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ABSTRACT  
This study was aimed at exploring data analysis techniques for generating 
accurate estimates of the loss in quality of fresh fruits, vegetables and cut flowers 
in chilled supply chains based on data from advanced sensors. It was motivated 
by the recent interest in the application of advanced sensors, by emerging 
concepts in quality controlled logistics, and by the desire to minimise quality losses 
during transport and storage of the produce. Cut roses were used in this work 
although the findings will also be applicable to other produce. The literature has 
reported that whilst temperature was considered to be the most critical post-
harvest factor, others such as growing conditions could also be important in the 
senescence of cut roses. Kinetic modelling was the most commonly used 
modelling approach for shelf life predictions of foods and perishable produce, but 
not for estimating vase life (VL) of cut flowers, and so this was explored in this 
work along with multiple linear regression (MLR) and partial least squares (PLS).  
 
As the senescence of cut roses is not fully understood, kinetic modelling could not 
be implemented directly. Consequently, a novel technique, called Kinetic Linear 
System (KLS), was developed based on kinetic modelling principles. Simulation 
studies of shelf life predictions for tomatoes, mushrooms, seasoned soybean 
sprouts, cooked shrimps and other seafood products showed that the KLS models 
could effectively replace the kinetic ones.  
 
With respect to VL predictions KLS, PLS and MLR were investigated for data 
analysis from an in-house experiment with cut roses from Cookes Rose Farm 
(Jersey). The analysis concluded that when the initial and final VLs were available 
for model calibration, effective estimates of the post-harvest loss in VL of cut roses 
could be obtained using the post-harvest temperature. Otherwise, when the initial 
VLs were not available, such effective estimates could not be obtained. Moreover, 
pre-harvest conditions were shown to correlate with the VL loss but the correlation 
was too weak to produce or improve an effective estimate of the loss. The results 
showed that KLS performance was the best while PLS one could be acceptable; 
but MLR performance was not adequate.  
 
In another experiment, boxes of cut roses were transported from a Kenyan farm to 
a UK distribution centre. Using KLS and PLS techniques, the analysis showed that 
the growing temperature could be used to obtain effective estimates of the VLs at 
the farm, at the distribution centre and also the in-transit loss. Further, using post-
harvest temperature would lead to a smaller error for the VL at the distribution 
centre and the VL loss. Nevertheless, the estimates of the VL loss may not be 
useful practically due to the excessive relative prediction error. Overall, although 
PLS had a slightly smaller prediction error, KLS worked effectively in many cases 
where PLS failed, it could handle constraints while PLS could not. 
 
In conclusion, KLS and PLS can be used to generate effective estimates of the 
post-harvest VL loss of cut roses based on post-harvest temperature stresses 
recorded by advanced sensors. However, the estimates may not be useful 
practically due to significant relative errors. Alternatively, pre-harvest temperature 
could be used although it may lead to slightly higher errors. Although PLS had 
slightly smaller errors KLS was more robust and flexible. Further work is 
recommended in the objective evaluations of product quality, alternative non-linear 
techniques and dynamic decision support system. 
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1 INTRODUCTION 

 
============================================================ 

 

This chapter describes the major motivations behind the study, which include 

the potential of RFID technology, the issue of quality loss in the perishable 

produce supply chain, and the emerging concept of quality-controlled logistics. 

It also establishes the research hypothesis that the loss in quality of perishable 

produce can be estimated based on the data collected by an embedded sensor 

network; and the research objective which is to develop data analysis 

technique(s) and identify the existing ones for the estimation. In terms of scope, 

cut roses are used as an exemplar for horticulture produce while RFID tags and 

data loggers were used for data collection purpose. Previous studies that 

appear to have similar objectives are briefly reviewed. The research challenges 

are identified and discussed.  

 

_______________________________________________________________



1.1 RFID TECHNOLOGY 

1.1.1 HISTORY OF RFID TECHNOLOGY 

Radio Frequency IDentification (RFID) is not a new technology. Its application 

can be dated back as early as the 1950s in “identification, friend or foe” systems 

for military aircraft or in electronic article surveillance for anti-counterfeiting 

(Landt 2001; Landt 2005). Despite such a long history, its implementation within 

the supply chain industry has only been relatively recent (Hardgrave and Miller 

2006). The RFID adoption strategy in 2003 by Wal-Mart, the largest US retailer, 

was probably the first. The retailer mandated that by the end of 2006 its top 100 

suppliers must be RFID compliant (Bansal 2003). In the same year, the US 

Department of Defence initiated a similar policy for adopting RFID technology. It 

required all equipment to be supplied with passive RFID tags by January 2005 

(US Department of Defence 2003). These two concerted initiatives have since 

brought RFID technology into industry’s focus. As a consequence, a number of 

companies have started pilot studies to investigate the feasibility of adopting the 

technology. A survey by AMR Research in 2005 found that 69% of the 500 

companies that were involved in the survey, planned to study the feasibility of 

RFID adoption at various scales, ranging from evaluation phase to pilot, and 

even full implementation of the technology (Rashid 2005). Large retailers such 

as Wal-Mart, Target, Metro and multi-national companies including Airbus, 

Boeing and Procter & Gamble were among those at the forefront of the trend 

(Airbus 2003; Metro 2003; Griffin 2005; Procter & Gamble 2005; Rashid 2005).  

1.1.2 WHAT IS IN AN RFID SYSTEM 

Traditionally, an RFID system always consists of two essential components:  

interrogators (or readers) and transponders, commonly referred to as “tags”. 

The readers send and receive radio frequency data to and from the tags via 

antennas. An RFID tag is the device which stores the data that identifies the 

object it is attached to. Such data contain a unique ID number for the object and 

other details such as its manufacturing date, origin and chemical composition 

for food products. Depending on their capability to read and write data, RFID 
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tags can be classified into five classes. For class 0 and class 1 tags, the data 

can be written once only either at manufacturing sites or at the users’ sites. In 

contrast, the RFID tags in the later classes 2-4 can perform an unlimited 

number of “read” or “write” operations. Class 3 and class 4 tags are integrated 

with on-board sensors, which enable data such as temperature, pressure and 

motion to be recorded at pre-programmed intervals. The most advanced RFID 

tags, which belong to class 4, can interact with each other and form a wireless 

sensor network without the presence of a reader. Furthermore, RFID tags can 

also be classified based on how they are powered. Passive RFID tags depend 

on their readers for the power source while the active tags are battery-powered. 

(The semi-passive class refers to the tags that have built-in batteries but still 

depend on their readers for data communication) (Laran RFID 2004).   

 

The integration of sensors into an RFID tag is a recent development in RFID 

technology. Adding sensors that can measure the conditions that the products 

are exposed to such as temperature, vibration, chemicals and gases can 

provide much more valuable information about their current and historical 

conditions. While few sensor-integrated RFID systems are commercially 

available, it is expected that this new generation of RFID systems would lead to 

a whole new world of imaginable applications in the food supply chain, 

homeland defence, military operations, manufacturing, animal health, medical 

operations and other applications (Cain and Lee 2008).  

1.1.3 RFID TECHNOLOGY – WHY NOW? 

The principal causes of the recent interest in RFID technology can be attributed 

to both its technological potential and business-related factors.  

 

RFID is capable of realising traceability and eventually real-time visibility along 

the supply chains, which could have huge implications across many industry 

sectors, including the horticultural produce supply chain. By definition, 

traceability is “the ability to follow the movement of a feed or food through 

specified stage(s) of production, processing and distribution” (ISO 2007). An 

effective food traceability system can provide a complete history of a product at 
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various stages and operations from primary production to consumption. The 

demand for traceability has come not only from consumers but also from 

distributors and regulatory bodies. For the latter, traceability can facilitate timely 

root-cause identification and cost effective product recalls if necessary, an issue 

that has been problematic without effective traceability. For example, in the 

hepatitis A outbreak in Pennsylvania, US in November 2003 it took the 

government over three weeks to establish the potential link between the illness 

and farms outside US, by which point most of the damage had been done 

(Labuza and Myers 2004). Consequently, there is a growing focus on 

traceability for all foods as exhibited by a number of US and EU laws and 

regulations (Labuza and Myers 2004). For the consumers, increased health 

awareness (e.g. preference for organic products) and major food scares such 

as Bovine Spongiform Encephalopathy (BSE), Escherichia coli, Salmonella 

species and dioxin residues have made them become increasingly critical when 

purchasing food (FAO 2001). Traceability can provide information on production 

and processing aspects of the products, and thereby help the customers in 

making their buying decision. 

 

In addition, strategic RFID policies adopted by a few large (multi-)national 

organisations seem to contribute to the recent interest in the technology, 

possibly irrespective of its maturity. An AMR research report indicated that large 

business entities such as Wal-Mart and the US Department of Defence 

represented the principal drive in RFID adoption. The report found that many 

companies would cite customer mandates as the primary reason of their 

interest in the technology (Rashid 2005). Given its market disruptive potential, 

other larger companies could not afford to let their business competitors get too 

far ahead and hence they believed waiting for a more mature RFID technology 

is unrealistic (Goth 2005). 

1.1.4 THE VERDICTS 

Three years after Wal-Mart’s initiative, different industry sectors started to look 

back and evaluated the success of their RFID adoption programmes. In 2006, 

Wal-Mart reported, as a result of its RFID initiative, a 16% reduction in the 
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number of times it experienced out-of-stock situations and a 60% improvement 

in efficiency of replenishing the shelves with products from its backroom stores  

(Cecera and Suleski 2007). Procter & Gamble, one of Wal-Mart's top providers 

of consumer goods, praised the initiative saying its multi-million RFID 

investment had been recovered (Songini 2007). However, results from other 

RFID adopters were less impressive. Plans to expand RFID deployment at 

Target and the US Department of Defence were postponed; an RFID pilot study 

at Albertson, another U.S. giant retailer, was discontinued (Cecera and Suleski 

2007). Even Wal-Mart itself was reportedly to re-assess its RFID strategy 

(Weier 2007).  

 

Nowadays, the general industry view of RFID technology has become more 

cautiously positive: its potential is enormous but there exist challenges that 

need to be addressed. Cost, lack of practical knowledge about the technology, 

difficulty of demonstrating Return-on-Investment (ROI), practical issues (e.g. 

difficulty of attaching tags) and technological issues (integration, reliability, lack 

of standards) were reportedly among the barriers to RFID adoption (Riedel et al. 

2008).  One major challenge that has been pointed out in numerous 

publications lies in the management of the data captured by RFID (Han et al. 

2006; Lin et al. 2006; Attaran 2007; Sabbaghi and Vaidyanathan 2008; Kapoor 

et al. 2009). Specifically, the question for interested companies is how they are 

going to handle and interpret the enormous volume of RFID data to achieve 

competitive advantages in their business. Companies have become 

increasingly aware that adopting RFID solely for compliance purpose may not 

be economically justified. They realise that in order to achieve a return on 

investment in RFID technology, valuable information must be mined from the 

captured RFID data, interpreted and shared within the companies as well as 

with external partners to solve a specific business problem (Goth 2005; Faber 

2007; Fred et al. 2007; Murphy 2007). This view effectively emphasises the 

essential role of data analysis in the successful deployment of RFID 

technologies. 
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1.2 LOSS IN QUALITY OF FRESH HORTICULTURAL PRODUCE  

1.2.1 FRESH HORTICULTURAL PRODUCE  

Amongst all the agricultural sectors, horticulture focuses on cultivating plants 

that are used by people for food, for medicinal purposes and for aesthetic 

gratification. Its products generally include fruits, vegetables, ornamentals, nuts 

and medicinal plants. Of those, fruits, vegetables and flowers are often 

marketed soon after harvest without significant processing, leading to such 

terminologies as fresh produce and fresh cut flowers. 

 

Fresh fruits, vegetables and cut flowers are important agricultural products for 

their nutrition, pleasure and hence economic values. In 2008, fresh fruits and 

vegetables alone accounted for £8.34bn in the UK retail market (KeyNote 

2009). A significant proportion of fresh produce (89.5% and 42.2%, 

respectively) is imported for UK domestic consumption with the main sources of 

supply being South Africa, France, the Netherlands, New Zealand Chile, Spain, 

Turkey and the US (KeyNote 2009). The UK retail market for cut flowers is 

smaller and was worth £1.84bn in 2008, of which approximately £700m was 

accounted by imports from countries including Kenya and the Netherlands 

(MINTel 2008). The value of world export in fresh fruits, vegetables and cut 

flowers was estimated at £63bn in 2003 (Pinckaers 2005). 

1.2.2 THE SUPPLY CHAIN  

Beside the farms and the consumers, there are 3 major stakeholders in the 

supply chain of horticultural produce, including the cooperative agents, the 

wholesalers and the retailers. Figure 1.1 outlines the roles that these 

stakeholders play in the supply chain. The cooperative agents are primarily the 

first outlet for the products after leaving the farms. Traditionally, the produce 

would be brought to a wholesale market where the bulk shipment is sold to a 

wholesaler. Nowadays auction markets are the more popular destination. For 

example, FloraHolland, the world largest auction of floricultural products, 

reported an annual sale of €3.8 billion in flowers and plants for 2009. The 

auction imports flowers from 60 countries while its products are exported to 
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almost 140 different ones (FloraHolland 2010). This has made the FloraHolland 

auction and the likes become international centres for the supply and demand 

of floricultural products (van Dantzig and Boonstra 2005). However, the auction 

system may be heading toward more challenging times as a number of growers 

have started to move away from auction and chose to deal with wholesalers 

and distributors directly (Yanik 2010), particularly for fresh fruits and vegetables 

(Pinckaers 2005).  

 

The wholesalers, the second major stakeholders, are normally a multi-national 

distributor but could be any combination of exporters, importers and distributors. 

They are responsible for transporting the produce from the auction houses and 

wholesale markets to their distribution centres, which are often closer to the 

retailers. Two of the biggest UK-based distributors of cut flowers are World 

Flowers, which delivers over 1.5 billion cut flower stems a year to its customers 

around the world, and Flamingo Holdings, supplying 600 million flower stems 

each year to the UK market (MINTel 2008).  

 

The retailers, the outlets that directly sell cut flowers to consumers, are 

supermarkets, florists, street markets and garden centres. Among these, 

supermarkets have the largest share of cut flower markets, accounting for 65% 

of the total UK market in 2007 while the other three altogether captured some 

26% (MINTel 2008). For their advantages of strong buying power and in-store 

capacity to offer a wider choice of flowers, supermarkets such as Marks & 

Spencer are believed to continue to dominate the market although mail order 

and online sales are increasingly popular (MINTel 2008). 

 

Logistically, from the farm to their retail outlets, fresh vegetables, fruits and cut 

flowers often go through a combination of transport modes. Trucks and trailers 

are by far the primary transportation means. For long distance delivery, air 

shipments or sea freight may also be involved. Of those two, although 

temperature abuse is a concern in air freight (Pearce 2003; Staby and Reid 

2007), it is often the preferred mode solely due to the shorter delivery time 

(Anonymous 2005). 
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Figure 1.1: Major stakeholders in supply chain of h orticultural produce 

 

1.2.3 QUALITY CONCEPT AND REMAINING SHELF LIFE DEFINITION  

In general, the quality of a product is a combination of its characteristics that 

enable it to meet consumer expectations and needs (FAO 2008). For foods, 

including fresh horticultural produce, the concept of quality becomes 

increasingly complex as the consumers’ needs and expectations have evolved 

over the years. In the past, most children probably grew up being told by their 

parents to eat whatever that was given to them. Most of the attention then was 

whether the food was edible; little interest was paid to how such food got to their 
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dining table in the first place. Nowadays, consumers, particularly those from 

developed countries, are likely to expect more than just “food as fuels” (Promar 

International 2006). They want exotic products to be affordable and available all 

year round (KeyNote 2010). They would assess the product quality using 

sensory attributes such as taste, texture and appearance, nutritional attributes 

such as energy, protein, carbohydrate and fat, and safety attributes e.g. allergy-

related information. Other factors that also attract increasing consumer interest 

include product origin, environmental consideration, worker’s welfare, and 

sustainable agriculture (FAO 2008). Therefore, those attributes and factors, 

being considered as a whole and relative to each other, although rather 

subjective, together determine the quality of fresh horticultural produce as 

perceived by a consumer.  

 

For wholesalers and producers of fresh fruits, vegetables and cut flowers, the 

product quality involves additional considerations. The wholesalers would be 

concerned with issues such as the supply security, the ease of packaging and 

labelling, and the stability of the product during transport and storage. For the 

producers, a product that requires less input but can be sold at higher price is 

the one that has higher quality. 

 

As information regarding the quality of horticultural produce (and other food 

products) is not readily reflected or accessible on its label, some measures are 

used as an indirect indication of its quality. “Remaining shelf life” (or vase life for 

cut flowers) is one such measure. A universally accepted definition for the term 

does not seem to exist (Fu and Labuza 1993) possibly because consumers, 

retailers and other stakeholders have different preferences over the attributes of 

produce quality. Examples of its definition are: 

• “the time period for the product to become unacceptable from sensory, 

nutritional or safety perspectives” (Fu and Labuza 1993). 

• “the time during which the food product will remain safe, be certain to 

retain desired sensory, chemical, physical and microbiological 

characteristics, comply with any label declaration of nutritional data when 
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stored under the recommended conditions” (Institute of Food Science 

and Technology 1993).  

• “the period during which the product maintains its microbiological safety 

and sensory qualities at a specific storage temperature”(Chilled Food 

Association 2006). 

Perhaps due to the lack of a universal definition, the shelf life period that is 

shown on some food products could be quite arbitrary and in some cases not 

supported by scientific studies (Panagou 2004). 

 

This study adopts the definition by Chilled Food Association. However, for cut 

roses, the requirement of microbiological safety is irrelevant as the flowers are 

inherently safe.  

1.2.4 THE POST-HARVEST LOSSES IN QUALITY  

Due to their perishable nature, the quality of fresh fruits, vegetables and cut 

flowers deteriorate with time after harvest. A number of factors can speed up or 

slow down such post-harvest senescence but none can stop it. Eventually, the 

product quality will become so poor that it will not be suitable for human 

consumption. This happens to a significant proportion of horticultural produce in 

chilled supply chains even before reaching their prospective consumers, which 

is a major issue that is recognised by the industry. It was reported at the 2006 

world cut flower congress that approximately 20 - 30% of fresh produce was lost 

during transport (Gregory 2006). For developed countries, Kader and Rolle 

(2004) estimated that 12% of fresh fruits and vegetables were lost between 

production and consumption sites. For developing countries, the loss was likely 

at a greater scale, with estimates as high as 40% (APO and FAO 2006) or 50% 

(Brown et al. 2005). To make matters worse, quality loss does not always result 

in a product being discarded but it does lead to loss in profitability. Losses in 

quality during transport and storage could transform high quality premium 

products into acceptable economy class ones. This loss, which was not 

quantified, was believed to be even more significant (Brown et al. 2005). 

Consequently, given the size of the industry, the post-harvest loss poses a 

significant economic burden. 
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1.2.5 THE CAUSES OF THE POST-HARVEST LOSSES 

There are many factors that lead to post-harvest loss in quality of horticultural 

produce. The most obvious one lies in post-harvest management of the 

products. Experts have pointed to providing optimal ranges of temperature and 

humidity as the most important practice to minimise quality loss after harvest 

(Kader 2003; Kader and Rolle 2004; Brown et al. 2005; Gregory 2006). 

However, industrial experience indicates that this is far from being achieved; a 

typical shipment of cut roses would be at 10 - 20 oC, much higher than the ideal 

temperature of less than 5 oC, for most part of their journey from the farms to 

the retailers (Pearce 2003; Staby and Reid 2007; Klümpen 2010); temperature 

abuse was reported in 15 - 30% of the trips, according to an industrial survey 

(White 2007).  In addition, produce genotype, pre-harvest conditions and other 

post-harvest factors (such as mechanical stress) are believed to contribute to 

the post-harvest loss in quality (Brown et al. 2005). The effects of all of these 

factors are discussed more fully in Section 2.3. 

1.3 QUALITY-CONTROLLED LOGISTICS  

In the food industry, the increases in business competition and in the complexity 

of the supply chain networks have driven companies to continue optimising their 

supply chain management. Recently, a new inventory management concept 

called “quality-controlled logistics” has emerged. Conceptually, it is based on 

the idea of directing product flows according to product quality and customers’ 

quality demands (van Der Vorst et al. 2005). For horticultural produce, indirect 

measure of quality such as shelf life, “sell-by date”, and “expiry date” could be 

used in place of the product quality. For that reason, quality-controlled logistics 

have lead to policies such as “first expire first out” or “last expire first out”, which 

are all related to the quality of the produce, as opposed to the traditional “first in 

first out” (Emond and Nicometo 2006). 

 

The benefits of quality-controlled logistics are already recognised; it could 

improve food safety and customer service (Roberti 2005), reduce unnecessary 
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buffers in inventory (Jedermann et al. 2008), and ultimately reduce distribution 

costs and cycle times (Hingley et al. 2007).   

 

A critical requirement for an effective quality-controlled logistics system is that 

the produce quality must be known. In order to implement such policies as “first 

expire first out”, this knowledge must always be timely accessible throughout 

the supply chain. Clearly, this rules out laboratory testing for quality 

measurements as it would not be practical, and hence necessitates quality 

modelling and prediction for horticultural produce. 

1.4 RESEARCH MOTIVATION AND SCOPE  

The work in this thesis is motivated by these major factors: the potential of RFID 

technology (Section 1.1), the issue of quality loss in the supply chain of fresh 

horticultural produce (Section 1.2), and the recent trend in logistics 

management (Section 1.3). While RFID technology can potentially offer great 

benefits, a major challenge to its adoption is how to identify and realise a 

competitive advantage using the technology. Data analysis is one of the keys to 

overcoming this challenge. In addition, quality prediction is required for the 

horticultural produce industry to manage and reduce the significant post-harvest 

losses encountered in the supply chain, and to move toward quality-controlled 

logistics. As a result, this thesis investigates the development of data analysis 

techniques to estimate the quality of horticultural produce from the data 

captured by RFID sensors. 

 

In terms of scope, the study focuses on cut roses as an exemplar for 

horticultural produce and the data analysis techniques that it develops will be 

equally applicable to other produce. The reason for selecting cut roses is 

because they are reportedly the leading cut flower crop (Pinckaers 2005), and 

are considered to be a high-valued product. In addition, cut roses are reportedly 

one of the horticultural produce that are most susceptible to the transport 

condition (particularly temperature). The supply chain for cut roses is not very 

long (about 72 h). Furthermore, remaining vase life (VL) has been used as a 

measure of the quality of cut roses throughout this study. 
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In addition, data loggers are used throughout this study for data collection while 

temperature-sensor-integrated RFID tags are used occasionally for 

demonstration purpose. This is solely due to the unavailability of the RFID tags. 

Nevertheless, it is expected that the data analysis will be the same regardless 

of whether data loggers or RFID tags are used.  

1.5 RESEARCH HYPOTHESES AND OBJECTIVES  

This study investigates the hypothesis that whether or not using multivariate 

data analysis techniques the loss in quality of the perishable produce can be 

estimated based on the data collected by embedded sensor networks. 

Specifically, it examines the possibility of estimating the loss in remaining VLs of 

cut roses using post-harvest temperature recorded by data loggers or RFID 

tags. The study aims at developing novel data analysis technique(s) as well as 

identifying existing ones for the quality estimation. 

1.6 PREVIOUS STUDIES 

A number of studies have been identified as having some similarity with this 

work. One of them was publicised in 2009 by Ambient Systems and Information 

Highway Group (IHG). During their demonstration study, RFID tags were placed 

in strawberry pallets which were subsequently transported from a farm in Spain 

to a distribution centre in Germany. During the transport, temperature was 

measured and remaining shelf life of strawberries in each pallet were estimated 

and transmitted through a wireless network with general packet radio service 

(GPRS) connection. Both the temperature and the remaining shelf life were 

available upon the produce’s arrival at the distribution centre (Ambient Systems 

and Information Highway Group 2009). Details of how the remaining shelf life 

was estimated from the temperature measurements are not available and no 

patent for the algorithm has been identified. The study demonstrated the 

emerging interest from perishable goods supply chain industry in using RFID 

technology. 
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Another study was carried out to investigate the microbiological impact of 

transport temperature on fresh-cut endive (Rediers et al. 2009). Data loggers 

were placed in crates of fresh-cut endive that were transported from the farm to 

the processor and from the processor to different restaurants. Endive samples 

were taken for microbiological analyses at three different points along the 

supply chain. The study observed that higher levels of indicator microorganisms 

were associated with temperature fluctuation during transport (Rediers et al. 

2009). The result implied that transport temperature was an important factor 

that could influence the microbiological quality of the produce. However, the 

study used the data collected by data loggers for observation purpose only i.e., 

it did not perform any quantitative analysis with the data, which is the main 

focus of this work. 

1.7 RESEARCH CHALLENGES  

Estimating the quality of horticultural produce based on RFID collected data has 

two major challenges. The first one lies in the characteristics of the data itself. 

The data consists of different variables of the perishable produce system, which 

may be broadly classified as pre-harvest, at-harvest and post-harvest variables. 

From a system engineering point of view, the first two classes of variables, i.e. 

pre-harvest and at-harvest, can be seen as the initial conditions of the produce 

system; the post-harvest variables represent its system dynamics during the 

supply chain. Post-harvest variables including temperature, and possibly 

humidity, are recorded along the supply chain by RFID tags or data loggers, 

resulting in series of measurements of the variables. These could be considered 

as nonlinear time series because the variables, e.g. temperature, are not 

properly controlled. The number of measurements per time series is usually 

quite limited, e.g. less than 100 temperature measurements for a typical supply 

chain of cut roses, due to the limited memory capacity of RFID tags or data 

loggers, while a normal time series would often exceed 1000 samples. 

Consequently, any existing time series data analysis techniques may not be 

readily applied to the current data. In short, the post-harvest data is similar to a 

nonlinear multivariable time series but existing techniques may not be used for 

its analysis. 
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The second major challenge of the study is due to the complex biology 

associated with the perishable produce. It is believed that the understanding of 

the underlying biological system (i.e. the produce) and its associated processes 

(e.g. senescence) can greatly improve the performance of any data analysis 

technique. However, as the underlying biological system of horticultural produce 

is inherently complex, its associated processes are not completely understood. 

As a result, little a priori information exists linking the collected data with the 

produce quality. The challenge is therefore how to develop a data analysis 

technique that could describe the link between the post-harvest data collected 

by RFID tags and the quality of the produce with little a priori knowledge of the 

senescence process.  

 

In short, the challenges involved in this thesis are the multivariate, nonlinear, 

time series nature of the variables and the lack of knowledge of the senescence 

process that links the collected data to the quality of the produce. 

1.8 ORIGINAL CONTRIBUTION  

There are a number of original contributions that the work reported in this thesis 

makes to scientific understanding. These are briefly summarised below: 

1. A novel technique termed Kinetic Linear System (KLS) was developed 

for modelling the effect of temperature on the remaining shelf life of 

perishable products. The technique is based on kinetic principles and 

hence is applicable to perishable products the shelf life of which is 

governed by chemical, biochemical, microbial and physical processes. It 

is data-driven and so can be applied to products which do not normally 

have a traditional kinetic model. 

2. Using cut roses as an exemplar, this work demonstrates that multivariate 

data analysis techniques can be used to generate effective estimates of 

the post-harvest loss in quality of perishable produce based on real 

supply chain data collected by advanced sensors. The prediction 

capabilities of KLS, PLS and MLR were investigated for the analysis of 



 44 

real supply chain data in various contexts such as with or without an a 

priori constraint, using pre-harvest data, using post-harvest data or both.  

3. In terms of the physiological understanding of cut roses, this work 

confirmed an expert opinion that temperature is the most critical post-

harvest environmental factor that affects the post-harvest vase life of cut 

roses. While it agrees with the opinion, this work also shows that other 

factors such as pre-harvest growing temperature could be equally 

important. 

4. This work also delivers two original data sets that were collected in large 

scale experiments with international supply chains of cut roses. These 

two data sets are extensive as they contain measurements collected 

during pre-harvest, at-harvest and post-harvest periods, and the results 

of the vase life tests. 

1.9 ORGANISATION OF THE THESIS 

This thesis consists of eight chapters. Chapter 1 establishes the context of the 

study with research motivations, scope of the study, research hypothesis, 

objectives and challenges. Chapter 2 reviews current literature in the 

senescence of cut flowers, particular roses, and the techniques that can be 

used to estimate the quality of perishable produce. Subsequently, Chapter 3 

describes the technical issues involved in implementing the data analysis 

techniques identified in Chapter 2 (i.e. PLS and MLR), and subsequently 

outlines the solutions that are adopted in this study. The procedure for 

performance assessment of the data analysis techniques is also established in 

this chapter. 

 

Chapter 4 describes the mathematical development of a novel data analysis 

technique (KLS) for estimating the quality loss of perishable produce. Different 

aspects of implementing the technique are discussed, including the possible 

mathematical scenarios, the assumptions and the implementation procedure. 

Chapter 5 demonstrates the validity of the newly developed technique by 

comparing its performance with the simulated outputs from a number of kinetic 

simulation models. Chapter 6 reports the performance of KLS, PLS, and MLR 
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techniques in an in-house experiment with Cookes Rose Farm. Similarly, 

Chapter 7 reports the implementation of the three techniques in a study of a 

chilled supply chain of cut roses. The thesis conclusion is presented in Chapter 

8, together with a discussion on potential future work. 
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2 LITERATURE REVIEW 

 
=========================================================== 

 

This chapter reviews existing literature in post-harvest studies of cut flowers, 

particularly roses. Two major areas are addressed: the current understanding of 

post-harvest senescence of cut roses; and the existing techniques to determine 

the post-harvest loss in terms of remaining VL. More specifically, the chapter 

provides general information on the production of cut roses and then describes 

the phenomena that are commonly associated with cut flower senescence. The 

understanding of those phenomena provides the foundation for the discussion, 

of the effects of various genetic, pre-harvest, and post-harvest factors on the 

longevity of cut roses. Existing techniques to determine the losses in VL of cut 

roses can be classified into evaluation techniques and estimation techniques. 

Both of these classes of techniques are reviewed in this chapter. 

_______________________________________________________________



2.1 CUT ROSE PRODUCTION 

For commercial cultivation, roses are grown mainly in a protected, i.e. 

greenhouse, environment. This facilitates advanced control over the growing 

conditions: temperature, carbon dioxide, light, humidity, irrigation, nutrient 

delivery, etc., of the crop and thereby extends its availability during the year as 

well as increases production. The total worldwide greenhouse area devoted to 

cut rose production was estimated to be approximately 8500 ha; close to half of 

that area was from the top three countries including Ecuador, Colombia and 

Kenya. Over the past decade, individual production facilities have become 

larger (over 10 ha) to optimise their marketing and logistic operations as well as 

to reduce labour cost (Blom et al. 2003). 

 

As greenhouse roses can be produced year-round, their cultivation and harvest 

have been scheduled to target special occasions such as Valentine’s Day and 

Mother’s Day. To facilitate such crop timing, detailed planting and harvesting 

are generally required. During winter-to-spring seasons, roses are grafted on 

rootstock, a plant with an established, healthy root system, and are allowed to 

sprout. Subsequently, the growers could harvest or pinch the shoot to force the 

development of more new shoots from the bud(s) at the node below the harvest 

cut or pinch. The average time from pinching to the next harvest is 

approximately 6 to 10 weeks. This duration varies significantly with flower 

varieties and the time of a year (Reid 2008).  

 

Roses possess a wide variety of colour. Red has been the traditional and 

predominant colour; however, yellow, pink and white cut roses are widely 

available. Recently, Suntory Ltd announced its commercialisation of the 

genetically modified blue-violet roses in Japan (Suntory Ltd. 2009). New 

varieties are constantly being developed. 

 

Rose prices depend on a number of quality attributes, of which the two most 

common are bud size and stem length. In terms of bud size, roses are classified 

as hybrid tea, sweethearts or miniatures, where the hybrid tea class usually has 



 49 

a higher price. For stem length, a general rule is that the taller the stems, the 

higher the price. Cut roses are commonly graded on stem length in 10 cm 

intervals, e.g. 20-30 cm, 30-40 cm, 40-50 cm and 50-60 cm (Blom et al. 2003). 

2.2 SENESCENCE OF CUT ROSES 

While floral senescence may not yet be completely understood (van Doorn 

2004; Rogers 2006; van Doorn and Woltering 2008), previous studies generally 

agreed that for cut flowers it is always accompanied by most, if not all, of the 

following physical phenomena: a reduction in xylem hydraulic conductance due 

to vascular occlusion, lower stomatal conductance, decrease in phloem 

transport and sugar starvation. 

2.2.1 VASCULAR OCCLUSION  

After harvest, cut flowers are deprived of their natural supplies of water and 

nutrients, which were previously provided by their root system. Although these 

resources can be artificially supplied by placing cut flowers in vases filled with 

nutrient solution, the translocation of water and nutrients through the stem is 

progressively diminished. The most important cause is that the translocation 

ability is significantly impaired by xylem occlusion. A number of factors leading 

to the occlusion of the xylem include air aspiration, cavitation formation, 

bacteria-induced blockage and the metabolic response of the stem to cutting. 

Cavitation formation and air aspiration 

Cavitation, the formation of vapour bubbles inside flowing liquid, is a routine 

phenomenon in all transpiring plants including intact or cut flowers. A popular 

hypothesis for the formation of cavitation inside xylem conduits is the ‘air 

seeding’ hypothesis first advanced by Zimmermann (1983). The hypothesis 

suggests that due to a critical pressure difference across the pit membranes, 

the radius of the air-water menisci is reduced until the entering of air seeds, 

which nucleates cavitation. In addition to cavitation, air aspiration also leads to 

embolisms in the xylem of cut flowers. Immediately after harvest, the xylem of 

cut flowers is exposed to air, which enters its conduits through the cutting 

surface. The presence of aspired air in the xylem conduits contributes to xylem 
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occlusion and a decrease in subsequent water uptake (van Meeteren et al. 

2006).  

Microorganism-induced blockage 

Studies have shown that microorganisms are partly responsible for xylem 

occlusion. For example, washed microbial cells of Bacillus, Enterobacter, 

Kluyveromyces and Pseudomonas spp. upon being added to vase water were 

able to infiltrate into the cut xylem vessels of roses; microbial polysaccharides 

(mol. wt. > 10 000) in the vase water led to total occlusion of xylem transport, 

subsequently resulting in “bent-neck” in cut roses (Put and Rombouts 1989). In 

addition, aerobic pectolytic microorganisms are believed to play a major role in 

disturbing the water uptake in plants (Put and Rombouts 1989). This is because 

they produce enzymes that are capable of degrading pectin, the major cell-wall 

constituent of herbaceous plants. Overall, the number of exogenous bacteria in 

vase water is negatively related to the longevity of cut flowers by upsetting the 

water uptake (Put and Jansen 1989; van Doorn et al. 1995). In addition, by 

preventing microorganisms from occluding the xylem, antimicrobial chemicals 

such as 8-hydroxyquinoline sulphate (HQS) are capable of alleviating the 

reduction in the hydraulic conductance, and thereby prolonging the VL of cut 

roses (Ichimura et al. 1999).  

Metabolic response to wounding 

Plants possess metabolic mechanisms to prevent the entry of micro-organisms 

into their opened tissues at wounded sites. Although many aspects of such 

mechanisms are not yet clear (Loubaud and van Doorn 2004), it is known that 

wounding results in occlusion of the xylem conduits, due to diverse processes 

such as gum deposition, formation of tyloses and balloon-shaped outgrowths of 

cells adjacent to a conduit (van Doorn and Cruz 2000). 

 

Chemicals that inhibit the plants’ wound healing appear capable of extending 

remaining VL of cut flowers. This was demonstrated when applying S-carvone, 

a putative antibacterial and anti-wound healing chemical, on Maiden’s Blush 

(Baeckea frutescens; Myrtaceae) and Geraldton waxflower (Chamelaucium 

uncinatum; Myrtaceae) (Damunupola et al. 2010). 
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2.2.2 A REDUCED XYLEM HYDRAULIC CONDUCTANCE  

There are a number of hypotheses as to how stomata respond to a reduction in 

xylem hydraulic conductance. One common hypothesis is that there exists a 

simple feedback system between stomata conductance and leaf water potential, 

which is influenced by xylem occlusions. For that feedback system, low leaf 

water potential would lower stomata opening so as to reduce water loss by 

transpiration. In turn, low water status at the leaf would be caused by a 

decrease in xylem hydraulic conductance, a consequence of xylem occlusions 

(Saliendra et al. 1995; Hubbard et al. 2001). However, there were conditions in 

which stomatal response appeared independent of leaf water status; but rather 

it seemed to be directly dependent on the variables influencing the leaf water 

potential (Saliendra et al. 1995) such as xylem hydraulic conductance.  

 

Regardless of what the mechanism of stomatal response was involved, it is 

generally agreed that a reduction in the xylem hydraulic conductivity would 

result in lower stomata opening. This observation, that the two factors were 

positively correlated, was supported by a number of studies (Sperry et al. 1993; 

Sperry and Pockman 1993; Saliendra et al. 1995; Hubbard et al. 2001; Tuzet et 

al. 2003). For example, evidence from Sperry and Pockman’s study of Betula 

occidentalis showed that a reduced xylem hydraulic conductance, by injecting 

air into the xylem, induced a decrease in stomatal conductance (Sperry and 

Pockman 1993); in a similar study for ponderosa pine under controlled stead-

state conditions, Hubbard and colleagues (2001) also found that the stomatal 

conductance and the plant assimilation were directly proportional to the xylem 

hydraulic conductance.  

2.2.3 DECREASING PHLOEM SUGAR TRANSPORT  

Photosynthetic products and other nutrients are transported via phloem from 

plant sources to plant sinks. At the sources e.g. mature leaves, the 

photosynthetic assimilate is produced in excess and hence is available for re-

distributing to other parts of the plant. At the sinks e.g. flowers and young 

leaves, the photosynthesis production does not satisfy the local demand and 

hence assimilate import is necessary. As stomatal conductance is reduced, 
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photosynthesis is affected and consequently the concentration of sucrose, the 

main photosynthetic product, in the leaves decreases. In turn, research showed 

that this sucrose concentration is linearly correlated with the net carbon export 

rate into the sieve tube sap (Fader and Koller 1983; Grodzinski et al. 1998). As 

a result, it is likely that a reduction in stomatal conductance would lead to a 

decrease in sucrose availability from photosynthesis.  

2.2.4 SUGAR STARVATION  

Intuitively, a reduction in photosynthetic sugar would eventually lead to sugar 

starvation, provided that no sugar remobilization by the plant itself or exogenous 

compensation was attempted. In cut flowers, sugar starvation is most likely to 

occur at the petals themselves as they certainly represent major sugar-sinks. It 

is therefore tempting to conclude that insufficient (sugar) energy for 

maintenance would be the cause of petals’ and eventually flowers’ senescence. 

This hypothesis was first proposed in (Thimann et al. 1977) for leaf senescence. 

Since then, seemingly supporting as well as contradicting evidences have been 

observed. van Doorn (2004) presented a review of arguments both in favour of 

the hypothesis, that sugar deprivation causes senescence, and against it, that 

an excessive sugar level causes senescence. The review found that there was 

not good evidence in cut flowers to invalidate the hypothesis, while considerable 

evidence existed in substantiation of it. For example, Ichimura et al. added 

sucrose to the vase solution in which cut roses (Rosa hybrida L. cv. Sonia) were 

displayed, and observed an increase in soluble carbohydrates in the petals of 

the flowers, leading to an extended VL. It was therefore concluded that a 

positive correlation existed between sugar level in petals and the VL of cut 

roses (Ichimura et al. 1999; Ichimura et al. 2003). Similar conclusion for other 

cut flowers has also been observed (Chanasut et al. 2003). 

 

In summary, a much simplified picture of senescence in cut flowers would begin 

with a reduction in xylem hydraulic conductance due to vascular occlusion. The 

reduction in turn leads to a decrease in stomatal conductance. As a result, 

photosynthesis is affected and less sugar is available for export to major sinks 
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such as flower petals. This eventually results in sugar starvation, which was 

believed to initiate flower senescence.  

2.3 FACTORS AFFECTING THE SENESCENCE OF CUT ROSES 

2.3.1 GENOTYPE – THE GENE THAT IS INHERITED 

Genotype is undoubtedly the most critical factor in the growth, development and 

senescence of plants. It carries structural information according to which plant 

machinery is built. For example, plants of different genotypes have structural 

differences in their xylem networks, which influence air embolism removal and 

xylem hydraulic conductance recovery during their subsequent post-harvest life 

(van Ieperen et al. 2002; van Meeteren et al. 2006). This would partly explain 

the observation that water stress tolerance varies with cut flower cultivars as 

van Doorn and Vojinovic (1996) observed in cut Frisco roses and cut Sonia 

roses. Furthermore, flowers of different genetic origins were shown to have 

different abscisic acid (ABA) level in petals, different endogenous ethylene 

production (Mayak et al. 1972), different sensitivity to exogenous ethylene 

(Müller et al. 2001; Macnish et al. 2004), all of which directly correlates with 

flower longevity. In fact, by modifying the genotype, genetic engineering can 

create new cultivars of flowers with better longevity, as well as other desirable 

attributes such as novel colour, scent, and better resistance to abiotic and biotic 

stress (Zuker et al. 1998; Bovy et al. 1999; Rout et al. 1999; Onozaki et al. 

2001; Suntory Ltd. 2009). 

2.3.2 PRE-HARVEST GROWING CONDITIONS 

Flower genotype interacts with environmental conditions and subsequently 

results in different phenotypes of flowers with varying characteristics. 

Consequently, pre-harvest factors such as water stress, air humidity and light 

play significant roles in the development of flower plants and eventually the 

senescence of their flowers. Research found that water availability during pre-

harvest periods could influence the xylem anatomy of a plant. The abiotic stress 

leads to smaller diameter xylem conduits in grapevine plants (Lovisolo and 

Schubert 1998) and in an Olea europaea L. cultivar (Verdeal Transmontana) 
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(Bacelar et al. 2007). Subsequently, plants with smaller xylem vessels are less 

susceptible to cavitation than those with larger xylems (Tyree and Dixon 1986). 

Moreover, cut flowers with a smaller xylem diameter had a better capability to 

recover from xylem occlusion due to air aspiration following subsequent 

placement in water (Yang and M. T. Tyree 1992; van Ieperen et al. 2002), and 

hence would have longer VL.  This phenomenon was observed in sugar maple 

(Acer saccharum) (Sperry et al. 1988) and cut chrysanthemum flowers 

(Dendranthema x grandiflorum Tzvelev) (van Meeteren et al. 2006). 

 

Relative air humidity during the growing period is also capable of affecting the 

post-harvest VL of cut flowers. Research showed that plants grown in humid 

conditions developed highly conductive stomatal systems that would be less 

capable of controlling water loss during the post-harvest stage (Nejad and 

Meeteren 2005; In et al. 2007a). The water balance in the cut stems of these 

plants is more susceptible to being upset, which ultimately leads to shorter post-

harvest life. This conclusion was verified for 14 rose cultivars when Mortensen 

and Gislerød (1999; 2005) observed that high humidity levels during growing 

periods had negative effects on the subsequent VL of the roses.  

 

Light, a critical yet variable environmental factor to plants, also plays an 

important role in the post-harvest life of cut flowers. Lighting period during pre-

harvest was shown to have negative effects on the subsequent VL of cut roses 

(Mortensen and Gislerød 1999). In addition, research showed that light quality 

(red to far-red wavelength) also had a complex effect on the accumulation of 

ABA in flower petals. It was observed that red light resulted in higher level of 

ABA in rose petals compared to far-red (Loveys 1979; Garello et al. 1995). 

Conversely, Tucker (1976) and Tillberg (1992) showed the opposite when 

studying Scots pine seed and tomato. As higher ABA levels are associated with 

longer VLs in cut flowers (Mayak et al. 1972), light conditions during the growing 

period could have significant impact on the longevity of cut flowers. 

 

Urban et al. studied the effect of pre-harvest CO2 level on water balance and 

senescence of cut roses. They found that cut roses grown in an elevated CO2 
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atmosphere were able to maintain their water balance longer and hence their 

VL was extended (Urban et al. 2007). 

2.3.3 POST-HARVEST TEMPERATURE 

It is generally agreed that temperature is probably the most critical post-harvest 

environmental factor affecting the VL of cut flowers. The higher the storage 

temperature, the shorter the VL of cut flowers is, particularly cut roses 

(Faragher et al. 1986; Ichimura et al. 1999; Pompodakis et al. 2005). Being 

intrinsic, temperature influences the rate of all metabolic reactions that occur in 

cut flowers from harvest to the end of their VL. However, the extent of such 

kinetic influence has not been quantified because the metabolism in plants and 

specifically in flowers is not yet fully understood. For cut roses, the dramatic 

effect of temperature on the VL of the flowers is believed due to its kinetic role 

in the respiration process. A study showed that respiration in cut roses 

increased exponentially with temperature and could reach up to 6-fold for a 

10oC increase in temperature (Reid and Andrew 2003). A similar result was also 

observed in Narcissus flowers (Cevallos and Reid 2000).  

 

In addition to its kinetic effect, post-harvest temperature was found to play a 

significant role in different stages that lead to senescence of cut flowers. For 

xylem functioning, Ichimura et al. (1999) found that higher temperature resulted 

in a more rapid decrease in hydraulic conductance of cut roses, and thereby 

shortened their VL. Moreover, when cut roses were held in colder water, higher 

water uptake rate was observed (In et al. 2007b), which may be attributed to an 

inhibitive effect of low temperature to xylem occlusion. A study on excised 

wheat shoots revealed that the transpiration through the stem under the same 

transpiration tension from the ear varies significantly with temperature 

(Kuppelwieser and Feller 1991). Other research in the temperature effects on 

xylem transport is mostly for intact plants and focuses more on freezing 

conditions (Cavender-Bares et al. 2005; Qu et al. 2007). Nevertheless, these 

studies also found temperature to be a significant factor on the functioning of 

xylem.  
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In addition, post-harvest temperature was also shown to influence stomata 

functioning. Research showed that temperature was the crucial physiological 

factor stimulating the opening and closing of tulip petals (Azad et al. 2004). 

During such petal movements, the proportion of open and closed stomata on 

the inside and outside of the same petals were redistributed, which could 

influence turgor pressure and other physiological functions, including water 

balance (Azad et al. 2007).   

 

Moreover, temperature was also capable of inducing inhibitions to phloem 

translocation. This inhibition was believed to be the consequence of physical 

blockages of the sieve plates (Minchin et al. 1983). A further study by Minchin 

and Thorpe (1983) on Common Morning Glory Ipomoea purpurea revealed that 

the inhibition of phloem transport was dependent on the rate of cooling rather 

than the temperature per se. More recently, Peuke et al. (2006) in a study of 

Ricinus communis observed a decrease in the solute (sucrose) concentration in 

the phloem sap, which was believed to be due to the effect of low temperature 

on the retrieval of sugar into the phloem. One common conclusion from these 

studies was that the temperature effect on phloem translocation is temporary 

and the phloem blockages are fully reversible. However, it is noted that these 

studies were carried out on intact plants. Whether or not cut flowers could 

recover from such inhibitions needs further investigation. 

 

Post-harvest temperature may also have an important impact in cultivating 

diseases in cut flowers. Research showed that cut roses that were exposed to 

cooling and slow re-warming were more susceptible to fungal infection from 

Botrytis cinerea (van der Sman et al. 1996). As cooling is often employed to 

remove field heat from cut flowers, subsequent temperature control is important 

to avoid re-warming, and thereby reduce Botrytis infection. 

2.3.4 POST-HARVEST HUMIDITY 

Humidity is one of the post-harvest factors that affects stomata functioning 

(Tuzet et al. 2003). The underlying mechanism of such influence is complex and 

not yet fully understood (Buckley 2005; Bunce 2007). However, it seems that in 
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general stomatal response would counteract the effects of the changes that 

occur to the plant possibly to maximize its maintenance and hence longevity. 

For example, stomata closure was observed after a decrease in atmospheric 

humidity (Saliendra et al. 1995). This may be explained by the fact that a lower 

atmospheric humidity results in a larger humidity gradient which leads to a 

reduction in stomata apertures in plants to restrict water loss.  

 

In practice, compared to temperature, post-harvest humidity appears to have 

less direct impact on the VL of cut flowers. Faragher et al. (1986) stored cut 

roses at 65% and 95% relative humidity, and found that the latter treatment 

slightly extended the VL of the flowers (4.6 d at 95% relative humidity compared 

to 3.9 d at 65% relative humidity). Consequently, the researchers concluded 

that humidity levels during cold storage were found to have little effect on the VL 

of cut roses (Faragher et al. 1986).  

 

However, the most significant problem associated with relative humidity is its 

promoting effects of diseases. For example, Botrytis infection, one of the most 

common post-harvest diseases in cut flowers, is particularly promoted at high 

relative humidity (Salunkhe et al. 1990; Droby and Lichter 2004). These 

diseases contribute further to losses in quality and subsequently quantity of 

perishable produce. Visually, Botrytis blight reduces the ornamental value of cut 

roses. Metabolically, it produces additional ethylene, ABA and other plant 

hormones (Salunkhe et al. 1990; Sharon et al. 2004), which initiate senescence 

symptoms such as petal necrosis and petal abscission (Droby and Lichter 

2004). Various treatments to overcome Botrytis infection have been developed 

and the use of anti-Botrytis products cost US$ 15-25 million a year (Elad et al. 

2004), which highlights the scale of the Botrytis problem. 

2.3.5 ETHYLENE AND OTHER HORMONES 

Ethylene is one of the most studied plant growth regulators. It plays a key role in 

promoting senescence of most flowers, especially those that are climacteric, 

showing an abrupt increase in respiration rate during senescence (Gan 2004). 

Prior to such respiratory increase, a burst of endogenously synthesised 
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ethylene was observed, which was believed to initiate the senescence process 

in flowers (Reid and Wu 1992). When cut flowers are exposed to exogenous 

ethylene, senescence symptoms including petal abscission, petal wilting, flower 

abscission and flower wilting could occur (Mayak and Halevy 1972). It was 

concluded that petal abscission in eudicotyledon flowers, including roses, is 

generally sensitive to ethylene while petal wilting may or may not be (Woltering 

and Van Doorn 1988; van Doorn 2001). In addition, flower abscission was 

shown to be highly sensitive to ethylene in most plants (Van Doorn 2002). The 

effects of ethylene in promoting senescence are further supported by the 

response of cut flowers to ethylene inhibitors. The VL of cut flowers was 

extended when silver cation (Ag+), an effective and specific inhibitor of ethylene 

action, was applied (Reid and Wu 1992). 

 

Ethylene also correlates with the susceptibility of cut flowers to Botrytis 

infection. It was shown that the disease incidence increased significantly when 

exogenous ethylene was applied while it was reduced by treatment of silver 

thiosulphate, an ethylene inhibitor (Elad 1988). 

 

In addition to ethylene, ABA is another plant growth hormone that shows a 

significant role in the senescence of cut flowers. Exactly how ABA affects cut 

flower senescence still remains unclear (Trivellini et al. 2007) although research 

has led to strong evidence that ABA has a key part in regulating plant stomata 

to minimize water loss (Wilkinson and Davies 2002). However, ABA level was 

also found to correlate well with the water deficit in rose petals even though they 

have no stomata (Borohov et al. 1976). Regardless of its mechanism, 

endogenous ABA has a direct relationship with cut flower longevity (Mayak et 

al. 1972). For example, late in their senescence, petals of cut roses experience 

a sharp increase in the level of ABA activity (Le Page-Degivry et al. 1991; 

Kumar et al. 2008). Because the abrupt increase in ABA occurs after the 

climacteric jump in endogenous ethylene production, it was suggested that one 

of the actions of ethylene in the senescence process is to induce the increase in 

ABA activity (Mayak and Halevy 1972). The endogenous ABA level in stock 

leaves and petals of other cut flowers also increases as their senescence 

progresses (Aneja et al. 1999; Ferrante et al. 2004). Treatment of exogenous 
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ABA not only promotes senescence but also increases botrytis disease 

incidence in cut flowers (Shaul et al. 1995). 

2.3.6 DISCUSSION 

Senescence of cut flowers is complex and not fully understood. However, basic 

ideas on a macro level have been generally agreed. It is known that xylem 

occlusion occurs due to a number of various factors such as mechanical 

wounding, the presence of microorganisms and cavitations. The occlusion 

reduces the availability of water, and hence possibly results in lower stomatal 

openings. In turn, this closure of stomata would affect photosynthesis in cut 

flowers and subsequently decrease the production of carbohydrates, which are 

vital to the maintenance, the growth and the development of the flowers. 

Research seems to point to sugar starvation as the cause of senescence in cut 

flowers. 

 

The factors that affect the remaining VL of cut flowers can be classified into 

genotype, pre-harvest conditions, post-harvest factors and plant growth 

regulators. Temperature has been shown to be the most critical post-harvest 

factor in the senescence of cut flowers. It affects not only the kinetic rates of all 

metabolic reactions in the flowers, but also the occurrence of xylem occlusion, 

stomata regulation and sugar transport in phloem networks. Consequently, 

post-harvest temperature should be used in any effort to estimate the post-

harvest loss in the VL of cut flowers. However, the effects of other factors 

including genotype, pre-harvest and other post-harvest conditions, and the 

actions of plant growth regulators should not be discounted. The extent to which 

post-harvest temperature alone can provide the basis of a useful VL prediction 

remains unclear, and this matter forms a central component of the research 

investigations presented in this thesis. 

2.4 TECHNIQUES FOR EVALUATING VL 

Techniques for evaluating the VL of cut flowers provide a means to determine 

accurately the VL. Two different approaches to evaluating the VL of cut flowers 

were identified. One is the vase life test approach, which is commonly applied in 
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industry; the other relies on analytical techniques, which are normally performed 

in a laboratory. 

2.4.1 THE VASE LIFE TEST APPROACH  

The vase life test is carried out in laboratory studies, whether for academic or 

business purposes. The basic principle of the test is to simulate the conditions 

that the cut flowers would normally experience during their transport, sale and 

home display. As a result, the conditions during the vase life test depend on 

specific studies and their objectives. However, for comparison purpose, 

recommended testing conditions are 20 oC, 60% relative humidity, 12 hours of 

light (1000 lux) and 12 hours of darkness (Floral Solutions 2006). The VL of cut 

flowers is determined as the time duration, commonly in days, under the 

specified conditions between the start of the test and the end of the VL of the 

flowers. In order to identify the end of the flower VL, a number of write-off 

criteria must be used. These criteria can be objective or subjective. An example 

of objective criteria is the occurrence of petal or flower abscission (Chanasut et 

al. 2003). Subjective criteria are based on the perceived extents of phenomena 

such as flower wilting, petal discolouration (Faragher et al. 1984; Faragher et al. 

1986; Put and Jansen 1989; Pompodakis et al. 2005) and bent neck (Put and 

Jansen 1989; Ichimura et al. 1999; Mortensen and Gislerød 1999). For these 

criteria, a scale from 1 to 5 is normally used to rate the phenomena. 

 

While the vase life test is simple and easy to perform, it must be carried out in a 

laboratory where specific conditions can be stimulated and controlled. More 

importantly, the test offers little value in quality control of in-transit cut flowers 

because its result, the remaining VL of the flowers, would only become 

available after the flowers have reached their customers. Therefore, the 

technique is mostly used for verification purposes. 

2.4.2 ANALYTICAL TECHNIQUES  

Analytical techniques to evaluate the VL of cut flowers are not common, 

regardless of which write-off criteria are used. The primary reason is that the 

underlying biological processes that are responsible for such phenomena as 
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flower wilting, flower abscission, petal discolouration and stem bend are not 

completely understood. However, progress, especially in the area of genetic 

analysis, has been made in developing such a technique. The link between the 

expression profiles of certain genes and the quality of horticultural produce is 

well established. For example, single genes and families of genes are likely to 

be involved in key metabolic pathways related to the colour, texture, respiration, 

carbohydrate composition and the flavour of strawberries (Manning 1994; 

Manning 1998).  

 

For ethylene-insensitive cut flowers, progress in developing an analytical 

instrument to estimate their quality is underway. In a research project supported 

by the Department for Environment, Food and Rural Affairs (DEFRA), UK, 

researchers carried out an extensive survey of gene expression in Alstroemeria, 

and identified five genes that seem indicative of the potential floral quality and 

VL. These genes could be the basis of diagnostic tools which can measure not 

only the potential VL of cut flowers but also the accumulative adverse effects of 

post-harvest treatments (DEFRA 2004).  

 

More recently, a spin-off company from Wageningen University called NSure in 

2006 has marketed a technology to determine accurately the quality of 

horticultural products, including cut flowers (NSure Co. Ltd.). The procedure to 

obtain an estimate using NSure technology is that the user must prepare a test 

sample from the product tissues, and transfer it onto a test card provided by the 

company. Then, the card must be sent back to the company for analysis. At the 

company, a set of indicator genes are selected based on the gene expression 

analysis of the sample and expert knowledge of distribution chain logistics. The 

combined expression of these genes, which are believed to reflect the history 

and actual conditions of the product, provides an indication of its quality (van 

Wordragen et al. 2008). News releases indicated that the technology was tested 

on many products such as cut roses (NSure Co. Ltd. 2006), pears (NSure Co. 

Ltd. 2007b) and potatoes (NSure Co ltd 2008).  

 

Both of these attempts represent progress in the analytical approach to 

estimating quality of cut flowers. While they might be at various stages of 
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development, the technologies could potentially replace the traditional vase life 

test. However, the major shortcoming is that these technologies can only be 

performed in a laboratory. It may be a long time before such diagnostic tools 

become readily applied in an industrial context where real-time quality 

monitoring is desired. 

2.4.3 DISCUSSION 

At the present, the most practical way to determine the VL of cut flowers is to 

carry out what is known as the vase life test. While it is sufficiently accurate for 

the purposes of the cut flower industry, the vase life test offers little value in 

planning and management of cut flowers in the chilled supply chain. Research 

in genetic technology may offer alternative solutions, where diagnostic tools can 

be developed to estimate accurately the remaining VL of cut flowers. However, 

such technologies must be used in a laboratory, which may not be suitable for 

practical real-time quality monitoring. 

2.5 MODELLING TECHNIQUES FOR ESTIMATING VL 

In general, modelling techniques can be classified based on the amount of first-

principle knowledge they require. Model-based techniques need extensive 

knowledge and understanding of the biochemical processes occurring in the 

produce. On the other hand, data-driven techniques use only observed 

measurements to obtain a model. Kinetic modelling may be considered as 

somewhere in between the two extremes: some first-principle knowledge of the 

products is usually required but empirical understanding could be used in 

substitution. 

2.5.1 THE KINETIC MODELLING TECHNIQUE  

General principle 

The kinetic modelling technique is probably the most widely applied technique 

in modelling the quality of perishable products. The reason that makes it so 

popular is probably that it is based on kinetic principles, which can be used to 

model changes in chemical, biochemical, microbial and physical processes 

occurring in any food product (van Boekel 2008). Therefore, a kinetic model 
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could describe accurately the behaviour, for example quality changes, of a food 

product, if the kinetics of the underlying processes is captured. Even when such 

knowledge is not fully available, an empirical kinetic model may also be built 

and perform effectively (van Boekel 2008).  

Reliance on mathematical descriptions of measureable quality attributes  

For perishable products such as cut flowers, fruits, vegetables, seafood and 

meat, quality is defined as a combination of various quality attributes (see 

Section 1.2.3). In such applications, measureable quality attributes that are 

critical to the product quality are normally selected and subsequently modelled. 

The quality attributes are selected usually based on consumer’s preference 

e.g., colour in mushroom (Lukasse and Polderdijk 2003), or based on 

physiological properties of the product itself e.g., growth of spoilage bacteria in 

chilled fish (Taoukis et al. 1999).  

 

A key requirement of kinetic modelling is the measurement of quality attributes 

that are critical to the overall quality of the product (Labuza 1984). This 

immediately presents a significant challenge in applying kinetic modelling to 

products of which the important quality attributes are not measurable. For 

example, attributes such as flower wilting or fruit crunchiness are not directly 

modelled by kinetic modelling possibly because they are not easy to measure. 

In addition, since it may not be possible to know in advance which quality 

attribute would be the limiting one, multiple quality attributes are often desired 

for a product (Nunes et al. 2007). In such case, multiple kinetic models may be 

required as kinetic modelling must identify and model each attribute 

independently. 

 

Another key requirement of kinetic modelling is the use of mathematical models 

to describe the quality deterioration in the product. The identification of such 

mathematical description depends on the first-principle knowledge of the 

products as well as the available empirical reasoning. For each kinetic model, 

the specific mathematical description of the quality attribute is ideally derived 

from the complete knowledge of the chemical, biochemical, microbial and 

physical processes affecting the attributes themselves. However, due to the 
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complexity of those processes, such knowledge may not always be available 

(Labuza 1984). Consequently, empirical reasoning is often used in substitution 

to formulate the kinetic description. For example, Lukasse and Polderdijk ( 

2003) studied the post-harvest dynamic quality evolution of mushrooms and 

derived kinetic models using knowledge of mushroom physiology. Three 

mushroom quality attributes were modelled, including colour, stipe length and 

hat opening. The physical basis of the model for mushroom colour evolution 

was based on two chemical reactions which described the conversion of 

polyphenol oxidase (PPO) precursor into PPO and subsequently into chinons. 

However, by arguing that any quality model must be irreversible, the 

researchers introduced an empirical term lossk which represented the PPO that 

was lost without being converted into chinons (Lukasse and Polderdijk 2003). 

While such modification led to an irreversible model, the validity of the 

introduction of lossk was not discussed. Moreover, the same model structure was 

implemented for modelling stipe length and hat opening without describing the 

physical basis for these two attributes. Therefore, these models seem to be 

based more on empirical reasoning than on the first-principle knowledge.  

 

Differences in empirical reasoning may lead to different models and 

interpretations. In a kinetic model, the function of quality attributes often has a 

low-order polynomial form although more complicated ones are also common 

(Tijskens and Polderdijk 1996). For example, the tomato firmness model from 

Schouten et al. ( 2007a) is different from the firmness model used by van Dijk et 

al. (2006b). Schouten et al. (2007a) argued that tomato firmness can be either 

enhanced or diminished during the pre-harvest period but it can only deteriorate 

during the post-harvest period. Consequently, the researchers formulated two 

kinetic equations corresponding to pre-harvest and post-harvest variation in 

tomato firmness (Schouten et al. 2007a). On the other hand, van Dijk et al. were 

interested in the effect of chilling injury and hence introduced an additional term 

for it in their tomato firmness model (van Dijk et al. 2006b). For their differences, 

both models, which were validated reasonably well against experimental data, 

provide different interpretations concerning tomato firmness.  
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Various mathematical descriptions of the environmental effects 

A kinetic model must include a description of the effects of environmental 

conditions, which often play a critical role in the degradation of the product 

quality. Temperature is probably the most common environmental factor in 

kinetic modelling studies. For each model of a quality attribute, the kinetic 

modelling technique must select a temperature dependence, the most common 

form of which is the Arrhenius relation (see (Delignette-Muller et al. 1995)). 

Other expressions for the temperature dependence include the square root 

relation, the linear relation and the exponential relation, which were reviewed in 

(McMeekin et al. 1992; Fu and Labuza 1993). Although they are used less 

commonly, a few applications of these kinetic expressions have been reported; 

for example, linear temperature dependence for shelf life predictions of 

mushrooms (Lukasse and Polderdijk 2003), a square root model for the 

temperature dependence in seasoned soybean sprouts (Lee et al. 2007), and a 

square root model in the study of shelf life control of chilled fish (Taoukis et al. 

1999). Opinions may vary as to which models to use (Delignette-Muller et al. 

1995).  

 

Expressions for other environmental factors such as humidity are less common 

compared to temperature. One example is the modification of the Arrhenius 

expression to account for the effect of humidity on bacteria growth, which was 

proposed by Davey (1989).  

Implications of a dynamic environment   

Provided that the mathematical descriptions for the quality attributes and for the 

temperature dependence are identified, at constant temperature the kinetic 

equation can be integrated and the quality (attribute) evolution may be obtained. 

However, environmental conditions during the product storage in practical 

applications may vary significantly. In such dynamic conditions, solving the 

kinetic equation could pose an additional challenge. Varying temperature leads 

to solving ordinary differential equations in the kinetic modelling, which may be 

mathematically challenging (Schouten et al. 2007b). A numerical approach is 

usually taken, where the basic principle is the integration on time sub-intervals 

over which the temperature can be assumed constant (Fu and Labuza 1993). 
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The approach is not popular possibly because the historical record of past 

temperature is not usually accessible at a reasonable cost, especially when 

food item levels are considered (Fu and Labuza 1993). However, significant 

improvements in sensor technology and in particular RFID tags, which could 

dramatically reduce the cost of automatically measuring and recording 

temperature and humidity, may revitalise this approach in the near future. 

Applications in studies of cut flowers and other perishable produce  

Not many applications of kinetic modelling can be found in studies of cut or 

intact flowers. One application of kinetic modelling in potted plants was reported 

by Tijskens et al. (1996). In their study, quality was described in terms of 

“acceptability”, the probability that one plant in the batch becomes 

unacceptable. Based on previous research (Sterling and Molenaar 1986) and 

population dynamics, the researchers argued that a logistic function would be a 

good model of the quality of potted plants. The temperature dependence of the 

kinetic rate was expressed as a sum of two Arrhenius expressions. Each of the 

expressions represented the decaying rate of the plant’s acceptability due to 

chilling injury and due to high temperature deterioration, both of which were 

particularly active at different ranges of temperature. Although simulation results 

at constant temperatures compared reasonably with observed measurements, 

the dynamic performance at varying temperatures was not assessed. Other 

issues that may need to be explored include the validity of summing two kinetic 

rates for an overall rate of decrease in the acceptability, and the credibility of 

applying population dynamics (i.e. logistic curve) when the sample size, 12 

samples, was quite limited (Tijskens et al. 1996). 

 

Currently applications of kinetic modelling were more common in fruits and 

vegetables than in cut flowers. Tijskens and Polderdijk developed a model for 

keeping quality of vegetable produce during post-harvest storage and 

distribution (Tijskens and Polderdijk 1996). In their model, most common issues 

in kinetic modelling were addressed, including model kinetics (zero order, first 

order and logistic kinetics), temperature dependence, effects of initial quality 

and quality limits, multiple limiting quality attributes and dynamic modelling. 

Validation at constant temperatures for lettuce and tomato showed good 
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agreement although some deviation was observed in Brussels sprouts. 

However, the proposed dynamic formulation was complicated, especially for 

variable initial quality and quality limits, and its dynamic performance was not 

validated. Other applications were also reported in mushrooms (Lukasse and 

Polderdijk 2003), tomatoes (van Dijk et al. 2006b; van Dijk et al. 2006a; 

Schouten et al. 2007a, 2007b) and seasoned soybean sprouts (Lee et al. 2007).  

 

Kinetic modelling also plays a fundamental role in applications of time-

temperature indicator (TTI) in perishable produce. TTI is a measuring device 

which embeds a system that enables direct and quantitative measurement of 

the cumulative effect of temperature acting on the product. For a chemical or 

biological TTI to work, its embedded system and the quality decaying process in 

the perishable product must have similar kinetics, such as reaction order, 

activation energy and reference rate constants (Wells and Singh 1988; Bobelyn 

et al. 2006). This requirement highlights the major limitations of TTI which are 

the product(s) must be kinetically characterized, and a biological or chemical 

system with similar kinetics must exist. In addition, the use of TTI in shelf life 

prediction of perishable products seems to assume that all products would have 

the same initial quality state. This assumption may not hold in cases where the 

effects of genotype and pre-harvest conditions on post-harvest quality are not 

negligible. Despite these limitations, TTI has become increasingly popular in 

dairy products (Sherlock and Labuza 1992), chilled fish (Taoukis et al. 1999; 

Tsironi et al. 2008), meat (Vaikousi et al. 2009) and vegetables (Giannakourou 

and Taoukis 2002, 2003; Bobelyn et al. 2006).  

Discussion 

Kinetic modelling is the most widely used in estimating post-harvest quality loss 

in perishable produce. It requires three essential elements: a measurable 

quality attribute, its mathematical description and an expression describing the 

temperature dependence. Without any of those three elements, kinetic 

modelling can not be carried out, which may explain why no applications in the 

post-harvest modelling of cut flowers have been identified in the literature. In 

addition, dynamic environments, where temperature is changing, could present 

a computational problem to kinetic modelling. 



 68 

2.5.2 DATA-DRIVEN TECHNIQUES 

For estimating the VL of cut flowers, data-driven techniques may be a better 

choice than their model-based counter-part. The main reason is that 

measurements concerning the storage conditions of cut flowers such as in-

transit temperature and humidity will be more readily available than the 

understanding of how cut flowers behave. The availability of such 

measurements without sufficient knowledge of the embedded biochemical 

system would naturally facilitate more data-driven studies than first-principle 

modelling techniques. 

Thermal integration technique 

The thermal integration technique, also known as the “heat unit approach” or 

“degree-days approach”, is based on the idea that the summation of 

temperatures that a plant is exposed to characterises its maturity stage. 

Implicitly, the thermal integration approach assumes that plant developmental 

rate varies linearly with the temperature sum and hence with temperature over a 

restricted range. Clearly, many other genetic and environmental factors are 

known to affect the plant developmental rate. However, as Johnson and 

Thornley noted the temperature summation technique worked well in many 

cases because temperature, the most important environmental variable, was 

captured effectively (Johnson and Thornley 1985). 

 

The thermal integration technique has been used widely in plant development 

studies for its simplicity and effectiveness. Most of the studies were carried out 

on growing crops and vegetables such as maize (Ruiz et al. 1998), chickpeas 

(Bello et al. 2005), olives (Orlandi et al. 2005), rice (Chopra and Chopra 2004) 

and soybeans (Voldeng et al. 2003). A few other studies were performed on 

intact flowers (mostly roses). For example, Pasian and Lieth (1994) studied a 

number of developmental events in rose shoots, such as the occurrence of new 

shoot, unfolding of a new leaf and visible flower bud. The researchers used 

thermal units, calculated from average air temperature to predict these 

developmental events. For validation, the predicted day of event was compared 

with corresponding observation, showing that the technique worked 
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satisfactorily. However, considerable variability was observed, particularly in 

estimating the thermal units required in each developmental stage (Pasian and 

Lieth 1994). In addition, it should be noted that the plants used in the study 

were of the same age (4 year old plants), from the same cultivar (Rosa hybrida 

‘Cara Mia’), and were grown under the same water and nutrient conditions. The 

purpose was obviously to keep all factors except temperature constant. Doing 

so enabled the examination of the effect of temperature. However, the model 

that was obtained may not be practical because in practice the growing 

conditions are constantly changing. Moreover, the validation data was collected 

on plants grown inside a glass greenhouse under constant temperature. 

Consequently, the performance under changing temperature remains to be 

validated. Other more recent studies in flower development include November 

cactus (Larsen et al. 1998), rose (Steininger et al. 2002; Mattson and Lieth 

2006) and Ambrosia (commonly known as ragweed) (Laaidi et al. 2003).  

 

Despite its popularity in plant development research, no application of this 

technique in cut flowers has been found. This could be explained by the 

limitations of the thermal integration technique which have also been well 

documented. An obvious limitation of the technique was that it assumed a linear 

relationship between plant development and temperature. While this 

assumption seemed reasonable in many reported studies, it remains an 

empirical observation, which can only be applied on a case-by-case basis. 

Another shortcoming of the heat integration technique is that it does not account 

for other genetic and environmental variables that would also have significant 

effects on plant development (Wang 1960). The inclusion of such variables as 

day length and radiation integral, using similar expression as for temperature 

was shown to improve the technique’s performance (Johnson and Thornley 

1985). A similar conclusion was obtained when cultivar-specific temperature 

thresholds were used (Pasian and Lieth 1996). A more subtle disadvantage of 

the heat sum method is that it does not capture the time sequence of 

temperature records. As a result, two different temperature regimes that could 

lead to different plant developments may correspond to the same heat sum. 

This limitation, illustrated and discussed in (Wang 1960), remains to be 

addressed. 
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Multiple linear regression (MLR) and partial least squares (PLS) 

 

In regression studies, an MLR model involves more than one independent 

variable. The coefficients of those variables are evaluated from experimental 

data using estimation techniques. The most common estimation technique is 

ordinary least squares (OLS).  

 

The principal idea of OLS is to minimise the sum of squares of the residual; i.e., 

the difference between the observed and predicted values of the dependent 

variable for each observed sample. Its applications can be found in virtually any 

fields such as economics, agriculture, environment and food processing, and its 

implementation is built in many data analysis software packages including 

SAS/STAT, SPSS, and Matlab. However, OLS can not be applied to multi-

collinear data sets, in which a linear relation exists among the observed 

variables. Multi-collinearity leads to a singular correlation matrix, which does not 

have an inverse that is in turn required by OLS.  Although pseudo-OLS can be 

used instead, this alternative could lead to multiple solutions, as opposed to a 

unique solution by OLS. Consequently many statistical derivations for the OLS 

estimator may no longer hold. For example, when multi-collinearity exists, the 

OLS estimator is no longer the Best Linear Unbiased Estimator (BLUE), as it 

would be otherwise. Due to measurement noise, exact multi-collinearity is 

relatively rare compared to near multi-collinearity. It was suggested that OLS 

should be avoided in analyzing data with near multi-collinearity because the 

precision in the estimate obtained would be significantly deteriorated (Sundberg 

2000).  

 

PLS is among the most widely used regression techniques, especially in 

chemometrics and analytical chemistry. Its mathematical derivations are 

described in many textbooks and articles such as (Martens and Naes 1989; 

Frank and Friedman 1993). A major motivation for its preference over the 

conventional OLS is from its capability in handling (near) multi-collinearity. The 

PLS regression technique is based on using latent variables (LVs) which 

maximise the covariance between the independent and dependent variables. 
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By eliminating some LVs that are deemed insignificant from the regression, the 

PLS model performance may be improved compared to an OLS model, 

especially when the data at hand suffers from near multi-collinearity; the same 

improvement is also seen compared to principal components regression where 

the LVs, more commonly known as principal components (PCs) in principal 

component analysis, maximise variance on the independent variables only 

(Martens and Naes 1989). It should be noted that the trade-off in overcoming 

(near) multi-collinearity using PLS is the presence of bias in the estimated 

regression coefficient. How much bias would be present depends on the 

number of LVs used in the regression. This was discussed in (Frank and 

Friedman 1993) where similarities and differences between OLS and PLS were 

highlighted. 

 

Despite being used widely in many fields, very few applications of linear 

regression techniques, including OLS and PLS, for estimating the VL of cut 

flowers were found in literature. One of them was reported by In et al. studying 

the relation between various pre-harvest and post-harvest factors and the VL of 

cut ‘Asami Red’ roses (In et al. 2007a). The researchers used linear regression 

analysis to obtain a model of the VL of cut roses in terms of the minimum pre-

harvest humidity and a few other morphological and physiological factors. As In 

et al. concluded, this model was not good enough for practical application (In et 

al. 2007a). Its coefficient of determination was rather low, which indicated that a 

significant amount of variance in the VL data was not captured. The major 

reason was probably that the independent variables were selected with an 

objective of avoiding multi-collinearity. Consequently, important factors such as 

pre-harvest growing temperature were prematurely eliminated from the 

regression analysis. Clearly, a better variable selection strategy could lead to a 

different set of independent variables, where the potential multi-collinearity can 

be overcome using such techniques as PLS. In addition, another potential 

shortcoming of the reported model was the use of the average value of pre-

harvest factors over 15 days. It was not clear how the duration of 15 days was 

selected as In et al. (2007a) neither explained their decision in detail nor 

provided any supporting references.   
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Another application of regression analysis in predicting the VL of cut flowers 

was the work by Hansen et al. (1991). Both linear and nonlinear regression 

models of total damage rating in terms of post-harvest time were reported for 

various cut flowers and foliage. As the data that were used in the modelling had 

been obtained at constant temperature (25 oC) and humidity conditions (50%), 

those models would have little applicability in a dynamic environment such as in 

chilled supply chains, where temperature and humidity are variable.  

 

In contrast to cut flowers, applications of linear regression techniques for other 

perishable products were found more readily. The most common ones are 

perhaps in analysing near infra-red spectra data. The combination of near infra-

red spectroscopy with linear regression analysis provides the framework for 

many non-invasive techniques for measuring the quality attributes of various 

perishable produce such as kiwifruits (McGlone and Kawano 1998), apples 

(McGlone et al. 2005), mango, banana and peach (Subedi and Walsh 2009)). 

Nicolai et al.  published a detailed review of these techniques including their 

principles, instrumentation and the linear regression involved (Nicolaï et al. 

2007). Applications for other analytical data were also reported. For example, 

Brockhoff et al. (1993) and subsequently Sundberg (2000) examined different 

linear regression techniques in predicting the flavour of Jonagold apples using 

gas chromatographic measurements. Another example was found in a study of 

spoilage in meat products, where the spoilage was correlated with 

microbiological and physicochemical measurements using PLS (Mataragas et 

al. 2007). However, while the combination of linear regression with analytical 

measurements found many useful applications, a major limitation still remains: 

these measurements may only be available in a laboratory, which is likely to 

prevent the research findings from being implemented in an industrial context. 

 

Linear regression analysis of readily available measurements for estimating the 

quality of perishable products was far less common. For example we (Doan et 

al. 2008) have compared the performance of three linear regression techniques 

including OLS, Principal Component Regression (PCR) and Latent Root 

Regression (LRR) in predicting changes in the shelf life of chilled seafood. The 

study demonstrated that using the measurements of the environmental 
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conditions, which can be recorded along the chilled supply chain by data 

loggers, changes in the quality can be estimated. Nevertheless, further 

validation work on real data is still required. 

Discussion  

Linear data-driven techniques that could potentially be used in predicting the VL 

of cut roses have been reviewed. These include the thermal integration 

technique and linear regression approaches, including OLS and PLS. The 

thermal integration technique enjoys many applications in plant development 

studies, but at the same time exhibits many significant limitations; these include 

assuming a linear relationship between temperature and plant development, not 

accounting for effects of other environmental variables, and being unable to 

capture the correlation in serial measurements of temperature. It was probably 

those shortcomings that have so far prevented the technique from being applied 

to cut roses.  

 

For linear regression techniques, the two issues that are common to all were 

reviewed: variable selection and missing data. OLS is probably the most 

common technique in linear regression. However, it can not work effectively 

with multi-collinear data. PLS was selected to overcome this problem of multi-

collinearity. The application of linear regression techniques to spectra data form 

the basis of non-invasive techniques for measuring the quality attributes of 

perishable products such as fruits, fishes and meat. However, few applications 

of OLS or PLS in estimating the quality changes of cut roses currently appear in 

literature. 

2.5.3 MODEL-BASED TECHNIQUES 

Few first-principle models that predict the VL of cut flowers have been identified. 

The reason for this is that senescence as a biological process in cut flowers has 

not been completely understood (van Doorn 2004; Rogers 2006; van Doorn and 

Woltering 2008). The FLORES model, proposed in 1991 by van Doorn and 

Tijskens (1991) was one of the earlier attempts in building a first-principle model 

for the VL of cut flowers. However, it was not a truly first-principle model, even 

though important processes were described within it. Specifically, the 
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researchers identified a number of important physiological effects such as time 

and temperature, dry storage or transport, infection by fungi, bacteria in the 

vase solution, suboptimal temperatures, exogenous ethylene, and absence of 

flower preservative in the vase solution. Each of the identified effects was 

subsequently modelled based on empirical and experimental knowledge. The 

response of those sub-models was expressed in terms of the percentage 

reduction of the maximum VL of the cut flower, which had also been determined 

empirically. This model by van Doorn and Tijskens (1991) represented a 

reasonable attempt in modelling for VL of cut flowers. Its key contribution was 

probably the inclusion of the important physiological stresses. However, van 

Doorn and Tijskens’ model is not truly a mechanistic model. Empirical modelling 

of the identified physiological stresses effectively meant that the underlying 

biological processes that drive the stress response of the cut flowers were not 

captured. In addition, those processes could be highly coordinated in a complex 

biological system, which would question the validity of a key assumption made 

by van Doorn and Tijskens: the responses of the physiological stresses were 

additive and hence summed to form the overall response (van Doorn and 

Tijskens 1991). 

 

Another attempt was from the work of Reid and co-workers (1996). The 

researchers built a complex model of the water balance in cut roses. Although 

its validation results were not published, the model illustrated the importance of 

maintaining a proper water balance in cut rose stems. Nevertheless, a potential 

extension for this model would be the description of how the water balance 

affects the VL of cut roses. As Reid et al. noted, a negative water balance, 

where more water is lost than taken up, was the cause of flower wilting (Reid et 

al. 1996). This could also be the controlling signal to stomata functioning 

(Sperry et al. 1993; Sperry and Pockman 1993; Saliendra et al. 1995; Hubbard 

et al. 2001; Tuzet et al. 2003) and may therefore affect the photosynthesis, 

where chemical energy is produced to maintain cut flowers. 

 

Other existing models of flowers concern the growth of intact flowers or the 

production of cut flowers in a greenhouse. For example, Lieth and Pasian 

developed a model for the growth and development of intact rose shoots (Lieth 
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and Pasian 1991). These researchers considered the carbon balance in the 

rose shoot, and empirically modelled important biological processes including 

photosynthesis, carbon translocation and respiration. The validation results 

were mixed: only one out of two shoots showing good agreement with 

experimental measurements (Lieth and Pasian 1991). This might be explained 

by the fact that the modelling was rather empirical, and perhaps more 

importantly that the water balance and critical environmental factors such as 

humidity were not considered. 

2.5.4 DISCUSSION 

In this section, modelling techniques for estimating the VL of cut roses were 

reviewed. These techniques were classified into kinetic modelling, data-driven 

and model-based techniques. Kinetic modelling has been popular in modelling 

the shelf life of perishable produce and food products, but no application in cut 

flower has been reported. This could be due to the difficulty in identifying a 

measurable quality attribute, its function in the kinetic equation and a 

mathematical description of temperature dependence. Linear regression 

techniques including OLS and PLS have been used to analyse spectra data for 

evaluating the quality of perishable produce but few attempts in modelling the 

VL of cut flowers were reported. Mechanistic models of the VL of cut flowers 

have not been available. The primary reason is that the biological processes 

embedded within the cut flowers are complex and not fully understood. 

2.6 CHAPTER CONCLUSION 

Senescence of cut flowers in general and specifically of cut roses is a complex 

biological phenomenon that has not been completely understood. However, it is 

generally agreed that genetic, pre-harvest and post-harvest factors and the 

action of plant growth regulators, ethylene in particular, all affect how cut roses 

senesce. Temperature is considered the most important post-harvest factor and 

hence must be used to estimate the post-harvest loss in VL of cut roses. 

However, it must be kept in mind that the precision of such an estimate may 

depend a lot on the other factors including genetic, pre-harvest and other post-

harvest conditions and the presence of plant growth regulators. 
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Due to the complexity of their senescence, there are not many techniques to 

determine the post-harvest loss in the VL of cut roses. Techniques for 

evaluating the VL, including the vase life test approach and other genetic-based 

techniques, are limited to a laboratory context. On the other hand, modelling 

techniques for estimating the post-harvest loss can be further classified into 

kinetic modelling, data-driven and model-based techniques. In modelling 

perishable produce, kinetic modelling is the most popular whilst data-driven 

techniques including OLS and PLS are also used in analysing spectral data 

from the products. Model-based techniques were rarely used due to the 

incomplete first-principle knowledge. 

 

This review has identified the lack of application of kinetic modelling and linear 

regression techniques in modelling the VL of cut roses using post-harvest 

measurements. What needs to be understood better is the suitability of these 

data-driven techniques given the biological characteristics of cut flowers or 

other produce. The literature review indicates that this is a new area of research 

where little previous work exists. This thesis aims to contribute new knowledge 

to this area. Consequently, this area will be further investigated in this thesis for 

studying the post-harvest loss in cut roses, as an exemplar for the perishable 

goods supply chain. Specifically, kinetic modelling, OLS and PLS will be used to 

estimate based on post-harvest temperature measurements and the post-

harvest loss in VL of cut roses, while acknowledging the potential effects of 

other factors including genetic, pre-harvest conditions. 
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3 METHOD 

============================================================ 

 

This chapter has three main objectives. First, it describes relevant technical 

issues that are encountered in implementing MLR and PLS modelling 

techniques. These issues such as selection of variables and selection of the 

number of the latent variables are widely recognised, but their solutions are 

often problem-dependent. The respective solutions that were implemented in 

this thesis are subsequently explained. The second objective is to establish the 

framework for assessment and comparison of model performance. This 

framework consists of the statistics that are required in evaluating the 

performance, the approach used to evaluate them, and any performance limits 

that could be established. Finally, this chapter also discusses the relevance and 

implementations of the a priori knowledge which states that the higher storage 

temperature results in the greater loss in remaining VL. 

_______________________________________________________________ 



3.1 TECHNICAL ISSUES IN MLR AND PLS MODELLING TECHNIQUES 

Three implementation issues were identified in MLR and PLS modelling 

techniques; these include the requirement of a uniform number of 

measurements (i.e. independent variables) in MLR and PLS, variable selection 

in MLR, and the selection of the number of the latent variables to use in PLS. 

These issues and their solutions are described below. 

3.1.1 UNIFORM NUMBER OF MEASUREMENTS IN INPUT SAMPLES  

Both MLR and PLS require their input samples to have the same number of 

measurements. This means that it must be possible to arrange all the input 

samples into a 2-D data matrix. However, this requirement is not often satisfied 

in monitoring storage temperature of in-transit perishable produce. Due to 

uncertainty in transport processes, every shipment may take a different duration 

of time, resulting in temperature profiles with different number of temperature 

measurements. Consequently, the temperature profiles must be adjusted to 

have the same number of measurements before MLR and PLS techniques can 

be applied.  

 

The issue of having to adjust the “length”, the number of measurements, of a 

temperature profile prior to MLR and PLS modelling is known as the “unequal 

batch length” problem in online monitoring of chemical batch processes 

(Nomikos and MacGregor 1995; Undey and Cinar 2002). A trivial solution is to 

only consider the profiles up to a uniform length and ignore the additional 

measurements in the input profiles. However, this would require a proper 

adjustment of the corresponding dependent variable, which might not be 

possible. For example, consider an input profile of 25 temperature 

measurements (sampling time at 1 measurement per h) that corresponds to a 

loss of 48 h in remaining VL of a cut rose stem. If only the first 20 

measurements of this input profile were considered, the corresponding loss in 

the remaining VL would not always be known. Consequently, ignoring the extra 

measurements in input profiles is not applicable. 
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Undey and Cinar (2002) discussed several techniques to overcome this issue in 

batch process monitoring, including indicator variable technique, dynamic time 

warping and curve registration. These techniques were designed specifically to 

align data profiles collected from a batch process according to their common 

features or landmarks. However, similar landmarks may not be defined in data 

samples from the supply chain of perishable produce as the transport process is 

subject to external events such as changes in transport routes. Therefore, these 

techniques are not suitable for this study.  

 

Techniques developed to overcome missing data in linear regression can also 

be applied to overcome this issue. For example, the first two approaches that 

Nomikos and MacGregor proposed for filling in the unknown independent 

variables (Nomikos and MacGregor 1995) were essentially the single imputation 

technique with different imputed values. Instead of ignoring the extra 

measurements, input profiles could be appended with “dummy” measurements 

so as to make the profiles equal in length. This is the strategy that was 

implemented in this work, with the “dummy” measurement being the reference 

temperature at which the remaining VL of cut flowers was defined. The 

reference temperature was used because it would allow the remaining VL to be 

adjusted. Figure 3.1 illustrates the strategy with an example. Initially, the 

required length, the desired number of measurements in each input profile, is 

evaluated. In the example, suppose that each profile must have 11 temperature 

measurements but the original input profile only has 8 (represented by black 

dots). For profiles that have fewer than the required number of measurements, 

the reference temperature is appended to the profiles until they have the 

required number of measurements. In the example shown in Figure 3.1, three 

reference temperature measurements are appended to the original profile, 

resulting in the adjusted input profile having a total of 11 measurements. 

Subsequently, the remaining VL must be adjusted as well. Appending one 

reference temperature measurement to the original temperature profile would 

resemble the scenario that upon exiting the supply chain, the product is stored 

at the reference temperature for an additional duration of one sampling period. 

Therefore, the remaining VL at the end of such additional storage is one unit 

less than the remaining VL at the end of the supply chain. So, for every 
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appended measurement, one unit of VL is subtracted from the corresponding 

remaining VL. Consequently, the adjusted remaining VL in Figure 3.1 is 9, 

which is obtained from the original remaining VL of 12. This procedure was 

performed in the case studies for Cookes Rose and World Flowers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Strategy for modifying temperature prof iles to achieve uniform length 
 

3.1.2 VARIABLE SELECTION IN MLR 

Variable selection is a task of significant importance in MLR. This is the problem 

of selecting the “best” subset of available independent variables for building a 

regression model. A major motivation for the task is to avoid over-fitting. The 

Occam’s Razor, the principle of parsimony, suggests that models containing 

only necessary variables should be preferred (Hawkins 2004). When that 

principle is not followed, over-fitting often occurs, where the models may 

capture statistical features that are present in the current data but are not 

representative of the population (Babyak 2004). The coefficients corresponding 

to the extra independent variables add random variation to subsequent 

predictions, the precision of which is consequently reduced (Hawkins 2004). As 

a result, prediction performance of over-fitting models is likely to be affected. In 

addition, another danger of over-fitting is that such models may be overlooked 
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and falsely accepted as good models; this is because they often have high 

coefficient of determination R2 values. In fact, it was illustrated that sufficient 

independent variables, regardless of whether they are true predictors of the 

dependent variable, always lead to a linear model with R2 close to unity (Babyak 

2004). It was the high R2 value that usually leads to a false confidence in an 

over-fitting model. Consequently, variable selection must be performed carefully 

so as to avoid over-fitting in MLR modelling. 

 

For the variable selection task, two items must be decided upon: a set of 

evaluation criteria, and a strategy to identify tentative sets of independent 

variables from the ones that are available. For evaluation criteria, a statistical 

test based on the F distribution can be carried out for a null hypothesis of 

eliminating a subset of explanatory variables. Alternatively, an adjusted 

coefficient of determination can be utilised (Rao et al. 2007). Other criteria that 

have been proposed and used frequently are the predicted residual sum of 

squares (PRESS), the Cp statistic, the Akaike Information Criterion (AIC) 

(Akaike 1973), and the Bayesian Information Criterion (BIC) (Schwarz 1978). As 

prediction performance was the main objective, this work selected root mean 

squared error in prediction (RMSEP) as the criterion. Its definition and 

mathematical formula are described in more detail in Section 3.2.1.  

 

For selection strategy, forward or backward stepwise selection is commonly 

used to select the subset of variables. It is based on correlation between each 

independent variable and the dependent one, and only variables that have 

significant correlation are selected. However, this strategy may not completely 

eliminate the risk of over-fitting because variables may behave differently in 

isolation compared to simultaneous interactions with others (Babyak 2004). 

Alternatively, a combination of forward and backward selection such as 

proposed in (Walmsley 1997) could also be used. Nevertheless, if all 

independent variables (e.g. temperature readings from a temperature profile) 

have the same potential to affect the dependent variable (e.g. the loss in 

remaining VL), it is unreasonable to exclude any independent variable 

completely from the subsequent modelling. Consequently, stepwise selection 

was not suitable for the present study.  
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As described in detail in the subsequent chapters, the data sets of temperature 

profiles from the Cookes Rose experiment and from the World Flowers 

experiment typically have 60-70 profiles each of which has more than 100 

temperature readings (collected at 0.5 h per reading). If all temperature 

readings from a temperature profile are used as independent variables, over-

fitting is likely to occur. Consequently, this study used the average of 

consecutive temperature readings as independent variables. Figure 3.2 

illustrates the strategy using an input profile with 11 readings and an averaging 

window of k=3 readings. The new input data x has only four independent 

variables. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Averaging temperature readings for vari able selection 
 

The size of the averaging window k is an important parameter. It can vary from 

one reading to the whole length of the original input sample. As mentioned 

previously, when k=1, the number of profiles is smaller than the number of 

independent variables, leading to over-fitting. On the other hand, if k is equal to 

the total number of readings, then only the average temperature over the 

studied period would be used as the sole independent variable in model 

calibration. The optimal k is identified based on the evaluation criterion RMSEP; 

i.e., the “best” k is the one that produces the lowest RMSEP. 

3.1.3 SELECTION OF THE NUMBER OF LATENT VARIABLES IN PLS 

PLS is among the most widely used regression techniques. PLS regression only 

retains the first few latent variables (LVs) to maximise the covariance between 
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the independent and dependent variables. By excluding some LVs that are 

deemed insignificant, PLS prediction performance may be improved compared 

to MLR, especially when the data at hand is close to multi-collinearity.  

 

The issue of which LVs to retain is a challenging task and a lot of research has 

been done to address this problem. In one way, it may be viewed as a variable 

selection task, and hence as discussed in Section 3.1.2, strategies and criteria 

must be established. Owing to the fact that the eigenvalues are a measure of 

the covariance (in PLS) or variance (in PCA) captured in the corresponding LVs 

(in PLS) or PCs (in PCA), the most common strategy is to retain only the LVs 

(or PCs) that have the corresponding eigenvalues exceeding a certain 

threshold, and thereby eliminate the LVs (or PCs) with small variances. This 

strategy is likely to overcome the (near) multi-collinearity problem. However, 

since it is done solely on the variance of independent variables in PCA, PCs 

having significant correlation with the dependent variable(s) may be erroneously 

deleted (Sutter et al. 1992; Jolliffe 2002). 

 

This work implemented a stepwise strategy for LV selection. Initially, all the LVs 

were ranked in the order of decreasing eigenvalues. Then, models retaining 

increasing number of LVs were built and RMSEP of each model was evaluated. 

The optimal model was selected based on the prediction performance that gave 

the lowest RMSEP. This strategy is illustrated in Figure 3.3. 

3.2 PERFORMANCE EVALUATION APPROACH  

In order to assess the prediction performance of the modelling techniques, a 

number of statistics are normally used. Consequently, the selection of those 

statistics is important and so is the way those statistics are to be evaluated. 

Furthermore, if the lower and upper thresholds of those statistics could be 

evaluated, they can provide indications of how good the techniques are, and 

how much they can be improved. 
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3.2.1 PERFORMANCE STATISTICS 

A number of statistical indices were used to assess prediction performance of 

the modelling techniques being investigated. These statistics included RMSEP, 

R2, slope and intercept of the best fit line of predicted versus observed loss in 

remaining VL. RMSEP represents the average error in prediction while R2, the 

square of the Pearson’s product-moment correlation coefficient, measures how 

well the linear relationship between the predicted loss in VL and the observed 

one.  
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Figure 3.3: LV selection strategy in PLS modelling 
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In an ideal situation, the best fit line should coincide with the equality line y x=  

and therefore its slope and intercept should approach 1 and 0 respectively. The 

formula for the statistics used are summarised below. 

 

Let the prediction error e  be defined as 

, ,i pred i obs ie y y= −  

Where ,pred iy  is the predicted loss in remaining VL for the cut rose 

thi ( 1,2, ,i m= … ); 

   ,obs iy  is the observed VL for that cut rose sample. 

RMSEP statistic is defined as 

  

 2

1

1 m

i
i

RMSEP e
m =

= ∑  (3.1) 

 

In addition, 2R , which measures the goodness of the linear relationship between 

,pred iy and ,obs iy , was also used in the performance assessment. 
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Where  obsy  is the mean of all ,obs iy , ( 1,2, ,i m= … ). 

  predy  is the mean of all ,obs iy ,( 1, 2, ,i m= … ). 

The best fit line of the predicted versus the observed loss in the remaining VL is 

given by 

 pred obsy a y b= ⋅ +  (3.3) 

The slope a  and intercept b  of the best fit line were evaluated as 
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3.2.2 CROSS VALIDATION STRATEGY  

Cross validation is commonly implemented in performance assessment of 

predictive models. It offers a better use of the data, especially when their 

availability is limited. Although many variants of cross validation exist, they 

share the same principle: the division of the available data into two subsets, one 

of which is used for model calibration, while the other is for performance 

assessment. The variation between different cross validation techniques comes 

from how the division is implemented. A widely used cross validation is the 

leave-one-out (LOO) strategy where one data sample is left out for performance 

assessment; the rest of the data is used for model calibration and the procedure 

is repeated until each sample is left out once. Alternatively, leave-two-out or 

leave-multiple-out cross validations are also used.  

 

In a similar fashion to performance assessment, cross validation is also 

implemented in the calibration of predictive models; especially when model 

calibration involves optimization for predictive performance i.e. selection of an 

optimal model from a number of alternatives. Such alternatives could arise from 

variable selection in MLR models (Anderssen et al. 2006) or from LV selection 

in PLS models (Westerhuis et al. 2008; Filzmoser et al. 2009).  

 

When cross validation is used in both performance assessment and model 

calibration, it is referred to as cross model validation (Westerhuis et al. 2008) or 

repeated double cross validation (Filzmoser et al. 2009). This strategy, which 

was adopted from Filzmoser et al. (2009), is illustrated in Figures 3.4 – 3.6. As 

shown in these figures, the whole procedure consists of two cross validation 

loops. Initially, the original data set is randomly divided into a number of sub-

sets of preferably equal size (Figure 3.4). These sub-sets are the inputs to the 

outer cross validation loop, which then produces the predicted values for the 

dependent variable in every data sample. Based on the predicted and 

experimental values, performance indices including RMSEP, R2, slope and 

intercept of best fit line can be evaluated (Figure 3.4). Further, it should be 

noted that there are many ways in which the original data set can be divided 

into sub-sets. If the procedure is repeated for a large number of times, each 
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time with a different set of sub-sets, statistical distributions of the performance 

indices can be obtained. 

 

The outer cross validation starts with selecting one of the testN sub-sets as the 

test set while the others form the calibration set (Figure 3.5). This outer loop is 

repeated testN  times, until each of the sub-sets has been selected once. Within 

this outer loop, the calibration set is used to develop and optimise a predictive 

model. Initially, it is sub-divided into valN smaller sub-sets, which are inputs to 

the inner cross validation loop. This inner loop results in modelN predicted values 

for every data sample in the calibration set, where modelN is the total number of 

alternative models being considered. Based on these predicted and observed 

values of the dependent variable, the loss in remaining VL, modelN values of the 

RMSEP index are evaluated. Consequently, the model with the minimum RMSEP 

is identified and then it is re-calibrated using the whole calibration data set. The 

test data set is subsequently applied to the optimised model which produces 

predicted values for data in the test set (Figure 3.5). 

 

The inner cross validation loop (Figure 3.6) begins where one of the valN  sub-

sets is used as the validation set while the others form the training data set. The 

inner cross validation loop is repeated until each of the valN  sub-sets is used as 

the validation set once. Based on the training data set, modelN  alternative models 

are developed. Subsequently, the validation data are applied to the modelN   

models, leading to modelN   predicted values for each data sample in the 

validation data set. 
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Figure 3.4: Double cross validation strategy 
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Figure 3.5: Outer cross validation loop 
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Figure 3.6: Inner cross validation loop 
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3.2.3 PERMUTATION TESTING 

Permutation testing is a statistical technique that has an origin in statistical 

hypothesis testing. It has been applied in many areas such as canonical 

analysis of multivariate data (Anderson and Legendre 1999), and statistical 

classification (Golland et al. 2005; Westerhuis et al. 2008). It belongs to the 

non-parametric class of techniques, which means no assumption on statistical 

distribution is required. This is a major advantage of permutation testing 

technique, particularly for small data sets where insufficient data prevent such 

an assumption from being made and verified. The most significant limitation of 

permutation testing is its computational requirement. Nevertheless, with the 

increasing power of today’s computers, this shortcoming has become less 

significant (Potvin and Roff 1993). 

 

The essential idea of permutation testing is to assess the statistical significance 

of some observation based on the probability of it occurring purely by chance. 

Two key steps in permutation testing are selecting a statistic and evaluating its 

nonsense (i.e., randomised) distribution. For example, in a pattern classification 

context, the statistic is usually the cross-validation error, or the test error. The 

nonsense distribution is obtained by permutating the class labels while fixing the 

data sample, and then evaluating the statistic (Golland et al. 2005). The 

permutations need not be exhaustive; i.e., not all possible permutations need to 

be considered. Instead, it was suggested that generally 5000 permutations are 

sufficient (Potvin and Roff 1993). 

 

Permutation testing was applied in this work to evaluate the statistical 

significance of the predictive performance of the modelling techniques used. 

The procedure of implementing permutation testing is shown in Figure 3.7. 

Initially, the selected modelling technique is applied to the original data, and 

performance statistics including RMSEP, R2, slope and intercept of the best fit 

line are evaluated using the cross validation approach (see Section 3.2.2). 

Subsequently, the observed dependent variable, but not the independent ones, 

in the original data set is permutated i.e. shuffled randomly. Then, the same 
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modelling technique is applied to the permutated data set and RMSEP, R2, slope 

and intercept of the best fit line are evaluated. These observed values belong to 

the nonsense distributions of the performance statistics. Consequently, the loop 

consisting of data permutation, modelling, and evaluation is repeated a large 

number of times (typically 10000 times). As a result, the nonsense distributions 

of RMSEP, R2, slope and intercept of the best fit line are obtained. Permutation 

testing is completed by evaluating the probability of the performance statistics of 

the original data under the nonsense distributions. 

3.2.4 STATISTICAL PERFORMANCE ASSESSMENT  

A statistical assessment of an estimate or prediction of (the loss in) VL of cut 

roses is based on the comparison between the actual and nonsense 

distributions of RMSEP statistics. The three following criteria are considered: 

1. The statistical significance of the hypothesis that the mean of the actual 

RMSEP distribution is smaller than that of the nonsense distribution. The 

selected significant level was 0.05. This criterion is to ensure that on 

average, the estimate based on the actual data has a smaller error than 

the one based on the randomised data. When this criterion is not 

satisfied, the estimation is labelled “not significant” or NS. 

2. The p-value (type I error) of the lower 5 percentile of the nonsense 

distribution. This p-value is the proportion of the actual distribution that 

exceeds the lower 5% percentile of the nonsense distribution (Figure 

3.8). The smaller this p-value is the smaller the probability that the actual 

RMSEP would appear as if it belonged to the nonsense distribution.  

3. The q-value (type II error) of the upper 5 percentile of the actual 

distribution. This q-value is the proportion of the nonsense distribution 

that is exceeded by the upper 5 percentile of the actual distribution 

(Figure 3.9). The smaller this q-value is the smaller the proportion of the 

nonsense distribution that appears as if it belonged to the actual 

distribution. 

The estimation is effective when its actual RMSEP distribution has smaller mean 

than the nonsense distribution and its p-value and q-value are both smaller than 

10%. 
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Figure 3.7: Permutation testing strategy 
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Figure 3.8: p-value (type I error) for comparison between the act ual and nonsense RMSEP 

distributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9: q-value (type II error) for comparison between the ac tual and nonsense 
RMSEP distributions 
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observation. It could be argued that those studies were carried out at different 

constant storage temperatures and hence the conclusion would only be limited 

to such isothermal conditions. Nevertheless, the counter-argument would be 

that storage at dynamic temperature may be considered as a sequence of 

storages at constant temperatures. Consequently, unless substantial evidence 

is established against it, this work accepts the hypothesis, meaning that a 

higher storage temperature leads to a bigger loss in VL of cut roses. 

 

However, it should be noted that such a priori knowledge was derived from and 

hence only correct for two identical samples of cut flower; i.e., the samples must 

have the same genotype and the same history of growth and development e.g. 

same pre-harvest conditions. (These conditions would more often than not be 

satisfied in laboratory studies only). As a result, the implication of the a priori 

knowledge depends on whether or not other non-thermal factors are included in 

the modelling. In other words, if the modelling does not account for other non-

thermal factors such as the pre-harvest conditions and cultivar-specific 

information, then the a priori knowledge may not necessarily be met. On the 

other hand, if those factors of the flowers are also modelled, a constraint 

representing the a priori knowledge would have to be imposed. This thesis 

investigates two classes of scenarios: Scenarios A – only post-harvest 

temperature is modelled without the a priori constraint, and Scenarios B – post-

harvest temperature is modelled with the a priori constraint. 

3.3.1 A PRIORI CONSTRAINT IN MLR MODELLING  

Consider a MLR model for the loss in remaining VL in terms of temperature, 

 1 1 2 2 1rs s rs n n nt t t T T Tβ β β β +∆ = − = + + + +…  (3.5) 

Where  iβ : the thi   regression coefficient ( 1,2, , 1i n= +… ). 

   iT : the thi   temperature readings ( 1,2, ,i n= … ). 

   n : the number of temperature readings. 

  st : the initial VL of the roses (evaluated at reference temperature) 

before being exposed to temperature profile  1 2, , nT T T… . 
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rst : the remaining VL of the roses (evaluated at reference 

temperature) after being exposed to temperature 1 2, , nT T T… . 

  rst∆ : the loss in VL of the roses due to temperature iT . 

The role of 1nβ +  is important. In a “regression” sense, it is the free coefficient i.e. 

independent from the explanatory variables. 1nβ +  is a constant when the model 

(3.5) is used to explain the effect of temperature without any regard to other 

non-thermal effects (such as humidity, or pre-harvest conditions) on remaining 

VL of cut flowers. In such cases, the a priori constraint is not necessarily 

satisfied, and hence was not imposed. On the other hand, if the model (3.5) is 

meant to capture both thermal and non-thermal effects, and assuming that 

those effects are additive, 1nβ +  is not a constant, but rather a variable 

representing the non-thermal components in the remaining VL. The a priori 

constraint must be imposed, which implies the higher the storage temperature, 

the bigger the reduction in VL over the same duration of storage. By taking the 

derivative of (3.5), the constraint was 

 
( )

0 ( 1, )rs
i

i

t
i n

T
β

∂ ∆
= > =

∂
 (3.6) 

In summary, there are two scenarios as follows: 

1. Scenario A: modelling effects of temperature only 

 1 1 2 2 1

1 is the free (constant) coefficient
rs s rs n n n

n

t t t T T Tβ β β β
β

+

+

∆ = − = + + + +



…

 (3.7) 

2. Scenario B: modelling thermal and non-thermal effects  

 

( )

1 1 2 2 1

1 is the non-thermal (variable) component

0 1,

rs s rs n n n

n

i

t t t T T T

i n

β β β β
β

β

+

+

∆ = − = + + + +



> =

…

 (3.8) 

3.3.2 A PRIORI CONSTRAINT IN PLS MODELLING  

Using the notation from (de Jong 1993) the overall regression coefficients 

obtained by PLS is 

 1( ) ( )T T
PLS diag−=β W P W b Q  (3.9) 

 
Where  PLSβ : the overall regression coefficients; 
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  W : the weight matrix of input data; 

  P : loading matrix of input data; 

  b : inner regression coefficient; 

  Q : loading matrix of output data; 

As with MLR modelling, PLS modelling also has two scenarios as follows: 

1. Scenario A: modelling effects of temperature only. No constraints 

were required nor imposed 

 
( ) ( ) ( )1 2 1

1

1 2rs s rs PLS PLS PLS n n

n rs

t t t T T n T

t

β

β
+

+

∆ = − = + + + +


= ∆

β β β…

 (3.10) 

2. Scenario B: modelling thermal and non-thermal effects. The 

constraints were 

 

( ) ( ) ( )1 2 1

1

1 2

0

rs s rs PLS PLS PLS n n

n rs

PLS

t t t T T n T

t

β

β
+

+

∆ = − = + + + +
 = ∆
 >

β β β

β

…

 (3.11) 

3.4 CHAPTER CONCLUSION 

In implementing MLR and PLS techniques, the selection of variables, the 

selection of the number of LVs to use, and the requirement of a uniform number 

of input measurements per sample are often encountered. This chapter 

explained the strategy that was adopted to overcome those two issues. In 

addition, it also described the performance assessment framework, which 

includes the performance statistics and the evaluation procedure. This 

framework will be applied in the subsequent chapters to compare and assess 

the prediction performance of different analysis techniques in estimating the 

vase life loss of cut roses. Finally, the chapter discussed the relevance of the a 

priori knowledge which states that the higher storage temperature leads to a 

greater loss in quality, as measured by the remaining VL, and its 

implementation in MLR and PLS techniques was outlined. 
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4 MATHEMATICAL DEVELOPMENT OF KINETIC 

LINEAR SYSTEM (KLS)  TECHNIQUE 

 
============================================================ 

 

This chapter describes the mathematical development of a new technique, 

developed as part of the work reported in this thesis, called Kinetic Linear 

System (KLS) for modelling the post-harvest loss in the remaining shelf life of 

perishable produce (such as fresh fruit, vegetables and cut flowers) resulting 

from temperature stresses. KLS is based on kinetic principles so that it can be 

applied to any perishable produce where senescence is governed by 

biochemical processes. In addition, KLS is also data-driven so that it does not 

suffer from the disadvantage of the kinetic modelling technique, where model 

parameters have to be specified. 

 

The chapter is organised as follows. Section 4.1 explains the motivation for 

developing KLS. Section 4.2 describes the mathematical development of KLS 

including derivation, model calibration, shelf life prediction, and assumptions. 

Section 4.3 discusses various issues that may be encountered when using the 

KLS technique. These issues include the different mathematical scenarios that 

may occur in KLS model calibration, the requirement for an initial shelf life and 

the different parameters involved in KLS modelling. Section 4.4 demonstrates 

KLS model calibration and prediction using an example. 

 

_______________________________________________________________ 
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4.1 MOTIVATION 

A major challenge for the perishable produce industry is to deliver consistently 

high quality, long-lasting fruits, vegetables and cut flowers to its customers. 

Product quality and particularly shelf life are important because the perception 

of these is one of the key criteria that consumers use when considering which 

produce to purchase.  

 

Perishable produce is transported from farms to wholesalers and distribution 

centres through supply chains at low temperature (e.g., 0-10oC depending upon 

the specific produce). Previous studies have established that temperature in 

such chilled supply chains is not optimal (Grieve and Waltham 2008). As sub-

optimal temperature accelerates deterioration of the produce, their quality at 

delivery locations is reduced. The loss in quality of perishable produce is 

potentially significant, depending on the specific produce (Section 1.2.4). 

Consequently, this presents an economic incentive to monitor the in-transit 

temperature, and subsequently to address temperature-based quality problems.  

 

Two capabilities are required for quality control: temperature monitoring and 

linking the temperature stresses to the loss in quality (Verdijck and van Straten 

2002). The first is possible through the use of data loggers, sensor-integrated 

RFID tags, or wireless sensor networks (Carullo et al. 2009). The second, 

linking the temperature stresses to loss of quality, is the topic of this chapter. 

 

Generally, modelling techniques can be classified based on the amount of first-

principle knowledge they require. At one extreme, there are techniques that are 

based on first principles. Such model-based techniques are rarely used as the 

biological systems and processes embedded in the produce are complex. At the 

other extreme, there are data-driven techniques that use only observed 

measurements to obtain a model. In the area of quality modelling of fresh 

perishable produce, as the literature review shows, these techniques have 

hardly been applied.  
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The literature review (Chapter 2) has revealed that kinetic modelling is the most 

commonly used technique in modelling the effect of temperature on the quality 

of perishable produce. Kinetic modelling is the preferred approach in this field of 

study because it is based on kinetic principles which govern all biochemical 

processes. However, building a kinetic model is complicated and time 

consuming. As illustrated in Figure 4.1, kinetic modelling must identify and 

model each quality attribute independently. Multiple quality attributes and hence 

multiple models may be required (Nunes et al. 2007).  

 

In addition, for each quality attribute model based on the kinetic modelling 

technique it is necessary to select a temperature dependence (e.g., Arrhenius 

or Ratkowsky) and a function of the attribute (e.g., Monod or Gompertz for 

modelling microbial growth in meats and fishes) (McDonald and Sun 1999; 

Shimoni and Labuza 2000; Isabelle and André 2006). Opinions often vary on 

which types of functions should be used. Expert reasoning are often combined 

with parameter estimation to obtain an empirical kinetic model. However, 

different reasoning may lead to different models and interpretation. For 

example, the tomato firmness model from Schouten et al. (Schouten et al. 

2007a) is different from the model from Van Dijk et al. (van Dijk et al. 2006b). 

Which model to use may not be straightforward.  

 

Most reported studies have been for constant temperatures. Dynamic 

temperature leads to solving ordinary differential equation in kinetic modelling, 

which may be mathematically complicated (Schouten et al. 2007a). 

 

Consequently, a technique is desired that it is based on the kinetic principle, but 

which does not suffer from the above disadvantages of current kinetic modelling 

techniques. This is the motivation for the development of KLS. 
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Figure 4.1: Multiple kinetic models corresponding t o different quality attributes are 

required to evaluate shelf life. 
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4.2 KLS  MATHEMATICAL DERIVATION  

4.2.1 DERIVATION 

For any perishable produce item, the quality attribute Q that solely determines 

its shelf-life is expressed as: 

 ( ) ( )dQ
f T g Q

dt
− = ⋅  (4.1) 

 
Where ( )f T  represents the temperature effects on the quality attribute Q and 

( )g Q is a function of Q . Referring to Figure 4.2, the following definitions apply: 

distt  is the time the item is transported from a producer (farm) i.e. the 

start of the supply chain, to a distribution centre considered here as 

the end of the supply chain. 

T  is the temperature of the perishable item. 

initQ  is the initial quality of the perishable item at the producer’s location. 

remQ  is the quality remaining when the product item is received at the 

distribution centre. 

endQ  is the lower limit on quality which indicates the end of the shelf life 

of the produce. When this limit is reached, the product is no longer 

acceptable for consumption, nor does it have any economic value. 

remt  is the time associated with the remaining quality of the produce 

remQ . It is the time duration that the product would take to 

deteriorate at reference temperature refT  from remQ  to endQ . remt  is 

an unknown parameter that, if it can be modelled or predicted, 

would provide the basis for determining an expiry date (often called 

a best before date) for the produce; this would be an expiry date 

related to actual temperature stresses experienced in the supply 

chain. 

initt  is the initial shelf-life associated with the initial quality initQ . It is the 

time duration that the product would take to deteriorate at 

reference temperature refT  from initQ   to endQ . 
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Figure 4.2: Definition of notations of variables us ed in KLS development 
 

In practice the quality measurements , ,init rem endQ Q Q are not normally available. 

Instead, a temperature profile T  for the distribution period and consequently 

distt are recorded using data loggers or RFID tags. The objective of the KLS 

method is to estimate the remaining shelf life remt  of the product after the 

distribution period, given the temperature profile T , distribution time distt , and 

the initial shelf life initt i.e. without any knowledge of quality measurements  

, ,init rem endQ Q Q . 

 

Divide Equation (4.1) by ( )g Q  and then integrate  

 ( ) ( )
0init

Q t

Q

dQ
f T dt

g Q

− =∫ ∫  (4.2) 

 

The time period of interest is the shelf life initt , thus integration of Equation (4.2) 

is over the interval 0 to initt , which corresponds to the quality change initQ   to  

endQ . Consequently, for any item that is kept under a constant reference 

temperature  refT  (which might apply if the produce were not transported and 

just held in constant storage conditions until endQ  was reached), and using 

these integration intervals, Equation (4.2) leads to 
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( ) ( ) ( )

0

end init

init

Q t

ref init ref

Q

dQ
f T dt t f T

g Q

− = = ⋅∫ ∫  (4.3) 

 
On the other hand, if the same produce item was kept at  refT  after going 

through a transportation period during which storage temperature varied, 
Equation (4.2) is equivalent to: 

 

( ) ( )

( ) ( )

( ) ( )

0

0

0

 

 

end dist rem

init

dist dist rem

dist

dist

Q t t

Q

t t t

ref

t

t

rem ref

dQ
f T dt

g Q

f T dt f T dt

f T dt t f T

+

+

− =

= +

= + ⋅

∫ ∫

∫ ∫

∫

 (4.4) 

 
Equations (4.3) and (4.4) both have the same left-hand sides, thus it follows, 

after rearranging, that 

    

 ( ) ( ) ( )
0

distt

ref init remf T dt f T t t= ⋅ −∫  (4.5) 

 

Note that  T  is a series of k measurements { }
0,it t i k

T = =
.  Thus, the left-hand side 

of Equation (4.5) becomes the integral expression: 

 ( ) ( )
1

0
1

0
dist i

i

t tk

k dist
io t

f T dt f T dt where t and t t
−

=

= = =∑∫ ∫  (4.6) 

 
Assume that both T and ( )f T  are linear in terms of time over one sampling 

interval, and using the Trapezoidal Rule, the integral term in the right –hand 

side of Equation (4.6) becomes: 

 ( ) ( ) ( ) ( )
1

1

1

1

2

i

i i

i

t

i i t t t t

t

f T dt t t f T f T
−

−

− = =
 = − + ∫  (4.7) 

 
Substituting Equation (4.7) into Equation (4.6) and assuming that the time 

sampling is one unit, gives: 

 ( ) ( ) ( ) ( )
0

1

1

1

2

dist

k i

t k

t t t t t t
io

f T dt f T f T f T
−

= = =
=

 = + +  ∑∫  (4.8) 
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Let us now examine the function over the temperature range  [ ]maxmin TT . 

Owing to the finite resolution of temperature measuring devices (e.g. data 

loggers), the temperature T can only take on a finite number of values in the 

range [ ]maxmin TT . Let { }min 1 2 max 1,j n j n
T T T T T T

=
= < < < < =… …  

denote these temperature values. As a result, the function ( )f T  can only take 

on values in the set ( ){ }
1,

j j
j n

f f T
=

= . In other words, the set ( ){ }
1,

j j
j n

f f T
=

=   

contains all values of the function of interest.  

 

Example 

Let us suppose that there was a data logger that had a minimum resolution 

of 1 oC and that the logger was used to record the temperature of a 

produce item that had the minimum and maximum temperatures of 

min 12 oT C=  and max 15 oT C= , respectively. Consequently, any reading 

from the logger will be one of the following temperatures 

{ }min max12, 13, 14, 15 oT T C= = . As a result, any function of the 

temperature measurement ( )f T  can only assume the values in the set 

( ) ( ) ( ) ( ){ }min max12 , 13 , 14 , 15o o o of T C f C f C f T C= = .   

 

Rewriting the set ( ){ }
1,

j j
j n

f f T
=

=  in vector form i.e. 

( ) ( ) ( ) ( )1 2

T

j nf T f T f T f T =  vf … … . Equation (4.8) leads to 

 ( )
distt

T

o

f T dt = ⋅∫ vα f  (4.9) 

 
Where: α is the coefficient vector which is related to the statistical distribution of 

temperature measurements over the range being considered. Equation (4.9)

numerically approximates the left hand side integral by a linear combination of 

the function values at discretised states.  
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Example (cont.) 

Let us continue with the above example and assume that the following 

temperature profile was recorded. 

{ },1 15 12 14 14 13 15 14 13profileT =  

Equation (4.8) becomes 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1
15 13 12

2

14 14 13

15 14

12 1.5 13 3 14 1.5 15

distt
o o o

o

o o o

o o

o o o o

f T dt f C f C f C

f C f C f C

f C f C

f C f C f C f C

 = + + 

+ + +

+ +

= + + +

∫

 

Consequently, ( )1 1 1.5 3 1.5
T=α  and 

( ) ( ) ( ) ( ){ }12 , 13 , 14 , 15
T

o o o of C f C f C f C=vf . 

 

Substituting Equation (4.9) into Equation (4.5) yields the expression. 

 ( ) ( )T
v ref init remf T t t⋅ = ⋅ −α f  (4.10) 

 
This equation can be used to predict  remt  (remaining shelf life) given knowledge 

of the other parameters, thus providing the basis of a numerical or data-driven 

means of shelf life prediction using kinetic principles. 

4.2.2 MODEL CALIBRATION  

Let us consider only temperature profiles of m produce items for which the 

remaining shelf-life ,rem mt  after the distribution period ,dist mt  is available. The 

coefficients vectors mα  (Equation (4.9)) together form a matrix A of size m n×  

where n is the number of temperature states in the range [ ]maxmin TT . 

 [ ]1 2

T

m=A α α α…  (4.11) 

 
Hence, Equation (4.10) leads to  

 

( )

,1 ,1 ,2 ,2 , ,

1

T

init rem init rem init m rem m

v

ref

t t t t t t

where
f T

 ⋅ = − − − 

=

aug

aug

A f

f f

…

 (4.12) 
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Example (cont.) 

Let us continue with the example and assume that the loss in shelf life of 

the produce item 1 (corresponding to ,1profileT ) is ,1 ,1 12.5init remt t− = . 

Further, let us assume that there is another produce with the following 

data 

{ },2

,2 ,2

12 12 13 14 15 14 15 15 15 14

22.5
profile

init rem

T

t t

=

− =
 

By repeating the previous step for the produce item 2, we obtain 

( )2 1.5 1 2.5 4
T=α . Consequently, Equation (4.12) becomes 

1 1.5 3 1.5 12.5

1.5 1 2.5 4 22.5

   ⋅ =   
   

augf  

 where 
( )
( )

( )
( )

( )
( )

( )
( )

13 13 14 15
, , ,

T
o o o o

ref ref ref ref

f C f C f C f C

f T f T f T f T

  =  
  

augf  

 

Note that the linear system described by Equation (4.12) represents the training 

information that is available. Solving the linear system for augf gives a KLS 

model of the reduction in the produce shelf life owing to temperature stresses. 

This KLS model is therefore obtained from the temperature profile T , the 

remaining shelf life remt , and the initial shelf life  initt ; i.e., without quality 

measurements , ,init rem endQ Q Q  or any knowledge of the functions for Q  or f . 

4.2.3 SHELF LIFE PREDICTION 

Given a KLS model, now consider the produce item p  that has the temperature 

profile pT , while being transported from the farm to a distribution centre. Its 

remaining shelf-life ,rem pt (upon being delivered at the distribution centre) is 

unknown  and to be estimated . Applying similar derivation, Equation (4.10)

leads to 

 ( ), ,
T
p init p rem pt t⋅ = −augα f  (4.13) 
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Let us suppose that some vector augf  exists that satisfies Equation (4.12), then 

 , ,
T

rem p init p pt t= − ⋅ augα f  (4.14) 

 
Equation (4.14) shows that the remaining shelf-life of the new product item 

,rem pt can be evaluated using the initial shelf life of the product ,init pt , the 

temperature profile pT  (which determines pα ) and the KLS model augf . 

4.2.4 ASSUMPTIONS 

There are a number of assumptions made during the derivation of the KLS 

method. The most important one is that the KLS method assumes that all 

produce items have the same model KLS, augf . This is critical so that the KLS 

model can be applied to new produce items that were not used in model 

calibration. Mathematically, augf is a vector representing the effect of 

temperature ( )f T  at each temperature state 

{ }min 1 2 max 1,j n j n
T T T T T T

=
= < < < < =… …  compared to the 

corresponding effect at reference temperature ( )reff T . Therefore, the 

assumption effectively implies that all items were assumed to respond to 

temperature stresses in the same way and that temperature is the single 

determinant of changes in shelf life. While making this assumption is necessary, 

caution must be taken because there are circumstances where it may not hold. 

The literature review in Chapter 2 has revealed that post-harvest temperature is 

not the only factor that could significantly affect the remaining shelf life of fresh 

perishable produce. The review pointed out that factors including genotype, pre-

harvest conditions and other post-harvest factors such as humidity can all play 

important roles in the deterioration of perishable produce and thereby shorten 

their shelf life. As a result, designing experiments specifically aimed at 

minimising variation in those factors may result in data sets which could 

potentially improve the performance of the KLS method. Nevertheless, such 

improvement may not be practical because variation in some factors such as 

growing conditions and post-harvest humidity is likely to exist in real contexts. 
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Another assumption is that the effect of temperature ( )f T  and the behaviour of 

quality (attribute) ( )g Q , are decoupled in the kinetic equation (Equation (4.1)). 

This assumption appears reasonable in most cases where only a single 

biochemical process affects quality Q . In fact, in such simple cases the 

assumption was usually made implicitly without any explanation (e.g. (Yan et al. 

2008)). However, the situation becomes more complicated when multiple 

biochemical processes are involved. For example, the kinetics of mushroom 

colour is believed to involve at least two chemical reactions: the first is to form 

polyphenol oxidase (PPO) and the second is to convert PPO into chinons, the 

precursor of the brown colouring agents in mushroom (Lukasse and Polderdijk 

2003). As a result, the corresponding kinetic model is a non-separable system 

of three differential equations, which does not seem to be reducible into a 

general form as in Equation (3.1). This suggests that the kinetic model in 

(Lukasse and Polderdijk 2003) may not have a mathematically equivalent KLS 

model. However, whether the assumption of decoupling ( )f T and ( )g Q is valid 

or not in modelling mushroom colour is still inconclusive.  

 

Another assumption in KLS development is that both temperature T and its 

effect ( )f T are linear in terms of time over a sampling interval. This assumption 

is necessary in order to approximate numerically the integral in Equation (4.7). 

The assumption is reasonable when the sampling interval is sufficiently small. 

4.3 DISCUSSIONS 

4.3.1 MATHEMATICAL SCENARIOS IN MODEL CALIBRATION  

In calibrating a KLS model (Equation (4.12)), there are a number of possible 

mathematical scenarios. In the following, recall that m  is the number of 

perishable produce items, from which the data used in training the KLS model 

was obtained, and n  is the number of temperature states in the range 

[ ]maxmin TT . 
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Case a: over-determined system ( nm > )  

In this case, the linear system is over-determined and no analytical solution can 

be obtained. The reason is that the true behaviour of each produce sample (as 

expressed by augf ) is likely to be different from one another. Consequently, no 

single augf can satisfy the linear system (Equation (4.12)). However, KLS 

assumes that such a difference is negligible and hence all augf for all samples 

should converge to some “average” solution, which is often the least square 

solution.  

Case b: under-determined system ( nm < ) 

The linear system in Equation (4.12) is under-determined when there are fewer 

samples (for calibration) than the temperature states; i.e., nm < . For such 

systems, there would be an infinite number of solutions augf which do not 

normally converge. Clearly, additional information is required to identify the 

solution which best describes the true behaviour of the produce being modelled. 

Effectively, the mathematical inequality means that given available data ( m ), 

there is an upper limit on how much details of the produce’s behaviour can be 

deduced. 

 

To deal with under-determined system, a trivial way is to collect more data 

samples, and hence increase m . Alternatively, reducing the temperature 

resolution i.e. increasing the temperature step and thereby reducing the number 

of temperature states n could also help, although the prediction accuracy could 

be affected. In addition, a priori information may also help as well. For example, 

( ) 1refT T= =augf  can be used as an additional constraint if refT  is within the 

temperature range [ ]maxmin TT being considered. 

Case c: well-defined system ( nm = ) 

A well-defined system is relatively rare and a unique solution can be obtained 

from the linear system.  
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4.3.2 MODELLING PARAMETERS  

KLS modelling involves a number of parameters including a reference 

temperature refT , upper and lower temperature thresholds maxT and minT , and 

temperature steps )1...,,2,1(1 −=−=∆ + njTTT jj . refT is the temperature at which 

the remaining shelf life of perishable produce is evaluated in a shelf life test. For 

cut roses, an industry standard (Floral Solutions 2006) suggests that refT should 

be set at 20 oC to resemble conditions under which the flowers would commonly 

be displayed in customers’ environments. The other three parameters, 

TTT ∆,, minmax , are design parameters, which are problem-dependent. The values 

for these parameters are normally selected such that they capture the 

temperature range of interest. However, as discussed earlier, when insufficient 

data are available for model calibration, leading to an under-determined system 

of linear equations, the design parameters could be modified to deal with the ill-

defined mathematical system. 

4.3.3 USING KLS  AS A REGRESSION TECHNIQUE 

As illustrated in (Figure 4.2), a KLS model expresses the change from initial 

shelf life to the final shelf life of perishable produce under the effect of 

temperature. In other words, the temperature that the produce is exposed to 

during such a change in shelf life is analysed. However, there are scenarios 

where it is desired to investigate the effect of temperature on the subsequent 

changes in shelf life of the produce i.e. the changes in shelf life occur after the 

produce is exposed to the temperature. An example is investigating the effect of 

temperature during growing period on the post-harvest changes in shelf life of a 

certain produce. The mathematical development of the KLS technique (Section 

4.2) is not applicable in such scenarios. However, procedurally a KLS model 

could still be obtained as before although the mathematical foundation, which is 

based on kinetic principle (Equation (4.1)), may no longer hold; rather, the 

model is a regression of the coefficient vector α .  
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4.3.4 ACCOUNTING FOR NON-THERMAL EFFECTS IN KLS  MODELLING  

As detailed in the literature review (Section 2.3), post-harvest temperature is not 

the only factor that could affect the remaining shelf life of perishable products. 

Other factors such as genotype, pre-harvest (i.e. growing) conditions, and post-

harvest humidity may also play important roles in their post-harvest 

deterioration. When the effects of such non-thermal factors are not negligible, 

those factors must be accounted for in the modelling. KLS technique facilitates 

this by introducing slack variables. 

 

Let us define the slack variables slackf as a vector ( 1m × ) where ,islackf  

represents the loss in shelf life of the thi  perishable product item ( 1,i m= ) that 

is due to the effects of the non-thermal factors. To account for the non-thermal 

factors, Equation (4.12) is modified as follows 

 ,1 ,1 ,2 ,2 , ,

T

init rem init rem init m rem mt t t t t t ⋅ + = − − − aug slackA f f …  (4.15) 

 
Let us define 

 

,1 ,1 ,2 ,2 , ,

T

init rem init rem init m rem mt t t t t t

 
=  
 

 = − − − 

aug
cal

slack

cal

f
x

f

y …

 (4.16) 

Then, Equation (4.15) becomes 
 [ ]m ⋅ =cal calA I x y  (4.17) 

Where mI  is the unity matrix of size m . 
 
Clearly, the linear system described in Equation (4.17) is under-determined (i.e., 

has more unknowns than equations), and hence would lead to an infinite 

number of solutions. Additional information is required to identify an optimal 

solution. In a general case, it is reasonable to select the solution that minimises 

the variance of the slack variables slackf . There are two reasons for that. The 

first reason is that although the non-thermal factors are not negligible, the post-

harvest temperature is considered to be the dominant factor affecting the loss in 

shelf life of the perishable products. As a result, it is unlikely that the slack 

variables would vary significantly. The second reason is that the different 

product items could have shared some common non-thermal factors. For 
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example, many could come from the same farm, or same batch of harvest. 

These common factors reduce the variance in the slack variables. 

 

In order to obtain a solution of Equation (4.17) that minimises the variance of 

slackf , let us define a matrix H where 

 ( ), ,m n m m mm = − H 0 I 1  (4.18) 

Where  

,m n0  
is the matrix of zeros with m rows and n columns; 

,m m1  
is the matrix of ones with m rows and m columns. 

Consequently, 

 

( )

( )
( )

, ,

,

m n m m m

m m m

m

m

m

 
 ⋅ = −   

 

= − ⋅

= −

aug
cal

slack

slack

slack slack

f
H x 0 I 1

f

I 1 f

f f

 (4.19) 

 

Where ,
1

1 m

i
im =

= ∑slack slackf f . 

Therefore, the variance of the slack variables can be expressed as follows 

 

( ) ( )
( ) ( )

( )
2

2

var( )

1

1

T

T

T T

m

m

= − ⋅ −

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

slack slack slack slack slack

cal cal

cal cal

f f f f f

H x H x

x H H x

 (4.20) 

Consequently, the mathematical problem of solving Equation (4.17) for a 

solution that minimises the variance of the slack variables is transformed into an 

optimisation problem 

 

( )

[ ]

2

1
min

:

T T

m

m

subjected to

 ⋅ ⋅ ⋅ 
 

⋅ =

cal
cal calx

cal cal

x H H x

A I x y
 (4.21) 
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The above optimisation problem (Equation (4.21)) can be solved using 

mathematical software packages such as Matlab which has a built-in quadprog 

function that is specifically designed for quadratic programming. 

 

For estimating the remaining shelf life of a product item, the unknown 

contribution of the non-thermal factors is approximated by the average of the 

slack variables slackf . Consequently, Equation (4.14) becomes 

 , ,
T

rem p init p pt t= − ⋅ −aug slackα f f  (4.22) 

In short, when the non-thermal factors must be accounted for, Equation (4.21) is 

used for model calibration while Equation (4.22) is for estimating the remaining 

shelf life. 

4.3.5 REQUIREMENT OF INITIAL SHELF LIFE  

It should be noted that a KLS model (Equation (4.12)) describes the effect of 

temperature on the changes in shelf life and not the shelf life itself. 

Consequently, in order to evaluate the remaining shelf life of a perishable 

product after a storage (or transport) period, its initial shelf life at the beginning 

of that period must be available.  

 

There are scenarios where the initial shelf life of the produce was not available 

e.g. as in the case study with Cookes Rose Farm. Two approaches could be 

used to overcome the requirement of the initial shelf life. The first is to make 

some assumption about it. The assumption could be that all the produce 

samples have the same initial shelf life; or that their initial shelf lives vary but the 

variation is minimised (see Section 4.3.4 for a similar mathematical derivation). 

The second approach, that could be employed when the initial shelf life was not 

available, was to use the final remaining shelf life in place of the changes in 

shelf life. However, it should be noted that the mathematical development of the 

KLS technique (Section 4.2) does not support the substitution of the changes in 

shelf life by the final remaining shelf life; the model that is obtained is a 

regression model of the coefficient vector α  (see Section 4.3.3).  
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4.3.6 A PRIORI CONSTRAINT IN A KLS  IMPLEMENTATION 

Frequently, a priori knowledge about perishable produce exists and should be 

captured in their models. For example, studies in the physiology of cut flowers 

seemed to suggest that the higher the temperature at which cut roses are 

stored, the shorter their remaining VL (Section 3.3). In such cases, 

mathematical constraints must be implemented to express the a priori 

knowledge. For example, the following constraints impose the above a priori 

knowledge for cut flowers. 

 ( ) ( )1 2 ( )nf T f T f T< < <…  (4.23) 

This could be expressed in a matrix form as follows: 

 

1 1 0 0

0 1 1

0 1 1

− 
 − 
  ⋅ <
 
 
 − 

augf 0

…

… …

… … … … …

… … … … …

… …

 (4.24) 

The linear system (Equation (4.12)) and the a priori constraint (Equation (4.24)) 

might be solved using most numerical software such as Matlab. 

 

In a similar fashion, other a priori knowledge such as chilling injury at some 

temperature, or the smoothness of the function ( )f T  could also be 

implemented. 

4.4 PROCEDURE FOR A KLS  IMPLEMENTATION 

4.4.1 MODEL CALIBRATION PROCEDURE  

Figure 4.3 outlines the procedure to obtain a KLS model. It starts with 

temperature profiles for model calibration and ends when augf is completely 

identified. Essentially, three steps are involved including parameter 

specification, evaluation of ( )mii ,1=α  and forming and solving the linear system 

(Equation (4.12)). 
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Figure 4.3: Model calibration procedure 
 

Example 

For illustration purpose, let us revisit and expand on the example that 

was considered in Section 4.2. 

{ }
{ }

,1 ,1 ,1

,2 ,2 ,2

15 12 14 14 13 15 14 13 ; 12.5

12 12 13 14 15 14 15 15 15 14 ; 22.5

profile init rem

profile init rem

T t t

T t t

= − =

= − =
 

Step 1: parameter specification 

The parameters are selected as following: 

CT

CT

CT

CT

o

o

o

o
ref

1

12

15

14

min

max

=∆

=

=

=

 

Specify TTTTref ∆,,, minmax  

Evaluate the distribution (over 
the specified states) ( )mii ,1=α  
of each temperature profile i. 

Collect all iα into a matrix A  
and solve the linear system 
Equation (4.12) 

Calibrating 
temperature 

profiles 

KLS model 

augf  
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Step 2: Evaluation of ( )mii ,1=α  

From specification of parameters in Step 1, the temperature states are 

{ } C015141312 . Consequently, the vector of variables in Equation 

(4.12) is 

( ) ( ) ( ) ( ) ( )[ ]T
ref

CTfCTfCTfCTf
CTTf

0000
0

15141312
14

1 ====
==

=augf

 

Or equivalently 

( )
( )

( )
( )

( )
( )

0 0 0

0 0 0

(1) (2) (3) (4)

12 13 15
1

14 14 14

T

T
f T C f T C f T C

f T C f T C f T C

 =  

 = = =
 =

= = =  

aug aug aug aug augf f f f f

 

Where ( )Tf  is the effect of temperature oT C on the shelf life of the 

produce sample. 

 

From the previous examples, [ ]1 1 1.5 3 1.5
T=α and 

[ ]2 1.5 1 2.5 4
T=α . 

Step 3: forming and solving the linear system (Equation (4.12)) 

Given temperature profiles 1,profileT , 2,profileT  and parameters as in Step 1, 

the matrix A  which collects all vector ( )1, 2i i =α  is 

1 1.5 3 1.5

1.5 1 2.5 4

 
=  
 

A . Consequently, the linear system in Equation 

(4.12) can be explicitly expressed as 

 

,1 ,1

,2 ,2

1 1.5 3 1.5 12.5

1.5 1 2.5 4 22.5

init rem

init rem

t t

t t

− 
⋅ =  − 

   
⇒ ⋅ =   

   

aug

aug

A f

f

 (4.25) 

 
Substituting [ ]T)4()3()2()1( augaugaugaugaug fffff = , the linear system 

becomes  
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(1)

(2)1 1.5 3 1.5 12.5

11.5 1 2.5 4 22.5

(4)

 
 

    ⋅ =       
  
 

aug

aug

aug

f

f

f

 (4.26) 

Or equivalently,  

 

(1)
1 1.5 1.5 9.5

(2)
1.5 1 4 20

(4)

 
    ⋅ =    
    

 

aug

aug

aug

f

f

f

 (4.27) 

 

Clearly, the above system has more variables ( 3=n ) than equations 

2=m and as discussed previously this situation would lead to infinite 

number of solutions for augf . Therefore, more information or data would 

be required to solve this system.  

 

Let suppose data from another sample is collected additionally where 

{ },3 ,3 ,312 12 13 14 13 15 14 13 15 ; 14profile init remT t t= − =  

Incorporating the new data, the linear system becomes  

 

1 1.5 1.5 (1) 9.5

1.5 1 4 (2) 20

1.5 3 1.5 (4) 12

    
    ⋅ =    

    
    

aug

aug

aug

f

f

f

 (4.28) 

Consequently, the unique solution is  

 
[ ]

(1) (2) (3) (4)

2 1 1 4

T

T

 =  

=

aug aug aug aug augf f f f f
 (4.29) 

4.4.2 PROCEDURE TO ESTIMATE THE LOSS IN SHELF LIFE  

The procedure to perform estimation of the loss in the remaining shelf life using 

a KLS model is depicted in Figure 4.4.  
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Figure 4.4: Using KLS model to evaluate the loss in  shelf life due to a test temperature 
profile. 

 

Example (cont.) 

Let us continue with the above example and assume that a test data 

sample is { }, 13 13 12 14 14 15 13profile testT =  

The corresponding vector of coefficients is [ ]1 2 2 1
T

test =α . 

Consequently, the estimated loss in shelf life is 

 

( ) ( )

( )

, ,

2

1
1 2 2 1 10

1

4

T

init test rem test testestimated
t t− = ⋅

 
 
 = =
 
 
 

augα f

 (4.30) 

 

Evaluate the coefficient vector testα  
of the test profile. 

Test temperature profile 

testT  

Loss in shelf life  

( ) T
init rem testtest

t t− = ⋅ augα f  
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4.5 CHAPTER CONCLUSION 

This chapter described the mathematical development of the new KLS 

technique for modelling the temperature-related loss in shelf life of perishable 

fresh produce. KLS is based on the kinetic principle and is data-driven. As a 

result, it can be applied in studies of products such as cut flowers, where the 

understanding of the product is incomplete and hence its first-principle model is 

not available. The procedure for KLS implementation (i.e., model calibration and 

shelf life prediction) was outlined and illustrated with an example. 
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5 KLS  SIMULATION CASE STUDIES  

 
============================================================ 

 

This chapter reports the performance of the KLS technique in a number of 

simulated perishable products. These products include fresh produce (tomato 

and mushroom), processed food (seasoned soybean sprout), and seafood 

products (fresh seafood from temperate waters and from tropical waters, and 

cold-smoked salmon). Their simulated remaining shelf life is determined by the 

kinetic models which are implemented either in Matlab R2009a or in seafood 

safety and shelf life prediction (SSSP) v2.0, a software package that is available 

on Internet. A set of 116 temperature profiles typical of conditions during chilled 

supply chain were used as input to the simulations. KLS models are calibrated 

based on the temperature profiles and the simulated shelf life. Model 

performance was assessed by comparing the remaining shelf life obtained from 

the kinetic simulations and that obtained from the KLS models.  

 

The performance assessment typically showed that R2=1.00, prediction errors 

were small, and best fit lines were close to the equality line y=x. This 

demonstrates that KLS technique, being data-driven, could effectively replace 

the kinetic ones. 

 

_______________________________________________________________ 
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5.1 INTRODUCTION 

In Chapter 4, the new KLS technique was mathematically developed from 

kinetic principles. Based on its theoretical development, the most important 

advantage of KLS is that it is a data-driven technique and hence it does not 

require any first-principle knowledge to develop a model for estimating the loss 

in quality of perishable products due to temperature stress. In addition, while the 

traditional kinetic modelling would need as many models as the number of the 

quality attributes involved in determining the shelf life, only one KLS model is 

required. 

 

This chapter aims to demonstrate these advantages of the KLS modelling 

technique and its capability in replacing traditional kinetic models. The 

motivation is that being data-driven KLS could be used in applications where 

kinetic principles would apply but traditional kinetic models are not available or 

not easy to implement. Such applications can be found readily in perishable 

products such as cut flowers. 

 

The chapter is organised as follows. Section 5.2 explains the overall 

methodology that is used in this simulation study. It also outlines the strategies 

in KLS model calibration and validation. Section 5.3 describes the data and 

information available for the simulation study. All simulations in this chapter use 

the same set of temperature data, which is described in Section 5.3.1. A brief 

description of the simulation models is provided in Section 5.3.2 while more 

details are available in subsequent Sections 5.4 and 5.5. These later two 

sections explain the details and the results of the simulation studies of 

perishable produce (Section 5.4) and of food products (Section 5.5). Discussion 

of simulation results is presented in Section 5.6, which is followed by a chapter 

conclusion Section 5.7. 

 

 

 



 125 

5.2 METHODOLOGY 

In order to investigate the capability of KLS in substituting kinetic models, two 

consecutive stages are involved. In the first stage, a KLS model must be 

calibrated from the input and output data of a selected kinetic model. This is 

normally known as “training” or “calibrating” and during this process the KLS 

model “learns” the performance of the kinetic model. The second stage is model 

validation where new inputs are applied to the kinetic model as well as to the 

newly calibrated KLS model and the corresponding outputs are compared. 

Details of the two stages are explained below. 

5.2.1 KLS  MODEL CALIBRATION  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: KLS calibration strategy 
 

Figure 5.1 outlines the strategy used in calibrating a KLS model. Initially, a set 

of temperature profiles are input into the simulation of a perishable product to 

generate a set of corresponding changes in quality Q∆ . Subsequently, the sets 

of the temperature profiles and the corresponding Q∆  together form the 

calibration data set that is used to generate the KLS model for the simulated 

product. (Chapter 4 details the procedure to derive a KLS model from a 

calibration data set). 

Temperature Kinetic model(s) of perishable 
product (e.g. tomato) 

Q∆  

Calibration 
data set 

KLS model  
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5.2.2 KLS  MODEL VALIDATION  

Figure 5.2 shows the strategy used for validation of a KLS model of simulated 

perishable products. Basically, a test temperature profile that was not used 

during calibration is input into the KLS model. The output, KLSQ∆  is compared 

with the corresponding output simulatedQ∆  of the simulated model that was used 

during the calibration stage. 

 

 

 

 

 

 

Figure 5.2: Validation strategy 
 

In addition, leave-one-out cross validation and statistical indices including 

RMSEP, R2, slope and intercept of the best fit line were implemented in 

assessing the performance of KLS models. Details of the strategy as well as 

definitions of the indices were described in Chapter 3. 

5.3 TEMPERATURE DATA AND SIMULATIONS  

5.3.1 TEMPERATURE DATA  

Temperature profiles gathered from field trials in an international supply chain of 

an unspecified perishable produce were made available for use. Whilst neither 

the remaining shelf life nor the kinetic model of the produce was available for 

subsequent analysis; the use of the temperature profiles would closely simulate 

the temperature conditions that may be expected in a perishable produce 

supply chain. In total, there were 116 temperature profiles, each contained 22-

23 temperature readings collected by data loggers. This set of data was divided 

into two subsets: one was used for KLS model calibration while the other was 

for model validation.  

 

Kinetic model(s) of perishable 
product (e.g. tomato) 

KLSQ∆  

simulatedQ∆  

KLS model  

Test temperature 
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Figure 5.3 shows typical temperature profiles used in this simulation study. The 

maximum and minimum temperatures in the data set were 21.5 oC and 2.5 oC, 

respectively. The temperature readings in the data set varied about a mean of 

10.4 oC, and by a standard deviation of 3.4 oC. 

 

 
Figure 5.3 Examples of the temperature profiles use d in simulation studies 

 

5.3.2 KINETIC SIMULATION OF PERISHABLE PRODUCTS  

In order to investigate the capability of KLS in reproducing the performance of 

kinetic models, a number of published kinetic models of perishable products 

were selected for simulation studies. These products and their kinetic models 

were studied in two sections.  

• Section 5.4 focused on perishable produce including tomatoes and 

mushrooms. Their kinetic models involved sensory quality attributes such 

as firmness and colour. 
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• Section 5.5 focused on food products including seasoned soybean 

sprout and seafood. The models of these food products contained kinetic 

descriptions of microbial bacteria growth in the food systems. 

All of the kinetic models are described in details in their respective sections. 

5.4 PERISHABLE PRODUCE SIMULATION CASE STUDIES  

5.4.1 KINETIC MODELLING OF TOMATOES  

Tomato is an important agricultural produce. It is most commonly consumed 

fresh as in salads, or cooked such as in Italian dishes, or in making juice. In 

2008 the world produced more than 136 million tons of tomatoes, of which 

Europe and the United States together accounted for 34 million tons or 

approximately 25% (FAOSTAT 2010). Therefore, research in many aspects of 

tomato including its shelf life after harvest has attracted significant interest over 

the years. 

 

Numerous kinetic models exist for linking tomato quality attributes such as 

firmness, colour and taste to the various stresses that tomatoes may endure 

after harvest. Many of these models are first order kinetic and were developed 

at constant temperature. For example, in an investigation of the kinetic 

approach to food quality prediction Wells and Singh (Wells and Singh 1988) 

stored mature green tomatoes at various temperature conditions and examined 

their quality attributes including firmness, sourness and flavour. The 

researchers found significant differences in tomato firmness between storage 

temperature conditions but not in the other two attributes: sourness and flavour. 

Subsequently, they proposed a first-order kinetic model for tomato firmness and 

evaluated the activation energy and the reference rate constant from the 

Arrhenius plot of reaction rate vs. temperature using regression analysis (Wells 

and Singh 1988). Their approach is common in kinetic modelling and is used to 

identify the quality attribute of importance, select a kinetic model and then 

estimate the model parameters by regression analysis. The key decisions of 

which quality attributes and/or which kinetic models to use may not always be 

as apparent. 
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A variant of first order kinetics considers firmness of tomatoes (and other fruits 

and vegetables) as consisting of two parts: a variable part of the firmness, 

which is modelled by first order mechanism, and a constant part that is due to 

fixed factors such as cellulose or structure-based firmness. Lana et al. (Lana et 

al. 2005) used that rather empirical approach to study firmness of fresh-cut 

tomatoes under the effects of storage temperature and at-harvest ripening 

stage. Later, the researchers also reported a similar study modelling the colour 

of fresh-cut tomatoes (Lana et al. 2006). While firmness and subsequently 

colour were selected for studying, Lana et al. (Lana et al. 2005) observed that 

the limiting quality attribute, which determines the shelf life of fresh-cut 

tomatoes, was not known. From a shelf life prediction perspective, the question 

is again which attribute and hence model to use. If the shelf life of fresh-cut 

tomatoes was limited by multiple quality attributes, e.g. both firmness and 

colour, modelling each quality attributes independently as in (Lana et al. 2005; 

Lana et al. 2006) may not be very useful for practical applications in shelf life 

prediction. 

 

A more complicated model of tomato firmness was reported by van Dijk et al. 

(van Dijk et al. 2006b) and van Dijk et al. (van Dijk et al. 2006a). The 

researchers reasoned that chilling injury and enzymatic degradation were the 

two major processes responsible for firmness decay. The enzymes that were 

considered include polygalacturonases, pectin methyl esterase and β-

galactosidases. The researchers noted that their integrated model of tomato 

firmness was a set of differential equations which had “cumbersome” solutions. 

Without such analytical solutions, the firmness of tomatoes that were exposed 

to variable temperature stresses (e.g., during supply chain) may require 

repeated integration of the set of differential equations. Yet, the enzymes that 

were studied may not be the only ones; there could be other enzymes that were 

responsible for cell wall degradation and hence firmness decay in tomatoes but 

were not modelled (van Dijk et al. 2006a). Incorporating any additional enzymes 

into modelling could introduce significant complexity to the already complicated 

model.  
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In short, all of these previous studies used kinetic modelling principles to model 

tomato behaviour. The studies had to identify a specific quality attribute and a 

kinetic model using some (usually incomplete) first-principle knowledge of 

tomato senescence. 

5.4.2 SELECTED KINETIC MODELS OF TOMATO  

This study selected the kinetic models reported in (Schouten et al. 2007a) to 

simulate the behaviours (i.e., firmness and colour) of tomato under variable 

temperature stresses.  

Firmness model 

Based on previous work (Lana et al. 2005; Lana et al. 2006; van Dijk et al. 

2006b), Schouten and colleagues (2007a) defined firmness as the maximum 

force required for a 1 mm compression of a tomato at speed of 40 mm/min. 

They reasoned that tomato firmness consists of a variable part which can be 

modelled by first-order kinetics and a fixed invariable part due to its biophysical 

structure. In addition, the researchers also adopted the viewpoint which stated 

in Tijkens et al. (2002) that firmness can be generated and diminished prior to 

harvest but it can only be decayed post harvest. Based on those two concepts, 

Schouten and colleagues (2007a) derived the following kinetic model for tomato 

firmness: 

 

( ) ( )
( )

0

0

Fpost

Fpre F

k t

fix fix

k t

ref fix fix

F t F F e F

F F F e F

− ⋅

− ⋅∆

 = − +


= − +
 (5.1) 

Where 

Fprek  and Fpostk  the reaction rate constants (d-1) for the firmness 

breakdown before and after harvest respectively; 

0F  and ( )F t  the firmness (N) at harvest and at time t  (d ); 

fixF  the invariable firmness (N) at infinite time; 

refF  an arbitrary reference firmness; 

Ft∆  the (firmness) biological age, which is defined as 

the time needed for the firmness to change from 



 131 

refF  to 0F . 

Arrhenius’ law was used to describe the temperature dependence of all kinetic 

reaction rates constants  

 

1 1a

ref

E

R T T

refk k e

 
−  − 

 
 =  (5.2) 

Where 

aE  activation energy (J.mol-1); 

refT  reference temperature (K); 

refk  the reaction rate constants (d-1) at reference 

temperature; 

R  gas constant (8.314 J.mol-1.K-1). 

 
As KLS method requires the initial quality of all samples, it was assumed for 

simplicity that the samples start their post-harvest periods with the same initial 

quality content. In this case, the assumption effectively means that 0F  is 

constant and as a result, the model from (Schouten et al. 2007a) was modified 

as followed: 

 

( ) ( )
( ) ( )

var
var

var

Fpost

fix

dF t
k F t

dt
F t F t F


= − ⋅


 = +

 (5.3) 

With ( )varF t : the variable contribution of tomato firmness (N) at time t  (d). 

 

This kinetic model of tomato firmness was implemented in Matlab R2009a with 

an initial firmness of 10 N, which was arbitrarily selected in the range of the 

initial firmnesses shown in Figure 4 in Schouten et al. (2007a). Other parameter 

values that the model required were taken from Schouten et al. (2007a) and are 

reproduced in Table 5.1 below. 
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Table 5.1 Kinetic parameter for tomato firmness mod elling 
Parameters Unit Values 

,Fpost refk  d-1 0.0509 

FpostE  J.mol-1 22320 

fixF  N 0.816 

refT  K 285.15 

 

Colour model 

Schouten et al. (2007a) studied colour evolution in tomato by focusing on the 

synthesis of the red components in the tomato skin. The researchers reasoned 

that a colourless precursor is converted into the red (mainly lycopene) 

components by an enzyme system according to the following reaction: 

 2Rpostk
prec E E Red+ → +  (5.4) 

Where 
prec  is a colourless precursor; 

E  is the enzyme; 

Red  is the red components; 

Rpostk  
is the reaction rate constants (d-1) during post-harvest 

period. 

From Equation (5.4), the changes in colour of tomatoes can be summarised in 

the following differential equations. 

 Rpost

Red prec E
k E prec

t t t

∂ ∂ ∂= − = = ⋅ ⋅
∂ ∂ ∂  (5.5) 

In terms of the red components, Equation (5.5) is mathematically converted into 

 
( )

max min

Rpost

Red
k Red c Red

t
c Red Red

∂ = ⋅ ⋅ −
∂
= −

 (5.6) 
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Where maxRed and minRed  are the asymptotic colour value at plus and minus 

infinite time (1000/G). 

 

Other parameter values that the model required were taken from Schouten et 

al. (2007a) and are reproduced in Table 5.2 below. 

 

Table 5.2 Kinetic parameter for tomato colour model ling 
Parameters Unit Values 

,Fpost refk  ( prec .d)-1 0.02355 

RE  J.mol-1 40553 

minRed  1000/G 4.086 

maxRed  1000/G 17.308 

refT  K 285.15 

 

5.4.3 REMAINING SHELF LIFE EVALUATION  

In this study, it is assumed that a tomato reaches its end of useful life when its 

firmness is equal to or less than a threshold firmness value of 3 N. For tomato 

colour, the lower threshold is 13.22 for the red colour component. The 

remaining shelf life of a tomato is defined as the time duration (in days) that it 

would take to reach its end of useful life under the reference storage condition 

10refT =  oC.  
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5.4.4 SIMULATION RESULTS  

5.4.4.1 VALIDATION OF THE IMPLEMENTATION OF THE KINETIC MODELS 

 

 
Figure 5.4: Simulated tomato firmness during storag e at different isothermal 

temperatures 
 

Initially, the tomato simulation was run at three isothermal temperatures, 

including 16 oC, 19.9 oC and 24.5 oC, for comparison with results shown in 

(Schouten et al. 2007a). As Figure 5.4 shows, the results were in qualitative 

agreement with the results in (Schouten et al. 2007a). In general, the tomato 

firmness decreases monotonically from an initial value of 10 N to approximately 

3 N after 20 days. Note that the monotonic decrease was due to the modelling 

view that tomato firmness can only be diminished post harvest, as described 

earlier. A notable difference between Figure 5.4 and Figure 4 in (Schouten et al. 

2007a) is that the initial tomato firmness took different values in Schouten and 

colleagues study. In addition, the position of tomato in the truss, which was 

examined in the previous paper, was not within the scope of the present study. 
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5.4.4.2 EVALUATION OF SIMULATED REMAINING SHELF LIFE 

Figure 5.5 shows the simulated remaining shelf life of tomatoes as determined 

by firmness. The tomatoes started with the same initial firmness of 10 N. After 

being subjected to each of the 116 temperature profiles (Section 5.3.1), their 

remaining shelf life varies about a mean of 8.3 d with a standard deviation of 1.5 

d. The maximum and minimum remaining vase lives are respectively 11.2 d and 

4.0 d. 

 
Figure 5.5: Simulated remaining shelf life of tomat o by firmness 

 

Figure 5.6 shows the simulated remaining shelf life of tomatoes as determined 

either by firmness, or by firmness and (red) colour. As shown, the remaining 

shelf life by firmness and by firmness and colour often coincides. This implies 

that the firmness attribute is more likely to be the limiting factor in determining 

the shelf life of tomatoes. However, there are many occasions where the shelf 

life by firmness is greater than the shelf life by firmness and colour. This 

suggests that the colour attribute is the limiting factor in those cases. As a 

result, Figure 5.6 illustrates that the remaining shelf life of tomato could be 
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determined by different quality attributes and hence multiple attributes (e.g. 

firmness and colour) are usually required. 

 
Figure 5.6: Simulated remaining shelf life of tomat o by firmness, and by firmness and 

colour 
 

5.4.4.3 KLS MODEL CALIBRATION 

The reference temperature for KLS method was set at 10 o
refT C= . Minimum and 

maximum temperatures in the temperature data set were 2.5 oC and 17.5 oC. 

The temperature resolution was chosen to be 0.5 oC. 

 

Note that the coefficient vector α  of each temperature profile in the calibration 

data set can be derived from its histogram over the interval [2.5 oC, 17.5 oC] 

(Chapter 4). The set of these coefficient vectors constitutes the matrix A  as 

shown in Equation (4.11). The calibration of the KLS model completes with the 

evaluation of augf according to Equation (4.12). 
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Figure 5.7: augf  as evaluated in tomato firmness simulation. Using leave-one-out 

strategy, 116 augf were obtained and converged. 

 

The solution vector augf that expresses the KLS model was evaluated and 

shown in Figure 5.7. As leave-one-out strategy was implemented, there were a 

total of 116 augf vectors, one for each of the temperature profiles. As can be 

seen in Figure 5.7, these solution vectors converged to a single vector, which 

characterised the simulated tomato firmness model. In addition, there were 

abrupt changes at both ends of the temperature states i.e. at 2.5-3 oC and at 

17.5 oC. It is believed that the firmness decay at low temperature would be 

negligible. Consequently, the effect of low temperature on firmness decay and 

hence the KLS solution vector at such temperature would be very small. 

 

On the other hand, the jump in the KLS solution vector going from 17 oC to 17.5 
oC was because the value at 17.5 oC actually accounted for all temperatures 

equal to or greater than 17.5 oC. As stated earlier, the maximum temperature 

was 21.5 oC and so the KLS solution vector at 17.5 oC would be an average of 

the effect of temperature between 17.5 oC and 21.5 oC on firmness decay. 
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Setting the maximum temperature state at 17.5 oC was a design decision, so as 

to prevent the coefficient matrix A  from being ill-conditioned.  

5.4.4.4 KLS MODEL VALIDATION 

The performance of the KLS models, shown in Figure 5.7, in predicting 

remaining shelf life of tomatoes was assessed using leave-one-out strategy and 

statistical indices including RMSEP, R2, slope and intercept of the best fit line 

(Section 3.2). 

Shelf life by firmness 

 

 
Figure 5.8: Comparison between simulated shelf life  of tomato (by firmness) and the 
corresponding KLS prediction. The best fit line coi ncides with the line 1.00y x= .  

 

Figure 5.8 shows the comparison between the simulated shelf life of tomatoes 

and its corresponding KLS prediction. The simulated shelf life of tomatoes was 

determined based on firmness level. The KLS predicted shelf life was evaluated 

using the KLS solution vector (shown in Figure 5.7) as in Equation (4.14). 

Performance assessment was carried out as described in Section 3.2. The 
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values of the performance indices are shown in Figure 5.8, together with the 

best fit line and the equality line 1.00y x= . As the figure indicates, the 

predictions by the KLS model agree well with the simulated shelf life of 

tomatoes. The coefficient of determination 2 1.00R =  suggests that the KLS 

model captured all variation in the simulated data. Moreover, average prediction 

error RMSEP was only 0.1 d, which represents only 1.2% error for an average 

shelf life of 8.3 d. From the figure, the best fit line and the equality line y x=  

are not visually differentiated. Indeed, the mathematical equation for the best fit 

line is 1.00 0.03y x= + , which only differs from the line 1.00y x= by a small 

intercept of 0.03. In short, the KLS predicted shelf life matched closely with the 

simulated shelf life of tomatoes (by firmness). In other words, the KLS model is 

capable of reproducing the simulated shelf life of tomatoes by the kinetic 

firmness model. 

Shelf life by firmness and colour 

 
Figure 5.9: Comparison between simulated shelf life  of tomato (by firmness and colour) 

and corresponding KLS prediction 
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When both firmness and colour were considered, another KLS model was 

calibrated. Performance assessment was carried out based on the same 

statistics as previously. Figure 5.9 shows that although it is not quite as good as 

in the case of one kinetic model (Figure 5.8), using one KLS model to reproduce 

the simulated shelf life of tomato from two kinetic models still has good 

performance. All variation in simulated data was captured ( 2 0.98R = ); average 

prediction error was small (RMSEP=0.22 d); the best fit line only deviated slightly 

from the equality line 1.00y x= . Therefore, the performance statistics suggest 

that KLS model is capable of “learning” the output of two kinetic models of 

tomato firmness and (red) colour. 

Additional results from mushroom colour simulation studies 

A similar approach to the tomato simulation studies was also carried out for 

mushroom colour simulation studies. The kinetic models for colour evolution in 

mushroom were taken from (Bobelyn et al. 2006), including a first order kinetic 

model and a sigmoid kinetic model. The performance of the KLS technique in 

reproducing those mushroom models is summarised in Table 5.3 below. Similar 

conclusion can be made: the KLS technique was capable of “learning” the 

output of the mushroom kinetic models. 

 

Table 5.3: Results from mushroom colour simulation studies 
Kinetics 1st order kinetic Sigmoid kinetic 

Source (Bobelyn et al. 2006) 

Coefficient of 

determination R2 
0.99 0.92 

RMSEP (d) 0.33 0.72 

Slope of best fit 1.00 0.94 

Intercept of best fit 0.04 -0.10 
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5.5 FOOD PRODUCT SIMULATION CASE STUDIES  

5.5.1 BACKGROUND  

Food quality changes with time and storage conditions. Therefore, it is 

necessary to model the chemical, biochemical, microbial and physical 

processes that occur in food systems to monitor, predict and control their quality 

changes. The most common approach so far has been based on kinetic 

modelling principles. The kinetic models used in food quality modelling can be 

broadly classified into first-principle kinetic models and empirical kinetic models. 

First-principle kinetic models of food systems are derived based on fundamental 

understanding of the mechanisms of the processes that occur in the systems. 

They are available in elementary processes that only exist in simple, usually 

dilute, ideal systems. However, real foods are neither dilute nor ideal systems 

and so the quality changes are due to many interacting and complex reaction 

mechanisms rather than a single elementary step. This is why simplified 

empirical models are needed. The use of empirical models in studying real food 

systems suffers from a limitation that the understanding about the system is not 

captured (van Boekel 2008). 

 

Microbiological decay is an important aspect in food deterioration, especially for 

fresh or minimally processed refrigerated products. Microorganisms may play a 

significant part in food spoilage. Predictive microbiology refers to studies which 

are to predict the shelf life of refrigerated foods based on microbial growth. 

These studies usually involve a number of steps. First, an appropriate growth 

curve model (e.g. Gompertz model) is selected and experimental data are 

gathered to estimate the model parameters (such as specific growth rate and 

lag time). Subsequently, the effects of compositional and environmental factors 

on the microbial growth are investigated using another model such as the 

square root model. The combination of the two steps enables the prediction of 

the microbial level and thereby can be used to estimate the shelf-life of 
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perishable foods under commercial distribution conditions (Fu and Labuza 

1993). 

5.5.2 KINETIC MODELS  

Food systems including seasoned soybean sprouts and seafood products were 

selected for the simulation study. The kinetic model of seasoned soybean 

sprouts was taken from (Lee et al. 2007) while models of seafood products 

were previously developed and implemented in the Seafood spoilage and safety 

predictor software (SSSP) (Dalgaard 1999; Dalgaard et al. 2002). 

5.5.2.1 KINETIC MODEL OF SEASONED SOYBEAN SPROUTS 

Lee and colleagues (2007) modelled the growth of aerobic bacteria on Korean 

seasoned soybean sprouts to estimate microbial spoilage and shelf life of the 

food product at varying temperatures. These researchers believed that while 

studies of specific strains of spoilage bacteria were common, practical shelf life 

evaluation often used the total aerobic bacterial growth as a criterion (Lee et al. 

2007). For a description of the microbial growth, Lee and colleagues (2007) 

adopted the following model, that was published in (Baranyi and Roberts 1994). 

 

max

max
max

1
1

dq
q

dt

dN q N
N

dt q N

µ

µ

 =

    = −   +  

 (5.7) 

Where 
q   : the normalized concentration of an unknown substance 

that is believed critical to cell growth in soybean sprout; 

maxµ  : the maximum specific growth rate (h-1); 

N  : the microbial count (cfu.g-1); 

maxN  
: the maximum cell density (cfu.g-1). 

 
Lee et al. (2007) fitted Equation (5.7) with experimental data at many fixed 

temperatures to obtain corresponding sets of values for parameters including 

maxµ , maxN , oq  and oN , where the latter two parameters represent the initial 
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values of q  and N respectively at initial temperature oT . The sets of 

parameter values were then regressed against temperatures to obtain the 

following temperature dependence: 
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 =
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 (5.8) 

 
Equations (5.7) and (5.8) were implemented in Matlab R2009a to estimate the 

simulated total aerobic bacterial counts in seasoned soybean sprout at dynamic 

temperatures and thereby the remaining shelf life of the product. 

5.5.2.2 KINETIC MODELS IN SSSP V2.0 SOFTWARE 

Seafood spoilage and safety predictor (SSSP) v2.0 software was developed by 

Dalgaard and colleagues (2002) at The Danish Institute for Fisheries Research. 

It was originated from the Seafood spoilage predictor (SSP) software and has 

been freely available online at http://www.dfu.min.dk/micro/ssp/ since February 

1999. The software predicts shelf life and growth of bacteria in a number of 

fresh and lightly preserved seafood products under dynamic storage conditions 

(e.g., temperature, CO2 concentration, water activity). There are basically two 

classes of models in SSSP v2.0 software: relative rate of spoilage (RRS) 

models and microbial spoilage (MS) models. For fresh seafood, RRS models 

are purely empirical, meaning they are developed using shelf life data obtained 

at different storage temperatures and that they do not take into account the 

underlying biochemical mechanism responsible for the spoilage. As a result, 

RRS models tend to be simpler, yet effective albeit over a limited range of 

temperature. On the other hand, MS models are based on the concepts of 

specific spoilage organism (SSO) and the spoilage domain. While SSO is 

referred to as the part of the total micro-flora that participates in the spoilage 

process, its spoilage domain is defined as the range of conditions (pH, 

temperature, water activity, and atmosphere) under which a SSO can grow and 

produce spoilage metabolites (Gram and Dalgaard 2002).  
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SSO models often involve environmental factors other than temperature such 

as CO2 concentration and water activity; these are out of the scope of the 

present study. Consequently, only seafood products that are described by an 

RRS model in SSSP v2.0 software were selected for simulation. These 

products include fresh seafood from temperate and tropical waters, cold-

smoked salmon and cooked-and-brined shrimps. Two types of RRS models 

including exponential and square-root are implemented in SSSP v2.0. Their 

empirical relations are described in the following equations 

 ( )
1

2 min

ln( )RS k a T

RS k T T

= + ⋅

= −

Exponential:

Square root:
 (5.9) 

Where 
RS   : rate of spoilage (d-1); 

1k and 2k  : the rate constants; 

minT and a  : model parameter. 

By definition, RRS is the ratio of RS  at temperature T  (oC) to RS  at refT , 

which is usually set at 0 oC. As a result, 
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The simulation of seafood products was carried out by applying the temperature 

data (Section 5.3.1) to the corresponding models available in SSSP v2.0 at 

default parameter settings. 

5.5.3 REMAINING SHELF LIFE EVALUATION  

For seasoned soybean sprout simulation, it is assumed that the product 

reaches its end of useful life when its total aerobic bacterial count is equal to or 

greater than a threshold value of 108 (cfu.g-1). The remaining shelf life is defined 
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as the time duration that it would take to reach its end of useful life under 

standard storage condition 10 o
refT C= .  

 

For seafood simulation, RRS models in SSSP v2.0 were used to evaluate the 

simulated remaining shelf life of various seafood products after being exposed 

to a dynamic temperature profile. The default parameter settings were 

employed (the initial remaining shelf life of 14 d at 0 oC). The final remaining 

shelf life (i.e., after being exposed to the temperature profile) was produced by 

SSSP v2.0. 

5.5.4 SIMULATION RESULTS  

5.5.4.1 VALIDATION OF THE IMPLEMENTATION OF THE KINETIC MODELS 

Seasoned soybean sprout 

 

 
Figure 5.10: Total aerobic bacterial counts in seas oned soybean sprouts simulated at 

different temperatures 
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Equations (5.7) and (5.8) were programmed for simulating the microbial growth 

in seasoned soy bean sprout. The simulations were run at temperatures of 0, 5, 

10 and 15 oC, and the results were plotted in Figure 5.10. Visual comparison of 

Figure 5.10 with Figure 2 in Lee et al. (2007) indicated that the results in the two 

figures agreed well with each other. This comparison confirmed that the kinetic 

model for microbial growth in seasoned soy bean sprout was implemented 

correctly. 

Seafood products 

Kinetic models for seafood products were already implemented in SSSP v2.0, 

which was used directly without any modification or validation.  

5.5.4.2 EVALUATION OF SIMULATED REMAINING SHELF LIFE 

 
Figure 5.11: Simulated shelf life (as determined by  the level of total aerobic bacteria) of 

seasoned soybean sprout after exposing to the simul ation temperature data 
 
Figure 5.11 shows the simulated remaining shelf life as determined by the level 

of total aerobic bacteria in seasoned soybean sprout. The simulated food 

product starts with an initial level of total bacterial count at 104.2 (cfu.g-1). After 

being exposed to one of the 116 temperature profiles available for simulation 
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studies (Section 5.3.1), their remaining shelf life, the time the total aerobic 

bacteria count of the products would take to reach 108 (cfu.g-1) at 10 oC, varies 

about a mean of 25.6 h with a standard deviation of 2.08 h. The maximum and 

minimum remaining shelf lives are respectively 29.8 and 19.5 h. 

 

Similar observations were obtained in the simulation of seafood products using 

SSSP v2.0. 

5.5.4.3 KLS MODEL CALIBRATION 

The same set of model parameters were used for calibrating the KLS model of 

simulated food products including seasoned soybean sprouts and seafood 

products. The reference temperature was set at 10 o
refT C=  which is equivalent 

to the reference temperature used in remaining shelf life evaluation. Minimum 

and maximum temperatures in the temperature data set were 2.5 oC and 17.5 
oC. The temperature resolution was chosen at 0.5 oC. 

 
Similarly to the simulation study for perishable produce (Section 5.4), the 

solution vector augf that expresses the KLS model for the simulated seasoned 

soybean sprout was evaluated. As leave-one-out strategy was implemented, 

there were a total of 116 augf vectors, one for each of the temperature profiles. 

These solution vectors converged to a single vector, which characterised the 

simulated level of total aerobic bacteria count in seasoned soybean sprout.  

5.5.4.4 KLS MODEL VALIDATION 

Seasoned soybean sprout 

Figure 5.12 shows the comparison between the simulated shelf life of seasoned 

soybean sprout and its corresponding KLS prediction. The simulated shelf life 

was determined based on the level of the total aerobic bacterial organism. The 

predicted shelf life was obtained using the KLS solution vector, as in Equation 

(4.14). The values of the performance indices were also shown in Figure 5.12, 

together with the best fit line and the equality line 1.00y x= . 
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Figure 5.12: Comparison between the simulated shelf  life of seasoned soybean sprout 

(by bacterial load) and the corresponding KLS predi ction. 
 

As Figure 5.12 indicates, the predictions by KLS model agree well with the 

simulated shelf life. The coefficient of determination 2 0.99R =  suggests that 

the KLS model captured virtually all the variation in the simulated data. 

Moreover, the average prediction error RMSEP was only 0.2 h, which represents 

less than 1% error for an average shelf life of 25.6 h. From the figure, the best 

fit line and the equality line 1.00y x=  are not visually differentiated. Indeed, the 

mathematical equation for the best fit line is 1.00 0.05y x= + , which only 

differs from the line 1.00y x= by a small intercept of 0.05 . In short, the KLS 

shelf life predictions matched closely with the simulated shelf life of seasoned 

soybean sprout. In other words, the KLS model is capable of reproducing the 

simulated remaining shelf life of seasoned soybean sprout by the kinetic model 

in Lee et al. (2007). 
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Seafood products 

 
Figure 5.13: Comparison between simulated shelf lif e of cooked and brined shrimps and 

corresponding KLS prediction. 
 

Figure 5.13 shows the comparison between simulated shelf life of cooked and 

brined shrimps and its corresponding KLS prediction. The simulated shelf life 

was determined using SSSP v2.0 based on empirical RRS models (Section 

5.5.2.2). The predicted remaining shelf life was obtained using the KLS model. 

The values of the performance indices are shown in Figure 5.13, together with 

the best fit line and the equality line y x= . As the figure indicates, the 

predictions by the KLS model agree well with the simulated shelf life. The 

coefficient of determination 2 0.99R =  suggests that the KLS model captured 

almost all the variation in the simulated data. Moreover, average prediction error 

RMSEP was only 0.51 h and the best fit line 0.99 0.48y x= + , which only 

slightly deviates from the line 1.00y x= . In short, the KLS prediction of 

remaining shelf life of cooked and brined shrimps matched closely with their 

simulated shelf life.  



 150 

 

Results from the simulation studies of other seafood products are tabulated in 

Table 5.4. From this table, a similar conclusion can be made: KLS predictions 

agreed well with the simulated remaining shelf life. The worst KLS performance 

was obtained in simulation of fresh seafood from temperate waters, where the 

intercept of the best fit line was much greater than zero, its ideal value. It was 

noted that a square root RRS model was implemented in SSSP v2.0 for this 

fresh seafood from temperate waters while exponential models were used for 

other seafood products. Therefore, it seemed that KLS performed better with 

exponential RRS model than with square root ones. 

 

Table 5.4: Results from similar SSSP v2.0 simulatio n studies 
Statistics Fresh seafood 

from temperate 

waters 

Fresh seafood 

from tropical 

waters 

Cold-smoked 

salmon 

Model information Square root RRS Exponential RRS Exponential RRS 

Source SSSP v2.0 

Coefficient of 

determination R2 
0.91 1.00 1.00 

RMSEP (h) 0.85 0.31 0.20 

Slope of the best 

fit line 
0.90 1.00 1.00 

Intercept of the 

best fit line 
6.29 0.42 0.27 

 

5.6 DISCUSSION 

The ability of KLS for modelling was investigated, as a first step, using 

simulation studies for perishable produce (including tomato and mushroom) and 

food products (including seasoned soybean sprout and seafood products). The 

results demonstrated that KLS can reproduce the remaining shelf life from the 

various simulation models with very low error. More importantly, it does so with 

the advantage of being simpler and data-driven. The simulation studies showed 
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that KLS model calibration only requires knowledge of the temperature data set 

and the remaining shelf life data. It does not require any models or 

measurements for any quality attributes.  

 

The data-driven feature of the KLS technique is particularly important for 

perishable products where multiple quality attributes (e.g., firmness and colour 

in tomatoes) are considered in evaluating remaining shelf life. Collecting 

measurements and developing a kinetic model for each of the quality attributes 

concerned would be time consuming at least and may even be impossible if the 

fundamental understanding of the product is too complex or not available. For 

example, predicting VL of cut roses and other flowers in general has been 

studied for decades and yet little information was found about models of quality 

attributes (such as wilting, colour) for cut flowers (Chapter 2). As understanding 

about flower senescence is still being gathered, it is unlikely at the present that 

a kinetic model could be developed to predict remaining VL for cut flowers. 

Consequently, this is where KLS can be used in place of a kinetic model. 

 

Moreover, the performance of the KLS technique in simulation studies of the 

various kinetic models emphasises its flexibility. It should be noted that the 

original mathematical development for KLS started with a single differential 

equation (Equation (4.1)). However, only the kinetic model of tomato firmness 

fitted this description while the other simulated models involved multiple 

(coupled) differential equations. Yet, KLS was shown to perform well in 

predicting the output of all those models. 

 

A KLS model is expressed by the solution vector augf which represents the effect 

of temperature at each temperature state (relative to the reference temperature) 

on the loss in remaining shelf life. For example, Figure 5.7 suggested that 

tomato firmness would deteriorate approximately twice as fast at temperature of 

17 oC compared to 4 oC. The solution vector at reference temperature ( 10refT =  

oC) is always equal to 1, which was used as a constraint in solving for augf . This 

highlights another potential advantage of the KLS technique: additional a priori 

knowledge of the underlying biochemical system may be implemented by 
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constraining the solution augf . For example, if it is established that certain 

products would lose their shelf life faster at higher temperature, the solution 

vector augf can be constrained to be (strictly) increasing. This KLS capability of 

incorporating a priori knowledge was discussed in Section 4.3.6 and is explored 

further in subsequent chapters. 

 

An assumption that was made in the simulation studies was that the simulated 

products started and ended their shelf life with the same values of quality 

attribute Q . In other words, all perishable products started their shelf life with 

the same startQ  value and ended their shelf life with the same endQ  value. For 

example, all simulated tomatoes had the same firmness at harvest and at the 

end of their shelf life. This assumption was made to simplify the task of running 

simulations and generating simulated data. As described in Equation (4.13), the 

KLS technique can work with varying initial shelf life values, and hence varying 

initial conditions. Consequently, it is believed that the assumption did not 

artificially enhance KLS performance in the simulation studies. In other words, 

the assumption would not have any effect on KLS performance. 

5.7 CHAPTER CONCLUSION 

This chapter demonstrated that KLS modelling technique can be used as an 

alternative to the traditional kinetic modelling in predicting the remaining shelf 

life of perishable products. As KLS is data-driven, it has potential applications in 

products where kinetic models would be complicated to implement or simply not 

available. Examples of such applications are in cut flowers, and hence, as the 

next step, the method is then applied to cut roses, using real-world data 

collected from actual supply chains. Results relating to this work are presented 

in the next two chapters. 
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6 A NON-CHILLED SUPPLY CHAIN CASE STUDY  

 

============================================================ 

 

This chapter analyses the data collected from an in-house experiment with cut 

roses from Cookes Rose Farm (Jersey). Cut roses were delivered via postal 

service from the farm to the University of Manchester, where vase life tests 

were carried out. The temperature during the tests, and during the flower 

display in an ambient office environment, was recorded by data loggers. The 

logged temperature data were analysed by the kinetic linear system (KLS) 

technique, multiple linear regression (MLR), and partial least square (PLS) 

regression.  

 

The analysis showed that post-harvest temperature stress can be used to 

estimate changes in the remaining VL of cut roses. In addition, it also showed 

that pre-harvest meteorological temperature may have some correlation with 

the post-harvest loss in the VL of cut roses, although such correlation was too 

weak for an effective estimation. The best prediction performance was obtained 

from KLS modelling, which is fundamentally different from MLR and PLS. KLS 

is developed from kinetic modelling; it does not assume a linear relationship 

between temperature and the vase life loss (as MLR and PLS do), and it had a 

better capability in data reduction.  

_______________________________________________________________
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6.1 BACKGROUND  

Cookes Rose Farm is located in Jersey (Channel Islands). The farm grows 

roses, and delivers them to local florists. Deliveries are also made via postal 

service to continental consumers in the UK. Boxes of cut flowers are flown to 

the UK once a day by the Post Office, where they are then sent through the UK 

postal system to customers. Delivery time usually takes one or two days but 

occasionally could be up to 3 days. In the past, the farm has received quality-

related complaints from customers in the North West region of the UK. 

6.2 OBJECTIVES AND SCOPE OF THE STUDY  

The literature review in Chapter 2 has concluded that post-harvest temperature 

plays a critical role in senescence of cut flowers and particularly cut roses. 

Therefore, the overall project has investigated the adequacy of using data-

driven techniques to analyse post-harvest temperature for predicting the 

corresponding change in the remaining VL of cut roses. As part of the project, 

this chapter reports a study aimed at assessing the performance of the KLS 

technique, which was developed and described in Chapter 4, and comparing 

this technique to common linear regression techniques, including PLS and 

MLR. The data set to be analysed was collected during an experiment with 

Cookes Rose Farm. This involved Cookes Rose Farm sending cut roses from 

the farm to the University of Manchester where two types of tests were 

undertaken: one in a temperature controlled cabinet, and the other in an office 

subject to prevailing ambient conditions. 

 

In terms of scope, the Cookes Rose Farm study primarily focuses on the effect 

of post-harvest temperature stress. The reason for this is that, although the 

effects of other environmental factors such as humidity and lighting are also 

significant, post-harvest temperature is widely considered to be a very  

important post-harvest factor influencing the remaining VL of cut roses. In 

addition to post-harvest temperature, a preliminary analysis of the effects of pre-
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harvest factors including air temperature, humidity and rainfall levels during the 

growing period was also performed.  

 

The study consisted of two stages: data collection and data analysis. In the data 

collection stage, cut roses in boxes of five stems were delivered to the 

University of Manchester, where tests were carried out to determine their VLs. 

Throughout this stage, various data such as temperature and observation 

photos were collected. Subsequently, the data were analysed in the second 

stage using a number of techniques including KLS, PLS and MLR. Details of the 

first stage are explained in Section 6.3 and Section 6.4, and the modelling 

techniques are described in Section 6.5. Results from the data analysis are 

presented and discussed in Sections 6.7 – 6.11, which is followed by 

conclusions in Section 6.12. 

6.3 EXPERIMENTAL METHOD AND EQUIPMENT FOR DATA COLLECTIO N 

6.3.1 OVERVIEW 

The purpose of the experiment was to collect measurements on the 

temperature conditions that cut roses were exposed to during their transport 

from Cookes Rose Farm to the University of Manchester, and also the 

temperatures during the subsequent vase life testing period. In addition, the 

experiment also aimed at evaluating the remaining VL of cut roses, starting from 

the point of delivery, which was required for the subsequent predictive 

modelling exercise. 
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Figure 6.1: Different sub-stages during the Cookes Rose experiment 
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Figure 6.1 shows schematically the three different post-harvest sub-stages in 

the Cookes Rose experiment: postal delivery and two different testing regimes, 

including the office display test and the VL test. During the first sub-stage, 

boxes of five cut roses were delivered via UK postal service from Cookes Rose 

Farm to the University of Manchester. Two data loggers were placed in each 

box, one at each end, to record temperature. The delivery boxes had the 

following (external) dimensions: 56 cm long, 10.5 cm wide and 8 cm deep. 

Upon delivery, three out of five cut roses from each box went into the VL test, 

which was carried out at the controlled standard condition (i.e. 18 oC). The 

purpose of the VL test was to evaluate the remaining VL of the roses upon 

delivery. The two remaining stems went into the office display test where they 

were placed in a vase in an office environment, and were subjected to office 

ambient temperature conditions. The office display test, which ended when the 

cut roses died, was to record the series of office ambient temperature that led to 

the death of the flowers. 

6.3.2 MATERIALS AND EQUIPMENT  

Two boxes of cut roses (cv Jacaranda) were delivered to University of 

Manchester from Cookes Rose Farm every week for 15 weeks (25/06/2008 – 

30/09/2008). Each box contained five cut rose stems of ca. 40 cm in length. 

 

iButton data loggers (DS1921L-F52), products of Maxim Integrated Products 

Ltd (http://www.maxim-ic.com/), were used to record temperature 

measurements. The data loggers were programmed to record a temperature 

measurement every 30 min. These loggers were taken to Cookes Rose Farm 

and attached to the boxes (inside each box; one logger at each of its ends) prior 

to the start of the experiment. At the farm, the date and time when the roses 

were placed in the boxes was recorded and this information was sent to the 

University of Manchester. 

 

The vase life tests were carried out in a LMS 300W temperature controlled 

cabinet (incubator). The operating temperature in the incubator was set to 18 
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oC. Two fluorescent inspection lamps (230V-11W) were installed inside the 

incubator to provide adequate lighting condition for the vase life test. A weighing 

scale (a Kern & Sohn EMB220-I scale) was used to weigh the flowers. 

Photographs of the cut roses were taken using a digital camera (Canon 

SX100IS) during the vase life tests. An RS-1365 temperature and humidity 

meter, available from http://uk.rs-online.com, was used to measure temperature 

and humidity in the temperature controlled cabinet, and these measurements 

were used to validate the performance of the iButton data loggers that were 

also attached to the rose stems. 

6.3.3 TESTING PROCEDURE 

On the date of flower delivery, a test solution was prepared as following: 

1. Measure 1 L clean water in a container. 

2. Mix with 1 packet of Chrysal Clear Liquid Rosa – a liquid cut flower food 

that is especially made for roses by Pokon & Chrysal-Naarden-Holland. 

3. Transfer 100 mL of the solution to a 100 mL measuring cylinder. Repeat 

for 4 other 100 mL measuring cylinders. 

4. Label the cylinders with the date. 

Upon the arrival of the cut roses at the University of Manchester, the following 

procedure was performed: 

1. Record time, date of delivery and make initial observations on the status 

of the box.  

2. Open the box, unpack the roses and cut the roses to 35 cm stem length 

(on an angle) using a sharp knife. 

3. Weight and then place the roses in the labelled cylinders immediately 

after cutting. 

4. Attach new activated data loggers to each rose stem. 

5. Take photos of the roses (from approximately 1 m distance; against 

white background). 

6. Transfer three cylinders (with cut roses) to the LMS incubator for the 

remaining vase life test; place the remaining two cylinders in an ambient 

office environment for the office display test. 
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7. Note the time of transference, and record any observation on condition of 

the roses (e.g., wilting, loss of petals, presence of botrytis, etc.). 

8. Recover the data loggers from the box to retrieve the temperature profile 

data for the postal delivery stage.  

All cut roses undergoing either the vase life test or the office display test were 

observed at least once a day. The following procedure was performed: 

1. Record time and date of observation 

2. (For roses in the incubator, take the cylinder with the rose out of the 

incubator). Take photos of the roses. 

3. Record the liquid solution level in the cylinder 

4. Note any observation e.g., is the flower developing? has the rose bud 

bent? are the petals wilted? 

5. For any rose that has died, record its weight before discarding. 

6.3.4 DETERMINING THE END OF CUT ROSE LIFE 

In this study, “remaining VL” or “VL” (for short) is defined as the time period that 

a cut rose takes under a pre-specified standard condition (18 oC) to reach the 

end of its useful life (Section 1.2.3). As a result, the remaining VL of a cut rose 

undergoing the vase life test is given by the duration of the test. (This duration is 

likely to be different from the time it would take to die under non-standard 

conditions e.g., office ambient conditions). Therefore, it is important to 

determine when a cut rose has reached its end of useful life. 

 

Subsequent to the vase life test, photos that were taken daily during the 

experiment were observed to determine when the life of the cut roses had 

ended. An example of the evaluation task is shown in Appendix B. Many criteria 

can be used to determine whether the flower has died. In this study, the criteria 

that were employed included the occurrence of darkening of the petal edge, 

flower wilting, bent neck, petal desiccating, petal discolouration, and petal 

abscission. If using these criteria did not allow a clear-cut decision on the VL of 

some samples, then the final judgement was based on whether such flowers 

still had visual appeal for home display. Clearly deciding when a flower is dead 

is a subjective decision and is a source of experimental variability because 
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different people might come to different decisions. Further, the photos were 

taken only once a day for each flower sample. Consequently, the vase life 

results were subject to a measurement resolution of 1 d. 

6.4 DESCRIPTION OF EXPERIMENTAL DATA  

Table 6.1 provides an overview of the data that were collected during the 

experiment. In total, 150 cut rose stems in 30 boxes were delivered to the 

University of Manchester over a 15 week period. For each stem, two 

temperature readings were taken (one at each end of the delivery box) every 

0.5 h thus providing two delivery stage temperature profiles for each shipment. 

Consequently, there were 30 pairs of temperature profiles recorded during the 

postal delivery. 

 

In addition, out of five stems in each box, two were placed in an office ambient 

environment for the office display test while the other three were placed in an 

incubator for the vase life test. During these tests, temperature readings were 

recorded every 0.5 h using data loggers attached to the flower stem.  

 

Other measurements that were collected include the fresh weights and dry 

weights (as measured at the beginning and at the end of the tests respectively), 

daily readings of the liquid level in the cylinder, and a set of daily observation 

photos.  
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Table 6.1: Data collected during the Cookes Rose ex periment 
Data and quantity Details 

Time and date of dispatch 

of flowers from the farm 

and arrival at the 

University of Manchester. 

(30 pairs) 

The time and date data were used to retrieve 

temperature recorded while the flowers were in 

the postal system. 

Temperature profiles 

during postal delivery. (30 

pairs) 

Two data loggers were attached to each of the 

30 boxes of cut roses to record temperature. A 

reading was taken every 0.5 h 

Fresh weight (g) 

(150 readings) 

Stems of cut roses were weighed after being 

re-cut to 35 cm in length. 

Temperature profiles 

during the vase life tests 

and the office display 

tests. (150 temperature 

profiles) 

Data loggers were attached to the flower stems 

to record temperature. A reading was taken 

every 0.5 h. 

Liquid level (mL) 

(150 series of daily liquid 

level readings) 

During the test, water was drawn up into the 

flower stems, and also loss owing to 

transpiration. The level of remaining liquid was 

recorded once a day. 

Dry weight (g) 

(150 readings) 

After the vase life test was completed, the dead 

flower was weighed. 

Observation photos. (150 

sets of photos taken every 

day for every cut rose) 

Each time a rose was observed, two photos 

were taken. The first was to capture the overall 

outlook of the flower as well as its ID. The 

second provided a closer look of the flower 

petals. 

 

In addition to post-harvest measurements, pre-harvest data in the form of daily 

meteorological measurements, including air temperature, sunshine duration and 

rainfall level for the farm region during the period 01/01/2008 – 31/10/2008, was 

kindly provided by Mr. A Pallot of the Jersey Meteorological Department. In the 
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absence of measurements directly obtained from greenhouses at the farm, the 

weather data were used in the preliminary analysis of the effects of pre-harvest 

conditions on subsequent remaining VL of cut roses. 

6.5 MODELLING OVERVIEW  

6.5.1 MODELLING OBJECTIVE  

The modelling objective was to obtain a model that captures the effect of post-

harvest temperature stress on subsequent changes in the VL of cut roses. For 

this objective, the study required temperatures recorded during a period where 

the initial and final VLs of cut roses were known. Therefore, a data set for 

modelling must include three essential components: 

1. Initial VL data for cut roses before being exposed to the temperature 

stress. 

2. Temperature (and possibly any other) data collected during the period 

the flowers are under temperature stress. 

3. Final VL data for cut roses after being exposed to temperature stress. 

When such a model is obtained, it can ideally be used to estimate one of the 

three components above given that the other two are known. For example, if 

initial VL and temperature stress are known, the model can be used to evaluate 

the final VL of the flowers. Similarly, if the initial VL is known, storage 

temperature can be controlled such that after a period of time the remaining VL 

of the flower still meets a specified lower threshold. In this study, the model is 

used to evaluate the VL (at 18 oC) of the cut roses that were delivered to the 

University. 

6.5.2 MODELLING SCENARIOS  

Figure 6.2 shows schematically the two modelling scenarios that were 

investigated. Scenario 1 corresponds with the office display test while Scenario 

2 concerns the postal delivery period. The vase life test was not modelled in this 

study because the temperature during the test was set at constant 18 oC.  
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In Scenario 1, the temperature condition during the office display test was 

recorded by a data logger attached to each cut rose sample being displayed. 

The final VL was zero because the flowers were displayed until they were 

considered “dead”. The initial VL was estimated by the average of the VLs of 

the three cut roses that were delivered in the same box but were used in the VL 

test. This estimation was possible by making the assumption that all five cut 

roses in the same box had the same VL upon delivery to the University of 

Manchester. (This assumption is discussed further in Section 6.5.3). Therefore, 

Scenario 1 has all three components necessary for modelling, as set out in the 

previous section. 

 

In Scenario 2, temperatures during the postal delivery stage were recorded by 

data loggers placed inside each box of flowers. The final VL was also estimated 

by the average of the VLs of the three cut roses that were subsequently used 

for the VL test. However, the initial VL was unknown. Consequently, 

assumptions regarding the initial VL were made, so that Scenario 2 could be 

considered for modelling. 

 

In addition, the hypothesis that higher storage temperature causes greater loss 

in VL was discussed in Section 3.3 and this was examined in each of the two 

scenarios. This led to further classification of the modelling scenarios where 

scenarios B and A correspond to modelling with and without the a priori 

constraint respectively (Section 3.3). Table 6.2 gives a summary of all modelling 

scenarios as well as the dependent and independent variables involved. 
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Figure 6.2: Modelling scenarios in the Cookes Rose study 
 

Cookes Rose Farm 

Flowers dead 

VL test 
• Temperature: set at 18 oC 
• Initial VL: equal to duration 
of the test 
• Final VL: zero 

Scenario 2: Postal delivery 
• Varying temperature: 
recorded by data loggers 
• Initial VL: not available 
• Final VL: available from the 
VL test 

Scenario 1: Office display 
test 

• Varying temperature: 
recorded by data loggers 
• Initial VL: from the VL test 
• Final VL: zero University of 

Manchester 



 165 

 

Table 6.2: Dependent and independent variables in m odelling scenarios. Scenarios B and 
A represent modelling with and without the a priori constraint, respectively. 

Scenario Based on data 

obtained from  

Dependent variables Independent variables 

A 

1 

B 

Flowers 

displayed in 

office 

environment 

• Initial VL was 

the average duration 

of the VL test. 

• Final VL was 

zero. 

• Temperature 

profiles logged during 

the office display tests 

of the roses.  

2 A 

Flowers in 

postal delivery 

system 

• Initial VL was 

unknown. 

• Final VL was the 

average duration of 

the VL test. 

• Temperature 

profiles logged during 

the postal delivery. 

 

6.5.3 ASSUMPTIONS 

An assumption that was made in establishing the modelling scenarios was that 

the cut roses in the same box had the same remaining VL upon delivery to the 

University. This assumption was necessary to derive the initial VL to Scenarios 

1 (A and B) from the results of the vase life test. However, due to various pre-

harvest factors including biological, environmental as well as experimental 

factors, the assumption is very unlikely to be satisfied. Cut roses from the same 

delivery box often had different vase lives. Such variation in VLs was illustrated 

by the varying durations of the vase life test that 3 out of 5 samples in every 

flower box went through. The variation represents the inherent uncertainty in 

estimating the VL and subsequently the loss in the remaining VL. As a result, 

any models that are derived based on the data for that vase life loss would not 

be able to eliminate such variation.  

6.5.4 MODELLING TECHNIQUE 

In this chapter, KLS, PLS and MLR techniques were used for each of the 

modelling scenarios (Table 6.2). Details of the mathematical formulations, 
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solution techniques and implementation issues involved were described in 

Chapter 4 for KLS and in Section 3.1 for PLS and MLR. 

6.5.5 PERFORMANCE EVALUATION  

The approach to performance evaluation that was used was described in detail 

in Section 3.2. Basically, performance evaluation involves the calculation of R2, 

RMSEP, and the slope and intercept of the best fit line on the predictions, in a 

double cross validation strategy. 

 

Permutation testing was performed to obtain the lower performance limits for R2, 

RMSEP, and the slope and intercept of the best fit line. Details of permutation 

testing are described in Section 3.2. 

6.6 RESULTS OF VERIFICATION ON DATA RELIABILITY  

6.6.1 TEMPERATURE MEASUREMENT ACCURACY  

To test the accuracy of the data loggers, 10 iButton data loggers (resolution: 0.5 
oC; accuracy: ±1 oC) and an RS-1365 temperature meter (resolution: 0.1 oC; 

accuracy: ±0.8 oC) were placed together under an office ambient environment 

and subsequently inside a fridge. Temperature readings were taken every 15 

min for 6 h. The difference between the data logger readings and the RS meter 

reading is plotted in a box and whisker diagram (Figure 6.3) and a histogram 

(Figure 6.4) below. 
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Figure 6.3: Box and whisker diagram for the tempera ture difference between data logger 

readings and the RS-1365 meter readings. The box ha s a line at the lower quartile, the 
median, and the upper quartile values. Extreme valu es (within 1.5 times the inter-quartile 
range) are marked with vertical lines (outside the box). Outliers shown by “+” symbols 

are the values that are either smaller or greater t han those extreme values. 
 

Figure 6.3 and Figure 6.4 plot the difference between a reading from the data 

loggers and the corresponding reading from the RS-1365 temperature meter. 

As can be seen, the readings from the data loggers were statistically different 

from those obtained from the RS-1365 meter. The fact that the mean and 

median of the difference were -0.29 and -0.45 respectively indicates that the 

data loggers would be likely to give a lower reading than the RS-1365 meter. 

Although the manufacturer’s specification of data logger accuracy was ±1 oC, 

only 179 out of 240 (74.6%) data logger readings were within 1 oC from the 

corresponding RS-1365 meter readings. The actual (217 out of 240) accuracy, 

based on 90% of readings, was ±2 oC. 
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Figure 6.4: Frequency histogram showing the accurac y of data loggers. Y-axis shows the 
number of pairs of a data logger readings and a RS- 1365 temperature meter’s reading; x-

axis indicates the temperature difference in the pa ir of reading. 
 

Analysis of variance was carried out for the differences between readings from 

each of the ten data loggers and the readings from the RS-1365 temperature 

meter. The null hypothesis was that the differences were from the same 

distribution, which effectively implies that the readings from the different data 

loggers are consistent with each other. The results are shown in Table 6.3. As 

p=0.9999, the null hypothesis can not be rejected. In other words, it is accepted 

that the series of readings from the data loggers were consistent with each 

other. 

 

Table 6.3: Analysis of variance (ANOVA) on differen ce between the readings from the 10 
data loggers and from the RS meter 

Source of 

variance 

Sum of 

square 

Degree of 

freedom 

Mean 

Square 

F statistic Prob>F 

Columns 31.1 10 3.1081 0.08 0.9999  

Error 10249.5 253 40.5118   

Total 10280.6 263    
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It can be concluded that the data loggers used in the Cookes Rose data 

collection experiment were consistent with each other, although their accuracy 

was ±2 oC. 

6.6.2 EFFECTS OF DATA LOGGERS ’ POSITION  

There were two data loggers in each of the 30 boxes of cut roses that were 

delivered to the University, each located at opposite ends of the boxes. As a 

result, every reading from a data logger had a corresponding reading from 

another data logger from the same box. The difference in the pair of readings is 

the difference in temperature at two ends of every box of flowers, which was 

plotted in a box-whisker diagram (Figure 6.5) and a histogram (Figure 6.6). Less 

than half of the readings (42.5%) were within 0.5 oC; most of the readings 

(75.1%) were within 1 oC while 90.8% of the temperature measurements were 

within 2oC difference. Given the loggers’ accuracy of ±2 oC, this indicated that 

the difference in temperature at two ends of boxes of cut roses was negligible. 

 
Figure 6.5: Temperature difference between one end of boxes (flower heads) and the 

other end of the same boxes (stem end) 
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Figure 6.6: Frequency histogram showing the differe nces in temperature recorded at two 

ends of boxes 
 

6.6.3 VARIABILITY IN VASE LIFE DATA  

The variability in VL of cut roses that was not due to post-harvest temperature 

effect was studied. As described earlier, three of the five stems in each flower 

box were placed inside an incubator. These stems, therefore, had the same 

temperature profile during postal delivery (in the same box) and the same 

temperature during the vase life test. Yet, these stems often had different vase 

lives. Such variation in VL is depicted in Figure 6.7. Similarly, the other two 

stems from the box were subject to the office display tests in an office ambient 

environment, and hence were exposed to the same temperature stress yet they 

also died at different times. The variation in the duration of the office display test 

is plotted in Figure 6.8. As both variations arose from the stems that 

experienced the same post-harvest temperature, they were certainly not related 

to the effect of post-harvest temperature stress. Rather, as identified in the 

literature review (Section 2.3) other factors such as biology of the flowers and 
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variation in the environmental conditions during pre-harvest and at harvest 

could be the key driving forces that lead to the observed variations. 

 

 
Figure 6.7: Histogram of variation in VL of cut ros es at delivery as determined by the 

vase life test. X-axis shows the difference in VL o f the cut roses that were exposed to the 
same temperature stress during postal delivery (i.e ., in the same box) and subsequently 
placed in the incubator at standard condition (18 oC). Y-axis represents the fraction of 

samples that had the same vase life difference. 
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Figure 6.8: Histogram of variation in the duration of office display test. X-axis shows the 
difference in the durations of the office display t ests for cut roses from the same delivery 

box. Y-axis represents the fraction of samples that  had the same duration difference. 
 

6.7 SCENARIO 1 – MODELLING THE OFFICE DISPLAY PERIOD  

As described in Table 6.2, in Scenario 1 the display of cut roses in an ambient 

office environment was studied. The objective was to predict the VL loss during 

these office display tests. The data used for the modelling included the 

temperature readings recorded during the office display tests, and the initial and 

final VLs. The testing period ended when the roses died. Consequently, the final 

VL was zero. In addition, as two cut roses from each of the 30 boxes were 

displayed, 60 temperature series were collected. Further, the other three rose 

stems from the same delivery box were subjected to the vase life test in the 

LMS incubator. The average duration of the vase life tests for the three stems 

was used as the initial VL. The loss in VL, which was to be estimated, was the 

difference between the initial and final VL values, and hence was effectively 

equal to the initial VL. It should be noted that, as the temperature during the 

office display test varied, and was different from the reference temperature 
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( 18 o
refT C= ), the initial VL would be different from the duration of the office 

display test. 

6.7.1 EXPLORATORY STUDY 

Typical profiles of temperature during the office display tests, shown in Figure 

6.9, reveal fluctuations in the office temperature. This was due to the fact that 

during the tests the flowers were displayed in an office where the environment 

(i.e. temperature, humidity) varied between night and day. Figure 6.9 also 

shows that the duration of the display tests and hence the number of 

temperature readings varied significantly. This would have implications on data 

pre-processing for MLR and PLS modelling. 

 

 
Figure 6.9: Typical temperature profiles logged dur ing the office display tests of cut 
roses. The time (x-axis) was recorded in unit of 0. 5 h from the start of the tests. The 

temperature was recorded by data loggers attached t o the flowers. 
 

After data pre-processing (see Section 3.1.1), PCA was performed on the data 

set. The analysis revealed that the first three PCs accounted for more than 80% 

of the data variance. The score plots for the first and second PCs are presented 
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in Figure 6.10 and Figure 6.11. (Figures for the third PC are similar and hence 

omitted). The observations were grouped according to the month of the delivery 

date of the rose samples in Figure 6.10 and according to the range of the vase 

life loss in Figure 6.11. As seen in Figure 6.10, most of the samples delivered in 

July had positive second PC scores (quarters 1 and 2). In addition, while the 

August deliveries seemed to have positive first PC scores (quarters 2 and 3) 

while 18 out of 22 samples delivered in September had negative first PC scores 

(quarters 4 and 1). Therefore, it seems that there was possibly a trend in the 

PCA observations with respect to the delivery date (month). This could be 

explained by the fact that during the office display test, the temperature in the 

office was not specifically controlled and hence closely correlated with the 

seasonal weather changes.  

 

 
Figure 6.10: PCA scores plot for the first and seco nd PCs, which together explain 72.2% 

of the total variance. Different symbols represent different delivery date (month). 
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Figure 6.11: PCA scores plot for the first and seco nd PCs, which together explain 72.2% 

of the total variance. Different symbols represent different range in VL loss. 
 

Figure 6.11 shows the PCA scatter plot (for the first and second PCs) with 

observations grouped according to ranges of the vase life loss. No clear trend 

between the groups of VL could be observed, which suggests that estimating 

the vase life loss using the display temperature would be challenging.  

6.7.2 KLS  PERFORMANCE 

6.7.2.1 SETTING PARAMETERS 

Figure 6.12 shows the histogram of the temperature of the cut roses during the 

office display tests in an ambient office environment. From this figure, the lower 

and upper bounds of temperature in Scenario 1 were set at 22 oC and 27 oC 

respectively. The temperature step was set at 1 oC as a result of the data 

loggers’ accuracy (see Section 6.6.1).  
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Figure 6.12: Scenario 1 – Variation in temperature logged during the office display tests 

of cut roses in an office environment. 
 

6.7.2.2 SCENARIO 1A – WITHOUT THE A PRIORI CONSTRAINT 

Figure 6.13 shows a typical performance of KLS model in Scenario 1A, 

modelling the office display period without the a priori constraint. A total of 60 

samples, 2 from each of the 30 boxes, were designated for the office display 

test. However, two of the 60 stems died at the beginning of the test. 

Consequently, only 58 roses completed the office display test and these data 

were analysed in this scenario. The KLS predictions were obtained using cross 

validation strategy with 10testN = segments (Section 3.2.2). 

 

As can be seen in the figure, there is a general agreement between the 

observed vase lives and their KLS predictions.  Most of the blue circles, which 

represent the comparison between the observed VLs and their predictions, 

seem to follow the equality line quite well although the correlation between the 

observed and predicted VLs was small (R2 = 0.29). The deviation between the 
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circles and the equality line is significant as reflected in the significance of the 

prediction error, RMSEP = 2.38 d. 

 

 
Figure 6.13: Scenario 1A – a typical KLS performanc e in modelling the office display test 

period without  the a priori constraint. The best fit line and the equality lin e are also 
shown. X-axis represents the remaining VLs of the c ut roses at the beginning of the 

office display test. Y-axis plots the corresponding  KLS predictions. 
 

The performance of KLS was evaluated for 10000 iterations, each with a 

different segmentation of the available data set used in cross validation. In 

addition, permutation testing (Section 3.2.3) was also performed.  

 

Figure 6.14 plots the KLS solutions obtained during its performance evaluation. 

The numerical values of KLS solutions represent the vase life loss, measured in 

units of 0.5 h, per frequency at each temperature state. Across the selected 

temperature states, KLS solutions seem to converge quite well except at 27 oC. 

Significant variation as well as outliers were observed at 27 oT C= . 
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Figure 6.14: Scenario 1A – KLS models. X-axis repre sents the temperature states 

specified in KLS modelling. Y-axis shows the KLS so lutions at each temperature state. 
 

Figure 6.15 - Figure 6.18 shows the distributions of RMSEP, R2, and the slope 

and intercept of the best fit lines, and their corresponding nonsense distributions 

from permutation testing. It should be noted that the nonsense distributions 

represent the lower performance limits. In all of the figures, the actual 

distributions of the performance statistics and their nonsense counter-parts are 

clearly far apart. This observation confirms that the estimation of the loss in VL, 

using the temperature data collected from the office display test, was effective 

(Section 3.2.4). Meaningful information embedded within the experimental data 

was captured by the KLS technique.  
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Figure 6.15: Scenario 1A – RMSEP distribution from KLS modelling. The blue distribu tion 

represents RMSEP from original data while the red one was from the permutated 
nonsense data. 
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Figure 6.16: Scenario 1A – R2 distribution from KLS modelling. The blue distribu tion 

represents R2 from original data while the red one was from the permutated nonsense 
data. 

 



 181 

 
Figure 6.17: Scenario 1A – distribution of the inte rcepts of the best fit lines from KLS 

modelling. The blue distribution represents the int ercepts from original data while the red 
one was from the permutated nonsense data. 
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Figure 6.18: Scenario 1A – distribution of the slop es of the best fit lines from KLS 

modelling. The blue distribution represents the slo pes from original data while the red 
one was from the permutated nonsense data. 

 

6.7.2.3 SCENARIO 1B – WITH THE A PRIORI CONSTRAINT 

The a priori constraint from studies of the physiology of cut flowers states that a 

higher storage temperature leads to a greater loss in the VL of cut flowers (see 

Section 3.3). In this scenario (1B), the constraint was implemented. However, 

inspection of the data from the office display tests revealed that there were 

more than 40 pairs of cut rose samples that had temperature profiles and 

corresponding losses in VL appear inconsistent with the constraint. An example 

of such pair is shown in Figure 6.19. Nevertheless, it should be emphasised that 

what was observed did not contradict the a priori knowledge derived from 

previous physiology studies. As explained in Section 3.3, such a priori 

knowledge only applies to two cut flower samples having identical history of 

stress (e.g., same pre-harvest conditions) and genotype (e.g., same variety). 

The pairs identified from the data set and exemplified in Figure 6.19 may have 

different pre-harvest conditions, and hence the a priori knowledge did not hold. 
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Figure 6.19: Pair of samples inconsistent with the a priori constraint: Sample 2 was 
displayed at higher temperature throughout but had lower loss in VL compared to 

Sample 4. 
 

Clearly, implementing the a priori constraint requires non-thermal factors such 

as pre-harvest conditions, genetic variation and post-harvest humidity to be 

accounted for. Consequently, slack variables were introduced in order to 

account for the non-thermal factors other than the post-harvest temperature. 

Details of the modified KLS model were explained in Section 4.3.4. Quadratic 

programming optimisation was formulated with the objective of minimising the 

variance of the slack variables.  

 

Figure 6.20 shows a typical KLS performance in Scenario 1B, modelling the 

office display test period with the a priori constraint. The KLS predictions were 

obtained using cross validation strategy (with 10testN = segments). As can be 

seen in the figure, most of the predictions are between 5-10 d and only 5 out of 

58 are outside that range. In contrast, there is more variation in the 

experimental VL where 19 out of 58 samples have VL less than 5 d or more 
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than 10 d. This indicates that the KLS model with the a priori constraint does not 

sufficiently capture the variation in VL.  

 

 
Figure 6.20: Scenario 1B – a typical KLS performanc e in modelling the office display 

period with  the a priori constraint. The best fit line and the equality lin e are also shown. 
X-axis represents the remaining VLs of the cut rose s at the beginning of the office 

display test. Y-axis plots the corresponding KLS pr edictions. 
 

Similar to Scenario 1A, the performance of KLS was evaluated 10000 times, 

each time with a different segmentation of the available data set used in cross 

validation. In addition, permutation testing (see Section 3.2.3) was also 

performed. The two sets of results are presented in Table 6.4. The actual 

distributions of RMSEP (d), R2, slope and intercept of the best fit lines are clearly 

far apart from their corresponding nonsense counterparts; the p-values and q-

values for the statistics are all zero. 
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Table 6.4: Scenario 1 – KLS performance with/withou t the a priori constraint. “Actual” 
results were obtained using original data while “no nsense” results were from 
permutation testing studies. 10000 repetitions of c ross validation studies were 

performed. All statistics were presented as mean ± standard deviation. 
Scenario 1 

 

A (without a 

priori constraint) 

B (with a priori 

constraint) 

Predicted output  ∆VL (d) during office display 

(mean = 7.2; min = 2; max = 11) 

actual 2.3 ± 0.1  2.1 ± 0.0  

nonsense 3.7 ± 0.0  3.0 ± 0.0  

p-value 0.00 0.00 
RMSEP 

q-value 0.00 0.00 

actual 0.32 ± 0.02  0.24 ± 0.02  
R2 

nonsense 0.00 ± 0.00 0.00 ± 0.00  

actual 0.57 ± 0.02 0.31 ± 0.01  
Slope 

nonsense 0.04 ± 0.02 0.08 ± 0.01  

actual 2.79 ± 0.10  4.90 ± 0.09  
Intercept 

nonsense 6.26 ± 0.13 6.53 ± 0.11  

 

A question is that whether 10000 iterations were sufficient for statistical 

assessment. Further inspection of the nonsense results suggests that they 

were. The nonsense R2 distributes virtually at zero; the slope is very close to 

zero; and the intercept is closer to the mean of the observed VLs. These results 

indicate that there is no linear relationship between the nonsense predictions 

and the experimental VLs and that the best fit line is a horizontal line close to 

the mean of the observed VLs. These features are expected for the nonsense 

data and as 10000 iterations were able to reproduce the features, they were 

statistically sufficient for performance assessment in this case. In plain words, 

increasing the number of iterations would not significantly change the results 

shown in Table 6.4. 

 

The above results in Scenario 1A and 1B for KLS were obtained under the 

assumption that for every box of cut roses, the two stems that were displayed 

had their initial VL equal to the average of the remaining VLs of the three stems 

that were subject to the vase life tests in the incubator. Alternative to this 
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assumption, each of the samples that were on display could have its initial VL 

equal to that of any of the three in the incubator. In this case, the results (not 

shown) were much worse than those in Table 6.4. 

6.7.3 PLS PERFORMANCE 

6.7.3.1 DATA PRE-PROCESSING 

The same data set that was previously analysed by the KLS technique was 

studied using PLS. As 2 out of 60 cut rose samples died at the beginning of the 

display test, again data from only 58 samples were available.  

 

PLS modelling technique requires a uniform number of measurements per input 

sample. To overcome this issue, the strategy, which was discussed in detail in 

Section 3.1.1, was essentially to use reference temperature 18 o
refT C=  to 

make up for any data samples that had fewer than the required number of 

measurements. 

 

In addition, two schemes of data scaling were also explored including:  

1) The original data were scaled to zero mean and unit variance, i.e. auto-

scaling. 

2) The original data were scaled to zero mean only, i.e. zero-mean scaling. 

6.7.3.2 SCENARIO 1A – WITHOUT THE A PRIORI CONSTRAINT 

Double cross-validation, which was described in detail in Section 3.2.2, was 

implemented in evaluating PLS model performance. The optimal number of PLS 

factors, the PLS model dimension, was determined using the RMSEP statistic. 

The modelling data set, which contained 58 temperature series recorded during 

the office display test and 58 corresponding losses in the VL of the cut roses, 

was split into calibration and test subsets – the outer loop. Using the calibration 

subset, an inner cross validation study was performed and the RMSEP statistic 

was evaluated for all possible number of PLS factors. The optimal number of 

PLS factors, which produced the minimum RMSEP, was used to obtain an 

optimal PLS model based on the calibration data. Subsequently, the 

performance of the optimal PLS model was assessed using the test subset. The 
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whole procedure (from randomised splitting into calibration and test subsets to 

assessing prediction performance) was repeated 1000 times; in each time, the 

data set was divided into 10testN =  sub-sets (Section 3.2.2), giving a total of 

10000 PLS models that were generated. The results (where the original data 

were auto-scaled) are shown in Figure 6.21, Figure 6.22 and Table 6.5 below. 

 

 
Figure 6.21: Scenario 1A – RMSEP of PLS models using validation subset (data were 

auto-scaled). 
 

Figure 6.21 and Figure 6.22 suggest that to achieve minimum prediction error a 

PLS model was likely to retain only the first PLS factor. RMSEP based on 

validation subsets of data initially increases, fluctuates and subsequently levels 

off with the number of PLS factors retained. It was not clear as to why only one 

LV was optimal in terms of RMSEP. One possible reason is that no significant 

linear relationship between the temperature and the VL, as suggested in the 

exploratory PCA (Figure 6.11). Another reason could be due to the data pre-

processing to have a uniform number of measurements. Inspection of the 

original temperature profiles revealed that few had 300-350 readings while most 
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of them had less than 200-250 readings. Consequently, the temperature profiles 

after data pre-processing were predominant by the reference temperature 

18 o
refT C= , which may lead to optimal PLS models with just one LV. 

 

 
Figure 6.22: Scenario 1A – Distribution of optimal numbers of PLS factors (auto-scaling). 
 

All of the statistics including RMSEP, R2, and the slope and intercept of the best 

fit lines were evaluated using test data subsets in a double cross-validation 

strategy (Section 3.2.2). A typical PLS performance with auto-scaling is 

presented in Figure 6.23. A similar figure for the results using zeo-mean scaling 

can be found in Appendix B (Figure B. 1). Distributions of the performance 

statistics and their corresponding nonsense distributions from permutation 

testing are summarised in Table 6.5. The results showed that the zero-mean 

scaling strategy led to significant overlap between the actual distributions of the 

statistics and their nonsense ones; the p-values and q-values for RMSEP 

distributions were also greater than 0.10. Therefore, it can be concluded that 

using this scaling strategy, PLS failed to predict effectively the remaining VL. 

For auto-scaling, minimal overlaps occur at the tails of the distributions of 
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RMSEP, and hence small p-values and q-values; however, the common 

intersections of the two actual and nonsense distributions of the slope and 

intercept were considerably larger. As a result, the PLS performance in this 

case was effective (Section 3.2.4) based on RMSEP but could be improved, 

particularly in terms of the best fit line. 

 

 
Figure 6.23: Scenario 1A – a typical PLS performanc e in modelling the office display 

period without  the a priori constraint. (auto-scaling) 
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Table 6.5: Scenario 1A – PLS performance using diff erent scaling strategies. “Actual” 
results were obtained using original data while “no nsense” results were from 

permutation studies. 1000 repetitions of double cro ss validation studies were performed. 
(10000 PLS models were generated.) All statistics a re presented as mean ± standard 

deviation. 
Scaling strategy Zero-mean Auto-scaling 

Predicted output  ∆VL (d) during office display 

(mean = 7.2; min = 2; max = 11) 

Number of models (out of 10000) 

that used only one PLS factor 
7832 9954 

actual 2.2 ± 0.1 2.1 ± 0.1 

nonsense 2.4 ± 0.1 2.4 ± 0.1 

p-value 0.11 0.02 
RMSEP 

q-value 0.26 0.02 

actual 0.21 ± 0.03 0.24 ± 0.02 
R2 

nonsense 0.16 ± 0.03 0.15 ± 0.04 

actual 0.30 ± 0.03 0.31 ± 0.02 
Slope 

nonsense 0.26 ± 0.02 0.27 ± 0.03 

actual 5.02 ± 0.20 4.98 ± 0.15 
Intercept 

nonsense 5.31 ± 0.15 5.27 ± 0.27 

 

In addition, results from the nonsense data suggested that 1000 repetitions 

were not statistically sufficient. Distributions of nonsense R2 had a statistical 

mean around 0.15, which is significantly different from 0; the nonsense slopes 

and intercepts indicated that the nonsense best fit lines were not horizontal. 

These contradict with the characteristics of the nonsense predictions, which are 

not correlated with the observed VLs. The reason for the contradiction was that 

the nonsense data from the 1000 repetitions of the permutation testing were not 

representative of their statistical population, which is uncorrelated to the 

observed VLs. Consequently, increasing the number of the repetitions would 

eventually eliminate the contradiction and produce distributions of nonsense R2 

around zero, distributions of the best fit lines around a horizontal line. 
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6.7.3.3 SCENARIO 1B – WITH THE A PRIORI CONSTRAINT 

No PLS algorithm has been identified to implement the a priori constraint. 

Consequently, PLS modelling is not available for this scenario. 

6.7.4 MLR PERFORMANCE 

6.7.4.1 DATA PRE-PROCESSING 

Data pre-processing for MLR modelling was similar to that for PLS modelling 

(Section 3.1.1). In addition, as explained in Section 3.1.2, temperature readings 

in the original input profiles were averaged over a window of size k . The 

optimal parameter k  was determined during the cross-validation exercise.  

 

Moreover, two schemes of data scaling including auto-scaling and zero-mean 

scaling (Section 6.7.3.1) were also studied. 

6.7.4.2 SCENARIO 1A – WITHOUT THE A PRIORI CONSTRAINT 

Numerical results of MLR modelling without the a priori constraint are tabulated 

in Table 6.6. A typical performance of MLR modelling using auto-scaling without 

the a priori constraint is presented in Figure 6.24. A similar figure for zero-mean 

scaling can be found in Appendix B (Figure B. 2). The optimal window size for 

averaging temperature readings (Section 3.1.2) was 2k =  when the data was 

either auto-scaled or zero mean. It meant that only temperature averaged over 

2 x 0.5 = 1 h should be used in these cases. 
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Figure 6.24: Scenario 1A – a typical MLR performanc e in modelling the office display 

period without  the a priori constraint. (auto-scaling) 
 

Comparing the actual and nonsense distributions of the selected statistics 

indicated that MLR performance was far from adequate. For zero-mean scaling, 

the actual performance was only as good as the nonsense results. In particular, 

both actual and nonsense MLR models produced virtually the same RMSEP. For 

auto-scaling, while the actual RMSEP was smaller than the nonsense one, the 

variations in both actual and nonsense distributions were significant, which led 

to substantial overlaps between the two distributions. Consequently, MLR 

modelling failed to make effective estimates (Section 3.2.4) for the remaining VL 

of the cut roses in this case. 
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Table 6.6: Scenario 1A – MLR performance using diff erent scaling strategies. (100 
repetitions) 

Scaling strategy Zero-mean Auto-scaling 

Predicted output  ∆VL (d) during office display 

(mean = 7.2; min = 2; max = 11) 

Optimal window size k  2.0 ± 1.1 2.1 ± 0.9 

actual 2.3 ± 0.1 NS 2.3 ± 0.1  

nonsense 2.3 ± 0.1 NS 4.6 ± 1.7  

p-value 0.98 0.21 
RMSEP 

q-value 0.93 0.11 

actual 0.29 ± 0.01 0.26 ± 0.03 
R2 

nonsense 0.29 ± 0.01 0.08 ± 0.08 

actual 0.31 ± 0.03 0.33 ± 0.02 
Slope 

nonsense 0.24 ± 0.02 0.31 ± 0.07 

actual 4.86 ± 0.13 4.76 ± 0.12 
Intercept 

nonsense 5.38 ± 0.18 4.39 ± 0.94 

(NS: not significant i.e. the mean of the actual distribution is not 
smaller than that of the nonsense one at 5% significant level; 
see Section 3.2.4) 

6.7.4.3 SCENARIO 1B – WITH THE A PRIORI CONSTRAINT 

Similar to KLS modelling with the a priori constraint, slack variables were also 

introduced in MLR modelling to account for the non-thermal factors such as 

genotype and variation in conditions prior to the modelling period as well as any 

other effects that were not related to post-harvest temperature. The model 

obtained was described in Equation (3.8) (Section 3.3.1). Quadratic 

programming optimisation was formulated in a similar approach as that which 

was described in Section 4.3.4. The objective was to minimise the variance of 

the slack variables. Figure 6.25 shows a typical MLR performance using auto-

scaling. A similar figure for zero-mean scaling can be found in Appendix B 

(Figure B. 3). The prediction performance is summarised in Table 6.7.  
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Figure 6.25: Scenario 1B – a typical MLR performanc e in modelling the office display 

period with  the a priori constraint. (auto-scaling) 
 

Table 6.7: Scenario 1B – MLR performance using diff erent scaling strategies. (10 
repetitions) 

Scaling strategy Zero-mean Auto-scaling 

Predicted output  ∆VL (d) during office display 

(mean = 7.2; min = 2; max = 11) 

Optimal window size k  29 ± 55 60 ± 93 

actual 2.2 ± 0.0 2.2 ± 0.0 

nonsense 2.4 ± 0.2 2.3 ± 0.1 

p-value 0.50 0.90 
RMSEP 

q-value 0.20 0.30 

actual 0.29 ± 0.02 0.28 ± 0.02 
R2 

nonsense 0.22 ± 0.05 0.23 ± 0.03 

actual 0.34 ± 0.01 0.33 ± 0.01 
Slope 

nonsense 0.28 ± 0.02 0.27 ± 0.01 

actual 4.70 ± 0.06 4.74 ± 0.06 
Intercept 

nonsense 5.18 ± 0.07 5.19± 0.05 
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As shown in Table 6.7, MLR modelling with the a priori constraint also 

performed poorly. Although the mean of the actual RMSEP distribution was 

slightly smaller than that of the nonsense one, the difference was just equal to 

one standard deviation; the p-values and q-values were significantly greater 

than 0.10. So, there was considerable overlap between the real model and the 

nonsense one. This also occurred in the R2 statistic. Consequently, as set out in 

Section 3.2.4, MLR modelling failed to make an effective prediction in this case.  

 

In addition, in scenarios A and B (without and with the a priori constraint), only 

100 and 10 repetitions respectively of the cross validation were performed. The 

reason was because MLR modelling took about 3 h (scenario A) and 16 h 

(scenario B) to complete an iteration. Consequently, it was not practical to 

increase the number of the repetitions in MLR modelling. However, the results 

from permutation testing indicate that the number of the repetitions was not 

statistically sufficient. Distributions of nonsense R2, slopes and intercepts 

suggested that there was some correlation between the nonsense predictions 

and the observed VLs, which was not true. Increasing the number of the 

repetitions would eliminate this spurious correlation although significant 

computation time is likely involved. 

6.7.5 DISCUSSION 

Scenario 1, modelling the office display period, represents the scenario with the 

most complete data, which included the temperature stress and the 

corresponding loss in VL. Using the data set, KLS, PLS and MLR modelling 

were performed and their prediction performance was assessed based on 

RMSEP, R2 and the slope and intercept of the best fit line, and by comparing with 

the results from permutation testing. In addition, the feasibility of implementing 

the a priori knowledge observed in the literature was also explored. 
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Table 6.8: Summary of KLS, PLS and MLR performance in Scenario 1. The best value of the actual statist ics from different techniques is 
highlighted in blue colour. 

Scenario 1A (without the a priori constraint) Scenario 1B (with the a priori constraint) Statistics 

KLS PLS MLR KLS PLS MLR 

Actual 2.3 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.1 ± 0.0 – 2.2 ± 0.0 

Nonsense 3.7 ± 0.0 2.4 ± 0.1 4.6 ± 1.7 3.0 ± 0.0 – 2.4 ± 0.2  

p-value 0.00 0.02 0.21 0.00 – 0.50 
RMSEP 

q-value 0.00 0.02 0.11 0.00 – 0.20 

Actual 0.32 ± 0.02 0.24 ± 0.02 0.26 ± 0.03 0.24 ± 0.02 – 0.29 ±  0.02 
R2 

Nonsense 0.00 ± 0.00 0.15 ± 0.04 0.08 ± 0.08 0.00 ± 0.00 – 0 .22 ± 0.05 

Actual 0.57 ± 0.02 0.31 ± 0.02 0.33 ± 0.02 0.31 ± 0.01 – 0.34 ±  0.01 
Slope 

Nonsense 0.04 ± 0.02 0.27 ± 0.03 0.31 ± 0.07 0.08 ± 0.01 – 0 .28 ± 0.02 

Actual 2.79 ± 0.10 4.98 ± 0.15 4.76 ± 0.12 4.90 ± 0.09 – 4.70 ±  0.06 
Intercept 

Nonsense 6.26 ± 0.13 5.27 ± 0.27 4.39 ± 0.94 6.53 ± 0.11 – 5 .18 ± 0.07 
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The best performances of KLS, PLS and MLR in Scenario 1, modelling the 

office display period, are summarised in Table 6.8. Statistical performance 

assessment was described in detail in Section 3.2.4. Essentially, a distinct 

separation between the actual distributions of the performance indices and the 

nonsense ones suggests that the models are finding some features that allow 

for the prediction of the remaining VL. This occurred in scenarios with KLS, 

where there was no overlap between the actual and nonsense distributions of 

RMSEP, R2, and the slope and intercept of the best fit line. In contrast, for PLS 

there was some overlap, particularly in the distributions of R2, slope and 

intercept while for MLR models, the overlaps were much more significant. 

Therefore, MLR models did not perform adequately without or with the a priori 

constraint.  

 

KLS without the a priori constraint had the best values of R2, slope and 

intercept. The highest R2 indicates that the linear correlation between the KLS 

predictions and the observed VLs was the strongest in this case; the best 

values of the slope and intercept suggest that the best fit line was closest to the 

line y = x. Although its RMSEP (2.3 d) was not the smallest RMSEP (2.1 d), in 

terms of improvement over the nonsense performance, KLS in Scenario 1A was 

by far the best, having its actual RMSEP 1.3 d smaller the corresponding 

nonsense RMSEP. Consequently, KLS performance without the a priori 

constraint is the best among the techniques in Scenarios 1A and 1B.  

 

Similarly, the performance of PLS in Scenario 1A was very close to that of KLS 

in Scenario 1B although the latter had much better distinction between the 

actual and nonsense performances. Therefore, it is concluded that KLS is the 

best technique in making effective predictions in Scenario 1 while PLS 

performance might still be acceptable. However, MLR was the worst of the 

three as it clearly could not differentiate between the original data and the 

nonsense (permutated) data. 

 

However, the above performance comparison between KLS, PLS and MLR 

assumed that the actual and nonsense distributions of the performance 
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statistics were approaching their statistical population distributions. By 

examining the nonsense distributions, this assumption seems reasonable in 

KLS modelling but not in PLS and MLR. As can be seen in Table 6.8, the 

nonsense R2 and the slope of KLS performance were very close to 0.0, 

illustrating the characteristics of the nonsense predictions: having no correlation 

with the observed VLs. This was not the case for PLS and MLR nonsense 

performances, where some spurious correlation was implied. The consequence 

is that increasing the number of repetitions in cross validation studies may 

eventually eliminate the spurious correlation. However, the computational cost 

and time requirement have made this exhaustive investigation for PLS and MLR 

modelling prohibitive in this study. 

 

Regarding the comparison between Scenarios 1A and 1B, a number of studies 

suggested that the higher the storage temperature the greater the loss in VL 

(Section 3.3). This hypothesis was transformed into an a priori constraint which 

was implemented in Scenarios 1B for KLS and MLR techniques (no algorithm 

for PLS with constraints was identified and so this could not be investigated). 

The implementation of the a priori constraint slightly improved the prediction 

error RMSEP but at a significant cost to the best fit line (i.e., moving further away 

from the equality line y x= ) and R2 (Table 6.8). The reason for a poorer 

performance could be associated with the validity of the assumption that was 

made in implementing the a priori constraint. It should be noted that the 

implementation (Section 4.3.6) required the non-thermal factors that affect the 

VLs of cut roses to be accounted for (Sections 3.3 and 6.7.2.3). In turn, the 

modelling of the non-thermal factors made an assumption of minimum variance 

in those factors (Section 4.3.4). While this assumption was necessary to solve 

for a KLS model, it may not always be reasonable. As the exploratory analysis 

(Figure 6.10) shows, seasonality had a clear impact on the displaying 

temperature. Therefore, it is expected that other non-thermal factors during the 

display period such as humidity could also vary with seasonality as well, which 

does not support the minimum variance assumption. In addition, as shown in 

subsequent sections growing conditions, which are expected to have significant 

effects on the VLs of the flowers, also varied significantly across seasons (and 
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hence harvests). Consequently, the assumption of minimum variance may not 

be strongly supported, which could lead to a poorer KLS performance.  

6.8 SCENARIO 2 – MODELLING THE POSTAL DELIVERY PERIOD  

In Scenario 2, the period of transport of cut roses from Cookes Rose Farm to 

the University of Manchester was modelled. Temperature readings recorded 

during the transport and VLs from the vase life tests were included in the 

analysis. The objective was to estimate the loss in remaining VLs of the roses 

during the postal delivery from Cookes Rose Farm to the University.  

 

Data available for this Scenario included a total of 30 profiles (one from each of 

the 30 boxes) of temperature readings recorded during the delivery process. In 

addition, the remaining VL of the flowers upon receipt at the University of 

Manchester was estimated by the duration of their subsequent vase life tests. 

However, the initial VL at the farm was not available. Consequently, the 

assumption that all cut roses had the same initial VLs was explored. Later, this 

assumption was relaxed to allow the flowers in the same box to have the same 

initial VL, which could be different from that of other boxes. 

6.8.1 EXPLORATORY STUDY 

A total of 30 boxes of cut roses were sent from Cookes Rose Farm to the 

University of Manchester. Two data loggers were placed inside each of the 

boxes, with one data logger located at each end of the box, recording 

temperature during postal delivery. As shown earlier (Section 6.6.2), the 

difference in the temperature recorded by the two data loggers in each box was 

negligible. Consequently, the mean of the readings from the two data loggers in 

each box was used. As a result, there were 30 profiles of transport temperature 

in the data set. Figure 6.26 shows three of the 30 profiles. The blue curve 

corresponding to the shortest profile was from a box that took only one day to 

arrive at the University. On the other hand, the longest profile, shown by the red 

line, had 144 readings, which was equivalent to three days of transport. Most 

often, a box of cut roses would take two days to reach the University, as shown 

by the third profile.  
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Figure 6.26: Three temperature profiles logged duri ng postal delivery of boxes of cut 

roses from Cookes Rose Farm to the University of Ma nchester. The blue (o) and red (+) 
profiles correspond to the profiles with minimum an d maximum lengths i.e. number of 

measurements respectively. The other profile is an example that had the number of 
readings somewhere in between. 

 

After data pre-processing (Section 3.1.1), PCA was performed on the data set. 

The analysis revealed that the first two PCs accounted for more than 60% of 

data variance. The score plots for the first and second LVs are presented in 

Figure 6.27 and Figure 6.28. The observations were grouped according to the 

month of the delivery date of the rose samples in Figure 6.27, and according to 

the range of the final remaining VL (upon delivery to the University) in Figure 

6.28. As seen in Figure 6.27, the September deliveries are significantly 

separated from the July and August ones. This separation means that the 

transport temperature during September was quite different from that during 

August and July. As the temperature was not regulated during the postal 

delivery, it was reasonable to expect the transport temperature to correlate with 

the outside air temperature, which in turn is subject to seasonal variations. 
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Figure 6.27: PCA score plot for the first and secon d PCs, which together explain 61.1% of 

the total variance. Different symbols represent dif ferent delivery date (month). 
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Figure 6.28: PCA score plot for the first and secon d PCs, which together explain 61.1% of 

the total variance. Different symbols represent dif ferent range in VL loss. 
 

Figure 6.28 shows the PCA score plot (for the first and second LVs) with 

observations grouped according to ranges of the remaining VL of cut roses on 

delivery to the University of Manchester. No clear trend between the groups of 

VL could be observed, which suggests that estimating VL using the transport 

temperature would be challenging. 

6.8.2 KLS  PERFORMANCE 

6.8.2.1 SETTING PARAMETERS 

A similar procedure as described in Section 6.7.2.1 was carried out. Using the 

temperature profiles of the cut roses being transported from Cookes Rose Farm 

to the University, the lower and upper bounds of temperature in Scenario 2 

were set at 14 oC and 24 oC respectively. The temperature step was set at 1 oC 

as a result of the data loggers’ accuracy (Section 6.6.1). 
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6.8.2.2 SCENARIO 2A – WITHOUT THE A PRIORI CONSTRAINT 

As the initial VLs of cut roses just before entering the postal system were not 

available, assumptions had to be made regarding these initial VLs (Section 

4.3.5). It was assumed that all the flower samples entered the postal system 

with the same initial VLs, which were constant yet unknown. This assumption 

ignores potential variation in the VL of cut roses immediately after harvest due 

to pre-harvest factors such as biological variation and growing conditions. 

Details of the solution strategy were outlined in Section 4.3.5. KLS performance 

was evaluated in 1000 repetitions of cross validation; a typical performance is 

shown in  Figure 6.29 and the numerical results are summarised in Table 6.9. 

 

 
Figure 6.29: Scenario 2A – a typical KLS performanc e in modelling the VL upon delivery 

at University of Manchester assuming uniform initia l VLs (without  the a priori constraint). 
 

Subsequently, the assumption of a uniform initial VL was relaxed by allowing 

the initial VL to vary from one harvest (i.e. box) to another. In other words, cut 

roses in the same delivery box had the same initial VL, which could be different 

from that of the flowers in another box. Consequently, there were additionally 30 

unknown initial VLs (for 30 boxes) to be estimated. The removal of the 
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assumption of a uniform initial VL made the KLS linear system undetermined, 

which would normally lead to infinite number of solutions. The optimal solution 

was sought for such that it minimised the variance of all the initial VLs. Section 

4.3.5 described briefly the solution strategy for this undetermined linear system. 

KLS performance was again evaluated; a typical performance is shown in 

Figure 6.30 and the numerical results are also summarised in Table 6.9. 

 

 
Figure 6.30: Scenario 2A – a typical KLS performanc e in modelling the VL upon delivery 

at University of Manchester assuming variable initi al VLs (without  the a priori constraint). 
 

The results shown in Figure 6.30 and summarised in Table 6.9 show that KLS 

estimates were worse than random (nonsense) guesses without the assumption 

of a uniform initial VL. Specifically, varying the initial VL resulted in a horizontal 

best fit line and a prediction error of 2.9 d while its corresponding nonsense was 

2.8 d. Similarly, actual R2 is around 0.01, which is smaller than the nonsense R2 

of 0.05. Consequently, in this case KLS estimates did not have a linear 

relationship with the observed VLs and hence the predictions were not effective. 
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On the other hand, assuming a uniform initial VL led to minimal differences 

between the actual performance and the nonsense one, particularly in RMSEP 

and R2 statistics. The mean of the actual RMSEP distribution is 0.2 d smaller 

than that of the nonsense one. Nevertheless, as the difference is small 

compared to the standard deviations of the distributions, there are significant 

overlaps between the actual and nonsense distributions. This is reflected by the 

significant p-values and q-values. A similar observation can also be made for 

the R2 statistic. The magnitude of the statistic ( 2 0.05R ∼ ) suggests that the 

linear relationship between the predicted and observed VLs was not significant. 

Consequently, KLS estimates in this case were also not effective. 

 

Table 6.9: Scenario 2A – KLS performance with/witho ut the assumption of a uniform 
initial VL at the farm (1000 repetitions) 

Assumption Uniform initial VL Varying initial VL 

Predicted output  VL (d) at delivery 

(mean = 7.2; min = 2; max = 11) 

Actual 2.5 ± 0.1 2.9 ± 0.1 NS 

Nonsense 2.7 ± 0.1 2.8 ± 0.0 NS 

p-value 0.26 – 
RMSEP 

q-value 0.56 – 

Actual 0.05 ± 0.03 0.01 ± 0.01 
R2 

Nonsense 0.01 ± 0.01 0.05 ± 0.03 

Actual 0.12 ± 0.03 0.01 ± 0.05 
Slope 

Nonsense -0.01 ± 0.03 -0.08 ± 0.01 

Actual 6.34 ± 0.25 7.24 ± 0.39 
Intercept 

Nonsense 7.23 ± 0.21 7.71 ± 0.04 

(NS: not significant i.e. the mean of the actual distribution is not 
smaller than that of the nonsense one at 5% significant level; see 
Section 3.2.4) 

6.8.2.3 SCENARIO 2B – WITH THE A PRIORI CONSTRAINT 

In this scenario, the a priori observation that a higher temperature leads to a 

greater loss in VLs was implemented. The observation was expressed as a 

mathematical constraint that the KLS coefficients must be positive and increase 
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with temperature. Details of the mathematical manipulation were described in 

Section 4.3.6 

 

As in Scenario 2A, the initial VLs just before entering the postal delivery system 

were assumed uniform across all the boxes of cut roses. In other words, the 

initial VLs were constant, albeit unknown. Details of the solution strategy were 

outlined in Section 4.3.5. KLS performance was evaluated in 1000 repetitions of 

cross validation. A typical performance is shown in Figure 6.31 and the 

numerical results are summarised in Table 6.10. 

 

 
Figure 6.31: Scenario 2B – a typical KLS performanc e in modelling the VL upon delivery 
at University of Manchester assuming uniform initia l VLs (with  the a priori constraint). 

 

Subsequently, the assumption of uniform initial VLs was relaxed by allowing 

them to vary from one delivery box to another. In this case, the initial VLs were 

considered as additional coefficients to be estimated. Similar to Scenario 2A, 

the optimal solution that minimised the variance of all the initial VLs was sought 

for (Section 4.3.5). KLS performance was again evaluated, illustrated in Figure 

6.32 and summarised in Table 6.10. 
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Figure 6.32: Scenario 2B – a typical KLS performanc e in modelling the VL upon delivery 
at University of Manchester assuming variable initi al VLs (with  the a priori constraint). 

 

Table 6.10: Scenario 2B – KLS performance with/with out assumption on initial VL at the 
farm (1000 repetitions) 

Assumption Uniform initial VL Varying initial VL 

Predicted output  VL (d) at delivery 

(mean = 7.2; min = 2; max = 11) 

Actual 9.1 ± 0.2 3.6 ± 0.0 

Nonsense 9.8 ± 0.2 3.8 ± 0.0 

p-value 0.06 0.00 
RMSEP 

q-value 0.08 0.00 

Actual 0.09 ± 0.01 0.19 ± 0.04 
R2 

Nonsense 0.00 ± 0.00 0.04 ± 0.02 

Actual 1.12 ± 0.07 0.09 ± 0.01 
Slope 

Nonsense 0.13 ± 0.06 -0.04 ± 0.01 

Actual -1.68 ± 0.55 9.23 ± 0.01 
Intercept 

Nonsense 5.24 ± 0.47 10.21 ± 0.09 
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Figure 6.31, Figure 6.32 and Table 6.10 show that KLS performed poorly with 

the a priori constraint, regardless of whether the initial VLs were assumed 

uniform or variable across the boxes. Average prediction error was about 3.6 d 

(assuming variable initial VLs) -  9.1 d (assuming uniform initial VLs), which is 

rather excessive considering the average observed VLs was 7.2 d. In addition, 

When uniform initial VLs were assumed, the variance in the predictions was 

significant (Figure 6.31); in contrast, the assumption of variable initial VLs led to 

minimal variance in the predictions. The two cases appear to illustrate the two 

extremes: one with too strict an assumption (i.e. uniform initial VLs) and one 

with too loose an assumption (i.e. variable initial VLs). In both cases, the 

variance in the observed VLs was not captured and hence KLS performance 

was not effective.  

6.8.3 PLS PERFORMANCE 

6.8.3.1 DATA PRE-PROCESSING 

The same data set that was previously analysed by KLS technique was studied 

using PLS technique. The assumption of a uniform initial VL and the two scaling 

strategies including auto-scaling and zero-mean scaling (Section 6.7.3.1) were 

also investigated.  

 

PLS modelling technique requires a uniform number of measurements per input 

sample. To overcome this issue, the strategy, which was described in Section 

3.1.1, was essentially to use reference temperature 18 Co
refT =  to make up for 

any data samples that had fewer than the required number of measurements. 

6.8.3.2 SCENARIO 2A – WITHOUT THE A PRIORI CONSTRAINT 

Similar to Scenario 2 for KLS (Section 6.8.2.2), PLS modelling required an 

assumption of the initial VL of cut rose samples just before entering the postal 

delivery system. Under the assumption of a uniform initial VL, results of PLS 

modelling in Scenario 2A are tabulated in Table 6.11. A typical PLS 

performance using auto-scaling is shown in Figure 6.33. A similar figure for 

zero-mean scaling can be found in Appendix B (Figure B. 4). In addition, without 

being assumed constant, the initial VLs were unknown variables that were 
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greater than the remaining VLs as evaluated at the University. As PLS was not 

capable of implementing such constraints, PLS without the assumption on initial 

VL was not considered. 

 

 
Figure 6.33: Scenario 2A – a typical PLS performanc e in modelling the VL upon delivery 

at University of Manchester assuming uniform initia l VLs (auto-scaling ). 
 

The results in Table 6.11 show that PLS models on the actual data performed 

worse than on the nonsense data. For both scaling techniques, the mean of the 

actual RMSEP distribution was greater than that of the nonsense distribution. On 

this basis, PLS performance was not acceptable. 
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Table 6.11: Scenario 2A – PLS performance under the  assumption of uniform initial VL 
using different scaling strategies (10000 repetitio ns, 105 PLS models) 

Scaling strategy Zero-mean Auto-scaling 

Predicted output  VL (d) at delivery 

(mean = 7.2; min = 2; max = 11) 

Number of models (out of 

105) that used only one PLS 

factor 

94225 96386 

Actual 2.5 ± 0.2 NS 2.6 ± 0.2 NS 

Nonsense 2.4 ± 0.1 NS 2.5 ± 0.1 NS 

p-value –  – 
RMSEP 

q-value – – 

Actual 0.06 ± 0.04 0.05 ± 0.03 
R2 

Nonsense 0.12 ± 0.05 0.04 ± 0.03 

Actual 0.12 ± 0.05 0.07 ± 0.07 
Slope 

Nonsense 0.12 ± 0.03 0.07 ± 0.04 

Actual 6.27 ± 0.05 6.75 ± 0.51 
Intercept 

Nonsense 5.99 ± 0.25 6.58 ± 0.25 

 

6.8.3.3 SCENARIO 2B – WITH THE A PRIORI CONSTRAINT 

As discussed previously, as no PLS algorithm has been identified to implement 

the a priori constraint this was not tested. 

6.8.4 MLR PERFORMANCE 

6.8.4.1 DATA PRE-PROCESSING 

Data pre-processing for MLR modelling in Scenario 2 was similar to that which 

was carried out in Scenario 1 (Section 6.7.4.1).  

 

Moreover, an assumption of the initial VL at the farm was studied in a similar 

way as for KLS techniques (Section 6.8.2). Two data scaling techniques were 

explored including auto-scaling and zero-mean scaling. 
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6.8.4.2 SCENARIO 2A – WITHOUT THE A PRIORI CONSTRAINT 

MLR performance based on a uniform initial VL assumption and without the a 

priori constraint is tabulated in Table 6.12. A typical MLR performance using 

auto-scaling is presented in Figure 6.34. A similar figure for zero-mean scaling 

can be found in Appendix B (Figure B. 5). Clearly, MLR performance was not 

adequate. As seen in Table 6.12, the actual predictions were not better than the 

nonsense estimates. Prediction error based on actual data was not less than 

that from the permutated data. Figure 6.34 also shows that all of the predicted 

VLs varied around 6 d while the observed ones varied from 1 to 11 d. This 

indicates that minimal variance in the VL was captured by MLR modelling. This 

may be attributed to the fact that the MLR model was over-fitting: there were 

more independent variables than the number of flower samples. Consequently, 

MLR modelling could not produce effective estimates of the VLs in this 

scenario.  

 
Figure 6.34: Scenario 2A – a typical MLR performanc e in modelling the VL upon delivery 
at University of Manchester assuming uniform initia l VLs (auto-scaling, without a priori 

constraint ). 
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Table 6.12: Scenario 2A – MLR performance using dif ferent scaling strategies. Uniform 
initial VLs was assumed (1000 repetitions) 

Scaling strategy Zero-mean Auto-scaling 

Predicted output  VL (d) at delivery 

(mean = 7.2; min = 2; max = 11) 

Optimal window size k 29 ± 0 29 ± 0 

Actual 2.5 ± 0.2 NS 2.5 ± 0.0 NS 

Nonsense 2.4 ± 0.1 NS 2.5 ± 0.0 NS 

p-value –  – 
RMSEP 

q-value – – 

Actual 0.14 ± 0.04 0.14 ± 0.04 
R2 

Nonsense 0.14 ± 0.04  0.14 ± 0.04 

Actual 0.12 ± 0.05 0.09 ± 0.01 
Slope 

Nonsense 0.16 ± 0.03  0.09 ± 0.01 

Actual 6.27 ± 0.42 6.41 ± 0.08 
Intercept 

Nonsense 5.99 ± 0.25  6.41 ± 0.09 

 

6.8.4.3 SCENARIO 2B – WITH THE A PRIORI CONSTRAINT 

When the a priori constraint was implemented, MLR performance (Table 6.13) 

improved a little. However, for zero-mean scaling, the mean of the actual 

RMSEP distribution was not smaller than that of the nonsense distribution. For 

auto-scaling, while the actual mean was smaller than the nonsense one, the 

standard deviations of the actual and nonsense distributions also became more 

significant. This led to a significant overlap between the two distributions, as 

indicated by the significant p-values and q-values. In addition, as can be seen in 

Figure 6.35, the variance in the observed VLs was not effectively captured in 

the MLR predictions. As a result, MLR predictions were not adequate for either 

scaling strategy. 
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Figure 6.35: Scenario 2B – a typical MLR performanc e in modelling the VL upon delivery 

at University of Manchester assuming uniform initia l VLs (auto-scaling, with a priori 
constraint ). 

 

It should be noted that only 100 repetitions were carried out during the cross 

validation study of MLR modelling. The reason was because in this case one 

repetition was much more time consuming than in other cases (e.g., with KLS 

modelling). Approximately, 100 repetitions of MLR modelling took between 5.5 h 

and 18 h to complete. (In comparison, 10000 repetitions of KLS modelling took 

less than 20 min.) This could be due to the greater number of independent 

variables in MLR modelling. The consequence is that the results from analysing 

the nonsense permutated data implied some spurious correlation between the 

nonsense predictions and the observed VLs. Although it is expected that a 

sufficiently large number of repetitions would eliminate such spurious 

correlation, the computation cost and hence time requirement made it 

impractical. 
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Table 6.13: Scenario 2B – MLR performance using dif ferent scaling strategies. Uniform 
initial VLs was assumed (100 repetitions) 

Scaling strategy Zero-mean  Auto-scaling 

Predicted output  VL (d) at delivery 

(mean = 7.2; min = 2; max = 11) 

Optimal window size k  6 ± 0  6 ± 0 

Actual  2.5 ± 0.1 NS 2.5 ± 0.1 

Nonsense  2.5 ± 0.0  NS 2.8 ± 0.5 

p-value –  0.55 
RMSEP 

q-value – 0.59 

Actual  0.13 ± 0.07 0.10 ± 0.07 
R2 

Nonsense  0.12 ± 0.05   0.05 ± 0.05 

Actual  0.13 ± 0.02  0.15 ± 0.04 
Slope 

Nonsense  0.08 ± 0.01   0.11 ± 0.04 

Actual  6.13 ± 0.21  6.05 ± 0.30 
Intercept 

Nonsense  6.53 ± 0.09   6.19 ± 0.48 

 

6.8.5 DISCUSSION 

Scenario 2, modelling the postal delivery period, represents the scenario with 

incomplete data. Only temperature during the delivery period and the final 

remaining VL were available; the initial VLs at the beginning of the period were 

not known. As a result, the assumption of a uniform initial VL was considered.  

 

Using the data set, KLS, PLS and MLR modelling were performed and their 

prediction performance was assessed based on RMSEP, R2, and the slope and 

intercept of the best fit line, and on comparison with the results from 

permutation testing. (Details of the performance assessment were described in 

Section 3.2). In addition, the feasibility of implementing an a priori knowledge 

observed in literature (Section 3.3) was also explored. 
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Table 6.14: Summary of KLS, PLS and MLR performance  (in RMSEP) in Scenario 2 
Scenario 2A (without the a priori 

constraint) 

Scenario 2B (with the a priori 

constraint) 

RMSEP 

KLS PLS MLR KLS PLS MLR 

Actual 2.5± 0.1 2.5± 0.2 NS 2.5± 0.0 NS 3.6± 0.0 –  2.5± 0.1 

Nonsense 2.7± 0.1 2.4± 0.1 NS 2.5± 0.0  NS 3.8± 0.0 – 2.8± 0.5 

p-value 0.26 –  –  0.00 –  0.55 

q-value 0.56 – – 0.00 – 0.59 

 

Table 6.14 summarises the best performance (i.e., having smallest RMSEP) of 

KLS, PLS and MLR in Scenario 2. The results show that prediction performance 

of all three techniques was not adequate. Their predictions based on the 

original data were often worse than those based on the nonsense data. The 

performance with the smallest RMSEP was by KLS without the a priori 

constraint, and by MLR with the a priori constraint; however, in both cases the 

actual performance was not far from the random distribution, as indicated by the 

significant p-values and q-values. The performance of KLS with the a priori 

constraint was effective (Section 3.2.4) but led to excessive prediction error 

(RMSEP = 3.6 d compared to the average VL of 7.2 d). 

 

The inadequate performances of the three modelling techniques emphasise the 

importance of the initial VL data. In Scenarios 1, both the initial and final VLs 

were available and the VL predictions were effective, at least by KLS modelling. 

In contrast, the initial VLs were not available in Scenarios 2 and effective VL 

estimates could not be obtained.  

 

In addition, the assumptions concerning the initial VLs seem also to contribute 

to the poor prediction performance in Scenarios 2. Assuming a uniform initial VL 

across boxes of cut roses essentially disregard any effect of growing conditions 

on the subsequent VL of cut roses. However, the literature review in Section 

2.3.2 actually suggested that the growing conditions could have significant 
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effect the post-harvest VL. Moreover, as subsequent analysis shows, the 

meteorological conditions, which is expected to correlate with the actual 

growing conditions of the flowers, varied significantly over the course of the 

experiment. Consequently, the assumption of a uniform initial VL may not be 

very reasonable. In contrast, assuming variable initial VLs means that roses 

delivered in the different boxes had the different initial VLs and thereby 

recognises the VL variation between harvests due to the growing conditions. 

However, implementing this assumption introduced additional variables, which 

led to over-fitting in modelling VLs of cut roses. This can be observed in Figure 

6.32 where the VL predictions varied minimally while the observed ones were 

from 3 to 11 d; the predicted VLs were over-fitting a straight line that is not the y 

= x line. Clearly, the assumption of variable initial VLs needs additional 

information (which was not available in this study) to avoid over-fitting. 

 

Overall, implementing the a priori constraint did not improve the prediction 

performance. For KLS, although the overlap between the actual and nonsense 

RMSEP distributions was removed, implementing the constraint also led to a 

significant increase in prediction error. For MLR, it increased variance in the 

performance. Consequently, the prediction performance was reduced in both 

cases. This was rather expected considering the effect of the a priori constraint 

in Scenarios 1. In other words, when sufficient data were available, 

implementing the constraint did not lead to any improvement in prediction 

performance (in Scenarios 1). Then, it is unlikely to result in any improvement 

when initial VLs were not available. 

6.9 PRELIMINARY STUDY OF THE EFFECTS OF PRE-HARVEST CONDITIONS  

6.9.1 OBJECTIVES AND ASSUMPTIONS  

This preliminary study was aimed at exploring the significance of the effects of 

pre-harvest conditions on the remaining VL of cut roses. 

 

As measurements from the greenhouse at Cookes Rose Farm were not 

available, meteorological data for the region where the farm was located were 
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used for the analysis. The assumption was that the meteorological data closely 

reflected the conditions occurring inside the greenhouse. This assumption was 

reasonable because little control of the temperature, humidity or lighting for the 

greenhouse was implemented.  

 

Another assumption was that the growing period for roses at Cookes Rose 

Farm was 6 weeks. This assumption was made based on observations by the 

owner of the farm. 

6.9.2 EXPLORATORY STUDY 

Figure 6.36 and Figure 6.37 show the daily average temperature, rainfall, 

sunshine period and air pressure in Jersey from 14/05/2008 to 29/09/2008. The 

experiment was carried out between 25/06/2008 and 29/09/2008. 

 

A PCA exploratory study was performed on the meteorological data. As the 

growing period was assumed to be 42 days, for each cut rose sample all the 

weather measurements within a 42 days prior to its harvest were included in the 

PCA study. This resulted in 253 weather measurements for each cut rose 

sample. As the samples from one delivery box had the same set of 

measurements, there were 30 data samples in total. Auto-scaling was carried 

out before the PCA operation. 
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Figure 6.36: Daily maximum, mean, and minimum air t emperatures and rainfall levels in 
Jersey from 14/05/2008 – 29/09/2008. All cut rose s amples in the study were harvested 

between 25/06/2008 – 29/09/2008. Growing period was  42 days (e.g. 14/05 – 25/06). 
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Figure 6.37: Sunshine period and air pressure in Je rsey from 14/05/2008 – 29/09/2008. 

 

 

 

 



 220 

 
Figure 6.38: Scree plot showing the cumulative sum of variance that was captured versus 

the number of PCs used. 
 

Figure 6.38 shows the cumulative sum of captured variance for the first 30 PCs. 

As can be seen, all of the variance of the data would be retained using these 

first 30 PCs. The reason was that there were only 30 different samples of 

meteorological measurements (i.e., one for each delivery box). 

 

Figure 6.39 shows the PCA scatter plot (for the first and second PCs) with 

observations grouped according to ranges of VL loss. No clear trend between 

the groups of VL could be observed, which seems to suggest that estimating 

the remaining VL using the meteorological data would be challenging. 
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Figure 6.39: PCA scores plot for the first and seco nd PCs, which together explain 24.7% 
of the total variance. Different symbols represent different range in remaining VL upon 

delivery at the University of Manchester. 
 

6.9.3 MODELLING RESULTS AND DISCUSSION  

6.9.3.1 MODELLING TECHNIQUES AND SUB-SCENARIOS 

As MLR prediction performance was consistently inadequate in previous 

scenarios, MLR was not considered in this analysis of the pre-harvest 

measurements. Consequently, only KLS and PLS were used for the modelling 

of the pre-harvest effects on the remaining VL of cut roses. 

 

As KLS only works on temperature, the daily average air temperatures collected 

over 6 weeks prior to harvest was used in KLS modelling. In contrast, PLS 

could analyse other meteorological measurements such as rainfall level, 

sunshine period and atmospheric pressure in addition to the average air 

temperature. The corresponding post-harvest VL was the same as that which 

was observed in Scenario 1, the office display test. Specifically, two levels of 

modelling were considered. For modelling at box level, the VL loss for each box 

was equal to the initial VL at delivery, which was estimated by averaging the 
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VLs of the three stems from the box that were used for the vase life test in the 

incubator. This led to 30 data samples, one for each box of cut roses. 

Additionally, modelling was carried out at stem level. In this case, the loss in VL 

corresponding to each stem could be equal to the VL of any of the three stems 

that were placed in the incubator. Consequently, there were a total of 90 data 

samples (3 from each box). 

6.9.3.2 DATA PRE-PROCESSING 

The pre-harvest data used in this analysis contain meteorological 

measurements reported in different units and ranges (see Section 6.4). 

Consequently auto-scaling was applied to the data prior to performing PLS 

modelling. No scaling was performed prior to KLS modelling. 

6.9.3.3 KLS PREDICTION PERFORMANCE 

KLS prediction performance in box-level modelling is presented in Figure 6.40; 

a similar figure for stem-level modelling can be found in Appendix B (Figure B. 

7). Corresponding numerical results are summarised in Table 6.15. As can be 

seen in the distributions of the statistics, the performance based on the actual 

data was slightly better than that based on the permutated nonsense data for 

RMSEP, slope and intercept but not for R2. However, the slope of the best fit line 

was very close to zero i.e. the best fit line approached a horizontal line. R2 was 

also close to zero and smaller than the nonsense R2, suggesting there was no 

(linear) correlation between the predicted and observed VLs. In addition, as the 

p-values and q-values indicated, there was significant overlapping between the 

actual and nonsense RMSEP distributions, which indicates low statistical 

confidence. Consequently, KLS predictions at both box level and stem level 

were not effective.  
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Figure 6.40: Performance of KLS in pre-harvest mode lling at box level. X-axis shows the 
performance indices while y-axis plots the fraction  of the total number of samples. Blue 
distributions were based on actual data while the r ed distributions were from nonsense 

permutated data. 
 

Table 6.15: Pre-harvest modelling – KLS performance . (10000 repetitions of double cross 
validation studies were performed.)  

Modelling level RMSEP R2 Slope Intercept 

Actual 2.5 ± 0.1 0.03 ± 0.02 0.07 ± 0.02 6.66 ± 0.17 

Nonsense 2.7 ± 0.1 0.08 ± 0.05 -0.06 ± 0.02 7.55 ± 0.16 

p-value 0.15 
Box level 

q-value 0.27 
(not applicable) 

Actual 3.2 ± 0.1 0.01 ± 0.01 0.02 ± 0.02 6.90 ± 0.13 

Nonsense 3.3 ± 0.1 0.04 ± 0.01 -0.04 ± 0.02 7.33 ± 0.16 

p-value 0.34 
Stem level 

q-value 0.59 
(not applicable) 
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6.9.3.4 PLS PREDICTION PERFORMANCE 

For comparison with KLS, PLS modelling was performed with only pre-harvest 

air temperature, and with all meteorological measurements.  

 

Table 6.16: Pre-harvest modelling – PLS performance . I: only daily average air 
temperature was used; II: all pre-harvest data (air  temperature, rainfall level, sunshine 

period, atmospheric pressure) were used. (1000 repe titions) 
 Modelling level RMSEP R2 Slope Intercept 

Actual 3.0 ±0.2 0.03 ±0.03 -0.07 ±0.06 7.68 ±0.51 

Nonsense 3.3 ±0.2 0.03 ±0.04 -0.09 ±0.07 7.85 ±0.50 

p-value 0.33 

Box 

level 

q-value 0.63 
(not applicable) 

Actual 3.6 ±0.2 NS 0.02 ±0.02 -0.06 ±0.05 7.67 ± 0.35 

Nonsense 3.2 ±0.1 NS 0.04 ±0.02 0.09 ± 0.03 6.54 ±0.21 

p-value – 

I 
Stem 

level 

q-value – 
(not applicable) 

Actual 3.2 ±0.1 NS 0.02 ±0.02 -0.09 ±0.05 7.62 ±0.34 

Nonsense 3.0 ±0.2 NS 0.05 ±0.05 -0.10 ±0.06 8.00 ±0.46 

p-value – 

Box 

level 

q-value – 
(not applicable) 

Actual 3.6 ±0.1 NS 0.02 ±0.02 -0.06 ±0.03 7.54 ±0.22 

Nonsense 3.3 ±0.1 NS 0.00 ±0.00 0.00 ±0.02 7.32 ±0.14 

p-value – 

II 
Stem 

level 

q-value – 
(not applicable) 

 

The combination of types of meteorological data being considered (only 

temperature or all available measurements) and modelling levels resulted in 

four different scenarios. The results of PLS performance in these scenarios are 

shown in Table 6.16. In three out of those four scenarios, PLS performance was 

not adequate as its prediction error based on the actual data was worse than 

that based on randomised data. The only case which produced some distinction 

between the actual and nonsense performances was PLS modelling at box 

level with daily averaged temperature. However, as the p-values and q-values 

indicated, significant overlapping between the actual and nonsense RMSEP 
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distributions was present. Further, the slope of the best fit line was very close to 

zero. Consequently, the PLS prediction was also not effective in this case. 

6.9.3.5 DISCUSSION AND CONCLUSION 

Meteorological data were analysed to examine the effects of pre-harvest factors 

on post-harvest loss in the VL of cut roses. The data included daily temperature 

(maximum, minimum and average), rainfall level, sunshine period and 

atmosphere pressure. Based on information from the farm’s owner, the pre-

harvest period was assumed to be 6 weeks. 

 

The results in Table 6.15 and Table 6.16 show that both KLS and PLS did not 

perform adequately in modelling pre-harvest temperature. There was significant 

overlap between the actual and nonsense RMSEP distributions; the best fit lines 

for the actual performance were approaching a horizontal line; and the actual R2 

was very small.  

 

For comparison, modelling at the box level led to a better performance than at 

the stem level. This was observed both in KLS and in PLS modelling. The two 

modelling levels differed in one aspect: what was represented by each data 

sample. For a box of cut roses, the flowers were harvested on the same day 

and hence had the same meteorological measurements for 42 days before 

harvest. In box level modelling, that set of meteorological measurements 

corresponds to one vase life loss which was estimated by the average of the 

VLs of the three cut roses from the box that were placed in the incubator. 

However, in stem level modelling, the same set of meteorological 

measurements corresponds to any of the three VLs of the roses in the vase life 

test. In other words, the same values of independent variables (i.e., 

meteorological measurements) had (three) different values of dependent 

variable (i.e., the vase life loss). This “data inconsistency” is believed to be 

responsible for the poorer performance of modelling at the stem level. 

 

In conclusion, KLS and PLS techniques could not make effective estimates of 

the post-harvest loss in VL using pre-harvest air temperature and other 

meteorological measurements. 
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6.10 MODELLING PRE- AND POST- HARVEST TEMPERATURES  

6.10.1 OBJECTIVES AND TECHNIQUES  

This section investigates whether or not combining pre-harvest and post-

harvest temperatures could lead to a better prediction performance. Specifically, 

the modelling in Scenario 1, the office display test period, is re-examined where 

both pre-harvest and post-harvest temperatures are analysed to estimate the 

loss in VL of cut roses. 

 

As in Section 6.9, only KLS and PLS are used in this section. In addition, 

modelling at stem level is not considered as it was shown (Section 6.9) to 

produce poorer performance compared to modelling at box level. 

6.10.2 DATA DESCRIPTION 

In this scenario, pre-harvest meteorological temperature during the growing 

period, and post-harvest temperature recorded during the office display test 

were combined to estimate the post-harvest loss in VL. A detailed description of 

the post-harvest data set was presented in Section 6.7.1. Similarly, pre-harvest 

data were described in Section 6.9.2. The combined pre-harvest and post-

harvest data set contained 60 data samples (two cut roses from each box were 

displayed in the office display test). Each data sample consists of a temperature 

profile and a VL loss. The temperature profile was formed by combining pre-

harvest 42-day meteorological temperature readings with post-harvest 

temperature collected during the office display period. The loss in the VL was 

equal to the initial VL for the box at delivery, which was estimated by averaging 

the VLs of the three stems that were placed in the incubator for the vase life 

test. 

 

KLS modelling was performed with the same parameter settings (lower and 

upper temperature thresholds) as those used in Section 6.7.2.1 for post-harvest 

temperature. For PLS modelling, two scaling strategies including auto-scaling 

(PLS(I)) and zero-mean (PLS(II)) were investigated. 
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6.10.3 RESULTS 

Numerical results of estimating the VL loss using the combined pre-harvest and 

post-harvest temperature are presented in Table 6.17 for KLS and PLS 

techniques. Typical performances of KLS and PLS modelling can be found in 

Appendix B (Figure B. 8 and Figure B. 9) 

 

Table 6.17: Results of pre-harvest and post-harvest  modelling for KLS and PLS. (PLS(I) 
corresponds to results with auto-scaling; PLS(II) c orresponds to results with zero-mean 

scaling) (10000 repetitions) 
Modelling technique RMSEP R2 Slope Intercept 

Predicted output  ∆VL (d) during office display 

(mean = 7.2; min = 2; max = 11) 

Actual 2.2 ± 0.1 0.23 ± 0.03 0.33 ± 0.02 4.87 ± 0.15 

Nonsense 3.0 ± 0.1 0.00 ± 0.00 -0.00 ± 0.02 7.21 ± 0.16 

p-value 0.00 
KLS 

q-value 0.00 
(not applicable) 

Actual 2.2 ± 0.0 0.23 ± 0.02 0.33 ± 0.01 4.81 ± 0.11 

Nonsense 2.3 ± 0.1 0.18 ± 0.04 0.31 ± 0.03 4.97 ± 0.28 

p-value 0.07 

PLS 

(I) 

q-value 0.06 
(not applicable) 

Actual 2.2 ± 0.1 NS – – – 

Nonsense 2.2 ± 0.1 NS – – – 

p-value –  

PLS 

(II) 

q-value – 
(not applicable) 

 

For KLS technique, the inclusion of pre-harvest temperature into the modelling 

slightly lowered the prediction error by 0.1 days (Table 6.4 in Section 6.7.2) at 

the cost of reducing the expected best fit line. 

 

For PLS with auto-scaling (i.e., PLS(I)), the same prediction error was obtained 

with a small improvement in the best fit line (Table 6.5 in Section 6.7.3). 

However, the difference between the actual and nonsense distributions of 

performance statistics became smaller. Effectively, this reduced the statistical 



 228 

confidence in the PLS prediction, as suggested by the increase in p-values and 

q-values. For PLS with mean centering (i.e., PLS(II)), the prediction 

performance was not effective. 

 

Additional results (not shown) from analysing the combined data set of 

temperature during the postal delivery and the office display test periods did not 

lead to any significant improvement in prediction performance for both KLS and 

PLS. 

6.10.4 DISCUSSION 

Comparing between KLS and PLS, both techniques produced similar prediction 

performances for actual data (Table 6.17). All of the performance statistics 

including RMSEP, R2, slope and intercept based on the actual data were virtually 

the same for both KLS and PLS actual performances. Consequently, it may 

seem that there was no better technique between the two. However, inspecting 

their performances on nonsense data argues otherwise. As Table 6.17 shows, 

the KLS nonsense performance reflects the characteristics of nonsense data. 

There is no correlation between the nonsense predictions and the nonsense 

outputs as R2 is zero and the best fit line is a horizontal line at the mean of the 

observed VLs. In contrast, the PLS nonsense performance implied some 

spurious correlation between the nonsense predictions and the nonsense 

outputs. This may be because the number of repetitions of cross-validation 

study was not sufficiently big. Therefore, the statistical distributions of the 

performance indices have not converged to their population distributions.  

 

On the basis of relative improvement over nonsense performances, KLS would 

be preferred to PLS. As shown in Table 6.17, the difference between the actual 

and nonsense performances was much more significant in KLS results than in 

PLS. In fact, from nonsense data to actual data RMSEP was improved by 0.8 d 

using KLS modelling but only 0.1 d using PLS. Similar observations can be 

made for other statistics. 
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Overall, combining the pre-harvest and post-harvest temperatures did not 

significantly improve the KLS and PLS prediction performance, as compared to 

the performance based only on the post-harvest temperature. One of the 

reasons could be that for each box the initial VL, which was estimated by the 

average of the VLs of the three cut rose stems placed in the incubator, could 

have effectively captured the effects of the pre-harvest meteorological 

measurements. As the initial VL was incorporated in the analysis, the 

subsequent inclusion of the pre-harvest measurements could be more or less 

redundant, and hence did not improve the prediction performance. The second 

reason could be that the correlation between the pre-harvest air temperature 

and post-harvest VL was quite weak. This could be inferred from the results of 

modelling the pre-harvest data (Section 6.9).  

 

Although no significant improvement in prediction performance was achieved in 

this case, it should not preclude the use of pre-harvest measurements in any 

subsequent prediction exercise. The reason is that this analysis of pre-harvest 

factors was only a preliminary study. Meteorological conditions, instead of 

actual pre-harvest measurements, were analysed and shown to have a weak 

correlation with post-harvest VL. Since actual pre-harvest measurements 

describe more accurately what happens to the rose plant, it is reasonable to 

expect that using the actual pre-harvest measurements would result in a 

stronger correlation, which could improve the estimation of the post-harvest VL. 

6.11 FURTHER DISCUSSION 

6.11.1 WHY KLS  WAS BETTER THAN PLS AND MLR 

KLS, PLS and MLR represent different modelling strategies that could be used 

in estimating the loss in remaining VLs of cut roses. KLS is a novel technique 

developed from kinetic modelling principles (Chapter 4). PLS, probably the most 

common technique in chemometrics, is based on the regression of a specifically 

chosen subset of linear combinations of the original variables to the target VL. 

MLR is based on the linear regression of the original variables.  
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In Scenario 1, KLS produced the best prediction performance while PLS 

performance may be acceptable; none of the techniques worked in Scenario 2. 

There were three major reasons that may explain the difference in performance 

of the three techniques. The first reason is that PLS and MLR are purely data-

driven while KLS originates from kinetic modelling. The difference in the origins 

here could be a key factor. It is known that important processes (e.g. 

respiration) that could contribute to the loss in remaining VL of cut roses are 

governed by kinetic principle. Some information relevant to the kinetics of these 

processes may have been captured by KLS technique and therefore enabled it 

to perform better at estimating the VL loss. In fact, KLS models are in the forms 

of mathematical vectors of the rates at which the remaining VLs of cut roses 

would diminish at specified temperatures. Based on such KLS models, kinetics 

of VLs of cut roses in terms of temperature can also be deduced. In contrast, 

PLS and MLR were purely mathematical techniques. They are not capable of 

capturing any information regarding the actual chemical processes occurring 

within the flowers. Consequently, this difference could contribute to KLS 

superior performance. 

 

The second reason for better performance in KLS modelling lies in its 

formulation. Both PLS and MLR techniques model the loss in VL of cut roses as 

a linear combination of temperature readings. On the other hand, KLS 

expresses the overall VL loss as the sum of the losses at each temperature 

state. Therefore, PLS and MLR assume the VL loss varies linearly with 

temperature while KLS solves for the (rate of) loss at every temperature state, 

which could be nonlinear. As the literature review in Section 2.3.3 discovered, 

the relationship between temperature stress and VL of cut roses is complex and 

hence unlikely to be linear. On this basis, KLS is more flexible than the other 

two methods. In fact, as KLS solutions indicated (Figure 6.14), the effect of 

temperature on VL of cut roses could very well be nonlinear. As a result, the 

linearity assumption that MLR and PLS make might be partly responsible for 

their worse performance compared with KLS. 

 

The third reason relates to the number of independent variables that each 

modelling technique has to deal with. PLS and MLR models the data along the 
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time axis while KLS does so along the temperature axis. In other words, both 

PLS and MLR designate an independent variable for temperature at each time 

point. This led to the number of independent variables being equal to the total 

number of temperature readings which in turn depended on the time duration 

and the frequency of data collection. On the other hand, KLS only had one 

independent variable for each temperature state, which is a design parameter 

i.e. can be pre-selected. As a result, while both MLR and PLS had to deal with 

more than 240 independent variables, KLS was content with no more than 11. 

This clear advantage in data reduction capability is likely to be an important 

factor contributing to the superiority of KLS over the other two techniques.  

 

In short, KLS outperformed MLR and PLS because:  

1) It is originated from kinetic modelling. 

2) It does not make a linearity assumption for temperature effect on the loss in 

VL. 

3) It has a better capability in data reduction and hence a KLS model has fewer 

independent variables. 

6.11.2 VASE LIFE ESTIMATION USING POST -HARVEST TEMPERATURE 

Using the Cookes Rose data set, this chapter investigated the hypothesis of 

using post-harvest temperature to estimate the corresponding loss in the 

remaining VL of cut roses. With regard to this objective, the study has 

compared the prediction performance of KLS, PLS and MLR using the actual 

data, with the performance obtained from the permutated nonsense data. 

Results from KLS, the best of the three techniques, show that there were 

distinct differences between the two actual and nonsense performances. This 

indicates that the VL loss estimates based on post-harvest temperature are 

better than nonsense guesses. In other words, post-harvest temperature data 

contain embedded information that is useful in estimating the vase life loss.  

 

In addition, meteorological data were also used to build models for estimating 

the loss in VL in Scenario 1 but their performance was not effective. This was 

because significant overlap between the actual and nonsense RMSEP 
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distributions was present. Nevertheless, in some cases the RMSEP based on 

the actual data was better than that based on the nonsense data. As a result, 

there was some correlation between the pre-harvest meteorological conditions 

and the loss in VL of cut roses but it was too weak for an effective prediction 

performance 

 

In summary, while other conditions such as pre-harvest meteorological 

temperature may also play a part, post-harvest temperature was a major factor 

in estimating the post-harvest loss in the VL of cut roses. 

6.11.3 COMPARISON BETWEEN SCENARIOS 1 AND 2 

Scenario 1 corresponded to the office display test, where cut roses were placed 

in vases and observed until they died. This scenario had the most complete 

data set, which consisted of initial VLs (estimated by the VL test), final VLs =0 

(displayed until death), and the temperature stress during the office display test 

(recorded by attached data loggers). By contrast, Scenario 2 corresponded to 

the postal delivery period where the flowers were transported from Cookes 

Rose Farm to the University of Manchester. For practical reasons, initial VLs to 

this period were not known and hence the data set in Scenario 2 was 

incomplete. Although an assumption about initial VLs could be made, the lack of 

real data seemed to be the major reason as to why overall prediction 

performance in Scenario 1 was better than in Scenario 2. 

6.12 CHAPTER CONCLUSION 

In this chapter, KLS, PLS and MLR modelling techniques were used to analyse 

the Cookes Rose data set. Two post-harvest scenarios were considered, 

including Scenario 1, the office display period, and Scenario 2, the postal 

delivery period. The conclusion is that in Scenario 1, where a complete data set 

was available, KLS performed better than PLS and MLR. In Scenario 2, where 

the initial VLs were not available, KLS, PLS and MLR performances were all 

inadequate.  
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The study also concludes that effective estimates of post-harvest VL could be 

obtained based on post-harvest temperature. In addition, preliminary analysis 

indicated that pre-harvest meteorological temperature appeared to contain 

information that is predictive of the post-harvest loss in the VL of cut roses, but 

the correlation was too weak for an effective estimation.  
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7 AN INTERNATIONAL CHILLED SUPPLY CHAIN 

CASE STUDY 

============================================================ 

 

This chapter analyses the data collected from an experiment with World 

Flowers Ltd. During the experiment, boxes of cut roses of Tropicana, Red 

Calypso and Armani varieties were transported in a chilled supply chain from a 

farm in Kenya to a distribution centre in Hook (UK). For each box of flowers, two 

VL tests were performed; one was at the farm and the other was at the 

distribution centre. Pre-harvest measurements including growing temperature, 

rainfall and radiation levels were retrieved from records at the farm. Post-

harvest temperature was collected using RFID tags and data loggers. KLS and 

PLS techniques were used to analyse the data. 

 

A number of modelling scenarios and sub-scenarios were considered. Based on 

input data, there were three scenarios including modelling pre-harvest 

measurements, modelling post-harvest temperature, and modelling the 

combination of pre- and post-harvest temperatures. In terms of the estimated 

output, there were three sub-scenarios corresponding to estimating the VL at 

the farm, the VL at the distribution centre and the loss in VL (i.e. the difference 

between the two VLs). It was found that the growing temperature could be used 

to obtain effective estimates of the VLs at the farm, at the distribution centre and 

the in-between loss; using post-harvest temperature would lead to a smaller 

prediction error for the VL at the distribution centre and the VL loss. In addition, 

combining both pre-harvest and post-harvest temperatures led to a slight 

improvement in KLS estimates but not in PLS ones. Nevertheless, the 

estimates of the VL loss may still not be useful practically due to the excessive 

relative prediction error. Overall, KLS was more robust than PLS in modelling 

post-harvest temperature although the latter seemed to have a smaller 

prediction error. 

_______________________________________________________________
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7.1 BACKGROUND  

This chapter investigates a chilled supply chain of cut roses from a Kenyan farm 

to a distribution centre in United Kingdom. At one end of the supply chain is the 

Oserian farm which is located close to Lake Naivasha in Kenya; its area is 

about 84 hectares, which makes it the largest flower farm in Kenya. At the other 

end is the distribution centre owned by World Flowers Ltd, which is located in 

Hook, Hampshire (UK). Boxes of different varieties of cut roses were 

transported in 40-ft trailers to Nairobi airport, which is about 126 km from the 

farm. The flower boxes were then flown to either the UK or the Netherlands and 

then trucked to the distribution centre in Hook. The whole journey took 

approximately 2-3 days but substantial variation (in the duration) was possible, 

due to the changes in destination airport. 

7.2 OBJECTIVES AND SCOPE OF THE STUDY  

As part of the overall work, this chapter continues investigating the hypothesis 

of estimating the loss in remaining VL of cut roses using post-harvest 

temperature stress. This chapter uses KLS and PLS to analyse the 

experimental data collected from the Oserian-to-Hook chilled supply chain. 

 

In terms of scope, this chapter continues focusing on analysing post-harvest 

temperature stress. However, results in the previous chapter have shown that 

pre-harvest weather conditions may correlate, albeit weakly, with the remaining 

VL of cut roses. Consequently, this chapter also considers thoroughly all pre-

harvest factors that are available from the greenhouses at the farm.  

 

This study consists of two parts: data collection and data analysis. In the data 

collection experiment, boxes of cut roses were transported from the farm in 

Kenya to the distribution centre in Hook (UK). Throughout this experiment, 

various data such as post-harvest temperature, remaining VL at the farm and at 

the distribution centre, and other pre-harvest and at-harvest measurements 

were collected. Details of the data collection experiment are explained in 
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Section 7.3; the modelling scenarios and techniques are described in Section 

7.5. Results from the data analysis are presented and discussed in Sections 7.7 

– 7.9, which is followed by discussions (Section 7.10) and conclusions (Section 

7.11). 

7.3 EXPERIMENTAL METHOD AND EQUIPMENT  

7.3.1 OVERVIEW 

The purpose of the experiment was to collect relevant data that could be used 

to estimate the post-harvest loss in the remaining VL of cut roses. The 

experiment consisted of four stages including pre-harvest growing period, post-

harvest transport and storage, the VL test at the farm and the VL test at the 

distribution centre. The order of these stages is described in Figure 7.1 below. 
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Figure 7.1: Different stages in the World Flowers d ata collection experiment 

Oserian farm 
(Kenya) VL test  at Hook 

distribution centre 
• Temperature: said 
to be controlled at 20 oC 

• Humidity: unknown 

Transport and storage of 
cut flowers 

• Transport by trucks 
and airplanes for 2-3 days 

• Storage at Hook 
distribution centre 

VL test at Oserian farm 
• Temperature: ~20 oC 
• Humidity: ~ 70% 

Growing period  
• Up to 6 weeks 
before harvest 
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7.3.2 MATERIALS AND EQUIPMENT  

The data collection experiment involved three rose cultivars including 

Tropicana, Calypso and Amani. Photos of these rose cultivars are shown in 

Table A. 2 in Appendix A. Two boxes of cut roses were delivered from the farm 

to the distribution centre almost every day from 17/06/2008 to 23/10/2008.  

 

iButton data loggers (DS1921L-F52), products of Maxim Integrated Products 

Ltd (http://www.maxim-ic.com/), were used to record temperature 

measurements. The data loggers were programmed to record a temperature 

measurement every 30 min. These loggers were activated at the University of 

Manchester and then sent to the farm. One data logger was placed on the 

middle layer in the centre of every box.  

 

MTsens RFID tags were used in many occasions in this study to demonstrate 

the concept of employing a wireless sensor network for data collection. The tag 

is a semi-passive RFID tag that is marketed by Montalbano technology Ltd. 

(http://www.montalbanotechnology.com/) and is designed to monitor the 

temperature of perishable products. 

 

An RS-1365 temperature and humidity meter, which was described in Section 

6.3.2, was also used to validate the accuracy of the data loggers and the 

MTsens RFID tags. 

7.3.3 EVALUATION OF REMAINING VL  

As described in Section 1.2.3, remaining VL is defined as the time period that a 

cut rose takes under a pre-specified standard condition to reach the end of its 

useful life. For the flower industry, the display temperature for the reference 

condition is  20 oC (Floral Solutions 2006).  

 

During the data collection experiment, for each box of cut roses being studied 

two VL tests were performed; one was at the farm and the other was at the 

distribution centre. Detailed procedure of the tests was described in (Floral 
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Solutions 2006). It should be noted that in the tests, subjective criteria were 

used to determine when a flower was dead, and the exercise was performed 

once a day. Consequently, the vase life test results were subject to a 

measurement resolution of 1 d. 

7.4 DESCRIPTION OF EXPERIMENTAL DATA  

Figure 7.2 summarises the data that were collected at the different stages of the 

experiment. For the pre-harvest growing period, meteorological measurements 

including daily maximum, minimum and average temperature (oC), daily rainfall 

(mm) and daily radiation (J/cm2) between 01/05/2008 and 19/11/2008 were 

recorded. In addition, the at-harvest conditions including temperature, humidity 

and lighting condition were also measured. From a randomly selected box of cut 

roses, a bunch, which consisted of 12 stems, was weighted and subjected to a 

VL test at the farm. A data logger was placed within the selected box to record 

the post-harvest temperature stress during the transport from the farm to the 

distribution centre and during subsequent storage. At the end of the storage 

period, one bunch consisting of 12 stems was subjected to a VL test at the 

distribution centre. Table 7.1 tabulates the data that were collected during the 

experiment. 
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Figure 7.2: Data collected at different stages in t he World Flowers case study 

Oserian farm 
(Kenya) VL test  at the 

distribution centre 
• Remaining VL at 
distribution centre 

Transport and storage 
of cut flowers 

• Temperature 

VL test  at farm  
• Remaining VL at the 
farm 

Growing period 
• Temperature, 
rainfall and radiation 

At harvest 
• Temperature, 
humidity, fresh 
weight and lighting 
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Table 7.1: Experimental data collected during the W orld Flowers case study 
Data and quantity Description 

Pre-harvest data 

• Up to 6 weeks (i.e. 42 daily 

measurements) before 

harvest 

The measurements included daily maximum, 

minimum, and average temperature, daily 

rainfall and daily radiation. 

At-harvest data  

• 154 sets of measurements 

The measurements included harvest time, 

temperature, humidity, lighting condition and 

fresh weight 

Data loggers were used. One profile 

corresponded to a box of cut roses. 

Post-harvest temperature 

stress during transport and 

storage 

• 154 temperature profiles 

by data loggers. 

• 97 temperature profiles by 

RFID tags. 

RFID tags were used. Each box had one 

RFID tag in addition to a data logger. 

However, due to the limited number (10) of 

the RFID tags, many boxes only had one 

data logger i.e., without an MTsens RFID tag. 

Post-harvest humidity stress 

during transport 

• 3 humidity profiles 

Humidity was recorded for 3 boxes from two 

different harvest by data loggers  

VL at the farm 

• 154 sets 

VL at the distribution centre  

• 154 sets 

A set is consisted of daily observations of 12 

cut roses until 6 of them were judged as 

dead. Average temperature and humidity 

during the test were also recorded. 

 

7.5 MODELLING OVERVIEW  

7.5.1 MODELLING OBJECTIVE  

The modelling objective in this chapter is similar to that of Chapter 6; i.e., to 

obtain a model that captures the effect of post-harvest temperature stress on 

subsequent changes in the VL of cut roses. Moreover, as had been found in 

Chapter 6, the pre-harvest conditions could potentially provide meaningful 
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estimates of the post-harvest loss in the VL of cut roses. Consequently, the 

effects of such measurements in the estimation are also investigated. 

7.5.2 ASSUMPTIONS 

This study made two major assumptions. The first assumption was that the 

bunches of cut rose stems which were subjected to the VL tests were 

representative of the box from which they were removed. In essence, this 

assumption neglected the potential variation in the remaining VL of cut roses 

within a box. As a result, before leaving the farm, the cut roses would have the 

same remaining VL, which was evaluated by the VL test at the farm; at the end 

of the storage period, the cut roses would have the same VL, as evaluated by 

the VL test at the distribution centre. This assumption was necessary so that the 

initial and final remaining VLs of the (transport and storage) period under study 

could be estimated and used in subsequent modelling. 

 

The second major assumption was that the temperature recorded by a data 

logger was representative of the box to which the logger was attached. 

Essentially, the assumption neglected the temperature variation within a box. 

However, as shown in Section 7.6.3 this assumption was not validated. 

7.5.3 MODELLING SCENARIOS  

There are two ways to group the modelling scenarios in this chapter; one is 

based on the input data and the other is based on the output information. From 

the viewpoint of input data, the major modelling scenarios in this chapter were: 

I. Scenario 1: using the pre-harvest (and at-harvest) measurements. 

II. Scenario 2: using the post-harvest temperature stress. 

III. Scenario 3: using both the pre-harvest (including at-harvest) 

measurements as well as the post-harvest temperature. 

In turn, based on the output to be estimated, the three major sub-scenarios 

were: 

a. Estimating the remaining VL at the farm immediately before dispatching. 

b. Estimating the remaining VL at the end of the storage period at the 

distribution centre. 
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c. Estimating the post-harvest loss in VL during transport from the farm to 

the distribution centre and during the subsequent storage. 

Except for the combinations of II.a and III.a, all other combinations of modelling 

scenarios were considered and are indicated by a tick mark in Table 7.2. The 

exceptional combinations (II.a and III.a) are marked by a cross (X) in Table 7.2 

and were not considered. The reason is that the remaining VL of cut roses at 

the farm and the post-harvest conditions during transport and storage of the 

flowers are independent. The remaining VL at the farm is only influenced by the 

factors that affect the flowers before leaving the farm; in contrast, the post-

harvest conditions only affect the flowers after leaving the farm.  

 

Table 7.2: Summary of modelling scenarios considere d 
 

I. Scenario 1 – 

Pre-harvest 

modelling 

II. Scenario 2 

– Post-harvest 

modelling 

III. Scenario 3 – 

Pre- and Post-

harvest 

modelling 

(a) Remaining VL at the 

farm  
  

(b) Remaining VL at the 

distribution centre    

(c) The loss in the 

remaining VL during 

transport and storage 
   

 

7.5.4 MODELLING TECHNIQUES 

In this chapter, KLS and PLS techniques are used for data analysis. Details of 

their mathematical formulations and the solution techniques were described in 

Chapter 4 for KLS and Chapter 3 for PLS.  

 

Results in Chapter 6 had consistently indicated that MLR performance was 

inferior to that of PLS, and hence MLR technique was not considered. 

Input scenario 

Output sub-scenario 
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7.5.5 PERFORMANCE EVALUATION  

The approach to performance evaluation was described in detail in Section 3.2. 

Basically, it involves the evaluation of R2, RMSEP, and the slope and intercept of 

the best fit line on the predictions in a (double) cross validation strategy. 

 

Permutation testing was performed to obtain the lower performance limits for R2, 

RMSEP, and the slope and intercept of the best fit line. Details of permutation 

testing are described in Section 3.2. 

7.6 DATA RELIABILITY  

7.6.1 TEMPERATURE MEASUREMENTS 

7.6.1.1 DATA LOGGERS 

The accuracy of data loggers has been investigated in Section 6.6.1. The 

conclusion was that only 74.6% of the data logger readings were within 1 oC of 

the corresponding RS-1365 meter (Section 6.3.2). 

7.6.1.2 RFID TAGS 

10 MTSens RFID tags and an RS-1365 meter were used to generate data for 

validating the reliability and accuracy of the RFID tag measurements. All 

devices, RFID tags and the RS-1365 meter, were placed at the same location 

(within 10 cm of each other) and recorded 26 readings at frequency one reading 

per 15 min.  

 

Analysis of variance (ANOVA) for the readings from the RFID tags resulted in a 

p-value of 0.9999, suggesting that the readings had the same mean. This meant 

that the RFID measurements were consistent with each other and hence were 

considered to be reliable.  

 

The difference between the readings from each of the RFID tags and the 

corresponding ones from the RS-1365 meter was evaluated. Figure 7.3 shows 

the box plot and the distribution of all of the deviations with their statistics. As 

can be seen, the deviations were likely to be negative, indicating that the RFID 
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readings were smaller than the corresponding readings from the RS-1365 

meter. Numerical results showed that only 45% of the RFID readings were 

within 1 oC difference from that of the RS-1365 meter; 94% were within 2 oC 

difference. This suggested that the RFID tags were ±2 oC accurate. This is in 

contrast with the product datasheet for MTsens RFID tags, available online at 

http://www.montalbanotechnology.com/images/docs/MTSENS-BROCHURE-

EN.pdf, which states that the tag accuracy is ±1 oC. 

 

 
Figure 7.3: Deviation of the readings by MTsens RFI D tags from the readings from the 

RS-1365 meter 
 

The above exercise was also repeated at higher data collection frequency (1 

reading per min). Analysis of the collected data led to a similar conclusion and 

hence was omitted. 

7.6.2 REMAINING VASE LIFE MEASUREMENTS  

As explained earlier, the variation in remaining VL within one box was assumed 

to be negligible. The assumption implied that the flowers in the same box had 

the same remaining VL at the farm and the same remaining VL at the end of the 
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storage period at the distribution centre. Consequently, due to post-harvest 

deterioration during transport and subsequent storage, the flowers would have 

shorter VLs at the end of the storage period than at the farm. Figure 7.4 shows 

both remaining VLs for all Tropicana samples. While most were consistent with 

the assumption, a few samples showed contradiction: the VL at the farm was 

shorter than at the distribution centre. Clearly, the assumption of negligible 

variation in VL of cut roses within a box was not reasonable in those cases. This 

is because the roses may have different growing conditions and other biological 

factors such as plant age. The more significant the variation was, the less 

accurate the estimate of the VL by any deterministic value would be, which as a 

consequence led to observations that were inconsistent with the assumptions. 

As the factors that lead to the VL variation within a box were not within the 

scope of this study, it was not possible to include the inconsistent samples in 

the subsequent data analysis. Consequently, those samples were removed 

before data analysis was performed. 

 

 
Figure 7.4: Remaining VL of cut roses at the farm a nd at the distribution centre; the 

samples that were inconsistent with the assumption of negligible variation in the 
remaining VL within a box are indicated. 
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7.6.3 TEMPERATURE VARIATION IN A BOX OF CUT ROSES  

Variation of temperature within a box of cut roses was investigated. Nine data 

loggers were placed at different positions in a box of cut roses which departed 

Nairobi at 02:25 hours on the 26th June 2008 and arrived in Hook at 22:00 hours 

on the same day. Figure 7.5 illustrates the physical locations of the data loggers 

in the box. The first data logger was placed at one layer from the top of the box 

and toward one end. The second logger was one layer further down and toward 

the centre of the box. The third, fourth and fifth data loggers were one layer 

from the bottom of the box, where the remaining loggers were located. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The box plots from analysis of the data are shown in Figure 7.6. Analysis of 

variance gave a p-value of 0.0, which strongly suggested that temperature 

varied across the box of cut flowers. 
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1 

Figure 7.5: Physical locations of the nine data loggers in a box of 
cut roses 
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Figure 7.6: Analysis of temperature readings from 9  data loggers placed at different 

positions in the same box of cut roses. 
 

The exercise was repeated for another box of cut roses with different data 

loggers. The collected data was analysed and a similar result was obtained. 

Therefore, it was concluded that temperature variation within a box was 

significant.  

 

A notable trend in Figure 7.6 is that except for the third data logger, the average 

temperature of the other loggers seemed to decrease from the first logger to the 

ninth. Referring to the physical location in the box (Figure 7.5), this suggested 

that temperature decreased from the top to the bottom of the box of cut roses. 

However, this trend was not confirmed using data from the repeated exercise. 

7.7 SCENARIO 1 – MODELLING PRE-HARVEST CONDITIONS 

As described in Section 7.5.3, analysis of pre-harvest and at-harvest data was 

performed in Scenario 1.  The data consisted of pre-harvest daily 

measurements including average growing temperature, rainfall and radiation, 
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and at-harvest measurements including temperature, humidity, lighting and 

fresh weight (Table 7.1). The objective was to examine the effect of the pre-

harvest and at-harvest conditions on the remaining VL just before leaving the 

farm and on the remaining VL at the distribution centre. 

 

Scenario 1 led to a number of sub-scenarios studying the effects of two 

parameters including data input and the size of the historical window. The 

former parameter referred to whether only pre-harvest temperature data or all 

pre-harvest and at-harvest data were analysed. The latter controlled how far 

back from harvest the pre-harvest data would be included in the analysis. Up to 

6 weeks of pre-harvest data were available but it would not be necessary nor 

optimal to analyse all. The three values of this parameter that were considered 

were 2, 4 and 6 weeks. 

7.7.1 EXPLORATORY STUDY 

7.7.1.1 IS THERE A TREND IN PRE-HARVEST DATA?  

 
Figure 7.7: Variation in growing temperature during  pre-harvest period (01/05-23/10) 
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Maximum, minimum, 12 hour-average and whole-day average growing 

temperatures during pre-harvest period (01/05/2008 – 23/10/2008) are shown in 

Figure 7.7. The figure indicates that the average temperatures were stable 

around 15 oC with little variation. On the other hand, the daily maximum and 

minimum temperatures experienced more fluctuations from day to day but 

showed no sign of any trend on a bigger time scale such as from month to 

month. 

 

Figure 7.8 shows similar information for daily average rainfall and radiation 

level. While no clear trend could be identified for the daily radiation 

measurements, the rainfall data confirm the existence of a rainy season which 

started in late July and was in full effect from late August till the end of the study 

period (23/10/2008). 

 
Figure 7.8: Daily rainfall and radiation level duri ng pre-harvest period 

 

7.7.1.2 IS THERE A TREND IN VL MEASUREMENTS AGAINST HARVEST TIME?  

Figure 7.4 plots remaining VL evaluated at the farm and at the distribution 

centre against the date of harvest. As shown, variation in longevity of cut roses 
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across seasons was not obvious. However, it seemed that the roses that were 

harvested after the beginning of September appeared to last longer. Statistical 

hypothesis testing confirmed that the average VL of those flowers harvested 

before September was slightly smaller than those harvested from September 

onward. This conclusion applies to both VL at the farm and VL at the distribution 

centre. Interestingly, the harvests of longer lasting roses seems to coincide with 

the full onset of the rainy season, considering that the growing period is typically 

up to 6 weeks. Consequently, rainfall level during the growing period could be 

an important factor that correlates with the post-harvest VL of cut roses. 

7.7.1.3 IS THERE A CORRELATION BETWEEN PRE-HARVEST DATA AND VL? 

 
Figure 7.9: PCA score plots based on 4-week pre-har vest growing temperature. The first 

three PCs captured 54% variance. Data was grouped a ccording to ranges in VL at the 
farm 

 

PCA was performed on pre-harvest and at-harvest measurements, and the 

scores were grouped according to the corresponding VL at the farm, at the 

distribution centre and according to the loss in VL due to transport, which was 

the difference between the two VL values.  
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Initially, only growing temperature during the 4 weeks prior to harvest was 

analysed. Figure 7.9 shows representative results for Tropicana samples. In the 

figure, the scores were grouped according to VL at the farm. As can be seen, 

the indication from the figure was that the pre-harvest temperature 

measurements did not seem to have any correlation with the remaining VL 

evaluated at the farm.  

 

Adding other measurements such as rainfall level and radiation did not reveal 

any correlation between the pre-harvest measurements and the remaining VL. 

Neither did varying the size of the historical window (from 4 to 6 or 2 weeks). 

Similar analysis with grouping in VL at the distribution centre or in the loss in VL 

led to a similar conclusion. 

7.7.2 KLS  PERFORMANCE 

7.7.2.1 SETTING PARAMETERS 

Figure 7.10 shows the variation of the daily average growing temperature at the 

farm from 01/05/2008 to 23/10/2008. From this figure, the lower and upper 

temperature bounds for KLS modelling were set at 14 oC and 17 oC 

respectively. The temperature step was set at 0.5 oC. 
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Figure 7.10: Variation in pre-harvest daily average  temperature 

 

7.7.2.2 ESTIMATING REMAINING VL AT THE FARM 

Following the procedure described in Section 4.4, KLS was applied to daily 

average growing temperatures to estimate the remaining VL at the farm. Cross 

validation (with 10testN =  segments) was repeated 10000 times and RMSEP, R2 

and the slope and intercept of the best fit lines were evaluated. A typical KLS 

performance is shown in Figure 7.11 for Tropicana variety. Permutation testing 

was also carried out to obtain the corresponding nonsense distributions of the 

same statistics. The whole procedure was repeated for three varieties including 

Tropicana, Red Calypso and Amani at three different sizes of data window: 2, 4 

and 6 weeks. Figure 7.12 plots KLS performance for Tropicana based on 2-

week pre-harvest temperature data. Prediction performance (as measured by 

RMSEP) in every case is summarised in Table 7.3. 
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Figure 7.11: A typical KLS performance in estimatin g (Tropicana) VL at the farm based on 

2-week pre-harvest temperature measurements. 
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Figure 7.12: Cross-validated KLS performance in est imating (Tropicana) VL at the farm 
based on 2-week pre-harvest temperature measurement s. Blue distributions represent 

the actual performance; Red distributions show the nonsense performance from 
permutation testing. Y-axes show statistical densit ies of the performance indices. 

 

Figure 7.12 and Table 7.3 show that the estimates from KLS modelling were 

effective (Section 3.2.4). The distinction between the actual and nonsense 

distributions of the performance indices was visible in Figure 7.12. Further 

statistical tests confirmed that the actual errors were smaller than the nonsense 

ones for all but one case (Amani with 6-week data). All of the p-values and q-

values (shown in Table 7.3) were small except for those of Amani variety with 6-

week data, which were not evaluated because the estimation was not 

significant. Considering that the results of the VL tests had a resolution of 1 d, 

an estimation error of 1.3-2.0 d (Table 7.3) may seem reasonable. However, the 

linear correlation between the predicted and observed VLs was not very strong 

as indicated by R2 statistic. 

 

Further, Table 7.3 also shows the effect of pre-harvest window size on the VL 

estimation of KLS. The worst performance came from the modelling of 6-week 

pre-harvest growing temperature, which produced the biggest estimation errors 
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in each of the three varieties. For the other two window sizes, 2 weeks and 4 

weeks, there was little difference although the latter outperformed the prior in 

estimating VL of Tropicana cut roses. 

 

Table 7.3: RMSEP in KLS estimation of VL at the farm using growing temperature 
Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 2.0 ± 0.1 1.8 ± 0.1 2.0 ± 0.1 

Nonsense 2.2 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 

p-value 0.06 0.00 0.00 

Tropicana 

(average VL=15.7 d; 

min=13 d; max=19 d) 
q-value 0.09 0.00 0.00 

Actual 1.3 ± 0.0 1.3 ± 0.0 1.6 ± 0.0 

Nonsense 1.9 ± 0.1 1.9 ± 0.0 1.8 ± 0.0 

p-value 0.00 0.00 0.00 

Red Calypso 

(average VL=15.4 d; 

min=13 d; max=18 d) 
q-value 0.00 0.00 0.00 

Actual 1.3 ± 0.0 1.3 ± 0.0 1.5 ± 0.0NS 

Nonsense 1.6 ± 0.0 1.5 ± 0.0 1.5 ± 0.0NS 

p-value 0.00 0.01 - 

Amani 

(average VL=15.9 d; 

min=14 d ; max=18 d) 
q-value 0.00 0.00 - 

(NS: not significant i.e. the mean of the actual distribution is not smaller than that 

of the nonsense one at 5% significant level; see Section 3.2.4) 

 

Across the three varieties Tropicana had the biggest estimation error. This may 

suggest that the correlation between Tropicana VL and the pre-harvest 

temperature was weaker, compared to that of Red Calypso and Amani. 

Consequently, for the same pre-harvest temperature, the Tropicana variety had 

greater variation in VL at the farm than that of the other two.  

7.7.2.3 ESTIMATING REMAINING VL AT THE DISTRIBUTION CENTRE 

Similarly, KLS was also used to estimate the remaining VL at the end of the 

storage period at the distribution centre based on the growing temperature. A 

similar procedure was carried out and results are tabulated in Table 7.4. 
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Table 7.4: RMSEP (d) in KLS estimation of VL at the distribution ce ntre using growing 
temperature 

Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 1.9 ± 0.1 NS 1.8 ± 0.0 NS 1.8 ± 0.0 NS 

Nonsense 1.9 ± 0.1 NS 1.9 ± 0.0 NS 1.7 ± 0.0 NS 

p-value - - - 

Tropicana 

(average VL=12.5 d; 

min=7 d; max=16 d) 
q-value - - - 

Actual 1.2 ± 0.0 NS 1.2 ± 0.0 NS 1.2 ± 0.0 NS 

Nonsense 1.2 ± 0.0 NS 1.3 ± 0.0 NS 1.2 ± 0.0 NS 

p-value - - - 

Red Calypso 

(average VL=12.7 d; 

min=10 d; max=14 d) 
q-value - - - 

Actual 2.7 ± 0.1 NS 2.5 ± 0.0 2.6 ± 0.1 

Nonsense 2.8 ± 0.1 NS 2.6 ± 0.1 2.8 ± 0.1 

p-value - 0.05 0.04 

Amani 

(average VL=11.4 d; 

min=6 d; max=15 d) 
q-value - 0.05 0.04 

 

The results suggest that the KLS technique did not perform well. In most cases, 

on average the actual RMSEP was not smaller than its nonsense counterpart. 

The only two exceptions were in the Amani variety with 4 and 6 weeks of pre-

harvest temperature data. In those cases, the means of the actual RMSEP were 

smaller than the means of the nonsense distributions. This suggested that the 

VL estimates were better than nonsense. In addition, the corresponding p-

values and q- values were also small, indicating little overlap between the actual 

and nonsense distributions and hence high statistical confidence in the 

estimation. 

7.7.2.4 ESTIMATING THE LOSS IN REMAINING VL DURING TRANSPORT 

Similarly, based on the growing temperature KLS was also used to estimate the 

post-harvest loss in VL during the transport of cut roses from the farm to the 

distribution centre and the subsequent storage there until the VL test took place. 

The results are tabulated in Table 7.5. 
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Table 7.5: RMSEP (d) in KLS estimation of the loss in VL during chi lled transport and 
storage using growing temperature 

Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 2.3 ± 0.0 NS 2.1 ± 0.1 2.0 ± 0.1 

Nonsense 2.0 ± 0.1 NS 2.2 ± 0.1 2.3 ± 0.1 

p-value - 0.23 0.01 

Tropicana 

(average loss in VL = 

3.2 d; min=1 d; 

max=9 d) q-value - 0.25 0.00 

Actual 1.8 ± 0.1 1.7 ± 0.0 1.8 ± 0.0  NS 

Nonsense 2.1 ± 0.1 2.0 ± 0.1 1.9 ± 0.0  NS 

p-value 0.02 0.00 - 

Red Calypso 

(average loss in VL = 

2.7 d; min=1 d; 

max=7 d) q-value 0.00 0.00 - 

Actual 3.0 ± 0.1 2.8 ± 0.1 2.8 ± 0.0 

Nonsense 3.2 ± 0.1 3.0 ± 0.1 3.2 ± 0.1 

p-value 0.21 0.00 0.00 

Amani 

(average loss in VL = 

4.5 d; min=1 d; 

max=10 d) q-value 0.29 0.00 0.00 

 

Results in Table 7.5 show that the actual RMSEP distribution was significantly 

smaller than the nonsense for Amani and possibly Red Calypso but not for 

Tropicana roses. Further, the excessive p-values and q-values for the Amani 

variety with 2-week data indicated that there was significant overlapping 

between the actual RMSEP distribution and the nonsense one, and hence the 

estimates had low statistical confidence. For other Amani and Red Calypso 

cases, the p-values and q-values were low, which suggested high statistical 

confidence in the estimation. Given that the average loss in VL of Amani roses 

was about 4.5 d (min=1; max=10 d), an average RMSEP of 2.8 d may not be 

very useful. For Red Calypso roses, which had an average VL loss of 2.7 d 

(min=1; max=7 d), the estimation errors were 1.7-1.8 d. Considering that the 

data for the remaining VL was subject to a measurement resolution of 1 d, 

further improvement on the estimation error may require vase life data of better 

quality.  
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7.7.3 PLS PERFORMANCE 

7.7.3.1 PLS IMPLEMENTATION 

In addition to the analysis with all available data, PLS analysis with only 

temperature data is also carried out for comparison purposes as KLS can only 

work with temperature data. Consequently, two sub-scenarios are explored, 

including:  

1) Applying PLS to only the growing temperature.  

2) Applying PLS to all pre-harvest data.  

In both sub-scenarios, double cross validation (Section 3.2.2) is performed to 

identify the optimal number of PLS factors and to assess the prediction 

performance.  

7.7.3.2 ESTIMATING REMAINING VL AT THE FARM 

Using only growing temperature 

The prediction errors obtained when using PLS to estimate the remaining VL of 

cut roses at the farm are presented in Table 7.6 for growing temperature only. 

The p-values and q-values of the actual and nonsense RMSEP distributions are 

also shown. A typical PLS performance is presented in Figure 7.13. 

 

As shown in Table 7.6, for all combinations of varieties and pre-harvest window 

sizes, the means of the actual RMSEP distributions were smaller than the means 

of the corresponding nonsense distributions. However, in two combinations 

including Tropicana with 2-week data and Amani with 2-week data, high p-

values and q-values existed, indicating significant overlap between the actual 

and nonsense distributions. Moreover, the R2 statistic was small (ca. 0.1), 

indicating that the linear correlation between the predicted and observed VLs 

was not very significant. 
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Figure 7.13: A typical PLS performance in estimatin g (Tropicana) VL at the farm based on 

4-week pre-harvest temperature measurements. 
 

 

Table 7.6: RMSEP in PLS estimation of VL at the farm using growing temperature 
Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 2.1 ± 0.1 2.0 ± 0.2 2.0 ± 0.1 

Nonsense 2.2 ± 0.1 2.3 ± 0.1 2.4 ± 0.1 

p-value 0.31 0.05 0.02 

Tropicana 

(average VL=15.7 d; 

min=13 d; max=19 d) 
q-value 0.42 0.02 0.00 

Actual 1.4 ± 0.1 1.5 ± 0.1 1.3 ± 0.1 

Nonsense 1.8 ± 0.1 1.9 ± 0.1 2.0 ± 0.1 

p-value 0.01 0.02 0.00 

Red Calypso 

(average VL=15.4 d; 

min=13 d; max=18 d) 
q-value 0.00 0.00 0.00 

Actual 1.5 ± 0.1 1.1 ± 0.2 1.1 ± 0.1 

Nonsense 1.6 ± 0.0 1.8 ± 0.1 1.8 ± 0.1 

p-value 0.12 0.00 0.00 

Amani 

(average VL=15.9 d; 

min=14 d; max=18 d) 
q-value 0.43 0.00 0.00 
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Using all pre-harvest data 

All the pre-harvest data including growing temperature, radiation and rainfall 

levels were analysed, and the results for PLS performance are tabulated in 

Table 7.7. The results show that the mean of the actual RMSEP distribution was 

smaller than that of the nonsense distribution for all combinations of varieties 

and window sizes studied. However, significant overlaps between the two 

distributions were present in three combinations including Amani with 2-week 

data and Tropicana with 2- and 4-week data.  

 

Table 7.7: RMSEP (d) in PLS estimation of VL at the farm using all pre-harvest 
measurements 

Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 2.1 ± 0.5 2.1 ± 0.2 1.9 ± 0.2 

Nonsense 2.6 ± 0.1 2.4 ± 0.1 2.6 ± 0.1 

p-value 0.06 0.12 0.02 

Tropicana 

(average VL=15.7 d; 

min=13 d; max=19 d) 
q-value 1.00 0.40 0.00 

Actual 1.4 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 

Nonsense 2.0 ± 0.1 1.9 ± 0.0 2.1 ± 0.1 

p-value 0.00 0.00 0.00 

Red Calypso 

(average VL=15.4 d; 

min=13 d; max=18 d) 
q-value 0.00 0.00 0.00 

Actual 1.3 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 

Nonsense 1.5 ± 0.1 1.7 ± 0.1 1.7 ± 0.0 

p-value 0.14 0.00 0.00 

Amani 

(average VL=15.9 d; 

min=14 d; max=18 d) 
q-value 0.80 0.00 0.00 

 

In terms of input data, the tabulated results (Table 7.6 and Table 7.7) suggest 

that using all pre-harvest measurements seemed to produce a smaller 

estimation error than using only growing temperature. The most significant 

difference was observed in the Red Calypso variety. Using all pre-harvest data 

with window sizes of 4 and 6 weeks led to estimation errors of 1.0 and 0.8 d 

respectively. On the other hand, using only growing temperature gave errors of 

1.5 and 1.3 d with the same window sizes. This suggested that additional data 

such as rainfall level and radiation intensity seemed to improve the PLS 
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estimation performance. This conclusion appears to agree with an earlier 

observation (see Section 7.7.1.2). The only exception was in Tropicana with 4-

week data where using only growing temperature led to a smaller estimation 

error and higher confidence i.e., lower p-values and q-values. 

 

In terms of the duration of the pre-harvest period, PLS seems to perform better 

with the bigger window size. Table 7.6 and Table 7.7 show that increasing the 

window size reduces the error in estimating the VL at the farm. For example, as 

the window size increased from 2 weeks to 4 weeks and then to 6 weeks, the 

error was lowered from 1.3 to 1.1 and then to 1.0 d for Amani (using all pre-

harvest data, Table 7.7). The only exception was observed in estimating the VL 

of Red Calypso using 2 and 4 weeks of growing temperature where the 

difference in estimation error, 1.4 and 1.5 d, was mostly due to rounding errors. 

Furthermore, increasing the window size also reduced the p-values and q-

values and hence the overlapping between the actual and nonsense RMSEP 

distributions. 

 

Across the three varieties, Tropicana seems to have the worst error in VL 

estimation by PLS modelling. This occurred consistently across the three 

window sizes regardless of whether only growing temperature (Table 7.6) or all 

pre-harvest data (Table 7.7) was analysed. 

7.7.3.3 ESTIMATING REMAINING VL AT THE DISTRIBUTION CENTRE 

PLS was applied to the pre-harvest data to estimate the remaining VL at the 

end of the storage at the distribution centre. The results are presented in Table 

7.8. In most cases the remaining VL was not well predicted by PLS modelling of 

pre-harvest data. The actual errors were often not significantly smaller than the 

nonsense ones. However, exceptional cases existed in the Amani variety where 

its VL was effectively estimated with high statistical confidence (low p-values 

and q- values) by PLS modelling of growing temperature. An example of the 

exceptional cases is presented in. 
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Figure 7.14: A typical PLS performance in estimatin g (Amani) VL at the distribution 

centre based on 4-week pre-harvest temperature meas urements. 
 

Using additional pre-harvest data seems to worsen PLS prediction 

performance. This was supported by the observation that the estimation error 

for Amani VL using only growing temperature was smaller than that from using 

all available pre-harvest data regardless of the size of the pre-harvest window 

period. 

7.7.3.4 ESTIMATING THE LOSS IN REMAINING VL DURING TRANSPORT 

The post-harvest loss in remaining VL of cut roses during transport and 

subsequent storage at the distribution centre was predicted by PLS modelling of 

the pre-harvest data. The prediction error and corresponding p-values and q-

values are tabulated in Table 7.9. The results suggest that PLS prediction of the 

loss in VL during transport was effective in some but not all cases. For example, 

for Red Calypso variety with any of the three window sizes being studied, 

minimal overlap between the actual and nonsense RMSEP distributions 

occurred; the mean of the actual errors was smaller than the nonsense one. 

Consequently, effective predictions were achieved in those cases. On the other 
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hand, cases such as Amani with 2-week data led to high p-values and q-values, 

indicating significant overlapping between the actual and nonsense RMSEP 

distributions. The predictions in those cases were not reliable. 

 

The magnitude of the prediction errors reveals a practical concern. As shown in 

Table 7.9, in most cases for Tropicana and Amani, the average RMSEP exceeds 

2 d. However, the observed average losses in remaining VL of the two varieties 

were 3.2 and 4.5 d, respectively. As a result, while PLS predictions of the post-

harvest loss in remaining VL could be effective in some cases, the associated 

prediction error may be excessive for practical applications. 
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Table 7.8: RMSEP (d) in PLS estimation of VL at the distribution ce ntre 
Input data Pre-harvest window size 2 weeks 4 weeks 6 weeks 

Actual 2.0 ± 0.1 NS 1.9 ± 0.2 NS 1.9 ± 0.1 NS 
Nonsense 1.9 ± 0.1 NS 1.9 ± 0.1 NS 2.0 ± 0.0 NS 
p-value - - - 

Tropicana 
(average VL=12.5 d; min=7 d; 
max=16 d) 

q-value - - - 
Actual 1.3 ± 0.1 NS 1.3 ± 0.1 NS 1.3 ± 0.1 NS 
Nonsense 1.2 ± 0.0 NS 1.3 ± 0.1 NS 1.2 ± 0.1 NS 
p-value - - - 

Red Calypso 
(average VL=12.7 d; min=10 d; 
max=14 d) 

q-value - - - 
Actual 2.3 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 
Nonsense 2.8 ± 0.1 2.9 ± 0.1 3.0 ± 0.1 
p-value 0.01 0.00 0.00 

Growing 
temperature 

Amani 
(average VL=11.4 d; min=6 d; 
max=15 d) 

q-value 0.00 0.00 0.00 
Actual 2.1 ± 0.3 NS 2.1 ± 0.1 NS 1.7 ± 0.1 
Nonsense 2.0 ± 0.1 NS 2.1 ± 0.1 NS 1.8 ± 0.0 
p-value - - 0.37 

Tropicana 
(average VL=12.5 d; min=7 d; 
max=16 d) 

q-value - - 0.95 
Actual 1.3 ± 0.1 NS 1.3 ± 0.1 1.4 ± 0.1  NS 
Nonsense 1.1 ± 0.0 NS 1.4 ± 0.1 1.2 ± 0.0  NS 
p-value - 0.57 - 

Red Calypso 
(average VL=12.7 d; min=10 d; 
max=14 d) 

q-value - 0.70 - 
Actual 2.7 ± 0.3 NS 2.3 ± 0.1 2.3 ± 0.1 
Nonsense 2.6 ± 0.1 NS 2.8 ± 0.1 2.9 ± 0.1 
p-value - 0.00 0.00 

All pre-
harvest data 

Amani 
(average VL=11.4 d; min=6 d; 
max=15 d) 

q-value - 0.00 0.00 
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Table 7.9: RMSEP (d) in PLS estimation of the loss in remaining VL (i.e., ∆∆∆∆VL) during transport and storage 

Input data Pre-harvest window size 2 weeks 4 weeks 6 weeks 
Actual 2.0 ± 0.1 2.3 ± 0.2  NS 2.2 ± 0.1 
Nonsense 2.5 ± 0.1 2.2 ± 0.1 NS 2.5 ± 0.1 
p-value 0.02 - 0.14 

Tropicana 
(average ∆VL = 3.2 d; min=1 
d; max=9 d) 

q-value 0.01 - 0.44 
Actual 1.6 ± 0.1 1.6 ± 0.1 1.4 ± 0.1 
Nonsense 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 
p-value 0.01 0.00 0.00 

Red Calypso 
(average ∆VL = 2.7 d; min=1 
d; max=7 d) 

q-value 0.00 0.00 0.00 
Actual 2.9 ± 0.2 2.4 ± 0.1 2.5 ± 0.2 
Nonsense 3.4 ± 0.1 3.6 ± 0.1 3.2 ± 0.1 
p-value 0.10 0.00 0.00 

Growing 
temperature 

Amani 
(average ∆VL = 4.5 d; min=1 
d; max=10 d) 

q-value 0.29 0.00 0.00 
Actual 2.5 ± 0.3 NS 2.3 ± 0.1 NS 1.9 ± 0.1 
Nonsense 2.2 ± 0.3 NS 2.0 ± 0.1 NS 2.3 ± 0.1 
p-value - - 0.05 

Tropicana 
(average ∆VL = 3.2 d; min=1 
d; max=9 d) 

q-value - - 0.05 
Actual 1.7 ± 0.1 1.8 ± 0.1 1.4 ± 0.1 
Nonsense 2.3 ± 0.1 2.1 ± 0.1 2.8 ± 0.2 
p-value 0.02 0.01 0.00 

Red Calypso 
(average ∆VL = 2.7 d; min=1 
d; max=7 d) 

q-value 0.00 0.02 0.00 
Actual 3.2 ± 1.1 2.8 ± 0.2 2.5 ± 0.1 
Nonsense 3.5 ± 0.2 3.5 ± 0.1 3.0 ± 0.1 
p-value 0.07 0.01 0.00 

All pre-
harvest data 

Amani 
(average ∆VL = 4.5 d; min=1 
d; max=10 d) 

q-value 0.34 0.00 0.00 
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7.7.4 DISCUSSION 

In this scenario, where the pre-harvest conditions were modelled, various sub-

scenarios were investigated. 

 

The smallest estimation errors from different sub-scenarios are reproduced in 

Table 7.10. Only results in Table 7.3 - Table 7.9 where effective predictions 

were achieved are summarised. A hyphen is used to indicate that such an 

effective prediction was not available. 

 

Table 7.10: Smallest RMSEP from various sub-scenarios of Scenario 1 

Sub-scenarios 

KLS 

(temperature 

only) 

PLS 

(temperature 

only) 

PLS (all pre-

harvest data) 

Tropicana 1.8 ± 0.1 2.0 ± 0.2 1.9 ± 0.2 

Red Calypso 1.3 ± 0.0 1.3 ± 0.1 0.8 ± 0.1 
Remaining VL 

at the farm 
Amani 1.3 ± 0.0 1.1 ± 0.1 1.0 ± 0.1 

Tropicana - - - 

Red Calypso - - - 

Remaining VL 

at the 

distribution 

centre 
Amani 2.5 ± 0.0 2.1 ± 0.1 2.3 ± 0.1 

Tropicana 2.0 ± 0.1 2.0 ± 0.1 1.9 ± 0.1 

Red Calypso 1.7 ± 0.0 1.4 ± 0.1 1.4 ± 0.1 
Loss in 

remaining VL 
Amani 2.8 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 

 

7.7.4.1 COMPARISON BETWEEN KLS AND PLS PERFORMANCES 

From Table 7.10, PLS seems to be a better modelling technique than KLS in 

terms of estimation error. Except for estimating the remaining VL of Tropicana 

at the farm, in all other cases the best RMSEP from PLS was smaller than that 

from KLS. This is also true regardless of whether PLS was applied to growing 

temperature only or to all pre-harvest data.  
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The reason that PLS outperformed KLS in this scenario is that KLS is not built 

as a regression technique. As detailed in Chapter 4, KLS was developed from 

kinetic principles to describe the loss in shelf life or VL in terms of the 

temperature condition that the perishable item experiences. Consequently, the 

KLS development was only valid for the modelling of the quality (shelf life, VL) 

deterioration during the period that the temperature measurements were 

collected. However, procedurally KLS could be applied to temperature data 

recorded outside that period, like a regression technique (Section 4.3.3); this 

was demonstrated in this section where growing temperature was used to 

estimate the VL at the farm, at the distribution centre and the VL loss in 

between. Nevertheless, such KLS implementation was not supported by the 

original mathematical development from kinetic principles. Without the link to 

kinetic principles, the KLS regression technique did not perform as well as PLS.  

7.7.4.2 PREDICTION PERFORMANCE IN THE THREE VL SUB-SCENARIOS 

Table 7.10 also reveals that in modelling the pre-harvest conditions, estimating 

the VL at the farm was the sub-scenario with the smallest error. This is 

expected, in view of the assumptions that were made implicitly regarding the 

many factors that could affect the remaining VL of cut roses. As the literature 

review in Chapter 2 revealed, those factors included biological factors (e.g., 

flower variety, flower age), pre-harvest growing conditions (e.g., temperature, 

humidity, light intensity), and post-harvest conditions (e.g., temperature, 

humidity, ethylene exposure). Compared to the other two sub-scenarios, the 

estimation of the remaining VL at the farm made the most reasonable 

assumption. No assumption of the post-harvest conditions was necessary while 

most important biological (i.e., flower variety) and pre-harvest (temperature, 

rainfall level, sunlight radiation level) factors were considered.  

 

For the remaining VL at the distribution centre and the VL loss during post-

harvest transport and storage, their estimations in Scenario 1 did not consider 

post-harvest conditions. In doing so, important factors such as post-harvest 

temperature were implicitly assumed to be uniform across the flower samples; 

i.e., all samples were exposed to the same post-harvest temperature during 

transport and storage. However, this assumption may not necessarily be 
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reasonable, as shown by the profiles of logged post-harvest temperature 

(Figure 7.15). Consequently, the performances in these sub-scenarios were 

lower compared to the estimation of the VL at the farm. 

7.7.4.3 USING ALL PRE-HARVEST DATA OR ONLY GROWING TEMPERATURE 

Moreover, the results in Table 7.10 confirmed that using rainfall and sunshine 

radiation levels, in addition to the growing temperature, reduced errors in 

estimating the remaining VL at the farm, at the distribution centre, and the loss 

in between. An explanation for this could be that during the growing period of 

the roses the two additional factors correlated very well with the humidity and 

sun light intensity, which in turn were shown to have important roles in the 

growth, development and senescence of roses (Section 2.3.2).  

7.8 SCENARIO 2 – MODELLING POST-HARVEST TEMPERATURE 

As described in Section 7.5.3, modelling of the post-harvest transport of cut 

roses from the farm to the distribution centre was performed in Scenario 2.  The 

post-harvest data included the temperature recorded during transport and 

storage, and the remaining VLs as evaluated at the farm and at the distribution 

centre.  The objective was to investigate the effect of post-harvest temperature 

stress on the loss in the remaining VL of cut roses. 

 

In this scenario, two sub-scenarios were considered depending on whether or 

not the remaining VL at the farm was used. In addition, for KLS technique, the 

effect of the a priori constraint that higher temperature leads to greater loss in 

VL was also examined.  
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7.8.1 EXPLORATORY STUDY 

7.8.1.1 PROFILES OF POST-HARVEST TEMPERATURE 

 
Figure 7.15: Typical logged temperature profiles fo r Tropicana 

 

Figure 7.15 shows typical temperature profiles logged during the transport of cut 

roses (Tropicana variety) from the farm to the distribution centre and the 

subsequent storage prior to the vase life tests. The shortest profile, which lasts 

4 days, is represented by the blue curve; the longest, almost 8 days, is shown 

by a red curve. A typical temperature profile, visualised by the black solid line in 

Figure 7.15, shows significant temperature variation in the first part, which was 

believed to correspond to the transport from the farm to the distribution centre. 

The temperature during the second half of the profile was more stable, which 

seems to relate to the storage period before the vase life test at the distribution 

centre. 
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7.8.1.2 CORRELATION BETWEEN POST-HARVEST TEMPERATURE AND LOSS IN 

REMAINING VL 

 
Figure 7.16: PCA score plots based on post-harvest temperature. The first three PCs 
captured 76% variance. Data were grouped according to post-harvest vase life loss 

 

The logged post-harvest temperature was pre-processed to obtain a uniform 

number of measurements in each profile. The procedure of the pre-processing 

was described in details in Section 3.1.1. The pre-processed temperature 

profiles were then analysed using PCA technique. Figure 7.16 showed the 

results for Tropicana samples. In this figure, the scores were grouped according 

to the loss in VL during post-harvest transport and storage, which was the 

difference between the remaining VLs at the farm and at the distribution centre. 

As can be seen, the figure shows that the PCA scores for different groups in the 

VL loss spread quite randomly. This suggests that the correlation between the 

logged temperature and the loss in VL during transport would not be strongly 

linear and hence linear techniques such as MLR and PLS may not perform very 

well.  
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Similar analyses for Red Calypso and Amani varieties, or with grouping in 

remaining VL at the distribution centre led to a similar conclusion. 

7.8.2 KLS  PERFORMANCE 

7.8.2.1 SETTING PARAMETERS 

Based on the variation in logged temperature, the lower and upper temperature 

bounds for KLS modelling were set at 5 oC and 20 oC respectively. The 

temperature step was set at 1 oC. 

7.8.2.2 ESTIMATING THE POST-HARVEST LOSS IN VL 

Following the procedure described in Section 4.4, KLS was applied to the 

logged temperature to estimate the loss in VL during transport from the farm to 

the distribution centre and the subsequent storage before the vase life test. 

Cross validation (with 10testN =  segments) was repeated 10000 times and 

RMSEP, R2, and the slope and intercept of the best fit line were evaluated. 

Permutation testing was also carried out to obtain the corresponding nonsense 

distributions of the same statistics. 

 

The procedure was performed for three varieties including Tropicana, Red 

Calypso and Amani. KLS performance without the a priori constraint for 

Tropicana variety is shown in Figure 7.17; results for the other varieties are 

summarised in Table 7.11. 
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Figure 7.17: KLS performance in estimating the loss  in VL of cut roses (Tropicana 
variety) during transport and storage using logged temperature. Blue distributions 

represent the actual performance; Red distributions  show the nonsense performance 
from permutation testing. Y-axes show statistical d ensities of the performance indices 

 

As can be seen in Figure 7.17, the actual distributions of the performance 

statistics, RMSEP, and the slope and intercept, do not coincide with their 

corresponding nonsense distributions. The peaks of the distributions are 

distinct; the overlaps in RMSEP, as reflected by p-values and q- values in Table 

7.11, are relatively small. This indicates that the estimates were effective 

(Section 3.2.4), which in turn suggests that the logged temperature indeed 

contained information predictive of the VL loss, and that information was 

captured by the KLS model. However, the linear correlation between the 

observed and predicted loss was not justified by R2, which was almost the same 

as its nonsense distribution (Figure 7.17). 

 

Nevertheless, as compared to the average loss in VL for each variety the 

magnitude of the prediction error seemed quite big. From Table 7.11, the 

average losses were 3.2, 2.7 and 4.5 d; yet, the average estimation errors 
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(without the a priori constraint) were 2.2, 1.7 and 2.7 d for Tropicana, Red 

Calypso and Amani respectively. 

 

Table 7.11: RMSEP (d) in KLS estimation of the loss in VL during tra nsport and storage 
using post-harvest temperature 

Sub-scenarios 
Without a priori 

constraint 

With a priori 

constraint 

Actual 2.2 ± 0.1 1.9 ± 0.0  NS 

Nonsense 2.5 ± 0.1 1.9 ± 0.0  NS 

p-value 0.07 - 

Tropicana 
(average ∆VL = 3.2 d; 
min=1 d; max=9 d) 

q-value 0.09 - 

Actual 1.7 ± 0.0 1.9 ± 0.0  NS 

Nonsense 2.1 ± 0.2 1.8 ± 0.0  NS 

p-value 0.00 - 

Red Calypso 
(average ∆VL = 2.7 d; 
min=1 d; max=7 d) 

q-value 0.00 - 

Actual 2.7 ± 0.1 2.6 ± 0.0 

Nonsense 3.6 ± 0.1 3.0 ± 0.0 

p-value 0.00 0.00 

Amani 
(average ∆VL = 4.5 d; 
min=1 d; max=10 d) 

q-value 0.00 0.00 

 

The performance of KLS with the a priori constraint was also evaluated and is 

shown in Table 7.11. According to the tabulated results, implementing the 

constraint reduces the prediction performance of KLS technique. KLS with the a 

priori constraint could not produce effective estimates for Tropicana and Red 

Calypso as it did without the constraint. In the exceptional case, the estimation 

error for Amani variety from the constrained KLS (2.6 d) seemed smaller than 

that from the unconstrained one (2.7 d). Nevertheless, further analysis of the 

numerical results confirmed that this reduction of 0.1 d in RMSEP was not 

statistically significant. 

7.8.2.3 ESTIMATING THE REMAINING VL AT THE DISTRIBUTION CENTRE 

Similar to Section 7.8.2.2, KLS was implemented to estimate the remaining VL 

of cut roses at the distribution centre. 
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Table 7.12 presents the KLS performance in estimating the remaining VL based 

on post-harvest temperature. The results suggest that implementing the a priori 

constraint worsened KLS prediction performance. When the constraint was 

implemented, KLS could not make effective estimates of the remaining VL from 

the post-harvest temperature. On the other hand, without the constraint, 

effective estimates were possible for all three varieties. However, the linear 

correlation between the predicted and observed VLs, as measured by R2, was 

not very strong, as shown in Figure 7.18. 

 

Table 7.12: KLS prediction error RMSEP (d) in estimating the remaining VL at the 
distribution centre using logged temperature 

Sub-scenarios 
Without a priori 

constraint 

With a priori 

constraint 

Actual 1.8 ± 0.1 2.8 ± 0.0  NS 

Nonsense 2.1 ± 0.1 2.8 ± 0.0  NS 

p-value 0.03 - 

Tropicana 
(average VL=12.5 d; 
min=7 d; max=16 d) 

q-value 0.03 - 

Actual 1.1 ± 0.1 2.6 ± 0.0  NS 

Nonsense 1.3 ± 0.1 2.2 ± 0.0  NS 

p-value 0.04 - 

Red Calypso 
(average VL=12.7 d; 
min=10 d; max=14 d) 

q-value 0.04 - 

Actual 2.1 ± 0.2 4.0 ± 0.1  NS 

Nonsense 3.1 ± 0.1 2.8 ± 0.0  NS 

p-value 0.01 - 

Amani 
(average VL=11.4 d; 
min=6 d; max=15 d) 

q-value 0.00 - 
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Figure 7.18: A typical KLS performance in estimatin g (Tropicana) VL at the distribution 
centre based on post-harvest temperature measuremen ts (without a priori constraint). 

 

In addition, relative to the average VL for each variety as well as its range (i.e., 

min and max), the magnitude of the prediction error seems reasonable. For 

example, for Red Calypso with an average VL of 12.7 d (min=10 d; max=14 d), 

the average RMSEP was 1.1 d. Given that the remaining VL was evaluated in 

the vase life tests with a measurement resolution of 1 d, any improvement in the 

prediction error may require VL data of better quality. Similar observations can 

be made for Tropicana and Amani roses. 

7.8.3 PLS PERFORMANCE 

7.8.3.1 PLS IMPLEMENTATION 

PLS was used to model the post-harvest temperature. Double cross validation 

(Section 3.2.2) is performed to identify the optimal number of PLS factors and to 

assess the prediction performance. 
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In addition, the a priori constraint that was previously explored in KLS modelling 

was not implemented with PLS. This was because no PLS algorithm to 

implement constraints was found in literature. 

7.8.3.2 ESTIMATING THE POST-HARVEST LOSS IN VL AND THE REMAINING VL AT THE 

DISTRIBUTION CENTRE 

Table 7.13 tabulates the performance of PLS in two sub-scenarios: estimating 

the loss in VL during transport and subsequent storage, and estimating the 

remaining VL at the end of the storage period. In the first sub-scenario, the 

means of the actual RMSEP distributions were smaller than those of the 

nonsense ones. However, the p-values and q-values for Tropicana and Amani 

roses were significant, indicating excessive overlaps between the actual and 

nonsense distributions. Consequently, only PLS estimates for the loss in VL of 

Red Calypso were effective. In the second sub-scenario of estimating the VL at 

the end of the storage period at the distribution centre, only estimates for 

Tropicana roses were effective. For the other two varieties, either the mean of 

the actual RMSEP distribution was greater than that of the nonsense one, or the 

excessive p-values and q-values indicated significant overlapping between the 

two distributions. 

Table 7.13: PLS prediction error RMSEP (d) in Scenario 2 

Sub-scenarios 
Post-harvest VL 

loss 

VL at the 

distribution centre 

Actual 2.1 ± 0.1 1.6 ± 0.1 

Nonsense 2.3 ± 0.1 1.9 ± 0.1 

p-value 0.47 0.01 
Tropicana 

q-value 0.66 0.00 

Actual 1.5 ± 0.1 1.3 ± 0.1  NS 

Nonsense 2.2 ± 0.1 1.2 ± 0.0  NS 

p-value 0.01 - 
Red Calypso 

q-value 0.00 - 

Actual 2.9 ± 0.2 2.3 ± 0.1 

Nonsense 3.3 ± 0.1 2.5 ± 0.1 

p-value 0.24 0.13 
Amani 

q-value 0.84 0.89 
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7.8.4 DISCUSSION 

In this section, two sub-scenarios analysing the post-harvest temperature were 

considered. In the first one, the estimation of the remaining VL at the end of the 

storage at the distribution centre was studied; in the second, the VL loss during 

the transport (from the farm to the distribution centre) and the subsequent 

storage was estimated. The estimation errors in the two sub-scenarios are 

summarised in Table 7.14. Only errors from effective estimates (Table 7.11-

Table 7.13) are presented. A hyphen is used to indicate that such an effective 

estimate was not available. 

7.8.4.1 THE EFFECT OF THE A PRIORI CONSTRAINT 

Studies in the physiology of cut flowers suggest that a higher temperature may 

lead to a greater loss in the remaining VL of cut flowers (Section 3.3). This a 

priori knowledge was investigated by implementing a constraint that satisfied 

the suggestion. As no PLS algorithm with constraints was identified, only KLS 

with the a priori constraint was explored. However, as can be seen from Table 

7.14, the results of KLS modelling with the a priori constraint only gave effective 

estimates for the loss in VL of Amani. Yet, even in that case, the estimation 

error RMSEP (2.6 d) was quite significant relative to the average loss in VL (4.5 

d). Recall that (Section 3.3) the implementation of KLS with the a priori 

constraint has to accommodate a mathematical constraint (Section 4.3.6) as 

well as account for the non-thermal factors (Section 4.3.4). It is believed that 

significant variations in the factors such as daily rainfall (Figure 7.8) was 

present, which may make the assumption of minimum variance in those factors 

(Section 4.3.4) unreasonable. 



 280 

 

Table 7.14: RMSEP (d) from different sub-scenarios in Scenario 2 

Sub-scenarios 

KLS (without 

the a priori 

constraint) 

KLS (with 

the a priori 

constraint) 

PLS  

Tropicana 
(average VL=12.5 d; 
min=7 d; max=16 d) 

1.8 ± 0.1 - 1.6 ± 0.1 

Red Calypso 
(average VL=12.7 d; 
min=10 d; max=14 d) 

1.1 ± 0.1 - - 

Remaining 

VL at the 

distribution 

centre Amani 
(average VL=11.4 d; 
min=6 d; max=15 d) 

2.1 ± 0.2 - - 

Tropicana 
(average ∆VL = 3.2 d; 
min=1 d; max=9 d) 

2.2 ± 0.1 - - 

Red Calypso 
(average ∆VL = 2.7 d; 
min=1 d; max=7 d) 

1.7 ± 0.0 - 1.5 ± 0.1 

Loss in 

remaining 

VL 
Amani 
(average ∆VL = 4.5 d; 
min=1 d; max=10 d) 

2.7 ± 0.1 2.6 ± 0.0 - 

 

7.8.4.2 COMPARISON BETWEEN KLS AND PLS PERFORMANCES 

Table 7.14 also reveals that KLS seems to be more robust than PLS although 

the later can produce smaller estimation errors. Based on post-harvest 

temperature, for all three rose varieties, KLS can be used to obtain effective 

estimates of the remaining VL at the distribution centre as well as the loss in VL 

during the transport and storage. In contrast, PLS only gave effective estimates 

of the remaining VL of Tropicana rose and the loss in VL of Red Calypso; for 

the other cases, the PLS estimates were not effective. Nevertheless, in the 

cases where PLS estimates were effective, the corresponding estimation errors 

were smaller than those of the KLS estimates. 
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7.9 SCENARIO 3 – MODELLING PRE-HARVEST AND POST-HARVEST TEMPERATURE 

In Scenario 3, both pre-harvest and post-harvest temperatures were analysed.  

The objective was to investigate whether the combination of both pre-harvest 

and post-harvest temperatures would lead to better estimates of the loss in 

remaining VL of cut roses. 

7.9.1 KLS  PERFORMANCE 

7.9.1.1 KLS IMPLEMENTATION AND PARAMETERS 

Intuitively, pre-harvest and post-harvest stages represent two fundamentally 

different stages for roses (and other flowers in general). The former stage 

associates with the accumulation and possibly deterioration in biological 

structures and in contents of micronutrients and carbohydrates that would 

determine the remaining VL of the flower just after being harvested. In the latter 

stage, the post-harvest period, the cut rose, which had been detached from its 

plant, was using up its stored nutrients and carbohydrates, and hence its 

remaining VL diminished with time. (The effect of any vase life solutions in 

extending the VL of cut flowers was not investigated in this study). 

Consequently, for KLS implementation in modelling both pre-harvest and post-

harvest temperatures, two sets of parameters were used; one was for pre-

harvest and the other was for post-harvest. The values of the parameters 

including upper and lower temperature bounds, and the temperature step were 

the same as those used in modelling pre-harvest temperature (see Section 

7.7.2.1) and in modelling post-harvest temperature (see Section 7.8.2.1) 

independently. 

7.9.1.2 ESTIMATING THE POST-HARVEST LOSS IN VL AND THE REMAINING VL AT THE 

DISTRIBUTION CENTRE 

Table 7.15 shows the statistics associated with the actual and nonsense RMSEP 

distributions in estimating the post-harvest vase life loss and in estimating the 

remaining VL at the distribution centre. As can be seen, in estimating the vase 

life loss, KLS could not make effective estimates for Tropicana variety. For the 
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other two varieties, the average of the actual RMSEP was significantly smaller 

than the nonsense one. In addition, the p-values and q-values for the actual and 

nonsense RMSEP distributions in those cases were small, indicating little 

overlapping between the two distributions. A typical KLS performance is shown 

in Figure 7.19. Consequently, the KLS estimates for Red Calypso and Amani 

were effective although the linear correlation between the estimates and the 

observed VL loss was not very strong. 

 

 
Figure 7.19: A typical KLS performance in estimatin g the loss in VL of Red Calypso roses 

during transport and storage based on pre-harvest a nd post-harvest temperature 
measurements. 
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Table 7.15: KLS prediction error RMSEP (d) in Scenario 3 

Scenarios 
Post-harvest VL 

loss 

VL at the 

distribution centre 

Actual 2.1 ± 0.1 NS 2.2 ± 0.7  

Nonsense 2.1 ± 0.1 NS 2.7 ± 1.2  

p-value - 0.74 
Tropicana 

q-value - 0.85 

Actual 1.6 ± 0.1  1.6 ± 0.8  

Nonsense 2.1 ± 0.1  2.0 ± 1.3  

p-value 0.00 0.96 
Red Calypso 

q-value 0.00 0.85 

Actual 2.5 ± 0.1  2.9 ± 1.4  

Nonsense 2.8 ± 0.1  3.9 ± 1.8  

p-value 0.03 0.32 
Amani 

q-value 0.03 0.86 

 

In estimating the remaining VL at the end of the storage period at the 

distribution centre, KLS produced estimates with the actual RMSEP distributions 

having smaller means than the nonsense ones. However, the p-values and q-

values were excessively large, suggesting that significant overlapping between 

the actual and nonsense RMSEP distributions were present. Therefore, the 

statistical confidence in those KLS estimates was low and hence the predictions 

were considered not to be effective. 

7.9.2 PLS PERFORMANCE 

7.9.2.1 PLS IMPLEMENTATION 

Pre-processing of the temperature profiles (so that they all have a uniform 

number of measurements) was carried out in the same way as performed in 

Section 7.8.3.1. 

 

Double cross validation was also employed in determining the optimal model 

dimension and subsequently in assessing its predictive performance.  
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7.9.2.2 ESTIMATING THE POST-HARVEST LOSS IN VL AND THE REMAINING VL AT THE 

DISTRIBUTION CENTRE 

Table 7.16 shows the PLS performance in Scenario 3. The results indicate that 

in all but one case, the actual PLS estimates had smaller average errors than 

the nonsense ones from the permutation test. (The exceptional case was in 

estimating the vase life loss for Tropicana roses, where the estimate was not 

significant). However, in the cases of Amani roses, the p-values and q-values 

were exceeding the significant level of 0.10, suggesting that significant 

overlapping was present between the actual and the nonsense RMSEP 

distributions. 
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Table 7.16: PLS prediction error RMSEP (d) in Scenario 3 

Scenarios 
Post-harvest VL 

loss 

VL at the 

distribution centre 

Actual 2.1 ± 0.1 NS 1.6 ± 0.0  

Nonsense 2.0 ± 0.1 NS 2.0 ± 0.1  

p-value - 0.00 
Tropicana 

q-value - 0.00 

Actual 1.6 ± 0.1  1.3 ± 0.1  

Nonsense 2.1 ± 0.1  1.4 ± 0.0  

p-value 0.00 0.07 
Red Calypso 

q-value 0.00 0.08 

Actual 2.4 ± 0.2  2.2 ± 0.1  

Nonsense 2.7 ± 0.1  2.5 ± 0.1  

p-value 0.20 0.10 
Amani 

q-value 0.37 0.36 

 

7.9.3 DISCUSSION 

In this section, two modelling sub-scenarios were studied. In the first sub-

scenario, the estimation of the remaining VL at the end of the storage at the 

distribution centre was studied; in the second, the vase life loss during the 

transport and the subsequent storage was estimated. In both of the sub-

scenarios, the pre-harvest and post-harvest temperatures were used as input. 

The estimation errors from the sub-scenarios are summarised in Table 7.17. 

Only errors from the effective estimates (Table 7.15 and Table 7.16) are 

reproduced. When an effective estimate was not available, a hyphen is shown. 

 

As shown in Table 7.17, of the six cases, for two sub-scenarios involving three 

varieties each, KLS and PLS could only make effective estimates in two cases 

each; in the other cases, the estimation was not effective, meaning that either 

the mean of the estimation error was greater than that from a permutation test, 

or the statistical confidence was low as indicated by significant p-values and q-

values. 
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Table 7.17: RMSEP from different sub-scenarios in Scenario 3 
Sub-scenarios KLS  PLS  

Tropicana 
(average VL=12.5 d; 
min=7 d; max=16 d) 

- 1.6 ± 0.0 

Red Calypso 
(average VL=12.7 d; 
min=10 d; max=14 d) 

- - 

Remaining VL at 

the distribution 

centre 
Amani 
(average VL=11.4 d; 
min=6 d; max=15 d) 

- - 

Tropicana 
(average ∆VL = 3.2 d; 
min=1 d; max=9 d) 

- - 

Red Calypso 
(average ∆VL = 2.7 d; 
min=1 d; max=7 d) 

1.6 ± 0.1 1.6 ± 0.1 
Loss in remaining 

VL 

Amani 
(average ∆VL = 4.5 d; 
min=1 d; max=10 d) 

2.5 ± 0.1 - 

 

An interesting observation was that while the vase life loss could be estimated 

effectively (e.g., for Amani and Red Calypso roses), the corresponding VL at the 

distribution centre may not, and vice versa. Further investigation is required to 

explain why that was so. 

7.10 FURTHER DISCUSSION 

In terms of input data, this chapter investigated three scenarios including:  

1) Scenario 1: modelling of the pre-harvest conditions. 

2) Scenario 2: modelling of the post-harvest temperature. 

3) Scenario 3: modelling of the combined pre- and post-harvest 

temperature.  

Furthermore as shown in Table 7.2 Scenario 1 had three sub-scenarios while 

Scenarios 2 and 3 only had two. These sub-scenarios corresponded to the 

output variables including the remaining VL at the farm, the VL at the 

distribution centre and their difference i.e. the loss in VL during transport to and 

storage at the distribution centre. The prediction errors of KLS and PLS in all 

modelling scenarios are summarised in Table 7.18. 
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Table 7.18: Prediction error RMSEP (d) in all modelling scenarios 

1) Pre-harvest modelling 2) Post-harvest 
modelling 

3) Pre- and post-
harvest modelling 

Scenarios 
KLS 

PLS 
(temperature 
only) 

KLS  PLS  KLS  PLS  

Tropicana (average VL=15.7 d; 
min=13 d; max=19 d) 1.8 ± 0.1 2.0 ± 0.2 na na na na 

Red Calypso (average VL=15.4 d; 
min=13 d; max=18 d) 1.3 ± 0.0 1.3 ± 0.1 na na na na 

Remaining 
VL at the 
farm 

Amani (average VL=15.9 d;    
min=14 d ; max=18 d) 1.3 ± 0.0 1.1 ± 0.1 na na na na 

Tropicana (average VL=12.5 d; 
min=7 d; max=16 d) - - 1.8 ± 0.1 1.6 ± 0.1 - 1.6 ± 0.0 

Red Calypso (average VL=12.7 d; 
min=10 d; max=14 d) - - 1.1 ± 0.1 - - - 

Remaining 
VL at the 
distribution 
centre Amani (average VL=11.4 d; min=6 d; 

max=15 d) 
2.5 ± 0.0 2.1 ± 0.1 2.1 ± 0.2 - - - 

Tropicana (average ∆VL = 3.2 d; 
min=1 d; max=9 d) 

2.0 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 - - - 

Red Calypso (average ∆VL = 2.7 d; 
min=1 d; max=7 d) 

1.7 ± 0.0 1.4 ± 0.1 1.7 ± 0.0 1.5 ± 0.1 1.6 ± 0.1 1 .6 ± 0.1 
Loss in 
remaining 
VL 

Amani (average ∆VL = 4.5 d;   
min=1 d; max=10 d) 

2.8 ± 0.1 2.4 ± 0.1 2.7 ± 0.1 - 2.5 ± 0.1 - 

na: not applicable i.e., this sub-scenario was not considered. 
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7.10.1 COMPARISON BETWEEN KLS  AND PLS 

As Section 2.5.2 revealed, PLS is one of the most commonly used regression 

techniques and is designed to deal with data sets in which the number of 

measurement variables per sample is large. By contrast, KLS was developed 

from a general differential equation describing the kinetics of the quality of a 

perishable product (Chapter 4). Results in Table 7.18 show that PLS produced 

estimates of the remaining VLs and the vase life loss that were slightly more 

accurate than those from KLS. The most significant difference between KLS 

and PLS was in estimating the vase life loss for Amani roses using growing 

temperature. In that case, RMSEP of KLS estimates averaged 2.8 d while that of 

PLS ones was only 2.4 d. 

 

Despite being slightly less accurate, KLS is more robust and flexible compared 

to PLS. The robustness of KLS was evident in Scenario 2 (see Table 7.18) 

where KLS was able to give effective predictions in all six cases while PLS 

could only do so for two cases. In addition, KLS is more flexible as it was able to 

implement a priori constraints as demonstrated in Section 7.8.2 while PLS could 

not do so. Although this KLS capability did not lead to any estimation 

improvement, it may be valuable in other applications where appropriate a priori 

knowledge and data sets exist. 

7.10.2 PRE-HARVEST OR POST-HARVEST TEMPERATURE  

Post-harvest temperature was suggested as the most important factor in the 

post-harvest life of cut roses (Section 2.3). However, this study found that 

growing temperature could be equally important. As can be seen in the results 

from Scenarios 1 and 2 (Table 7.18), using post-harvest temperature to 

estimate the remaining VL at the distribution centre and the vase life loss led to 

prediction errors that were similar to those from using growing temperature. In 

some cases, using growing temperature led to smaller RMSEP (e.g., estimating 

the loss in VL of Tropicana); in other cases, more accurate predictions were 

obtained based on post-harvest temperature e.g., estimating the remaining VL 

of Amani roses at the distribution centre. The only notable difference in the 
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prediction performance in Scenario 1 (using growing temperature) and Scenario 

2 (using post-harvest temperature) was in estimating the remaining VL at the 

distribution centre for Tropicana and Red Calypso. In those two cases, the post-

harvest modelling produced effective estimates of the remaining VL but the pre-

harvest modelling could not. 

 

The potential benefit of combining pre-harvest and post-harvest modelling was 

investigated in Scenario 3. Intuitively, it was expected that such combination 

would result in an improved performance compared to Scenarios 1 and 2. 

However, as the results in Table 7.18 show, only KLS performance was 

improved while PLS performance was slightly worsened. More importantly, the 

improvement in KLS performance was at the expense of its robustness as 

effective estimates were only obtained in two out of six cases. 

 

For PLS, although the combined data set had many more measurements for 

each data sample than the individual pre-harvest or post-harvest data sets, little 

change in PLS prediction performance was observed compared to Scenario 2. 

The performance was not reduced significantly because PLS is capable of 

dealing with data sets having many more measurements compared to the 

number of samples. On the other hand, it is believed that the performance was 

not improved because the number of data samples was not increased.  

7.10.3 PREDICTION PERFORMANCE IN THE SUB-SCENARIOS 

In each Scenario, two VL sub-scenarios were considered including the 

estimation of the remaining VL at the distribution centre and the estimation of 

the vase life loss during transport and storage. For Scenario 1, an additional 

sub-scenario was the estimation of the remaining VL at the farm. As shown in 

Table 7.18, of the three sub-scenarios, estimating the loss in VL had the biggest 

estimation error. This could be explained using the fact that the vase life loss 

was the mathematical difference between the remaining VL at the farm and the 

remaining VL at the distribution centre. Errors existed in evaluating the 

remaining VL both at the farm and at the distribution centre, regardless of which 

evaluation technique (i.e. experimental testing or numerical estimation) was 
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used. Such errors would mathematically propagate to the estimation of their 

difference i.e. the vase life loss, leading to a greater estimation error.  

7.10.4 USEFULNESS OF THE VL ESTIMATION 

Table 7.18 showed that estimates of the remaining VLs and the vase life loss 

during transport and storage were possible using either growing temperature or 

post-harvest temperature. Such estimates were effective, meaning that there 

was high statistical confidence that their errors were smaller than that of a 

random guess from the permutation testing. However, for the estimation of the 

vase life loss, the relative estimation errors were rather significant. Specifically, 

the minimum relative errors based on the means of RMSEP were 2/3.2 (63%), 

1.4/2.7 (52%) and 2.4/4.5 (60%) for Tropicana, Red Calypso and Amani, 

respectively. It is likely that such excessive relative errors would make the 

estimation of the vase life loss not useful practically. For the estimation of the 

remaining VLs (at the farm or at the distribution centre), the relative estimation 

errors were much more modest (based on the minimum of RMSEP means: 11%, 

8% and 7% for Tropicana, Red Calypso and Amani respectively). 

Consequently, those estimates could still be useful practically. 

 

The excessive relative error in estimating the loss in VL of cut roses should be 

expected. This was because the average of the vase life loss was rather small 

(2.7-4.5 d). Further, the absolute error of the estimation of the vase life loss is 

always greater than those from estimating the individual VLs (Section 7.10.3), 

which in turn are greater than 1 d due to the measurement resolution of the 

vase life test results (Section 7.3.3). For those reasons, using other techniques 

for the estimation may not significantly improve the relative error. 
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7.11 CHAPTER CONCLUSION 

This chapter reported a case study in a chilled supply chain of cut roses. It 

found that not only post-harvest temperature but also pre-harvest temperature 

and other environmental factors could be used to obtain effective estimates of 

the remaining VLs and their difference (i.e. loss) during transport and storage of 

cut roses. However, the estimation of the vase life loss had high relative error 

and hence may not be practically useful. This was due to the (small) magnitude 

of the vase life loss as well as the measurement resolution of the vase life test 

results. In addition, it was found that PLS led to smaller prediction errors 

although KLS was demonstrated to be more robust and flexible. 
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8 CONCLUSION AND FURTHER WORK  
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8.1 CONCLUSION 

This thesis reports the investigation of the hypothesis that multivariate data 

analysis techniques can be used to estimate the loss in the quality of fresh 

fruits, fresh vegetables and cut flowers in chilled supply chains based on the 

data collected using advanced sensors. Cut roses were selected as an 

exemplar system although it is expected that the findings will also be applicable 

to other produce. 

 

Literature review in the senescence of cut flowers, particularly cut roses, and in 

their vase life prediction was undertaken. Simulation studies of various 

perishable products such as tomato, mushroom, seasoned soybean sprout, 

cooked shrimp, and other seafood products were performed. For real supply 

chain data, two large scale experiments with cut roses, one with Cookes Rose 

Farm (Jersey) and the other with World Flowers Ltd. (UK), were performed. The 

outcomes of the two experiments were two original data sets that are 

considered as an original contribution of this work. In addition, a new technique 

termed KLS, and existing ones including PLS and MLR were implemented for 

the data analysis. Detailed results, discussions and conclusions were presented 

in Chapters 5, 6, and 7. The essential conclusions are summarised below. 

 

1. A novel data-driven technique termed Kinetic Linear System (KLS) was 

developed for modelling the effect of temperature on the remaining shelf 

life of perishable products. The technique is based on kinetic principles 

and hence is applicable to perishable products the shelf life of which is 

governed by chemical, biochemical, microbial and physical processes. 

Simulation studies showed that a KLS model could “learn” and 

subsequently reproduce the output of traditional kinetic models in shelf 

life prediction. Consequently, it can be applied to products which do not 

normally have a traditional kinetic model. This was demonstrated by 

using KLS for the analysis of the data from the Cookes Rose and the 

World Flower experiments.  
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2. With respect to the research hypothesis KLS, PLS and MLR were 

investigated for the analysis of the data from the two experiments with 

cut roses. MLR was shown to have poor estimation performance 

whereas KLS and PLS could generate estimates of the loss in VLs of cut 

roses during transport and storage. These estimates are effective, having 

a smaller error than that of nonsense guesses with a high statistical 

confidence. However, the estimation of the losses in VLs may not be 

useful practically due to the magnitude of the associated relative error. 

This was demonstrated in the Cookes Rose Farm case study (Chapter 

6), where the minimum RMSEP was 2 d for an average loss of 7.2 d; and 

in World Flowers case study (Chapter 7), where the RMSEP was from 1.4 

to 2.8 d for average VL losses of 2.7-4.5 d. 

 

In addition, PLS technique had a slightly smaller RMSEP than KLS 

technique.  However, the latter was more flexible as it can work with 

constraints and does not require a uniform number of measurements in 

its input. KLS is more robust as it worked effectively in many cases 

where PLS failed to. KLS also has a better capability in data reduction 

because it uses temperature states rather than the actual temperature 

measurements as its independent variables (Section 6.11.1).  

 

3. In terms of the physiological understanding of cut roses, the studies 

reported in this thesis confirmed an expert opinion that temperature is 

one of the most important post-harvest factors for cut roses. In addition 

to post-harvest temperature, the literature review in this thesis also found 

that other factors including genotype, pre-harvest (growing) conditions, 

post-harvest non-thermal factors (e.g. humidity) could also have 

influential effects on the post-harvest longevity of cut roses. The effect of 

the pre-harvest conditions was indeed confirmed by the results from the 

data analysis in the Cookes Rose and the World Flowers case studies. 

Effective estimates of the VLs of cut roses at the farm, at the distribution 

centre, and the loss in VLs were obtained based on the growing 

temperature using KLS and PLS techniques. 
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In conclusion, multivariate data analysis techniques can be used to generate 

effective estimates of the loss in VLs of cut roses based on post-harvest 

temperature collected by data loggers. However, the estimates of the VL loss 

may not be useful practically due to high relative errors. Of the three techniques 

that were studied, PLS and KLS performed effectively while MLR could not. 

Although PLS had slightly smaller errors than KLS, the latter was more robust 

and flexible. In addition, either post-harvest temperatures or pre-harvest 

temperatures could be used for the estimation although the post-harvest 

measurements may lead to slightly smaller errors. 

8.2 FURTHER WORK 

The work reported in this thesis has presented a number of possibilities for 

further work. These include studies to improve the quality of the experimental 

data, investigations of alternative techniques and the application of KLS and 

multivariate data analysis techniques in a real-time decision support system. 

8.2.1 IMPROVED DATA SETS 

Reducing measurement error 

In this study, measurement error, particularly for the evaluation of the remaining 

VL of cut roses, could be significant. As described in Sections 6.3.4 and 7.3.3, 

the VL was evaluated based on human judgement which could be subjective 

and recorded with a measurement resolution of 1 d. Clearly, the remaining VL 

values were susceptible to judgemental error and as a consequence were likely 

to have an accuracy of ±1 d. It should be noted that any data analysis technique 

can not eliminate such error in the data for the experimental VL i.e., its 

estimates of the remaining VL would have an error that is always greater than 1 

d. Considering that the minimum RMSEP reported in this study was around 1.4-2 

d, the contribution of the measurement error represents a major portion of the 

RMSEP. As a result, reducing the measurement error using more objective 

criteria could significantly improve the prediction performance of any data 

analysis technique. 
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A trivial way to reduce the measurement error is to employ additional experts 

and perform the evaluation task (of determine whether the flower sample has 

reached its end of its useful life) multiple times a day. In that way, human error 

can be reduced and the measurement resolution is improved. However, this 

approach may not be very practical due to the cost associated with employing 

additional experts to perform the VL tests. Alternatively, the remaining VL may 

be assessed using gene expression analysis techniques, as discussed in 

Section 2.4.2. Nevertheless, because the techniques are not publically 

available, either further research must be carried out to correlate the expression 

levels of the relevant genes to the potential VL or a commercial service such as 

that from NSure Ltd. (2007a) must be employed. 

 

Another approach to evaluate objectively the VL could be potentially developed 

in metabolic studies of the cut flowers. The idea would be to identify one or 

more metabolites associated with the senescence process in cut roses, and 

subsequently correlate the concentration of such metabolite(s) to the VL of the 

flowers. As reviewed in Section 2.5.2, this idea was already explored in studying 

the spoilage of food products such as milk (Nicolaou and Goodacre 2008), 

minced beef (Ammor et al. 2009) and others as mentioned in (Nicolaï et al. 

2007). Nevertheless, no application in cut flowers have been reported, which is 

possibly because their quality attributes have not been successfully linked to 

any particular plant metabolite(s). 

Reducing pre-harvest and biological variation 

Figure 6.7 and Figure 6.8 showed the variation in VL of cut roses that were 

exposed to the same post-harvest temperature stress profile. As this VL 

variation was not due to post-harvest temperature, its presence would reduce 

the accuracy of any VL estimation using post-harvest temperature. 

Consequently, it may be desirable to minimise such VL variation. 

 

It is believed that the variation in the pre-harvest conditions and the genetic 

variation in the flower samples are the two major sources that contribute to the 

VL variation shown in Figure 6.7 and Figure 6.8. Consequently, a thorough 

study would start with using genetic engineering technology to generate flower 

plants having identical genetic materials. These genetically identical plants 
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would be grown under a well-controlled greenhouse so as to minimise the 

variation in their pre-harvest conditions. (The idea of manufacturing genetically 

identical plants and growing them in controlled greenhouse has been proposed 

under the concept of “sustainable plant factory”). Subsequently, the flowers 

from these plants would be used for data collection experiment. In other words, 

some would undergo at-harvest VL testing while others would be subjected to 

various post-harvest temperature profiles and subsequent VL testing. The data 

collected can then be used to develop models such as in Chapters 6 and 7. 

8.2.2 ALTERNATIVE DATA ANALYSIS TECHNIQUES  

MLR and PLS were selected in this project to explore the capability of linear 

regression techniques in estimating the (loss in) VL of cut roses. As a result, the 

performance of other linear techniques such as principal component regression 

could be potentially inferred from that of either MLR or PLS. On the other hand, 

the performance of nonlinear techniques such as artificial neural networks 

(ANNs), support vector machine (SVM), and nonlinear (kernel) PLS need 

further study.  

 

As an example, ANNs were selected to demonstrate the potential of nonlinear 

techniques in estimating the vase life loss using post-harvest temperature. A 

multilayer perceptron model with as many input nodes as the number of 

measurements in each temperature profile was calibrated. Figure 8.1 shows the 

preliminary performance of ANNs for Tropicana roses in World Flowers case 

study (Chapter 7). Although its performance still needs to be optimised and 

statistically assessed, the technique produced lower prediction error (RMSEP = 

1.3 d) than either KLS (RMSEP = 2.2 d, Table 7.11) or PLS (RMSEP = 2.1 d, 

Table 7.13). As a result, nonlinear regression techniques and ANNs in particular 

may be worth further consideration. 
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Figure 8.1: Performance of ANNs in estimating the l oss in VLs of Tropicana roses in 

World Flowers case study. 
 

Alternatively, survival analysis techniques may also be considered for future 

studies. These techniques were developed to evaluate the times until an event 

of interest (e.g., the death of cut flowers), taking into account the effects of 

censorships as well as the effects of external factors (e.g., post-harvest 

temperature). Methods of survival analysis have been used extensively in 

various fields such as clinical studies (Sanz et al. 1989; Fleming and Lin 2000) 

and reliability studies (Wang et al. 2005; Bradley and Kohler 2007). For 

modelling shelf life of food, Hough et al. applied survival analysis techniques to 

study the spoilage of yogurt stored at 42 oC (Hough et al. 2003). While the study 

successfully illustrated the concept in the modelling of sensory shelf life of food 

products, the example it used was rather simple. As the researchers noted, 

additional challenges e.g., accounting for the effects of storage temperature and 

humidity are expected in more practical studies (Hough et al. 2003). The data 

collection would also become more challenging when the conditions e.g., 

temperature and humidity vary during storage. 
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8.2.3 VL ESTIMATION FOR A REAL -TIME DECISION SUPPORT SYSTEM 

Decision support systems (DSS) refer to any computer-based information 

systems that are developed to improve any decision-making process and its 

outcome (Arnott 2004). Since its introduction in 1970s, DSS has been 

implemented in a wide range of applications such as healthcare (Shin and 

Markey 2006; Berner and Lande 2007; Shebl et al. 2007), environmental 

management (Jones et al. 2002; Mysiak et al. 2005), urban development 

management (Quattrochi et al. 2000), and agriculture (Bange et al. 2004; 

Bazzani 2005). A real-time DSS is a system that supports decision making at 

any point in time. 

 

As mentioned in Section 1.3, in a quality-controlled logistics system, decisions 

are made based on the quality of the products. Consequently, the estimation of 

the quality (loss) of horticultural produce was to facilitate making such 

decisions. This thesis demonstrated that the effective estimates of the VL loss 

in cut roses were obtained at the end of their transport or storage. Such 

estimates are valuable in making decisions regarding the subsequent 

management of the flowers and the optimal distribution policy e.g., which quality 

class do they belong to? which customers should they be sold to, and at which 

price? However, in a logistics system it is often necessary to make many 

decisions at any time point, particularly before the end of the transport or 

storage. For examples, when a produce is deteriorating too fast, decisions must 

be made as to which remedial actions e.g., adjusting temperature conditions, 

changing transport route, or selecting alternative destinations should be 

performed. For such decisions, real-time quality estimation for a real-time DSS 

is required. 

 

While real-time quality estimation is not a novel concept, its application in 

perishable goods supply chain has not been identified. The reason is that there 

are several difficulties in addition to the already-challenging task of quality 

estimation. The first additional challenge would be the collection of the data that 

are suitable and reliable for the real-time estimation. The desired data set would 

consist of not only the measurements of the conditions e.g., temperature but 
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also the corresponding assessments of the product quality during transport and 

storage. Accurate quality assessments are believed to be the most time-

consuming and costly task in the data collection exercise. The second 

additional challenge is of more technical nature i.e. the quality estimation must 

be made based on an incomplete set of real-time data. For this challenge, KLS 

implementation in a real-time context must be explored while applications of 

dynamic PLS were reported in many studies (e.g. (Chen et al. 1998; 

Komulainen et al. 2004; Doan et al. 2006)). 

 

From the above three areas for further research, the accurate determination of 

product quality (e.g., vase life or shelf life) is probably the most important. The 

reason for that is because data sets of better accuracy enable a more objective 

evaluation of the capability of the data analysis techniques. Such an evaluation 

may subsequently provide further insights into the feasibility of the relevant 

practical application, and hence raises the importance of the research not only 

in academia but also in industry. Within this area of further work, it is believed 

that preferences should be toward automatic and objective evaluation 

techniques, which do not heavily involve human judgement. Consequently, 

gene expression analysis and metabolic studies would be the preferred options.  

8.3 FINAL REMARKS  

The work reported in this thesis has opened a new research area in using 

multivariate data analysis techniques to estimate the loss in quality of in-transit 

product based data collected by advanced sensors. As the cost of deploying 

advanced sensors continues decreasing, their applications in logistics and the 

supply chains of perishable products in particular are drawing more and more 

interest from various stakeholders. Therefore, it is apparent that multivariate 

data analysis techniques will continue to be at the centre of further research and 

applications in this area. 
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APPENDICES 

A. USING PHOTOS TO DETERMINE THE END OF THE USEFUL LIFE OF CUT ROSES 

For the Cookes Rose Farm study, photos were taken daily during the office 

display tests and the VL tests of cut roses. These photos and a number of 

criteria as set out in Section 6.3.4 were subsequently used to determine the end 

of the useful life of the flowers. The following photos demonstrate an example of 

the evaluation task. 

 

Table A. 1: Observation photos for flower ID 17 dur ing the office display test 
Date Sample ID 17 in the office display test 

08/07/2008 

The flower is 

delivered, 

processed and 

displayed in a 

cylinder in an 

office 

environment. 

 

09/07/2008 
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10/07/2008 

 

11/07/2008 
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12/07/2008 

 

The flower 

shows the first 

sign of bent 

neck. 

 

13/07/2008 

The flower is 

dead. The 

display test is 

ended. 

 

B. ADDITIONAL RESULTS IN COOKES ROSE CASE STUDY 
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Figure B. 1: Scenario 1A– a typical PLS performance  in modelling the office display 

period without  the a priori constraint. (zero-mean) 
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Figure B. 2: Scenario 1A– a typical MLR performance  in modelling the office display 

period without  the a priori constraint. (zero-mean) 
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Figure B. 3: Scenario 1B – a typical MLR performanc e in modelling the office display 

period with  the a priori constraint. (zero-mean) 
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Figure B. 4: Scenario 2A – a typical PLS performanc e in modelling the VL upon delivery 

at University of Manchester assuming uniform initia l VLs (zero-mean scaling ). 
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Figure B. 5: Scenario 2A – a typical MLR performanc e in modelling the VL upon delivery 
at University of Manchester assuming uniform initia l VLs (zero-mean scaling, without a 

priori constraint ). 
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Figure B. 6: Scenario 2B – a typical MLR performanc e in modelling the VL upon delivery 

at University of Manchester assuming uniform initia l VLs (zero-mean scaling, with a 
priori constraint ). 
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Figure B. 7: Performance of KLS in pre-harvest mode lling at stem level. X-axis shows the 
performance indices while y-axis plots the fraction  of the total number of samples. Blue 
distributions were based on actual data while the r ed distributions were from nonsense 

permutated data. 
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Figure B. 8: A typical performance of KLS in pre-ha rvest and post-harvest modelling. 

 

 
Figure B. 9: A typical performance of PLS in pre-ha rvest and post-harvest modelling 

(auto-scaling) 
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C. ROSE CULTIVARS IN WORLD FLOWERS STUDY 

In the World Flowers case study, three roses cultivars were used; these 

included Red Calypso, Amani and Tropicana. Table A. 2 below shows photos of 

the roses. 

Table A. 2: Rose cultivars in World Flowers study 
Red Calypso Amani Tropicana 

 

 

D. PUBLISHED PUBLICATION  

As a result of the work reported in this thesis, a paper was submitted and 

accepted for an oral presentation at the International Conference on Signal 

Processing 2008 in China. Its manuscript was subsequently published in the 

conference proceedings and is available online at 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4697709 

(subscription to IEEE Xplore digital library is required). A copy of the paper is 

attached at the end of the thesis. 

 

Further publications are being prepared and will be submitted in the near future. 
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Abstract 

The paper illustrates that valuable information can 
be mined from temperature data collected along the 
perishable food produce supply chain. Three 
regression techniques: Ordinary Least Square (OLS), 
Principal Component Regression (PCR) and Latent 
Root Regression (LRR) have been used to predict 
remaining shelf life of tropical seafood products. The 
results show that LRR is the best of the three 
regression techniques and works well in predicting 
remaining shelf life for tropical seafood. The results 
demonstrate the potential usefulness of utilizing 
automated temperature data collection (e.g. using 
RFID sensors) to help achieve a challenging business 
objective–remote real-time prediction of remaining 
shelf life of chilled foods. 

1. Introduction 

RFID has been seen as a technology to 
revolutionize the supply chain and the retail industry, 
but early adopters have found the technology 
expensive. It has been argued that to achieve the full 
benefits of RFID technology, valuable information 
must be mined from raw RFID data, interpreted, and 
then shared both internally and externally with supply-
chain partners, to achieve a specific business objective.  

One such objective for the food industry is shelf life
monitoring, prediction and control for chilled foods. 
Generally, shelf life of a food product is defined as the 
time duration it can be stored until becoming 
unacceptable for human consumption. The concept of 
Shelf life relates to a number of terms such as best 
before, use by, and freshness date, all of which are in 
common use. Remaining shelf life is basically the shelf 

life as evaluated at the time of assessment. As food 
quality depends significantly on the conditions under 
which it is stored, remaining shelf life varies greatly 
with environmental factors; temperature being a key 
variable. Traditionally, determination of remaining 
shelf life is carried out in laboratory studies which are 
now considered as time consuming and expensive. 
Increasing customer demand for high quality food and 
safety assurance as well as rapid market expansion are 
the main motivating factors in developing novel 
techniques for estimating remaining shelf life of fresh 
food products. 

This paper illustrates the idea of using regression 
technique to analyze data and then predicting the 
remaining shelf life of chilled foods. Three regression 
techniques are used for data analysis: Ordinary Least 
Square (OLS), Principal Component Regression (PCR) 
and Latent Root Regression (LRR). The work is based 
on temperature data collected from an international 
fresh produce supply chain. 

2. Material and methods 
2.1. Temperature data from field trial  

Temperature measurements gathered from field 
trials in an international supply chain were made 
available for analysis. Whilst this temperature data 
relates to non-sea food produce, it is used in the 
research reported here as a generic data set to 
investigate the usefulness of the three regression 
techniques considered. In effect, the working 
assumption, as a starting point for the research, is that 
the data represents seafood that has been shipped 
through a chilled supply chain, rather than the normal 
0oC conditions. The purpose was to use this data for 
the regression analysis, and also to generate simulated 
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shelf life data using public domain software available 
for this purpose. 

Two sets of temperature measurements were 
available. The first consists of 80 temperature profiles 
recorded over 22 hours (one measurement per hour). 
This data set was used to construct a training data set. 
The second data set, consisting of 37 temperature 
profiles recorded over the same duration and 
frequency, was used as the test data set. 

2.2. Seafood Spoilage and Safety Prediction 
(SSSP) software 

As remaining shelf life measurements 
corresponding to the provided temperature profiles 
were not available, Seafood Spoilage and Safety 
Predictor (SSSP) v2.0 software was used to generate 
this data. 

SSSP was developed by P. Dalgaard and colleagues 
at The Danish Institute for Fisheries Research. SSSP 
originates from the Seafood Spoilage Predictor (SSP) 
software and has been available online (for free 
download) since February 1999 [1]. The software 
predicts shelf life and growth of bacteria in a number 
of fresh and lightly preserved seafoods under dynamic 
storage conditions (e.g. temperature, CO2
concentration, water activity). There are basically two 
classes of models in the SSSP v2.0 software: relative 
rate of spoilage (RRS) models; and microbial spoilage 
(MS) models. For fresh seafood, RRS models are of 
empirical nature, which means that they are developed 
using shelf life data obtained at different storage 
temperatures. On the other hand, MS models are based 
on the concepts of specific spoilage organism (SSO) 
and the range of conditions (pH, temperature, water 
activity and atmosphere) under which a SSO can grow 
and produce spoilage metabolites [2].  

In this study, RRS models have been used as only 
temperature measurements were available for analysis. 

2.3. Ordinary Least Square (OLS) 
OLS is probably the most basic technique for 

multiple linear regression. Its mathematical 
development is covered in numerous textbooks and 
hence will not be reproduced here. The formulation of 
the technique is summarized as follows:  

Let y be the dependent variable and x represent the 
independent predictors. The multiple linear regressions 
can be expressed as 

y T= ⋅ +x  (1) 

Where: β is the parameter vector and ε is the 
residual error. For a set of training data 
{ };train trainyX , the OLS estimate of the coefficient 
vector is 

( ) 1ˆ T T
OLS train train train train

−
= X X X y  (2) 

If the inverse matrix does not exist, a pseudo 
inverse could be used. Given the OLS estimate, the 
prediction can be performed as 

OLS
ˆŷ T

test OLS= ⋅x  (3) 

2.4. Principal Component Regression (PCR) 
PCR has a long history dating back to Kendall’s 

and (independently) Hotelling’s work in 1957. 
Recently PCR has received increasing interest. For 
details of PCR mathematical development, readers are 
referred to [3]. The technique is essentially based on 
using principal components (PCs) in regression. The 
estimate of the coefficient vector is: 

2ˆ T T
PCR train train

−= AL A X y  (4) 

A consists of eigenvectors of T
train trainX X that 

correspond to the PCs retained for regressions; L is a 
diagonal matrix whose diagonal elements are the 
square root of the corresponding eigenvalues of 

T
train trainX X . Similar to Equation (3), the prediction is: 

PCR
ˆŷ T

test PCR= ⋅x  (5) 

Note that A does not necessarily include all of the 
eigenvectors of T

train trainX X . In fact, by excluding 
some eigenvectors that are deemed insignificant PCR 
prediction performance may be improved compared to 
OLS technique. The decision of which eigenvectors 
(and hence PCs) to retain is a challenging task and a lot 
of work has been done to address this issue. Readers 
are referred to [3] and the reference therein for a 
detailed discussion. 

2.5. Latent Root Regression (LRR) 
Latent Root Regression (LRR), also known as 

Ridge Regression, is, like PCR, related to Principal 
Component Analysis (PCA). However, the main 
difference is that while PCR uses PCs evaluated from 
the predictor variables Xtrain, the LRR technique 
calculates the PCs based on both predictor variables 
Xtrain and the dependent variable ytrain. Under the same 
LRR framework, there are a number of different LRR 

2718



techniques. In a recent study, Bertrand et al. [4] 
proposed a version of LRR by utilizing the latent roots 
of [ ]train trainyZ for regression where Ztrain is the 
PCs of Xtrain. This LRR version leads to a simple 
expression for mean square error of the estimator and 
makes variable selection easier, as noted by Jolliffe [3]. 
However, the original LRR seems to have been 
proposed by Webster et al [5], where latent roots of the 
correlation matrix of the matrix [ ]train trainyX are
used in regression. According to Webster’s LRR 
technique, the estimate of the coefficient vector is: 

ˆ
LRR k kfβ =  (6) 

( )
1

2 12 1 2 1
0 0

1

n

k k i k k k
i

f y l lδ δ
−− −

=

= −  (7) 

Here k is the vector of coefficients of the predictor 

variables corresponding to the kth PC; and 0kδ
represents the coefficients of the dependent variable y 
to the kth PC. The summation in Equation (6) and the 
second summation in Equation (7) are over a subset of 

PCs for which either the corresponding eigenvalues kl
or the coefficient 0kδ  are largest.  

2.6. Performance statistics 
A number of statistics were calculated to evaluate 

the performance of the regression techniques. They 
include mean square error (MSE), coefficient of 
determination, and maximum relative absolute error 
(RAEmax). Letting  denote the error vector for the 
prediction of the test data set, where is defined as: 

ˆ test= −y y  (8) 

Here ŷ and testy are respectively the predicted and 
simulated shelf life vectors. Then 

1 TMSE
m

=  (9) 

2 1
T

T
test test

R = −
y y

 (10) 

max max 100
test

RAE =
y

 (11) 

Here m is the number of test samples in the data set 
(for the case of the data considered in this paper, m = 
37); testy represents the raw simulated shelf life before 
scaling (i.e. not yet normalized to zero mean); and the 
vector division in Equation (11) is defined as an 
element-by-element division operator. 

3. Results and Discussion 

The SSSP v2.0 software was used to generate shelf 
life data for the temperature profiles from the field 
trial. Tropical seafood simulation in SSSP was selected 
for the study. This simulation is based on an 
exponential RRS model:  

( ) ( )
( )exp

o
refo

ref

shelf life T C
shelf life T C

a T T
=

−
 (12) 

Where 0.12a = for tropical seafood is a model 
parameter; T and Tref are storage and reference 
temperatures respectively. In this study, Tref was set at 
0oC and the corresponding shelf life at reference 
temperature is 14 days i.e., 336 hours. 

The temperature profiles and the simulated shelf life 
data are mean-centered before all analysis. As the 
matrix T

train trainX X is full rank and hence its inverse 
exists, OLS analysis is quite straightforward: estimate 
ˆ

OLS by Equation (2) and use it for prediction as in 
Equation (3). In PCR analysis, the first two PCs are 
retained, which together account for 87.5% of total 
variance. Different combinations of PCs were also 
examined but they seemed to lead to lower prediction 
performance.  

For LRR analysis, the temperature profiles and the 
simulated shelf life data were scaled to unit standard 
deviation. PCA was then performed on the scaled data 
matrix [ ]train trainyX . The strategy is to retain both 
the first few PCs that together accounts for up to 90% 
total variance and the PCs for which magnitudes of the 
coefficients to the dependent variable y exceed a 
threshold. Using a threshold of 0.05, a total of 12 PCs 
were retained for regression.  

 Figure 1 shows the prediction performance of the 
three regression techniques being studied. The x-axis 
corresponds to the simulated shelf life (from the SSSP 
software) and the y-axis corresponds to the predicted 
shelf life (from the regression technique). The line y = 
x is also shown for visual reference. The figure 
indicates that while there is not much difference 
between results from PCR and OLS, the LRR 
performance is the best of the three. This observation is 
numerically supported by the performance statistics 
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tabulated in Table 1. These statistics show little 
difference between OLS and PCR techniques. On the 
other hand, LRR is shown to be a much better 
regression technique, with substantial improvement in 
all three performance statistics (MSE, R2 and RAEmax
).

Figure 1: Tropical seafood shelf life prediction 
by OLS, PCR and LRR techniques 

The observation that LRR performs significantly 
better than OLS and PCR is surprising. It should be 
noted that LRR (and PCR) is designed to deal with 
multi-collinearities in the predictor data. A quick check 
on the rank of Xtrain and Xtest revealed that they are both 
full rank and hence multi-collinearities should not be 
an issue. Therefore, it is reasonable that PCR did not 
offer any advantage in using PCs for regression. 
However, LRR surprisingly improves the prediction 
performance. The reason could be that LRR takes into 
account the correlation between the predictor variables 
x and the dependent “y” variable 

Table 1: Performance statistics in tropical 
seafood simulation study 

 OLS PCR LRR 
MSE (hour) 9.51 9.10 2.43 
R2 0.61 0.63 0.90 
RAEmax 12.90% 12.88% 7.66% 

The good performance of LRR technique is an 
interesting result. It should be noted that the simulated 
data sets are non-linear (cf. Equation (12)). Yet LRR, 
which is essentially a linear regression technique, is 
capable of producing a good prediction performance. 
Although further validation with experimental shelf 
life data is necessary, this preliminary result indicates 
the potential usefulness of linear regression techniques 
in the challenging task of predicting shelf life of 
perishable food products. 

4. Conclusion 

Three regression techniques (Ordinary Least Square 
(OLS), Principal Component Regression (PCR) and 
Latent Root Regression (LRR)) were used to predict 
remaining shelf life of tropical seafood products. The 
results show that LRR is the best of the three 
regression techniques for the data and produce 
considered, and it works well in predicting remaining 
shelf life for tropical seafood.  

This preliminary study has used data that was 
collected using data loggers to prove the concept. In 
addition, shelf life information was not experimentally 
determined (hence the reason for using the simulated 
values from SSSP v2.0 simulation software). The next 
step in the research is to extend the study to the use of 
RFID tags to enable automated data collection and 
remote real-time prediction, and to undertake 
experimental assessment of the shelf life for 
comparison with the shelf life predictions provided by 
the regression techniques.  
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