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Abstract

We present new reconstruction results and methods for limited data problems in
photoelastic tomography. We begin with a survey of the current state of x-ray to-
mography. Discussing the Radon transform and its inversion we also consider some
stability results for reconstruction in Sobolev spaces. We describe certain limited
data problems and ways to tackle these, in particular the Two Step Hilbert recon-
struction method. We then move on to photoelastic tomography, where we make
use of techniques from scalar tomography to develop new methods for photoelastic
tomographic reconstruction.

We present the main mathematical model used in photoelasticity, the Truncated
Transverse Ray Transform (TTRT). After some initial numerical studies, we extend
a recently presented reconstruction algorithm for the TTRT from the Schwartz class
to certain Sobolev spaces. We also give some stability results for inversion in these
spaces. Moving on from general reconstruction to focus on inversion of some special
cases of tensors we consider solenoidal and potential tensor fields. We discuss existing
reconstruction methods and present several novel reconstructions and discuss their
advantages over using more general machinery. We also extend our new algorithms,
as well as existing ones, to certain cases of data truncation.

Finally, we present numerical studies of the general reconstruction method. We
give the first published results of TTRT reconstruction and go into some detail de-
scribing the implementation before presenting our results.

8



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

9



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and he has given The Uni-

versity of Manchester the right to use such Copyright for any administrative,

promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accor-

dance with the regulations of the John Rylands University Library of Manch-

ester. Details of these regulations may be obtained from the Librarian. This

page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property Rights and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

exploitation of this thesis, the Copyright and any Intellectual Property Rights

and/or Reproductions described in it may take place is available from the Head

of the School of Mathematics.

10



Acknowledgements

My first thanks, of course, go to Bill. Without your patience, guidance and encour-

agement this work would not have been possible. The enthusiasm with which you

approach mathematics never ceases to amaze me and it has been a privilege to share

this exciting world with you for the last five years.

Next, my family: my parents and my brother. For your never faltering, never

questioning support in all my endeavours. For your love.

My colleagues and comrades in arms in the department. For showing me that

finishing is possible. For friendship and fun, for the never ending stream of puzzles

in times of boredom. Thank you.

Finally, to Ruth. For keeping me sane. For being there, always. For the final

push across the finish line. Now new adventures await.

To each of you, my deepest gratitude.

Thank you.

11



Chapter 1

Introduction

In 1917 Johan Radon published his paper “On the definition of functions from the

values on their integrals on certain manifolds”1. Little could he know that the subject

of his investigations would come to underpin what has been described as “the most

important invention in diagnostic radiology since the discovery of x-rays”2: x-ray

computerized tomography (CT).

Of course, as often happens, the first practical implementations of x-ray CT by

Godfrey Hounsfield in 1972 were completed without knowledge of Radon’s work, re-

deriving the necessary equations for the application. Allan Cormack, who shared

the 1979 Nobel Prize in medicine with Hounsfield was equally unaware of the pre-

vious work of Radon. Since its original invention, the x-ray CT field has developed

and evolved, finding applications not only in medicine, but in areas ranging from

palaeontology and nondestructive testing to geophysics and archaeology. Scanners

have moved from single rows of x-ray detectors to entire arrays, and improvements

in computer technology have allowed algorithm implementations to keep up with the

ever increasing number of detectors. In the 1990s, scanning modalities moved from

circular to the helical trajectories common today. One of the more unexpected con-

sequences of this development is the new results in two-dimensional Radon transform

inversion for limited data. Indeed, many of the recent results in the field are based

1Author’s translation. Original title: Über die Bestimmung von Funktionen durch ihre Integral-
werte längs gewisser Mannigfaltigkeiten.

2See e.g. [11]

12



Chapter 1. Introduction 13

on the exact reconstruction formula for helical CT presented by Katsevich in 2002.

Considering the new inversion formula and letting the helical pitch tend to zero, led

to the discovery of algorithms for local tomography such as the Two Step Hilbert

transform by Noo et al. described in this thesis.

Photoelastic tomography is, compared to x-ray tomography, a much younger field.

This is only natural, as rank two tensor fields lead to much more complicated rela-

tionships than the much simpler scalar field sought by x-ray CT. Two-dimensional

“transmission” photoelasticity dates back to the end of the 19th century, but photoe-

lastic tomography was not developed until the 1990s. Before then, the only way to

make use of photoelastic measurements for three-dimensional objects was to carefully

cut the specimen into thin slices and investigate each one. This method was extremely

time-consuming, not to mention the fact that investigation destroyed the specimen.

For these reasons, three-dimensional photoelasticity was largely abandoned.

Recent advances in photoelastic tomography show promise of once again making

photoelasticity a viable option for non-destructive testing. Using knowledge and al-

gorithms based on scalar tomography, new methodologies are being developed. In

this thesis we will survey the landscape of scalar x-ray tomography and tensor field

tomography. We present new theoretical developments for photoelastic tomography,

including novel reconstruction algorithms for special types of tensor fields and new

stability results for a recently developed algorithm. We also present the first results of

numerical reconstructions using the aforementioned recent algorithm for photoelastic

tomography, and note that this method is now ready for testing on real data. We give

special attention to limited data problems. The phrase “limited data” is somewhat

unfortunate as it is often reached for and used in a number of different contexts. For

two-dimensional Radon transforms, restrictions to limited data are typically catas-

trophic, in the sense that a nullspace in the underlying operator is implied, and so full

reconstructions are no longer possible. Typical practical situations include detectors

too small to take all necessary data. In three dimensions, the situation is somewhat

different. The reconstruction problem is dimensionally overdetermined, and certain

forms of limited data may still allow full and exact reconstruction. Similar situations
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occur in photoelastic tomography. We will refer to the former situation as truncated

data, leaving the phrase limited data for cases when the limitation is not catastrophic.

This distinction will become clear as the specifics of particular cases are described.

While our focus is on tomography of scalar fields and rank two tensor fields, we

should also mention the thriving field of tomography of rank one tensor fields, usually

referred to as vector tomography. Indeed, some of the results by Sharafutdinov used

in this thesis are based on his earlier work on vector tomography. One of the main

applications of this field is the determination of fluid velocities from tomographic

acoustic measurements, but other applications include oceanography and nuclear

magnetic resonance. For an overview of vector tomography see for example [26].

We give a brief outline of each chapter of this thesis, drawing attention to the

main results.

In Chapter 2 we introduce the Radon transform and consider its inversion. We also

present stability estimates and results for limited data problems, both of which we

will make use of in later chapters to develop novel results for photoelastic tomography.

Chapter 3 gives an introduction to the mathematics of photoelasticity and pho-

toelastic tomography. We present some initial numerical findings and describe the

general reconstruction algorithm recently developed, encouraged by our numerical

work. We also give new results extending the general algorithm to Sobolev spaces

and considering its stability.

In Chapter 4 we consider some special types of tensors and present one existing and

several new reconstruction algorithms for these special cases. Whilst only applicable

to certain cases, these new algorithms allow for more efficient reconstructions. The

new algorithms also have applications for certain types of truncated data.

In Chapter 5 we present our main numerical results. We describe the implemen-

tation of our forward model, the phantoms and simulated data, and finally results of

reconstructions.

Finally, in Chapter 6 we summarise and give our thoughts on how to extend and

continue this work.



Chapter 2

Tomography and the Radon

Transform

2.1 Mathematical model

Before we begin our introduction to the mathematics describing the x-ray transform,

we make some remarks about notation.

Definition 2.1. A function φ ∈ C∞(Rn) is called an open support test function

if for every n, k ∈ N, xnφ(k)(x) is bounded as x → ±∞. The space of open support

test functions is known as the Schwartz space and is denoted by S .

For a function φ ∈ S (Rn) we use the notation φ̂ and φ̌ to denote the Fourier

transform and its inverse, respectively, and use the following definitions:

φ̂(ω) = (2π)−n/2

∫

Rn

e−ix·ωφ(x) dx (2.1)

φ̌(x) = (2π)−n/2

∫

Rn

eix·ωφ(ω) dx (2.2)

For functions of several variables we sometimes only require partial Fourier transforms

15
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or Fourier transforms in some of the variables. In this case we use the notation

Fp→t[g(θ, p)] to indicate a Fourier transform in the p-variable only.

Lemma 2.2. For φ ∈ S , we have both φ̂ ∈ S and φ̌ ∈ S

Proof. See e.g. [23].

The mathematical model typically used in x-ray computerized tomography (CT)

is to approximate the x-rays by lines, and ignore scattering, beam hardening and

other physical effects. The main physical assumption is that the absorption of x-

rays is proportional to the density of the object being x-rayed. We give here a brief

introduction to the theory. For a more thorough treatment, see e.g. [17]. Let f be

the density of some object being hit with x-rays. Typically f represents some finite

object, and so we assume it to be compactly supported, that is equal to zero outside

some bounded domain. If an x-ray beam of intensity I0 enters the object, travels

along the line L, and exits with intensity I, then

I = I0 exp

[
−
∫

L

f dl

]
, (2.3)

where dl is the measure on the line L. Typically, one considers as data not the

measured values of the intensity I, but rather gL = − ln(I0/I). We then have

gL =

∫

L

f dl. (2.4)

The problem of computerized tomography is then to reconstruct f given gL for all lines

L passing through the support of f . As a purely theoretical exercise this problem was

formulated long before the invention of x-ray CT. In 1917 Johann Radon published a

paper [21] describing this problem, as well as a solution. For this reason, the integral

operator (2.4) is known in the mathematical literature as the Radon transform of f ,

Rf . For a direction θ ∈ Sn−1 and p ∈ R we have

R : S (Rn) → S (Z), with Z = Sn−1 × R,

given by

Rf(θ, p) =

∫

θ⊥
f(pθ + y) dy. (2.5)
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Rf(θ, p)

p

p

f

θ

Figure 2.1: The Radon transform

See Figure 2.1 for a simple illustration of R.

For images f in R2, the Radon data lives on S1 ×R. Typically one only considers

the subset [0, π)×R, since Rf(θ+π, p) = Rf(θ,−p). This type of data is often referred

to as a sinogram, due to the characteristic shape of the data for a delta function input,

illustrated in Figure 2.2. Since the Radon transform is linear, sinograms from more

complicated images, which can be thought of as a sum of delta measures, look like a

very large number of sine waves all superimposed. The images in Figure 2.3 show a

Shepp-Logan phantom, which is often used to test reconstruction algorithms, and its

Radon transform.

The spaces S (Rn) and S (Z) are equipped with the inner products

〈f1, f2〉 = 〈f1, f2〉S (Rn) =

∫

Rn

f1(x)f2(x) dx (2.6)

〈g1, g2〉 = 〈g1, g2〉S (Z) =

∫

Sn−1

∫

R

g1(x)g2(x) dp dθ, (2.7)

where f(x) is the complex conjugate of f(x).
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Figure 2.2: The sinogram of a delta measure at polar coordinates (p, φ) = (0.7, 0)
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Figure 2.3: Shepp-Logan phantom and its Radon transform

The formal adjoint operator R# of R is given by

〈Rf, g〉 = 〈f, R#g〉. (2.8)

since we only consider the Radon transform on real valued functions, we leave out

the complex conjugation below. We thus have

〈Rf, g〉 =

∫

Sn−1

∫

R

Rf(θ, p)g(θ, p) dp dθ

=

∫

Sn−1

∫

R

∫

θ⊥
f(pθ + y)g(θ, p) dy dp dθ
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Now, let x = pθ + y, giving p = x · θ, and dx = dp dy, and so

〈Rf, g〉 =

∫

Sn−1

∫

Rn

f(x)g(θ, θ · x) dx dθ

=

∫

Rn

f(x)

∫

Sn−1

g(θ, θ · x) dθ dx. (2.9)

Hence,

R#g =

∫

Sn−1

g(θ, θ · x) dθ. (2.10)

The adjoint is also dual in a geometric sense: While the Radon transform inte-

grates over all points on a given line (or hyperplane), R# integrates over all lines

(hyperplanes) through a point. This can be seen as “projecting back” the Radon

data along the lines onto the image, and so the formal adjoint operator is known as

backprojection.

2.2 Reconstruction

Today a wide range of applications involve the reconstruction of functions given

information about their Radon transform. Below we outline the basic theory behind

Radon transform inversion. We sometimes write Rθf(p) = Rf(θ, p).

2.2.1 The Fourier slice theorem

Theorem 2.3 (The Fourier slice theorem). Let f ∈ S (Rn), θ ∈ Sn−1, and t ∈ R.

Then

R̂θf(t) = (2π)(n−1)/2f̂(tθ). (2.11)

Note that since the Fourier transform is invertible, this proves that the Radon

transform is also invertible.

Proof.

R̂θf(t) = (2π)−1/2

∫

R

e−iptRθf(p) dp

= (2π)−1/2

∫

R

e−ipt

∫

θ⊥
f(pθ + y) dy dp

(2.12)
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Now, let x = pθ + y, giving p = x · θ, and dx = dp dy, and so

R̂θf(t) = (2π)−1/2

∫

Rn

e−itθ·xf(x) dx

= (2π)(n−1)/2f̂(tθ)

(2.13)

2.2.2 Filtered backprojection

The Fourier slice theorem shows that the Radon transform is invertible in principle,

but it turns out to be a rather cumbersome algorithm to use in practice and this

type of inversion is not widely used. Instead, some algebraic manipulation yields

an equation much better suited for practical purposes. This algorithm is known as

filtered backprojection.

For Radon data Rf(θ, p) we are only interested in Fourier transforms in the p

variable, so we use the notation R̂f(θ, p) to mean a Fourier transform in this variable

only.

Definition 2.4. The Riesz potential Iα of a function f is given by

Îα[f ](t) = |t|−αf̂(t). (2.14)

Theorem 2.5. Let f(x) ∈ S (Rn). Then for any α < n we have

f = 1
2
(2π)1−nI−αR#Iα−n+1Rf. (2.15)

Proof. Write

Iαf(x) = (2π)−n/2

∫

Rn

eix·ω|ω|−αf̂(ω) dω (2.16)

We change to polar coordinates by letting ω = tθ, t ∈ R, θ ∈ Sn−1, giving

Iαf(x) = (2π)−n/2

∫

Sn−1

∫ ∞

0

eitx·θ|t|n−1−αf̂(tθ) dt dθ (2.17)

The Fourier Slice Theorem (2.3) then gives

Iαf(x) = (2π)−n+1/2

∫

Sn−1

∫ ∞

0

eitx·θ|t|n−1−αR̂f(θ, t) dt dθ (2.18)
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Since R̂f(−t,−θ) = R̂f(t, θ), we can replace t and θ in the above argument by −t

and −θ, respectively to get the same equation with the inner integral over (−∞, 0),

and adding the two gives

Iαf(x) = 1
2
(2π)−n+1/2

∫

Sn−1

∫ ∞

−∞
eitx·θ|t|n−1−αR̂f(θ, t) dt dθ (2.19)

Using the definition of Iα again we have

Iαf(x) = 1
2
(2π)−n+1

∫

Sn−1

Iα−n+1Rf(θ, x · θ) dθ

= 1
2
(2π)−n+1R#Iα−n+1Rf(x) (2.20)

and finally we apply I−α to both sides, completing the proof.

This establishes 1
2
(2π)1−nI−αR#Iα−n+1 as R−1, and forms the basis for many

practically used inversion algorithms. In 2D the most common form is α = 0, in

which case the leftmost filter is simply the identity, leaving a simple 1D filter on the

right:

R−1 = 1
2
(2π)−1R#I−1. (2.21)

This reconstruction is known as Filtered Backprojection (FBP) and lends itself to very

efficient implementations, as the filter used is one-dimensional. Moreover, I−1g(θ, p)

is independent for each value of θ, and as data is often collected at one angle position

at a time, the collected data may be filtered on the fly.

The filter Iα is often referred to as a Ramp filter due to the shape of the commonly

used form I−1 in the Fourier domain, illustrated in Figure 2.4.

One other case will be of interest later, namely α = 1 which is called Backproject-

then-filter (BPF) as it only requires a filter on the image side:

1
2
(2π)−1I−1R#. (2.22)

Note that the backprojection operator is local, in the sense that to calculate the

value of R#g(x) at a given point x, only knowledge of the values of g at rays that

meet x is needed. The filter Iα however, is only local for even integers α. For n = 2

at least one of the filters is non-local and this gives the inversion operator global

dependence.
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Figure 2.4: Ramp filter

2.2.3 Implementation issues

In practical situations there is always some level of noise present in the data. This

is accentuated by a ramp filter, since high frequency components are amplified. To

reduce the noise level we regularise the ramp filter by limiting the high frequency

amplification. The simplest way to achieve this is to simply crop, or window, the

filter beyond a certain absolute frequency. However, the sharp change can produce

artefacts and better results are often achieved by smoothly rolling the filter down to

zero. One way to do this is to use a Hamming window as defined by (2.23) below.

The result of multiplying the ramp filter by a Hamming window is illustrated in

Figure 2.5.

Definition 2.6. For a discrete signal of length N , labelled by n = 0 . . .N − 1, the

Hamming window w(n) is given by

w(n) = 0.54 − 0.46 cos

(
2πn

N − 1

)
(2.23)

The effect of using a Hamming window is illustrated in Figure 2.6. A small

amount of random noise was added to the signal before applying a ramp filter, with

and without a regularising Hamming window. The noise suppression is clearly visible.

2.2.4 Algebraic reconstruction techniques

Algebraic reconstruction techniques take a different approach compared to the ana-

lytic inversion algorithms described above. Here, the CT system is modelled using a
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Figure 2.5: Ramp filter with various windows
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Figure 2.6: Ramp filter of e−x2

set of linear equations which are then solved simultaneously. In modern applications

these systems are extremely large and iterative techniques are used. As a general rule

these methods are much more computationally intense than FBP type algorithms,

but in return they are more flexible and can often use better models of the physics

involved in the x-ray system. We will mainly focus on exact, analytic reconstruc-

tion techniques for Radon transform inversion. We do make use of some algebraic

inversion methods for photoelastic tomography and so we give a brief outline of the

procedure here. The idea is to model the linear Radon transform as a matrix. We

discretize both images and sinograms as vectors and construct a matrix to represent

the operator corresponding to applying a Radon transform. More detail on the actual

construction of such a matrix is given in Section 5.1. Once we have a matrix, the

inversion simply amounts to inverting this matrix. In practice these matrices are too

large to invert directly, and so iterative methods are used.

Below is an illustration of a reconstruction using the Conjugate Gradient Least

Squares (CGLS) method from Hansen’s Regularisation Tools [7]. Notice that CGLS
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achieves a very good reconstruction in relatively few iterations. This is a regularized

inverse, and so we expect some degree of smoothing out of features. The effect is

particularly visible on the edges of the phantom.
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Figure 2.7: Algebraic Radon transform inversion

2.3 Stability estimates

To discuss the stability of the Radon transform we wish to consider it as an operator

between suitable Sobolev spaces. For this investigation we restrict ourselves to func-

tions supported in Ba, the ball of radius a in Rn. This will clearly be the case in any

practical situation.

Definition 2.7. The Sobolev space Hs
0(Ba), s ∈ R is defined as the completion of
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C∞
0 (Ba) in the norm of Hs(Rn), given by

||f ||2s =

∫

Rn

(1 + |ω|2)s|f̂(ω)|2 dω. (2.24)

Setting s = 0 gives the usual L2 norm.

On the data side, we are interested in smoothness only in the p-direction, and so

for C∞
0 (Z) we use the norm ||| · |||s, given by

|||g|||2s =

∫

S1

∫

R

(1 + t2)s|Fp→t g(θ, p)|2 dt dθ, (2.25)

and denote the closure of C∞
0 (Za) by Hs(Za). Here Za = Sn−1 × [−a, a]

Theorem 2.8. Let f ∈ Hs(Ba), with Ba the ball in Rn. Then there exists a constant

c(s, n) > 0 such that

2
√

π

(2π)n/2
||f ||s ≤ |||Rf |||s+ n−1

2

≤ c(s, n)||f ||s (2.26)

Proof. See e.g. [22], Theorem 2.4.1

Theorem 2.8 shows that the Radon transform increases smoothness by n−1
2

deriva-

tives, as measured by the Sobolev norm. In addition, this shows that the Radon

transform considered as a function from Hs(Ba) → Hs+ n−1

2 (Za) has a continuous

inverse.

In practical situations we require no more than 3 dimensions, so we will restrict

ourselves to this case. In fact, we are further restricted: Radon transform data,

or indeed x-ray transform data, in 3 dimensions would require measurements from

angles covering half the 2-sphere, which is somewhat impractical. It is much more

convenient to consider our 3-dimensional object as a “stack” of 2D functions, as in

Figure 2.8. The 2D Radon transform of each of these may be measured by a rotation

around a single axis. For a given rotation angle, data from all slices may be collected

at once, for example using a 2-dimensional detector, such as a CCD camera. We

formalize this in the definitions below. We also extend the left hand inequality of

(2.26) to 3D x-ray transforms, which we consider as a stack of 2D Radon transforms.
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Figure 2.8: Each plane considered as a 2D function, for which we collect 2D Radon
data

Definition 2.9. Consider f(x) for x ∈ R3 = R2 × R and write f(y, z) = fz(y), with

y ∈ R2, and z ∈ R. We then write the slice-by-slice Radon transform R̄ as

R̄f(θ, p, z) = R[fz(y)]. (2.27)

For distributional f ∈ S ′, we define R̄ by the action of a slice-by-slice backpro-

jection R̄# on a test function φ:

〈R̄f, φ〉 = 〈f, R̄#φ〉 (2.28)

We define the Sobolev norm for slice-by-slice Radon data analogous to (2.25)

|||g|||2s̄ =

∫

S1

∫

R

∫

R

(1 + t2 + ζ2)s|Fp→t
z→ζ

g(θ, p, z)|2 dt dζ dθ, (2.29)

along with the norm H s̄.

Clearly, R̄ is bounded from Hs → H s̄ for s > 3/2 by restriction followed by

Theorem 2.25. At present we do not know the smallest value of s for which R is

bounded however the following result shows the stability for the inverse for all s.

We shall require an extension of Theorem 2.8 for the slice-by-slice Radon trans-

form. Unable to find the required result in the literature, we prove it here in the form

of the following lemma:
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Lemma 2.10. Let f ∈ Hs(Ba). Then

||f ||s ≤ (8π)−1/4|||R̄f |||
s+ 1

2

(2.30)

Proof. We choose any f ∈ C∞
0 (Ba) and use the Fourier Slice Theorem for each slice

to see that

|||R̄f |||2
s+ 1

2

=

∫

S1

∫

R

∫

R

(1 + t2 + ζ2)s+ 1

2 |Fp→t
z→ζ

Rfz(θ, p)|2 dt dζ dθ

=
√

2π

∫

S1

∫

R

∫

R

(1 + t2 + ζ2)s+ 1

2 |Fz→ζ f̂z(tθ)|2 dt dζ dθ

≥ 2
√

2π

∫

R

∫

S1

∫ ∞

0

t(1 + t2 + ζ2)s|Fz→ζ f̂z(tθ)|2 dt dθ dζ

= 2
√

2π

∫

R3

(1 + ω2)s|f̂(ω)|2 dω

= 2
√

2π||f ||2s. (2.31)

We thus see that a slice-by-slice filtered backprojection, FBP, defined in the ob-

vious way, is a continuous map from Hs+ 1

2 (Z3
a) to Hs(Ba)

We have reviewed some stability results of the two-dimensional Radon transform,

and extended these to a relevant special case of three-dimensional problems. In

Section 3.6 we make use of these results to investigate the stability of a recently

developed reconstruction algorithm for photoelastic tomography. But before moving

on, we conclude our overview of the Radon transform by considering certain cases of

missing data.

2.4 Limited data tomography

In many modern applications of x-ray CT, the size of the imaged specimen exceeds

that of the detector array [9]. In the engineering community the problems associated

with this are dealt with mainly on the experimental side, with methods like contin-

uous image acquisition [12]. Much less emphasis has been put on the algorithm side
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of development and often standard filtered backprojection is used even for truncated

data. In the medical community there has been more of a drive towards new algo-

rithms specially designed to deal with data truncation in both approximate and exact

settings. We will consider some of the options available for dealing with truncated

data.

2.4.1 Limited data tomography

The problem of tomographic reconstruction from only partial data is known as limited

data tomography. Limited data here means the values of Rf(θ, p) are only known on

some proper subset of the domain. One typically distinguishes between three types of

limited data problems. In limited angle tomography, the data is, as the name suggests,

only known for certain values of θ. This might occur in medical applications when a

patient is attached to some apparatus, or in non-destructive testing when some views

are obscured by some device used for live loading. The exterior problem concerns the

case where the data Rf(θ, p) is known only for |p| > a for some a > 0. Here one

might be unable to measure rays going through the centre of the object, which may

be too dense for the x-rays to penetrate. The final case, which is the focus of this

section, is known as the interior problem. This involves, as described earlier, data of

the form Rf(θ, p) for |p| < a, and some a > 0. The typical situation is a detector

width too small to cover the entire object being scanned.

2.4.2 The interior problem and non-uniqueness

In the following sections we concentrate our attention to problems limited by detector

width. We require some notation to aid our discussion. We shall also restrict our

treatment to 2D. This includes the case of parallel x-ray 3D tomography, as each

horizontal slice can be treated as an individual 2D problem. This setup is used for

example at tomography beamlines at the European Synchrotron Radiation Facility

(ESRF). Let f ∈ S (R2) be the object we wish to reconstruct. We assume f to

be compactly supported and denote its support by Ω. Without loss of generality
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Figure 2.9: Different types of limited data
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we suppose that the object is rotated around some centre of rotation and that the

source-detector pair is fixed, centered around the same centre of rotation. There will

then be a circle determining the region of Ω that is illuminated by x-rays from all

angles. We denote this region A, as shown in Figure 2.10.

Ω

A

Detector

x-rays

Figure 2.10: Region A

In this terminology, the interior problem above means that region A lies entirely

inside Ω, that is, it does not contain any part of the boundary of Ω. If this is the case

it is possible to prove that the measured truncated Radon transform no longer has a

trivial nullspace. There are even compactly supported non-zero functions f0 ∈ S (Rn)

such that Rf |p<|a| ≡ 0. Natterer [17] gives an example. Note that a completely

“invisible” object would have to take negative values, which is clearly not physically

possible. However, the non-trivial nullspace does mean that unique reconstruction

is no longer possible. . This is particularly useful in situations when detecting

singularities, such as cracks, is of greatest interest. Later we shall see algorithms

using this property.
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2.4.3 Truncated filtered backprojection

If the sample is globally homogeneous and region A is in the centre of the specimen,

some useful information can be recovered by applying the standard filtered backpro-

jection (FBP) algorithm to the truncated data. Typically this yields reconstructions

with strong artefacts near the regions of the image corresponding to edges of the

detector, but it may still give some insight into the structure of f . Figure 2.11b

shows the result of truncated FBP for a web phantom. The original image is shown

in Figure 2.11a. For the purpose of illustration we show the image reconstructed on

the whole original image space. When this method is used in practice, one typically

only outputs the result inside region A. Note that the larger circle is a reconstruction

artefact, and does not correspond to the middle circle in the original image, as can

be seen from its location. The middle and outer original circles disappear almost

completely. The edge artefacts arise due to the jump in the data from the last data

value down to zero for unmeasured values. Since a ramp filter resembles a derivative,

the large jump distorts the data. The location of this jump in the reconstructed

image gives a good indication of the ’cut-off’ value: the region inside is in full view

of the detector at all times.

This artefact arising from the discontinuity at the detector edge can be alleviated

by padding with the boundary value. Alternatively, one could try to smoothly round

the data off to zero. There are various heuristic methods for doing this, including

the “water cylinder” approach [8]. All these methods give very similar results and

suffer from the same drawbacks. Figure 2.11c shows the image reconstructed using

this method.

The use of the web phantom illustrates another important point. Outside region

A, image features with different orientation are affected differently by data truncation.

Essentially this is a limited angle problem, with more angles missing further away from

region A. For the web phantom, the radial lines are reconstructed extremely well,

whereas the circular features outside the fully illuminated region disappear almost

completely. The reconstructed images may appear to provide information, when in



Chapter 2. Tomography and the Radon Transform 32

fact this information may be incomplete. Figure 2.12b is a physical phantom scanned

with a synchrotron source at the ESRF, artificially truncated and then reconstructed

using a padded FBP algorithm. The inner circle indicates the region illuminated from

all angles, and the outer circle encloses the region illuminated by x-rays for at least

50% of the angles. The annulus region appears to contain information, and knowing

that the original phantom consists of circles it is easy to see how and where the image

is distorted. However, when imaging an unknown or more complicated object, it is

not always clear which features are real and which are simply reconstruction artefacts.

Figure 2.12a shows an example of how this information may be used. Region A is

indicated by the dotted circle. Since images are almost always stored and displayed

in rectangular shapes, and region A is circular, some of the incomplete data may be

included, rather than leaving the corners empty, as long as the reader is aware of the

difference.

2.4.4 Dual resolution tomography

Instead of simply using filtered backprojection on the truncated data, it may some-

times be possible to obtain some information about the whole specimen. If the

limiting factor is the detector size, there is typically a trade-off between scanning

the whole object at a lower resolution, or only a region at a higher resolution. Dual

resolution tomography is an attempt to do both. The strategy is to take two or more

sets of data for the same object using different magnification. Here at least one of the

sets would cover the entire object, and subsequent sets would then be zoomed in on

the region of interest. In cone beam systems, the magnification can be achieved by

moving the specimen closer or further away from the source, and in parallel setups,

where this is not possible, one can use lenses. In non-medical applications, x-ray dose

is often not a concern and so multiple scans are less of a problem. There are different

ways to combine the different data sets. In parallel beam regimes one could work only

on the data side, by essentially replacing parts of the sinograms covering the whole

object by the higher resolution data from the later scans. In fan beam or cone beam
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padded with extreme values

Figure 2.11: The web phantom used to illustrate limited data artefacts
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Figure 2.12: Two real examples
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systems it is necessary to reconstruct an image using the full-view data, and then use

this to generate higher resolution data for the regions outside region A. The latter

approach is taken by Chun et. al in [4]. They carry out both numerical simulation

and physical experiments, and also consider some of the effects of physical limita-

tions, such as inaccuracies in the centre of rotation between the different measuring

cycles. The images in Figure 2.13 show the result of applying this technique to the

web phantom. We simulate two scans, the first one with a detector array covering

the whole object, and the second using an array of half the width but with the same

number of detectors. Note the improvement in resolution, which is clearly visible in

the region south east of the centre, which consists of dots of various sizes. Using FBP

based techniques means relatively low computations costs.

2.4.5 Two step Hilbert reconstruction

If we relax the degree of data truncation slightly, it is possible to achieve theoretically

exact reconstruction for a large class of truncated data problems. If parts of region

A lie outside Ω, any straight line inside A that intersects both edges of Ω can be

reconstructed. See Figure 2.14, where the dotted line indicates the area inside the

detector, and the shaded area can be reconstructed exactly, in spite of severe data

truncation for certain angles.

The two step Hilbert method was first described by Noo et al. in [18]. The main

practical advantage of the Hilbert transform method is its ability to reconstruct the

actual attenuation values in situations with limited data. When using regular filtered

backprojection this is not possible. From a theoretical viewpoint it is also very

interesting to be able to achieve exact reconstructions from truncated data.

Definition 2.11. The Hilbert transform of f , Hf is defined as a convolution with

the kernel 1
πp

, that is

Hf(p) = pv

∫ ∞

−∞

f(p − s′)

πs′
ds′ = (2π)−1/2

∫ ∞

−∞
−i sgn(t)eitpf̂(t) dt, (2.32)

where pv indicates that the integral is understood in a Cauchy Principal value sense,

and sgn denotes the sign function.
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Figure 2.13: Dual resolution tomography
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Ω

A

Figure 2.14: Reconstructible area using the two step Hilbert method

The Hilbert transform is intimately related to Radon transform inversion. The

standard form of filtered backprojection uses a ramp filter, which is a multiplication

by |t| in the Fourier domain. This can be written as |t| = (−it) (−i sgn(t)). A Fourier

domain multiplication by −it corresponds to a derivative in the spatial domain, and so

a ramp filter can be decomposed into a differentiation followed by a Hilbert transform.

I−1f(p) = H ∂

∂p
f(p). (2.33)

Since the derivative is a local operator, the non-local property of the Radon inversion

is due to the Hilbert transform step.

We follow the notation of [18] and let H0f(x) denote a 2D function where a Hilbert

transform has been applied in the second variable only, that is

H0f(x1, x2) = pv

∫ ∞

−∞

f(x1, x2 − x′
2)

πx′
2

dx′
2 = pv

∫ ∞

−∞

f(x1, x
′
2)

π(x2 − x′
2)

dx′
2 (2.34)

Lemma 2.12. Let

b0 =

∫ π

0

d

dp
Rf(θ, p)

∣∣∣∣
p=x·θ

dθ. (2.35)

Then

b0 = −
√

2πH0f. (2.36)

That is, first differentiating the Radon data in the p-direction and then backpro-

jecting, gives the original image acted on by a Hilbert filter in the x2 direction. It

may, at first, seem strange that a particular direction is introduced in a seemingly

rotationally symmetric procedure. The crucial point is the subset of angles which are

backprojected. Radon data satisfies the symmetry relation Rf(−θ,−p) = Rf(θ, p).

When backprojecting over π radians, we are essentially backprojecting over the full
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circle, and using redundancy. We note that the p-derivatives of the Radon transform

are antisymmetric instead, and so when backprojecting it is no longer possible to

backproject over the full circle, as the result would be zero. There is a choice of a

parameter φ, where the backprojected angle range is [φ, π + φ]. In the lemma above

we have φ = 0 and a simple extension of the definition of b0 to bφ is possible, along

with a corresponding definition of Hφ, Hilbert transforms along lines at an angle φ

with the x2 axis. We include the proof as we believe it is helpful in understanding

the relationship between the Hilbert transform and Radon transform inversion.

Proof. We start with the definition of b0, and write the derivative as a multiplication

by it = i|t| sgn(t) in the Fourier domain.

b0 =

∫ π

0

d

dp
Rf(θ, p)

∣∣∣∣
p=x·θ

dθ

= (2π)−1/2

∫ π

0

∫ ∞

−∞
itei(x·θ)tR̂f(θ, t) dt dθ

= (2π)−1/2

∫ π

0

∫ ∞

−∞
i sgn(t)ei(x·θ)tR̂f(θ, t)|t| dt dθ. (2.37)

We then use the Fourier slice theorem, and the fact that θ ∈ [0, π] means that

sin θ ≥ 0 and so sgn(t) = sgn(t sin θ). We finally change variables to ω = tθ and note

that t sin θ = ω2.

b0 = (2π)−1/2

∫ π

0

∫ ∞

−∞
i sgn(t sin θ)eix·(tθ)f̂(θt)|t| dt dθ

= (2π)−1/2

∫ ∞

−∞

∫ ∞

−∞
i sgn(ω2)e

ix·(ω)f̂(ω) dω1 dω2

= −
√

2πH0f. (2.38)
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Thus, if we can invert the Hilbert transform, we have a new way of inverting the

Radon transform. From the definition of the Hilbert transform in the Fourier do-

main, Ĥf(p) = −i sgn(p)f̂(p) it is clear that it is its own inverse, up to a constant.

The problem of inverting arises as even if f is compactly supported, Hf may have

unbounded support. As we can only recover a compact subset of b0, some more ma-

chinery is needed. Formulae for inverting the Hilbert transform even in this setting

have been known for a long time. We give one example due to Mikhlin [16, §26].

Proposition 2.13. Let f(t) be a function with support in [L + ε, U − ε] for some

ε > 0. Suppose Hf(t) is known in [L, U ]. Then

f(t) =
1√

(t − L)(t − U)

(∫ U

L

√
(p − L)(p − U) Hf(p)

π(p − t)
ds + C

)
, (2.39)

for some constant C, which in the tomography case is fixed by the integral of f , known

from projection data.

Several other methods for finite Hilbert transform inversion have been suggested, in

particular for dealing with the singularities near L and U . See e.g. [18, 31].

Figure 2.15 shows an example of using two step Hilbert reconstruction, compared

to a regular FBP reconstruction. On the line plot, notice the FBP (dotted line)

cupping, as well as giving the wrong attenuation level, both artefacts arising from

the algorithm trying to compensate for the missing data from outside region A.

This completes our overview of the Radon transform and scalar tomography. We

now move on to consider photoelasticity and tomography of tensor fields.
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Figure 2.15: Hilbert transform reconstruction
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Photoelasticity

In many situations in mechanical engineering it is of great importance to be able

to predict the stress behaviour of solid components under load. Commonly today,

a finite element model of the component is constructed and the stresses calculated

using approximations to the partial differential equations. One major limitation of

this approach is the importance of boundary conditions which may not be known, for

example in cases of complicated contact between two surfaces such as a threaded nut

and bolt. Photoelastic tomography overcomes this problem by recovering the stress

experimentally.

Photoelasticity is the effect whereby the introduction of stress in certain trans-

parent materials causes anisotropy in the otherwise isotropic permittivity, giving rise

to birefringence. The optical anisotropy, which depends on the stress distribution

within the material, may be measured using polarimetry [2, 30]. Assuming a low

stress, the ordinary and extraordinary rays can be considered to be straight lines and

to coincide, and the relationship between the anisotropic permittivity tensor and the

stress can be assumed to be linear. This allows us to use tomographic techniques to

recover the internal stress pattern of an object.

40
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Figure 3.1: Epoxy resin cube with a point load, viewed through a polarizing filter
[Image courtesy of Rachel Tomlinson, University of Sheffield]

3.1 Mathematical model

Before outlining the equations governing photoelasticity, we require some definitions.

We will assume all coordinates to be Cartesian, and we will not distinguish between

rank two tensors and matrices. Over R3 we identify a rank two symmetric tensor

field with the matrix field

f =




f11 f12 f13

f12 f22 f23

f13 f22 f33


 , (3.1)

with the components fij.

Using terminology from the theory of elasticity we define a unique splitting of

matrices into trace and trace-free parts.

Definition 3.1. Let f be a symmetric 3× 3 matrix f . The deviatoric, or trace-free,
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part of f Df is given by

Df = f − 1
3
Tr(f)I3, (3.2)

where Tr denotes the trace of f and I3 is the identity matrix. Similarly, we have the

isotropic, or in terminology from elasticity, the hydrostatic part of f , Hf given by

Hf = 1
3
Tr(f)I3. (3.3)

Symmetric tensors can be uniquely decomposed into deviatoric and isotropic parts

f = Hf + Df , and in the absence of any intrinsic directions in f, this decomposition

is respected by linear equations. That is, any linear equation of f may be written as

L[f ] = dD(f) + hH(f) for some constants d and h. (3.4)

This is a classical result in the tensor literature and may be proved by direct calcu-

lation [20].

The stress optic law proposes that the permittivity tensor depends linearly on

the stress tensor [13, §16]. In the remainder of our study of photoelasticity, we shall

assume that the forces involved are small enough to assume linear relationships in

the equations governing strain, stress and permittivity. We also consider materials

without intrinsic directions and so the dependence of the permittivity ǫ on stress σ

must also preserve the splitting into deviatoric and potential parts.

ǫ = C0D(σ) + C1H(σ), (3.5)

where C0 and C1 are material-dependent constants.

The isotropic part of the permittivity is very difficult to recover using polarimetry,

as it essentially involves measuring path lengths of light rays accurate to fractions of

a wavelength. It is also the case in many applications that only the deviatoric part is

of interest, and so the literature often only quotes one photoelastic constant, C = C0.

This is particularly common when studying ductile materials such as metals. The

von Mises yield criterion, which is a measure of when such a material begins to yield

is defined in terms of the difference of the principal stresses. For a stress tensor with
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eigenvalues λi, von Mises stress J is defined as

J =

√
1

2

∑

i6=j

(λi − λj)2 , (3.6)

which clearly only depends on the deviatoric stress.

Considering only the deviatoric part and thus using only one constant also makes

it possible to convert results between different materials. One is able to use a trans-

parent photoelastic material such as epoxy resin and construct a model for an en-

gineering component originally made from metal. This becomes a simple matter of

rescaling results according to the photoelastic constants.

3.1.1 Ray approximation

An approximation to Maxwell’s equations known as the Rytov-Kravtsov law is used to

model the light propagation through the photoelastic medium. For a full derivation

see e.g. [24, Ch. 5]. The anisotropy and its derivatives are assumed to be small,

ǫ = ǫ0I + f for some constant ǫ0 and a small f . This leads to the approximation

described below where, in particular, the ordinary and extraordinary rays are straight

coinciding lines. We parameterize the space of rays (that is, lines with orientation)

L = L(ξ, x) in R3 by a unit vector ξ giving the direction of a line, and the point

on the line closest to the origin x, which satisfies the inner product 〈ξ, x〉 = 0. For

a unit vector ξ we define Pξ to be the projection of a vector in R3 onto the space

perpendicular to ξ, and extend Pξ to be defined for arbitrary symmetric matrices. To

do this, we think of the symmetric matrix A as a bilinear form where

Pξ(A)(u, v) = A(Pξu, Pξv), (3.7)

or, writing Pξ as a matrix, we have

Pξ(A) = P T
ξ APξ. (3.8)

For a vector v we have Pξ(v) = v− (v · ξ)ξ and for example with ξ = e2 = (0, 1, 0)
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and the matrix f ,

Pξ(f) =




f11 0 f13

0 0 0

f13 0 f33


 . (3.9)

The Rytov-Kravtsov law then states that for the electric field E and t measuring

distance along the ray,
dE

dt
=

i

2ǫ0
Pξ(f)E, (3.10)

where E is the electric vector.

The solution operator to the initial value problem E(t) = U(t)E(t0) is expanded

as a Neumann series

U = I +

∫ t

t0

i

2ǫ0
Pξf(t1) dt1 +

∫ t

t0

dt1
i

2ǫ0
Pξf(t1)

∫ t1

t0

dt2
i

2ǫ0
Pξf(t2) + . . . (3.11)

and truncated to first order to form the linear approximation Sharafutdinov calls the

Transverse Ray Transform (TRT) of f along the ray x + ξt ∈ L,

TRTf(ξ, x) =

∫ ∞

−∞
Pξf(x + tξ) dt (3.12)

As mentioned above, effects of the hydrostatic parts of f are very difficult to

measure. Instead it is often only possible to measure integrals of a related operator,

the Truncated Transverse Ray Transform (TTRT) [24, Ch 6], given by

Kf(ξ, x) =

∫

L(ξ,x)

Qξ(f) dt (3.13)

with

Qξ = DPξ (3.14)

which in the example of (3.1) gives

Qξ(f) =
1

2




f11 − f33 0 2f13

0 0 0

2f13 0 f33 − f11


 . (3.15)

Here, Kf(ξ, x) may be measured using polarimetry for each ray (ξ, x).
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Since scalar multiples of the identity matrix field are in the nullspace of the TTRT,

from now on we only consider reconstruction of trace free matrix fields. That is, f

will be assumed to satisfy Hf = 0.

3.2 Photoelastic tomography

In contrast to conventional tomography, where a scalar field is reconstructed, pho-

toelastic tomography involves the recovery of a rank two symmetric tensor field from

integrals along lines of the projection of the tensor field onto planes normal to the

lines. The interaction with the light rays is more involved, and the inversion is much

more complicated.

We restrict our consideration to methods that recover the stress in a static ob-

ject. Other inversion techniques include the Load Incremental approach developed

by Wijerathne et al. [29]. As the name suggests this method involves taking measure-

ments of a specimen under increasing load and this type of method is not considered

in this thesis.

A possible experimental setup for the collection of TTRT data is being developed

in collaboration with the University of Sheffield [14, 27, 30].

The experimental system uses a specimen constructed from birefringent epoxy

resin. Objects are placed on a rotation stage inside a glass tank filled with fluid

matching the refractive index of the epoxy, and illuminated by a laser. The laser

light passes through a polarizer, the glass tank and finally an analyser before being

measured by a CCD camera. Additional optical apparatus may be put in place to

filter out scattered light rays, should this be deemed necessary. A technique known

as Fourier polarimetry [30] is used to recover TTRT data from the measured light

intensity. The specimen is rotated to collect tomographic data, and may be replaced

at a different orientation relative to the rotation stage to collect data for various axes

of rotation. Figure 3.2 illustrates the experimental setup.

We thus have the following problem definitions for our forward and inverse prob-

lems: Given a 3-dimensional rank two symmetric tensor field and a line L(ξ, x), the
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Optical equipment

Rotation stage with specimen

Laser light source

Figure 3.2: Possible experimental setup

data we collect is

Kf(ξ, x). (3.16)

Now, given Kf(ξ, x) for some family of lines, we wish to recover Df .

Our first step is to find some collections of lines which may feasibly be collected

while still being enough to uniquely determine f .

It is somewhat impractical to collect data for all possible lines (even when ex-

cluding lines that do not intersect the support of f) and a simple heuristic argument

shows that this may not be necessary. The space L of all lines in R3 is 4-dimensional,

whereas the sought f is a function of only 3 variables, and so it seems plausible to

expect that only a 3-dimensional family of lines would be needed for the recovery

of f . Indeed, a recent paper [15] proves uniqueness and provides an unstable recon-

struction algorithm using only lines parallel to 3 planes and a stable reconstruction

algorithm using lines parallel to 6 planes.

3.2.1 Reconstruction: historical background

When we began our investigations into photoelastic reconstruction, the field looked

very different compared to today. While the cutting edge of experimental photoe-

lastic reconstruction still belongs to the group of Aben et al. [1, 2] now as it did

then, much progress has been made on the theoretical side. The papers by Aben

contain a basic derivation of the reconstruction algorithm used, mainly appealing to

physical principles and a balance of forces. These investigations inspired Vladimir
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Sharafutdinov to conduct a more thorough mathematical investigation into the sub-

ject and, in true mathematical style, in much more generality. In the preface to his

book on the subject [24] he gives the following apology:

I am not sure that this book will gain a wide readership. A pure

mathematician would most likely consider it rather old-fashioned that

the book is abundant in cumbersome calculations performed in coordi-

nate form with use made of multilevel indeces. [...] On the other hand,

an applied mathematician will likely be confused by vector bundles, Rie-

mannian connections and Sobolev’s spaces.

Both the reconstructions presented by Aben et al. and Sharafutdinov are for the

recovery of only one component of the tensor field using data from rays parallel to

a single plane. Sharafutdinov also presents a formula in his book for calculating the

complete tensor, but this requires a practically infeasible amount of data, captured

from rays in all possible directions in R3.

In 2004 Hammer and Lionheart began investigating the possibility of combining

multiple one-component reconstructions to find the full stress tensor [6]. This is where

the current author started his journey into photoelastic tomography and where this

work takes its start.

3.2.2 Multiple axes of rotation

Our first approach to this problem is to consider algebraic methods. Instead of cal-

culating each tensor component separately, this methodology enables us to calculate

them all at once. An algebraic model of the problem also allows numerical analy-

sis of the model itself, to investigate the feasibility of reconstructions from varying

amounts of data. While it is clear that tomographic data collected using six different

axes of rotation and six separate reconstructions are enough, it may be possible to

achieve reconstruction using less data. Finally, using algebraic techniques allows a

more explicit approach to regularisation as we shall see later. As is typical in inverse

problems, quite some effort is required to construct an accurate numerical forward
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model. In addition to above, the forward model will also serve as a source of simulated

data for the testing of later analytical reconstructions.

3.3 Investigation of the forward model

The full description of the forward model is given in Section 5.1. For the following

we will assume access to a linear forward model. The model takes the form of a

sparse matrix representing the operator taking a three dimensional strain tensor field

to photoelastic measurement images. In practice this matrix is far too large to fit in

RAM at once, so we typically generate parts of it on the fly, as needed by our various

algorithms. We focus our initial investigation on this matrix, estimating its rank and

attempting reconstruction using the algebraic methods described in Section 2.2.4.

3.3.1 Rank estimation

We use a Singular Value Decomposition (SVD) to estimate the rank of the model

matrix, varying the number of angle steps in the rotation around each axis, as well

as the total number of axes. Even on small scales, the complete matrix becomes too

large to calculate the SVD, so very coarse grids need to be used.

We discretize our tensor field into 18 × 18 × 18 voxels. Using the forward model,

we construct a complete matrix M representing the TTRT operator, and calculate

its SVD. We simulate a digital camera with 30×40 pixels, and use 60 projections. To

compare different data acquisition modalities, we split the 60 projections over one or

several axes of rotation. The theory indicates that using 6 axes will be sufficient to

recover the deviatoric part of the tensor field (5 values for each voxel). The heuristic

argument based on dimensionality suggests that 3 axes may be enough.

Looking at the plot of the singular values in Figure 3.3a, the matrix rank certainly

appears to match the expected 5 values per voxel. Recall that the symmetric tensor

field has 6 independent values, but its trace is in the nullspace of the TTRT.

We may investigate the singular vectors corresponding to the zero (within nu-

merical tolerance) singular vectors. Considering the span of these vectors and using
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Figure 3.3: The singular values of M plotted for 1,2,3, and 6 axes of rotation

Matlab to calculate a canonical basis, it is clear from Figure 3.4 that these do indeed

correspond to the tensor trace in each voxel. The symmetric matrices have 6 inde-

pendent values and are stored in the order (f11, f12, f13, f22, f23, f33), so in each voxel,

the trace is the sum of the first, fourth and sixth values. The figure shows the case

for 1 axis; 2, 3, and 6 axes give the same result.

Interestingly, the plot of the singular values for different number of axes appears

to indicate that the nullspace is limited to the hydrostatic part of the tensor field

even for a single axis of rotation. For 1 axis, the singular values decrease by several

orders of magnitude, as may be seen in Figure 3.3b, but the main drop is still at 5

values per voxel. However, as we shall see, attempting a reconstruction from single
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axis data does indicate the presence of a larger nullspace.

Figures 3.5 – 3.10 show a CGLS reconstruction of f from data collected using 1,2,3,

and 6 axes of rotation. The phantom used is Phantom 2, defined in Section 5.2.2.

Due to the computational intensity, the grid size was restricted to 30× 30× 30. 1080

views were used, split over the varying number of rotation axes in order to use the

same amount of data for all reconstructions.

The artefacts visible in the 2-axis reconstruction may indicate the presence of a

nullspace beyond the hydrostatic part of the tensor. The reconstruction from data

from a single axis appears to fail almost completely, and only recovers partial struc-

tures while suffering from large artefacts. Indeed, for the 1-axis case it is possible to

calculate an explicit family of tensors in the nullspace of the TTRT. We defer the

calculation of such tensors until Section 3.5, at which point we will have developed

some more helpful tools.

Considering the reconstructions for 3 and 6 axes, the results from these numerical

investigations provide a positive indication that a complete reconstruction is in fact

possible from data limited to rays parallel to a small number of planes. Such an

algorithm was indeed found by Sharafutdinov and Lionheart in 2009.
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Figure 3.5: Algebraic reconstruction of f11
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Figure 3.6: Algebraic reconstruction of f12
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Figure 3.7: Algebraic reconstruction of f13
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Figure 3.8: Algebraic reconstruction of f22
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Figure 3.9: Algebraic reconstruction of f23
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Figure 3.10: Algebraic reconstruction of f33
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3.4 The general reconstruction algorithm

Below is a description of the new general reconstruction algorithm for the TTRT

developed by Sharafutdinov and Lionheart [15]. In Section 5.4 we present the first

published results of a numerical implementation of these methods. We recall the

setup and notation: We have a tensor field fij ∈ S , for which we have measured

the TTRT, Kf(ξ, x) for rays (ξ, x) parallel to k planes with normals η1, . . . ηk. This

corresponds to tomographic data acquisition rotating about an axis aligned with ηi.

By Kηf we denote the data collected for all lines perpendicular to a unit vector η. For

brevity, when using a set of vectors η1 . . . ηk we sometimes write Xi to mean Xηi
. The

data Kif is a trace-free symmetric 2×2 matrix and thus has two independent values,

the off-diagonal component K1
i f = (Kif)η · (ξ × η), and the diagonal component

K2
i f = (Kif)η · η. This may be seen by considering the tensor in the coordinate

frame of the ray (ξ × η, ξ, η).

ξξ × η

η

Figure 3.11: The coordinate frame of the ray

Continuing our example (3.15) with ξ = e2 = (0, 1, 0) and using η = e3 = (0, 0, 1)

we have

K1
η = 2

∫ ∞

x2=−∞
f13 dx2, and (3.17)

K2
η =

∫ ∞

x2=−∞
f11 − f33 dx2. (3.18)

For each axis of rotation, the data is parameterized as Ki
ηf = Ki

ηf(h, θ, p) where h

is the intersection of a given plane with η and (θ, p) are the usual coordinates of 2D

Radon transforms in each plane. Bη is a two-dimensional backprojection as defined

in (2.10) on each plane perpendicular to η.
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Rather than working with the data Kif directly, we introduce intermediate vari-

ables λ and µ and describe the reconstruction in terms of these:

Lemma 3.2. Let

λη(y) =
i

2
|Pηy|

̂(
Bη

∂K1
ηf

∂p

)
(3.19)

µη(y) = |Pηy|3 ̂(BηK2
ηf) (3.20)

Then

f̂(y)η · Pηy = λη (3.21)

|Pηy|2f̂(y)η · η − f̂(y)Pηy · Pηy = µη (3.22)

The unstable reconstruction algorithm uses three separate axes of rotation. For

η1 = (1, 0, 0), we have Pηy = (0, y2, y3), f̂ η = (f̂11, f̂12, f̂13) and using Tr f̂ = 0,

|Pηy|2f̂(y)η · η − f̂(y)Pηy · Pηy = −
(
(2y2

2 + y2
3)f̂22 + 2y2y3f̂23 + (y2

2 + 2y2
3)f̂33

)
.

This allows us to rewrite equations (3.21)-(3.22) for η1 as

y2f̂12 + y3f̂13 = λη1
(3.23)

(2y2
2 + y2

3)f̂22 + 2y2y3f̂23 + (y2
2 + 2y2

3)f̂33 = −µη1
(3.24)

Repeating these calculations for η2 = (0, 1, 0) and η3 = (0, 0, 1) we get the follow-

ing system of equations:





y2f̂12 + y3f̂13 = λη1

y1f̂12 + y3f̂23 = λη2

y1f̂13 + y2f̂23 = λη3

(2y2
2 + y2

3)f̂22 + 2y2y3f̂23 + (y2
2 + 2y2

3)f̂33 = −µη1

(2y2
1 + y2

3)f̂11 + 2y1y3f̂13 + (y2
1 + 2y2

3)f̂33 = −µη2

(2y2
1 + y2

2)f̂11 + 2y1y2f̂12 + (y2
1 + 2y2

2)f̂22 = −µη3

(3.25)
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Lionheart and Sharafutdinov show that this system is nondegenerate everywhere

except the coordinate planes, and so by continuity it has a unique solution on the

whole of R3.

The stable reconstruction algorithm starts again from Lemma (3.2) but uses six

axes to arrive at a system of equations which has a stable solution. The inversion

is somewhat more involved and we will leave out the details. We present the final

result, which corresponds to the final step in the practical implementation of this

algorithm.

As suggested in [15] we use the following 6 axes: Let (e1, e2, e3) be the standard

basis for R3. We then use




η1 = 1√
2
(e2 + e3), η2 = 1√

2
(e3 + e1), η3 = 1√

2
(e1 + e2)

η4 = 1√
2
(e2 − e3), η5 = 1√

2
(e3 − e1), η6 = 1√

2
(e1 − e2)

(3.26)

From Lemma (3.2) we now obtain 12 equations, and some algebraic manipulation

yields the following, stable system for the off-diagonal entries of f̂ for all y 6= 0:





|y|2f̂12 + y2y3f̂13 + y1y3f̂23 = (µ3 − µ6)/2

y2y3f̂12 + |y|2f̂13 + y1y2f̂23 = (µ2 − µ5)/2

y1y3f̂12 + y1y2f̂13 + |y|2f̂23 = (µ1 − µ4)/2

(3.27)

Sharafutdinov and Lionheart comment that singularities at the origin are inherent

to this reconstruction approach, since the main equations (3.21)-(3.22) of Lemma 3.2

vanish at y = 0, and agree to disregard such singularities. As we shall see in Sec-

tion 3.6, this issue is avoided as soon as f has compact support.

Finally, we are able to express the diagonal entries of f̂ in terms of the off-diagonal

entries from the solution of (3.27) and the corresponding λi.

f̂11 =

√
2

3|y|2
(
(y2 + y3)λ1 + (y1 − 2y3)λ2 + (y1 − 2y2)λ3 + (y2 − y3)λ4

− (y1 + 2y3)λ5 + (y1 + 2y2)λ6

)
− 4

3|y|2 (y1y2f̂12 + y1y3f̂13 − 2y2y3f̂23).

(3.28)
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f̂22 =

√
2

3|y|2
(
(y2 − 2y3)λ1 + (y1 + y3)λ2 − (2y1 − y2)λ3 + (y2 + 2y3)λ4

− (y1 − y3)λ5 − (2y1 + y2)λ6

)
− 4

3|y|2 (y1y2f̂12 − 2y1y3f̂13 + y2y3f̂23),

(3.29)

f̂33 =

√
2

3|y|2
(
− (2y2 − y3)λ1 − (2y1 − y3)λ2 + (y1 + y2)λ3 − (2y2 + y3)λ4

+ (2y1 + y3)λ5 + (y1 − y2)λ6

)
− 4

3|y|2 (−2y1y2f̂12 + y1y3f̂13 + y2y3f̂23).

(3.30)

This completes the algorithm for the reconstruction of fij ∈ S from TTRT data

by Sharafutdinov and Lionheart. Next we make use of the intermediate variables λ

and µ from this work to investigate the nullspace of the TTRT for one axis.

3.5 The nullspace of the single axis TTRT

Armed with machinery from the general reconstruction algorithm we show that the

TTRT with data from a single axis does indeed have a non-trivial nullspace, as

suggested by the numerical experiments in Section 3.3.1. For convenience we repeat

the relevant equations from Section 3.4:

f̂(y)η · Pηy = λη (3.31)

|Pηy|2f̂(y)η · η − f̂(y)Pηy · Pηy = µη (3.32)

Our one axis of rotation is denoted by η and we now assume λη = µη = 0. We

will construct the tensor f in the Fourier domain, component-wise for each y. We

begin by fixing some y, and noting that if Pηy = 0, then (3.31)-(3.32) are identically

satisfied. From now on we assume Pηy 6= 0 and let our tensor be defined by analytic

extension for such y satisfying y = tη, t ∈ R.

We now define

ξ =
Pηy

|Pηy|
, and (3.33)

ζ = η × ξ (3.34)
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Considering f̂ in the coordinate system given by (η, ξ, ζ), (3.31) and (3.32) now

read f̂12 = 0 and f̂11 − f̂22 = 0, respectively. These, along with Tr f̂ = 0 are the only

conditions on f̂ , so we may choose arbitrary values α, β and γ to construct the tensor

f̂(ỹ) =




αη,y 0 βη,y

0 −αη,y γη,y

βη,y γη,y 0


 (3.35)

satisfying (3.31)-(3.32). Here we use the notation f̂(ỹ) to indicate that we are con-

sidering f̂ in (η, ξ, ζ)-coordinates.

To find f(x) we use a rotation matrix Ry→ỹ to change back to standard coordinates

for each y, followed by an inverse Fourier transform, giving

f(x) =

∫
eix·y RT

y→ỹ f̂(ỹ) Ry→ỹ dy. (3.36)

Since α, β and γ were arbitrary, we have constructed a non-trivial element of the

nullspace of the TTRT with data from a single axis, proving the hypothesis suggested

by the numerical evidence in Section 3.3.1. We note that the rotation matrix R is

an analytic function of y and only depends on the direction of y, not its magnitude.

This enables us to impose smoothness restrictions such as f̂(ỹ) ∈ S and have them

carry over to f̂(y). Growth restrictions on f̂(ỹ) will also be respected, including the

conditions for the Paley-Wiener Theorem guaranteeing compact support for f(x).

We return to multi-axis TTRT to present new results regarding the stability of

the reconstruction in certain Sobolev spaces, making use of results from Section 2.3.

3.6 The TTRT on Sobolev spaces

In this section we present novel results extending the general TTRT reconstruction

algorithm to certain Sobolev spaces and considering stability estimates.

We restrict our attention to compactly supported functions. It is clear that this

is indeed the case for any practical application we are considering. Since we defined

Hs(Ba) as the completion of C∞(Ba), it is enough to consider fij ∈ C∞(Ba).
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The definitions of λ and µ are in terms of slice-by-slice backprojections, followed

by powers of the Laplacian on each slice. It is possible to rewrite these expressions

in terms of slice-by-slice filtered backprojections, which enables us to make use of

stability results from the Radon transform inversion.

Recall the definition of λη:

λη =
i

2
|Pηy|

̂(
Bη

∂K1
ηf

∂p

)
(3.37)

In order to deal with the derivative ∂/∂p, we make use of the following remark:

Remark 3.3. Let f(x) ∈ Hs(Ba). Applying a Hilbert transform in any of its vari-

ables still leaves f in Hs. Indeed, a Hilbert transform is nothing but a multiplication

by i sgn(y) in the Fourier domain, and clearly leaves |f̂ | unchanged. The result follows

from the definition of the Sobolev norm.

We use the above remark and replace K1
ηf by K̄1

ηf given by

Fp→tK̄
1
ηf(h, θ, p) = −i(sgn t)Fp→tK

1
ηf(h, θ, p), (3.38)

which gives

|λη| = 1
2
|Pηy| |FBPK̄1

ηf |

≤ 1
2
|y| |FBPK̄1

ηf |,
(3.39)

and

||λ̌η||s ≤ |||K1
η |||s+ 3

2

. (3.40)

For µη we have

µη = |Pηy|3 ̂(BηK2
ηf)

= |Pηy|2FBPK2
ηf

≤ |y|2FBPK2
ηf

(3.41)

Hence,

||µ̌η||s+2 ≤ |||K2
η |||s+ 1

2

. (3.42)
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We turn our attention to the choice of axes (3.26) used for the stable general

reconstruction algorithm. For this particular choice of rotation axes, Sharafutdinov

and Lionheart derive a system of equations (3.27) for the off-diagonal entries of f .

The system is uniquely solvable for any y 6= 0 and satisfies the bound

|f̂ij| ≤
3

2
|y|−2

3∑

i=1

|µi(y) − µi+3(y)| (i 6= j). (3.43)

Let ε > 0 and consider a high pass filtered fij, fε,ij,given by

f̂ε,ij(y) =





f̂ij |y| > ε

0 |y| ≤ ε

(3.44)

Just like f̂ij , f̂ε,ij is uniquely determined from (3.27) and

||fε,ij||s ≤ ||µ̌η||s+2. (3.45)

and using (3.42), we have

||fε,ij||s ≤ |||K2
η |||s+ 1

2

. (3.46)

Given f̂ij , i 6= j, Sharafutdinov and Lionheart provide a stable reconstruction of

the diagonal components f̂ii from the off-diagonal components and the λi, as given by

(3.28)-(3.30). Replacing f̂ij by f̂ε,ij, we proceed in the same way. The final stability

estimate by Sharafutdinov and Lionheart reads

|f̂(y)|2 ≤ C
(
|y|−2

6∑

i=1

|λi(y)|2 + |y|−4
3∑

i=1

|µi(y) − µi+3(y)|2
)

(3.47)

for some constant C.

Finally, considering (3.47) together with (3.39) and (3.41) we have

Theorem 3.4. Let fij ∈ C∞(Ba) and Ki
ηi
f be given. Then for any ε > 0 we have

||f̂ε(y)||2s ≤
6∑

i=1

(
C|||K1

ηi
|||2

s+ 1

2

+ C ′|||K2
ηi
|||2

s+ 1

2

)
(3.48)

for some constants C(ε), C ′(ε).
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We can thus stably recover f , everywhere outside an ε-ball in the Fourier domain.

As we shall see, f having compact support is enough for us to stably recover the

missing ε-ball. We note that, in a sense, this is the opposite of another common

inverse problem, analytic extrapolation. By the Paley-Wiener Theorem, a compactly

supported function has an analytic Fourier transform. Analytic extrapolation, or

analytic continuation, considers a situation where an analytic function is known on a

compact interval, and attempts to recover the function everywhere else. This process

has a unique solution but is severely ill-posed, see e.g. [5]. Returning to the problem

at hand, we are in the fortunate situation to know the function values everywhere

except a small ball. Moreover, the unknown ball is arbitrarily small. We proceed

with the following lemma.

Lemma 3.5. Let f be a compactly supported function with support in Ba and f̂ε be

a high pass filtered f , given by

f̂ε(y) =





f̂ |y| > ε

0 |y| ≤ ε

(3.49)

Then f is completely and stably determined by f̂ε for some ε > 0

Proof. Let Xa(x) be the n-dimensional Shah function of period a, given by

Xa(x) =

n∏

i=0

∞∑

k=−∞
δ(xi − ka) (3.50)

We consider the periodic extension of f , given by a convolution with the Shah

function and make use of the fact that the Fourier transform of Xa(x) is 1
a
X 1

a

(x).

This gives

f̂ ∗ Xa = f̂ X̂a

= f̂ 1
a
X 1

a

.
(3.51)

Choosing some ε such that 0 < ε < 1
a

we may now evaluate f̂ ∗ Xa everywhere

except the origin. We can thus recover f up to one additive constant, corresponding

to the Fourier transform evaluated at zero. But since we know that f is compactly

supported, this final constant is also fixed, giving the result.
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We have extended the work of Sharafutdinov and Lionheart and shown that con-

sidering the TTRT as a mapping of tensor components in Hs
0(Ba) to components in

Hs
0(Za) has a continuous inverse. We will now move on to consider some specialised

reconstruction methods and the advantages these can provide in the cases where they

apply.



Chapter 4

Special Tensors

In this chapter we will consider some special types of tensors and investigate the

possibilities for reconstruction in these cases. Clearly the general reconstruction al-

gorithm could be applied, but, as we shall see, there are better options available. We

will describe one algorithm for certain tensors predating the general reconstruction,

considering it in light of the more recent work. We will also describe a completely

new algorithm for a different class of tensors, which when applicable provides a more

efficient reconstruction. Finally we use results from scalar Radon inversion to describe

new reconstruction algorithms for these special tensors in the case of data truncation.

Before describing the algorithms we briefly leave the subject of photoelastic re-

construction for a discussion of general symmetric tensor fields. Sharafutdinov [24,

Ch 2] shows that there is a unique splitting of tensor fields into solenoidal (divergence

free) and potential (symmetrised derivative of a vector field) parts. Whereas solenoi-

dal fields often arise in engineering situations where the stress is due to temperature

changes, certain cases of mechanical loading results in a purely potential stress field.

It is worth noting that while we restrict our considerations to rank 2 tensors over R3,

the tensor field splitting result by Sharafutdinov is given for general rank k tensors

over Rn.

The case of solenoidal fields has been studied extensively by Aben et al., see e.g.

[2], and we shall return to these in Section 4.3. Photoelastic tomography of poten-

tial stress fields is less studied, and we will show that for these, the reconstruction

66
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algorithm presented in [15] can be drastically improved.

4.1 Potential tensors

A symmetric rank two tensor field f is said to be potential if can be written as the

symmetrised derivative of a vector field:

fij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(4.1)

A strain field of this type satisfies a set of equations known as Saint-Venant’s com-

patibility condition. The condition is the vanishing of the Saint-Venant tensor

Wijkl =
∂2fij

∂xk∂xl
+

∂2fkl

∂xi∂xj
− ∂2fil

∂xj∂xk
− ∂2fjk

∂xi∂xl
i, j, k, l = 1, 2, 3. (4.2)

This is easily verified by direct calculation. Substituting (4.1) in (4.2) we get

W =
1

2

(
∂3uj

∂xk∂xl∂xi
+

∂3ui

∂xk∂xj∂xi

)

+
1

2

(
∂3uk

∂xi∂xj∂xl

+
∂3uk

∂xi∂xj∂xl

)

− 1

2

(
∂3ui

∂xj∂xk∂xl
+

∂3ui

∂xj∂xk∂xl

)

− 1

2

(
∂3uj

∂xi∂xl∂xk
+

∂3uj

∂xi∂xl∂xk

)

(4.3)

A sufficiently smooth potential field clearly satisfies W = 0. By symmetries in

f and order of derivatives, the 81 permutations of the indices reduce to 6 distinct

equations. One such choice of indeces (i, j, k, l) is

{(1, 1, 2, 2), (1, 1, 3, 3), (2, 2, 3, 3), (1, 1, 2, 3), (1, 2, 2, 3), (1, 1, 2, 3)} (4.4)

Another way to look at the Saint-Venant tensor is to use the operator CURL

defined by Amrouche et al. in [3].

Definition 4.1. Let f be a rank two tensor field over R3. The matrix curl of f

CURL f , mapping tensors to tensors is defined as

CURL(f)ij = ǫilk∂lfjk (4.5)
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where ǫijk is the Levi-Civita symbol given by

ǫijk =





+1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

0 if any index is repeated

and ∂i = ∂/∂xi. For brevity, we write C to mean the operator CURL applied twice.

The Saint-Venant tensor may then be written as Wf = C f as may be verified

by writing out the terms. For symmetric tensors f , C f is itself a symmetric tensor

and this clearly shows that there are only 6 independent equations in W . Indeed, we

have

(C f)ij = ǫilk∂l CURL fjk

= ǫilkǫjmn∂l∂mfkn

= ǫilkǫjmn∂m∂lfnk

= (C f)ji.

(4.6)

Potential tensors occur in practice in applications where the stress is due to strain,

for example from mechanical loading. Consider an object going through a small

deformation given by the vector field u. The strain tensor ε is defined by

εij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (4.7)

If the strain is sufficiently small to be in the range of linear elasticity, the stress σ

is a linear function of strain, σ = L(ε). For an isotropic material, L must be of the

form (3.4)

Ld,h(f) = dD(f) + hH(f). (4.8)

In the literature [20, 28] the parameters d and h are known in terms of the Lamé

coefficients λ and µ and for a homogeneous material they are constants:

σ = 2µε + λ Tr εI3 = 2µD(ε) + (2µ + 3λ)H(ε) (4.9)
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The linear relationships between strain and stress, and stress and permittivity

mean that they have to be of the form (3.4). In particular, the isotropic part of ε,

Hε is a scalar multiple of Hǫ, and hence constant. Thus, the Saint-Venant’s tensor

Wε is zero if and only if WDε is zero. Applying the relationship from (3.4) again

we have that f also satisfies Wf = 0. We exploit this fact in a new reconstruction

algorithm for tensors f such that Wf = 0.

4.2 A novel reconstruction algorithm for potential

tensor fields

In this section we present a new reconstruction algorithm for the TTRT in the case of

a potential strain field. We return to Lemma 3.2 and consider again the case η3 = e3,

with the added condition of Wf = 0. Considering the Saint-Venant condition in the

Fourier domain, we have

yiyj f̂kl + ykylf̂ij − yiylf̂jk − yjykf̂il = 0 i, j, k, l = 1, 2, 3. (4.10)

We start from the third equation of (3.25). Using the Saint-Venant condition to

substitute the middle term and rearranging we get

2(y2
1 + y2

2)(f̂11 + f̂22) = −µη3
(4.11)

And Tr f = 0 gives

2(y2
1 + y2

2)f̂33 = µη3
(4.12)

Now, µη3
was given by a plane by plane backprojection, followed by a multiplication

in the Fourier domain by (y2
1 + y2

2)
3/2, so going back to the original data variable, we

have

f̂33 =
1

2
(y2

1 + y2
2)

1/2 ̂(Bη3
K2

η3
f) (4.13)

Comparing (4.13) with the definitions in Section 2.2, we note that this is nothing but

a scalar Radon inversion of the form backproject-then-filter for each plane perpen-

dicular to η3. Indeed, 1
2
(y2

1 + y2
2)

1/2 = |Pη3
y| and so in each plane perpendicular to
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η3, this is equal to a ramp filter I−1, exactly as in the 2D Radon transform inversion

of (2.22).

Thus, f33 is exactly given by the 2D scalar Radon transform of K2 in each plane,

and can be reconstructed very efficiently for each plane from data collected using

only one axis of rotation, for example using the more efficient inversion algorithm in

(2.21) which uses a 1D filter. We have thus proved the following theorem:

Theorem 4.2. Let f be a potential tensor field with fij ∈ S (R3). Then

R̄f33(θ, p, x3) = K2
e3

f(x3, θ, p) (4.14)

The general method presented in [15] requires the collection of data for several

axes, a solution of a system of equations for each point in the Fourier domain, and fi-

nally a 3D Fourier inversion before anything is reconstructed. In contrast to this, the

algorithm presented here can be implemented very efficiently using standard methods

of scalar 2D Radon transform inversion, and if only one component of the tensor is

required, it is enough to use one axis of rotation. The sufficiency of one axis is of par-

ticular interest, as data acquisition is otherwise very time consuming. Changing axis

of rotation requires human interaction with the experimental setup, and also presents

additional practical challenges such as image registration for matching up data from

different axes. In Section 4.4.1 we will also see how this new algorithm allows us to

apply methods from x-ray reconstruction to handle photoelastic reconstruction from

truncated data.

We now turn our attention to the second special type of tensor under considera-

tion: solenoidal tensors.

4.3 Solenoidal tensors

A solenoidal tensor field f satisfies

3∑

j=1

∂fij

∂xj
= 0 (4.15)

for each i.
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For an elastic body in equilibrium, with body forces absent or negligible, the stress

tensor satisfies (4.15) [20]. Though explained in different terminology, this equation

forms the basis of a reconstruction method for photoelastic tomography by Aben et

al. [2] known as Integrated Photoelasticity. This method uses TTRT data from one

axis of rotation to reconstruct a single tensor component, perpendicular to the axis

of rotation. In contrast to the solution to the same problem given by Sharafutdinov

[24, sec 2.16], Aben’s method is not restricted to convex domains. Moreover, the

method uses a regular backprojection, rather than Sharafutdinov’s weighted moment

backprojection which lends itself to less efficient implementations. Aben’s method

requires an integration and a differentiation of the TTRT data, followed by a scalar

Radon transform reconstruction in each plane.

In light of the recent work by Lionheart and Sharafutdinov [15] it is clear that the

assumption that the field is solenoidal is not required for a reconstruction using only

data from rays parallel to a small number of planes. However, it is worth revising

Aben’s method as it provides a simpler and computationally less costly alternative

for the solenoidal case. We will also show that considering the general reconstruction

algorithm with the added assumption of a solenoidal tensor field does not reduce to

Aben’s method but rather to a new, related reconstruction procedure.

We will outline the method of Aben, reformulating it in a more mathematical

framework. We also present the new, alternative solenoidal reconstruction derived

from the general reconstruction algorithm.

4.3.1 Aben’s method

The derivation of Aben’s method in [2] appeals to physical principles and does not

make clear its mathematical assumptions about the geometry of the domain. We

hope in this section to clarify the derivation and its assumptions. The idea is to

use the solenoidal property to reduce the problem to one of scalar Radon transform

inversion. We may then use any of the inversion techniques from Section 2.2 to

complete the reconstruction. Without loss of generality Aben chooses η = e3 and
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considers reconstruction of f33 in the plane x3 = Z. We first restrict our attention to

a single rotation angle, choosing rays parallel to some direction ξ perpendicular to η,

say ξ = e2, corresponding to θ = 0. In the notation of Aben, our data is then

V1(x1, x3) = K2
e3

f(x3, 0, x1) =

∞∫

x2=−∞

f11 − f33 dx2, and (4.16)

V2(x1, x3) = K1
e3

f(x3, 0, x1) =

∞∫

x2=−∞

2f13 dx2, (4.17)

as in the example (3.17)-(3.18).

The case Aben et al. consider is a tensor field f on the closure of a domain D

in R3 that is smooth apart from corners and edges. The field is solenoidal in the

interior, and on the boundary satisfies a zero normal boundary condition fn = 0,

where n is the normal to ∂D. It is not clear what assumptions are made about the

domain. Aben’s argument appears to require that a slice of D between x3 = Z and

x3 = Z + ǫ, has the property that any plane of constant x3 ∈ [Z, Z + ǫ] intersects ∂D

with zero area.

Before continuing we digress with a remark: Rather than considering f on some

domain D, we may consider it as a distribution on all of R3, given by the characteristic

function of D multiplied by a smooth test function. In this case, the solenoidal

condition in a distributional sense becomes a Neumann boundary condition on D

exactly matching Aben’s assumption, as well as a classical solenoidal condition on f

in D.

Aben applies Gauss’ theorem to the divergence free vector field with components

f1i on the slice of D with x3 ∈ [Z, Z + ǫ] and x1 ∈ (−∞, X]. This is illustrated in

Figure 4.1.

On the portion that intersects ∂D the normal component is zero so the remaining

terms are

∫

x3=Z+ǫ

f13 dx1dx2 −
∫

x3=Z

f13 dx1dx2 +

∫ ∞

−∞

∫ Z+ǫ

Z

f11 dx3dx2 = 0. (4.18)
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x1

x3

Z + ǫ

Z

(a) Side view

x1

x2

X

(b) Top view, slicing D

x1

x2

x3

(c) Slice of D

Figure 4.1: Illustration of slice of domain D used in Aben’s method

Dividing by ǫ and taking the limit as ǫ → 0 we have

∫ ∞

−∞

∫ X

−∞

∂f13

∂x3

∣∣∣∣
x3=Z

dx1dx2 =

∫ ∞

−∞
f11 dx2, (4.19)

and it follows that

∞∫

x2=−∞

f33 dx2 =
∂

∂x3

X∫

x1=−∞

V2 dx1 − V1. (4.20)

The RHS of (4.20) may be calculated from the data, and the LHS is exactly the

two-dimensional Radon transform of f33 at θ = 0. Repeating this argument for each

rotation angle θ we arrive at a full set of 2D Radon transform data for f33 in the plane

x3 = Z. All that remains is to carry out a Radon transform inversion, for example

using filtered backprojection. Repeating for each Z recovers f33 in the whole domain.

The above argument is valid for any choice of rotation axis η, for each choice yielding

the component η · fη.

4.3.2 Another way of looking at Aben’s method

Below we outline a different, more direct derivation of Aben’s method. Starting with

the assumption that f is solenoidal we have in particular

∂f11

∂x1
+

∂f12

∂x2
+

∂f13

∂x3
= 0 (4.21)
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Integrating with respect to x2 over all of R we have

∂

∂x1

∞∫

x2=−∞

f11 dx2 +
∂

∂x3

∞∫

x2=−∞

f13 dx2 = 0 (4.22)

and then integrating with respect to x1 up to X we have

∞∫

x2=−∞

f11 dx2 = − ∂

∂x3

X∫

x1=−∞

∞∫

x2=−∞

f13 dx2 dx1 (4.23)

and the result follows as in (4.20).

To make it easier to compare to the other algorithms, we restate the relevant

result in our previous notation, as the following theorem.

Theorem 4.3 (Aben’s method). Let f be a solenoidal tensor. Then

R̄f33(θ, p, x3) =
∂

∂x3

p∫

ρ=−∞

K1
e3

f(x3, θ, ρ) − K2
e3

f(x3, θ, p) (4.24)

4.3.3 The general reconstruction formula [15] in the case of a

solenoidal tensor field

It is of interest to investigate the general reconstruction formula when a solenoidal

condition is enforced on f . As we shall see, it does not reduce to Aben’s method, but

rather to a new reconstruction method for solenoidal tensors. Considering (3.25) we

notice that in the solenoidal case we have

y1f̂11 + y2f̂12 + y3f̂12 = 0, and

y1f̂12 + y2f̂22 + y3f̂23 = 0, and

y1f̂13 + y2f̂23 + y3f̂33 = 0.

(4.25)

Hence the first three equations of (3.25) reduce to

−yif̂ii = λi (4.26)

and the diagonal components of f are given by

f̂ii = −F−1
y→x(y

−1
i λi). (4.27)
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Once we have fii, the last three equations of (3.25) reduce to

yiyj f̂ij = g(y), (4.28)

and fij, i 6= j, can be found.

Considering, in particular, the reconstruction of f33, we have

f33 = −F−1
y→x

(
y−1

i (y2
1 + y2

2)Fx→yBe3

[
∂K1

e3

∂p

])
, (4.29)

and since the multiplication by (y2
1 + y2

2) corresponds to a Riesz potential in each

plane, we may write this as

R̄f33(θ, p, x3) = − ∂

∂p

x3∫

z=−∞

K1
e3

f(z, θ, p) dz (4.30)

As in Aben’s method, we recover the scalar Radon transform of the f33 component

of the tensor. However, this algorithm is different from the Aben method (and indeed

Sharafutdinov’s original method in [24]). In particular, the only data required is the

off-diagonal component K1, or V2 in the notation of Aben. Moreover, this algorithm

involves differentiation in the x1 direction and integration in x3 direction, whereas

these are reversed in Aben’s method in Section 4.3.2.

This new reconstruction method for the solenoidal case can be derived without

the machinery developed in [15], instead using a method similar to our derivation for

Aben’s method.

If we start with a different consequence of f being solenoidal, namely

∂f13

∂x1
+

∂f23

∂x2
+

∂f33

∂x3
= 0 (4.31)

and proceed as in Section 4.3.2 one obtains

∞∫

x2=−∞

f33 dx2 = − ∂

∂x1

Z∫

x3=−∞

V2 dx3, (4.32)

which again yields a reconstruction formula for f33 using scalar Radon transform

inversion as in (4.20). Note that considering all rotation angles, this reconstruction

is identical to (4.30). This derivation is clearly much easier, not relying on any of the

work needed for the general reconstruction.
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4.3.4 Consistency condition

We have developed a reconstruction algorithm for solenoidal tensor fields which is

distinct from the one by Aben et al. The two different formulae may be used together

to arrive at a consistency condition on the TTRT data for solenoidal tensor fields.

Since both algorithms recover Rf33(θ, p) for a fixed angle θ, we have consistency

conditions for each angle. By equating the two reconstruction methods for f33 we get

V1 =

(∫ Z

−∞
dx3

∂

∂x1
+

∫ X

∞
dx1

∂

∂x3

)
V2. (4.33)

This may be used in an experimental setting to check the validity of assuming a

solenoidal stress field.

We now turn our attention to limited data problems, focusing on the algorithms

for potential and solenoidal tensors.

4.4 Photoelastic tomography from truncated data

In the previous sections we have presented reconstruction algorithm for two commonly

occurring cases in photoelastic tomography, potential and solenoidal tensor fields.

Both cases, in slightly different ways, involve reducing the reconstruction of the tensor

field to a scalar 2D Radon reconstruction yielding a given component of the tensor.

Once in the domain of Radon inversion, we are able to apply new techniques developed

in this field for certain types of data truncation problems. Of particular interest here

are the Hilbert transform methods, which provide an exact reconstruction method

for a special, but commonly occurring, type of data truncation. Typical practical

applications include clamping apparatus obscuring some views or elongated specimens

which in certain directions are too wide to fit in the field of view.

4.4.1 Hilbert transforms and potential tensors

The easiest case is the one for potential tensor fields. In Section 4.2 we showed that

the reconstruction the Pηf component of the tensor f is given exactly by a Radon
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transform inversion of the data K2
ηf . We are thus in a position to use the two step

Hilbert reconstruction described in Section 2.4.5 directly.

4.4.2 Hilbert transforms and Aben’s method

We begin with a note on the implementation of Aben’s method in its current version.

The reconstruction algorithm by Aben et al. consists of two steps. First scalar Radon

data is obtained from the photoelastic tomography measurements by integration and

differentiation of the data. Finally, a Radon transform inversion is carried out using

any standard method, typically filtered backprojection. Using the decomposition of

the ramp filter from (2.33), these steps may be combined. We describe the case

for recovering f33 from data acquired by a tomography scan around the axis η = e3.

Aben’s method works with a fixed view and so we also consider the case Ki
ηf(h, θ, p) =

Ki
ηf(x3, 0, x1). The calculation of the Radon data,

∫
f33 dx2 =

∂

∂x3

∫ X

−∞
K1

ηf dx1 − K2
ηf, (4.34)

includes an integration in the x1 direction. In the notation of Radon transform

inversion, for rays along the vector θ, we have

Rθf11(p) = Rθf11(x1)

=
∂

∂x3

∫ X

−∞
K1

ηf dx1

=

∫ X

−∞

∂

∂x3
K1

ηf dx1.

(4.35)

The first step of an FBP Radon transform inversion involves applying a ramp filter:

I−1Rθf11 = H ∂

∂p
Rθf33

= H ∂

∂x1

Rθf33

= −H ∂

∂x3
K1

ηf

(4.36)
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From the point of view of implementation stability, this is clearly better than per-

forming a numerical integration followed by a ramp filter. Moreover, this illustrates

the possibility of replacing filtered backprojection by a two step Hilbert reconstruc-

tion. In this case, only a derivative is required on the data side. Rewriting (4.36) for

this case we have

∂

∂p
Rθf11 =

∂

∂x1
Rθf33

= − ∂

∂x3
K1

ηf,

(4.37)

and the local dependence is preserved. We may thus use this technique in any mea-

surement setting where two step Hilbert reconstruction is available, including the

situation illustrated in Figure 2.10.

4.5 Summary

We have presented a new reconstruction algorithm for photoelastic tomography of

purely potential stress fields. Though a more general reconstruction procedure is

known, the new algorithm lends itself to a much easier and more efficient implemen-

tation. Using the new algorithm it is now also possible to achieve partial reconstruc-

tions using only parts of the data. From rays parallel to only one axis η, the η · fη

component of the stress tensor can be recovered. The new reconstruction algorithm

has been implemented numerically, and a simple study of its stability with respect to

noise was also carried out.

Further, we have provided a derivation of Aben’s reconstruction algorithm for

solenoidal tensors, set in a mathematical framework rather than the notion of bal-

ance of forces. We have shown that the new general reconstruction method yields a

reconstruction algorithm which is different from Aben’s in the solenoidal case. Used

together, the two algorithms give rise to an integrability condition on the data for

solenoidal tensor fields.

Finally, we have used results from scalar Radon transforms to extend the new

algorithms to certain cases of truncated data.
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While these new algorithms provide new theoretical inversion methods, further

work is required before we are able to give results of practical implementations of

these. In the next chapter we present the results of some numerical work, but only

for the general reconstruction algorithm from Chapter 3.



Chapter 5

Numerical Results

5.1 Forward model

In order to test our algorithms we first develop a simulator in order to generate

data sets. This will take discretized permittivity tensor fields and calculate integrals

of projections, as described by the operator Q in (3.13). Though we simulate an

experimental setup similar to the one described in [27], we calculate the values of Ki

directly rather than the light intensities measured by that system. Using a vector to

represent the tensor field, we describe the action of the operator Q as multiplication

by a matrix L. Even for small values of the parameters of discretization this matrix

is enormous, and much too large to store in RAM all at once. Instead of calculating

the whole matrix, we generate it one row at a time, corresponding to one individual

source-detector pair. Multiplying each generated row ri by the image vector x, we

build up the value of Lx, as illustrated in Figure 5.1. Once we calculate ri · x, we

store this single value and may discard ri to free up the memory again.




r1

r2
...
rn







x


 =




r1 · x
r2 · x

...
rn · x




Figure 5.1: Matrix multiplication by generating one row at a time

80
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Later we will show that code used to generate the rows of L may also be used

to calculate LT x. With minor modifications this enables us to use the code as a

backprojector.

5.1.1 Discrete representation of the tensor field

The discretized tensor field is represented by an N ×N ×N ×6 array, containing the

6 distinct values of the symmetric tensor field in each voxel. We store this as a vector

by listing each value, incrementing first the tensor component number, and then x,

y and finally z position. Similarly, the data is represented by an nη × nθ × h×w × 2

array, where we use nη separate axes, nθ angle steps for tomographic acquisition

around each axis and use a camera with h ×w pixels. The factor of 2 is the number

of independent values of Qf in (5.14) which are integrated along each ray.

5.1.2 Simulated experimental setup

We simulate an experimental setup with parallel light beams passing through a spec-

imen. Sources and detectors consist of arrays in an equally spaced grid, either side of

the object being scanned, as illustrated in Figure 5.2. To match the CCD camera in

the experimental system, the width to height ratio for the detector is 4:3. The source-

detector pair is kept fixed and the object is rotated. For tomographic acquisition we

always rotate around the z-axis and when other tomography axes are needed, we

rotate the specimen accordingly. This simplifies the calculation of tensor projections

Pη.

5.1.3 Location of specimen

The location of the specimen relative to the coordinate reference frame is given by an

affine transformation. We store this in an augmented matrix for each axis of rotation.

For the coordinate transformation y = Ax + b the augmented matrix equation is

 y

1


 =


 A b

0 · · · 0 1




 x

1


 . (5.1)
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x
y

z

Figure 5.2: Simulated experimental setup

5.1.4 Ray path through voxel grid

The first task is to calculate the integral along a line through a voxel grid. We

use the method developed by Siddon [25] in a form revised for modern CPUs by

Jacobs et al. [10]. This method considers the voxels as volumes separated by the

intersections of planes and calculates the intersection of a line segment with these

planes. The advantage is that, whereas the number of voxels in a grid of size n×n×n

scales by n3, the number of planes scales linearly. We outline the method below in

a two-dimensional setting, which is easier to describe and readily extends to three

dimensions.

The idea is to parameterize the line segment and consider the difference in the

parameter value between consecutive planes (lines) of a given orientation defining the

voxels (pixels). Consider the following setup, illustrated in Figure 5.3. We have a

pixel grid of a certain size, defined by Nx lines in the x direction and Ny lines in the

y direction. The spacing between the lines is given by dx and dy and the first planes

intersect at the point (bx, by). The line segment extends from (x1, y1) to (x2, y2) and

is represented in parametric form as

x(α) = x1 + α(x2 − x1) (5.2)

y(α) = y1 + α(y2 − y1). (5.3)
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We assume the ray is in a generic position, in the sense that x1 6= x2 and y1 6= y2,

both of which are trivial to handle. The intersection points of the ray with the sides

of the pixel grid are labelled αmin and αmax. We will only need the case when the line

segment starts and ends outside the grid, but for segments that start or end inside

the grid we set αmin or αmax to 0 or 1, respectively.

x

y (x1, y1)

(x2, y2)

αmin

αmax

bx

by

dx

dy

0 1 Nx − 1

lij

Figure 5.3: Setup for calculation of line integrals, as described in [10]

From the definition of α we may calculate its value at the intersection of the ray

with a given plane as follows: For planes parallel to the x-axis, we have α = αx(i),

and for planes parallel to the y-axis, we have α = αy(j), where

αx(i) =
(bx + idx) − x1

x2 − x1
, and (5.4)

αy(j) =
(by + jdy) − y1

y2 − y1

. (5.5)

We then have

αmin = max(0, αxmin, αymin), and (5.6)

αmax = min(1, αxmax, αymax), (5.7)
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where

αxmin = min(αx(1), αx(Nx)), (5.8)

αxmax = max(αx(1), αx(Nx)), (5.9)

αymin = min(αy(1), αy(Ny)), and (5.10)

αymax = max(αy(1), αy(Ny)). (5.11)

Having found αmin and αmax, we calculate the pixel through which the ray enters the

grid system. We also calculate the increment in α between successive planes in both

the x and y directions. Finally, we step through the grid, in each case noting which

axis the next boundary crossed by the ray is parallel to and update accordingly. The

length of the ray path through any given pixel lij is given by the difference between

consecutive values of α. We continue stepping while α ≤ αmax.

Note that all the work is done in the setup, a single time for each ray. The con-

tribution of each voxel to the ray path may then be calculated very fast by following

the ray step by step through the grid in an algorithm that scales linearly with the

side length of the voxel grid. Clearly only a small fraction of the voxels contribute to

the integral along any given ray, so we store these values as a sparse vector.

Once the contribution of each voxel to the total integral for a given ray is known,

we are able to calculate integrals along that ray. We denote the operator taking an

image vector x to its line integrals by L̃. We make use of L̃ to calculate scalar back-

projections. For simulating photoelastic data however, some more work is required

to evaluate the functions to be integrated.

5.1.5 Projection of the tensor field

From a given tensor we need to calculate the projection onto the plane perpendicular

to the ray. To simplify this, we rotate our coordinate system to align the ray with
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the y-axis. In this reference frame, the projection of the tensor

f =




f11 f12 f13

f12 f22 f23

f13 f22 f33


 (5.12)

onto the plane perpendicular to the ray is given by

Pηf =




f11 0 f13

0 0 0

f13 0 f33


 . (5.13)

Finally, we have

Qηf =




1
2
(f11 − f33) 0 f13

0 0 0

f13 0 −1
2
(f11 − f33)


 . (5.14)

As Qηf only contains two independent values, g1 = 1
2
(f11 − f33) and g2 = f13 say,

we extract these and integrate along each ray. Having calculated the contribution of

each voxel to the integral, we simply multiply the vector of gi by the corresponding

weight for each voxel and sum.

5.1.6 Backprojection

With minor modification we may reuse the same code to carry out scalar backpro-

jection. Since it is the dual operator of ray integration L̃, backprojection is given

by L̃T . Our code generates rows of the matrix L̃, but we may use these to calculate

x = L̃T y as follows: Let the size of L̃ be m × n, and write y = (y1, y2, . . . , ym). We

initialize x to the zero vector of length n. Then for i = 1, . . . , n we calculate ri of L̃

and add yiri to x. When this procedure is complete we have x = L̃T y.

5.2 Data simulation

The model described above simulates the interaction of light with a stressed photoe-

lastic object. We generate two different strain field phantoms to use as input to the
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forward projector. The first one has only smooth features and is expected to be less

sensitive to algorithm instabilities. The second phantom contains sharp edges and

is designed to highlight the limitations of the unstable reconstruction algorithm. A

detailed description of the number of voxels and pixels used, along with simulated

noise and other steps taken to avoid “inverse crime” is given in Section 5.2.3.

5.2.1 Phantom 1: smooth

Phantom 1 is constructed from smooth Gaussians which makes it relatively easy to

reconstruct. We start with a cube with sides consisting of the interval [−1, 1], valued

zero everywhere. We then add 3-dimensional Gaussians b(x) to the different tensor

components fij according to Table 5.1, where

b(x) = Exp
(
−50

[
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
])

. (5.15)

Finally, we remove the hydrostatic part of the phantom, to produce the phantom

illustrated in Figure 5.4.

i j x0 y0 z0

1 1 -0.5 -0.5 -0.5

1 2 -0.5 -0.5 0.5

1 3 -0.5 0.5 -0.5

2 2 -0.5 0.5 0.5

2 3 0.5 -0.5 -0.5

3 3 0.5 -0.5 0.5

Table 5.1: Phantom 1: Smooth

5.2.2 Phantom 2: sharp edges

Phantom 2 is constructed to contain sharp edges, which are more sensitive to insta-

bilities in the reconstructions. We start again with a cube with sides consisting of

the interval [−1, 1], valued zero everywhere. We set the value inside certain cuboids
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(a) f11 (b) f12

(c) f13 (d) f22

(e) f23 (f) f33

Figure 5.4: Phantom 1: Smooth



Chapter 5. Numerical Results 88

to 1, according to Table 5.2. Finally, we remove the hydrostatic part of the phantom,

to produce the phantom illustrated in Figure 5.5.

i j x0 y0 z0

1 1 [-0.4, 0.4] [-0.6, 0.2] [-0.8, 0.8]

1 2 [-0.4, 0.4] [-0.2, 0.6] [-0.8, 0.8]

1 3 [-0.8, 0.8] [-0.4, 0.4] [-0.6, 0.2]

2 2 [-0.8, 0.8] [-0.4, 0.4] [-0.2, 0.6]

2 3 [-0.6, 0.2] [-0.8, 0.8] [-0.4, 0.4]

3 3 [-0.2, 0.6] [-0.8, 0.8] [-0.4, 0.4]

Table 5.2: Phantom 2: Sharp edges

5.2.3 Sample projection images

Figure 5.6 shows some sample projection images from Phantom 2 for a single axis of

rotation at various points of rotation around the axis.

For our numerical experiments, phantoms were generated inside a cubic grid mea-

suring 243×243×243 voxels, and measurements were simulated for a pixel grid with

387×516 pixels. The pixel grid was then down-sampled by a factor of 3 to 129×172

pixels by binning. Finally, Gaussian random noise was added to each pixel corre-

sponding to a 1% noise level for each projection image. The final reconstruction was

carried out on a voxel grid measuring 90 × 90 × 90. Note that this does not evenly

divide the size of the original grid. The number of angle steps used was varied de-

pending on the number of rotation axes used, in order to use the same total amount

of data. A total of 1080 projections were collected, which for 6 rotation axes corre-

sponds to 180 angle steps per rotation axis. Since our reconstructions are unique, we

do not expect any artefacts outside the support of our original phantom and so we

restrict the reconstructed region to match the phantoms.
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(a) f11 (b) f12

(c) f13 (d) f22

(e) f23 (f) f33

Figure 5.5: Phantom 2: Sharp edges
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0 degrees 22 degrees 44 degrees

66 degrees 88 degrees 110 degrees

132 degrees 154 degrees 176 degrees

Figure 5.6: Sample projection images

5.3 Algorithm implementation

Given (simulated) data K1 and K2, the reconstruction procedure is as follows:

5.3.1 Stable reconstruction using data from 6 axes

Step 1

We start with

λη =
i

2
|Pηy|

̂(
Bη

∂K1
ηf

∂p

)
(5.16)

µη = |Pηy|3 ̂(BηK2
ηf) (5.17)
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Instead of calculating λ and µ, we write

λη =
i

2
|Pηy|λ̃η (5.18)

µη = |Pηy|2µ̃η. (5.19)

This way, λ̃η is given by a slice-by-slice differentiated backprojection and µ̃η is

given by a slice-by-slice filtered backprojection. For µ̃η we make use of (2.15), which

shows that in each plane, the ramp filter commutes with the backprojection. The

final filters are incorporated into the calculations of f̂ij from λ and µ, since that

already involves algebraic equations in the Fourier domain.

The projection images K1 need to be differentiated in the p-direction. We perform

a regularised derivative, which we carry out in the Fourier domain using a Hamming

window regularisation: After a one dimensional Fast Fourier Transform (FFT) we

multiply by −itw(t), where w is the Hamming window of (2.23). Finally, we use the

inverse FFT to move the signal back to the image domain.

Following the filter we backproject the filtered data onto the voxel grid using the

method described in Section 5.1.6. Finally, µ̃η is calculated using a three dimensional

FFT.

For the data K2 we carry out a ramp filter, again in the Fourier domain using a

Hamming window for regularisation. As with K1 we then backproject onto the voxel

grid and again finish with a three dimensional FFT.

Step 2

We now have the value of λ̃η and µ̃η on a voxel grid. To proceed we need to solve the

system (3.27), using (5.18)-(5.19) to substitute µ̃η for µη.

Mathematica may be used to invert the system (3.27) for f̂ij (i 6= j). The results

are given by (5.20)-(5.22).
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f̂12 =

(
(
−y1(2y

2
1 + (y2 − y3)

2)y3(y
2
1 + y2

3)
)
µ̃1+

(
−y2(2y

2
2 + (y1 − y3)

2)y3(y
2
2 + y2

3)
)
µ̃2+

(
(y2

1 + y1y2 + y2
2 + y2

3)
2((y1 − y2)

2 + 2y2
3)
)
µ̃3+

(
y1y3(y

2
1 + y2

3)(2y
2
1 + (y2 + y3)

2)
)
µ̃4+

(
y2y3(y

2
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Using these equations, f̂12, f̂13, and f̂23 are calculated at each voxel except at

(y1, y2, y3) = (0, 0, 0) where it is undefined. The value in this voxel is set using a

linear interpolation of the values in neighbouring voxels.

Having calculated f̂ij (i 6= j) we use these values together with λ̃ to calculate the

final tensor components f̂ii. Again Mathematica may be used to substitute λ̃η for λη

in (3.28) - (5.21), giving
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(5.25)

Again, the values of f11, f22, and f33 at (y1, y2, y3) = (0, 0, 0) is not defined by

(5.23)-(5.25) and as above we use a linear interpolation from neighbouring voxels.

Finally, we use the three dimensional inverse FFT to recover fij from f̂ij . Results

for our phantoms are shown in Section 5.4.

5.3.2 Unstable reconstruction using data from 3 axes

Step 1

We begin as in Section 5.3.1 to compute λ̃ and µ̃ on a voxel grid.

Step 2

To proceed with the unstable reconstruction formula we need to solve the system

(3.25). This system separates and we first use the initial three equations to solve for

f̂ij (i 6= j). As before we use (5.18) to substitute λ̃ for λ and solve the system using

Mathematica. The result is given by (5.26)-(5.28).

Given f̂ij (i 6= j) we may carry out the substitution (5.19) and invert the last

three equations of (3.25) to obtain f̂ii, which are given by (5.29)-(5.31).
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f̂22 = −(2y2
1y

2
2(2f12y1y2 + µ̃3(y

2
1 + y2

2))+

2y1y2(f23y1 − f13y2)(2y
2
1 + y2

2)y3 + (4y2
1 + y2

2)(2f12y1y2 + µ̃3(y
2
1 + y2

2))y
2
3+

−4(f13y1 − f23y2)(2y
2
1 + y2

2)y
3
3 + 2(2f12y1y2 + µ̃3(y

2
1 + y2

2))y
4
3+

µ̃1(2y
2
1 + y2

2)(y
2
2 + y2

3)(y
2
1 + 2y2

3) − µ̃2(2y
2
1 + y2

2)(y
2
1 + y2

3)(y
2
2 + 2y2

3))
/(

6(y2
1 + y2

2 + y2
3)(y

2
2y

2
3 + y2

1(y
2
2 + y2

3))
)

(5.30)



Chapter 5. Numerical Results 96

f̂33 = −(−4y2
1y

2
2(2f12y1y2 + µ̃3(y

2
1 + y2

2))+

4y1y2(f13y2(2y
2
1 + y2

2) + f23(y
3
1 + 2y1y

2
2))y3+

−2(y2
1 + y2

2)(2f12y1y2 + µ̃3(y
2
1 + y2

2))y
2
3+

2(f13y1(2y
2
1 + y2

2) + f23y2(y
2
1 + 2y2

2))y
3
3 − (2f12y1y2 + µ̃3(y

2
1 + y2

2))y
4
3

+µ̃1(y
2
1 + 2y2

2)(2y
2
1 + y2

3)(y
2
2 + y2

3)+

µ̃2(2y
2
1 + y2

2)(y
2
1 + y2

3)(2y
2
2 + y2

3))
/(

6(y2
1 + y2

2 + y2
3)(y

2
2y

2
3 + y2

1(y
2
2 + y2

3))
)

(5.31)

With the equations in place, f̂ij may be calculated at each voxel except the co-

ordinate axes where it is undefined. The values in these voxels are set using a linear

interpolation of the values in neighbouring voxels. As before we complete the recon-

struction with the three dimensional inverse FFT, giving fij from f̂ij . The results for

our phantoms are illustrated in the next section.

5.4 Results

Below we illustrate the results of our implemented reconstructions. The original used

for comparison is regenerated on a smaller grid matching the reconstructions. Note

that this is smaller than the original phantom used to generate the data. Each page

shows one component of the tensor field, comparing the original phantom to the result

of a reconstruction using the unstable algorithm and one using the stable algorithm.

Figures 5.7 – 5.12 were made using Phantom 1, and Figures 5.13 – 5.18 were made

using Phantom 2. For problems at this scale, the reconstruction time was a couple

of minutes on a 2 GHz dual core AMD Opteron processor. In practice, though this

time will increase, we still expect the limiting factor to be image acquisition time,

which is currently over ten hours.
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.7: Reconstruction of Phantom 1 (smooth), f11
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.8: Reconstruction of Phantom 1 (smooth), f12



Chapter 5. Numerical Results 99

(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.9: Reconstruction of Phantom 1 (smooth), f13
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.10: Reconstruction of Phantom 1 (smooth), f22
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.11: Reconstruction of Phantom 1 (smooth), f23
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.12: Reconstruction of Phantom 1 (smooth), f33
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.13: Reconstruction of Phantom 2 (sharp edges), f11
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.14: Reconstruction of Phantom 2 (sharp edges), f12
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.15: Reconstruction of Phantom 2 (sharp edges), f13
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.16: Reconstruction of Phantom 2 (sharp edges), f22
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.17: Reconstruction of Phantom 2 (sharp edges), f23
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(a) Original phantom

(b) Unstable reconstruction

(c) Stable reconstruction

Figure 5.18: Reconstruction of Phantom 2 (sharp edges), f33
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5.5 Summary

These results clearly illustrate the performance of the two algorithms. Both the three

axis unstable reconstruction and the six axis stable reconstruction show promise. For

sufficiently smooth data sets a three axis reconstruction may be acceptable, as may

be seen from the results for Phantom 1 in Figures 5.7 – 5.12. There are some visible

artefacts but these may be accepted in return for the easier reconstruction. The

advantage of only using three axes is particularly apparent when considering the

physical issues concerning specimen placement and registration issues in matching

views from separate axes of rotation. While acquisition time is dependent on the

number of views, rather than the number of axes, a typical system can collect data

from a number of views for a fixed axis without user interaction. In the case of the

test system [27], each change of axis of rotation requires a user present, so reducing

the number of axes needed can greatly reduce the amount of effort required.

Introducing sharp edges as in Phantom 2, the limitation of the unstable recon-

struction becomes apparent. As may be seen in Figures 5.13 – 5.18, strong artefacts

are visible in the reconstructions with the unstable method. While artefacts are ex-

pected, they do appear surprisingly severe. We postulate that there may be another

factor affecting the reconstructions: The sharp phantom is aligned with the voxel

grid. For the unstable reconstruction, the rotation axes are also aligned with the

voxel grid, whereas the axes used for the stable reconstructions are not. To investi-

gate the effect of this further we rotate the phantom by 45° around the x- and y-axes

and repeat our experiment.

With the rotated phantom our pane-by-plane visualisation becomes difficult to

read, so we use rotated cut-plane instead and look head on for a two dimensional

view. The previous and new visualisations are shown in Figure 5.19.

The main instability of the unstable reconstruction algorithm is due to its inability

to recover the values of f̂ on the coordinate planes. For comparison, as well as

displaying the original rotated phantom, we display a version of the phantom where

we set the Fourier coefficients on each coordinate plane to zero. As we can see
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(a) Original view
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(b) Using tilted cut-planes
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(c) Head-on view

Figure 5.19: Visualisation for rotated phantom
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(b) The original phantom with coordinate-plane
Fourier components set to zero
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(c) Stable reconstruction
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(d) Unstable reconstruction

Figure 5.20: Comparison of artefacts in an unstable reconstruction

in Figure 5.20, the artefacts arising from this manipulation match the artefacts in

the unstable reconstruction very well. In general these are much less severe than

in the axis-aligned phantom, but they are still strong enough to justify a six-axis

reconstruction.
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Conclusions and Future Work

This concludes our investigations into x-ray and photoelastic tomography. While this

thesis is finished, the subject is by no means closed. We give some thoughts on our

journey, and on where to go next.

We have presented new reconstruction results for photoelastic tomography, focus-

ing on limited data problems. We begin with the observation that three dimensional

photoelastic tomography, like three dimensional scalar tomography is dimensionally

overdetermined. This is fortunate, since collecting full three dimensional tomographic

data is extremely difficult, as this would entail scans from directions covering half a

sphere. In this sense, only limited data sets may be collected but our initial numerical

studies show that these limited sets are sufficient for full reconstruction.

We have described an algorithm recently developed by Sharafutdinov and Lion-

heart which gives an explicit reconstruction algorithm for this type of limited data.

With this as our starting point we first extended this excellent work from the Schwartz

class to Sobolev spaces, also giving stability results. We then moved on to describe

several novel reconstruction algorithms for certain commonly occurring special cases

of tensors. We also extended our new results to certain cases of data truncation.

Finally, we gave the first results of numerical implementation of Sharafutdinov and

Lionheart’s algorithm.

During our investigations we made some observations which are relevant in a more

general inverse problems setting:

112
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6.1 Deceptive singular value decomposition

The SVD is a commonly used numerical tool for understanding under-determined

and ill-conditioned problems. While very useful for lower dimensional problems,

care is needed when applying such techniques to problems in higher dimensions.

Due to computational complexity, in particular with tensor valued functions of three

dimensions, only very coarse grids may be possible.

Our initial numerical investigations included a study of the SVD of our forward

model. However, this did not tell the whole story and indeed also gave slightly

misleading results. Looking at just the singular values of the TTRT for one axis,

suggested that a complete reconstruction might be possible. Carrying out a numerical

reconstruction on the other hand gave very poor results. Going back to the theory

we were able to prove the existence of a nullspace. The moral is that results need to

be taken with a pinch of salt, especially when the singular vectors are unavailable or

difficult to interpret.

6.2 Future work

There are a number of obvious directions in which to continue this research. While we

have extended the general reconstruction algorithm of Sharafutdinov and Lionheart

to Sobolev spaces, it is still restricted to a linear approximation. The next step in

this direction is to use projective Newton methods in an iterative non-linear scheme.

This would involve a full ODE solution along each ray to solve the forward problem

of Rytov-Kravtsov. Novikov [19] takes this approach for the non-truncated TRT.

On the numerical side, we believe the implementation is ready to be tested in

experimental data. Until now, TTRT data has unfortunately been difficult to col-

lect but further numerical studies are also of interest. More simulated experiments

investigating performance at various noise levels would no doubt be useful.

We have showed that reconstruction of the full tensor requires data from at least

two, and most likely three axes of rotation. To achieve stable reconstruction of full
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tensors yet more axes are needed. However, as is often the case for inverse problems, it

is worth going back to the underlying question. For some applications, it may not be

the tensor itself, but rather some property calculated from it that is actually sought.

Such properties include the von Mises yield criterion or other tensor invariants. It

may be possible to recover such invariants of the tensor, stably or unstably from fewer

axes of rotation.

The experimental work considered is currently only for parallel light rays. In

many practical applications of x-ray tomography, there has been a tendency to move

towards fan beam and cone beam acquisition modalities. Since a parallel ray geometry

suits our current experimental setup, this is where our theoretical work was focused.

Extending this work to other measurement geometries is yet another interesting open

problem in this field.

Finally, it would be interesting to find some parallels to other fields of applied

tensor tomography. Applications known to this author include diffusion MRI and

seismic imaging. However, these are closer in nature to the TRT, whereas photoelastic

tomography suffer the added complication of the TTRT. For the former problems, one

common problem is the choice of measurement axes. It is clear that six axes whose

outer product spans the space of symmetric matrices are needed, but a possible

optimal choice of such is not known. For the TTRT case we are only recovering

the deviatoric part of the tensor field, and it not clear what the minimal number

of measurements are. Further investigation would benefit not only photoelastic, but

may yield results relevant to other fields using tensor tomography.
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