

reduce the scale of the test, for example by reducing the Ames test to only two strains of bacteria 

instead of the five required for a full assessment to provide early indications, however, the 

number of compounds that can be screened is still limited.  In line with modern drug discovery, 

there is a desire to screen for genotoxicity early191.  Identifying compounds with possible 

genotoxic liabilities early means high investment optimising the compound, that will most likely 

fail later on, will not be made.  Higher throughput assays have been developed192, 193 to give early 

indications on the likely outcome for a greater number of compounds in the battery of 
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genotoxicity tests, but their predictions are not absolute and they are not considered a 

replacement.     

 

 

Figure 5.4.  The generic path of drug discovery and development
194

, and where safety assessment takes place. 

 

Before a compound is selected as a candidate, all chemicals involved in the complete synthetic 

route (including intermediates) and potential metabolites of the target molecule will be exposed 

to in silico toxicity prediction tools.  If any of them are flagged as possible Ames-positive, then 

they will be tested unless reliable literature data can be sourced.  For Ames-positive AAs, it is 

important to consider two issues regarding their use in drug design.  Firstly, if the AA is an 

intermediate in a synthetic route, its levels as an impurity in the final product must be controlled.  

European guidelines state that genotoxic impurities can only be present up to a limit of 1.5  

µg/day195.  Remaining below this threshold is relatively easy for low dose drugs but becomes 

increasingly difficult when high doses are required.  Secondly, a drug candidate that has an 

embedded Ames-positive AA likely to be released through metabolism acting on the parent 

compound carries high risk and identifying this early is paramount. 
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5.1.5 Methods for predicting the mutagenicity of AAs 

 

A recent review discussed the vast number of non-commercial QSAR models that have been 

published to predict mutagenicity and carcinogenicity196.  The models can be divided into two 

categories: a) “local” models, i.e. QSAR models for congeneric classes; and b) “general,” or global 

or non-local models, i.e. QSARs for non-congeneric sets of chemical.  Predictions of mutagenicity 

for AAs are usually made from local models, although there are examples of general models being 

applied to AAs197-201.  Benigni and Bossa202 highlighted that non-local QSARs for non-congeneric 

chemicals are more prone to erratic predictions because modelling large sets of chemicals acting 

by different mechanisms makes it unavoidable for the use of large numbers of descriptors.  Local 

models for AAs can be divided further into models for the graduation of mutagenic potency and 

the discrimination between positive and negative compounds.  Mutagenic potency (LogMP) is 

usually the dependent variable (y-variable) used for continuous QSAR models.  It is calculated as 

the logarithm of the number of revertants per nanomole of chemical from the linear portion of 

the dose-response curve.  For discriminant models, compounds are assigned positive and negative 

labels based on an induction factor (IF) calculated from the Ames test results.  This factor is the 

quotient of the number of revertants per plate divided by the number of revertants per plate of 

the negative control.  Substances with an IF above two or three, depending on the bacterial strain, 

are considered positive.      

Numerous papers have been published attempting to predict the mutagenic potency of AAs using 

a variety of descriptors and statistical learning methods.  Debnath et al.203 gathered from the 

literature a set of 95 AAs acting on Salmonella typhimurium TA98 and TA100 +S9.  The authors 

presented correlations for a subset of 88 of these amines based on hydrophobicity (LogP), 

energies of the highest occupied (HOMO) and lowest unoccupied molecular orbitals (LUMO), and 

an indicator variable that designates the presence of three or more fused aromatic rings.  Their 

best result for TA98 has an  =0.898 (  =0.806204), although the quality of the model deteriorated 

when all 95 compounds were used.  A subset of 67 AAs were modelled for TA100 and produced a 

model with an   =0.87.  The importance of LogP was found to be nearly identical for both models 

and the electronic descriptors played a minor role.  Since the compilation of this data set, it has 

been revisited by many authors using different classes of descriptors.  Basak et al.205 used 

topological and geometric descriptors to model all 95 compounds with similar results i.e.  =0.893 

(  =0.797204).  Maran et al.206 calculated an extensive set of constitutional, geometrical, 

topological, electrostatic, and quantum mechanical descriptors for this data set.  These workers 

produced a six-parameter correlation with   =0.913 (  =0.834204).  The use of quantum 

mechanical calculations was criticised by Cash207 as too demanding on computational resource.  

Therefore, electrotopological state indices were used to produce an r=0.876 (  =0.767204).  Basak 
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and co-workers205 revisited the data set and found that the majority of the variance could be 

explained with topological parameters and the inclusion of LogP.  Geometric and quantum 

chemical parameters did not result in significantly improved predictive models.  All these studies 

used linear techniques e.g. MLR and PLS.  Vracko et al.208 attempted to detect the possibility of 

non-linear relationships between structure and mutagenicity of these compounds using artificial 

neural networks in conjunction with topological descriptors.  They achieved an   = 0.751; lower 

compared to the linear methods.  Volkova et al.209 studied how to select the minimal training set, 

which covers the information space efficiently.  They produced an impressive model with neural 

networks trained on only 30 of the compounds with an   =0.986.  The test set twice larger than 

the training set has a correlation between experimental and predicted activity of   =0.816.  Cash 

et al.210 revisited the QSAR equation constructed from electrotopological state (E-state) indices to 

perform external validation using a data set of 29 aromatic amines.  The    of the regression 

between predicted and experimental Log MP was 0.27, indicating that their original model had 

poor predictive accuracy for compounds in the test set.  Examination of the training and test sets 

revealed that only three of the eight descriptors in their original model were represented in the 

test set.  Both data sets were combined and then randomly split into a new training and test set.  

The new six-term equation had an    of 0.77 and    of 0.70.  However, an    for the test set of 

0.44 indicated that the new model provided little improvement.  It was concluded that the 

descriptors used could describe the training set relatively well but the results from external 

validation indicated possible over-fitting. It was also noted that compounds only differing in an 

alkyl substituent far away from the amine function greatly affected the LogMP.  This is something 

that the E-state indices cannot account for.  Bhat et al.211 increased the size of the Debnath data 

set to 181 AAs using data from a variety of literature sources.  Using AM1 optimised geometries, 

they calculated hundreds of molecular descriptors.  Using multiple linear regression techniques 

they accounted for 66% of the observed variation in the mutagenic potency.  Using neural 

networks they were able to account for 90% of the variation. 

Hatch et al.212  constructed a data set of 80 AAs of diverse structure and a range of 10 orders of 

magnitude in mutagenic potency.  They investigated numerous types of descriptors including, 

structural and quantum chemical ones.  The results were interpreted to show that a main 

determinant of mutagenic potency was the extent of the aromatic π-system.  Small contributions 

were made by dipole moments and the calculated stability of the nitrenium ion. 

Many of the methods discussed above highlight lipophilicity, and the HOMO and LUMO energies 

as important in determining the mutagenic potency of AAs.  Lipophilicity, usually included as LogP, 

is commonly considered a measure of the propensity of chemicals to be absorbed and 

transported, as well as of being able to interact with the receptors responsible for metabolic 
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activation.  The inclusion of the HOMO energies of the parent AAs agrees with the fact that the 

majority of AAs are mutagenic only in the presence of the S9 microsomal preparation, by which 

they are oxidised to the mutagenic metabolite.  The importance of the LUMO energies is less 

straight forward.  Given the first step in the metabolic activation of AAs is oxidation, it is the 

HOMO energy of the parent (or the LUMO energy of the oxidized nitrenium form), rather than the 

LUMO energy of the parent amine, that might be expected to correlate with the mutagenic 

potency.  To our knowledge the reason for the importance of the LUMO energy is unresolved.  It 

may point to the importance of the stability of the nitrenium ion (discussed below).  However, the 

LUMO energy of the nitrenium ion is not necessarily coincident with that of the parent amine213.  

Felton et al.214 evaluated a set of 23 amino-carbolines related to cooked food mutagens.  Their 

results showed a reasonably strong correlation (  =0.80) between LUMO energy and the 

observed mutagenic potential of several heterocyclic amine mutagens.  They reasoned, a lower 

LUMO energy means a higher electron affinity.  Using the reasoning that electron withdrawing 

groups should lead to lower LUMO energies, two novel, highly mutagenic heterocyclic amine 

analogues were proposed, but not tested.  The HOMO-LUMO energy gap is also considered to be 

an indication of stability213.  A large HOMO-LUMO energy gap suggests low reactivity. 

LogP, HOMO and LUMO energies are clearly important in predicting the mutagenic potency of 

AAs.  However, it should be noted that not all QSAR analysis of the Debnath dataset found these 

to be the best predictors of LogMP.  Indeed, Maran et al.206 did not include any of these 

descriptors, instead finding the most important descriptor to be the number or aromatic rings.  

Other workers201, 212 have also questioned the importance of LogP to predict mutagenic potency 

because they did not find good correlation with LogMP, which suggests it may be data set 

dependent.  QSAR equations, constructed from topological parameters, can be difficult to 

interpret and they tend do not to lend themselves to easy comparison and generalisation.  

However, some of these have also highlighted the number of aromatic rings as important213.     

 

Since the nitrenium ions have been implicated as the active electrophile in the reaction with DNA 

bases, it is reasonable to expect that LogMP may correlate with properties of these ions.  Ford 

and co-workers calculated heats of formation (ΔH) for Equation 5.1 by the semiempirical AM1 

method for a series of AAs, and observed a negative correlation of LogMP with ΔH215, 216 . 

          
              Equation 5.1 

         

An explanation of the correlation provided by ΔH of Equation 5.1 is that these enthalpy values 

indirectly relate to the lifetime and, therefore the selectivity of the nitrenium ions.  According to 

this explanation, the more stable and, therefore, longer lived the ion, the greater the mutagenic 
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potency.  This hypothesis was tentatively confirmed by Novak and Rajagopal217 who indirectly 

measured the lifetimes of nitrenium ions in solution for 18 AAs and observed a strong correlation 

with ΔH (  =0.74).  However, the importance of nitrenium ion stability in determining the 

potency of AAs has been questioned on larger data sets212.   

 

Borosky studied a set of 17 AAs using higher level DFT calculation, compared to semiempirical 

AM1 and Hartree-Fock ab intio methods previously used.  It was found that the formation of the 

nitrenium ion was more plausible through the N-O dissociation reaction calculated from acetic 

and sulphuric ester of the parent amine than from the related hydroxylamine.  Correlations with 

the calculated stability of the nitrenium ion were only found when the compounds classified as 

aromatic, imidazo-carbocyclic and imidazo-heterocylic, were separated.    The low correlations 

with ab initio nitrenium ion stabilities in previous work could be caused by the diversity of the 

data set considered212.   In this study, water was included implicitly as a solvent and was found to 

significantly stabilize the nitrenium ions but the same trend was observed for the gas-phase 

calculations.  In the follow-up study Borosky218 used only gas-phase calculations on a set of 43 AAs 

for this reason.  This time, the data set had to be split into six classes; aromatic; heteroaromatic; 

imidazocarbocyclic; imidazoheterocylic; dipyridoimidazole; and quinoxalines; to detect 

correlations.  Mutagenic potential was found to increase with nitrenium ion stability and an 

increased negative charge on the exocyclic nitrogen on the ion.  Correlations were found to be 

non-linear for certain classes of compounds, which in some cases contained as little as three data 

points.  The role of hydrophobicity was also investigated, although positive correlations were 

observed for each series of compounds, they were not as strong as the other descriptors. 

During lead optimisation, medicinal/computational chemists are usually interested in QSAR 

models that describe how the potency of a series of compounds is modulated by small changes in 

structure.  However, when considering mutagenic potential, it is also important to consider what 

distinguishes the Ames-positive compounds from those that are Ames-negative.  Discriminant 

models attempt to categorise these compounds using features of the molecular structure.  In 

relation to AAs, it has been demonstrated that the factors that modulate the mutagenic potency 

are usually different from those that make the difference between positive and negative 

outcomes in the Ames test219, 220. 

Leach et al.221 studied a number of reactions implicated in causing the mutagenicity of AAs.  The 

reaction energies, computed with (U)B3LYP/6-31G* for 312 compounds, involving the formation 

of the nitrenium ion in Equation 5.2 and Equation 5.3  were the only energies that were able to 

significantly discriminate between active and inactive compounds.  However, there was an 
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overlap between the energies for both, Ames-positive and Ames-negative compounds.  This 

method was able to discriminate the AAs and because only one parameter was used, it was 

possible to assign a probability to a compound of being Ames positive.  For example, a computed 

high reactivity should be avoided when designing new compounds.  Leach et al. also compared 

the discrimination achieved to that achieved by a large number of in house descriptors for the 

same compounds.  Only two descriptors were able to provide a similar discrimination but their 

interpretation was less straight forward.  It was interesting to note that LogP descriptors were 

worse than a larger number of other descriptors.  

          
             Equation 5.2 

  

                    Equation 5.3 

 

The use of nitrenium ion stabilities, introduced by Ford et al.215, has recently been extended to 

discriminate between 257 Ames-positive and negative AAs183.  From Equation 5.1, one can 

calculate relative energies ΔΔE according to Equation 5.4.       

                                       Equation 5.4 

 

A negative value for ΔΔE indicates that the nitrenium ion for the AA of interest is more stable than 

that for the reference aniline, and a positive value for ΔΔE indicates a less stable nitrenium 

aniline.  By implication, a negative value of ΔΔE should correlate with Ames-positive result, 

whereas positive values of ΔΔE should correlate with Ames-negative compounds.  The authors 

compared four different levels of theory and found AM1 provided a good balance between speed 

and accuracy.  They were able to correctly classify 85% of the data set.  Similar to the Leach et al. 

approach, their method is based on a continuous spectrum of ΔΔE values, which allowed them to 

observe and rationalize SAR for some series of molecules.  For example,  ΔΔE captured the trends 

going from Ames-positive to Ames-negative for some para-substituted anilines.  

Another approach is to use structure alerts originally purposed by Ashby and subsequently 

revised by Ashby and Tennant222 to highlight risks of mutagenicity.  Kazius et al.223 applied 29 

toxicophores to a data set of 4337 diverse chemicals.  They defined toxicophores as substructures 

that indicate an increased potential for mutagenicity, whether this is caused by DNA reactivity or 

not.  They were able to correctly classify 82% of the training set and 85% for an external test set 

of 535.  The statistics for 441 compounds with the specific aromatic amine toxicophore shows an 

accuracy of 86%.  The use of toxicophores for discriminating Ames results for AAs was taken 

further by Casalegno et al.224. They extracted diatomic fragments from the Debnath data set using 

MLR and neural networks to produce models with    values ranging from 0.77 to 0.91.  However, 
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the leave-one-out    values were inferior to those obtained by Maran et al.206 with a QSAR 

equation for the same data set. 

There are numerous commercial software packages available for the prediction of Ames 

mutagenicity, the most well known being DEREK225, TOPKAT226 and MultiCASE227.  The underlying 

algorithms range from rule-based expert systems to QSAR based methods.  DEREK is a knowledge- 

and rule-based expert system that makes semi-quantitative estimations as to whether or not an 

Ames positive moiety is present in the input chemical structure.  The output consists of a 

prediction about the presence and probability of a specific sub structure to result in a positive 

Ames result ranked with adjectives certain, probable, plausible etc. to impossible.  On the other 

hand, TOPKAT provides a probability of mutagenicity based QSAR models constructed from 

electrotopological descriptors.  It also provides a measure of similarity between the molecule of 

interest and the chemical space covered by the models.  MultiCASE dissociates each input 

molecule into 2-10 atom fragments and statistically evaluates the strength of association between 

the fragments (toxicophores) and similar ones from the database, assigning mutagenicity scores.  

The quantitative prediction of mutagenicity is further refined by taking into account 

physicochemical properties.  While predictions from these programmes are widely used and often 

requested by regulators, their accuracy is limited228.  Furthermore, AAs have been highlighted as a 

class of compounds for which the Ames predictions from DEREK and TOPKAT were particularly 

poor229.  

It was the importance of AAs in a medicinal chemistry context and the discrepancies over the 

importance of descriptors that motivated us to investigate this class of compound.  QTMS has 

previously been shown to produce good models for a set of 23 halogenated hydroxyfuranone 

derivatives that do not require metabolic activation to cause mutations in the Ames test.  More 

importantly, QTMS was successfully applied to a set of 23 triazenes that are only active in the 

Ames test with the addition of S9.  A model, including LogP as a descriptors, produced an    and 

   (leave-one-seventh out) of 0.86 and 0.74, respectively.  The remainder of this Chapter 

discusses the modelling of literature mutagenic potency for AAs using QTMS descriptors. 
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5.2 Methodology 
 

The QCT descriptors were used to investigate correlations with LogMP for a number of literature 

data sets.  Precise details about the investigations are provided in each section.  In short, 

compounds of interest were optimised with Gaussian03 using DFT (B3LYP/6-311+G(2d,p)) to 

produce the wave function from which the BCP properties were extracted.  All the BCP properties 

were considered, which included the electron density ρ, the eigenvalues of the Hessian of 

ρ, λ1, λ2, and λ3, the Laplacian 2
, the ellipticity ε, the kinetic energy density K(r), a 

more classical kinetic energy G(r) and the equilibrium bond length Re.      

5.3 Results and Discussion 

5.3.1 Sasaki Data Set 

 

As a first step, we selected three compounds that displayed a wide range in mutagenic potency230 

(Figure 5.5). 

 

 

 
 
 

1-NA     2-NA      2-AF 
 

 Figure 5.5.  1-naphthylamine (1-NA) with the β-carbon labelled, 2-naphthylamine (2-NA), and 2-aminofluorene (2-
AF). 

 

Experimental results231 indicate that 1-NA is almost exclusively ring oxidised at the β-carbon, 2-AF 

is almost exclusively N-oxidised and 2-NA is both ring and N-oxidised, with ring oxidation rates 

generally much higher than N-oxidation.  As ring oxidation is a detoxification mechanism, it means 

that the mutagenic potency increase according to 1-NA < 2-NA < 2-AF. 

Sasaki et al.230 suggested that the nitrenium ion stability is an important factor in explaining the 

mutagenic potency of these compounds.  For this reason, we calculated the BCP properties of the 

nitrenium ions as well as the parent compounds.  In line with experimental results, it was 

expected that the BCP properties of the common bonds in the three compounds would follow the 

mutagenic potency order once mapped onto each other.  However, this was not the case for 

either the parent compounds or their nitrenium ions, as 2-AF was the median value in many 

cases.  Different LogMP values were found in the literature which ordered the mutagenic potency 

of these compounds as 2-NA < 1-NA < 2-AF in contrast to Guengerich’s 1-NA < 2-NA < 2-AF.  

However the difference between LogMP for 1-NA and 2-NA was only 0.07 log units.  It is 
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important to note that the experimental results in the first instance were collected in the same 

laboratory, while the latter results were collected from various sources (1-NA232, 2-NA203, 2-AF233).  

As the BCP properties for 2-AF were the median values of the three compounds, in most cases 

they still failed to predict the mutagenic order, even when the order of 1-NA and 2-NA were 

swapped.  

5.3.2 Hatch Data Set 

 

Hatch et al.212  published a data set of 80 AAs (Appendix D).  We constructed a variety of PLS 

models with different combinations of BCP descriptors from the bonds of the common skeleton 

shown in Figure 5.6.      

1

N 2

H
3

H
4

 

Figure 5.6.  The common skeleton and numbering scheme used for the 80 aromatic and heteroaromatic amines. 

All the models constructed had an    below 0.25 and a    below 0.21.  An example observed 

versus predicted plot is shown in Figure 5.7.    
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Figure 5.7.  An observed versus predicted plot from one of the models constructed for the 80 aromatic and 
heteroaromatic amines using the C-NH2 bonds. 

These poor correlations led us identify subsets of compounds that would provide better 

correlations.  The data set contained 25 aromatic amines and 25 1-methyl-imidazole-2-amine 

(MIA) derivatives.  We attempted to model these separately.  The results are reported in the 

following sections. 
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5.3.2.1 Aromatic Amines 

 

The increased size of the common skeleton for the aromatic amines allowed us to include more 

bonds and therefore more BCP descriptors.  The common skeleton included 6 C-C bonds, 1 C-N 

bond, 2 N-H bonds and 5 C-R bonds, where R is hydrogen if no substituent is present.     
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Figure 5.8.  The common skeleton and numbering scheme used for the aromatic amines.  

 

Different PLS models were constructed with different combinations of compounds and bonds in 

an attempt to explain the differences in LogMP for these compounds.  Different observed versus 

predicted plots were inspected. 

Table 5.1.  PLS models generated for the aromatic amines. The compounds related to the numbering can be found in 
Appendix D. 

 
Model 

no. 
No. of 

Compounds 
No. LVs       Comment 

A
ll 

ar
o

m
at

ic
 a

m
in

es
 

M1 19 3 0.85 0.61 C-C and C-N bonds 

M2 25 1 0.41 0.07 All bonds 

M3 25 1 0.36 0.09 C-C and C-N and N-H bonds 

M4 25 1 0.37 0.08 C-C and C-N 

M5 19 1 0.58 0.22 All bonds – Outliers 80, 76, 73, 43, 41, 21 removed 

M6 19 1 0.45 0.11 As M5 but C-C and C-N bonds 

M7 18 3 0.96 0.32 As M5 – 20 also removed 

D
ia

m
in

e 
R

em
o

ve
d

 M8 15 2 0.75 0.30 
C-C and C-N bonds – diamines 38, 42, 43, 52, 54, 58, 59, 
65, 66, 68 are removed. 

M9 15 1 0.61 0.21 As M8 – but all bonds 

M10 15 1 0.59 0.24 As M8 - but C-C, C-N, and C-H bonds 

D
ia

m
in

es
 M11 10 2 0.77 0.61 

C-C and C-N bonds – only diamines 38, 42, 43, 52, 54, 58, 
59, 65, 66, 68 included 

M12 10 2 0.91 0.56 As M11 – but all bonds 

M13 10 2 0.69 0.42 As M11 – but C-C, C-N and C-H bonds. 



139 
 

Key points arising from the PLS modelling given in Table 5.1 were; 

 No reasonable models could be constructed for the 25 aromatic amines (e.g. M2, M3, and 

M4) 

 Removal of compounds identified as outliers did not significantly improve the results (see 

M5 and M6). 

 Removal of 2-aminoanthracene, whose LogMP value is ~ 1.5 log units higher than all the 

other compounds in M5, improved the correlation (M5 compared to M7) but the    of 

0.32 suggested poor predictive ability.  The spread of experimental values is too narrow to 

be able to build a good model. 

 The correlations improved when the compounds with two amino groups were removed 

(see M8, M9 and M10). 

 The diamines produced good correlations when modelled separately, however, there 

were only 10 compounds in this set (see M11, M12, and M13). 

 

5.3.2.2 1-Methyl-Imidazole-2-Amine (MIA) derivatives     
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Figure 5.9.  The common skeleton of the 1-methyl-imidazole-2-amine derivatives. 

 

The common skeleton of the 1-methyl-imidazole-2-amine (MIA) derivatives is shown in Figure 5.9.  

The structures of the compounds were examined and subsequently grouped according to the type 

of ring fused to the C6-C7 bond.  The ring was either a phenyl ring or a pyridine ring where the 

position of the nitrogen atom changed in relation to MIA.  The different groupings are given in 

Table 5.2, where the atom numbering refers to Figure 5.10.  PLS was used in an attempt to 

correlate the BCP descriptors to the LogMP.  The results are provided in Table 5.3 and an 

observed versus predicted plot is shown in Figure 5.11 for the best correlation obtained.   

 

 

 

 



140 
 

Table 5.2.  The different MIA groups with the description of the structure. 

Group Description Colour assigned No. Of 
compounds 

1 N at the 4 position Grey 7 
2 N at the 7 position Orange 5 
3 No N atom i.e. benzo Green 6 
4 N atom at the 4 position, fused furan 

ring at the 5,6 position 
Purple 1 

5 N atom at the 5 position Pink 3 
6 N atom at the 6 position  Blue 3 
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Figure 5.10.  The atom numbering scheme used for the MIA derivatives. 

 

 

 

Table 5.3.  The PLS models generated for the MIA derivatives. 

 
Model 

no. 
No. of 

Compounds 
No. LVs       Comment 

A
ll 

C
o

m
p

o
u

n
d

s M14 25 1 0.51 0.28 All bonds 

M15 25 2 0.73 0.34 C-N and C-C bonds 

M16 25 3 0.54 0.45 C-N bond 

Ty
p

e 
1

, 2
 a

n
d

 3
 M

IA
 

M17 18 2 0.72 0.59 All 

M18 18 1 0.68 0.58 C-N and C-C bonds 

M19 18 4 0.79 0.68 C-N bond 

M20 18 2 0.77 0.71 Bond 6-7 

M21 17 2 0.88 0.85 Bond 6-7, 16 removed 
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Figure 5.11.  The observed versus predicted of model M16 plot for the MIA derivatives.  

 

The number of compounds in groups 1, 2 and 3 and the range of LogMP values allowed us to 

investigate these three subgroups together.  PLS was used to construct models for the 18 

compounds belonging to these subgroups (Table 5.3).  Models using the BCP descriptors from 

different bonds gave similar results in terms of    and    (See models M16, M17 and M19).  An 

inspection of the VIP plot for model M16, which was constructed from all the BCP descriptors in 

the common skeleton (Figure 5.9), highlighted the C6-C7 bond was the most important to the 

model (Figure 5.12).   
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Figure 5.12.  The VIP plot for model M16. 

 

This suggested that the C6-C7 bond is most sensitive to structural changes in the MIA derivatives.  

QTMS usually highlights the bonds associated with the active centre, which in this case would be 

expected to be close to the amine group.  However, the C1-N2 BCP is separated by least three 

bonds from a BCP that is directly involved with structural or atomic differences.  This raises the 

issue of the sensitivity of BCP properties, that is how many bonds between a BCP are needed 

before the properties of the BCP are unaffected by substitutions.  This is something which is 

unresolved.             

Visual inspection of the structures showed that substitutions a number of bonds away from the 

mechanistically important NH2 group can significantly affect the mutagenic potency of these types 

of compounds.  The importance of the C6-C7 bond to the model demonstrates that properties of 

this BCP capture structural changes.   

Eight out of the nine BCP properties of the C6-C7 are found in the top ten most important 

properties to model M16.  We constructed a model using only the BCP properties of the C6-C7 

bond (M20) and saw slight improvements.  Compound 16 was identified as an outlier being the 

only group 1 compound that had a phenyl substituent.  It was removed from the modelling and 

the    and    improved (See M21).  Surprisingly, the electron density at the C6-C7 BCP produced a 

linear correlation with LogMP (Figure 5.13).    
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Figure 5.13.  A plot of the electron density at the C6-C7 BCP versus the logMP. 

 

Correlations of the BCP descriptors with LogMP were found but these required the splitting of the 

initial data set of 80 compounds.  Furthermore, certain compounds had to be excluded to produce 

reasonable correlations.  In an attempt to gain more insight into the use of BCP descriptors for 

this data set, we employed a number of statistical techniques.  Our aim was to improve the 

models while reducing the numbers of descriptors used.  We also wanted to investigate which 

descriptors and bonds contributed most to explaining the experimental mutagenic potency for 

both the aromatic amines and the MIA derivatives.  Two methods have previously been used in 

the context of QTMS for this purpose. 
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Feature selection has been performed by Esteki et al.64, 112 using multi-linear regression.  The same 

technique was performed with our set of aromatic amines and MIA derivatives, separately.  All 

the BCP descriptors from one bond are used to construct a multi-linear regression model.  The 

same was performed for the rest of the bonds in the common skeleton.  For example, this 

involves constructing fourteen models for the aromatic amines (one for each bond in the common 

skeleton).  The models are ranked according to their    value and the bonds that have the highest 

   are considered most important.  The same is performed with the BCP descriptors from the 

bonds selected as the most important.  For example, all the electron density descriptors for the 

selected bonds are used to construct a model.  The descriptors that have the highest    are 

considered most important.  The most important descriptors from the most important bonds are 

then only considered for further modelling.  All the multi-linear regression was performed using 

TSAR234 software package. 

We also performed a hierarchical PLS approach to select the most important descriptors and 

bonds.  PLS models were constructed for each BCP descriptor from all the bonds in the common 

skeleton.  Subsequently, descriptors with small VIP scores were gradually deleted until a model 

with only one descriptor remained.  A model was then constructed from the top two descriptors 

in each of the descriptor models and the stepwise deletion of descriptors repeated.  The    and 

   values were then inspected. 

Both these techniques can be used to reduce the number of descriptors used to construct models 

and also highlight which bonds and descriptors are most important.  We used both these 

techniques extensively but no substantial improvement in the models was observed (results not 

shown).           

5.3.3 Changing the Y-Variable 

 

The mutagenic potency of aromatic and heterocyclic amines can be measured in a number of 

different strains of bacteria.  The results presented thus far used the LogMP calculated from the 

response of the bacterial strain TA98 to the test compounds.  Gramatica et al.235 used the 

Debnath data set to construct separate QSAR equations for mutagenic potency measured in 

bacterial strains TA98 and TA100.  They suggested that steric factors were more important in 

predicting the mutagenic potency of the compounds measured in TA98 strain, while polarisability, 

electronic and hydrogen-bonding features were more important in the TA100 strain.  However, 

they highlighted that descriptors were not so easily and singularly interpretable for an 

understanding of the complex underlying mechanisms.    The conclusion may suggest the reason 

for the mediocre results we obtained for the mutagenic potency of the compounds in the TA98 

strain as it is known that QTMS descriptors capture the importance of electronic properties for 
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the property of interest.  For this reason, we investigated the use of BCP descriptors to predict the 

mutagenic potency of aromatic amines measured in the TA100 and the TA98 bacterial strains. 

After removal of diamines and highly conformationally flexible compounds, 60 aromatic amines 

from the Debnath data set203 remained that had LogMP values measured in TA100 (Appendix D).  

A plot of the LogMP in TA100 versus LogMP in TA98 (47 aromatic amines LogMP values in both 

Bacterial strains) revealed that the relative potencies vary widely (Figure 5.14).   

 

 

Figure 5.14.  A plot of the mutagenic potency of 47 aromatic amines measured in TA100 versus TA98.  The red data 
point represents 3-aminoquinoline and shows the largest difference in mutagenic potency depending on the strain in 
which it was measured. 

3-aminoquinoline is a weak mutagen when measured in TA98 strain (LogMP = -3.14) but its 

mutagenic potency is stronger when measured in the TA100 strain (LogMP = 0.07). 
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Hierarchical PLS was performed on the data set with the LogMP measured in TA100 and TA98.  

The best model for the prediction of LogMP measured in TA98 contained 38 compounds and had 

an    and    of 0.69 and 0.61, respectively.  The model was constructed from 2 latent variables 

which contained the information from 13 BCP properties.  We tested the model with 15 aromatic 

amines that had been tested at GSK because ultimately, these are the compounds that we aimed 

to predict.  No LogMP value was provided but a categorisation of positive (assigned 1), negative 

(assigned -1) or equivocal (assigned 0) was enough to test how the model performed on these 
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compounds.  The predictions for the GSK-measured aromatic amines show a spread in potency 

but the model fails to distinguish the correct activity of the compounds (Figure 5.15). 

 

Figure 5.15.  Predicted versus observed LogMP measured in bacterial strain TA98 (blue diamonds).  Predictions for 15 
aromatic amines measured at GSK are also given (red squares = Ames-positive, orange squares = Ames-equivocal and 
green squares = Ames-negative).    

 

The best model for the prediction of LogMP measured in TA100 contained 50 compounds and had 

an    and    of 0.57 and 0.54, respectively (Figure 5.16).  The model was constructed from only 

four ellipticity (ε) descriptors with the information contained in one latent variable.  A linear 

relationship is clearly present; however, at the higher end of the mutagenicity scale the 

relationship plateaus suggesting possibly a non-linear correlation.  A further explanation for this 

observation could be that the 1.5 – 2 LogMP is the upper experimental limit for detecting the 

mutagenic potency.  The spread in LogMP values of the 15 aromatic amines measured at GSK is 

less than the spread for the TA98 model (Figure 5.15).  The strain TA100 is reportedly more 

influenced by the electronic properties of the compounds tested but also fails to distinguish Ames 

results for the GSK compounds. 
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Figure 5.16.  .  Predicted versus observed LogMP measured in bacterial strain TA100.  Predictions for 15 aromatic 
amines measured by GSK are also given.    

 

5.4 Summary 
 

The statistical analysis of QTMS properties failed to produce a robust, predictive model to predict 

the toxicity of AAs.  We have shown that by using BCP descriptors alone, it is unlikely that a single 

model for the prediction of these compounds can be successful.  Reasonable correlations were 

obtained when the data sets were split into congeneric series.  The use of mutagenic potency of 

the AAs measured in the bacterial strain TA100 did not improve the results.  A reason for 

mediocre results could be that other factors than electronic effects have a more significant 

influence on the mutagenic potency of the compounds studied.  However, in any QSAR study the 

integrity of experimental results is vital236.  Merging Ames assay data from different sources 

suffers from interlaboratory variations in techniques. 

 

The national Toxicology Program (NTP) determined the average interlaboratory reproducibility of 

the Ames test data to be 85%200, 223.  This means that 15% of compounds tested will be either false 

positive or false negatives.  Therefore, any models constructed for the discrimination between 

positive and negative compounds can only ever have an 85% chance of the prediction being 

correct if data used is generated in different laboratories.  This highlights the difficulty in bringing 

together data points for a labour-intensive, biological assay in large enough numbers to be able to 
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construct meaningful statistical models.  The literature data phylogeny in Figure 5.17 shows that 

the majority of data used to model the mutagenic potency of AAs are taken from numerous 

laboratories.      

 

   

Figure 5.17.  Literature data phylogeny for Ames data used to model the mutagenic potency of aromatic and 
heterocyclic amines.  
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(1983-1988) 

= tested by authors 

= literature mutagenicity 

data 

= mix of author and 

literature mutagenicity 

data 

1
 Howorth, S. et al. Env. Mut., 1983, 5, 3. 

2
 Later, D. W. et 

al., Env Mut., 1984, 6, 497. 
3
 Zeiger, E. et al., Env. Mol. 

Mut., 1988, 11, 1. 
4
 Zeiger, E. et al., Env. Mut., 1987, 9, 1.

5
 

Hatch, F. T. et al., Env. Mol. Mut., 2001, 38, 268.
6
 

Debnath, A. K. et al., Env. Mol. Mut., 1993, 19, 37.
7
 

Borosky, G. L., Chem. Res. Toxicol., 2007, 20, 171. 
8
Cash, 

G. C. et al., Mut. Res., 2005, 585, 170. 
9
 Gramatica, P. et 

al., SAR QSAR Env. Res., 2003, 14, 237. 
10

 Glende, C. et al., 
Mut. Res., 2001, 498, 19.

11
 Glende, C. et al., Mut. Res., 

2002, 515, 15.
 12

 Knize, M. G. et al. Env. Mol. Mut., 2006, 
47, 132.

 13
 (No. of compounds, strains of bacteria used)  
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The two largest literature data sets, Debnath et al.203 and Hatch et al212, were compared.  Ten 

compounds were common to both data sets where the mutagenic potency value was taken from 

different sources. The average difference between the mutagenic potency was 0.70 log units.   All 

LogMP values in the Debnath data set were produced using TA98 +S9 whereas the Hatch data set 

was produced using TA98 or TA1538 which could be the reason for the discrepancies.  Where 

multiple conflicting data was found when compiling the Hatch data set the authors used the 

median value, which could be another reason for these differences.  The use of LogMP as a 

dependent variable has recently been questioned because of the influence of experimental noise, 

variation in environment and differences between laboratories237.  This confirms the questioning 

of the reproducibility of the Ames test by Kazius et al.223, who highlighted that the reproducibility 

is limited by the purity of the tested chemical, inconsistencies in the interpretation of dose-

response curves, interferences by toxic side effects (such as cytotoxicity), variations in the 

methodology employed, and variations in the materials used (bacterial strains and metabolic 

activation mixtures). 

 

Although CYP1A2 is implicated as the major P450 enzyme involved in the metabolism of AAs, it is 

not inconceivable to expect AAs to interact and be metabolised by other P450s.  To investigate 

these possible interactions, we selected 73 AAs (34 Ames-positive and 39 Ames-negative 

according to internal GSK and literature data) based on structural diversity, availability and 

mutagenic potency and submitted them to the standard P450 enzyme inhibition assays at GSK 

consisting of the five pharmaceutically important P450 (3A4 (two different assay standards), 1A2, 

2C19, 2C9 and 2D6 (Figure 5.2)) at a top concentration that allowed inhibition to be measured 

above a pIC50 of 4.3.   These assays are fluorescence intensity-based and in high-throughput 

format.  The results are shown in Table 5.4.  The agreement between the two different 3A4 assays 

was extremely good, so we only report the combined results.  Only ca. 20% of the 73 AAs 

inhibited each of the P450 enzymes but there was little difference between the number of Ames-

positive and -negative AAs, even for CYP1A2.  We submitted the 73 AAs for testing at higher 

concentrations in the 1A2 inhibition assay allowing pIC50 values to be measured down to 3.4.  

More of the AAs were found to inhibit 1A2, but once again the differentiation between Ames-

positive (13 compounds) and –negative (17 compounds) was poor.  These results must be taken 

into context.  The Ames-negative compounds inhibiting CYP1A2 could be enzyme inhibitors but 

not substrates, hence no genotoxic outcome.  The Ames-positive compounds not inhibiting 

CYP1A2 could acquire their genotoxic potential from conversion by other CYP enzymes, hence 

exerting their DNA-modifying effect via a mechanism different from the nitrenium ion pathway.   
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Table 5.4.  The results of 73 AAs submitted for P450 profiling in the major P450 enzymes responsible for the 
metabolism of the majority of drugs.     

P450 Enzyme Minimum pIC50 

Measurable 
Ames-Positive Ames-Negative Total 

3A4 >4.3 6 10 16 
2C19 >4.3 7 8 15 
2C9 >4.3 9 9 18 
2D6 >4.3 9 9 18 
1A2 >4.3 6 10 16 

1A2(Higher Concentration) >3.4 13 17 30 

 

Another complication to consider is the evidence of cooperative binding in the active site of 

CYP1A2238.  Heterotropic cooperativity, in which one ligand modifies catalysis of another ligand, 

has been demonstrated using kinetic studies and computational modelling techniques with 1-

isopropoxy-4-nitrobenzene and 1,4-phenylene diisocyanide239.  In this case the co-occupancy by 

the two molecules led to enhanced binding but reduced catalytic activity.  Homotropic 

cooperativity with CYP1A2 has also been observed with pyrene and benzo[a]pyrene240.  The 

author proposed that co-occupancy of the CYP1A2 active site is a common feature for numerous 

small substrates (and other ligands) but the nature of cooperative behaviour is highly ligand-

dependent.  The active site of CYP1A2 (approximately 370 Å3) is large enough to fit only one α-

naphthoflavone241 molecule but many of the AAs we considered are much smaller.  Cooperativity 

will skew the correlation between a molecular descriptor and the biological test result.  

Furthermore, cooperativity can lead to enhanced and reduced catalytic activity and therefore, 

may increase or decrease the mutagenic potency of AAs.  While docking studies may be used to 

predict co-occupancy, the information provided is unlikely to be sufficient to make predictions 

about the sites of oxidation and so this potential influence on mutagenic potency is difficult to 

include in any QSAR modelling. 

 

Around 2007, GSK had decided to measure the genotoxicity for a set of 500 synthetic building 

blocks to generate a list of Ames-negative AA molecules.  The work started on two compounds 

but stalled due to purification issues which resulted in contradictory Ames results for the same 

compounds.  In the next chapter, we report the outcomes of an investigation into the fidelity of 

the Ames test for a set of AAs.    
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Chapter 6                                                                                                     

Investigating the Reproducibility of the Ames Test with Carbocyclic 

and Heterocyclic Primary Aromatic Amines for Modelling Ames Test 

Classification 
 

6.1 Introduction 
 

m-Toluidine is a recognised Ames-negative aniline242.  It was tested by GSK as the free base in 

DMSO as a brown solution and was Ames-positive, with and without metabolic activation (+/-S9).  

The compound was re-purified, stored frozen and protected from light.  The free base in dimethyl 

sulfoxide (DMSO) was a clear liquid and tested Ames-negative.  The hydrochloride salt, made from 

the re-purified m-toluidine was also Ames negative when tested separately in DMSO and water.  

In other laboratories, 4-aminobenzylamine has also been tested as a brown liquid and produced 

an Ames positive +S9 at only the two highest concentrations and just over the 2-fold positive 

criterion243.  Subsequently, the compound was purified, kept refrigerated and protected from light 

and turned out to be negative243.  These examples suggest that degradation could explain the 

positive Ames outcomes.  In contrast, three samples of 4-aminobenzamide from three different 

suppliers showed 3 very different Ames responses in TA98 +S9 when tested by GSK, whereas 

without metabolic activation (-S9) in TA 98 and in 4 other bacterial strains (+/-S9) the response 

remained below the 2-fold increase threshold for Ames-positive classification (Figure 6.1).  Both 

positive batches were confirmed to be 99.8% pure by HPLC-LCMS.  This chemical has been 

reported as Ames negative, which was confirmed in N-methylpyrrolidine (NMP) as a solvent and 

surprisingly, after standing in DMSO for 1.5 hours244.   

 

 

 

Vehicle 
 DMSO 
 DMSO + 1.5 hour 
 NMP 

Figure 6.1.  The fold increases above the negative controls for the three different batches of 4-aminobenzamide 
(samples 1 and 3 with retests) screened in TA98 +S9 in DMSO or NMP. 
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International guidelines have been developed for laboratories to ensure uniformity of testing 

procedures.  These list DMSO as the solvent of choice if the test compound does not dissolve in 

water.  There are three reasons for selecting DMSO: it dissolves a wide range of chemicals, is 

relatively non-toxic to the bacteria and microsomal S9 enzymes, and it is completely miscible with 

the molten agar used in the Ames test. 

However, DMSO itself is not chemically inert and has been known to affect Ames results231, 245-247.  

Moran et al.248 screened 14 solvents with known mutagens benzo[a]pyrene and 2-aminofluorene 

for their compatibility with the Ames test.  They found 12 solvents to be satisfactory under the 

conditions specified, including DMSO.  They recommended that other solvents be used instead of 

DMSO when the test compound reacts with DMSO or when DMSO could interfere with the 

process of metabolic activation.  Nestmann and co-workers suggested that repeat tests in a 

second solvent should be performed to confirm initial findings246.  Conflicting Ames results for p-

phenylenediamine were followed up by Burnett et al.244 with more detailed studies.  They found 

that fresh solutions of either DMSO or water were non-mutagenic whereas DMSO solutions 

became Ames-positive upon standing, which was not observed for the p-phenylenediamine 

dissolved in water. 

To the best of our knowledge, there are no systematic investigations into the effects of the purity 

of the samples or the presence of DMSO on the Ames test for AAs.  Hence, we performed 

investigations to establish the robustness of the Ames test for AAs pre- and post-purification and 

with the hydrochloride salt forms. 

 

6.2 Methodology 
 

6.2.1 Data Sets 

 

We started out with a set of 22 low molecular weight, commercially available AAs that were 

structurally diverse, known to be Ames-positive and spanning a range of activity.  Initially, it was 

attempted to purify the AAs by distillation or by HPLC.  However, boiling points above 220oC for 

many of the AAs engender the possibility that some of them may decompose during distillation.  

The time and effort required to produce enough of the purified material also precluded HPLC.  It 

was therefore decided to use recrystallisation techniques.  A number of purification and 

availability issues brought the number of molecules down to the 14 listed in Table 6.1.  
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6.2.2 Purification and Conversion to the Hydrochloride Salt 

 

The solvents used to purify the AAs are listed in Table 6.1.  Filtration through a PL-Thiol MP SPE+ 

cartridge (Polymer Laboratories) removed any potential metal impurities and the AAs were 

recrystallised from a variety of solvents.  The crystals were stored at 4oC and protected from light.  

Missing values in Table 6.1 indicate that no suitable solvent was found from which the AA could 

be recrystallised.   

 

If the crystallisation failed, the unpurified material was used after being passed through a 

cartridge.  The AAs were dissolved in ethyl acetate, and then hydrogen chloride in diethyl ether 

was added to give suspensions.  The mixtures were stirred for approximately 30 minutes, the 

solids isolated by filtration and washed with ethyl acetate.  The solids were foil-wrapped to 

exclude light, dried under high vacuum at ambient temperature and then stored at 4oC.  In total 

nine hydrochloride salts were prepared. 

 

The purities of the unpurified, purified and hydrochloride salt materials were determined using 

HPLC with LC/UV/DS/ELSD detection (Table 6.1)1.  The percentage purity could not be determined 

for two compounds (4-aminoacetanilide and 2-amino-5-hydroxybenzoic acid) using this method. 

 

 

 

 

 

 

 

 

 

 

 

                                                             
1 0.01 ml of a 1 mg/ml solution of each compound was injected in CH3CN/H2O/TFA at a concentration ratio of 10:10:1, respectively.  
Samples were analysed using a Luna C18(2) 4.6mm i.d. x 150mm column with a gradient of 3% B to 50% B in 30 minutes, holding at 
50% B for 20 minutes.  A is H2O:TFA, 1000:1 and B is CH3CN:TFA, 1000:2.  The flow rate was 1ml/min.  A UV detector set at 300nm, 
180nm bandwidth with a 550nm, 100nm bandwidth as a reference was used in conjunction with mass spectrometer and an 
evaporative light scattering detector. 
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Table 6.1.  The names, CAS and structures of the 14 AAs, their purification conditions and levels of purity. 

Name 

(CAS #) 

Structure Recrystallisation Solventa % Purity 

   Unpurified    Purified  HCl Salt 

2-aminofluorene 

(153-78-6) 

 

ethanol 99.4 99.7 99.3 

6-aminochrysene 

(2642-98-0) 

 

- 99.4 - - 

2-aminoanthracene 

(613-13-8) 

 

petroleum ether and 

ethanol 
96.0 96.8 100 

1-methyl-2-

aminobenzimidazole 

(1622-57-7) 
 

ethanol followed by water 98.6 99.9 - 

4-phenoxyaniline 

(139-59-3) 

 

- 99.2 - 98.6 

2-amino-5-

phenylpyridine 

(33421-40-8) 
 

- 97.6 - - 

2,4,5-trimethylaniline 

(137-17-7) 

 

petroleum ether and 

ethanol 
99.8 100 98.5 

3-aminobenzonitrile 

(2237-30-1) 

 

petroleum ether and 

cyclohexane 
98.2 95.5 - 

2-Aminonaphtho(2,3-

d)imidazole 

(102408-31-1) 
 

ethanol 99.8 99.4 100 

4-chloro-2-methylaniline 

(95-69-2) 

 

- 94.6 - 99.5 

3-aminoquinoline 

(580-17-6) 

 

- 99.8 - 100 

2-methyl-4-

bromoaniline 

(583-75-5) 
 

cyclohexane 99.9 100 - 

4-aminoacetanilide 

(122-80-5) 

 

ethanol - 

Not 

determine

d 

- 

2-amino-5-

hydroxybenzoic acid 

(394-31-0) 
 

ethanol - 

Not 

determine

d 

- 

a 
The solvent purities were as follows: methanol, 99.9%; cyclohexane, 99.5%; toluene, 99.8%; diethyl ether, 99.0%; dichloromethane, 

99.8%; chloroform 99.8%; methyl pentane, 95.0%. 
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6.2.3 The Ames Test 

 

To evaluate the mutagenic activity of the AAs in relation to the purity, solvent and protomer (i.e. 

freebase or hydrochloride salt), the bacterial tester strains Salmonella typhimurium TA98 and 

TA100, with and without metabolic activation (rat liver homogenate S9), were used in the Ames 

standard plate incorporation assay.  The assay was performed in accordance with the procedure 

described by Maron and Ames189 and regulatory guidelines249.  These two strains were chosen, 

instead of the standard five, as they are often used in cut-down versions of the Ames test250 

because TA98 is capable of detecting frameshift mutations, while TA100 detects base pair 

substitutions180.  A heat map of the Ames test results for 100 substituted anilines tested in 6 

different bacterial strains (+/-S9) collated from GSK and external sources (e.g. National Toxicology 

Database in the US) exemplifies the significance of TA98 and TA100 for this chemotype (Figure 

6.2).  All the compounds in Table 6.1 are known to be Ames positive in either one or both of the 

strains used.  GSK assign a compound equivocal if a clear positive or negative response is not 

observed or if there is contradictory results for the same compound.  

 

Figure 6.2.  Ames test results (red – positive; orange – equivocal; green – negative; white - no data available) for 100 
substituted anilines in 6 bacterial strains +/- S9 based on internal and external data sources. 
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The dilution solvent for compounds was either DMSO (Sigma-Aldrich) or distilled water (GIBCO), 

and all dosing solutions were prepared immediately prior to testing.  All experiments were 

performed with solvent controls and each run in duplicate with the average value reported.  In a 

few cases where large deviations between runs had been observed, they were repeated.  Vehicle 

controls (DMSO or water) were run in quadruplicates with and without metabolic activation (+/-

S9).  The positive controls were run in quadruplicate with and without metabolic activation.  The 

positive control for TA98 +S9 was benzo[a]pyrene (B[a]P) (10 µg/plate), 2-nitrofluorene (2NF) (1 

µg/plate) for TA98 -S9, 2-aminoanthracene (2-ANN) (5 µg/plate) for TA100 +S9 and sodium azide 

(2 µg/plate) for TA100 -S9.  Positive controls were also run in duplicate.  All compounds were 

generally tested at 6 concentrations (5000, 2500, 1500, 500, 150 and 50 µg/plate) in TA100 and 

TA98 +/-S9.  Some tests were repeated at lower concentrations due to toxicity and/or 

precipitation observed at low concentrations in the original tests.  Where repeats were performed 

they are highlighted in Table 6.2.   

 

Here the procedure to perform the plate incorporation assay is explained.  A cartoon 

representation of the preparation of one plate in the Ames test is shown in Figure 6.3.  A 

predetermined number of sterile, capped tubes are filled with 2.0 ml of top agar.  For the plate 

incorporation method without activation (-S9), 0.1 ml of the test solution dissolved in the vehicle 

(water or DMSO) at the required concentration, 0.1 ml of the bacterial strain (TA98 or TA100) and 

0.5 ml of sterile buffer are added to the 2.0 ml of top agar in the sterile tube.  For the assay with 

metabolic activation, 0.5 ml of metabolic activation mixture (containing 10% v/v of S9 fraction) 

replace the 0.5 ml of sterile buffer.  The contents of the tube are mixed by rotating between the 

fingers and poured onto a minimal agar plate.  The plate is moved in a circular fashion to spread 

the agar uniformly.  The overlay agar is allowed to solidify before the plate was incubated at 37oC 

in the dark for 72 hours.  After the incubation period, the numbers of revertant colonies on the 

plate are counted.  The Ames test we perform requires the preparation of 60 (6 (concentrations 

of test compound) x 2 (bacterial strains) x 2 (+/-S9) x 2 (duplicates) + 12 (positive and negative 

controls) = 60) plates prior to counting.     
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Figure 6.3.  Cartoon representation of the plating of a compound at one concentration used to perform an Ames test.  
The figure represents the use of metabolic activation (+S9), without metabolic activation the S9 extract is replaced 
with sterile buffer. 

 

Ames Study Manager, Report Generator and Sorcerer Systems (Perceptive Instruments Ltd.) were 

used to count the number of revertant colonies on plates and curate the raw data.  The addition 

of a small amount of histidine to the top agar allows the plated bacteria to undergo between six 

and eight cell divisions before the histidine is depleted.  If the test compound is mutagenic, the 

revertant bacteria continue to grow in the absence of the histidine and are visible on the plates.  

The revertant colonies are easily scored against the hazy looking background lawn which is made 

up of the histidine-dependent bacteria.  Examination of the background lawn reveals if the test 

compound is toxic to the bacteria.  A “thinning” or complete absence of the background lawn 

compared to the negative controls implies that the compound is toxic.  Cell toxicity and test 

compound precipitation are recorded after being observed with the naked eye and use of a 

microscope.  If precipitation is observed, that plate is counted but no other higher concentrations 

are considered as the availability of the test compound to the bacteria is unknown.  The 

mutagenic activity is described by an induction factor (IF), which is the quotient of the revertants 

per plate at each concentration divided by the average number of revertants per plate of the 

negative controls.  In strains TA98 and TA100, substances with an IF of two or greater, in 

conjunction with a dose-response curve, are considered to be Ames-positive in the test strains 

used.  Dose-response curves can be found in Appendix E for all the Ames tests we performed.  
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Figure 6.4.  A photograph of two plates, after incubation, that have been prepared in the Ames test. The plate on the 
left is a negative control.  The plate on the right is dosed with a chemical that has caused a > two-fold increase 
compared to the control.  The revertant colonies are clearly visible.    

 

6.3 Results and Discussion 
 

The unpurified substances were 94.6 to 99.9% pure according to HPLC-LCMS increasing to 96.8 to 

100% after recrystallisation except in four cases.  For unknown reasons, the purity deteriorated 

for the free base of 3-aminobenzonitrile and the hydrochloride salt of 2,4,5-trimethylaniline.   

 

Ames results were generated for all 14 raw compounds, for a subset of 9 purified samples and a 

slightly different subset of 9 molecules as the hydrochloride salt (Table 6.2).  The anticipated 

transformation from an Ames-positive to an Ames-negative results occurred for only one AA.  4-

aminoacetanilide in TA98 +S9 moved from just above the IF two-fold threshold (IF = 2.2) in the 

unpurified form to just below the threshold (IF = 1.6) as the purified free base.   The Ames tests 

for unpurified and purified free base were repeated using water instead of DMSO (Table 6.3).  The 

Ames results in DMSO were confirmed in water but the IF for the purified compound increased to 

1.8.   Nevertheless, the hydrochloride salt gave a clear positive response in DMSO (IF = 3.0) and in 

water (IF = 2.6) therefore, this AA must still be considered Ames-positive. 

 

Small changes in the induction factor in either direction are observed in several cases. The IF 

(TA100 +S9) for 2,4,5-trimethylaniline diminished from 11.3 to 8.3 from raw (99.8%) to purified 

(100%) material.  Most drastically, aminobenzonitrile’s IF (TA98 +S9) raised from 5.0 to 10.9 due 

to a deterioration in purity from raw (98.2%) to “purified” (95.5%) compound. This amine also 

undergoes a qualitative shift, i.e. from Ames-negative to Ames-positive (TA98 -S9; IF = 2.3) albeit 

only by a marginal amount. The IF’s for the most genotoxic substance in our dataset, 2-

aminofluorene, doubled with and without metabolic activation from raw to purified form despite 

almost identical purities of 99.4 and 99.7%, respectively. For several unpurified AAs the Ames 
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tests on both strains were repeated in duplicate (the IF values are shown in parentheses in Table 

6.2) and the results were remarkably similar. 

 

The 14 AAs can be pooled into 3 groups (Table 6.2): I) those Ames-positive with and without 

metabolic activation, II) those strongly Ames-positive +S9 and III) those marginally Ames-positive 

+S9. Remarkably, the IF for the latter group of five amines changed by less than one unit across 

the Ames tests for all four forms, i.e. unpurified and purified compound, as hydrochloride salt in 

DMSO and in water. This observation is in sharp contrast to the variations in outcome for some of 

the AAs mentioned in the Introduction and can probably be attributed to differences in their 

tendencies for structural deterioration.  
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Table 6.2.  The IF’s in the Ames test for 14 AAs (the highest IF observed and independent of the concentration is given); N denotes a negative test. 

 

a 
The Ames test was limited by toxicity or precipitation and so not all dose levels were counted. 

b 
Toxicity was observed at all doses +S9 in the initial Ames test, hence the test was repeated at 1.5, 5, 15, 50, 150, 500 μg/plate.   

c
 

Values in brackets correspond to repeat experiments in order to investigate the reproducibility. d Compound precipitated out of solution in the initial Ames test so it was repeated at 15, 25, 50, 150, 500, 1500 μg/plate.   
 

Compound name 

Unpurified Purified HCl Salt DMSO HCl Salt Water 

TA98 TA100 TA98 TA100 TA98 TA100 TA98 TA100 

 -S9  +S9  -S9  +S9  -S9  +S9  -S9  +S9  -S9  +S9  -S9  +S9  -S9  +S9  -S9  +S9 

I 2-aminofluorene 10.8
a 

42.8
a
 N

 a
 13.0

a
 23.7

a
 82.0

a
 3.6

a
 19.0

a
 - - - - - - - - 

I 6-aminochrysene 
35.5

a
  

(62.0)
b,c 

8.2
a
  

(11.6)
 b,c

 

9.6
a
  

(13.9)
 b,c

 

N
a
 

(10.6)
 b,c 

 
- - - - - - - - - - - - 

II 2-aminoanthracene N
a
 27.7

a
 N

 a
 4.1

a
 N

a
 29.6

a
 N

a
 5.0

a
 - - - - - - - - 

II 1-methyl-2-aminobenzimidazole N 
24.6 

(34.5)
c
 

N 
14.6 

(13.0)
 c N 34.6 N 15.6 N 30.1 N 13.6 N 27.6 N 15.0 

II 4-phenoxyaniline N
a
 21.2

a
 2.7

a
 16.7

a
 - - - - - - - - - - - - 

II 2-amino-5-phenylpyridine N 14.2 N 2.8 - - - - N
a
 17.2

a
 N

a
 2.4 N

a
 14.5

a
 N

a
 N

a
 

II 2,4,5-trimethylaniline N 
4.1  

(5.0)
c
 

N 
11.3 

(10.0)
c
 

- 4.6 - 8.3 - - - - - - - - 

III 3-aminobenzonitrile N 
5.0  

(5.6)
c
 

N N 2.3 10.9 N N N 4.7 N N N 6.8 N N 

III 2-aminonaphtho(2,3-d)imidazole N
a
 6.7

a
 N

a
 N

a
 N

a
 7.2

a
 N

a
 N

a
 - - - - - - - - 

III 4-chloro-o-toluidine N
a
 2.6

a
 N 1.9

a
 - - - - N

a
 2.4

a
 N

a
 2.8 - - - - 

III 3-aminoquinoline N 1.9 N 3.0 - - - - N 2.0 N 2.7 N 2.1 N 3.3 

III 2-methyl-4-bromoaniline N
a
 N

a
 N

a
 2.4

a
 N

a
 N

a
 N

a
 2.0

a
 N N N 2.6 

N
d 2.1

d N
d 3.0

d
 

III 4-aminoacetanilide N 2.2 N N N N N N N 3.0 N N N 2.6 N N 

III 2-amino-5-hydroxybenzoic acid N 2.1 N N N 3.2 N N N 2.0 N N N
d
 2.1

d
 N

d
 N

d
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Table 6.3.  The IF in the Ames test for 4-aminoacetanilide tested in water as the unpurified and purified. 

Compound name 

Unpurified in Water Purified in Water 

TA98 TA100 TA98 TA100 

- + - + - + - + 

III 4-Aminoacetanilide N 2.4 N N N N N N 

 

These findings can be considered as an endorsement for the reliability of the Ames test for this 

compound class. However, there are several caveats to this statement: 

 

 The variation in purity remained within a narrow band of 95 – 100%  as 

determined by LCMS 

 We did not systematically investigate the relationship between compound purity 

and the reproducibility of the Ames test, which could be very chemotype-

dependent 

 We only tested a small set of AAs, whose structures are probably not wholly 

representative of this compound class 

 We employed only two strains out of the five required for regulatory acceptance 

of the Ames results  

 

Nevertheless, the consistency of the IF values across different assay conditions for the same 

bacterial strain is remarkable and even more so, considering the variety of carbo- and 

heterocycles, of mono- and multicycles and of substitution patterns with electron-donating and –

withdrawing groups used. Furthermore, the formation of the hydrochloride salt did not appear to 

influence the magnitude of the Ames response in the T98 and T100 strains which provides a 

strategy to purifying these types of compounds when other techniques fail. 

 

We subsequently had the stability of 73 low molecular weight AAs determined in DMSO at room 

temperature for one week. We found that nine molecules degraded to a significant degree (12 – 

42%). This emphasises the requirement for this compound class to be kept under appropriate 

storing conditions and for the Ames test only to be conducted when the purity levels are known in 

order to prevent spurious outcomes as reported in the Introduction.  

 

Following on from our findings above, a project started at GSK to systematically perform the five-

strain Ames test on low molecular weight AAs to assemble a reference set for Safety Assessment 

and Genetic Toxicology. This collection has currently grown to around 400 molecules and is 

known from here on as the GSK data set.  The 200-strong Ames-negative compound set is of 

particular interest to chemists as building blocks for chemical synthesis.  Preliminary work has 
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been undertaken to investigate QSAR equations to discriminate between positive and negative 

anilines using the 400 molecule data set.  This work is reported in the following section. 

 

6.4 Predictive Toxicology for Aromatic Amines 
 

As part of the data preparation for this investigation, the Ames classifications of the 400 GSK AAs 

were compared to those published in the literature.  The AA subset of the Organon data set223 

consists of 258 molecules183, after filtering, whereas 674 AAs are listed in the comprehensive 

Bayer compilation of approximately 6500 chemicals tested in the Ames test198.  In the overlap of 

136 compounds with the GSK data set, only seven were classified differently which could be 

explained by the inclusion of an equivocal category in the GSK classifications.  This was 

encouraging considering the interlaboratory difference previously discussed.  It should be noted 

that data from multiple Ames tests for the same compound can exist in the literature and can be 

contradictory.  If a judgement is being made on multiple contradictory literature results, then the 

classification decided can be based upon the individuals’ interpretation of the result which can be 

limited by their experience.  Experts within GSK analyse all the available data and make a 

judgement based on the protocols used for the Ames tests under question (i.e. if regulatory 

guidelines were adhered to).  For a compound to be classified as negative, it must have been 

tested in at least the five bacterial strains required by the regulators, the test must have been 

conducted according to regulatory guidelines and the molecule must have displayed an 

unequivocal negative response in all test strains.  For a compound to be classified as positive, it 

must have shown a clear positive response in at least one of the bacterial strains.  If a compound 

has only been tested in two of the required bacterial strains and was negative, then this does not 

mean the compound is considered Ames-negative as the data would be considered inadequate 

because it does not comprise of a full Ames test.  If the external data is inadequate, or does not 

exist, then the compound is tested in-house and categorised according to GSK’s protocol.  

Therefore, the GSK AA data set contained a combination of classifications based on reliable 

literature/external and in-house data, with a slightly larger proportion based on internal data.  In 

this work we filtered and separated the compounds according to Figure 6.5. 

After visual inspection of the 273 substituted anilines we removed 4 large drug-like compounds 

and one iodine containing compound.  We focussed on the subset of 234 substituted anilines 

(known from here as the aniline data set) with only one primary amine (NH2) group attached to 

the aromatic ring to simplify the modelling.  The 234 anilines were grouped into seven different 

categories depending on their Ames classification (Figure 6.5) 
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Figure 6.5.  The structural criteria we applied to separate the GSK data set.* 4 large drug-like compounds and one 
iodine containing compound removed. 

 

Table 6.4.   The classification of the 234 anilines in the GSK data set. 

Ames Classification 

All Ortho Meta Para +S9 -S9 

Negative Negative 105 66 21 18 
Positive Negative 89 39 32 18 
Equivocal Negative 2 2 0 0 
Equivocal Equivocal 3 2 1 0 
Positive Positive 28 16 7 5 
Negative Positive 3 3 0 0 
Positive No Data 4 2 1 1 

 

It can be seen from Table 6.4 that the data set contained an approximate 50:50 split between 

Ames-positive with metabolic activation (+S9)  and Ames-negative with and without metabolic 

activation (+/-S9).  These two categories agree with the recognised mechanism of metabolic 

activation of AAs that causes them to become mutagenic or not.  The category that contained the 

next greatest number of compounds was Ames-positive with and without metabolic activation 

(+/-S9).  We previously highlighted two compounds (2-aminofluorene and 6-aminochrysene) that 

also displayed these results for the Ames tests in bacterial strains TA98 and TA100 that we 

performed.  It is known that in addition to DNA adduct formation through the activation of AAs by 

P450 1A2, intercalation into the DNA without the formation of a covalent bond is another 

mechanism that can lead to genotoxicity and therefore to an Ames-positive result +/-S9183.  With 

the aim to avoid additional mechanisms of genotoxicity, we focussed on the compounds that are 

395 Primary Aromatic 

Amines 

122 Heterocyclic Anilines 273 Substituted Anilines 

234 Mono-NH2 Aniline* 34 Multiple-NH2 Aniline 

130 
Ortho 

42 
Para 

62 
Meta 
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thought to act through CYP1A2 activation.  The final data set contained 105 ortho-, 53 meta-, and 

36-para substituted anilines.   

Our motivation for this work stemmed from the encouraging results obtained for the 

discrimination of Ames classifications for AAs using descriptors generated from quantum 

mechanics183, 221.  For the 194 anilines, we calculated the reaction energies for the equations that 

display the largest discrimination for AAs according to Leach et al.221 discussed in Chapter 5 and 

represented in Equation 6.1 and Equation 6.2.  We also calculated the relative stability of the 

nitrenium ion, using aniline as the reference, according to the equation utilised by Bentzien et 

al.183 (Equation 6.3).  To make a fair comparison, the geometries were optimised at the 

(U)B3LYP/6-31G* level of theory.  Bentzien et al.  suggested that the AM1 semiempirical level was 

a good compromise between accuracy and speed, however, as Leach et al. obtained their results 

at the (U)B3LYP/6-31G* level we opted for the higher level of theory.  A single conformation was 

generated for all structures using the LigPrep251 application in Schrödinger’s Maestro252 modelling 

platform.  The structures were visually inspected and changed if they were obviously not the 

lowest energy conformers.  Geometry optimisation was then performed using GAUSSIAN0348.  All 

the equations require the syn and anti conformations of the nitrenium ion to be considered.  We 

optimised both conformers and the lowest energy conformations were used in the calculations, 

which is suggested by the authors from both publications. 

          
             Equation 6.1 

 

                     Equation 6.2 

 

          
              Equation 6.3 

 

Equation 6.1 is considered as a surrogate reaction to represent the energy changed for the 

combined process of protonation and deprotonation of the hydroxylamine to react with DNA 

(Figure 5.3).  Equation 6.2 was used by Leach et al. to model the formation of the nitrenium ion 

from the N-acetoxy or N-sulphate esters, formed in second phase metabolism of the 

hydroxylamine by N-acetyltransferase and sulphotransferase enzymes (Figure 5.3)253.  The origins 

of Equation 6.3 were discussed in Chapter 5.  The relationship between the reaction energies 

calculated from the three equations was investigated.  The results are shown in the correlation 

matrix in Table 6.5.  

Table 6.5.  Correlation matrix of the energies calculated from Equation 6.1, Equation 6.2 and Equation 6.3. 

 Equation 6.1 Equation 6.2 Equation 6.3 

Equation 6.1 1.000 0.995 0.995 
Equation 6.2 - 1.000 0.989 
Equation 6.3 - - 1.000 



165 
 

  

The correlation matrix showed the energies were highly correlated and so would discriminate 

between the anilines virtually identically.  Because of this reason we only considered the results 

obtained from Equation 6.3 from here. 

We discussed in Chapter 5 that the classification of Ames-positive and negative correlates with 

the energy calculated from Equation 6.3 which uses aniline as a reference.  Bentzien et al.183 

classified an AA as Ames-negative if the ΔΔE, calculated from Equation 6.4, was positive i.e. the 

nitrenium ion was less stable than that of aniline and vice versa.  This method makes the 

assumption that aniline, as the parent compound, is the most stable of the Ames-negative AAs.  

Bentzien et al. observed a significant improvement in correct predictions when an uncertainty 

interval of ΔΔE = ±21 kJmol-1 around the reference energy (0 kJmol-1) was introduced, where any 

AA with a calculated energy between this interval was not considered. 

                                       Equation 6.4 

    

We employed a slightly different approach to discriminate between the anilines.  We only 

considered the meta- and para-substituted anilines (89 anilines in total) that were classified Ames 

negative +/- S9 (39 anilines) and Ames positive +S9 only (50 aniline).  The 89 meta-/para-

substituted anilines had a variety of electron-withdrawing and electron donating substitutions 

and included fused rings. The Ames-positive anilines were assigned a value of 1 and the Ames-

negative a value of -1.  Using SIMCA-P54 we constructed a discrimination model using ΔΔE.  The 

model assigned a value between -1 and 1 to the anilines.  Subsequently, any aniline with a 

negative value is considered to be predicted as Ames-negative and any aniline with a positive 

value Ames-positive.  We did not apply an uncertainty interval.  We report the results in the 2 x 2 

confusion matrix, also known as a truth table (Table 6.6).  The term sensitivity is defined as the 

ratio of true positives divided by all experimental positives.  Similarly, specificity is the ratio of 

true negatives divided by all experimental negatives and accuracy is defined as true positives 

summed with true negatives divided by the sample size.  

Table 6.6.  Truth table for Ames Prediction of the 89 meta- and para-substituted anilines in the GSK data set using the 
nitrenium ion stability hypothesis. 

 Predicted Ames Positive Predicted Ames Negative 

Ames Positive Experimental 40 (50) 10 
Ames Negative Experimental 14 25 (39) 

Accuracy 0.73, Sensitivity 0.80, Specificity 0.64 
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The accuracy of 0.73 is slightly lower compared to that (0.85) reported by Bentzien et al.183 .  

However, the sensitivity and specificity were similar.  We subsequently used these results as a 

benchmark to compare our model discussed below. 

In Chapters 3 and 4, we reported the use of BCP properties in predicting pKa values for phenols, 

carboxylic acids and anilines.  Compound pKa values are dependent on the stability of the related 

ion in solution.  The stability of the nitrenium ion of parent anilines has been determined as 

important in discriminating between Ames-positive and Ames-negative compounds.  In Chapter 4, 

we found that the C-N bond length can be used to predict the pKa of anilines.  In Chapter 5 we 

found that the electron density at the C-N BCP can be linked to the difference in mutagenic 

potency of AAs.  Accordingly, we investigated if the electron density at the C-N BCP in the data set 

of 89 meta- and para-substituted anilines could discriminate between the Ames-positive and 

Ames-negative compounds.  Our work and findings are reported below. 

 

The electron densities at the C-N BCPs of the anilines were calculated from the previously 

(U)B3LYP/6-31G* optimised structures using MORPHY9849.  In SIMCA-P, ΔΔE from the model 

discussed above, was replaced with the corresponding electron density.  The results from the 

reconstructed model are shown in Table 6.7 and graphically in Figure 6.6 .      

Table 6.7.  Truth table for Ames Prediction of the 89 meta- and para-substituted anilines in the GSK data set using the 
electron density at the C-N BCP. 

 Predicted Ames Positive Predicted Ames Negative 

Ames Positive Experimental 41 (50) 9 
Ames Negative Experimental 17 22 (39) 

Accuracy 0.70, Sensitivity 0.82, Specificity 0.56 
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Figure 6.6.  A graphical representation of the discrimination of the 89 meta- and para-substituted Ames-positive and 
Ames-negative anilines using the electron density at the C-N BCP. 

 

According to the model, a relatively lower electron density at the C-N BCP corresponds to Ames –

positive anilines and conversely a relative higher electron density at the C-N BCP corresponds to 

Ames-negative anilines.  The accuracy of 0.70 and sensitivity of 0.82 is comparable to that 

obtained using ΔΔE, where an accuracy and sensitivity of 0.73 and 0.80 were obtained, 

respectively.  However, the specificity of 0.56 is lower than that obtained using ΔΔE (0.64).  The 

specificity can be increased by changing the 0 threshold (X-axis in Figure 6.6) used to discriminate 

between Ames-positive and Ames-negative, although it would be at the expense of the sensitivity.  

In relation to the predictions of Ames classification for AAs, it is a difficult choice whether 

improved sensitivity or specificity is desirable.  Increasing sensitivity means that more Ames-

positive compounds are predicted correctly, therefore there are fewer predicted false-negatives.  

However, this is at the expense of the specificity and so there will be an increase in number of 

false-positive predictions.  A false-negative prediction (wrongly identified as an Ames-negative 

compound) could lead to a compound being used in drug design that when tested later in the 

Ames test is found to be positive.  A false-positive prediction (wrongly identified as Ames-positive 

compound) could lead to a useful compound being disregarded.  The desired levels of sensitivity 

and specificity can depend on what stage in drug design the prediction is being made and how it is 

applied250.  The advantage of using one descriptor (i.e. the electron density at the C-N BCP) to 

discriminate between the anilines is that it allows chemists to target this property when 

considering using meta- or para-substituted  aniline building blocks.  A relatively low electron 

density at the C-N BCP should be avoided.  Furthermore, using just the electron density at the C-N 

bond requires one geometry optimisation compared to the two required to calculate ΔΔE. 
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The mediocre accuracy of the model created using the electron density at the C-N bond was 

disappointing considering meta- and para-substituted anilines had only been used.   To 

understand false predictions, clearly visible in Figure 6.6, we investigated the individual data 

points. We start with the nine false-negative predictions in turn (Figure 6.7).     

 

  
4-amino-2-chlorobenzonitrile 7-amino-4-hydroxy-2-

napthalenesulphonic acid 

  
methyl 4-amino-2-hydroxybenzoate 4-aminobenzamide 

 
 

4-aminobenzonitrile 3,4,5-trifluoroaniline 

 
 

methyl 4-aminobenzoate 7-quinolineamine 

 

 

4-(6-methyl-1,3-benzothiazol-2-
phenyl)amine 

 

Figure 6.7.  The structures and chemical names of the anilines classified as false-negatives using the electron density 
at the C-N BCP (Figure 6.6).  

 

According to Figure 6.2 the vast majority of positive Ames results are detected in the bacterial 

strains TA98 and TA100, which is the reason we restricted our Ames testing to these two strains.  

There is a slim chance that any of nine compounds are Ames-positive in one of the other bacterial 

strains.  The classification for 4-amino-2-chlorobenzonitrile was based on GSK data and was found 

to be positive in TA98 and TA100 +S9.  The classification for methyl 4-amino-2-hydroxybenzoate 
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was based on a GSK five-strain Ames test where a clear positive response (IF = 6.8 at 5000 

µg/plate) was observed in TA98 +S9.  4-aminobenzonitrile was positive in TA98 +S9 (IF = 3.1 at 

1600 µg/plate) based on GSK data.  A different source242 classified this compound as negative.  

However, the Ames test was not performed to the maximum concentration of 5000 µg of test 

compound/plate, therefore the former classification must stand.  The classification for methyl 4-

aminobenzoate was based on a positive response (IF = 3.8 at 5000 µg/plate) observed in TA98 

+S9.  4-(6-methyl-1,3-benzothiazol-2-phenyl)amine was tested under the National Toxicology 

Programme in the US and positive responses were observed in both TA98 and TA100 +S9.  Mixed 

external data254 exists for 7-amino-4-hydroxy-2-napthalenesulphonic acid ranging from negative 

+S9 to positive +S9 in both TA98 and TA100.  The mixed Ames results for 4-aminobenzamide have 

been discussed in the introduction and are shown in Figure 6.1.  No explanation can yet be 

offered to explain these results so this compound must still be considered Ames positive.  A clear 

positive response (IF = 6 at 1600 µg/plate) for 3,4,5-trifluoroaniline was observed in TA98 +S9.  

The origins of this compound displaying a positive response are unclear as similar structures, for 

example 2,3-difluoroaniline and 2,5-difluoro-4-bromoaniline are Ames-negative.  7-

Quinolineamine was classified as positive +S9 however, there is literature evidence255 that 

suggests this compound is Ames-positive in TA98 and TA100 +/- S9.  Considering this result, 7-

quinolineamine would have been filtered from our data set of 89 meta-/para-substituted anilines.  

Furthermore, quinoline itself is Ames-positive and so the origins of the positive result for 7-

quinolineamine cannot be specifically attributed to the amine function256.  Based on evidence 

presented above, we believe we have justification to remove at least half the predicted false-

negative anilines from the data set.    

Next we discuss the 17 false-positive predictions (Figure 6.8).  In contrast to Ames-positive 

anilines, for a compound to be classified as negative it must have been tested in at least the five 

bacterial strains required by the regulatory and up to a maximum concentration of 5000 µg/plate, 

providing the test is not limited by toxicity or solubility.  Explaining false-positive predictions is 

more difficult because in many of the Ames tests, no response is observed at all.  4-[(1-

methylethyl)oxy]aniline has been tested by GSK in the standard Ames test and an adapted version 

(i.e. the preincubation Ames assay180) , which can be used when a dose-response is observed in 

the standard test but does not reach the two-fold threshold required for an Ames-positive 

classification.  In the standard Ames test with 4-[(1-isopropyl)oxy]aniline an IF of 1.7 was observed 

at 5000 µg/plate.  In the adapted test the number of revertants still did not reach the two-fold 

threshold but the test was limited by toxicity to 3000 µg/plate.  4-[(1-isopropyl)oxy]aniline has a 

structure similar  to other compounds in the aniline data set that are correctly predicted as Ames-

positive, for example 4-methoxyaniline and 4-ethoxyaniline.  However, according to the criteria 

for determining Ames classification, this compound must be considered negative.  The false-
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positive prediction for 4-amino-2-fluorophenol may be explained by the maximum concentration 

counted in the Ames test being limited by toxicity.  For the remaining compounds the Ames test 

results (mainly based on GSK and NTP data) all displayed clear negative responses.      

  
4-[(1-isopropyl)oxy]aniline 3-methylaniline 

 

- 

4-aminophenol Proprietary Structure   

  
1H-benzimidazol-5-amine 3,4-difluoroaniline 
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1,1-dimethylethyl 3-aminobenzoate 

  
(4-aminophenyl)phenlamine 4-bromoaniline 
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4-ethylaniline Proprietary Structure  
 

 
 3-chloroaniline 

Figure 6.8.   The structures and chemical names of the anilines classified as false-positives using the electron density 
at the C-N BCP.  

 

The origin of the experimental data for ten of the most extreme outliers in either classification 

was analysed and three predicted false-negative compounds (i.e. 4-aminobenzonitrile, methyl 4-

aminobenzoate, and 3,4,5-trifluoroaniline) were selected for Ames retesting in the most 

indicative bacterial strain (TA98) for AAs (Figure 6.2).  These three compounds had previously 

tested negative in TA100 +/-S9 and positive in TA98 +S9 but the purity was unknown.  Their 

purities were confirmed to be 100% by LCMS.  4-aminobenzonitrile displayed a clear positive 

response but methyl 4-aminobenzoate and 3,4,5-trifluoroaniline were negative in TA98 +S9 

(Figure 6.9).  The experimental results used to construct our model were corrected for these two 

compounds and 4-aminobenzamide and 7-quinolineamine were removed based on the 

discussions above.  The improved statistics for the new model are shown in Table 6.8.       

Table 6.8.  Updated truth table for Ames Prediction of the 87 meta- and para-substituted anilines in the GSK data set 
using the electron density at the C-N BCP.  

 Predicted Ames Positive Predicted Ames Negative 

Ames Positive Experimental 40 (46) 6 
Ames Negative Experimental 13 28 (41) 

Accuracy 0.78, Sensitivity 0.87, Specificity 0.68 
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Figure 6.9.  Does-response curves for the original Ames data and the retest data for 4-aminobenzonitrile, methyl 4-
aminobenzoate and 3,4,5-trifluoroaniline in bacterial strain TA98 +S9.    
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It is worth mentioning here a note of caution when collecting Ames results for AAs from the 

literature, although this did not apply to the meta- and para-substituted anilines we investigated.  

Many AAs were tested under the National Toxicology programme (NTP) in the US.  Their criteria 

for determining Ames classification is based on statistically significant increases in the number of 

revertants compared to the negative controls and not an increase over a specified threshold.  This 

means that for some compounds the classifications can differ, obviously affecting modelling 

attempts and results.  Furthermore, many of the NTP Ames tests employed both rat and hamster 

S9 to mimic metabolic activation.  It is known that the use of hamster S9 produces higher 

responses and therefore can be considered more sensitive257.  Some AAs have been classified as 

Ames-positive based on a positive response being observed with hamster S9 only.  However, 

current guidelines only require the use of rat S9.  To produce models for the prediction of Ames 

results for AAs, it is therefore important to be careful when mixing results obtained with S9 

extracted from different animal species where the classification differs.                 

6.5 Summary 
 

We investigated the reproducibility of the Ames test for a data set of 14 AAs.  We found that the 

small changes in purity, the protomer (i.e. free base and hydrochloride salt) tested and the 

solvent (i.e. DMSO or water) had only marginal influences on the IF’s and did not result in a 

change of any Ames classification.  These results formed the basis for the systematic Ames testing 

of synthetic building block AAs leading to a data set of 400 molecules.  We subsequently extracted 

a set of 89 meta- and para-substituted anilines and constructed predictive models, using the 

electron density at the BCP or ΔΔE as the only descriptors, to discriminate between Ames-positive 

and Ames-negative compounds in this class.  The statistics for the model compare favourably to 

similar methods published in the literature183.  We were able to explain some of the false-negative 

and false-positive-predictions.  These are currently being considered for repeat Ames tests.  Three 

compounds have been retested and the model correctly predicted two of the compounds as 

Ames-negative.  The considerations and difficulties in modelling AAs have been highlighted. We 

believe this method can be applied to different AAs subsets for the prediction of Ames test 

classifications.   
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Chapter 7                                                                                                                 

Conclusions and Future Work 
 

The use of QCT descriptors has been extended to predict two different properties of interest to 

the industrial sponsor and the wider scientific community.  We have constructed models for one 

of the largest data sets so far used for QTMS applications to predict pKa values for carboxylic 

acids.  It was not surprising that the SVM statistical learning method performed the best but it 

was unexpected that the linear PLS method would provide very similar CV statistics.  It was 

advantageous that the less CPU intensive HF/6-31G(d) level of theory provided comparable 

results to the more demanding B3LYP/6-311G(2d,p) level of theory.  The predicted pKa values 

from the models constructed from the 228 carboxylic acids compared favourably to commonly 

used pKa prediction tools.  The ortho-substituted benzoic acids were the least well predicted 

because QCT descriptors mainly account for the electronic contributions to the predicted 

property and do not fully capture steric effects.   

 

To improve pKa predictions for ortho-substituted compounds, we used data sets containing 

benzoic acids, phenols and anilines.  We considered the use of ab initio bond lengths exclusively 

as descriptors to predict pKa.  The aim was to investigate their effectiveness in pKa prediction but 

we also focused on comparing single-bond-length models and all-bond-length models.  Ab intio 

bond lengths can be extracted directly from the optimised geometries and do not require a 

further programme, such as MORPHY, to calculate the BCP properties.  The results indicate that 

single-bond-length, compound-class specific models can be used to predict the pKa of meta-/para-

substituted compounds but this is not the case for ortho-substituted compounds.  However, we 

identified high-correlation subsets that were able to accommodate the steric effects specific only 

to ortho-substituted compounds.  These high-quality models provided us with the confidence to 

successfully challenge the assigned experimental pKa values of compounds that were outliers.  It is 

remarkable that models constructed from a single bond length are able to accurately predict the 

pKa for a set of drug compounds used as a test set.   

 

Extending the use of QCT descriptors for biological property prediction, we investigated their 

application to predict the mutagenicity of carbocyclic and heterocyclic aromatic amines.  This 

class of compounds is synthetically very useful to medicinal chemists involved in drug design but 

they are often used with trepidation because of the large percentage of genotoxic compounds 

found in this group of chemicals.  Surprisingly, the comprehensive literature on the prediction of 

the mutagenic potency, measured in the Ames test, for these compounds is divided over which 

properties are important.   



175 
 

 

Comprehensive investigations into the prediction of mutagenic potencies taken from the 

literature produce a number of models but these failed to classify a test set of GSK Ames data.  It 

became apparent that contradictory Ames test results existed for several compounds; something 

that is problematic to modelling methods.  The systematic experimental investigation of AAs in 

the Ames test confirmed the reproducibility of this test but did not account for interlaboratory 

variations.  We questioned whether the prediction of mutagenic potency using literature data of 

variable quality is possible or even worthwhile in relation to the use of such a model at GSK.  A 

recent, carefully constructed list at GSK provides Ames test results from external and internal data 

for approximately 400 aromatic and heterocyclic aromatic amines.  The majority of the Ames-

positive compounds are only positive with metabolic activation.  This agrees with the widely 

accepted mechanism involving metabolic activation of these compounds by CYP1A2 to reactive 

metabolites that invoke a genotoxic response.  Still, for a considerable number of compounds, the 

Ames results are inconsistent with this mechanism.  Furthermore, our P450 enzyme inhibition 

assay results suggest that other cytochrome P450s could further complicate the mechanism 

leading to genotoxicity. 

 

In consideration of the above, a model was constructed using the electron density at the common 

Carbon-Nitrogen BCP of meta-/para-substituted anilines, which had Ames test results consistent 

with the accepted mechanism (i.e. negative without and positive with metabolic activation).  The 

model correctly classified 70% of the anilines.  Three outliers in the model were retested after 

establishing their purity levels.  It was encouraging that two of the compounds turned out to be 

negative as opposed to the original positive outcome for molecules of unknown purity.  When the 

classification for these compounds was updated and two compounds with a high potential for 

genotoxic mechanisms were removed, the model correctly classified 78% of the anilines.       

 

The two properties predicted in this work required very different considerations.  However, there 

were examples in both cases where models constructed using QCT descriptors were able to 

correctly challenge experimentally determined pKa values and Ames classifications.  QCT 

descriptors, calculated from solutions to the Schrödinger equation, have a strong physical basis 

but their calculations take longer than other popular descriptors.  This work has demonstrated 

their successful extension to larger data sets and in conjunction with the ever increasing speed of 

modern computation their routine use in drug discovery is an exciting opportunity.  
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The suggestion and opportunities for future work are listed below. 

 In Chapter 3 we discussed the prediction of pKa for carboxylic acids using QCT descriptors.  

Beyond extending this work to other classes of compounds, QTMS needs to match 

experiment by taking into account the nature of different tautomers present. 

 The QTMS method can be extended to predict pKa values for multiprotic compounds.  

Multiple ionisation centres have complex effects on the ionisation of a particular group.  

Hence for many of the published methods, results are limited to a series of monoprotic 

structures.  However, as QCT descriptors are based on ab initio calculations, these effects 

will automatically be encapsulated in the wave function and thus the descriptors and 

therefore the final prediction.  A similar method to that of Jelfs et al.79, who developed an 

algorithm that applies multiple predictive models in a stepwise manner and reproduces 

the correct ionisation order for different groups within a compound, should be used. 

 In Chapter 4 we demonstrated that a single ab initio bond length can be used to predict 

pKa.  In the case of ortho-substituted compounds, the consideration of conformation was 

important to model construction.  The dependence of conformation on QCT descriptors 

should be fully investigated.  This should involve returning to previous data sets used in 

QTMS analysis and investigating if unexplained outliers were caused by conformational 

differences to the rest of the data set.  This analysis may also be able to explain the so 

called “active centre contamination” in VIP plots. 

 Presently high-correlation subsets are visually identified.  Different clustering methods 

should be explored to investigate if they choose the same compounds for the same high-

correlation subsets or if less chemically intuitive, higher-correlation subsets are found. 

 A direct comparison using single-bond-length models to other QCT descriptor models 

should be performed to understand the added value of using QCT descriptors. 

 In Chapter 5 and Chapter 6 we discussed the collaborative work involving screeners, 

medicinal chemists, toxicologists, analytical and computational chemists, performed to 

purify a set of aromatic amines, screen them in the Ames test and use the data to 

generate predictive models.  With the knowledge gained from this work, carefully 

designed studies should be carried out to answer the questions that remain open. These 

are discussed below.  

 The models constructed to discriminate Ames outcomes for meta-/para-substituted 

anilines should be extended to account for all AAs.  As more compounds are added to the 

GSK data set, these models can be continually tested and updated.  Investigations into 

how the compounds in the data set need to be split into subsets and whether better 

models are constructed using high-correlation subsets should be performed. 
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 Direct comparisons between external and internal Ames test results should be made to 

fully appreciate the limits of using data from mixed sources for this class of compound.  

Models constructed using only data generated at GSK will avoid the problems associated 

with interlaboratory variations. 

 P450 enzyme inhibition data should be collected for all compounds considered in 

modelling to exclude mechanisms other than DNA modifications via the nitrenium ion 

formation.  Ames-positive +S9 compounds that do not interact with 1A2 are either 

inherently genotoxic or are metabolised by another P450 enzyme.  Outliers identified in 

computational models should be excluded if strong interactions with P450 enzymes other 

than CYP1A2 are observed.   

 To fully understand the influence of DMSO in the Ames test, the Ames-positive 

compounds that were found to degrade in DMSO should be systematically Ames-tested in 

another solvent.  The degradation products should be identified to understand the 

mechanism involved and explain the Ames test outcomes. 

 Recently, workers have proposed chemical models for the activation of aromatic 

amines258, 259  to avoid the use of the S9 metabolic activating mix, which itself is toxic to 

the bacterial strains.  The Ames results generated from such a model should be compared 

to the standard Ames test results.  While such a system is not accepted by the regulators, 

it simplifies the mechanisms involved and may be useful in explaining the current 

difficulties in modelling Ames data for this class of compound. 

 Ultimately, the generated models should be made available to the medicinal chemists so 

they can predict the likelihood of genotoxicity for an untested AA that they want to 

employ in synthesis or that appears as an impurity or metabolic product. 
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 The carboxylic acids and associated experimental pKa values. 

ID CAS no. Chemical Name Exp. pKa 

meta- and para-substituted benzoic acids    

1 000051-44-5 3,4-dichlorobenzoic acid 3.64 

2 000051-36-5 3,5-dichlorobenzoic acid 3.54 

3 000057-66-9 4-[(dipropylamino)sulfonyl]benzoic acid/probenecid 3.40 

4 000062-23-7 4-nitrobenzoic acid 3.44 

5 000065-85-0 benzoic acid 4.19 

6 000074-11-3 4-chlorobenzoic acid 3.98 

7 000093-09-4 2-naphthalenecarboxylic acid 4.17 

8 000093-07-2 3,4-dimethoxybenzoic acid 4.36 

9 000098-73-7 4-(1,1-dimethylethyl)benzoic acid 4.40 

10 000099-96-7 4-hydroxybenzoic acid 4.54 

11 000099-94-5 4-methylbenzoic acid 4.37 

12 000099-50-3 3,4-dihydroxybenzoic acid 4.48 

13 000099-34-3 3,5-dinitrobenzoic acid 2.82 

14 000099-10-5 3,5-dihydroxybenzoic acid 4.04 

15 000099-05-8 3-aminobenzoic acid 4.74 

16 000099-04-7 3-methylbenzoic acid 4.27 

17 000100-09-4 4-(methyloxy)benzoic acid 4.47 

18 000121-92-6 3-nitrobenzoic acid 3.46 

19 000121-34-6 4-hydroxy-3-(methyloxy)benzoic acid 4.51 

20 000149-91-7 3,4,5-trihydroxybenzoic acid 4.21 

21 000150-13-0 4-aminobenzoic acid 4.85 

22 000455-38-9 3-fluorobenzoic acid 3.86 

23 000456-22-4 4-fluorobenzoic acid 4.14 

24 000528-45-0 3,4-dinitrobenzoic acid 2.82 

25 000530-57-4 4-hydroxy-3,5-bis(methyloxy)benzoic acid 4.34 

26 000535-80-8 3-chlorobenzoic acid 2.81 
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27 000536-66-3 4-(1-methylethyl)benzoic acid 4.35 

28 000585-76-2 3-bromobenzoic acid 3.81 

29 000586-89-0 4-acetylbenzoic acid 3.70 

30 000586-76-5 4-bromobenzoic acid 4.00 

31 000586-38-9 3-(methyloxy)benzoic acid 4.09 

32 000619-86-3 4-(ethyloxy)benzoic acid 4.45 

33 000619-66-9 4-formylbenzoic acid 3.77 

34 000619-65-8 4-cyanobenzoic acid 3.55 

35 000619-64-7 4-ethylbenzoic acid 4.35 

36 000619-21-6 3-formylbenzoic acid 3.84 

37 000619-05-6 3,4-diaminobenzoic acid 3.49 

38 001132-21-4 3,5-dimethoxybenzoic acid 3.97 

39 001877-72-1 3-cyanobenzoic acid 3.60 

40 002215-77-2 4-(phenyloxy)benzoic acid 4.52 

41 003739-38-6 3-(phenyloxy)benzoic acid 3.92 

42 004052-30-6 4-(methylsulfonyl)benzoic acid 3.64 

43 005438-19-7 4-(propyloxy)benzoic acid 4.46 

44 007496-53-9 4-(glycylamino)benzoic acid 4.20 

ortho-substituted benzoic acids   

45 000050-85-1 2-hydroxy-4-methylbenzoic acid 3.40 

46 000050-84-0 2,4-dichlorobenzoic acid 2.68 

47 000050-79-3 2,5-dichlorobenzoic acid 2.47 

48 000050-78-2 2-(acetyloxy)benzoic acid 3.49 

49 000050-31-7 2,3,6-trichlorobenzoic acid 1.50 

50 000050-30-6 2,6-dichlorobenzoic acid 1.59 

51 000059-07-4 4-amino-2-(ethyloxy)benzoic acid 5.09 

52 000061-68-7 2-[(2,3-dimethylphenyl)amino]benzoic acid 4.20 

53 000065-49-6 4-amino-2-hydroxybenzoic acid 3.66 

54 000069-72-7 2-hydroxybenzoic acid 2.97 

55 000083-40-9 2-hydroxy-3-methylbenzoic acid 2.95 

56 000088-65-3 2-bromobenzoic acid 2.88 

57 000089-86-1 2,4-dihydroxybenzoic acid 3.11 
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58 000089-56-5 2-hydroxy-5-methylbenzoic acid 3.15 

59 000089-55-4 5-bromo-2-hydroxybenzoic acid 2.66 

60 000089-52-1 2-(acetylamino)benzoic acid 3.40 

61 000091-52-1 2,4-dimethyloxybenzoic acid 4.36 

62 000091-40-7 2-(phenylamino)benzoic acid 3.99 

63 000092-70-6 3-hydroxy-2-naphthalenecarboxylic acid 2.79 

64 000096-97-9 2-hydroxy-5-nitrobenzoic acid 2.12 

65 000099-60-5 2-chloro-4-nitrobenzoic acid 2.14 

66 000118-92-3 2-aminobenzoic acid 4.95 

67 000118-91-2 2-chlorobenzoic acid 2.89 

68 000119-90-1 2-methylbenzoic acid 3.98 

69 000129-66-8 2,4,6-trinitrobenzoic acid 0.65 

70 000133-90-4 3-amino-2,5-dichlorobenzoic acid 3.40 

71 000303-38-8 2,3-dihydroxybenzoic acid 2.91 

72 000303-07-1 2,6-dihydroxybenzoic acid 1.05 

73 000321-14-2 5-chloro-2-hydroxybenzoic acid 2.65 

74 000445-29-4 2-fluorobenzoic acid 3.27 

75 000490-79-9 2,5-dihydroxybenzoic acid 2.95 

76 000552-16-9 2-nitrobenzoic acid 2.17 

77 000577-56-0 2-acetylbenzoic acid 4.13 

78 000579-75-9 2-(methyloxy)benzoic acid 3.90 

79 000609-99-4 2-hydroxy-3,5-dinitrobenzoic acid 0.70 

80 000610-30-0 2,4-dinitrobenzoic acid 1.42 

81 000632-46-2 2,6-dimethylbenzoic acid 3.35 

82 000652-32-4 2,3,5,6-tetrafluoro-4-methylbenzoic acid 2.00 

83 000947-84-2 2-biphenylcarboxylic acid 3.46 

84 001466-76-8 2,6-bis(methyloxy)benzoic acid 3.44 

85 001521-38-6 2,3-dimethyloxybenzoic acid 3.98 

86 001918-00-9 3,6-dichloro-2-(methyloxy)benzoic acid 1.97 

87 002243-42-7 2-(phenyloxy)benzoic acid 3.53 

88 002438-04-2 2-(1-methylethyl)benzoic acid 3.63 

89 002516-96-3 2-chloro-5-nitrobenzoic acid 2.17 
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90 003970-35-2 2-chloro-3-nitrobenzoic acid 2.02 

91 004727-29-1 2-[(phenylamino)carbonyl]benzoic acid 2.50 

92 005344-49-0 2-chloro-6-nitrobenzoic acid 1.34 

93 021327-86-6 2-chloro-6-methylbenzoic acid 2.75 

94 025784-02-5 2-[(2-amino-2-oxoethyl)amino]benzoic acid 4.20 

aliphatic carboxylic acids  

95 000050-21-5 2-hydroxypropanoic acid 3.86 

96 000053-86-1 [1-[(4-chlorophenyl)carbonyl]-2-methyl-5-(methyloxy)-1H-indol-3-yl]acetic acid/indomethacin 4.50 

97 000061-78-9 N-[(4-aminophenyl)carbonyl]glycine 3.80 

98 000061-33-6 3,3-dimethyl-7-oxo-6-[(phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid/benzylpenicillin 2.74 

99 000061-32-5 6-({[2,6-bis(methyloxy)phenyl]carbonyl}amino)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acidmethicillin 2.77 

100 000064-19-7 acetic acid 4.76 

101 000068-11-1 mercaptoacetic acid 3.55 

102 000075-99-0 2,2-dichloropropanoic acid 1.79 

103 000075-98-9 2,2-dimethylpropanoic acid 5.03 

104 000076-93-7 hydroxy(diphenyl)acetic acid 3.05 

105 000076-05-1 trifluoroacetic acid 0.52 

106 000076-03-9 trichloroacetic acid 0.51 

107 000077-06-5 gibberellic acid 4.00 

108 000079-43-6 dichloroacetic acid 1.26 

109 000079-31-2 2-methylpropanoic acid 4.84 

110 000079-14-1 hydroxyacetic acid 3.83 

111 000079-11-8 chloroacetic acid 2.87 

112 000079-09-4 propanoic acid 4.88 

113 000079-08-3 bromoacetic acid 2.89 

114 000081-25-4 3,7,12-trihydroxycholan-24-oic acid 4.98 

115 000085-34-7 (2,3,6-trichlorophenyl)acetic acid 3.70 

116 000086-87-3 1-naphthalenylacetic acid 4.23 

117 000087-51-4 1H-indol-3-ylacetic acid 4.75 

118 000087-08-1 3,3-dimethyl-7-oxo-6-{[(phenyloxy)acetyl]amino}-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid/phenoxymethylpenicillin 2.79 

119 000088-09-5 2-ethylbutanoic acid 4.71 

120 000090-64-2 hydroxy(phenyl)acetic acid 3.41 
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121 000093-76-5 [(2,4,5-trichlorophenyl)oxy]acetic acid 2.83 

122 000093-72-1 2-[(2,4,5-trichlorophenyl)oxy]propanoic acid 2.84 

123 000094-82-6 4-[(2,4-dichlorophenyl)oxy]butanoic acid 4.95 

124 000094-81-5 4-[(4-chloro-2-methylphenyl)oxy]butanoic acid 6.20 

125 000094-75-7 [(2,4-dichlorophenyl)oxy]acetic acid 2.73 

126 000094-74-6 [(4-chloro-2-methylphenyl)oxy]acetic acid 3.13 

127 000097-61-0 2-methylpentanoic acid 4.79 

128 000098-89-5 cyclohexanecarboxylic acid 4.90 

129 000099-66-1 2-propylpentanoic acid 4.60 

130 000102-32-9 (3,4-dihydroxyphenyl)acetic acid 4.25 

131 000103-82-2 phenylacetic acid 4.31 

132 000104-03-0 (4-nitrophenyl)acetic acid 3.85 

133 000104-01-8 [4-(methyloxy)phenyl]acetic acid 4.36 

134 000107-94-8 3-chloropropanoic acid 3.99 

135 000107-92-6 butanoic acid 4.82 

136 000116-53-0 2-methylbutanoic acid 4.81 

137 000117-34-0 diphenylacetic acid 3.94 

138 000120-36-5 2-[(2,4-dichlorophenyl)oxy]propanoic acid 3.10 

139 000122-88-3 [(4-chlorophenyl)oxy]acetic acid 3.10 

140 000122-59-8 (phenyloxy)acetic acid 3.17 

141 000123-76-2 4-oxopentanoic acid 4.64 

142 000141-82-2 propanedioic acid 2.85 

143 000144-49-0 fluoroacetic acid 2.59 

144 000300-85-6 3-hydroxybutanoic acid 4.41 

145 000305-03-3 4-{4-[bis(2-chloroethyl)amino]phenyl}butanoic acid/chlorambucil 5.75 

146 000306-08-1 [4-hydroxy-3-(methyloxy)phenyl]acetic acid 4.41 

147 000327-97-9 3-{[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid/chlorogenic acid 2.66 

148 000331-25-9 (3-fluorophenyl)acetic acid 4.13 

149 000348-10-7 [(2-fluorophenyl)oxy]acetic acid 3.08 

150 000372-09-8 cyanoacetic acid 2.45 

151 000404-98-8 [(3-fluorophenyl)oxy]acetic acid 3.13 

152 000405-79-8 [(4-fluorophenyl)oxy]acetic acid 3.13 
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153 000405-50-5 (4-fluorophenyl)acetic acid 4.24 

154 000462-60-2 N-(aminocarbonyl)glycine 3.89 

155 000467-69-6 9-hydroxy-9H-fluorene-9-carboxylic acid/flurenol 1.09 

156 000473-81-4 2,3-dihydroxypropanoic acid 3.55 

157 000501-52-0 3-phenylpropanoic acid 4.66 

158 000503-74-2 3-methylbutanoic acid 4.77 

159 000503-66-2 3-hydroxypropanoic acid 4.51 

160 000515-30-0 2-hydroxy-2-phenylpropanoic acid 3.53 

161 000516-05-2 methylpropanedioic acid 3.12 

162 000539-35-5 6-(4-oxo-1,3-thiazolidin-2-yl)hexanoic acid/mycobacidin 5.10 

163 000581-96-4 2-naphthalenylacetic acid 4.25 

164 000588-32-9 [(3-chlorophenyl)oxy]acetic acid 3.07 

165 000588-22-7 [(3,4-dichlorophenyl)oxy]acetic acid 2.92 

166 000594-61-6 2-hydroxy-2-methylpropanoic acid 3.61 

167 000595-46-0 dimethylpropanedioic acid 3.15 

168 000595-37-9 2,2-dimethylbutanoic acid 5.03 

169 000598-78-7 2-chloropropanoic acid 2.80 

170 000598-72-1 2-bromopropanoic acid 2.97 

171 000601-75-2 ethylpropanedioic acid 2.96 

172 000614-61-9 [(2-chlorophenyl)oxy]acetic acid 3.05 

173 000616-62-6 propylpropanedioic acid 2.99 

174 000617-31-2 2-hydroxypentanoic acid 2.89 

175 000622-47-9 (4-methylphenyl)acetic acid 4.37 

176 000646-07-1 4-methylpentanoic acid 4.84 

177 000689-13-4 N-formyl-N-hydroxyglycine 3.50 

178 000940-64-7 [(4-methylphenyl)oxy]acetic acid 3.21 

179 001643-15-8 [(3-methylphenyl)oxy]acetic acid 3.20 

180 001759-53-1 cyclopropanecarboxylic acid 4.83 

181 001798-99-8 [(3-bromophenyl)oxy]acetic acid 3.09 

182 001798-11-4 [(4-nitrophenyl)oxy]acetic acid 2.89 

183 001821-12-1 4-phenylbutanoic acid 4.76 

184 001877-75-4 {[4-(methyloxy)phenyl]oxy}acetic acid 2.31 
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185 001877-73-2 (3-nitrophenyl)acetic acid 3.97 

186 001878-91-7 [(4-bromophenyl)oxy]acetic acid 3.13 

187 001878-88-2 [(3-nitrophenyl)oxy]acetic acid 2.95 

188 001878-87-1 [(2-nitrophenyl)oxy]acetic acid 2.90 

189 001878-85-9 {[2-(methyloxy)phenyl]oxy}acetic acid 3.23 

190 001878-82-6 [(4-cyanophenyl)oxy]acetic acid 2.93 

191 001878-68-8 (4-bromophenyl)acetic acid 4.19 

192 001878-66-6 (4-chlorophenyl)acetic acid 4.19 

193 001878-65-5 (3-chlorophenyl)acetic acid 4.14 

194 001878-49-5 [(2-methylphenyl)oxy]acetic acid 3.23 

195 001879-58-9 [(3-cyanophenyl)oxy]acetic acid 3.03 

196 001879-56-7 [(2-bromophenyl)oxy]acetic acid 3.13 

197 002088-24-6 {[3-(methyloxy)phenyl]oxy}acetic acid 3.14 

198 002270-20-4 5-phenylpentanoic acid 4.88 

199 002976-75-2 (1-naphthalenyloxy)acetic acid 3.20 

200 003813-05-6 (4-chloro-2-oxo-1,3-benzothiazol-3(2H)-yl)acetic acid 3.04 

201 005292-21-7 cyclohexylacetic acid 4.80 

202 006324-11-4 [(2-hydroxyphenyl)oxy]acetic acid 3.02 

203 010502-44-0 hydroxy[4-(methyloxy)phenyl]acetic acid 3.42 

204 014387-10-1 (4-ethylphenyl)acetic acid 4.37 

205 015307-86-5 {2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid/ diclofenac 4.15 

206 015687-27-1 2-[4-(2-methylpropyl)phenyl]propanoic acid/ibuprofen 4.45 

207 016484-77-8 2-[(4-chloro-2-methylphenyl)oxy]propanoic acid 3.68 

208 016563-41-0 3-(1-naphthalenyloxy)propanoic acid 4.00 

209 018046-21-4 [4-(4-chlorophenyl)-2-phenyl-1,3-thiazol-5-yl]acetic acid/fentiazac 3.60 

210 020225-24-5 2-ethylpentanoic acid 4.71 

211 022071-15-4 2-[3-(phenylcarbonyl)phenyl]propanoic acid/ketoprofen 4.45 

212 022131-79-9 [3-chloro-4-(2-propen-1-yloxy)phenyl]acetic acid/alcofenac 4.29 

213 022204-53-1 2-[6-(methyloxy)-2-naphthalenyl]propanoic acid/naprosyn 4.15 

214 029679-58-1 2-[3-(phenyloxy)phenyl]propanoic acid/fenoprofen 4.50 

215 032857-63-9 [4-(1,1-dimethylethyl)phenyl]acetic acid 4.42 

216 036330-85-5 4-(4-biphenylyl)-4-oxobutanoic acid/fenbufen 4.51 
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217 038194-50-2 ((1E)-5-fluoro-2-methyl-1-{[4-(methylsulfinyl)phenyl]methylidene}-1H-inden-3-yl)acetic acid/sulindac 4.70 

218 040828-46-4 2-[4-(2-thienylcarbonyl)phenyl]propanoic acid/suprofen 3.91 

219 040843-25-2 2-({4-[(2,4-dichlorophenyl)oxy]phenyl}oxy)propanoic acid 3.43 

220 053808-88-1 [3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]acetic acid/ionazolac 4.30 

221 055335-06-3 [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid 2.68 

222 055863-26-8 (11-oxo-6,11-dihydrodibenzo[b,e]thiepin-2-yl)acetic acid/tiopinac 3.71 

223 058667-63-3 N-(3-chloro-4-fluorophenyl)-N-(phenylcarbonyl)alanine 3.72 

224 069335-91-7 2-[(4-{[5-(trifluoromethyl)-2-pyridinyl]oxy}phenyl)oxy]propanoic acid 3.12 

225 069806-34-4 2-[(4-{[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy}phenyl)oxy]propanoic acid 2.90 

226 074103-06-3 5-(phenylcarbonyl)-2,3-dihydro-1H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid/ketorolac 3.49 

227 089894-13-3 [(4-chloro-3-nitrophenyl)oxy]acetic acid 2.96 

228 104273-73-6 4-(cyclopropylcarbonyl)-3,5-dioxocyclohexanecarboxylic acid 5.32 
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Tehan 
ID ID SMILES Chemical Name Exp pKa Ref. 

Meta/Para-Substituted Phenols 
   

1 1 NCCc1ccc(O)cc1 4-(2-aminoethyl)phenol 9.77 1 

2 2 Cc1c(Cl)ccc(O)c1 3-methyl-4-chlorophenol 9.20 1 

3 3 CC(Cc1ccc(O)cc1)(C)C 4-tert-amylphenol 10.43 1 

4 4 c1(cc(O)ccc1[N+](=O)[O-])C(F)(F)F 3-trifluoromethyl-4-nitrophenol 6.07 1 

5 5 c1(Cl)c(C)cc(cc1C)O 4-chloro-3,5-dimethylphenol 9.70 1 

6 6 c1(ccc(cc1)O)c2ccccc2 4-phenylphenol 9.55 1 

7 7 C(OCCCC)(=O)c1ccc(cc1)O 4-hydroxy nutyl benzoate 8.47 1 

8 8 c1(Cl)c(Cl)ccc(O)c1 3,4-dichlorophenol 8.63 1 

9 9 c1(C)cc(O)ccc1C 3,4-dimethylphenol 10.36 1 

10 10 C(C)(C)(C)c1ccc(cc1)O 4-t-butylyphenol 10.39 1 

11 11 C(F)(F)(F)c1cccc(O)c1 3-trifluoromethylphenol 8.95 1 

12 12 C(C)(=O)c1ccc(cc1)O 4-hydroxyacetophenone 8.05 1 

13 13 c1(C(C)C)ccc(cc1)O 4-isopropylphenol 10.24 1 

14 14 O=Cc1cccc(O)c1 3-hydroxybenzaldehyde 8.98 1 

15 15 [N+](=O)([O-])c1ccc(cc1)O 4-nitrophenol 7.15 1 

16 16 C(C)(=O)Nc1ccc(cc1)O n-(4-hydroxyphenyl)acetamide 9.38 1 

17 17 c1(ccc(cc1)O)Cl 4-chlorophenol 9.41 1 

18 18 c1(O)ccc(cc1)C 4-cresol 10.26 1 

19 19 c1(ccc(cc1)O)Br 4-bromophenol 9.17 1 

20 20 c1(ccccc1)O phenol 9.99 1 

21 21 c1(O)cc(C)cc(C)c1 3,5-dimethylphenol 10.19 1 

22 22 c1c(cccc1Cl)O 3-chlorophenol 9.12 1 

23 23 c1c(C)cccc1O 3-cresol 10.09 1 
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24 24 C(OCC)(=O)c1ccc(cc1)O 4-hydroxybenzoic acid, ethyl ester 8.34 1 

25 25 c1(cccc(O)c1)C(C)=O 3-hydroxyacetophenone 9.25 1 

26 26 c1(ccc(cc1)O)N 4-aminophenol 10.45 1 

27 27 O=Cc1ccc(cc1)O 4-hydroxybenzaldehyde 7.61 1 

28 28 c1(O)ccc(cc1)CC 4-ethylphenol 10.00 1 

29 29 c1(O)ccc(cc1)OC 4-methoxyphenol 10.10 1 

30 30 c1c(cccc1O)OC 3-methoxyphenol 9.65 1 

31 31 c1(ccc(cc1)O)F 4-fluorophenol 9.91 1 

32 32 c1c(cccc1F)O 3-fluorophenol 9.21 1 

33 33 C(F)(F)(F)c1ccc(cc1)O 4-trifluoromethylphenol 8.68 1 

34 34 c1(O)cc(OC)cc(OC)c1 3,5-dimethoxyphenol 9.34 1 

35 35 c1(ccc(cc1)O)I 4-iodophenol 9.21 1 

36 36 [N+](=O)([O-])c1cccc(O)c1 3-nitrophenol 8.36 1 

37 37 c1(cc(O)ccc1[N+](=O)[O-])[N+](=O)[O-] 3,4-dinitrophenol 5.42 1 

38 38 c1(cccc(O)c1)c2ccccc2 3-phenylphenol 9.64 1 

39 39 c1(cccc(O)c1)C(C)(C)C 3-(1,1-dimethylethyl)-phenol 10.12 1 

40 40 [N+](=O)([O-])c1cc(O)cc(c1)[N+](=O)[O-] 3,5-dinitrophenol 6.69 1 

41 41 c1(Cl)cc(O)cc(Cl)c1 3,5-dichlorophenol 8.18 1 

42 42 c1c(cccc1N)O 3-aminophenol 9.86 1 

43 43 c1c(cccc1Br)O 3-bromophenol 9.03 1 

44 44 c1(Cl)c(Cl)cc(cc1Cl)O 3,4,5-trichlorophenol 7.84 1 

45 45 c1(cccc(O)c1)C(C)C 3-isopropylphenol 10.16 1 

46 46 c1c(CC)cccc1O 3-ethylphenol 9.90 1 

47 47 c1c(cccc1O)OCC 3-ethoxyphenol 9.65 1 

48 48 c1(O)ccc(cc1)OCC 4-ethoxyphenol 10.13 1 

49 49 c1(Br)cc(O)cc(Br)c1 3,5-dibromophenol 8.06 1 

50 50 c1c(cccc1I)O 3-iodophenol 9.03 1 
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51 51 c1(O)ccc(cc1)CCC 4-propylphenol 10.34 1 

52 52 c1(O)cc(CC)cc(C)c1 3-ethyl-5-methylphenol 10.10 1 

53 53 N#Cc1ccc(cc1)O 4-cyanophenol 7.97 1 

54 54 N#Cc1cccc(O)c1 3-cyanophenol 8.61 1 

55 55 c1(O)ccc(cc1)CS 4-methiophenol 9.53 1 

56 56 c12CCCc1ccc(O)c2 5-indanol 10.32 1 

57 57 [N+](=O)([O-])c1c(C)ccc(O)c1 3-nitro-4-cresol 8.62 1 

58 58 C(C)(=O)c1ccc(cc1)O hydroxyacetophenone 8.05 1 

Ortho-Substituted Phenols (Capable of forming internal hydrogen bonds) 
   

1 59 c1(ccccc1O)C(N)=O 2-hydroxybenzamide 8.89 1 

2 60 C(=O)(Nc1ccccc1)c2ccccc2O salicylanilide 7.40 1 

3 61 c1(ccccc1O)C(OC)=O methyl salicylate 9.87 1 

4 62 c1(O)c(cccc1C=O)OC 2-vanillin 7.91 1 

5 63 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccc(cc2)Cl 3,5,4'-trichloro salicylanilide 4.70 1 

6 64 C(=O)(Nc1ccccc1Cl)c2ccccc2O 2'-chloro salicylanilide 7.31 1 

7 65 c1(c(O)ccc(c1)N(=O)=O)C(=O)Nc2ccccc2 5-nitro salicylanilide 3.03 1 

8 66 C(=O)(Nc1ccc(cc1)Br)c2ccccc2O 4'-bromo salicylanilide 7.31 1 

9 67 c1(cc(ccc1O)Br)C(=O)Nc2ccc(cc2)Cl 4'-chloro-5-bromo salicylanilide 6.00 1 

10 68 C(=O)(Nc1ccc(cc1)Cl)c2ccccc2O 4'-chloro salicylanilide 7.30 1 

11 69 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccccc2 3,5-dichloro salicylanilide 4.70 1 

12 70 c1(cc(ccc1O)Cl)C(=O)Nc2ccccc2 5-chlorosalicylanilide 6.17 1 

13 71 c1(cc(ccc1O)Cl)C(=O)Nc2ccccc2C 5-chloro-2'-methyl salicylanilide 6.60 1 

14 72 C(=O)(Nc1ccc(Cl)cc1Cl)c2ccccc2O 2',4'-dichloro salicylanilide 7.14 1 

15 73 N(=O)(=O)c1ccccc1NC(=O)c2ccccc2O 2'-nitro salicylanilide 6.91 1 

16 74 c1(cc(ccc1NC(=O)c2ccccc2O)Cl)N(=O)=O 2'-nitro-4'-chloro salicylanilide 6.74 1 

17 75 c1(ccc(Br)c(C)c1O)C(NC)=O 5-bromo-2-hydroxy-n,3-dimethyl-benzamide 7.52 1 

18 76 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccc(cc2)F 3,5-dichloro-4'-fluoro salicylanilide 4.80 1 
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19 77 c1(cc(cc(Br)c1O)Br)C(=O)Nc2ccc(Cl)cc2N(=O)=O 3,5-dibromo-2'-nitro-4'-chloro salicylanilide 4.11 1 

20 78 C(=O)(Nc1ccc(Cl)cc1C)c2ccccc2O 2'-methyl-4'-chloro salicylanilide 7.43 1 

21 79 c1(cc(ccc1O)F)C(=O)Nc2ccc(Br)cc2C 5-fluoro-2'-methyl-4'-bromo salicylanilide 7.10 1 

22 80 c1(cc(ccc1O)F)C(=O)Nc2ccc(Cl)cc2C 5-fluoro-2'-methyl-4'-chloro salicylanilide 7.30 1 

23 81 c1(cc(cc(Br)c1O)Br)C(=O)Nc2ccc(F)cc2F 3,5-dibromo-2',4'-difluoro salicylanilide 4.77 1 

24 82 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccc(F)cc2F 3,5-dichloro-2',4'-difluoro salicylanilide 4.77 1 

25 83 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccc(Cl)cc2N(=O)=O 3,5,-4'-trichloro-2'-nitro salicylanilide 4.11 1 

26 84 c1(cc(cc(Cl)c1O)Cl)C(=O)Nc2ccc(cc2C)N(=O)=O 3,5-dichloro-2'-methyl-4'-nitro salicylanilide 4.41 1 

Ortho-Substituted Phenols 
   

1 85 c1(c(O)ccc(c1)[N+](=O)[O-])[N+](=O)[O-] 2,4-dinitrophenol 4.09 1 

2 86 c1(Cl)c(O)c(Cl)cc(Cl)c1Cl 2,3,4,6-tetrachlorophenol 5.22 1 

3 87 c1(c(cccc1N(=O)=O)O)N(=O)=O 2,3-dinitrophenol 4.96 1 

4 88 c1(Cl)c(Cl)c(O)c(c(Cl)c1Cl)Cl pentachlorophenol 4.70 1 

5 89 c1(O)c(cccc1Cl)Cl 2,6-dichlorophenol 6.79 1 

6 90 c1(O)c(C)cccc1Cl 2-methyl-6-chlorophenol 8.69 1 

7 91 c1(cc(cc([N+](=O)[O-])c1O)[N+](=O)[O-])[N+](=O)[O-] 2,4,6-trinitrophenol 0.38 1 

8 92 c1(cc(Cl)cc([N+](=O)[O-])c1O)[N+](=O)[O-] 4-chloro-2,6-dinitrophenol 2.96 1 

9 93 c1(cc(cc(C(C)CC)c1O)[N+](=O)[O-])[N+](=O)[O-] 2-sec-butyl-4,6-dinitrophenol 4.62 1 

10 94 [N+](=O)([O-])c1ccccc1O 2-nitrophenol 7.23 1 

11 95 c1(ccccc1O)C(C)C 2-isopropylphenol 10.47 1 

12 96 c1(ccccc1O)C(C)(C)C 2-t-butylphenol 10.28 1 

13 97 c1(O)c(Cl)cc(cc1Cl)Cl 2,4,6-trichlorophenol 6.23 1 

14 98 c1(O)cc(C)ccc1C(C)C thymol 10.62 1 

15 99 c1(C(C)C)c(O)cc(c(Cl)c1)C chlorothymol 9.98 1 

16 100 [N+](=O)([O-])c1c(O)ccc(Cl)c1 4-chloro-2-nitrophenol 6.46 1 

17 101 c1(ccccc1O)c2ccccc2 2-phenylphenol 9.92 1 

18 102 c1(ccccc1OC)O 2-methoxyphenol 9.98 1 
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19 103 c1(ccccc1CC)O 2-ethylphenol 10.20 1 

20 104 c1(OC)cc(C)ccc1O 4-methyl-2-methoxyphenol 10.28 1 

21 105 c1(ccccc1OCC)O 2-ethoxyphenol 10.11 1 

22 106 c1c(Cl)c(O)cc(Cl)c1Cl 2,4,5-trichlorophenol 7.40 1 

23 107 c1(O)cc(C)ccc1C 2,5-dimethylphenol 10.41 1 

24 108 c1(ccccc1O)Cl 2-chlorophenol 8.56 1 

25 109 c1(ccccc1O)Br 2-bromophenol 8.45 1 

26 110 c1(ccccc1O)N 2-aminophenol 9.75 1 

27 111 c1(ccccc1C)O 2-cresol 10.28 1 

28 112 c1(c(O)ccc(C(C)(C)C)c1)C(C)(C)C 2,4-di-t-butylphenol 11.72 1 

29 113 c1(OC)cc(ccc1O)C=CC 2-methoxy-4-(1-propenyl)phenol 9.88 1 

30 114 c1(OC)cc(CC=C)ccc1O eugenol 10.19 1 

31 115 c1(ccc(c(Cl)c1)O)C(C)(C)C 4-(tert-butyl)-2-chlorophenol 8.58 1 

32 116 c1(ccc(c(C)c1)O)C(C)(C)C 4-(t-butyl)-2-cresol 10.59 1 

33 117 [N+](=O)([O-])c1ccc(c(N)c1)O 2-amino-4-nitrophenol 7.60 1 

34 118 [N+](=O)([O-])c1cc(Br)c(c(Br)c1)O 2,6-dibromo-4-nitrophenol 3.39 1 

35 119 c1(C)cc(C)ccc1O 2,4-dimethylphenol 10.60 1 

36 120 c1(O)c(Br)cc(cc1Br)Br 2,4,6-tribromophenol 6.10 1 

37 121 N(=O)(=O)c1c(O)ccc(N)c1 phenol, 4-amino-2-nitro- 7.81 1 

38 122 [N+](=O)([O-])c1cc(C)ccc1O 4-methyl-2-nitrophenol 7.40 1 

39 123 c1(Cl)c(O)ccc(Cl)c1 2,4-dichlorophenol 7.89 1 

40 124 c1(OC)cc(ccc1O)C=O vanillin 7.40 1 

41 125 c1(O)c(cccc1C(C)(C)C)C(C)(C)C 2,6-di-t-butylphenol 11.70 1 

42 126 c1(O)c(cc(cc1C(C)(C)C)C)C(C)(C)C 2,6-di-t-butyl-4-methylphenol (bht) 12.23 1 

43 127 c2(cc(cc(C1CCCCC1)c2O)[N+](=O)[O-])[N+](=O)[O-] 2-cyclohexyl-4,6-dinitrophenol 4.52 1 

44 128 [N+](=O)([O-])c1ccc(cc1O)[N+](=O)[O-] 2,5-dinitrophenol 5.21 1 

45 129 c1(ccccc1O)F 2-fluorophenol 8.70 1 
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46 130 [N+](=O)([O-])c1ccc(cc1O)F 5-fluoro-2-nitrophenol 6.07 1 

47 131 c1(O)c(C)cc(c(C)c1)C 2,4,5-trimethylphenol 10.57 1 

48 132 c1(C)c(C)cccc1O 2,3-dimethylphenol 10.54 1 

49 133 c1(O)c(C)cc(cc1C)C 2,4,6-trimethylphenol 10.86 1 

50 134 c1(ccccc1O)I 2-iodophenol 8.51 1 

51 135 c1(c(O)c(C)cc(c1)[N+](=O)[O-])[N+](=O)[O-] 4,6-dinitro-o-cresol 4.31 1 

52 136 c1(O)c(O)ccc(CCN)c1C 2-methyldopamine= 9.54 1 

53 137 [N+](=O)([O-])c1cccc(c1O)[N+](=O)[O-] 2,6-dinitrophenol 3.97 1 

54 138 c1(O)c(C)cccc1C 2,6-dimethylphenol 10.62 1 

55 139 c1(Cl)c(cccc1Cl)O 2,3-dichlorophenol 7.70 1 

56 140 c1(O)c(Cl)ccc(Cl)c1 2,5-dichlorophenol 7.51 1 

57 141 [N+](=O)([O-])c1cccc(Cl)c1O 6-chloro-2-nitrophenol 5.48 1 

58 142 c1(Br)c(Br)c(O)c(c(Br)c1Br)Br pentabromophenol 4.62 1 

59 143 c1(O)c(cccc1Br)Br 2,6-dibromophenol 6.67 1 

60 144 c1(cc(C)cc([N+](=O)[O-])c1O)[N+](=O)[O-] 2,6-dinitro-p-cresol 4.23 1 

61 145 N#Cc1ccccc1O 2-cyanophenol 6.86 1 

62 146 [N+](=O)([O-])c1ccc(cc1O)Cl 5-chloro-2-nitrophenol 6.05 1 

63 147 c1(Br)c(O)ccc(Br)c1 2,4-dibromophenol 7.79 1 

64 148 [N+](=O)([O-])c1cc(Cl)c(c(Cl)c1)O 2,6-dichloro-4-nitrophenol 3.55 1 

65 149 [N+](=O)([O-])c1ccc(c(Cl)c1)O 2-chloro-4-nitrophenol 5.45 1 

66 150 c1(O)cc(ccc1OC)C=O isovanillin 8.89 1 

67 151 c1(ccccc1CCC)O 2-propylphenol 10.47 1 

68 152 c1(O)cc(C)cc(C)c1C 2,3,5-trimethylphenol 10.67 1 

69 153 c1(C)cc(c([N+]([O-])=O)cc1)O 5-methyl-2-nitrophenol 7.41 1 

70 154 c2(cc(cc(c1ccccc1)c2O)[N+](=O)[O-])[N+](=O)[O-] 2,4-dinitro-6-phenylphenol 3.85 1 

71 155 c1(C(C)(C)C)cc(C(C)(C)C)cc(C(C)(C)C)c1O 2,4,6-tri(tert-butyl)phenol 12.19 1 

72 156 c1(F)c(F)c(O)c(c(F)c1F)F pentafluorophenol 5.53 1 
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73 157 [N+](=O)([O-])c2c(O)ccc(c1ccccc1)c2 4-phenyl-2-nitrophenol 6.73 1 

74 158 c1(Cl)c(Cl)ccc(Cl)c1O 2,3,6-trichlorophenol 5.80 1 

75 159 c1(O)c(Cl)c(Cl)cc(Cl)c1Cl 2,3,5,6-tetrachlorophenol 5.14 1 

76 160 c1(cc(cc(Cl)c1O)[N+](=O)[O-])[N+](=O)[O-] 6-chloro-2,4-dinitrophenol 2.10 1 

77 161 [N+](=O)([O-])c1c(O)ccc(OC)c1 4-methoxy-2-nitrophenol 7.31 1 

78 162 c1(C)cc(Cl)ccc1O 2-methyl-4-chlorophenol 9.71 1 

79 163 c1(O)c(Br)cc(cc1Br)C#N bromoxynil 3.86 1 

80 164 c1(cc(C)cc(C)c1O)C(C)(C)C 2-(1,1-dimethylethyl)-4,6-dimethylphenol 12.04 1 

81 165 c1(O)c(cccc1C(C)C)C(C)C phenol, 2,6-bis(1-methylethyl)- 11.10 1 

82 166 c1(cc(C)ccc1O)C(C)(C)C 2-(tert-butyl)-4-methylphenol 11.72 1 

83 167 [N+](=O)([O-])c1cc(C)c(c(C)c1)O 2,6-dimethyl-4-nitrophenol 7.07 1 

84 168 c1(O)c(Cl)cc(cc1Cl)C 4-methyl-2,6-dichlorophenol 7.19 1 

85 169 c1(O)c(Cl)cc(cc1Cl)Br 4-bromo-2,6-dichlorophenol 6.21 1 

86 170 [N+](=O)([O-])c1c(O)ccc(C(C)CC)c1 4-(sec-butyl)-2-nitrophenol 7.59 1 

87 171 C(O)(=O)c1ccc(O)c(Cl)c1 3-chloro-4-hydroxybenzoic acid 7.52 1 

88 172 c1(Cl)c(Cl)c(O)cc(Cl)c1Cl 2,3,4,5-tetrachlorophenol 6.35 1 

89 173 N(=O)(=O)c1ccc(c(O)c1)C phenol, 2-methyl-5-nitro- 8.59 1 

90 174 Cl-c(cc(c1)C)c(c1)O 2-chloro-4-methylphenol 8.74 1 

91 175 c2(c(ON=Cc1cc(Br)c(c(Br)c1)O)ccc(c2)N(=O)=O)N(=O)=O bromofenoxim 5.46 1 

Meta/Para-Substituted Benzoic Acids 
   

1 176 C(O)(=O)c1ccc(c(Cl)c1)Cl 3,4-dichlorobenzoic acid 3.64 1 

2 177 c1(cc(Cl)cc(Cl)c1)C(O)=O 3,5-dichlorobenzoic acid 3.54 1 

3 178 S(=O)(=O)(N(CCC)CCC)c1ccc(cc1)C(O)=O probenecid 3.40 1 

4 179 [N+](=O)([O-])c1ccc(cc1)C(O)=O p-nitrobenzoicacid 3.44 1 

5 180 C(O)(c1ccccc1)=O benzoic acid 4.19 1 

6 181 C(O)(=O)c1ccc(cc1)Cl 4-chlorobenzoic acid 3.98 1 

7 182 C(O)(=O)c2ccc1c(cccc1)c2 2-naphthoic acid 4.17 1 
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8 183 C(O)(=O)c1ccc(c(OC)c1)OC 3,4-dimethoxybenzoic acid 4.36 1 

9 184 C(O)(=O)c1ccc(cc1)C(C)(C)C 4-(tert-butyl)-benzoic acid 4.40 1 

10 185 C(O)(=O)c1ccc(cc1)O p-hydroxybenzoic acid 4.54 1 

11 186 C(O)(=O)c1ccc(cc1)C p-toluic acid 4.37 1 

12 187 C(O)(=O)c1ccc(c(O)c1)O 3,4-dihydroxybenzoic acid 4.48 1 

13 188 [N+](=O)([O-])c1cc(cc(c1)[N+](=O)[O-])C(O)=O 3,5-dinitrobenzoic acid 2.82 1 

14 189 c1(cc(O)cc(O)c1)C(O)=O 3,5-dihydroxybenzoic acid 4.04 1 

15 190 C(O)(=O)c1cccc(N)c1 3-aminobenzoic acid 4.74 1 

16 191 C(O)(=O)c1cccc(C)c1 m-toluic acid 4.27 1 

17 192 C(O)(=O)c1ccc(cc1)OC p-methoxybenzoic acid 4.47 1 

18 193 [N+](=O)([O-])c1cccc(c1)C(O)=O m-nitrobenzoic acid 3.46 1 

19 194 C(O)(=O)c1ccc(c(OC)c1)O 4-hydroxy-3-methoxybenzoic acid 4.51 1 

20 195 c1(O)c(O)cc(cc1O)C(O)=O 3,4,5-trihydroxybenzoic acid 4.21 1 

21 196 C(O)(=O)c1ccc(cc1)N 4-aminobenzoic acid 4.85 1 

22 197 C(O)(=O)c1cccc(F)c1 m-fluorobenzoic acid 3.86 1 

23 198 C(O)(=O)c1ccc(cc1)F p-fluorobenzoic acid 4.14 1 

24 199 c1(cc(ccc1[N+](=O)[O-])C(O)=O)[N+](=O)[O-] 3,4-dinitrobenzoic acid 2.82 1 

25 200 c1(O)c(OC)cc(cc1OC)C(O)=O 4-hydroxy-3,5-dimethoxybenzioc acid 4.34 1 

26 201 C(O)(=O)c1cccc(Cl)c1 m-chlorobenzoic acid 3.81 1 

27 202 C(O)(=O)c1ccc(cc1)C(C)C cumic acid 4.35 1 

28 203 C(O)(=O)c1cccc(Br)c1 m-bromobenzoic acid 3.81 1 

29 204 C(O)(=O)c1ccc(cc1)C(C)=O p-acetylbenzoic acid 3.70 1 

30 205 C(O)(=O)c1ccc(cc1)Br p-bromobenzoic acid 4.00 1 

31 206 C(O)(=O)c1cccc(OC)c1 m-methoxybenzoic acid 4.09 1 

32 207 C(O)(=O)c1cccc(I)c1 3-iodobenzoic acid 3.85 1 

33 208 C(O)(=O)c1ccc(cc1)OCC p-ethoxybenzoic acid 4.45 1 

34 209 c(cc(c1)C(=O)O)c(c1)C=O 4-formylbenzoic acid 3.77 1 



240 
 

35 210 N#Cc1ccc(cc1)C(O)=O p-cyanobenzoic acid 3.55 1 

36 211 C(O)(=O)c1ccc(cc1)CC 4-ethylbenzoic acid 4.35 1 

37 212 C(O)(=O)c1ccc(cc1)I 4-iodobenzoic acid 4.00 1 

38 213 C(O)(=O)c1cccc(c1)C=O 3-formylbenzoic acid 3.84 1 

39 214 Nc1ccc(cc1N)C(O)=O 3,4-diamino-benzoic acid 3.49 1 

40 215 c1(cc(OC)cc(OC)c1)C(O)=O 3,5-dimethoxybenzoic acid 3.97 1 

41 216 C(O)(=O)c1cccc(c1)C#N m-cyanobenzoic acid 3.60 1 

42 217 C(O)(=O)c1ccc(cc1)Oc2ccccc2 p-phenoxybenzoic acid 4.52 1 

43 218 C(O)(=O)c2cccc(Oc1ccccc1)c2 m-phenoxybenzoic acid 3.92 1 

44 219 S(C)(=O)(=O)c1ccc(cc1)C(O)=O p-methylsulfonylbenzoic acid 3.64 1 

45 220 C(O)(=O)c1ccc(cc1)OCCC 4-propoxybenzoic acid 4.46 1 

46 221 O=C(O)c(cccc1O)c1 4-[(acetylamino)amino]-benzoic acid 4.20 1 

Ortho-Substituted Benzoic Acids 
   

1 222 c1(ccc(cc1O)C)C(O)=O 4-methylsalicylic acid 3.40 1 

2 223 c1(ccc(cc1Cl)Cl)C(O)=O 2,4-dichlorobenzoic acid 2.68 1 

3 224 c1(cc(Cl)ccc1Cl)C(O)=O 2,5-dichlorobenzoic acid 2.47 1 

4 225 c1(ccccc1OC(C)=O)C(O)=O acetylsalicylic acid 3.49 1 

5 226 c1(c(Cl)ccc(Cl)c1Cl)C(O)=O 2,3,6-trichlorobenzoic acid 1.50 1 

6 227 c1(c(cccc1Cl)Cl)C(O)=O 2,6-dichlorobenzoic acid 1.59 1 

7 228 c1(ccc(cc1OCC)N)C(O)=O 2-ethoxy-4-aminobenzoic acid 5.09 1 

8 229 c1(ccccc1Nc2cccc(C)c2C)C(O)=O mefenamic acid 4.20 1 

9 230 c1(ccc(cc1O)N)C(O)=O p-aminosalicylic acid 3.66 1 

10 231 c1(ccccc1O)C(O)=O salicylic acid 2.97 1 

11 232 c1(cccc(C)c1O)C(O)=O 3-methylsalicylic acid 2.95 1 

12 233 c1(ccccc1I)C(O)=O 2-iodobenzoic acid 2.93 1 

13 234 c1(ccccc1Br)C(O)=O o-bromobenzoic acid 2.88 1 

14 235 c1(ccc(cc1O)O)C(O)=O 2,4-dihydroxybenzoic acid 3.11 1 
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15 236 c1(cc(C)ccc1O)C(O)=O 5-methylsalicylic acid 3.15 1 

16 237 O=C(O)c(c(O)ccc1Br)c1 5-bromosalicylic acid 2.66 1 

17 238 c1(ccccc1NC(C)=O)C(O)=O n-acetyl-o-aminobenzoic acid 3.40 1 

18 239 c1(ccc(cc1OC)OC)C(O)=O 2,4-dimethoxybenzoic acid 4.36 1 

19 240 c1(ccccc1Nc2ccccc2)C(O)=O n-phenyl-o-aminobenzoic acid 3.99 1 

20 241 c2(C(O)=O)c(O)cc1ccccc1c2 2-naphthalenecarboxylic acid, 3-hydroxy- 2.79 1 

21 242 [N+](=O)([O-])c1ccc(c(C(O)=O)c1)O 5-nitrosalicylic acid 2.12 1 

22 243 [N+](=O)([O-])c1ccc(c(Cl)c1)C(O)=O 2-chloro-4-nitro-benzoic acid 2.14 1 

23 244 c1(ccccc1N)C(O)=O 2-aminobenzoic acid 4.95 1 

24 245 c1(ccccc1Cl)C(O)=O 2-chlorobenzoic acid 2.89 1 

25 246 C(O)(=O)c1ccccc1C o-toluic acid 3.98 1 

26 247 c1(cc(I)ccc1O)C(O)=O 2-hydroxy-5-iodo-benzoic acid 2.62 1 

27 248 c1(C(O)=O)c(cc(cc1[N+](=O)[O-])[N+](=O)[O-])[N+](=O)[O-] 2,4,6-trinitrobenzoic acid 0.65 1 

28 249 c1(cc(I)cc(I)c1O)C(O)=O 3,5-diiodosalicylic acid 2.30 1 

29 250 c1(cc(Cl)cc(N)c1Cl)C(O)=O 3-amino-2,5-dichlorobenzoic acid 3.40 1 

30 251 c1(cccc(O)c1O)C(O)=O 2,3-dihydroxybenzoic acid 2.91 1 

31 252 c1(c(cccc1O)O)C(O)=O 2,6-dihydroxybenzoic acid 1.05 1 

32 253 c1(cc(Cl)ccc1O)C(O)=O 5-chlorosalicylic acid 2.65 1 

33 254 c1(ccccc1F)C(O)=O 2-fluorobenzoic acid 3.27 1 

34 255 c1(cc(O)ccc1O)C(O)=O 2,5-dihydroxybenzoic acid 2.95 1 

35 256 [N+](=O)([O-])c1ccccc1C(O)=O 2-nitrobenzoic acid 2.17 1 

36 257 c1(ccccc1C(C)=O)C(O)=O o-acetylbenzoic acid 4.13 1 

37 258 c1(ccccc1OC)C(O)=O o-methoxybenzoic acid 3.90 1 

38 259 c1(cc(cc(C(O)=O)c1O)N(=O)=O)N(=O)=O 2-hydroxy-3,5-dinitro-benzoic acid 0.70 1 

39 260 c1(cc(ccc1C(O)=O)[N+](=O)[O-])[N+](=O)[O-] 2,4-dinitrobenzoic acid 1.42 1 

40 261 C(O)(=O)c1c(C)cccc1C 2,6-dimethylbenzoic acid 3.35 1 

41 262 c1(C(O)=O)c(F)c(F)c(c(F)c1F)C 2,3,5,6-tetrafluoro-4-methyl-benzoic acid 2.00 1 
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42 263 c1(ccccc1c2ccccc2)C(O)=O [1,1-biphenyl]-2-carboxylic acid 3.46 1 

43 264 c1(c(cccc1OC)OC)C(O)=O 2,6-dimethoxybenzoic acid 3.44 1 

44 265 c1(cccc(OC)c1OC)C(O)=O 2,3-dimethoxybenzoic acid 3.98 1 

45 266 c1(c(Cl)ccc(Cl)c1OC)C(O)=O 3,6-dichloro-2-methoxybenzoic acid 1.97 1 

46 267 c1(ccccc1Oc2ccccc2)C(O)=O o-phenoxybenzoic acid 3.53 1 

47 268 c1(ccccc1C(C)C)C(O)=O o-isopropylbenzoic acid 3.63 1 

48 269 [N+](=O)([O-])c1ccc(c(C(O)=O)c1)Cl 2-chloro-5-nitrobenzoic acid 2.17 1 

49 270 [N+](=O)([O-])c1cccc(C(O)=O)c1Cl 2-chloro-3-nitrobenzoic acid 2.02 1 

50 271 c2c(NC(c1c(C(O)=O)cccc1)=O)cccc2 n-phenylphthalamic acid 2.50 1 

51 272 N(=O)(=O)c1cccc(Cl)c1C(O)=O 2-chloro-6-nitro-benzoic acid 1.34 1 

52 273 c1(c(C)cccc1Cl)C(O)=O 2-chloro-6-methyl-benzoic acid 2.75 1 

53 274 c1(ccccc1NCC(N)=O)C(O)=O 2-[(acetylamino)amino]-benzoic acid 4.20 1 

Anilines 
   

1 275 Nc1cc(C(O)=O)ccc1 3-aminobenzoic acid 4.53 3 

2 276 Nc1ccc(C(O)=O)cc1 4-aminobenzoic acid 2.38 2 

3 277 Nc1cc(O)c(C(O)=O)cc1 p-aminosalicylic acid 2.05 2 

4 278 Nc1ccc(O)cc1 4-amino-phenol 5.48 2 

5 279 Nc1cc(O)ccc1 3-amino-phenol 4.37 2 

6 280 Nc1cc(N(=O)=O)cc(N(=O)=O)c1 3,5-dinitroaniline 0.30 2 

7 281 Nc1cc(Cl)cc(Cl)c1 3,5-dichloroaniline 2.51 2 

8 282 Nc2ccc(c1ccccc1)cc2 4-aminobiphenyl 4.35 2 

9 283 Cc1c(N(=O)=O)ccc(N)c1 3-methyl-4-nitroaniline 1.64 2 

10 284 C(c1ccccc1)(=O)c2ccc(cc2)N 4-benzoylaniline 2.24 2 

11 285 [N+](=O)([O-])c1c(C)cc(cc1C)N 3,5-dimethyl-4-nitrobenzenamine 2.54 2 

12 286 [N+](=O)([O-])c1c(C)ccc(N)c1 2-nitro-p-toluidine 0.40 2 

13 287 S(C)(=O)(=O)c1ccc(cc1)N 4-methylsulfonylaniline 1.35 2 

14 288 N(=O)(=O)c1c(Cl)ccc(N)c1 4-chloro-3-nitro-benzenamine 1.90 2 
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15 289 C(F)(F)(F)c1ccc(cc1)N p-trifluoromethylaniline 2.45 2 

16 290 C(OC)(=O)c1ccc(cc1)N methyl-p-aminobenzoate 2.47 2 

17 291 C(OCCCC)(=O)c1ccc(cc1)N butyl-p-aminobenzoate 2.47 2 

18 292 C(OCCC)(=O)c1ccc(cc1)N propyl-p-aminobenzoate 2.49 2 

19 293 C(OCC)(=O)c1ccc(cc1)N p-aminobenzoic acid, ethyl ester 2.51 2 

20 294 c1(Cl)c(Cl)ccc(N)c1 3,4-dichloroaniline 2.97 2 

21 295 C(F)(F)(F)c1cccc(N)c1 3-trifluoromethylaniline 3.49 2 

22 296 c1c(cccc1N)Br m-bromoaniline 3.58 2 

23 297 c1c(cccc1N)I 3-iodo-benzenamine 3.61 2 

24 298 c1(ccc(cc1)I)N 4-iodo-benzenamine 3.78 2 

25 299 c1(ccc(cc1)Br)N p-bromoaniline 3.86 2 

26 300 c1(C)cc(ccc1Br)N 3-methyl-4-bromoaniline 4.05 2 

27 301 c1(ccccc1N)C(O)=O 2-aminobenzoic acid 2.14 2 

28 302 c1(ccccc1O)N o-aminophenol 4.84 2 

29 303 [N+](=O)([O-])c1ccc(c(N)c1)O 2-amino-4-nitrophenol 3.10 2 

30 304 c1(Br)c(N)ccc(Br)c1 2,4-dibromoaniline 2.30 2 

31 305 [N+](=O)([O-])c1cc(C)ccc1N 3-nitro-4-toluidine 3.03 2 

32 306 c1(ccccc1N)c2ccccc2 2-aminobiphenyl 3.83 2 

33 307 [N+](=O)([O-])c1cc(Cl)c(c(Cl)c1)N 2,6-dichloro-4-nitroaniline -2.55 2 

34 308 [N+](=O)([O-])c1cc(C)c(c(C)c1)N 2,6-dimethyl-4-nitrobenzenamine 0.98 2 

35 309 c1(N)c(Cl)ccc(Cl)c1 2,5-dichloroaniline 2.05 2 

36 310 c1(c(N)ccc(c1)[N+](=O)[O-])[N+](=O)[O-] 2,4-dinitroaniline -4.25 2 

37 311 [N+](=O)([O-])c1c(N)ccc(Cl)c1 4-chloro-2-nitroaniline -1.02 2 

38 312 [N+](=O)([O-])c1ccc(c(Cl)c1)N 2-chloro-4-nitroaniline -0.94 2 

39 313 c1(N)c(F)c(F)c(c(F)c1F)F 2,3,4,5,6-pentafluoroaniline -0.28 2 

40 314 c1(N)c(cccc1Cl)Cl 2,6-dichloroaniline 0.42 2 

41 315 N(=O)(=O)c1c(N)ccc(OC)c1 4-methoxy-2-nitro-benzenamine 0.77 2 
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42 316 [N+](=O)([O-])c1ccc(c(C)c1)N 4-nitro-2-toluidine 1.04 2 

43 317 c1(Cl)c(cccc1N)Cl 2,3-dichloroaniline 1.76 2 

44 318 c1(Cl)c(N)ccc(Cl)c1 2,4-dichloroaniline 2.00 2 

45 319 c1(ccccc1N)C(OCC)=O o-aminobenzoic acid, ethyl ester 2.18 2 

46 320 c1(ccccc1N)C(OC)=O methyl anthranilate 2.23 2 

47 321 [N+](=O)([O-])c1ccc(c(N)c1)C 5-nitro-2-toluidine 2.35 2 

48 322 c1(c(C)c(C)c(c(C)c1C)N)[N+](=O)[O-] 2,3,5,6-tetramethyl-4-nitrobenzenamine 2.36 2 

49 323 [N+](=O)([O-])c1ccc(c(N)c1)OC 2-methoxy-5-nitroaniline 2.49 2 

50 324 c1(ccccc1Br)N o-bromoaniline 2.53 2 

51 325 c1(ccccc1I)N 2-iodoaniline 2.60 2 

52 326 N(=O)(=O)c1cccc(c1N)N(=O)=O 2,6-dinitroaniline -5.00 2 

53 327 c1(N)c(Cl)cc(cc1Cl)Cl 2,4,6-trichloroaniline -0.03 2 

54 328 c1c(Cl)c(Cl)cc(Cl)c1N 2,4,5-trichloroaniline 1.09 2 

55 329 c1(N)c(OC)ccc(OC)c1 2,5-dimethoxyaniline 3.93 2 

Han 2006 - Fluorophenols 
   

# 330 Oc1ccc(F)cc1F 2,4-difluorophenol 8.58 4 

# 331 Oc1c(F)cccc1F 2,6-difluorophenol 7.51 4 

# 332 Oc1c(F)c(F)cc(F)c1F 2,3,5,6-tetrafluorophenol 6 4 

Regnar 2000 
   

      R_3 333 COc1cc(CO)ccc1O 4-(hydroxymethyl)-2-(methoxy)phenols 9.78 5 

      R_4 334 COCc1ccc(O)c(OC)c1 2-(methyloxy)-4-[(methyloxy)methyl]phenol 9.79 5 

      R_7 335 COC(=O)c1ccc(O)c(OC)c1 methyl 4-hydroxy-3-(methyloxy)benzoate 8.3 5 

      R_8 336 COc1cc(CCO)ccc1O 4-(2-hydroxyethyl)-2-(methoxy)phenol 10.09 5 
      
R_10 337 COc1cc(ccc1O)C(C)O 4-(1-hydroxyethyl)-2-(methoxloxy)phenol 9.83 5 
      
R_11 338 COC(C)c1ccc(O)c(OC)c1 2-(methyloxy)-4-[1-(methyloxy)ethyl]phenol 9.75 5 
      
R_12 339 COc1cc(ccc1O)C(O)CO 1-[4-hydroxy-3-(methyloxy)phenyl]-1,2-ethanediol 9.5 5 

      340 COc1cc(ccc1O)C(C)=O 1-{4-hydroxy-3-(methyloxy)phenyl]ethanone 7.81 5 
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R_14 

      
R_16 341 CCCc1ccc(O)c(OC)c1 2-(methyloxy)-4-propylphenol 9.85 5 
      
R_20 342 COc1cc(\C=C\CO)ccc1O 4-[(1E)-3-hydroxy-1-propen-1-yl]-2-(methyloxy)phenol 9.54 5 
      
R_21 343 COc1cc(\C=C\C=O)ccc1O (2E)-3-[4-hydroxy-3-(methyloxy)phenyl]-2-propenal 7.94 5 
      
R_23 344 CCC(O)c1ccc(O)c(OC)c1 4-(1-hydroxypropyl)-2-(methyloxy)phenol 9.83 5 
      
R_25 345 CCC(=O)c1ccc(O)c(OC)c1 1-[4-hydroxy-3-(methyloxy)phenyl]-1-propanone 7.98 5 
      
R_26 346 COc1cc(ccc1O)C(=O)C(C)O 2-hydroxy-1-[4-hydroxy-3-(methyloxy)phenyl]-1-propanone 7.32 5 
      
R_27 347 COc1cc(ccc1O)C(O)C(CO)Oc1ccccc1OC 

1-[4-hydroxy-3-(methyloxy)phenyl]-2-{[2-(methyloxy)phenl]oxy}-1,3-
propanediol 9.88 5 

      
R_33 348 COCc1cc(\C=C/Oc2ccccc2OC)ccc1O 2-[methyloxy)methyl]-4-((Z)-2-{[2-methyloxy)phenyl]oxy}ethenyl)phenol 9.49 5 

      
meta/para nitrophenols added 

   
# 349 Oc1ccc(c(F)c1)[N+]([O-])=O 3-fluoro-4-nitrophenol 5.3 6 

# 350 Oc1cc(F)c(c(F)c1)[N+]([O-])=O 3,5-difluoro-4-nitrophenol 4.4 6 

# 351 Cc1cc(O)ccc1[N+]([O-])=O 3-methyl-4-nitrophenol 7.29 7 

# 352 Cc1cc(O)cc(C)c1[N+]([O-])=O 3,5-dimetyl-4-nitrophenol 8.25 8 

# 353 Oc1ccc(c(Cl)c1)[N+]([O-])=O 3-chloro-4-nitrophenol 6.49 8 

      
Meta-Anilines 

   

 
354 Nc1cccc(N)c1 3-aminoaniline 4.88 9 

 
355 Nc1cccc(Cl)c1 3-chloroaniline 3.34 9 

 
356 Nc1cccc(c1)C#N 3-cyanoaniline 2.76 9 

 
357 Nc1cccc(F)c1 3-fluoroaniline 3.59 9 

 
358 COc1cccc(N)c1 3-methoxyaniline 4.2 9 

 
359 Cc1cccc(N)c1 3-methylaniline 4.69 9 

 
360 Nc1cccc(c1)[N+]([O-])=O 3-nitroaniline 2.5 9 
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361 Cc1cc(C)cc(N)c1 3,4-dimethylaniline 5.17 9 

 
362 Nc1ccc(O)c(N)c1 3-amino-4-hydroxyaniline 5.7 9 

 
363 COc1ccc(N)cc1Br 3-bromo-4-methoxyaniline 4.08 9 

 
364 Cc1ccc(N)cc1Br 3-bromo-4-methylaniline 3.98 9 

 
365 Cc1ccc(N)cc1Cl 3-chloro-4-methylaniline 4.05 9 

 
366 Nc1cc(Br)cc(Br)c1 3,5-dibromoaniline 2.34 9 

 
367 COc1cc(N)cc(OC)c1 3,5-dimethoxyaniline 3.82 9 

 
368 Cc1cc(C)cc(N)c1 3,5-dimethylaniline 4.91 9 

 
369 COc1cc(N)cc(Cl)c1 3-chloro-5-methoxyaniline 3.1 9 

 
370 COc1cc(N)cc(c1)[N+]([O-])=O 3-methoxy-5-nitroaniline 2.11 9 

 
371 Nc1cc(Br)c(O)c(Br)c1 3,5-dibromo-4-hydroxyaniline 3.2 9 

 
372 COc1c(Br)cc(N)cc1Br 3,5-dibromo-4-methoxyaniline 2.98 9 

 
373 Cc1c(Br)cc(N)cc1Br 3,5-dibromo-4-methylaniline 2.87 9 

      
Zhang 

   

 
373 OC(=O)c1ccccc1O 2-hydroxybenzoic acid 2.98 10 

 
374 OC(=O)c1cccc(O)c1 3-hydroxybenzoic acid 4.08 10 

 
375 OC(=O)c1ccc(O)cc1 4-hydroxybenzoic acid 4.58 10 

 
376 OC(=O)c1cccc(O)c1O 2,3-hydroxybenzoic acid 2.98 10 

 
377 OC(=O)c1ccc(O)cc1O 2,4-hydroxybenzoic acid 3.29 10 

 
378 OC(=O)c1cc(O)ccc1O 2,5-hydroxybenzoic acid 2.97 10 

 
379 OC(=O)c1c(O)cccc1O 2,6-hydroxybenzoic acid 1.3 10 

 
380 OC(=O)c1ccc(O)c(O)c1 3,4-hydroxybenzoic acid 4.48 10 

 
381 OC(=O)c1cc(O)cc(O)c1 3,5-hydroxybenzoic acid 4.04 10 

 
382 OC(=O)c1c(O)cc(O)cc1O 2,4,6-hydroxybenzoic acid 1.68 10 

 
383 OC(=O)c1cc(O)c(O)c(O)c1 3,4,5-hydroxybenzoic acid 4.19 10 

 
384 OC(=O)c1ccccc1 hydroxybenzoic acid 4.2 10 
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Drug Molecules Liao 
   

 
385 CC(=O)Nc1ccc(O)cc1 Acteaminophen 9.63 11 

 
386 CN(C)[C@H]1[C@@H]2C[C@H]3C(C(=O)c4c(O)ccc(Cl)c4[C@@]3(C)O)=C(O)[C@]2(O)C(=O)C(C(N)=O)=C1O Chlortetracycline 9.3 11 

 
387 CN(C)[C@H]1[C@@H]2C(O)[C@H]3C(C(=O)c4c(O)cccc4[C@@]3(C)O)=C(O)[C@]2(O)C(=O)C(C(N)=O)=C1O Oxytetracycline 9.11 11 

 
388 CN(C)[C@H]1[C@@H]2C[C@H]3C(C(=O)c4c(O)cccc4[C@@]3(C)O)=C(O)[C@]2(O)C(=O)C(C(N)=O)=C1O Tetracycline 9.69 11 

 
389 Oc1c(I)cc(Cl)c2cccnc12 Clioquinol 8.16 11 

 
390 C[C@]12CC[C@H]3C(=CCc4cc(O)ccc34)[C@@H]1CC[C@H]2O 17a-Dihydroequiline 10.29 11 

 
391 C[C@]12CC[C@H]3C(=CCc4cc(O)ccc34)[C@@H]1CC[C@@H]2O 17b-Dihydroequilin 9.77 11 

 
392 C[C@]12CCc3c(ccc4cc(O)ccc34)C1CC[C@@H]2O Equilenin 9.77 *** 

 
393 CSCC[C@H](NC(=O)[C@@H](Cc1ccccc1)NC(=O)CNC(=O)CNC(=O)[C@H](N)Cc1ccc(O)cc1)C(O)=O Enkephalin 9.89 11 

 
394 C[C@]12CC[C@H]3[C@@H](CCc4cc(O)ccc34)[C@@H]1CC[C@@H]2O 17B-Estradiol 10.71 11 

 
395 C[C@]12CC[C@H]3[C@@H](CCc4cc(O)ccc34)[C@@H]1CCC2=O Estrone 10.34 11 

 
396 C[C@]12CC[C@H]3[C@@H](CCc4cc(O)ccc34)[C@@H]1CC[C@@]2(O)C#C Ethinyl estradiol 10.4 11 

 
397 CC(C)NCC(O)c1ccc(O)c(O)c1 Isoproterenol 10.07 11 

 
398 C[C@H](CCc1ccccc1)NC[C@@H](O)c1ccc(O)c(c1)C(N)=O Labetalol 7.41 11 

 
399 CN1CC[C@@]23[C@H]4Oc5c2c(CC1C3C=C[C@@H]4O)ccc5O Morphine 9.4 11 

 
400 CN1CC[C@@]23[C@H]4Oc5c2c(CC1C3C=C[C@@H]4O)ccc5O Normoorphine 9.8 11 

 
401 CCCN(C)[C@H]1C=C(OC2OC(C(O)[C@H](O)[C@H]2O)C(O)=O)[C@@H]2Oc3c4C2C1CCc4ccc3O Morphine-6-glucuronide 9.36 11 

 
402 N[C@@H](Cc1ccc(O)cc1)C(O)=O Tyrosine 10.27 11 

 
403 COc1cc(C=O)ccc1O Vanillin 7.4 11 

 
404 COc1ccc(C=O)cc1O iso-Vanillin 8.89 11 

 
405 COc1cccc(C=O)c1O ortho-Vanillin 7.91 11 

 
406 Nc1ccc(cc1)C(O)=O 4-Aminobenzoic acid 2.5 11 

 
407 CCOC(=O)c1ccc(N)cc1 Benzocaine 2.52 11 

 
408 CCN(CC)CCOC(=O)c1ccc(N)cc1 Procaine  2.29 11 

 
409 CC(=O)NS(=O)(=O)c1ccc(N)cc1 Sulfacetamide 1.76 11 
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Appendix D 
 

Hatch Data set 

CAS ID Structure LogMP 
TA98 

AA/MIA 

102408-25-3 1 

 

5.79 MIA 

77094-11-2 2 

 

5.15  

76180-96-6 3 

 

4.7 MIA 

92180-79-5 4 

 

4.66  

95896-78-5 5 

 

4.56 MIA 
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4.32 MIA 
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67730-11-4 10 

 

3.98  

5869-25-0 11 

 

3.8  

75679-01-5 12 

 

3.4  

75104-43-7 13 

 

3.39  

 14 

 

3.31 MIA 
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613-13-8 20 

 

2.17 AA 

4176-53-8 21 

 

2.11 AA 

26148-68-5 22 

 

1.9  

57667-51-3 23 

 

1.813 MIA 

401560-72-3 24 

 

1.747 MIA 

102408-31-1 25 

 

1.54  
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33421-40-8 30 

 

0.83  

 31 

 

0.81  

155789-83-6 32 

 

0.778 MIA 

132898-06-7 33 

 

0.693  

17351-87-1 34 

 

0.65 MIA 
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Ames Results
2-aminofluorene
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Ames Results
6-chrysenylamine
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Ames Results
2-aminoanthracene

T
A
9
8

T
A
1
0
0

-S9 +S9

Toxicity

Precipitation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

1

2

3

4

5

6

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

5

10

15

20

25

30

35

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

NH
2

 



268 
 

Ames Results
1-methyl-2-aminobenzimidazole
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Ames Results
4-phenoxyaniline
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Ames Results
2-amino-5-phenylpyridine
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Ames Results
2,4,5-trimethylaniline
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Ames Results
3-Aminobenzonitrile
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Ames Results
2-aminonaphtho(2,3-d)imidazole
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Ames
4-Chloro-2-methylaniline
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Ames Results
3-aminoquinoline
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Ames Results
4-bromo-2-methylaniline
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Ames Results
4-Aminoacetanilide
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Ames Results
2-amino-5-hydroxybenzoic acid

T
A
9
8

T
A
1
0
0

-S9 +S9

Toxicity

Precipitation

OH
OH

O

NH
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.5

1

1.5

2

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.5

1

1.5

2

2.5

3

3.5

15 25 50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

 



279 
 

Ames Results
2-ethylaniline

T
A
9
8

T
A
1
0
0

-S9 +S9

Toxicity

Precipitation

NH
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t

0

0.2

0.4

0.6

0.8

1

1.2

50 150 500 1500 2500 5000

Dose level per plate (µg)

R
a
ti

o
 t

re
a
te

d
 /
 s

o
lv

e
n

t



280 
 

 


