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Abstract 

 
 

Introduction: Prognosis in Traumatic Brain Injury (TBI) can be made using 

prognostic models (the IMPACT and CRASH models) or brain injury 

biomarkers (S100B). Current prognostic models are derived from historic 

datasets recruited from heterogeneous countries in terms of trauma care and for 

the purpose of clinical trials.  

Objective: To construct a prognostic model suitable for British trauma care, to 

compare the prognostic performance of prognostic models with S100B and to 

assess the  combination of prognosticators from the constructed models with 

S100B.  

Methods: A dataset of 802 TBI cases from the Trauma Audit and Research 

Network (TARN), Manchester, UK was used to construct the prognostic 

models.. During the modelling, criteria  for well-developed models as per the 

literature review were followed such as the dataset being large, the variables 

being selected from the literature and  missing information being  imputed. A 

further dataset of TBI cases was used to validate these models Moreover, the 

resulting models were run on a dataset of 100 TBI cases who had their serum 

S100B recorded at 24 hours to compare their performance with S100B.  

Results: Two prognostic models were constructed (models A and B) to predict 

the discharge survival. Both models share age, admission Glasgow Coma Scale 

(GCS), admission pupillary reactivity and presence/absence of hypoxia and 

lowblood pressure (on admission) and brain stem injury. However, model A 

includes Injury Severity Score (ISS) which is replaced with cause of injury, 

extracranial injury, brain swelling and interaction of cause of injury and age in 

model B. Both models have high performance either on the derivation dataset 

(Area Under the ROC Curve (AUC) of model A: 0.92 and AUC of model B: 

0.93) or the external validation set from a  later time period in TARN (AUC of 

model A: 0.92 and AUC of model B: 0.82). Furthermore, in the S100B dataset, it 

appears that the performance of prognostic models is not significantly different 

to that of S100B (for example, AUC of model A in this dataset: 0.64 versus 0.69 

of the model just including S100B for survival prediction).  A combination of 

S100B and models prognosticators improved performance and S100 improved 

the performance of models A and B.  

Discussion: The proposed prognostic models have very high AUCs and since 

they have been validated on a different TBI dataset from TARN, they are valid 

to be used for the purpose of the British trauma care benchmarking. 

Unfortunately, the results of the analysis on the small S100B dataset are not 

adequately powerful to be conclusive. However, these findings highlight the 

importance of future research on this topic in larger datasets.  

Conclusion: Two prognostic models have been constructed which can be used 

for the British TBI patients.  
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1.1. Review of the epidemiology of traumatic brain 

injury and the research question  

Worldwide many people die due to Traumatic Brain Injury (TBI) each year or 

suffer from the resulting neuropsychological disability causing either social or 

individual problems. As a matter of fact, TBI is a silent epidemic [1-7] which 

has been disregarded by policy makers compared with other public health 

challenges such as breast cancer or Acquired Immune Deficiency Syndrome 

(AIDS). However, the annual incidence of brain injury in the United States 

surpasses that of breast cancer or AIDS significantly [1]. It is now the leading 

cause of death and disability among the young generation and anticipated to 

become one of the major causes of mortality by 2020 worldwide [7]. 

1.1.1. Definition  

Based on Medical Heading Subject (MeSH) database, head trauma or 

craniocerebral injury is defined as “a traumatic injury involving the cranium 

and intracranial structures” [8] and described as TBI when it involves brain.  

Standards for Surveillance of Neurotrauma [9] define a case of TBI as 

either:  

1) An occurrence of injury to the head (arising from blunt or penetrating 

trauma or from acceleration –deceleration forces) with at least one of the 

following: 

- observed or self reported alteration of consciousness or amnesia 

due to head trauma 

-  neurologic or neuropsychological changes (determined from 

neurologic and neuropsychological examinations) or diagnosis of skull fracture 
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or intracranial lesions (determined from radiological examination or other 

neurodiagnostic procedures) that can be attributed to the head trauma.  

2)  An occurrence of death resulting from trauma with head injury or 

traumatic brain injury listed on the death certificate, autopsy report, or medical 

examiner‟s report in the sequence of conditions that resulted in death.  

According to the guideline commissioned by National Institute for 

Clinical Excellence (NICE) [10] head injury is defined as “any trauma to the 

head,  other than superficial injuries to the face”.   

 Recently, a new definition of TBI has been proposed by the 

Demographic and Clinical Assessment Working Group of the International and 

Integrity Initiative toward Common Data Elements for Research on Traumatic 

Brian Injury and Psychological Health {Menon,  #303}. The proposed 

definition is: 

 

‘TBI is defined as an alteration in bran function or other evidence of brain 

pathology caused by an external force.’ 

 
The medical term : injury, according to MeSH database, is described as 

“damage inflicted on the body as the direct or indirect result of an external force, with 

or without disruption of structural continuity” [8]. This description suggests that the 

term “brain injury” has association with trauma; hence brain injury and TBI can 

substitute each other in a medical text. In this review, “brain injury” is equated to 

traumatic brain injury when being referred to. Moreover, brain injury patients are a 

subgroup of patients who have head trauma with an evidence for brain damage. Even 

with the current clinical or radiographic diagnostic tools, this distinction is not always 

possible particularly in mild brain injury.  
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1.1.2. Incidence and cost 

In the United States, each year 1.5 million people suffer from TBI of which 

50,000 die, 230,000 are hospitalized and the remaining are discharged home 

[11]. In Europe, the incidence of hospitalization or death is estimated to be 235 

per 100,000 [12]. According to the study of Alan Tennant the incidence rate of 

traumatic brain injury in England was 229.4 in the year 2001-2 and 229.1 for 

the year 2002-3 per 100,000 of general population [13].  

The cost of TBI is classified as either direct or indirect. The direct cost 

amounts to hospitals charges after acute care involving prescribed medicines, 

undertaken procedures or performed rehabilitation strategies and then, further 

out-patient services. The indirect cost is caused by subsequent patient‟s lack of 

productivity, early retirement or sick leave [14]. The total cost related to brain 

injury in 2000 was estimated to be 6$ billion in the United States [15], while 

the exact figure from Europe is unknown [12]. However, in Spain during the 

year 1997, the injuries resulting from traffic crashes imposed 3,397 € to the 

nation [16] which gives an approximate estimation of brain injury cost in a 

European country.  

1.1.3. High risk groups 

Males are at higher risk and age groups of 0 to 4 and 15 to 19 are more prone 

to sustain TBI  than other groups [2]. J David Cassidy and colleagues who 

undertook a best-evidence synthesis on dimensions of mild TBI epidemiology, 

including risk factors reported similar results [17]. Recreational and sporting 

activities [17] and some work-related situations such industrial-type jobs [18] 
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put the individual at a higher risk level as well. In the United States, being 

African-American may act as a risk factor [2]. 

1.1.4. Cause 

The causes of TBI are categorized differently in various studies. Fall, motor 

vehicle –traffic crash, struck by/against an event and assault are conventional 

categories used by most authors with some variations. In 1995, World Health 

Organisation (WHO) proposed a guideline for surveillance of nerurotrauma in 

societies from which the main causes are displayed in  table 1[9]. In the United 

States the most frequent aetiology is fall [2] but in Europe it is said to be motor 

vehicle-crashes [12]. 
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Table 1 External causes of brain injury (drawn from Standards for 

Surveillance of Neurotrauma, ed. D.J. Thurman, Kraus, J.F., Romer, C.J.. 

1995, Geneva: World Health Organisation. [9]) 

1.1.5. Outcome  

Victims of TBI may experience a spectrum of outcome ranging from full 

recovery to death. Those who survive may continue to suffer from various 

degrees of physical or mental disabilities affecting their life and some of them, 

despite being physically fit, may never resume their pre-injury functionality for 

a long time. Mild physical and mental consequences of TBI may be a number 

of complaints such as headache, dizziness, fatigue and difficulty concentrating. 

If a patient demonstrates 3 of these symptoms, he/she would then be diagnosed 

with Post-Concussion Syndrome (PCS) which commonly occurs following 

concussion (a mild form of brain injury but severe enough to result in loss of 

consciousness). The survivors of more severe forms of TBI which result in 

longer periods of loss of consciousness may suffer from more severe disability.  

Mental and physical consequences of TBI do not affect only the 

individual victim. For example, people with TBI may suffer from relationship 

difficulties inside the family. Out of 48 participant couples in Wood RL and his 

colleagues‟ research [19] twenty three (relatively 47%) were separated or 

divorced in the end, meaning that just less than 53% continued their 

partnership. Hawley CA and others [20] reported that the level of stress in 

parents of TBI children was clinically high with the rate of 40%. One third of 

Vehicular and animal transportation: operator or passenger 

Vehicular and animal transportation: pedestrian 

Firearms and other Objects Used as Weapons 

Violence without Use of Firearm or Other Weapons 

Sports/Recreation 

Falls 

Other (Struck by falling object, other specified or known cause of injury, 

Unknown) 
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the parents were found to have poor psychological health. Moreover, 

Montgormery and others [21] observed that 57% of families of children with 

brain injury witnessed behavioural problems in other siblings. With decreased 

amount of time worked and subsequent impact on employment status [13, 18] 

the potential harm of the injury to the family goes beyond psychological 

matters, ending up as an economic burden as well.  

1.1.6. Prognosis  

Prognosis means the prediction of the outcome of the disease and as such it 

would assist the clinicians in having an estimate of the severity. A poor 

prognosis means the clinician should consider the value of more aggressive 

intervention.  

Knowing the prognosis in TBI is important to assist clinicians dealing 

with individual TBI patients, to stratify patients based on the severity of their 

injuries in clinical trials and to perform trauma care benchmarking. Whilst 

overall, advancement in each of these areas can lead to improvement in 

patients‟ outcome, knowing prognosis has a specific advantage in each area. In 

clinical practice, it would assist clinicians in making timely and appropriate 

decisions and also in allocating resources. In clinical trials, knowing the 

prognosis would assist to detect pure effect of the intervention on outcome 

irrespective of the severity and in the recruitment of patients with a truly 

intermediate prognosis. And lastly, the quality of trauma care in a given trauma 

centre can be benchmarked  by comparing the observed prognosis of patients 

cared for in that centre to the expected prognosis at the national level. The 

expected prognosis is calculated by using a model derived from nationawide 

data. 
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Considering the above importance of prognosis in TBI, the research 

question is:  

How can the outcome of a given TBI patient be predicted? 

There are currently two common prognostic tools in TBI to predict the 

outcome: prognostic models and brain injury biomarkers. Prognostic models 

apply commonly measured patient characteristics and provide the probability 

of a given outcome at a certain point in time. Brain injury biomarkers are 

usually serum biomarkers which tend to increase in TBI and also be higher in 

more severe forms of TBI. In the following sections of the introduction, the 

common prognostic models in TBI and the most widely acknowledged brain 

injury biomarker; S100B are discussed.  

1.1.7. Common terms in research into TBI prognosis  

 

Glasgow Coma Scale (GCS) 

 

First introduced by Teasdale et al.  in 1974, this is a scoring system to measure 

the level of consciousness (Table 2). This system is internationally well-

established and ranges from 3 to 15 and is the sum of three subscores assessing 

three domains of eye, verbal and motor response. Later on, in several studies it 

was shown that lower GCS is associated with adverse outcome [22-24]  
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Best verbal response 

Orientated to time, place and person 5 

Appropriate responses but disorientated 4 

Inappropriate responses but coherent words 3 

Incoherent sounds only 2 

No verbal response 1 

 

Best motor response 

Obeys commands 6 

Localise pain 5 

Normal flexion to pain 4 

Abnormal flexion to pain 3 

Extension to pain 2 

No motor response 1 

 

Best eye opening response 

Spontaneous eye opening 4 

Opens eyes to speech 3 

Opens eyes to pain 2 

No eye opening response 1 

Table 2 Glasgow Coma Score is the sum of three types of patient’s 

response score to stimulation: verbal, motor and eye opening.  

 

 

Glasgow Outcome Scale (GOS) 

 

Glasgow Outcome Scale was first introduced by b. Jennet and M. Bond in 

1975 [25]. They categorized the outcome into five groups of death, persistent 

vegetative state, sever disability (conscious but disabled), moderate disability 

(disabled but independent) and good recovery. In 1981 Jennet et al.  proposed 

an extended revised version of the system to enhance its application and 

reliability [26]. In the extendedextended revision of GOS referred to as GOSE, 

each three  last categories are further divided into upper and lower levels 

(Table 3). In 1998, Wilson and others [27] proposed a structured pattern of 

interview to score the outcome of TBI patients based on GOS. 
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GOSE score Performance level 

1 Dead 

2 Vegetative state 

3 Lower sever disability: completely dependant on others 

4 Upper sever disability: dependant on others for some activities 

5 Lower moderate disability: unable to return to work or participate in 

social activities 

6 Upper moderate disability: return to work at reduced capacity, 

reduced participation in social activities 

7 Lower good recovery: good recovery with minor social or mental 

deficits 

8 Upper good recovery 

Table 3 The extended Glasgow Outcome Scale (GOSE)  

1.1.8. Summary 

 

 

 

 

 

 

Traumatic brain injury is a major public health problem and has detrimental 

effects on victims’ lives  due to physical and psychological  morbidity. An 

understanding of prognosis in TBI assists clinicians with timely and appropriate 

decisions and allocation of resources. Also, it is important to understand 

prognosis for benchmarking trauma care quality and clinical trials of new 

intervention. There are currently two common prognostic tools available in the 

literature: brain injury biomarkers and prognostic models.  
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1.2. Prognostic models  

Prognostic models employ a number of patients‟ characteristics such as age, 

GCS, pupillary reactivity, CT findings etc. to predict a given outcome. In this 

section, two internationally known models derived from large cohorts of TBI 

patients plus two models (which have been proposed as well-developed models 

by a systematic review) are introduced.  

Area Under the receiver operator Curve (AUC) is a statistical term to 

measure the model performance (or its predictive strength) and has been stated 

in several places of this section. This concept is further discussed in Paper 1 

(section 2.7.1).  

1.2.1. IMPACT models 

International Mission for Prognosis and Clinical Trial (IMPACT) dataset of 

TBI is the mergence of several previously conducted clinical trials and 

observational studies which in total contains data on more than 9000 TBI 

subjects [28]. Included studies were all from developed world (North America 

and Europe). The initiative started in 2002 targeted at advancing the approach 

in TBI clinical trials and as part of this initiative, the IMPACT models for TBI 

prognosis were published in 2008 [24]. The IMPACT dataset contains severe 

TBI cases as per their admission GCS being 8 or less. Although it contained 

some very few cases with moderate GCS (i,e, GCS of more than 8 but less than 

13),the IMPACT dataset included mainly severe TBI cases. 

Overall 6 prognostic models are proposed by the IMPACT 

collaboration [24]. The core models use age, motor GCS score and pupillary 

reactivity to predict mortality or unfavourable outcome (GOS < 4) at 6 months 
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after sustaining injury. The expanded models use hypoxia, hypotension, the 

Marshall CT classification, traumatic SAH and epidural haematoma in addition 

to the covariates in the core models. The lab models add glucose and 

haemoglobin (Hb) to the covariates included in the expanded models. Models 

are presented in the form of score charts with an online calculator [29].  

From the core models to the lab models and as new covariates are 

added to the models, the performance of the models improves according to 

AUC. The AUCs are reported in various sub-datasets ranging from 0.66 for the 

core model on mortality prediction in the Saphir data (phase III trial of the 

competitive NMDA antagonist DCPP-ene, 1995-1997 [30]) to 0.87 for the 

expanded model on mortality prediction in EBIC data (European Brain Injury 

Consortium survey, 1995) (Saphir and EBIC studies were two of many studies 

pooled into the IMPACT mega dataset [30]).  

The important advantage of the IMPACT models is the large dataset 

from which the models have been derived. Furthermore, the models 

construction complies with many criteria for a well-developed model proposed 

by Perel et al. [31] and Mushkudiani et al [32]. Briefly and apart from the large 

derivation set, the variables used by the models such age, GCS etc.. are readily 

obtainable and the models have been externally validated in another dataset of 

TBI different to the derivation dataset with no significant change in AUC. In 

fact, a high external AUC of 0.83 is obtained for the expanded model for 

mortality prediction when it was run on the CRASH data (section 1.2.2). 

Furthermore, the missing information had been handled appropriately rather 

than omitting the cases with missing values. This is because in the modelling 

procedure, all cases who have a missing value even on one variable are 
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excluded meaning that they in fact do not exist in the data. Imputing the 

missing values with an appropriate strategy is preferable to total loss of 

information [28].  

1.2.2. CRASH models  

The Medical Research Council (MRC) CRASH (Corticosteroid Randomisation 

After Significant Head Injury) study was initially a clinical trial to investigate 

the effect of early administration of methylprednisolone in TBI [33]. The 

dataset of more than 10 000 cases collected in this trial was subsequently used 

to derive prognostic models [23]. The participating hospitals were from various 

countries around the globe with different degrees of contribution to patient 

recruitment. The trial was commenced in 1999 and was terminated in 2004. 

The inclusion criteria were head injury sustained at the age of above 16 with 

admission GCS of 14 or less and clear indication or contraindication for 

corticosteroid administration.  

Overall 6 prognostic models are proposed by the CRASH 

collaboration. Basic models do not contain CT findings and instead use age, 

GCS, pupillary reactivity and major extra cranial injury. However, there are 

also separate models by CRASH which include CT findings in addition to the 

factors in the basic models. Each model (with or without CT) can predict 

mortality or severe disability within 14 days or six months following the injury. 

Moreover, separate models are applicable to low-middle income countries 

versus high-income countries. These models are presented in the tables of odds 

ratios with an online calculator available [34].  

Similar to the IMPACT models, adding more covariates i.e. CT 

findings to the basic models results in improvement in AUC. The AUC of the 
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models ranges from 0.81 for death/severe disability prediction to 0.88 for 

mortality prediction either in high-income or low-income countries.  

The upsides of the CRASH models are almost similar to those of the 

IMPACT models such as easily obtainable variables, external validity and 

handling of missingness with the most important one being the large derivation 

dataset. Moreover, the CRASH models reasonably maintain their predictability 

in the external validation on the IMPACT dataset (a drop from internal AUC of 

0.88 to external AUC 0.77).  

1.2.3. Other models 

Perel et al.[31] performed a systematic review of the literature on the 

prognostic models in TBI and concluded that at the time of the review, there 

were only two models which fulfilled the methodological requirements with 

acceptance external validation: models by Signorini et al. [35] and 

Hukkelhoven et al. [36]. It is not surprising that since this review was 

conducted prior to the introduction of the IMPACT and CRASH models, these 

models are not appraised in Perel‟s work.  

Hukkelhuven et al.  derived a prognostic model on a TBI series from a 

clinical trial in Europe and the North America. The trial was designed to assess 

the effect of Tirilazad Mesylate in TBI and contained over 2,200 cases. Two 

models were introduced to predict mortality or severe disability at 6 months. 

The models employed age, GCS (motor score), pupillary reactivity, hypoxia, 

hypotension, Marshall CT Classification and SAH to make its outcome 

prediction with AUC of 0.78 for mortality prediction and 0.80 for unfavourable 

outcome prediction. These AUCs even increased in the external validation set 

(ranging from 0.83 to 0.89 for various constructed models). The dataset from 
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which the Hukkelhuven‟s models were derived, was later pooled in the 

IMPACT dataset.  

Signorini et al. analysed a dataset of 124 TBI cases all cared in the 

intensive care unit and constructed 6 models (one Baseline model with 5 final 

models). The outcome measure was mortality at 1 year following injury. The 

baseline models contained age, GCS, presence/absence of haematoma on CT 

and pupillary reactivity. The final models contained the covariates in the basic 

model plus ICP measured at various time points e.g. within 24 hours of injury, 

between 24 to 48 hours of injury etc. The AUCs of models ranged from 0.84 

(for the basic model) to 0.9048 for the basic model plus ICP measured between 

24 and 48 hours. The Signorini‟s models are very old dating back to about 20 

years ago (1991).  

1.2.4. Summary  

 

 

Prognostic models are a tool for predicting outcome in TBI. They employ 

patients’ characteristics recorded or known to the clinician and provide the 

probability of an outcome at a certain time point. Currently, there are two 

internationally well-developed prognostic models which have been derived 

from large datasets of TBI: the IMPACT and CRASH prognostic models. The 

development of these models complies with the methodological requirements 

of well-developed models. The factors consistently most associated with 

prognosis are age, GCS, pupillary responses, CT scan findings with 

measures of injury severity and laboratory variables also having value in 

some models 
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1.3. Brain injury biomarkers 

These are chemicals which increase in the blood or CSF following TBI and 

their serum concentration relates to the severity of brain injury and outcome. 

There are many biomarkers proposed in the literature and Table 4 lists some of 

them as compiled by Qurreshi in 2002.  

Obviously the list of some biomarkers proposed  by Qurreshi in 2002 is 

expected to be longer than that in 2002 especially with the new advances in 

better understanding of cellular pathways initiated following TBI. For a 

number of reasons understanding the multifaceted pathogenesis of TBI is 

important. Firstly, it may assist with diagnosis and identifying the severity of 

the damage caused by TBI especially that the advanced imaging modalities are 

not sensitive enough (such as CT to detect diffuse axonal injury) or are not 

widely available due to their high cost (such as MRI). Secondly, knowing these 

cellular and molecular can open up the possibility to investigate therapeutic 

agents to disrupt those pathways which are neurotoxic. It is currently believed 

that the disruption of Blood Brain Barrier (BBB) following trauma can initiate 

immunological responses by activating CNS „resident‟ cells such as microglia 

and astrocytes or by causing the infiltration of the peripheral immune cells 

{Morganti-Kossmann, 2007 #296}. This  subsequently results in 

neuroinflammation. Immune cells react by producing cytokines which can have 

either neuotoxic or neuroprotecitve effects. Interleukin (IL)-1 and  Tumor 

Necrosis Factor (TNF) are some of the cytokines which may have more 

neuroprotecrtive effects. Moreover, it has been found that increased patients 

with severe TBI have increased levels of IL-1, TNF, IL-6, IL-10 in CSF or 

serum and also some cytokines may be significantly higher in those TBI 
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patients with unfavorable outcome such as IL-1 {Chiaretti, 2005 #302}. 

Another expansion in the field of TBI pathogenesis relates to the observation 

that neuronal death following trauma is not always necrotic and it includes 

apoptotic cell death as well {Wang, 2000 #294}. The latter refers to a 

programmed series of events  ultimately causing the cellular death. It is 

currently believed that Calpain proteins are mainly involved in necrotic death 

whereas the apoptotic death is mainly mediated by Caspase 3 {Wang, 2000 

#294}. Siman el al. have shown increased levels of a panel of proteins 

including a calpain-derived protein (alpha-spectrin) in CSF of patients with 

TBI {Siman, 2009 #301}. In the same way, Buki et al. showed that using a 

calpain inhibitor can disrupt the axonal injury pointing to the potential 

pharmacological benefits of understanding the molecules and biomarkers 

involved in the pathogenesis of nervous system in TBI {Buki, 2003 #298}.  

 

Creatinine kinase, brain type 

Glial fibrillary acidic protein 

Lactate dehydrogenase isoenzyme 1 

Myelin basic protein 

Neuron-specific enolase 

S100b protein 

E-selectin 

L-selectin 

Soluble intercellular adhesion molecule-1 

Cleaved tau protein 

Glutamic oxaloacetic transaminase 

Glutamic pyruvate transaminase 

Malate transaminase 

Fructose 1, 6-diphosphate aldolase 

α-hydroxybutyric acid dehydrogenase 

Tumour necrosis factor-α 

Transforming growth factor-β1 

Interleukin-1β 

Interleukin-6 

Interleukin-8 

Interleuin-10 

Interleukin-12 
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Neopterin 

Β2-microglobulin 

Soluble interleukin-2 receptor 

Table 4 Brain injury biomarkers which have been proposed for 

assessment of brain injury severity or prognosis.  

 

Table 5 suggests that a variety of blood markers may have significant 

clinical role in diagnosis or prognosis of brain injury. Niedeggen A et al.  

observed that all TBI patients who have Creatine Kinase-brain type (CK-BB) > 

50 ng/l survive the injury [37]. Mao et al.  demonstrated that serum Myelin 

Basic Protein (MBP) is correlated to extra- and intracranial haematoma and the 

degree of cerebral contusions detected by CT scan [38]. Furthermore, Neuron 

Specific Enolase (NSE) and MPB have higher serum levels in non-survival as 

proposed by Yamazaki Y. et al.  [39]. With regards to cytokines, Gopcevic A. 

et al.  found central venous IL-8 concentration has significant prognostic power 

the same as age and GCS [40]. Similarly, Minambres E. et at. showed the 

correlation of IL-6 arterial and jugular gradient with 6-month GOS [41].  
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Authors Publication year Sample size biomarker outcome Findings 

Nylen et al. [42] 

 

2006 59 Serum-GFAP 1-year GOS - Those with unfavourable 

outcome had higher peak 

GFAP 

- All with GFAP> 15.04 

µg/l died 

Vose et al. [43] 2004 85 Serum S100B, NSE, GFAP 6-month 

GOS 

-S100B was the strongest 

predictor of death 

Pelinka et al.  [44] 2004 92 Serum S100B, GFAP 3-month GOS -S100B had higher power 

for mortality prediction than 

GFAP. 

Niedeggen et al.  [37] 1989 76 Creatine kinase BB (CK-BB) Survival -All with CK-BB> 50 ng/l 

died 

-Those with CK-BB < 25 

ng/l had minimal 

neurological deficits. 

Mao et al.  [38] 1995 112 Serum Myelin Basic 

Protein(MBP) 

CT characteristics - MBP was correlated to the 

volume of extradural 

haematoma, intracranial 

haematoma and the extent 

of the cerebral contusion. 

Yamazaki et al.  [39] 1995 25 Serum Neuron Specific 

Enolase (NSE) and MBP 

Survival -The level of NSE and MBP 

were higher in those who 

died. 

Gopcevic et al.  [40] 2007 20 Central venous plasma IL-8 Survival -IL-8 was significantly 

higher in non-survivors. 

 

Minambres E. et al.  [41] 2003 62 Transcranial IL-6 (arterial and 

jugular gradient) 

6-month GOS -The gradient was higher in 

non-survivals. 

Table 5 Some examples of various brain injury biomarkers used in TBI diagnosis or prognosis.  
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It appears that the most known biomarkers are still S100B, Gilial 

Fibrillary Acidic Protein (GFAP), and Neuron Specific Enolase (NSE). 

PubMed was searched for each of these biomarkers utilizing the MeSh 

(Medical Subject Heading) terms [45] for each marker and brain injury. The 

number of results for some of these were less than 10 published papers namely 

CK-BB, E- and L- selectin, Malate transaminase, α-hydroxybuttyric acid 

dehydrogenase, transforming growth factor-β1, interleukin-1β and 12, 

Neopterin, β2-microglobulin and soluble interleukin-2 receptor. The search for 

S100B retrieved 142 papers which are comparable to those for Myelin basic 

protein (MBP), Neuron-specific Enolase (NSE), and Glial Fibrillary Acidic 

Protein (GFAP). The results for GFAP remarkably outnumbered that for 

S100B at more than 299 publications. However, a review of the titles showed 

that the investigations on GFAP‟s clinical role in brain injury are much less 

than that on S100B (< 30). The main focus of general research into GFAP is at 

molecular level to characterize astrocytic response to injury in vitro and on 

non-human samples. Overall, it appears the amount of literature for S100B is 

substantially more than other biomarkers.  

In the following section, S100B protein as a brain injury biomarker is 

discussed.  

1.3.1. Summary 

 
 

There are several biomarkers of brain injury which have been proposed to be 

associated with outcome in TBI or to be used for outcome prediction. Three 

of the most known of these biomarkers are GFAP, NSE and S100B. However,  

so far,  S100B has received the most attention in the literature.  
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1.4. S100B protein 

S100 proteins are “a family of highly acidic calcium-binding proteins found in 

large concentration in the brain and believed to be glial in origin. They are 

also found in other organs in the body” [46]. It was first introduced in 1965 

when Moore described it as a characteristic protein of the nervous system [46]. 

Rather 0.5% of soluble brain proteins are composed of S100 [46]. This family 

are not exclusively found in nervous system as it was initially thought [47]. It 

is now clear that it is synthesized in normal as well as pathologic or neoplastic 

tissues such as melanoma [48]. 

The S100 protein family comprises at least 25 isomers of which S100B 

is a member (3) with molecular weight of 21 kilo-Dolton (KD) [49]. Other 

prominent members are S100A1 to S100A13 [47, 50]. 

1.4.1. Functions 

S100B protein is found in cytoplasmic compartment [46], as a membrane-

bound molecule [46] or in the extra cellular compartment [47]. In the extra 

cellular compartment it is believed to be secreted by astrocytes, pituitary 

folliculostellate cells and adipocytes in non-pathological situation[47]. For the 

latter to occur, stimulations by a provocative substance such as nor epinephrine 

is needed [47]. Amongst the above aforementioned tissues, brain is the main 

source of knowledge about the extracellular roles of the protein [47]. These 

roles are primarily divided into physiologic and pathologic functions [49]. The 

physiologic (trophic) functions exert their effect when the concentration of 

S100B is at nanomolar levels [47]. Some functions are neurodegeneration [47, 

49], energy metabolism [47] and cytoskeleton modification [49]. At micro 
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molar concentrations, pathologic (toxic) effects [47, 49] of the protein are 

primarily the induction of iNOS in astrocytes [47] which has a fatal impact on 

cells. All of the physiologic and pathologic functions are performed through 

paracrine or autocrine routes [49].  Although in physiologic situations, S100B 

is thought to be released via secretion but after TBI cell membrane discruption 

may be the cause of its release into the extracelluar compartment.  

1.4.2. Effect of age, gender and race 

Gazzolo and others [51] examined these variables in a population of more than 

1000 children who were from 1 month to 15 years old with the mean of 8.4 

years. Of these, 486 were male and the remaining 522 were female and all of 

them were in a healthy clinical condition with no apparent neurologic 

problems. The main observation of this study was higher S100B concentration 

during the first year and in early adolescence (9 to 10 years old) compared to 

other age groups. Table 6 presents the obtained reference intervals at various 

ages during childhood. As seen, the median values in either males or females 

during first year of life and early adolescence are higher than other time 

periods. This report also suggests higher levels of S100B in females. 
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Age at 

sampling,  

years 

(M/F) 

Males (n = 482) Females (n = 522) P
 
value 

Median 25
th

 

 

75th Median 25th 75th 

0–1 

(43/42) 

0.81 0.44 1.93 0.95 0.45 2.24 0.27 

1–2 

(46/40) 

0.72 0.32 1.33 0.77 0.49 1.37 0.35 

2–3 

(52/48) 

0.62 0.39 0.97 0.76 0.59 1.61 <0.05 

3–4 

(52/47) 

0.7 0.32 1.27 0.66 0.37 0.89 0.7 

4–5 

(41/53) 

0.61 0.31 1 0.74 0.44 1.1 0.29 

5–6 

(34/48) 

0.68 0.32 1.24 0.56 0.36 1.1 0.59 

6–7 

(37/49) 

0.6 0.43 0.96 0.86 0.65 1.17 <0.05 

7–8 

(28/39) 

0.9 0.65 0.96 0.9 0.39 0.96 0.77 

8–9 

(35/52) 

1.37 1.34 4.56 1.41 1.03 4.6 0.95 

9–10 

(41/32) 

1.44 0.91 1.75 1.67 1.44 2.03 0.45 

10–12 

(24/18) 

1.45 0.81 2.63 1.74 0.97 2.1 0.71 

11–12 

(16/16) 

0.42 0.39 0.45 0.45 0.41 0.48 0.38 

12–13 

(10/8) 

1.23 1.2 2 1.25 0.96 2.21 0.66 

13–14 

(17/18) 

1.13 0.99 1.89 1.35 1.16 2.23 <0.05 

14–15 

(6/12) 

0.66 0.45 0.72 0.91 0.52 0.97 <0.05 

Total  

1–15 

(482/522) 

0.8 0.44 1.49 0.95 0.58 1.62 <0.05 

Table 6 The effect of gender on S100B concentration at various age 

groups.  

 

Portela‟s group [52] recruited 19 healthy neonate and 15 healthy 

children aged from 4 to 16 and 85 healthy adults from 18 to 70 years old. The 

impact of age was found significant under the age of 20 and non-significant 

afterwards. They found the highest concentration of S100B in the neonates. 

Figure 1 displays the course of serum S100B protein during ageing. As 

depicted, a healthy individual has the highest level of S100B in serum at more 

than 0.4 μg/l after birth. The number is set to drop sharply till the age of 20 
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when its decline rate lessens till the age of 30. After 40, the level tends to 

increase but not significantly. In fact, despite initial sharp decrease of serum 

S100B from nearly 0.4 μg/l to just above 0.1 μg/l during the first twenty years 

of life, the further fluctuations are statistically insignificant. Gazzolo‟s and 

Portela‟s restuls also indicate that S100B in the healthy adult population (i.e. > 

20 years old) is expected to be less than 0.1 μg/l. 

 

Figure 1 Correlation of serum S100B protein concentrations with age 

(from: Portela LV, Tort AB, Schaf DV, Ribeiro L, Nora DB, Walz R, 

Rotta LN, Silva CT, Busnello JV, Kapczinski F, et al: The serum S100B 

concentration is age dependent. Clin Chem 2002, 48:950-952.). 

 

Abdesselam‟s group [53] compared the S100B concentrations in three 

groups of “black” (n=40), asian (n=44) and caucasian (N=46) healthy 

individuals. They did not find any significant difference between asian (0.11 

µg/l) and black (0.14 µg/l) groups while in the Caucasian the figure was 

significantly lower (0.07 µg/l).  

1.4.3. Proposed clinical roles  

Elevated serum S100B levels have been reported in psychoneurologic diseases 

such as Alzheimer‟s disease, Down‟s syndrome, multiple sclerosis, 
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amyotrophic lateral sclerosis, schizophrenia, depression, cerebral stroke and 

TBI [54]. This biomarker also has prognostic value in melanoma and can help 

to apply an appropriate therapy protocol by detecting metastasis or recurrence 

after treatment [48, 55]. 

There are some reports suggesting that serum S100B levels elevate 

following physical activity compared to values observed before exercise [56-

59]. Moreover the pre-post game difference has been claimed to be 

significantly correlated to the number of headers and trauma events during the 

game such as a football match [58]. However, despite this elevation, the serum 

levels remain within normal range [56]. 

There are some trials on the possible therapeutic roles of S100B after 

brain injury but on animals so far. In the project of Klenddienst‟s group, after 

induced brain injury, the rats received infusion of S100B and consequently 

experienced improved cognitive performance and enhanced hippocampus 

neurogenesis [60]. Nearly the same result had been observed by the same 

scientists in 2004 [61]. 

In the medico legal field, S100B is assumed to have two applications: 

firstly; the identification of the cause of death and secondly; attribution of a 

subsequent disability to brain injury in case of multiple trauma or when such a 

cause and effect relation should be investigated (in judiciary conditions as it is 

sometimes unknown whether the brain injury is the actual source of 

impairment or other elements such as concomitant limb fractures are at play). 

With regards to cause of death, Li and his colleagues published two papers in 

2005 [62, 63]. In both studies 283 autopsy cases were examined within 48 

hours post-mortem. Acute death was defined when survival time was shorter 
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than 6 hours and, in contrast, delayed death happened between 6 hours to 5 

months after injury. S100 immunopositivity revealed that positivity in neurones 

and myelin is more frequent in delayed head injury death and fire fatality while 

in astrocytes, the rate was lower in acute death due to strangulation and 

drowning compared to other subcategories of acute death. The authors also 

reported an inverse relationship of astrocytes S100B positivity with serum 

S100B in acute death. The initial conclusion was the probable usefulness of 

combined analysis of S100B positivity in the brain tissue and serum 

concentrations of the protein for the identification of death resulting from head 

injury, hypoxic and /or ischemic brain damage. In the second paper [63], the 

group observed that serum levels are markedly higher in the right heart and 

subclavian vein after acute death from head injury and asphyxiation due to 

neck compression while mildly to moderately elevated for other blunt and 

sharp instrumental injuries. They also found that serum S100B is lower after 

sub acute than acute death due to head injury. These two studies of Li„s group 

propose an important medico legal role for S100B which is now “a hope on the 

horizon”. 

In the following section, the role of S100B in diagnosis or prognosis of 

TBI has been discussed.  

1.4.4. S100B and TBI  

In this section, the major proposed roles of S100B in various studies are 

discussed. This section is divided into 3 parts of mild brain injury, severe brain 

injury and various severities. This division  is based on GCS (mainly on 

attending or admission to hospital) with GCS < 12 being mild and GCS < 9 

being severe. This grouping of studies simplifies understanding of the different 
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roles of S100B proposed in different studies. At the end, the results of some 

studies in non-TBI serious which can affect the interpretation of S100B role in 

TBI, are also presented.  

Each part of this section is accompanied by a table (Table 7, Table 8 or 

Table 9) which summarises the main findings of studies. Additionally, the table 

contains information on some particular characteristics of each study which is 

helpful in comparing various studies. These characteristics are age, sampling 

time, the time point of outcome assessment, the size of the study and whether 

cases with extracranial injuries were included or excluded (i.e. isolated versus 

non-isolated brain injury). Age is important because of S100B concentration 

overall tends to be higher in children than adults and also it decreases as the 

child ages [51, 52]. Sampling time is important because the elapsed time 

between injury and blood sampling affects the relationship of S100B and 

outcome [64]. Furthermore, S100B serum levels tend to decline in a short 

period of time following their rather immediate surge at the time of injury [65]. 

Regarding the time point of outcome assessment, one may assume that as the 

time passes, a higher proportion of TBI victims who have survived recover. 

Similarly, patients with non-isolated TBI tend to have higher S100B 

concentrations and perhaps worse outcome than those with isolated TBI [66]. 

Lastly, the sample size provides an insight about the power of the study.  

 

Mild brain injury 

 

In this severity group of TBI, S100B can be used to predict the outcome ( PCS, 

GOS or GOSE), or the absence/presence of intracranial pathology determined 
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by CT. The majority of studies tend to report the sensitivity and specificity 

although AUC is a better tool to compare the results across different studies. 

PCS is a collection of signs and symptoms such as headache, dizziness, fatigue 

or difficult concentration which results from head injury severe enough to 

cause loss of consciousness.  

As seen in Table 7, across many papers, sensitivity and specificity do 

not change in the same direction in that when one increases, the other 

decreases. This necessitates a compromise between sensitivity and specificity. 

Thus, it seems investigators prefer more specificity for outcome prediction 

unlike for CT abnormality which a high sensitivity is preferable (as a screening 

or ruling out test). A specific test would enable the therapist not to misdiagnose  

those cases who are prone to develop PCS or GOSE of less than a desirable 

level for the sake of a timely intervention whilst a sensitive test would enable 

ruling out of cases from CT scanning when they are unlikely to benefit from it. 
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Study Number 

of cases 

Children/adults Sampling 

time 

Outcome Outcome 

assessment 

time 

Specificity Sensitivity AUC Isolated Cut-off 

Bazarian et 

al. [67] 

35 10-83 Within 6 

hours 

PCS 3 months 71.4% 56.3% 0.589 no  

Mussach et. 

al [68] 

139 > 20 On 

admission 

CT  50% 100% 0.864 no 0.21 

Savola et al.  

[69] 

172 16-49 Within 6 

hours 

PCS 1 month 93% 27% 0.702 no 0.50 

Morochovic 

et al.  [70] 

102 12-84 Within 6 

hours 

CT  29.8% 83.3%  nop 0.10 

Biberthaler 

et al.  [71] 

1309 > 18 On 

admission 

CT  30% 99%  yes 0.10 

Figueiredo 

et al.  [72] 

50  On 

admission 

CT  20% 100% 0.82 yes 0.10 

Biberthaler 

et al.  [73] 

52  On 

admission 

CT  40.5% 100%  no >0.10 

Muller et 

al.  [74] 

226 > 18 In ED CT  31% 95% 0.73 yes 0.10 

Townend et 

al.  [75] 

112 adults 18-360 

hours 

after 

injury 

GOSE < 

5 

1 month 83% 90% 0.889 no 0.48 

Table 7 Some studies of S100B role in mild TBI (GCS > 12).  
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The AUC for outcome prediction widely ranges from the minimum of 

0.58 [67] to the maximum of 0.88 [75]. This may be explained by differences 

in the type of outcome (being PCS in Bazarian‟s study [67] and GOSE < 5 in 

Townend‟s study [75]) or the time of outcome assessment (being 3 months in 

Bazarian‟s study and 1 month in Towend‟s study) or other factors affecting the 

case-mix such as age. Overall, the Savola‟s study appears to be the most 

powerful study of this type for outcome prediction in mild TBI as the sample 

size is 172 [69]. The authors observed an AUC of 0.702 for PCS one month 

after injury with sensitivity and specificity of respectively 27% and 93%.  

Overall, the AUCs for prediction of intracranial pathology determined 

by CT are higher than those for outcome prediction. The minimum AUC for 

CT pathology prediction is 0.73 (by Muller et al.  [74]) with a maximum AUC 

of 0.86 (by Mussach et al. [68]). The most powerful study of this type is the 

one by Biberthaler et al.  who managed to recruit 1309 mild TBI cases [71]. 

Unfortunately, the AUC is not supplied in this paper but a very high sensitivity 

of 99% with a low specificity of 30% to detect abnormal CT has been obtained. 

The cut-off serum level for this diagnostic performance is 0.10.  

 

Severe brain injury 

 

In severe TBI, S100B has been commonly proposed for the outcome prediction 

(Table 8). The outcome measure can be severe disability (measured by GOS or 

GOSE) or mortality. These studies significantly vary on sampling time and the 

time point of outcome assessment; hence differing results with regards to cut-

offs and AUCs. The sampling time ranges from on admission to some time 
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later even up to 4 days after injury (Plinka‟s study [76]). The outcome 

assessment also ranges from early adverse outcome (i.e. within 12 hours) up to 

1 year following injury.  
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Study Number 

of cases 

Children/adults 

 
Sampling 

time 

Outcome Outcome 

assessment 

time 

Specificity Sensitivity AUC Isolated Cut-off 

Olivercrona 

et al.  [77] 

48 > 15 On 

admission 

GOS < 4 3 month 28% 91.3% 0.585 no 0.32 

Olivercrona 

et al.  [77] 

48 > 15 On 

admission 

Mortality 3 month 95.2% 33.3% 0.687 no 1.67 

Olivercrona 

et al.  [77] 

48 > 15 On 

admission 

GOS < 4 12 month 40% 75% 0.552 no 1 

Olivercrona 

et al.  [77] 

48 > 15 On 

admission 

Mortality 12 month 25 95 0.647 no 1.67 

Vos et al. 

[43] 

85 > 15 On 

admission 

GOS < 4 6 months 59% 88% 0.677 no 1.13 

Vos et al. 

[43] 

85 > 15 On 

admission 

mortality 6 months 41% 100%  no 1.13 

Pelinka et 

al.  [76] 

23  < 12 

hours 

Mortality < 12 hours   0.691 yes 4.42 

Pelinka et 

al.  [76] 

23  13-36 

hours 

mortality Within 13-

36 hours 

  0.802 yes 2.24 

Pelinka et 

al.  [76] 

23  37-60 

hours 

mortality Within 37-

60 hours 

  0.819 yes 2.71 

Table 8 Some studies on S100B role in severe TBI (GCS < 9) (continued)
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Study Number 

of cases 

Children/adults 

 
Sampling 

time 

Outcome Outcome 

assessment 

time 

Specificity Sensitivity AUC Isolated Cut-off 

Pelinka et 

al.  [76] 

23  > 84 

hours 

Mortality > 84 hours   0.971 yes 0.79 

Pelinka et 

al.  [76] 

23  Within 12 

hours 

mortality Within 12 

hours 

  0.692 No 7.99 

Pelinka et 

al.  [76] 

23  Within 

13-36 

hours 

mortality Within 13-

36 hours 

  0.693 No 2.16 

Pelinka et 

al.  [76] 

23  Within 

37-60 

hours 

mortality Within 37-

60 hours 

  0.747 No 0.70 

Pelinka et 

al.  [76] 

23  > 84 

hours 

mortality > 84 hours   0.783 No 1.19 

Mussack 

et al.  [78] 

20  12 hours 

after 

admission 

GOS < 4 A year 

after injury 

70% 77% 0.90 yes 0.59 

Nylen et 

al.  [79] 

59 > 8 Within 2 

days 

GOS< 4 A year 

after injury 

80% 50% 0.69 no 0.55 

Table 8 Some studies on S100B role in severe TBI (GCS < 9) (continued).   
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The study by Olivercrona et al. provides a rough insight about the 

predictive performance of S100B when sampling time is constant but the type 

or the time of outcome is different [77]. As presented in Table 9, AUC of 

S100B tends to be higher for mortality prediction than disability prediction 

(GOS < 4). For example, the authors observed increase of AUC from 0.58 to 

0.68 for mortality versus disability outcome prediction at three months after 

injury. Furthermore, it appears S100B strength for outcome prediction 

decreases as the time for outcome assessment prolongs in that, for instance, 

S100B AUC for disability prediction at three months is 0.585 whereas this is 

0.552 for disability prediction at 12 months. However, the sample size in 

Olivercrona‟s study is small (only 48 cases).  

The study by Plinka et al. provides the opportunity to evaluate the 

effect of sampling time and the presence/absence of extracranial injury on 

S100B predictive strength [76]. With regards to sampling time, it appears the 

later the blood taken, the stronger the predictability. For example, S100B 

measured at less than 12 hours following injury has AUC of 0.691 to predict 

mortality whereas if the sampling is performed after 84 hours, the AUC jumps 

to 0.971. Furthermore, excluding cases with extracranial injuries from the 

analysis led to drop in AUC. This can be observed by comparing AUCs of 

S100B when sampling time is the same but cases with multiple injuries are 

ruled in or out.  

The AUCs across various studies differ with the minimum of 0.552 to 

the maximum of 0.971. Not only factors such as the power of the study (sample 

size), extracranial injuries, sampling time, outcome measure and the time of 

outcome assessment can explain differing AUCs, this can also occur as a result 
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of different case-mix as to age or severity of injuries (including extracranial 

injury). Overall, according to Table 8, the AUC appears to have an average of 

about 0.80 for outcome prediction in severe TBI irrespective of factors 

affecting the sampling time, laboratory method of S100B measurement, 

outcome assessment or case-mix. Moreover, it appears there has to be some 

degree of compromise between sensitivity and specificity in selection of the 

cut-off point as, in outcome prediction, sensitivity and specificity tend to hold 

opposite directions in that if one rises, the other decreases.  

According to the sample size, the most powerful study of the table is 

that by Vos et al.  having recruited 85 cases [43]. Vos el al. observed an AUC 

of 0.677 to predict severe disability 6 months after injury. The blood samples 

were taken on admission and patients with extracranial injury were not 

excluded. The authors reported the cut-off point of 1.13 having a high 

sensitivity of 88% (for severe disability) and 100% (for mortality) with a low 

sensitivity of 59% (for severe disability) and 41% (for mortality).  

 

Various severities  

 

The studies of this type which have included cases with various admission 

GCSs are useful in that a group of TBI patients who talk and are alert on 

admission would deteriorate later on. As such, studies with inclusion of various 

degrees of admission GCS have a higher chance of capturing this group of 

patients and putting them in the same group as those who present with low 

GCS to hospital. Like mild brain injury, S100B in these studies is used for 

detection of intracranial pathology on CT or outcome prediction (Table 9).  
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Study Number 

of cases 

Children/adults Sampling 

time 

Outcome Outcome 

assessment 

time 

Specificity Sensitivity AUC Isolated Cut-off 

Herrmann 

et al.  [80] 

39 >16 Median 

27 hours 

after 

injury 

Neuropsychological 

assessment 

2 weeks 90% 69% 0.81 no 140 

Herrmann 

et al.  [80] 

39 >16 Median 

27 hours 

after 

injury 

Neuropsychological 

assessment 

6 months 88.9% 65% 0.77 no 140 

Honda et 

al.  [81] 

34  1 day CT  100% 27.8% 0.658 no  

Honda et 

al.  [81] 

34  2 day CT  100% 33.3% 0.738 no  

Honda et 

al.  [81] 

34  3 day CT  100% 33.3% 0.689 no  

Bechtel et 

al.  [82] 

152 < 18 Within 6 

hours 

CT  56% 75% 0.67 No 50 

Spinella 

et. at. [83] 

27 < 18 Within 12 

hours of 

injury 

PCPC ≥ 4 Discharge   0.94 No  

Table 9 Some studies on S100B role in TBI with various severities (i.e. with no limitations on GCS).  
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Herrrmam et al.  investigated the effect of the outcome assessment time 

on S100B prognostic strength and observed AUC of 0.81 and 0.77 for 

neuropychological deficit respectively at 2 weeks and 6 months after the injury 

[80]. This may imply that S100B holds less predictive strength for longer term 

outcome prediction. This is in accordance with what Olivercrona et al.  

observed in severe TBI (GCC < 9) [77]. Honda et al.  investigated the effect of 

sampling time on S100B capability to detect abnormal CT and found that the 

second day sampling has a higher AUC than either first day or third day 

samples (AUCs of 0.658 versus 0.738 versus 0.689 respectively from the first, 

second and third day of blood sampling) [81].  

Overall the studies including various severities of GCS are small (i.e. < 

40 cases). However, that by Betchel et al. recruited 152 TBI cases to observe 

AUC of 0.67 (with sensitivity of 75% and specificity of 56%) for detection of 

CT abnormality [82].  

 

Extracranial injury  

 

Some studies have examined the effect of extracranial injury on serum S100B 

concentrations. The importance of this relates to the observation by some 

authors that the brain is not the only source of S100B release into the blood 

stream as other body tissues such as fat tissue can contribute to raised S100B 

serum concentration [66, 84, 85]. There are two types of studies investigating 

this issue: some studies compared S100B serum levels in subjects of trauma 

but sparing TBI with subjects in a healthy control group whilst some other 
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studies compared the serum levels of isolated TBI patients with non-isolated 

cases.  

Unden et al.  discerned that 29% of patients who had uncomplicated 

bone fractures with a negligible likelihood of head injury due to the nature of 

the trauma, had raised S100B (above 0.15 µg/l) [84]. Similarly, Anderson et al.  

compared the S100B concentration in the trauma patients without brain injury 

(based on physical examination and interview) to healthy individuals and 

observed that the maximum S100B concentration in the control group was 

much lower than the minimum S100B contraction in the trauma group (0.13 

versus 0.5 µg/l) [85].  

Savola et al.  performed a more detailed analysis of the effect of 

extracranial injury [66]. They observed the highest S100B concentration was in 

serum of patients who had moderate to severe brain injury with large 

concomitant extracranial injury (median 4.01 versus 0.02 µg/l in the normal 

population). Those patients with isolated moderate to severe brain injury had 

higher S100B concentration to those without brain injury but with large 

extracranial trauma (median 0.94 versus 0.35 µg/l). Furthermore, patients with 

large extracranial injury and without brain injury also had raised S100B but to 

the lesser degree than to those with both large extracranial injury and brain 

injury (0.35 versus 4.01 µg/l). These findings were proven to be statistically 

significant. However, minor extracranial injuries such as soft tissue contusions, 

wounds, sprains, luxations and small fractures tended not to raise S100B. In 

fact, serum S100B concentration in the two groups of minor and large 

extracranial injuries sparing brain injury were significantly different (0.35 

versus 0.07 µg/l). Overall, the findings by Savola. et al. suggest both brain 
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injury and larger extracranial injury can contribute to raise S100B serum 

concentration and cases with non-isolated TBI are expected to have higher 

S100B concentrations than those sustaining isolated TBI.  

1.4.5. Summary  

 

S100B is an isomer of a family of proteins called S100 which are calcium-

binding proteins found in the brain with glial origin. They constitute 5% of 

soluble brain proteins. S100B has positive effects on neuroregeneration, 

metabolism and cytoskeleton at nano molar concentrations with harmful 

effects at micro molar concentrations. S100B serum levels appear higher in 

females than males and also in blacks and Asians than whites. Serum levels 

are maximal in the first year of life when they decrease till the age of 20 to 

reach a plateau of less than 0.1 µg/l for the rest of life.  

S100B rises in several neurological (such as Alzheimer’s disease, 

Down’s syndrome, multiple sclerosis) and non-neurological conditions 

(such as melanoma). Also physical activity can cause its rise in the blood 

without trauma. S100B has been proposed in the forensic medicine to assess 

the cause or nature of the death or disability.  

In mild TBI, S100B can be used for prediction of CT abnormality or 

a certain outcome. For outcome prediction, studies have suggested various 

AUCs ranging from 0.58 to 0.89. Similarly, in severe TBI, S100B predictive 

strength varies across studies with AUCs of 0.58 to 0.90. This diversity in 

AUCs implies differences in sensitivity and specificity too. Overall, it 

appears that sensitivity and specificity of S100B do not follow the same 

direction.  
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1.5. Current issues in TBI prognosis  

1.5.1. Problems with the current prognostic models 

The current prognostic models in TBI suffer from one or more of the following 

disadvantages: the sampling population  being those included in  a clinical trial, 

the time frame being historic and the location as being fromvarious countries. 

Clinical trials can not be  truly representative of the TBI population for which 

the prognostic models need to be  developed. Firstly, the inclusion criteria in 

clinical trials are tailored to serve the very purpose of the trial i.e. assessing the 

efficacy of the intervention. As such, those cases which demonstrate clear 

indication or contraindication for the intervention are excluded from 

recruitment according to the uncertainty principle. This poses a selection bias 

for a prognostic  study. Secondly, some patients may be excluded because of 

the consent issue as to the intervention being administered or not. Further, it is 

important for a prognostic model to take the temporal advances and regional 

differences in brain injury trauma care into account. This means if a model has 

been derived from a historic TBI dataset, it may not necessarily be applicable 

for the current or more recent TBI populations due to introduction of new 

improvements in the trauma care policies bound to occur with the passage of 

time. Similarly, if a model has been developed in a different location, it may 

not necessarily be applicable in every location with differences in care policies. 

Murray et al.  [86] compared some „interventional‟ approaches in TBI 

management across TBI samples from various European countries and 

observed that in some countries such UK or France, victims of TBI have lower 



 61 

chance of direct admission to the neurosurgical centre or to undergo 

intracranial operation than Italy or Spain. Regional differences not only apply 

to care policies but also to the demographic pattern or to the pattern of injury 

severities. Murray et al. compared TBI sample populations in Europe from this 

perspective and demonstrated that TBI victims in UK and France tend to be 

older, less often a vehicle occupant or to sustain major extracranial injury than 

the victims in Italy or France. All of these countries are, in fact, geographically 

near each other and all are grouped in the „high income‟ or „developed‟ 

countries.  

The importance of time and regional differences is even more 

highlighted when the prognostic models are to be used for the trauma care 

benchmarking aimed at providing the relative performance of each trauma care 

centre at a national level. It defines how far (in a positive or a negative 

direction) the quality of care is from the national standard. This comparison is 

accomplished through comparing the prognosis in a trauma centre to the 

standard prognosis at the national level. The prognosis in the national level is 

obtained through prognostic models which are derived from the pooled datasets 

of trauma patients across the country. Conspicuously, using a prognostic model 

in a given country which has been developed in a different country may not be 

necessarily valid for the purpose of benchmarking of trauma care centres.  

The British trauma care is different to that of other countries from either 

Europe or America. Some of these differences include but are not limited to 

transfer policies from the scene to hospital (for example via air or land), the 

skill level of the attending personnel and the initial interventions at scene or 

during the transfer (such as management of life threatening events, intubation, 
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drug administration etc.), admission to the neurosurgical unit (primary, 

secondary or never), adoption of conservative versus interventional approach in 

many clinical scenarios (such as ventilation, ICP monitoring, drug 

administration, operation etc.), discharge policies, community care, patients 

follow-up, rehabilitative strategies etc.  

The CRASH dataset was from a clinical trial study and only 3 studies 

out of 11 studies merged in the IMPACT dataset were observational with the 

rest being clinical trials. Furthermore, the IMPACT dataset is somewhat 

historic in terms of the time of data collection since the most recent sub-dataset 

was Saphir trial which was terminated in 1997. Even, the termination time of 

some sub-datasets go back to 1980s such as UK4 (the UK four centre study as 

finished in 1988) or TCDB (Traumatic Coma Data Bank as finished in 1987). 

With regards to the regional differences in trauma care, this is an issue for both 

the CRASH and the IMPACT models. The CRASH dataset was collected from 

50 countries around the globe and although the originators of the models built 

individual models for developed and developing countries, this distinction can 

not address the country‟s health care expenditure in general or the efficacy of 

trauma care in particular. This is shown in Murray‟s study indicating 

differences in TBI populations as per the demographic pattern, severity pattern 

or the therapeutic approaches across various developed countries even in the 

same European geographical region. This could also be the case for the 

IMPACT dataset which contains cases from various countries mainly in 

Europe and the North America.  

Hukkelhoven‟s models suffer from the same disadvantages as being 

derived from clinical trials, being historic (1991-1994) and regionally diverse 
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(from 15 countries). Signorini‟s model is also historic as its termination dates 

back to 1991. Although the design of this study was observational with no 

regional diversity in the recruitment, the Signorini‟s model is the oldest 

amongst all TBI prognostic models.  

1.5.2. Problems with S100B  

A review of the literature on S100B prognostic role in TBI showed that across 

studies the performance of this biomarker varies significantly. For example, 

Townend et al. achieved a high AUC of 0.88 to predict disability whereas 

Nylen et al. obtained much lower AUC of 0.69 for the same prediction. The 

differences in S100B performance can be explained by differences in case-mix, 

S100B sampling time or laboratory method of measurement and also 

differences in type or time of outcome measure. Different case-mix implies 

different patients‟ characteristics which influence the outcome. For example, if 

a population sample contains significantly older subjects than the other sample, 

the older population may have significantly higher proportion of the adverse 

outcome. However, age is not the only factor which may cause a difference in 

case-mix. Some other important patients‟ characteristics are cause of injury, 

GCS, pupillary reactivity, presence/absence of extracranial injury, various CT 

abnormalities etc. Depending on these factors, one sample may have more 

severe TBIs than the other sample and hence different probability of adverse 

outcome. Furthermore, it appears various laboratory methods of S100B 

measurement vary in their sensitivity/specificity [87] and in the same way the 

time of blood sampling with respect to the time of injury affects the prognostic 

performance of S100B [76]. Lastly, Olivercrona et al. observed that S100B 

may be stronger to predict much shorter- term outcomes (3-month) than 
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outcomes at one year following injury or it is stronger for mortality prediction 

than disability prediction [77]. Unfortunately, studies on S100B are not 

uniform as to the above factors. Therefore, the results differ significantly. As 

such, it is not possible to draw a conclusion on whether or not S100B can be a 

good prognostic factor in TBI.  

1.5.3. Prognostic models versus brain injury biomarkers 

There are currently two available tools to predict the outcome in TBI; brain 

injury biomarkers and prognostic models.  

Brain injury biomarkers can be used by taking a blood sample of the 

patient and then measuring the concentration of the biomarker and relating that 

to the outcome. This relationship can be established through knowing the 

sensitivity and specificity of the biomarker when it is above a certain cut-off. 

This is a familiar tool to clinicians as they commonly used various blood 

markers to associate them with a clinical event such as amylase for acute 

pancreatis, Troponin for myocardial infarction, ALF for liver cancer etc. 

Furthermore, the concept of sensitivity and specificity is well known to 

clinicians and they can appreciate the „degree of uncertainty‟ regarding the 

predictive strength of these biomarkers. On the other hand, prognostic models 

involve a different aspect of medical statistics which is currently novel and 

unfamiliar. The measures to determine the performance of models such as 

AUC are not widely known by doctors and thus the degree of uncertainty can 

be hardly appreciated.  

Prognostic models, however, do not incur measurement of a factor not 

commonly collected in trauma management. From this viewpoint, measuring a 

biomarker can pose extra cost whereas what current prognostic models use for 
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the outcome prediction are factors which are routinely measured during the 

physical examination or are collected for the sake of the patient monitoring 

such as O2 Sat., blood pressure etc.  

The above issues are important regarding the potential practicality and 

popularity of prognostic models versus brain injury biomarkers. However, it 

may be even more important to understand how performance of prognostic 

models and brain injury biomarkers differs in that if one prognostic tool 

significantly outperforms the other, this can influence practicality and 

popularity issues. To the best knowledge of the investigator, no studies so far 

have addressed this problem in one single dataset and comparing various 

studies on the subject of prognostic models versus brain injury biomarkers is 

not reliably conclusive. This is because the highest AUC which has been 

achieved by prognostic models is 0.88 (the CRASH model) and 0.84 (the 

IMPACT model). In the same way, there are studies in the literature which 

have obtained high AUCs of around 0.90 for S100B outcome prediction [75, 

83] beside some other studies which have observed much lower AUC of 0.58 

or 0.69 [77, 79]. This means in some studies S100B competes with prognostic 

models whereas in some other studies prognostic models outperform S100B.  

1.5.4. Combination of prognostic models with biomarkers 

This combination can have two forms: adding a brain injury biomarker to the 

existing prognostic models or adjusting the brain injury biomarker with 

cofounders i.e. other TBI prognosticators. Either of these approaches would 

address the same topic as to whether or not this combination yields a stronger 

predictive tool. Adding biomarkers to prognostic models may enhance the 
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accuracy of models and considering other confounders when using a biomarker 

may enhance the accuracy of the biomarker predictability.  

 

Adding a biomarker to prognostic models  

 

The maximum AUC of currently well-developed models in TBI are 0.88 

(CRASH) and 0.84 (IMPACT) in the derivation dataset which drops to 

respectively 0.77 and 0.80 in external validation. Although these models 

appear promising in terms of not making the prediction at random, it is unclear 

how much accuracy is required for various purposes of prognosis in clinical 

trials, trauma care benchmarking or clinical practice and whether this degree of 

accuracy is acceptable or not. When an ideal model has an AUC of 1, it may be 

argued that these models are far from this ideal. Whilst these models are still 

the best available models for prognosis, there is still scope to improve their 

accuracy by examining various ways to „push‟ their AUC closer to the ideal 

model. Conspicuously, there are still patients who do not meet the predictions 

made by the prognostic models as they may die despite being predicted to 

survive and vice versa.  

One option may be to add other predictors into the models. These 

models contain the core TBI predictors [88] i.e. age, GCS (or motor subscore) 

and pupillary reactivity plus some other covariates such as CT and vital signs. 

However, adding new variables may negatively affect the performance of the 

model in data other than the derivation dataset. This is commonly referred to as 

overfitting: when a model performs very well in the derivation set but 
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significantly drops in performance in different set of data. This may even make 

the model useless when it can not be applied in other TBI series.  

Incorporating a brain injury biomarker to the prognostic models may 

enhance the accuracy of the models without putting the model at risk of 

overfitting. This is because some biomarkers such as S100B have been shown 

to be one of the strongest predictors of outcome in TBI amongst other common 

TBI prognosticators when considered individually and not in combination. Vos 

et al. compared the R
2 

of various TBI predictors and found that S100B was 

stronger to predict poor outcome (GOS < 4) 6 months after TBI than CT and 

GCS. This may indicate that adding S100B to models may result in exclusion 

of other predictors which eventually may lead to a better performing model 

without holding too many covariates and thus the risk of overfitting.  

 

Adjusting the biomarker with other prognosticators 

 

The obvious conclusion from a literature review on S100B role in TBI 

presented in Table 7, Table 8 and Table 9 is contradictory results in that in 

some studies S100B performs very well whereas in other studies the 

performance is not promising. The different results can be explained by 

differences in case-mix, sampling time, laboratory method of S100B 

measurement or the type and time of outcome assessment (being morality, 

severe disability etc.).  

Knowing the reason for this difference in results is important in that it 

may offer a much better prognostic tool than current prognostic models. In fact, 
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some authors have reached very high AUCs for S100B as close to 0.90 [75, 

76].  

1.5.5. Summary  

There are three issues regarding the currently proposed prognostic models 

patient samples are from clinical  trials (both IMPACT and CRASH),  the 

dataset being historic (IMPACT) and places for recruitment being diverse 

(both IMPACT and CRASH). These factors may affect the reliability of models 

in other TBI populations including British cases of TBI. Regarding S100B, 

some studies have reached very high AUCs for outcome prediction which can 

compete with that of prognostic models whereas in some other studies low 

AUCs were found. The differing AUCs across studies can be due to differences 

in case mix, sampling time, laboratory methods of S100B measurement, or 

differences in time or type of outcome measurement. As a result of this 

inconsistency in the literature, it is not possible to decide between a prognostic 

model and S100B which one outperforms the other. This is important since, 

unlike prognostic models, S100B results are easy to interpret although 

prognosis models use routinely measured patients’ characteristics. Trial of the 

combination of S100B with prognostic models may enable a stronger 

prognostic tool than either prognostic models or S100B on their own. This is 

because it is unclear whethe or not the current AUCs of prognostic models are 

adequately high or why in some studies very high AUCs of close to 0. 90 have 

been obtained.  
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1.6. Aim and objectives  

1.6.1. Aim  

The aim of the PhD is to improve our understanding of brain injury prognosis. 

For a number of reasons, this area still requires improvement (section 1.5):  

1.6.2. Objectives  

1. Since, the IMPACT and the CRASH models may not be reliable in a British 

dataset the first objective of the PhD is:  

 

To develop a prognostic tool to predict the survival in TBI applicable to 

the British trauma care.  

 

2. It is important to know which of the two commonly proposed prognostic 

tools i.e. prognostic models and a brain biomarker are more accurate in their 

outcome prediction. Regarding this the second objective of the PhD is:  

 

To ascertain  from a multivariate model and a blood test which one is 

better suited for prognosis in TBI.  

 

3. One way of obtaining more accuracy in TBI prognosis can be combination 

of prognostic models with brain injury biomarkers. This combination can be 

either in the form of adding a biomarker to the prognostic model or 

adjusting  biomarker prognosis with confounders. The former may enhance 

models‟ accuracy without risk of overfitting. Taking account of other TBI 
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prognosticators as confounders may enhance the biomarker predictability as 

some authors have reached AUCs of 0.88 to 0.90 for S100B outcome 

prediction. Thus the third objective of the PhD is: 

 

To determine whether a combination of multivariate models and a blood 

test can significantly improve the prognosis in TBI.  

 

1.6.3. Summary  

In this section the aims and objectives of the PhD are discussed. 
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1.7. Approach, design and the importance of the project 

and the hypothesis formulation  

1.7.1. Design  

 

Observational versus experimental  

 

None of the objectives of the PhD involve intervention as to change the course 

of the disease and as such the design of the study has to be observational.  

 

Cohort versus case-control 

 

It can be assumed that a prognostic tool acts similarly to a diagnostic test to 

diagnose a medical condition. In fact, both of these predict the occurrence of an 

event. Therefore, the appropriate study design has to be cohort. Case-control 

studies only recruit cases with  or without the outcome (or  disease) and are 

generally not suitable for assessment of a diagnostic test or prognosis.  

 

Prospective versus retrospective  

 

Although retrospective data can be used for assessing the prognostic accuracy 

of a model, there are some advantages pertained to prospective research as 

compared to retrospective research. The prospective studies can be designed 

and tailored for the specific purpose of the research right from the beginning 

with regards to many factors such as inclusion/exclusion criteria, data 



 72 

collection, formatting and sampling size. Unfortunately, retrospective data does 

not provide much flexibility regarding these factors as the data collection often 

is part of a different research objective.  

Overall, the best study design for the prognostic analysis is 

observational prospective cohort studies.  

1.7.2. Approach and hypothesis  

The Trauma Audit and Research Network (TARN) is a trauma registry based at 

Salford Royal NHS Foundation Trust, Manchester, UK which receives data on 

trauma patients from participating hospitals across England and Wales [89]. 

TARN is a part of changes recommended by the College of Emergency 

Medicine in trauma management through auditing and researching injury and 

care systems and aims to provide information on the quality of care. The 

trauma patients‟ profiles are submitted to TARN if they reach hospital alive 

after injury and fulfil at least one of the following criteria: 

1. stay at hospital for longer than 3 days 

or 

2. are cared in the Intensive Care (ICU). 

or 

3. have interhospital transfer 

or 

4. die at hospital  

TBI patients are a subgroup of trauma patients whose characteristics are 

stored in TARN. Therefore, TARN can provide a set of TBI cases who are 

from Britain, receive the recent trauma care and are part of an ongoing 

observational initiative. Such dataset can be used to derive a prognostic model 
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which is conventionally a better known prognostic tool than a brain injury 

biomarker. Moreover, the most popular statistical method for model 

construction is logistic regression. This has been shown by the systematic 

reviews on prognostic models in TBI performed by Perel et al.  [31] and 

Mushkudiani et al.  [32]. Regarding this the first and second null hypotheses of 

PhD are:  

1. The probability of survival is not influenced by patients’ 

characteristics in severe TBI.  

2. The logistic regression model does not explain the pattern of 

mortality in severe TBI.  

Furthermore, in 2005 a research study was embarked on at Salford 

Royal NHS Foundation Trust aiming at assessing the strength of S100B to 

predict death or severe disability 3 months following TBI. The setting was the 

hospital ICU to enrol severe TBI cases. The blood samples were obtained 24 

hours (+/- 2 hours) following the injury and the degree of disability was 

assessed by GOS. The investigator joined the research group half way through 

to participate in patient recruitment, data collection and final univariate 

analysis. The study was initially targeted to recruit 100 subjects and the final 

dataset provided the opportunity to perform a multivariate analysis on the data. 

Therefore, it becomes feasible to compare the prognostic strength of a 

biomarker, S100B, to multivariate models on a single dataset and also to assess 

whether or not a combination of the two prognostic tools yields a better 

performance than each tool alone. Therefore, the following null hypotheses are 

formulated tailored to the second and third objective of the PhD:  
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3. Addition of clinicodemographic characteristics of patients 

does not improve the prognostic performance of S100B in 

TBI.  

4. There is no difference between prognostic performance of 

S100B and multivariate models in severe TBI.  

5. There is no difference in prognostic performance between 

multivariate models which do/do not contain S100B as a 

predictor in severe TBI.  

1.7.3. Importance 

Using the TARN data, it is hoped that at the end of PhD, a prognostic model 

has been developed which can be used for prognosis in British TBI individuals 

or series. Furthermore, the performance of prognostic models with that of 

S100B will be compared to provide an insight about which one of these 

prognostic tools may outperform the other. Finally, by trial of combinations of 

prognostic models with brain injury biomarkers, it will be investigated whether 

or not this combination can be an option to improve the predictive strength of 

prognostic models.  

1.7.4. Summary  

The PhD includes two parts: construction of a prognostic model for TBI 

patients using the TARN data and analysing a sample of 100 TBI cases who 

have their S100B serum levels recorded at 24 hr following the injury. The 

latter is aimed at comparing S100B prognostic performance to prognostic 

models or the combination of S100B with other prognosticators. Logistic 

regression will be used as the statistical method.  
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1.8. Study protocol  

The PhD involves the analysis of two TBI datasets: one from TARN with the 

other being the S100B dataset. For the rest of this thesis, the TARN study and 

the S100B study are respectively refer to the analysis, results and the 

interpretation of results as performed on the TARN and S100B TBI datasets.  

AIS codes: various injuries sustained by patients are coded in trauma 

registry using the AIS dictionary [90, 91]. This dictionary allocates a 6 digit 

AIS code to each injury which is followed by a post decimal figure 

representing AIS severity score (briefly severity score or AIS score). AIS 

scores ranges from 1 to 6. For example, a patient with penetrating abdominal 

injury with blood loss of more than 20% by volume receives AIS code and 

severity of 516006.3 (where 516006 is the code and 3 is the severity score).  

ISS: it is the sum of the squared of the three highest AIS scores 

allocated to each patient. It ranges from 1 to 75.  

1.8.1. TARN study  

1. Variables selection: This stage addresses what variables are to be 

investigated in the prognostic analysis. There are many variables proposed for 

TBI prognosis but in the modeling, selection of every proposed prognosticator 

may result in overfitting model and it is advised to base this selection on 

clinical consensus and literature [32] to minimize the number of variables. For 

this study, the variables were selected from those prognostic studies by the 

IMPACT and CRASH plus those suggested by Perel et al.  in their systematic 

review of prognostic models [31]. All these studies have employed multivariate 

analysis and the list of chosen variables are: age [23, 31, 35, 36, 92], cause of 
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injury[92], GCS [23, 31, 35, 36, 92], pupillary reactivity [23, 31, 35, 36, 92], 

Injury Severity Score (ISS) [31, 35], systolic and mean Blood Pressure (BP) 

[31, 36, 92], presence/absence of hypoxia [31, 36, 92], CT findings [23, 31, 35, 

36, 92] and presence/absence of extracranial injury [23]. 

2. Database selection: TARN records the Abbreviated Injury (AIS) code 

and severity for each injury sustained by patients. Thus a given type of injury 

of interest can be retrieved from the TARN registry by selecting the cases that 

have the AIS code related to that very injury. This means that the TBI cases in 

TARN can be selected through brain injury AIS codes. These codes are those 

which come under internal organ under the head section of the AIS dictionary 

[90, 91] plus those AIS codes under the skull which are highly likely to be 

associated with brain injury. These codes pertain to basal skull fracture and not 

simple skull fracture and all have AIS severity of 3 and above (the skull AIS 

codes which are unlikely to be associated with concomitant brain injury all 

have AIS severities of 1 or 2). Furthermore, only recently TARN commenced 

recording pupillary reactivity and as such it is necessary that those cases who 

do not have this variable recorded be excluded from data retrieval. If these 

cases are not excluded, the number of missing information on pupillary 

reactivity would be high making the analysis of this variable impossible. This 

is not desirable since this variable is stated as one of the core TBI 

prognosticators in TBI along with age and GCS [88]. Overall, the selection 

criteria of the data from TARN is either head AIS code under internal organ or 

skull AIS code with AIS severity  ≥ 3 AND pupillary reactivity recorded.  

3. Data preparation: This involves determining the best time point (out of 

at scene and on admission) and also the best sub score of GCS for prognosis 
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and allocating the appropriate Marshall Class to each case. The latter is 

because TARN does not record CT images or reports and thus AIS codes have 

to be used as substitutes to perform this translation.  

4. Univariate analysis: At this stage the linearity of continuous variables 

with outcome and their association with outcome in a univariate analysis are 

addressed. Some of the selected variables are obviously categorical by nature 

namely pupillary reactivity, cause of injury, various CT findings and 

presence/absence of extracranial injury. However, other variables can be taken 

either categorical or continuous. Logistic regression makes an assumption that 

all continuous variables have a linear relationship with logit odds of the 

outcome of interest (referred to as linearity assumption). This implies that if the 

continuous variable does not demonstrate this linearity, it has to be transformed 

to meet this assumption or else be categorized. Furthermore, at this stage it is 

required to run univariate statistical tests (t test or Mann Whitney U test for 

continuous variables and Chi Square test for categorical variables) to assess 

their association with outcome. In the same way, the odds ratio of outcome 

needs to be derived for each variable through logistic regression without 

adjustment for other prognosticators.  

5. Multivariate analysis and model derivation: This stage is the actual 

model construction. It is performed initially with age, GCS, pupillary 

reactivity, ISS and extracranial injury and proceeds with addition of CT 

findings and blood pressure and O2 saturation. Age, GCS, pupillary reactivity 

and extracranial injury are the covariates in the basic CRASH models. Model 

A of IMPACT also contains these covariates apart from extracranial injury 

which is not recorded in IMPACT [92]. We added ISS to this list as the extent 
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of extracranial injury can affect it and thus ISS contains information on 

extracranial injury too. The next step is adding CT features which is the case in 

the CRASH models and IMPACT models. Lastly, addition of blood pressure 

and O2 saturation is based on the order in the IMPACT models.  

6. Internal and external validation: Bootstrapping is used for interval 

validation and the resulting models are run on the IMPACT dataset and a later 

TARN dataset  as the external validation.  

1.8.2. S100B study  

1. Variables selection: this stage is similar to what is done in the literature 

review for the TARN project. However, it further included those variables 

which are not recorded in TARN. The list of selected variables are clinico-

demographic characteristics namely age [23, 24], GCS [23, 24], pupillary 

reactivity [23, 24], cause of injury [92], ISS [31, 92, 93], CT characteristics 

[23, 24, 94], extracranial injury [23], vital signs including mean (BP) [92, 95], 

systolic BP [92, 95], temperature [92, 96], and laboratory measures including 

PH [92, 97], Haemoglobin (Hb)[92, 97], Glucose [92, 97], Platelet (Plt) count 

[92, 97] and prothrombin time (PT) [92, 97] along with O2 saturation (O2 Sat.) 

[92, 96] and Intracranial Pressure (ICP) [35].  

2. Retrospective data collection: the original S100B project contains data 

on age, cause of injury, CT classifications and ISS. However, values of other 

variables are required to be retrospectively recorded with patients identifiers 

(name or hospital number). Some of these data are recorded in the regional 

electronic records (the Electronic Patient Record (EPR) at hospital and also 

ICU for vital signs) and TARN. If the information is not available through 

these sources then the patients‟ case notes are reviewed. For GCS and pupillary 



 79 

reactivity the time point of assessment is on admission whereas for laboratory 

measures and vital signs the closest time point to 24 hours after injury is 

selected. This is when the blood sampling was performed in the original S100B 

study.  

3. Univariate analysis: Chi square test is used for comparing categorical 

variables across the survivals versus non-survivals or those with favourable 

outcome versus those with unfavourable outcome. Mann-Whitney U test or t 

test (depending on the normality of the distribution) is used for continuous 

variables for the same purpose. Similarly, logistic regression is used to derive 

the odds ratio for outcome without adjustment for other factors.  

4. Multivariate analysis and model derivation: two types of multivariate 

analyses are performed. Firstly, the constructed model in the TARN project is 

run in the S100B dataset and its performance is measured as per AUC, 

Nagelkerke R
2
 (section 2.7.2) and classification accuracy. Then the change in 

the performance is measured after adding S100B to this model. Secondly, a 

model is derived with only S100B and its performance is recorded. 

Subsequently those variables which are either found significant in the 

univariate analysis or present in the constructed model of TARN project are 

added to this model to observe the change in performance.  

1.8.3. Summary  

The protocols of the TARN and S100B studies are presented in this section. 
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1.9. Thesis structure  

This PhD thesis is presented in the alternative format (i.e. by publications) as 

opposed to the standard format (which contains sections in the following order: 

introduction/background, methods, results and discussion and future direction). 

The difference is only the location of the materials for each section of the 

standard format in that firstly, they are not presented in the standard sequence 

and secondly, they are interrupted by information from other sections in several 

places. Thus the coherence of a standard thesis is not maintained although the 

information on introduction/background, methods, results and discussion is 

contained in several disparate places.  

This PhD thesis contains 7 papers and all across the thesis these papers 

are referred to base on the number allocated to them (e.g. Paper 1, 2 etc.) 

1.9.1. Relevance of each paper to a standard thesis  

 

Paper 1: Utilisation and Assessment of Prognostic Models Derived Through 

Logistic Regression in Medicine.  

 

This paper covers some background to the concept of predictive models 

discussing ways as to how to use them or how reliable they are to help us with 

the purpose they are built for. This paper also provides an insight about the 

model construction contributing to the methods section.  

 

Paper 2: Predicting Outcome after Severe Traumatic Brain Injury Using the 

Serum S100B Biomarker: Results Using a Single (24h) Time-point [98].  
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This paper provides a portion of the evidence/background leading to 

hypotheses 3 and 4 and also includes partial results with regards to the first 

objective by assessing S100B as a prognostic tool. However, the prognostic 

performance of S100B reported in this paper may be far from ideal to be used. 

The hypothesis 3 addresses the issue that whether accounting for other 

predictive factors would enhance S100B predicative performance. However, 

the question still remains as to, among a brain injury biomarker or a 

multivariate model, which one is the superior prognostic tool. This latter issue 

is addressed in hypothesis 4. This paper is now published in Resuscitation [98].  

 

Paper 3: Comparing Model Performance for Outcome Prediction Using 

Total GCS and Its Components in Traumatic Brain Injury 

 

This paper covers an important step taken to make the appropriate decision 

with regards to methods (step 3 of the TARN study protocol) for the purpose of 

addressing hypotheses 1 and 2. GCS is recorded by TARN in a way that each 

patient potentially can hold records of total GCS and each component i.e. 

motor, eye and verbal at two main time-points of at scene and on admission to 

emergency department. Considering all these combined records together, there 

can be 7 various records for GCS (total, motor, eye, verbal, verbal plus motor, 

motor plus eye and verbal plus eye); each with its own prognostic capability. 

This paper discusses which GCS component and at what time-point of 

measurement is expected to have the best predictive value to be contained in a 

model along with other important predictive factors of outcome in TBI. 
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Paper 4: Using AIS Codes to Classify CT Findings in the Marshal System 

[99] 

 

This paper covers an important portion of the methods (step 3 of the TARN 

study protocol) in PhD to address hypotheses 1 and 2. An algorithm is 

proposed to assign a Marshall CT class to TBI patients based on recorded head 

AIS codes in the dataset or trauma registry. The assumptions, upsides and 

disadvantages of this proposed approach is discussed. This paper is now 

published in BMC Medical Research and Methogology [99].  

 

Paper 5: Prognostic Value of Various Intracranial Pathologies in Traumatic 

Brain Injury  

 

This paper presents an important step with regards to the methods (step 4 and 5 

of the TARN study protocol) employed in PhD and also provides results and 

discussions to refute hypotheses 1 and 2. Based on literature; various CT 

findings have significant prognostic value in TBI. However the question relates 

to the relative influence of each injury such as SAH or contusion on outcome 

when other important factors such as GCS or pupillary reactivity are taken into 

account. This paper compares various proposed CT classifications such as the 

Marshal System or AIS scores and concludes on the strongest intracranial 

pathologies for outcome prediction. The appropriate intracranial pathologies 

proposed in this paper are included in the final prognostic models as presented 

in Paper 6.  
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Paper 6: Models of Mortality Probability in Traumatic Brain Injury: Results 

of TARN Modelling  

 

This paper provides the methods, results and the discussion for the PhD with 

regards to hypotheses 1 and 2 and the first objective of PhD is met. Two 

prognostic models are presented which use patients‟ characteristics to make the 

prediction on survival. Refuting the hypotheses 1 and 2 is mainly based on this 

paper.  

 

Paper 7: Comparing the Prognostic Performance of S100B with Multivariate 

Models in Traumatic Brain Injury 

 

This paper includes methods, results and discussion of PhD with respect to 

hypotheses 3, 4 and 5 and to meet the second and third objectives.  

1.9.2. Comparison with a standard thesis  

Each paper, apart from Paper 1, contains sections of introduction, methods, 

results and discussion tailored to the specific objective of that paper. Although 

the objectives of papers may be different to those of the PhD, they are 

important in terms of their relevance to the PhD aim (i.e. improvement of our 

understanding of TBI prognosis). Overall, various sections of a standard thesis 

are presented in the following manner:  

 

Introduction 

This is presented in the introduction section of the PhD thesis and Paper 1.  
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Methods 

This is presented in all papers. Additionally, there are two further sections at 

the end of Papers 6 and 7 titled as „Expansion on methods‟ which provide more 

details on the methods used to achieve the five PhD objectives. This material 

was considered overly detailed or irrelevant to standard papers for journal 

publication.  

 

Results 

This is presented in all papers apart from Paper 1. Furthermore, there are some 

results pertained to the TARN project which follow Paper 6 (titled as „Further 

results‟). These were considered overly detailed or irrelevant to a standard 

paper and as such are presented in this way.  

 

Discussion  

This is presented in all papers apart from Paper 1 as each paper discusses the 

limitations, implications of the respective results and their relevance to the 

literature. However, there is also a separate section at the end of the thesis 

which provides further discussion on limitations, implications and comparison 

with the literature in the context of PhD hypotheses, objectives and aim. It is in 

the section that the discussion on how far the PhD objectives are met is given. 

In this section, a summary of the discussion from respective papers is provided 

with respect to limitations, comparison with the literature and 

implications/interpretation of the results in the first paragraph.  
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Future direction 

Apart form Paper 1, each paper presents information related to this. 

Furthermore, there is separate section at the end of PhD which suggests other 

issues to be considered/followed in the future research of TBI prognosis.  

1.9.3. Authors contribution 

At the beginning of each paper, the names of co-authors of that paper are 

provided. Apart from Paper 2, the first author of all papers is the investigator 

(M.M.L.).  

Mehdi Moazzez Lesko (the investigator): the investigator joined an ongoing 

research project on the S100B prognosis to derive its sensitivity and specificity 

for outcome prediction. Then this project was taken further for PhD along with 

TARN project. The investigator contributed to prospective data collection half 

way through. The retrospective data collection (for unrecorded data) was 

performed by the investigator as well. However access to the hospital EPR was 

restricted by the ethics committee and therefore this part was performed by 

F.L., although data retrieval from case notes was done by the investigator 

himself with the help of Health Record Office at the local hospital. Regarding 

the vital signs, the data were delivered in password-secured files via email by 

the IT officer at the local ICU with the patients‟ names as identifiers. All the 

statistical analysis of this study (either the original prospective project or the 

second retrospective part for PhD) was done by the investigator. Regarding the 

TARN project, the investigator performed all the statistical analysis as far as it 

was possible in Statistical Package for Social Sciences (SPSS) or Microsoft 

Excel. However, some parts of the analysis related to fractional polynomial 

analysis (section 7.5.7) were done by Omar Bouamra in SATA. Moreover, the 
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investigator drafted all papers apart form Paper 2 in which only results and 

discussion sections were written by the investigator.  

Omar Bouamra (O.B.): As a statistician, O.B. contributed with 

appropriateness and accuracy of various statistical approaches taken and their 

results and interpretations for both TARN and S100B projects. Specifically, 

O.B. performed all the fractional polynomial analysis in STATA. Accordingly, 

he is the coauthor in all papers except Paper 4.  

Timothy Rainey (T.R.): TR started the patients‟ recruitment of the original 

S100B project. As such, he is the first author of Paper 1 and the co-author of 

Paper 7.  

Tom Jenks (T.J.): TJ is in charge of data retrieval in TARN and contributed to 

data retrieval at various parts of PhD. This particularly was for the analysis 

performed in Papers 3 and 6 and as such he is the co-author of these papers.  

Charmiane Childs (C.C.): As the co-supervisor of PhD and the chief 

investigator of the original ongoing S100B project, C.C. is the main author of 

Paper 2 and for her supervision and contribution to content accuracy, is the 

coauthor of Papers 3, 4, 6 and 7.  

Sarah O’Brien (S.O.B.): As the co-supervisor of PhD, S.O.B is the co-author 

of all papers (apart from Paper 2) for her supervision and feedback on the 

scientific approaches taken and also on the content accuracy and 

communication efficacy with the broader audience.  

Marylyn Woodford (M.W.): M.W. particularly provided advice on the 

allocation of various brain injury AIS codes to Marshall Classes as presented in 

Paper 4. Also M.W. set out the objectives for TARN TBI modeling and 
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provided insight on data retrieval from TARN and thus contributing to Papers 6 

and 3.  

Laura White (L.W.): L.W. performed an in-depth review of the allocation of 

AIS codes to Marshall classes and as such she is the co-author of Paper 4.  

Hester Lingsma (H.L.): From the IMPACT collaboration, H.L. reviewed the 

detailed approach taken in the model construction for its appropriateness and 

provided the relevant comments and suggestions. H.L. is the co-author of Paper 

6.  

Pablo Perel (P.P.): From the CRASH collaboration, P.P. reviewed the detailed 

approach taken in the model construction for its appropriateness and provided 

the relevant comments and feedbacks. P.P. is the coauthor of Paper 6.  

Raphael Sacho (R.S.): RS participated in the first part of S100B project in the 

recruitment and follow-up of a number of patients. Therefore, he is the co-

author of Paper 7.  

Fiona Lecky (F.L.): As the main supervisor of PhD, F.L. initiated this work 

and assisted the investigator with the design and the progress of the work 

throughout the PhD with close supervision and guidance on every part from 

conduct of the studies and adherence to the protocols, to drafting of each paper 

and final thesis compilation. 

It goes without saying that this work was impossible without invaluable 

contribution of every co-author to accomplish each piece of PhD.  

1.9.4. Summary  

The structure of the thesis as the alternative format,  the contribution of each 

paper to the PhD aim and objectives and their relevance to a standard thesis 
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are discussed in this section. The contribution of each author to various papers 

is also provided.   
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2. Paper 1: Utilisation and Assessment of 

Prognostic Models Derived Through Logistic 

Regression in Medicine 

Authors 

 Mehdi Moazzez Lesko  

 Omar Boumra 

 Sarah O‟Brien 

 Fiona Lecky 
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2.1. Abstract  

Over recent years quantifying the probability of the existence or occurrence of 

a medical condition through using various patients‟ characteristics has become 

increasingly common. Logistic regression is the commonly used statistical 

method to make such predictions and its output is called a prognostic model. 

This article is aimed at clinicians with average knowledge of statistics to 

introduce the conceptual framework behind the derivation of a prognostic 

model. Essential statistical concepts to comprehend how a model is used or 

how the accuracy and reliability of a model is assessed are described. To this 

aim, various types of model presentation including tables, scoring systems or 

web-based calculators are also discussed with examples. Similarly, various 

measures (indices) of model performance such as discrimination and 

calibration are described. Finally, it is explained what it is meant by model 

validity or generalisibility. This document can therefore be used to understand 

the various necessary terminologies used in the application of a prognostic 

model.
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2.2. Introduction  

Over recent years quantifying the probability of the existence or occurrence of 

a medical condition through using known demographic, clinical, laboratory or 

other patient‟s characteristics has become increasingly common. An example 

of this is to quantify the probability of the existence of Pulmonary Embolism 

(PE) when a number of observations such as presence/absence of tachycardia, 

haemoptysis or signs and symptoms of Deep Vein Thrombosis (DVT) etc. are 

known [100] or the probability of the occurrence of nausea or vomiting 

following operation when the patient‟s age, duration of surgery or anaesthesia 

are known [101]. To make such predictions, logistic regression is the statistical 

method which is commonly used and its output is called a prognostic model. A 

prognostic model is not expected to perform perfectly and thus there are 

several measures to describe its performance like the performance 

characteristics of a simple clinical or laboratory diagnostic test which is 

described by its sensitivity, specificity, negative and positive predictive value 

etc. Understanding the terms which quantify the performance of a prognostic 

model thus has similar importance to those using them, as understanding these 

aforementioned terms (describing the performance of a simple diagnostic test) 

has to clinicians making diagnoses.  

With increasing use of prognostic models in medicine, this article aims 

to provide an overall introduction to the concept of prognostic models 

constructed through logistic regression, their use and the measures of model 

performance. A substantial knowledge of statistics is not required to 

comprehend the concepts since the essentials of medical statistics required to 

understand logistic regression are first explained in a concise manner herein. 
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This document can be used to understand various necessary terminologies used 

while applying a prognostic model. 

2.3. Essentials of statistics for prognostic models and 

logistic regression  

The value of statistics in medicine is simple to understand. For instance, we 

may wish to know whether or not pulmonary outcome is different in patients 

suffering from Chronic Obstructive Pulmonary Disease (COPD) who take a 

drug, say Salmetrol, to those patients who do not. Ideally, we have to 

investigate all patients with COPD in the „world‟ by giving a drug (Salmetrol) 

to some of them and not to others, in a random fashion and to compare the 

outcome in these two groups. However, this approach is not possible for many 

reasons and thus the statistics assists us to analyse a sample of the population 

of patients with COPD and then to infer what goes on in the real world from 

the analysis of this one sample. 

Statistics is the analysis of the variables and variables are 

objects/characteristics/attributes or „entities‟ which vary and are not constant. 

The parameter is the other term which is alternatively used for the term 

variable. Alternative terms for the term „value‟ are observations, measurements 

or data. The variables can be categorical or continuous.  

Categorical variables vary within certain types/stages of a status or a 

medical condition (such as gender which varies between being male or female 

or the type of breast cancer which can vary among being lobular, ductal or 

mixed). 
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Continuous variables vary by adopting a measured figure. A continuous 

variable is in fact any variable which is not categorical (such as age, weight, 

blood sugar, serum bilirubin etc). However, sometimes continuous variables 

can be converted to categorical variables by defining a certain „cut-off points‟. 

For example, for some reason, a statistician may decide to categorise the 

continuous age as (< 17), (18 to 40), (41-65) and (> 66).  

2.4. Position of prognostic models in statistical analysis 

Statistics in medical science are used for descriptive or analytical purposes.  

In the descriptive form, the average/median and the variability of the 

data are described. In this manner, the variability is described through 

presenting graphs (histogram, box-and-whisker plot or bar chart) or through 

quantifying the frequencies, range, centiles or variance/standard deviation.  

In the analytical form of statistics (Figure 2), two or more groups of 

data are compared or their relation with each other is explored. 

 

Figure 2 A schematic presentation of various common types of analytical 

statistics in medicine.  

 

Comparing the data tells us whether or not the values are 

„meaningfully‟ different in two or more groups. For example, whether or not 

the median of blood cholesterol in a group of patients who had a heart attack is 

Analytical statistics  

Comparison  Relation  

Agreement  Association  Prediction/regression  
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different to those who did not or whether or not the frequency of anaemia in a 

group of male population is different to that in a group of female population. 

Obviously, this „meaningful‟ difference implies that one variable is expected to 

be higher or lower than the other in real life as inferred from the difference in 

the sample. This will be described in more details later (section 2.5).  

Exploring the relation among two or more variables involves one of 

these three aspects: agreement, association or prediction/regression.  

Agreement refers to similarity of the measurements performed by two 

people (inter-rater reliability) or at two time points (intra-rater reliability). One 

example of this is when one wishes to know how Glasgow Coma Scale (GCS) 

scores are similar (i.e. in agreement) if they are measured by two people or by 

one person at separate time points.  

Association means that, among two variables or more, if one variable is 

higher, the other is expected to be higher or lower and thus they are not 

independent. For example, one may be interested to know if the renal clearance 

of Gentamicin is associated with or independent of the renal creatinine 

clearance. In such case, increase or decrease in renal clearance may change the 

serum level of creatinine or these two may be independent.  

Prediction or regression is to estimate the value of one variable when 

the value of one or more other variables are known. This prediction is made 

through models and models are the mathematical equations used to make this 

prediction. The term prognostic model is commonly used to refer to these 

predictive models.  

The are several types of models but the simplest one is a linear 

(univariate) model.  
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2.4.1. Linear models  

The linear model is described by the regression line which is:  

Y = (a × X) + b 

In which, Y is the variable to be predicted (also referred to as 

dependant, outcome or response variable) and X is the variable used to make 

the prediction (also referred to as explanatory variable/factor, independent 

variable/factor, covariate or regressor). a is called the coefficient with b being 

the constant or intercept.  

The above model can be derived through statistical analysis of a sample 

of the population. It allocates actual figures to “a” and “b”. This then enables a 

clinician to calculate the unknown value of Y using the known value of X in 

real life. This formula also shows that X and Y are associated with each other 

i.e. they are not independent. In fact, one way of evaluating the association of 

two variables is to perform the regression in that if a is zero, then it can be 

inferred that there is no association between X and Y.  

2.4.2. Multivariate models  

Multivariate models incorporate more than one variable to predict the value of 

the other variable. Such models are called multivariate models and they take 

the following form:  

Y = (a1 ×X1) + (a2 × X2)…+ b 



 96 

An example of such model is when we want to predict the score of a 

functionality scale called Functional Independence Measure (FIM) total score 

in stroke patients at discharge. This is a scoring system based on some items 

related to motor and cognition functionality which ranges from 18 (total 

dependence or lack of functionality) to 126 (total independence or normal 

functionality). The following model was derived through analysing the data of 

464 stroke patients [102]:  

FIM total score at discharge = - 0. 32 (age) + 0. 80 (FIM 

total score on admission) - 0. 13 (onset to admission 

interval) + 68. 6 

Using the above formula, then the discharge FIM total score can be 

calculated if age, admission FIM total score and the elapsed time between 

onset of symptoms to admission to hospital are known.  

However, the information provided by the above formula is more than 

just a prediction in that:  

 Firstly, if other variables are investigated during the construction of a 

model and they do not appear in the final model, this means those variables are 

not associated with or have no effect on the dependent variable. For example, 

during the construction of the above model to predict FIM, the effect of sex 

and age on FIM was also investigated, but these are not included in the final 

model. It can therefore be concluded that these factors have no effect on FIM. 

Obviously, if the effect of a variable is not considered during the model 

construction, absence of such variable in the model does not necessarily mean 

no additional  effect on the dependant variable. 
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 Secondly, multivariate models take into account the effect of multiple 

variables on a dependent factor collectively. This is usually referred to as 

adjustment with confounders to address the concern that factors may alter the 

effect of each other. An example of this situation is when one is interested to 

know whether or not Body Mass Index (BMI) has any effect on developing a 

cardiac complication following hip fracture in elderly [103]. Here, there are 

other „confounders‟ which may contribute to developing such complication 

such as older age or male sex. Performing a multivariate analysis by taking 

BMI, age and gender into account to predict the occurrence of cardiac 

complication addresses the effect of age and gender on outcome as well. It is 

then stated that the effect of BMI on risk of developing cardiac complication 

following hip fracture is adjusted for age and gender (confounders).  

 Thirdly, in a model which predicts one variable using one or more other 

variables, it can be stated that the predicted variable is associated with the 

predictors or the predictors are risk factors for the predicted variable. For 

example, when the model to predict the cardiac complication in the elderly 

with hip fracture contains age, gender and BMI, it can be stated that age, 

gender and BMI are risk factors for a cardiac event.  

2.5. Position of logistic regression in statistical 

methods 

Logistic regression is a „statistical method‟ used to derive a prognostic model. 

Statistical methods are specified mathematical calculations which can serve the 

purpose of the analysis; being either making a comparison or assessing the 
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relation between two or more variables. Examples of some commonly used 

statistical methods are t test, Chi Square test, Mann Whitney U test etc. 

The idea is firstly, to describe the population sample based on the 

purpose of the analysis and secondly, to determine how certain one can be that 

what is observed in the sample; is going on in the actual population or other 

samples of this population. The degree of certainty with which one can 

generalise what is observed in a sample to the whole population or „the 

meaningfulness‟ of what is observed is referred to as the statistical 

significance.  

There are two ways to investigate and demonstrate the statistical 

significance: estimation and hypothesis testing. Confidence Intervals (CI) are 

commonly used for estimation and the p value is used for hypothesis testing. 

Most statistical methods in medicine address the issue of clinical significance 

through hypothesis testing although often knowing the CI is more informative.  

2.5.1. Estimation and Confidence Intervals 

The Confidence Interval (CI) is presented by two figures between which we can 

be confident the actual value in the population resides with a ‘specified degree 

of certainty’.  This degree of certainty is stated when the CI is reported such as 

97. 5% CI or 95% CI (but 95% CI is the most commonly used). A 95% CI can 

be obtained for the mean, frequency, odds ratio and many other statistically 

descriptive or analytical factors.  

It simply means that if we repeat our sampling 100 times (or take 100 

samples of the population), the value of our interest (be it mean, frequency etc) 

is something between the two given figures 95 times (or in 95 samples of 

population).  This information is very useful simply because by analysing one 
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sample of population, we can estimate what would be observed if we had 100 

samples of population instead of only one. For example, a study found that 

80% of Intravenous Drug (IV) users in a sample of 499 cases detained for 

mandatory rehabilitation were positive for Hepatitis C Virus (HCV). The 95% 

CI from this sample was 76.2-83.6 [104]. This means if the sampling is 

repeated several times from the population of IV drug users under 

rehabilitation, the frequency of being HCV (+) is between 76.2 to 83.6, in 95% 

of the samples.  

CIs can also be used to investigate the association between two 

variables and for this purpose, knowing the CI for the odds ratio is helpful.  If 

this CI does not contain 1 (which demonstrates no association), we can 

conclude that the association between the two variables are statistically 

significant. For example, one may be interested to know if diabetes is 

associated with acute Myocardial Infarction (MI). We can simply obtain the CI 

for the odds ratio of having MI when the patient is diabetic in a dataset which 

contains this information. Shaw. et al. Observed an odds ratio of 1.41 with 

95% CI of 1.26 and 1.57 by analysing a sample of 100,253 patients  [6]. This 

demonstrates a statistically significant association since we can expect the 

presence of the association described by the confidence limits, on 95% of the 

occasions if the sampling of the population is performed repeatedly.  

2.5.2. Hypothesis testing and the p value  

The p value is the probability that what is observed in the sample,  actually 

occurs in the population if the null hypothesis is true. The null hypothesis 

differs according to the purpose of statistical analysis. For example, if the 

purpose is to compare a variable among two or more groups of values, then the 
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null hypothesis is that there is no difference (or the difference is zero). Table 

10 presents some null hypotheses related to various statistical analyses and 

methods. There is a cut-off level for the p value commonly at 5% below which 

the null hypothesis is declared rejected. Thus, when the p value of a statistical 

analysis is less 5%, it is stated that the null hypothesis is refuted.  
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Table 10 Various statistical methods along with their purpose and the hypothesis. 

Purpose of statistical analysis Example of 

statistical method 

Null hypothesis 

Comparison Categorical variable Chi square test The difference between 

frequencies (or proportions) 

is zero 

Continuous variable T test, Mann Whitney 

U test 

The difference between the 

means is zero (t test), the 

difference between the 

medians is zero (Mann 

Whitney U test) 

Relation Agreement - Kappa (κ) test The ratings are independent  

Association Categorical variable Chi Squared Test The difference between 

frequencies (or proportions) 

is zero 

Continuous variable Simple linear 

regression 

The coefficient is zero 

Prediction 

/regression 

Continuous variable Multiple linear 

regression 

The coefficient is zero 

Categorical 

variable 

2 categories Logistic regression The coefficient is zero 

More than two 

categories 

Multinomial 

regression 

The coefficient is zero 
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For example, when determining whether the Length Of Stay (LOS) in 

hospital, in trauma patients with and without underlying medical condition is 

different or not, the null hypothesis states that there is no difference. If in a 

sample of trauma patients, we observe a difference between the median LOS in 

patients with underlying medical condition and those without underlying 

medical condition with a p value of, say 3%, we can then say that if there is no 

difference between the LOS in these trauma populations, then there is only 3% 

chance that we observe such a difference in our sample. In other words, the 

type I error of our analysis is only 3%.  

For regression, the null hypothesis is that the coefficient is zero. In 

multiple regressions, i.e. there is more than one covariate; each covariate holds 

a p value related to its coefficient. 

2.5.3.  Logistic regression 

Logistic regression is a statistical method to construct a model to predict a 

categorical variable which has only two categories. Therefore, the outcome 

variable can be the existence (i.e. absence/presence) or occurrence/non 

occurrence of a medical condition such as survival, a postoperative 

complication, having a cancer etc.. The output of the model for a patient with 

given characteristics is loge (odds of what is predicted); for example, loge (odds 

of survival, a postoperative complication, having a cancer, etc.).  

Knowing the odds, calculation of the probability is simple since: 

Odds = probability / (1-probability) 

therefore:  

Probability = odds / (1+ odds) 
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The remaining two sections of this article explain various ways of 

presenting the output of logistic regression and also the indices which are used 

to assess how accurate a model is in its predictions. The output of logistic 

regression can be in two forms: a model (which contains the covariates, 

coefficients and the constant) or the odds ratio for each covariate. If the output 

of a logistic regression is in the form of a model, there are several ways to 

present this.  

2.6. Presentation of the results of logistic regression  

2.6.1. Table  

This is the simplest from of presenting the output of logistic regression 

analysis. The table contains covariates with their related coefficients, odds ratio 

(with or without 95% CI) or p value. If the table only contains the odds ratio, 

then it just provides information on the significance of the effect of each 

covariate on outcome which can be determined by p value or the 95% CI for 

odds ratio. Such table is not helpful to calculate the probability of the outcome 

variable.  

Knowing the coefficients and the constant from the table, the following 

equation can then be obtained:  

Loge(odds of outcome) = (coefficient)1 × (covariate)1 + 

(coefficient)2 × (covariate)2 + (coefficient)3 × (covariate)3 

+ …. + the constant 
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If we call Loge(odds of outcome) as B and the probability of outcome 

as A, the mathematical calculation of the probability of the outcome is as 

follows: 

B = loge (A/ (1-A)) 

e 
B 

= A /(1-A) 

A = e 
B
 / (1+ e 

B
) 

 

Interaction  

 

Two covariates in a model are interacting with each other, when they are 

affecting the degree to which they each influence the outcome (dependent 

variable). This is declared in the model by the originators and is simple to 

mathematically incorporate in the regression equation. In such case, the 

interaction is presented as an „extra‟ covariate which, like other covariates, 

holds an odds ratio and a coefficient. 

Table 11 presents a model which was derived to predict in-hospital 

morality for patients who undergo a vascular surgery [105]. This model 

employs the post-operative values of a number of patients‟ characteristics. In 

this table, the three interactions are in bold and are: between out-of-hours 

surgery and chronic statin therapy and between last mean daily Heart Rate 

(HR) and last mean daily Systolic Blood Pressure (SBP) < 100 or >179 

mmHg’ and between last mean daily HR and  withdrawal of chronic beta-

blocker. These interactions mean that the amount of the effect which, for 
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example, last mean daily HR has on the probability of death would change 

depending on last mean daily SBP or withdrawal of chronic beta-blockers. This 

is simple to mathematically describe as the interactions can be treated as 

individual covariates with their respective coefficients. 

 
Table 11 The model to predict in-hospital mortality following a vascular 

surgery.  

 

Thus the equation obtained from this table to calculate the log e (odds of 

in-hospital death) is as follows:  

log e (odds of in-hospital death) = (Age × 0. 052) + 

((Creatinine > 180 mmol. l-1) × 1. 625) + ((Surgery out of 

hours × no chronic statin therapy) × 2. 113) + (last mean 

daily HR × 0. 017) + ((last mean daily HR × ‘last mean 

daily SBP < 100 or >179 mmHg’) × 0. 019) + ((last mean 

daily HR × withdrawal of chronic beta-blockade) × 0. 017) 

–7. 951 

 
In the above formula, the variables which are of „yes/no type‟ such as 

out-of-hour surgery are 1 when present and are 0 when absent. Therefore, if 

they are absent, their effect on outcome would be zero.  

Covariate  Coefficient  

Age (per one-year increase) 0.052 

Creatinine > 180 mmol.l-1 1.625 

 

Surgery out of hours × no chronic statin 

therapy 

2.113 

 

Last mean daily HR (per beat per minute 

increase) 

0.017 

 

Last mean daily HR × ‘last mean daily 

SBP < 100 or > 

179 mmHg’ 

 

0.019 

 

Last mean daily HR × withdrawal of 

chronic beta-blockade 

0.017 

 

Constant –7.951 
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In the above model, some interactive variables such as out-of-hour 

surgery or withdrawal of chronic beta-blocker are not contained as individual 

covariates in that there is no covariate as out-of-hour surgery or withdrawal of 

chronic beta-blocker separately. This is not always the case in all models. As 

can be seen in this model, Last mean daily HR is contained individually and 

also in interactions with last mean daily SBP and withdrawal of chronic beta-

blockade. 

2.6.2. Scoring system  

In this form of presentation, each covariate receives a score or point and then 

the sum of all scores (called the sum score) is calculated. Each given sum score 

holds an equivalent probability or odds ratio of the outcome. There are several 

ways to obtain the related probability of a sum score. This may be provided in 

a table, presented in a graph, plotted against a line in the monogram or 

calculated through a linear equation.  

 

Example 1: predicting 30-day mortality in patients with ST-elevation MI (TIMI 

risk score): table presentation of the probabilities (Figure 3) 
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Figure 3 The TIMI risk score to predict mortality within 30 days following 

ST-elevation MI (from: Morrow DA, Antman EM, Charlesworth A, 

Cairns R, Murphy SA, de Lemos JA, Giugliano RP, McCabe CH, 

Braunwald E: TIMI Risk Score for ST-Elevation Myocardial Infarction: 

A Convenient, Bedside, Clinical Score for Risk Assessment at Presentation 

: An Intravenous nPA for Treatment of Infarcting Myocardium Early II 

Trial Substudy. Circulation 2000, 102:2031-2037.).  

 

Using this model, a risk score can be calculated which is the sum of 

points given to each particular characteristic presented in the „FRONT‟ table. 

Subsequently, the equivalent odds ratio of death by 30 days can be spotted in 

the „BACK‟ table knowing the calculated risk score [106].  

 

Example 2: the APCHE III prognostic system: the graph presentation of the 

probabilities (Figure 4) 

 

This model was developed by analysing a dataset of 17,440 cases to predict the 

probability of mortality in hospital for patients who are admitted to Intensive 

Care Unit (ICU) due to various medical conditions (APCHE: Acute Physiology 

and Chronic Health Evaluation) [107].  
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Initially, the APACHE III score is calculated which is the sum of points 

allocated to 17 covariates (the sum score). Then the probability of mortality 

related to the calculated sum score can be obtained in Figure 4 based on the 

cause of the admission to the ICU.  

 

Figure 4 The APCHE III prognostic system to predict mortality in ICU 

(from: Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, 

Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell FE: 

THE APACHE-III PROGNOSTIC SYSTEM - RISK PREDICTION OF 

HOSPITAL MORTALITY FOR CRITICALLY ILL HOSPITALIZED 

ADULTS. Chest 1991, 100:1619-1636.) 

 

Example 3: calculation of the probability of distant metastasis in renal cell 

carcinoma: a nomogram (Figure 5) 

 

A nomogram is a graphical calculator and in multivariate analysis, it contains 

several scoring lines. Each covariate has a scoring line on which its value can 

be plotted. There is usually three other lines to plot the point given to each 

value, to spot the total points (the sum score) and finally to spot the final 

probability (or odds ratio) of the outcome. Figure 4 presents a „nomogram‟ 
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which can be used to calculate the probability that a patient with renal cell 

carcinoma has a distant metastasis knowing tumour size and symptom 

classification (asymptomatic, local or systemic) [108].  

 

Figure 5 A nomogram to predict distant metastasis in renal cell carcinoma 

(from: Georg CH, Jean-Jacques P, Claudio J, Paul P, Alexandre de La T, 

Laurent S, Gregory V, Jacques T, Luca C, Vincenzo F, et al: Patients with 

distant metastases from renal cell carcinoma can be accurately identified: 

external validation of a new nomogram. BJU International 2008, 101:39-

43.) 

 

Example 4: The IMPACT model for the probability of mortality within 6 

months following severe traumatic brain injury: the linear equation (Figure 6)  

 

In order to make such prediction, first the sum score is calculated using table in 

Figure 6 [24]. 
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Figure 6 The IMPACT model to predict mortality in 6 months following 

severe traumatic brain injury (from: Steyerberg EW, Mushkudiani N, 

Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts 

I, Habbema JD, Maas AI: Predicting outcome after traumatic brain 

injury: development and international validation of prognostic scores 

based on admission characteristics. PLoS Med 2008, 5:e165; discussion 

e165.)  

 

Then, the probability is calculated using the following equations:  

 

LP = -2. 55 + 0. 275 × sum score 

Probability of mortality within 6 months = 1/ (1+e 
–LP

) 

2.6.3. Web-based calculator 

Oftentimes, an online-calculator is provided which by putting the respective 

value of a number of variables the probability of outcome is given. An example 

of such calculators is the one proposed by Chen. et al.  which predicts the 

probability of caesarean delivery using a number of mother‟s  characteristics 

such as age, height, weight, gestational age, pregnancy weight gain etc [109]. 

This calculator is available at 

http://www.ise.ufl.edu/rmfe/projects/CSPrediction/CSpredictEnscrpited1.htm.  

http://www.ise.ufl.edu/rmfe/projects/CSPrediction/CSpredictEnscrpited1.htm
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2.7. Model Accuracy  

It is ideal that a model makes an absolutely accurate prediction. 

However, this does not happen in reality and therefore there are several 

measures to assess the performance of a model (or how accurate the model‟s 

prediction is). This is similar to a diagnostic test for a disease condition which 

is not always accurate and thus the accuracy of a test is measured through its 

sensitivity, specificity etc. In the same way, accuracy of a model‟s prediction 

can be assessed through several measures. Overall, the performance of a model 

has two dimensions: discrimination and calibration.  

It is first essential that the distinction is made between the predicted 

probability and the observed probability. The predicted probability is the 

probability of the outcome as calculated by the model for a patient with given 

characteristics. The observed probability for a patient with given characteristics 

is the frequency of the outcome among patients who all have those 

characteristics in the dataset. The idea is that two or more patients with the 

same characteristics may have different outcomes observed in real life (and 

thus in the dataset) whereas these two patients have the same probability 

predicted by the model. The observed probability is the proportion of the 

outcome observed in the dataset of patients with a given set of characteristics 

and the predicted probability is the proportion predicted by the model. For 

example, a model may predict the probability of admission to intensive care for 

a severe trauma patient at the age of 50 with underlying heart disease as 60%. 

This means every patient with the above characteristics has 60% chance of ICU 

admission (predicted probability). However, in the dataset from which the 

model has been derived, some patients at the age of 50 and with heart problems 
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may be admitted to ICU and some of them with the same characteristics may 

be never cared in ICU. The observed probability is the frequency of cases with 

these given characteristics who were cared in the ICU.  

2.7.1. Discrimination 

Discrimination is the ability of the model to predict higher probability of 

outcome for the patients who experience the outcome than those who do not 

experience the outcome. In a model with a perfect discriminative performance, 

all patients who experience the outcome at all times have a higher predicted 

probability than the probability predicted for patients who do not experience 

the outcome. However, the perfect performance rarely happens in reality.  

Area Under the Roc Curve (AUC) or C statistics is the measure to 

assess the discriminative performance of the model:  

 

Area Under the Roc Curve (AUC) (C statistics) 

 

This is the probability that in a random pair of patients that one has the 

outcome and the other does not, the patient who experiences the outcome has a 

higher predicted probability by the model than the one without the outcome.  

For example, an ideal model for prediction of death in a disease condition is 

expected to have AUC of 100% (or 1). This means that the predicted 

probability of death for a patient who dies is always (i.e. at 100% of the times) 

higher than the predicted probability of death in a patient who survives.  

Vergouwe et al. stated that in comparing the AUC (or performance) of 

a prognostic model across various population samples, it is important that the 

influence by differences in case-mix and also the value of coefficients taken 
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into account {Vergouwe,  #295}. This means that a large difference between 

performance of a model in the development population compared to the 

external validation population can partially be explained by the differences in 

case-mix or the coefficients and a different AUC does not necessarily reflect a 

different model performance. 

However, this ideal model is rarely achieved in reality and thus the 

AUC is expected to be less than 100%. Nevertheless, if the AUC is more than 

50%, it can be said that at least the prediction is not made by chance. (A 

prediction which is made by chance is like flipping the coin which has 50% 

chance of being either head or tail).  

There is no consensual cut-off for AUC to regard models with AUCs of 

above that cut-off as good discriminative models. However, an AUC of above 

85% may be an indicator of a good discrimination. An example of a prediction 

with this degree of AUC is to predict the breast cancer through mammography 

[110].  

2.7.2. Nagelkerke R2 

This measure is sometimes given to show a model‟s performance. It ranges 

from 0 to 1 (or from 0 to 100%) with 1 indicating the perfect model. 

Nagelkerke R
2
 is sometimes referred to as the equivalent of R

2
 in a linear 

model. Thus understanding R
2
 which is used for a linear model can partially 

help to understand the concept of Nagelkerke R
2
 for a logistic regression 

model. The idea and use of both these measures are the same despite their 

difference in mathematical calculation.  

 

R
2 
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By definition, R2 is the amount of variability in the predicted variable (Y) 

which is explained by the model.  

 

Variability  

 

In the linear regression equation of Y= (a × X) + b, for each value of X, 

there is only one Y value. However, this is not the case in reality (and thus is 

the dataset) in that each value of X can potentially hold several Y values.  

For example, one may wish to predict the Length Of Stay in hospital 

(LOS) from the admission age using a linear model. Obviously each value of 

age can potentially have several different LOS but if a model is derived (where 

the equation will take this form: LOS = (a × age) + b) for each value of 

age there is only one LOS predicted by the model. Thus for each age in the 

dataset, there can be a number of LOSs which are equal to what the model 

predicts and a number of LOSs which are different to this prediction.  

Variability in a set of data is a mathematical calculation which is 

performed through sum of squares and has three types: total sum of squares, 

explained sum of squares and residual sum of square.  

total sum of squares = 

2

1

n

i
i

yy  

explained sum of squares (explained variation) = 

2

1

ˆ
i

i
yy  

residuals sum of squares (unexplained variation)= 
2

1

ˆ
i

ii
yy  
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Where y and y are the observed and predicted values respectively 

(Figure 7). According to this graph, the explained value is the difference 

between the predicted value (the constant line) and the mean of all observed 

values (the dotted line). This is presented as 

_

yy  in the above formula. 

The unexplained value is the difference between the observed value (○) and the 

predicted value (the constant line). This is presented as yy  in the above 

formula.  

 

Figure 7 Explained and unexplained values and variation. The dotted 

vertical line represents the mean of observations.  

 

 

Calculating R
2 

 

R
2
 is calculated using the following formula:  

 R
2
 = 1 – (residuals sum of squares/ total sum of squares) 

or 

R
2
 = 1 – (unexplained variation/ total sum of squares) 
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Similar to AUC, there is no cut-off for R
2
 above which to regard the 

performance of the model acceptable. However, R
2 

is a good measure to 

compare the performance of several models if it is known for every model.  

2.7.3. Calibration (goodness of fit) 

This refers to how close the predicted probability by the model is to the 

observed probability. . This is expressed as how the model fits the data. In an 

ideal model all predicted probabilities are equal to the observed probabilities. 

However, similar to discrimination, this perfect performance is rarely achieved.  

The following measures are used to mathematically describe the 

calibration of a model:  

Negative Predictive Value (NPV): This is the proportion of the patients with 

predicted probability of less than 50% by the model who did not experience the 

outcome.  For example, if the NPV of a model is 80%, there is 80% chance that 

a patient with say 30% predicted probability of death (i.e. any value less than 

50%) did die in reality.  

Positive Predictive Value (PPV): this is the proportion of the patients with 

predicted probability of more than 50% by the model who do experience the 

outcome.  For example, if the PPV of a model is 80%, there is 80% chance for 

a patient with say 60% predicted probability of death (i.e., any value more than 

50%) did die in reality.  

Sensitivity: this is the proportion of the patient with the outcome who hold the 

predicted probability of more than 50% by the model.  For example, if the 

sensitivity of a model is 80% this means the model makes the prediction of 

death of more than 50% for 80% of patients who die.  
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Specificity: this the proportion of the patient without the outcome who hold the 

predicted probability of less than 50% by the model to experience the outcome.  

For example, if the specificity of a model is 80% that means the model makes 

the prediction of no death (i.e. survival) of more than 50% for 80% of patients 

who do not die.  

Accuracy rate (classification accuracy): this is the proportion of the patients 

who are correctly classified by the model.  The correct classification implies 

that if the patient experience the outcome, the predicted probability is more 

than 50% and if the patient does not experience the outcome, the predicted 

probability is then less than 50%.  

 Mathematical calculations of NPV, PPV, sensitivity, specificity and 

accuracy rate can be presented through a 2 ×2 table (similar to a diagnostic 

test) as follow:  

 

Outcome  + - 

+ a b 

- c d 

 

NPV = d / (d + c) 

PPV = a / (a +b) 

Sensitivity = a / (a + c) 

Specificity = d (d + B) 

Accuracy rate = (a + d) / (a + b + c+ d) 

Predicted probability > 50% 
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The concept of these measures for a model is overall similar to a 

diagnostic test. For example, sensitivity of a diagnostic test is the proportion or 

the probability that a patient with the disease has a positive test result. In a 

model, the (+) test result to experience the outcome is when the predicted 

probability is more than 50%. This cut-off of 50% is „by default‟ and it can 

also be set at a figure higher than 50% in which case this would be mentioned 

by the originators of the model.  

2.7.4. Hosmer- Lemeshow goodness of fit test (HL statistics) 

This is a statistical method referred to as „goodness of fit‟ test to assess the 

calibration of a prognostic model. The test provides a p value and if its value is 

less than 5%, it is stated that the model does not fit the data. This reflects that 

the model is not satisfactorily calibrated.  

2.7.5. Brier score (the average quadratic) 

This is the sum of the squared differences between observed probability and 

predicted probability divided by the number of patients. Mathematical 

presentation of this is as follows:  

Brier score = ∑ (observed probability – predicted probability)
 2
 / n 

Where n is the number of patients.  

A perfect model holds a Brier score of 0 and the worst performing 

model holds a brier score of 1 (100%).  

2.7.6. Calibration plot (Calibration curve) 

This is the plot of observed probability against predicted probability. The 

calibration plot is a valuable tool to assess calibration performance by 



 119 

providing immediate interpretable information across the whole range of 

probability which is from 0 to 1. This means in the calibration plot one can 

observe, for example, the predicted probabilities are closer or more distant to 

the observed probabilities in the higher ranges of probability of outcome than 

lower ranges or vice versa.  

The X axis in the calibration pot is usually predicted probability and the 

Y axis is usually the observed probability. There is line of comparison which 

represents the perfect calibration i.e. observed probability is equal to predicted 

probability at all times (X=Y). In interpretation of a calibration plot, these 

issues should be considered:  

 Overall, how close the predicted probabilities are to observed 

probabilities. This is just the visual presentation of the calibration 

because the mathematical answer to this issue can be obtained through 

HL statistics (section 2.7.4). 

 At what ranges of predicted probabilities (i.e. high, moderate or low 

predicted probability), there is more closeness or more distance from 

the observed probability.  

Figure 8 presents the calibration curves for two models: Admission 

APACHE II (the line) which uses patients characteristics on Admission and 

Worst APACHE II (the dotted line) which uses the worst patients 

characteristics during their stay in ICU to predict mortality [111]. The straight 

line represents the situation in which the models hold the perfect calibration. 

This figure depicts following information about Admission APACHE II model: 
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Figure 8 Calibration curves for the Admission APACHE II score and the 

Worst 24-hour APACHE II score to predict in hospital death (from: 

Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos 

PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell FE: THE 

APACHE-III PROGNOSTIC SYSTEM - RISK PREDICTION OF 

HOSPITAL MORTALITY FOR CRITICALLY ILL HOSPITALIZED 

ADULTS. Chest 1991, 100:1619-1636.).  

 

 Overall, the predicted probabilities are close to the observed 

probabilities (however, this was shown by the authors of this study 

through HL statistics as well). 

 The best calibration is held with very low (i.e. less than 5%) and 

moderate (i.e. between 35% and 55%) predicted probabilities. This 

means at the these ranges of predicted probability, the difference 

between the observed probability and the predicted probability is 

minimal. The worst calibration is held with low (i.e. between 5% to 

35%) and high (i.e. more than 55%) predicted probabilities. This means 
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at these ranges of predicted probability, the difference between the 

observed probability and the predicted probability is maximal.  

The same information can be obtained for the Worst APACHE II 

model. For example, as depicted, the higher the predicted probability, the more 

distant it is from the observed probability.  

This figure also shows that overall, the predictions made by Admission 

APACHE II model is closer to the observed probability than predictions made 

by the Worst APACHE II model i.e. the admission model has a better 

calibration performance than the worst model.  

2.8. Model’s Generalisability (or validity) 

Model validity refers to the performance of the model in the dataset from 

which the model has been derived (internal validly) or in a separate different 

dataset (external validation). The dataset from which the model is derived is 

called the derivation dataset. The dataset on which the model is validated is 

called internal or external validation dataset. If a model is accurate only in the 

dataset from which it has been derived, then this model is not generalisable i.e. 

is not reliable to be used in settings other than the derivation set. There are 

many reasons why an accurate model on the derivation dataset may not hold 

validity. This may relate to inherent deficiencies of modelling method or the 

design of the study [112]. However, even when a model has been developed 

with vigilant study design and methodology, it is still needed to be examined in 

other settings (or different datasets). 

Internal validity (model reproducibility): this is when the validity of the model 

is examined in a different sample of patients who were not included in the 

derivation dataset just by random [113]. In this manner, the dataset is, for 
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instance, divided into two sub datasets (e.g. 2./3 versus 1/3 of the cases) and 

the derivation is performed in one sample (e.g. on 2./3 of the cases) to obtain 

the indices of performances. Subsequently, the resulting model is run in the 

remaining cases and the performance indices are obtained from this second 

dataset. A model with good internal validation should not demonstrate a huge 

drop in its measures of performance between these two datasets.  

External validation (transportability): this is when the performance of the 

model is investigated in a different dataset of patients which differ to the 

derivation sets in many ways [113]. Based on the type of the difference, there 

are potentially 5 types of external validations: historical, geographic, 

methodological, spectrum and follow-up interval. Failure of a model in any of 

these external validations warns the users of such model in settings which have 

the same type of difference(s) with the derivation set.  

Historical validation: this validation is when the validation dataset is recruited 

from a different calendar time to that from the derivation dataset [113]. The 

importance of such validation relates to the changes in treatment, management 

or health care polices bound to occur over time.  

Geographic validation: this validation is when the validation dataset is 

recruited from a different location (s) which refers to the generalisability of the 

model to a setting in different geographic regions [113]. This type of validation 

would address regional differences of treatment, management or health care 

polices. 

Methodological Validation: this validation is when the validation dataset is 

recruited by a different method [113]. This implies to the differences in 

patients selection or data collection. For example, a dataset of stroke patients 
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may exclude those cases who have had the symptoms less than 24 hours 

whereas in the other sample of stroke patients this exclusion criterion does not 

apply.  

Spectrum validity: this validation is when the validation dataset contains cases 

who, on average, have a different degree of severity or advancement of the 

disease [113]. For example, a dataset may contain brain injury patients who 

attended hospital with GCS of less than 8 in contrast to the other dataset who 

contain brain injury patients with presenting GCS > 12. 

Follow-up interval validity: this validation is when the existent of a condition 

or occurrence of an event pertains to a different period of time in the validation 

dataset to that in the derivation dataset [113]. An example of such validation is 

to assess the performance of a model which predicts the degree of disability of 

stroke patients at discharge from hospital in the other sample of stroke patients 

to predict the same degree of disability at sometime after discharge.  

2.9. Model development  

Beside a good performance, a model has to be well-developed. This means 

construction of a model is much more complicated than performing statistical 

tests such as a Chi Square test. This is because the modelling has to be 

performed through several stages such as careful selection of covariates or data 

preparation for logistic regression. Assessment of the way a presented model 

has been developed is beyond the scope of this article and is similar to critical 

appraisal of a research study. For this purpose, the series of publications in the 

British Medical Journal (BMJ) [114-116] or the quality assessment tool for 

prognostic models proposed by Perel et al.  [31] can be referred to [31]. 
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Musshkudiani et al.  also provided a list of recommendations for constructing 

and validating models which can be used as quality assessment tool [32].  

Briefly, if a model has been derived from a large dataset, is in 

widespread use, has received international acceptance or has been peer-

reviewed prior to its presentation or publication, it may be nearly ensured that 

the model is well-developed. However, cautions should still be taken as to 

various types of external validity. For example, a well-developed model may 

be too old to reflect ongoing changes in patients‟ management. Similarly, a 

model which has been constructed in the developed world may not be good for 

a country which has limited medical facilities or resources.  
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3.1. Abstract  

3.1.1. Background and Objectives 

In recent years, biochemical markers have been employed to predict the 

outcome of patients with traumatic brain injury (TBI). In mild TBI, S100B has 

shown the most promise as a marker of outcome. The objective of this study in 

patients with severe TBI was to: show the range of serum S100B levels during 

the acute phase after trauma: determine if S100B has potential to discriminate 

favorable from unfavorable outcome in patients with similar brain injury 

severity scores and to establish an S100B level „cut-off‟ predictive for death.  

3.1.2. Methods 

All patients with severe TBI, admitted to this neurointensive care unit within 

24 hours of injury were eligible for inclusion in this study. One serum blood 

sample was obtained from each patient at the 24 hours post injury time-point. 

S100B levels were measured using Enzyme-Linked Immunosorbent Assay. 

Injuries were coded using an internationally recognized injury scoring system. 

Three month follow up was undertaken with outcome assessed using the 

Glasgow Outcome Score (GOS). 

3.1.3. Results 

100 patients were recruited. Serum S100B levels ranged from 0.08µg/l to 

12.62µg/l
.
 S100B levels were significantly higher in patients with a GOS of 1 

(death) 2 and 3 (unfavorable outcome) compared with those with GOS 4 and 5 

(good recovery). In this study a cut-off point of 0.53 µg/l has sensitivity of 
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>80% and specificity of 60% to predict unfavorable outcome and 49% to 

predict death.  

3.1.4. Conclusion 

In 100 patients studied with similar brain injury severity scores, serum S100B 

measured at the 24 hour time point after injury is significantly associated with 

outcome but a cut-off 0.53ug/l does not have good prognostic performance.  
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3.2. Introduction  

The severity of brain injury can be assessed in a variety of ways. For the 

paramedic and clinician the best empirical assessment of injury is the degree of 

impaired cerebral function. Here assessment of conscious level using the 

internationally recognised Glasgow Coma Scale (GCS)
 

[117] aids triage, 

prognosis and family counselling. Subsequent assessments of head and other 

body injuries can be made using anatomical scoring systems such as the 

Abbreviated Injury Scale (AIS) [118] and for multiple injuries the Injury 

Severity Score (ISS) [118]. Physiological scoring systems can also be used 

using the revised trauma score (RTS)
 [119]

 and the four elements composing the 

TRISS methodology (Trauma Score and Injury Severity Score) [120]. These 

scoring and survival probability systems are particularly valuable in 

epidemiological studies for assessment of outcome with respect to severity of 

injury.  

In recent years quantitative biochemical markers have been employed 

to diagnose a variety of diseases e.g. creatinine for renal failure [121], troponin 

for myocardial infarction
 

[122] and lipase for pancreatitis [123]. Of the 

calmodulin/troponin C superfamily of calcium binding proteins
 
[50], S100B 

has shown most promise as a biochemical marker of outcome after mild head 

injury [124]. Protein S100B fulfils many of the criteria of an ideal molecular 

serum biomarker for brain damage in this patient group and has proved more 

reliable in predicting outcome compared with other markers such as neuron 

specific enolase [43]. S100B has high specificity for nervous tissue although it 

is recognised that non-nervous tissue such as fat and muscle also release 

protein S100B [125]. Increased levels of S100B are associated with a poor 
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neuropsychological outcome [80, 126]. Consequently, S100B has been 

proposed as a diagnostic and prognostic tool in mild brain injury. It has also 

been used to aid decision making about the need for CT scanning in the 

Emergency Department (ED) [74, 124]. For patients with severe head injury, 

S100B has proved more reliable in predicting outcome compared with other 

markers such Neuron Specific Enolase [43, 78]. However, as blood samples 

have been taken at many different time-points after injury in the various 

published studies, it remains uncertain as to the time-point at which blood 

sample should be taken where S100B levels best reflect the severity of brain 

damage.  

In a recent series of investigations from this Centre, the majority of 

patients with severe TBI admitted to the intensive care unit for medical 

management of their head injury had the same AIS score for the head (AIS 5) 

despite considerable differences in outcome when assessed using conventional 

outcome scores three months after brain damage
 
 [17, 18]. To improve our 

ability to discriminate survivors from non-survivors, the aim of this study was 

to: show the range of serum S100B levels after severe TBI; determine if S100B 

has potential to discriminate favourable from unfavourable outcome in TBI 

patients with the same AIS scores and to establish an S100B level cut off 

predictive for death.  

3.3. Methods 

Research ethics approval was obtained before the study commenced. Patients 

aged ≥16 years with severe head trauma admitted to the intensive care unit 

(ICU) of this large University teaching hospital within 24 hours of injury were 
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eligible for recruitment to the study. Late referrals to ICU (admission ≥24 

hours after injury) were excluded.  

Patients were admitted either as direct referrals from the Emergency 

Department (ED) or as tertiary referrals from ED of other hospitals within the 

Greater Manchester region. All the patients were sedated, intubated, and 

mechanically ventilated and all had an intra or extra-axial lesion on CT, with or 

without systemic trauma. The patients were treated in accordance with local 

neurointensive care guidelines to maintain cerebral perfusion pressure (CPP) at 

60 mmHg or higher and intracranial pressure (ICP) below 20 mmHg. To 

manage raised ICP, patients were positioned 30° head up and received 

sedation, analgesia, neuromuscular blockade and osmotherapy with manitol 

(0.5g/kg) as required. Advanced therapies such as induction of barbiturate 

coma, surgical removal of haematoma, were considered as „second-tier‟ 

therapy when ICP was refractory to first-tier treatments
 
[127].  

3.3.1. Assessment of Injury Severity  

From the patient‟s case notes details of all injuries sustained at the time of the 

accident were noted. Using the AIS directory each injury was assigned a code. 

From the respective codes, a score was given representing the severity of 

trauma in each of seven separate body regions [118]. Briefly, an AIS code 1 

represents minor injury and AIS 5 the most severe of survivable injuries. The 

AIS for the head region includes trauma to the brain and cranium. For an 

assessment of the severity of injuries in all the body regions, the internationally 

recognised Injury Severity Scale (ISS) was used. ISS is calculated by summing 

the squares of three highest AIS severity of scores allocated. However, if there 
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is AIS score 6 among scores allocated, then the ISS of 75 will be automatically 

allocated irerepeticve of other socres.  

3.3.2. Blood sampling  

Blood samples were obtained from each patient at 24h time-point after the 

patient had sustained his/her injury to the head. A single 5 ml blood sample 

was obtained via dwelling arterial cannula. The sample was transported via a 

pneumatic transport system from the ICU to the laboratory. Samples were 

centrifuged (2800 rpm) separated and stored at -70
o
C until batch analysis of 

serum samples (approx 30/batch) was undertaken. Clinical details were 

recorded at the time of sampling. 

3.3.3. Assay 

Stored serum samples were analysed using a one-step immunoassay (enzyme-

linked immunosorbent assay, ELISA; Sangtec 100™ Diasorin, Wokingham 

UK) incorporating S100B antibody coated microtitre plates and tracing 

antibody conjugated with horse radish peroxidase (HRP) and Tetra 

Methylbenzidine (TMB) substrate to give a colour reaction proportional to the 

concentration of S100B in the sample 

3.3.4. Outcome 

Three months after the primary injury was sustained a follow-up assessment 

using the GOS
 
[26] was undertaken by one designated member of the research 

team (RS). Contact was usually made by telephone, speaking either with the 

patient him/herself (when appropriate) or with a relative, identified at the time 

of admission, who had agreed to be contacted in the future for the purpose of 
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outcome assessment. On some occasions patients who remained in the care of 

NHS rehabilitation services at the time of the three month GOS, were assessed 

via discussion with the patient‟s healthcare professional.  

3.3.5. Data collection 

Details of the anatomical distributions of the patients‟ injuries, obtained via the 

medical case notes, were transferred to an Excel™ (Microsoft Corporation) 

database for AIS and ISS scoring by a member of the research team and 

checked by the same Trauma Audit Research Network (TARN) officer 

throughout the study. 

3.3.6. Statistics 

From previous pilot data of nine patients from whom serial S100B samples 

were obtained over the course of the first 5 days after severe TBI, the 24-h 

post-injury time-point was observed to be most promising to detect the point at 

which injury-induced increase in S100B start to fall (Table 12). A continued 

elevation (or absence of a fall) in S100B levels might therefore be expected in 

those patients with the most severe of TBI and is in line with previous 

publications [128]. 
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Table 12 Change in S100B serum levels before (range 5-23, median 12.5) 

the 24h after injury time-point and after (range 25-85; median 35h) 24 h. 

(NS: Non-Survivors, S: Survivors) 

 

Comparisons of S100B values in the different categories under 

investigation were made using the Mann-Whitney U-test to compare median 

values. The Receiver Operating Characteristics (ROC) curve to plot sensitivity 

versus 1 – specificity was undertaken using the Statistical Package for the 

Social Sciences (SPSS Inc; Chicago, USA). Each S100B value, in tern, is 

treated as a cut-off and the sensitivity and specificity was determined for each 

S100B value., so allowing for the selection of the optimum cut-off value. 

Where patients have similar AIS (head) scores we predict that a high serum 

protein S100B level, 24 hours after severe TBI, will enable us to discriminate 

between patients who have a good versus a poor outcome three months after 

TBI. A minimum of 96 patients with an AIS for the head of 3 or more are 

needed to achieve 95% power at the 5% significance level to detect a 

difference in poor outcome (GOS 3 or less) of 70% versus 30% for patients 

with a high 24 hour protein S100B level. 

Pilot study patient Serum S100B (μg/l) outcome 

 Before 24 hr time-

point 

After 24hr time-

point 

 

1 1.12 0.73 NS 

2 0.57 0.20 S 

3 1.38 0.82 NS 

4 1.66 1.57 NS 

5 0.50 0.37 S 

6 0.29 0.17 S 

7 0.84 0.22 NS 

8 2.07 3.25 NS 

9 1.19 0.45 S 
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3.4. Results  

One hundred patients (81 male: 19 female) aged 16-86 years (median 31) years 

with TBI were recruited to the study over a period of 25 months (Table 13). All 

patients had sustained severe brain trauma. With the exception of two patients 

only, all injuries to the head scored 4 or 5 (median 5) on the AIS scale 

corresponding with severe brain damage (Table 1). In 53 patients (53%) brain 

injury was the only significant trauma. The remaining 47 patients (47%) had 

additional injuries to the body viscera, bone and soft tissues. In all patients, the 

ISS (representing the sum of all the injuries to head and body) ranged from 9-

50 (median 25), a score corresponding with a classification of severe trauma. 

Thirty one (31%) patients required emergency neurosurgery (Table 1). Of the 

100 patients recruited to the study, 70 patients (70%) survived their injuries 

and 30 (30%) died. All but one of the deaths occurred during the acute period 

after injury (first 5 days). Three months after TBI, GOS ranged from 1-5 

(median 4) (Table 13) 

. 
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Table 13 Characteristics of the 100 study patients 

 

 Number (percentage) 

Gender  

Male/female  81/19 

Age  

Median  31 

Range  16-86 

Highest AIS code   

3 2 

4 37(37%) 

5 61(61%) 

ISS  

Median 25 

Range  9-57 

Multiple injuries  47% 

Emergency neurosurgery  31(31%) 

Outcome  

GOS 1 (death) 30(30%) 

GOS 2 4(4%) 

GOS 3 16(16%) 

GOS 4 29(29%) 

GOS 5 21(21%) 

Unfavourable outcome  50% 

S100B (µg/l)  

Median 0.74 

Range  0.08-12.62 
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The concentration of serum S100B obtained 24 hours after injury 

ranged from 0.08-12.62 (median 0.74) µg/l. In five patients, S100B levels were 

below the limits of detection for the assay. In the 98 patients with the most 

severe brain injury (AIS 4, 5) S100B levels were not significantly different 

between the two AIS categories (Figure 9). However, the p value of 0.06 

inidicates that this finding tends to be significant, should the sample size be 

larger.Table 14 shows S100B levels in patients with and without four key 

conditions: those who required emergency neurosurgery; those patients with 

multiple trauma (as opposed to isolated brain injury only); those who had an 

unfavourable outcome (GOS less than 4) with brain injury severity scored as 4 

and 5 respectively and those patients who died. S100B concentrations were not 

significantly different in patients who underwent emergency neurosurgery 

compared with those who did not. Similarly, the difference in S100B levels in 

patients with multiple trauma compared with the levels in patients with isolated 

brain injury were not significantly different. S100B concentrations (Figure 10) 

were significantly higher in: those with unfavourable versus favourable 

outcome (p=0.00) and those who died versus those who survived (p=0.003, 

Table 14 ). 
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Figure 9 Box and Whisker plot of serum S100B levels (μg/l; open circles) 

in patients with AIS 4 (n=37) and AIS 5 (n=61). Differences between the 

two AIS categories are not significant (p=0.06, Mann-Whitney U-test). 

One extreme outlier (12.62 μg/l) in a patient with AIS 5 has been excluded 

in the figure but the value has been retained for all calculations including 

the median and interquartile range. 
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 Yes NO P value 

N Median 

S100B 
(25

th
 to 75

th
 

centiles) 

N Median 

S100B 
(25

th
 to 75

th
 

centiles) 

Emergency neurosurgery 31 0.83 

(0.47-1.66) 

69 0.73 

(0.39-

1.46) 

0.78 

Multiple injuries 53 0.73 

(0.44-1.74) 

53 0.75 

(0.34-

1.42) * 

0.53 

Unfavourable Outcome 

(GOS < 4) 

47 1.36 

(0.60-2.28) 

50 0.48 

(0.29-

0.94) 

0 

Unfavourable outcome 

(AIS 4) 

14 0.99 

(0.55-2.00) 

23 0.37 

(0.19-

0.53) 

0 

Unfavourable outcome 

(AIS 5) 

35 1.59 

(0.64-2.44) 

26 0.72 

(0.40-

0.98) 

0 

Death 30 1.44 

(0.60-2.32) 

70 0.59 

(0.34-1.20 

0.003 

Death (AIS 4) 6 0.75  

(0.51-1.80) 

31 0.47 

 (0.20-

1.09) 

0.03 

Death (AIS 5) 24 1.61  

(0.65-2.41) 

37 0.75  

(0.45-

1.22) 

0.03 

Table 14 Comparison of serum S100B concentrations (µg/l) in patients who had /did not 

have the following: emergency neurosurgical management, multiple injuries, 

unfavourable outcome (AIS 4, 5) or who died/survived severe TBI. *Patients in this 

category had isolated TBI. Main categories for statistical comparison are emboldened. 
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Figure 10 Scatter plot of serum S100B levels for each GOS score. Patients 

with AIS 3 (*), AIS 4 (○) and AIS 5 (◊). As shown in Figure 9 one outlier, 

12.62 μg/l in a patient with GOS score of 1 is excluded.  
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ROC analysis of these data shows that serum S100B is a significant 

predictor of outcome with an area under the curve (AUC) of 0.77 (CI: 0.68 -

0.86) for prediction of unfavourable outcome (GOS 1, 2 and 3) at 3 months and 

AUC 0.69 (CI: 0.57-0.80) for prediction of death (Figure 11)., The best cut-off 

for S100B (optimizing sensitivity at the cost of lower specificity) is 0.53 µg/l. 

This cut-off provides a sensitivity of 82% with specificity of 60% to predict 

GOS of less than 4 at 3 months. To predict death at three months this cut-off 

has sensitivity of 83% and specificity of 49% 
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Figure 11 Receiver Operating Characteristic (ROC) curve showing plots of sensitivity versus 1-specificty to predict: A, 

unfavorable outcome, assessed at 3 months, at various cut-off levels of serum S100B and B, death at various cut-off levels 

of serum S100B.  
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3.5. Discussion  

In this cohort of 100 patients with severe traumatic brain injury admitted to the 

intensive care unit of our institution, serum S100B levels measured at the 24 

hour time point ranged from 0.08µg/l
 

to 12.62µg/l. Serum levels were 

significantly higher in those patients who, three months after injury, had an 

unfavourable outcome compared with those who had made a good recovery. 

The patients who died also had significantly higher S100B concentrations than 

the survivors. Although there is no significant difference in S100B values 

between AIS categories 4 and 5, within each of these categories S100B levels 

did significantly predict good from a poor outcome. ROC curve analysis 

showed that S100B can be used to predict outcome at 3 months; be it death or 

unfavourable outcome (GOS of 3 or less).  

We chose the cut-off point of 0.53µg/l
 
to optimise sensitivity without 

excessive lowering of specificity. This cut-off has sensitivity greater than 80%, 

meaning that at least 80% of patients who die or have a poor outcome will have 

serum S100B concentrations of >0.53 µg/l
 
at 24 hours post-injury, however the 

specificity for unfavourable outcome and death respectively are 60% and 49%. 

This means that 40% of patients with good outcome and 51% of patients who 

survive will also have “positive” (>0.53µg/l) S100B levels at this time. 

The exact half-life of S100B protein in the blood is still unclear but it is 

thought that it is close to 97 minutes
 
[78]. Although our target time-point for 

blood sampling was 24 hours from TBI, we accepted two hours either side; 22 

to 26 hours on pragmatic grounds. However, the short half life of S100B 

presents a limitation to our study because of the potential change in the levels 

of S100B which might occur between 22 and 24 hours and 24 and 26 hours. 
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Thus, a two hour time gap before or after the target (24h) sampling time may 

lead to variability in S100B concentrations simply due to sample time. 

However, despite the short half-life, S100B serum levels were significantly 

elevated above baseline for up to 3 to 4 days after injury  [22, 23]. The second 

limitation of our study relates to the cohort of patients recruited. All the 

patients recruited to the study were admitted to this neurointensive care unit 

within 24 hours of injury. We cannot be confident, however, that the results we 

have obtained from our centre are generalisable to all neuro-receiving hospitals 

i.e. those with and without specialist neurosurgery teams. It has been shown 

that the provision of early neurosurgical care to TBI patients improves outcome 

(at discharge or 30 days) by comparison to those patients who are not admitted 

to a neurosurgical centre
 
[129]. A future multicentre study may, however, 

provide the results needed to determine if the results we report are 

generalisable to a wider cohort of severe TBI patients. 

Although several previous studies have shown that S100B can predict 

outcome following TBI, unfortunately the cut-offs and their diagnostic 

characteristics differ significantly. For example, Vos et al. suggested an 

admission cut-off of 1.13 µg/l
 
for prediction of unfavourable outcome at 6 

months [43], which is greater than the cut off identified by our study (0.53 

µg/l). However, the diagnostic characteristics are similar (sensitivity 0.88 and 

specificity 0.43). On the other hand, whilst the S100B cut-off from Mussack‟s 

study [78] (0.59µg/l) obtained from samples 12 hours after injury is close to 

our cut-off, specificity is 100% to predict GOS less than 4 at one year
20

 which 

is significantly higher than our specificity of 60%. Similarly, Nylen and 

colleagues investigating S100B on admission report a cut-off of 0.55µg/l. This 
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cut-off provided 100% specificity to predict unfavourable outcome at one year
 
 

[25] and is close to the cut-off of 0.53µg.L
-
which we produced for the 24 hour 

time-point to predict outcome at three months. The prognostic performance of 

S100B to predict outcome might be improved in future studies with more 

consistency in sampling times and follow up intervals. Contrary to our 

expectations we found neither emergency neurosurgery nor multiple trauma 

influenced the performance of this serum biomarker but the type of critical care 

provided (specialist neurosurgical versus general trauma) might, in the future 

be shown to be of importance in influencing patient outcome
 
[129]. 

The time point of 24 hour post-injury is probably more reliable than 

admission serum S100B levels for outcome prediction because the patient has 

already been resuscitated in the emergency department. This obviates the 

effects of tissue perfusion on S100B levels
 
[64]. Similarly, and depending on 

the half-life, the time elapsed from injury to admission to hospital might also 

be expected to influence the serum concentration
 
[78]. 

Although extracranial sources of S100B such as fat, muscle and bone marrow
 

[85]
 
may contribute to S100B levels, minor peripheral injuries do not appear to 

lead to a significant raise S100B levels [66]. This fits with our observations 

that S100B levels were not significantly different in patients with and without 

systemic trauma. It is worth noting here that in this group of patients the 

contribution to the overall ISS due to peripheral trauma was small. 

This study shows that although S100B levels tend to be higher in TBI 

patients with a GOS of less than 4 compared with those patients with a GOS of 

4 or 5, an S100B cut-off of 0.53µg/l is not a reliable prognostic indicator. The 

ROC curves for prediction of death and unfavourable outcome have an AUC of 



 145 

0.67 and 0.75 respectively which is far from ideal to underpin clinical decision 

making. Whilst the cut-off of 0.53µg/l has a sensitivity of more than 80% to 

predict death, the specificity is relatively low (at 60% for prediction of 

unfavourable outcome and 49% for death prediction). This means that serum 

S100B measured 24 hours after injury can reliably detect poor outcome/death 

in more than 80% of cases but 40% of the patients who make a full recovery 

may also have levels above the 0.53µg/l cut-off.  

In conclusion, although serum S100B levels 24 hours after injury are 

significantly correlated with outcome after severe traumatic brain injury, 

S100B may not have a good prognostic performance to guide therapy and 

prognosis. Future research should focus on comparing the prognostic power of 

S100B to other available well-developed prognostic models in traumatic brain 

injury.  
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4.1. Abstract  

4.1.1. Introduction 

The Glasgow Coma Scale (GCS) score is used both in clinical practices for 

patient assessment, communication amongst clinicians and in outcome 

prediction models such as TRISS. However in clinical practice and during the 

derivation of prognostic models, it is important to understand which GCS 

subscore- eye, verbal, motor- contributes most to prognosis.  

4.1.2. Objective 

To determine which GCS subscore is best correlated with outcome taking time 

of assessment into account.  

4.1.3. Methods 

Records of patients with brain injury presenting after 1989 were extracted from 

the Trauma Audit and Research Network (TARN) database. Using logistic 

regression, a baseline model was derived with age and Injury Severity Score 

(ISS) as covariates and discharge outcome (survival) as the dependent variable. 

Total GCS, its subscores and their combinations at various time points were 

separately added to the baseline model in order to compare their effect on 

model performance.  

4.1.4. Results 

21,657 cases with brain injury were extracted. The total GCS score at scene 

and its subscore parts had significantly lower predictive power compared with 

those recorded on arrival at Emergency Department (ED) (scene total GCS: 
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AUC: 0.89 (95% CI: 0.89-0.90) and Nagelkerke R
2 

of 0.54, admission total 

GCS: AUC of 0.91(95% CI: 0.91-0.91) and Nagelkerke R
2 

of 0.58). Eye and 

verbal subscores had significantly lower performances compared with total 

GCS, motor subscore and various combinations of GCS subscores. Motor 

subscore and total GCS appeared to have similar predictive performance 

(admission total and motor GCS both had AUC of 0.91(95% CI: 0.91-0.91) 

and Nagelkerke R
2 

of 0.58) 

4.1.5. Conclusion 

GCS on arrival is a significantly better predictor of outcome than that recorded 

at scene. The reason for this is uncertain. Either GCS is recorded more 

accurately at hospital or the effect of intoxication has dissipated by the time of 

arrival at hospital. Motor subscore of GCS is a powerful predictor of outcome 

and contains most of the predictive power of the total score.  
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4.2. Introduction 

The Glasgow Coma Scale (GCS) was first introduced in 1974 to measure the 

depth of unconsciousness in patients with acute brain injury [117]. This scale 

comprises three subscores independently measuring motor response, verbal 

performance and eye opening. Since its introduction, it has been accepted 

internationally in clinical practice as the means to estimate the severity of the 

medical condition or injury affecting the brain. GCS is also used as a predictive 

subscore in prognostic models. These models are developed to assess prognosis 

for a given TBI patient (such as the International Mission for Prognosis and 

Analysis of Clinical Trials (IMPACT) [24] and Corticosteroid Randomisation 

After Significant Head injury (CRASH) models [23]) or to perform 

benchmarking of trauma care systems by trauma registries (TRISS 

methodology) [120].  

There are some disadvantages with the measurement of GCS. It is not 

straightforward to learn [130] and at times it might be impossible to measure 

quickly, which is an issue in emergency situations. Furthermore, the inter-rater 

reliability of total GCS is only moderate as Gill et al.  observed there is a 

probability of 68% that a pair of two GCS scores measured by two observers at 

the same time will differ in one subscore or another [131]. It is also well-

known that assessing the verbal subscore of GCS is not reliable in sedated or 

intubated patients. This is also the case for the motor/eye subscore when 

neuromuscular blockage is used. When using GCS in prognostic models, the 

problem faced by trauma registries is that it is unclear which time point of GCS 

assessment holds better prognostic value. GCS is usually measured both at 

scene (where the injury is incurred) and on admission to the Emergency 
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Departments (ED) and the trauma registries often hold the record at both time 

points.  

Healey et al.  reported that the motor subscore contains the most 

predictive strength of GCS through a careful statistical analysis of a North 

American dataset of general trauma patients [22]. This analysis was performed 

without taking other important prognosticators such as age and extracranial 

injury into account. Ross et al.  reported that the motor subscore may have 

similar diagnostic characteristics to total GCS to identify severe structural brain 

damage [132]. Similarly, Baxt et al.  suggested a Trauma Triage Rule which 

employs the pre-hospital motor subscore of GCS along with other factors such 

as systolic blood pressure or pulse rate to triage major trauma patients [133]. 

However, the latter two studies did not investigate the prognostic performance 

of GCS subscores and they were performed on a North American trauma 

population sample. This is relevant as US trauma patients and care systems 

differ significantly from Europe, both these aspects influencing patient 

outcome and also affecting the GCS/outcome inter-relationship.  

With regards to reports on the similar association of motor subscore and 

total GCS with injury severity, one might argue that measurement of motor 

subscore should suffice. The objectives of this study were twofold: to analyse 

the prognostic power of various GCS subscores in traumatic brain injury 

patients under the British trauma care system taking other important 

prognosticators into account and to investigate which time point of GCS 

measurement (at scene versus on admission to ED) has more prognostic 

strength.  
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4.3. Methods  

A subset of TBI patients presenting to Trauma Audit and Research Network 

(TARN) was studied. TARN is currently the largest trauma registry in Europe 

and receives information on trauma patients from participating hospitals across 

England and Wales and increasingly from other countries in Europe. The 

TARN inclusion criteria are that the injured patient reaches the hospital alive 

and meets either: (I) more than three days stay in hospital, and/or (II) being 

cared in the intensive care, and/or (III) inter-hospital transfer and/or (IV) death 

at any time in hospital. The information is extracted from patients‟ medical 

notes or other available electronic sources by the data collector(s) at the 

participating hospital. Subsequently, TARN staff members code each injury 

sustained using the Abbreviated Injury Scale (AIS) [90]. The final data are 

saved in a main server located on the main campus of the University of 

Manchester. Access to the database is provided by Structured Query Language 

(SQL) server 2000. The inclusion criteria for this study were all TARN patients 

sustaining brain injuries of AIS severity score of 3 or above. Patients with  

head injuries with AIS score 1 and 2 were excluded since these scores refer to 

cases with mild head injuries such as simple or unspecified skull fractures. 

Running the appropriate query in SQL, cases fulfilling the above criteria were 

retrieved from TARN dataset.  

For multivariate analysis, logistic regression was employed and to 

address the linear relationship of continuous variables with log odds of the 

outcome of interest as a requirement for logistic regression [134], fractional 

polynomials transformation was used [135]. In this method, the continuous 

variables are transformed into 1 or more other variables which is referred to as 
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„functional form‟ of the original variables. The transformation is a power 

transformation and the candidates of power are -3, -2, -1, 0, 1, 2, 3 where 0 is 

loge transformation and 1 reflects no transformation (linear). The selection of 

the best transformation(s) is based on when the power candidate(s) yields a 

model with a significant improvement (referred to as „gain‟) in the goodness of 

fit of the model which holds no transformations. Table 15 presents the results 

of fractional polynomials analysis for each covariate. It shows that, for 

instance, age should be transformed into two variables being 

93.0
100

1.0
log

age
e

 and 06.0
100

1.0
3

age  These two 

transformed covariates should be supplied to the model instead of the „true‟ 

age.  
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Variable  Transformation  

Age  

06.0
100

1.0

93.0
100

1.0
log

3
age

age
e

 

ISS s 

64.0
10

17.0
10

2

ISS

ISS  

Scene Scores Total GCS 
05.1

10

GCS

 

Motor GCS 95.1MotorGCS  

Eye GCS 
41.0

1

EyeGCS
 

Verbal GCS 
6.0

1

VerbalGCS
 

Sum of Motor and Eye GCS 82.1log EyeGCSMotorGCSe  

Sum of Motor and Verbal 

GCS 
88.1log VerbalGCSMotorGCSe  

Sum of Verbal and Eye GCS 

45.137

03.0
1

3
EyeGCSVerbalGCS

EyeGCSVerbalGCS  

Admission 

Scores  

Total GCS 
99.0

10

GCS
 

01.1
10

3
GCS  

Motor GCS 
53.0

1
2

MotorGCS
 

66.18
2

MotorGCS  

Eye GCS 

99.6

097log

2
EyeGCS

EyeGCS
e  

Verbal GCS 
57.0

1

VerbalGCS
 

Sum of Motor and Eye GCS 

74.337

37.0
1

3
EyeGCSMotorGCS

EyeGCSMotorGCS
 

Sum of Motor and Verbal 

GCS 
2)(log VerbalGCSMotorGCSe

 

Sum of Verbal and Eye GCS 

12.188

3.0
1

3

2

EyeGCSVerablGCS

EyeGCSVerbalGCS
 

Table 15 Fractional Polynominal transformations of variables included in 

the modelling  
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Age and Injury Severity Score (ISS) are covariates with which the GCS 

prognostic strength is adjusted with. Using logistic regression, a baseline model 

was derived with age and ISS as regressors and discharge outcome (survival) 

as the dependent variable. Total GCS, its subscores and their combinations 

were added separately to the baseline model to assess their effect on model 

performance. The various combinations of GCS subscores were the sum of 

motor and eye subscores, motor and verbal subscores and eye and verbal 

subscores. Overall 15 models were constructed (one baseline model, seven 

models with admission GCS, subscores or combination of subscores and seven 

models with scene total GCS, subscores or combination of subscores). Area 

Under the Roc Cure (AUC), classification accuracy, Nagelkerke R
2 

[136] and p 

value of HL statistics were taken as measures of the performance of each 

model. Regarding missing information, all missing total GCS scores were 

imputed with the sum of their subscores in case of lack of availability in the 

dataset. Similarly, if total GCS was recorded as 15 and one or more subscores 

were missing, then the missing subscores(s) were imputed with the full score. 

Apart from this, no other imputation strategies were implemented for missing 

information. The analysis was performed on the complete dataset with no split 

sampling.  

Whilst the fractional polynomials transformations were performed in 

Stata, logistic regression was run in Statistical Package for the Social Sciences 

(SPSS).
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4.4. Result  

Using the inclusion criteria, a dataset of 21,657 TBI cases were extracted 

containing all brain injury records in TARN from January 1988 to April 2008. 

Table 16 presents the clinico-demographic characteristics of the sample 

population. Median age is 34.4 (interquartile range: 20-57) and 73.3% of the 

population are male. The median ISS was 24. The median total GCS was 9 at 

scene with motor, verbal and eye subscores holding respectively medians of 4, 

2, and 2. However, the median total GCS on admission is higher than scene 

score; being 11. Furthermore, the admission motor, verbal and eye subscores 

hold medians of respectively 5, 4, 3. Sixty nine percent of patients survived 

their injuries at discharge. The amount of missing information varied across 

various subscores of GCS and also across the two time points of measurement; 

at scene or on admission. Overall, there are more missing GCS scores at scene 

than on admission.  
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 Median 

(interquartile 

range)/frequency 

(N= 216527) 

Number of 

missing(percentage) 

Age 34.4(20-57) 0 

Male 73.3% 0 

ISS 24(16-29) 0 

Scene GCS   

o Total 

o Motor 

o Verbal 

o Eye 

9(4-14) 9530(44%) 

4(1-6) 9876(45.6%) 

2(1-5) 9867(45.5%) 

2(1-4) 9852(45.4%) 

Admission GCS   

o Total 

o Motor 

o Verbal 

o Eye 

11(6-15) 2677(12.3%) 

5(3-6) 3726(17.2%) 

4(1-5) 3741(17.2%) 

3(1-4) 3721(17.1%) 

Survival 69.4 1(0%) 

Table 16 Patients characteristics and number of missing values for each 

parameter. 
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Adding total GCS, its subscores and various combinations of the 

subscores resulted in a significant decrease of the deviance of the baseline 

model at all times. Also in each model the effect of covariates included in the 

model on outcome was significant i.e. p value < 0.05. Table 17 presents the 

performance of each constructed model per measures of AUC, Nagelkerke R
2
, 

classification accuracy and HL statistic. The baseline model is the model which 

contains only age and ISS and other models are named according to the added 

GCS, subscores or combinations of subscores to the baseline model. Overall 

the baseline model does not have a good performance as per HL statistics and 

adding GCS or subscores does not improve this. However, the performance of 

the baseline model is increased following addition of GCS, subscores or 

combinations of subscores according to AUC, classification accuracy and 

Nagelkerke R
2 

and the AUC increases are statistically significant. Furthermore, 

comparing the admission and scene scores, each model containing admission 

scores outperforms its counterpart model with scene scores in all three 

measures and the AUC differences are statistically significant. For example, 

AUC of the admission „total GCS‟ model is significantly higher than scene 

„total GCS‟ model (confidence intervals: 0.91-0.92 versus 0.89-0.90 

respectively).
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AUC 

(Confidence 

Interval) 

Classification 

accuracy 

Nagelkerke 

R
2 

HL 

statistics 

(P 

value) 

Baseline model 

 

0.84 

(0.83-0.84) 

78% 0.40 50.11 

(0.00) 

Admission 

GCS 

Total GCS 

(N=12127) 
0.91 

(0.91-0.92) 

85% 0.58 62.14 

(0.00) 
Motor 

(N=11781) 
0.91 

(0.91-0.91) 

85% 0.58 48.78 

(0.00) 
Eye 

(N=11805) 
0.89 

(0.89-0.90) 

83% 0.53 46.23 

(0.00) 
Verbal 

(N=11890) 
0.90 

(0.90-0.91) 

84% 0.55 53.12 

(0.00) 
Motor + Eye 

(N=11815) 
0.91 

(0.91-0.91) 

85% 0.58 53.55 

(0.00) 
Motor + 

Verbal 

(N=17993) 

0.91 

(0.91-0.92) 

86% 0.59 46.40 

(0.00) 
Verbal + Eye 

(N=18001) 
0.91 

(0.90-0.91) 

85% 0.57 28.62 

(0.00) 

Scene 

GCS 

Total GCS 

(N=18980) 
0.89 

(0.89-0.90) 

82% 0.54 40.8 

(0.00) 
Motor 

(N=17931) 
0.89 

(0.88-0.90) 

82% 0.54 38.24 

(0.00) 
Eye 

(N=17936) 
0.88 

(0.87-0.88) 

80% 0.50 48.68 

(0.00) 
Verbal 

(N=17916) 
0.88 

(0.88-0.90) 

81% 0.52 59.63 

(0.00) 
Motor + Eye 

(N=11815) 
0.89 

(0.89-0.90) 

82% 0.55 34.56 

(0.00) 
Motor + 

Verbal 

(N=11813) 

0.89 

(0.89-0.90) 

82% 0.55 34.51 

(0.00) 
Verbal + Eye 

(N=11821) 
0.89 

(0.88-0.89) 

81% 0.53 45.02 

(0.00) 

Table 17 Comparison of predicitve models for survival using various GCS 

subscores and their combinations (N: number of cases included in the 

modelling).  

4.5. Discussion  

In this study, we have compared separately the prognostic power of total GCS, 

its subscores and various combinations of its subscores through multivariate 

analysis of a large British dataset of TBI cases. A baseline model was 

constructed with age and ISS and subsequently the improvement in the model 

performance was investigated following addition of GCS, subscores or 
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subscores combinations as per four measures of AUC, classification accuracy, 

Nagelkerke R
2
 and HL statistics. Overall adding GCS, subscores or 

combinations of subscores results in significant improvement of the baseline 

model performance apart from the goodness of fit assessed by the HL statistics. 

Furthermore, it appears that eye and verbal subscores on their own, i.e. with no 

combination with other subscores, hold the least prognostic strength compared 

with total GCS, motor GCS or combination of motor with eye or verbal GCS. 

Similarly, the predictive strength of total GCS, motor GCS and combination of 

eye with verbal subscores or combination of motor with eye subscores appears 

the same.  

4.5.1. Limitations 

We acknowledge a number of limitations. Firstly, for this analysis, an existing 

dataset of TBI patients retrieved from TARN was used. Therefore, the effect of 

local protocols in GCS collection is unclear as to when the condition of the 

patient does not permit measurement of one subscore such as intubation or 

paralysis. In such case, immeasurable subscore might be assigned the lowest 

score or regarded as missing. Furthermore, the record of GCS on admission to 

ED does not clarify whether this has been performed prior to or following 

resuscitation. This depends on each hospital‟s specified polices. In fact, the 

acute course of TBI is unstable in that several events occurring over a short 

time span such as secondary insult or expanding intracranial mass lesion may 

influence the level of consciousness [137]. Post-resuscitation appears to be a 

better time point to collect GCS than admission GCS for predictive purposes as 

in such case the patient is expected to be at least haemodynamically stable. 

Secondly, the GCS predictability was adjusted only with age and ISS. 
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However, pupillary reactivity is also one of the important predictors in TBI but 

was not accounted for in this analysis. This is because recording of pupillary 

reactivity has only recently commenced for TBI submissions in TARN. Had 

pupillary reactivity been included in the modelling procedure, the dataset 

would have then been significantly smaller, yielding less reliable results. 

Furthermore, we compared the prognostic strength of GCS and its subscores in 

several models which are not unified in terms of the number of missing 

information (or the number of TBI cases included). For example, whilst total 

admission GCS was assessed in a model derived from 18980 cases, the scene 

score was assessed in much lower number of TBI cases i.e. 12127. This implies 

that there were a number of cases which were included in the admission model 

but not in the scene model. This is also the case with comparing various 

combinations of subscores. It is unclear how this exclusion would change the 

results.  

4.5.2. Comparison with the literature 

With regards to the  same predictive strength of motor and total GCS, the 

results of our study are consistent with findings by Healey et al. [22]. However, 

in our study, GCS is adjusted with other TBI predictors i.e. age and ISS. 

Moreover, unlike Healey et al. who performed their analysis on general trauma 

patients with no exclusion of intoxication or shock potentially affecting level of 

consciousness, we performed our analysis on a TBI population who all 

sustained documented brain injury determined by AIS codes. Perhaps this also 

explains why the population sample in Healey‟s study consisted of 90% GCS 

score of 15 whereas our dataset contains more varied GCS scores (e.g. median 

admission total GCS: 11 with interquartile range of 6 and 15).  
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Marmarou et al. observed that both enrollment (the time point when the 

patient was enrolled to the study) and pre-enrollment motor GCS have 

significant prognostic effect on outcome in TBI (Marmarou, Lu et al. 2007). 

This finding may be the same as our finding in that earlier GCS (scene GCS) is 

less predictive of survival than later GCS (i.e. admission GCS). The 

explanation for this finding may relate to the completion of resuscitation as 

later time points e.g. on admission or on enrolment to the study are more likely 

to be when the TBI patient has already been resuscitated.  

4.5.3. Implications of the study  

We cannot explain why admission GCS scores have more predictive strength 

than scene scores. It might be due to the effects of alcohol or other drugs, 

which are diminished by the time the patient arrives at hospital. So GCS on 

admission might be more representative of the true level of consciousness 

being caused by the injury per se [138]. Also it might highlight inaccurate 

recording of GCS at scene, which might be due to environmental difficulties or 

skill level of attending personnel. However, whatever the reason for the 

difference in scene and admission GCS predictability, it might have pragmatic 

implications on clinical decisions for therapeutic interventions based on GCS. 

So we suggest that GCS on admission should be taken into account rather than 

GCS at scene.  

We observed that a model which contains total GCS holds similar 

prognostic performance to a model which contains only the motor subscore. 

This suggests that adding eye and verbal subscores to the motor subscore does 

not hold any prognostic value and thus their measurement may not be 

necessary. On the one hand omitting eye and verbal scores  might result in an 
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improvement in the overall inter-rater reliability (between personnel with the 

same level of experience/skill), which is poor for total GCS but better for the 

motor score [131]. Also measuring only motor subscore would be easier to 

teach, learn and implement than total GCS since the error rate of eye and 

verbal GCS is high among unskilled observers compared with skilled ones 

[130]. On the other hand, although GCS scale is designed to measure the depth 

of the unconsciousness, which also relates to the outcome, in practise it is not 

only used for the purpose of prognosis. The results of our study demonstrates a 

possible similar prognostic strength for total and motor GCS but this cannot be 

generalised reliably to other applications of GCS such as day-to-day 

monitoring of patients‟ alertness (as occurs in the intensive care units) or a 

clinical decision on intervention. Further, total GCS with respect to its 

descriptive capability holds more information content compared with motor 

GCS which does not provide any information on eye and verbal response. 

Likewise, each GCS score can be the sum of a varied combination of subscores 

and each combination of subscores might have significantly different mortality 

rates [22]. Therefore, we assume that for each total GCS with a certain motor 

subscores, changes in the eye and verbal subscores would then result in 

different mortality rates. If verbal and eye subscores are not measured, then the 

influence of eye and verbal response on outcome within the group of patients 

with the same motor subscore is ignored. It is considered that the added value 

of the eye and verbal subscores is mainly in trauma patients with more 

moderate degrees of injuries. In our study, age and ISS were taken into account 

as confounders, but the analysis was not performed separately on a subgroup of 

patients with a moderate degree of injury. Overall we believe measurement of 

motor subscore alone, despite being more simple and perhaps more reliable, 
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does not outweigh its disadvantages. Had the motor subscore significantly 

outperformed the total GCS in outcome prediction, omission of eye and verbal 

subscores might have then been suggested in clinical practice.  

The „motor + verbal‟ model has similar predictive performance to „total 

GCS‟ model per AUC and even its performance is higher per Nagelkerke R
2.

 

This suggests that measuring the eye subscore might not be necessary although 

the advantages and disadvantages of this are similar to measurement of the 

motor score alone, as discussed above. Similarly, the performance of „motor + 

eye‟ model is the same as „total GCS‟ model for admission GCS scores. This 

finding is reassuring in that if measurement of the verbal subscore is not 

possible (for instance due to intubation), then measurement of only motor and 

eye subscores should suffice.  

4.5.4. Future direction  

It is important that the results of our study be validated in a different set of TBI 

cases from different setting (country) and for a different type and time point of 

outcome. The quality of trauma care is one factor which affects the outcome 

and as such has a confounding role. Our dataset was collected from the British 

hospitals with the specified health care policy. Regarding the outcome, 

discharge survival is not the only end target of TBI care and management since 

functionality as close to that prior to the injury is important as well. 

Furthermore, this normal functionality can be achieved in short-term or long-

term.  

4.6. Conclusion  

In a population of TBI patients whose injuries were managed within England in 

Wales over the last 20 years, the total GCS and motor subscore may have 
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similar predictive strength. Furthermore, it appears the eye subscore on its own 

holds less predictive strength than total GCS or various combinations of 

subscores. With regard to admission and scene GCS scores, admission scores 

significantly outperform scene scores for outcome prediction.  
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5.1. Abstract  

5.1.1. Background  

The purpose of Abbreviated Injury Scale (AIS) is to code various types of 

Traumatic Brain Injuries (TBI) based on their anatomical location and severity. 

The Marshall CT Classification is used to identify those subgroups of brain 

injured patients at higher risk of mortality or deterioration. The purpose of this 

study is to determine whether and how AIS coding can be translated to the 

Marshall Classification  

5.1.2. Methods 

Initially, a Marshall Class was allocated to each AIS codes through cross-

tabulation. This was agreed upon through several discussion meetings with 

experts from both fields (clinicians and AIS coders). Furthermore, in order to 

make this translation possible, some necessary assumptions with regards to 

coding and classification of mass lesions and brain swelling were essential 

which were all approved and made explicit.  

5.1.3. Results 

The proposed method involves two stages: firstly to determine all possible 

Marshall Classes which a given patient can attract based on allocated AIS 

codes; via cross-tabulation and secondly to assign one Marshall Class to each 

patient through an algorithm.  

5.1.4. Conclusion  

This method can be easily programmed in computer softwares and it would 

enable future important TBI research programs using trauma registry data. 
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5.2. Background  

Trauma registries hold records of patients with Traumatic Brain Injury (TBI) 

across a designated region mainly for assessment of trauma care 

centres/systems compared with a national standard e.g. analysing data to 

predict survival probability (observed – expected survival rates). The 

demographic and clinical details of trauma patients are submitted to these 

registries primarily to provide data that will improve clinical outcome for 

trauma patients but they also form a valuable dataset for epidemiological 

studies. The Abbreviated Injury Scale (AIS) [90, 91] was proposed by the 

Association for the Advancement of Automotive Medicine and was designed 

specifically for coding various types of injury and for scoring them based on 

the severity. Using a standard dictionary each entry in a trauma registry dataset 

is assigned a 6-digit AIS code number with a post decimal place representing 

score of severity. The description for each AIS code is contained in the AIS 

dictionary. Each post-decimal score of the injury severity ranges from 1 

(minimal) to 6 (maximal).  

The AIS dictionary is structured by anatomical region of the body such 

as face, neck, abdomen and pelvic contents etc. One section in this dictionary is 

allocated to head trauma, which is subdivided into the whole area (massive 

destruction of cranium and brain, penetrating injury and scalp injury), 

intracranial vessels, cranial nerves (cranial nerves I to XII), internal organs and 

skeletal. This part of the AIS dictionary contains information about the 

anatomical location of the lesion (brain stem, cerebrum and cerebellum), the 

type of the lesion (e.g. haemorrhage, contusion and brain swelling), various 
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subtypes of haemorrhage such as Subarachnoid Haemorrhage (SAH), Subdural 

Haemorrhage (SDH) and the size of the lesion.  

Using the AIS dictionary to describe injuries is probably limited to 

those running trauma registries. It is rarely employed for clinical and 

therapeutic purposes or in data collection for clinical trials because a trained 

coder is needed to code the injuries and also because the description and 

classifications of injuries is more detailed than required for clinical purposes. 

Alternatively, the Marshall Classification of structural brain damage is based 

on CT findings of TBI patients [139]. This system was first introduced in 1991 

and the main aim was to identify those TBI patients at higher risk of 

deterioration or mortality although it has been validated as having predictive 

value for TBI outcome as well [24, 36, 94, 140, 141]. The hierarchy of 

Marshall Classes represents the increasing risk of developing raised ICP 

determined by factors relating to this pathology such as mass lesions or brain 

swelling. This classification challenged the previous perception that patients 

with compressed or absent cisterns who had a good clinical evaluation could be 

treated as if their brain CT is normal [139].  

Understanding the relationship between AIS coding of brain injury and 

the Marshall Classification is important for several reasons. First, the AIS and 

Marshall Classification systems describe slightly different things. The Marshall 

Classification provides the opportunity to identify a subset of TBI patients at 

risk of developing intracranial hypertension. It ignores brain stem and 

cerebellar injuries, which are described in detail in the AIS dictionary. 

Secondly, the Marshall System is focused on closed head injury and was not 

designed for penetrating head injuries, for which there are several AIS codes. 
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Since TBI in trauma registries tends to be coded using the AIS dictionary and 

in clinical settings using the Marshall Classification, it is impossible to 

generate a complete picture of TBI incidence, risk factors and outcome without 

being able to bring these two types of data together.  

Therefore we propose a method for allocating a Marshall Class to the 

AIS codes that are recorded for a given TBI patient. We have assumed that 

each injury description in the AIS dictionary can be used as an alternative to 

the CT reports.  

5.3. Methods  

5.3.1. AIS coding  

Coding of brain injuries in the AIS dictionary is based on anatomical location 

(the brainstem, the cerebellum, the cerebrum and pituitary), the type of injury 

(Table 18), subtypes of haemorrhage (Table 18) and the degree/extent of the 

injury. Some types of injuries relate to certain locations of the brain; these 

being massive destruction (crush) which can affect the whole head or can occur 

in the brain stem, compression and transection exclusively occurring in the 

brain stem and pneumocephalus exclusively occurring in the cerebrum. 

However there are some other types of injuries incurred in more than one 

anatomical location namely ischemia, brain swelling or various subtypes of 

haemorrhage which may occur in the cerebellum or the cerebrum. Similarly, 

penetrating injuries, diffuse axonal injury, contusion, haemorrhage, infarction 

or laceration can be potentially sustained in all parts of the brain which include 

the brain stem, the cerebellum or the cerebrum. The determinants of the 

degree/extent of each injury include multiplicity, being uni/bilateral and 
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midline shift (for contusions) and the volume/diameter (for contusions and 

various subtypes of haemorrhage). The severity of brain swelling in the 

cerebrum is determined by the status of ventricles or the brain stem cisterns - 

either or both may be compressed or absent. Where information is not 

adequately documented, the codes referred to as „Not Further Specified; NFS‟ 

are assigned. Alongside the injuries which fall under the heading  

Penetrating injury 

Diffuse axonal injury  

Contusion 

Haemorrhage 

Brain swelling 

Infarction  

Ischemia 

Pneumocephalus 

Laceration  

Compression  

Massive destruction (crush) 

Transection  

 

Subtypes of haemorrhage 

Epidural 

Intraparenchymal  

Subdural  

Subarachnoid 

Subpial 

Table 18 Descriptions of types of injury and subtypes of haemorrhage in 

the AIS dictionary; update 98 

 

of „internal organ‟ in the head section of the dictionary, there are codes which 

relate to the skeleton and some of them include descriptions of basal skull 

fracture or not simple vault fractures, which should, in fact, be considered as 

traumatic brain injury. Nevertheless, the AIS code 116002, allocated to 

superficial penetrating injury to the head, should be interpreted as not 

accompanied by brain injury. It should be noted that TBI cases may be 

allocated more than one AIS code.  
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5.4. The Marshall Classification  

Table 19 displays the Marshall CT Classification. According to this system, the 

discriminative features are presence/absence of intracranial pathology, 

presence/absence of high or mixed density mass lesions, signs of raised 

intracranial pressure which is status of basal cisterns and midline shift and 

lastly evacuation of mass lesions. In this classification, a high or mixed density 

mass lesion implies contusion or hemorrhage. The extent of the lesion is 

determined by its volume, the cut-off being 25 cc. Moreover, depending on the 

size and surgical evacuation, a lesion can be one of Mashall Classes II, V or 

VI. The higher risk of raised ICP is determined by present, absent or 

compressed basal cisterns and the degree of midline shift – the cut-off point 

being 5mm. These pathologies fall into classes III or IV based on the severity. 

Unlike AIS coding, the Marshall System is mutually exclusive in that a TBI 

case is only allocated to one Marshall Class. 



 172 

 

Marshall Class   Description  

Class I Diffuse injury I (no visible 

pathology) 

No visible pathology seen 

on CT scan 

Class II Diffuse injury II  Cisterns are present with 

midline shift 0-5 mm 

and/or: lesion densities 

present no high- or 

mixed-density lesion > 25 

cc may include bone 

fragments and foreign 

bodies 

Class III Diffuse injury III 

(swelling) 

Cisterns compressed or 

absent with midline shift 

0-5 mm, no high- or 

mixed-density lesion > 25 

cc 

Class IV Diffuse injury IV (shift) Midline shift > 5 mm, no 

high- or mixed- density 

lesion > 25 cc 

Class V Evacuated mass lesion Any lesion surgically 

evacuated 

Class VI Non-evacuated mass 

lesion 

High- or mixed-density 

lesion > 25 cc, not 

surgically evacuated 

Table 19 The Marshall CT Classification 

5.4.1. Cross-tabulation of AIS codes with Marshall Classes 

As explained above, the Marshall System and the AIS coding hold two 

different approaches to brain injury classification and thus reconciliation 

between the two systems required various assumptions which had to be agreed 

upon from both the clinical and the coding perspective. A number of meetings 

were held with participation of two physicians specialising in emergency 

medicine and neurosurgery and two experts in AIS coding in the UK (from the 

Trauma Audit and Research Network (TARN)) [89] to discuss the most 

appropriate Marshall Class allocated to each AIS code performed through 

cross-tabulation.  Table 20 presents the resulting cross-tabulation based on 

expert consensus where the description for each code can be found in the AIS 
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document. The mapping was decided to be performed initially on AIS 

dictionary; update 98 which is still in widespread use despite the new update 

introduced in 2005. Subsequently, adaptation of this cross-tabulation to suit the 

AIS dictionary; update 2005 was discussed (Table 21). Likewise, the decision 

was made to consider only AIS codes which are either apparently brain injuries 

(such as SAH) or, with a high likelihood, can be regarded to be accompanied 

with brain injury (such as basal skull fractures). However, codes relating to 

unconsciousness were excluded from this cross-tabulation since these codes are 

commonly not used by trauma registries and instead, Glasgow Coma Scale 

(GCS) with the same value for outcome prediction is used to address the level 

of consciousness [120, 142].  

The rational for mapping various AIS codes of brain injury to the 

appropriate Marshall Class particularly regarding the assumptions made for 

brain swelling and mass lesions is provided in the Appnedix.  
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Table 20 Proposed Marshall Class - AIS code combinations based on the 

1998 update of the AIS dictionary

AIS codes  Marshall Class 

113000.6 V/VI 

116004.5 Penetrating injury  

140299.5 Brain stem injury  

140202.5 III 

140204.5 Brain stem injury  

140206.5 Brain stem injury 

140208.5 Brain stem injury 

140210.5 Brain stem injury 

140212.6 Brain stem injury 

140214.6 Brain stem injury 

140216.6 Penetrating injury  

140218.6 Brain stem injury  

140499.3 Cerebellar injury  

140402.3 Cerebellar injury  

140403.3 Cerebellar injury  

140404.4 Cerebellar injury  

140405.5 Cerebellar injury  

140406.5 Cerebellar injury  

140410.4 Cerebellar injury  

140414.4 Cerebellar injury  

140418.4 Cerebellar injury  

140422.5 Cerebellar injury  

140426.4 Cerebellar injury  

140430.4 Cerebellar injury  

140434.5 Cerebellar injury  

140438.4 Cerebellar injury  

140442.4 Cerebellar injury  

140446.5 Cerebellar injury  

140450.3 Cerebellar injury  

140458.3 Cerebellar injury  

140462.3 Cerebellar injury  

140466.3 Cerebellar injury  

140470.3 Cerebellar injury  

140474.4 Cerebellar injury  

140478.5 Penetrating injury 

140699.3 II 

140602.3 II 

140604.3 II 
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Table 20 Proposed Marshall Class - AIS code combinations based on the 

1998 update of the AIS dictionary (continued) 

AIS codes  Marshall Class 

140606.3 II 

140608.4 V/VI 

140610.5 V/VI 

140612.3 II 

140614.3 II 

140616.4 V/VI 

140618.5 V/VI 

140611.3 II 

140620.3 II 

140622.3 II 

140624.4 V/VI 

140626.5 V/VI 

140628.5 II 

140629.4 II 

140630.4 II 

140632.4 II 

140634.5 II 

140636.5 V/VI 

140638.4 II 

140640.4 II 

140642.4 II 

140644.4 II 

140646.5 II 

140648.5 V/VI 

140650.4 II 

140652.4 II 

140654.5 II 

140656.5 V/VI 

140660.3 III 

140662.3 III 

140664.4 III 

140666.5 IV 

140676.3 II 

140678.4 II 

140680.3 II 

140682.3 II 

140684.3 II 

140686.3 II 

 



 176 

Table 20 Proposed Marshall Class - AIS code combinations based on the 

1998 update of the AIS dictionary (continued)  

 

AIS codes  Marshall Class 

140688.4 II 

140690.5 Penetrating injury  

140799.3 II 

150200.3 I 

150202.3 I 

150204.3 I 

150206.4 I 

150404.3 I 

150406.4 I 

150408.4 I 
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Table 21 Allocating a Marshall Class to AIS code; update 2005 

 

5.4.2. Selection of one Marshall Class 

A TBI patient may receive more than one AIS code whereas each patient 

should receive only one Marshall Class in the Marshall System. In order to 

address this, the decision was made to place all AIS codes which fall under the 

same Marshall Class together as „Equivalent to one Marshall Class‟. In this 

manner, Equivalent to Marshall Class I, II, III, IV or V/VI each respectively 

represents Marshall Classes I, II, III, IV and V/VI. Then an algorithm was 

Code Marshall Class 

140605 II 

140613 II 

140621 II 

140625 II 

140627 II 

140631 II 

140639 II 

140643 II 

140645 II 

140647 II 

140649 II 

140641 V/VI 

140651 II 

140655 V/VI 

140687 II 

140686 II 

140691 Penetrating injury  

140692 Penetrating injury  

140689 II 

140701 I 

140702 I 

140703 I 

140675 II 

140677 II 

140681 II 

140683 II 

140694 II 

140695 II 

140697 II 

140698 II 

150000 I 
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devised to choose one Equivalent to Marshall Class which would be the final 

single Marshall Class mapped. Using of such algorithms for patients who 

sustained multiple brain injuries was proposed by Maas et al.  [94].  

5.5. Results 

5.5.1. The proposed method to allocate a Marshall Class to 

a TBI patient  

This involves two stages: assignment of Equivalent to Marshall Classes and 

then selection of the final Marshall Class.  

 

Stage 1: Assignment of Equivalent to Marshall Classes  

 

Table 22 presents various AIS codes which all come under one similar 

Marshall Class (Equivalent to Marshall Class I, II, and III etc.). According to 

this table, the unclassified codes relating to brain stem, cerebellar and 

penetrating injuries were broken down further into penetrating, brain 

stem/cerebellar codes necessitating addition of two further classes of VII and 

VIII to represent penetrating and the brain stem/cerebellar injuries respectively. 

This has been agreed by the authors of previous guides for using the Marshall 

Classification [140] (personal communication). The other possible options are 

to further split the brain stem/cerebellar injuries into two distinct individual 

Marshall Classes or to merge all penetrating, brain stem and cerebellar codes 

into one class as „unclassified‟. This depends on the research objective. 
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 AIS codes  

Equivalent 

to Marshall 

Class I (no 

visible 

pathology) 

150200,150202,150204,150206, 150404,150406, 

150408 

Equivalent 

to Marshall 

Class II  

140602,140604,140606,140612,140614,140611,140620,140622,140628,140629,140630,140632,140634,140638,140640,140642, 

140644,140646,140650,140652,140654,140684,140688, 140686, 140699, 140676, 140678, 140680, 140682, 140799 

Equivalent 

to Marshall 

Class III 

(swelling) 

140202, 140660, 140662, 140664 

Equivalent 

to Marshall 

Class IV 

(shift) 

140666 

Equivalent 

to Marshall 

Class V/VI 

140608,140610,140616,140618,140624,140626,140636,140648, 

140656, 113000 

Cerebellar/ 

brain stem 

injuries  

140204,140206,140208,140210,140212,140214,140218,140299,140402,140403,140404,140405,140406,140410,140414,140418, 

140422,140426,140430,140434,140438,140442,140446,140450,140458,140462,140466,140470,140474,140499, 

Penetrating 

injury  

140216, 140478, 140690, 116004 

Table 22 Grouping of AIS codes into various ‘Equivalent of Marshall Classes’. 
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Stage 2: Selection of the final Marshall Class 

 

Figure 12 displays an algorithm proposed to select one Equivalent to Marshall 

Class which can be the mapped final Marshall Class for a given patient. This is 

based on the fact that the Marshall Classification is ordinal indicating that, in 

case of multiple injuries, the highest class is the single class allocated to the 

patient. This is reflected in the algorithm. Initially, all penetrating injuries are 

contained in Class VIII. This is the point at which the algorithm stops since the 

Marshall Classification is designed for blunt injuries. At the second step, 

injuries are screened for Equivalent to Marshall Class V which will result in a 

class VI designation in case of surgical evacuation or, otherwise, class V. The 

following steps sequentially take account of Equivalent to Marshall Classes IV, 

III and II. However, prior to searching for Equivalent to Marshall Class II 

leading to allocation of class II, Marshall Class VII is mapped in case of the 

presence of brain stem/cerebellar codes. The algorithm is flexible with the 

position of this step being implemented prior to screening for Equivalent to 

Marshall Class I as displayed in Figure 12 or otherwise being placed following 

exclusion of penetrating codes. In the latter situation, the algorithm begins its 

detection of the single mapped Marshall Class by exclusion of those who have 

sustained penetrating, brain stem or cerebellar injuries.
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Figure 12 Algorithm to derive the Marshall Class from Equivalent to 

Marshall Classes. 

 

Programming the procedure to designate a single Marshall Class to a 

given TBI case for which various AIS codes are recorded is straightforward in 

Penetrating 

injury  

Class VIII  Equivalent 
to Marshall 

Class V/VI 

Evacuation/ 

Craniotomy  

Equivalent 
to Marshall 

Class IV 
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Class V 
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injury 
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Equivalent 
to Marshall 

Class I 
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No 

No 

No 
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computer softwares such as Statistical Package for the Social Sciences (SPSS) 

etc. In the first step, all Equivalent to Marshall Classes are computed as 

nominal variables for each TBI case. Each Equivalent to Marshall Class will 

then be „yes‟ if at least one of the AIS codes allocated to this code (Table 22) is 

present and otherwise such Equivalent to Marshall Class is „no‟. Second, the 

computer has to search all computed Equivalent to Marshall Classes step by 

step in accordance with the algorithm. For example, if a given case has brain 

stem/cerebellar injuries and Equivalent to Marshall Class V/VI with surgical 

evacuation, the Marshall Class VI is allocated.  

5.6. Discussion  

In this study, we have attempted to propose a method to translate the head 

injury AIS codes into the Marshall CT Classification. This involves two steps; 

first to cross-tabulate various AIS codes with the Marshall Classes and 

secondly to select the single Marshall Class allocated to a case of TBI through 

an algorithm. In order to perform this transformation some assumptions had to 

be made..  

5.6.1. Limitations/assumptions  

Although both the Marshall Classification and the AIS dictionary group CT 

features according to their severity, one important difference between the two 

systems relates to their purposes. The main aim of the Marshall Classification 

is to identify those TBI patients who are at higher risk of deterioration or 

mortality, whereas the AIS scoring system is used to classify injuries based on 

their anatomy rather than physiological merits. These different approaches to 

CT classification mean that certain assumptions have to be made when trying 
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to reconcile the two systems. Ideally the two systems would be completely 

interchangeable and no assumptions would be required. Since this is not the 

case an important question is whether or not mapping AIS codes onto the 

Marshall Classification is worthwhile. We believe adoption of the conceptual 

approach we have proposed allays some concerns in that, instead of strictly 

meeting the definition of each Marshall Class, the objective and rational 

surrounding that class are also employed to spot the appropriate AIS codes. A 

disadvantage of the Marshall Classification is that it is not a reliable 

classification to be used in the retrospective research settings in which the 

access to the real CT obtained during acute phase of therapy is often not 

possible in case the Marshall Class is not recorded in the existing dataset.  

The Marshall Classification should be ideally performed by the expert 

who views the CT. However, Marshall Class II, unlike other classes, contains a 

broad range of heterogeneous injury types or severities. Considering the 

different objective of AIS dictionary which is to anatomically classify injury 

severities, mapping AIS codes with Marshall Classes is in fact alike ignoring 

many valuable individual pieces of information by pooling them into one class 

such as class II. This leads to them all being treated similarly in prognostic 

analysis despite potentially having varied individual prognostic merit on their 

own. This defect is substantial when class II contains, for instance, infarction 

beside laceration which are different in nature and perhaps in prognostic 

strength.  

The method proposed in this study is based primarily on the assumption 

that the descriptions in the AIS dictionary can be substitutes for CT reports, but 

this is not always the case. As well as including CT reports, the sources of 
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information to document injury descriptions also encompass MRI, surgery, x-

ray, angiography, post-mortem examinations or clinical diagnosis. 

Nevertheless, it seems reasonable to assume majority, if not all the information 

for AIS coding, is obtained from CT scans since CT is the commonest modality 

for diagnosing structural brain damage for every patient suspected to have 

sustained severe trauma in the developed world and several other developing 

nations.  

 As AIS coding does not rely only on one CT report, the dynamic nature 

of brain injury as to progressing or regressing over time is reflected in AIS 

codes unlike the Marshal Classification. This is because the Marshal 

Classification is collected from CT images/reports at a certain point in time 

(oftentimes on admission) whilst AIS codes contain information after discharge 

or death as well. As such using our algorithm to obtain the Marshal Class with 

AIS codes intermediation would inherit the information on dynamic nature or 

CT findings evolution as well. This poses a problem since evolution of 

structural brain damages per se is a prognostic factor indicating higher chance 

of unfavourable outcome [143]. Servadei et al.  have shown that the worst CT 

classification has more prognostic value than less severe CT classification (s) 

[143]. Consequently, if the Marshal Classification is obtained from AIS codes, 

there may be some overestimation of its negative prognostic role in TBI as 

compared to the Marshal Classification using CT images/reports. This may be 

particularly an issue with patients who sustain more severe brain injuries as 

they are more subject to various means of investigations such as MRI or 

operation.  
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As well as the above fundamental assumption regarding AIS 

descriptions as substitutes for CT reports, there are two other important 

assumptions related to the brain swelling and the mass lesion. Unfortunately 

neither the Marshall Classification nor the AIS dictionary describe precisely 

the severity of brain swelling. The degree of swelling in AIS dictionary is only 

determined by cistern/basal cisterns status whereas the degree of midline shift 

is also an important determining factor. Likewise, although midline shift or 

cisterns status is important in the Marshall Classification of brain swelling, 

other causes of midline shift, such as mass lesion, are disregarded. With respect 

to the size of mass lesions, future research is required to determine the precise 

size cut-offs for categorising such lesions, in spite of the already-known fact 

that larger lesions are associated with poorer outcome [29]. Comparing the cut-

offs, those for subdural and epidural haemorrhage in the AIS dictionary are 

larger than those in the Marshall Classification by 25 cc although this 

difference may be negligible for contusion and intracerebral haemorrhage 

which is only 5 cc. The evidence base for lesion size in both classifications 

appears to be limited, despite claims that the cut-offs are backed by substantial 

experience and are not merely arbitrary [140, 144].  

In Table 20, we assumed that codes indicating hypoxic or ischemic 

brain damage are related to normal CT scan. This may not always be the case 

as some patients may develop brain swelling as a secondary damage to 

hypoxia/hypotension. Whilst our assumption of clear CT for 

hypotension/hypoxia may not be acceptable in our cross-tabulation, we believe 

the algorithm would address this problem. For example, if a patient develops 

brain swelling following hypoxia, then two codes of hypoxia and brain 
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swelling will be allocated. As the injuries are taken through the algorithm, the 

brain swelling Marshal Class of III or IV (depending on the severity) is 

allocated prior to the final step of the algorithm as Marshal Class I (normal 

CT).  

The position of various steps of the algorithm is based on the 

assumption that the Marshal Classification is ordinal in severity. Despite being 

the case from Class I to IV, this is not true for class IV versus class V as 

patients in class IV demonstrate lower likelihood of favourable outcome or 

survival than those in class V [140, 145]. Since the Marshall Classification is 

mutually exclusive, it is conspicuously necessary to prioritise which type of 

injuries is more relevant for allocation of the proper Marshal Class in case of 

multiple brain injuries. Whilst, according to the adverse outcome frequency, 

the brain swelling with compressed cisterns may have to be placed prior to 

mass lesion in the algorithm, we believe the current position of each step is 

more reflective of what occurs in real life of Marshal Classification through 

observing the actual CT. In fact, the current position of various steps of the 

algorithm are according to what has been suggested by Maas et al.  [140]. In 

Maas‟s algorithm, the Marshal Classification was taken as ordinal but still class 

V represented lesser degrees of brain injury than class IV in their subsequent 

prognostic analysis.  

5.6.2. Implication  

The Marshall Classification has prognostic value to make predictions on the 

outcome of TBI patient [24, 36, 94, 140]. AIS coding is also important from 

prognostic viewpoint [146] but the severity scores (ranging from 3 to 6 in TBI) 

encompass a wide variety of different injuries that the relationship of the score 
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and CT findings can not be easily made particularly in clinical settings where 

the AIS dictionary is not a familiar tool. Hence, it is important for trauma 

registries to ` avoid exclusive reliance on AIS coding for the sake of better 

communication with the clinical audience. As the Marshall Classification holds 

comparable prognostic value to age, GCS, pupillary reactivity, SAH etc. [24, 

36] and trauma registries commonly do not have record of this classification, 

the translation of AIS codes to the Marshall system opens up the possibility for 

multivariate prognostic analysis of large series of TBI subjects saved in trauma 

registries. In fact, the internationally known IMPACT prognostic models [24] 

in TBI employ the Marshall Classification for outcome prediction and using 

our proposed translation not only permits running the IMPACT models in 

trauma registries, derivation of new prognostic models including the Marshall 

Classification becomes feasible. Furthermore, as other TBI series accrued in 

clinical studies (observational or clinical trials) often do not have AIS coding, 

our proposed translation facilitates mergence of datasets from trauma registries 

and clinical studies to conduct more powerful studies or performance of 

comparative analysis across datasets when data recording is not uniform.  

5.6.3. Future direction 

The design of the algorithm is such that at the end of the allocation, there must 

be no cases left with no Marshall Class assigned. We ran our algorithm in a 

dataset of 802 TBI cases from the Trauma Audit Research and Network 

(TARN) and noticed that there were no cases left with no Marshall Class 

allocated (unpublished data). However, we acknowledge that our proposed 

allocation still requires three possible forms of validation in the future. First, it 

is yet to be determined how accurate our method is when the Marshall 
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Classification is performed using the AIS codes. In this manner, AIS codes are 

applied as substitutes for CT reports and in case all the assumptions are 

followed, 100% accuracy should be met. The second form of validation is 

when the allocation is performed with actual CT images at hand. In this 

manner, the allocations are compared across two groups. In one group, the 

classification is done through observing the CT and in the other group the 

Marshall Class is obtained following assignments of AIS coding and 

subsequently using our proposed cross-tabulation and algorithm. This form of 

validation is not expected to yield 100% accuracy and it examines how strong 

the assumptions are. The third form of validation is to compare the Marshall 

Classification at certain time point with that collected from AIS codes obtained 

from any available source including CT, MRI, operation notes etc. This form 

of validation would examine the influence of multiple sources of information 

or the temporal effect of events on the cross-tabulation and algorithm.  

5.7. Conclusion  

Using robust assumptions, we have proposed a method to allocate a single 

Marshall Class to a patient whose AIS codes are available, such as in trauma 

registries. This would enable future important TBI research programs.  
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5.8. Appendix: description of AIS codes to the Marshall 

Classes cross-tabulation 

AIS codes outside cerebrum or unrelated to raised ICP 

 

The Marshall Classification enables categorising a subset of TBI patients at 

risk of developing intracranial hypertention. Therefore injuries sustained in the 

brain stem and cerebellum is ignored. However, there are many codes 

describing the injuries in these two anatomical locations in the AIS dictionary. 

Almost all these codes do not have a Marshall Class equivalent. Bearing this in 

mind, we differentiated other non cerebral injuries relating to the brain stem or 

cerebellum by grouping them as „brain stem injury‟ or „cerebellar injury‟ 

without allocating a Marshall Class. The exception is AIS code 140202, which 

identifies the brain stem compression and thus corresponds to the Marshall 

Class III which involves compressed or absent cisterns. Moreover, the Marshall 

System is not designed for penetrating injuries [139] for which there are 

several AIS codes. Therefore, we grouped all such AIS codes as “penetrating 

injury” with no Marshall Class allocated. However, a penetrating injury AIS 

code related to the brain stem or cerebellum should still be grouped as 
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penetrating injury rather than a cerebellar or brain stem injury. This is because 

penetrating and blunt brain injuries pathophysilogically differ.  

Similarly, a number of AIS codes representing cerebral injuries are not 

directly related to raised intracranial pressure. These include massive 

destruction of both cranium and brain (crush), infarction, intraventricular 

haemorrhage, ischemia, pneumocephalus, laceration and pituitary injury. Such 

injuries are best mapped to the Marshall Class II since they do not indicate a 

normal CT (i.e. Marshall Class I) nor do they indicate brain swelling or mass 

lesions (i.e. Marshall Classes III and above). However, crush injury should be 

mapped to the most severe Marshall Class i.e. Class VI because of the very 

severe nature of this injury.  

 

Not Further Specified (NF)S AIS codes 

 

In allocating the appropriate Marshall Class to the cerebral AIS codes, we 

assumed that NFS injuries are minimally severe injuries of their type as is 

always the case in the dictionary. For example, the code 140999 which 

represents cerebral NFS was allocated to Marshall Class II, which represents 

the least severe brain injury in the Marshall Classification.  

 

Brain swelling 

 

Although, in the Marshall Classification, only class III is declared as „brain 

swelling‟ by Marshall et al. , class IV also contains this pathology. This is 

because midline shift, which denotes class IV, can be caused by brain swelling 
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as well. Thus, there are two Marshall Classes of III and IV indicating brain 

swelling, which are distinguished by compressed/absent cisterns for class III 

and midline shift of more than 5mm for class IV. However, in AIS coding the 

degree of the brain swelling is determined by the status of ventricles/cisterns 

being normal, compressed or absent. Therefore, the highest degree of brain 

swelling in AIS dictionary, i.e. absent cisterns, actually falls in the Marshall 

Class that indicates the lowest degree of brain swelling (class III) with no 

equivalent AIS code for Marshall Class IV. This inability in the AIS dictionary 

to distinguish between Marshall Classes III and IV poses a problem. The 

decision is whether or not to pool all AIS codes of brain swelling into Marshall 

Class III and to leave Class IV blank or to allocate AIS codes of mild and 

moderate brain swelling to Marshall Class III and AIS codes for severe 

swelling to Class IV. We selected the second option assuming that Marshall 

Classes III and IV represent mild and severe brain swelling respectively, 

irrespective of the criteria of the severity.  

 

Mass lesions  

 

There are several separate AIS codes for two kinds of mass lesions; contusion 

and haemorrhage. There are also several severity groups (small, moderate and 

large, massive or extensive) into which these lesions can fall depending on the 

size as ascertained by AIS severity scores. Furthermore, the cut-offs for this 

classification based on size are different in the AIS dictionary and the Marshall 

Classification. Whilst the Marshall Classification uses the simple cut-off of 

25cc regardless of type and location, those used in the AIS dictionary vary by 
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the type, anatomical location and, at times, by age of the patient. For instance, 

a single contusion in the cerebrum is small when < 30 cc, large when between 

30 cc and 50 cc and is extensive when > 50 cc (The cut-offs for the size-wise 

grouping of intracerebral haemorrhage, epidural or subdural hematoma are 

receptively 30cc, 50cc and 50cc.) 

Regarding the size of high density mass lesions, a problem exists on the 

cut-off or criteria to distinguish small from large lesions being different in the 

AIS dictionary and the Marshall Classification. Therefore the assumption was 

made that small haemorrhage and contusion (unilateral or bilateral), SAH and 

Subpial haemorrhage correspond to the Marshall Class II with all other large, 

massive or extensive mass lesions coming under class VI.  

 

Skull fractures  

 

Codes indicating several skeletal fractures (basal skull fracture or not simple 

vault fractures) were all placed in Marshall Class I, which is described as no 

intracranial pathology.  

5.8.1. AIS 2005 

Adapting our proposed mapping for the 2005 update is simple since we know 

that the update to the head section involves changes in a number of AIS scores 

and the addition of some new codes. None of the old AIS codes, which have 

undergone changes in their severity score, are affected in terms of their mapped 

Marshall Class. However, for new AIS codes,  represents the most appropriate 

Marshall Class mapped. Some of the new AIS codes have arisen because some 

of the old AIS codes have been further sub-divided to specify the injuries in 
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more detail. Overall these criteria do not affect the mapping proposed in  for 

each particular injury. For example, in the 2005 AIS dictionary, the severity of 

Diffuse Axonal Injury (DAI) is further qualified by whether or not it is 

confined to white matter/basal ganglia or involves the corpus callusom. No 

matter which is the case, the equivalent Marshall Class II, as allocated in , still 

holds. Nevertheless, there are 3 new codes (140701, 140702 and 140703) that 

describe the hypoxic or ischemic brain damage which occurs due to systemic 

hypoxia, hypotension or shock. Since these causes of brain damage are not 

directly related to head trauma, we can infer that the head CT of such patients 

should be clear which indicates Marshall Class I (no visible pathology).  
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6.1. Abstract  

6.1.1. Introduction 

Various diagnosed intracranial pathologies in Traumatic Brain Injury (TBI) can 

help to predict patients‟ outcome. These pathologies can be categorised using 

the Marshal Classification or the Abbreviated Injury Score (AIS) dictionary or 

can be described through traditional descriptive terms referring to the type of 

injury such as Subarachnoid Haemorrhage (SAH), Subdural Haemorrhage 

(SDH), Epidural Haemorrhage (EDH) etc.  

6.1.2. Objective  

To assess the prognostic value of AIS scores, the Marshall Classification and 

various intracranial pathologies in TBI.  

6.1.3. Method 

A dataset of 802 TBI patients in the Trauma Audit and Research Network 

(TARN) database was analysed using logistic regression. Initially reference 

models were constructed with age, Glasgow Coma Scale (GCS), pupillary 

reactivity, Injury Severity Score (ISS), cause of injury and presence/absence of 

extracranial injury as predictors and survival at discharge as outcome. 

Subsequently, AIS score, the Marshall Classification and various intracranial 

pathologies such as haemorrahge, SAH or brain swelling were added to assess 

the relative predictive strength of each variable and also to assess the 

improvement in the predictive performance of the models.  
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6.1.4. Results 

 Various AIS scores or Marshal Classes did not appear to significantly affect 

the outcome. Among traditional descriptive terms, only brain stem injury and 

brain swelling significantly influenced outcome (odds ratios for survival: 0.17 

(95% CI: 0.08-0.40) and 0.48 (95% CI: 0.29-0.80) respectively). Neither 

haemorrhage nor its subtypes such as SAH, SDH, and EDH were significantly 

associated with outcome. Adding AIS scores, the Marshall Classification and 

various intracranial pathologies to the prognostic models resulted in almost 

equal increase in the predictive performance of baseline models. 

6.1.5. Conclusion 

In this relatively recent dataset, the significant effect of brain swelling and 

brain stem injury on outcome in comparison to injuries such as SAH suggests 

the need to improve therapeutic approaches to patients who have sustained 

these injuries. 
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6.2. Introduction  

Traumatic Brain Injury (TBI) can cause various types of intracranial 

pathologies. It may lead to contusion, haemorrhage or diffuse axonal injury 

(including brain swelling). With regards to predicting outcome, the presence of 

structural damage indicates poorer outcome compared with a normal CT [147]. 

There are several traditional terms such as intracranial haemorrhage, 

Subarachnoid Haemorrhage (SAH), Epidural Haemorrhage (EDH), Subdural 

Haemorrhage (SDH), brain swelling to describe the structural brain damage. 

The association of these pathologies such as intracranial haemorrhage [93], 

SAH [24, 36, 92, 140, 148-152], SDH [92, 94, 153], EDH [24, 92, 94, 140, 

148] and brain swelling [94, 143, 149] with outcome has been shown in the 

TBI literature.  

Abbreviated Injury Scale (AIS) dictionary is a document which codes 

various intracranial injuries sustained due to TBI. The injuries are coded based 

on anatomical location of the lesion (brain stem, cerebrum and cerebellum), the 

type of the lesion (e.g. haemorrhage, contusion and brain swelling), various 

subtypes of haemorrhage such as SAH, SDH and the size/degree of the 

pathology. Each AIS code is equivalent to a particular injury description and is 

followed by a figure as one post-decimal place ranging from 1 (the minimal 

severity) to 6 (the maximal severity). The post-decimal point is referred to as 

AIS severity score. For example, an SDH less than 50cc in an adult receives 

AIS code of 140652 which has severity score of 4. This is presented as 

140652.4 

Furthermore, the Marshal Classification of CT findings in TBI is first 

introduced in 1991 and is used to have a more accurate predictive assessment 
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of TBI patients who sustained intracranial hypertension by considering those 

injuries which are causes of, or somehow related to, raised ICP [139]. Since 

this classification is based on the degree of brain swelling or the extent of mass 

lesion, it disregards physiological characteristics and anatomical distribution of 

injuries in that, for example, contusion, SDH or EDH are all considered as 

mass lesions. Some studies have shown this classification can also be applied 

to predict the outcome in TBI [24, 36, 92, 94, 140, 143]. 

The Trauma Audit and Research Network (TARN) [89], based in the 

UK, is a trauma registry which receives detailed information on severe trauma 

patients mainly from trauma receiving hospitals in England and Wales. TARN 

has embarked on a project to construct prognostic models applicable to a subset 

of trauma patients who have sustained brain injury using a dataset which 

includes cases submitted after September 2005. This provides an opportunity to 

assess the predictive performance of various intracranial pathologies due to 

TBI. The studies on this issue so far have been conducted on older datasets 

which do not take account of temporal advances and improvements in trauma 

care systems [24, 36, 92-94, 140, 143, 148-153]. The objective of this study is 

twofold: to determine the relative prognostic strength of various AIS severity 

scores of brain injury and the Marshall Classification and to determine which 

intracranial pathologies are more important for outcome prediction in TBI 

using a more recent dataset.  



 199 

6.3. Methods  

6.3.1. Patients included  

TARN holds the anonymous record of each TBI patient with various AIS codes 

and scores. The criteria for submission to TARN are that the patient arrives at 

hospital alive and fulfils one of the following criteria: (I) more than three days 

stay in hospital, (II) being nursed in the intensive care unit, (III) inter-hospital 

transfer or (IV) death at any time point in hospital. If a given patient meets the 

criteria, trained coders then code the sustained injuries using the AIS 

dictionary. The criteria to retrieve TBI cases from TARN general trauma 

registry  were AIS severity score of brain injury 3 or more (AIS codes under 

the „Internal Organ‟ in the head section of the dictionary, update 98 [90]) OR 

AIS cods related to basal and compound/depressed/open skull fracture AND 

availability of pupillary reactivity at any time point in TARN dataset. The 

reason for the availability of pupillary reactivity as a criterion was that many 

well-conducted studies have shown the importance of this variable for outcome 

prediction in TBI [23, 24, 36, 92, 93, 137] and it has only been recorded in 

TARN recently i.e. from September 2005 onward. The outcome measure for 

the analysis was survival at discharge and where applicable, the time point of 

measurement of covariates was on admission. 

6.3.2. Differentiation of various intracranial pathologies  

To investigate the predictive importance of AIS scores, the decision was made 

to choose the highest AIS score in case the patient had more than one AIS code 

assigned (34.4% of patient had more than 2 AIS codes/severity score assigned). 

Furthermore, AIS codes were classified according to what is presented in table 
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23. This classification exclusively describes type, subtypes and location and 

disregards the extent/degree of injuries as determined by size, volume or other 

parameters in the AIS dictionary. Injury types include contusion, haemorrhage 

and brain swelling with EDH, SAH and intracranial haemorrhage as subtypes 

of haemorrhage only if they are sustained in the cerebrum (i.e. not in the brain 

stem or cerebellum). These are intracranial pathologies which have been found 

by the International Mission for Prognosis And Clinical Trial Design 

(IMPACT) [28, 92, 94] to significantly affect the outcome in TBI. Moreover, 

there are other injury types sustained in the cerebrum which are not contained 

in  table 23 in order not to make the classification overly detailed and thus 

complicated. Some examples of these codes are infarction, ischemia or diffuse 

axonal injury. Furthermore, should the haemorrhage or contusion be sustained 

in the brain stem or cerebellum, in table 23 , this is classified under the brain 

stem and cerebellar injuries and not the cerebral injury.  

 
Table 23 Traditional terms to describe intracranial pathologies in TBI 

 

 

In the same way, AIS codes were differentiated according to the 

Marshall Classification [139]. An algorithm was applied which enabled a 

Marshall Class to be allocated to each patient depending on the brain injuries 

described by AIS dictionary. This algorithm adds two additional classes to the 

original Marshall Classification to represent penetrating and brain 

Cerebral contusion 

Cerebral brain swelling 

Cerebral haemorrhage  

Cerebral EDH 

Cerebral SDH 

Cerebral SAH 

Brain stem injury 

Cerebellar injury 
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stem/cerebellar injuries as classes VII and VIII respectively. However, since in 

TARN, the distinction between classes V and VI can not be reliably made, 

these two classes were merged together in this analysis (class V represents 

evacuated mass lesion versus class VI representing non-evacuated mass 

lesion).  

6.3.3. Examination of prognostic value of AIS severity 

scores and various intracranial pathologies  

Initially the significance of the association of the brain injury AIS severity 

scores and various intracranial pathologies 

with survival at discharge was investigated using Chi Square test. Then two 

models were constructed. One model included age, GCS, pupillary reactivity, 

Injury Severity Score (ISS) (model A) and the other model included the same 

covariates except that ISS was replaced with presence/absence of major 

extracranial injury (i.e. extracranial AIS severity score > 3) and the cause of 

injury (model B). The reason for this replacement was that ISS and extracranial 

injury could not be contained in the same model due to multicolinearity effect. 

Following replacement of ISS with extracranial injury, the cause of injury 

became significant. The admission values were selected for GCS and pupillary 

reactivity and all missing information on these covariates were replaced firstly 

with observations en-route or, secondly, at scene. These models were named as 

“the baseline models A and B”.  

Subsequently, brain injury AIS severity scores and various intracranial 

pathologies were added separately to each model A and B firstly to observe the 

significance of effect of each variable on outcome in the model and secondly to 

observe the changes in the model performance according to the significance of 
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the decrease in the deviance or increase in Area Under the Roc Curve (AUC) 

and Nagelkerke R
2
 [136]. Due to insufficient cases with AIS score 6 (only 6 

cases in the whole dataset), this score was merged with AIS score 5. Various 

intracranial pathologies as presented in table 23 were supplied to the models 

altogether (i.e. not individually) only if they were found significant in the 

univariate analysis. However, we observed that some pathologies such as 

various types of haemorrhage were not significant in our models unlike the 

literature. This was thought likely to be due to the given combination of 

intracranial pathologies in table 23. Therefore, various combinations were 

investigated by merging/omitting various pathologies. This was performed 

based on the literature and the results of our multivariate analysis. We 

differentiated numerically each combination (i.e. combinations 1A to 5A and 

1B to 3B where A and B represent models A and B).  

6.4. Results  

The results are presented in 3 sections to cover: the univariate analysis, the 

significance of each variable in the multivariate models and lastly their added 

value to the performance of the models.  

6.4.1. Patients characteristics and the univariate analysis 

The clinicodemographic characteristics of the population studied are shown in 

Table 24. The dataset comprised 802 TBI cases. The median age was 39 and 

males constituted 75.2% of the population. The commonest causes of injury 

were Road Traffic Collisions (RTC) and falls. The majority of cases (51.1%) 

had severe TBI i.e. GCS < 9 recorded on admission to the emergency 

department. Most cases (68.6%) had normal pupillary reactivity followed by 
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neither reactive at 16.5%. The median ISS was 25 and the frequency of major 

extracranial injury was 14.5% as determined by extracranial AIS score > 3. 

 

Table 24 Clinicodemographic characteristics of the population sample 

studied. 
 

Table 25 demonstrates the frequency of each AIS score, Marshall Class 

and various intracranial pathologies along with the results of univariate 

Covariate Median 

(interquartile 

range) 

Frequency 

(percentage) 

Age 39 

(22-58) 

 

Gender Male - 603 

(75.2%) 

Female - 199 

(24.8%) 

Cause of injury RTC - 314 

(39.2%) 

Fall - 313 

(39.0%) 

Assaults - 143 

(17.8%) 

Others - 32 

(4%) 

GCS(categorical) Mild (13-15) - 278 

(35.8%) 

Moderate (9-12) - 99 

(12.7%) 

Severe (3-8) - 399 

(51.5%) 

Pupillary reactivity Normal - 446 

(68.6%) 

Abnormal-both 

reactive 

- 69 

(10.2%) 

Abnormal-only one 

reactive 

- 28 

(4.3%) 

Neither reactive - 107 

(16.5%) 

ISS 25 

(16-29) 

 

Extracranial injury (cut-off: AIS=4) - 116 

(14.5%) 

Survival - 599 

(74.7%) 
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analysis. Most cases had the highest AIS score of 4 (39.4%) and only 6 cases 

were recorded with the highest AIS of 6. Likewise, haemorrhage (of any type) 

was present in 76.4% of cases with SDH the most frequent type of 

haemorrhage (22.1%) followed by SAH (18.6%). Similarly, 8.9% and 5.1% of 

cases had brain stem and cerebellar injury respectively (of any kind such as 

haemorrhage or contusion). Nevertheless, non-hemorrhagic brain injuries such 

as contusion and swelling were present in 39.9% and 34.2% of the patients 

respectively. When using the Marshal CT Classification, the most frequent 

pathology is class II (50.5%) followed by class V/VI (20.7%) and III (10.6%). 

All covariates including AIS scores and the Marshal Classification were 

significantly associated with survival apart from contusion and SDH. Therefore 

contusion and SDH were not investigated further in the multivariate analyses. 
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Table 25 Frequency of various AIS score, Marshall Classes and 

intracranial pathologies. The p value represents the significance of 

association with survival at discharge. 

Covariate Frequency 

(percentage) 

Odds ratio for 

survival 

(CI) 

p value 

by Chi 

square 

test 

Highest AIS 

scores 

3 189 

(23.6%) 

 < 0.005 

4 316 

(39.4%) 

0.73 

(0.42-1.27) 

5 291 

(36.2%) 

0.15 

(0.09-0.25) 

6 6 

(0.7%) 

0.02 

(0.00-0.22) 

Cerebral contusion 320 

(39.9%) 

1.25 

(0.90-1.74) 

0.18 

Cerebral brain swelling 275 

(34.2%) 

0.31 

(0.22-0.43) 

< 0.005 

Cerebral haemorrhage 533 

(66.5%) 

0.61 

(0.42-0.87) 

< 0.005 

Cerebral EDH 95 

(11.8%) 

2.85 

(1.49-5.45) 

< 0.005 

Cerebral SDH 178 

(22.1%) 

1.17 

(0.79-1.73) 

0.43 

Cerebral SAH 149 

(18.6%) 

0.56 

(0.38-0.82) 

< 0.005 

Brain stem injury 72 

(8.9%) 

0.08 

(0.04-0.14) 

< 0.005 

Cerebellar injury 41 

(5.1%) 

0.30 

(0.16-0.56) 

< 0.005 

Marshal 

Classification 

I 65 

(8.1%) 

 < 0.005 

II 405 

(50.5%) 

1.17 

(0.54-2.50) 

III 85 

(10.6%) 

0.39 

(0.17-0.90) 

IV 74 

(9.2%) 

0.19 

(0.08-0.44) 

V/VI 166 

(20.7%) 

0.160 

(0.08-0.35) 

Brain 

stem/cerebellar 

injury 

4 

(0.5%) 

0.05 

(0.005-0.57) 

Penetrating 

injury 

3 

(0.4%) 

0.32 

(0.03-3.92) 
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6.4.2. The significance of each variable in the model  

Table 26 and Table 27 show the effect of AIS scores, the Marshall 

Classification and intracranial pathologies on outcome (survival at discharge) 

using multivariate analysis. The combination 1A and 1B were the ones 

presented in  tabel 23 (except for contusion and SDH which were not 

significant in the univariate analysis). In model A (Table 26), AIS score 4 was 

not significantly associated with outcome whereas AIS score 5/6 were 

marginally significant (<0.1 but > 0.05).  Regarding the Marshal Classification, 

no Marshal Class showed significant association with outcome although the 

Marshall Class II was marginally significant (p = 0.06). Moreover, among all 

intracranial pathologies, only brain stem injury was significantly associated 

with discharge survival whereas brain swelling and cerebellar injury were 

marginally significant (p = 0.08 and 0.09 respectively).  
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Table 26 Prognosis associated with AIS scores, the Marshall Classification and intracranial pathologies in the multivariate model A (*: p 

< 0.005, **: p < 0.05) 

 Baseline model A Model A + AIS scores Model A + Marshal 

Classification 

Model A + combination 

1A 

Model A 

 

Age 0.96 

(0.95-0.97)** 

0.96 

(0.95-0.97)** 

0.95 

(0.94-0.96)** 

0.95 

(0.94-097)** 

GCS Mild - - - - 

Moderate 0.41 

(0.20-0.82)* 

0.40 

(0.20-0.81)* 

0.37 

(0.18-0.77)** 

0.40 

(0.19-0.82)* 

Severe 0.22 

(0.12-0.39)** 

0.22 

(0.12-0.41)** 

0.22 

(0.12-0.41)** 

0.23 

(0.12-0.43)** 

Pupillary reactivity Normal - 

 

- - - 

Abnormal-both reactive 0.40 

(0.21-0.74)** 

0.40 

(0.21-0.75)** 

0.37 

(0.19-0.71)** 

0.40 

(0.21-0.76)** 

Abnormal-only one 

reactive 

0.28 

(0.12-0.65)** 

0.26 

(0.11-0.60)** 

0.26 

(0.11-0.61)** 

0.26 

(0.11-0.61)** 

Neither reactive 0.04 

(0.02-0.09)** 

0.05 

(0.03-0.09)** 

0.05 

(0.02-0.1)** 

0.05 

(0.02-0.10)** 

ISS 0.18 

(0.10-0.33)** 

0.29 

(0.15-0.56)** 

0.26 

(0.14-0.5)** 

0.27 

(0.14-0.51)** 

AIS 3 - 

 

- - - 

4 - 1.28 

(0.63-2.60) 

- - 

5/6 - 0.52 

(0.25-1.08) 

- - 
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Table 26 Prognosis associated with AIS scores, the Marshall Classification and intracranial pathologies in the multivariate model A (*: p 

< 0.005, **: p < 0.05) (continued)

  Baseline model A Model A + AIS scores Model A + Marshal 

Classification 

Model A + combination 

1A 

Marshal Class I - 

 

- - - 

II - - 2.70 

(0.97-7.5) 

- 

III - - 0.1 

(0.31-3.16) 

- 

IV - - 0.70 

(0.22-2.21) 

- 

V/VI - - 0.74 

(0.26-2.12) 

- 

Brain stem/cerebellar injury - - 0.39 

(0.00-42.11) 

- 

Penetrating injury - - 1.2 

(0.02-82.91) 

- 

Combination 1A Brain swelling - - - 0.64 

(0.38-1.05) 

EDH - - - 1.80 

(0.76-4.28) 

SAH - - - 0.22 

(0.10-0.50) 

Brain stem injury - - - 0.45 

(0.18-1.14)** 

Cerebellar injury - - - 0.94 

(0.52-1.69) 
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In model B (Table 27), no significant association between AIS score 4 

and outcome was observed whereas this association was significant for score 

5/6. Unlike model A, Marshal Classes IV and V/VI demonstrated significant 

effects on outcome. Moreover, among intracranial pathologies, only brain 

swelling and brain stem injury significantly influenced survival at discharge in 

model B. 
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Table 27 Prognosis associated with AIS scores, the Marshall Classification and various intracranial pathologies in the multivariate 

model B (*: p < 0.05, **: p < 0.005)

 Baseline model B Model B + AIS scores Model B + Marshal 

Classification 

Model B + combination 

1B 

Model B 

Age 0.96 

(0.95-0.97)** 

0.96 

(0.95-0.97)** 

0.96 

(0.94-0.97)** 

0.96 

(0.95-0.97)** 

GCS Mild - 

 

- - - 

Moderate 0.39 

(0.19-0.80)* 

0.37 

(0.18-0.76)** 

0.34 

(0.16-0.72)** 

0.39 

(0.18-0.81)* 

Severe 0.18 

(0.10-0.32)** 

0.23 

(0.12-0.42)** 

0.22 

(0.12-0.42)** 

0.22 

(0.12-0.41)** 

Pupillary reactivity Normal - - - - 

Abnormal-both reactive 0.40 

(0.21-0.74)** 

0.40 

(0.21-0.77)** 

0.38 

(0.2-0.75)** 

0.40 

(0.21-0.76)** 

Abnormal-only one 

reactive 

0.21 

(0.09-0.49)** 

0.23 

(0.10-0.55)** 

0.23 

(0.09-0.56)** 

0.21 

(0.09-0.50)** 

Neither reactive 0.03 

(0.02-0.07)** 

0.04 

(0.02-0.07)** 

0.04 

(0.02-0.08)** 

0.04 

(0.02-0.08)** 

Extracranial injury 0.22 

(0.12-0.40)** 

0.21 

(0.11-0.39)** 

0.18 

(0.10-0.35)** 

0.24 

(0.13-0.44)** 

Cause of injury RTC - 

 

- - - 

Fall 0.60 

(0.34-1.05)* 

0.64 

(0.36-1.17) 

0.71 

(0.39-1.3) 

0.60 

(0.33-1.10) 

Assaults 1.71 

(0.77-3.82) 

1.91 

(0.83-4.42) 

2.09 

(0.90-4.85) 

1.80 

(0.78-4.15) 

Others 1.01 

(0.29-3.55) 

1.11 

(0.31-3.98) 

0.97 

(0.25-3.77) 

0.98 

(0.27-3.52) 
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Table 27 Prognosis associated with AIS scores, the Marshall Classification and various intracranial pathologies in the multivariate 

model B (*: p < 0.05, **: p < 0.005) (continued)

  Baseline model B Model B + AIS scores Model B + Marshal 

Classification 

Model B + combination 

1B 

AIS 3 -  

 

- - 

4 - 0.85 

(0.41-1.75) 

- - 

5/6 - 0.23 

(0.11-0.46)** 

- - 

Marshal Class I - 

 

- - - 

II - - 1.85 

(0.64-5.36) 

- 

III - - 0.7 

(0.23-0.49) 

- 

IV - - 0.26 

(0.08-0.86)* 

- 

V/VI - - 0.33 

(0.11-0.99)* 

- 

Brain stem/cerebellar injury - - 0.24 

(0.00-39.06) 

- 

Penetrating injury - - 0.11 

(0.00-4.46) 

- 

Combination 1B Brain swelling - - - 0.48 

(0.29-0.80)** 

EDH - - - 1.67 

(0.70-4.01) 

SAH - - - 1.00 

(0.56-1.81) 

Brain stem injury - - - 0.17 

(0.08-0.40)** 

Cerebellar injury - - - 0.50 

(0.20-1.35) 
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Since in the analysis of types of hemorrhage, none showed significant 

association with outcome in neither model A nor B despite this being observed 

in other studies [24, 36, 92-94, 140, 143, 148-153], other combinations of 

intracranial pathologies were investigated. These combinations were based on 

(1) hemorrhage commonly thought to be  predictive of adverse outcome in TBI 

from a clinical viewpoint, underpinned by literature [23, 93], (2) brain stem 

being a significant predictor in both models A and B, (3) brain swelling being a 

significant predictor in model B and marginally significant in model A and (4) 

cerebellar injury being marginally significant in model A. Table 28 presents 

various combinations of intracranial pathologies, created according to the 

above observations. All combinations, which were formed based on the results 

of model A (i.e. combinations 2A, 3A, 4A, 5A), contained brain stem injury as 

this variable was significant in model A. The different combinations for model 

A related to the presence/absence of marginally significant covariates (brain 

swelling and cerebellar injury) and the clinically important variable: 

hemorrhage. Further, combinations 2B and 3B were originated based on the 

results of model B. Both combinations contain the significant covariates of 

model B (brain stem injury and brain swelling). The only difference of these 

two combinations related to presence or absence of hemorrhage i.e. 

hemorrhage is included in combination 2B but not in the combination 3B. 
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Table 28 Categories within combinations of various intracranial 

pathologies (+: present, -: not present) 

 

Following the trial of these various combinations of intracranial 

pathologies, it was observed that, in model A, brain stem injury remained 

significant in all combinations, with haemorrhage never being significantly 

associated with outcome. Furthermore, in combinations where the brain 

swelling and the cerebellar injury were present i.e. combination 2A (brain stem 

injury, cerebellar injury and brain swelling) and combination 3A (combination 

2A plus haemorrhage i.e. brain stem injury, cerebellar injury, brain swelling 

and haemorrhage), these covariates showed a marginally significant association 

with discharge survival. Similarly, in model B, the brain stem injury and the 

brain swelling were significantly associated with outcome in both 

combinations whilst haemorrhage demonstrated no significant association in 

combination 2B (brain stem injury, brain swelling and haemorrhage). We also 

added each intracranial pathology individually i.e. without combining with 

other intracranial pathologies and observed the same results.  

 Combination Brain stem 

injury 

Cerebellar 

injury 

Brain 

swelling 

Hemorrhage 

Based on 

results from 

model A 

Combination 

2A 

+ + + + 

Combination 

3A 

+ + + - 

Combination 

4A 

+ - - + 

Combination 

5A 

+ - - - 

Based on 

results from 

Model B 

Combination 

2B 

+ - + + 

Combination 

3B 

+ - + - 
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6.4.3. Added value of each variable to the model 

performance  

Table 29 shows the added value of AIS scores, the Marshall Classification and 

various intracranial pathologies to models A and B. The AUC and Nagelkerke 

R
2 of the models A and B prior to and following addition of each new variable 

(AIS scores, Marshall Classification or intracranial pathologies) are presented. 

The baseline models A and B had AUC and Nagelkerke R
2 

of respectively 0.91 

and 0.57. Addition of AIS scores and the Marshall Classification to model A 

resulted in a significant decrease in the deviance of the model along with 

increase in AUC from 0.91 to 0.92. Further, addition of various intracranial 

pathologies to this model demonstrated similar increase in AUC. In terms of 

Nagelkerke R
2
, the degree of increase varied. Similar to model A, both AIS and 

the Marshall Classification significantly decreased the deviance of model B 

whilst increasing AUC from 0.91 to 0.92. Moreover, adding various 

intracranial pathologies to this model resulted in the same increase of AUC as 

to AIS score or the Marshall Classification, apart from the combination 1B 

which raised AUC slightly higher as to 0.93. Similar to model A, the increase 

in Nagelkerke R
2 

varied.  
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Table 29 The added value of AIS scores, the Marshall Classification and various intracranial pathologies to the performance of models 

to predict survival at discharge.

 AUC Decrease in 

deviance 

 (p value) 

Nagelkerke R
2
  AUC Decrease in 

deviance  

(p value) 

Nagelkerke R
2
 

Baseline model 

A 

0.91 

(0.89-0.93) 

- 0.57 Baseline model 

B 

0.9 

(0.88-0.93) 
- 0.57 

AIS 0.92 

(0.89-0.94) 

<0.001 0.58 AIS 0.92 

(0.90-0.94) 

<0.001 0.61 

Marshal 

Classification 

0.92 

(0.90-0.94) 

<0.001 0.60 Marshal 

Classification 

0.92 

(0.90-0.94) 

<0.001 0.62 

Combination 1A 0.92 

(0.90-0.94) 

- 0.60 Combination 1B 0.93 

(0.90-0.95) 
-  

Combination 2A 0.92 

(0.90-0.94) 

 0.60 Combination 2B 0.92 

(0.90-0.94) 
- 0.61 

Combination 3A 0.92 

(0.90-0.94) 

 0.60 Combination 3B 0.92 

(0.90-0.94) 

<0.001 0.61 

Combination 4A 0.92 

(0.90-0.94) 

 0.59 

Combination 5A 0.92 

(0.90-0.94) 

<0.001 0.59 
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6.5. Discussion 

In this study, the predictive power of AIS severity scores, the Marshal 

Classification and various traditionally descriptive intracranial pathologies has 

been investigated. Using a subset of TBI patients submitted to TARN, two 

reference prognostic models to predict the discharge survival were constructed 

with important TBI prognosticators namely age, GCS, pupillary reactivity, ISS, 

cause of injury and extracranial injury as covariates. Then the association of 

each classification system (AIS severity score or the Marshall Classification) or 

descriptive pathology with outcome and also its contribution to the 

performance of the reference models were assessed in univariate and logistic 

regression analyses respectively. AIS score 5/6 appears to have a significant 

effect on outcome with AIS score 3 as the reference. Regarding the Marshal 

Classification, various Marshal Classes do not appear to have significant 

influence on outcome prediction in model A with only classes V and V/VI 

being significant in model B. Moreover, haemorrhage does not seem to be 

important although brain swelling and brain stem injuries (of any kind 

including haemorrhage and contusion) may be the important predictors of 

outcome among all structural damages. This analysis shows that including 

these classifications or intracranial pathologies slightly enhances the predictive 

power of baseline prognostic models as per AUC and Nagelkerke R
2
.  

6.5.1. Implications of the study 

Although various AIS scores on univariate analysis have odds ratios of less 

than one for survival, which decreases in line with the increase of the score, 

this effect seems not to be maintained in multivariate analysis. This is because 
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score 4 does not hold significant association with outcome despite score 5 

being significantly more predictive of death than score 3. This implies that the 

prognostic difference between AIS scores 3 and 4 is not significant. We cannot 

explain this finding because both scores contain various types and severities of 

injuries. However, it is possible that some injuries which are coded 3 should be 

perhaps placed under AIS score 4 or vice versa.  

The Marshall Classification does not appear to be a reliable classifier 

for TBI patients based on their probable outcome. Although, addition of the 

Marshal Class to the baseline predictive models improved the performance, 

this does not add anything to the notion that structural brain damage (of any 

kind) is an indicator of a worse outcome than no intracranial pathology [147]. 

A reliable classification should be able to effectively provide relative predictive 

strength for each category of pathological findings which can be referred to as 

the capability of the classification system to score each individual category for 

outcome prediction. The Marshall Classification appears to fail in this matter in 

our analysis. However, we believe our results do not undermine the validity of 

the Marshall Classification for descriptive purposes or to indentify those TBI 

cases who are at high risk of developing raised ICP. In fact, not only this 

classification has not been proposed from the prognosis viewpoint, it may still 

be appropriate as a CT classification. This is because we used AIS codes to 

assign one Marshall Class to a TBI case in our data. AIS coding, however, 

employs the information not only from CT reports but also any source which 

can provide information on intracranial pathology (such as MRI, operation 

notes, clinical diagnosis etc.). Thus, according to results, one may assume this 
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classification is not good for categorising intracranial pathologies but valid for 

pathologies observed by CT.  

This study in part permitted us to assess the prognostic importance of 

the type and anatomical location of brain damage following TBI. Contusion 

appears not to have a negative prognostic value because it does not influence 

the survival status. This is also the case for haemorrhage, when it is used in 

multivariate analysis. However, brain swelling still seems to be an important 

factor for outcome prediction. Regarding the location of the lesion, it appears 

that the most important location is the brain stem with no importance for 

cerebellar and cerebral lesions apart from brain swelling. These findings may 

have some therapeutic implications as there is currently no definitive or 

appropriate therapy/intervention for brain stem injury. Although this finding 

appears intuitive for clinicians involved in treating these patients, this poor 

prognosis is observed in comparison with other factors influencing the 

outcome. This means victims of brain stem injury still have a chance of 

survival since the brain stem injury is only one factor for calculating the 

probability of outcome in our prognostic models. Furthermore, the negative 

effect of brain swelling on outcome compared with haemorrhage or other 

injuries may imply the current therapeutic strategies are not sufficient for 

averting  the poor outcome. This is highlighted further as our dataset is current 

and so modern therapeutic approaches have been taken into account. It is 

important to note that lack of significance for traumatic cerebral haemorrhage 

does not indicate the full efficiency of existing therapeutic approaches to 

intracranial pathologies. There are still many patients who sustain traumatic 
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cerebral haemorrhage and do not survive or subsequently end up with severe 

disability. 

6.5.2. Comparison with the literature 

Gennarelli et al.reported a non-linear relationship between AIS scores and 

mortality in that mortality consistently decreases as AIS score increased 

especially for scores 3 and above [144]. In our study, we observed that for AIS 

scores of brain injury, although there may be a decrease in the odds ratio of 

survival as AIS score increases (model B), the effect of score 4 on outcome is 

not significant as compared to score 3. Two important differences between our 

study and Gennarelli‟s may indicate more reliable results in our study. Firstly, 

we performed a multivariate analysis taking other important predictors into 

account where this was not performed in Gennarelli‟s study. It might be that 

the additional prognosis of AIS 4 versus 3 is covered by inclusion of GCS and 

pupillary reactivity in the models as GCS and the pupillary reactivity are more 

likely to be low/abnormal as AIS increases. Secondly, our analysis was 

exclusively performed on a subgroup of head AIS scores whereas Gennarelli‟s 

study is about AIS scores from all body regions.  

The association of the Marshall Classification with outcome has been 

investigated in a number of other studies [24, 36, 92, 94, 140, 143]. Maas el. al. 

demonstrated that classes V and VI had a lower mortality rates than class IV 

but they observed that overall the Marshal Classification has reasonable 

discriminative power (AUC= 0.669) [140]. This appears similar to our finding 

that adding the Marshal Classification to the predictive models would improve 

the performance. No adjustment for confounders was made in this study. 

Moreover, Servadei et al.  performed a univariate analysis on the outcome 
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predictability of the Marshal Classification with a similar result to our 

univariate analysis [143]. Among the studies which performed a multivariate 

analysis, the Marshal Classification was reported as a significant prognosticator 

when this classification was not used in its original form [24, 36, 92]. Apart 

from classes V and VI in these studies, various other Marshal classes were 

merged together such as class III merged with class IV [24, 92] or class I 

merged with class II [36]. We did not perform such mergence as we intended 

to use the Marshall Classification in its original form although mergence of 

classes V and VI was unavoidable due to lack of reliable information. One 

study found significant influence of each Marshall Class on outcome with only 

merging classes V and VI following adjustment with age, motor GCS and 

pupillary reactivity [94]. However, in this study the reference category was 

class II whereas in ours class I was the reference category.  

The difference in severity of TBI may explain the difference of our 

findings with regards to haemorrhage, SAH and EDH with many other studies 

consistently reporting the predictive significance of haemorrhage [93], SAH 

[24, 36, 92, 140, 148-152], or EDH [24, 92, 94, 140, 148]. For example, 

Fearnside et al.  observed a significant prognostic importance for SAH by 

multivariate analysis of a dataset in which all patients had GCS of 8 or less 

whereas in our dataset 35.8% of patients had mild GCS (i.e. >12) [149]. 

Similarly, Azian et al.  excluded those cases without intracranial haemorrhage 

and reported the significant predictive strength of SAH and EDH [148]. It may 

be that haemorrhage, SAH or EDH is a less important predictor of outcome in 

patients with less severe TBI unlike those who sustained more serious injuries. 

However, one important strength of our research is that our dataset is much 
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more recent than those used in other such studies. Moreover, the other 

explanation of the different results may relate to using AIS codes which rely 

also on MRI, operation notes or even mere clinical diagnosis and not only CT 

images. Regarding this, it is important to consider our study as a prognostic 

analysis of intracranial pathologies and not merely CT findings. As such, 

although it somewhat gives prognostic insight about various CT finding as they 

count in AIS coding, we believe the results of our study are more relevant for 

clinical decision makings with regards to the ultimate patient‟s diagnosis rather 

than only CT findings.  

6.5.3. Limitations  

Although our dataset contains severe cases of trauma per TARN submission 

criteria, our study may be considered to suffer from strong selection bias. This 

is because death is one criterion to be included into the TARN trauma registry 

(a bias towards inclusion of patients who die). Whilst this can potentially pose 

a bias, in our analyzed dataset only 5 cases stayed at hospital for less than 3 

days and of these only 3 cases died. We can assume that the remaining 2 who 

survived entered the dataset due to either intensive care or inter-hospital 

transfer (the other two criteria for submission to TARN). This also highlights 

that majority of cases in the data (99.37%) sustained brain injuries severe 

enough to stay at hospital for longer than 3 days. As such, it can be assumed 

that the inclusion criteria for this study is longer than 3 days stay at hospital 

since 99.37% of cases entered the dataset because of this criterion. One may, 

however, consider a selection bias towards excluding those cases who sustain 

intracranial pathology but not severe enough for more than 3 days in-hospital 

care and they do not enter the registry since they survive. Whilst this is an issue 
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with our current dataset, we believe the number of such cases must not be high 

to pose a significant bias to our study. In fact, the analyzed dataset is more 

representative of TBI victims who sustain intracranial pathologies as 35.8% of 

cases had admission mild GCS (i.e. > 13). This subgroup of patients represents 

those patients who „talk and die‟. Overall, the survival rate in our data is close 

to the average survival rate in other severe TBI populations (70%). We believe 

although the selection bias is an issue with our analysis, it is not strong to 

significantly undermine the results.  

The other limitation of our study is that we classified various 

intracranial pathologies described by AIS codes according to the Marshall 

Classification [99]. This classification was designed to identify risk of raised 

ICP based on CT image whereas AIS coding is performed from any source of 

information including MRI, operating notes etc.. Whilst AIS coding mostly 

relies on CT reports, the effect of other sources of information on the Marshall 

Classification obtained with AIS intermediation is unclear [99]. Furthermore, 

AIS coding is reflective of the dynamic nature of the brain injury as it employs 

multiple sources complied over time whereas the Marshall Classification is 

from a certain point in time (oftentimes on admission). Servadei et al.  

demonstrated that the evolution of intracranial pathologies per se is a TBI 

prognosticator [143]. The temporal change of brain injury is consequently 

inherited in the Marshall Classification when obtained from AIS descriptions 

but not when obtained from observing the actual CT image. Overall, there may 

be some overestimation of negative prognostic strength of the Marshall System 

when it is performed via AIS coders.  
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In this study, the highest AIS score was taken as a single variable for 

the analysis of association with outcome. However, patients may sustain 

multiple intracranial injuries and thus attract many AIS codes for each injury, 

especially if the brain injury is of severe type. Thus choosing only one AIS 

score out of several severity scores allocated might not be appropriate. This is 

an area for future research to determine how the predictive strength of 

intracranial injuries changes in the event of multiple intracranial injuries. It is 

still unclear which patient is at higher risk of experiencing unfavourable 

outcome, for instance, if one of them has multiple injuries with severity of 3 

and the other has one brain injury scored as 4. 

In this study, the original hypothesis was that prognostic analysis of 

combinations 1A or B would enable us to propose a reliable classification with 

significant prognostic value. However, apart from the brain stem injury and 

brain swelling, all other intracranial pathologies appeared non-significant in 

this analysis. Although this finding adds valuable information to the current 

literature with respect to the relative efficiency of therapeutic approaches to 

each intracranial pathology, at this stage we can not propose a classification 

apart from using the common conventional terms such as SAH, EDH, SDH etc.  

6.5.4. Future direction  

As some TBI patients, especially those who sustain severe injuries, 

have a high chance of multiple types of injury, the future research on 

development of a classification of intracranial pathologies for prognostic 

purposes should examine the impact of the number of intracranial injuries. 

Other important factors might be the anatomical location because of the 
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importance of brain stem injury, types of injury because of the importance of 

brain swelling and also the extent or severity of each injury.  

The results of our study still require further validation in a different 

series of TBI. This particularly relates to the follow-up interval with regards to 

the outcome assessment and also the type of outcome (disability versus 

survival). Whilst in this study, the endpoint of outcome was discharge survival 

(well-recognised in prognostic analysis of trauma registries data [22, 120, 129, 

142, 154]), this analysis should be replicated for disability and also long term 

outcome such as 6 months following injury.  

6.6. Conclusion  

Within a subset of severe TBI patients, not all AIS scores or  Marshall Classes  

have prognostic significance when taken into account along with 

clinicodemographic prognostic factors. This suggests AIS scores and the 

Marshall Classification may not be appropriate to classify intracranial 

pathologies. The significant association of brain swelling and brain stem injury 

implies the need to improve therapeutic approaches to those patients who have 

sustained these injuries. Furthermore, development of any new classification 

which can be employed for predictive purposes entails considerations given to  

the type, location; extent and multiplicity of injuries prioritising which one of 

these factors are of more importance.  
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7.1. Abstract 

7.1.1. Background 

Prognostic models in traumatic brain injury (TBI) are employed to design 

clinical trials, to assess/compare trauma care systems and to adjust trauma care 

for an individual patient. The current available prognostic models are rather old 

(the IMPACT models) or derived from non-homogenous datasets in terms of 

the trauma care delivered (the CRASH models).  

7.1.2. Aim 

To construct prognostic models to predict outcome in recent UK TBI patients.  

7.1.3. Method 

Records of patients with brain injury since January 2005 were extracted from 

the Trauma Audit and Research Network (TARN) database. TARN holds the 

records of patients with severe injuries i.e. longer than 3 days stay at hospital, 

inter-hospital transfer, critical care in hospital or death. Following a literature 

review, the variables age, cause of injury, GCS, pupillary reactivity, Injury 

Severity Score (ISS), CT classifications and various intracranial pathologies, 

systolic and mean blood pressure, hypoxia and the presence of extracranial 

injury were tested with survival at discharge as outcome. Variables with no 

significant correlation on univariate analysis were excluded. Stepwise logistic 

regression analysis was performed.  

7.1.4. Results  

Two models were derived on 802 patients with significant brain injury (models 

A and B). Age, GCS, pupillary reactivity, hypoxia and brain stem injury are 
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significant predictors in both. However, model A contains ISS in contrast to 

model B with the presence of brain swelling, cause of injury and major 

extracranial injury. Both models have high predictive performance (Model A; 

Area Under the ROC Curve (AUC) =0.92 (95% CI: 0.90-0.95), Nagelkerke R
2
: 

0.62 and HL test: P value = 0.20, Model B; AUC = 0.93 (95% CI: 0.91-0.95), 

Nagelkerke R
2
: 064 and HL test: P value= 0.19).  

7.1.5. Conclusion  

We have developed two prognostic models applicable to UK patients recently 

hospitalised after traumatic brain injury. 
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7.2. Introduction  

Traumatic Brain injury (TBI) is a global public health issue and is the cause of 

a substantial number of deaths and disabilities each year [155]. Tackling the 

problem involves devising and implementation of several preventive measures 

ranging from legislations on speed limit and seat belt for primary and 

secondary prevention [156] to the provision of the appropriate acute trauma 

care and rehabilitative strategies as tertiary prevention to avert the negative 

consequences of brain damage when it has already occurred. To this aim, 

prognosis is one of the several factors which can potentially help clinicians 

with decision making. Further, availability of a prognostic tool would assist 

trauma registries to benchmark local care systems by comparing their 

performance to a national standard performance. It has been suggested that 

accurate prognostic tools can also improve patient selection in trials of new 

interventions in TBI [157]. 

It is well-established that prognostication of TBI can not be based on a 

single clinical measure. For example, although in general, brain-injured 

patients with low or moderate Glasgow Coma Scale (GCS) are more prone to 

unfavourable outcome but a significant proportion of these patients can have a 

reasonable outcome with appropriate care [158]. Similarly, many patients with 

admission GCS scores of more 14 or 15 may deteriorate to experience 

unfavourable outcome [158]. This is because the prognosis in TBI depends on 

several clinical factors such as age, level of consciousness, pupillary reactivity 

or  Computed Tomography (CT) features [92]. The interaction among these 

factors is such that the effect of one factor on outcome may be influenced or 

eliminated in the presence or absence of the other. To address this complex 
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interaction, prognostic models have been employed to construct a tool which 

provides the probability of various outcome measures for a given victim of 

TBI over time taking multiple predictors into account.  

In two recent systematic reviews, Perel. et al.  [31] and Mushkudiani et 

al.  [159] observed that the literature contains numerous TBI prognostic models 

but many of these models are methodologically flawed in that the derivation 

samples are too small to provide powerful results, the models are not externally 

validated and some studies lack measures of model performance. These are 

important considerations with regards to the reliability of the presented 

prognostic models. However, there are currently two large initiatives which 

have constructed accurate and reliable prognostic models available online; 

these projects being International Mission for Prognosis and Analysis of 

Clinical Trials (IMPACT) [28] and Corticosteroid Randomization After 

Significant Head injury (CRASH) studies [23, 24].  

The derivation of the CRASH and IMPACT models from clinical trials 

can pose a selection bias as only cases who met the inclusion criteria for the 

sake of given intervention were contained in the dataset. Furthermore, it is 

important that prognostic analysis is accounted for as an ongoing procedure in 

updated and contemporary TBI series [88]. As such, the IMPACT models may 

be considered somewhat historic. Similarly, the regional diversity in trauma 

care should be taken into account as countries exercise different policies with 

regards to many factors which can affect the outcome such as pre-hospital care, 

intervention versus conservative approach or provision of neuro-intensive care 

[86]. The Trauma Audit and Research Network (TARN) is a trauma registry 

based in the University Of Manchester, UK which holds records of trauma 
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patients admitted to participating hospitals across England and Wales [89]. 

Therefore, the TARN dataset contains cases who were cared under the British 

trauma care system whereas the British data in either CRASH or the IMPACT 

prognostic studies were merged with data from other parts of the world with 

different trauma care policy than that in Britain.  

With regards to the importance of regional and temporal differences in 

trauma care and the importance of observational studies for prognostic 

analysis, the objective of our study is to construct a prognostic model by using 

TBI cases from TARN which can be reliably applied to TBI outcome 

prediction in the UK. 
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7.3. Methods 

To obtain a well-developed prognostic model, the quality assessment tool 

proposed in Perel‟s systematic review was used as a guide [31]. Briefly, the 

internal validity of a model involves adequate rationale to include clearly-

defined predictors, employment of appropriate imputation strategies for 

missing information, performance of an adequate strategy to construct the 

model, appropriate management of interactions, appropriate management of 

continuous variables and lastly the inclusion of 10 outcome events per variable. 

Moreover, the derivation sample should be adequately described and the model 

should be presented with confidence intervals along with measures of 

discrimination and calibration. A well-developed model is also expected to 

sustain its performance in data different to the derivation dataset.  

7.3.1. Selection of predictors and population sample 

The predictors were selected based on the literature review; these being age 

[23, 31, 35, 36, 92], cause of injury [92], GCS [23, 31, 35, 36, 92], pupillary 

reactivity [23, 31, 35, 36, 92], Injury Severity Score (ISS) [31, 35], systolic and 

mean blood pressure [31, 36, 92], presence/absence of hypoxia [31, 36, 92], CT 

findings [23, 31, 35, 36, 92] and presence/absence of extracranial injury [23]. 

The dataset was selected from TARN. The criteria for submission to TARN are 

more than three days stay at hospital, reception of intensive care, inter-hospital 

transfer for specialist care or death due to injury after admission. Hospitals 

submit data to TARN via a web based data collection system. Trained coders at 

TARN would then code the injuries of each trauma case using the Abbreviated 

Injury Scale (AIS) dictionary (currently update 1998) [90]. The inclusion 
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criteria for this study were head AIS codes under the „internal organ‟ [90, 91] 

which held severity score of 3 or above including basal and 

compound/depressed/open skull fracture and availability of pupillary reactivity 

at any time point of trauma care in TARN. The latter criterion arose as 

pupillary reactivity has been shown to be correlated with outcome in the 

IMPACT and CRASH models and TARN commenced recording this variable 

only recently i.e. from September 2005 onward. The outcome measure for the 

analysis was survival at discharge and where applicable, the time point of 

measurement of variables was on arrival at the first hospital (such as for GCS, 

pupillary reactivity, blood pressure etc.).  

7.3.2. Univariate analysis 

The correlation of each covariate with survival was assessed utilizing Mann 

Whitney U test for continuous variables and Chi square test for categorical 

variables with p < 0.05 indicating significance. Age and ISS were considered 

continuous with cause of injury, pupillary reactivity, presence/absence of 

hypoxia (O2 saturation < 90 mmHg), CT findings and the presence/absence of 

extracranial injury as categorical variables. However, GCS, systolic and mean 

blood pressures were assessed both categorically and continuously. GCS was 

categorized into mild i.e. GCS 13 -15, moderate i.e. GCS 9-12 and severe i.e. 

GCS scores of < 9. The cut-offs for systolic blood pressure were 120 mmHg 

and 150 mmHg categorizing that into low blood pressure (<120 mmHg), 

normotension (120-150 mmHg) and hypertension (>150 mmHg) [95]. These 

were the cut-offs proposed by the IMPACT group which are the 25
th

 and 75
th

 

centiles of systolic blood pressure in their data and were observed to have 
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significant influence on outomce in the multivariate anslsyis. Similarly, the cut-

offs of 85 and 110 mmHg were used for mean blood pressure [95]. 

 The descriptions of AIS codes available from AIS dictionary were used 

as “substitutes” for CT findings. This variable was categorized according to the 

Marshal CT Classification [99]. Descriptions of AIS codes were also grouped 

based on commonly-used descriptive terms namely contusion, brain swelling, 

intracranial haemorrhage, Epidural Haemorrhage (EDH), Subdural 

Haemorrhage (SDH), Subarachnoid Haemorrhage (SAH), brain stem injury 

and cerebellar injury. In this manner, if the contusion or haemorrhage occurred 

in the brain stem or cerebellum, it was grouped as the brain stem or cerebellar 

injury. Moreover, we examined the association of each head AIS severity score 

(ranging from minimal 1 to maximal 6) to the outcome. 

To address the linear relationship of continuous variables with loge 

(odds of survival) as a requirement for logistic regression analysis (commonly 

referred to as linearity assumption) [134], fractional polynomials functions of 

continuous variables were employed [135]. Briefly, in this method, power 

transformation(s) of the variable is selected out of the power candidates of -3, -

2, -1, 0, 1, 2, 3 where 0 is loge transformation. The fractional polynomial 

analyses showed that whilst age can be included in the model without any 

transformations; GCS, ISS, systolic and mean blood pressure require 

transformation to correct their non-linear relationship. This simply implies that, 

for instance instead of the crude GCS or ISS values, the following 

transformations are required to be made prior to addition to the model: 
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7.3.3. Model derivation  

Based on univariate analyses and with the significant level of 5%, the 

covariates identified suitable for inclusion in the modelling procedure were: 

age, cause of injury, GCS (continuous/categorical), pupillary reactivity, ISS, 

extracranial injury, systolic blood pressure (categorical), mean blood pressure 

(categorical), hypoxia, brain swelling, intracranial haemorrhage, EPH, SAH, 

brain stem injury, cerebellar injury and the Marshal Classification. Forward 

stepwise logistic regression was used “manually”. Initially a model was 

constructed with age, GCS, pupillary reactivity, ISS and extracranial injury and 

subsequently other variables (CT finding, systolic and mean blood pressure and 

presence/absence of hypoxia) were added. Age, GCS, pupillary reactivity and 

extracranial injury are the covariates in the basic CRASH models. Model A of 

IMPACT also contains these covariates apart from extracranial injury which is 

not recorded in IMPACT [92]. We added ISS to this list as the extent of 

extracranial injury can affect it and thus ISS contains information on 

extracranial injury too. The next step was adding CT features which is the case 

in the CRASH models and the IMPACT model B. Lastly, addition of blood 

pressure and hypoxia was based on the order in the IMPACT model C. Each 

step involved addition of the next variable and evaluation of the new model in 

terms of the decrease in the deviance, the multicolinearity effect with other 

covariates and improvement in the models performance. If the decrease in the 

deviance compared to the model of the previous step was not significant, the 

variable was excluded from the rest of the modelling. In case of 

multicolinearity effect; the modelling procedure was branched with two 
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„parallel‟ models to avoid containment of variables with this effect in the same 

model.  

During the modelling procedure, it was observed that categorical GCS 

is similar to its continuous form in terms of the added predictive value to the 

model and thus, the modelling was continued with categorical GCS due to its 

simplicity to use as compared to complicated fractional polynomials 

transformations. Likewise, two types of classification of pupillary reactivity 

were tested in terms of the predictive value in the model (4 categories: normal, 

abnormal both eyes reactive, only one eye reactive and bilaterally unreactive 

versus 3 categories: both eyes reactive, only one eye reactive and bilaterally 

unreactive). It was observed that the prognostic strength is better when this 

variable is used with 4 categories rather than with 3 categories. 

Neither systolic nor mean blood pressure demonstrated significant 

effect on outcome when they included in the same model. However, when 

systolic and mean blood pressures were tested in the separate models. 

Furthermore, it was observed that between hypertension and low blood 

pressure only low blood pressure demonstrated significant association with 

outcome when normotension was the reference category. Thus the 

hypertension category was merged with the normotension category leaving 

these variables with only two categories of normotension (including 

hypertension) versus low blood pressure. Moreover, as the model with mean 

blood pressure did not show acceptable goodness of fit as per HL statistics (i.e. 

p value < 0.05), the model with systolic blood pressure was selected.  
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7.3.4. Interactions 

This happens when the effect of one covariate on outcome is influenced by the 

presence of the other covariate. Based on the literature, these interactions were 

investigated: age with cause of injury [160], systolic blood pressure with 

hypoxia [95] and mean blood pressure with present/absent hypoxia [95].  

7.3.5. Imputation  

In multivariate analyses, every case with one missing value is discarded as if it 

does not exist in the dataset. Proper „guess‟ on missing values in a dataset is 

superior to such loss of cases. In this study, all the univariate analyses were 

performed without imputation where in the multivariate analysis, the missing 

information was sequentially imputed with values recorded en route or at 

scene. However, this strategy failed to fill some missing values on systolic 

blood pressure and presence/absence of hypoxia. Therefore, the remaining 

unrecorded data on these variables were all placed into a separate category as 

„missing‟. 

7.3.6. Model validation 

For the external validation, the final models were run on a different TBI dataset 

from TARN (from May 2008 to April 2010) and also the IMPACT dataset.  

Fractional polynomials transformation was performed in Stata and all 

other univariate analyses, model derivation and validation procedure were 

performed in Statistical Package for the Social Sciences (SPSS version 15).  



 238 

7.4. Results  

The inclusion criteria retrieved 802 TBI cases from the TARN trauma dataset. 

The admission date of all cases was from September 2005 (which was the start 

date of recording pupillary reactivity in TARN) until April 2008 (with only one 

case recorded in April). However, there were some occasional records on 

pupillary reactivity prior to start date of recording pupillary reactivity in TARN 

which included in this analysis (127 (15.8%) cases in total).  

Table 30 compares the characteristics of patients whose profiles were 

submitted to TARN after September 2005 and were included in the modelling 

procedure to those who were excluded during the same period. The reason for 

this exclusion was lack of information on pupillary reactivity on every time 

point of measurement in TARN. As seen, the figures related to admission GCS 

and ISS are equal or close in both groups. Similarly, although male percentage 

and survival rate in included cases are different from those in excluded cases; 

this is not statistically significant (p > 0.05). The included dataset, however, 

seems to consist of significantly younger patients than the excluded dataset.
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Table 30 Comparison of demographic and injury characteristics of cases 

which were excluded from the model derivation to those included (i.e. 

submissions to TARN after September 2005) (brakets: 75% interquatile 

range). 

 

Table 31 shows the clinicodemographic characteristics of the 

population sample and the results of univariate analysis. The median age is 39 

with interqaurtile range of 22 to 58 with significant correlation with outcome. 

Males constitute 75.2% of the population with no influence of gender on 

outcome. The majority of the study population (91.9%) are recorded as being 

British with 40% missing information on this variable. No correlation is 

observed between nationality and outcome. Median GCS is 13 (interquartile 

range: 5-15) and the frequency of mild, moderate and severe GCS categories 

Variable 

Excluded submissions 

(1558) 

Included 

submissions 

(675) 

p 

value 

Age 

43.4 

(25.8-67.4) 

38.2 

(23.1-56.5) 

0.01 

Male 71.1% 74.6% 0.20 

Admission overall 

GCS 

12 

(6-14) 

11 

(4-14) 

0.09 

ISS 

25 

(17-30) 

25 

(17-30) 

- 

Survival rate 72.8 73.8 0.72 
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are 35.8%, 12.7% and 51.4% respectively. GCS is significantly correlated with 

outcome both continuously and categorically. Most patients have pupillary 

reactivity recorded as brisk-brisk (68.6%) followed by bilaterally no reaction 

(16.5%). Additionally, the effect of pupillary reactivity on outcome prediction 

is observed to be significant. The patients‟ ISS scores has a median value of 25 

(interquartile range: 16-29) with significant correlation with outcome. 14.5% of 

patients have concomitant extracranial injury as determined by extracranial 

AIS score of 4 or above. This significantly subjects the patient to a lower 

likelihood of survival. 
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Table 31 Clinicodemographic characteristics of population sample and results of univariate analysis *The p value indicates the 

correlation of all categories of covariate with outcome and not only one category. 
 

Covariate Median 
(interquartile 

range) 

Frequency 

(percentage) 

Odds ratio for 

survival 

p value by Man Whitney U test/Chi square 

test 

Age 39 

(22-58) 

 0.98 

(0.98-0.99) 

0.00 

Gender Male  603 

(75.2%) 

 0.75 

Female  199 

(24.8%) 

0.94 

(0.65-1.36) 

Nationality British  442 

(91.9%) 

 0.24* 

European  15 

(3.1%) 

2.10 

(0.47-9.46) 

Others  24 

(4.9%) 

1.22 

(0.45-3.37) 

Cause of 

injury 

RTC  314 

39.2%) 

 0.00 

fall  313(39.0%) 0.93 

(0.66-1.32) 

Assaults  143(17.8%) 2.662 

(1.53-4.62) 

others  32(4%) 1.369 

(0.57-3.28) 
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Table 31 Clinicodemographic characteristics of population sample and results of univariate analysis *The p value indicates the 

correlation of all categories of covariate with outcome and not only one category. (continued) 

 

Covariate Median 

(interquartile range) 

Frequency 

(percentage) 

Odds ratio for 

survival 

p value by Man 

Whitney U 

test/Chi square 

test 

GCS(categorical) Mild  278 

(35.8%) 

 0.00 

Moderate  99 

(12.7%) 

0.35 

(0.19-0.66) 

Severe  399 

(51.4%) 

0.08 

(0.05-0.12) 

Pupillary reactivity Brisk-brisk  446 

(68.6%) 

 0.00* 

Sluggish-sluggish  53 

(8.1%) 

0.21 

(0.11-0.41) 

Brisk-sluggish  16 

(2.4%) 

0.17 

(0.06-0.49) 

None-brisk  16 

(2.4%) 

1.52 

(0.20-11.79) 

None-sluggish  12 

(1.8%) 

0.02 

(0.00-0.10) 

None-none  107 

(16.5%) 

0.03 

(0.02-0.05) 

ISS 25 (16-29)  0.93 

(0.92-0.94) 

0.00 

Extracranial injury (cut-off: AIS score =4)  116 

(14.5%) 

0.51 

(0.37-0.71) 

0.00 

Survival  599 

(74.7%) 
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With regards to physiological measures (Table 32), the median systolic 

and mean blood pressure are 136.5 (interquartile range: 120-75) and 145 

(interquartile range: 126-160) respectively. According to systolic blood 

pressure, 40.4% of cases are normotensive with 29.1% and 26.1% remaining 

records of hypertension and low blood pressure respectively. However, per 

mean arterial blood pressure, majority of cases are hypertensive at 82.3% with 

only 8.1% and 3.7% records of normotension and hypotension respectively. 

Neither systolic nor mean blood pressure have any influence on outcome 

prediction when used continuously whereas this influence is significant 

categorically. Furthermore, 6.5% patients are hypoxic with a significantly 

higher chance of death compared to non-hypoxic patients.  
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Table 32 Vital signs of the population studied and results of univariate analysis. 
 

 

Covariate Median 

(interquartile range) 

Frequency 

(percentage) 

Odds ratio for 

survival 

p value by Man 

Whitney U 

test/Chi square 

test 

Systolic blood pressure 136.5 

(120-75) 

 1.008 

(1.00-1.01) 

0.4 

Systolic blood pressure 

(categorical) 

Hypotension 

(< 120 mmHg) 

 209 

(26.1%) 

0.37 

(0.25-0.56) 

0.00 

Normtension 

(120-150 mmHg) 

 324 

(40.4%) 

 

Hypertension 

(> 150 mmHg) 

 233 

(29.1%) 

0.41 

(0.27-0.62) 

Mean blood pressure(continuous) 145 

(125-160) 

 1.01 

(1.00-1.01) 

0.37 

Mean blood pressure 

(categorical) 

Hypotension 

(< 85 mmHg) 

 30 

(3.7%) 

0.11 

(0.04-0.31) 

0.00 

Normtension 

(85 – 110 mmHg) 

 65 

(8.1%) 

 

Hypertension 

(> 110 mmHg) 

 660 

(82.3%) 

1.73 

(1-2.99) 

Hypoxia (O2 Saturation < 90 mmHg)  51 

(6.5%) 

0.17 

(0.09-0.31) 

0.00 
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With regards to AIS scores, the Marshall Classification and various 

intracranial pathologies (Table 33), most cases have the highest brain injury 

AIS score of 4 at 39.4% and only 6 cases are recorded with the highest AIS of 

6. Likewise, intracranial haemorrhage (of any type) constitutes 76.4% of cases 

with SDH being the most frequent type of haemorrhage (22.1%) followed by 

SAH (18.6%). Similarly, 8.9% and 5.1% of cases have brain stem and 

cerebellar injury respectively (of any kind such as haemorrhage or contusion). 

Nevertheless, non-hemorrhagic brain injuries such as contusion and swelling 

comprise 39.9% and 34.2% of the sample population respectively. Regarding, 

the Marshal CT classification, the most frequent class is class II (50.5%) 

followed by class V/VI (20.7%). The Marshal Classification, various AIS 

scores and CT findings are significantly correlated with survival apart from 

contusion and SDH. 
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Table 33 AIS score, CT findings and the Marshal Class of the population studied and results of the univariate analysis 

Covariate Frequency (percentage) Odds ratio for 

survival 

p value by Man Whitney U 

test/Chi square test 

Highest AIS scores 3 189 

(23.6%) 

 0.00 

 

4 316 

(39.4%) 

0.73 

(0.42-1.27) 

5 291 

(36.2%) 

0.15 

(0.09-0.25) 

6 6 

(0.7%) 

0.02 

(0.00-0.22) 

Contusion 320 

(39.9%) 

1.25 

(0.90-1.74) 

0.18 

Brain swelling 275 

(34. 2%) 

0.31 

(0.22-0.43) 

0.00 

Intracranial haemorrhage 613 

(76.4%) 

0.55 

(0.36-0.83) 

0.00 

Epidural haemorrhage 95 

(11.8%) 

2.85 

(1.49-5.45) 

0.00 

Subdural haemorrhage 178 

(22.1%) 

1.17 

(0.79-1.74) 

0.43 
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Table 33 AIS score, CT findings and the Marshal Class of the population studied and results of the univariate analysis (continured) 

 

Covariate Frequency (percentage) Odds ratio for 

survival 

p value by Man Whitney U 

test/Chi square test 

SAH 149 

(18.6%) 

0.56 

(0.38-0.82) 

0.00 

Brain stem injury 72 

(8.9%) 

0.08 

(0.04-0.14) 

0.00 

Cerebellar injury 41 

(5.1%) 

0.30 

(0.16-0.56) 

0.00 

The Marshal CT 

classification 

I 65 

(8.1%) 

 0.00 

II 405 

(50.5%) 

1.17 

(0.54-2.50) 

III 85 

(10.6%) 

0.39 

(0.17-0.90) 

IV 74 

(9.2%) 

0.19 

(0.08-0.44) 

V/VI 166 

(20.7%) 

0.160 

(0.08-0.35) 

Brain stem/cerebellar injury 4 

(0.5%) 

0.05 
(0.005-0.57) 

Penetrating injury 3 

(0.4%) 

0.32 

(0.03-3.92) 
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7.4.1. Proposed models  

Table 34 (a: model A, b: model B) presents two models derived from the 

dataset. Each model is presented with the covariates, their odds ratios (plus 

confidence intervals), the significance level of the effect on outcome and the 

constant. The reason for the construction of two models is mainly related to the 

correlation of ISS and extracranial injury observed in the correlation matrix 

during the model construction. This implies that these two covariates can not 

be contained in the same model due to multicolinearity effect. Furthermore, it 

was observed that in the multivariate analysis the cut-off point of AIS severity 

score ≥ 3 for the presence of extracranial injury does not yield significant 

correlation with outcome. Nevertheless, when this cut-off was increased to 

extracranial AIS severity score ≥ 4, the significance level of this correlation 

decreased to less than 5%. The other difference between model A and model B 

relates to the predictive power of cause of injury and brain swelling which, 

unlike in model A, has importance in model B. 
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 Coefficient Odds 

ratio 

95. 0% C. I 

for odds ratio 

Sig.  

Age -0.05 0.95 0.94 0.96 < 0.005 

GCS mild      

moderate -0.86 0.42 0.21 0.87 0.02 

severe -1.42 0.24 0.13 0.44 < 0.005 

Pupillary 

reactivity 

Normal      

Abnormal-both 

reactive 

-0.98 0.38 0.2 0.72 < 0.005 

Only one 

reactive 

-1.27 0.28 0.12 0.68 < 0.005 

None reactive -2.87 0.06 0.03 0.11 < 0.005 

 -1.36 0.26 0.14 0.47 < 0.005 

Brain stem injury -1.71 0.18 0.08 0.39 < 0.005 

Hypoxia Yes -1.31 0.27 0.13 0.57 < 0.005 

Missing -0.5 0.61 0.27 1.36 0.225 

Systolic 

blood 

pressure 

Normotension      

low blood 

pressure  

-0.63 0.53 0.31 0.91 0.02 

Missing -0.77 0.46 0.1 2.17 0.329 

Constant 5.63     

Table 34 (a) results of multivariate analysis of outcome prediction: model 

A 

91.0
10

log
ISS

e
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 Coefficient Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Sig.  

Age -0.04 0.96 0.94 0.98 <0.005 

GCS mild     <0.005 

moderate -0.99 0.37 0.17 0.79 0.01 

severe -1.42 0.24 0.13 0.46 <0.005 

Pupillary 

reactivity 

Normal     <0.005 

Abnormal-

both reactive 

-1.01 0.36 0.18 0.71 <0.005 

Only one 

reactive 

-1.54 0.21 0.08 0.54 <0.005 

None 

reactive 

-3.13 0.04 0.02 0.09 <0.005 

Injury 

cause  

RTC     0.37 

Fall  0.83 2.31 0.56 9.43 0.24 

Assaults  -1.02 0.36 0.05 2.57 0.31 

Others  0.76 2.14 0.04 114.99 0.71 

Table 34 (b) results of multivariate analysis of outcome prediction: model 

B
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 Coefficient Odds 

ratio 

95. 0% C. I. 

for odds 

ratio 

Sig.  

Extracranial injury -1.26 0.28 0.15 0.55 <0.005 

Brain stem injury -1.85 0.16 0.07 0.35 <0.005 

Brain swelling -0.89 0.41 0.24 0.7 <0.005 

Hypoxia Yes -1.42 0.24 0.11 0.54 <0.005 

Missing -0.38 0.68 0.30 1.54 0.36 

Systolic 

blood 

pressure 

Normotension      

low blood 

prusse  

-0.60 0.55 0.31 0.97 0.04 

Missing -0.71 0.49 0.10 2.48 0.39 

Interaction 

of age and 

injury 

cause 

Age and RTC      

Age and fall -0.02 0.98 0.95 1 0.05 

Age and assault 0.04 1.05 0.99 1.10 0.08 

Age and others -0.02 0.98 0.90 1.07 0.69 

Constant 5.99     

Table 34 (b) results of multivariate analysis of outcome prediction: model 

B (continued) 
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7.4.2. Models performance  

Table 35 shows various dimensions of models performances in the derivation 

dataset and two external datasets from IMPACT and TARN. The two models 

have approximately similar figures on every measure of performance in the 

derivation set. The commonly used measure of performance, i.e. AUC, is 0.92 

(95% CI: 0.90-0.95) for model A and AUC = 0.93 (0.91-0.95) for model B in 

the prediction set. With regards to calibration, HL test of model A and B had a 

p value of 0.20 and 0.19 respectively. The TARN external dataset contains TBI 

cases from May 2008 till May 2010 with the same inclusion criteria as those 

for the derivation set although the AUC of model A remains the same in the 

TARN external validation set, the AUC of model B drops from 0.93 to 0.82. 

However, it was not possible to run model A in the IMPACT data as ISS was 

not recorded by IMPACT and thus model B was run for survival and 

favourable outcome prediction (Glasgow Outcome Scale (GOS) ≥ 4). The 

AUC of model B drops from 0.93 to 0.68 and 0.69 respectively for survival 

and favourable outcome prediction in the IMAPCT external dataset.  
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Table 35 Performance of models A and B across various measures of performance (n: number of cases).

 Model A Model B 

Prediction set 

(n=802) 

External 

validation set 

from TARN 

(n=990) 

Prediction set 

(n=802) 

External 

validation set 

from TARN 

(n=792) 

External validation set from the 

IMPACT 

(n=5476) 

survival favourable outcome 

Positive 

predictive value 

68.5% 91.5% 68.5% 90.4% 18.6% 39.8% 

Negative 

predicative value 

94.5% 73.1% 94% 85% 56.6% 28.1% 

Sensitivity 80.8% 94.6% 79.4% 99.3% 73.2% 77.1% 

Specificity 89.8% 64.6% 89.8% 25.3% 11.8% 7.1% 

Classification 

accuracy 

87.9% 89.1% 87.5% 90.1% 24.3% 38.2% 

HL statistics (p 

value) 

0.20  0.19    

Brier score 0.09 0.02 0.08 0.1   

AUC 0.92 

(0.90-0.95) 

0.92 

(0.89-0.94) 

0.93 

(0.91-0.95) 

0.82 

(0.78-.0.86) 

0.68 

(0.67-0.70) 

0.69 

(0.68-0.70) 

Nagelkerke R
2
 0.62  0.64    
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Figure 13 and Figure 14 show the Receiving Operating Curve (ROC) 

curve of respectively model A and B. For model A, the decrease in AUC in the 

TARN external dataset as compared to that in the derivation set is slight 

(constant line versus dashed line). This is also the case for model B as depicted 

by Figure 14. However, the decline is relatively huge in IMPACT data for 

either survival or favourable outcome prediction.  
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Figure 13 ROC curves of model A 
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Figure 14 ROC curves of model B  

 

Figure 15, Figure 16 and Figure 17 show the degree of agreement 

between the predicted probability of survival made by the models and the 

probability observed (calibration plot) (Figure 15: the derivation set, Figure 16: 

the TARN external validation set, Figure 17: the IMPACT external validation 

set). The line reflects the ideal situation in which every prediction is equal to 

the observed probability. As seen, the dispersion from such ideal situation is 

reasonable for both models A and B in either the derivation set or the TARN 

external validation set. However, the calibration appears poor at some points in 

the IMPACT external validation set. We compared the IMPACT dataset with 

the derivation dataset across various patients characteristics and observed that 

the two datasets are significantly different as per every covariate in the model 

such as age, GCS, pupillary reactivity etc. apart from the survival rate. 
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Figure 15 Calibration plot of Models A (○) and B ( ) in the TARN 

derivation dataset 
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Figure 16 Calibration plot of Models A (○) and B ( ) in the TARN external 

validation dataset. 
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Figure 17 Calibration plot of Model AB(○: favourable outcome prediction, 

: survival prediction) in the IMPACT external validation dataset. 
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7.5. Discussion  

Two predictive models of survival to discharge (model A and B) have been 

developed in this study utilizing a recent dataset of severe TBI patients, the 

majority whom received their trauma care in the UK. These two models share 

the covariates: age, GCS, pupillary reactivity, hypoxia and brain stem injury. 

However, model A contains ISS in contrast to model B which includes 

extracranial injury, brain swelling, cause of injury and its interaction with age 

instead. The discrimination powers (AUCs) are 0.92 (95% CI: 0.90-0.95) for 

model A and 0.93 (0.91-0.95) for model B. Both models have acceptable 

calibration per HL test (p value > 0.05). In addition to good performances of 

these models in terms of their discrimination and calibration, the derivation 

method applied in this study conforms to the criteria for a well-developed 

model in TBI [31, 159].  

7.5.1. Limitations  

We performed a selection bias analysis to compare the characteristics of 

patients who were excluded from the modelling due to lack of information on 

their pupillary reactivity to those who were included in the modelling. To this 

aim, the characteristics of 675 (84.2%) of cases in the dataset (included cases) 

who were submitted to TARN from September 2005 to Aril 2008 were 

compared to 1558 TBI cases who were not included in the dataset (excluded 

cases) during the same time period. It was observed that, these two groups do 

not hold statistically significant differences with respect to their gender, 

admission GCS, ISS and survival rate whereas it appears the excluded cases 
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are older than the included cases (43.4 versus 38.2). However, this difference 

between the ages, although being statistically significant, may not be clinically 

significant  

One of the limitations of this study relates to the population sample 

which can not be a truly representative of all TBI patients. This is because the 

sample was extracted from TARN which requires certain submission criteria 

for a given trauma patient such as longer of 3 days stay at hospital or admission 

to intensive care unite. However, although the presented prognostic models are 

not applicable to every TBI patient, it may be easy to ascertain the possible 

applicability to a given TBI patient since the prediction of long stay at hospital 

or transfer to ICU can often be made on admission based on initial clinical 

situation or CT findings.  

The further limitation of this study may be the inclusion of children in 

the analysis (7.5% were less than the age of 15). It has been shown the effect of 

age on outcome in TBI may be different in adults and children in that 

increasing age in children renders a better functionality than in adults [161]. In 

our models, age holds an odds ratio of less than one for survival and as age 

increases, the odds ratio decreases irrespective of the age value representing 

childhood or adulthood. This may suggest that the models presented here are 

best used for adult patients since the majority of the derivation dataset 

comprised adults (median: 39 with interquartile range of 22 to 58). However, it 

is unclear whether or not, despite the differences in functional measures, the 

trends in mortality due to TBI differ in children and adults as well.  
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7.5.2. Comparison with the literature  

The AUCs of our models are higher than those of the IMPACT and CRASH 

models which have AUCs of respectively 0.87 and 0.88. This may primarily 

relate to the differences of characteristics between the IMPACT and CRASH 

datasets to that in this study. In the IMPACT dataset, the majority of patients 

had severe head injury (GCS<9), and no mild brain injuries were included. 

This results in a smaller spread of baseline risks which automatically decreases 

the AUC. Moreover, the outcome prediction in the IMPACT study was long 

term (6 months mortality and unfavourable outcome). The CRASH study 

recruited cases with a lower degree of severity with the inclusion criteria of 

presenting GCS of < 15 on arrival at hospital within 8 hours of injury. 

However, the time point for survival as the outcome measure in our study 

(discharge) is similar to that of the CRASH study (14 days or earlier).  

With regards to application of prognostic models to benchmark the 

trauma care, we believe our TBI models are better than the IMPACT and 

CRASH models for this purpose. This is because the IMPACT and CRASH 

models were derived from clinical trials and hence are less likely to be a good 

representative of the trauma care recipients than data saved in trauma registers. 

On the other hand, for the purpose of stratification of TBI severity in trials, the 

CRASH and IMPACT models are better options as our models have been 

derived from an ongoing observational project. Furthermore, if one wishes to 

apply a prognostic model in a clinical setting, this may depend on the specific 

purpose of such use. Our models predict the discharge survival which is useful 

to provide insight on the acute care of TBI victims. During the acute course 

management, one important strategy can be the provision of neuro-intensive 
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care which has been shown to improve the outcome in TBI [129]. Using our 

models may facilitate balancing decisions on admission/transfer to neuro-

intensive care against appropriate allocation of such resources. On the other 

hand, the IMAPCT and CRASH models can be used to long-term outcome 

prediction which, despite having value during acute care, there are of unique 

value for decisions on delivery of chronic care such as rehabilitative or 

community care.  

Although ISS is contained in none of the CRASH and IMPACT 

prognostic models, it is one of the covariates which is contained in prognostic 

models for general trauma patients such as the TRISS [120] and TARN models 

[142]. Apart from our TBI model A, this variables is also included in the 

Signorini‟s model [93] of TBI prognosis which was reported as one of the best-

developed models in the literature by the Perel‟s  systematic review [31]. The 

ISS partially reflects the effect of extracranial injury on outcome in TBI and is 

calculated by summing the square of three highest AIS severity scores in 

different body regions. Thus extracranial injuries which are severe enough to 

attract high AIS severity scores in multiple trauma would affect ISS and thus 

indirectly the outcome in a model which contains ISS. This may explain why 

ISS and extracranial injury can not be contained in the same model as like our 

model A, Signorini‟s TBI model which included ISS, did not contain 

extracranial injury either.  

7.5.3. Implications of the study  

Among the two models, the advantage of one model over the other mainly 

depends on the purpose of using a prognostic model since both have similar 

performances. In a setting where access to trained coders for coding the 



 262 

injuries are not available, model B may be a better option as it does not involve 

calculation of fractional polynomial transformation of ISS 

 (                                   ). On the other hand, trauma registries may opt for 

model A which contains less covariates to run specifically where missing 

values are an issue. Conspicuously, the selection of the appropriate model in a 

retrospectively accrued TBI dataset depends on the availability of values on 

each covariate used by the model.  

We examined the importance of various intracranial pathologies from 

the literature in our modelling procedure and found that only brain stem injury 

(as in either model A or B) and brain swelling (as in model B) are significant. 

Although we based this piece of analysis on observations by other studies 

about prognostic strength of CT, unfortunately, we did not have access to the 

actual CT images in our registry and thus descriptions to brain injury AIS 

codes in the dictionary were used as substitutes for CT reports. However, CT is 

not the only source for AIS coding as the coding can be done based on the 

results of MRI, operational notes and etc. Therefore, whilst majority of 

information for AIS coding is obtained from CT reports, caution should be 

taken with regards to using the term „CT‟ abnormality to refer to brain stem 

injury and brain swelling in our models. As such, it is important to note the 

diagnosis of these pathologies in our models should not exclusively depend on 

CT and it can be according to MRI results, intracranial operation or even 

merely clinical basis. Consequently, using the term „intracranial pathology‟ is 

preferable to „CT finding‟ when referring to these pathologies in our models.  

We have no certain explanation as to why cause of injury and brain 

swelling lose their significance if the extracranial injury in Model B is replaced 

91.0
10

log
ISS

e
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with ISS in model A. This may, however, imply that extracranial injury, injury 

causes and brain swelling contains the same predictive strength as ISS does on 

its own since the performances of the two models do not significantly differ. 

Considering that extracranial injury influences ISS, it can be assumed that each 

ISS value represents partly extracranial injury with the remaining part being 

dependent on intracranial injury. Therefore, in reality, this „intracranial‟ part of 

ISS may be equivalent to cause of injury and brain swelling in its predictive 

strength. This may lead to the conclusion that due to the direct possible effect 

of brain swelling on ISS, there must be some degree of correlation between 

cause of injury and the type of intracranial injury sustained which would affect 

AIS coding and subsequently ISS [94].  

We have externally validated our models on two other TBI datasets 

from TARN and the IMPACT collaboration. Our models performance seems 

promising in the TARN dataset which is from a different time periods but 

otherwise with the same inclusion criteria (historical validation) [113]. This 

implies the models are valid for trauma benchmarking in Britain. However, the 

external validation in the IMPACT dataset does not appear satisfactory despite 

AUCs still being far above the cut-off of random guess (0.50). This may be due 

to different case-mix or time point of outcome prediction which is long term in 

IMPACT (6 months). The other explanation may be that our derivation dataset 

is more up to date.  

Trauma registries use prognostic models derived for general trauma 

patients including patients with traumatic brain injury to benchmark trauma 

care systems. The most well-known of these prognostic models are the TRISS 

methodology [120] but they are several other models tailored for different 
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subsets of patients such as intubated patients [154], patients with penetrating 

injury [120] or children [162]. TARN has also developed its own model of 

prognosis to suit the UK trauma population [142]. Benchmarking of neuro-

trauma care may have to be performed separately from benchmarking general 

trauma care through models derived from TBI populations. Furthermore, all 

commonly used general trauma models do not contain pupillary reactivity 

which in both models A and B holds a large effect on outcome (for example, 

the category of „both absent‟ holds the largest coefficient in both models and 

other categories of pupillary reactivity also have high coefficients compared to 

coefficients of other covariates). In fact, pupillary reactivity is the only 

covariate which is included in the TBI models (such as our proposed TBI 

models and also the CRASH and the IMPACT models) but is excluded in 

models for general trauma patients. Furthermore, bearing in mind that GCS not 

always suggests brain injury (as its impairment may be due to intoxication or 

secondary brain damage following hypoxia or hypotension), abnormal 

pupillary reactivity is the clinical finding which amongst the factors included in 

either general trauma or TBI prognostic models, may be the most indicative of 

underlying brain damage. This suggests that recording the pupillary reactivity 

for all victims of TBI must be declared mandatory in trauma registries 

including TARN.  

7.5.4. Future directions 

Beside the historic external validation which was performed on a TARN TBI 

dataset from a different time period, the proposed models still require further 

external validation to examine their „universal‟ generalisibiity. Ideally, a 

prognostic model should hold geographic validation (on datasets from different 
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localities), methodological validation (on datasets with a different study design 

or method of data collection), spectrum validation (on datasets with different 

severity of injuries) and follow-up interval validation (on datasets with 

different time point of outcome assessment) [113]. Although one may consider 

the performance of our models unsatisfactory in the IMPACT dataset to rule 

out various aspects of their external validity such as  methodological, spectrum 

or follow-up interval, this drop of performance can be due to our contemporary 

derivation dataset as compared to the IMPACT data or different case-mix and 

thus our models still have to be run in other recent TBI series to examine their 

validity.  

In this study, the coefficient of each regressor is provided which, if 

presented on a web-calculator could assist clinicians in quantifying the 

probability of survival for a TBI patient with given characteristics. 

Nevertheless, the safety of prognostic models in predicting the outcome for an 

individual patient is a controversial topic and requires further investigation. On 

the one hand, provision of this model may lead to withdrawal of active therapy 

to a patient with a poor predicted prognosis. On the other hand, with growing 

consensus on the various components of TBI management such as intubation 

or use of osmotic diuretics, the concern over the negative effect of models 

prognosis on appropriate therapy may be allayed especially if probability of 

outcome is considered along with other factors influencing TBI management. 

In fact, senior doctors often make predictions on the potential outcome of 

individual TBI patients and the role of prognostic models here may be solely to 

quantify this prediction. 
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The models presented in this study are used to predict survival at 

discharge. However, TBI management which includes therapeutic measures 

followed by rehabilitative schemes should target full recovery to the same level 

of physical and mental health as prior to the occurrence of injury and not only 

survival. Regarding this, in TBI management, knowledge on the probability of 

survival is not the only required factor in terms of prognosis since it is also 

important to know the risk of disability in survivals. Derivation of models to 

assist with prediction on outcomes apart from survival on a dataset from more 

homogeneous trauma care systems/policies is a matter of future research.  

7.5.5. Conclusion  

Two well-constructed prognostic models have been derived and internally 

validated which can be used to predict the survival of severe TBI patients 

based on simple clinical characteristics particularly applicable to British trauma 

care system.  
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7.6 Expansion on methods 

The main stages of model development as presented in the paper were 

covariates selection, dataset selection, selection bias analysis, univariate 

analysis, model derivation (i.e. manual stepwise logistic regression), 

imputation of missing information and model validation (internal and external). 

Some further details about performance of these steps follow. Moreover, not all 

of these stages were performed independently or in the above-mentioned 

sequence. For example, the imputation of missing information was performed 

during the model derivation.  

7.5.6. Dataset selection  

This was performed in two steps  

 

Step I 

 

The format of recording data in TARN is such that each hospital holds a 

distinct `submission to TARN. This means if a patient has been transferred 

from the first admitting hospital to a second hospital or further to a third 

hospital, he/she holds a number of TARN submissions equal to the number of 

attended hospital (assuming all attended hospitals submit data to TARN as 

otherwise the attended non TARN hospital is missing). Therefore, TARN saves 

information of submissions and not cases. In this first step of dataset selections, 

all submissions which met the criteria (i.e. brain injury AIS score of 3 or more 

plus basal and compound/depressed/open skull fracture AND also availability 

of pupillary reactivity at any time point (at scene, en route, at Emergency 
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Department (ED))) were extracted from the TARN „mother‟ dataset through 

running the appropriate syntax in Microsoft SQL Server. This procedure 

returned 1009 submissions.  

 

Step II 

 

This step involved firstly matching all submissions which belonged to one 

patient (case) and then to exclude those patients who did not have submission 

either from the first attended hospital or the last hospital from which the patient 

was discharged. The first submission was required for the record of admission 

variables such as GCS, pupillary reactivity, blood pressure etc. and the last 

submission was required for the record of the discharge survival. After 

matching procedure, there were 735 cases which had not been transferred and 

thus information on admission and discharge was available. Of the remaining 

274 transferred cases, only 67 cases had all the information available which 

meant 207 (274 - 67) cases did not have information from either the first 

hospital or the last hospital. To sum up, the final dataset contained 802 cases of 

TBI.  

7.5.7. Univariate analysis  

This stage involved the following analyses: 

Describing the distribution of each variable: the one-sample Kolmogorov-

Smirnov test was used to test whether the values of continuous variables were 

normally distributed or not. The p value of this test for all continuous variables 

was less than 0.05 (i.e. indicating non-normal distribution) and thus the median 

and the interqaurtile range were calculated to describe the distribution of each 



 279 

covariate. For categorical variables, the frequency of each category was 

calculated.  

Describing distribution of each variable in survivors and non survivors: the 

Mann Whitney U test was used for this purpose to compare the median and 

IQR of continuous variables and Chi Squared test was used for categorical 

variables. The logistic regression was also run to calculate the unadjusted odds 

ratio for survival for each covariate.  

Fractional polynomial analysis: this was performed to assess the linear 

relationship of the continuous covariates with loge (odds of outcome) 

and, in case of non-linearity, to identify the appropriate power transformations. 

This refers to the linearity assumption by the logistic regression. If the 

continuous variable does not demonstrate this linearity (between the variable 

and loge (odds of outcome)), then it has to be categorised or 

transformed. Fractional polynomial transformation is the power transformation 

of variables out of 7 power candidates of -3, -2, -1, 0, 1, 2, 3. [135]. This 

method is used to transform those continuous variables which do not meet the 

linearity assumption. Fractional polynomial analysis has to be performed in 

Stata since SPSS does not have this feature. The output of this analysis in Stata 

can be used not only to assess various transformations of the variable but also 

to assess the linearity assumption in the first place. The output of Stata shows a 

table containing three models: the linear model, the first degree model, and the 

second degree model. The linear model includes the continuous variable as it is 

(i.e. with no transformations or power transformation 1). The first degree 

model includes the variable with only one power transformation and the second 

degree model is with 2 power transformations. Based on the changes in the 
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deviance, one model has to be selected which demonstrates what power 

transformations should be used. Selection of the model is based on the 

significance of „gain‟ in the deviance as compared to the previous model. For 

example, if the change (or gain) in the deviance is significant in the first degree 

model as to the linear model (the model at the previous stage), then this means 

one power transformation should be applied to meet the linearity assumption. 

The power transformation is presented for each model derived in Stata. 

However, the final transformation(s) is the power transformation as suggested 

by the selected model plus/minus a constant which is provided separately by 

Stata. This implies that the formula to transform the continuous variable takes a 

different form to merely being a power transformation. For example, the GCS 

transformation takes the following form:. 

76.0
1

10
2

GCS  

02.1
10

1
log

1

10
2

GCS

GCS
e

 

The above formula clearly show that the power transformation is not 

the only mathematical calculation. For example, the first formula contained a 

constant (-0.76) alongside the power transformation of 2.  

Examples of the type of tables given by Stata to select the model of 

transformation presented later in this section with respect to each continuous 

variable analysed (Table 36 , Table 39, Table 41, Table 42 and Table 43).   

Furthermore, there is a way to visualise the results of Fractional 

polynomial analysis in a graph. This graph is drawn to assess how close the 
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observed probabilities were to the predicted probability for various values of 

the continuous variables (a discussion on predicted versus observed probablity 

is presented in Paper 1; section 2.7). For this purpose, the logistic regression is 

run on the dataset with the transformation indentified by fractional polynomials 

as covariates and the survival as outcome. The calculated predicted probability 

for each case in the dataset was saved (SPSS has this feature to save this 

probability in front of each case included in the data). The observed probability 

is also calculated for each value of the continuous variable. For example 

various cases with the same age of 23 may experience different outcomes as 

one may die and the other may survive. As such, the observed probability for 

each value of age is the frequency of cases who experience the outcome. The 

final graph can be drawn with x axis being the continuous variable and y axis 

being the probability. In this section, various examples of this type of graph are 

presented with respect to each continuous variable analysed. (Figure 18, Figure 

19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, Figure 25 and Figure 

26). The constant line represents the predicted probability with circles (○) 

standing for the observed probability. It is expected that the circles (i.e. the 

predicted probabilities obtained through fractional polynomial transformation) 

follow the line (observed probability). This will be referred to as whether these 

two follow the same pattern or not. The image which shows the pattern of the 

predicted and observed probabilities visualises whether or not the fractional 

polynomial transformation meets the linearity assumption satisfactorily. A 

perfect transformation is when the predicted and observed probabilities (y axis) 

follow absolutely the same pattern as the continuous variable changes (x axis).  
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For sake of presentation, the y axis of the graph was scaled using the 

logit of the observed/predicted probability (i.e. Log (probability/(1- 

probability)). This, however, caused a problem when the probability was 1 or 

0. In order to rectify this problem, the frequency of the cases who were all dead 

or all alive were taken into account by using the following formula: 0.5 – 

frequency/ frequency. This calculation is referred to as „correction for the 

frequency‟.  

 

Age  

 

Table 36 shows the results of fractional polynomial analysis for age. According 

to this table, the linear model had p value of 0.00. This significant p value for 

the linear model indicates there is no need for transformation or the age meets 

the linearity assumption as it is. Figure 18 and Figure 19 demonstrate the plot 

of predicted and observed probability against age (with no transformations) 

before and after correction for the frequency. Overall, predicted and observed 

probability followed the same pattern apart from some cases who were less 

than the age of 20 or around the age of 60 which this has been corrected in 

Figure 20 following the correction for frequency. 
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Table 36 Comparison of models of fractional polynomial transformations 

for age  
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Figure 18 The plot of age against predicted and observed probability 

without transformation before correction for the frequency. 

 

 df Deviance Gain P Powers 

Not in the 

model 
0 907.437    

Linear 1 882.981 0.000 0.000 1 

First degree 2 879.814 3.167 0.075 3 

Second 

degree 
4 878.215 4.766 0.450 -2 3 
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After correction for frequency 
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Figure 19 The plot of age against predicted and observed probability 

without transformation after correction for the frequency.  
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Cause of injury  

 

TARN does not hold a distinct variable with this name. Instead it has two other 

variables with the names of „mechanism of injury‟ and „level of intent‟ which 

were used to generate the cause of injury in this study. Categories included 

under level of intent in TARN were: non-intentional, alleged assault, suspected 

child abuse, suspected self-harm, sports, suspected high risk behaviour, 

alleged intent (non-assault) and others. Injury mechanism included vehicle 

incident/collision, fall more than 2 meters, fall less than 2 meters, shooting, 

stabbing, blast, blow, and burn, skeletal/organ/vessel destruction and others.  

The categories to include in the cause of injury were selected from the 

IMPACT study which contained RTC, work-related, assault, sports/recreation 

and others. There were two major differences between TARN formatting of 

cause of injury and that in IMPACT. This related to work-related injuries 

which are not recorded in TARN but recorded in IMPACT and „fall‟ which is 

recorded in TARN but not in IMPACT. Thus, the final categories to be 

included as cause of injuries were RTC, fall, assaults, sports and others (work-

related was discarded from the IMPACT categorisation and instead fall from 

the TARN categorisation was added).  

With the above modified IMPACT categorization, a strategy was 

required to allocate a cause of injury (out of RTC, fall, assaults, sports and 

others) to each case of TBI in the dataset from the information available on 

“injury mechanism” and “injury intent”. Table 37 demonstrates the cross-

tabulation of „injury intent‟ with „injury mechanism‟. The strategy to allocate 

an injury cause to each case based on this cross-tabulation was decided as 

follows:  
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Table 37 The cross-tabulation of injury mechanism and injury intent. 

 

All patients who have their level of intent recorded as sports should go 

under „sports‟ regardless of their injury mechanism. Similarly, all patients who 

have their injury mechanism recorded as assault or level of intent as assault 

should go under „assault. This means, for instance, if the patient has RTC under 

injury mechanism and assault under injury intent, assault was allocated 

irrespective of RTC as injury mechanism (there were overall 3 cases with this 

combination). With regards to RTC (as a cause of injury), as seen in Table 37, 

there were 321 cases with this injury mechanism. Of these, 3 were assault and 

4 were sports with remaining 314 being “others” under injury intent. To 

exclude the assaults and sports patients, RTC needed to be defined as when 

injury mechanism is RTC and level of intent is “others”. This was because 

patients with injury intent of assault or sports were respectively allocated to 

assault and sports. The same thing applies for falls. Table 38 summarises how 

each category of cause of injury were defined from injury mechanism and 

injury intent.  

 Injury Mechanism Total 

RTC Fall assault others 

Injury 

Intent 

assault 3 11 97 3 114 

sports 4 8 0 2 14 

others 314 313 29 18 674 

Total 321 332 126 23 802 
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Table 38 Allocation of injury cause based on injury mechanism and level 

of intent.  

 

GCS 

 

The IMPACT models use motor GCS instead of total GCS whereas the 

CRASH models use total GCS. The analysis presented in Paper 3 was 

performed to assess whether total GCS is preferable or its motor component. 

The results demonstrated that these two do not have a significant difference in 

outcome prediction. Furthermore, in the TARN dataset, the admission GCS 

score had only 26 missing values where this was much more for motor GCS 

(246 missing cases). Regarding this and the same predictive strength of total 

GCS to motor GCS, the decision was made to include the total GCS rather than 

motor GCS in the modelling.  

Total GCS was treated as both continuous and categorical. With the 

cut-offs of 12 and 9 (inclusive), this variable was categorised into three 

categories of mild, moderate and severe brain injury. For the continuous form, 

Table 39 shows the result of its fractional polynomials transformation. 

According to this table, the second degree model provided significant gain in 

the deviance (as determined by the P value) compared to the first degree and 

the linear model. The column representing gain is in fact the subtraction of the 

Cause of injury Definition 

RTC 
injury mechanism = RTC AND level of 

intent = others 

Fall 
injury mechanism = Fall AND level of 

intent = others 

Assault 
injury intent = assault OR level of intent = 

assault 

Sports Level of intent = sports 

Others 
remaining cases 
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deviance of the respective model from the previous model. The output of 

STATA contained the following transformations for GCS: 

76.0
1

10
2

GCS
 and 

02.1
10

1
log

1

10
2

GCS

GCS
e

. Figure 20 shows the 

observed and predicted probabilities follow reasonably similar patterns with 

these transformations.  
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Table 39. Comparison of models of fractional polynomial transformations 

for GCS.  

 

 

0 2 4 6 8 10 12 14 16

GCS

P
ro

b
a
li
ty

 o
f 

s
u

rv
iv

a
l(

lo
g

it
 s

c
a
le

)

Observed 

Predicted 

0.6

0.99

0.9

0.8

0.4

0.2

0.1

0.01

 
Figure 20 The plot of predicted and observed probability of survival 

without correction for the frequency.  

 df Deviance Gain P Powers 

Not in the 

model 

0 876.751    

Linear 1 704.556 0.000 0.000 1 

First 

degree 

2 684.970 19.586 0.000 0 

Second 

degree 

4 650.716 53.839 0.000 -2 -2 
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Pupillary reactivity.  

 

TARN records pupillary reactivity for each individual right and left eye as 

brisk, sluggish, absent or otherwise missing. A new variable was created which 

combined the records of each eye. Table 40 shows the frequency of each 

category following combining the right and left eye recordings. Chi square test 

for this pupillary reactivity categorisation demonstrated a significant difference 

between survivors and non-survivors (P < 0.0005). 

Table 40. Frequency of various categories of pupillary reactivity after 

combination of right and left eyes in survivals and non-survivals.  

 

ISS 

 

The Injury Severity Score (ISS) is a measure on an ordinal scale of anatomical 

severity of injury. It is the sum of the squared of the 3 highest AIS severity 

scores allocated to the patient. Table 41 shows the results of fractional 

polynomial analysis. According to this table, the first degree model is the best 

model since it provided a significant gain over the linear model. The formula 

for this presentation as given in the STATA output was                  . 

Figure 21 demonstrates the plot of ISS with observed and predicted 

probability without correction for frequency. According to this graph, some 

ISS values (just below 20) have similar observed probabilities whereas their 

predicted probabilities differ. However, this is not the case after the correction 

91.0
10

log
ISS

e

 Total  Survival  Non-survival  

Brisk-brisk 446(55.6%) 405(82.5%) 41(25.8%) 

Sluggish-sluggish 53(6.6%) 36(7.3%) 17(10.7%) 

Brisk-sluggish 16(2%) 10(2%) 6(3.8%) 

None-brisk 16(2%) 15(3.1%) 1(0.6%) 

None-sluggish 12(1.5%) 2(0.4%) 10(6.3%) 

None-none 107(13.3%) 23(4.7%) 84(52.8%) 

Missing  152(19%) - - 
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for frequency was performed as depicted in Figure 20. According to this figure, 

observed and predicted probabilities follow almost the same pattern in an 

acceptable way. 

 
Table 41 Comparison of models of fractional polynomial transformations 

for ISS.  
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Figure 21 The plot of predicted and observed probability of survival 

before correction for the frequency. 

 

 df Deviance Gain P Powers 

Not in the 

model 

0 907.437    

Linear 1 802.639 0.000 0.000 1 

First 

degree 

2 794.982 7.657 0.006 0 

Second 

degree 

4 793.691 8.948 0.524 -2 -1 
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After correction for frequency 
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Figure 22 The plot of predicted and observed probability of survival after 

correction for frequency.  
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Extracranial injury  

 

In TARN, AIS codes and severities are not recorded together under the 

same variables. This means there are a number of variables representing AIS 

codes with some others representing severity scores. AIS codes are saved under 

C (C1 to C21) with AIS severities under S (S1 to S21). For example, if a 

patient receives AIS codes and scores of 7164006.3 and 630299.2, he/she holds 

C1 and C2 (AIS codes) recorded as 7164006 and 630299 with S1 and S2 

(severity scores) recoded as 3 and 2. The ending number of C and S is used to 

match the AIS code with the severity score. As in the above example, C2 and 

S2 represent 630299.2.  

To create the variable representing the extracranial injury, a new 

nominal variable was created to count the number of cases with extracranial 

injury AIS codes, whose AIS score was above 3. To do this, the syntax was 

used which first searched C1 to C21 to spot extracranial AIS codes and then 

subsequently checked the matched AIS score (i.e. S1 to S21) for scores above 

3.  

Using this cut-off, the frequency of extracranial injury was 277 

(34.5%).  

 

Systolic blood pressure  

 

This variable was treated both continuously and categorically with the cut-offs 

for categorisation being 120 and 150 from the IMPACT [95]. Table 42 displays 

the results of fractional polynomial analysis of systolic blood pressure. As 

seen, the second degree model provides the highest significant gain in deviance 
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as compared to the linear model. The formula for the transformation in the 

output of STATA was 731.0
1

100
1

SysBP
SysBP  and 

229.0
1

100
ln

1

100
2

SysBPSysBP
SysBP . Figure 23 and Figure 24 

display the plot of systolic blood pressure with observed and predicted 

probabilities respectively before and after correction for the frequently. Even 

after the correction for the frequency (Figure 24), the patters of distribution of 

the predicted and the observed probabilities do not appear to be satisfactorily 

the same.  

 

 df Deviance Gain P  Powers 

Not in 

model 

0 555.333    

Linear 1 546.005 0.000 0.000 1 

First 

degree 

2 518.632 27.373 0.000 -2 

Second 

degree 

4 496.449 49.556 0.000 -1  -1 

Table 42 Comparison of models of fractional polynomial transformations 

for systolic blood pressure.  



 295 

Before correction for frequency 
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Figure 23 Plot of predicted and observed probability of survival for 

systolic blood pressure before correction for frequency.  
 

 

 

After correction for frequency 
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Figure 24 Plot of predicted and observed probability of survival for 

systolic blood pressure after correction for frequency.  
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Mean blood pressure  

 

This variable was also treated both continuously and categorically with the cut-

offs for categorisation being 85 and 110 from the IMAPCT [95]. Table 43 

displays the results of fractional polynomials analysis of mean blood pressure. 

According to this analysis, the second degree model held the best gain 

according to the p value in the deviance as compared to the linear model. The 

formula for the transformation in the output of the STATA was 

981.0
100

333.0
1

MeanBP
MeanBP  and 

386.0
100

333.0
ln

100

333.0
2

MeanBPMeanBP
MeanBP . Figure 25 and 

Figure 26 show the plot of mean blood pressure with predicted and observed 

probability of survival. Similar to  systolic blood pressure, even after correction 

for the frequency, the patters of distribution of the predicted and the observed 

probabilities do not appear to be satisfactorily the same. Furthermore, mean 

blood pressure demonstrated a significant association with outcome by logistic 

regression whereas Mann Witney U test did not find any significant difference 

in mean blood pressure between survivors and non-survivors. 

 
Table 43 Comparison of models of fractional polynomial transformations 

for mean blood pressure.  

 df Deviance Gain P  Powers 

Not in 

model 

0 544.192    

Linear 1 538.157 0.000 0.014 1 

First degree 2 520.952 17.206 0.000 -2 

Second 

degree 

4 511.815 26.342 0.010 0.5  0.5 
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Before correction for frequecny
(one extreme value of blood pressure of 0 with 

odds of death of -23 was excluded) 
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Figure 25 Plot of predicted and observed probability of daeth for mean 

blood pressure before correction for frequency.  
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odds of death of -23 was excluded) 
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Figure 26 Plot of predicted and observed probability of daeth for mean 

blood pressure after correction for frequency.  
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AIS scores, the Marshall Classification and various intracranial pathologies  

 

AIS severity scores are saved in TARN under S1 to S21. Moreover, 34.4% of 

cases had more than 3 brain injury AIS codes/scores allocated to them. Due to 

this, a syntax was written to search all brain injury AIS scores for the highest 

one.  

TARN does not have record of CT images/reports and thus AIS 

descriptions in the AIS dictionary were used for the Marshall Class allocation. 

The method applied is presented in Paper 4.  

Similarly, AIS codes were used to define various types of intracranial 

pathologies. The pathologies investigated are presented in Paper 5 (cerebral 

contusion, cerebral brain swelling, cerebral haemorrhage, cerebral EDH, 

cerebral SAH, brain stem injury and cerebellar injury). Table 44 provides AIS 

codes allocated to each intracranial pathology. Apart from SAH, all injuries 

have more than one code  which represents taking severity of injury based 

on size or being unilateral versus bilateral into account. However, haemorrhage 

(Not Specified: NS) encompasses cases with unknown type of cerebral 

haemorrhage or intracerebral haemorrhage. Furthermore, the brain stem and 

cerebellar injuries encompass various types of injuries including contusion, 

haemorrhage, infarction etc.  
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Table 44 Various AIS codes allocated to each intracranial pathology.  

Brain injury AIS codes 

Contusion 140204,140402,140403,140404,140405,140602,140604,140606,140608,140610,140612,140614, 

140616,140618,140611,140620,140622, 140624,140626 

 

Brain swelling 140662, 140664, 140666, 40660, 140628 

 

Epidural 

haemorrhage 

140414,140418,140422,140630,140632,140634,140636 

 

Subdural 

haemorrhage 

140438,140442,140446,140650,140652,140654,140656 

 

SAH 140684 

 

Haemorrhage 

(Not  

Specified: NS) 

140629, 

140638,140640,140642,140644,140646,140648,140678,140686 

 

Penetrating 

injury 

140216, 140478, 140690 

Brain stem 

injury 

140202,140204,140206,140208,140210,140212,140214,140216, 

140218,140299 

 

Cerebellum 

injury 

140402,140403,140404,140405,140406,140410,140414,140418,140422,140426,140430,140434,140438, 

140442,140446,140450,140458,140462,140466,140470,140474,140478,140499 
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7.5.8. Model derivation  

The overall stages of model derivation are described in the Paper 6. What 

follows is more detailed explanation of the modelling procedure. In order to 

avoid confusion with the „stepwise‟ logistic regression, each step is referred to 

as „level‟. In each level one model or more were derived for the purpose of that 

very level and the observations obtained during performance of that level are 

provided. The model(s) derived is (are) presented in the Appendix labelled 

according to the relevant level.  

Some levels involved adding of new variable(s) to the model derived at 

the previous level and observing the significance of change in the model 

deviance, in AUC and in the p value of the HL statistics. Multicolinearity 

among variables was also examined in the correlation matrix given by the 

output of SPSS at each level to avoid containment of two variables with this 

effect in the same model (multicolinearity effect: when two variables included 

in the same model are associated with each other. This should not occur and 

one of the two variables should be excluded from the model. SPSS output 

contains a table with the name of the Correlation Matrix which gives the 

degree of the associations among all the variables included.). Furthermore, 

based on the literature, the interaction between variables was specified in the 

SPSS syntax and the significance of the interaction was examined in the model 

output. In order for a variable to stay in the model, that variable had to decrease 

the deviance significantly and demonstrated significant association with 

survival with an acceptable significance and direction of odds ratio. Failure to 

meet any of these three requirements resulted in the removal of the variable.  
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It should be noted that although in the Paper 6 the imputation is 

described as a separate stage for the sake of presentation suitable for a journal 

article, this was in fact performed during model derivation. Furthermore, model 

derivation is a „try and error‟ procedure with regards to how a covariate may be 

included in the model (i.e. continuous or categorical, if categorical with 

what/how many categories), the order in which variables are included (i.e. 

which one is the first, the second, and the last) and the order of the levels of 

modelling. Although an overall strategy of model derivation was decided prior 

to modelling, however, „adaptations‟ were necessary due to the given 

observations obtained during the progress of the procedure. This section 

describes what prospectively occurred during the levels of the modelling. A 

perspective on the approach taken below in terms of efficiency and 

effectiveness is given in the main thesis discussion.  

The model derivation was performed over 15 levels and   table 45 

presents the title of each level along with the main observation(s) obtained at 

that very level. The title of the level somewhat shows the main aim of that level 

which is based on either the observation(s) on the previous level or the 

progress of the modelling procedure by adding/considering new variables. In 

fact  Table 45 can reflect on the inherent „try and error‟ nature of modelling by 

demonstrating the lack of a clear coherence in the procedure. This is because 

some levels could have been done prior or following to their current position or 

some repetitions could have been avoided. For example, following performing 

8 levels, the various cut-offs for extracranial injury (extracranial AIS severity 

score) were explored. This level could have been done at a much earlier level 

such as level 3. The current position of this level then resulted in reconstruction 
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of all models which had been derived up to level VIII (i.e. unnecessary 

repetition in retrospect). The following section supplies the way the model 

derivation was performed with respect to Table 45. Table 57 situated after this 

explanation provides main points and decisions of the modelling procedure 

important for understanding the way the final models were proposed and the 

levels which addressed these points.  
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 Table 45 Various levels of model derivation 

 

Level Title Observation(s) 

I Automatic stepwise modelling of age, 

continuous GCS, pupillary reactivity, ISS 

and extracranial injury 

 One of GCS transformations was 

discarded by SPSS which was not 

acceptable. 

II Manual stepwise modelling of age, 

continuous GCS, pupillary reactivity, ISS 

and extracranial injury 

 Pupillary reactivity: absent-brisk 

had odds ratio of above one for 

survival (not acceptable) 

 ISS and extracranial injury can not 

be included in the same model due 

to multicolinearity effect. 

III New categorisation of pupillary 

reactivity/decision to employ ISS or 

extracranial injury 

 Pupillary reactivity with three 

categories of both reactive, only 

one reactive and none reactive is 

better. 

 Extracranial injury (extracranial 

AIS score > 2) did not have a 

significant association with 

outcome in the model. 

IV Model IIIA including categorical GCS (12 

categories) 
 GCS scores of 9, 4 and 3 had odds 

ratio of above one for survival (not 

acceptable) 

V Model of level IIIA including new 

categorisation of GCS (3 categories) 
 GCS with 3 categories had 

significant association with 

outcome. 

VI Testing the value of cause of injury  Cause of injury is significant only 

when GCS is continuous. 
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  Table 45 Various levels of model derivation (continued)   

Level Title Observation(s) 

VIII Trial of the new categorisation of 

extracranial injury 
 Extracranial injury (extracranial 

AIS > 3) can be included in the 

model without ISS (with GCS either 

continuous or categorical). 

IX Imputation of missing GCS and pupillary 

reactivity 
 All missing GCSs were imputed 

with en-route and then at scene 

scores without significant changes 

in the model performance. 

 All missing pupillary reactivities  

were imputed with en-route and 

then at scene scores without 

significant changes in the model 

performance. 

 

X Inclusion of intracranial pathology  AIS scores were not selected as not 

all of them demonstrated significant 

association with outcome. 

 The Marshall Classification was not 

selected as not all classes 

demonstrated significant association 

with outcome. 

 SAH, EDH and haemorrhage did 

not show significant association 

with outcome. 

 Brain swelling and brain stem injury 

demonstrated significant association 

with outcome. 

 



 305 

Table 45 Various levels of models derivation (continued). 

Level Title Observation(s) 

XII Adding systolic blood pressure, mean blood 

pressure and hypoxia 
 Neither systolic blood pressure nor 

mean blood pressure were significantly 

associated with outcome (with 195 

missing cases in total) 

 Hypoxia was significantly associated 

with outcome. 

XIII Analysis of missingness/imputation of mean 

and systolic blood pressure and hypoxia 
 On univariate analysis, cases with 

missing systolic blood pressure tended 

to be younger, have lower GCS, more 

frequency of brain stem injury and 

lower survival rate. 

 On multivariate analysis, age and 

cause of injury significantly affected 

the missingness of systolic blood 

pressure. 

 On univariate analysis, cases with 

missing mean blood pressure tended to 

be younger, have lower GCS, lower 

frequency of extracranial injury and 

brain stem injury and lower survival 

rate. 

 On multivariate analysis, only age had 

significant effect on missingness of 

mean blood pressure. 
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 Table 45 Various levels of model derivation  (continued)  

Level Title Observation(s) 

XIII 
(continued from the previous page) 

Analysis of missingness/imputation of mean 

and systolic blood pressure and hypoxia 
 On univariate analysis, cases with 

missing O2 Sat. tended to have lower 

GCS, higher frequency of extracranial 

injury and brain stem injury and 

lower survival rate. 

 On multivariate analysis, only GCS 

had a significant effect on 

missingness of O2 Sat.. 

 All missing cases with systolic or 

mean blood pressure or O2 Sat. were 

placed in a separate category as 

missing. 

XIV Trial of systolic and mean blood pressure 

individually/2 versus 3 categories 
 Hypertension (either as per systolic or 

mean) was not significantly 

associated with outcome. 

 The model with mean blood pressure 

did not show acceptable goodness of 

fit. 

XV Assessment of interactions  Among possible interactions of age 

with cause of injury and systolic 

blood pressure with hypoxia, only age 

with cause of injury was significant. 
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7.5.9. Level I: Automatic stepwise modelling of age, 

continuous GCS, pupillary reactivity, ISS and extracranial 

injury 

We selected the variables from the literature that have the most consensus for 

being of higher prognostic value in TBI. At this first level age, continuous 

GCS, pupillary reactivity, ISS and extracranial injury were included in the 

automatic stepwise logistic regression. Pupillary reactivity had 6 categories of 

brisk-brisk, brisk-sluggish, sluggish-sluggish, sluggish –none, brisk-none, 

none-none. GCS was in its continuous form with two fractional polynomials 

transformation of 76.0
1

10
2

GCS
and 

02.1
10

1
log

1

10
2

GCS

GCS
e

. Similarly, ISS was 

transformed into                                           . These variables are included in the 

basic IMPACT/CRASH models. However, ISS is not present in these models 

but is in another well-developed model [93]. 

The final model discarded one of the GCS transformations during the 

automatic procedure whereas practically if one transformation is discarded, the 

other should not be retained. However, the „automatic‟ nature of this level 

offered no control to keep both transformations in the model. Thus the next 

level was performed to run logistic regression in the „manual stepwise‟ method.  

7.5.10. Level II: manual stepwise modelling  

At this level, a model was initially derived with age (step 1 model). 

Subsequently four further models were derived by adding continuous GCS 

91.0
10

log
ISS

e
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(two fractional polynomial transformations) to “model step 1” to construct 

„model step 2‟. Similarly pupillary reactivity (with 6 categories) was added to 

„model step 2‟ to construct „model step 3‟. This process was continued by 

adding ISS and extracranial injury to the models constructed at the previous 

steps (Table 46). The deviance of each constructed model at each step was 

spotted in the SPSS output and the significance of the difference of the drop in 

the deviance as compared to the deviance of the model in the previous step was 

assessed through Chi square test with one degree of freedom. To do this the 

online Chi square calculator was used [163]. From this level onward all logistic 

regressions were run with the „enter‟ method of SPSS (i.e. not stepwise).  

Table 46 lists the deviance of each model, the difference of this 

deviance with the model at the previous step and the significance of the 

difference (p value). As seen, adding each covariate to models resulted in a 

significant decrease in the deviance indicating that the covariate should be 

retained in the model. In this „manual‟ stepwise procedure, two fractional 

polynomials transformations of GCS were supplied to the model together 

whereas in the automatic form, the computer supplied them separately.  

The final resulting model demonstrated that the odds ratio of the pupil 

category: absent-brisk did not have a reasonable direction for survival (it was 

more than one) (Appendix: level II model). Furthermore, ISS and extracranial 

injury were correlated in the correlation matrix indicating that these two 

variables can not be retained in the same model.  
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Table 46 Changes in the deviance in the manual stepwise modelling at 

level II. 
 

7.5.11. Level III: new categorisation of pupillary 

reactivity/decision to employ ISS or extracranial injury  

As one category of pupillary reactivity in model II did not have a reasonable 

direction for its odds ratio of survival, pupillary reactivity was categorised 

differently as both reactive, only one reactive and none reactive. Furthermore, 

since at the previous level, ISS and extracranial injury were correlated, at this 

level, two models were constructed: model IIIA with age, continuous GCS 

(fractional polynomials transformations), pupillary reactivity (with new 

categorisation), ISS (fractional polynomials transformation) and model IIIB 

with age, continuous GCS (fractional polynomials transformations), pupillary 

reactivity (with new categorisation) and extracranial injury.  

In model IIIA (age, continuous GCS, pupillary reactivity, (3 categories) 

and ISS) all covariates were significantly correlated with outcome including 

pupillary reactivity with new categorisation and also ISS. However, in model 

 

 

deviance difference P value of the 

difference 

Step 1: Age 883.069 -  

Step 2 : Age +GCS 565.905 317.164 <0.005 

Step 3: Age +GCS +Pupillary reactivity 411.731 154.174 <0.005 

Step 4: Age +GCS +Pupillary reactivity 

+ ISS 

397.587 14.144 <0.005 

Step 5: Age +GCS +Pupillary reactivity 

+ ISS + Extracranial Injury 

392.310 5.277 0.0216 
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IIIB, extracranial injury (extracranial AIS severity score > 2) did not hold a 

significant association with outcome. The AUC of models IIIA and IIIB were 

respectively 0.91 and 0.90 with p value of HL statistics being 0.83 and 0.45.  

7.5.12. Level IV: model IIIA including categorical GCS 

Since GCS was correlated with outcome both in the continuous and categorical 

form, model IIIA was reconstructed this time with GCS included categorically 

with each GCS score counted as one individual category (thus 13 categories). 

The reference category was GCS 15.  

The resulting model (i.e. model IV) demonstrated that firstly, only GCS 

scores 14, 12, 10 and 7 held a significant effect on outcome and secondly, GCS 

score of 9, 4 and 3 had odds ratios of above one for survival whilst this was 

expected to be less than one. Therefore, in the next level, GCS was categorised 

into mild, moderate and severe GCS with the cut offs as 9 and 12.  

7.5.13. Level V: model of level IIIA including new 

categorisation of GCS 

GCS was categorised into mild (GCS < 12), moderate (12-9) and severe (< 9). 

Subsequently model IV was reconstructed with this new categorisation of 

GCS.  

The resulting model (model V) showed that all three categories of GCS 

had significant association with outcome with an acceptable direction for odds 

ratios (i.e. the odds ratios were less than one and decreasing as GCS became 

lower). The AUC of this model was 0.908 with P value of HL statistics being 

0.93.  
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7.5.14. Level VI: testing the value of cause of injury  

The cause of injury was added to models IIIA (with continuous GCS) and V 

(with categorical GCS) with RTC as the reference category. This resulted in a 

significant decrease in the deviance of the model IIIA (with continuous GCS) 

but no significant decrease was observed in model V (with categorical GCS). 

However, the sports category in model VIA has an “astronomical” value 

(81656351.28) for odds ratio. This was attributed to the small number of cases 

in this category (only 14 cases in the whole dataset). Therefore, the „sports 

category‟ was merged with the „others‟ category and the model was run again. 

The resulting model (model VIA) demonstrated that all included covariates 

(i.e. age, continuous GCS, pupillary reactivity (with 3 categories), ISS and 

cause of injury) had significant association with outcome with acceptable 

directions for odds ratios. The AUC of this model was 0.916 with p value of 

0.55 for HL statistics.  

7.5.15. Level VII: trial of the new categorisation of pupillary 

reactivity 

It was felt that the pupillary reactivity could be better described using further 

information available from the database of abnormal both reactive. New 

categorisation of pupillary reactivity as normal (brisk-brisk), abnormal-both 

reactive (brisk-sluggish or sluggish-sluggish), only one reactive (none-sluggish 

or none-brisk) and none reactive (none-none) were tested on models level VIA 

(age, continuous GCS, pupillary reactivity, ISS and injury cause) and level V 

(age, categorical GCS, pupillary reactivity and ISS). With the new 

categorisation of pupillary reactivity two models were constructed: model 
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VIIA from model VIA and model VIIB from model V. It was observed that 

this new categorisation of pupillary reactivity (i.e. with 4 categories) is better 

than the previous one (i.e. with three categories) since AUC of models VIA 

and V respectively increased from 0.916 to 0.922 and from 0.908 to 0.914. The 

p value of HL statistics for models VIIA and VIIB were respectively 0.549 and 

0.572 in both models, Furthermore, pupillary reactivity still held its significant 

association with outcome.  

So far two models were constructed. Both models shared age, GCS, 

pupillary reactivity and ISS. The differences were: GCS being continuous in 

model VIIA but categorical in model VIIB and cause of injury being present in 

model VIIA but absent in model VIIB. This meant when GCS was categorical, 

cause of injury was not significant.  

7.5.16. Level VIII: Trial of the new categorisation of 

extracranial injury  

So far it was observed that the extracranial injury with the extracranial AIS cut-

off of 3 can not be held in the same model with ISS and also it does not hold a 

significant effect on outcome in a model which does not contain ISS. It was 

thought these observations may be different if the cut-off for extracranial AIS 

increases to 4 (inclusive). Level VIII was performed to assess this. The 

frequency of extracranial injury based on this new cut-off was 116 (14.5%). 

Up to this stage, several models were constructed and the following 

issues were explored: the importance of ISS versus extracranial injury, various 

categorisations of pupillary reactivity, continuous versus categorical GCS and 

the importance of cause of injury. These issues required to be considered in the 

conduct of this level. To assess this new cut-off of extracranial injury 
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(extracranial AIS severity score > 3), it was firstly assessed whether or not this 

new cut-off would enable extracranial injury to be included in the same model 

with ISS. Thus this variable was added to model IIIA (age, continuous GCS, 

pupillary reactivity (4 categories) and ISS). Since this model contained 

continuous GCS, the addition of extracranial injury to model IIIA was also 

tested with categorical GCS (i.e. three categories). The resulting models did not 

have a significant decrease in the deviance indicating that extracranial injury 

still can not be held in a model with ISS. Secondly, it was examined that 

whether or not extracranial injury with this new cut-off would have a 

significant association with outcome if the model does not contain ISS. For this 

purpose, model IIIB (age, GCS and pupillary reactivity) was reconstructed 

twice once with continuous GCS and then with categorical GCS. It was 

observed that in both resulting models, the deviance significantly decreased 

and also extracranial injury demonstrated a significant association with 

outcome. Thirdly, the value of cause of injury was tested by adding this 

variable to the newly-constructed models IIIB. It was observed that cause of 

injury significantly decreased the deviance of both models and also held a 

significant association with outcome (models VIIIA and VIIIB). The AUC of 

models VIIIA and VIIIB were respectively 0.917 and 0.910 and HL statistics 

of both models had a significant p value.  

7.5.17. Level IX: Imputation of missing GCS and pupillary 

reactivity  

Four models were constructed so far. Model VIIB (age, categorical GCS, 

pupillary reactivity and ISS) was deemed better than VIIA model (age, 

continuous GCS, pupillary reactivity, ISS and cause of injury) because its AUC 
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is only slightly lower (0.914 versus 0.922) but has simpler classification of 

GCS by not using fractional polynomials making the model user-friendly. For 

the same reason, Model VIIIB (age, categorical GCS, pupillary reactivity, 

extracranial injury and cause of injury) was deemed better than model VIIIA 

(age, continuous GCS, pupillary reactivity, extracranial injury and cause of 

injury) despite having only slightly a lower AUC (0.917 versus 0.920). 

Therefore, models VIIB and VIIIA were chosen to proceed with imputation of 

missing data and further levels of models derivation. So far all the logistic 

regression models were run on complete cases which amounted to 645 cases. 

The excluded cases had missing information of either GCS or pupillary 

reactivity.  

The imputation strategies for GCS was firstly to sum motor, eye and 

verbal components if they were available as there were occasions when the 

GCS components were recorded but total GCS was missing; Secondly, to 

impute the remaining missing information with en route and then at scene GCS 

recordings and thirdly to identify patients who had been intubated by weighing 

within GCS similar to TARN general trauma predictive models [142]. There 

were overall 26 cases with missing total GCS. The first step resulted in 

imputation of one case. Imputing with the en route records resulted in the 

reduction of missing cases to 23. Subsequently, all the remaining missing 

GCSs were imputed with scene scores with no missing value left for the last 

step of imputation strategy. The model was not rerun at this stage because 21 

of the missing GCS cases also had missing pupillary response. Following the 

imputation of GCS, missing pupillary reactivities were imputed. The 

imputation was performed on uncombined pupillary reactivity (i.e. separately 
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for the left and right eye) and with 6 categories. The adopted imputation 

strategy for each eye was as follow: firstly, if one eye was missing and the 

other was recorded, the missing eye was regarded as normal. This was initially 

performed for all admission, en route and at-scene records of pupillary 

reactivity. Table 47 presents the number of missing pupils prior to and 

following this first step of imputation. Secondly, the missing admission pupils 

were imputed with en route records. This decreased the missingness of both 

right and left eye from 122 to 108. Thirdly, the missing information on each 

eye was imputed with at-scene records. This final step decreased the number of 

missing information to 0 for each eye. Following the imputation, the syntax to 

combine the pupillary reactivity of each eye was run again.  

Table 48 compares the performance of the models prior to and 

following the imputation of missing GCS and pupillary reactivity. As seen, the 

change in AUC is negligible for both models (drops of 0.003 and 0.007 

respectively for models VIIB and VIIIB). Even the p value of HL statistics in 

model VIIIB became more distant from the significant level when it was 0.063 

before imputation and 0.547 after imputation.  

 
Table 47 Frequency of missing information on pupillary reactivity for 

each eye prior to and following the first step of imputation 

Site of record Left eye Right eye 

 Before 

imputation  

After 

imputation  

Before 

imputation  

After 

imputation  

Admission 136 122 138 122 

En rout 761 761 762 761 

At scene 484 473 477 473 
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Table 48 Comparison of performances of models VIIB and VIIIA before 

and after imputation of GCS and pupillary reactivity.  

7.5.18. Level X: Inclusion of intracranial pathologies   

The results of the level X and the following level (Level XI: adjustment to 

model X) are presented and discussed in Paper 5. In this paper, the baseline 

models A and B in the paper were models IXA (model VIIB after imputation 

of GCS and pupillary reactivity) and IXB (model VIIIB after imputation of 

GCS and pupillary reactivity) in the actual modelling procedure. Then AIS 

scores (i.e. 3, 4, and 5/6), the Marshal Classification and various intracranial 

pathologies (i.e. including brain swelling, intracranial haemorrhage, EDH, 

SAH, brain stem injury and the cerebellar injury) were added separately to 

each model. This resulted in the construction of 6 models. However, these 6 

models were named with the prefix „X‟ in the staged approach discussed here. 

Their equivalent naming is presented in Table 49 (plus the equivalent naming 

of baseline models). The Appendix does not repeat these 8 models given in 

Paper 5.  

Model Before imputation After imputation 

Number of 

cases 

AUC HL test Number of 

cases 

AUC HL test 

Level 

VIIB 

650 0.914 

(0.889-0.940) 

0.573 802 0.911 

(0.888-0.934) 

0.658 

Level 

VIIIA 

650 0.917 

(0.891-0.943) 

0.063 802 0.908 

(0.884-0.932) 

0.547 
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Table 49 The name of each model presented in the paper with the 

equivalent name in the actual procedure model construction. 

Name of the model in the paper Name in the modelling procedure 

Baseline model A Model IXA 

Model A + AIS scores Model XA1 

Model A + Marshal Classification Model XA2 

Model A + combination 1A Model XA3 

Baseline model B Model IXB 

Model B + AIS scores Model XB1 

Model B+ Marshal Classification Model XB2 

Model B + combination 1B Model XB3 
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This level and the following level (level XI) assess the prognostic value 

of AIS scores, the Marshall Classifications and various intracranial 

pathologies. However, these levels were performed within the modelling 

procedure and thus the „appropriate‟ models among the resulting models 

required to be selected to proceed with the modelling. The selection of the most 

appropriate classification/intracranial pathologies was based on AUC and the 

significance of the association of each type of brain injury with outcome.  

All models of XA1 to XA3 had the same AUC. However, model XA1 

was not selected because in this model, none of AIS scores i.e. scores 4 and 5/6 

held significant association with outcome. Similarly, model XA2 was not 

selected because among all 6 categories of the Marshall Classification, only 

class II was associated with outcome with marginal significance. Among 

models XB1 to XB3, model XB1 was not selected since in this model AIS 

score 4 did not hold significant association with outcome. Similarly, model 

XB3 was not selected since among all 6 categories of the Marshal 

Classification included in this model, only classes IV and V/VI (merged) were 

significantly associated with outcome. Overall models XA3 and XB3 were 

selected for further analysis i.e. trial of various combinations of intracranial 

pathologies at level XI.  

7.5.19. Level XI: Adjustments to model X 

At this level, six models were constructed. The rational for various 

combinations of intracranial pathologies and the AUC of constructed models is 

presented in Paper 5. Briefly, this was based on the haemorrhage being 

significantly associated with outcome from either clinical or evidence 

viewpoint and brain swelling, brain stem injury and cerebellar injury being 
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marginally (0.05 < p value < 0.10) or significantly associated with outcome in 

models constructed at the previous level. However, since in Paper 5 the odds 

ratios and significance (p values) are not given, the Appendix, unlike level X, 

contains all models at this level. Table 50 lists the equivalent name of each 

model in the modelling procedure to that in the Paper 5.  

  

Name of the model in the paper  Name in the modelling procedure  

combination 2A  Model XIA1 

combination 3A Model XIA2 

combination 4A Model XIA3 

combination 5A Model XIA4 

combination 2B Model XIB1 

combination 3B Model XIB2 

Table 50 The name of each model presented in the paper with the 

equivalent name in the actual procedure of TBI prognosis model 

construction.  

 

After the analysis of the model performance, models XIA4 and XIB2 

were selected; these being the models in which all intracranial pathologies 

described held significant association with outcome. The reason for this 

selection was that, apart from model XIA4, in none of the models XIA1 to 

XIA4, all intracranial pathologies included held significant association with 

outcome. All these models had equal AUCs. Similarly among models XIB1 

and XIB2, model XIB2 was selected because unlike model XIB1, all 

intracranial pathologies included were significantly associated with outcome.  

7.5.20. Level XII: Adding systolic blood pressure, mean 

blood pressure and hypoxia 

Systolic blood pressure (categorical), mean blood pressure (categorical) and 

hypoxia (categorical) were added to models XIA4 and XIB2 altogether. 
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Systolic and mean blood pressures were not used continuously, since firstly 

although they were associated with outcome by logistic regression on 

univariate analysis, this is not supported by Mann Whitney U test. Secondly, 

the plot of predicted and observed probabilities against the fractional 

polynomials transformation of both variables did not demonstrate that these 

two probabilities would follow the same pattern of distribution in an acceptable 

way (Figure 24 and Figure 26).  

In the resulting models (models XIIA and XIIB), it was observed that 

neither systolic blood pressure nor mean blood pressure were significantly 

associated with outcome with normotension as the reference category. 

However, hypoxia demonstrated a significant association with outcome. The 

logistic regression was run on 607 cases.  

7.5.21. Level XIII: missingness analysis/imputation of 

missing mean and systolic blood pressure and hypoxia  

At the previous level, only hypoxia turned out to be significant in the 

multivariate models. However, the analysis was run only on 607 cases since the 

remaining 195 cases had missing information on hypoxia, mean or systolic 

blood pressure. Thus it was thought that if the missing cases are included in the 

modelling, the results might change. This level was performed to include all 

cases in the analysis of hypoxia and blood pressure following imputation of 

missing values. However, unlike GCS and pupillary reactivity, imputing 

missing values with en route and scene scores did not result in imputation of all 

missingness for mean blood pressure, systolic blood pressure and hypoxia. 

Thus an analysis was performed to assess what variables could affect the 

missingness for each of the above 3 variables. This analysis provides the 
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answer as to whether or not if some variables changes in the dataset, the 

missingness would change. For example, it may that if the patient ages, the 

chance of missingness of hypoxia decreases. This analysis is important with 

regards to „multiple imputation‟ as a method to impute missing values based on 

the existing data. By multiple imputation the missingness is predicted from the 

values of other none-missing variables. To perform this statistical method, it is 

first necessary to know if other variables can affect the missingness of the 

variable of interest.  

 

Systolic blood pressure  

 

There were overall 36 cases with missing systolic blood pressure. Replacing 

missing admission scores with en route and scene values resulted in the 

reduction of missing information to 31 and 21 respectively. Subsequently, an 

analysis was performed to assess the effect of other variables on the systolic 

blood pressure missingness. These „other‟ variables were decided to be those 

which had been included in the models so far. Initially, the characteristics of 

population with missing systolic blood pressure were compared with those who 

had this variable recorded. Chi square test was run for categorical variables 

(extracranial injury, injury cause, brain stem haemorrhage, brain swelling and 

survival rate) with Mann Whitney U test for the continuous variables (age, 

GCS and ISS). Also logistic regression was run with age, GCS, ISS, 

extracranial injury, brain stem haemorrhage, brain swelling and survival as 

covariates and systolic blood pressure missingness as outcome. This latter 
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multivariate analysis would show the effect of each variable on the missingness 

of systolic blood pressure.  

Table 51 demonstrates the comparison of the two populations of 

missing and non-missing systolic blood pressure. It appears those subjects with 

missing systolic blood pressure tended to be younger, have lower GCS and 

more frequency of brain stem injury and lower survival rate (these are the 

variables with significant p values). Similarly, the missingness was 

significantly associated with pupillary reactivity per univariate analysis (p 

value = 0.015). Table 52 demonstrates the results of logistic regression 

analysis. As seen, only age and cause of injury (assault) were significantly 

associated with missingness in the multivariate analysis. This means there were 

only two variables which can predict the missingness of systolic blood 

pressure. Due to this small number of „predictors of missingness‟ in the data, 

multiple imputation was deemed inappropriate. Therefore, following 

imputation of missing systolic blood pressure with en route and scene scores 

the decision was made to group all the missing values as a separate category. 

Subsequently, the continuous systolic blood pressure was categorised into low 

blood pressure (< 119), normotension (120-150), hypertension (> 151) and 

missing. 
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Table 51 Comparing characteristics with missing systolic blood pressure 

with those without missing systolic blood pressure.  

 

Table 52 Logistic regression analysis to predict systolic blood pressure 

missingness.  

 Missing 

(n= 21) 

Available 

(n=781) 

P value 

age 26 39 0.016 

GCS 3 13 0.001 

Pupillary 

reactivity 

Normal 0.9 99.1 0.015 
Abnormal-

both 

reactive 

2.9 97.1 

Only one 

reactive 
3.6 96.4 

Neither 

reactive 
5.6 94.4 

ISS 29 25 0.196 

Extracranial   0.063 

Injury 

cause 

RTC 3.2 96.8 0.544 
Falls 1.6 98.4 

Assault 3.5 96.5 
Others 3.1 96.9 

Brain stem injury 23.8 1 0.016 

Swelling 38.1   0.710 

Survival rate 38.1 75.7 0.00 

 

 Sig.  odds ratio 

Age .002 .929 

GCS .710 .965 

Pupillary reactivity Normal .238  
Abnormal-both reactive .112 4.702 

Only one reactive .116 8.656 
None reactive .083 6.866 

ISS .485 .975 

Extracranial injury .942 1.086 

Brain stem injury .787 1.250 

Brain swelling .385 .547 

Cause of injury RTC .224  
Fall .114 3.834 

Assaults .041 5.250 
Others .998 .000 

survival .383 .433 
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Mean blood pressure  

 

The dataset contained 47 cases with missing mean blood pressure (this variable 

was calculated from systolic and diastolic blood pressure and since there were 

already 36 missing systolic blood pressure, 11 cases with missing diastolic 

blood pressure rendered in total 47 cases with missingness on mean blood 

pressure). Initially, scene and en route mean blood pressure (in the continuous 

from) was calculated from respective scene and en route systolic and diastolic 

blood pressure. Then the missing admission mean blood pressure (continuous) 

was imputed first with en route and then with scene values. This resulted in the 

decrease of missingness to 43 and 32 respectively. Then the analysis was 

performed to compare the characteristics of the population with missing mean 

blood pressure to that with non-missing mean blood pressure. This comparison 

was made on age, GCS, pupillary reactivity, ISS, extracranial injury, cause of 

injury, brain stem injury, brain swelling and survival rate using Chi square and 

Mann Whitney U test. Similarly, logistic regression was run with these 

variables and the missingness as the outcome.  

Table 53 demonstrates that the population with missing mean blood 

pressure was significantly younger, had lower GCS, had higher frequency of 

extracranial injury, brain stem injury and survival rate. Moreover, it appeared 

by univariate analysis, pupillary reactivity also affected the missingness (p 

value = 0.003). According to the multivariate analysis, only age had a 

significant effect on the missingness of mean blood pressure (Table 54). As 

such, multiple imputation was deemed inappropriate. Subsequently and 

following the imputation of missing mean blood pressure with en route and 
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scene records, the remaining missingness was categorised in a separate 

category. Thus, mean blood pressure was re-categorised as hypotension (< 84 

mmHg), normotension (85-110 mmHg), hypertension (> 111 mmHg) and 

missing. 

 

Table 53 Comparing characteristics of cases with missing mean blood 

pressure to those without missing mean blood pressure. 

 Missing 

(n=32) 

Available 

(n=770) 

P value 

age 26 39 0.002 

GCS 3 13 0.00 

Pupillary 

reactivity 

Normal 1.3 98.7 0.003 
Abnormal-

both reactive 
2.9 97.1 

Only one 

reactive 
7.1 92.9 

Neither 

reactive 
7.5 92.5 

ISS 27.5 25 0.092 

Extracranial 37.5 13.5 0.00 

Injury 

cause 

RTC 8 92 0.224 
Falls 4.5 95.5 

Assault 4.2 95.8 
Others 6.3 93.8 

Brain stem injury 25 8.3 0.001 

Swelling 31.3 34.4 0.712 

Survival rate 37.5 76.2 0.00 
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Table 54 Logistic regression analysis to predict missingness of mean blood 

pressure.  

 Sig.  odds ratio 

Age .000 .923 

GCS .768 .973 

Pupillary reactivity Normal .244  

Abnormal-both 

reactive 

.163 3.743 

Only one reactive .246 4.900 

None reactive .052 7.668 

ISS .204 .955 

Extracranial injury .343 2.627 

Brain stem injury .220 2.440 

Brain swelling .299 .510 

Cause of injury RTC .551  

Fall .351 2.033 

Assaults .152 2.865 

Others .998 .000 

survival .476 .519 
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O2 sat. (hypoxia) 

 

There were overall 114 cases with O2 saturation recording missing. The 

strategy of imputation was similar to other variables which was replacing the 

missing information initially with en route and then scene records. 

Replacement with en route values resulted in 108 cases with missing O2 Sat. 

Further replacement of missing values with scene values resulted in 78 missing 

cases. An analysis was carried out to compare the characteristics of the 

population with missing O2 Sat. to that with recorded (available) hypoxia. 

Similarly, logistic regression was run to assess the association of each variable 

with missingness on O2 Sat.  

According to Table 55, patients with missing O2 Sat. tended to have 

lower GCS, larger frequency of major extracranial injury and brain stem injury 

and a lower survival rate. Furthermore the effect of pupillary reactivity on 

missingness was significant accordingly. Moreover, according to Table 56 

which demonstrates missingness in a multivariate analysis, only GCS had a 

significant association with missing O2 Sat. Therefore, similar to mean and 

systolic blood pressure, following the imputation of missing O2 Sat. with en 

route and scene values, this variable was re-categorised as hypoxia (O2 sat < 

90%), non-hypoxia and missing without using multiple imputation.  
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Table 55 Comparing characteristics of cases with missing O2 sat. to those 

without missing O2 Sat.  

 

Table 56 Logistic regression analysis to predict missingness of O2 sat.  

 Missing O2 Sat.  

(n=78) 

Available O2 Sat.  

(n=723) 

P value 

Age 36 39 0.081 

GCS 7 13 0.00 
Pupillary 

reactivity 
Normal 7.8 92.2 0.005 

Abnormal-

both 

reactive 

8.5 91.5 

Only one 

reactive 
12.8 87.2 

None 

reactive 
18 82 

ISS 26 25 0.067 

Extracranial 28.2 13 0.00 
Cause of 

injury 
RTC 11.8 88.2 0.307 
Fall 8.9 91.1 

Assaults 8.4 91.6 
Others 3.1 96.9 

Bran stem injury 17.9 8 0.004 

Swelling 35.9 34.1 0.753 

Survival rate 59 76.4 0.001 

 

 Sig.  odds ratio 

Age .112 .988 

GCS .017 .908 

Pupillary reactivity Normal .523  
Abnormal-both reactive .492 .711 

Only one reactive .632 1.334 
None reactive .293 .584 

ISS .967 .999 

Extracranial injury .566 1.363 

Brain stem injury .396 1.461 

Brain swelling .544 .823 

Cause of injury RTC .477  
Fall .182 1.638 

Assaults .382 1.430 
Others .592 .567 

Survival .694 .845 
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7.5.22. Level XIV: trial of systolic and mean blood pressure 

individually/2 versus 3 categories 

This level was performed to assess the importance of blood pressure on the 

complete data. It was initially necessary to assess the effect of hypoxia on the 

deviance of the models prior to inclusion of blood pressures. This was because 

hypoxia was a significant predictor at level XII where neither systolic nor mean 

blood pressures were significant. Furthermore, since there were two types of 

models to be run (models with suffix A and models with suffix B), this level 

was divided into two sections. At each section, systolic and mean blood 

pressure were added separately as these variables are apparently correlated 

with each other (multicolinearity effect). This means if systolic blood pressure 

changes, mean blood pressure would change as well. It is the pre-requisite for 

logistic regression that all the variables included should not affect each other in 

that if one variable changes, all others remain constant.  

 

Models XIVA  

 

Model XIVA1 (model XIA4 + hypoxia)  

 

Adding hypoxia to model XIA4 resulted in a significant decrease in the 

deviance of model XIA4 (495.663 versus 481.898, P < 0.005). Furthermore, 

hypoxia showed a significant association with outcome. AUC of the resulting 

model was 0.932. 

  

Model XIVA2 (model XIVA1 + mean blood pressure with 3 categories) 
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Adding mean blood pressure resulted in a significant decrease in the deviance 

of model XIVA1 (From 481.898 to 468.188, p < 0.0005). The category low 

blood pressure demonstrated a significant association with outcome with no 

significant association for the hypertension category. The AUC of the resulting 

model was 0.927.  

 

Model XIVA3 (model XIVA1 + mean blood pressure with 2 categories) 

 

Categories of hypertension and normotension were merged together leaving 

mean blood pressure with only 2 categories of hypotension versus no-

hypotension plus one category of missing information. This resulted in a 

significant decrease in the deviance of model XIVA1 (from 481.898 to 

468.333, p value < 0.0005). Furthermore, hypotension was significantly 

associated with outcome and AUC of the model was observed to be 0.927.  

 

Model XIVA4 (model XIVA1 + systolic blood pressure with 3 categories) 

 

Adding systolic blood pressure resulted in a significant decrease in the 

deviance of the model (from 481.898 to 476.259, p < 0.0005). Category: low 

blood pressure demonstrated a p value of close to significance (0.057) and 

AUC of the resulting model was 0.924.  

 

Model XIVA5 (model XIVA1 + systolic blood pressure with 2 categories) 
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Categories of hypertension and normotension were merged together leaving 

systolic blood pressure with only 2 categories of low blood pressure versus no-

low blood pressure plus one category of missing information. This resulted in a 

significant decrease in the deviance of model XIVA1 (from 481.898 to 

476.318, p value < 0.0005). Furthermore, Hypotension was significantly 

associated with outcome and AUC of the model was 0.924.  

 

Selection of the best model among Models type A 

 

Overall models with blood pressure (models XIVA2-5) were better than the 

model without blood pressure (model XIVA1) in terms of the effect on the 

deviance. This was because adding blood pressure (systolic or mean, with 2 or 

3 categories) resulted in a significant decrease in the deviance. Among models 

with mean blood pressure (models XIVA2 and XIVA3), the model with 2 

categories of mean BP is better since the category hypertension has no 

association with outcome in model XIVA2. Furthermore, among models with 

systolic BP, the model with 2 categories of systolic BP (model XIVA5) is 

selected as the category: hypertension has no association with outcome (model 

XIVA4). Lastly, among models XIVA3 and XIVA5, model XIVA5 was 

selected as the HL statistics of the other was observed to have a p value of less 

than 0.05 (0.111 versus 0.048 for model XIVA5). 

 

Models XIVB 

 

Model XIVB1 (model XIB2 + hypoxia) 
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Adding hypoxia to model XIB2 resulted in a significant decrease in the 

deviance (478.725 versus 465.888, p value < 0.005). Moreover, the association 

of hypoxia with outcome was significant and the AUC of the model was 0.928. 

 

Model XIVB2 (model XIVB1 + mean blood pressure with 3 categories) 

 

Adding mean blood pressure resulted in a significant decrease in the deviance 

of the model (from 481.898 to 451.936, p < 0.0005). The category hypotension 

demonstrated a significant association with outcome. However, the association 

of hypertension was not significant. The AUC of this model was AUC = 0.932.  

 

Model XIVB3 (model XIVB1 + mean blood pressure with 2 categories) 

 

Categories of hypertension and normotension were merged together leaving 

mean blood pressure with only 2 categories of hypotension versus no-

hypotension plus one category of missing information. This resulted in a 

significant decrease in the deviance of model XVB1 (from 481.898 451.940, p 

value < 0.0005). Furthermore the hypotension category was significantly 

associated with outcome. The AUC of the model was 0.932.  

 

Model XIVB4 (model XIVB1 + systolic blood pressure with 3 categories) 

 

Adding systolic blood pressure resulted in a significant decrease in the 

deviance of the model (from 481.898 to 461.154, p < 0.0005). None of systolic 
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blood pressure categories (neither hypotension nor hypertension) demonstrated 

significant association with outcome. The AUC of the model was 0.930.  

 

Model XIVB5 (model XIVB1 + systolic blood pressure with 2 categories) 

 

Categories of hypertension and normotension were merged together leaving 

systolic blood pressure with only 2 categories of low blood pressure  versus no-

low blood pressure plus one category of missing information. This resulted in a 

significant decrease in the deviance of model XIVB1 (from 481.898 to 

461.349, p value < 0.0005). The hypotension category significantly associated 

with outcome and the mode had an AUC of 0.929.  

 

Selection of the best model among models XVB1-5 

 

Overall models with blood pressure (models XIVB2-5) are better than the 

model without blood pressure (model XIVB1). This is because adding blood 

pressure (systolic or mean, with 2 or 3 categories) resulted in a significant 

decrease in the deviance. Among models with mean blood pressure (models 

XIVB2 and XIVB3), the model with 2 categories of mean BP is better since 

the category hypertension has no association with outcome in model XIVB2. 

Furthermore, among models with systolic BP, the model with 2 categories of 

systolic BP (model XIVB5) is selected as the categories hypertension and 

hypotension have no association with outcome in model XIVB4. Lastly, among 

models XIVB3 and XIVB5 (systolic versus mean blood pressure), model 
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XVB5 was selected as this model contains systolic blood pressure which is also 

included in model XIVA5.  

7.5.23. Level XV: assessment of interactions 

According to the literature, there are two interactions which needed to be 

investigated in the so-far-constructed models (models XVA5 and XVB5): 

interaction of age with cause of injury [160] and interaction of systolic blood 

pressure with hypoxia [96]. Each syntax of models XIVA5 and XIVB5 was run 

again with declaration of the aforementioned interactions.  

 

Model XVA1(model XIVA5 plus interaction of hypoxia and low blood pressure) 

 

Adding the interaction of hypoxia with hypotension resulted in a significant 

decrease in the deviance of the model from 476.318 to 470.917 (p value < 

0.005). Furthermore, among the interaction of various categories of hypoxia 

(yes, no and missing) with various categories of systolic blood pressure 

(normotension, hypotension and missing), only the interaction of missing 

hypoxia with hypotension appeared significant. This appeared to be not 

clinically significant. Thus, this interaction was not included in the model. The 

AUC of this model was 0.925 (0.903-0.946).  

 

Model XVB1 (model XIVB5 plus interaction of age and cause of injury and 

interaction of hypoxia and systolic blood pressure) 

 

Following addition of the above interactions to the model, the deviance of the 

model XIV5 significantly decreased from 461.349 to 446.764 (p value < 
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0.005). Furthermore, among interactions of various categories only interaction 

of age and fall was significant with no significant interaction between hypoxia 

and systolic blood pressure.  

 

Model XVB2 (model XIVB5 without interaction of hypoxia and systolic blood 

pressure) 

 

At this stage, model XIVB5 was run only with interaction of age and cause of 

injury. It was observed that the deviance of model XIVB5 significantly 

decreased from 461.349 to 451.830 (p value < 0.005). Age demonstrated a 

significant interaction with fall. The AUC of this model was 0.931.  

7.5.24. Main points and decisions in model derivation 

Table 57 presents the main points/decisions which were made during the 

modelling procedure based on the observations obtained at each level/model. 

This table assists with clarification of the „hidden‟ coherence of the modelling 

procedure. 
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Table 57 Main points/decisions made during the model derivation with their respective levels and models.  

 

Main point/decision Relevant levels Involved models 

Pupillary reactivity with 4 

categories: normal, abnormal 

both reactive, only one reactive, 

none reactive 

II, III, VII II, IIIA, IIIB, VIIA, VIIB 

Categorical GCS rather than 

continuous GCS 

IX VIIA, VIIB, VIIIA, VIIIB 

Categorical GCS with 3 

categories rather than 13 

categories 

IV, V IIIA, IV, V 

ISS and extracranial injury not 

to be in the same model 

II, VII II, IIIA,IIIB, VIIIA, VIIIB, 

Cause of injury in the model 

with extracranial injury but not 

with ISS 

VI, VIII IIIA, V, VIA, IIIB, VIIIA, VIIIB 

Cut-off for extracranial injury 

AIS severity score 4 and not 3 

VIII IIIA, IIIB, VIIIA, VIIIB 

Only hypotension important 

(hypertension merged with 

normotension) 

XIV XIVA2, XIVA3, XIVA4, XIVA5, XIVB2, XIVB3, XIVB4, 

XIVB5 

Why systolic blood pressure 

and not mean blood pressure 

XIV XIVA2, XIVA3, XIVA4, XIVA5, XIVB2, XIVB3, XIVB4, 

XIVB5 

Only brain stem injury and 

brain swelling as important 

intracranial injuries 

X, XI IXA, XA1, XA2, 

XA3,IXB,XB1,XB2,XB3,XIA1,XIA2,XIA3,XIA4,XIB1,XIB2 
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7.5.25. Calibration plot/Brier Score  

To draw the calibration plot, survival probability of each individual as 

predicted by the model (predicted probability) was saved. The predicted 

probabilities were then divided into bands with intervals of 0.1. The mean 

predicted probability and the observed probability were calculated within each 

band. Then, the scatter plot of the mean predicted probability and the mean 

observed probability were drawn in Excel.  

The brier score is not given in the SPSS output of logistic regression 

and thus this index was calculated by creating the appropriate syntax using the 

following formula (section 2.7):  

∑ (observed probability – predicted probability)
 2
 / n 

7.5.26. External validation  

The IMPACT dataset of TBI was sent through email by HL. It included 11023 

cases. Firstly, the IMPACT dataset was „prepared‟ for the validation according 

to the variables and their format in the TARN models. Secondly, since the 

IMPACT dataset contained missing information, an analysis was performed to 

compare the characteristics of patients with full variables recorded to those 

with one or more missingness. Thirdly, the characteristics of the TARN and the 

IPMACT were compared across various variables included in the TARN 

models. Fourthly, the TARN model B was run on the IMPACT data. The 

validation of TARN model A was deemed not feasible since the IMPACT 

dataset did not contain record of ISS.  

 

Preparation of the IMPACT dataset  
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This involved adjustments for the different format of recording of pupillary 

reactivity and cause of injury in the IMPACT dataset to that in the TARN 

dataset and the lack of extracranial injury and brain stem injury in the IMPACT 

dataset.  

In TARN TBI models, pupillary reactivity contains four categories 

(normal-both reactive, abnormal-both reactive, only one reactive, none 

reactive) whereas in IMPACT, the pupillary reactivity contain three categories 

(reacting, one reacting and neither reactivity). In order to alleviate this 

mismatched format of pupillary reactivity, the categories of normal and 

abnormal-both reactive were merged into „both reacting‟ in the TARN dataset.  

Furthermore, cause of injury in IMPACT holds 11 categories (Table 

58) whereas the TARN models contain only 4 categorises. Following the 

advice of a TARN member of staff (TJ), the equivalent category of cause of 

injury in TARN models was defined for each category in IMPACT. This is 

presented in Table 58. This mapping was based on the closest possible 

equivalent injury cause among RTC, assault, fall or others to that in the 

IMPACT classification. However, one may argue that the „bike/skate ect.‟ 

should have been considered as RTC whereas in this mapping it is considered 

as others. In TARN data recording, RTC is recorded when vehicle incidence or 

a collision occurs. However, in the IMPACT dataset it was not clear what 

percentage of cases with „bike/skate etc‟ as their cause of injury sustained their 

injury following collision and not skating.  

 



 339 

 
Table 58 The mapping of categories of injury cause in IMPACT to TARN.  

 

There are two variables in the TARN models which were not recorded 

in IMPACT; these being extracranial injury and brain swelling. In order to 

rectify this problem, extracranial surgery and Marshal Class III in IMPACT 

were used as proxies respectively for extracranial injury and brain swelling.  

 

IMPACT missingness 

 

The IMPACT dataset supplied to TARN had complete data on pupillary 

reactivity, hypoxia and systolic blood pressure. However, there was a number 

of missing information on other variables presented in Table 59. In total, 5542 

cases had a missing value on one variable or the other. Thus only 5481 cases 

remained with all the data available. Chi square test was run to assess the 

significance of the difference between the complete cases and those with one or 

more missing values on GCS, cause of injury and extracranial surgery. 

 
Table 59 The number of missing information in the IPMPACT dataset.  

 

Variable  Missingness  

GCS 3230 (58.2%) 

Cause of injury 17(0.3%) 

Extracranial surgery  3090 (55.7%) 

 

IMPACT classification TARN model classification 

Motor/vehicle occupant RTC 

Pedestrian RTC 

Motor/pedestrian/RTA/ other RTC 

Motorbike/Moped RTC 

Assault Assault 

domestic/fall Fall 

fall/alcohol Fall 

work-related Others 

Sports Others 

bike/skate ect. Others 

Other Others 
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Comparison of the TARN and the IMPACT datasets  

 

This was performed after merging the TARN and the IMPAT dataset in SPSS 

and across age, GCS, pupillary reactivity, cause of injury, extracranial 

surgery/injury, brain swelling and hypoxia using Mann Whitney U test for 

continuous variables (age) and Chi square test for categorical variables (GCS, 

pupillary reactivity, cause of injury, extracranial surgery/injury, Marshall Class 

III/brain swelling and hypoxia).  

 

Running of TARN model B on the IMPACT dataset  

 

This was performed on the merged TARN and IMPACT dataset. Since 

IMPACT holds the record on favourable versus unfavourable outcome, model 

B was also run for prediction of favourable outcome. The logistic regression 

was run on the complete cases of IMPACT dataset i.e. with no imputation.  

 

External validation in TARN dataset  

 

For this purpose, the derived models were run on another dataset of TBI cases 

from TARN which contained submissions from May 2010 till May 2010. Both 

internal and external datasets had the same inclusion criteria. First the two 

datasets (prediction and the external validation sets) were compared across 

various patients‟ characteristics.  
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7.6. Further results 

The results of univariate analysis, final derived models and their validation are 

presented in Paper 6 (Table 31, Table 32, Table 33, Table 34 and Table 35). 

What follows is the further results of the univariate analysis and the external 

validation.  

Table 60 presents the frequency/median of each variable across the 

groups of survivals and non-survivals. The significance of the differences are 

presented in Paper 6 (Table 31, Table 32 and Table 33). 
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 Variable Survival Non-survivals 

Median 
 

Frequency 
(percentage) 

Median 
 

Frequency 
(percentage) 

Age 40 

 

 49  

Gender Male  452 

(75%) 

 151 

(25%) 
Female  

 

147 

(73.9%) 

 52 

(26.1%) 

Nationality British  

 

334 

(75.6%) 

 108 

(24.4%) 
European  

 

13 

(86.7%) 

 2 

(13.3%) 
Others  

 

19 

(79.9%) 

 5 

(20.8%) 

Cause of 

injury 

RTC  

 

227 

(72.3%) 

 87 

(27.7%) 
Fall  

 

222 

(70.9%) 

 91 

(29.1%) 
Assaults  

 

125 

(87.4%) 

 18 

(12.6%) 
Others  

 

25 

(78.1%) 

 7 

(21.9%) 

GCS (continuous) 12 

 

 6  

GCS 

(categorical) 

Mild  377 

(92.2%) 

 32 

(7.8%)_ 
Moderate  

 

84 

(81.6%) 

 19 

(18.4%) 
Severe  

 

138 

(47.6%) 

 152 

(52.4%) 

Pupillary 

reactivity 

Brisk-brisk  

 

405 

(82.5%) 

 41 

(25.8%) 
Sluggish-

sluggish 
 

 

36 

(7.3%) 

 17 

(10.7%) 
Brisk-brisk  

 

10 

(2%) 

 6 

(3.6%) 
None-brisk  

. 

15 

(3.1%) 

 1 

(0.6%) 
None-sluggish  

 

2 

(0.4%) 

 10 

(6.3%) 
None-none  

 

23 

(4.7%) 

 84 

(52.8%) 

Table 60 The frequency/median of various variables across survivals and 

non-survivals (continued)
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Variable Survival Non-survivals 

 Median 
 

Frequency 
(percentage) 

Median 

 

Frequency 
(percentage) 

Extracranial injury (AIS > 2)  

 

546 

(91.2%) 

 140 

(69%) 

Extracranial injury (AIS > 3)  

 

   

Systolic blood pressure 

(continuous) 

138  129  

Systolic 

blood 

pressure 

(categorical) 

low bllod 

pressure (< 120 

mmHg) 

 

 

142 

(67.9%) 

 67 

(32.1%) 

Normotension 

(120-150 mmHg) 
 290 

(85%) 

 51 

(15%) 

Hypertension (> 

150 mmHg) 
 151 

(69.9%) 

 65 

(30.1%) 

Mean blood pressure 

(continuous) 

145.68  135.8  

Mean blood 

pressure 

(categorical) 

Hypotension  

(< 85 mmHg) 
 6 

(20%) 

 24 

(80%) 
Normotension 

(85-110 mmHg) 
 47 

(69.1%) 

 21 

(30.9%) 

Hypertension 

 (> 110 mmHg) 
 522 

(79.5%) 

 135 

(20.5%) 

Hypoxia 98 

 

 93S  

Highest AIS 

score 

3  

 

21 

(11.1%) 

 168 

(88.9%) 

4  

 

46 

(14.6%) 

 270 

(85.4%) 

5  

 

131 

(45%) 

 160 

(55%) 

6  

 

5 

(83.3%) 

 1 

(16.7%) 

Contusion  

 

247 

(77.2%) 

 73 

(22.8%) 

Intracranial haemorrhage  

 

443 

(72.3%) 

 170 

(27.7%) 

EDH  

 

84 

(88.4%) 

 11 

(11.6%) 

SDH  

 

137 

(77%) 

 41 

(23%) 

SAH  

 

97 

(65.1%) 

 52 

(34.9%) 

Table 60 The frequency/median of various variables across survivals and 

non-survivals (continued)
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Variable Survival Non-survivals 

 Median 
 

Frequency 
(percentage) 

Median 
 

Frequency 
(percentage) 

Marshal 

Classification 

I  

 

56 

(86.2%) 

 9 

(13.8%) 
II  

 

356 

(87.9%) 

 49 

(12.1%) 
III  

 

60 

(70.6%) 

 25 

(29.4%) 
IV  

 

40 

(54.1%) 

 34 

(45.9%) 
V/VI  

 

84 

(50.6%) 

 82 

(49.4%) 
Brain 

stem/cerebellar 

injury 

 1 

(25%) 

 3 

(75%) 

Penetrating 

injury 
 2 

(66.7%) 

 1 

(33.3%) 

Table 60 The frequency/median of various variables across survivals and 

non-survivals (continued).   
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Table 61 presents the comparison between those cases in the IMPACT 

dataset which had one or more missing value (excluded cases) and those which 

had all the data available. As seen the differences are significant across all 

variables (age, GCS, pupillary reactivity, cause of injury, brain swelling) 

except extracranial surgery, hypoxia and systolic blood pressure (hypoxia 

showed a marginal difference i.e. p value < 0.10 and more than 0.05). 
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Table 61 Comparison of the cases which had all data recorded (included) 

to those cases which had one or more missing value across various 

variables in IMPACT. 

 

 Excluded cases 

(5542) 

Included cases 

(5481) 

p value 

Age 32 

(22-48) 

30 

(21-43) 

0.00 

GCS Mild 1.8% 

(100) 

6.9% 

(378) 

0.00 

Moderate 6% 

(333) 

10.7% 

(585) 
Severe 34% 

(1883) 

82.4 

(4514) 
Missing 58.2% 

(3230) 

- 

Pupillary 

reactivity 

Both reacting 64.5% 

(3575) 

68.7% 

(3765) 

0.00 

One reacting 16.4% 

(915) 

12.1% 

(660) 
Neither 

reacting 
19.1% 

(1059) 

19.2% 

(1052) 

Cause of 

injury 

RTC 57.3% 

(3176) 

63.2% 

(3459) 

0.00 

Assault 5.2% 

(289) 

7.7% 

(423) 
Fall 22.6% 

(1251) 

17.5% 

(959) 
Others 14.7% 

(813) 

11.6% 

(636) 
Missing 0.3% 

(17) 

- 

Extracranial 

surgery 

yes 8.7% 

(481) 

20.2% 

(1105) 

0.543 

Missing 55.7% 

(3090) 

- 

Brain swelling 17.5% 

(972) 

21.9% 

(1197) 

0.00 

Systolic 

blood 

pressure 

Hypotension 49% 

(1291) 

51% 

(1344) 

0.418 

Normotension 49.9% 

(4185) 

50.1% 

(4202) 

Hypoxia 22.4% 

(1243) 

21.1% 

(1153) 

0.083 
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Table 62 presents the comparison between the IMPACT and the TARN 

datasets. According to this table, the differences between all variables (age, 

GCS, pupillary reactivity, cause of injury, extracranial injury, brain swelling, 

hypoxia and systolic blood pressure) are significant as per the p values apart 

from survival rates. The IMPACT dataset appears to contain slightly younger 

population of TBI cases. Furthermore, based on GCS, the TARN dataset 

included less severe cases since 35.8% of cases were recorded as mild GCS in 

contrast to this being 6.1% in IMPACT. This is also the case for pupillary 

reactivity as more cases in TARN dataset had both reactive pupils (79.2% 

versus 66.6%). Furthermore, according to hypoxia, the cases in IMPACT 

appear to have been more physiologically disturbed than those in the TARN 

dataset.
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Table 62 Comparison of the IMPACT and the TARN datasets across 

various variables included in the TARN model B.  

 The IMPACT 

dataset 

The TARN 

dataset 

P 

value 

Age 31 

(22-46) 

39 

(22-58) 

<0.005 

GCS Mild 478 

(6.1%) 

278 

(35.8%) 

<0.005 

Moderate 918 

(11.8%) 

99 

(12.7%) 
Severe 6397 

(82.1%) 

399 

(51.7%) 

Pupillary 

reactivity 

Both reacting 7340 

(66.6%) 

515 

(79.2%) 

<0.005 

One reacting 1572 

(14.3%) 

28 

(4.3%) 
Neither 

reacting 
2111 

(19.2%) 

107 

(16.5%) 

Cause of injury RTC 6949 

(58.8%) 

314 

(39.2%) 

<0.005 

Assault 2353 

(8.7%) 

313 

(39.0%) 
Fall 1025 

(19.9%) 

143 

(17.8%) 
Others 1481 

(12.5%) 

32 

(4%) 

Extracranial injury 1702 

(19.5%) 

116 

(14.5%) 

<0.005 

Brain swelling 2169 

(19.7%) 

275 

(34.3%) 

<0.005 

Hypoxia 2396 

(21.7%) 

51 

(6.5%) 

<0.005 

Systolic blood 

pressure 

Hypotension 2635 

(92.5%) 

215 

(7.5%) 

<0.005 

Normotension 8387 

(93.7%) 

566 

(6.3%) 

Survival 8149 

(73.9%) 

599 

(74.7%) 

0.635 
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Table 63 presents the differences between the TARN internal 

(derivation) dataset and the TARN external dataset. The two datasets appear 

significantly different across every variable apart from ISS as per the p values.  
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Table 63 Comparing characteristics of patients between the TARN 

internal and external datasets.  

 Internal TARN 

dataset 

External TARN 

dataset 

P value  

Age 39 

(22-58) 

43.9 

(24.2-67) 

<0.005 

GCS Mild 278 

(35.8%) 

758 

(57%) 

0.021 

Moderate 99 

(12.7%) 

159 

(12%) 
Severe 399 

(51.7%) 

412 

(31%) 

Pupillary 

reactivity 

Normal 541 

(67.5%) 

821 

(80.7%) 

<0.005 

Abnormal-both 

reactive 
94 

(11.7%) 

17 

(1.7%) 
Only one reactive 39 

(4.9%) 

51 

(5%) 
None reactive. 128 

(16%) 

128 

(12.6%) 

Cause of 

injury 

RTC 314 

(39.2%) 

448 

(40%) 

<0.005 

Assault 313 

(39.0%) 

1 

(0.1%) 
Fall 143 

(17.8%) 

664 

(59.3%) 
Others 32 

(4%) 

6 

(0.5%) 

ISS 25 

(16-29) 

25 

(16-29) 

0.452 

Extracranial injury 116 

(14.5%) 

123 

(8.9%) 

<0.005 

Brain swelling 275 

(34.3%) 

415 

(29.9%) 

0.034 

Brain stem injury  92 

(6.6%) 

0.045 

Hypoxia 51 

(6.5%) 

59 

(4.7%) 

<0.005 

Systolic 

blood 

pressure 

Hypotension 215 

(7.5%) 

304 

(22.5%) 

<0.005 

Normotension 566 

(6.3%) 

1050 

(77.5%) 

<0.005 

Survival 599 

(74.7%) 

1113 

(80.2%) 

<0.005 
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8.1. Abstract 

8.1.1. Introduction  

There are currently two prognostic tools available for predicting outcome in 

Traumatic Brain Injury (TBI). The first involves prognostic models combining 

clinico-demographic characteristics of patients for outcome prediction, whilst 

the second employs serum brain injury biomarkers. S100B is a widely-

acknowledged biomarker of brain injury.  

8.1.2. Objective 

To identify which method has better prognostic strength and explore how 

combining these methods might improve the prognostic strength.  

8.1.3. Methods 

We analysed data from 100 TBI patients, all of whom were admitted to the 

intensive care unit and had arterial S100B levels recorded at 24-hours after 

injury. TBI prognostic models A and B, constructed in Trauma Audit and 

Research Network (TARN), were run on the dataset and then S100B was 

added as an independent predictor to each model. Furthermore, another model 

was developed containing only S100B and subsequently, other important TBI 

predictors were added to assess their ability to enhance the predictive power of 

this model. The outcome measures were survival and favourable outcome at 

three months. 
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8.1.4. Results 

 Among all the prognostic variables (including age, cause of injury, GCS, 

pupillary reactivity, Injury Severity Score (ISS) and CT features); S100B has 

the highest predictive strength on multivariate analysis. No difference between 

performance of prognostic models or S100B in isolation is observed. Addition 

of S100B to the prognostic models improves the performance (e.g. Area Under 

the roc Curve (AUC), R
2
 Nagelkerke and classification accuracy of TARN 

model A to predict survival increase respectively from 0.64, 0.10 and 71% to 

0.72, 0.20 and 74.7%). Similarly, the predictive power of S100B increases by 

adding other predictors to S100B (e.g. AUC (0.69 versus 0.78), R
2
 Nagelkerke 

(0.15 versus 0.30) and classification accuracy (73% versus 77%) for survival 

prediction).  

8.1.5. Conclusion 

S100B appears to be the strongest prognostic variable in TBI. A better 

prognostic tool than those which are currently available may be a combination 

of both clinic-demographic predictors with S100B. 
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8.2. Introduction  

Outcome prediction in Traumatic Brain Injury (TBI) is one of the many factors 

taken into account by clinicians for the provision of acute and rehabilitative 

care to the sufferers. The prediction is made based on the relationship between 

the outcome and indicators of injury severity and should provide the likelihood 

of an individual patient experiencing various types of outcomes such as 

survival versus death. There are currently two prognostic tools available to 

make such prediction: serum biomarkers of brain injury that relate to outcome 

or prognostic models that incorporate various clinico-demographic factors 

(routinely measured characteristics such age, Glasgow Coma Scale (GCS), 

pupillary reactivity, Computed Tomography (CT features) etc.) to calculate the 

probability of a given outcome. So far several biomarkers have been proposed 

which show higher concentrations in blood of those TBI patients experiencing 

an unfavourable outcome [164]. However measurement of S100B is one of the 

brain injury biomarkers which has received more attention. This astroglial 

protein [47] has been demonstrated to be associated with outcome in TBI [43, 

69, 75, 78, 80, 83, 98, 126, 128, 165, 166].  

The association of S100B with outcome has prompted the researchers 

to determine serum cut-off levels, which can be used as a „diagnostic‟ test for a 

given outcome of interest such as survival or disability. We have recently 

reported our study on the effectiveness of serum S100B measured 24-hours 

after injury to predict unfavourable outcome i.e. Glasgow Outcome Scale 

(GOS < 4) or death at 3-months after injury in a subset of TBI patients who 

were all admitted in the Intensive Care Unit (ICU) at Salford Royal NHS 

Hospital, UK [98]. In this study, S100B levels above the cut-off point 0.53 µg/l
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had a sensitivity of 82% and 83% to respectively predict unfavourable outcome 

and mortality. However, the specificity was moderate at 60% for unfavourable 

outcome and 49% for mortality (Area Under the Roc Curve (AUC) for 

unfavourable outcome prediction: 0.77, AUC for mortality prediction: 0.69). 

Vos et al.  also found similar results in a cohort of severe TBI patients, the cut 

off of 1.13 µg/l being higher as an earlier admission sample [43]. They 

reported an AUC of 67.7 to predict poor outcome 6 months after severe TBI. 

Similarly, other cut-offs for TBI outcome prediction has been suggested by 

other researchers [69, 75, 76, 78, 167]. It may be that considering other TBI 

prognosticators such as age or GCS would enhance the prognostic power of 

S100B.
 

Prognostic models are often constructed through logistic regression run 

on large datasets of TBI cases which hold information on various clinico-

demographic characteristics or laboratory measurements. A “model” refers to 

an equation which calculates the probability of a given outcome by summing 

scores attributed to each predictor found to be important in the multivariate 

analysis. Thus the prognostic models are in fact equations providing the 

probability of outcome using given patient‟s characteristics. Two important 

such models proposed for international application are the International 

Mission for Prognosis and Analysis of Clinical Trials (IMPACT) models [24] 

and the Corticosteroid Randomisation After Significant Head injury (CRASH) 

[23]. The IMPACT model is presented in a user friendly fashion in that it 

attributes a score to each important prognosticator and then the probability of 

death or unfavourable outcome at the time point of 6 months can be calculated. 

The CRASH model is pertinent to low and middle income countries as the data 
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from TBI patients in these nations are contained in the derivation dataset and 

separate models applicable to these nations have been presented. An online 

calculator for either of these models is available [29, 34]. Similar to these 

international models, the Trauma Audit and Research Network (TARN) [89] 

has proposed its own TBI models (models A and B) suitable for the British 

trauma population at a national level [168].  

Due to the limited literature on comparing prognostic models with brain 

injury biomarkers, it is still unclear which TBI prognostic tool (a brain 

biomarker or a prognostic model) is superior. Whilst prognostic models appear 

to have received more popularity than biomarkers (and S100B) in their 

applicability, the AUC of these models may still not be adequate for clinical 

purposes. For example, the highest AUC of the IMPACT models is 0.87. 

Comparing this AUC with a more familiar diagnostic tool such as 

mammography for breast cancer diagnosis which has AUC of about 0.85 [110], 

may indicate prognostic models are still required to improve in their 

performance. However, there are studies which have obtained very high AUCs 

of close to 0.90 [75, 78] for S100B unlike some other studies on S100B which 

found much lower AUCs of less than 0.70 [76, 79]. This can be due to the 

difference in case-mix across studies which per se highlights the importance of 

considering other TBI outcome predictors in assessing S100B prognostic 

strength. In fact, this is the point where prognostic modelling through 

multivariate analysis meets research into S100B. 

The overall objective of this study is threefold: to compare the 

performance of these two prognostic tools (prognostic models and a brain 

injury biomarker), to investigate how adding S100B to TBI prognostic models 
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improves their performance and to investigate how combinations of S100B 

with other predictors may improve the predictive strength of S100B.  
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8.3. Methods 

8.3.1. Data collection 

For the purpose of this study, we used an available dataset from a study of 100 

TBI patients conducted previously. The study dataset had been accrued 

prospectively to assess the prognostic performance of S100B on its own in a 

univariate analysis. Patients, who had been admitted within 24 hours after the 

injury, were recruited from ICU at Salford Royal Hosptial, UK. The dataset 

contained information on gender, age, Injury severity Score (ISS), cause of 

injury, Computed Tomography (CT) descriptions, serum S100B levels and 

outcome as measured by GOS at 3 months following injury. Serum blood 

samples had been taken at 24 hours after the injury time and were analysed 

using a one-step immunoassay (enzyme-linked immunosorbant assay, ELIZA; 

Sangtec 100
TM

 Diasorin, Wokingham, UK) [98]. 

The inclusion criteria were all TBI patient admitted to Hope ICU who 

were older than 16 years old {Rainey, 2009 #210}. Exclusion criteria were all 

patients who arrived at ICU more than 24 hours after their injury and in case 

the consent was not performed. After obtaining the blood sample at 24 hours 

following the injury, the legally acceptable relative was consented as the 

patient was still unconscious. Had the patient died meanwhile then the relative 

would not be approached. Three months later the patient or the consenting 

relative were contacted to assess the patient's outcome. Prior to this contact, the 

casenote of the patient was reviewed to ascertain if the patient had died during 

his stay at hospital. All patients were at home at 3 months after their injury, had 

they been still alive.  
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Important predictors of outcome in TBI were selected following a 

literature review: clinico-demographic characteristics namely age [23, 24], 

GCS [23, 24], pupillary reactivity [23, 24], cause of injury [92], ISS [31, 92, 

93], CT features [23, 24, 94], extracranial injury [23], vital signs including 

mean Blood Pressure (BP) [92, 95], systolic BP [92, 95], temperature [92, 96], 

and laboratory measures including PH [92, 97], Haemoglobin (Hb) [92, 97], 

Glucose [92, 97], Platelet (Plt) count [92, 97] and Prothrombin Time (PT) [92, 

97] along with O2 saturation (O2 Sat.) [92, 96] and Intracranial Pressure (ICP) 

[35]. Although some of these variables were available in the dataset, a search 

of patients‟ records was needed to fill the gaps. Ethical approval for this was 

obtained from the Salford and Trafford Research Ethics Committee (reference 

05/Q1404/157(amendment 2007)). The potential sources for this extra 

information were case notes, regional electronic records of patients (either the 

hospital Electronic Patient Record (EPR) or ICU) and TARN, which is a 

trauma registry based at Salford Royal NHS Hospital, UK. The time point for 

measurement of clinico-demographic characteristics was admission records 

(GCS and pupillary reactivity). For vitals signs, laboratory values, O2 Sat. and 

ICP, the nearest observation to 24 hours after injury was used. The time point 

of 24 hours post injury was when the blood sample was taken for S100B assay 

in the original study. 

8.3.2. Univariate analysis 

The effect of each covariate on survival and favourable outcome was assessed 

using Mann Whitney U test for continuous variables and Chi square test for 

categorical variables with the significant level of 5%. Unlike some variables 
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which were clearly categorical, e.g. pupillary reactivity, the decision to use 

other variables categorically or continuously was based on whether or not there 

was a linear relationship with log odds of survival or favourable outcome 

(linearity assumption). This was a preliminary requirement for the multivariate 

statistical analysis selected for this study i.e. logistic regression [134]. 

Fractional polynomials analysis [135] was applied to assess continuous 

variable linearity. If there was no linearity, the relevant variable was then used 

categorically with the best cut-offs adopted from the literature. Subsequently 

the significance of association with outcome was tested on the dataset by Chi 

square test. If the variable demonstrated significant association in its 

continuous form with no linearity with log odds of outcome, trials of various 

cut-offs were performed to obtain the categorical significance as well.  

8.3.3. Multivariate analysis 

The performance of TARN TBI prognostic models (models A and B) [168] 

was assessed on the study dataset since these models are suitable for our 

dataset in that all cases have received British trauma care and were nursed in 

the ICU. Overall 7 models were constructed. Model A without S100B and 

model B without S100B were constructed using the covariates from TARN TBI 

models A or B through logistic regression. Following the derivation of these 

models, S100B was added to each model to construct two further models 

(model A with S100B and model B with S100B). Similarly, a model was derived 

only including S100B (S100B model). Subsequently, predictors from TARN 

TBI models A and B and those variables which were found significant per 

univariate analysis but not contained in the TARN models were added to the 

S100B model. This resulted in construction of two more models: expanded 
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S100B model A and expanded S100B model B. Each model was run twice; once 

for survival prediction and once for favourable outcome prediction.  

The performance of each model was assessed using three measures i.e. 

AUC, Nagelkerke R
2
 [136] and classification accuracy. Then for each research 

objective, the performance of pairs of models was compared for each measure 

of performance. The pair of models compared are presented in Table 64. For 

example, the performance of the model A without S100B was compared with 

the model A with S100B per three measures of performance to address the 

research objective as to the value of adding S100B to a TBI prognostic model. 

The difference between each measure of performance was considered high (or 

clinically significant) if it was more than 0.05 for AUC and Nagelkerke R
2
 and 

more than 10% for classification accuracy. These cut-offs were arbitrary and 

were chosen in order not to take small increases in performance measures into 

account.  
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Table 64 Various pairs of models compared according to research 

objectives. Each model was run twice; once for survival prediction and 

once for favourable outcome prediction.  

 

Models A and B (with and without S100B) were derived through 

logistic regression (enter method) in Statistical Package for the Social Sciences 

(SPSS) 15 for windows. However, the expanded S100B models A and B were 

derived through stepwise method.  

Objective  Models compared  

Comparing performance of S100B 

with multivariate prognostic models  

 Model A without S100B versus 

S100B model 

 Model B without S100B versus 

S100B model  

Assessing the added value of S100B 

to prognostic models 

 Model A without S100B versus 

model A with S100B 

 Model B without S100B versus 

model B with S100B  

Assessing S100B performance after 

adjustment with other predictors (the 

added value of other prognosticators 

to S100B) 

 S100B model versus expanded 

S100B model A 

 S100B model versus expanded 

S100B model B  
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8.4. Results  

Table 65 presents the results of the univariate analyses for clinico-demographic 

characteristics and S100B (median/frequency, odds ratio and significance of 

association with survival or favourable outcome). The dataset contains 100 TBI 

patients with median age of 31 and male to female ratio of 81/19. Neither age 

nor sex is significantly associated with survival or favourable outcome. 

However, GCS is significantly associated with either outcome (i.e. survival and 

favourable outcome) both continuously and categorically when the cut-off for 

categorization is 9 (i.e. severe versus non-severe brain injury). Nevertheless, 

GCS with the cut-offs of 9 and 12 (i.e. severe versus moderate versus mild 

brain injury) does not demonstrate significant association with outcome. The 

other variables which are significantly associated with survival are ISS (in its 

categorical form) and S100B. For favourable outcome, apart from continuous 

and categorical GCS, age and S100B are significant. 
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Table 65 Clinicodemographic characteristics of the study patients. *Despite the significant P value, the CI for odds ratio 

does include 1 which implies a non-significant association. The reason for this discrepancy is that odds ratios were obtained 

through logistic regression whereas the P value was derived through Mann Whitney U test. 

 Median or 

Frequency (%) 

Odds ratio 

 

P value 

(Survival) 

P value 

(Favourable 

outcome) Survival Favourable 

outcome 

Age 31 0.99 

(0.97-1.02) 

0.96 

(0.94-0.98) 

0.45 <0.001 

Male/female 81%/19% 1.95 

(0.69-5.48) 

1.48 

(0.54-4.06) 

0.2 0.44 

GCS Continuous 8 1.14 

(0.98-1.33) 

1.14 

(1.01-1.29) 
0.02* 0.02 

Categorical Cut-

offs 9 

and 12 

mild 17%   0.11 0.11 

moderate 19% 0.71 

(0.10-4.86) 

1.18 

(0.29-4.73) 

severe 54% 0.27 

(0.05-1.29) 

0.47 

(0.15-1.45) 

Cut-off 9 (Severe GCS) 54% 0.32 

(0.11-0.97) 

0.43 

(0.18-1.03) 
0.03 0.05 

Pupillary reactivity Both reacting 53%   0.25 0.09 

Only one reacting 6% 0.26 

(0.05-1.48) 

0.12 

(0.01-1.11) 

Neither reacting 16% 1.13 

(0.27-470) 

1.01 

(0.32-3.20) 
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Table 65 Clinicodemographic characteristics of the study patients. *Despite the significant P value, the CI for odds ratio does include 1 

which implies a non-significant association. The reason for this discrepancy is that odds ratios were obtained through logistic regression 

whereas the P value was derived through Mann Whitney U test. 

 Median or 

Frequency (%) 

Odds ratio 

 

P value 

(Survival) 

P value 

(Favourable 

outcome) Survival Favourable 

outcome 

Cause of 

injury 

RTC 43%   0.47 0.15 

Fall 42% 0.62 

(0.24-1.57) 

0.79 

(0.33-1.85) 

Assault 11% 1.55 

(0.29-8.29) 

4.71 

(0.91-24.42) 

Sports 4% 0.34 

(0.03-2.74) 

 

1.05 

(0.13-8.13) 

ISS Continuous 25 1.00 

(0.94-1.05) 

1.00 

(0.95-1.05) 

0.74 0.85 

Categorical 3-24 27%   0.01 0.26 

25-

75 

73% 0.21 

(0.06-0.77) 

0.60 

(0.24-1.47) 

Extracranial injury 5% 1.83 

(0.66-5.12) 

2.25 

(0.91-5.54) 

0.24 0.07 

S100B 0.7 0.49 

(0.30-0.80) 

0.21 

(0.10-0.44) 
<0.005 <0.005 
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Table 66 presents the results of univariate analysis for various CT findings. 

Among all CT features only the presence of compressed cisterns is 

significantly associated with survival. Similarly, for favourable outcome 

prediction, only the presence of mass lesion is significantly associated with 

outcome. 
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  Median or 

Frequency 

(%) 

Odds ratio 
 

P value 

(Survival) 

P value 

(Favourable 

outcome) Survival Favourable outcome 

Marshal CT 

classification 

II 6%   0.45 0.08 

V 33% 0.62 

(0.06-6.17) 

0.87 

(0.14-5.51) 

VI 61% 0.38 

(0.04-3.48) 

0.35 

(0.06-2.04) 

Mass lesion 89% 0.21 

(0.02-1.69 

0.19 

(0.04-0.93) 

0.1 0.02 

Haemorrhage 94%  0.18 

(0.02-1.63 

0.1 0.09 

Contusion 42% 0.76 

(0.32-1.804) 

0.61 

(0.27-1.35) 

0.54 0.22 

Table 66 CT findings of the population studied.  
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 Median or 

Frequency 

(%) 

Odds ratio 

 

P value 

(Survival) 

P value 

(Favourable outcome) 

Survival Favourable outcome 

SAH 26% 0.95 

(0.36-2.51) 

0.81 

(0.33-1.99) 

0.92 0.65 

SDH 43% 0.452 

(0.19-1.08) 

0.48 

(0.21-1.06) 

0.07 0.07 

EDH 20% 0.57 

(0.20-1.58) 

0.78 

(0.29-2.08) 

0.27 0.62 

Brain swelling 15% 0.83 

(0.26-2.69) 

1.17 

(0.39-3.51) 

0.76 0.78 

Midline shift 22% 0.69 

(0.253-

1.87) 

0.79 

(0.31-2.05) 

0.46 0.63 

Compressed Cisterns 6% 0.19 

(0.03-1.11) 

0.18 

(0.02-1.63) 
0.04 0.09 

Table 66 CT findings of the population studied. (continued) 
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Table 67 (Page 370, Page 371, Page 372 and Page 373) presents the 

results of univariate analyses for vital signs and laboratory measurements. 

Among all the variables (mean and systolic BP, temperature, PH, Hb, Glucose, 

Plt count, PT, hypoxia and ICP), only ICP in both categorical and continuous 

form holds a significant relationship with survival but is unrelated to 

favourable outcome. 
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 Median or 

Frequency% 

Odds ratio 

 

P value  

(Survival) 

P value 

(Favourable 

Outcome) Survival Favourable outcome 

Mean BP [95] Hypotensive (< 85 

mmHg) 

31% 1.5 

(0.40-2.76) 

2.69 

(1.09-6.65) 

0.82 0.1 

Normotensive (85-110 

mmHg) 

49%   

Hypertensive (> 110 

mmHg) 

14% 2.04 

(0.21-

20.05) 

1.82 

(0.31-10.58) 

Systolic BP [95] Hypotensive (< 120 

mmHg) 

57% 0.59 

(0.22-1.57) 

0.99 

(0.40-2.44) 

0.48 0.19 

Normotensive (120-150 

mmHg) 

31%  - 

Hypertensive (> 150 

mmHg) 

6% 1.19 

(0.28-4.98) 

0.33 

(0.09-1.18) 

Temperature [35] Normothermia 55%   0.2 0.08 

Hyperthermia (> 38) 19% 0.42 

(0.11-1.63) 

0.38 

(0.13-1.16) 

PH Continuous 7.4 0.23 

(0.00-

56.99) 

2.19 
(0.01-489.22) 

0.6 0.78 

categorical
§
 normal 34%     

Alkalosis (> 7.45) 24% 0.69 

(0.23-2.11) 

1.33 

(0.47-3.79) 

0.518 0.594 

Table 67 Vital signs and laboratory measurements of the study patients. The citations refer to the literature where the cut-

offs were obtained. 
§ 
There were no cases recorded as acidosis (PH < 7.35). 
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 Median or 

Frequency

% 

Odds ratio 

 

Survival Favourable 

outcome 

Survival Favourable 

outcome 

Hb Continuous 99.5 1.01 

(0.99-1.03) 

1.00 

(0.98-1.02) 

0.41 0.87 

Categorical Anemia (< 135 mmg/dl in 

makes and < 116 mmg/dl in 

females) [169] 

88% 0.40 

(0.07-2.10) 

0.44 

(0.08-2.51) 

0.26 0.34 

normal 6%   

Glucose Continuous 6.7 1.02 

(0.96-1.08) 

1.00 

(0.96-1.05) 

0.97 0.32 

Categorical Cut-offs of 

2.5 and 11 

[170, 171] 

Hypoglycaemia -   0.84 0.34 

Normoglycemia 88%   

Hyperglycaemia 6% 0.84 

(0.14-4.87) 

0.44 

(0.08-2.51) 

Table 67 Vital signs and laboratory measurements of the study patients. The citations refer to the literature where the cut-

offs were obtained. 
§ 
There were no cases recorded as acidosis (PH < 7.35). (continued)
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 Median or 

Frequenc

y% 

Odds ratio 

 

Survival Favourable outcome 

Survival Favourable outcome 

Glucose 
(Continued 

from  the 

previous 

page)  

Categorical  Cut-off 

of 6 

[97] 

Hypoglycaemia 28%   0.085 0.278 

Hyperglycaemia 66% 1.17 

(0.45-

3.05) 

0.61 

(0.25-1.50) 

Plt Continuous 150 1.00 

(0.99-

1.01) 

1.00 

(0.99-1.00) 

0.46 0.97 

Categorical Cut-offs 

of 100 

and 450 

[172] ¥ 

Thrombocytopeni

a 

16% 2.11 

(0.70-

6.39) 

1.500 

(0.51-4.43) 

0.18 0.46 

Normal 78%   

Cut-off 

of 200 

[97] 

thrombocytopenia 74% 1.35 

(0.44-

4.17) 

0.69 

(0.26-1.88) 

0.6 0.52 

normal 20%   

Table 67 Vital signs and laboratory measurements of the study patients. The citations refer to the literature where the cut-

offs were obtained. 
§ 
There were no cases recorded as acidosis (PH < 7.35).¥: there were no cases with thrombosis (i.e. Plt 

count > 450) (continued)
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 Median or 

Frequency% 

Odds ratio 

 

Survival Favourable outcome 

Survival Favourable outcome 

PT 17.7 0.91 

(0.75-

1.11) 

1.02 

(0.86-1.22) 

0.36 0.8 

Hypoxia 0   - - 

ICP Continuous 13 0.91 

(0.85-

0.97) 

0.94 

(0.89-0.99) 
<0.005 0.06 

Categorical Normal 67%   <0.005 0.08 

Increased (> 

20 mmHg) 

[35] 

19% 0.22 

(0.08-

060) 

0.43 

(0.17-1.11) 

Table 67 Vital signs and laboratory measurements of the study patients. The citations refer to the literature where the cut-

offs were obtained.(continued) 
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8.4.1. Importance of prognosticators in multivariate 

models 

Table 68 (Page 375 and Page 376) and Table 69 (Page 377 and Page 378) 

display the odds ratios along with the significance of association on each 

covariate with survival (Table 68 ) and favourable outcome (Table 69 ) in the 

models which were constructed.  
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Table 68 Odds ratios and significance of relationships of each covariate in various models investigated for survival and 

favourable outcome prediction. The numbers in the parentheses are 95% confidence intervals. The significant associations 

are starred (*: marginally significant i.e. p value <0.10 but >0.05, **: significant i.e. p value < 0.05, ***: p value < 0.005).  

 Model A 

without 

S100B 

Model A with 

S100B 

Model B 

without 

S100B 

Model B with 

S100B 

S100B 

Model 

Expanded 

S100B model 

(A) 

Expanded 

S100B model 

(B) 

Survival 

Age 0.99 

(0.96-1.01) 

1.01 

(0.98-1.04) 

0.99 

(0.95-1.02) 

1.01 

(0.97-1.06) 

  1.01 

(0.97-1.06) 

Severe GCS 0.33 

(0.09-1.27) 

0.42 

(0.11-1.69) 

0.32 

(0.08-1.28) 

0.42 

(0.10-1.74) 

   

Pupillary 

reactivity 

Both 

reactive 

       

Only one 

reactive 

0.44 

(0.11-1.75) 

0.46 

(0.17-2.01) 

0.4 

(0.10-1.66) 

0.42 

(0.09-1.97) 

 0.43 

(0.10-1.94) 

0.35 

(0.07-1.66) 

Neither 

reactive 

0.98 

(0.32-2.94) 

1.65 

(0.47-5.76) 

0.98 

(0.31-3.06) 

1.73 

(0.47-6.37) 

 1.92 

(0.50-7.28) 

2.12 

(0.55-8.11) 

ISS 0.49 

(0.10-2.31) 

0.88 

(0.18-4.30) 
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 Model A 

without 

S100B 

Model A 

with S100B 

Model B 

without 

S100B 

Model B with S100B S100B 

Model 

Expanded 

S100B model 

(A) 

Expanded 

S100B model 

(B) 

Survival 

Cause of 

injury 

RTC        

Fall   0.47 

(0.05-4.46) 

0.7 

(0.06-8.19) 

  0.8 

(0.07-9.83) 

Assault   0.64 
(0.00-235) 

1.34 
(0.003-581) 

  0.61 
(0.001-255.) 

Sports   0.03 
(0.00->10 

3
) 

<0.005 
(0.00->10

3
) 

  0.003 

(0.00->10
3
) 

Interaction 

of cause of 

injury and 

age 

RTC        

Fall   1.01 

(0.96-1.07) 

0.99 

(0.94-1.05) 

  0.99 

(0.93-1.05) 

Assault   1.03 

(0.86-1.23) 

0.99 

(0.83-1.20) 

  1.02 

(0.84-1.22) 

Sports   1.11 

(0.44-2.8) 

1.19 

(0.47-2.98) 

  1.22 

(0.48-3.08) 

Brain swelling   0.63 

(0.17-2.28) 

0.69 

(0.17-2.87) 

  1.22 

(0.48-3.01) 

Increased ICP      0.29** 

(0.09-0.88) 

 

Compressed cisterns      0.08 

(0.01-0.59)** 

0.1 

(0.01-0.67)** 

S100B  0.44 

(0.25-0.80)** 

 0.39 

(0.21-0.73)** 

0.49 

(0.30-0.80)*** 

0.42 

(0.24-0.75)*** 

0.34 

(0.18-0.66)*** 

Table 68 Odds ratios and significance of relationships of each covariate in various models investigated for survival and 

favourable outcome prediction. The numbers in the parentheses are 95% confidence intervals. The significant associations 

are starred (*: marginally significant i.e. p value <0.10 but >0.05, **: significant i.e. p value < 0.05, ***: p value < 0.005). 
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Table 69 Odds ratios and significance of relationships of each covariate in various models investigated for survival and 

favourable outcome prediction. The numbers in parantheses are confidence intervals. The significant associations are 

starred (*: marginally significant i.e. p value <0.10 but >0.05, **: significant i.e. p value < 0.05, ***: p value < 0.005) 

(continued) 

 Model A 

without S100B 

Model A with 

S100B 

Model B 

without S100B 

Model B with 

S100B 

S100B 

model 

Expanded 

S100B model 

(A) 

Expanded 

S100B model 

(B) 

Favourable outcome 

Age 0.95 

(0.93-0.98)*** 

0.97 

(0.94-0.10)** 

0.94 

(0.89-0.98)** 

0.95 

(0.89-1.01)* 

 0.97 

(0.94-0.98)** 

0.95 

(0.89-1.01)* 

Severe GCS 0.33 

(0.10-1.10)* 

0.37 

(0.09-1.48) 

0.28 

(0.07-1.08)* 

0.32 

(0.07-1.51) 

 0.37 

(0.09-1.49) 

0.32 

(0.07-1.52) 

Pupillary 

reactivity 

Both reactive        

Only one reactive 0.11 

(0.01-1.00)** 

0.1 

(0.01-0.94)** 

0.07 

(0.007-0.79)** 

0.06 

(0.004-0.79)** 

 0.1 

(0.01-0.94)** 

0.06 

(0.004-0.79)** 

Neither reactive 0.61 

(0.21-1.75) 

1.14 

(0.33-3.95) 

0.63 

(0.21-1.95) 

1.26 

(0.32-5.05) 

 1.15 

(0.33-3.98) 

1.27 

(0.32-5.05) 

ISS 0.41 

(0.09-1.93) 

0.81 

(0.15-4.45) 

     

Cause of 

injury 

 

 

RTC  

 

      

Fall   0.48 

(0.04-5.14) 

0.41 

(0.02-7.35) 

  0.41 

(0.02-7.31) 

Assault   0.18 

(0.00-104.82) 

0.31 

(0.00-296.42) 

  0.33 

(0.00-294.278) 

Sports   0.02 

(0.00->10 
3
) 

<0.005 

(0.00->10 
3
) 

  0.001 

(0.00->10 
3
) 
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Table 69 Odds ratios and significance of relationships of each covariate in various models investigated for survival and 

favourable outcome prediction. The numbers in parantheses are confidence intervals. The significant associations are 

starred (*: marginally significant i.e. p value <0.10 but >0.05, **: significant i.e. p value < 0.05, ***: p value < 0.005) 

(continued).  

 Model A 

without 

S100B 

Model A with 

S100B 

Model B 

without S100B 

Model B with 

S100B 

S100B 

model 

Expanded 

S100B 

model (A) 

Expanded 

S100B model 

(B) 

Favourable outcome  

Interactio

n of cause 

of injury 

and age 

RTC        

Fall   1.03 

(0.97-1.10) 

1.03 

(0.95-1.11) 

  1.03 

(0.95-1.11) 

Assaul

t 

  1.12 

(0.91-1.38) 

1.1 

(0.88-1.36) 

  1.09 

(0.88-1.36) 

Sports   1.15 

(0.46-2.88) 

1.32 

(0.53-3.30) 

  1.32 

(0.53-3.30) 

Brain swelling   0.83 

(0.23-3.07) 

0.91 

(0.21-4.08) 

   

Mass lesion        

S100B  0.22 

(0.10-0.49)*** 

 0.18 

(0.07-0.45)*** 

0.21 

(0.10-0.44)*** 

0.21 

(0.10-0.48)*** 
0.18 

(0.07-0.45)*** 
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Models A and B with and without S100B: The blank cells related to 

these models in Table 68 and Table 69 are those variables which are not 

contained in the respective TARN TBI model. In both models A and B none of 

the covariates show significant associations with survival status and this still 

holds after S100B was added, whilst S100B is the only significant predictor in 

both models. Also adding S100B to these models resulted in a significant 

decrease in the deviance according to Chi square test. For  favourable outcome 

prediction (Table 69), only pupillary reactivity competes with S100B in models 

A and B holding a statistically significant association. Age also appears 

significant in model A without S100B, Model A with S100B and model B 

without S100B but this is marginal in model B with S100B (5% < p value < 

10%). The other marginally important factor is severe GCS in models without 

S100B.  

S100B model and expanded S100B models A and B: Construction of 

expanded S100B models A and B was with the inclusion of covariates from the 

TARN TBI models A and B along with those predictors found significant in 

univariate analysis (Table 65 and Table 67); being presence/absence of 

compressed cisterns and ICP for survival and presence/absence of mass lesion 

for favourable outcome. The blank cells are those variables which were absent 

in TARN TBI models A and B, lack significance in univariate analysis or 

discarded during stepwise logistic regression. As seen, S100B on its own has a 

significant influence on outcome be it survival or favourable outcome and 

addition of other factors to S100B models does not change the significance of 

this influence. Amongst those covariates displayed for survival prediction, 

S100B is followed by compressed cisterns (in both expanded S100B models A 
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and B) and then increased ICP (in the expanded S100B model A). For 

prediction of favourable outcome, S100B still holds its dominant significance 

with pupillary reactivity as the second best predictor followed by age 

(significant in expanded S100B model A but marginally significant in 

expanded S100B model B).  

8.4.2.  Models performance  

Table 70  presents the measures of performance of each model to compare the 

constructed models for survival or favourable outcome prediction. As seen, per 

AUC or R
2
 Nagelkerke the worst performing models are those which do not 

include combinations of S100B with other TBI predictors (model A without 

S100B, model B without S100B and S100B model). According to this table, 

also the best models appear to be expanded S100B models A and B (S100B 

plus one or two other predictors). 
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Table 70 Various measures of performance for each constructed model 

(survival).  

.

 Classification 

accuracy 

AUC Nagelkerke 

R2 

HL 

statistics 

Survival 

Model A without S100B 71% 0.64 

(0.52-0.76) 

0.10 0.18 

Model A with S100B 74.7% 0.72 

(0.61-0.83) 

0.20 0.56 

Model B without S100B 70% 0.66 

(0.55-0.76) 

0.11 0.33 

Model B with S100B 75% 0.77 

(0.67-0.87) 

0.25 0.54 

S100B 73% 0.69 

(0.57-0.80) 

0.15 0.15 

Expanded S100B model 

(A) 

77% 0.78 

(0.66-0.88) 

0.30 0.59 

Expanded S100B model 

(B) 

77% 0.79 

(0.70-0.89) 

0.30 0.42 
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Table 70 Various measures of performance for each constructed model 

(favourable outcome).  

 

Comparing the performance of S100B model with model A without S100B 

and model B without S100B (the first objective of the study): This can address 

the question as to which prognostic tool among S100B or a prognostic model is 

better. Figure 27 and Figure 28 show the ROC curves of these models to 

respectively predict survival and favourable outcome. According to the graphs, 

 Classification 

accuracy 

AUC Nagelkerke 

R2 

HL 

statistics 

Favourable outcome 

Model A without S100B 67% 0.76 

(0.67-0.85) 

0.27 0.24 

Model A with S100B 76% 0.84 

(0.76-0.92) 

0.46 0.25 

Model B without S100B 70% 0.78 

(0.70-0.87) 

0.11 0.85 

Model B with S100B 77% 0.86 

(0.79-0.94) 

0.52 0.94 

S100B 67% 0.77 

(0.68-0.86) 

0.32 0.02 

Expanded S100B model 

(A) 

76% 0.84 

(0.76-0.91) 

0.46 0.73 

Expanded S100B model 

(B) 

77% 0.87 

(0.80-0.94) 

0.52 0.95 
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the differences in AUCs do not appear significant (the constant line versus the 

dashed lines).  
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Figure 27 The ROC curves of models A and B without S100B and S100B 

model for survival prediction 
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Figure 28 The ROC curves of models A and B without S100B and S100B 

model for favourable outcome prediction. 
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 Table 71 provides the differences in models performance across various 

measures (for example: AUC of S100B model minus AUC of model A without 

S100B = 73% - 71% = 2% for survival prediction). According to this table, 

AUC of S100B model does not appear to be highly different to that from 

models A and B without S100B to predict either survival or favourable 

outcome (the difference less than our clinical significance of 0.05). This is also 

the case for Nagelkerke R
2 

showing
 
a difference of less than 0.05 and also for 

classification accuracy showing a difference of less than 10%.  
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Table 71 The performance of S100B model versus models A and B without 

S100B (the figures demonstrate the difference in the respective measure of 

performance across the compared models) 

 

Changes in the performance of models A and B following the addition of 

S100B (the second objective of the study): This would address the added value 

of S100B to prognostic models. Figure 29 and Figure 30 show the ROCs 

curves of models to respectively predict survival and favourable outcome. 

According to graphs, adding S100B model to models A and B results in 

increase of AUC (thin lines versus the thick lines).  

 Classification 

accuracy 

AUC R
2 

Nagelkerke 

Survival 

S100B versus 

model A without 

S100B 

2% 0.05 0.05 

S100B versus 

model B without 

S100B 

3% 0.03 0.04 

Favourable outcome 

S100B versus 

model A without 

S100B 

0 0.01 0.05 

S100B versus 

model B without 

S100B 

3% 0.01 0.21 
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Figure 29 The ROC curves of models A and B with and without S100B for 

survival outcome prediction.  
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Figure 30 The ROC curves of models A and B with and without S100B for 

favourable outcome prediction.
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Table 72 provides the differences in the performance of models prior 

and following addition of S100B. According to this table, the increases in 

model‟s AUC are clinically significant; being 0.08 for model A after adding 

S100B to predict survival or favourable outcome and also for model B to 

predict favourable outcome. For survival prediction, the increase in AUC of 

model B is even greater still at 0.11. Similarly, the increases in Nagelkerke R
2 

with S100B are high in both models A and B for either outcome prediction. 

With regards to classification accuracy, this index of performance increases 

after addition of S100B, although the degree of increase is varied and not close 

to the clinical significance (i.e. an increase of 10%) at all times.  
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Table 72 Comparing the performance of Models A and B with and without 

S100B (the figures demonstrate the difference in the respective measure of 

performance across the models compared) 

 

Changes in the performance of the S100B model following 

construction of expanded S100B model A or B (the third objective of the 

 Classification 

accuracy 

AUC R
2 

Nagelkerke 

Survival 

Model A without 

S100B versus 

Model A with 

S100B 

3.7% 0.08 0. 10 

Model B without 

S100B versus 

Model B with 

S100B 

5% 0.11 0.14 

Favourable outcome 

Model A without 

S100B versus 

Model A with 

S100B 

9% 0.08 0.19 

Model B without 

S100B versus 

Model B with 

S100B 

7% 0.08 0.41 
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study): This should be considered to assess how the prognostic strength of 

S100B would improve after other TBI prognosticators are taken into account. 

Figure 31 and Figure 32 demonstrate the ROC curves of these models for 

respectively survival and favourable outcome prediction. It can be observed 

that the AUC of S100B model appears to rise following addition of other TBI 

prognosticators (the dot line versus the constant lines). 
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Figure 31 The ROC curves of S100B model and expanded S100B models A 

and B for survival prediction.  
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Figure 32 The ROC curves of S100B model and expanded S100B models A 

and B for favourable outcome prediction. 
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Table 73 gives the differences in model performance following adding 

other variables to the S100B model. The AUC of S100B model increases by 

0.09 and 0.07 respectively following construction of expanded S100B model A 

for survival and favourable outcome prediction. This increase is also of similar 

magnitude for expanded S100B model B at 0.1 for both types of outcome 

prediction. Similarly, Nagelkerke R
2 

 increases by 0.15 and 0.14 in expanded 

S100B model A respectively for survival and favourable outcome prediction and 

this increase is still significant for the expanded S100B model B being 0.14 and 

0.20. However, the change in classification accuracy for survival prediction is 

low (less than our clinical significance of 10%) in both expanded models 

whereas this is high for favourable outcome prediction. 
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Table 73 The performance of S100B versus expanded S100B model A and 

B (the figures demonstrate the difference in the respective measure of 

performance across compared modesl).  

 Classification 

accuracy 

AUC R
2 

Nagelkerke 

Survival 

S100B model 

versus expanded 

S100B model A 

4% 0.09 0.15 

S100B model 

versus expanded 

S100B model B 

4% 0.10 0.15 

Favourable outcome 

S100B model 

versus expanded 

S100B model A 

9% 0.07 0.06 

S100B model 

versus expanded 

S100B model B 

10% 0.10 0.20 
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8.5. Discussion  

In this study, the two common prognostic tools (prognostic models and 

a brain injury biomarker) in TBI were compared in a multivariate analysis by 

constructing two types of models: prognostic models containing a composite of 

important clinical prognosticators and a model which only contains S100B. 

The results show that these two prognostic tools do not differ in their 

performance per AUC, Nagelkerke R
2 

and classification accuracy. However, 

following addition of S100B to TBI prognostic models (TARN TBI models A 

and B), the performance of the models improve per AUC and Nagelkerke R
2
. 

Furthermore, taking other important TBI prognosticators into account along 

with S100B in a prognostic model improves the S100B prognostic strength. In 

all models which contain S100B and other predictors, S100B appears to be the 

most reliable predictor, showing a significant effect on outcome at all times.  

8.5.1. Limitations  

Our series suggests that including S100B with two or three other 

important TBI prognosticators would provide a stronger prognostic tool than 

either alone. It was hoped that the results of the multivariate analysis of the 

S100B dataset would provide the precise information on the relative prognostic 

importance of each variable contained in the models. However, in this study 

the findings for survival prediction are significantly different to that for 

favourable outcome prediction and also to the literature [23, 24, 31, 92]. For 

example, only compressed cisterns (as in expanded models A and B) and the 

increased ICP (as in expanded S100B model A) were found to be significant, 

with all other variables being insignificant. For favourable outcome prediction, 



 395 

despite pupillary reactivity being present in all constructed models for outcome 

prediction with age being present in 5 out of 7 models, compressed cisterns and 

increased ICP were never found to be significant. Overall, our results can not 

suggest the most important TBI prognosticators to be included in a „small‟ 

prognostic model. This is because of the differences of our results regarding 

most important prognosticators between the two types of outcome and also 

because of the differences of the results with the literature which suggests 

important prognostic strength for age, GCS and pupillary reactivity. However, 

we believe our data suggest that S100B combined with 1 or 2 predictors out of  

age, pupillary reactivity and GCS is able to provide a strong prognostic tool in 

that these three variables are shared by currently well-developed prognostic 

models i.e. CRASH and IMPACT models.  

 

Sample size  

 

It should be noted that the objective of our study was not to construct a 

prognostic tool which could be reliably reproduced in other population of TBI 

cases. We performed a comparative analysis of various models in our dataset 

of 100 cases to investigate which of the current prognostic tools might be a 

stronger predictor of outcome and due to the small population sample the 

characteristics of the final models are not reliable. However, despite the small 

dataset, we believe our findings are valuable for comparing the performance of 

the various models with each other. The comparisons were made, firstly, across 

three measures of model performance i.e. AUC, Nagelkerke R
2
 and 

classification accuracy, secondly, on more than one pair of models and thirdly, 
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for the prediction of more than one type of outcome i.e. survival and 

favourable outcome. From all these aspects the results of comparisons are 

consistent. However, the number of cases prevents model differences being 

statistically as well as clinically significant hence the overlaps in AUC 

confidence intervals (Table 70).  

Furthermore, although the increase in classification accuracy is not 

close to the our cut-off of clinical significance (i.e. > 10%) at all times, the 

clinically significant changes in AUC or Nagelkerke R
2
 would support the 

study findings. For example, although adding S100B to models A and B or 

adding other TBI predictors to S100B model does not yield an increase of 10% 

in classification accuracy for survival prediction, the increases in AUC and 

Nagelkerke R
2
 are large enough to be considered clinically significant per the 

cut-off of 0.05. In fact, AUC and Nagelkerke R
2
 are more reliable to compare 

competing models in that if a model holds higher AUC and Nagelkerke R
2
, this 

model holds a better performance even if the classification accuracy is not 

different.  

8.5.2. Comparison with the literature  

With regards to the combination of a brain injury biomarker with other TBI 

prognosticators to obtain a more reliable predictive power, the results of our 

study are consistent with other studies. Diminopoulou et al.  observed that a 

prognostic model which contains age, GCS and S100B performs better than 

one without S100B [165]. Similarly, Vos et al.  constructed a prognostic model 

which only contained clinical characteristics namely GCS and CT Marshal 

Classification [139] and demonstrated the improvement in the model 

performance following adding S100B, Glial Fibriliary Protein Acidic Protein 
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(GFAP) and Neuron Specific Protein (NSP) [43]. The two latter serum proteins 

have been shown in some studies to be raised in TBI which, similar to S100B, 

may have prognostic value as well. However, we observed a stronger 

predictive power can be obtained with only S100B in combination with other 

predictors routinely measured. To the best of our knowledge, no researchers 

have, so far, attempted to compare the two current prognostic tools (proposed 

prognostic models versus brain injury biomarkers), in terms of their relative 

predictive strength. This is an important comparison since we found no 

significant difference in the performance of these two current prognostic tools. 

This goes against the conclusion by many authors that S100B may not hold 

enough prognostic strength in TBI [67, 77, 82, 98, 173]. Should other 

prognosticators be taken into account, S100B could be a good tool perhaps 

even superior to current multivariate models.  

8.5.3. Implications of the study  

It is currently acknowledged that the most reliable of the available TBI 

prognostic models are those developed from the CRASH and the IMPACT 

datasets. Both of these models have been derived from a large cohort of TBI 

cases ( > 10,000 cases). Conspicuously, collection of such large numbers of 

TBI cases occurs over a long period of time and requires devotion of a huge 

amount of funding and resources. We observed that S100B on its own has the 

same prognostic strength as the prognostic models when identification of its 

prognostic characteristics in a univariate analysis does not entail accruing a 

large dataset. For instance, the pilot study in our centre demonstrated that a 

dataset of 100 TBI patients should suffice to investigate the prognostic 

characteristics of S100B. One may argue that collection and recording of data 
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from TBI cases may also occur within ongoing procedures such as in trauma 

registries. However, it is unclear how often a TBI prognostic model requires 

updating to take account of improved trauma care policies, new advances in 

management and therapeutic approaches. The time frame to update a 

prognostic model may also not provide an adequate number of TBI cases for 

construction of a reliable prognostic model. The major advantage of prognostic 

models over S100B appears to be the value of each covariate in the model 

being easily obtainable in the clinical notes because they are routinely 

measured. However, measuring S100B serum level is currently not a part of 

routine clinical practice but should its use increase, cost would decrease. In 

fact, the costly research into developing a prognostic model which uses 

commonly measured clinical data should be contrasted with the possible lower 

cost of measuring S100B in every TBI patient which can be included as a part 

of routine blood sampling.  

Among all constructed models, expanded S100B models A and B are 

the best per three measures of performance (AUC, Nagelkerke R
2
 and 

classification accuracy). These two models, apart from S100B, include only 1 

or 2 other covariates. This may imply that combination of S100B with 1 or 2 

other TBI prognosticators could provide a stronger prognostic tool than either 

multivariate models without S100B or S100B in isolation.  

In this study, we investigated the effect of many important prognostic 

factors (ranging from demographic and clinical observations to CT findings, 

vital signs and laboratory measures) and observed that S100B shows a 

significant effect on outcome in all models which contain this covariate. This is 

not the case with other predictors. This finding suggests an important clinical 
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implication in that S100B could be the most reliable factor among other 

measures such as GCS, pupillary reactivity or even ICP to monitor the course 

of brain injury [65].  

8.5.4. Future direction  

We embarked on the current project on the basis of limited literature on 

comparing prognostic models and brain injury biomarkers. As such, it is 

important to establish which prognostic tool is better and whether or not the 

combination of the two would be a better option. Whilst examining this 

requires a large dataset of TBI cases, we decided to first analyse the relatively 

small TBI data available to us. In this small sample, prognostic models do not 

appear significantly different to S100B. Similarly, their combinations either by 

adding S100B to prognostic models or considering one or two other TBI 

prognosticators along with S100B may be a better option. However, these 

results have to be validated in a larger TBI series. Similarly, we believe the 

idea of S100B (or brain injury biomarkers) versus prognostic models needs to 

be considered and taken forward in investigation on accurate prognosis in TBI. 

Had the results obtained on our small sample of S100B data been different 

(such as no significant improvement of performance in combination of S100B 

and prognostic models), then future research on this would appear less 

important. However, comparing prognostic models with biomarkers or 

assessing their combinations is a problem in medicine in general [174] and in 

TBI prognosis in particular [88]. This is because multivariate analysis requires 

much large datasets which are costly and time consuming to accrue for S100B. 

It is stated that the adequate sample size for modelling should include 500 

subjects [159].  
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8.6. Conclusion 

A comparisons of performance of the two currently used prognostic tools in 

TBI; a) multivariate prognostic models and b) laboratory biomarkers (in this 

study S100B) was shown to have an equivalent performance. However, S100B 

individually has the strongest influence on outcome. A future prognostic model 

which may perform better to predict outcome would be one which combines 

the S100B laboratory biomarker with a minimum of 1 to 2 TBI clinical-

demographic prognostic factors. This, however, requires to be examined in a 

larger cohort of TBI cases.  
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8.7. Expansion on methods  

8.7.1. Data collation/missing information  

Due to the retrospective collation of some patients‟ data, strategies were 

implemented to minimise the amount of missing information particularly on 

clinico-demographic values. Whilst the values for age, cause of injury, CT 

features and ISS were available in the original study dataset, information on 

GCS and pupillary reactivity was obtained from case notes, Electronic Patient 

Records (EPR) and TARN. These sources were not uniform in data recording 

in that, for example, admission GCS might have been available in TARN when 

missing in EPR. Therefore, for clinico-demographic data, all sources were 

searched for the following time points: - at scene of injury, en route and on 

admission to the first hospital (in case of transfer) and subsequently at the 

earliest time point following admission to ICU (the observations could be 

recorded by either clinicians or the nursing staff). Subsequently, missing 

admission values were imputed with en route, at scene and finally from the 

earliest time point following admission to ICU. However, this strategy still 

yielded 10% and 15% missing values on GCS and pupillary reactivity 

respectively. Similarly, with the patients‟ identifiers, the EPR was searched for 

laboratory values. This resulted in 42%, 7%, 6%, 6%, 6%, 7% missing values 

respectively on PH, Glucose, Hb, Plt count and PT. There was no limitation for 

the length of elapsed time on either side of 24-hours (earlier or later) to spot the 

closest measurement; had the information been missing at this exact time point. 

However, if the difference between the closest time of recording was more than 

24 hours different to the time point of 24 hours following the injury, the value 
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was then counted as missing. Since all patients were enrolled from the ICU, it 

was possible to access the observations on their vital signs along with O2 Sat. 

and ICP electronically recorded every 10 minutes during the ICU stay. There 

were only 74% cases with their temperature recorded [175] (38% rectal 

temperature and 36% brain temperature) which means 26% cases with missing 

information on this variable (rectal temperature was imputed with brain 

temperature). However, the amount of missing data was far lower for systolic 

blood pressure, mean blood pressure and ICP retrospectively at 6%, 6%, and 

8%. 

 

8.7.2. Data preparation/continuous versus categorical  

 

Clinicodemographic variables 

 

Fractional polynomials analysis showed that whilst age held linear relationship 

with logarithmic odds of both types of outcome, this is not the case for ISS and 

continuous GCS. Nonetheless, unlike ISS, GCS presented a significant 

association with both outcome measures of favourable outcome or survival in 

the continuous form by Mann Whitney U test. Therefore, for GCS, initially 

cut-offs of 9 and 12 were used to categorise this variable into mild, moderate 

and severe GCS. However, this categorisation resulted in no significant 

relationship with outcome by Chi square test and thus mild and moderate 

categories were merged together to group GCS values into severe (GCS < 9) 

and not severe (GCS ≥ 9) which yielded a significant association. On the one 

hand, GCS was significantly associated with outcome continuously but could 
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not be used in the multivariate model without transformation and on the other 

hand, its categorical form with 3 categories did not show significant association 

with outcome as per Chi square test. Since transformation of continuous GCS 

by means of fractional polynomials was expected to yield complicated 

mathematical calculations on a small sample size of only 100 cases, the 

decision was made to use GCS categorically rather than continuously. 

Regarding ISS, initially, cut-offs points of 8, 15. 24, 40 and 75 were used 

[176]. Nonetheless, due to small sample of cases within each range of ISS: 9 to 

15 (only one case) and ISS: 41 to 75 (only seven cases) with no case recorded 

as ISS less than 8, ISS: 9-15 was pooled into ISS: 16-24 with ISS: 41-75 

merged with ISS: 25-40. Therefore, ISS was left with two categories of 3 to 24 

and 25-75. Further, for identification of cases with extracranial injury, 

extracranial AIS scores > 2 were used as the criterion.  

 

S100B  

 

S100B showed a linear relationship with either survival or favourable outcome 

as per fractional polynomials analysis and therefore was analysed only 

continuously.  

 

CT features 

 

CT reports of patients were available from the original dataset and therefore 

using these reports the appropriate Marshal Class using the algorithm 

suggested by Maas et al. [94] were allocated to each case. However, Marshal 



 404 

Class IV was merged with the Marshal Class V because there were only one 

case with Marshal Class IV. Furthermore, other traditional descriptive terms 

for structural brain damage proposed by literature were also applied as nominal 

(yes/no) variables; being brain swelling, mass lesion, midline shift, cisterns, 

SAH, SDH, EDH, haemorrhage and contusion..  

 

Vital signs, O2 Sat. and ICP 

 

Cut-off points of 120 and 150 were used to categorise systolic blood pressure 

into hypotension, normtension and hypertension with 85 and 110 for mean 

blood pressure as proposed in the IMPACT study [95]. Furthermore, 

temperature values were first grouped into hypothermia (< 35 ° C; based on 

IMPACT [96]), normothermia (> 35 ° C but < 38 ° C) and hyperthermia (> 38 

° C; based on Signorini‟s study [35]) and since there was only one case within 

the hypothermic group, this was merged with normothermia. Furthermore, 

there were no cases with hypoxia recorded in the dataset. Consequently, 

hypoxia was discarded at this early stage from further analysis. Regarding ICP, 

fractional polynomials analysis did not prove a linear relationship with 

outcome. However, it was observed this variable holds significant correlation 

with survival in its continuous form. Using the cut-offs of 20, 30 and 40 as 

suggested by Signorini et al.  [35] to categorise ICP into mildly, moderately or 

severely raised ICP did not affect this significance. Using this categorisation, 

there were no cases within the severely increased group with only 6 cases in 

the moderately increased group. Because of this, all severities of raised ICP 

were merged into one group to have only two categories as raised ICP versus 
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normal ICP. The results demonstrated that both categorisations (either with 

four categories or with two categories) were significantly associated with 

survival but not favourable outcome. In the modelling procedure, ICP with two 

categories was included.  

 

Laboratory values 

 

Although the effect of PH, Hb, glucose, Plt count and PT on outcome are 

expected to flatten in the normal range values, in the IMPACT dataset, these 

parameters demonstrate a linear relationship with outcome with no obvious 

threshold point. Therefore, all laboratory measures were also continuously 

assessed along with their categorical form. For PH, cut-offs of 7.35 and 7.45 

were used to categorise PH values into acidosis, normal and alkalosis. 

Nevertheless, there were only 4 cases with acidosis and thus these cases were 

included in the normal group. For Hb, the upper and lower normal limits were 

employed to categorise this variable. The cut-offs  were different per gender 

(normal range: males: 135-180 mg/dl and females: 115-160 mg/dl) [169]. 

Using this categorisation, the dataset contained only one male case with Hb of 

above 181 which was then included in the normal range group resulting in the 

dataset containing no case with high Hb. Similarly, the upper and lower limits 

of 2.5 mmol/dl and 11 mmol/dl [171] [170] were used to recode glucose values 

into hypoglycaemia, normoglycemia and hyperglycaemia. Along with this 

categorisation, the cut-off of 6 mmol/dl as observed in the IMAPACT study 

[97] as the changing point in the trend of the influence of glucose on outcome 

was also tested. Additionally, since a similar change in the trend was observed 
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by the IMPACT for the Plt count at the value of 200 × 10
3 

[97], this value was 

used to categorise Plt count into thrombocytopenic versus normal group. 

However, along with this categorisation, Plt count was also categorised using 

the cut-offs of 100 and 450 which conventionally groups the values into 

thrombocytopenia, normal and thrombocytosis [172, 177]. Regarding PT, using 

9 min. and 12 min. as the upper and lower limits of normal range yielded no 

cases within the normal and below-the-normal-range groups and thus this 

variable was only continuously analysed. 

The performance of TARN TBI prognostic models (models A and B) 

[168] was assessed on the study dataset. Adaptations of these models to the 

dataset in this study included using GCS with two categories (severe and non-

severe GCS), using pupillary reactivity with three categories (normal, only one 

reactive and both reactive) and omission of hypoxia, brain stem injury and 

extracranial injury due to the small number of cases with each of these 

observations (there were no cases recorded with hypoxia or brain stem injury 

and there were only 5 cases recorded with extracranial injury which all 

survived till 3 months after injury and only one experienced unfavourable 

outcome).    

8.7.3. Handling missing information  

All the remaining missing information were imputed with multiple imputation 

strategy in Stata.  
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9. Discussion
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In this PhD, tow prognostic models have been constructed and the prognostic 

strength of S100B has been compared with prognostic models and also the 

prognostic strength of combination of these two tools has been examined. 

These next few pages summarise the approach and results in each project.  

 

TARN project  

 

The TARN TBI dataset (n=802) was used for the model derivation. Initially, 

the data were retrieved from TARN based on head AIS codes under internal 

organ in the AIS dictionary plus those skull AIS codes with AIS severity of 3 

or above. Those submissions which did not have their pupillary reactivity 

recorded at any time point were not selected.  

Further TBI data were retrieved from TARN with the same inclusion 

criteria irrespective of pupillary reactivity being recorded or not (n= 21657). 

Then the prognostic strength of various time points of GCS measurement and 

also various sub scores were compared in a multivariate analysis (i.e. following 

adjustment with age and ISS). The results demonstrated that total GCS and the 

motor subscore hold the similar prognostic power with admission 

scores/subscores being stronger than scene scores/subscores. This implied that 

in the modelling admission GCS/motor score may be better than scene 

GCS/motor score and since the number of missing information of motor 

subscore was much higher than that of total GCS in the derivation dataset (167 

versus 26), the admission total GCS was used in the subsequent modelling 

procedure.  
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Parallel to the above analysis, a method was devised to translate the 

brain injury AIS codes to the Marshall Classification facilitating allocation of a 

Marshall Class when AIS codes are at hand. Initially a cross-tabulation was 

devised which was agreed upon from both clinical and AIS coding viewpoints. 

Furthermore, an algorithm was proposed which can allocate one single 

Marshall Class to a TBI patient in a trauma registry who has various AIS codes 

of brain injury recorded. Following this, the cross-tabulation and algorithm 

were programmed in SPSS and thus a Marshall Class was assigned to each 

case in the derivation dataset.  

Subsequently, the univariate analysis was performed using Mann 

Whitney U test for continuous variables i.e. age, GCS, ISS, systolic and mean 

blood pressures and Chi Square test for categorical variables i.e. GCS, gender, 

nationality, cause of injury, extracranial injury, systolic and mean blood 

pressure, hypoxia, various AIS severity scores, the Marshall Classification and 

various intracranial pathologies (T test was never used since none of the 

continuous variables were found normally distributed by one-sample 

Kolmogorov-smirnov test). The univariate analysis demonstrated all variables 

significantly associated with outcome apart from gender, nationality, contusion 

and SDH. Therefore, these variables were excluded from the modelling. 

Furthermore, fractional polynomial analysis was performed to assess the 

assumption of linearity for logistic regression. This analysis demonstrated that 

age has a linear relationship with logit odds of survival and thus can be 

included in the model as „it is‟ (i.e. with no transformation or categorisation). 

However, for other variables the power transformations were required.  
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Following the univariate analyses, logistic regression was run on the 

TARN dataset. First age, GCS, pupillary reactivity, ISS and extracranial injury 

were supplied to one single model with automatic regression. However, it was 

observed that the automatic regression discarded one of the two fractional 

polynomial transformations of GCS. This was not acceptable. Thus this stage 

was run again „manually‟ in that each variable was supplied to the model at 

separate stages. Furthermore, it was observed that extracranial injury is 

significantly associated with outcome when firstly, the cut-off is extracranial 

AIS severity score of 4 and above (and not 3) and secondly, when it is not 

included in the model which contains ISS. This resulted in branching the 

modelling procedure with two parallel models one model including ISS and 

excluding  extracranial injury and the other excluding ISS but including 

extracranial injury. Additionally, it was observed that cause of injury is 

significant only in the model which contains extracranial injury.  

During the modelling procedure, the prognostic value of various AIS 

severities (3, 4 and 5/6), the Marshall Classification and various intracranial 

pathologies were assessed. It was observed that whilst adding the AIS severity 

and the Marshall Classification improves the prognostic strength of 

multivariate models, these may not be accurate in grouping injuries based on 

prognostic merit. This is because not all AIS severities or Marshall Classes 

demonstrated significant association with outcome. Regarding various 

intracranial pathologies namely haemorrhage, SAH, EDH, brain swelling, brain 

stem injury and cerebellar injury, only the brain stem injury and brain swelling 

were significantly associated with outcome. Several models were constructed 

to perform this piece of analysis. However, only those models in which all 
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intracranial pathologies were significant were chosen for the modelling 

procedure. These are two models: one only containing the brain stem injury 

and the other containing the brain stem injury along with the brain swelling.  

The prognostic value of hypoxia, mean and systolic blood pressures 

were also examined. It was discerned that whilst hypoxia is significantly 

associated with outcome, hypertension (as per either mean blood pressure (i.e. 

> 110 mmHg) or systolic blood pressure (i.e. > 150 mmHg) was never 

significant. Thus only hypotension versus normotension (including 

hypertension) was considered. Finally, between systolic and mean blood 

pressure, systolic blood pressure was selected since these two variables could 

not be included in the same model (as they lost their significance) and also the 

model with mean blood pressure did not demonstrate acceptable calibration as 

per HL statistics.  

There were overall 26, 136 and 138 missing cases with admission GCS, 

left and right pupillary reactivity respectively. This missingness was filled with 

the en route and then the scene records which left the dataset with no missing 

values of these variables. However, for hypoxia and systolic blood pressure 

(each with 36 and 114 missing cases), this strategy failed to fill all the missing 

values and thus the cases with missingness were all grouped in a different 

category as „missing‟. 

In the end two models were derived: model A and B. Both models 

contain age, GCS, pupillary reactivity, the brain stem injury, hypoxia and low 

blood pressure. However, model A contains ISS which is absent in model B 

whereas model B contains cause of injury, extracranial injury and brain 

swelling instead. The performance of these models is presented across various 
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indices. They have AUCs of 0.92 (C.I.: 0.90-0.95) and 0.93 (C.I.: 0.91-0.95) 

respectively for models A and B. Model A was externally validated on a 

different serious of TBI from TARN and maintained its performance as per 

AUC (0.92). Model B also demonstrated reasonably good performance in the 

same external dataset (AUC: 0.82). However, the drop in AUC for model B as 

it was re-run in the IMPACT data was somewhat huge (AUC: 0.68 for survival 

prediction and 0.69 for favourable outcome prediction at 6 months). From 

various aspects the proposed models can be considered well-developed 

regarding the strategies taken during the model derivation. 

 

S100B project 

 

The analysis of the first prospective S100B project which the investigator 

contributed to its completion, demonstrated that S100B, 24 hours after injury, 

has a high sensitivity to predict unfavourable outcome or death (more than 

80%) but its specificity is somewhat low (60% for unfavourable outcome and 

49% for death).  

With regards to the second part of S100B project, initially, the patients‟ 

case notes, EPR and TARN were searched for the variables which were not 

recorded in the original S100B study. In fact, the first S100B project only had 

records of age, cause of injury, CT findings and ISS. Subsequently, the 

association of each TBI prognosticator with outcome was assessed with the 

outcome (survival and favourable outcome at 3 months). The TARN TBI 

models A and B derived in the other part of PhD were run on the S100B 

dataset of 100 cases and their performance was compared with the model 
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which included only S100B. The performance was compared across various 

measures namely AUC, Nagelkerke R
2
 and classification accuracy. In order not 

to consider small differences in these indices, the differences of more than 0.05 

were considered „clinically‟ significant for AUC and Nagelkerke R
2
. Similarly, 

the difference of more than 10% was considered clinically significant for 

classification accuracy.  

The results demonstrated that, particularly as per AUC, the difference 

between performance of prognostic models and S100B is not clinically or 

statistically important. Regarding the importance of combinations of S100B 

with prognostic models, S100B was added to TARN models A and B to 

evaluate their change in performance. It was observed that this addition results 

in clinically significant increase in the models performance as per AUC and R
2
 

Nagelkerke. However 95% confidence intervals for AUCs overlapped 

implying inability to show the statistical significance. Similarly, those TBI 

prognosticators which were present in either model A or B or were found 

significant in the univariate analysis were added to the S100B model. 

Following to this, a clinically significant improvement in performance was 

observed as per AUC and Nagelkerke R
2
. However, this improvement was not 

statistically significant.  
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9.1. Limitations  

9.1.1. TARN project 

Summary from the respective papers  

Some limitations of this project have been already discussed in Papers 3, 4, 5 

and 6.  

Paper 3: in the analysis of prognostic value of various GCS subscores 

and the admission scores/subscores versus the scene scores/subscores, it was 

unclear that whether the immeasurable values (i.e. due to intoxication or 

intubation) were assigned as missing (i.e. leaving it blank during data entry) or 

were received the lowest GCS subscore based on the local hospital policy. This 

implies that some lowest GCS subscores in the analysis might represent 

missing values unlike the GCS criteria for the lowest subscore. Similarly, in 

this analysis the adjustment was performed with age and ISS although 

pupillary reactivity is an important confounder too. Furthermore, the definition 

of „admission to the emergency department‟ (the record which was taken from 

TARN as representing admission GCS) varies across hospital in terms of being 

prior to or following resuscitation. This is important as it has been suggested 

that post-resuscitation values may be better for prognostic analysis [137].  

Paper 4: regarding the method which was proposed to assign a 

Marshall Class to a case of TBI in trauma registries, this suffers from some 

limitations as to AIS scores being substitutes to CT reports and the assumptions 

made about the mass lesion and brain swelling. The source of information for 

AIS coding is not only CT and can be MRI or operational notes as well. This 

indicates the dynamic nature of brain injury which is inherited in AIS coding 



 

 

415 

415 

but not the Marshall Classification which is obtained via direct observation of 

CT image. Furthermore, the cut-offs for sizewise categorisations of mass 

lesions in AIS dictionary are different to that in the Marshall Classification. In 

the same way, the criteria to assess the degree of brain swelling are different in 

the two systems (being midline shift and cisterns status in Marshall 

Classification versus only the status of cisterns in the AIS dictionary).  

Paper 5: using AIS codes as substitutes to CT reports is also a 

limitation for the prognostic analysis of various intracranial pathologies in this 

paper as the CT findings/classifications from the literature were used as a basis 

for this analysis. Moreover, brain injury AIS codes are commonly multiple and 

taking only the highest code to assess the prognostic value of AIS scores may 

not be an appropriate approach.  

Paper 6: regarding the proposed final TBI models, the derivation 

dataset may not be a true representative of severe TBI according to TARN 

inclusion criteria. Even within the TARN context and according to the 

selection bias analysis, the derivation dataset was slightly younger than 

excluded TBI cases due to lack of pupillary reactivity recorded. Furthermore, 

children were not excluded from the multivariate analysis although it is thought 

the course of TBI differs in children versus adults.  

 

****** 

The approach taken in model derivation may be „holistic‟. This applies to the 

involvement in overly detailed observations which may not only lack 

importance with regards to their enhancement in the model performance; they 

may in fact disturb the model performance in other populations of TBI. This 
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overly detailed approach in modelling may be reflected in the difference 

between AUC of levels IIIÁ and VIIIB models and the final TARN models A 

and B which is only 0.01 (for model A) and 0.02 (for model B). Despite this 

slight difference, we still proceeded with the modelling since at the very early 

level it was unclear how far the performance of the model(s) would increase. 

This slight degree of difference occurs when levels IIIA and VIIIB models 

respectively contain only 4 or 5 variables (age, GCS, pupillary reactivity and 

ISS in level IIIA model and age, GCS, pupillary reactivity, extracranial injury 

and cause of injury in level VIIIB model) whereas TARN model A contains 

only 3 more variables (brain stem injury, hypoxia and systolic blood pressure) 

and TARN model B contains only 4 more variables (brain swelling, brain stem 

injury, hypoxia and systolic blood pressure). However, although in terms of 

AUC the difference between models IIIA to final models is small, it is unclear 

whether or not this degree of difference is in fact unimportant in the clinical 

context. For example, the AUC of mammography to diagnose breast cancer is 

statistically high (85%) [110] whereas this diagnostic tool has much less value 

in the diagnosis of breast cancer than other tools such as Fine Needle 

Aspiration (FNA) or biopsy. Furthermore, models A and B contain extra 

variables than model IIIA which puts emphasis on the prognostic value of these 

extra variables such as CT findings, hypoxia or hypotension. This is important 

especially with regards to tertiary preventive measures to consider 

interventions to treat CT abnormalities, hypoxia or hypotension in TBI 

patients. However, if the models are to be used to assess and compare the 

quality of care, this degree of difference in AUC may be negligible and models 

IIIA or IIIB may sufficiently serve the purpose.  
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Our series of TBI cases may not be representative of severe TBI cases 

to refute the hypotheses 1 and 2. Although according to TARN inclusion 

criteria, only the profile of those trauma patients who sustained severe injuries 

are submitted to TARN, comparing our dataset of TBI to the IMPACT dataset 

demonstrates that the severity of TBI in TARN is less as per GCS and pupillary 

reactivity. For example, 19.2% of cases in the IMPACT dataset had neither 

reactive pupils whereas this figure was significantly lower in the TARN data at 

16.5%. Even if one wishes to consider severe brain injury as GCS ≤ 8, 35.8% 

of our sample sustained mild brain injury (i.e. admission GCS 15, 14 or 13). 

However, the cases in our dataset had severe injuries enough to stay at hospital 

for more than 3 days or to receive ICU care (or to fulfil other criteria of TARN 

submission reflecting severe injuries). Similarly, all cases had one or more 

head AIS code representative of either intracranial pathology or 

compressed/depressed/open skull fracture.  

One other limitation of the models relate to survival being assessed at 

discharge rather than assessing this at a certain point in time such as 30 days 

after injury. A time-fixed outcome assessment has two important advantages 

over discharge outcome. Firstly, it is well-known that as time passes, the 

probability of death decreases after TBI. As such, varied length of time of 

outcome assessment plays a confounding role as it influences what the 

prognostic models predict which is the probability of survival. Secondly, there 

is a bias to consider some patients with severe TBI who are discharged from 

hospital but end up in rehabilitative centers and subsequently die there. These 

patients are in fact non-survivors of TBI but have been discharged because of 

the severity of injury being deemed unresponsive to any therapeutic 
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intervention. The bias is that this group of patients with severe injuries are 

considered as alive whereas they have not survived their severe injuries.  

 

It is an obvious disadvantage of TARN TBI model B that its 

performance significantly drops in the IMPACT external TBI population and 

one may consider that the same observation would have been observed, had the 

IMPACT had ISS records to externally validate model A (model A was not 

validated on the IMPACT data since ISS was not recorded). The reason for this 

poor external performance may be either significant difference of case-mix 

between the IMPACT and the TARN dataset or the inherent lack of 

transportability in TARN models. The IMPACT dataset pooled various 

datasets from observational and clinical trial studies conducted in varied 

geographical regions (across Europe and the North America) and the endpoint 

of outcome measure was at 6-months after the injury. The IMPACT dataset 

also contained more severe cases of TBI as per GCS and pupillary reactivity. 

Moreover, TARN models hold historic validation as there is not a significant 

drop in performance across various indices where the models are validated in a 

TARN TBI series from a different time period as to the derivation set. 

Similarly, the decrease in performance in the IMPACT dataset does not reflect 

our failure in constructing models suitable for the British trauma care system. 

So far, it is clear that the external performance of the models may be less than 

some IMPACT and CRASH TBI models in terms of some types of 

transportability related to geography, methodology, spectrum and fellow-up 

interval (Paper 1, section 2.8).  



 

 

419 

419 

Handling the continuous variables is one aspect of model development. 

We applied fractional polynomial transformation to address the linearity 

between the continuous variables and the logit odds of survival. During the 

modelling procedure we decided to discard continuous GCS (due to the same 

performance of the model with continuous GCS to the model with categorical 

GCS). Using categorical GCS with three categories of mild, moderate and 

severe may not be an appropriate approach since in this way GCS is not treated 

as a continuous entity. For example, two patients with different GCSs of 4 and 

8 are both put in the same category as severe GCS whereas GCS 8 and 4 are 

numerically different and thus may have different prognostic values. It may be 

that using other methods to address the linearity of GCS with logit odds of 

survival such as spline functions [178] be superior than fractional polynomials 

especially if the resulting model is expected to sustain its performance in other 

external datasets. Although, it is unclear which method to address linearity is 

better from the statistical point of view, using complicated mathematical 

formula proposed by fractional polynomials does not have clinical appeal.  

There are some downsides related to TBI models A and B compared to 

the CRASH and the IMPACT models. First and the utmost is the large 

population sample in which the CRASH and IMPACT models have been 

derived. The CRASH dataset contained more than 2000 TBI cases from high 

income countries and more than 7000 cases from the low to middle income 

courtiers. The IMPACT dataset contained 8509 cases (all from high income 

countries). However, our sample size in TARN was still large enough for 

derivation of a model as the number of patients with the outcome (i.e. 

survivals) was more than 10 times the number of predictors. Furthermore, both 
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the CRASH and the IMPACT models, unlike the proposed model in PhD, do 

not experience a huge drop in performance as per AUC (the IMPACT models 

were validated in the CRASH dataset and vice versa). The other upside of the 

IMPACT and the CRASH models over the TARN models may be related to 

the amount of human resources and expertise devoted to the development of 

such models.  

The derivation of prognostic models on the TARN TBI data was based 

on the argument that the IMPACT and CRASH models may not be valid for 

the British trauma care system. Therefore, one may argue that at the beginning 

these models should have been run on a sample of TBI cases in TARN to 

demonstrate whether or not the models actually lack the validity. Whilst this is 

a clearly missed step in the approach taken in this PhD, the IMPACT group 

have run their model on a subset of TBI cases from TARN and have observed 

an AUCs of between 0.80 and 0.85 for various IMPACT models. Despite this 

degree of performance is much higher than the random guess (i.e. AUC of 

0.50) but there is still scope to obtain a better performance closer to 1. 

Furthermore, this degree of performance is lower than that of the TARN 

general trauma model used for benchmarking of trauma care (Ps07 model; 

AUC = 0.94) [142]. Unfortunately, the CRASH model has not been run on the 

TARN data so far. However, it is not likely that the results of such analysis 

would have changed the procedure to construct a prognostic model for the 

British TBI population. This is because the performance of the CRASH models 

as per AUC dropped when externally validated. In fact, the maximal external 

AUC of the various CRASH models is 0.77. This is much lower than the AUC 

of the TARN general trauma model (AUC = 0.94) [142]. It is not likely that the 
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external validation of the CRASH models would increase in a TARN dataset to 

become close to the current AUC of the Ps07 model. Even in the internal 

validation, the highest AUC of the CRASH models is far below that of the 

Ps07 model (being 0.87). These issues are important with regards to the trauma 

benchmarking since the models used for this purpose overall have much higher 

AUCs than what has been obtained by the IMPACT and CRASH. Whilst from 

clinical perspective the AUCs by the IMPACT and CRASH appear acceptable, 

they are not suitable to offer a national standard which the local trauma care 

can be compared to (given the current TARN model performance for general 

trauma).  

In the same way, the validation of the TARN general trauma model in a 

subset of TBI cases was not performed in this PhD prior to embarking on the 

modeling. This is important since if general trauma models maintain their 

performance in TBI patients, then construction of models specifically designed 

for TBI patients may not be necessary. However, despite in the actual approach 

taken in this PhD, the general trauma models were not validated in the TBI 

dataset (s), the Ps07 model was once run in the derivation dataset of TBI 

models A and B (n=802) following the modeling procedure having been 

already completed. The results demonstrated that the AUC of this model 

underwent a drop in performance from 0.94 to 0.85. This can justify the 

derivation of prognostic models for TBI patients different to those built for 

general trauma patients.  

Although, for the objective of PhD, the prospective study design was 

preferable (as discussed in section 1.7.1), the PhD by design is retrospective. 

This in itself poses problems on those parts of study relevant to the protocol 



 

 

422 

422 

and data collection. Whilst a prospective study offers the possibility that the 

investigator tailors the protocol and data collection to the research objective, in 

a retrospective study only the existing data is analysed. In TARN project, it 

was not possible to assess the prognostic value of some variables such Hb [24], 

temperature [92] or ICP [35] whereas these might have been possible to record 

in a prospective design. In fact, some limitations in TARN project could have 

been eliminated, had the study been prospective such as less strong selection 

bias as per the inclusion criteria and assessing the prognostic value of various 

CT findings.  

9.1.2. S100B project  

Summary from the respective papers  

Some limitations of this project have been discussed in papers 2 and 7 so far.  

Paper 2: there are issues with the blood sampling at 24 hours which 

was merely based on pragmatic reasons and not evidence. However, the patient 

is expected to be more stabilised at this time point than admission. In the same 

way, the flexibility of 2 hours on either side of 24 hours following the injury is 

important as the half life of S100B is thought to be around 2 hours and as such 

significant changes in blood levels can be expected for example from 24 hours 

to 26 hours after injury (a gap of 2 hours in the sampling time which is close to 

the half life).  

Paper 7: the main limitation is the sample size which, despite being 

large enough for the univariate analysis of S100B prognosis, does not offer 

powerful results for the multivariate analysis in refuting the hypotheses 3, 4, 

and 5 (type II error). Similarly, due to this small sample, it was also not 
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possible to suggest which TBI prognosticators can be considered along with 

S100B to predict the outcome in TBI.  

 

****** 

 

For a number of reasons further caution should be taken in 

interpretation of the results of the study having recruited only adult cases. 

Apart from the possible different trajectories of brain injury in children and 

adults, S100B concentration also tends to be higher in healthy children than 

adults. It has been shown that as age increases, S100B serum levels decreases 

up to the age of 20 following which it plateaus [52]. Also, Geyer et al., in a 

sample of 148 children with mild TBI observed that serum levels decrease up 

to the age of 8 followed by an increase [179]. However, it is yet unclear how 

the serum levels of S100B differ in children versus adults following TBI and 

how this possible difference could affect the prognostic strength of S100B. 

Furthermore, S100B is a protein which is synthesized in astroglial cells and 

then reaches the blood stream after passing the blood brain barrier. The 

disposal of this protein is thought to be through renal excretion [180, 181]. 

Thus the kinetic of S100B with regards to its passage through the blood brain 

barrier and the excretion in the kidneys may be different in children and adults 

(this may be similar to the different kinetic of drugs in children versus adults).  

Similarly, one may argue that running the IMPACT or the CRASH 

models might have been superior to TARN models as the IMPACT and 

CRASH models have been externally validated. Nevertheless, the IMPACT, 

CRASH and TARN models share the core TBI prognosticators as age, GCS (or 
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motor GCS as in IMPACT) and pupillary reactivity. The differences of these 

models in terms of their covariates are the type of intracranial pathologies used 

or the inclusion of glucose and Hb in the IMPACT model. It appears unlikely 

that running the IMPACT or the CRASH models on the datasets would lead to 

substantially different results. 

In this study, the multivariate models as one type of prognostic tools in 

TBI were compared to S100B as a biomarker of brain injury. For this analysis, 

S100B was selected based on a search in PubMed to determine the relative 

amount of research/evidence for three commonly known brain injury 

biomarkers in TBI literature: S100B, GFAP and NSE. This approach does not 

necessarily reflect the better prognostic performance of S100B than the other 

two biomarkers. Vose et al.  compared the ROC curves of GFAP, NSE and 

S100B and observed GFAP and NSE have higher AUC to predict 6-month 

GOS < 4 than that for S100B (GFAP: 79.4, NSE: 78.2, S100B: 67.7). Although 

the confidence intervals are not supplied in this article, it may indicate that 

other brain injury biomarkers could be better TBI prognosticators than S100B.  

This study may not be accurate in the definition of severe TBI in 

refuting the hypotheses 3, 4 and 5. Since, cases were enrolled from a neruo-

ICU, this sample of TBI population represents perhaps only the extreme cases 

within the severity spectrum of TBI. Thus the dataset does not contain cases 

who sustained severe brain injury according to some factors such as GCS or 

pupillary reactivity but did not meet the requirements for admission/transfer to 

neuroICU (for example they did not need neurosurgical intervention). This 

may be an important selection bias as those patients who do not end up in 

nuero-ICU (or do not receive neurosurgical care) may not have necessarily a 
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more favourable outcome than those who are supplied with such specialist 

care. Furthermore, with respect to CT findings, the majority of cases (61%) 

sustained brain injury matched with Marshall Class VI followed by Marshall 

Class V (33%) with only 6% of cases holding Marshall Class II (the least 

severe Marshal class in the dataset). Similarly, 94% of cases had haemorrhage 

detectable by CT. This pattern of CT findings conspicuously is not 

representative of the heterogeneity in TBI severity.  

 Similar to the TARN project, some limitations of the S100B project 

arose due to its retrospective nature. This is particularly important with regards 

to the sampling time being 24 hours after injury. Although one may assume 

that at this time point the patient is stabilised and hence effect of secondary 

insult on the brain has settled, the admission sampling may be more important 

for management decisions which may need to be made at an earlier time point 

based on the prognosis.  

9.1.3.  Summary  

The approach taken in the modelling procedure might have been holistic in 

that the first constructed models do not seem to be significantly different to the 

final models as per AUC. Furthermore,  although the proposed models are 

targeted at severe cases of TBI,  the derivation dataset contained milder cases 

as per admission GCS (as being > 13) or as compared to the IMPACT data 

across GCS or pupillary reactivity. Regarding the external validity of the 

models, model B experienced a huge drop in performance when validated in 

the IMPACT data. Additionally,  due to the retrospective nature of PhD,  it was 

not possible to examine the value of Hb,  ICP or temperature as these factors 

are included in some TBI prognostic models but not recorded by TARN.  
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The small sample size of the S100B study poses an obvious limitation 

which undermines the power of the study. Furthermore,  since the IMPACT 

and CRASH models have been externally validated,  it might have been a better 

option to run the IMPACT and CRASH models on this data as well,  although 

it is not likely that the obtained results would have been substantially 

significantly different. Regarding comparing the prognostic value of brain 

injury biomarkers with prognostic models, S100B may not be the best 

representative of biomarkers because GFAP and NSE are proposed to perform 

better than S100B by some studies. Lastly, the S100B dataset included the 

extreme cases of TBI who were all cared in ICU and 94% of them sustained 

brain haemorrhage.  
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9.2. Comparison with the literature  

9.2.1. TARN project  

Summary from the respective papers  

So far each paper provides some aspects of comparing the results with the 

literature:  

Paper 3: the results with regards to GCS prognostic analysis is in 

consistence with Healey et al.  findings, however their dataset was from 

general trauma patients and no adjustments with confounders was made [22].  

Paper 5: with regards to prognostic value of various AIS severity 

scores, Gennarelli. et al.  [144] reported as AIS severity scores increase the 

chance for survival decrease but in the TARN dataset not every AIS severity 

score of brain injury (out of 3, 4 and 5/6) showed significant association with 

outcome. However, the Gennarelli‟s study was only on general trauma patients 

with no adjustments for confounders. Similarly, the prognostic value of the 

Marshall Classification has been assessed in many studies but similar to the 

results of this PhD, not every Marshall Class is significantly associated with 

outcome unless some classes are merged together [24, 36, 92, 140]. The results 

of PhD regarding various intracranial pathologies including SAH is not 

consistent with many other studies [23, 24, 36, 92, 140, 143, 148, 149, 151, 

152] which can be due to different case-mix as the TARN dataset includes 

relatively milder cases of TBI.  

Paper 6:  the proposed prognostic models in PhD can be added to the 

current list of TBI prognostic models including the CRASH and IMPACT 

models. The performance of TARN TBI models are slightly better than that of 
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the IMPACT and the CRASH models which may be due to the type or time of 

outcome prediction (disability at 6 months). However, since the TARN models 

have been derived from trauma registry data and been historically validated in 

a different dataset from TARN, the TARN models may be a better option for 

British trauma care assessment. However the CRASH and IMPACT models 

may better suit clinical trials as their derivation datasets were mainly from 

clinical trials. Regarding application of prognostic models in clinical setting, 

TARN models predict an acute outcome (i.e. survival at discharge) compared 

to the CRASH and the IMPACT models and therefore these models may offer 

different applications during trauma care (i.e. acute care versus chronic care).  

 

****** 

 

AIS scores, the Marshall Classification and various intracranial 

pathologies were added to the reference models in Paper 5 (reference models 

did not have intracranial pathologies but did contain other important TBI 

prognosticators such age, GCS or pupillary reactivity) and subsequently only a 

slight improvement in the performance (from 0.91 to 0.92) was noticed. This 

finding is in consistence with that by the CRASH collaboration when they 

added various intracranial pathologies detected by CT to the multivariate 

models and noticed a slight increase in AUC of only 0.02 (for models 

constructed for the third world) or no changes (for models constructed for the 

developed world). However, the IMPACT prognostic models demonstrated 

significant degrees of improvement in performance when CT findings were 

added to the baseline models (up to 0.08 increase in AUC). Regarding the time 
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of data collection in IMPACT as dating back to more than 13 years ago and 

more up to date data in the CRASH and the TARN datasets, the difference in 

results may be attributed to the improvement in trauma care policy for TBI 

victims. The other explanation may be more severe cases in the IMPACT 

dataset as they all had admission GCS of less than 9 whereas the CRASH and 

the TARN datasets include cases with higher GCS as well.  

TARN TBI datasets share age, GCS, pupillary reactivity with both 

CRASH and the IMPACT models. These are in fact the three core TBI 

predictors [88]. Further, among all the predictors in each model, pupillary 

reactivity: none reactive has the highest impact on outcome prediction 

according to odds ratio or the coefficient or its score in the scoring system (i.e. 

the IMPACT models). Extracranial injury was found important in the TARN 

TBI model B which is the case in the CRASH models but not in the IMAPCT 

models since this variable was not investigated in the IMPACT modelling. 

Low blood pressure is also included in the TARN and IMPACT models but not 

the CRASH models perhaps because this variables was not recoded in the 

CRASH data. However, with regards to CT findings, the results appear fairly 

heterogeneous. For example, whilst SAH is significant in both the CRASH and 

the IMPACT models, this variable was found non significant in our data. This 

is also the case for the Marshall Classification which is contained in the 

IMPACT model but not in TARN TBI models. There can be several 

explanations for this. It may be due to different case-mix of the studies as the 

IMPACT data contain more severe cases of TBI or the AIS intermediation in 

assigning the CT findings to TBI cases in TARN. However, with regards to 

brain swelling, it appears the three models (IMPACT, CRASH and TARN) are 
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in agreement in that the CRASH models include midline shift and obliteration 

of the 3
rd

 ventricles/basal cisterns (which can in part be due to brain swelling) 

and the IMPACT models include Marshall Class III/IV (merged) which 

partially represents brain swelling.  

9.2.2. S100B project  

Summary from the respective papers  

Paper 2: The cut-off and the prognostic characteristics found in the univariate 

analysis of S100B dataset are different to other studies. For example, whilst the 

cut-off by Nylen et al.  (0.55 μg/l) [79] was close to that obtained in the S100B 

dataset (0.53 μg/l), the specificity observed by Nylen et al.  was much higher 

(100% versus 60% for disability prediction or versus 49% for mortality 

prediction in our data). Similarly, whilst the sensitivity and specificity 

proposed by Vos et al.  [43] was close to what was observed in the S100B 

dataset, the cut-off was much higher (1.13 μg/l by Vos et al.  versus 0.53 in our 

study). These differences may be explained by differences in the case mix.  

Paper 7: the results of S100B study with regards to combination of 

S100B with other TBI prognosticators are inagreement with the findings by 

Dimiopoulou et al.  [43, 165] and Vos et al.  [43] as discussed in Paper 7. 

However, no study so far has attempted to compare the performance of 

prognostic models with a brain injury biomarker. 

 

****** 

 

It was observed that in our sample of TBI, the median S100B not only 

lacks significant difference in patients with and without extracranial injury, it is 
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in fact higher in isolated brain injury. This is in contrast with Savola‟s finding 

that major extracranial injury further increases the levels of S100B in TBI [66]. 

The reason for this difference may relate to the severity of brain injury. In 

Savola‟s study severe brain injury was defined as head trauma with amnesia, 

longer-than-24-hours unconsciousness, intracranial injury observed on CT or 

focal neurological deficit. Not all cases with these criteria of brain injury 

severity would end up in ICU which the subjects in our study were recruited 

from. Unfortunately, measures such as GCS or pupillary reactivity are not 

supplied in the Savola‟s study in order to make a rough comparison of the brain 

injury severity in the two studies. It may be that in more severe cases of TBI, 

the effect of extracranial injury on S100B declines. However, in moderate 

severities of TBI, extracranial injury may be able to increase S100B levels. In 

such case, it may be anticipated that severe brain injury has the same S100B 

concentration as moderate brain injury with extracranial injury.  

9.2.3. Summary  

Whilst TARN models appear better for trauma care benchmarking,  the 

IMPACT and CRASH models are particularly suitable for clinical trials. The 

results on various intracranial pathologies are different to the CRASH and 

IMPACT’s finding (such as the importance of haemorrhage and SAH) which 

can be due to different case-mix or the fact that intracranial pathologies in 

TARN are obtained from AIS codes rather than actual CT images. However,  it 

appears that all these models (TARN,  IMAPCT and CRASH) share the core 

TBI prognosticators i. e. age,  GCS and pupillary reactivity. It also appears 

that these models share brain swelling or pathologies which are likely to be 
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accompanied by brain swelling such as obliteration of the 3
rd

 ventricle/cisterns 

(CRASH) or Marshall Class III/IV (IMAPCT).  

According to univariate analysis of S100B data,  the results are 

different to other studies either on cut-off or the prognostic characteristics i. e. 

sensitivity and specificity. However, similar to our study,  it has been shown by 

Dimiopoulou et al. and Vos et al.  that S100B is one of the most important TBI 

prognosticators in multivariate analysis. However,  to the best knowledge of 

the investigator there is no studies so far which have attempted comparing 

S100B with prognostic models. Regarding the effect of extracranial injury,  the 

results are different to that by Savola’s group as unlike our study,  they found a 

significant effect of extracranial injury on serum S100B. It may be that in 

severe cases of TBI,  the effect of extracranial injury on S100B diminishes. 
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9.3. Implications  

9.3.1. TARN project  

Summary from the respective papers  

Some discussion on the interpretation and implication of the results is 

presented in papers 3, 4, 5, and 6.  

Paper 3: in the prognostic analysis of various GCS subscores, it was 

observed that motor and total GCS may have similar prognostic strength. This 

may indicate that measurement of eye and verbal subscores are not necessary 

as the motor subscores would be easier to learn with less inter- and intra- 

observer disagreement. On the other hand, total GCS has more content 

information and may be still superior to motor GCS for day-to-day monitoring 

of patient‟s course of of conciousness level. Moreover, it was observed that the 

admission scores/subscores are more predictive than scene scores/subscores 

which can be due to lingering effect of inebriation by the arrival at hospital or 

the level of skill to measure GCS at scene.  

Paper 5: considering prognostic value of various intracranial 

pathologies, the results of Paper 5 are important as it highlights the brain stem 

injury and brain swelling as strong predictors of outcome in TBI. This implies 

the necessity of research to improve current therapeutic approaches to patients 

who have sustained these types of injuries.  

Paper 6: regarding the two prognostic models constructed (models A 

and B), the models employ various charactristics to predict survival at 

discharge. Model A may be better for trauma registries as it uses ISS which is 

not commonly measured in clinical practice. On the other hand, model B may 
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be a better choice for clinicians. Moreover, Model A contains ISS instead of 

cause of injury, extracranial injury and brain swelling which are included in 

Model B. As both brain swelling and extracranial injury can influence ISS, 

there may be some relationship with intracranial injury and cause of injury 

which prohibits the two models holding exactly the same covariates. Further, 

as the proposed models contain pupillary reactivity as an important TBI 

predictor, it seems that recording this variable should be declared mandatory 

for all TBI submissions in trauma registries.  

 

****** 

 

For a number of reasons, the constructed models can be referred to as 

„well-developed‟ models. According to Perel‟s criteria [31] some indications of 

a well-developed model in our study are:  

 The patients had adequate follow-up as there was no missing 

information on the discharge survival status.  

 The predictors are included based on a reasonable rationale i.e. 

following the literature review and with consideration given to the clinical 

setting.  

 The variables were clearly defined.  This is reflected on the time point 

of measurement of the variables such as admission GCS or pupillary reactivity 

and clear definition of each category with regards to pupillary reactivity, cause 

of injury, extracranial injury, intracranial pathology (the brain stem injury and 

brain swelling) and hypoxia. For example, the category abnormal-both reactive 

in pupillary reactivity is when both eyes are reactive but one of them is 
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sluggish compared to the other. Similarly, the brain stem injury can include any 

types of injury such as compression, contusion, diffuse axonal injury etc whilst 

brain swelling excludes swelling in the brain stem or cerebellum. Furthermore, 

the diagnosis of these pathologies can be made based on clinical ground or any 

diagnostic modality including CT, MRI, operation notes etc. With regards to 

cause of injury, Table 38 (on page 287) should address any confusion. For 

example, if the patient has fallen following an assault, injury mechanism would 

be fall with the level of intent being assault. Using Table 38, the cause of injury 

would then be assault.  

 The missing information is handled with imputation strategies rather 

than complete case analysis.  Complete case analysis refers to when any case 

with a missing value on even one variable is excluded from the modelling. This 

did not occur during model construction as strategies were implemented to 

impute missing values.  

 Interactions between the variables were examined.  A number of 

interactions were examined based on the literature: age with cause of injury 

[160], systolic blood pressure with hypoxia and mean blood pressure with 

hypoxia [95]. However, the mean blood pressure/hypoxia interaction was not 

assessed since mean blood pressure was excluded from the modelling.  

 More than 10 outcome events (i. e. survival) were included per each 

predictor. Model A contains 7 covariates and model B contains 10 variables. 

According to this criteria, the dataset must include at least 7 × 10 survivals for 

model A and 10 × 10 survivals for model B. The number of survivals in the 

dataset was 599. Furthermore, this criteria was met at all times when various 
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models were constructed for comparison or assessment of the variables during 

various levels of the modelling procedure.  

 How to estimate the prognosis is explained.  The models are presented 

with the coefficients and the constant and the way to make the estimate on 

prognosis in presented in Paper 1 (section 2.6).  

 The models have high AUC (discrimination) (0. 92 and 0. 93 

respectively for models A and B) and a significant p value for HL statistics 

(calibration) (0. 32 and 0. 29 respectively for models A and B).  

 The confidence interval is given for the odds ratio of each covariate in 

the model.  

Mushkudiani et.al. [159] made some recommendations for developing 

and validating prognostic models. These recommendations are divided into 

study population, predictors, outcome, model development and model 

validation and overall are the same as the criteria proposed by Perel et al. . 

With regards to the study population, our sample size (i.e. > 500) and its 

representation of the current practice (since majority of cases sustained the 

injury following Sep. 2005) are some indicators of the strength of our study 

according to Mushkudiani et al. . Moreover, the predictors used in our models 

are readily available. For example, GCS and pupillary reactivity are commonly 

measured in TBI patients on admission and CT scan is widely in use in severe 

TBI to diagnose intracranial pathology. The recommendations regarding the 

model development and validity is overall the same as above-mentioned 

indicators according to Perel‟s criteria.  

Multivariate analysis in medical research is commonly used to account 

for the confounders. This is also referred to „adjustment for confounders‟. For 
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example, one may be interested to investigate the association of factor A with 

factor X when there is possibility that factor B or C may also affect factor X. 

This is important since the effect of factor A may be „nullified‟ in the presence 

of factors B and C. To address this, a model is constructed where all factors A, 

B and C are supplied to this model and factor X is taken as outcome. Then the 

significance of association of each factor A, B or C  with factor X is explored. 

Whilst this is a common approach in adjustment for confounders, in this PhD, a 

different method was devised as employed in Paper 4 (to assess the prognostic 

strength of various GCS subscores and combinations) and Paper 5 (to assess 

the prognostic strength of various intracranial pathologies). In the „common 

approach of adjustment for confounders‟, all the prognosticators (including 

those of interest such as GCS subscores in Paper 6 along with the confounders 

as age and ISS) could have been supplied to a single model and then the 

significance of their associations with outcome could have been assessed. This 

approach was not taken in the PhD and instead „baseline models‟ were first 

constructed which only included the confounders. Then the factor(s) under 

investigation were added to the baseline model to firstly assess the degree and 

significance of the change in the model performance (as per deviance, AUC, R
2
 

Nagelkerke etc.) and secondly to assess the significance of association with the 

outcome of interest in the resulting model. The disadvantage with the „common 

approach of adjustment for confounders‟ is that firstly, it does not permit 

assessing the added value of the factor of interest when the outcome of interest 

can be predicted by other factors. Secondly, with the „baseline model 

approach‟, comparing the predictive performance of various factors is possible 
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such as comparing the prognostic value of various intracranial pathologies as it 

was done in Paper 6.  

9.3.2. S100B project  

Summary from the respective papers 

The results of this part were partially discussed in Papers 2 and 7.  

Paper 2: briefly, S100B showed low specificity for outcome prediction 

at 3 months (60% for unfavourable outcome and 49% for death) despite having 

a high sensitivity of over 80% for either unfavourable or death prediction. This 

degree of prognostic performance may not be suitable for clinicians.  

Paper 7: it was observed that the difference in S100B and prognostic 

models‟ performance is not significant. The importance of this relates to S100B 

as a simple blood test which is more familiar to clinicians to interpret (through 

knowing sensitivity and specificity) whereas prognostic models are unfamiliar 

tools in clinical context and the interpretation of their performance is more 

complicated. However, prognostic models use those characteristics of patients 

which are routinely measured and thus do not incur extra cost whereas S100B 

is not a part of routine laboratory tests. Moreover, a better prognostic tool may 

be  the combination of brain injury biomarkers with other TBI prognosticators.  

 

****** 

 

In order to compare the prognostic strength of S100B with multivariate 

models, TARN TBI models were run on 100 sample of TBI patients and their 

performance was measured for 3-month outcome prediction. TARN TBI 

models have AUCs and Nagelkerke R
2
s of respectively more than 90% and 
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60% whereas these measures decline in the S100B dataset (For example, AUC 

of model A and B declines respectively by 0.28 and 0.20 for survival 

prediction and by 0.16 and 0.18 for favourable outcome prediction). There are 

a number of possible reasons for this. It may be due to small sample size of 

S100B dataset. Furthermore, TARN models are yet to be externally validated 

in other larger samples of TBI recruited in the British trauma care system 

(methodological, spectrum, and follow-up interval validation) and the drop in 

performance can be due to inherent lack of external validity. However, TARN 

TBI models have been developed to predict the outcome in short-run i.e. at 

discharge and they may perform poorly for the long-term outcome prediction 

such as 3-month survival or favourable outcome. This in fact can be one reason 

that the external validation of TARN model B on the IMPACT dataset yields a 

huge drop in performance. During the study design of this project, the drop in 

performance of TARN models in S100B was expected in part due to the 

sample size, and thus it was decided that, rather than using the exact 

coefficients of the models, the logistic regression be run again to obtain the 

coefficients from the dataset. Had this method not been applied, the 

performance of the TARN models would have perhaps experienced further 

drop.  

9.3.3. Summary  

According to many criteria suggested by Perel et al.  and Mushkudiani et al.  

such as sample size,  model presentation and performance ect. , the 

constructed models A and B can be considered well-developed. Moreover, the 

drop of these models performance in the S100B dataset may be due to small 

sample size of S100B data, long term outcome prediction (3 months versus 
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discharge) or inherent lack of validity. Furthermore,  as S100B is the only TBI 

prognosticator which was found significant,  its daily measurement may be a 

better choice than GCS or pupillary reactivity to monitor TBI progress.  
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9.4. Conclusion  

9.4.1. PhD Hypotheses  

 

Hypothesis 1: the probability of survival is not influenced by the patient 

characteristics in severe TBI.  

 

Both TARN TBI models A and B contain information on patients 

characteristics. These characteristics are demographic (age), descriptive of 

severity and type of injury (ISS, major extracranial injury and CT findings) or 

physiological (GCS, pupillary reactivity, hypoxia and low blood pressure). 

Using these characteristics in the logistic regression formula provides 

the probability of death (or survival) for a given TBI patient. This means if one 

characteristic changes while the others remain constant, it is expected the 

probability of outcome changes too. This is because various patient‟s 

characteristics demonstrate a significant p value in logistic regression analysis. 

As presented in Paper 1 (Table 10), the p value in logistic regression assists in 

assessing the null hypothesis that the coefficient of the respective variable is 

zero. A zero coefficient means the variable has no effects on the probability of 

outcome. Since these models demonstrate that the probability of outcome 

cannot be independent of various patient‟s characteristics, the above hypothesis 

is refuted.  

The importance of this refuting is that if the probability of survival is 

influenced by the patients characteristics; using the patients characteristics can 

then help to make prediction about the subsequent outcome.  
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Hypothesis 2: the logistic regressing does not explain the pattern of mortality 

in severe TBI 

 

Explaining the pattern in mortality can be taken as equivalent to the ability to 

predict the mortality. In this manner, random death can be taken as equivalent 

to „absolute lack of pattern‟ and predicting the mortality with absolute accuracy 

can be taken as „ability to explain the pattern‟.  

In our dataset of 802 TBI cases, two multivariate models were 

constructed through logistic regression. According to several measures of 

performance, these models can predict the survival (or mortality which is 1 

minus probability of survival). However, none of the measures of performance 

demonstrate absolute accuracy. For example, both constructed models have 

Nagelkerke R
2 

of more than 60%. This means that each model is able to 

explain 60% (majority) of the variability in mortality. This is also the case for 

AUC and classification accuracy which are on the one hand above 0.50 

(random event) and on the other hand less than 1 (absolute accurate prediction 

or definitive event).  

Regarding the performance of the models, the above hypothesis can be 

refuted in that these models do not suggest „absolute lack of pattern‟ although 

they are not able to provide a definitive pattern for mortality as well. 

 

The difference in the performance of TARN models A and B in the dataset is 

not statistically significant to that from the S100B model for both survival and 

favourable outcome prediction as per AUC. This is because the CIs for AUCs 

overlap. TARN models A and B represent multivariate models which can be 

Being able to explain the pattern of mortality by logistic regression, 

despite not being absolutely accurate, suggests that this prediction is not 

random and different patients can be regarded as with various risks of 

mortality.  

The prediction of mortality can be made by using the patient‟s 

characteristics as per the covariates included in either model A or B. However, 

it is important to note that the models constructed in Paper 3 which use only 

age, ISS and GCS (Table 17) can help with refuting of the above hypotheses 
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used in prognostication of outcome in severe TBI and the lack of difference 

between the performances of these models with S100B model fails to refute the 

above hypothesis.  

 

Hypothesis 5: There is no difference in prognostic performance between 

multivariate models which do/do not contain S100B as a predictor in severe 

TBI.  

 

The performance of TARN TBI models A and B do not experience a 

statistically significant increase following addition of S100B to these models as 

per AUC (due to the overlap of CIs). Since TARN TBI models A and B can 

represent multivariate models, the study fails to refute the above hypothesis.  

 

The power of the S100B project: type II error in assessing hypotheses 3, 4 

and 5 is fairly strong due to the small sample size for logistic regression 

analysis. This means that the probability that the above hypotheses are failed to 

be rejected when they are not true in reality is high.  

However, despite from statistical perspective, the hypotheses 3, 4 and 5 

are failed to be refuted, there is tendency for hypotheses 3 and 5 to be refuted 

on the following basis: despite non-statistical significant difference between 

S100B and expanded models (for hypothesis 3) and between TARN TBI 

models with and without S100B (for hypothesis 5) as per AUC, the changes in 

AUCs are above the clinical significant cut-off point as discussed in Paper 7. 

The important of this relates to the future research on this topic (sections 8.5.4, 

9.4.2, 9.4.3 and 10).  
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9.4.2. PhD objectives 

 

Objective 1: to develop a prognostic tool to predict the survival in TBI 

applicable to the British trauma care.  

 

Two prognostic models (model A and B) have been developed which enable 

calculation of the survival probability at discharge for a given TBI patients. 

Both models share age, GCS, pupillary reactivity, the brain stem injury, 

hypoxia and low blood pressure. However, model A contains ISS which is 

absent in model B and instead Model B uses extracranial injury, cause of injury 

and brain swelling. The models are presented with the odds ratio and the 

coefficient is given for each covariate. Similarly the models performance is 

presented according to several measures of performance. The models hold a 

high AUC (0.92 and 0.93 respectively for model A and model B). Similarly, 

the models have acceptable calibration per HL statistics (p values 0.20 and 0.19 

respectively for model A and model B). Furthermore, the criteria for a well-

developed model as proposed by Perel et al.  [31] and Mushkudiani et al.  

[159] were followed during the modeling which implies the final models can 

be considered well-developed. The models are externally validated and they 

still hold their high performance.  

As these models perform well in different TBI series from TARN, it is 

reasonable to suggest these models for the purpose of benchmarking of TBI 

care delivery. However, in order for clinical validity they still need further 
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validation in other TBI datasets. Similarly, their use in clinical trials is still 

unclear as the derivation dataset was from a trauma registry.  

Unfortunately, S100B can not be suggested as a prognostic tool at this 

stage as its specificity was found low in a sample of 100 cases of TBI despite 

high sensitivity.  

 

Objective 2: to ascertain among a multivariate model and a blood test which 

one is better to be used for prognosis in TBI.  

 

TARN TBI models A and B and S100B (in isolation) were run on the data of 

100 cases and it was observed that their performance is not significantly 

different (either clinically or statistically). Due to the small sample size this 

finding is not conclusive. However, it highlights the importance of taking this 

issue further in large datasets of S100B to obtain more powerful results. It is 

only after demonstrating that prognostic models outperform S100B, any further 

research on this topic may be deemed less necessary.  

 

Objective 3: to determine whether a combination of multivariate models and 

a blood test can significantly improve the prognosis in TBI.  

 

In this PhD, it was observed that either addition of S100B to current prognostic 

models or considering other TBI prognosticators alongside S100B causes a 

clinically significant increase in the performance of each tool in isolation. This 

may lead to achieve a better prognostic tool than those currently available. 

Unfortunately, the small sample size was unable to offer neither powerful 
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results (which can provide statistical significance) nor a prognostic tool which 

employs a combination of S100B with other patients‟ characteristics.  

Despite lack of statistical significance, the clinical significance in 

change of models‟ performance highlights the importance of future research on 

this topic in larger datasets (adding S100B to prognostic models or considering 

other TBI prognosticators along with S100B). Furthermore, as a rise in S100B 

performance was observed according to AUC, this may explain the variation in 

AUCs reported in the literature as well. However, the issue as to clinical versus 

statistical significance stills holds in this matter as well.  

9.4.3. Aim of PhD: to improve our understanding of 

prognosis in TBI 

In this PhD, two prognostic models have been proposed for TBI prognosis. 

These models can compete with the IMPACT and the CRASH models in terms 

of the methodology employed for their derivation and also the performance. 

However and more importantly, they are suitable for the British trauma care 

system and take account of the cotemporary changes in trauma care. 

Furthermore, they are derived from an ongoing observational project.  

Although the results of S100B study are subject to significant type II 

error, this PhD also adds a new insight about brain injury biomarkers compared 

to prognostic models which have to be tested in the future. As the performance 

of these two prognostic tools do not appear significantly different, their usage 

may depend only on how they are accepted in various settings (clinical or 

trials) based on factors related to their practicality or popularity. However, it 

was observed the combination of these two tools may offer a better 

performance. This opens possibility for future research in construction of 
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prognostic tools in TBI. This might be in fact the reason why some studies 

achieved a much higher S100B predictability than prognostic models in 

contrast to other studies. It may be due to different case-mix according to 

various factors affecting TBI prognosis.  

9.4.4. Summary  

The PhD refutes hypotheses 1 and 2 but fails to refute hypotheses 3,  4 and 5. 

Regarding the objectives, two well-developed prognostic models have been 

proposed for the British TBI population. These models have a high 

performance. Moreover,  the idea of comparing the prognostic performance of 

S100B with that of prognostic models and also their combination needs to be 

taken forward in the future research on TBI prognosis.  
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10. Future directions
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Summary from the respective papers  

Various future directions were discussed in each paper tailored to the particular 

results of the paper and its suitability for a journal article: 

Paper 3: it is important that the GCS prognostic analysis be performed 

in a different dataset of TBI (based on locality or time) and also with 

adjustment with pupillary reactivity. Furthermore, survival at discharge is not 

the only endpoint of outcome as longer-term outcome and also disability are 

important to consider as well.  

Paper 4: the proposed method to use AIS codes to perform the 

Marshall CT Classification requires further validation to test how accurate the 

proposed method is.  

Paper 5: with regards to prognostic analysis of various intracranial 

pathologies or CT findings, it is important to investigate the effect of the 

number of pathologies on the outcome and also on the relationship of each 

pathology with outcome.  

Paper 6: the final TBI  prognostic models  proposed (models A and B), 

both require further external validation from various dimensions such as 

geographical, methodological, spectrum ect.. Moreover, as the models only 

predict survival at discharge, there is still scope for models which can predict 

disability or long-term outcome. Overall, in the future, it is important to assess 

the safety of prognostic models as they may lead to early withdrawal of 

therapy.  

Paper 7: regarding the S100B study, since this study suffers from lack 

of enough power and the results demonstrate that there may not be significant 

difference between S100B and prognostic models in outcome prediction, it is 
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important that the results be validated in a lager cohort of TBI cases and the 

idea of comparing prognostic models with S100B (or brain injury biomarkers) 

and the combination of these two, be taken forward.  

 

****** 

 

In Paper 3 we constructed a baseline model with only age and ISS to 

reach an AUC of 0.84. This degree of performance per AUC is somewhat 

similar to the CRAH and the IMPACT models although the CRASH and 

IMPACT models contain more variables such as pupillary reactivity and CT 

findings. Moreover, in this paper, following addition of GCS to the baseline 

model, a high AUC of 0.91 was reached with only three variables (age, GCS 

and ISS). Similarly Healey et al.  [22] constructed a survival prediction model 

with only GCS and achieved an AUC of 0.89 which is well above the AUCs in 

the CRASH and the IMPACT dataset (the models constructed by Healey et al.  

were for the purpose of assessing the prognostic value of various GCS 

components and not to suggest a prognostic tool. However, the models 

demonstrated that GCS on its own may offer a high AUC for outcome 

prediction). The reason for these differences is not clear but they highlight that 

less complicated models which contain less predictors may be able to provide 

the same degree of predictive performance. This requires a further 

investigation and consideration should be given to measures of model 

performance other than AUC. Although AUC is the most common index to 

measure the discrimination power of a model, other measures of discrimination 

(Nagelkerke R
2
) and also other measures of model calibration apart from HL 



 

 

451 

451 

statistics such as brier score may be important. For instance this is reflected in 

the HL statistics of the GCS models in Paper 3 which, despite having high 

AUCs and Nagelkerke R
2
, have p values of close to 0 (a good model is 

expected to have a p value of above 0.05 by HL statistics). It may be that 

depending on the purpose of the model i.e. using in clinical settings, in clinical 

trials or for trauma care benchmarking, the desired performance of a model 

differ i.e. for instance, a high AUC of more than 0.85 of a model for a clinician 

may not be necessarily required for a model which is to be used in clinical 

trials.  

Investigating these issues requires joint clinical and statistical 

knowledge and expertise. On the one hand, multivariate statistics involves high 

level and meticulous knowledge of mathematical statistics which knowing all 

of the details involved may not be necessary for a clinician who is  interested in 

clinical and health care aspects of the results. As such, knowing the concept, 

essentiality and relevance of each statistical measure may suffice to conduct a 

valid study. This was one of the skills which the investigator developed. This 

skill continues to develop more by „bridging‟ the medical clinical knowledge 

with medical research and statistical knowledge. On the other hand, medical 

statisticians can not be left alone to perform their analysis and interpret the 

results without considering the clinical and practical context of the research. 

The simplest example of this reflects in the idea of clinical and statistical 

significance in that the blood pressures of two groups of patients may be 

significantly different in a statistical analysis but this difference may not hold 

clinical meaning with regards to the magnitude of the difference.  
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There are a number of variables which their prognostic value have been 

shown in multivariate analysis of other TBI datasets such as sodium [97], PH 

[97], haemoglobin [24, 97], Glucose[97], platelets count [97] and prothrombin 

time [97]. Since, TARN does not hold records of these variables and our 

S100B sample of TBI did not include enough cases with these observations 

(for example there were 93.6% anaemic patients), investigating the prognostic 

value of these laboratory variables on their own and also after adjustment with 

other TBI prognosticators such as age or GCS was not possible. Knowing this 

is important with regards to the timely and sufficient intervention in case of 

disturbance in any of these laboratory measures. It is a matter of future work to 

examine this in a larger up-to-date dataset of TBI cases recruited from a British 

trauma care centre(s) with an observational study design.  

One of the applications of our proposed models is in the clinical context 

of treatment and management of TBI patients. Although with the help of these 

models, more accurate prediction on outcome can be made, it is yet unclear 

how such prediction may or should affect the clinical decision making or 

allocation of recourses. Firstly, it has to be examined in a clinical trial that how 

using these models would affect the patient care / outcome. Secondly, as these 

models enable stratification of patients based on their risk of experiencing the 

death, more research is needed to investigate how this stratification can be 

performed. It may be that some cut-offs should be obtained to group TBI 

patients as low, moderate or high risk [36].  

The earliest research into possible S100B role in TBI prognosis may 

date back to the year 1998. However, despite all the huge amount of research 

into S100B so far (a Pubmed search for S100B and TBI using MeSH terms 
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results in 136 journal articles), this biomarker has not received the acceptance 

in clinical settings. The exact reason for this is unclear but it may be due to the 

lack of adequate prognostic performance of S100B in terms of sensitivity and 

specificity. For example, in our series of 100 TBI cases, S100B demonstrates a 

sensitivity of more than 80% for prediction of 3-month death or unfavourable 

outcome when the specificity is low (60% for unfavourable outcome prediction 

and 49% for death prediction). However, when using the same measure of 

performance as to those used for prognostic models (i.e. AUC or R
2 

Nagelkerke), it was observed that the difference between prognostic strength of 

S100B and multivariate models is not substantial. Thus if lack of clinical 

acceptance of S100B is due to its lack of prognostic strength, this may apply to 

multivariate models as well. Since the current reliable prognostic models have 

been introduced only recently (the introduction years of CRASH and IMPACT 

models is 2008 and that of TARN TBI models is 2010), the same „fate‟ may 

occur to prognostic models unless their usefulness over clinical judgment or 

„guessing‟ be shown in a clinical trial. 

It is important to validate the proposed models in this PhD on CRASH 

and IMPACT data. This would address the potential benefit of the models in 

clinical trials as CRASH and IMAPCT data are mainly trial data. In the same 

way, this validation would address the performance of the models in a different 

geographic regions as CRASH and IMPACT are not mainly British. On the 

other hand, validating the CRASH and IMPACT models on TARN data 

explores the performance of these models in a trauma registry or on 

observation data. The cross-validation of TARN, CRASH and IMPACT 

models is a matter of future research to explore the above issues.  
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Patel. et al. demonstrated that those TBI patients who receive 

neurosurgical care, have higher odds of survival [129]. Despite this, there is 

reluctance to transfer all brain injury patients to neurosurgical centres and 

currently, the preference is given to patients who have higher chance to benefit 

from surgical intervention. It appears this approach deprives many other TBI 

patients from effective trauma care. Using prognostic models to classify the 

patients in various risk categories may facilitate decisions on admission or 

transfer of the patient to a neurosurgical centre. This should be investigated in a 

clinical trial following determination of how TBI prognostic models can define 

high risk cases. However, supply of neurosurgical care to would-be-then-

defined high risk TBI patients is perhaps not the only adaptation which is 

required in the management and care of brain injury. Similar changes may be 

made in the rehabilitation of these patients by providing more immediate or 

aggressive rehabilitative interventions.  

The proposed TBI prognostic models are presented in tables of odds 

ratio with coefficients for each predictor and the constant. Thus, using the 

logistic regression formula, the survival probability of a TBI case with given 

characteristics can be calculated (section 2.6.1). There are other ways of model 

presentation such as scoring systems (by means of tables, graphs, nomogram or 

linear equation) or web-based calculators. It is unknown which presentation is 

most user-friendly. A web-based calculator may be an appealingly quick tool 

for clinicians in that the probability of outcome can be supplied without any 

onerous calculation by just putting the already-known patients‟ characteristics 

in the blank boxes of a web-page. However, there are issues with regards to 
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inter-observer and intra-observer reliability of each presentation including the 

web-based calculator. The clinical appeal is only one factor which has to be 

taken into account in examining which way of presentation is the best. 

However, the TARN TBI models may deserve to be presented as an on-line 

calculator in the future similar to current TARN TRISS calculator [89].  

In this study, the prognostic value of S100B at a certain time-point after 

injury (i.e. 24-hours after injury) was taken into account. Firstly, it is unclear 

what time point of S100B is the best for outcome prediction. On the one hand, 

24-hours following admission may be a better approach as the patient is 

expected to be stabilised following initial resuscitation which could eliminate 

the confounding effect of secondary insult (such as hypotension or hypoxia). 

These factors may relate both to S100B rise through causing ongoing brain 

damage and also outcome. On the other hand, even 24-hours after injury, 31% 

of our TBI population samples were hypotensive. Future direction should 

ascertain whether or not better option as to the time elapsed after injury for 

blood sampling is post-resuscitation irrespective when this is achieved; 

immediately after admission or some time after. In fact, the time point of 

sampling is one factor which differ across various studies on S100B prognosis. 

This factor may be able to explain different results on S100B prognostic 

performance observed in the literature review.  

The other option may be to account for the temporal pattern of S100B 

serum concentrations rather than reliance on a single blood measurement. 

Regarding this, one or more of these following factors in temporal course of 

S100B measured at certain intervals (such as daily) during a certain time period 

(such as till 7 days after injury) could be considered: (1) higher initial values, 
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(2) secondary increase over time [76], (3) the peak concentration [79] and (4) 

the average time for S100B to return to normal values [165, 182] . Similarly, it 

requires comparing prognostic value of S100B in this manner to multivariate 

models without S100B or combination of one single S100B measurement with 

other TBI prognosticators.  

It appears that if only the performance of the two prognostic tools (i.e. 

multivariate models and a brain injury blood biomarker) is taken into account, 

there is no difference in which one is being used for outcome prediction. 

However, performance is not the only factor important in using a prognostic 

tool. If application of a prognostic tool in clinical practice is regarded as 

application of a diagnostic test or an‟ intervention‟, then it is also important to 

compare the prognostic models with brain injury biomarker in a clinical trial. 

This off course has to be conducted following demonstrating that overall, using 

prognostic tools would be beneficial for the patients‟ outcome rather than 

exclusive reliance on clinical judgement or intuition in anther initial clinical 

trial.  

It is important that the prognostic strength of S100B and multivariate 

models be compared in another cohort of TBI patients from a different 

country/centre which includes more heterogeneous of TBI cases in a larger 

dataset than ours. The sampling procedure of the S100B study occurred only 

from the ICU patients which represents the extreme severity of brain damage. 

Furthermore, all 100 patients had abnormal CT findings. Thus the dataset can 

not represent those brain injury patients who have normal CT such as diffuse 

axonal injury (or the Marshal Class I). This is a confounding factor since the 
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TBI patients with observed abnormality in their CT have a poorer outcome 

than those with normal CT.  

The method of adjustment for confounders using the baseline models 

which was devised in Papers 3 and 5, requires to be further explored both from 

statistical and clinical perspective. Adjustment for cofounders can be done in 

either of the following ways: (1) to supply all factors (confounders and the 

factor of interest) to one single model and to assess the significance of 

association with outcome in the resulting model (the common method of 

adjustment for confounders), (2) to supply the factor of interest to a baseline 

model which includes the confounders and then to assess the significance of 

associations and changes in the model‟s performance. The latter particularly 

permits a better comparison of the association of several factors with the 

outcome of interest when confounders are taken into account. However, the 

statistical or clinical importance of the results is unclear if, for example, one 

factor appears non-significant in the model but significantly contributes to its 

performance or vice versa.  

10.1.1. Summary  

The proposed models are still required to be validated in a TBI dataset of 

different location,  spectrum of severity etc. Furthermore,  as these models 

were not developed for disability or long-term outcome prediction,  separate 

models are required for these predictions which are suitable for the British 

trauma care. In the same way,  the prognostic value of some factors such as 

Hb,  Glucose,  Plt count,  prothrombin time are still required to be examined in 

a recent British dataset as this can help with timely therapeutic decisions.  
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It is a matter of future research to determine why some models in the 

literature have high performance according to their AUC whereas they include 

only a few covariates. It may be that these models do not have acceptable 

performance as per other measures of performance or using less covariates 

truly does not change the performance.  

It is also important to determine how the clinical decision making can 

be affected by introducing prognostic models to the clinical setting. It is still 

unclear whether or not these models are useful or they are indeed harmful in 

clinical practice. However,  they may be helpful on stratifying TBI patients in 

various risk groups to allocate resources such as neuro-ICU.  

Moreover,  since the analysis of the small S100B dataset showed no 

significant difference in prognostic performance of S100B and prognostic 

models and also this analysis suggested the combination of these two tools 

might enhance the prognostic strength of either alone.  It is important that 

these findings be validated in a larger dataset which is more heterogeneous in 

terms of TBI severity as well. Despite the substantial type II error,  the S100B 

study demonstrates the importance of future research on brain injury 

biomarkers versus prognostic models.  
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11. Appendix  

In this appendix, models derived at each level of modelling procedure are 

presented. The models are presented in tables including the variables supplied 

to the logistic regression, significance (sig.), odds ratio, and the 95% 

confidence interval for the odds ratio. In this appendix, wherever ISS is 

referred to, it is in the form of 91.0
10

log
ISS

e

. 
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Model I  

 Sig.  Odds 

ration 

95. 0% C. I. for odds 

ratio 

Age .000 .952 .940 .965 

76.0
1

10
2

GCS
 

.000 .679 .588 .785 

Pupillary 

reactivity 

Brisk-brisk     

Sluggish-

sluggish 

.003 .299 .134 .669 

Brisk-sluggish .106 .324 .083 1.271 

Absent-brisk .424 2.428 .276 21.321 

Absent-

sluggish 

.002 .057 .009 .359 

Absent-absent .000 .076 .034 .167 

ISS .000 .141 .057 .351 

extracranial .041 2.146 1.033 4.460 

Constant .000 93.506   
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Model II  

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .952 .939 .964 

76.0
1

10
2

GCS
 .057 .370 .133 1.030 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .239 .558 .211 1.474 

Pupillary 

reactivity 

Brisk-brisk     

Sluggish-sluggish .008 .330 .145 .753 

Brisk-sluggish .143 .360 .092 1.414 

Absent-brisk .367 2.773 .303 25.376 

Absent-sluggish .003 .062 .010 .380 

Absent-absent .000 .081 .036 .181 

ISS .000 .147 .059 .365 

Extracranial injury .047 2.102 1.010 4.376 

Constant .000 53.629   
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Model IIIA (AUC: 0.91) 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .952 .940 .964 

76.0
1

10
2

GCS
 .010 .283 .108 .738 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .092 .456 .183 1.137 

Pupillary 

category 

Both reactive     

Only one 

reactive 

.247 .556 .206 1.502 

None reactive .000 .127 .062 .261 

ISS .000 .272 .139 .529 

Constant .000 47.405   
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Model IIIB (AUC: 0.90) 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .955 .943 .967 

76.0
1

10
2

GCS
 .003 .240 .094 .615 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .049 .407 .166 .996 

Pupillary 

category 

Both reactive     

Only one 

reactive 

.119 .462 .175 1.221 

None reactive .000 .122 .060 .247 

Extracranial injury .409 .797 .465 1.366 

Constant .000 43.937   
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Model IV  

 
 

 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds ratio 

Age .000 .950 .938 .963 

GCS 15     

14 .000 .058 .022 .148 

13 .009 .197 .058 .668 

12 .001 .093 .022 .397 

11 .275 .414 .085 2.014 

10 .028 .233 .063 .857 

9 .613 1.754 .199 15.500 

8 .161 .313 .062 1.586 

7 .004 .158 .044 .561 

6 .122 .353 .095 1.320 

5 .741 .769 .161 3.664 

4 .200 2.875 .571 14.459 

3 .752 1.166 .449 3.026 

Pupillary 

category 

Both reactive     

Only one reactive .318 .596 .216 1.646 

None reactive .000 .134 .064 .282 

ISS .000 .255 .128 .506 

Constant .000 154.557   
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Model V (AUC:  0.908) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .955 .943 .967 

GCS Mild     

moderate .001 .277 .129 .596 

severe .000 .138 .070 .272 

Pupillary 

category 

Both reactive     

Only one reactive .089 .437 .169 1.133 

None reactive .000 .077 .039 .152 

ISS .000 .234 .121 .452 

Constant .000 141.810   
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Model VI A (AUC: 0.916) 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .960 .947 .973 

76.0
1

10
2

GCS
 .006 .256 .097 .681 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .068 .421 .166 1.066 

Pupillary 

reactivity 

Both reactive     

Only one reactive .190 .507 .184 1.401 

None reactive .000 .109 .051 .232 

ISS .000 .241 .118 .493 

Cause of 

injury 

RTA     

Fall .011 .403 .200 .813 

Assault .256 1.738 .670 4.507 

others .433 .541 .117 2.507 

Constant .000 46.058   
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Model VIIA (AUC: 0.922) 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .959 .946 .973 

76.0
1

10
2

GCS
 .034 .336 .123 .922 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .190 .528 .203 1.371 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.009 .363 .170 .773 

Only one reactive .063 .372 .131 1.055 

None reactive .000 .077 .034 .173 

ISS .000 .237 .115 .489 

Cause of 

injury 
RTC     

fall .012 .404 .199 .822 

Assaults .253 1.742 .672 4.511 

others .425 .546 .123 2.415 

Constant .000 69.892   
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Model VIIB (AUC: 0.914) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds ratio 

Age .000 .955 .943 .967 

GCS mild     

moderate .003 .310 .143 .671 

severe .000 .179 .088 .360 

Pupillary 

reactivity 

Normal     

Abnormal-

both reactive 

.003 .337 .165 .689 

Only one 

reactive 

.020 .311 .117 .830 

None reactive .000 .053 .025 .110 

ISS .000 .232 .119 .454 

Constant .000 165.080   

 



 

 

469 

469 

Model VIIIA (AUC: 0.917) 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio  

Age .000 .961 .948 .974 

76.0
1

10
2

GCS
 .019 .301 .111 .822 

02.1
10

1
log

1

10
2

GCS

GCS
e

 .124 .475 .183 1.228 

Pupillary 

reactivity 

Normal .    

Abnormal-both reactive .007 .358 .170 .755 

Only one reactive .036 .326 .115 .927 

None reactive .000 .061 .027 .140 

Extracranial injury .001 .283 .137 .585 

Cause of 

injury 

RTC     

fall .021 .438 .217 .883 

Assaults .178 1.894 .748 4.797 

others .531 .631 .150 2.664 

Constant .000 72.977   
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Model VIIIB (AUC: 0.910) 

 
 

 Sig.  Odds ratio  95. 0% C. I. for odds 

ratio 

Age .000 .964 .951 .977 

GCS mild     

moderate .004 .312 .142 .688 

severe .000 .155 .077 .314 

Pupillary 

reactivity 

Normal     

Abnormal-

both reactive 

.003 .334 .163 .686 

Only one 

reactive 

.006 .247 .091 .671 

None 

reactive 

.000 .036 .017 .079 

Extracranial injury  .000 .241 .121 .482 

Cause of 

injury 

RTC     

fall .017 .436 .221 .863 

Assaults .180 1.846 .753 4.525 

others .536 .642 .157 2.619 

Constant .000 215.875   
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Model XIA1 (AUC: 0.92)  

 
 

 Sig.  Odds ratio 95. 0% C. I. for odds 

ratio 

Age .000 .952 .941 .963 

GCS mild     

moderate .020 .425 .206 .876 

severe .000 .225 .122 .414 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.004 .390 .205 .743 

Only one reactive .002 .253 .108 .592 

None reactive .000 .048 .024 .095 

ISS .000 .258 .138 .482 

Brain stem injury .000 .220 .100 .484 

Brain swelling .080 .637 .385 1.055 

haemorrhage .152 1.549 .851 2.817 

Cerebellar injury .072 .422 .165 1.081 

Constant .000 171.466   
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Model XIA2 (AUC: 0.92) 

 
 

 Sig.  Odds ratio 95. 0% C. I. for odds 

ratio 

Age .000 .954 .943 .965 

GCS mild     

moderate .017 .417 .203 .858 

severe .000 .228 .124 .420 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.004 .388 .204 .736 

Only one reactive .002 .251 .107 .590 

None reactive .000 .049 .025 .098 

ISS .000 .268 .143 .502 

Brain stem injury .000 .232 .17 .507 

Brain swelling .071 .630 .382 1.041 

Cerebellar injury .084 .442 .175 1.117 

Constant .000 220.067   
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Model XIA3 (AUC: 0.92) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .953 .942 .964 

GCS mild     

moderate .021 .430 .210 .881 

severe .000 .212 .116 .387 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.006 .413 .218 .780 

Only one reactive .003 .278 .120 .647 

None reactive .000 .049 .025 .097 

ISS .000 .219 .120 .403 

Brain stem injury .000 .185 .085 .402 

Haemorrhage .162 1.526 .844 2.760 

Constant .000 132.121   
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Model XIA4 (AUC: 0.92) 

 
 

 Sig.  Odds ratio 95. 0% C. I. for odds 

ratio 

Age .000 .955 .944 .966 

GCS mild     

moderate .019 .425 .208 .867 

severe .000 .216 .118 .393 

Pupillary 

reactivity 

Normal     

Abnormal-

both reactive 

.006 .411 .218 .775 

Only one 

reactive 

.003 .276 .118 .645 

None reactive .000 .051 .026 .100 

ISS .000 .229 .125 .420 

Brain stem injury .000 .194 .090 .421 

Constant .000 166.557   
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Model XIB1 (AUC: 0.92) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .957 .945 .969 

GCS mild     

moderate .015 .402 .193 .837 

severe .000 .217 .117 .402 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.006 .406 .212 .776 

Only one reactive .000 .210 .088 .501 

None reactive .000 .037 .018 .077 

Extracranial injury  .000 .227 .122 .422 

Cause of 

injury 

RTC     

fall .100 .605 .333 1.101 

Assaults .138 1.880 .817 4.329 

others .973 1.023 .278 3.768 

Brain stem injury .000 .164 .074 .364 

Brain swelling .003 .466 .282 .768 

Haemorrhage .529 1.213 .666 2.209 

Constant .000 295.630   

 



 

 

476 

476 

Model XIB2 (AUC: 0.92) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .958 .946 .970 

GCS mild     

moderate .014 .401 .193 .833 

severe .000 .220 .119 .408 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.006 .402 .211 .767 

Only one reactive .000 .210 .088 .504 

None reactive .000 .038 .018 .077 

Extracranial injury .000 .225 .121 .418 

Cause of 

injury 

RTC     

fall .106 .611 .336 1.110 

Assaults .136 1.888 .819 4.353 

others .968 .974 .269 3.525 

Brain stem injury .000 .167 .075 .370 

Brain swelling .003 .468 .284 .772 

Constant .000 329.004   

 



 

 

477 

477 

Model XIIA  

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds ratio 

Age .000 .952 .939 .964 

GCS mild     

moderate .064 .470 .211 1.046 

severe .000 .254 .128 .506 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.001 .303 .149 .617 

Only one 

reactive 

.001 .172 .062 .478 

None reactive .000 .063 .029 .138 

ISS .001 .283 .135 .594 

Systolic 

blood 

pressure 

Normtension     

Hypotension .507 .764 .345 1.694 

Hypertension .956 .983 .527 1.831 

Mean 

arterial 

blood 

pressure 

Normtension     

Hypotension .233 .394 .086 1.817 

Hypertension .700 .809 .276 2.374 

hypoxia .002 .270 .116 .627 

Brain stem haemorrhage .000 .139 .059 .327 

Constant .000 340.535   

 



 

 

478 

478 

Model XIIB  

 
 

 Sig.  Odds ratio 95. 0% C. I. for odds ratio 

Age .000 .954 .941 .968 

GCS mild     

moderate .037 .411 .178 .947 

severe .000 .256 .125 .524 

Pupillary 

reactivity 

Normal     

Abnormal-

both reactive 

.001 .292 .141 .606 

Only one 

reactive 

.000 .111 .036 .338 

None reactive .000 .049 .022 .111 

extracranial_AIS4 .002 .316 .150 .666 

Cause of 

injury 

RTC     

fall .044 .488 .243 .981 

Assaults .833 1.105 .438 2.786 

others .919 .916 .168 5.004 

swelling .000 .322 .180 .576 

Brain stem haemorrhage .000 .148 .061 .354 

Systolic 

blood 

pressure 

Normtension     

Hypotension .597 .800 .350 1.827 

Hypertension .985 1.006 .531 1.908 

Mean 

arterial 

blood 

pressure 

Normtension     

Hypotension .154 .307 .060 1.557 

Hypertension .658 .776 .253 2.383 

hypoxia .001 .208 .085 .510 

Constant .000 922.011   

 



 

 

479 

479 

Model XIVA1(AUC = 0.932) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for odds 

ratio 

Age .000 .954 .943 .964 

GCS Mild     

Moderate .012 .401 .196 .818 

Severe .000 .237 .129 .435 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.005 .396 .208 .753 

Only one reactive .006 .292 .122 .701 

None reactive .000 .052 .026 .103 

ISS .000 .249 .135 .457 

Brain stem injury .000 .179 .082 .391 

Hypoxia Yes .001 .270 .128 .568 

Missing .067 .501 .239 1.049 

Constant .000 215.422   

 



 

 

480 

480 

Model XIVA2 (AUC=0.927) 
 
 

 Sig.  odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .952 .941 .964 

GCS Mild     

Moderate .030 .447 .216 .924 

Severe .000 .272 .146 .506 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.002 .360 .188 .688 

Only one reactive .002 .253 .104 .617 

None reactive .000 .060 .029 .123 

ISS .000 .262 .139 .493 

Brain stem injury .000 .159 .072 .351 

Hypoxia Yes .001 .291 .136 .621 

Missing .413 .702 .300 1.638 

Mean blood 

pressure 

Normotension     

Hypotension .013 .193 .053 .707 

Hypertension .702 1.173 .519 2.650 

Missing .159 .343 .078 1.519 

Constant .000 203.806   

 



 

 

481 

481 

Model XIVA3 (AUC=0.927) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .953 .942 .964 

GCS Mild     

Moderate .029 .445 .215 .920 

Severe .000 .272 .146 .506 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.002 .359 .188 .688 

Only one reactive .002 .252 .103 .613 

None reactive .000 .059 .029 .121 

ISS .000 .260 .138 .490 

Brain stem injury .000 .159 .072 .351 

Hypoxia Yes .001 .286 .135 .608 

Missing .404 .697 .299 1.626 

Mean blood 

pressure 

No-hypotension     

Hypotension .001 .168 .056 .504 

missing .074 .300 .080 1.123 

Constant .000 233.249   

 



 

 

482 

482 

Model XIVA4 (AUC= 0.924) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .951 .940 .963 

GCS Mild     

Moderate .019 .423 .206 .867 

Severe .000 .238 .128 .442 

Pupillary reactivity Normal     

Abnormal-both 

reactive 

.004 .379 .197 .730 

Only one reactive .005 .282 .116 .684 

None reactive .000 .057 .028 .115 

ISS .000 .255 .138 .472 

Brain stem injury .000 .180 .083 .391 

hypoxia Yes .001 .272 .128 .577 

Missing .225 .609 .273 1.356 

Systolic blood 

pressure 

Normotension     

Hypotension .057 .553 .300 1.019 

Hypertension .809 1.075 .599 1.928 

Missing .363 .483 .100 2.322 

Constant .000 275.198   

 



 

 

483 

483 

Model XIVA5 (AUC=0.924) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .951 .940 .963 

GCS Mild     

Moderate .019 .423 .206 .866 

Severe .000 .241 .130 .444 

Pupillary reactivity Normal     

Abnormal-both 

reactive 

.003 .376 .196 .722 

Only one reactive .005 .281 .116 .683 

None reactive .000 .057 .028 .115 

ISS .000 .256 .138 .473 

Brain stem injury .000 .180 .083 .392 

Hypoxia Yes .001 .270 .127 .571 

Missing .225 .609 .273 1.357 

Systolic blood 

pressure 

No-hypotension     

Hypotension .022 .533 .311 .912 

missing .329 .465 .100 2.167 

Constant .000 279.830   

 



 

 

484 

484 

Model XIVB1 (AUC= 0.928) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

ratio 

Age .000 .956 .945 .969 

GCS Mild     

Moderate .010 .380 .183 .790 

Severe .000 .242 .129 .453 

Pupillary 

reactivity 

Normal .000    

Abnormal-both 

reactive 

.005 .388 .201 .748 

Only one reactive .001 .220 .088 .549 

None reactive .000 .040 .019 .082 

Injury 

cause 

RTC     

Fall .991 1.008 .269 3.779 

Assaults .471 .612 .161 2.328 

Others .393 1.908 .434 8.396 

Extracranial injury .000 .272 .145 .512 

Brain stem injury .000 .163 .073 .363 

swelling .001 .424 .253 .710 

Hypoxia Yes .001 .253 .115 .556 

Missing .134 .561 .263 1.196 

Constant .000 415.746   

 



 

 

485 

485 

Model XIVB2 (AUC=0.932) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .955 .943 .968 

GCS Mild     

Moderate .022 .418 .198 .884 

Severe .000 .280 .148 .530 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.002 .344 .178 .666 

Only one reactive .000 .189 .074 .481 

None reactive .000 .044 .021 .093 

Injury cause RTC     

Fall .104 .599 .323 1.110 

Assaults .109 2.040 .853 4.882 

Others .846 1.149 .283 4.672 

Extracranial injury .001 .325 .167 .631 

Brain stem injury .000 .150 .067 .337 

swelling .000 .383 .225 .652 

Hypoxia Yes .001 .244 .110 .541 

Missing .471 .729 .309 1.719 

Mean blood 

pressure 

Normotension     

Hypotension .005 .150 .040 .571 

Hypertension .947 1.029 .437 2.425 

Missing .134 .320 .072 1.419 

Constant .000 459.735   

 



 

 

486 

486 

Model XIVB3 (AUC=0.932) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .956 .943 .968 

GCS Mild     

Moderate .022 .417 .197 .882 

Severe .000 .280 .148 .529 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.002 .344 .178 .667 

Only one reactive .000 .189 .074 .480 

None reactive .000 .044 .021 .093 

Injury cause RTC     

Fall .102 .598 .323 1.108 

Assaults .108 2.043 .855 4.885 

Others .848 1.146 .283 4.651 

Extracranial injury .001 .324 .168 .624 

Brain stem injury .000 .150 .067 .336 

swelling .000 .384 .226 .652 

Hypoxia Yes .000 .243 .110 .539 

Missing .469 .729 .309 1.717 

Mean blood 

pressure 

No-hypotension     

Hypotension .001 .147 .048 .454 

missing .083 .312 .084 1.165 

Constant  470.994   

 



 

 

487 

487 

Model XIVB4 (AUC=0.930) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .954 .941 .966 

GCS Mild     

Moderate .016 .405 .194 .843 

Severe .000 .242 .128 .456 

Pupillary reactivity Normal     

Abnormal-both 

reactive 

.004 .372 .191 .723 

Only one reactive .001 .213 .084 .541 

None reactive .000 .042 .020 .089 

Injury cause RTC     

Fall .111 .605 .327 1.121 

Assaults .132 1.910 .822 4.437 

Others .875 1.117 .282 4.421 

extracranial_AIS4 .000 .311 .162 .594 

Brain stem injury .000 .168 .076 .373 

swelling .001 .401 .238 .676 

Hypoxia Yes .000 .240 .108 .534 

Missing .328 .665 .294 1.505 

Systolic blood 

pressure 

Normotension .190    

Hypotension  .589 .313 1.107 

Hypertension .658 1.143 .632 2.068 

Missing .416 .507 .099 2.600 

Constant .000 517.771   

 



 

 

488 

488 

Model XIVB5 (AUC=0.929) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .954 .942 .967 

GCS Mild     

Moderate .016 .405 .194 .843 

Severe .000 .247 .132 .463 

Pupillary reactivity Normal     

Abnormal-both 

reactive 

.003 .369 .190 .715 

Only one reactive .001 .214 .084 .542 

None reactive .000 .043 .020 .090 

Injury cause RTC     

Fall .116 .611 .330 1.129 

Assaults .135 1.902 .820 4.412 

Others .896 1.096 .278 4.318 

Extracranial injury  .000 .310 .162 .592 

Brain stem injury .000 .169 .076 .373 

swelling .001 .404 .240 .681 

Hypoxia Yes .000 .238 .107 .528 

Missing .329 .666 .294 1.507 

Systolic blood 

pressure 

No-hypotension     

Hypotension .039 .552 .314 .970 

missing .363 .475 .095 2.362 

Constant .000 529.858   

 



 

 

489 

489 

Model XVA1 (AUC=0.925) 

 
 

  Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .951 .940 .962 

GCS mild     

moderate .027 .441 .214 .909 

severe .000 .242 .130 .449 

Pupillary 

reactivity 

Normal .000    

Abnormal-both reactive .002 .359 .186 .694 

Only one reactive .003 .253 .102 .627 

None reactive .000 .055 .027 .113 

ISS .000 .266 .144 .493 

Brain stem injury .000 .183 .083 .403 

Hypoxia Yes .001 .230 .094 .566 

Missing .418 1.803 .433 7.509 

Systolic 

blood 

pressure 

Normotension     

Hypotension .100 .599 .325 1.103 

Missing .699 .621 .055 6.951 

Interaction 

of hypoxia 

and 

systolic 

blood 

pressure 

     

Hypoxia with 

hypotension 

.533 1.659 .337 8.155 

Hypoxia with missing 

systolic blood pressure 

1.000 .000 .000 . 

Missing hypoxia with 

normotension 

.042 .144 .022 .936 

Missing hypoxia with 

missing systolic blood 

pressure 

.393 .241 .009 6.331 

Constant .000 278.073   

 



 

 

490 

490 

Model XVB1 (AUC = 0.932) 

 
 

 Sig.  Odds 

ratio 

95. 0% C. I. for 

odds ratio 

Age .000 .962 .944 .981 

GCS mild .000    

moderate .013 .382 .178 .820 

severe .000 .236 .123 .456 

Pupillary 

reactivity 

Normal .000    

Abnormal-both reactive .002 .341 .172 .674 

Only one reactive .001 .192 .074 .496 

None reactive .000 .043 .020 .090 

Cause of 

injury 

RTC .425    

fall .263 2.245 .544 9.269 

Assaults .334 .380 .053 2.705 

others .844 1.478 .030 73.101 

Extracranial injury .000 .295 .153 .570 

Brain stem injury .000 .161 .071 .366 

Brain swelling .001 .400 .234 .684 

Hypoxia Yes .000 .182 .071 .463 

Missing .465 1.664 .425 6.519 

Systolic 

blood 

pressure 

Normotension     

Hypotension .077 .561 .295 1.066 

Missing .969 .952 .077 11.740 

Interaction 

of age and 

injury 

cause 

Age and RTC     

Age and fall .054 .976 .952 1.000 

Age and assault .105 1.043 .991 1.097 

Age and others .801 .989 .911 1.075 

Interaction 

of hypoxia 

and 

systolic 

blood 

pressure 

     

Hypoxia with hypotension .243 2.753 .502 15.100 

Hypoxia with missing 

systolic blood pressure 

1.000 .000 .000 . 

Missing hypoxia with 

normotension 

.108 .219 .035 1.392 

Missing hypoxia with 

missing systolic blood 

pressure 

.296 .162 .005 4.920 

Constant .000 430.839   

 



 

 

491 

491 

Model XVB2 (AUC= 0.931) 

 
 

 Sig. Odds 

ratio 

95.0% C.I. for odds 

ratio 

Age .000 .963 .945 .981 

GCS mild 

moderate 

severe 

    

.010 .370 .174 .788 

.000 .241 .126 .462 

Pupillary 

reactivity 

Normal     

Abnormal-both 

reactive 

.003 .362 .184 .712 

Only one reactive .001 .214 .084 .545 

None reactive .000 .044 .021 .092 

Cause of 

injury 

RTC     

fall .245 2.306 .564 9.428 

Assaults .308 .359 .050 2.569 

others .708 2.140 .040 114.995 

Extracranial injury .000 .283 .147 .546 

Brain stem injury .000 .157 .070 .353 

Brain swelling .001 .409 .241 .696 

Hypoxia Yes .000 .241 .108 .536 

Missing .356 .682 .302 1.538 

Systolic 

blood 

pressure 

Normotension     

Hypotension .040 .548 .309 .972 

Missing .391 .493 .098 2.481 

Interaction 

of age and 

injury 

cause 

Age and RTC     

Age and fall .049 .976 .952 1.000 

Age and assault .085 1.046 .994 1.102 

Age and others .692 .983 .904 1.069 

Constant .000 399.736   
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